.. py:module:: torch.library
.. currentmodule:: torch.library
torch.library is a collection of APIs for extending PyTorch's core library of operators. It contains utilities for testing custom operators, creating new custom operators, and extending operators defined with PyTorch's C++ operator registration APIs (e.g. aten operators).
For a detailed guide on effectively using these APIs, please see this gdoc
Use :func:`torch.library.opcheck` to test custom ops for incorrect usage of the Python torch.library and/or C++ TORCH_LIBRARY APIs. Also, if your operator supports training, use :func:`torch.autograd.gradcheck` to test that the gradients are mathematically correct.
.. autofunction:: opcheck
Use :func:`torch.library.custom_op` to create new custom ops.
.. autofunction:: custom_op
Use the register.* methods, such as :func:`torch.library.register_kernel` and func:torch.library.register_fake, to add implementations for any operators (they may have been created using :func:`torch.library.custom_op` or via PyTorch's C++ operator registration APIs).
.. autofunction:: register_kernel
.. autofunction:: register_autograd
.. autofunction:: register_fake
.. autofunction:: impl_abstract
.. autofunction:: get_ctx
The following APIs are direct bindings to PyTorch's C++ low-level operator registration APIs.
Warning
The low-level operator registration APIs and the PyTorch Dispatcher are a complicated PyTorch concept. We recommend you use the higher level APIs above (that do not require a torch.library.Library object) when possible. This blog post <http://blog.ezyang.com/2020/09/lets-talk-about-the-pytorch-dispatcher/>`_ is a good starting point to learn about the PyTorch Dispatcher.
A tutorial that walks you through some examples on how to use this API is available on Google Colab.
.. autoclass:: torch.library.Library :members:
.. autofunction:: fallthrough_kernel
.. autofunction:: define
.. autofunction:: impl