-
Notifications
You must be signed in to change notification settings - Fork 0
/
aes.py
422 lines (373 loc) · 16.5 KB
/
aes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#!/usr/bin/python3
# TODO make this a command line option
debug = True
# Rcon[] is 1-based, so the first entry is just a place holder
Rcon = bytes([0x00,
0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80,
0x1B, 0x36, 0x6C, 0xD8,
0xAB, 0x4D, 0x9A, 0x2F,
0x5E, 0xBC, 0x63, 0xC6,
0x97, 0x35, 0x6A, 0xD4,
0xB3, 0x7D, 0xFA, 0xEF,
0xC5, 0x91, 0x39, 0x72,
0xE4, 0xD3, 0xBD, 0x61,
0xC2, 0x9F, 0x25, 0x4A,
0x94, 0x33, 0x66, 0xCC,
0x83, 0x1D, 0x3A, 0x74,
0xE8, 0xCB, 0x8D])
# sub bytes box to be used for sub Bytes
# Use self.sbox to access this by row and column
sbox = bytes([
# 0 1 2 3 4 5 6 7 8 9 a b c d e f
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, # 0
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, # 1
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, # 2
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, # 3
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, # 4
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, # 5
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, # 6
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, # 7
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, # 8
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, # 9
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, # a
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, # b
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, # c
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, # d
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, # e
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 # f
])
xtime = lambda a: (((a << 1) ^ 0x1B) & 0xFF) if (a & 0x80) else (a << 1)
def ffAdd(a, b, c, d):
return a ^ b ^ c ^ d
def ffMultiply(a, b):
p = 0
for i in range(8):
if b & 1 == 1:
p ^= a
hi_bit = a & 0x80
a <<= 1
if hi_bit == 0x80:
a ^= 0x1b
b >>= 1
return p % 256
# Convert an array of bytes to an nb x nk matrix
def genMatrix(byte_array, columns, rows):
matrix = [[0 for col in range(columns)] for row in range(rows)]
c = 0
for col in range(columns):
for row in range(rows):
# Pad the matrix with zeros if the byte array is too short
if c >= len(byte_array):
matrix[row][col] = 0x00
else:
matrix[row][col] = byte_array[c]
c += 1
return matrix
def transposeMatrix(state, rows, columns):
byte_array = []
for col in range(columns):
for row in range(rows):
byte_array.append(state[col][row])
state = genMatrix(byte_array, columns, rows)
return state
# Convert an nb x nk matrix into an array of bytes
def genText(state, columns, rows):
# fill the byte array with zeros
byte_array = []
# replace elements in byte array with state data
for col in range(columns):
for row in range(rows):
# Get rid of zero padding
# This may break things that use 0x00 in the middle of a message
if not state[row][col] == 0x00:
byte_array.append(state[row][col])
return bytes(byte_array)
# Print out as a matrix.
def printMatrix(state):
output = ""
for row in state:
output += "[ "
for item in row:
output += "%02x " % item
output += "]\n"
print(output)
return output
def printRow(row):
output = "[ "
for item in row:
output += "%02x " % item
output += "]"
return output
class aes(object):
# Python constructor
def __init__(self, cipher_key, nb, nk):
self.round = 0
self.nb = nb
self.nk = nk
self.nr = self.nb + self.nk + 2
self.k = transposeMatrix(genMatrix(cipher_key, self.nk, self.nb), self.nk, self.nb)
# Initialize the sbox as a matrix and transpose it
self.sbox = transposeMatrix(genMatrix(sbox, 16, 16), 16, 16)
self.key_schedule, self.inv_key_schedule = self.keyExpansion(self.k)
# Initialize encryption recursion
def cipher(self, state):
if debug:
print("\nPLAINTEXT:", self.toString("", state, self.nb))
print("KEY: ", self.toString("", transposeMatrix(self.k, self.nb, self.nk), self.nk))
print("\nCIPHER (ENCRYPT):")
print(self.toString("input", state, self.nb))
state = self.addRoundKey(state)
# Run through all 4 cycles for the number of rounds
for i in range(self.nr - 1):
self.round += 1
if debug: print(self.toString("start", state, self.nb))
state = self.subBytes(state)
state = self.shiftRows(state)
state = self.mixColumns(state)
state = self.addRoundKey(state)
self.round += 1
if debug: print(self.toString("start", state, self.nb))
state = self.subBytes(state)
state = self.shiftRows(state)
state = self.addRoundKey(state)
if debug: print(self.toString("output", state, self.nb))
return state
# Transformation in the Cipher that processes the State using a non-
# linear byte substitution table (S-box) that operates on each of the
# State bytes independently
def subBytes(self, state):
for row in range(self.nb):
for col in range(self.nb):
x = state[row][col] >> 4 # this is the row number in sbox
y = state[row][col] & 0x0f # this is the column number in sbox
state[row][col] = self.sbox[x][y]
if debug: print(self.toString("s_box", state, self.nb))
return state
# This transformation performs a circular shift on each row in the state
# How does it work for matrices with 6 rows?
# Shift by row + 1 % 4
def shiftRows(self, state):
for row in range(self.nb):
byte_array = []
for col in range(self.nb):
byte_array.append(state[row][(col + row) % self.nb])
state[row] = byte_array
if debug: print(self.toString("s_row", state, self.nb))
return state
# Transformation in the Cipher that takes all of the columns of the
# State and mixes their data (independently of one another) to
# produce new columns.
def mixColumns(self, a):
b = [[0 for col in range(self.nb)] for row in range(self.nb)]
for col in range(self.nb):
b[0][col] = ffAdd(
ffMultiply(2, a[0][col]),
ffMultiply(3, a[1][col]),
ffMultiply(1, a[2][col]),
ffMultiply(1, a[3][col]))
b[1][col] = ffAdd(
ffMultiply(1, a[0][col]),
ffMultiply(2, a[1][col]),
ffMultiply(3, a[2][col]),
ffMultiply(1, a[3][col]))
b[2][col] = ffAdd(
ffMultiply(1, a[0][col]),
ffMultiply(1, a[1][col]),
ffMultiply(2, a[2][col]),
ffMultiply(3, a[3][col]))
b[3][col] = ffAdd(
ffMultiply(3, a[0][col]),
ffMultiply(1, a[1][col]),
ffMultiply(1, a[2][col]),
ffMultiply(2, a[3][col]))
if debug: print(self.toString("m_col", b, self.nb))
return b
# Transformation in the Cipher and Inverse Cipher in which a Round
# Key is added to the State using an XOR operation. The length of a
# Round Key equals the size of the State (i.e., for Nb = 4, the Round
# Key length equals 128 bits/16 bytes).
def addRoundKey(self, state):
# Transpose the state to work easier with key schedule
state = transposeMatrix(state, self.nb, self.nb)
result = [[0 for col in range(self.nb)] for row in range(self.nb)]
# Prepare Debug state ment
k_sch = bytearray([])
for i in range(self.nb):
k_sch.extend(self.key_schedule[self.round * self.nb + i])
state[i] = self.xorWords(state[i], self.key_schedule[self.round * self.nb + i])
# Transpose the matrix back to how it should be
state = transposeMatrix(state, self.nb, self.nb)
matrix = genMatrix(k_sch, self.nb, self.nb)
if debug: print(self.toString("k_sch", matrix, self.nb))
return state
def invCipher(self, state):
# Restart the rounds for the inverse cipher
self.round = 0
if debug: print("\nINVERSE CIPHER (DECRYPT):")
if debug: print(self.toString("iinput", state, self.nb))
state = self.invAddRoundKey(state)
# Run through all 4 cycles for the number of rounds
for i in range(self.nr - 1):
if debug: print(self.toString("istart", state, self.nb))
self.round += 1
state = self.invShiftRows(state)
if debug: print(self.toString("is_row", state, self.nb))
state = self.invSubBytes(state)
if debug: print(self.toString("is_box", state, self.nb))
state = self.invAddRoundKey(state)
if debug: print(self.toString("ik_add", state, self.nb))
state = self.invMixColumns(state)
self.round += 1
state = self.invShiftRows(state)
if debug: print(self.toString("is_row", state, self.nb))
state = self.invSubBytes(state)
if debug: print(self.toString("is_box", state, self.nb))
state = self.invAddRoundKey(state)
if debug: print(self.toString("ioutput", state, self.nb))
return state
# Transformation in the Inverse Cipher that is the inverse of SubBytes().
# Row = 17 /16 16 is the length of row in sbox
# col = 17 % 16 ; 17 is the position in array
def invSubBytes(self, state):
for row in range(self.nb):
for col in range(self.nb):
index = sbox.index(state[row][col])
x = int(index / 16) << 4
y = index % 16
state[row][col] = (x | y)
return state
# Transformation in the Inverse Cipher that is the inverse of ShiftRows().
def invShiftRows(self, state):
for row in range(self.nb):
byte_array = []
for col in range(self.nb):
byte_array.append(state[row][(col - row) % self.nb])
state[row] = byte_array
return state
def invAddRoundKey(self, state):
# Transpose the state to work easier with key schedule
state = transposeMatrix(state, self.nb, self.nb)
result = [[0 for col in range(self.nb)] for row in range(self.nb)]
# Prepare Debug state ment
k_sch = bytearray([])
for i in range(self.nb):
k_sch.extend(self.inv_key_schedule[self.round * self.nb + i])
state[i] = self.xorWords(state[i], self.inv_key_schedule[self.round * self.nb + i])
# Transpose the matrix back to how it should be
state = transposeMatrix(state, self.nb, self.nb)
matrix = genMatrix(k_sch, self.nb, self.nb)
if debug: print(self.toString("ik_sch", matrix, self.nb))
return state
# Transformation in the Inverse Cipher that is the inverse of MixColumns().
def invMixColumns(self, a):
b = [[0 for col in range(self.nb)] for row in range(self.nb)]
for col in range(self.nb):
b[0][col] = ffAdd(
ffMultiply(0x0e, a[0][col]),
ffMultiply(0x0b, a[1][col]),
ffMultiply(0x0d, a[2][col]),
ffMultiply(0x09, a[3][col]))
b[1][col] = ffAdd(
ffMultiply(0x09, a[0][col]),
ffMultiply(0x0e, a[1][col]),
ffMultiply(0x0b, a[2][col]),
ffMultiply(0x0d, a[3][col]))
b[2][col] = ffAdd(
ffMultiply(0x0d, a[0][col]),
ffMultiply(0x09, a[1][col]),
ffMultiply(0x0e, a[2][col]),
ffMultiply(0x0b, a[3][col]))
b[3][col] = ffAdd(
ffMultiply(0x0b, a[0][col]),
ffMultiply(0x0d, a[1][col]),
ffMultiply(0x09, a[2][col]),
ffMultiply(0x0e, a[3][col]))
# if debug: print(self.toString("im_col", b, self.nb))
return b
# rotWord() - performs a cyclic permutation on its input word.
# Function used in the Key Expansion routine that takes a four-byte
# word and performs a cyclic permutation.
def rotWord(self, word):
result = [0 for col in range(self.nb)]
for i in range(self.nb):
result[i] = word[(i + 1) % self.nb]
return result
def subWord(self, word):
for byte in range(self.nb):
x = word[byte] >> 4 # this is the row number in sbox
y = word[byte] & 0x0f # this is the column number in sbox
word[byte] = self.sbox[x][y]
# the cipher key which contains nk words.A)
return word
def xorWords(self, a, b):
word = [0 for col in range(self.nb)]
for i in range(self.nb):
word[i] = a[i] ^ b[i]
return word
# The state which contains nr + 1 words
# we also need to know nk
# TODO Debug this for 8 row keys
def keyExpansion(self, state):
# This will become the key schedule
words = genMatrix(bytes([]), self.nb, self.nb * (self.nr + 1))
# Load the cipher key byte by byte
i = 0
while i < self.nk:
for b in range(self.nb):
words[i][b] = state[i][b]
i += 1
# Expand the key
i = self.nk
while i < self.nb * (self.nr + 1):
# Allocate memory for the temp Array
temp = [0 for col in range(self.nb)]
for j in range(4):
temp[j] = words[i - 1][j]
# print(i,"temp", printRow(temp))
if (i % self.nk) == 0:
# Turn a byte from the rcon array into a word
rcon = [0 for col in range(self.nb)]
rcon[0] = Rcon[int(i / self.nk)]
temp = self.rotWord(temp)
# print(i,"rotw", printRow(temp))
temp = self.subWord(temp)
# print(i,"subw", printRow(temp))
temp = self.xorWords(temp, rcon)
# print(i,"rcon", printRow(rcon))
# print(i,"xorw", printRow(temp))
elif (self.nk > 6) and ((i % self.nk) == 4):
# If Nk = 8 and i -4 is a multiple of NK
# Then subword() is applied to words[i - 1] prior to the XOR
temp = self.subWord(temp)
# print(i,"subw", printRow(temp))
# End if
words[i] = self.xorWords(words[i - self.nk], temp)
i += 1
# Generate the inverse key schedule for decipher
inv_words = genMatrix(bytes([]), self.nb, self.nb * (self.nr + 1))
b = self.nb * (self.nr + 1) # Backwards counter
f = 0 # forwards counter
while b > 0:
inv_words[f + 0] = words[b - 4]
inv_words[f + 1] = words[b - 3]
inv_words[f + 2] = words[b - 2]
inv_words[f + 3] = words[b - 1]
f += 4
b -= 4
# if debug: print("key schedule: ")
# if debug: print(printMatrix(transposeMatrix(words, self.nb, self.nb * (self.nr + 1))))
# if debug: print(printMatrix(transposeMatrix(inv_words, self.nb, self.nb * (self.nr + 1))))
return words, inv_words
def toString(self, header, state, columns):
if header == "":
output = header + " "
elif self.round >= 10:
# Do double digits
output = "round[%d]." % self.round + header + " \t"
else:
output = "round[ %d]." % self.round + header + " \t"
for col in range(columns):
for row in range(4):
output += "%02x" % state[row][col]
return output