-
Notifications
You must be signed in to change notification settings - Fork 9
/
eval_nvs.py
71 lines (56 loc) · 2.18 KB
/
eval_nvs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import numpy as np
from argparse import ArgumentParser
import torch
from skimage.io import imread
from tqdm import tqdm
from torchmetrics.functional import structural_similarity_index_measure
import lpips
def compute_psnr_float(img_gt, img_pr):
img_gt = img_gt.reshape([-1, 3]).astype(np.float32)
img_pr = img_pr.reshape([-1, 3]).astype(np.float32)
mse = np.mean((img_gt - img_pr) ** 2, 0)
mse = np.mean(mse)
psnr = 10 * np.log10(1 / mse)
return psnr
def color_map_forward(rgb):
dim = rgb.shape[-1]
if dim==3:
return rgb.astype(np.float32)/255
else:
rgb = rgb.astype(np.float32)/255
rgb, alpha = rgb[:,:,:3], rgb[:,:,3:]
rgb = rgb * alpha + (1-alpha)
return rgb
def main():
parser = ArgumentParser()
parser.add_argument('--gt',type=str)
parser.add_argument('--pr',type=str)
parser.add_argument('--name',type=str)
args = parser.parse_args()
num_images = 16
gt_dir = args.gt
pr_dir = args.pr
lpips_fn = lpips.LPIPS(net='vgg').cuda().eval()
psnrs, ssims, lpipss = [], [], []
for k in tqdm(range(num_images)):
img_gt_int = imread(os.path.join(gt_dir, f'{k:03}.png'))
img_pr_int = imread(os.path.join(pr_dir, f'{k:03}.png'))
img_gt = color_map_forward(img_gt_int)
img_pr = color_map_forward(img_pr_int)
psnr = compute_psnr_float(img_gt, img_pr)
with torch.no_grad():
img_gt_tensor = torch.from_numpy(img_gt.astype(np.float32)).permute(2,0,1).unsqueeze(0).cuda()
img_pr_tensor = torch.from_numpy(img_pr.astype(np.float32)).permute(2,0,1).unsqueeze(0).cuda()
ssim = float(structural_similarity_index_measure(img_pr_tensor, img_gt_tensor).flatten()[0].cpu().numpy())
gt_img_th, pr_img_th = img_gt_tensor*2-1, img_pr_tensor*2-1
score = float(lpips_fn(gt_img_th, pr_img_th).flatten()[0].cpu().numpy())
ssims.append(ssim)
lpipss.append(score)
psnrs.append(psnr)
msg=f'{args.name}\t{np.mean(psnrs):.5f}\t{np.mean(ssims):.5f}\t{np.mean(lpipss):.5f}'
print(msg)
with open('/nvs.log','a') as f:
f.write(msg+'\n')
if __name__=="__main__":
main()