diff --git a/ants/registration/landmark_transforms.py b/ants/registration/landmark_transforms.py index cb14b395..b555f9a0 100644 --- a/ants/registration/landmark_transforms.py +++ b/ants/registration/landmark_transforms.py @@ -17,7 +17,7 @@ def fit_transform_to_paired_points( moving_points, spline_order=3, enforce_stationary_boundary=True, displacement_weights=None, - number_of_iterations=10, + number_of_compositions=10, gradient_step=0.5, sigma=3.0 ): @@ -61,8 +61,8 @@ def fit_transform_to_paired_points( moving_points, defines the individual weighting of the corresponding scattered data value. (B-spline only). Default = NULL meaning all displacements are weighted the same. - number_of_iterations : integer - total number of iterations for the diffeomorphic transform. + number_of_compositions : integer + total number of compositions for the diffeomorphic transform. gradient_step : scalar scalar multiplication factor for the diffeomorphic transform. @@ -183,7 +183,7 @@ def polar_decomposition(X): xfrm_list = [] total_field_xfrm = None - for i in range(number_of_iterations): + for i in range(number_of_compositions): update_field = fit_bspline_displacement_field( displacement_origins=updated_fixed_points, @@ -199,11 +199,14 @@ def polar_decomposition(X): enforce_stationary_boundary=True ) - update_field_smooth = smooth_image(update_field * gradient_step, sigma) - xfrm_list.append(txio.transform_from_displacement_field(update_field_smooth)) + update_field = update_field * gradient_step + if sigma > 0: + update_field = smooth_image(update_field, sigma) + + xfrm_list.append(txio.transform_from_displacement_field(update_field)) total_field_xfrm = txio.compose_ants_transform(xfrm_list) - if i < number_of_iterations - 1: + if i < number_of_compositions - 1: for j in range(updated_fixed_points.shape[0]): updated_fixed_points[j,:] = total_field_xfrm.apply_ants_transform_to_point(tuple(updated_fixed_points[j,:]))