forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_custom_ops.py
120 lines (94 loc) · 3.87 KB
/
test_custom_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Owner(s): ["module: onnx"]
import onnx_test_common
import pytorch_test_common
import torch
import torch.utils.cpp_extension
from torch.onnx import symbolic_helper
from torch.testing._internal import common_utils
class TestCustomAutogradFunction(pytorch_test_common.ExportTestCase):
opset_version = 9
keep_initializers_as_inputs = False
onnx_shape_inference = True
def test_symbolic(self):
class MyClip(torch.autograd.Function):
@staticmethod
def forward(ctx, input, scalar):
ctx.save_for_backward(input)
return input.clamp(min=scalar)
@staticmethod
def symbolic(g, input, scalar):
return g.op("Clip", input, min_f=scalar)
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.clip = MyClip.apply
def forward(self, x):
h = self.clip(x, 2)
return h
x = torch.randn(2, 3, 4, requires_grad=True)
model = MyModule()
onnx_test_common.run_model_test(self, model, input_args=(x,))
def test_register_op(self):
class MyClip(torch.autograd.Function):
@staticmethod
def forward(ctx, input, scalar):
ctx.save_for_backward(input)
return input.clamp(min=scalar)
class MyRelu(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
return input.clamp(min=0)
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.clip = MyClip.apply
self.relu = MyRelu.apply
def forward(self, x):
h = self.clip(x, 2)
h = self.relu(h)
return h
def symbolic_pythonop(ctx: torch.onnx.SymbolicContext, g, *args, **kwargs):
n = ctx.cur_node
name = kwargs["name"]
if name == "MyClip":
return g.op("Clip", args[0], min_f=args[1], outputs=n.outputsSize())
elif name == "MyRelu":
return g.op("Relu", args[0], outputs=n.outputsSize())
else:
return symbolic_helper._unimplemented(
"prim::PythonOp", "unknown node kind: " + name
)
from torch.onnx import register_custom_op_symbolic
register_custom_op_symbolic("prim::PythonOp", symbolic_pythonop, 1)
x = torch.randn(2, 3, 4, requires_grad=True)
model = MyModule()
onnx_test_common.run_model_test(self, model, input_args=(x,))
class TestExportAsContribOps(pytorch_test_common.ExportTestCase):
opset_version = 14
keep_initializers_as_inputs = False
onnx_shape_inference = True
def test_contrib_op_with_loop(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.gelu = torch.nn.GELU(approximate="none")
def forward(self, x):
res = []
res2 = []
for i in range(x.size(0)):
if len(res) > 0:
res2.append(res[0])
else:
res2.append(self.gelu(x[0]))
res.append(x[0])
return torch.stack(res), torch.stack(res2)
def symbolic_custom_gelu(g, input, approximate):
return g.op("com.microsoft::Gelu", input).setType(input.type())
from torch.onnx import register_custom_op_symbolic
register_custom_op_symbolic("::gelu", symbolic_custom_gelu, 1)
x = torch.randn(3, 3, 4, requires_grad=True)
model = torch.jit.script(M())
onnx_test_common.run_model_test(self, model, input_args=(x,))
if __name__ == "__main__":
common_utils.run_tests()