forked from wavewangyue/ner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_lstm_crf.py
60 lines (46 loc) · 2.61 KB
/
model_lstm_crf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import tensorflow as tf
import random
import numpy as np
class MyModel(object):
def __init__(self,
embedding_dim,
hidden_dim,
vocab_size_char,
vocab_size_bio,
use_crf):
self.inputs_seq = tf.placeholder(tf.int32, [None, None], name="inputs_seq")
self.inputs_seq_len = tf.placeholder(tf.int32, [None], name="inputs_seq_len")
self.outputs_seq = tf.placeholder(tf.int32, [None, None], name='outputs_seq')
with tf.variable_scope('embedding_layer'):
embedding_matrix = tf.get_variable("embedding_matrix", [vocab_size_char, embedding_dim], dtype=tf.float32)
embedded = tf.nn.embedding_lookup(embedding_matrix, self.inputs_seq)
with tf.variable_scope('encoder'):
cell_fw = tf.nn.rnn_cell.LSTMCell(hidden_dim)
cell_bw = tf.nn.rnn_cell.LSTMCell(hidden_dim)
((rnn_fw_outputs, rnn_bw_outputs), (rnn_fw_final_state, rnn_bw_final_state)) = tf.nn.bidirectional_dynamic_rnn(
cell_fw=cell_fw,
cell_bw=cell_bw,
inputs=embedded,
sequence_length=self.inputs_seq_len,
dtype=tf.float32
)
rnn_outputs = tf.add(rnn_fw_outputs, rnn_bw_outputs) # B * S1 * D
with tf.variable_scope('projection'):
logits_seq = tf.layers.dense(rnn_outputs, vocab_size_bio) # B * S * V
probs_seq = tf.nn.softmax(logits_seq)
if not use_crf:
preds_seq = tf.argmax(probs_seq, axis=-1, name="preds_seq") # B * S
else:
log_likelihood, transition_matrix = tf.contrib.crf.crf_log_likelihood(logits_seq, self.outputs_seq, self.inputs_seq_len)
preds_seq, crf_scores = tf.contrib.crf.crf_decode(logits_seq, transition_matrix, self.inputs_seq_len)
self.outputs = preds_seq
with tf.variable_scope('loss'):
if not use_crf:
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_seq, labels=self.outputs_seq) # B * S
masks = tf.sequence_mask(self.inputs_seq_len, dtype=tf.float32) # B * S
loss = tf.reduce_sum(loss * masks, axis=-1) / tf.cast(self.inputs_seq_len, tf.float32) # B
else:
loss = -log_likelihood / tf.cast(self.inputs_seq_len, tf.float32) # B
self.loss = tf.reduce_mean(loss)
with tf.variable_scope('opt'):
self.train_op = tf.train.AdamOptimizer().minimize(loss)