From 394b5f7cbd7a0609b03034dbf5cc10a7847a6769 Mon Sep 17 00:00:00 2001 From: Xingyi Yang <787707188@qq.com> Date: Sun, 12 Mar 2023 01:27:25 +0800 Subject: [PATCH] Update ReadMe more descriptions on inference, and more emoji --- README.md | 31 ++++++++++++++++++++----------- 1 file changed, 20 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index fdd6088..c2f6e15 100644 --- a/README.md +++ b/README.md @@ -12,7 +12,7 @@ This repository contains the offical implementation for our CVPR-2023 paper. **Consistent-Teacher: Towards Reducing Inconsistent Pseudo-targets in Semi-supervised Object Detection** -[[arxiv](https://arxiv.org/abs/2209.01589)] [[code](https://github.com/Adamdad/ConsistentTeacher)] +[[arxiv](https://arxiv.org/abs/2209.01589)] [[code](https://github.com/Adamdad/ConsistentTeacher)] [[project page](https://adamdad.github.io/consistentteacher/)] Xinjiang Wang*, Xingyi Yang*, Shilong Zhang, Yijiang Li, Litong Feng, Shijie Fang, Chengqi Lyu, Kai Chen, Wayne Zhang @@ -23,6 +23,7 @@ Xinjiang Wang*, Xingyi Yang*, Shilong Zhang, Yijiang Li, Litong Feng, Shijie Fan ![](assets/pipeline.jpg) ## Main Results +All results, logs, configs and checkpoints are listed here. Enjoy 👀! **MS-COCO 1%/2%/5/%/10% Labeled Data** @@ -100,6 +101,7 @@ Xinjiang Wang*, Xingyi Yang*, Shilong Zhang, Yijiang Li, Litong Feng, Shijie Fan ``` ### Notes - Defaultly, all models are trained on 8*V100 GPUs with 5 images per GPU. +- Additionally, we support the `2x8` and `fp16` training setting to ensure everyone is able to run the code, even with only 12G graphic cards. ## Usage @@ -147,6 +149,19 @@ bash tools/dataset/prepare_coco_data.sh conduct ``` For concrete instructions of what should be downloaded, please refer to `tools/dataset/prepare_coco_data.sh` line [`11-24`](https://github.com/microsoft/SoftTeacher/blob/863d90a3aa98615be3d156e7d305a22c2a5075f5/tools/dataset/prepare_coco_data.sh#L11) + +#### VOC0712 Dataset +- Download JSON files for unlabeled images PASCAL VOC data in COCO format +``` +cd ${DATAROOT} + +wget https://storage.cloud.google.com/gresearch/ssl_detection/STAC_JSON.tar +tar -xf STAC_JSON.tar.gz +# voc/VOCdevkit/VOC2007/instances_test.json +# voc/VOCdevkit/VOC2007/instances_trainval.json +# voc/VOCdevkit/VOC2012/instances_trainval.json +``` + ### Training - To train model on the **partial labeled data** and **full labeled data** setting: @@ -164,17 +179,11 @@ bash tools/dist_train.sh configs/consistent-teacher/consistent_teacher_r50_fpn_c The core idea is to convert a new dataset to coco format. Details about it can be found in the [adding new dataset](https://github.com/open-mmlab/mmdetection/blob/master/docs/tutorials/customize_dataset.md). -#### VOC0712 Dataset -- Download JSON files for unlabeled images PASCAL VOC data in COCO format -``` -cd ${DATAROOT} +### Inference and Demo +- To inference with the pretrained models on images and videos and plot the bounding boxes, we add two scripts + - `tools/inference.py` for image inference + - `tools/inference_vido.py` for video inference -wget https://storage.cloud.google.com/gresearch/ssl_detection/STAC_JSON.tar -tar -xf STAC_JSON.tar.gz -# voc/VOCdevkit/VOC2007/instances_test.json -# voc/VOCdevkit/VOC2007/instances_trainval.json -# voc/VOCdevkit/VOC2012/instances_trainval.json -``` ## License