forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ReduceUtils.h
238 lines (216 loc) · 8.6 KB
/
ReduceUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#pragma once
#include <ATen/Parallel.h>
#include <ATen/NumericUtils.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/native/ReductionType.h>
#include <c10/util/irange.h>
#include <ATen/OpMathType.h>
#include <ATen/native/cpu/utils.h>
#include <ATen/OpMathType.h>
namespace at::native {
inline namespace CPU_CAPABILITY {
using namespace vec;
#define AT_DISPATCH_REDUCTION_TYPES(op, ...) \
[&] { \
switch (op) { \
case ReductionType::SUM: { \
static constexpr auto reduce = ReductionType::SUM; \
return __VA_ARGS__(); \
} \
case ReductionType::MEAN: { \
static constexpr auto reduce = ReductionType::MEAN; \
return __VA_ARGS__(); \
} \
case ReductionType::MIN: { \
static constexpr auto reduce = ReductionType::MIN; \
return __VA_ARGS__(); \
} \
case ReductionType::MAX: { \
static constexpr auto reduce = ReductionType::MAX; \
return __VA_ARGS__(); \
} \
case ReductionType::PROD: { \
static constexpr auto reduce = ReductionType::PROD; \
return __VA_ARGS__(); \
} \
} \
}()
template <typename scalar_t, ReductionType reduce>
inline vec_scalar_t<scalar_t> init_value() {
using acc_t = vec_scalar_t<scalar_t>;
acc_t val;
if (reduce == ReductionType::SUM ||
reduce == ReductionType::MEAN) {
val = static_cast<acc_t>(0);
} else if (reduce == ReductionType::PROD) {
val = static_cast<acc_t>(1);
} else if (reduce == ReductionType::MAX) {
val = -std::numeric_limits<acc_t>::infinity();
} else {
TORCH_INTERNAL_ASSERT(reduce == ReductionType::MIN);
val = std::numeric_limits<acc_t>::infinity();
}
return val;
}
template <typename scalar_t, ReductionType reduce>
inline vec_scalar_t<scalar_t> init_value(const c10::optional<Scalar>& initial) {
using acc_t = vec_scalar_t<scalar_t>;
if (initial.has_value()) {
return initial.value().to<acc_t>();
} else {
return init_value<scalar_t, reduce>();
}
}
template <typename scalar_t>
inline void init(scalar_t* out, int64_t size, const vec_scalar_t<scalar_t>& val) {
using Vec = Vectorized<vec_scalar_t<scalar_t>>;
map<scalar_t>(
[val](Vec x) { return Vec(val); },
out,
out,
size);
}
template <typename scalar_t, ReductionType reduce>
inline void init(scalar_t* out, int64_t size, const c10::optional<Scalar>& initial) {
using acc_t = vec_scalar_t<scalar_t>;
acc_t val = init_value<scalar_t, reduce>(initial);
init(out, size, val);
}
// overload with `include_self`, used by scatter_reduce
template <typename scalar_t, ReductionType reduce>
inline void init(scalar_t* out, int64_t size, bool include_self = false) {
using acc_t = vec_scalar_t<scalar_t>;
if (!include_self) {
acc_t val = init_value<scalar_t, reduce>();
init(out, size, val);
}
}
template <typename scalar_t, ReductionType reduce>
inline void _init(scalar_t* self_ptr, at::opmath_type<scalar_t>* buffer_ptr, int64_t size, bool include_self) {
if (!include_self) {
init<at::opmath_type<scalar_t>, reduce>(buffer_ptr, size, include_self);
} else {
vec::convert(self_ptr, buffer_ptr, size);
}
}
template <typename scalar_t>
inline typename std::enable_if<!std::is_same<scalar_t, Vec2>::value, scalar_t>::type
_max(const scalar_t& x, const scalar_t& y) {
return at::_isnan(y) ? y : std::max(x, y);
}
template <typename scalar_t>
inline Vectorized<scalar_t> _max(const Vectorized<scalar_t>& x, const Vectorized<scalar_t>& y) {
// vec::maximum propagates NaN
return vec::maximum(x, y);
}
template <typename vec_t>
inline typename std::enable_if<std::is_same<vec_t, Vec2>::value, Vec2>::type
_max(const vec_t& x, const vec_t& y) {
// vec::maximum propagates NaN
return maximum(x, y);
}
template <typename scalar_t>
inline typename std::enable_if<!std::is_same<scalar_t, Vec2>::value, scalar_t>::type
_min(const scalar_t& x, const scalar_t& y) {
return at::_isnan(y) ? y : std::min(x, y);
}
template <typename scalar_t>
inline Vectorized<scalar_t> _min(const Vectorized<scalar_t>& x, const Vectorized<scalar_t>& y) {
// vec::minimum propagates NaN
return vec::minimum(x, y);
}
template <typename vec_t>
inline typename std::enable_if<std::is_same<vec_t, Vec2>::value, Vec2>::type
_min(const vec_t& x, const vec_t& y) {
// vec::minimum propagates NaN
return minimum(x, y);
}
template <typename scalar_t, typename accumut, typename Op,
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
inline void map_acc(
const Op& vec_fun,
accumut* output_data,
const accumut* input_data,
const scalar_t* input_data2,
int64_t size) {
using Vec = vec::Vectorized<scalar_t>;
using aVec = vec::Vectorized<accumut>;
int64_t d = 0;
constexpr int64_t kVecSize = Vec::size();
constexpr int64_t kaVecSize = aVec::size();
for (d = 0; d < size - (size % kVecSize); d += kVecSize) {
Vec data2_vec = Vec::loadu(input_data2 + d);
auto [data2_avec0, data2_avec1] = convert_to_float<scalar_t>(data2_vec);
aVec input_vec0 = aVec::loadu(input_data + d);
aVec input_vec1 = aVec::loadu(input_data + d + kaVecSize);
vec_fun(input_vec0, data2_avec0).store(output_data + d);
vec_fun(input_vec1, data2_avec1).store(output_data + d + kaVecSize);
}
if (size - d > 0) {
int64_t tail_size = size - d;
Vec data2_vec = Vec::loadu(input_data2 + d, tail_size);
auto [data2_avec0, data2_avec1] = convert_to_float<scalar_t>(data2_vec);
if (tail_size > kaVecSize) {
aVec input_vec0 = aVec::loadu(input_data + d);
aVec input_vec1 = aVec::loadu(input_data + d + kaVecSize, tail_size - kaVecSize);
vec_fun(input_vec0, data2_avec0).store(output_data + d);
vec_fun(input_vec1, data2_avec1).store(output_data + d + kaVecSize, tail_size - kaVecSize);
} else {
aVec input_vec0 = aVec::loadu(input_data + d, tail_size);
vec_fun(input_vec0, data2_avec0).store(output_data + d, tail_size);
}
}
}
// for Max and Min, propagate NaN:
template <typename T, ReductionType reduce>
inline T update(const T& x, const T& y) {
if (reduce == ReductionType::SUM ||
reduce == ReductionType::MEAN) {
return x + y;
} else if (reduce == ReductionType::PROD) {
return x * y;
} else if (reduce == ReductionType::MAX) {
return _max(x, y);
} else {
TORCH_INTERNAL_ASSERT(reduce == ReductionType::MIN);
return _min(x, y);
}
}
template <typename scalar_t, ReductionType reduce>
inline void update(scalar_t* out, const scalar_t* data, int64_t K) {
using Vec = vec::Vectorized<vec_scalar_t<scalar_t>>;
map2<scalar_t>(
[](Vec x, Vec y) { return update<Vec, reduce>(x, y); },
out,
out,
data,
K);
}
template <typename scalar_t, ReductionType reduce,
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
inline void update(at::opmath_type<scalar_t>* out, const scalar_t* data, int64_t K) {
using opmath_t = at::opmath_type<scalar_t>;
using Vec = vec::Vectorized<opmath_t>;
map_acc<scalar_t, opmath_t>(
[](Vec x, Vec y) { return update<Vec, reduce>(x, y); },
out,
out,
data,
K);
}
template <typename scalar_t, ReductionType reduce>
inline void write(scalar_t* out, int64_t count, int64_t K) {
using Vec = vec::Vectorized<vec_scalar_t<scalar_t>>;
if (reduce == ReductionType::MEAN) {
if (count > 0) {
vec::map<scalar_t>(
[count](Vec x) { return x / Vec(count); },
out,
out,
K);
}
}
}
} // namespace CPU_CAPABILITY
} // namespace at::native