-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathwebui.py
304 lines (264 loc) · 13.2 KB
/
webui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os, torch, argparse, asyncio, websockets, threading
import gradio as gr
from src import quantize
from langchain import PromptTemplate
from langchain_community.llms import LlamaCpp
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_core.prompts import PromptTemplate
from core import list_converted_gguf_models, default_repo_id, read_config, update_config, removeModelFromCache
import sys
sys.path.append('./src/llama_cpp/')
sys.path.append('./src/')
cache_gguf_dir = os.path.join(os.getcwd(), "src/quantized_model")
# Callbacks support token-wise streaming
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
#check if cuda is available
device = 'cuda' if torch.cuda.is_available() else 'cpu'
state, config = read_config()
if state == None:
config.set('Settings', 'execution_provider', device)
config.set('Settings', 'repo_id', default_repo_id)
update_config(config)
else:
default_repo_id = config.get('Settings', 'repo_id')
device = config.get('Settings', 'execution_provider')
def snapshot_download_and_convert_to_gguf(repo_id):
gguf_model_path = quantize.quantize_model(repo_id)
return gguf_model_path
n_gpu_layers = None
if device == "cuda":
n_gpu_layers = -1
else:
n_gpu_layers = 0
n_ctx = 6000
n_batch = 30
n_parts = 1
temperature = 0.9
max_tokens = 4095
def init_llm_chain(model_path):
llm = LlamaCpp(
model_path=model_path,
n_gpu_layers=n_gpu_layers,
n_ctx=n_ctx,
n_batch=n_batch,
temperature=temperature,
max_tokens=max_tokens,
n_parts=n_parts,
callback_manager=callback_manager,
verbose=True
)
template = """Question: {question}
Answer: Let's work this out in a step by step way to be sure we have the right answer."""
prompt = PromptTemplate.from_template(template)
llm_chain = prompt | llm
return llm_chain, llm
def parse_args():
parser = argparse.ArgumentParser(description='Optional arguments for --host & --port.')
parser.add_argument('--host', type=str, default='0.0.0.0', help='The host IP to run the server on.')
parser.add_argument('--port', type=int, default=7860, help='The port to run the server on.')
parser.add_argument('--share', type=bool, default=False, help='To create a public link.')
return parser.parse_args()
args = parse_args()
model_path = snapshot_download_and_convert_to_gguf(default_repo_id)
async def generate(websocket):
async for message in websocket:
output = llm_chain.stream(message)
for character in output:
await asyncio.sleep(0)
await websocket.send(character)
async def start_websockets():
print(f"Starting WebSocket server on port 7861 ...")
async with websockets.serve(generate, "localhost", 7861):
await asyncio.Future()
async def main():
await start_websockets()
with gr.Blocks(css='style.css') as demo:
with gr.Tabs(selected="chat") as tabs:
with gr.Tab("Chat", id="chat"):
with gr.Row():
with gr.Column(scale=1):
title = gr.Button(
value="LLMinator",
scale=1,
variant="primary",
interactive=True,
elem_id="title-container"
)
converted_models_chat = gr.Dropdown(
choices=list_converted_gguf_models(cache_gguf_dir),
value=default_repo_id,
max_choices=5,
filterable=True,
info="Default: stabilityai/stable-code-instruct-3b",
label="Selected Model",
)
with gr.Group():
execution_provider = gr.Radio(
["cuda", "cpu"],
value=device,
label="Execution providers",
info="Select Device"
)
with gr.Column(scale=4):
with gr.Group():
chatbot = gr.Chatbot(elem_id="chatbot-container")
msg = gr.Textbox(label="Prompt")
stop = gr.Button("Stop")
with gr.Tab("Models", id="models"):
with gr.Row():
with gr.Column():
with gr.Group():
model_repo_id = gr.Textbox(
value="",
label="Hugging Face Repo",
info="Default: stabilityai/stable-code-instruct-3b",
interactive=True
)
format_choice = gr.Dropdown(
choices=["gguf"],
value="gguf",
label="Convert Format",
interactive=True
)
download_convert_btn = gr.Button(
value="Download Snapshot & Convert",
variant="secondary",
interactive=True
)
with gr.Row():
with gr.Group():
converted_models = gr.Dropdown(
choices=list_converted_gguf_models(cache_gguf_dir),
value=default_repo_id,
max_choices=5,
filterable=True,
info="gguf models available in the disk",
label="Converted Models",
interactive=True
)
send_to_chat_btn = gr.Button(
value="Send to Chat",
variant="secondary",
interactive=True
)
with gr.Group():
saved_gguf_models = gr.Dropdown(
choices=list_converted_gguf_models(cache_gguf_dir),
max_choices=5,
filterable=True,
info="gguf models available in the disk",
label="Remove Models",
interactive=True
)
remove_model_btn = gr.Button(
value="Remove Model",
variant="danger",
interactive=True
)
with gr.Tab("Configs", id="configs"):
with gr.Row():
with gr.Column(elem_id="configs-container"):
n_gpu_layers_input = gr.Slider(0, 5000, value=5000, step=1, label="n_gpu_layers", visible=torch.cuda.is_available(), interactive= True)
n_ctx_input = gr.Slider(100, 6000, value=6000, label="n_ctx", interactive= True)
n_batch_input = gr.Slider(1, 512, value=30, label="n_batch", visible=torch.cuda.is_available(), interactive= True)
n_parts_input = gr.Slider(1, 10, step=1, value=1, label="n_parts", interactive= True)
temperature_input = gr.Slider(0.1, 1, step=0.1, value=0.9, label="temperature", interactive= True)
max_tokens_input = gr.Slider(1, 4095, value=4095, label="max_tokens", interactive= True)
with gr.Row():
config_update_btn = gr.Button(
value="Update Configs",
variant="primary",
interactive=True
)
config_reset_btn = gr.Button(
value="Reset Configs",
variant="primary",
interactive=True
)
llm_chain, llm = init_llm_chain(model_path)
def updateConfigs(n_gpu_layers_input, n_ctx_input, n_batch_input, n_parts_input, temperature_input, max_tokens_input):
global n_gpu_layers, n_ctx, n_batch, n_parts, temperature, max_tokens, llm_chain, llm
if torch.cuda.is_available():
n_gpu_layers = n_gpu_layers_input
if n_batch_input < n_ctx_input:
n_batch = n_batch_input
else:
raise gr.Error("n_batch should be between 1 and n_ctx")
else:
n_gpu_layers = 0
n_ctx = 30
n_ctx = n_ctx_input
n_parts = n_parts_input
temperature = temperature_input
max_tokens = max_tokens_input
llm_chain, llm = init_llm_chain(model_path)
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.Tabs(selected="chat")
def resetConfigs():
global n_gpu_layers, n_ctx, n_batch, n_parts, temperature, max_tokens, llm_chain, llm
n_gpu_layers = 0
n_ctx = 6000
n_batch = 30
n_parts = 1
temperature = 0.9
max_tokens = 4095
llm_chain, llm = init_llm_chain(model_path)
return gr.update(value="0"), gr.update(value="6000"), gr.update(value="30"), gr.update(value="1"), gr.update(value="0.9"), gr.update(value="4095")
def updateExecutionProvider(provider, gguf_model):
global device
if provider == "cuda":
if torch.cuda.is_available():
device = "cuda"
else:
raise gr.Error("Torch not compiled with CUDA enabled. Please make sure cuda is installed.")
else:
device = "cpu"
update_config(config, execution_provider=provider)
loadModel(gguf_model)
return gr.update(value=device)
def removeModel(model_name):
removeModelFromCache(model_name)
return gr.update(choices=list_converted_gguf_models(cache_gguf_dir)), gr.update(choices=list_converted_gguf_models(cache_gguf_dir)), gr.update(choices=list_converted_gguf_models(cache_gguf_dir))
def user(user_message, history):
return "", history + [[user_message, None]]
def downloadConvertModel(model_repo_id):
if model_repo_id:
snapshot_download_and_convert_to_gguf(model_repo_id)
return gr.update(value=""), gr.update(choices=list_converted_gguf_models(cache_gguf_dir)), gr.update(choices=list_converted_gguf_models(cache_gguf_dir)), gr.update(choices=list_converted_gguf_models(cache_gguf_dir))
else:
raise gr.Error("Repo can not be empty!")
def loadModel(repo_id):
global llm_chain, llm
model_path = snapshot_download_and_convert_to_gguf(repo_id)
llm_chain, llm = init_llm_chain(model_path)
update_config(config, repo_id=repo_id)
def loadModelFromModelsTab(model_repo_id):
loadModel(model_repo_id)
return gr.update(value=model_repo_id), gr.Tabs(selected="chat")
def loadModelFromChatTab(repo_id):
loadModel(repo_id)
return gr.update(value=repo_id)
def bot(history):
print("Question: ", history[-1][0])
output = llm_chain.stream(history[-1][0])
print("stream:", output)
history[-1][1] = ""
for character in output:
# print(character)
history[-1][1] += character
yield history
submit_event = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, chatbot, chatbot)
# stop.click(None, None, None, cancels=[submit_event], queue=False)
download_convert_btn.click(downloadConvertModel, model_repo_id, [model_repo_id, converted_models_chat, converted_models, saved_gguf_models], queue=False, show_progress="full")
send_to_chat_btn.click(loadModelFromModelsTab, converted_models, [converted_models_chat, tabs], queue=False, show_progress="full")
converted_models_chat.change(loadModelFromChatTab, converted_models_chat, converted_models_chat, queue=False, show_progress="full")
remove_model_btn.click(removeModel, saved_gguf_models, [saved_gguf_models, converted_models_chat, converted_models], queue=False, show_progress="full")
execution_provider.change(updateExecutionProvider, [execution_provider, converted_models_chat], execution_provider, queue=False, show_progress="full")
config_update_btn.click(updateConfigs, [n_gpu_layers_input, n_ctx_input, n_batch_input, n_parts_input, temperature_input, max_tokens_input], [n_gpu_layers_input, n_ctx_input, n_batch_input, n_parts_input, temperature_input, max_tokens_input, tabs], queue=False, show_progress="full")
config_reset_btn.click(resetConfigs, None, [n_gpu_layers_input, n_ctx_input, n_batch_input, n_parts_input, temperature_input, max_tokens_input], queue=False, show_progress="full")
demo.queue()
def launch_demo():
demo.launch(server_name=args.host, server_port=args.port, share=args.share)
if __name__ == "__main__":
threading.Thread(target=launch_demo).start()
asyncio.run(main())