-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathInteractive_CSTR.py
638 lines (491 loc) · 30.5 KB
/
Interactive_CSTR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
import tkinter as tk
from tkinter import *
from tkinter import ttk
from tkinter import messagebox
from scipy import interpolate
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.optimize import minimize
from scipy.interpolate import interp1d
from gekko import GEKKO
def main():
raiz = Tk()
gui = Window(raiz)
gui.raiz.mainloop()
return None
class Window:
def __init__(self, raiz):
self.raiz = raiz
self.raiz.resizable(1,1)
self.raiz.title("APM Continuously Stirred Tank Reactor (CSTR)")
self.raiz.geometry('1350x750+0+0')
## ===================================== VARIABLES ===============================
# ------------------------------- DATAS ----------------------------------------
self.q_copy = DoubleVar(value=100.00); self.V_copy = DoubleVar(value=1.00); self.rho_copy = DoubleVar(value=1000.00)
self.Cp_copy = DoubleVar(value=0.239); self.mdelH_copy = DoubleVar(value=5e4); self.EoverR_copy = DoubleVar(value=8750.0);
self.k0_copy = DoubleVar(value=7.2e10); self.UA_copy = DoubleVar(value=5e4);
self.Tf_copy = DoubleVar(value=360.0);
# ------------------------------ STEADY STATE VALUES -----------------------
self.T_ss_copy = DoubleVar(value=377.7587);
self.u_ss_copy = DoubleVar(value=300.0);
self.Ca_ss_copy = DoubleVar(value=0.137525);
# ------------------------------- MODELING PROCESS -------------------------------
self.Caf_copy = DoubleVar(value=1.0);self.Stp1_copy = DoubleVar(value=303.0); self.Stp2_copy = DoubleVar(value=297.0);
self.Stp3_copy = DoubleVar(value=300.0); self.Kp_copy = DoubleVar();self.Tp_copy = DoubleVar();self.Lp_copy = DoubleVar();
self.Kc_copy = DoubleVar();self.Ti_copy = DoubleVar();self.Td_copy = DoubleVar();
self.Tc = DoubleVar(value=300.0) ; self.T=DoubleVar(value=300.0); self.Ca=DoubleVar(value=1.0);self.Atenty=StringVar('')
self.SP1_copy=DoubleVar(value=310.00); self.SP2_copy=DoubleVar(value=335.00)
## ======================================== GUI =============================================================== ##
Column0=Label(self.raiz, width=3);Column0.grid(row=0,column=0,rowspan=18)
# Column3=Label(self.raiz, width=5);Column3.grid(row=0,column=3,rowspan=18)
Column7=Label(self.raiz, width=10);Column7.grid(row=0,column=9,rowspan=18)
labComp=Label(self.raiz, text="----- DATAS -------", borderwidth=2, relief="groove",font= 'arial 11 bold',width=20);
labComp.grid(row=2,column=1,columnspan=3,sticky="sewn",padx=0,pady=10)
Fe=ttk.Entry(self.raiz,textvariable=self.q_copy, validate="focusout", validatecommand=self.kk, width=10);Fe.grid(row=3,column=2,padx=0,pady=2); Fe.config(justify="left") #Comp1.insert(10,20.8)
lblFe=ttk.Label(self.raiz, text="q(m3/hs)="); lblFe.grid(row=3,column=1,sticky="e",padx=0,pady=2)
lblFe_d=ttk.Label(self.raiz, text="Volumetric Flowrate"); lblFe_d.grid(row=3,column=3,sticky="w",padx=0,pady=2)
V=ttk.Entry(self.raiz,textvariable=self.V_copy, validate="focusout", validatecommand=self.kk, width=10);V.grid(row=4,column=2,padx=0,pady=2); V.config(justify="left")#; #Comp2.insert(10,0.0)
lblV=ttk.Label(self.raiz, text="V(m^3)="); lblV.grid(row=4,column=1,sticky="e",padx=0,pady=2)
lblV=ttk.Label(self.raiz, text="Volume of CSTR"); lblV.grid(row=4,column=3,sticky="w",padx=0,pady=2)
Dem=ttk.Entry(self.raiz,textvariable=self.rho_copy, validate="focusout", validatecommand=self.kk, width=10);Dem.grid(row=5,column=2,padx=0,pady=2); Dem.config(justify="left")#; #Comp3.insert(10, 0.0)
lblDem=ttk.Label(self.raiz, text="rho(kg/m^3)="); lblDem.grid(row=5, column=1, sticky="e", padx=0, pady=2)
lblDem_d=ttk.Label(self.raiz, text="Density of A --> B Mixture"); lblDem_d.grid(row=5, column=3, sticky="w", padx=0, pady=2)
Cp=ttk.Entry(self.raiz,textvariable=self.Cp_copy, validate="focusout", validatecommand=self.kk, width=10);Cp.grid(row=6,column=2,padx=0,pady=2); Cp.config(justify="left")#; #Comp3.insert(10, 0.0)
lblCp=ttk.Label(self.raiz, text="Cp(J/kg-°K)="); lblCp.grid(row=6, column=1, sticky="e", padx=0, pady=2)
lblCp_d=ttk.Label(self.raiz, text="Heat Capacity of A --> B Mixture"); lblCp_d.grid(row=6, column=3, sticky="w", padx=0, pady=2)
DH=ttk.Entry(self.raiz,textvariable=self.mdelH_copy, validate="focusout", validatecommand=self.kk, width=10);DH.grid(row=7,column=2,padx=0,pady=2); DH.config(justify="left")#; Comp4.insert(10,0.0)
lblDH=ttk.Label(self.raiz,text="DH(J/mol)="); lblDH.grid(row=7,column=1,sticky="e",padx=0,pady=2)
lblDH_d=ttk.Label(self.raiz, text="Heat of reaction for A --> B"); lblDH_d.grid(row=7, column=3, sticky="w", padx=0, pady=2)
E_R=ttk.Entry(self.raiz,textvariable=self.EoverR_copy, validate="focusout", validatecommand=self.kk, width=10);E_R.grid(row=8,column=2,padx=0,pady=2); E_R.config(justify="left")#; Comp5.insert(10,0.0)
lblE_R=Label(self.raiz, text="E/R(°K)="); lblE_R.grid(row=8,column=1,sticky="e",padx=0,pady=2)
lblE_R_d=ttk.Label(self.raiz, text="E=Activation Energy/R=Cte Gases"); lblE_R_d.grid(row=8, column=3, sticky="w", padx=0, pady=2)
k0=ttk.Entry(self.raiz,textvariable=self.k0_copy, validate="focusout", validatecommand=self.kk, width=10);k0.grid(row=9,column=2,padx=0,pady=2); k0.config(justify="left")#; ko.insert(10,0.0)
lblk0=ttk.Label(self.raiz, text="ko(1/sec) ="); lblk0.grid(row=9,column=1,sticky="e",padx=0,pady=2)
lblk0_d=ttk.Label(self.raiz, text="Pre-exponential factor"); lblk0_d.grid(row=9, column=3, sticky="w", padx=0, pady=2)
UA=ttk.Entry(self.raiz,textvariable=self.UA_copy, validate="focusout", validatecommand=self.kk, width=10);UA.grid(row=10,column=2,padx=0,pady=2); UA.config(justify="left")#;# Comp7.insert(10,0.0)
lblUA=Label(self.raiz, text="UA(W/°K)="); lblUA.grid(row=10,column=1,sticky="e",padx=0,pady=2)
lblUA_d=ttk.Label(self.raiz, text="Overall Heat Transfer Coefficient"); lblUA_d.grid(row=10, column=3, sticky="w", padx=0, pady=2)
# ------------------------------- SS Initial Conditions -------------------------------
lbCargaDatos=Label(self.raiz,text="-- SS Initial Conditions --", borderwidth=2, relief="groove",font= 'arial 10 bold',width=20)
lbCargaDatos.grid(row=11,column=1,columnspan=3,sticky="sewn",padx=0,pady=15)
lblCa_0_Value=Label(self.raiz,textvariable=self.Ca_ss_copy, borderwidth=2, relief="sunken", width=9, fg="green");
lblCa_0_Value.grid(row=12, column=2, pady=2, padx=0, sticky='w'); lblCa_0_Value.config(justify="left")
lblCa_0=ttk.Label(self.raiz, text="Ca_ss(mol/dm3)="); lblCa_0.grid(row=12,column=1,sticky="e",padx=0,pady=2)
lblCa_0_d=ttk.Label(self.raiz, text="Concentration of A in CSTR"); lblCa_0_d.grid(row=12, column=3, sticky="w", padx=0, pady=2),#font= 'arial 10 bold'
btCondIniciales = tk.Button(self.raiz, text="-- Steady State --",command = self.iniConditions,font= 'arial 10 bold',foreground = "green")
btCondIniciales.grid(row=12, column=3,sticky="e",padx=0,pady=0);#btTunePID.config(justify="center", foreground="green")
lblT_0_Value=Label(self.raiz,textvariable=self.T_ss_copy, borderwidth=2, relief="sunken", width=9, fg="green");
lblT_0_Value.grid(row=13, column=2, pady=2, padx=0, sticky='w'); lblCa_0_Value.config(justify="left")
lblT_0=ttk.Label(self.raiz, text="T_ss="); lblT_0.grid(row=13,column=1,sticky="e",padx=0,pady=2)
lblT_0_d=ttk.Label(self.raiz, text="SS Temperature in CSTR"); lblT_0_d.grid(row=13, column=3, sticky="w", padx=0, pady=2)
Tce_0=ttk.Entry(self.raiz,textvariable=self.u_ss_copy, validate="focusout", validatecommand=self.kk, width=10);Tce_0.grid(row=14,column=2,padx=0,pady=2); Tce_0.config(justify="left") #Comp0.insert(10,15.5)
lblTce_0=ttk.Label(self.raiz, text="Tc_ss(°K)="); lblTce_0.grid(row=14,column=1,sticky="e",padx=0,pady=2)
labTce_0_d=ttk.Label(self.raiz, text="SS Temperature of cooling jacket"); labTce_0_d.grid(row=14,column=3,sticky="w",padx=0,pady=2)
Tf=ttk.Entry(self.raiz,textvariable=self.Tf_copy, validate="focusout", validatecommand=self.kk, width=10);Tf.grid(row=15,column=2,padx=0,pady=2); Tf.config(justify="left")#; Comp8.insert(10,0.0)
lblTf=ttk.Label(self.raiz, text="Tf(°k)="); lblTf.grid(row=15,column=1,sticky="e",padx=0,pady=2)
lblTf_d=ttk.Label(self.raiz, text="Feed Temperature"); lblTf_d.grid(row=15, column=3, sticky="w", padx=0, pady=2)
Caf=ttk.Entry(self.raiz,textvariable=self.Caf_copy, validate="focusout", validatecommand=self.kk, width=10);Caf.grid(row=16,column=2,padx=0,pady=2); Caf.config(justify="left")#; Comp8.insert(10,0.0)
lblCaf=ttk.Label(self.raiz, text="Caf(mol/m3)="); lblCaf.grid(row=16,column=1,sticky="e",padx=0,pady=2)
lblCaf_d=ttk.Label(self.raiz, text="Feed Concentration"); lblCaf_d.grid(row=16, column=3, sticky="w", padx=0, pady=2)
Stp1=ttk.Entry(self.raiz,textvariable=self.Stp1_copy, validate="focusout", validatecommand=self.kk, width=10);Stp1.grid(row=17,column=2,padx=0,pady=2); Stp1.config(justify="left")#; Comp8.insert(10,0.0)
lblStp1=ttk.Label(self.raiz, text="Step1(1:10]="); lblStp1.grid(row=17,column=1,sticky="e",padx=0,pady=2)
lblStp1_d=ttk.Label(self.raiz, text="Step N°1 en Tc"); lblStp1_d.grid(row=17, column=3, sticky="w", padx=0, pady=2)
Stp2=ttk.Entry(self.raiz,textvariable=self.Stp2_copy, validate="focusout", validatecommand=self.kk, width=10);Stp2.grid(row=18,column=2,padx=0,pady=2); Stp2.config(justify="left")#; Comp8.insert(10,0.0)
lblStp2=ttk.Label(self.raiz, text="Step2 [10:19]="); lblStp2.grid(row=18,column=1,sticky="e",padx=0,pady=2)
lblStp2_d=ttk.Label(self.raiz, text="Step N°2 en Tc"); lblStp2_d.grid(row=18, column=3, sticky="w", padx=0, pady=2)
Stp3=ttk.Entry(self.raiz,textvariable=self.Stp3_copy, validate="focusout", validatecommand=self.kk, width=10);Stp3.grid(row=19,column=2,padx=0,pady=2); Stp3.config(justify="left")#; Comp8.insert(10,0.0)
lblStp3=ttk.Label(self.raiz, text="Stp3 [19:]="); lblStp3.grid(row=19,column=1,sticky="e",padx=0,pady=2)
lblStp3_d=ttk.Label(self.raiz, text="Step N°3 on Tc"); lblStp3_d.grid(row=19, column=3, sticky="w", padx=0, pady=2)
# ---------------------- Test - MODELING and TUNNING -------------------------------
btDoubleTest= ttk.Button(self.raiz, text="Double Test",command = self.graphStep)
btDoubleTest.grid(row=20, column=0,sticky="w",padx=5,pady=5)
btModel = ttk.Button(self.raiz, text="Modeling",command = self.graphModel)
btModel.grid(row=20, column=1,sticky="w",padx=5,pady=5)
lblKp=ttk.Label(self.raiz, text="Kp="); lblKp.grid(row=21,column=0,sticky="w",padx=0,pady=2); lblKp.config(justify="left")
lblKp_Value=Label(self.raiz,textvariable=self.Kp_copy, borderwidth=2, relief="sunken", width=9, fg="green");
lblKp_Value.grid(row=21, column=0, pady=2, padx=0, sticky='e'); lblKp_Value.config(justify="right")
lblKp_d=ttk.Label(self.raiz, text="Ganancia"); lblKp_d.grid(row=21, column=1, sticky="w", padx=0, pady=2)
lblTp_Value=Label(self.raiz,textvariable=self.Tp_copy, borderwidth=2, relief="sunken", width=9, fg="green");
lblTp_Value.grid(row=22, column=0, pady=2, padx=0, sticky='e'); lblTp_Value.config(justify="left")
lblTp=ttk.Label(self.raiz, text="Tp="); lblTp.grid(row=22,column=0,sticky="w",padx=0,pady=2)
lblTp_d=ttk.Label(self.raiz, text="Cte de tiempo"); lblTp_d.grid(row=22, column=1, sticky="w", padx=0, pady=2)
lblLp_Value=Label(self.raiz,textvariable=self.Lp_copy, borderwidth=2, relief="sunken", width=9, fg="green");
lblLp_Value.grid(row=23, column=0, pady=2, padx=0, sticky='e'); lblLp_Value.config(justify="left")
lblLp=ttk.Label(self.raiz, text="Lp="); lblLp.grid(row=23,column=0,sticky="w",padx=0,pady=2)
lblLp_d=ttk.Label(self.raiz, text="Lag Time"); lblLp_d.grid(row=23, column=1, sticky="w", padx=0, pady=2)
btTunePID = ttk.Button(self.raiz, text="Tunning PID",command = self.TunePID)
btTunePID.grid(row=20,columnspan=2, column=2,sticky="we",padx=5,pady=5);#btTunePID.config(justify="center", foreground="green")
lblSP1=ttk.Label(self.raiz, text="Sp1[0:10]:"); lblSP1.grid(row=21,column=2,sticky="e",padx=0,pady=2); lblSP1.config(justify="right")
SP1_Value=ttk.Entry(self.raiz,textvariable=self.SP1_copy, validate="focusout", validatecommand=self.kk, width=10);
SP1_Value.grid(row=21,column=3,padx=0,pady=2,sticky='w'); SP1_Value.config(justify="left", foreground="green")
lblSP2=ttk.Label(self.raiz, text="Sp2[10:]:"); lblSP2.grid(row=22,column=2,sticky="e",padx=0,pady=2); lblSP2.config(justify="right")
SP2_Value=ttk.Entry(self.raiz,textvariable=self.SP2_copy, validate="focusout", validatecommand=self.kk, width=10);
SP2_Value.grid(row=22,column=3,padx=0,pady=2,sticky='w'); SP2_Value.config(justify="left", foreground="green")
lblKc=ttk.Label(self.raiz, text="Kc="); lblKc.grid(row=23,column=2,sticky="e",padx=0,pady=2); lblKc.config(justify="right")
Kc_Value=ttk.Entry(self.raiz,textvariable=self.Kc_copy, validate="focusout", validatecommand=self.kk, width=10);
Kc_Value.grid(row=23,column=3,padx=0,pady=2,sticky='w'); Kc_Value.config(justify="left", foreground="green")
lblKc_d=ttk.Label(self.raiz, text="Proportional Gain"); lblKc_d.grid(row=23, column=3, sticky="w", padx=70, pady=2)
lblKc_d.config(justify="right")
lblTi=ttk.Label(self.raiz, text="Ti="); lblTi.grid(row=24,column=2,sticky="e",padx=0,pady=2); lblTi.config(justify="right")
Ti_Value=ttk.Entry(self.raiz,textvariable=self.Ti_copy, validate="focusout", validatecommand=self.kk, width=10);
Ti_Value.grid(row=24,column=3,padx=0,pady=2,sticky='w'); Ti_Value.config(justify="left", foreground="green")
lblTi_d=ttk.Label(self.raiz, text="T Integral"); lblTi_d.grid(row=24, column=3, sticky="w", padx=70, pady=2)
lblTi_d.config(justify="right")
lblTd=ttk.Label(self.raiz, text="Td="); lblTd.grid(row=25,column=2,sticky="e",padx=0,pady=2); lblTd.config(justify="right")
Td_Value=ttk.Entry(self.raiz,textvariable=self.Td_copy, validate="focusout", validatecommand=self.kk, width=10);
Td_Value.grid(row=25,column=3,padx=0,pady=2,sticky='w'); Td_Value.config(justify="left", foreground="green")
lblTd_d=ttk.Label(self.raiz, text="T Derivative"); lblTd_d.grid(row=25, column=3, sticky="w", padx=70, pady=2)
lblTd_d.config(justify="right")
# lblTp_d=ttk.Label(self.raiz, text="Cte de tiempo"); lblTp_d.grid(row=22, column=1, sticky="w", padx=0, pady=2)
# lblTp_d=ttk.Label(self.raiz, text="Cte de tiempo"); lblTp_d.grid(row=22, column=1, sticky="w", padx=0, pady=2)
# tk.Tk.iconbitmap(self.raiz,default="APM.ico")
def kk(self):
## #y=self.Y0.get()
## self.q_copy.set('%6.2f'%self.q_copy.get());self.V.set('%6.2f'%self.V_copy.get());self.Cp_copy.set('%8.4f'%self.Cp_copy.get())
## self.mdelH_copy.set('%6.2f'%self.mdelH_copy.get());self.rho_copy.set('%6.2f'%self.rho_copy.get());self.EoverR_copy.set('%6.2f'%self.EoverR_copy.get());self.ko_copy.set('%6.2f'%self.ko_copy.get());
## self.UA_copy.set('%6.2f'%self.UA_copy.get());self.Tf_copy.set('%6.2f'%self.Tf_copy.get());self.Caf_copy.set('%6.2f'%self.Caf_copy.get())
## self.Y12.set('%6.2f'%self.Y12.get());self.Y13.set('%6.2f'%self.Y13.get());self.Y14.set('%6.2f'%self.Y14.get());self.Y15.set('%6.2f'%self.Y15.get())
## #self.P.set('%8.2f'%self.P.get());self.T.set('%8.2f'%self.T.get()) #;self.Y14.set('%6.2f'%self.Y14.get());self.Y15.set('%6.2f'%self.Y15.get())
return True
# define CSTR model
def cstr(self,x,t,u,Tf,Caf):
# Inputs (3):
# Temperature of cooling jacket (K)
Tc = u
# Tf = Feed Temperature (K)
# Caf = Feed Concentration (mol/m^3)
# States (2):
# Concentration of A in CSTR (mol/m^3)
Ca = x[0]
# Temperature in CSTR (K)
T = x[1]
self.q=float(self.q_copy.get());self.V=float(self.V_copy.get());self.Cp=float(self.Cp_copy.get())
self.EoverR=float(self.EoverR_copy.get());self.k0=float(self.k0_copy.get());self.UA=float(self.UA_copy.get());
self.mdelH=float(self.mdelH_copy.get());self.rho=float(self.rho_copy.get());
# self.Tf_copy=float(self.Tf.get());self.Caf_copy=float(self.Caf.get());#self.Esc3=float(self.Esc3.get());
#self.T=float(self.T.get());self.Ca=float(self.Ca.get());self.Tc=float(self.Tc.get());
# print('type(Tc)=',type(Tc));print('type(T)=',type(T));print('type(Ca)=',type(Ca));print('type(q)=',type(self.q));
# print('type(V)=',type(self.V));print('type(Cp)=',type(self.Cp));print('type(k0)=',type(self.k0));
# print('type(UA)=',type(self.UA));print('type(EoverR)=',type(self.EoverR));print('type(mdelH)=',type(self.mdelH));
# print('type(rho)=',type(self.rho));# print('type(q)=',type(q));
# Parameters:
# Volumetric Flowrate (m^3/sec)
# q = 100
# Volume of CSTR (m^3)
# V = 100
# Density of A-B Mixture (kg/m^3)
# rho = 1000
# Heat capacity of A-B Mixture (J/kg-K)
# Cp = 0.239
# Heat of reaction for Calor de ReaccionA->B (J/mol)
# mdelH = 5e4
# E - Activation energy in the Arrhenius Equation (J/mol)
# R - Universal Gas Constant = 8.31451 J/mol-K
# EoverR = 8750
# Pre-exponential factor (1/sec)
# k0 = 7.2e10
# U - Overall Heat Transfer Coefficient (W/m^2-K)
# A - Area - this value is specific for the U calculation (m^2)
# UA = 5e4
# reaction rate
rA = self.k0*np.exp(-(self.EoverR/T))*Ca#self.k0*
# Calculate concentration derivative
dCadt = self.q/(self.V*100)*(Caf - Ca) - rA
# Calculate temperature derivative
dTdt = self.q/(self.V*100)*(Tf - T) \
+ self.mdelH/(self.rho*self.Cp)*rA\
+ self.UA/(self.V*100)/self.rho/self.Cp*(Tc-T)
# Return xdot:
xdot = np.zeros(2)
xdot[0] = dCadt
xdot[1] = dTdt
return xdot
def iniConditions(self,*args):
m=GEKKO(remote=False)
q=float(self.q_copy.get());V=float(self.V_copy.get());Cp=float(self.Cp_copy.get())
EoverR=float(self.EoverR_copy.get());k0=float(self.k0_copy.get());UA=float(self.UA_copy.get());
mdelH=float(self.mdelH_copy.get());rho=float(self.rho_copy.get());
Tf=float(self.Tf_copy.get());
Tc=float(self.u_ss_copy.get());
Caf=float(self.Caf_copy.get());
T_1=m.Var(value=300.0)
Ca_1=m.Var(value=1.0)
m.Equation(q/(V*100)*(Tf - T_1)+mdelH/(rho*Cp)*(k0*2.7184**(-(EoverR/T_1))*Ca_1)+UA/(V*100)/rho/Cp*(Tc-T_1)==0)
m.Equation(q/(V*100)*(Caf - Ca_1) - (k0*2.7184**(-(EoverR/T_1))*Ca_1)==0)
m.solve() #disp=False
self.Ca_ss_copy.set('%7.4f'%Ca_1.value[0])
self.T_ss_copy.set('%7.4f'%T_1.value[0])
pass
def graphStep(self,*args):
# Steady State Initial Conditions for the States
# Ca_ss = 0.87725294608097
# T_ss = 324.475443431599
self.Ca_ss=float(self.Ca_ss_copy.get());self.T_ss=float(self.T_ss_copy.get());self.u_ss=float(self.u_ss_copy.get())
self.Stp1=float(self.Stp1_copy.get());self.Stp2=float(self.Stp2_copy.get());self.Stp3=float(self.Stp3_copy.get());
Tf=float(self.Tf_copy.get());Caf=float(self.Caf_copy.get());#self.Esc3=float(self.Esc3.get());
x0 = np.empty(2)
x0[0] = self.Ca_ss
x0[1] = self.T_ss
# Steady State Initial Condition
# u_ss = 300.0
# Feed Temperature (K)
# Tf = 350
# Feed Concentration (mol/m^3)
# Caf = 1
# Time Interval (min)
t = np.linspace(0,25,251)
# Store results for plotting
Ca = np.ones(len(t)) * self.Ca_ss
T = np.ones(len(t)) * self.T_ss
u = np.ones(len(t)) * self.u_ss
# Step cooling temperature to 295
u[10:100] = self.Stp1
u[100:190] = self.Stp2
u[190:] = self.Stp3
# Simulate CSTR
for i in range(len(t)-1):
ts = [t[i],t[i+1]]
y = odeint(self.cstr,x0,ts,args=(u[i+1],Tf,Caf))
Ca[i+1] = y[-1][0]
T[i+1] = y[-1][1]
x0[0] = Ca[i+1]
x0[1] = T[i+1]
# Construct results and save data file
# Column 1 = time
# Column 2 = cooling temperature
# Column 3 = reactor temperature
data = np.vstack((t,u,T)) # vertical stack
data = data.T # transpose data
np.savetxt('data_doublet.txt',data,delimiter=',')
plt.figure()
plt.subplot(3,1,1)
plt.plot(t,u,'b--',linewidth=3)
plt.ylabel('Cooling T (°K)')
plt.legend(['Jacket Temperature'],loc='best')
plt.subplot(3,1,2)
plt.plot(t,Ca,'r-',linewidth=3)
plt.ylabel('Ca (mol/L)')
plt.legend(['Reactor Concentration'],loc='best')
plt.subplot(3,1,3)
plt.plot(t,T,'k.-',linewidth=3)
plt.ylabel('T (K)')
plt.xlabel('Time (min)')
plt.legend(['Reactor Temperature'],loc='best')
plt.show()
self.raiz.mainloop()
#================================ MODELING first-order plus dead-time (FOPDT) =======================#
def graphModel(self,*args):
data = np.loadtxt('data_doublet.txt',delimiter=',')
u0 = data[0,1]
yp0 = data[0,2]
t = data[:,0].T
u1 = data[:,1].T
yp = data[:,2].T
# specify number of steps
ns = len(t)
delta_t = t[1]-t[0]
# create linear interpolation of the u data versus time
uf = interp1d(t,u1)
# define first-order plus dead-time approximation
def fopdt(y,t,uf,Km,taum,thetam):
# arguments
# y = output
# t = time
# uf = input linear function (for time shift)
# Km = model gain
# taum = model time constant
# thetam = model time constant
# time-shift u
try:
if (t-thetam) <= 0:
um = uf(0.0)
else:
um = uf(t-thetam)
except:
#print('Error with time extrapolation: ' + str(t))
um = u0
# calculate derivative
dydt = (-(y-yp0) + Km * (um-u0))/taum
return dydt
# simulate FOPDT model with x=[Km,taum,thetam]
def sim_model(x):
# input arguments
Km = x[0]
taum = x[1]
thetam = x[2]
# storage for model values
ym = np.zeros(ns) # model
# initial condition
ym[0] = yp0
# loop through time steps
for i in range(0,ns-1):
ts = [delta_t*i,delta_t*(i+1)]
y1 = odeint(fopdt,ym[i],ts,args=(uf,Km,taum,thetam))
ym[i+1] = y1[-1]
return ym
# define objective
def objective(x):
# simulate model
ym = sim_model(x)
# calculate objective
obj = 0.0
for i in range(len(ym)):
obj = obj + (ym[i]-yp[i])**2
# return result
return obj
# initial guesses
x0 = np.zeros(3)
x0[0] = 2.2 # Km
x0[1] = 0.8 # taum
x0[2] = 0.0 # thetam
# show initial objective
print('Initial SSE Objective: ' + str(objective(x0)))
# optimize Km, taum, thetam
# bounds on variables
bnds = ((-1.0e10, 1.0e10), (0.01, 1.0e10), (0.0, 5.0))
solution = minimize(objective,x0,method='SLSQP',bounds=bnds)
x = solution.x
# show final objective
print('Final SSE Objective: ' + str(objective(x)))
print('Kp: ' + str(x[0]))
print('taup: ' + str(x[1]))
print('thetap: ' + str(x[2]))
self.Kp_copy.set('%4.2f'%x[0])
self.Tp_copy.set('%4.2f'%x[1])
self.Lp_copy.set('%4.2f'%x[2])
# from identification
## Kp = 2.16288502017
## taup = 0.913444964569
## thetap = 0.000121628824381
# design PI controller
# tauc = max(0.1*taup,0.8*thetap)
tauc = max(0.1*x[1],0.8*x[2])
Kc = (1.0/x[0])*(x[1]/(x[2]+tauc))
tauI = x[1]/8.0
self.Kc_copy.set('%4.2f'%Kc)
self.Ti_copy.set('%4.2f'%tauI)
self.Td_copy.set(0.000012)
print('Kc: ' + str(Kc))
print('tauI: ' + str(tauI))
# calculate model with updated parameters
ym1 = sim_model(x0)
ym2 = sim_model(x)
# plot results
plt.figure()
plt.subplot(2,1,1)
plt.plot(t,ym1,'b-',linewidth=2,label='Initial Guess')
plt.plot(t,ym2,'r--',linewidth=3,label='Optimized FOPDT')
plt.plot(t,yp,'kx-',linewidth=2,label='Process Data')
plt.ylabel('Output')
plt.legend(loc='best')
plt.subplot(2,1,2)
plt.plot(t,u1,'bx-',linewidth=2)
plt.plot(t,uf(t),'r--',linewidth=3)
plt.legend(['Measured','Interpolated'],loc='best')
plt.ylabel('Input Data')
plt.show()
#=============================== TUNNING DEL CONTROLADOR PID ================================#
def TunePID(self,*args):
# Steady State Initial Conditions for the States
# Ca_ss = 0.87725294608097
# T_ss = 324.475443431599
# Ca_ss=float(self.Ca_ss_copy.get());T_ss=float(self.T_ss_copy.get());u_ss=float(self.u_ss_copy.get())
# Kc=float(self.Esc1_copy.get());tauI=float(self.Ti_copy.get());tauD=float(self.Td_copy.get());
# SP1=float(self.SP1_copy.get());SP2=float(self.SP2_copy.get());#self.Esc3=float(self.Esc3.get());
self.Ca_ss=float(self.Ca_ss_copy.get());self.T_ss=float(self.T_ss_copy.get());self.u_ss=float(self.u_ss_copy.get())
self.Kc=float(self.Kc_copy.get());self.tauI=float(self.Ti_copy.get());self.tauD=float(self.Td_copy.get());
self.SP1=float(self.SP1_copy.get());self.SP2=float(self.SP2_copy.get());#self.Esc3=float(self.Esc3.get());
Tf=float(self.Tf_copy.get());Caf=float(self.Caf_copy.get());#self.Esc3=float(self.Esc3.get());
# print('type(Ca_ss)=',type(Ca_ss));print('type(T_ss)=',type(T_ss));print('type(u_ss)=',type(u_ss))
# print('type(Kc)=',type(Kc));print('type(tauI)=',type(tauI));print('type(tauD)=',type(tauD));
# print('type(SP1)=',type(SP1));print('type(SP2)=',type(SP2));print('type(Tf)=',type(Tf));
# print('type(Caf)=',type(Caf));# print('type(q)=',type(q));
x0 = np.empty(2)
x0[0] = self.Ca_ss
x0[1] = self.T_ss
# Steady State Initial Condition
# u_ss = 300.0
# Feed Temperature (K)
# Tf = 350
# Feed Concentration (mol/m^3)
# Caf = 1
# Time Interval (min)
t = np.linspace(0,5,501)
# Store results for plotting
Ca = np.ones(len(t)) * self.Ca_ss
T = np.ones(len(t)) * self.T_ss
u = np.ones(len(t)) * self.u_ss
# storage for recording values
op = np.zeros(len(t))*self.u_ss # controller output
pv = np.zeros(len(t)) # process variable
e = np.zeros(len(t)) # error
ie = np.zeros(len(t)) # integral of the error
dpv = np.zeros(len(t)) # derivative of the pv
P = np.zeros(len(t)) # proportional
I = np.zeros(len(t)) # integral
D = np.zeros(len(t)) # derivative
sp = np.zeros(len(t)) # set point
sp[0:100] = self.SP1
sp[100:] = self.SP2
#sp[150:] = 280.0
# Upper and Lower limits on OP
op_hi = 350.0
op_lo = 250.0
pv[0] = self.T_ss
# loop through time steps
for i in range(len(t)-1):
delta_t = t[i+1]-t[i]
e[i] = sp[i] - pv[i]
if i >= 1: # calculate starting on second cycle
dpv[i] = (pv[i]-pv[i-1])/delta_t
ie[i] = ie[i-1] + e[i] * delta_t
P[i] = self.Kc * e[i]
I[i] = self.Kc/self.tauI * ie[i]
D[i] = - self.Kc * self.tauD * dpv[i]
op[i] = op[0] + P[i] + I[i] + D[i]
if op[i] > op_hi: # check upper limit
op[i] = op_hi
ie[i] = ie[i] - e[i] * delta_t # anti-reset windup
if op[i] < op_lo: # check lower limit
op[i] = op_lo
ie[i] = ie[i] - e[i] * delta_t # anti-reset windup
ts = [t[i],t[i+1]]
u[i+1] = op[i]
y = odeint(self.cstr,x0,ts,args=(u[i+1],Tf,Caf))
Ca[i+1] = y[-1][0]
T[i+1] = y[-1][1]
x0[0] = Ca[i+1]
x0[1] = T[i+1]
pv[i+1] = T[i+1]
op[len(t)-1] = op[len(t)-2]
ie[len(t)-1] = ie[len(t)-2]
P[len(t)-1] = P[len(t)-2]
I[len(t)-1] = I[len(t)-2]
D[len(t)-1] = D[len(t)-2]
# Construct results and save data file
# Column 1 = time
# Column 2 = cooling temperature
# Column 3 = reactor temperature
data = np.vstack((t,u,T)) # vertical stack
data = data.T # transpose data
np.savetxt('data_doublet.txt',data,delimiter=',')
# Plot the results
plt.figure()
plt.subplot(3,1,1)
plt.plot(t,u,'b-',linewidth=3)
plt.ylabel('Cooling T (K)')
plt.legend(['Jacket Temperature'],loc='best')
plt.subplot(3,1,2)
plt.plot(t,Ca,'g-',linewidth=2)
plt.ylabel('Ca (mol/L)')
plt.legend(['Reactor Concentration'],loc='best')
plt.subplot(3,1,3)
plt.plot(t,T,'k:',linewidth=3,label='Reactor Temperature')
plt.plot(t,sp,'r--',linewidth=2,label='Set Point')
plt.ylabel('T (°K)')
plt.xlabel('Time (min)')
plt.legend(loc='best')
plt.show()
pass
main()