-
Notifications
You must be signed in to change notification settings - Fork 0
/
ResNet.py
92 lines (69 loc) · 3.37 KB
/
ResNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
import torch.nn as nn
class block(nn.Module):
def __init__(self, in_channels, out_channels, identity_downsample=None, stride=1):
super(block, self).__init__()
self.expansion = 4
self.cov1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(out_channels)
self.cov2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
self.cov3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, stride=1, padding=0)
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
self.relu = nn.ReLU()
self.identity_downsample = identity_downsample
def forward(self, x):
identity = x
x = self.relu(self.bn1(self.cov1(x)))
x = self.relu(self.bn2(self.cov2(x)))
x = self.bn3(self.cov3(x))
if self.identity_downsample is not None:
identity = self.identity_downsample(identity)
x += identity
x = self.relu(x)
return x
class ResNet(nn.Module):
def __init__(self, block, layers, image_channels, num_classes):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(image_channels, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, layers[0], out_channels=64, stride=1)
self.layer2 = self._make_layer(block, layers[1], out_channels=128, stride=2)
self.layer3 = self._make_layer(block, layers[2], out_channels=256, stride=2)
self.layer4 = self._make_layer(block, layers[3], out_channels=512, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(512*4, num_classes)
def forward(self, x):
x = self.maxpool(self.relu(self.bn1(self.conv1(x))))
x = self.layer4(self.layer3(self.layer2(self.layer1(x))))
x = self.avgpool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc(x)
return x
def _make_layer(self, block, num_residual_blocks, out_channels, stride):
identity_downsample = None
layers = []
if stride != 1 or self.in_channels != out_channels * 4:
identity_downsample = nn.Sequential(nn.Conv2d(self.in_channels, out_channels * 4, kernel_size=1,
stride=stride),
nn.BatchNorm2d(out_channels * 4))
layers.append(block(self.in_channels, out_channels, identity_downsample, stride))
self.in_channels = out_channels * 4
for i in range(num_residual_blocks - 1):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def ResNet50(img_channels=3, num_classes=1000):
return ResNet(block, [3, 4, 6, 3], img_channels, num_classes)
def ResNet101(img_channels=3, num_classes=1000):
return ResNet(block, [3, 4, 23, 3], img_channels, num_classes)
def ResNet152(img_channels=3, num_classes=1000):
return ResNet(block, [3, 8, 36, 3], img_channels, num_classes)
def test():
net = ResNet152()
x = torch.randn(2, 3, 224, 224)
y = net(x)
print(y.shape)
test()