-
Create and activate a local Conda environment in the current folder:
conda create --prefix ./.conda python=3.9 -y conda activate ./.conda
-
Install all required dependencies:
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia pip install -r requirements.txt
-
Generate
requirements.txt
:pip freeze > requirements.txt
The requirements.txt
file contains all the dependencies required for this project. You can install them using:
pip install -r requirements.txt
pip install tensorboard==2.12.0 pip install numpy==1.23.0 tensorboard --logdir="/mnt/pipeline_1/MLT/writer_logs/training_try_stage2_share/" --port=6007
mkdir -p ./mnt/pipeline_1/MLT/Weather/training_try_stage2_share/
Training To train the model, run the training script:
bash train_mult.sh
Testing After training, you can test the model by running the following script:
bash test.sh
Inference For inference on new data, use the following Python script:
python inference.py --model_path <path_to_pretrained_model> --save_path <path_to_save_visualization_results>
--model_path
: The path to the pretrained model. This should point to the model file you wish to use for inference.
--save_path
: The directory where the visualization results will be saved.