-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClean_Code_Fenics_FPE.py
186 lines (145 loc) · 5.45 KB
/
Clean_Code_Fenics_FPE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import gc
import logging
import json
import numpy as np
from tqdm import tqdm
from mpi4py import MPI
from dolfin import *
from scipy.interpolate import LinearNDInterpolator
# Logging setup
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Configuration
CONFIG_PATH = "config.json"
def load_config(config_path):
"""Load configuration from a JSON file."""
try:
with open(config_path, "r") as file:
return json.load(file)
except Exception as e:
logger.error(f"Failed to load configuration: {e}")
raise
config = load_config(CONFIG_PATH)
def initialize_mpi_environment():
"""Initialize MPI and print rank-specific information."""
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
if rank == 0:
logger.info(f"Initialized MPI environment with {size} processes")
return comm, rank
def setup_mesh(config):
"""Create a mesh for the domain."""
try:
mesh = BoxMesh(
MPI.COMM_WORLD,
Point(*config["domain"]["lower_bounds"]),
Point(*config["domain"]["upper_bounds"]),
*config["domain"]["resolution"]
)
logger.info("Mesh created successfully.")
return mesh
except Exception as e:
logger.error(f"Error in mesh creation: {e}")
raise
class LorenzSystem(UserExpression):
"""Represents the Lorenz system."""
def eval(self, values, x):
sigma, rho, beta = config["lorenz"]["sigma"], config["lorenz"]["rho"], config["lorenz"]["beta"]
values[0] = sigma * (x[1] - x[0])
values[1] = x[0] * (rho - x[2]) - x[1]
values[2] = x[0] * x[1] - beta * x[2]
def value_shape(self):
return (3,)
class StateSpaceDistribution(UserExpression):
"""Interpolate an initial density."""
def __init__(self, interpolant, **kwargs):
self.interpolant = interpolant
super().__init__(**kwargs)
def eval(self, values, x):
result = self.interpolant(*x)
values[:] = result if not np.isnan(result) else 0
def generate_diffusion_vector():
"""Generate a diffusion vector based on user-defined configuration."""
params = config["diffusion"]
return np.random.normal(params["mean"], params["std"], 2).tolist() + [
np.random.uniform(params["range"][0], params["range"][1])
]
def define_diffusion_matrices(dw):
"""Define diffusion and control matrices."""
diffusion_matrix = Constant(
((config["intensity"] * dw[i] * dw[j] for j in range(3)) for i in range(3))
)
control_matrix = Constant(config["control_matrix"])
return diffusion_matrix, control_matrix
def load_initial_data(file_path, mesh):
"""Load initial density data."""
try:
data = np.genfromtxt(file_path, delimiter=',')
interpolant = LinearNDInterpolator(data[:, :2], data[:, 2])
logger.info(f"Loaded initial density data from {file_path}")
return interpolant
except Exception as e:
logger.error(f"Failed to load initial data: {e}")
raise
def solve_fokker_planck(mesh, u_sol, u0, solver, plot_dir):
"""Solve the Fokker-Planck equation iteratively."""
simulation_time = 0
counter = 0
progress = tqdm(total=int(config["simulation"]["total_time"] / config["simulation"]["time_step"]),
desc="Solving Fokker-Planck")
while simulation_time <= config["simulation"]["total_time"]:
counter += 1
try:
solver.solve()
u0.assign(u_sol)
except Exception as e:
logger.error(f"Solver error at step {counter}: {e}")
break
if counter % config["output"]["save_interval"] == 0:
if MPI.COMM_WORLD.Get_rank() == 0:
os.makedirs(f"{plot_dir}/data", exist_ok=True)
solution_data = u0.compute_vertex_values(mesh)
np.save(f"{plot_dir}/data/solution_{counter}.npy", solution_data)
simulation_time += config["simulation"]["time_step"]
progress.update(1)
progress.close()
def main():
comm, rank = initialize_mpi_environment()
# Setup simulation
mesh = setup_mesh(config)
dw = generate_diffusion_vector()
diffusion_matrix, control_matrix = define_diffusion_matrices(dw)
interpolant = load_initial_data(config["initial_distribution_path"], mesh)
# Function spaces
V = FunctionSpace(mesh, 'CG', 1)
W = VectorFunctionSpace(mesh, 'CG', 1)
lorenz_expr = LorenzSystem(degree=2)
FX = interpolate(lorenz_expr, W)
# Initial density
u = TrialFunction(V)
v = TestFunction(V)
u0 = interpolate(
StateSpaceDistribution(interpolant, element=V.ufl_element(), degree=2),
V
)
# Fokker-Planck equation
operator = dot(diffusion_matrix * grad(u), grad(v)) * dx - u * inner(FX, grad(v)) * dx
fokker_planck_eq = (1.0 / config["simulation"]["time_step"]) * dot(u - u0, v) * dx + config["theta"] * operator
u_sol = Function(V)
problem = LinearVariationalProblem(lhs(fokker_planck_eq), rhs(fokker_planck_eq), u_sol)
solver = LinearVariationalSolver(problem)
solver.parameters["linear_solver"] = "gmres"
solver.parameters["preconditioner"] = "ilu"
# Solve and plot
solve_fokker_planck(mesh, u_sol, u0, solver, config["output"]["plot_dir"])
# Clean up
gc.collect()
comm.Barrier()
if __name__ == "__main__":
main()