forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
moments_utils.h
206 lines (187 loc) · 6.52 KB
/
moments_utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#pragma once
#include <array>
#include <cstring>
#include <numeric>
#include <utility>
#include <vector>
#include <ATen/Parallel.h>
#include <ATen/OpMathType.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/native/cpu/utils.h>
#include <c10/util/SmallVector.h>
#include <c10/util/irange.h>
namespace at {
namespace native {
inline namespace CPU_CAPABILITY {
template<typename T> using opmath_t = at::opmath_type<T>;
constexpr int64_t kChunkSize = 16;
template <typename T>
void AddMoments(
int64_t m0_add,
const T& m1_add,
const T& m2_add,
int64_t& m0,
T& m1,
T& m2) {
const int64_t n = m0 + m0_add;
const T c = n == 0 ? static_cast<T>(0) : static_cast<T>(m0_add) / static_cast<T>(n);
const T delta = m1_add - m1;
m1 += c * delta;
m2 += m2_add + delta * delta * c * static_cast<T>(m0);
m0 = n;
}
template <typename T>
C10_ALWAYS_INLINE void AddMomentsVec(
int64_t m0_add,
const vec::Vectorized<T>& m1_add,
const vec::Vectorized<T>& m2_add,
int64_t& m0,
vec::Vectorized<T>& m1,
vec::Vectorized<T>& m2) {
using Vec = vec::Vectorized<T>;
const int64_t n = m0 + m0_add;
const T c = n == 0 ? static_cast<T>(0) : static_cast<T>(m0_add) / static_cast<T>(n);
const Vec c_vec(c);
const Vec delta = m1_add - m1;
m1 += c_vec * delta;
m2 += m2_add + delta * delta * c_vec * Vec(static_cast<T>(m0));
m0 = n;
}
template <typename T>
inline typename std::enable_if<std::is_same<T, opmath_t<T>>::value, void>::type
UpdateMomentsVec(
int64_t m0,
const T* X_ptr,
const std::array<vec::Vectorized<opmath_t<T>>, kChunkSize>& c_vecs,
int64_t& m0_stk0,
vec::Vectorized<opmath_t<T>>& m1_stk0,
vec::Vectorized<opmath_t<T>>& m2_stk0) {
using Vec = vec::Vectorized<opmath_t<T>>;
Vec m1_vec(0);
Vec m2_vec(0);
for (const auto j : c10::irange(m0)) {
const Vec x_vec = Vec::loadu(X_ptr + j * Vec::size());
const Vec delta_vec = x_vec - m1_vec;
m1_vec += delta_vec * c_vecs[j];
m2_vec += delta_vec * (x_vec - m1_vec);
}
AddMomentsVec(m0, m1_vec, m2_vec, m0_stk0, m1_stk0, m2_stk0);
}
// each bfloat16/half vector will be converted to two float vectors,
// and accumulated successively on m1_stk0/m2_stk0.
template <typename T>
inline typename std::enable_if<!std::is_same<T, at::opmath_type<T>>::value, void>::type
UpdateMomentsVec(
int64_t m0,
const T* X_ptr,
const std::array<vec::Vectorized<at::opmath_type<T>>, kChunkSize>& c_vecs,
int64_t& m0_stk0,
vec::Vectorized<at::opmath_type<T>>& m1_stk0,
vec::Vectorized<at::opmath_type<T>>& m2_stk0) {
using Vec = vec::Vectorized<T>;
using fVec = vec::Vectorized<at::opmath_type<T>>;
fVec m1_fvec0(0), m1_fvec1(0);
fVec m2_fvec0(0), m2_fvec1(0);
for (const auto j : c10::irange(m0)) {
const Vec x_bvec = Vec::loadu(X_ptr + j * Vec::size());
auto [x_fvec0, x_fvec1] = convert_to_float<T>(x_bvec);
const fVec delta_fvec0 = x_fvec0 - m1_fvec0;
const fVec delta_fvec1 = x_fvec1 - m1_fvec1;
m1_fvec0 += delta_fvec0 * c_vecs[j];
m1_fvec1 += delta_fvec1 * c_vecs[j];
m2_fvec0 += delta_fvec0 * (x_fvec0 - m1_fvec0);
m2_fvec1 += delta_fvec1 * (x_fvec1 - m1_fvec1);
}
AddMomentsVec(m0, m1_fvec0, m2_fvec0, m0_stk0, m1_stk0, m2_stk0);
AddMomentsVec(m0, m1_fvec1, m2_fvec1, m0_stk0, m1_stk0, m2_stk0);
}
// Compute rowwise moments by Welford algorithm and cascade sum to improve
// numerical stability.
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
// https://en.wikipedia.org/wiki/Pairwise_summation
template <typename T, int64_t kMaxDepth>
std::pair<opmath_t<T>, opmath_t<T>> RowwiseMomentsImpl(const T* X, int64_t N, int64_t ddof = 0) {
using math_t = opmath_t<T>;
constexpr int64_t kVecSize = vec::Vectorized<T>::size();
constexpr int64_t kAccVecSize = vec::Vectorized<math_t>::size();
const int64_t n = N / kVecSize;
const int64_t m = divup(n, kChunkSize);
const int64_t depth = utils::CeilLog2(m);
using Vec = vec::Vectorized<math_t>;
const Vec kZeroVec(math_t(0));
c10::SmallVector<int64_t, kMaxDepth> m0_stk(depth, 0);
c10::SmallVector<Vec, kMaxDepth> m1_stk(depth, kZeroVec);
c10::SmallVector<Vec, kMaxDepth> m2_stk(depth, kZeroVec);
for (const auto i : c10::irange(m)) {
const T* X_ptr = X + i * kChunkSize * kVecSize;
const int64_t m0 = std::min(kChunkSize, n - i * kChunkSize);
static std::array<Vec, kChunkSize> c_vecs = ([]() {
std::array<Vec, kChunkSize> result;
for (const auto i : c10::irange(kChunkSize)) {
result[i] = Vec(math_t(1) / static_cast<math_t>(i + 1));
}
return result;
})();
UpdateMomentsVec(m0, X_ptr, c_vecs, m0_stk[0], m1_stk[0], m2_stk[0]);
int64_t mask = i + 1;
for (int64_t j = 1; j < depth && (mask & 1) == 0; ++j) {
AddMomentsVec(
m0_stk[j - 1],
m1_stk[j - 1],
m2_stk[j - 1],
m0_stk[j],
m1_stk[j],
m2_stk[j]);
m0_stk[j - 1] = 0;
m1_stk[j - 1] = kZeroVec;
m2_stk[j - 1] = kZeroVec;
mask >>= 1;
}
}
for (const auto i : c10::irange(1, depth)) {
AddMomentsVec(
m0_stk[i], m1_stk[i], m2_stk[i], m0_stk[0], m1_stk[0], m2_stk[0]);
}
std::array<math_t, kAccVecSize> m1_arr{};
std::array<math_t, kAccVecSize> m2_arr{};
m1_stk[0].store(m1_arr.data());
m2_stk[0].store(m2_arr.data());
int64_t m0 = 0;
math_t m1 = 0;
math_t m2 = 0;
for (int64_t i = n * kVecSize; i < N; ++i) {
math_t x = static_cast<math_t>(X[i]);
const math_t delta = x - m1;
++m0;
m1 += delta / static_cast<math_t>(m0);
m2 += delta * (x - m1);
}
// for BFloat16, each vector in m1_arr/m2_arr holds 2*n accumulated result
int64_t m0_add = n * kVecSize / kAccVecSize;
for (const auto i : c10::irange(kAccVecSize)) {
AddMoments(m0_add, m1_arr[i], m2_arr[i], m0, m1, m2);
}
return std::make_pair(m1, m2 / static_cast<math_t>(N - ddof));
}
template <typename T>
std::pair<opmath_t<T>, opmath_t<T>> RowwiseMoments(const T* X, int64_t N, int64_t ddof = 0) {
using Vec = vec::Vectorized<T>;
constexpr int64_t kVecSize = Vec::size();
const int64_t n = N / kVecSize;
const int64_t m = divup(n, kChunkSize);
const int64_t depth = utils::CeilLog2(m);
if (depth <= 4) {
return RowwiseMomentsImpl<T, 4>(X, N, ddof);
} else if (depth <= 8) {
return RowwiseMomentsImpl<T, 8>(X, N, ddof);
} else if (depth <= 16) {
return RowwiseMomentsImpl<T, 16>(X, N, ddof);
} else if (depth <= 32) {
return RowwiseMomentsImpl<T, 32>(X, N, ddof);
} else {
return RowwiseMomentsImpl<T, 64>(X, N, ddof);
}
}
} // namespace CPU_CAPABILITY
} // namespace native
} // namespace at