From 31ff34ec2c950c1818b0729740e45566f7ddd45e Mon Sep 17 00:00:00 2001 From: Michael Zingale Date: Tue, 12 Nov 2024 09:25:10 -0500 Subject: [PATCH 1/8] start of a new net that does (nn,g) approx in the iron-group --- .../neutron_approximation.ipynb | 641 ++++++++++++++++++ 1 file changed, 641 insertions(+) create mode 100644 networks/He-C-Fe-group-simple/neutron_approximation.ipynb diff --git a/networks/He-C-Fe-group-simple/neutron_approximation.ipynb b/networks/He-C-Fe-group-simple/neutron_approximation.ipynb new file mode 100644 index 000000000..9276d2ea8 --- /dev/null +++ b/networks/He-C-Fe-group-simple/neutron_approximation.ipynb @@ -0,0 +1,641 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "da1e5c34-0fcf-44da-9ae0-ec48f148c88a", + "metadata": {}, + "outputs": [], + "source": [ + "import pynucastro as pyna\n", + "from pynucastro.rates import ReacLibRate, TabularRate" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "847816d9-f880-43e5-966a-4e20bcf803e2", + "metadata": {}, + "outputs": [], + "source": [ + "DO_DERIVED_RATES = True" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ee9f4d6a-b817-475c-ba36-ca6a09f75582", + "metadata": {}, + "outputs": [], + "source": [ + "reaclib_lib = pyna.ReacLibLibrary()\n", + "weak_lib = pyna.TabularLibrary()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "32a423ae-1c45-48f9-8890-886e7947eff2", + "metadata": {}, + "outputs": [], + "source": [ + "# these are the nuclei we have in subch_simple\n", + "all_reactants = [\"p\",\n", + " \"he4\", \"c12\", \"o16\", \"ne20\", \"mg24\", \"si28\", \"s32\",\n", + " \"ar36\", \"ca40\", \"ti44\", \"cr48\", \"fe52\", \"ni56\",\n", + " \"al27\", \"p31\", \"cl35\", \"k39\", \"sc43\", \"v47\", \"mn51\", \"co55\",\n", + " \"n13\", \"n14\", \"f18\", \"ne21\", \"na22\", \"na23\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d338da52-327c-4ab1-ab6b-40da8430ac6d", + "metadata": {}, + "outputs": [], + "source": [ + "# create a library of ReacLib rates\n", + "core_lib = reaclib_lib.linking_nuclei(all_reactants)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "097e87ee-561b-4737-8a71-36989ba312b4", + "metadata": {}, + "outputs": [], + "source": [ + "# in this list, we have the reactants, the actual reactants,\n", + "# and modified products that we will use instead\n", + "\n", + "other_rates = [(\"c12(c12,n)mg23\", \"mg24\"),\n", + " (\"o16(o16,n)s31\", \"s32\"),\n", + " (\"o16(c12,n)si27\", \"si28\")]\n", + "\n", + "for r, mp in other_rates:\n", + " _r = reaclib_lib.get_rate_by_name(r)\n", + " _r.modify_products(mp)\n", + " core_lib.add_rate(_r)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f062fc6c-1e9f-486f-a4f1-535ada0f2a57", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "removing: p31(p,c12)ne20\n", + "removing: si28(a,c12)ne20\n", + "removing: ne20(c12,p)p31\n", + "removing: ne20(c12,a)si28\n", + "removing: na23(a,g)al27\n", + "removing: al27(g,a)na23\n", + "removing: al27(a,g)p31\n", + "removing: p31(g,a)al27\n" + ] + } + ], + "source": [ + "# finally, the aprox nets don't include the reverse rates for\n", + "# C12+C12, C12+O16, and O16+O16, so remove those\n", + "\n", + "for r in core_lib.get_rates():\n", + " if sorted(r.products) in [[pyna.Nucleus(\"c12\"), pyna.Nucleus(\"c12\")],\n", + " [pyna.Nucleus(\"c12\"), pyna.Nucleus(\"o16\")],\n", + " [pyna.Nucleus(\"o16\"), pyna.Nucleus(\"o16\")]]:\n", + " core_lib.remove_rate(r)\n", + "\n", + "# C12+Ne20 and reverse\n", + "# (a,g) links between Na23 and Al27\n", + "# (a,g) links between Al27 and P31\n", + "\n", + "rates_to_remove = [\"p31(p,c12)ne20\",\n", + " \"si28(a,c12)ne20\",\n", + " \"ne20(c12,p)p31\",\n", + " \"ne20(c12,a)si28\",\n", + " \"na23(a,g)al27\",\n", + " \"al27(g,a)na23\",\n", + " \"al27(a,g)p31\",\n", + " \"p31(g,a)al27\"]\n", + "\n", + "for r in rates_to_remove:\n", + " print(\"removing: \", r)\n", + " _r = core_lib.get_rate_by_name(r)\n", + " core_lib.remove_rate(_r)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "bd6eb4e1-e7a4-45c5-bde6-0a03f3111493", + "metadata": {}, + "outputs": [], + "source": [ + "# now create a list of iron group nuclei and find both the\n", + "# ReacLib and weak / tabular rates linking these.\n", + "\n", + "iron_peak = [\"n\", \"p\", \"he4\",\n", + " \"mn51\",\n", + " \"fe52\", \"fe53\", \"fe54\", \"fe55\", \"fe56\",\n", + " \"co55\", \"co56\", \"co57\",\n", + " \"ni56\", \"ni57\", \"ni58\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "034305b2-b488-4cde-8209-c9baca639b49", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "warning: He4 was not able to be linked\n", + "warning: Fe53 was not able to be linked\n", + "warning: Mn51 was not able to be linked\n", + "warning: Ni58 was not able to be linked\n", + "warning: Fe52 was not able to be linked\n", + "warning: Fe54 was not able to be linked\n" + ] + } + ], + "source": [ + "iron_reaclib = reaclib_lib.linking_nuclei(iron_peak)\n", + "iron_weak_lib = weak_lib.linking_nuclei(iron_peak)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "b58b6146-5422-4e4f-8634-07329ff0915f", + "metadata": {}, + "outputs": [], + "source": [ + "# add the libraries\n", + "\n", + "all_lib = core_lib + iron_reaclib + iron_weak_lib" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "803d0390-5c03-43b4-80ca-8c5bedd9629a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "modifying N13 ⟶ p + C12 from C12 + p ⟶ N13 + 𝛾\n", + "modifying O16 ⟶ He4 + C12 from C12 + He4 ⟶ O16 + 𝛾\n", + "modifying F18 ⟶ He4 + N14 from N14 + He4 ⟶ F18 + 𝛾\n", + "modifying Ne20 ⟶ He4 + O16 from O16 + He4 ⟶ Ne20 + 𝛾\n", + "modifying Na22 ⟶ p + Ne21 from Ne21 + p ⟶ Na22 + 𝛾\n", + "modifying Na22 ⟶ He4 + F18 from F18 + He4 ⟶ Na22 + 𝛾\n", + "modifying Mg24 ⟶ p + Na23 from Na23 + p ⟶ Mg24 + 𝛾\n", + "modifying Mg24 ⟶ He4 + Ne20 from Ne20 + He4 ⟶ Mg24 + 𝛾\n", + "modifying Si28 ⟶ p + Al27 from Al27 + p ⟶ Si28 + 𝛾\n", + "modifying Si28 ⟶ He4 + Mg24 from Mg24 + He4 ⟶ Si28 + 𝛾\n", + "modifying S32 ⟶ p + P31 from P31 + p ⟶ S32 + 𝛾\n", + "modifying S32 ⟶ He4 + Si28 from Si28 + He4 ⟶ S32 + 𝛾\n", + "modifying Cl35 ⟶ He4 + P31 from P31 + He4 ⟶ Cl35 + 𝛾\n", + "modifying Ar36 ⟶ p + Cl35 from Cl35 + p ⟶ Ar36 + 𝛾\n", + "modifying Ar36 ⟶ He4 + S32 from S32 + He4 ⟶ Ar36 + 𝛾\n", + "modifying K39 ⟶ He4 + Cl35 from Cl35 + He4 ⟶ K39 + 𝛾\n", + "modifying Ca40 ⟶ p + K39 from K39 + p ⟶ Ca40 + 𝛾\n", + "modifying Ca40 ⟶ He4 + Ar36 from Ar36 + He4 ⟶ Ca40 + 𝛾\n", + "modifying Sc43 ⟶ He4 + K39 from K39 + He4 ⟶ Sc43 + 𝛾\n", + "modifying Ti44 ⟶ p + Sc43 from Sc43 + p ⟶ Ti44 + 𝛾\n", + "modifying Ti44 ⟶ He4 + Ca40 from Ca40 + He4 ⟶ Ti44 + 𝛾\n", + "modifying V47 ⟶ He4 + Sc43 from Sc43 + He4 ⟶ V47 + 𝛾\n", + "modifying Cr48 ⟶ p + V47 from V47 + p ⟶ Cr48 + 𝛾\n", + "modifying Cr48 ⟶ He4 + Ti44 from Ti44 + He4 ⟶ Cr48 + 𝛾\n", + "modifying Mn51 ⟶ He4 + V47 from V47 + He4 ⟶ Mn51 + 𝛾\n", + "modifying Fe52 ⟶ p + Mn51 from Mn51 + p ⟶ Fe52 + 𝛾\n", + "modifying Fe52 ⟶ He4 + Cr48 from Cr48 + He4 ⟶ Fe52 + 𝛾\n", + "modifying Co55 ⟶ He4 + Mn51 from Mn51 + He4 ⟶ Co55 + 𝛾\n", + "modifying Ni56 ⟶ p + Co55 from Co55 + p ⟶ Ni56 + 𝛾\n", + "modifying Ni56 ⟶ He4 + Fe52 from Fe52 + He4 ⟶ Ni56 + 𝛾\n", + "modifying C12 ⟶ He4 + He4 + He4 from He4 + He4 + He4 ⟶ C12 + 𝛾\n", + "modifying O16 + p ⟶ He4 + N13 from N13 + He4 ⟶ p + O16\n", + "modifying Ne20 + He4 ⟶ p + Na23 from Na23 + p ⟶ He4 + Ne20\n", + "modifying Ne21 + p ⟶ He4 + F18 from F18 + He4 ⟶ p + Ne21\n", + "modifying Mg24 + He4 ⟶ p + Al27 from Al27 + p ⟶ He4 + Mg24\n", + "modifying Si28 + He4 ⟶ p + P31 from P31 + p ⟶ He4 + Si28\n", + "modifying S32 + He4 ⟶ p + Cl35 from Cl35 + p ⟶ He4 + S32\n", + "modifying Ar36 + He4 ⟶ p + K39 from K39 + p ⟶ He4 + Ar36\n", + "modifying Ca40 + He4 ⟶ p + Sc43 from Sc43 + p ⟶ He4 + Ca40\n", + "modifying V47 + p ⟶ He4 + Ti44 from Ti44 + He4 ⟶ p + V47\n", + "modifying Mn51 + p ⟶ He4 + Cr48 from Cr48 + He4 ⟶ p + Mn51\n", + "modifying Co55 + p ⟶ He4 + Fe52 from Fe52 + He4 ⟶ p + Co55\n", + "modifying Fe53 ⟶ n + Fe52 from Fe52 + n ⟶ Fe53 + 𝛾\n", + "modifying Fe54 ⟶ n + Fe53 from Fe53 + n ⟶ Fe54 + 𝛾\n", + "modifying Fe55 ⟶ n + Fe54 from Fe54 + n ⟶ Fe55 + 𝛾\n", + "modifying Fe56 ⟶ n + Fe55 from Fe55 + n ⟶ Fe56 + 𝛾\n", + "modifying Co55 ⟶ p + Fe54 from Fe54 + p ⟶ Co55 + 𝛾\n", + "modifying Co56 ⟶ n + Co55 from Co55 + n ⟶ Co56 + 𝛾\n", + "modifying Co56 ⟶ p + Fe55 from Fe55 + p ⟶ Co56 + 𝛾\n", + "modifying Co57 ⟶ n + Co56 from Co56 + n ⟶ Co57 + 𝛾\n", + "modifying Co57 ⟶ p + Fe56 from Fe56 + p ⟶ Co57 + 𝛾\n", + "modifying Ni57 ⟶ n + Ni56 from Ni56 + n ⟶ Ni57 + 𝛾\n", + "modifying Ni57 ⟶ p + Co56 from Co56 + p ⟶ Ni57 + 𝛾\n", + "modifying Ni57 ⟶ He4 + Fe53 from Fe53 + He4 ⟶ Ni57 + 𝛾\n", + "modifying Ni58 ⟶ n + Ni57 from Ni57 + n ⟶ Ni58 + 𝛾\n", + "modifying Ni58 ⟶ p + Co57 from Co57 + p ⟶ Ni58 + 𝛾\n", + "modifying Ni58 ⟶ He4 + Fe54 from Fe54 + He4 ⟶ Ni58 + 𝛾\n", + "modifying Fe53 + He4 ⟶ n + Ni56 from Ni56 + n ⟶ He4 + Fe53\n", + "modifying Fe54 + p ⟶ He4 + Mn51 from Mn51 + He4 ⟶ p + Fe54\n", + "modifying Fe54 + He4 ⟶ n + Ni57 from Ni57 + n ⟶ He4 + Fe54\n", + "modifying Fe54 + He4 ⟶ p + Co57 from Co57 + p ⟶ He4 + Fe54\n", + "modifying Fe55 + p ⟶ n + Co55 from Co55 + n ⟶ p + Fe55\n", + "modifying Fe55 + He4 ⟶ n + Ni58 from Ni58 + n ⟶ He4 + Fe55\n", + "modifying Fe56 + p ⟶ n + Co56 from Co56 + n ⟶ p + Fe56\n", + "modifying Co56 + p ⟶ n + Ni56 from Ni56 + n ⟶ p + Co56\n", + "modifying Co56 + p ⟶ He4 + Fe53 from Fe53 + He4 ⟶ p + Co56\n", + "modifying Co57 + p ⟶ n + Ni57 from Ni57 + n ⟶ p + Co57\n", + "modifying Ni58 + p ⟶ He4 + Co55 from Co55 + He4 ⟶ p + Ni58\n" + ] + } + ], + "source": [ + "if DO_DERIVED_RATES:\n", + " rates_to_derive = []\n", + " for r in all_lib.get_rates():\n", + " if r.reverse:\n", + " # this rate was computed using detailed balance, regardless\n", + " # of whether Q < 0 or not. We want to remove it and then\n", + " # recompute it\n", + " rates_to_derive.append(r)\n", + "\n", + " # now for each of those derived rates, look to see if the pair exists\n", + "\n", + " for r in rates_to_derive:\n", + " fr = all_lib.get_rate_by_nuclei(r.products, r.reactants)\n", + " if fr:\n", + " print(f\"modifying {r} from {fr}\")\n", + " all_lib.remove_rate(r)\n", + " d = pyna.DerivedRate(rate=fr, compute_Q=False, use_pf=True)\n", + " all_lib.add_rate(d)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c32122ac-a41b-45bc-9312-6ff8c4f0ef0a", + "metadata": {}, + "outputs": [], + "source": [ + "# we will have duplicate rates -- we want to remove any ReacLib rates\n", + "# that we have tabular rates for\n", + "\n", + "dupes = all_lib.find_duplicate_links()\n", + "\n", + "rates_to_remove = []\n", + "for d in dupes:\n", + " for r in d:\n", + " if isinstance(r, ReacLibRate):\n", + " rates_to_remove.append(r)\n", + "\n", + "for r in rates_to_remove:\n", + " all_lib.remove_rate(r)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "17f573de-170b-422f-854e-d4337126f855", + "metadata": {}, + "outputs": [], + "source": [ + "# combine all three libraries into a single network\n", + "\n", + "net = pyna.AmrexAstroCxxNetwork(libraries=[all_lib],\n", + " symmetric_screening=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "0aad0120-6588-4fd2-9786-864e8db9e5cc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "using approximate rate S32 + He4 ⟶ Ar36 + 𝛾\n", + "using approximate rate Ar36 ⟶ S32 + He4\n", + "using approximate rate Ar36 + He4 ⟶ Ca40 + 𝛾\n", + "using approximate rate Ca40 ⟶ Ar36 + He4\n", + "using approximate rate Ca40 + He4 ⟶ Ti44 + 𝛾\n", + "using approximate rate Ti44 ⟶ Ca40 + He4\n", + "using approximate rate Ti44 + He4 ⟶ Cr48 + 𝛾\n", + "using approximate rate Cr48 ⟶ Ti44 + He4\n", + "removing rate S32 + He4 ⟶ Ar36 + 𝛾\n", + "removing rate S32 + He4 ⟶ p + Cl35\n", + "removing rate Cl35 + p ⟶ Ar36 + 𝛾\n", + "removing rate Ar36 ⟶ He4 + S32\n", + "removing rate Ar36 ⟶ p + Cl35\n", + "removing rate Cl35 + p ⟶ He4 + S32\n", + "removing rate Ar36 + He4 ⟶ Ca40 + 𝛾\n", + "removing rate Ar36 + He4 ⟶ p + K39\n", + "removing rate K39 + p ⟶ Ca40 + 𝛾\n", + "removing rate Ca40 ⟶ He4 + Ar36\n", + "removing rate Ca40 ⟶ p + K39\n", + "removing rate K39 + p ⟶ He4 + Ar36\n", + "removing rate Ca40 + He4 ⟶ Ti44 + 𝛾\n", + "removing rate Ca40 + He4 ⟶ p + Sc43\n", + "removing rate Sc43 + p ⟶ Ti44 + 𝛾\n", + "removing rate Ti44 ⟶ He4 + Ca40\n", + "removing rate Ti44 ⟶ p + Sc43\n", + "removing rate Sc43 + p ⟶ He4 + Ca40\n", + "removing rate Ti44 + He4 ⟶ Cr48 + 𝛾\n", + "removing rate Ti44 + He4 ⟶ p + V47\n", + "removing rate V47 + p ⟶ Cr48 + 𝛾\n", + "removing rate Cr48 ⟶ He4 + Ti44\n", + "removing rate Cr48 ⟶ p + V47\n", + "removing rate V47 + p ⟶ He4 + Ti44\n", + "looking to remove P31 + He4 ⟶ Cl35 + 𝛾\n", + "looking to remove Cl35 + He4 ⟶ K39 + 𝛾\n", + "looking to remove Cl35 ⟶ He4 + P31\n", + "looking to remove K39 ⟶ He4 + Cl35\n", + "looking to remove Cl35 + He4 ⟶ K39 + 𝛾\n", + "looking to remove K39 + He4 ⟶ Sc43 + 𝛾\n", + "looking to remove K39 ⟶ He4 + Cl35\n", + "looking to remove Sc43 ⟶ He4 + K39\n", + "looking to remove K39 + He4 ⟶ Sc43 + 𝛾\n", + "looking to remove Sc43 + He4 ⟶ V47 + 𝛾\n", + "looking to remove Sc43 ⟶ He4 + K39\n", + "looking to remove V47 ⟶ He4 + Sc43\n", + "looking to remove Sc43 + He4 ⟶ V47 + 𝛾\n", + "looking to remove V47 + He4 ⟶ Mn51 + 𝛾\n", + "looking to remove V47 ⟶ He4 + Sc43\n", + "looking to remove Mn51 ⟶ He4 + V47\n" + ] + } + ], + "source": [ + "# now we approximate some (alpha, p)(p, gamma) links\n", + "\n", + "net.make_ap_pg_approx(intermediate_nuclei=[\"cl35\", \"k39\", \"sc43\", \"v47\"])\n", + "net.remove_nuclei([\"cl35\", \"k39\", \"sc43\", \"v47\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "147e433a-a0d4-49ff-bde4-cfea39ea6233", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNQAAAKrCAYAAAA57NCnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddZiU5f7H8ffEdics7C7dLSACii1itz+7O496VDz2MY96jt2FgR1YCLYC0t0N29059ftjZp6dYWeXXRrm87ouruvJ+7ln9a/P9b3vr8nlcrkQERERERERERGRNjHv7QmIiIiIiIiIiIjsTxSoiYiIiIiIiIiItIMCNRERERERERERkXZQoCYiIiIiIiIiItIOCtRERERERERERETaQYGaiIiIiIiIiIhIOyhQExERERERERERaQcFaiIiIiIiIiIiIu0Q1IGay+WisrISl8u1t6ciIiIiIiIiIiL7iaAO1KqqqoiLi6OqqmpvT0VERERERERERPYTQR2oiYiIiIiIiIiItJcCNRERERERERERkXZQoCYiIiIiIiIiItIOCtRERERERERERETaQYGaiIiIiIiIiIhIOyhQExERERERERERaQcFaiIiIiIiIiIiIu2gQE1ERERERERERKQdFKiJiIiIiIiIiIi0gwI1ERERERERERGRdlCgJiIiIiIiIiIi0g4K1ERERERERERERNpBgZqIiIiIiIiIiEg7KFATERERERERERFpBwVqIiIiIiIiIiIi7aBATUREREREREREpB0UqImIiIiIiIiIiLSDAjUREREREREREZF2UKAmIiIiIiIiIiLSDgrURERERERERERE2kGBmoiIiIiIiIiISDsoUBMREREREREREWkHBWoiIiIiIiIiIiLtoEBNRERERERERESkHRSoiYiIiIiIiIiItIMCNRERERERERERkXZQoCYiIiIiIiIiItIOCtRERERERERERETaQYGaiIiIiIiIiIhIOyhQExERERERERERaQcFaiIiIiIiIiIiIu2gQE1ERERERERERKQdFKiJiIiIiIiIiIi0gwI1ERERERERERGRdlCgJiIiIiIiIiIi0g4K1ERERERERERERNrBurcnICIiIiIiIiKyL3G5XNgcLhwuFyYgxGLGYjbt7WnJPkSBmoiIiIiIiIgEvYp6GxtLaimuaaSktpEGu9O4ZzZBfEQISZGhdIoNJzM+ArMCtqCmQE1EREREREREglZ2RR0r86vIq2po8RmnC0prbZTW2lhXXENEiJneydH07xBDqFW7aQUjBWoiIiIiIiIiEnTqbQ7mZJWzubS23e/W2ZwsyatkXXENo7smkB4XsVvmKPsuxagiIiIiIiIiElSKqhuYsiJ/h8I0X7U2B7+sK2bu1jJcLtcum5/s+xSoiYiIiIiIiEjQKKhqYPraIup99kjbWasKq5m5uVShWhBRoCYiIiIiIiIiQaG8zsYv64uwO3d98LWhpJb52RW7fFzZNylQExEREREREZEDntPlYsamUmyO3VdFtrKgirzK+t02vuw71JRARERERERERA54K/KrKKlt5PxhnSmpbQRgWV4VuZX1JEeFMqxTHCYT5FTUs6Kgaoe/M2tzKacM6EiIRTVMBzIFaiIiIiIiIiJyQGt0OFmaVwlAdaODaWuKjHtmEwxJi+XXDcU4dsFS0OpGB2uLqhnQMXanx5J9l+JSERERERERETmgbSypMfZNiwqxcHyfFA7rlkiYxUxKVBh2p4sjeiRxbK8UEiJCdvp7a4pq1KDgAKcKNRERERERERE5oK0tqjGOv1yeR4PdSc+kKIZ1jqOguoH4iBC+X1VAVKiF0V0S+XFNIQDj+6SQEhWG0yccW5BdwZqi6la/V9VgJ6+qgU6x4bvxV8nedMBUqD3xxBOYTCZuvfXWvT0VEREREREREdlH1NsclNXZjPMGuxOATWW1JEaG0GB3UljdgN3poqLeTqjF5Pf+guxyJi/KMf5tL0zzyldzggPaAVGhNm/ePF577TUGDx68t6ciIiIiIiIiIvsQbwMCAKvZhMPpwgV0jA6jssFOcU0Dg9NiAAi3mmlrE1Cr2cTw9DjS4yKwmE3kVtQzJ6vM6CJaUmvb7hiy/9rvK9Sqq6u54IILeOONN0hISNjb0xERERERERGRfUipT7AVG27lxP4dGN8nhf4dYliUU0Gjw8X64lqO75PKUT2TmZ9V3qZxx3ZNJNRi5puV+Xy5LA+zCUZlNuUSpT5Bnhx49vsKtRtuuIETTzyRY445hkceeaTVZxsaGmhoaDDOKysr98AMRURERERERGRvaXQ4jePSWhvfrSxo9sz6khrWl9Q0uw5wUHocQzvFGeefLc3FYjaRmRDBJ4tzjIq0RbmVnDqgIzM3leICGny+Kwee/TpQ+/jjj1m4cCHz5s1r0/OPP/44Dz300G6fl4iIiIiIiIjsG5w72WxzYXYFqwr9902LCw/BbDJx5qBOzZ6PCLFQa3PgcoHL5cJkMjV7RvZ/+22glpWVxS233MJPP/1EeHjbumZMnDiR2267zTivrKwkIyNjN85SRERERERERPamEPOuD7RqGu04XS4+XZqLo4XEzmo2KUw7gO23gdqCBQsoLCzkoIMOMq45HA7+/PNPXnzxRRoaGrBYLH7vhIWFERYWthdmKyIiIiIiIiJ7Q2z4ro8+6u1OssrrGJUZz4LsChrsTsKtZlKjw9haXgdA3G74ruw79tv/ukcffTTLli3zu3bZZZfRt29f7rrrrmZhmoiIiIiIiIgEn6So0N0y7oxNpQztFMeJ/ToQZjVTb3OwubTWCNR213dl37DfBmoxMTEMHDjQ71pUVBRJSUnNrouIiIiIiIhIcIoNsxJmMe9Qk4Bpa4pavGd3upifXc787MBdQZMVqB3QzHt7AiIiIiIiIiIiu4vJZKJ7UuQe/abVbKJLwp79puxZ+22FWiC///773p6CiIiIiIiIiOxj+qRGN+vUuTt1T4ok1KIapgOZ/uuKiIiIiIiIyAEtLjyEjPiIPfItswn6p8bskW/J3qNATUREREREREQOeIdkJhBqMe327wxJiyMuImS3f0f2LgVqIiIiIiIiInLAiwy1cHBGwm79RlJkCAM7qjotGChQExEREREREZGg0CM5arcFXtGhFo7smYzZvPur4GTvU6AmIiIiIiIiIkHjoM5xDNrFoVpMmBXnzGXM/OgvXC7XLh1b9k0mVxD/l66srCQuLo6KigpiY2P39nREREREREREZA/ZXFrL7K1lNNidOzVO96RINn74Gx/c/wkAqZnJXHT/2Rx1wWGEhmkvtQOVAjUFaiIiIiIiIiJBqc7mYH5WORtLasDUvqWasWFWauas4v3rXiMkLISG2ga/+4kd4znlhuM5+drjiE3SvmoHGgVqCtREREREREREgtrTN7xJnh26HT+cmIzkFp+zmk10jA6le1wYXVNjOSH8POw2R6tjh0eGcf1zlzHhiqN3w8xlb7Hu7QmIiIiIiIiIiOwtTqeTuV/OpqyggtXv/wqhIST26Uxy785EJ8dQlleOs76Bxz66BWujjf/rdDUNdY1ceP9ZWEOt2w3U6msbmPzoFwrUDjAK1EREREREREQkaG1cuoWyggoAug7MZO38DeTPWwclFVi7prLm1+UAhDTa+Pub+TTUNQLwwb8/JzUjmfqahlbHBzj5uvG7+VfInqYunyIiIiIiIiIStOZPW2IcJ3SIM46TOiaQ3DnROC/KLqUkv7zpRRcUZZVsd/wrn7iAc/556q6csuwDFKiJiIiIiIiISNBaPmOVcWw2N8UkHbulktw5yTgvzilly4osv3fbsi39rCnzcNhbXxYq+x8FaiIiIiIiIiISlJxOJytnrQEgLjmGytIq417n3p1ISW8K1Ao2F7Jp2da2DWyCmIRoAFb+vZZP/jNlV09d9jIFaiIiIiIiIiISlLLW5FJVVgNA/zF9KM1rWtLZfXAX0nunGedbVmWzZWV2m8ZNyUjike/uxmw2AfDeg5+ybuHGXT5/2XsUqImIiIiIiIhIUPJWpwEMGNPXr0Kt9/DuZPbrbJyvW7ARW4OtxbEi4yKN46KtJWxZlcP/3X06AA67gycuep6Guu03MJD9gwI1EREREREREQlKK2b6Bmq9qa/2BF4mSElPIqlTIpExEQDkrs8POMbhZ4/mXx/dypSySYw7e7Rx/ZVb3+H8e8+k10HdANi6Koe3Jk7evT9I9hgFaiIiIiIiIiISlFb+7Q7UrCEWug3JNJoHhIaFAGAymYwqtdL8cs78x4kcesYoDj97jDHGgLF9OeLcsQDcNelGQsKsANRV1/PGnR9w13s3ERruHu+r539g4S/L9vCvlN1BgZqIiIiIiIiIBJ2K4kqy1uQC0Gt4d/I2FBr3ImOblm9m+Cz7PObCw3ng8zs4965TjWur5qw1jkPDQ7ngvrOM8+9enU5a9w5c+cSFxrWnL3uJ2qq63fSrZE9RoCYiIiIiIiIiQWfl301BWP/RfVi/aJNxHpccYxxn9k03jreucjcl6DYo06g6Wz1nvd+4F9xzJjGJ7g6fDruDl255h1NvPJ6DjhkEQFF2CZMf/WK3/S7ZMxSoiYiIiIiIiEjQ8WtIMLYvRdmlxnlskm+g1lShtnV1DgDWECu9R/QAIG9jAWWFFX5jX/rwucbx9Hd/w253cOur1xDiWUr6xf++I3td3m75XbJnKFATERERERERkaCzduFG47jfIb2oKqk0zqPjo4xj306f3kANoN+oXsbx6jnr/MY+5frjiYp3Lxu12xy8dvt7pHXvwDl3nGJce/W2d3f5b5I9R4GaiIiIiIiIiASdLE84FpMYTVJaApUl1ca96ISmQC2tewdCQt2NBrJWNQVqfVsJ1AAuvLdpL7Wpb/6M3W7n3LtPIyU9CYA53y9kzvcLdvnvkj1DgZqIiIiIiIiIBJW66jqKskoAyOjbGZPJRFVZU6AW67OHmsVqoXOvNACy1+Zit9lhm0Btnc/+a15n3HoikTERANga7Lw9cTIRUeFc/dRFxjOv3DaJxgbbbvmNsnspUBMRERERERGRoOLt7gmQ2acTADXltca1+ORYv+e7Dc4Ez1LNDUu2AJCSnkR4ZBgAeRvym33DbDZzjk830Ckv/YjT6eTwc8YwaFw/AHLW5fHVcz/s4l8ne4ICNREREREREREJKlmrmwK1DE/TgdqqOuNaXGqc3/MDxvQ1jlfMXA2AyWQirUcHAPI3FeKwO5p957y7Tyc8yh26NdbbePf+jzGZTNzw3OWYzSYAPnzkc4pzS5u9K/s2BWoiIiIiIiIiElSyfJoLZPZLB6Cupt64ltgx3u/5AWP7GMfLPYEaQKeeHcFTuVaYVdzsO2azmbNuO9k4//LZ73E6nfQY0pUTrznO/d3qet6a+OEu+mWypyhQExEREREREZGgsnV1tnGc0de95LOxttG4ltQpwe/5boMyjf3QVsxcg8vlAqBzj47GM3kbCgJ+66IHziYsIhSAhtpGPnz0SwAuffhcYhKjAfj5/T9Z59N1VPZ9CtREREREREREJKh4l3yGhFrp2DUVgIb6pkAt2dOJ08tisdBvdG8ASvPKyN9cCECaT6CWs775Pmp4qtROvWmCcf7ZU1NwOp3EJsVw8YPnGNc/fPSLXfTrZE9QoCYiIiIiIiIiQcNhd5CzLg+Azr3SsFgtANgb7MYzsZ7KMV8Dxvgs+5zhXvbpXfJJC40JvC575P8ICQsBzxLPz57+BoATrjzaqIab+dVcNi3futO/T/YMBWoiIiIiIiIiEjQKtxZja3SHZ97lnnj2QQPA5K4q29bAQ30bE6wBoJOnKQFAbiuBmtVq5aRrjjHOP3r8KwBCw0M5546mTqCTH/tyR3+W7GEK1EREREREREQkaJQVlBvHyZ2blnY6HU4ALJbAUUnfUb0we+55O32mZCRhDXFXuLW05NPryv9chDXUCkBNRS1fPvc9ACdcfQzxKbEA/PHJLLLW5LQ6juwbFKiJiIiIiIiISNAoL6w0juNT4wBwOp1GowFLiDXgexFR4fQY2hWAzSuyqCqrxmKxkNolBYCirJJWvxsaGsLxlx1pnL//8GcAhEeGcaanE6jL5eKjJ77ayV8oe4ICNREREREREREJGuWFFcaxN1CrLq8xroWEBg7UAAaObVr2uXKWe9mnd7+12so6nE5nq9++7n+XGnu2VZfV8N1rPwFwyvXjiUmIAuCXD/4ib2PgjqGy71CgJiIiIiIiIiJBo8wvUHMvtSzObqouC40IbfHdQeP6G8dzflgEQFS8OwhzuVzUVta1+u3Q8FCOuWiccf7ufR8BEBkTwem3nAiepaefPPl1u3+X7FkK1EREREREREQkaASqUCvOLTWuhUW2HKgNP3awUcH29zfzcLlcRMdHGvd9K91acuMLl2OxuuOYiuIqpk/6DYDTbz6ByNgIAKa9+xuFWcU78OtkT1GgJiIiIiIiIiJBo7yoaQ+1BE+gVprX1KggPDKsxXcjYyIYevQgAIpzSlm7YCPRcVHG/bYEauGR4Rx+zhjj/M2JkwGIjo/itBsngKfj6JfPft/OXyZ7kgI1EREREREREQka5QGWfJYXNF3zVom1ZOypI43jv6fMM5Z8AtSU17ZpDje/fJXRMbQsv5zfPpkJwBm3nkhIWAgAP733B40Ntjb+KtnTFKiJiIiIiIiISNDwBmphEaGER4UDUFlSZdyP8qk4C+SQk0cYx7O+mUd0fPsq1ACiYiMZe/rBxvnrd7wHQFxyLOPOOsSY08yv5rbxV8mepkBNRERERERERIJGhWfJZ1xKLCaTyX3NJ1DzdttsSVJaAv0O6QXApmVbcdjtxr22BmoAt71+DSaz+/vFOaVsXLoZgAlXHm0888ObP7d5PNmzFKiJiIiIiIiISNBorHcvowzz2SutqrTaOI5JjNnuGGNOaVr2mb0uzzhu65JPgOj4aCOYw2cvtcHj+pPeOw2Axb8uJ2d9XotjyN6jQE1EREREREREgobD7gDAYmmKRHyDsNik6O2OMea0puWa6xdtMo7rquvbNZdLH/4/43jRz0txOp2YTCYmXNFUpTb1zV/aNabsGQrURERERERERCRoOB1OAKMpAEBtZZ1xHO/p/NmazL6djSqyratyjOu+Y7bFsKMGERUfCZ7Ont++PA2AYy85AmuIBYDpk37HbrO3Oo7seQrURERERERERCRoBArUfAMrb6OC7RlzqrtKzeV0GdfaG6gBHPV/hxrHXzz3PQAJqXGM9nQTLSuo4O9vF7R7XNm9FKiJiIiIiIiISNDwBmoWa1MkYg2xGse2hsY2jePtxulrRwK1Sx9pWvaZt6GAwq1FAJxw5THG9alqTrDPUaAmIiIiIiIiIkHB5XLh9FSU+YZfllCLcdxQ27ZArfeIHnQblOl3zbIDgVpsYgxdB2QY52/d425OcNAxg+jYNQWA+dOWGEGb7BsUqImIiIiIiIhIUHA6ncaxb6AW4lOh1ljXtkDNZDL5VZEBmK07FrOcf88ZxvGsKfPcY5nNjL/sKPAEgX9+PnuHxpbdQ4GaiIiIiIiIiAQF73JPtgnUrKE+gVp92wI1gKMvPMxoHgDg8gns2uPI8w4lLCIUgPqaBv78/G8Axp092nhm1jfzdmhs2T0UqImIiIiIiIhIUHDYmwIv3+WZ1rCmQK2h3tbm8WISouk1vIdxvnHJlh2e2yEnjzCOP3z0C/B0E83o0wmAFTNWU1FcucPjy66lQE1EREREREREgkKIb3Dms7QzxKdCzdaOCjWAgWP7GMfLZ67e4bld9eQFxvHGpVuoqawFYPQp7m6fTqeL2d+p2+e+QoGaiIiIiIiIiAQFi8VCZGwEANXltcb1kLAQ47ixHRVqACkZycZx9to8stfm7tDcOnRJNZoQ4IJJ938MwNjTRhrPePdXk71PgZqIiIiIiIiIBI3o+CgAqsuqjWuhOxGobbsMc+qbv+zw3E67+QTj+OcP/gKg76heJHSIA2DB9CXU1zbs8Piy6yhQExEREREREZGgYQRqPhVqoZ6GAOxIoFbkH6hNn/Q7jQ3tG8Pr9JtPwGJ1NzmoKq1m6Z8rMJvNHHKSe3+1hrpGFv60dIfGll1LgZqIiIiIiIiIBI2o+EgAbA02o6On75JPWzvDsPJtArXyokp+mvT7Ds3NbDYz5IgBxvk792rZ575KgZqIiIiIiIiIBA1vhRpAdXkNAKHhPoFao71d45UXVjS79vETX2G3tW8cryueaGpOsPLvtTQ22hh29CDCo8IAmP3dfBwOxw6NLbuOAjURERERERERCRr+gZp72WeYz5JPe8OOBWqRsRGMGD8EgPzNRfw6ecYOza/3Qd2JT3XvmeZ0OPnsP1MIDQ9l5PFDAagormLV32t3aGzZdRSoiYiIiIiIiEjQCFShFuJXodbOJZ+F7iWf8alxXPCvM43rHz3+5Q5Xko2/7Ejj+NvXpgMw6sThxrUlv6/coXFl11GgJiIiIiIiIiJBwzdQqyp1d/r0q1Brx1JNW6PNCOXiU+MYeGg/Yw+07LV5/PnZ7B2a44X3nYnJbAKgJKeMLauyGXRYP+P+ilmrd2hc2XUUqImIiIiIiIhI0EhMSzCOC7cWAxAWEWZcsze2vaqsorjKOE5IjQXgfJ8qtcmPfYHT6Wz3HMMjw+k9oodx/tbdH5LWvQMJHdxLQVfMWqN91PYyBWoiIiIiIiIiEjQ69exoHOdtyAcgdAcr1Epyy4zj+BR32DXsqIH0H90bgM3Ls/j7m/k7NM9LHzrXOJ4/fTEmk4kBY/sCUFtZx5YV2Ts0ruwaCtREREREREREJGh09gnUcj2BWnhkU6DmsLW98it7Ta5x7A3qTCaTX5Xah498jsvlavc8R4wfSmRMBAC2Bjvzf1rCQE+gBrBippZ97k0K1EREREREREQkaCSnJ2INsQCQs94dqIVF+iz5tLc9UMtanWMcZ/TtbBwfPGEYvQ7qBsC6hZuY+8PCHZrrwMOaArRvX57GgLF9jPPlCtT2KgVqIiIiIiIiIhI0LBYLad07AJC3oQCXy0W4T6DWngq1raubll1m9msK1LatUnvtn++3aymp1wlXHWscL/trFT2HdTMaKKyYuabd48muo0BNRERERERERIJKWg93oNZQ10hJXhlhUT6BWrsq1NxLPkNCrXTsmup3b+xpBxt7qWWtzuHrF6a2e56jTx6O2eKObqpKq6ksqaLvqF4AFGwpoii7pN1jyq6hQE1EREREREREgkqnHr6NCQqIiA43zh32tnXldNgd5KzLA6BzrzQsVovffZPJxA3PX47JZALg/Yc+ozS/LOBYLTGbzWT06WScf/38VAaMaVr2qX3U9h4FaiIiIiIiIiISVHwDtZz1+UTsQIVa3qZCbI3uZZwZfTsFfKb38B5MuOIoAGqr6nj7no/aPdfDzjzEOJ759VwGHurbmEDLPvcWBWoiIiIiIiIiElQ6+XT6zF6TQ3xqnHHeWG9r0xi+DQky+6a3+Nxlj55HVFwkANPe/Y3Vc9e1a66n3jShaa7r8uhzcE/jfP3iTe0aS3YdBWoiIiIiIiIiElS6D+5iHK9dsJHQ8FBMZvfSzMb6xjaN0VKHz23Fp8RxyUPnGucv3fw2TmfblpUCxCfHEpccA4DT4WTxr8tJ6pQAwNZVOdt5W3YXBWoiIiIiIiIiElRS0pNI7pwIwJq563E4HEb3TJfTRW113XbH2Lwyyzhuacmn18nXHUfXARkArJ67np/e+6Nd8x18xADj+Ic3fyGzn7sirrKkivKiinaNJbuGAjURERERERERCTrebpm1VXVkrc41lmUCbFqyZbvvr56zHgCL1UKX/i0v+QSwhli57tnLjPO3Jn5ITUVNm+d66vXHG8erZq8l06ciTlVqe4cCNREREREREREJOv08gRqekCouOdY437C09UCtsqTKWPLZ66BuhEWEtfo8wEFHD+KwM0cBUFZQwVsTJ7d5rkOOGIA11ApAbWUdsSkxxj3fpaey5yhQExEREREREZGg09cvUFtHkmcJKJ5GBa1Z+fda43jAmD5t/ubVT11sLC399tXpzPtxUZvf7TYw0zjesLgp8FOF2t6hQE1EREREREREgk6v4d0xW9yxyLIZq6ivrjfu5W8qavXdFbPWGMf92xGodeyaytVPXWycP33FK1SWVLXp3SPOHWMcr1uwwTjeujq7zd+XXUeBmoiIiIiIiIgEFYfDwcYlW4hNci+dzF6Ty7K/Vhn3i7JLWn1/5d87FqjhaVAwYvwQAErzynj2utdxuVzbfe+k645rml9WibHnmyrU9g4FaiIiIiIiIiISNMqLKrh68O3ceui9lBcG7pBZXlTZ4vt2m501c90NCTp2TSG5U2KLzwZiMpm4/a3riUmMBuCvz2fzy4d/bfe9yOgIEtMSjHNvGFi4tZi6NnQllV1LgZqIiIiIiIiIBI0Nizdvt6qrprzlDpwbFm+moa4RdqA6zSu5UyK3vHK1cf7CjW9SuNW9zDR7bS4NdQ0B3xt+7GDjuM5niWr22rwdmofsOAVqIiIiIiIiIhI0hhwxgH6H9Gr1GW9gFojf/mmjdyxQAzj87NEcfeFh4Onc+fiFz/PwOc9wWd9buH7EXdht9mbvnHbzCcZxVVm1caxOn3ueAjURERERERERCRrWECuPfn8P3QZltviM0+GksdEW8J5voDZg7I4HagA3Pn8FKRlJACyfsZq/Pp8Nnn3R1i3c1Oz53gd1J9TTJdRhcxjXC7Na3/NNdj0FaiIiIiIiIiISVGISonli2r106tmxxWc2L89qds3hcLD41+UARMZE0G1gy6FcW0THR3HmrScFvLfq77UBr/ca1q3ZteLtNFGQXU+BmoiIiIiIiIgEncSOCTw5/T5jc38Ai7UpJtm4ZHOzd9Yv3ERlSRUAw44eiMVq2ak5/PLhX7xx1wcB762cvSbg9WMuOrzZteLc0p2ah7SfAjURERERERERCUodu6by5PR7MVvc8UhsciwAEcmxZBVVk1NRR15lPaW1jTidLuZPW2K8O2L8sJ3+/ht3vY/D7gh4b2ULFWrHXXYEmMBstZDQqxMdR/aiMSaS/Kp66myBx5Jdz+RyuVx7exJ7S2VlJXFxcVRUVBAbG7u3pyMiIiIiIiIie0FBVjGLVuSwtaoRR3QEkSlxzZ4xm6BqcyEbf17Muq9n89rfj9Kxa+pOffeVf7zLl8993+L9j7JeJblzknFe1WBnbVE1s2auJSojBUuotdk7kSEWkqNC6Z4USUZ8BGaTaafmKIEpUFOgJiIiIiIiIhKUHE4XKwuqWFVYRZ3N2eb3XE4nmYlRHNQ5jviIkJ2aw6o56/j8v98y44vZOJ3+Ec3VT13E2befQmltIwtzKsipqG/X2JEhFvp1iKZ/hxgFa7uYAjUFaiIiIiIiIiJBp7S2kRmbSimrC9zNsy3MJhjaKY4BHXc+sMrbVMCXz37Pd6/9hL3RDsC5d53GyJtOYmleJc6dSG+SIkMY2y2RBE+HUNl5CtQUqImIiIiIiIgElQ0lNczcXMquSkTSYsI4smcyIZad36q+srSK126fhA0TQ+88k6KaHQ/8fJlNcFi3JLomRu6S8YKdAjUFaiIiIiIiIiJBY32xO0zb1VKiQjm2d8ouCdUa7U6mry2kpHbXhGm+DuuWSPekqF0+brBRl08RERERERERCQp5lfXM2g1hGkBRTSN/bSplZ+uWXC4Xf2ws2S1hGsCMzaUUVjfslrGDiQI1ERERERERETng2RxO9zLP3fiNrPI6NpbU7tQYa4tqyK1sX/OB9nC5YOamUuyOtjdhkOaa91cVERERERERETnALMiuoKbRwfnDOlNS2wjAsrwqcivrA17bUXOzykiLDScy1NLud6sb7MzPLm82n5pGO4d0SQDAajZjAr5bVbDDc6xssLMot5KRGfE7PEawU6AmIiIiIiIiIge02kYHa4urAahudDBtTZHf/UDXdlSjw8XqwioOSm9/WLWyoAq70xVwPt7zPinRhFp3rqMowOrCKgalxRBubX/wJ1ryKSIiIiIiIiIHuHXF1UZHz6gQC8f3SeGwbomEeRoIBLq2c9+rweFs3+JSm8PJ+pKa7c6nW2Ikm3ZyWSmA0+Vu0CA7RhVqIiIiIiIiInLAcrlcrPMJjr5cnkeD3UnPpCiGdY5j9taygNcAxvdJISUqDKdPo4EF2RWsKapu9Zv1didZ5XV0TYxs8zy3ltdhc7hanCNAVKgFk8ldUeeVGh3KoLRYUqLCMAHVjXY2ltayqqCK7WV664pqGNgxts1zlCb7bYXaK6+8wuDBg4mNjSU2NpbRo0czderUvT0tEREREREREdmH1Noc1PgEUA1292b8m8pqSYwMafGa14LsciYvyjH+bS9M82pvJ83CqqbnW5pPt8RINpc2Vaelx4VzTK8Ucivq+Wp5Hh8tzuGPjSXEh4cQEbL9pZyVDXbqbY7tPifN7bcVaunp6TzxxBP06tULl8vFpEmTOPXUU1m0aBEDBgzY29MTERERERERkX1ASU2jcWw1m3A4XbiAjtFhVDbYA15rC6vZxPD0ONLjIrCYTeRW1DMnq8yoMiuptbVvnp4mBK3Np2tiJD+vbdpb7eDMBJbnV7GqsCnkq6y3M3NzqXEebjUzKjOBjjFh2J0uNpbWsjinwuh2WlLbSOe4iHbNVfbjQO3kk0/2O3/00Ud55ZVXmD17tgI1EREREREREQGgrK4p2IoNtzKmayI2hxOnE2ZtKQ14rS3Gdk3E6XLxzcp8XC4Y0yWBUZkJzNhU6vlu43bH8HK5XMY8W5pPfLiVBruTek/1WmyYlZgwK5tKW98HbVz3JOpsDr5YlkeY1cwxvVKwO5wsy68y/j4K1Npvvw3UfDkcDj777DNqamoYPXp0i881NDTQ0NBUQllZWbmHZigiIiIiIiIie4O3YgygtNbGdysL/O7XNDqaXfN1UHocQzvFGeefLc3FYjaRmRDBJ4tzjPEX5VZy6oCOzNxUiguwO1y4XC5Mpu135HS6MPY7CzRHgPJ6Oz/5VKeFhZiN+bckMsRCWmw4nyzOwe50YW90sDSvkiGdYo1Aze5oX/MEcduvA7Vly5YxevRo6uvriY6O5quvvqJ///4tPv/444/z0EMP7dE5ioiIiIiIiMj+a2F2hd+SSoC48BDMJhNnDurU7PmIEAu1nn3J2hKmAbTtKX8NNnelWlSohaqGwKFaZKgFu7Opqg2gqsFOVBv2V5PW7deBWp8+fVi8eDEVFRV8/vnnXHLJJfzxxx8thmoTJ07ktttuM84rKyvJyMjYgzMWERERERERkT0pxLIjcVXrahrtOF0uPl2ai6OFVprt+a7JBGYT2+3K6auywU5Vg52uiZEsy6sK+ExtowOr2Uy41WyEatGhFmp8GhHsjr9PMNhvu3wChIaG0rNnT4YPH87jjz/OkCFDeO6551p8PiwszOgK6v0nIiIiIiIiIgeuhIiQNjzVPvV2J1nldYzKjCfM6o5Wwq1mMuOb9iKLjwht83gmk2mH5jl3axmDOsbSNzWaMIt7HrFhVsZ0SSAq1F0pl1dZz4iMeKxmE1GhFganxbKhpGnftfbMU5rs1xVq23I6nX57pImIiIiIiIhIcEuK2j2B0YxNpQztFMeJ/ToQZjVTb3OwubSWreV17u9Gti8gS4oMbXdn0OyKen5eV8TgtFiGefZ5q260s7GkljpPFdqfG0sYlZnAmYPScLhcbCypZXl+U0VbUtSuDxyDwX4bqE2cOJEJEyaQmZlJVVUVkydP5vfff2fatGl7e2oiIiIiIiIiso+IDLEQFWppdfP+lkxbU9TiPbvTxfzscuZnlwe83yEmrF3fSo0JY21x6x07AymsbuTndcUt3q+3O/ljY0nAe7HhVsKt2k9tR+y3gVphYSEXX3wxeXl5xMXFMXjwYKZNm8axxx67t6cmIiIiIiIiIvsIk8lEr+QoFudW7rFvhlvNpMdFtOHJJl3iI5hrMdG4B7tu9k6O2mPfOtDst4HaW2+9tbenICIiIiIiIiL7gV7J0SzJq8S1h7KqXslRWMzt2+zfajHTMzmKlQXVbXh651lMJnooUNth+22gJiIiIiIiIiLSFpGhFnonR7OmaPeHVaEWE1unzufzr+cyeFx/Mvt1JjUjmZSMJGKTYjCZWg7a+neIYW1RDfb2tPvcQX1To7XccyeYXK49lc/ueyorK4mLi6OiokIdP0VEREREREQOYDaHk29W5FO9A3uptcdBSeHc1uP6gPfCIkLp3DuNa5+5hGFHDQr4zJqiamZvKdutc4wNs3LygA5Yzebd+p0Dmf5yIiIiIiIiInLAC7GYGds1kfYtxGyfzPgIeqTGYLYEjlsa6hrZuGQLn//32xbH6J0cRefY8N02R7MJxnZLVJi2k/TXExEREREREZGg0DE2nLHdEnfL2KnRoRzWLZHIqHAue+S8Vp8defywFu+ZTCZGpUVTvSl/l8/RBBzWLYnU6PZ1IJXmFKiJiIiIiIiISNDokRTFYd0SaWfPgFZ1jApl7gOT+e+Vr1BZWsXZd5xMj6FdAz6b0CGO8Zcf1eJYLpeLV256i+8vf56ChRt22RzNJkgqKOaFM57k909nEcQ7gO0S2kNNe6iJiIiIiIiIBJ3S2kZmbi6ltNa2w2NYTCaGdY7l539/zHev/ASANdTKydcex4CxfXjk3P8FfK/3iB7c9+ltdOya2uzeNy9P44Ub3wQgIiaC2/94lK0O2Jk+BclRoYztmsh5CRdjb7QD0H1IF/7vrtMZd9YhWNScoN0UqClQExEREREREQlKTqeLlYVVLNpYjDM0pO3vORxkxEUw579f8/ubP2MymZpVfJnNJpLTkyjcWmxcs1jNOOxOAGISorjr/ZsZdcJBxv2Vf6/h9iMewG5zN0649+N/cPg5Yyira2RhdgVZpbWYWtifLZCoUAu9kyK4q+f12BvsmM0mnNskc6mZyZxxy4lMuPJoImMi2jx2sNOSTxEREREREREJSmaziYEdY9nw3y/548532PrrUmoKAnfYtNc3UrpyK0vfmMZXpzxC7a+L+evd38CzTHNbTqfLL0zrPrgLz858hLTuHQCoKqvh3pMe5517P8LhcFBdXsOj5z1rhGln3XYyh58zBoCEiFB62hv46rRHWPbWdMpWZ2OvD1xZV51Xin1rAcm5hYxLCKXo92XYG+zGnLZVuLWYV2+fxCW9biJ7Xd4O/BWDk3VvT0BEREREREREZG+x2+ws+mkptVV1lC/eSFV5DWEJ0XQckEl8WgJ56/NpqKimcksROF1GePbWxA+JiA6nurxmu9+ISYzmiWn3ktAhnpfnP8lTl73ErCnzAJj82JesmrOOqLgII4AbdFg/rnziAr8x5v+4mNqCcpa89iO538+lOK+c2C6pdBnalcKsEuz1NqqyimgoryGhQxxlBRVYrGbunHRDm/4O5YUVrJi5mvReaTvwVww+CtREREREREREJGitmr2O2qo6ADL7p7Ni1hoayqqxF5QREhVC4aLAjQFqq+qISYre7vghoVb+8fq1JHSIByA6PooHv/wnnz39DW/dMxmnw8miX5YZz0fFRXL3+zc129ds/vTFxrHd5sDlcFKxMZ+lG5t3A60oqQLAYXfy0i3vtunv0H9MH6MiTrZPSz5FREREREREJGgtmL7EOI5NijGOkzslktwpsdV3q0qqtzv+9c9fzmFnjPK7ZjKZOOefp/LULw8Ql+K/p/shJw8nJSPZ71pjfSNL/1gJQEpGEnXVDa1+0+nZpw2gsrhqu3NM6pTAkz/dR3hk2HafFTcFaiIiIiIiIiIStJbPXG0cO332QuvYPZXk9KSdHv/T/0wxKuC2NWBsH2NPNa9fPviLf5/zDDWVtca1dQs30ejZM23oUQNpqG09UGuvktwypr7xyy4d80CnQE1EREREREREgpLdZmfN3PXg6XZZXlhh3Mvs25nUzKZKMbO17RGKNcxK14GZAORtLODV2yYFfO6TJ6ewes46ACJjmzps/vXFHG48+G7yNhUAsMIn9OvaPz1gE4Qd0XdUL+P4zbs/YMuq7F0ybjBQoCYiIiIiIiIiQWnDki3Ue6q9BoztQ1l+uXGv+9CuZPTpZJzHxG9/vzSvsIhQHvzyDiKiwwGY+tYv/P3tfL9n1sxbz3sPfgqebqOPfjeRh6fcRXR8FADZa/O4dey9bFiymZV/rzHeW/Tr8h3+vds69PSDOe2mCQA01tt48qLnsTUG7h4q/hSoiYiIiIiIiEhQWjmrKajqP7oPVWVNe6L1Ht6dzH7pxnlIeEirY3Uf3AWzxR2z1JTXMvWtX7nuf5ca9/971auUeSrg6qrrePzC53HYHQCcN/EMBh7aj9Enj+Dl+U+S0bczAKX55dx2+P0s/t29f1pkbATzpy0J8PW2MVvMDDligHE+6cFPufjhc43vrVu4iQ///cUOjx9MFKiJiIiIiIiISFDyrfwaOLYvDbWN4GkaEJsYQ2xSDHHJ7kYF9bX1LY4TmxzDc7Me5azbTzauff7Mtxx21iGMPmUEAOWFFTx7zWu4XC5eu/09ctblAdD34J5ceP9Zxntp3Tvw7F//pt8h7uWYtZV11JTXAJDRp/MO/c6UjCRemvcEUxs+4onp9xLmaT5gq7fx0o1v+XUV/ejxL/3+LhKYAjURERERERERCUorZrqDo/CoMNJ6pOJ0uLtjhkaEGs94q9SqS2uM5Zjbqiyu4se3f+WKx84nKj4SAIfdwZMXvcA/Xr+WeE8nz1lT5vH2PZP5/o2fje/e9f7NWEOsfuPFJsXwn58fYNSJB/ldj+8QS+deHf0/bgr820YcP5QOXdx7wJUXVtJtUCZmsxmr1crV/7nQeO7XyTOIT4nlogfOBsDpdPHkxS9QVx24kYK4KVATERERERERkaBTmFVMUXYJeDbn37wsy7gXFRdpHGf2baoKGzC2T4vjffrUFBx2B7e8crVxbc73C3E5nfzjjWuNa588NcU4vvzR80nvlRZwvPDIMB788p+k9266P+e7hVSVVvs9N3L8UD7Y9FKz9yOiwxl4aD8AbA02Ni7datw75frjSclwdzB1uVw8ddnL/N9dpxlVcbkbCnhr4uQWf6soUBMRERERERGRIOS7f9qAMX3YsHSLcR6fGmsc++6j1mdkz2bjhIS5q8uKskr4dfIMjjx3LB27pYInrHrmylcYc8pIjr/sSPc1p7tDZ89h3Tjl+vGtztEaYsUSYvG7VlniH6h16Z9Bhy6pxtJUr6KsYvoe3NTFc9XstX73//nODcbx4t+XU1ZYwV3v3US4Zznot69MY9OyLUhgCtREREREREREJOis2CZQKy9o6vAZk9DU0TOjX1OFWn11PWGRofiyNdiN40+e/BqHw8GNL1xhXJs3dTHlxZWcedtJfsszT7zmWGPfspZUl9ewdWUOACnpiZhMzdd3dh2YAdsEfwDlBRVGxRnA6jnr/O4PO2oQad07uE9c8MyVr9C5Zxrn3XMGeJZ+vnTLO7hcrlbnGKwUqImIiIiIiIhI0NmwZLNx3HdULyqKq4xz373SuvgEalvX5NB7eI9mY2V6nslak8vMr+Yy6oSD/JZU/u+qV/nw0S/BJ5v6/rWfcDgcrc5x07KtRqB1yEkjuGfyLc2eSc1w75PmuzQVoKqshu5DuhAS5u5OumqbQA3gxhcvN44XTFtCWWE5Z912khG0Lfl9BX9+PrvVOQYrBWoiIiIiIiIiEnSyVrkrvxLTEohJiKaypClQi0lsqlBLTk8ylkFuXZXDsZcc0Wws3+6bHz3+FS6Xi+v+d6lxbdY38/j945kAmC3uKGb9ok38+Navrc5x66ps47jLgAyOOHcs2xapvXn3B9RW1ZGxTaBWX9tASGgIvQ7qBkDu+nwqiiv9njn4+INIzXQHcu7g7zVCw0O59r+XGM+8dsck6msbWp1nMFKgJiIiIiIiIiJBpbKkivIid7iU2bcTeJZXevkGamazmQzPM/kbCzjsrFHNll5WV9TQa3h38ARl86ct5rAzDiGpU4L7AZ/KtLNuP9k4fvtfH1FV5r8nmq+s1TnGsTcw23YF5toFG7n/1CdJ657qd91hc+B0Ouk9oqmibtOyrWzr+ueaqtRmf7+AytIqRp88ghHjh4Bnb7hPnvy6xTkGKwVqIiIiIiIiIhJUstbkGsfe6rKailrjWnxKrN/zPYa6q7ycThcbFm2mQ7cUv/v5Gws5b+IZxvnkx74E4JqnLvZ7rs/BPbnisfM58ryx4An23nvg0xbnudVnnpl9O9HYaPO7721YsOT3FUx5eVqz9xvrG0nv3ck4z91Q0OyZsaeOJKmzO/hzOV08e83rmEwmrvvfZcYeb5/8Zwp5m5q/G8wUqImIiIiIiIhIUPGt/PJu5l9XVW9ci+8Q7/f8wEP7GscrZq5h9EnD/e4Xbi1m5IShRhXZ8hmrmTt1EQN83gOIT47FbDZz1ZMXGctIv2mlm6Z3npExESR1SqQsr8zv/pHnjiEiOhyAhT8tNY696qrr6dSzo3Geuz4v4HeuebppiefMr+ZQU1lLZt/OnH7zCQDYGmy8/s/3A74brBSoiYiIiIiIiEhQ8d2bzLucs76mKVBLTPMP1AaMbQrGls9czem3nOh33+VyUbS1mIsfONu49urtk3j/oc/8nps/fTH1tfWkpCc1ddN0OHn51ubdNBvqGijYXGTM0WQyUZxd6vfMqBOH8+9v7jYaD9RV1/vdr62qo1OPDsZ57sbAVWZHnjuWhI7u3+x0unju2tcBuPD+s0joEAfAjC/nsPDnpQHfD0YK1EREREREREQkqPgt+fRUldXXNhrXkjsl+j3fuWdHYxnoqr/X0qFLCpGxEX7P5K7P5/BzxtB/TB/3N1bnMO3d39w3PVuuOexOXrr5HQC/bpqLf1vBvB8X+42XvTbPCNm8cyzZpkJt8OH9GXLEAO7/7HZjeaavhpoGOnRJMRoh5K7Pb/FvcuUTFxrHf3z2N/W19UTFRnLF4xcY19+8+4NmwV+wUqAmIiIiIiIiIkFlq2cpZXhUGCnpSeDZb8wr2bOnmJfJZDKWb1aX17BlZTb9R/f2eyZ3QwEmk4nrfbp7upzu8OngCQcZ1356/w8a6xsJDQ/lyieawqoPH/3CL6zya0jg2eetYGuRcS0kPITEju55HnLScO5676ZmzRLqaxqwhljp2NW951vehoIWA7HjLj6cOE9o6HQ4eeHGtwA49uLD6TnMvYfcuoWbmDt1UcD3g40CNREREREREREJGo0NNvI9Sx8z+nY2Qih7o914Jjo+utl7A8b4LPucsZoJVxztd99b/dVnZE/GnDrSuB4SFsI9H95MdEIUeLpvvnrbJAAOPWMUXQdkALBy1hqW/L7CeC9rtU9Dgn7uQG39ws3GtdhE/zke+X9jufnlK/2u/fzBnwCk9XDvo1ZbVWd0Nw3kskf+zzj+5YO/aKxvxGw2c/6/zjSuf/jI56pSU6AmIiIiIiIiIsGkYHMhTk/lWHrvNOO63eYATzVaIH6NCWat5tAzRmGxNsUqa+atM459Ayd7o53i3DIuvO8s49rUt3/FbrdjNpuNvdTwhFVeORuaGgh4O3X67v2WnO6/LBXgpGuOwxratPTz21em8+M7v9GpR1NjgrwNLS/7PPGqY5uCP7uDl291L08de9pII/hbNXsdi35d3uIYwUKBmoiIiIiIiIgEjfLCpgqtpLSmUMrpdAJgtgaOSnoO60pouHvz/xUzVmM2mxl8+ADj/oYl7k6dm5Zt4e9v5hvXXS4Xr93xHqfffIKx75q90c4bd34IwOHnjKZzL3ewt/i3FSyfubr5PDu5l3YW+iz59A3JfEXHR/md/++qV3DYHcZ5Tiv7qAFc/OA5xvG0d3+nsdHWLPib/OgXrY4RDBSoiYiIiIiIiEjQKC+sMI7jU90dLJ1OJ3iKyqwhzTf3BwgJDaHPwT0ByN9cRHFuKVc+fr5xv7HeRmOjjUkPfmpci4qPBGDe1EXMn7aEc+86zbj37avTsNvtWCwWzpt4unHdG1Z552mxWoiOj6Kupp7K0mrjuZSM5IDzjIzxb5bgdLr4dfJfxnlJblmAt5qcftMJRMW5521vtPP6He/DNsHfkt9XsHzGqlbHOdApUBMRERERERGRoOEfqMU2uxYSFtLiuwPH+uyj9tcqeo/o6ddd8+Wb32bmV3MBSExL4PpnLzfuvXbHJM667STCo8IBsNXbePe+TwA4+oLDjMYB835czJr5G4w5xafGYjKZWDlrjRH6AUbX0W1FesIwAGuoFTzNCbxqymta+/MAcL5PNdoPb/wUMPj7MMir1BSoiYiIiIiIiEjQ8F1K6a1QK84uMa55l3UGMuSIpiWes79fAEBKRpJxbfqkP4zj8yaezrEXjTO6gW5dlcMPr//C2befZDzz9fM/4HQ6sYZYOfcun7Dqkc+NeXrn6NuwACChQ1zAOfrO395oJ617qt/9qrLqAG/5O+v2k4mI9gR/DXbenjgZtgn+5k9bwuq561od50CmQE1EREREREREgkZZgCWfJXlNyyDDIsNafHfw4f2NfdDmfLcQu81OrxHdjPu2Bht4QrYTrjoGk8nEdf+71Lj/3oOfcMqNxxMWEQpAQ10jHzz8GQDHXXoEyZ3de7r9/c18Y98z7xwX/LTUby6JaQkB5xgS4h8Ijjn1YCMcA1g5e/shmNls5ux/nmqcT3l5WsDgb/JjX253rAOVAjURERERERERCRrlRU2BWoJnyWdpfrlxzTd82lZIaAgHn3AQANXlNSz7axXxSc0rxc645URCPUtH+x7ci2MuGgdAVVkN7/7rY067+QTj2c+e+Q6n00loWAjn+IRYXvGpseRvLmTt/A1+15M6Ne/yCWANs/qdr/x7Dbe+drVxvmnpFub9uKjF3+h1wb/OMMLFxrpGJj3g3htu2+Ava03Odsc6EClQExEREREREZGg4btfWpxnH7LyoqZloNtu6r+tMaeMNI5nfT2PqG26agIce8nhfudXPHY+4VHucOr7N35m4GH9CfEszayvqefjJ78GYMKVRzfr0hmfEsefn/3d7BveUGtbIaH+gdqq2esYeFg/v2uPnf8cOevzWv2dZrOZM25tCv6++F9T8HfGLSca16e++Uur4xyoFKiJiIiIiIiISNDw7k0WGRNBWIQ75Kr0CdS2DbS2dfCEoUYn0FnfzDM6YvryNibwSu6cxNX/ucg4f/7a1xh/6ZHG+adPTQEgPDKMYy4c5/dufGocf37ePFCLim3+XVpoqjDvh0VExDRV3lWX1/Dg6U9RV13X6m+99OH/M/Zka6ht4LOnvwFPYOj9G/z03h/YGm2tjnMgUqAmIiIiIiIiIkGjstgdnsUmxzRdK2naqD86IbrV96Piohhy5EAACrcWU1tV2+yZz57+ttm1k649joOOGQRAUXYJdVV1RihVU17L/GmLATjhqqO3edPFmnn+yz1NJlOL8wvZZsknnuAvxvO7zBZ3FLR5RRZPXf4yLper2fNeZrOZk6451jj/+sUfwVM1N/b0g8FT3TdryvwWxzhQKVATERERERERkaBha7TDNt0wfTtfxia2XqEGMPbUpmWfy/9a3ex+9tpcSvPL/K6ZTCZuf/M6o6nBLx/+RfchXYz7kx78BIBug7qQ2iXFuL741+XNxjdbW45zfCvUvM0PFv28zFjKarGYjTn89flsPn7i61Z/6yX//j8jwCvOLjH2TDvhymOMZ3548+dWxzgQKVATERERERERkaDhdDjBp1ILT4WYV6xnX7XWjD5lhHG8dsFG49h3WeVb90xu9l5qZgrX/e8y4zxvU4FxvGbeBupr6wHof0gv4/rK2WubjWMNaV6F5hXqE6h5O4HaGu00ejqQ2hrt3P3+zUZI9s69H7H4t+ahnVdkdAS9hnc3zt+8+0MAhh41kI7dUgFY+NNSv98SDBSoiYiIiIiIiEjQCBSo1frsJZaQ2rxr57aSOyfRe0QP8Owt5nXQ0YOM47++mB3w3fGXHsEhJw0HoKqkhtAIdwDmcrqY/MiXAHQb3FS5VlflDtm69E83rgVa1mncCw81juN8wsGqUncVntlsYvTJI7j4wXPc33W5ePryl6mtank/Ne+zAPN+XITT6cRsNvtVqf341q8tvn8gUqAmIiIiIiIiIkHDG6hZfAI17zUAa2jzTf0DGeOz7NOr76hexpLLuqp6/v5uQbNnTCYTt752DTEJ7qWljXVNG/r/+M6vnrlZmr036sThxrHZ3HKcE+azlDUiJtxY3llTXuN+1/O7z//XGQw+vD8ABVuKeO32SS2OOeqEg4zqO1uDnWnv/g7AcZceYYw37d3fcNgdLY5xoFGgJiIiIiIiIiJBw2FvXqHmu4Sysa6xTeMcduYhza5ZQ6yMPH6ocf7+Q58GfDcpLYGbXrqq2fWyggrWLtzoF/B5jTu76XuB7nuFRDRVqDltTg49Y5T72OluPuD93WazmTvevp7wKHen0x/e/IV5Py5qcdxxZ402jj/zdCVNSktg9MnuoK8kt4w5Pyxs8f0DjQI1EREREREREQkKLpfL6GrpF6iFNlWENdQ1BHx3W+WFFc2umS1mrnziAuN8/cJNfstJfR1x7hgOO6t5KPf2PZMDBmZmn86erQVqvhVqNpuNCVf4dw31/d1p3TpwzdOXGOfPXPmKX4MGX5c/ep5xnLWmqenCBJ9ln1Pf+qXFeR1oFKiJiIiIiIiISFDwDaJaqlBraGOF2p+f/d3smtliJqNPZ1IyksAT4H3w0GcB3zeZTNz80pXEb7Nn2+Jfl+Ow25s9//e3TctHnc5WAjWfCjVbg50BY/qQ2a+z33d9nXj1MQw/bgh4qsxevvWdgOMmdkwgvXcn4/ztf30EwIjxQ0junAjAgmlLWt2L7UCiQE1EREREREREgoKjhUAtxGffNFu9rdl7zcdx8NeXc5pdt3k6aZ507XHGtenv/dHiOPEpcdz66tX+Y9sdLP1zVbNnZ06Zaxy3VqFWV11vHIeEWTGZTH7NA+zb7HNmMpm4/c3riIqLBODn9/9k5tdzCeScO081jv/63N10wWKxGPvJ2RrtzPtxcYtzO5AoUBMRERERERGRoODyqezy3djfGta+CrUVM9dQmude8hiXHGNcXzt/IwDn/PMUI7CrKKpk1Zy1LY419rSDOe7SI/yurfx7jXEcHe9uXrBxyRbjmnc/tEDKiyuN46g497vHXDTOuGZvsNPY4B8apqQncf2zlxnnz177OhU+43iNv/QIo8NobVWd0XTBt0HD39/Ma3FuBxIFaiIiIiIiIiISFELCQjCb3Use62t8KrlCfZoStKFCzXe554CxfY3j5TNW4XK5sFqtDDq0n3H97Xs+anW8m168kq6DMo1zW0PTks9B4/o1e97VSqBWWVxlHHs7icYlxxIW6V4K6nK5mBWgAu3Yiw9n9CkjwLM/3HPXv2HsN+dlNpsZMb6p6cIHD7uXsw4+vL9R4Tbn+4XYbc2XrB5oFKiJiIiIiIiISFAwm81G8FNdXmtcDwnzWfLZ0Hqg5rvcMyQshH6jehn3inNKWT13PQCXP9a0if/SP1e22JwAIDwyjEe+udtvGapX34N7Nbu2bdDlq7q8xjiOSWyqnrNamxov/PBm8+YBJpOJW1+9mpjEaPAs6fz9k1nNnrvqyQuN43ULNlJfW09IaAgHnzDM+H6gJasHGgVqIiIiIiIiIhI0ojxLKGt8gqdQn86YjdtZ8um73HPE+CHUVPoHZT+88TMA/Uf3MRoOOB1OXrjhrVbH7dAlhfPvOaPZ9fCoMDr16OB3rbUKtRqfoDAuJRY8+7L5znPRL8vI3ZDf7N3Ejgnc8vJVxvkLN75Jiee3emX06UxyelPThfcf/hyAMaf4LPuccuAv+1SgJiIiIiIiIiJBw7snWVVZjVHp5ReobadCzXe557izRlNR5L/X2O8fzzSqxC575P+M6799NIPG+tbDuqPOP7TZtey1uYw59WC/ay5aDtRqfYIz7/5ulSVVzZ7zBn/bOvycMRx+zmgAqkqrefW2d5s9c9K1xxrH0975DYCRE4ZhDXFXwc2cMrfVKroDgQI1EREREREREQka0fHuJZ8Ou4P62gbYJlBrbcmn0+n0W+45+pQRlBdV+D1TX9vA1y9MBeCEK48xllA67A5euuWdVuf2zcvTml37dfIMhh410P9iK1lVnc/S0sSO8QCU+4R+Js8ect++Ot1veaivm1680gjjfv9kFitmrfG7f/Yd/k0X1s5fT1RspDHPoqwSNize3Opv3d8pUBMRERERERGRoOFd8onPss+Q8FDjmq2x5Q31Ny/PMpZ7Dj92MFGxkZQXNgVq3pDpy+e+p7bKHWxd8uA5xv3p7/5GY2PgwK6soJwf3/q12fWailq+ev57v26irfGGhABJnRLA02TAq9tAd/OD2so6I/jbVlxyLJc83FRd98o/3sHp0yE1NDSEgT7NGN6cOBnAr5JuZoDGBwcSBWoiIiIiIiIiEjSi45oCNW9jgjCfCjV7Q8uB2pLfVxjHw44eBEB5obv6KyYx2liyWVVazbevTAfg1BsnGI0Q7DYHr93+XsCxP37iayMMi4gO97u3YPpSEtMS/K7Z7YHn6dulNLlzkt8cAUadeFDA4G9bJ1x5NF0HZgCwZt4GfvnwL7/7lz/q03ThjxXY7XajSyjA7O8WBBz3QKFATURERERERESChnfJJz4dMUN9KtTsrVSoLfmjKVAbfHh/8Kn+ik+N47yJZ2AyuZdUfv7fb42A7IJ7zzTem/rmz83CsOKcEr591R3AhUWEcuZtJzb79qZlW/3OG2oD78fmu2Q1oWOc3xwBMvulc/QFh4En+Au0zBTAYrVw3f8uM87fmvghdTX1xvmAsX19lrM6+eq5H0julEiPoV0B2LB4MzUVgZeUHggUqImIiIiIiIhI0IhOiDaOvZv1h0b4LPm0BQ7UnE4nS/9YCUBMQhTdB3ehoa6Bump3yBSfGktm386MO/sQ8IRYU9/8BYAz/3ESETHuqjNbg5037/7Qb+zJj31lBGGnXD+eC+87e7u/w/vdbfkGglar1ZiLlzv4O90I/r7wCf62ddDRg4yqs5LcMj79zxS/+8deNM44nvLijwAMGNMHPB1AV85et93fsb9SoCYiIiIiIiIiQSMlI8k4LthcBEBYZFOg5mh0BHxv8/IsqkqrARg0rj9ms9mvw2d8qrsa7Px7mqrRPn1qCo0NNsxmM+f+81Tj+rcvTzOq1Aq2FDH1TXfHzfCoMM6581QsFovfnGID7J9WVVYdcJ4Oh3uvM++yTpoFarFk9OnM4eeOcd8rquSH1wN3/AS4+qmLje6dnz41hcKtRca9ix861wjmCrYUkbepgIGH9jPur5i5usVx93cK1EREREREREQkaHTq0dE4zl2fD55lll72FirUvNVpAEMOHwBAUXapcS3BE6h1H9yFMaeOBKA4p5Tp7/4OwHn3nEF4VBh49jl77/5PAfjwkS+w29wh3uk3n0B8insc79JJgKqSKkaddJDffGZ6uo1uy+V0twC1WC3GtaIcn3l2cHf+PH/i6ca1T5+eQmN94CWk6b3SOPXGCca835zYVF0XFRtJ9yFdjPO375nMgLF9jHMFaiIiIiIiIiIiB4BOPX0CtY2eQC0yzLjmDbe25bd/2hHu/dOyVucY19J7dzKOz/9XU5XaJ09+hd1mx2w2c8atJxnXv3z+e7LW5jDt3d8AiIyN4KzbTzbu9xjSzTh2ueDQ00ZhsTbFOB89/jXZa3P95lhb3dRgICTUahx75xkZE0FiR3eg1m1QF8ae7u7KWZJbxrR3fgv4uwEuvO8sYpPcVXK/fTSTFbPWGPd8K+8W/bKM1IxkUjOTAVg9Z32LAeX+ToGaiIiIiIiIiASNxI7xhHsCNKNCzWd5ZaDumYH2TwPYuirbeCazX2fjuM+IHow8figA+ZuLmD7pDwAueegcY7+2htpGHjn3fzg9SzTP+sfJxCY2Le3s7BP8Afzy4V/GslKAxvpG7jz2Yb8lmCU+lWghns6lDXUNxtLWjL6djCWaAOffc4Zx/PGTX9NQF3gvtej4KC59+Fzj/NXb3sXpdM/78HPHGMtLK4qrKC+uNKrU6msb2LB4c8Ax93cK1EREREREREQkaJhMJtJ6dAAgf1MhDofDCNgAHAEq1LasyDIaGHj3TwPIWtNUIZbRt7PfOxfce5Zx/M69H1FTUYPZbObUG443rm9csgWAmMRozrj1BL/3O20TqK2eu56I6HC/a0VZJdx57L8pKygHzxJTL29ImLMuH5fLFXCOvYf34OAThgFQuLWYz5/5LuDfDOCEq46h64AMYy6/Tp4BgNlsJr1XmvHclBemMnCs7z5qawKMtv9ToCYiIiIiIiIiQcUbVtltDoqySgiPjjDuOezOZs8vCbB/GsBWz1LK8Kgwkjsn+r0zYEwfDjurqePn+w9/DsDlj51HSFiI37Pn3HEKUXFR/nP0hH5e9TX1xv5ovnLW5XH3+EeoKqumNL/cuB4R5Q7ffKvoMvp0bvb+VU9eZFSYffT4lxRmFTd7Bs+ebNf+9xLj/K2JHxoVbWNPO9i4/tcXs/32UVs+68DcR02BmoiIiIiIiIgElU7dm8Kq3PX5REQ1Vag5Hc0r1LyVZAB9D+kFniWX+RsLAMjo08moWvN1zVMXE+pZevn1C1PZsiobq9XKsKMHGc+YTHDqTROavZvWvYPf8kwCdPaMTnCHcBuXbuFfJz7mt/wz3FPNlrW65So6gK4DMoyquYa6Rt648/1mz3gNP3YIh5w0HDzVcNPecTdcOO3mpvlnrckls386kbHukHLFjNVGhdyBRIGaiIiIiIiIiASVTj2blijmrM8nPKppKWWgCrUtK7OM4y790433nJ6Kscx+6QG/06FLCv931+mecR288o93qa2qZcPiTcYzLhdMffOXZu+GhoeSnO5f9VZbVe93Puyogca+aqtmr+O7134y7kXFRgKwdU1T4wTffd58XfzgOcQlu/dv+/2TWX4NGLZ1ic9eap8+NQW7zU5ixwRiEqMBcDqczP1hEf1H9wagNL+c/E2FLY63v1KgJiIiIiIiIiJBxXd/sqzVOSR0bNrsv6HWf2N+l8vF5hXuQC01M9kIqnw7fAZaSul1zp2n0KFLCgALpi/hP5e8SElumd8z7z/8WcB3t21MYG/0b5hQsKWYJ6bdS3S8u1KtcEvTck1v9Zp3nmaLudkyUuPZ+Cguf+wC4/zlW97BYQ/c7bTn0G6MnDDM8/0ifvtoJgCDx/U3nvnhjZ/oe3Av43zTsq0Bx9qfKVATERERERERkaDSc2hX43jNvPVYrVZjHzFbg39oVZxTSm1lHQBdPJvyA2xd5ROo9e3U4rfCIsK45umLjfOZX88DwBJiwWJ1f7O6rMavusyrx9Burf6OrNU5dB/chUe/n0i4z7JV93dDcDqdZHsaJ3Tq0YGQ0JAWRoLxlx1Br+HdwbOE9Ic3fm7x2fMnnm4cf/TEVzidTk667jjj2oqZa/yq9nz3cTtQKFATERERERERkaASmxRDZ09nynULN9HYYDM6fbpcLipLq4xnvdVpAF37p/tcb6q6CrQ3ma9DzxjF0KMG+l07f+IZHH3hOOP83fs+avZev0N6tzpuXXU9xTml9B/dhyd/uh+L1WLcm/XNfBb9upyGusY2zdFisXDDc5cb5+/c97HR2XRbAw/tx6DD3J08s1bnMPPreYw4dgiWEPf3aypqiYpravSw1aea70ChQE1EREREREREgk7fUT0BsDXY2LhkM1Hxkca99Yua9jjbvNxn/zSfCrWVf68FIDwyjMzthFUmk6lZI4KjLjiUm168wqiMqyiuYvqk3/ze6+eZY2u81V/9D+ntVylXU17Lw2c+ZZz3Ht5ju2MNGNOHYy5yh3xVpdW8e/8nLT57nm+V2uNf4nK56Orz95k7dbHRVEEVaiIiIiIiIiIiB4B+o5qqv1bPWW9s7s82e35t8a1QG5gJQGFWMUVZJeAJ5nwrwwKpKqvmq+d+MM5dLnjlH+8SFhHGEeeOMa6/cdeHfu+lZCSTmJbQ6ti+S0+91Whevk0M+o/p0+o4Xlc8fgERng6h3706nWV/rQr43IjxQ+k5zL0kdd2CjSz4aSnjzh5t3J/34yI6dHXvHZe1OveA6/SpQE1EREREREREgk7fUU2b5q+as5bkzk0dNTct28q8aYtZPmMV6xZuMK57u2Su8lSnAfQfvf2g6p1/fUR5YQUAIWHufczm/rCI71//mZtfvsqoUisvrODz/35rvGcymbZbpeZb/VVVWm0c9xnpX5FWuKVtnTaTOyVy0QPngGf5638ufZHaqrpmz5lMpmZVaqfecLxxnrehwKiYq62qoyS3tE3f318oUBMRERERERGRoNN9cCah4e5wa/Gvy8nf1BQ4zfx6LvdMeJR/jLufjUs91WomuHrw7Txzxcss/XOl8eyAsX1b/c786Uv49tXpAIRHhXHLK1cZ9167fRLlhRUce/HhxrV37v2Ixkabcd53VOv7qPnuT1ZX3VSR9vCUu/yee+bKV/nif9+1OpbXGbeewMBD3b8rf1Mhr/zj3YDPjT39YDL6uEOzpX+sZNOyrSR0jAdPGOdy+sxz1YG1j5oCNREREREREREJKmUF5fz49m+ERoQCUJpf7rfMs6GmoflLLne49OM7v7Hw52XG5X6H9Gr+rEdFcSVPXfqicX75o+cz/tIjOfHqYwGor23gyYtf4KaXriDMM5fGehvPXv0aLpeLH9/+hZWz17T6W7I8gZrdbsdhc4CnCs4IAn28evsk3rjzfZxOZ7N7viwWC3dOutFY+vnj278ya8q8gM+de9dpxvnHT3zFQT57xfmGlArURERERERERET2U/mbC7m83608f/0bVJfVBHzGEtrynmjRCVHkrM8DoEv/dGISogM+53K5+O9Vr1KaXw7AiPFDOO2mCQBc8/RFdOrZEYBVs9fx+dPfccUTFxjv/vTeH5wSexHPXPkqf0+Z3+rvKSuooKqsmqzVuca1yNgIVs5qCuIOPWOUcfzp09/w5MUvUF8bIDT0kdatA9f7dP3839WvUlZQ3uy5o84/lJSMJADmfL+Q4ccNNu4Vbi0yjg+0Tp8K1EREREREREQkaBRllVBdHjhI83LaW95Af8LlR+Fyuu8PaGWj/6lv/mJUdcUlx3DH2zcYXS8joiO4672bMJvd5+8//Bn9R/choWNTY4T6QFVyLdi6Kod1C5r2eotPiWXFrNXG+bXPXOLeq83zvV8nz+Dm0feQvTY34Hhe4y89grGnjQSgvKiS/179Ki6Xiy0rs/jryznYbXZCQkM4545TjXfm/rDIWErbWN+0dDVr9YHV6VOBmoiIiIiIiIgEjYGH9uXoCw5r9Rlbo42DjhnU7PqAsX2IiosyzlvqnJm9Ntdv37Hb3riOpG26dfY/pDfnTTwDAIfdwcTjH6Esv6Ldv8f7vc3Lm7qRJnVOZNXsdQAkd04kNTOZk689jvs+u53wqDDwNF64YeTd/Pn53y2OazKZuPW1a4wOqLO/XcCj5z/L1UPu4OGznubzZ9wNFI6/4ijiU2IB+PPz2WT2TzfG8IZr2Wvzdui37asUqImIiIiIiIhI0DCZTNzx9vUccvLwFp9xOV0ctU3oZraYueWVq/32NAtUoWa32Xn8wueNJZUnXnUMY04dGfA7F95/Fr2Gd4dtOnS2V3F2KdnrmgKr6LhIo0FB/zF9jMq4Q08fxYtzHje6ldZW1fHvc/7Lq7e9i91mDzh2fEoct71xrXH+xyezcDrce7D9/a17OWp4ZBgnXuPeF87pcJLYId543vtsaV4ZDrtjh3/jvkaBmoiIiIiIiIgEFWuIlfs+uY0hRwzwv2FqOuyYmYI11Gqcn3j1MXTulcbSP9wdPhM6xNG5V1qzsd978FPWzncvv0zvncY1/72kxXlYrBYOPuGg7c7XG4i1pCi7hKKtJca5zdYUXA06tJ/fs136Z/DinMc58ryxxrUvnv2e2498kOKcEgLpPaIH8amxza6vW7CRxgb3ss4Trz4Ws8UdM61ftMl4xu6Zi9PpMvaTOxAoUBMRERERERGRoBMaHsrDU+4io29n45rF2tSMYMvqHEad6A67wiLDuOo/F7Fi5mpjb7Phxw1pFnQt/XMlHz/xtTHWxA9vISIqvMU5vP/QZ3z478+3O9e0Hqmt3i/JLaWssCmsKsoqNo5HjB/S7PmI6AgmfnALN714JdYQ929eOWsN1x10Jwt/Xur3bGl+GTeMvIvywspm49ga7UZ4lpKexGhP1V9pfjmxyTHNni/KDhzY7Y8UqImIiIiIiIhIUIqMieCZ3x8kKj4SgA5dkgmLjyLtkL7ku8yc+eI13DXjMZ5a/QL1Zgvzpy0x3h05fqjfWBXFlTx58Qu4XO6GBZc8dC69h/do9fvfvTa9TfOsLK7i3LvcG/9HRIdjspiJ75FGtxNG0Pe8cYT070KHI4eQNqo3oXGRbFq6BYCO3VIDVtHhqXo75frx/O+vf5OamQyexgN3j3+EDx/5AqfTid1m56nLXqYkt6zFufl2Ez35uvHGcUioldC4SNJG9ab32YfS/8Ij2VDZwIbiGspqG3G6Wm78sD8wuVz7+S/YCZWVlcTFxVFRUUFsbPPSRRERERERERE58FU12FiVU8GKLaWYYyJafM7RYCNvzhrWffk3//vyNhJS3XuFORwO7pnwKAt/XgbAoHH9eOqXB7BYLC2OBfDdaz/x2u2TjP3WWhIaHsK3NR+yqbCSjeUNbC2qwhoe2vLvyS5m09QFdI0J5aanL97Or4fKkiqeuPgF5k1dZFwbOWEYPYd25aPHv2r13YOOHsSTP90PgNPp5Nox9xIzpDvdJgwnJj25xfcsZhMdo8PokxpN57hwzNtZ1rqvUaCmQE1EREREREQkKNXZHMzLKmdzaS3tDUdiwqyMSI8nMyGCt+6ZzMdPuIOn+NQ4XlnwJMmdk9o0TmVJFd++Op0pL06lrMC/y2d4VBiN9TaueO8WzAO6UtPYzk39XS66J0cxMj2e8JDWwz2n08lHj33FpAc+oaWoqP/o3qz8e63ftZAwKz/UfUS9zcH87HI2FNdAO8OxqFALI9Lj6ZoY2a739iYFagrURERERERERILOxpIa5m4tp8HThXJHRdfU8vZpj9FYUYvZYuY/P9/PkMMHtOFNf431jfw6eQaTHviE4pxSAK5+7nJSThjJlrK6nZpjuNXMIV0S6JKw/cBq4c9Leez8Z6kormp2r/vgLtz9/s188dx3TH/nd1wuFxEx4byw+TVmbymj3r5zf8suCRGMykwgYjvh375AgZoCNREREREREZGg4XK5WJhTwfL85oHRjqrKKubnG1/hojtO4cx/nLRTYzmdTqZP+p16lwn7iD7tr0prxZC0WIZ0it1u19AP/v0Zkx74NOC9m1+6kpOvG0/B1mK+e3U6Pc89jM22XTZFokItHNc7hdjwkF036G6gQE2BmoiIiIiIiEhQcLlcLMiuYEXBrgvTvOyVNZw7tgfRYYGDIKfTyQcPf86Pb//KuXedxqk3HN/iWFUNdqauLqTOtuvCNK/BabEM6xzX4v2K4kou7Hp9i/u6hYaH8P7Gl0jsmMDinAqW5DXv/rmzIkIsTOibSkyYdZePvauoy6eIiIiIiIiIBIUNJbW7JUwDsMZG8duGEpzO5nVLtkYb/7nkRd5/+DOKskt48+4PsDU2L+tyOBzkbSnkhyXZuyVMA1iaV8nKrSUt3s/fXNRqk4TGehvPXPkqm0prd0uYhmdvu1/XFeEI8LfcV+y7UZ+IiIiIiIiIyC5S02hnblbZbv1Gaa2NZfmVDOnUVAFWW1XHQ2c+ZXQABaivaeC9Bz8jNDyEgs1FFGwpJH9zEUVZJQy6+ngGXnr0bp3nX2sLeeToB0lJjaVz7zTSe3UivXcanXulkdG3E9f991LmT19MUVYJhVnF1Fb67+EWlRrHnK27929ZXm9nSW4FB6XH79bv7Cgt+dSSTxEREREREZED3q/ri8gqr+f8YZ0pqW0EYFleFbmV9QCkRocyoW8HPl6cQ8NObK5vNsHJ/TsSHxFCaX4Z90x4lA1LtrTp3YRenZjw3m1cOCKj2RyTo0IZ1ikOkwlyKup3utJu8/RFzLj3/YD3UtKT6Nw7jb4jezJoXH+6DsygtrKO9Ys2UVtZS+xxw9lS7v67Bfp7jsqMJzEyFBOwIKeCgqqWK95aYwJO6t+BxMjQnfilu4cq1ERERERERETkgFZeZyPLEwBVNzqYtqao2TP9O8RQXNO4099yumBVQRWdamu5YeRdNNS1bcyYhCgOvvEkzBZzszmaTe6GAr9uKN5lyyC7HDOURS99R01e80qzouwSirJLWPzrcj5+8mvMZhM9hnZl0GH96XvkQCNMI8DfMybMSlx4CFNXFxIZYmFc90R+DPD3bgsXsKKgisO6Je3gr9x9FKiJiIiIiIiIyAFtbVG1cRwVYuH4PinUNDqYu7WcBoeT9LhwCqsbyIjfNVvNbyyt5ffnp7Qeppngzkk30mNwVzp0ScYSGc5nS3NxuprPMT4iBLvTxRE9kjBjYn52OWV1O9da02Q2MXHGYyRXVpO9No+cdXlkr8slZ20e2WvzqCxpqoBzOl2sW7iJdQs3MdQOAy/pYNzbdq71Ngd2pwsTEGo1U9/Oar9TB3RkQXY52RXu0G5zaS0j0+MJD7Hs1O/d1RSoiYiIiIiIiMgBy+VysaGk1jj/cnkeDXYnPZOiGNY5jtlby+iTGs1v64vJiI/we3d8nxRSosJw+uyWtSC7gjU+AV0gdqeLMdeOZ8Zns2hsKVRzQXxyLN0HdwFgdWEV3uKzbedYUN1AfEQI368qICrUwuguify4ptAYKjU6lEFpsaREhWECqhvtbCytZVVB05iBbKls4ODBXegxpGuzeyV5ZSyfsZplf65k2V+r2LRsKy6Xi+4njPB7LtDfs6bRzukD07CYTfy2odjv75kaHcZ3KwuMQDDEYuL8Yel8vjSXmkYHU1bk+43vdMHmslr6psa0+jff0/bbQO3xxx/nyy+/ZPXq1URERDBmzBiefPJJ+vTps7enJiIiIiIiIiL7iMoGO42Opiop7/5om8pq6Z0SRffESLLK61oMnhZkl7OqsPUALZDQtES+r/mQ4txS1i3YyLoFG1m7YAPrFmykNL+cmMRoMvp2Np4v8lluuu0ct5bXUVjdgN3poqLeTqjFZDybHhfOuO5JLMqpYMamUhrsTmLDrQzqGEtEiIWaxpa7hdbZnNTaHESFNo+HktISOPzs0Rx+9mgAKkurWPz3OjalxPk9t+1cO8WGEWa18OXyPCJCzBzdM4XvVhUYzzfanRzUOY5f1hfTVrtiKe6utt8Gan/88Qc33HADI0eOxG63c88993DcccexcuVKoqKi9vb0RERERERERGQfUOITxljNJhxOFy6gY3QYlQ124iNCSIoKJTM+goSIEMZ1S+Knddvf88tqNjE8PY70uAgsZhO5FfXMySrD5nD5fTe5UyLJnRIZfXJTZVdZYQWRMeGERYQ1m2egORbXNDA4zV2hFW414/AJ/w7OTGB5fpVf6FdZb2fm5lLjPNxqZlRmAh1jwrA7XWwsrWVxTgUuz3cDBWrbik2MocuYvmzaUNLq3xNMRshmc7iwmk1+46wpqqZfagwdosMoqG7erODMQWnMzSonq7yps6gCtV3oxx9/9Dt/9913SU1NZcGCBYwbN26vzUtERERERERE9h0V9XbjODbcypiuidgcTpxOmLWl1K+Ca3yfFP7cVNLCSP7Gdk3E6XLxzcp8XC4Y0yWBUZkJzNhU2uy720pI9a/ycrlcVHqeDzTHRoeL9cW1HN8nFbMJ5meVu58NsxITZmVTaU2rcx3XPYk6m4MvluURZjVzTK8U7A4ny/KrWp3ntiq3eTbQXGsbHXRPiuT4PqlYzCaW5FX6vdNgd7Isv5KD0uOYurqQtqist+NyuTCZTG14es/YbwO1bVVUVACQmJjY4jMNDQ00NDSln5WVlS0+KyIiIiIiIiL7P7vPWs7SWhvfrSxo8dlA3T8PSo9jaKemAOyzpblYzCYyEyL4ZHGOUZG2KLeSUwd0ZOamUlye77Y1BHK63B0tW5vj+pIa1pf4B2dhIe4mCq0t64wMsZAWG84ni3OwO13YGx0szatkSKdYluVX+f19tmfbZ1uaqzdUbMmqgmr6pUaTER9BflV9q8/i6fbpdIFl38nTDoxAzel0cuuttzJ27FgGDhzY4nOPP/44Dz300B6dm4iIiIiIiIjsPeadDGEWZlc020MtLjwEs8nEmYM6NXs+IsRCrc2ByUSbK6p2tPCqweZeWhkVaqGqIXCoFhlqwe50+nXbrGqwE+Xpmtmeb++qPMvhcrE4t5KDOsfx4+rmyz4DfnsfCtM4UAK1G264geXLlzNjxoxWn5s4cSK33XabcV5ZWUlGRsYemKGIiIiIiIiI7A2hFvMuH7Om0Y7T5eLTpbk4WqjwCmvHd80mE1azqV3VYngaLlQ12OmaGMmyvKqAz9Q2OrCazYRbzUaoFh1qocbmaPc8w6y77m+5vriGAR1i6JEcud1nrWYT5n0sUdv1/1ftYTfeeCPfffcdv/32G+np6a0+GxYWRmxsrN8/ERERERERETlwJUaG7PIx6+1OssrrGJUZb4RM4VYzmfERPt8N3SPznLu1jEEdY+mbGm2EY7FhVsZ0SSAq1F0tl1dZz4iMeKxmE1GhFganxbLBs3zUd575mwv5+ImvmPbub2xatgWH3b/qLWEX/i1dwMKcCgZ13H42096/5Z6w31aouVwubrrpJr766it+//13unXrtrenJCIiIiIiIiL7mKTdFMbM2FTK0E5xnNivA2FWM/U2B5tLa9nq6U4575MZbCirYNC4/gw6rB+xSTHbnWdhdfu7WWZX1PPzuiIGp8UyzLPXW3WjnY0ltdR5qtD+3FjCqMwEzhyUhsPlYmNJLcvz3RVtvkHe05e/zJLfVxjnYRGhdB/ShfQ+nUhKS+TkG49v9/xas7W8joEdYwj3LD9tSXLUrg9Fd5bJ5XK1r55wH3H99dczefJkpkyZQp8+fYzrcXFxREREtPquV2VlJXFxcVRUVKhaTUREREREROQA9c2KfMrqbHv0mz/f8Ar589YZ510HZDDosH70ObgnGX06kd67k1/IllVex6/ri/foHJOjQjmxXwfj/I6jHvQL1LYVFRfJVbP+Q3FN+4O/nXFUz2Qy4tuW9ewp+22g1tLGfu+88w6XXnppm8ZQoCYiIiIiIiJy4FtdWM2crWV77Ht1+WV8ceojsJ3IJSYhis69O5HeO43OvTvB0QfhsO65xYQZ9XXY1udQsLmI/C2FLP1jJQWbm3c69QoND+W5ra8zc3PrXTx3pahQC2cMStvn9lDbbwO1XUGBmoiIiIiIiMiBz+Zw8tmSXGzt3PR/R41IjycjFJbPWM2yP1ex7K+VrFu4CafD2ep7Ay87hqHXnbBH5thQUcOXJz2Mo6FtlXsR0eE8POUuBh7en8+X5NGwnd+yqwzrFMfgTvteZrPf7qEmIiIiIiIiItIWIRYzg9NiWZBTsdu/FR1m4ft/fcDSX5fR66Bu9BjajZOvG09sUgwVxZVUFlWRv7mQ7HV55KzLo3Br0zLPNZ/OoNcZo4nqkLDb57n0jWkBwzSTycS2tVcZfTrx+I/30qFLCgBDOsUyN6t8t88xMsRC39To3f6dHaEKNVWoiYiIiIiIiBzwnC4XU1cX7vb9vw5OCOXmXje2eD80PISbX76K8ZceCUB9bQN5G/LJXptH9to8CuttxJ88erfOsXJtDqVfzqBDlxQ6dk2lQ9cUOnZNIbVLCv+7+lX++PRv49n+o3vz72/u9tvvzeVyMW1NEQXVDbt1nsf0SqZz3L61d5qXAjUFaiIiIiIiIiJBoaLOxverC7A5dk8UMqBDDMM6xXBq7MU01LUc3I068SAe+XZii/dnbyljTVH1bpljmMXMCf06EBseeNHir5P/4vELnwdg9CkjuGfyrYRHhjV7rqrBzncrC2jcTUs/+6ZGMypz91fq7Sgt+RQRERERERGRoBAXEYLtj6XYhvUiJCp8l47dIymS4elxmEwm7v7gZh468+kWnz3+8qNaHatXqIvf/lxOp3EDd+kcQywmju6V3GKYBnDkeYdSVVaD2WLmhCuPxmK1BHwuJsyK6+/lNPbvRmj0rq0i65oYyciM+F065q5m3tsTEBERERERERHZE2Z/t4APbnuHn294lbriyl02btdIC29OeIhrh/2TFX+vYexpBzNywrCAz8Ylx9DvkN4tjmW32Xn0vGf57c53WPP5zF02x8gQC3XT53Njn5t4+R/vUFddF/A5k8nEqTccz8nXHtdimAaw4KclTLr5LX669mVqCnZdB9U+KVEc1i1xn+vquS0FaiIiIiIiIiJywMtZn8cTF7mXMpas3Er8yk10T4zcqTGjQi0c0yuFOf/5kpy1eWxcuoVbx97LP49+iDGnjMAa0jyQqiiu4vrhd7LkjxUBx3zjzg9Y9ucqXE4Xmz78jYOTI4gI2bn4plt8OCMiXHx230eU5pXx1XM/8H/p1/DWxA8pzi1t93gFW4p47PzncDpdlK3NIXrxenomRe3UHCNCzBzdM5lDuuz7YRraQ017qImIiIiIiIgc6OprG7h59D1sWrYVgMPOHMV9n96OyWQip6KOX+dsxJnY9lygtqiCod1TGN4zhVCLma9fnMpLN7/d7LmYxGiqSpv2QotOiKK6rAYAs9nEZY+ez7l3norJEyD9/slMHj3vWQCsIRae+eNh+h/Smwa7kxX5FcxbmUd4Ykyz77Skc1w4meEWbuhyDQAmE2ybAllDLBx5/qGcffspdBuYud0xGxts3HrovaxbsBE8+8E9POUuzGYzeZX1/Dp3I7bYKEzmtoWAESFmeiVH079DDGHW/afua/+ZqYiIiIiIiIjIDnj9n+8bYVpG387c8fYNRojVOS6C5U9/wZQzH2PJ6z+SZIHwbYIdR6OdkpVb2fjtXP648x2+OuXfrP3od0It7ucOPWNUwO/6hmmjTjyIt1Y+y7CjBwHgdLp4a+KHPHD6f6guryF/cyH/u+Y14/nrn7uc/p6loWFWM5G5xXx50sP8OXESW6ctoGRVFg6b3e97tUUVZP+5nIJpCyib/CvRa7aQNaOpEi5QSZXd5uCnSX9ww4i7WD133Xb/lu/86yMjTOvUowN3vXcTZk94lhYbzuoXvmHKGY+x+NUfSMDZrLrOYbNTsiqL9VNmk5hbSP4bU+mXGL5fhWmoQk0VaiIiIiIiIiIHstnfLeC+U54AICwilJfmP0mXfunG/bqaes5Mugxbo53UzGQ+2PQyxdnFPHPN6+RsLKQktxR7XSOubbpZWqwWvql8j9DwUAAu6HodhVuLA84hNTOZd9c+T0hoCA6Hg/cf+owPH/nCuJ/WPZXI2Eg2LN4MwNEXHMZd791khH4A7z/8Ge89+CkAyelJFGeXYLKYSemeSkVhFY5GG3ZPZ1GzxYzTM98bXriMl256p01/q3s//geHnzOmxfsLf17KXcf9G4CQUCsvzHmcHkO6GvdtjTbOSLqM+poG4lPj+CT3dSqLK3ni8lfofXBPLrznTM5IuJiGmga/cTv3SuONZc8QEhrSpnnuC/av+E9EREREREREpI3KCsp55oqXjfNrnrnEL0wDWPrHSmyN7kqvkeOHAvDPYx5mwY+LyV+bi626vlmYBuCwO7jnhMdwOt33+o8O3GggsWM8939+hxEWWSwWLn34/3j0+3uISYwGIG9joRGmdeiSzE0vXuEXpgHMn77EOLY32gBwOZwUrsunoaLGCNMAI0wDeO3299v0tzr+siM59MzAlXYAlSVV/OfSF43zKx6/wC9MA1gxcw31nrBsxPghmM1m/nnMv1nww0I+evBTVv+9mvDIsGZj56zL48mLX8DhcLRprvsCBWoiIiIiIiIicsBxuVw8fcXLlBe5u3kecvJwTrrm2GbPLfxpqXE8fPxQZn49l5x1+W36xpLfV/DKre/icrla7Nx5wb1n0WdEj2bXD54wjFcW/IfM/v4BX5f+GVhCrH7XaiprWT17LQCZ/TpTV1XfpvkB2Bvt230moWM8N754BRZL4K6eLpeLZ699jZJcdzfPg44ZxOm3nNDsuQU+f8sRxw1l3o+L2Lx8q3Htx7d+JS4p8B5wf3z6N89d+wb7y0JKBWoiIiIiIiIicsD59pXpzP1hEQDxqXHc9sZ1zaq+AFbMWm0c9x7ePWBzgdZ8/eJUJj3wSYsVau/c+xHFOSUB78UmRWNrsPldmzt1EbeM+RfZ6/KMa6vnrMPpdAdNQ44YSINPNdquUJZfzjv/+qjF+9Pe/Z2/vpgDnkYL/3z3RmPfNF++f8u+h/Ti+Rve9Lv/9zfziU+Na/E7U9/6hdf/+f5+EaopUBMRERERERGRA8qWlVm8dsck4/yf79xAQoAgp762gfWL3EstM/t15qvnvqc4pzTgmNZQa8DrAB8+8gWblm5l1IkHERkbwbXPXMLh57r3Iqsur+Gpy182lob6euUfk8jbUACeDf7Do9zLITcu3cKNB9/N0j9XArBy1lrjnZTM5Db/HbbnzNtOJCTMvRT1i2e/Z+Evy5o9k7M+j5dufss4v+2Na0nulNjsObvNzpq56wHo2DWFaW//Sv6mQr9nqstrcG4nLPv8v9/yzcvTdvg37SkK1ERERERERETkgNHYYOPxC5+nsd5d+XXqDcdz8IRhAZ9dO38DDrt736703p346vkfWhw3JiGq1e/+/tksHvl2Il+WvMOZ/ziJm1+6kuTO7uBp4U9L+eYl/5BoxldzmPrWLwCER4Xx2NR/8eLcJ8js1xmAmopa7h7/CDO+msNyn8qvGV/+3ca/xPbVVzdwxWPnG+dPX/YS1eU1xrndZueJi14w9kU7/vKjOPT0wPusbVi82fibdxmQwWdPfxPwueLswNV6vn7/ZGa7f8uepkBNRERERERERA4Yk+772Njgv0v/dK76z4UtPrty1hrjOH9TobGsMpBAy0W9ouIiOe/u08HTdAAgNjGGO96+3njmjbveZ+vqHACKc0v571WvGvdueO5yOvdMo0u/dF6c8zgjPQGgrcHGv89+hmV/rgIgLjmGtfM2tuGvEFhsUjRn33Gycf7Dm79wxHljGHrkAACKskt40aca7cNHvmD1nHUAdOrZkeufvbTFsVf4/C2Lc0qx2wI3GNi2am1bHbqkcP6/zmzHr9o7FKiJiIiIiIiIyAFh2V+r+OyZbwEICbVy9wc3ExbRvKukl28I5F1u2ZKq8uoW79ltDroNymx2ffixQzjtpgkANNbbeOKi57E12vjvla9QVeoe77AzRzH+siONdyKiI3j46zs59pLDAXA6XcY+a10DfKMtOnRNYUrFe3xR9A5X/+diEjq4l7+6nC4ePfdZ/vnODUTFRQLwywd/8cens1g9dx2TH/0CALPFzMQPbiYiOqLFb/j+LSNjW35uW7455bXPXML7G18yuq3uyxSoiYiIiIiIiMh+z26z8/z1TV0iL3v0fHoO7dbi8y6XywiBYpNieOjrO7nhucsZOLav8UxqZrKxd5qt3k5S54SAYzXUNrS4XPTKJy4go697Gee6BRt5/ILnmPfjYgCSOiVw66vXNKt+s4ZY+efbN3Dunaf6XbfV2+g6KMPvWmh4iLG0dFvecYu2FmMyN33jzndvNI6X/bWK0oIKbnrxSuPas9e+xn+vetWo2Lv4gXPoe3CvgN/A+7ec6V6WGhEdzn2f3saNL1zB4MMHGM+kZCSR0CGOPiObOp6aLWbufO8m47wkt7TVSsB9SZsDteuuu47p06fv3tmIiIiIiIiIiOyAr577gc0rsgDoM7IHZ9x6QqvPZ6/NNarE+o/pTXxKHKfdNIHkjCTjmcd+uIeTrjnWOB84tl/zgTz5z5QXf6SmsrbZ7bCIMO5+/yYsVvdSUG+3TICbXryS2KSYgPMzmUxc+cSF9Bre3bi28u+15G/0XzI58vihvLXy2YBjeMNFp9PFugVNS0VHjB9Kz2FNYeN/r3yFo84/lHFnjwaguryWTcu2AtB9cBf+7+7TAo7vVZRVTEluGQB9R/UiITWeU284nrRuqcYzD375Tz7Ne5MX5zxhhJROh5NhRw8ynlnlWV66P2hzoPbaa69x4okn8vrrr+/eGYmIiIiIiIiItENhVjHvPfQpeIKom1++ytjLrCUrZjYtURwwpqkqbfNyd5BkDbHQuVcamZ7qMoBug7s0G8fqCcqqy2v47tWfAn6r9/AeXHCv/75gB08YxphTR273t3lDPy9vgwCvLv0ziIyJaLFKzWvVbP+w6p7JtxjHm5ZtZcOSzdzy8lXEJfsHfDe9dKURBrZkud/fso9xvHmF+29pMpnI7JduXI+IDvf5PfWkde8Ango+u83e6rf2Fe1a8hkaGsp1113HI4880upzP/30E5dddtnOzk1EREREREREZLteve1dI2g66drj6D28x3bf8d3zyxsC2W12stfkgqfrpzXE6hcElReUEx3v3+3TbnMYyxS/+N+3NNT5B15eo04a7nc+csKw7S5vLM0vMzbx7zowwy+I8uoywL0E1NsdtCWr5qz1O8/o09lv+eUzV7xCbFIMnXt1Mq5FxUXS9+CerY7LNs0d+nv+lk6nky0rswHo2C2V8MimPepiE6ON4w2LNtN3lPsbDXWNRmXcvq5dgdrTTz/NuHHjeOCBB7jllltafK6wsJD33ntvV8xPRERERERERKRF835cZCyjjE+N47JH/q9N73kr0Uwmk7GsMmd9vtGdsuvA5kHV1tU5DBjbp9lYvUa43y8rqGDaO783u+9yuXjl1nf8rn361BTqawOHb16+4dLwY4fw9G8PNnsm0hOyZfZNb3bP16rZ64wloF63v9XUhXT9ok1Me/c3Vv7dFI7VVNTyzUvTWh0XYNPypnl6Q7rCrcVGyNllgP/cEjrGG8ebV2TRb1Rvv3nuD9oVqMXFxTFt2jROO+00XnjhBc4//3zs9v2jFE9EREREREREDiyN9Y28eNNbxvnVT11ETEJ0q+/gCbi2rs4BoEOXZKN6aotnDzY8SynxhHQxCe6qtKxVOZx4zXHNxkvNSDaOP31qSrNliz+99wfLZ7g37Q+LDAWgKKuET578utV5Zq3ONY4z+6W7K++2KWp77vo3KNhStN0KtdK8MoqyS/yudRuYSY+hXY3z5294s9l7kx78hLLCiu3M0/23jE+NIzbRvWTU92/Ztb9/I4XUzKa/V+76fPqOamp4sG0l3b6q3V0+Q0ND+eyzz7jyyiv5+OOPOemkk6itbb7pnoiIiIiIiIjI7vTJk1PI3VAAwKBx/TjmwnFteq80v5zayjoAMnyWdG5ZkW0ce5dSmkwm45mi7BL6j+6Fxeofp5QXVnDwCcMAKNhSxG8fzTTuVZVV88ad7xvnNzx/ubEn2Sf/mULepoIW5+kN/fCtlPMvMqM4p5Q7j32Y+A5x2/3d3iWYvm578zrjuLGuEYC+B/dk/KVHAFBbWcfb90xuccyqsmrKCir85whsDvC39Orcs6NxXLi1mB5Du2L2dCENNMd9UbsDNQCz2czrr7/OxIkTmT59OkcddRQlJSVteFNEREREREREZOflbsjnoye+AsBitXDTi1dud08yryzfoKpP055hm1Y0LV3s6rNMsbdPp801czeQ0de/Gix3QwHnTTzDOP/oia9wONxLR9/510eUF1UCcNhZhzDh8qM54xZ3B1Jbg43X//k+Lcla4zPPvp2pr633u+/dUy13fT6T7v9ku787b0Pz8K73Qd1J75Xmd+2ml67kiscvIDI2AoBp7/zGmnnrW5hjUxVdRh/fQM3nbznQP1CLS441jutrGwgNCzGq1nLX5zdbmrov2qFAzevRRx/l2WefZd68eRx22GFkZ+8fKaKIiIiIiIiI7N9eue1dbA02AM689US6Dcxs87tbVzUFVb7h2KalWwAICQuhU4+mKqqBh/YzjpfPWMVhZx7iN15pXhk9hnZl0Dj3c1mrc5j2zu9sWLKZ715zd/4Mjwrjuv9eCsAF951FgqeibMaXc1j489JW5xmXHENsUgwlOWV+9ydccbQRRG1ZmW0sJ/UKjwrzO89dnxfwOykZSX7ncckxJHSI5+IHzgHPEtmXbnkbp9PZ4hzZpkJto+dvaTab/DqlAoT6NChwePasS/P8vWsqapt1Nt0X7VSgBnDzzTfzwQcfsGHDBsaOHcvq1at3zcxERERERERERAJYOXsts79dAEBy50QuvP+sdr3vW6HmDdTKCsrJXusOnHoO62osywT8GhGsmLWG026a0GzMvA0FXPbv84zzd+79iLcmfmhUW110/9mkpLuDq6jYSK584kLj2ZduebvZvms1FTWU5pX5zbE4p9TvmWFHD+LJn+43wrmG2ka/+92HdPE7z9mQ32ze6xdvYtGvy/2uPXXZywCceuPxRki2avY6fn7/z2bvB/pbVpfXsGmpu0Kt68BMQsNbDvq8v9s3wMxZ33ye+5o2B2rJyckt3jvvvPP45ptvKC0t5dBDD2X27Nm7an4iIiIiIiIiIn4mPdC0vPHC+84iIjqiXe9vXdO8qmrpHyuNa0OOGOj3fHKnRDp2TQFg9Zx1RESHE5cS6/dM7oZ8Bh3Wj3FnjwbPvmrzflwMQEp6UrMQ7piLxhmb8W9dlcOvk2f43fddSumt8PIGbF6DDutLeq80npx+n9E4wdchJw33Ow+05PO9Bz9tdm3JHysoyi7BGmLl+mcvM66//9CnzYK/bZelAiz7a5URJA45YkCz8cN9Kum8FWq++6rlBQj+9jVtDtQKCws599xzW7w/fvx4fv75Z0wmEy+//PKump+IiIiIiIiIiGHZX6tY+JN7iWRa9w6Mv+zIdo+R5VmmGJMYbeznteT3Fcb9QCHQgEP7AtBYb2P9os0MPdI/dMv1VFVd+cQFhISF+N07/19nNqvSMpvNXPPURcb5R49/aey7RgvLUnM2NgVNYVFhRMW5Q7Rug7rw6A//IizSf4ln/0N6YzI37SuXvS7Pb9nmmnnr+fub+eCp9Evr3sF9wwXPXPkKAMOPHcKI8UMAyN9cxC8f/uX3De88wyPDjKWj2/tb+s7TYfcu+exgXDugKtQALBZLq/dHjRrFn3/+SefOrbdqFRERERERERFpL5fLxTv3fWScX3jfWVhDrO0ao7aqjqJsd2PFjL6djUYGS/5wh0AWq4UBY3o3e2/AmL7G8YqZqzn1xuP97nu7jaZ168C4s5r2WAuLDGP8ZUcEnMvAQ/sZgVP22jz+/KxpxV+gpZQbFm02rsUlxfiN1W9ULx759m6/ax8/NYVOPkGVw+agJLepys230u/8f53Jza9cZZwv/GkppfnuZy+4t2lJ7UePNzVcaGywkbfR/bvT+3TCbHbHTEs9f0uTyWTsK+cr3CdQs9vdAZ9fhdrGljuf7it2eg+1bfXr149ly5bx448/7uqhRURERERERCSILfplGcv+XAVAeu80jr7gsHaPUbi12Dju3Msd4pQVlBuVVr1HdA+4hHSgzz5qy2euZtCh/QiLCPW75lXg842G2gZWzlrb4nwuuPdM43jyY18YFWT5W4p85unuwum7DNS7H5uvoUcOJDSiqTpu/tTFxKfG+T3jraRbPnO1sSS1Y9cUjr/8SEYcO4QOXdxLW10uF/+96lXPb+/L0CPdwV/Oujz++PRvAEpySnE6PIGY529ZXV7Dek/w121QJrGJ/sEf2+yh5vRUqHXsfgBXqLVVXFwcxx577O4YWkRERERERESCkMvl4t37PzbOL3rgHL/GAW1VXlhhHCd2iIdt9087vPkSRYAuAzKIiosEYMXMNbhcLsacOtK4n7PWHXYt+nUZy/9a5ffuK7e967ec09fQIwfSf7S7Im7z8ixmTZnXfJ4d3fMsyvYJA3unBRzPuwzUa8XMNX7nC39xL5ed5PO3vODeswgJdQdxNzzftGfa3KmLqCytAk8Fm9dHj32J0+mkzGeOCZ6/pe/+aYMP7x9wjmE+gZrDE8hFRIWTmJYAB9oeagArV67k4osvZuTIkUyYMIFJkyYZfyRfH3744XaXh4qIiIiIiIiItNXcqYtYNXsdAF0HZHDEuWN2aBzfoMpbveW759fgAHt+4dnzrP+YPsYYOevzufKJC4z7dpuDqrIq3r2vKajyVnttWLyZ6e/+HnBck8nkt6Ry8qNf4HK5jHmGhocQER1OZUkVtRV1xnNJnRICjhcV23qDht8/nsXi35az+Df3b+7UsyPHXny4cX/0ySNJ9lS/uZwu/nfVa+AN/jy/f/OKLGZ+PW+7f8tA+6fhCc+8vHuoAaSkJwJQXljpt9fbvqjNgdq6desYNWoUn332GS6Xi+XLl3PZZZcxbtw48vP3/eRQRERERERERPZPLpfLb7+vix88x9ivq73KCyuNYyME8uz5ZbaY/ZZ2bmvAmKZ7S/9YSWpmil8DgicueoGVf7uXd3bpn84db19v3Hvn3o+oqawNOO7I44fSa3h3ANYt3MTcqYuMecanxmEymVj650q/d+JT4gKOFekTqAXaXy53Yz7v+IR+F91/drNKv+v+e4lxPHPKXKrLq93Bn0+V2uRHv6C8wKdCzfO39O6fBjB4XOAKtfDopkDNu2QUICreXV3ncrmoq6oL+O6+os3/9917771ER0ezbNky5s+fT1ZWFu+99x7Lli1j9OjRrFmzpg2jiIiIiIiIiIi0z9/fzmfdgo0A9BzWjbGnH7zDY21bVVVWWGHsn9ZnZI+A+6d5DTt6kM+c3EszO/Vs2vtr/rQlxvElD53L0CMHcpinQUFZQQUfP/5VwHG3Das++PdnVBY3BWpssywVIMGzDHRb3qWbAHabnd4jevg/4IKVs9wZTma/zhx53thmY4w7azSJae7xXU4Xz133BmwT/K1ftIllM5qWtsanxlFdXsOGxe7907oP7kJsUvP909imKYHT0bTyMTq+ablqdXng8HFf0eZAbfbs2dx000307NnTuHbhhRcye/ZszGYzhx56KHPnzt1d8xQRERERERGRIPXVc98bxztTnUazQC2WeVMXGectVVR59T24p7Gf2cKfllJXU0/3IV2M+95qq+5Duhih31VPXkhIqLtS7Iv/fddiB8vRp4yg68AMAFbPWY/T6TLm6HK5mOszT4CktMCBmjXUvyptwNg+ARsYAFz8wDktbtl11ZMXGsd/fj6b2uq6ZsHfgp+WGsfxqbEsmL7EmHdrf0vf/34un6Wd0Z496vA0N9iXtfn/wJKSEjp27Njset++fZk1axbp6ekcffTRTJs2bVfPUURERP6fvbOObiJrw/gTa5K6u0NboLi7O4u7LLaw2AIr6LcC6+jC4iyw6ArL4u7uUKBogbq7t/H5/kgySRptk5bSvb9zOGRm7ty58ybp3Dz3FQKBQCAQCIT/KPEvEul8X76hXmjVr6lZ/eVlanqoXfv3Nr3dZkALPWfJYTKZaNO/OQBAJBAj4nwk7J20vbCGfdafFo28gjww9LMPAABikQTrZm3TmY+eyWRqiFXqY4yJjEfym1SN/S5ezjrHyOFqCmoR5yOx+M85Wu1cvJ3QfmgrvffafVwnOLrbAwqhcP2sHYBC+Atq4A8AyE3L0xjnVQ1bNtfbtzrqudI0PdRqiKAWGBiIyMhIncc8PDxw9epVNGnSBAMGDMCBAwcsOUYCgUAgEAgEAoFAIBAI/1GOblQ57gyY2dss7zQAyFXLocZis/DwnDxM09XHGXVbhxg9v+0gVbjpzaP3NEQgJW0GaYpJo/83hC4i8ODsE5zeflFn3x2GtYabn6Y3maObA64duK3V1sVHd1EC9ZBPAIh/kaQz3xqHxzFaUHLyT6qiC5f/ug5BiQBMJhNDPv1Aqy3Xhot7JyMAAA6udnoLEtAw5P8pPdqglkMNAIprSshn586dceDAAUgkEp3H7e3tcf78efTu3RvHjh2z5BgJBAKBQCAQCAQCgUAg/Acpzi/G+T3y6pg8Gy56Tuhk9BxjKEM+7ZxscP/0I0jE8iqTHYe1MUmsa9y1PviKpPp3T0SAb6edc+3QmpMa29Z2fHz223R6e8sXu5EWl6F1HovFQu9JXTX2Obrb46oOQY1nzdPaBwBsrnYhgjvHH8LW0VpjX1pMBjISs3T2oaTP5K6wc7YFAEglMmxf9CcAoNOINhrFD6x4HDy9+gLCUhEAoP3gVlqFDsrCYMgVNUpNULNzqoEeahMnTkTbtm3x4MEDvW24XC4OHz6MOXPmoGPHjpYaI4FAIBAIBAKBQCAQCIT/IOf3XIOgWAgA6D6uI2wctL3BykthThEAwM7FTiPcs+PwNiadb8XloEWfJgCAguxC5KbnabU5te2C1r5WfZui92S5WFZaJMCqyZs0wh2V9J7cRWO7tEigFe7JYDIMjq8sN4/eA1OHwDWvy1KIBCK9fQHA6MWD6dcX/7gGAODb8NBtTAfVNXlWuHbwDr1tii1pQY3S7aFWYwS15s2b48CBA2jdurXhDplMrF27FpcvX7bE+AgEAoFAIBAIBAKBQCD8B6EoCsc2naG3B8zqbZF+pQqPNCaTWe5wTyVt1XKtPSlTfRMAslNyEfssQWv/9F8mwN3fVX7elec4tlE7D727vxv86/rS2w/OPtZqY8j7i6MmqCm9yJ7fjEJpkUCrbWpMOn6dqTunm5Khn30AFkd+vaLcYkRek+ez6zu1O91GUCIsX7inmiiofm2NHGq5NURQIxAIBAKBQCAQCAQCgUCoKh5dfIrEqBQAQKPO4Qiq72+RfpWVOAXFgnKHeypp2bcJLWrFPY2n9zu4qgoU7Fj8h9Z5NvbWmPf7THp7+6J9SHqdotWuTqva9Ou3j+K0jrM52mGdSqx4KkHN2VOVZ00sEOtsf27XFZzfc1Vvf0wmE4271Ke3d371NwCgdpMgMFlym0lEknKFe8r7VXjZqWl5bI7qPKlEarSPdwkR1AgEAoFAIBAIBAKBQCBUO45uVHmnDbSQdxoASBWCWklhKb3P1HBPJXZOtmjYqR4A0KIcALT6QFWB9OH5SJ0hnU26NqDvR1gqwspJGyGVaopHfmE+9GuxUC6EqXvQla3kqQ5HTVBTF/iUMBgMeNf21Ni36dOdyEzK1tvn5J/G0K9f3H4NkUg+Jo6V9jg6jmirtx+NcegQMJXvDQBarKuuVO/REQgEAoFAIBAIBAKBQPjPkR6fiTvH5TncXX2c0XZgC6PnmIqsjKBW3nBPJephn0oC6vrBxkGe/F8ikuDE1vM6z/1o2Vha1Hpx+zX+XX3C6PVa92tGv2boT6Gm4aFmxbeCo7tmhU8Wm4mhn/bT2FecX4LVUzbrDf0MbRoMJw95PzKpDPuXHwUAMNmaspK9iy0aKYRGYzDV8sAphUcZEdQIBAKBQCAQCAQCgUAgECrGhb3XIFNUf+z3cQ+TQghNhRZtFNpRecM9lbQd2FxrH5PFROeRKg+tQ2t0C2V8Gx7m75xFJ+bf/c3fiHueqD1GNdoNbUW/luo4roTLs1K1E0vhV8db4ziLzcIH03uCXca77OG5Jzj5m3YxBSXq1UdP/nYOAEBJNQW4wPr+Jr9X6oKZsjDCf05Qe/36NQoLCy3RFYFAIBAIBAKBQCAQCIT/OFcP3KJf95zQyWL9UhSl5YXVeVS7CvUV/SReax+LzcLEH0bT28lv05CVkqPz/Prt6mDY5x8AAMQiCVZM3ACJWALoEdRyknPp17qOK+Fac+nXYrFEK7k/g8kAk8lE0+4NtM7dOm83UmPSdfY75qshdCGB7ORcxD1P1BL2lBVUTUFdMFMWTFC/L0uKqJWB2YKaUChE3bp1cfjwYcuMiEAgEAgEAoFAIBAIBMJ/lsSoZMQ+lVfIrNs6BO7+bhbru6wQFdI0CHVa1tbb3hDX/r2ttY/JYsLR1R4B9VRVOncs/lNvHxO/HwX/uvJ8aW8exuDPHw/pHCcA3DnxUO0+9FflVM9rVlpYStuyLFOWjdPaJygWYtVHm3TmfuNZ8xDWopbaff2hlfst7lkictPz9I5NHXWvQEGxECgrqP0XPNQMlVclEAgEAoFAIBAIBAKBQDCVawfu0K87DitfsQBjlK0cOWBmbzrssjyIhGLcOnpfvqF2enF+CQBg1KJB9L4bh+7q7ceKZ4UFuz6hvbX2ff8v7p95hPxs7SjAW8fu068pHYKXkqI8lUeaQOH5pY6yiEJQfX84eznS+5W53yKvvsCR9ad19j1h6Uj69YNzTyCTaI6DoigN4c8QSm88ALB3kRdP+M+FfBIIBAKBQCAQCAQCgUAgWAL1cM+Ow1pbtO/c9Hz6NYvNRJfRFQv3fHjuCUoK5EUN3Hxc6P0v77wGAHQd04EuDiAoFuDm0ft6egLCWtTG+CUjAIUg9dOYX/H85iv6uFL0SovNoPcp88vpokBNjCtUE9eUwp9EJEFxvnx/v6nd6cPqRQJ2LP4DiVHJWn0379UY1vZ8uh+6a7Vzbxm4V3XUz7exl4t5pMongUAgEAgEAoFAIBAIBEI5qcxwTwC4sO8a/drexQ5cPtdge32oi36NutanXz+/FQWpVAomk4lWalU59313wGB/o/83GO0GyauGFuUVI0YtP1vjLtq5ziiDgpoqj1lxntxjLrhRAHg2qnu99OcNAMCoRYNpMawwt5gWGEUCMVZO2qjl0QcAnYa31dpnY28NZy8nAEDEhUiUFmt7xpVF6Smn7iGofj0iqBEIBAKBQCAQCAQCgUAgmEBlh3ue/O08vc3hcirUj0goxu1jDwAA1vZ8BNTxoY8V5hThwdknAICPlo2h9799HIuMhEy9fTKZTMzf9Qn8FH2pp9aq1ThAq72hkM/CXO3CAB2HtdEQrk5tvwgoQk7rtg6h96fHZcInxAsA8PLOGxxYdUyrr0k/jtLax2Iz0aa/vOqpSCDGw3NP9I5PiTJPG5OtVpygUCXEqQuA1REiqBEIBAKBQCAQCAQCgUCoFlRmuOft4w+QmZhNb5fqyC9mCurhnu0GtURhmSqap7dfAAD41PKCT21P+U4KWD1li8F+beytsfTQfI3QSyjEtpCmQRr7DKWyV3qlqdN2UAsNserto1i8fhgNAJi2cjy9/8Xt15iybAw9hj1L/0HsU81qpk7ujnDzc9HYV1okoD3sYELYp0wmAxT3wOaoqnnmZahCcp08HHWdWm0gghqBQCAQCAQCgUAgEAiEd05lh3se3XhGY7s4r7hCRRY1Rb82yMvM1zh++/hD2httzuap9P5HF58iJy3XYN9FuUVa+dFeP4xGmwEtNPYZGndJYanGdnCjANg52Wq1O77pLACgXpsw+IZ60fuPbTyHYZ/3BwCIRRKs/2SH1vXsnGw0tkUCMeq2CYW1nTy/2p0TD3WGiyrJSVNVAlX3FMzLLKBfO7jZ6z2/OkAENQKBQCAQCAQCgUAgEAjvnOsHVdUwLR3uGfc8EY8vPQMAcPlWgCKxf1nxyRhikWa4Z9MeDTW8qqCoVPnPSnmoZNNuDeEZ5A4oRLDVUzYb7L+s6AcANw7e1fJQM0TZ/GUdh7XRGCPbig0o8snRwt8mNeHv8lP0m96TDv18ev0lrh9UheKmRKchJjJB67pigRgt+jQGFKGvz2680mqjJCclh35txbOiX6uLk07uRFAjEAgEAoFAIBAIBAKBQDDIo4uR9Ot2g1tatO8/fviXfu2j5o1VnFes5wzdvH4QQ4d7turXFFZcDvIy5F5VDIYq79ep7ReRnSr3Rvtk/Uf0+fdPP0ZeVoHOvhOjknHl75sAABsHa3q/WCTB9kV/wD3A1aQxCkuEGtvtB7ekxwgAYS1qAYqiAPtXHAUANOnaAF7BHvIGFLD+k+2YtkoVCrptwV6IBCIAwB8/HtR53aK8YrQdYFrYp9I2KJMrTV34Ix5qBAKBQCAQCAQCgUAgEAgGEAlEeHH7NQDAM9ANXkEeFus79mk8ruyXh2k6utmjduNA+liRjnxjhnhy5Tn9Wll9UykCObg5oP/0ngAAsVCMf1cfBwC06tuUzjlGURTWTNWdS23PtwfocM8BM3trHIt/kQQ2h62xTyQS6+xHWCKiXzu42cO/rq+GUNWqb1NaxDq945JK+NswmW7z8OwThLWshabd5feYFpeJQ2tPIul1Ci7suQoAsLbla1w3KyUXLfs2BYstz4l25+RDneNDmZBPvi2Pfq0U/qzt+BWuwFpVmC2oWVlZ4fLly+jVq5dlRkQgEAgEAoFAIBAIBALhP8Wre28hEsgFooadwy3a9+6l/9CvRy4cBAdXledTUTk91J5cVQlqjTrXA0VRtFjl6G6PYV/0hxVPnhPsxJZzyFd4o81YM5E+7/bxByjK06zEGfssAVfVRL9hn/ejjzFZcukm5W2axjmiMp5o9H6BSlBr3CUcDAZDQ1DzDPLAgBlyDUcsFNOVPFv2bgp3f7kXHEVRWPvxb5i+egJdoODPnw5h++I/aNFvxMKBsLZXiWpHN56GraMN6rSqTY83N10lnKmTl64aj6agprJldcdsQY3BYKBTp07w8LCcekwgEAgEAoFAIBAIBALhv0Pk1Rf060adLCeovYmIwc3D9wAAzl5O6D+jJ2zVEvTnZ+oOv9SFRCzBi5tRAABXH2d41/KEoFhAC4GO7g5w9nRC3yndAQCCEiEOrjkBAOgwpDWcvZwAAJSMwpppv2n0vWfpP3Ti/xELBsHexZ7O9ebs5QQGQ7PyJwCUFukW1CRiVTEApS3VBbWywt/Jrefp3GUzf1V5qd05+RAuPs7oO7W74noC2pb2LnYYPKcvGnSoS7ePOCcP2Q1vW4fe90xhr7Lkq4W92jra0PYtzCmibVndISGfBAKBQCAQCAQCgUAgEN4p6p5fDTvVs1i/u5fsp1+PXjwYXD4XnoGq6qGpMekm9/X6QTQECq+wRp2Vnl8qYUgpAg2fPwBsjjzs8eiGMyjMlYtE09Vykt04dBclRfJcbG8fxeLGIXlBBmdPR/SfIQ8b9VCMMz+zAJN+GK01nrLFEJRQalVCld5+Zcfp5OFIC2Vy4e8kAKDdwBZw8VEJf2un/YYJ343UyOkGACMXDIS1HR89JnSm95UWCfDy7mvUb68S1J7f1F2YoCBb5aGnFDjzswq1bFmdIYIagUAgEAgEAoFAIBAIhHeGSCjGi1tyTybPQDd4BrpbpN8Xt6Nw92QEAMDNz4UWkLxre9JtUqJNF9SeXFF50TVUeH6lx2fS+1w8HQEA7n6u6DWxCwCgpLAUR9afBgB0Gd2eFopkUhnWz9wOaIl+Q8Cz5mqMUywUo9u4Dhgxf6DGeE5tu6g1RqlEqrHtX8dHPs4EtXEqPOVGzB8IjqLi57GNKuFv2qoJdNubh++Cw+Wg90dd6X1sDgv9Z8pDRv3DvDWut3vJPwhvG0Zv6xPU1ENt7V3s5GNUs6WzwpbVGSKoEQgEAoFAIBAIBAKBQHhnRKnlT2tQSd5p474aBiuuPMTRu5a6oJam81xd6PKiS3yVTO/zU4hXUORqU+Y+O/zrSZQUyr3RPvp5DN3m8t838OTqc9w5IU/e7+brgr5Tu9HHfdTGmRqdjinLxoKjuAcAOPHbOTy69FRjjE+vq0Q/FodFh4oqx+ngakcLWG6+LuipLvytUwh/I9vBSSFoyWQU1s3chsQo1X1KxFI8OPsEAOAZrJn+6+Xt17B3saNt8SYilvbqU6dYrRiEg5udQVtWV4igRiAQCAQCgUAgEAgEAuGdoV4501L50yKvvUDEBbnY5BXsgZ4TVaGJds62dN6uson+9SERS/D8htzbysXbCT4K77GEl7pFIK9gD3Qb1wEAUJhbTOdS6z2pKy1oSSUy/Dx2HX3O2K+GwopnRW971/aiXye/TQODwYCTh1ooJAV8M3A5Xt59Q+9SeuQBoHOkFecXIzslV2uMADBq0SC6KuehX0/Suc2mLBtHt7ny903cO/lI47zf5u+BSCgG34ZH54aDQphLfpOK+u3qKO5Riqj7b7XsqRQYAcDJw9GgLasrlSaoRUdHV1bXBAKBQCAQCAQCgUAgEGoImpUzzRfUKIrCrq//prc//GY42Bw2vc1gMOhwyszELIiEYqN96sqfBgAJUfpFoDGLh9BeavuXH0FGYhYAYMJ3I+k22Sk5AADPIHf0mtRF43yvWirvr1SFJ52yUIESQbEQX/b9ETGR8QCApzdUIZY2dvIKnIlRKaoxhmmO0TPQHT3GdwIUYZhKu/Uc3wkOrnLhT6aWk015flpsBg7/egoAaHFRyaF1pxDeThX2+eyGdthnaZGAfq0Mg1X3gvP/LwhqqampOHfuHH755RdMnjwZLVq0gK2tLUJDQy0zQgKBQCAQCAQCgUAgEAg1EqlUipe3XwMA3P1dLZI/7cr+W3h6/SUAwC/MG13Httdq460Qq2QyCulxGUb7VBeFGnZUhaUmKryq7Jxs4Ohmr3GOb6g3Bs7qDQAQloqwbcFeAMCAGb1oDzkl474epiH6oYxQlawQ1FiKYgfqFOYWY1Gv75H4OgVxTxPo/TaKayS+UhPUdAhVE78fBb4tDwBw8rcLePsoFgAw6UfNQgju/i5YtG82mEy5mPjnjwdRkF2oIfwBwL1TEZqFCW5pV/oUqoWBung7KcYptyXPmgs3Pxetc6obJgtqeXl5uHHjBrZs2YJPPvkEnTp1gqurK3x9fdGnTx/Mnz8f//zzD4RCIXr06IHPPvusckdOIBAIBAKBQCAQCAQC4b0mNTodwlIRACCsZW2z+ysuKMGWL3bT21NXfAgWS1uE0sijZkLYZ+wzlVClHGdJYSkyk7IBAH51fWmvNXXGLx1Be3pd2X+L9sZr2FktVxwD6Diirda5HgFudDimcoxlRTePAHkl0Nz0fMzvupS2JQBYKypzJqjlJvOvqy2ouXg5YdzXwwCFd9/Gub+Doih0HdMBDKbqnnxCvBHarBb6fNSNvv8j609r2BIA0uMy4ernQnuevbgVBZlMptFGKFCN083XGWKRmC4Q4RvmDSaz+mcoM3mELi4u6NSpE2bOnIk//vgDYrEYAwcOxPLly7Fp0yZQFIU9e/YgMjIShw8fxqpVqyp35AQCgUAgEAgEAoFAIBDea2KfJdKvA+v5md3fniX/ICdVni+szYDmaNO/uc52XrXKV+kzTjFOJpNBhyMmvVZ5fpWtdqnE1tEGk38aS29vmrsTGYlZiDgfqWpEAbu+/FPrXBabBY8AV0AhPFIUBbaVpjgY0iwYQQ38AYDOk6bERiGoJb5KUo1TTyjl4Ll94Rsqz9n27MYrXP77Jv788RAotXDPp9dfQiQSY/T/htBC35H1p+Di7azRF0VRuLj3Gh32WZxfopEfDQAkQgn92sHVHilv0yCTykU3vzq6bVndMFlQYzAYCAwMxJUrV5Cbm4tbt25hx44dmDdvHrp37165oyQQCAQCgUAgEAgEAoFQ44h/riao1TdPUIt+Eocj6+V5vbh8K8xcO0lvW98QlaAWp+Z9pgupVIqEl3JRyru2J104wNQk+r0mdUZIs2AAQExkPL4duhKCYs3Kl8e3nodEItE61ydELnKVFJYiMzELTu6OGseT36Ri2dmv6Jxw6tgpQj4TFCGfHC4H7gqBriwcKw5mrFHZa8vnu3Bg1VGNNhKRBNsX7IVHgJtGwYWYJ3Fa/Z3ffRWhzWrR22VtLBFL5S8YAJPJpMcIHXneqismC2rPnj1DgwYN0KNHD0yfPh2pqamVOzICgUAgEAgEAoFAIBAINZr4FypBLSC84oKaTCbDulnb6QT6Y74cajAfW63GgXQusFf3tKtQqpMWmwGRQKw1xkSNUEpfveezWCzM+nUyvf36QQwAwNbJBjwbLgBALBBj51d/a52rLkq9vPsWXsGa95T0OhUObvZYcf4bui8lMqkMErGEDhf1C/PWGf6qpGWfJmj9QTNAEUIqlcg9xhp3rU+3OaEQ/kYuGESHuF7ZfxNsK81Q1DcRMRrhpep53JRjk9uGqThumi2rEyYLanXq1MGRI0dw+fJlvHjxArVr18aCBQuQk5NTuSMkEAgEAoFAIBAIBAKBUCOJU3iosTksrWqR5eHcrit4oUh+7xfmjWFf9DfYnm/LR6AiVDLuWQJKi0r1to1/rgqZVA9LjXkaT782FqYY3jYMXcdoFkf4eMWHGK42zqPrT2vlGqvbOoR+/eruG/jV0RSbxEIx0mIz4BHgpuWldvPIPZzdfQVSidSkMQLA9F8m0OGcAODq64zvji6gixaIhRL8/r+/4F/HB+2HtgIU4purj2bYp3ouNwBIUAs7lclkoCi58Km8VqyaLf1rWsinkrZt2+LatWv466+/cPr0aQQHB2PlypU6k+8RCAQCgUAgEAgEAoFAIOhCIpYgKUruueQb5q2VcN9UCrILsW3hPnr7kw1TYMXlGD2vbku5WCWTUbTXmC7UCxIoPdQoisKLW/LqpHbOtvAK9tB7vhI3X83KlbUaB2LcN8PB5ctDSIWlIuz77oBGG/VCDS/vvkZwQ3+tfhNfpUAmkyHljWZxBYlYinXTf1P11SJE69yyOLrZg8NVvQ8u3s7g2/AxfP5Aet/RjWcgk8kwetFgel9BdqFWXzeP3qMFM/Xw2KK8Yvo1R/E+Pb8pF0N5Ntya56FWlgEDBuDJkyf45ZdfcOrUKVAUhQsXLqCgoMCyIyQQCAQCgUAgEAgEAoFQ40h+k0rn0gqsry0UmcqOxX/Qgk7nUe3QtFsDk86r0zqUfv3y7hu97dTDUpV53pJep9DXDG8bZrQqZVpcBo6sP62xb/WUzZCIpRg0py+9759VxzVyqTm6OcC7llyse/MwBv71tPOLJbxMQnp8JgQlQq1jMrWiAsoiAYbY9c1+jfxuUffe4tJfNzD2yyHgWstDSkWlIvz+5V8IaRqM5r0aAQBKCrQ9/B5deEp7zSVGpUAqlb/X8S9U3mo8Gy4yErPoaql1W4dqeMhVZ8yqQ8pkMjF58mS8efMGP//8M/7++2/4+/tj0aJFSEszXnaWQCAQCAQCgUAgEAgEwn8HiqJwYd817F9xFMc2naP3u/u50oJLeXh+Kwqnd1wCAFjb8TFt1XiTz9UMp3ytcSz5bSr+WXkUxzadxXNFKCmTxYSLt5Piuqr29doYFqooisKG2TvoMEg7Z1sAQMyTeOxd+g8mfj8SVjy5p5awRIhNc3aWGadc+BMJxEh5mw4GUzNC8Mo/t3BknaZYBwBdR3fQ2L5x8A4daqmL1w+jcWzjGQDQyIm2ftZ2ZCXnYMinKuHv31+Oo6SoFKMXD9HbX3ZKLnwUxR/EQjEy4rMAAG8fxdJtnNwd6VBdAKjXJlRHT9UTswQ1JVwuFwsXLkRMTAymTp2KdevWITg42BJdEwgEAoFAIBAIBAKBQKghXP3nFpaPX4/ti/bh2KYz9P5/Vh7FIMcJOLvrssl9FReUYNmH62iRaMJ3I+Hq7Wz0PCV+Yd6wtucDACIuPMWctv/D2MAZuHvyIb4dugrbFu7D+k+200KQTCrDUNfJmNliISKvPKf7qdfWsAh0atsF3D0ZAQBw9nLCt0cWgM2Re2HtX3EUr+68wdivh9HtT267gLwsVfRfnZYq4W/9rB1aotibhzE49OtJresGN9L0+juw+jhWfbQJErF2NVFBiRDLxq2jPdomLB2BbmPlglxRXjFWTd6E8UtH0PaSiqVYNm4dGnSoq+35pqb3pcVm0K+VlVIT1DzU3Pxd6HBPKLz93hcsIqgpcXR0xMqVKxEVFYVRo0ZZsmsCgUAgEAgEAoFAIBAI7zmGwvkExUJc/OO6yX1tnPs7LdjUaxuGgbN6m3zuizuvsX7WdoiFcnGptEiAl3feICMhC2d3XTY4zjcPY/Dk6nP6fsJa1NbbNjEqGZs/20Vvz908FQ3a18WEb0cCCu+15ePXY+Cs3nBwswcUwt0PI35BYW4Rvur/M46qCY+v7r0B9DuZaXB2p7Y4eW7XFSwZvAKlxQKN/Vu/2I1ERT67kGbBGPr5B/hk/Ud03rdHF5/i2MazmL3hI/qc28cfIOl1CkKb1tK8iNr4UqLT6dfKPGrq+3xDvPD8tlxQYzAYtDfe+4BFBTUlfn5++P333yujawKBQCAQCAQCgUAgEAjvKa36NYWdk43e413HdNB7TJ2rB27j/O6rgCLUc9He2Sbn3op+EodP232FE1vPQywUax138XJG93Ed9Z7vEeiGjAS511rtJoHgKXKLlUUsEuPncevoUM9+H/dA2wEtAADD5w+gPbvS4jKx5bNdmL9zFn3ukyvPMdRtMu6ejKALN5QXV7UiCCPmDwBHEcZ579QjzOuyFOnxmYBCGDux9TwAgGfNxeJ9c8Cx4sDW0Qbz1Ma0fdEfCGkarKomSgHTGs/H4fWn9I5BLFDZV+mhlp2SQ+/zru2J6MdxAICAcF/YOur/bFQ3KkVQIxAIBAKBQCAQCAQCgUAoixXPCt30iFUNOtRFr4mdjfaRkZiFtdO20tufbPgIXkHGq2wqoSjKYC6xoAb+6P5hRzossyy9J3WlXxvKn7Zn6QG8eSivHuoX5o1pq1X53VgsFhbung2+LQ8AcGbnZUjFUngGuavGKTPRFU0HXL6VRpGC4fMG4OczX9Ehm68fRGNGswW49Od1/DJlM91u+i8T4BemKnzQtFsDDJnbD1DkQVv24XrM36US2XQJkuqo2zlBIQzmZarCWVlsFmRSGQAg3EguuuoGEdQIBAKBQCAQCAQCgUAgVBl9PuqmtY/NYWHu5qlgMBg6z1Eik8mwcuIGFOUVAwA6j2xr0JtMF7UbB2Hi9/rTVAU1DICDqz3aDW6pdazzyLYQCUT0tr6cX5HXXmD/8iOAQjRatG8O+DY8jTZewR6YuXYSvf3d8FUaOcfMoVaTILxViHk+IV5wdHNAo87hWHPte1q0K8wpws/j1tECV9uBLdB3anetvib/NBoB9XwBRUGBLzotKddYrPhWAICUN6lAmYqgWYkqb7V671H+NBBBjUAgEAgEAoFAIBAIBEJVEtwwAMGNAjT2DZ83AAH1/Iye++/q43h8WZ6/zM3PBXM2GRfhdDHmf0Mw/Iv+Oo8FhsvFo7LCH8+Gi+m/TMSzm6/ofbpEoKK8Yo1iCRO/G4nQZrW02gFAr0ld0GZAcwCAVCIr933ow9XbGWKRPD+cetGA4IYB2PRgOVr3b6bRnm3FxuSfxui0JZfPxaK9c8BkySUkpUeZqUjF8uqteZkFEAnFtFcbi8PCi7tqBQnKFjeo5hBBjUAgEAgEAoFAIBAIBEKV0nZgC/q1tT0fY74cavScNxEx2PnVX4Aigf3C3bNh52RboeszGAxMXfGhlmhm72IHvq08LLJJtwbgquVHG/PlUPBteXhx6zWg8DBzU8tTpmTdrG3ITMwGADToWBfD5w/QOw6JWAIbE/KGsfSEn+pDWKIqOtCgQz2NY3ZOtpj0w2iw2CpJSCKSYFHP7/H8VhR0IZVIwbPRnSvOGFKJlH79+sFb+jXfhoun114CAFy8neBdy7NC/b8riKBGIBAIBAKBQCAQCAQCoUoZ9kV/WNvzwWAyMOvXyXoT+ysRlAjx87h1kCi8nUbMH4BGncPNGgODwcDcLVPRtEdDep+tozX9mslkYvCcPgAAz0B3jJg/AI8vPaMFoua9Gmv1efGP67j8100AgI2DNRbtmQ0WS78YtmryJlzYc9XoWL2C3DUEsLKUFdzS4lSho817NdI4JhKKsfzD9bRHHFcRkpmVnIMvOi/BobUnNXKfxb9IxOedvtEI1dSHi48z/ZrB1PZ2U3oXAgDXmksXbGjes3GFPA3fJex3PQACgUAgECoCRVEoFkmRXSJCdokYJSIJZBTAYjBgw2XB1doKLjZW4JdzNc/SSGUUckpEyC4RIa9UDLGUAhgAh8mEszUHLtZWcORzwNIx4SBoIpVRyC0VIatYrLCljLalE58DFxsOnPhWxJYmIJVRyCsVI6tEhNwSMcQyGUABHBYDjnz559LZmtjSFCQSCRISEhATE4OEhASUlJSAoijweDz4+fkhODgYgYGBsLKyetdDrfZIJBIkJSUhJiYGcXFxtC25XK6GLbncinlI/JeQSqUatiwuLqZt6evrS9uSx+OZ0Nt/G5lMpmHLoqIiyGQy8Hg8eHt7Izg4GMHBwcSWJiCjKBQIJMguFiGnVAShRIYvItaAxQAc+RykFQrgYm0FDktbNKIoChtn70Diq2QAQEjTIEz4bqRFxsVisfDD8UWY3WoxEl+nYuy3I5FaIEB2sQgFQglCp/TGN1N6g8dhIj5PgIjbbwAGA6AotOitKaglRiVj3cxt9PbczR/D3d/N4PWVHlrGyErOxfyds7Bm2m/wCHBFvkAC5zBfOIX5gOtgDTtnOxRmFSA/LgPZLxOR8kpeUTO4YQBcvZ01+tr6xW7ERMYDAALD/fDd0YVYOXkjnl57CalEis2f78KzW6/wxfYZAEXhh1FrIBIYLj6gZOT8Adj06S4AgK2bHax93eFS1w92/m5gcznI93FG07kDkBuVDFluAbJT83Ta8n2ACGoEAoFAeK8QS2WIySlBVEYRckuNP9jdba0Q5maLACfrKhUHckpEeJVRhNicEkiMVGjisBio7WKDMDdbOPA5VTbG94XcEhGiMosQnW2CLZkMBLvYIMzdFk7EllrklYoVtiyWi7sGYDMZCHaxRpibLZytiRhUlpSUFJw7dw5Xr15FcXGxwbZcLhft2rVDz549ERwcXGVjfF9IS0vD+fPncfnyZRQVFRlsy+FwaFvWrl27ysb4vpCRkYELFy7g0qVLKCgoMNiWzWajTZs26NWrF0JCQt47z5DKJisrCxcuXMDFixeRn59vsC2LxUKrVq3Qq1cv1KlTh9iyDCUiKV5nFeF1ZjFKxVKDbRkMwN+RjzA3W3jacWlbntp2AWd2XgYU3lSL9s0Fx8pyz3k2h42vrnyPqIwiJOcLkPo6U29bu2EdMKhtPUQfvYs6HerS+0uLSvHt0FUoKZR7cXUb1wFdRrUzeu35u2Zh/aztSFRUwNQLg0LbEe3g2qUR3mQVo1ikbUt3tdcyiRRJN17AiyGvaKq05fm9V3Fs01kAAMeKjcV/zIVXsAdWXliC37/8C/+sPAoAuP7vHcRGxiOogT/iniXKh8BgGKyOCgCBDQPQckIX8OoFwLdDOJhs7cXteg2C6NdN03Lx9sht1DXT2/BdwKCMWaMGU1BQAAcHB+Tn58Pe3v5dD4dAIBAIBqAoCm+zivEgKQ8iI0KALvgcFloHOMHfkV8p41NSLJLgTnwukvIFJrTWJsjZGi39HcHTMfn4r1EqluJOfC4S8oyHF+giwImPVv5O79xLsTogEEtxNyEXcbkVs6WfIx+t/Z1gbUVsWVRUhF27duHatWsVOr9JkyaYOnUqXF1dLT62943i4mLs2bMHV65cMfoDTRcNGjTAtGnT4O7ubkLrmk1paSn27duHCxcuVMiWdevWxfTp0+Hl5VUp43ufEAgE+Pvvv3H69OkK2TI0NBTTp0+Hr69vpYzvfUIik+FxcgFeZBSiIqqDizUH7QKdkfY0Hl90+oZOsL9o7xx0G9vBYuPMLBLiVlwO8gSScp/LZAANvOzRwNMOP41ei2sHbgMKr691t3+kc7EZQyaT4d6pRziw+hgir77QOObm7wqxSIKPj/4PaUw2jKwt6sSZz0HbQGfkvk7G3HZf0t5mn2+brpVD7tbR+1gxcQOK80t09tV2UEs8vfochbmai0mO7vao27spWswfihwTFr3LwmQA4R52aOTt8N54yBNBjQhqBAKBUO0pEUlxMy4HKQUVE6nUCXa2Rit/J1gZyEFRUaKzi3E3Ideo548xeGwm2gQ6V7r4V52JzSnB3fhcCMtZRaosXDYTrf2dEOhsbULrmkl8bgnuxOdCYGblMCsWA638nRDsYjxxck0lIiICW7ZsQV5enln98Pl8TJw4EV26dLHY2N43IiMjsWnTJuTk5JjVD5fLxfjx49G9e/f/rFfQ8+fPsWnTJmRm6veoMQUrKyuMGTMGffr0+c/aMioqChs2bEB6erpZ/XA4HIwcORL9+/f/z9oyq1iI67E5KKiASKUOA0DUH5dxb90JgKIwaHYfzPp1skXGKJNReJSSj+dphTBXFGEUluDY1A3Ij0mDtT0fG+8vh29IxQTqqAfR+P3LPxFxPhIAMP/QApSG+CGvAiKVxhgBRB+4gdu/HAEllaHvlG747LfpOtumRKdh6dCViI1M0Drm6uOMTQ+W4+qB2/j9yz9RWiiAq68zFt5egcjUArNt6cjnoEOQ83vhHU8ENSKoEQgEQrWmQCDGudeZOt3aK4ozn4PuoW4W81yiKApPUgrwJNVweE15aeXviDrudhbt833gaWoBIpINh9eUl+a+Dgj3/O8961+kF+J+onniT1maeDugofd/z5YXLlzAtm3bKuSxoo8hQ4Zg5MiR/7kf3FevXsWmTZssassPPvgAH3744X/Olrdu3cL69eshlVruGdmzZ09MnjwZTOZ/q37dvXv3sHbtWkgk5glA6nTp0gXTpk37z9kyKb8UV95mQ2rB73jsmYcouPgIK859DTZHf+YqQYkQTBYTVlzD4aBSGYUr0VkVjijQhaioFJc/345Plg5H2wEtDLYtzC0yWp00NTYdmQIJnpZSRlNelIeES5HIPHoLqy4tNWinjXN/x5H1p3UeG714MCb/OAZSqRTPbr9GtrsLEguEFhsjm8lA19qu8LKv3rkJ/1vfbAKBQCC8VxSLJBYX0wAgp1SM868zITLTY0fJ09RCi4tpAHA3IQ+vMw3nE6ppPE8rtLiYBgAPkvLxMr3Q4v1WZ15lFFlcTAOARyn5eFYJn/fqzJUrV/Dbb79ZVAACgEOHDuHff/+1aJ/VnZs3b1pcTAOAEydO4M8//7Ron9Wde/fu4ddff7WomAYA586dw+7duy3+HlVnHj16hDVr1lhUTAOAy5cvW1yIr+6kFghw+W2WRcU0AAjq3Qx9N04Hy0BKjFvH7mOUz8cY6TUVqbH6vQxllOXFNACwsuWj56aZCO3WUG+b0mIBlg5diSEuk7Bh9g6D/TFdHRFpYTENAPy7NkS/LTPBttIvTKbHZ+LYxjN6j/+97AjePo4Fg8lErpebRcU0AJDIKFx8m4X0Qsv2a2mIoEYgEAiEaomMonA1OtviYpqS3FIxbsebF2oEACn5AjxKsbwApOROfC6yi0WV1n91Ir1QiAdJlheAlNxLzENGUfWemFmKzCIh7iXkVlr/D5PzkWqBEOz3gbi4OGzdurXS+j9w4AAePXpUaf1XJ5KTkytFTFNy9OhR3L17t1L6rm6kp6dj/fr1lWbL06dP4+bNm5XSd3UjKysLa9eutbgwqeTixYu4dOlSpfRd3SgVS3E1OrtCOb5MIblEglcZuhcaT/52Ht8OWYni/BIU5RXj3K4rGselUikyEjIRee0FjpyOtLiYpoTBZuHM01S8eZoAYanmnCMvMx8Lun2Lm4fv0WMuLdLMbVpcUILYp/G4ceIhzj5NhrSSjJkmlOHCrbfISsnR+XdEUCyAzMC1KYrCxjk78SKtEPEVzM9qDKUXoUBSOd9NS0CqfBIIBAKhWvIyvRCZlSwkxeWWIjC3BAFOFcuvJZLKcMsCopwhKAA343LQr67He5OgtSKIpTLcjKtcWwLAzdgc9A/3ALsGh99IZRRuxuWYncPEGLficjAg3BMcVs21pUQiwaZNmyrth7aSrVu3YvXq1bCxqbn56WQyGTZt2gSx2LwcQMbYvn076tatW6PTuchkMmzevBlCYeUuEPz++++oX78+HB0dK/U67xKKorB161aUllaOIKBkz549aNSoUY0uRkJRFG5bIPepMSKS8+HjwIc9j01fd8/Sf7Dve01v37O7LiMzMRvp8RlIi8tEZmI2pBIpnEK80Wf3Z5XqWSRls7Dnnzu4+9MBuPu7wifEE44ejnh47gnyM1Ue3hKxFMs+XA8mi4n0OPk4C3PkgmG778chqFflFlxJAgtb238NUWY+fEO94RvqBZ/aXvAJ9YJvqDeWHp6Pl7dfIzMpG5mJ2chMzEJGYjZkive4Xo9GlbqoDAACiQz3EvLQMdilUq9TUUgONZJDjUAgEKodpWIJioRSSCkKEimFa7HZkMgo9A5zhyOPg1vxORZbDeOxmRjawAvsCogCL9IL4GrDhUxtnCwGA11qu0JGUWCAgTvxucgTmP8DsqmPAxp41dxnVURSHp6myUMy3Wys0NzPUcOu1ooqrQDAZjLBAHDiZcWSRjfyskdjHweLjr868SQlH49TNEMyeWym1ucyXyg2+zsV7mGH5n4198f28ePHsXfvXgCAg4MD5s2bB6lUCiaTiW3btiExMRF79uxBdHQ0AODIkSN48uRJha7Vu3dvTJ5smUTb1ZGzZ89ixw5VeJMueyYlJWH69Onw8PBASUkJNm7ciOLiYoP96qJr166YPl13ou2awOXLl7F582YAQFhYGL7//nt89NFHYDKZOj+j5tC+fXvMmTPHQiOvfty8eRO//vqr1n51u9rb22PKlCkAAB6PBwaDgUWLFpX7Wi1btsS8efMsMu7qSEJeKbzsuMgukS+GPk0tRGqhoFLmbj72PHQPdYNUIsXKSRtx8Y/rJp/be+encA33x5gmPhpjzSkRWXz+dvbj9ch8HFvu8zxbhqL7hulaY0wpEOjcZw7pEdE4P32j3uMOrnYIa1kbDTrUQ8OOdRHcOBCF2YUQCcV4KmYhXeH5X3ZcxSKJxeZtANA9xA0+DtUvnxrxUCMQCARCteNtVgmepBZAKqMQ6maDOu62eJpaiCvRWQh1M5zAtbwIJDLE5pYgxLV8/YqlMkRlFCFCrDnOZ6mFOP0qAwDgYcdFfS873Ig13/PqVUYRwj3twKyBCbclMhleZ6p+NBcpcueVff/PRskr2IW52cKKXXE7RGUWoYGXfY30+JPKKETpyLsnlMh0fi7N/U69zipCI2/7GumlJpPJcPq0KhlzQUEBvvnmG1AUhXr16mHQoEFYv349MjIy8O2335p9vcuXL2PUqFGwtq55FWllMhlOnTqlsU+XPe/evYvi4mIsXboUzZo1w8CBAyuUF+3atWsYM2ZMjVwwpyhKw5YffPAB3r59Cxj4jJrDrVu3MG7cODg7O5s99upI2c+lEnW7Jicn09/xXr16Vfg7ev/+fWRkZMDdvXK9jt4VL9MLYcdl089qJZUxd0suECCvVIyFbRYjJjLeaHsbB2t4BLohoF09uIb7AwCKRFKNsTIAi8/fWszoi0ufb4eg2DRvUhabCXtXe7SY2VfnGPXtMwePprUQ2q0h3l55RnueqZOfVYh7px7h3il5agIu3wp124SiQb/moDqocsXpGpel5m0A8DKjsFoKajVv9kMgEAiE9xqpjMKL9EI6Z4RMBih9qUvFlRNG8CqjqNx5aKKzS1AglGqNU70XKxYTuSWWCW8qEUuRmFe5ISnviricUo0QkVKxTOf7ryTI2Rqx2SXlusbQBl7wc+QDChE1Prd8578vJOSV6vye6PtcmvudEkspxObUTFtGREQgKyuL3qYoiv47YWNjg7i4OACAq6srli5ditmzZ8PWtnw/Gjds2IAWLeSV4IRCIa5evWrRe6guPHv2DKmpqRr7dNnTy8sLMTExAIDY2FjUq1evQteTSCS4fPmyBUZe/YiKikJ8vFxAaNq0KV69ekWHfur7jJqDTCbDxYsXze6nOhITE4M3b95o7S9rV3XatWtX4dxyFEXh/PnzFTq3upNXKkZaoRA2HBZ6h7mhQ5AzuIqFlsqau0VlFCH2aYLBNu2HtMLhnF04krsbWx+tQofPB9LHyo61MuZvLk1qod3oDia3l0pkEDOZsK/jq3OM+vaZy9hts3CieB9+f7kW3x9bhGmrxqPfxz3QuEs4HN00FyaEpSI8vvQMr8vMwwyNqyLztoHhnvBVE9CS8wUoFFq2aIgleK8FtWvXrqF///7w9vYGg8HAkSNH3vWQCAQCgWAm6YVCCBTVN7ksJsLcbfEmy3DIT68wN3zYzBdOfFXpbw6LgQnN/WBjpb8alJKcEnG5H9JxaiJC2XE68NjoU8cdrfwdaVd4S4wzroYKF/ruS9f7b2PFAoMhXwktS9tAJ0xo7gcHnnEH/JoqAhn6jOj7XOqiV5gbxjX1xZgmPhjV2Bu9wtzgbM3R2bamfi5v3bqltc/Hxwfff/89Jk2ahBcvXgAAZs+ejaVLl+LZs2cYPXq0RvuwsDAsXrwYv//+O3bu3IkVK1ZgwIABYLF0f991XbMmoO++ytozISEBjRo1AgA0bNhQI6fckiVL0LdvX3rbw8MD69evx4QJE8p1zfcd5X0xGAz07NkT586d0ziu6zMKAF5eXli4cCG2b9+OXbt2Yc2aNRg4cKBW/4auWdPQdV/67AoAbm5uYDKZyMiQezEtWrRIZ5g2n8/H3r17ER4ebtI1awLK58ChZ6k4E5WJ1AIhmhhJrdArzA0TmvvBy46rsT/cww4TmvuhhZF0AnG5JRg0py+s7fnQ57yfk5YHW0f53xGZjEK82sKkrrEamr8pn4nKf2EmeN1RALp81h/etTzB4eqfm3Qa3gb129cBx4oN/+6NwVDkedU1RkM2dre1QrcQV4xq7IPRjX3Qv56HIrrB8DjjckvA5rDhF+aD1h80w7DP++PTLR9j5cWl+CdtO35/uRafbZ2GbuM6wM3PBWAwENCtkUYf+sZVdt5m6lz46PM0rcIR1XG+8V6HfBYXF6NRo0aYPHkyhgwZ8q6HQyAQCAQLoMy/wGIy0KmWC+4l5EIoMb66KZLI0NTHARffZhltq4usYhHseboFg7JQFGVwnPkCCU6/yoATn4M2AU44pQghMHecWSU1r9onRVE670vf+x/kbK1zQsVmMhDoZA2BRIoQVxs8SDKcJDe7BtoSRu7L0OdSFw+T8vAyowhMBtDM1xFda7vi38hUrXbZJSJQFAVGDQtHVuZFUyc5ORlff/01AgIC8PHHH+PLL79EYaE899/NmzfRvXt3um3Tpk0xd+5c7N+/Hxs2bEBhYSG8vb0xaNAgODk5aXi/KYmNjYVUKtUruL2v6LIl9NgzLCwMS5YsQVRUFHJydIdb+fv748svv8T58+fx77//6myTkJAAkUgEKysri97Lu0Zpy/bt2+Phw4daRR502RQAFi9ejJs3b2LNmjUQi8Xw8fGBr6+vSddMSUlBaWkp+Hx+JdzRu0PX51KfXQGgbdu2Gt5ply9fxrRp07Bnzx5IJKpFuXbt2iE3NxfPnz/X6iMzMxMFBQU1LhxZ+RxXPq9jc0sQ6ma8yEp+qRi1XW2QWqgSr2q72iCv1Lh3mEAiw4Tl4zBzzUQISoSIeRKH1w9j8PphNN48jEFeRgF6TehMt88TiDUqZuoaq6HnpPKZWF5EPC52v5FX5M1IyMLrhzF48zAabyJiEP04Dp5B7pizaSrsXewgLBXi9JNkKGcwusaoz8a+Djx0DHbBo+R83IjNgVAigz2PjQae9uBzWCjWsRCpRCylUCCUwEHHPJjBYMAvzAd+YT7oO1X+jIuOTseNXM35hr5x6Zq3VXQuXB3nbu+1oNanTx/06dPnXQ+DQCAQCBYku0QEBoBOwS54lVFkcqXPqMwi1HW3g4ctV6f3DZvJQDNfB/g68MFiMpCSL8DdxFyIpZTiumKYWkCoQCCBREbpHCeTAbpcvEgqg6RMyXFj46znYYswN1vwOSwIxDK8SC/EK0VOrCKhFEKJDFz2e+1grkGxSKolmBp6/wOdrXHhtXbukCBna0hkFB4l56OJjwMeJudrhYqqUyqWoUQkhbUJnoHvCwKxVO+E2djn0hAyCniTWYx6HnbgsphaFdxEUgqFQildca0mUFJSohWiyGaz6R/NxcXFEAqF4HK5EIlEdM6qtLQ0uv2kSZNw9OhRjRxNKSkp2LRpk97rikQiJCcnw9/fv1Lu610gEomQlJSktV+XPQHg77//BhTCRl5entZ5YWFhWLBgAQ4cOIAzZ87ova5UKkVCQgJq165twbt5t0ilUjrc09/fH0FBQWjRogUCAgIwZ84cLF++XKdN7ezs4OnpiQsXLkAkkv9NTUpK0nhf+Hw+Ro8ejWbNmsHGxgYpKSlYvXo1srOzQVGUWSG41RHlPZVFl11//PFHQCGo/fTTT3TbBw8eYMqUKWjRogVu375N7+/cubPBkOOYmBg0btzY4vf0rqAoCtnFIrCZDEhlFCgAnrZcFJjg+R+bW4K67rbgsBgQSym42sgF8Kwyz/6hDbzwKrMIAY58OPI5yC4R4XpMDrKLRbCxYoNnzUW9NmGo1yZM77Wy1frUNdaKPieNzi8V12UwGPAIcINHgBs6DGmlsy8unwupNQ8QSXWO0ZCNW/o74VlaoYboVyCQaFRQ57GZaOXvBE87LiQyCjE5JXicnA9KMU5dgpouGI62QK6qX0Pj0jVvMzYXhuI9v5eYp5HuJNvE3wRVSc2Z+RAIBAKhRlAolCDI2RoetlxwWAzU9bBFUp4Az9ML0SnYBS42VhBLZXC1scJDNS8koUSGp2kFaOrrQCeVVaddoDNkFIVjL9JAUUDbACe08neiE84WlSPks1Akb6trnBlFQjT1dQBFAQwGcD9R8wehsXEWCeVJXUvEUnjacdEtxBXZpSJkFonocXLZNcfjQpfd9b3/jjw2hBIZHRKsTm1XG8RklyA2pwQt/Bzh58BHgpGcc0VCSY0S1AyFLbtYW+n8XBr6TilhMRkIcbNBkVCiJaYpKRJJapSglpmpQ7QNCsLYsWMhk8nAYDCwZ88eeHt7Y/r06SgtLYVYLMaWLVsARXidh4dHhXItZWRk1ChBLTs7G1KpttCry552dnb4/PPPIZVKkZycjD179micU79+fYwYMQI7duzA9evGq/plZGTUKEEtLy+PFsT++OMPev+SJUuwbt06nTYFgMLCQiQnJ2PGjBm4ePEi3rx5o+UhOXPmTHC5XHz11VfIy8tDQEAAfS0obFmTBLWioiKUlGh7O+uyKwD4+vqisLAQ+fmqv5FSqRTXrl1Dly5daEHNx8cHtWrVwurVq/VeWxkyWlOQUhQEEhmcrTloG+gMsVQGmQy4FS+fXxl6zogkMiTnCxDkbI3XmcWo7WqDt1nFcORrCzvBzta4/DYLJWIputR2RRMfBxQK9XtdlUX9GWnPY2uNVd9z0hjG55emj5GiKDo0UtcYde0DAHsuG3ZcNmJzDKdI6RjsglKxFAefpoLLZqJ7iBskUhmephWWa5xl5xv6xqVv3mZsLqyPIpG02nnE15yZjwkIhUKN5JIFBQUG2xMIBAKh6pEqVsxidIT1XY3JNnjuy/Qi1HW3hZ8jH2mFqrwLXDYT/k587H+cTK8YPkopwMBwT9yMzQGluK6pyBRt9Y3TWPUlfeOEIqm8krRCIVLyBfC049KCmrScxROqO7ruR59d8wQSnNfhnebAY8Pdlos78bmQyCgk5JUixNXGqKD2X7Clksxikc7PpaHvVFNfBzT2doCUopBTIsIlA6EZ5fn+vA/oCvd68+YNli5dqrV/4cKFWvuU4Vz6QhYNoS5i1AR02RIG7GmoYmq9evWQn5+PR48emXTt/4otlTYrLCzUaVMAWLp0KQYMGIBhw4bBx8cHKSkp2LlzJ54+fQoHBwe0atUKM2bMQG5uLgBoFTT4r9hSHfXPYlJSEn744QetNpcuXcLq1avh4uKC7OxsdO3aFU+ePKHtqIuaZkuZQivJKRHjxIt0rePG5m5vs4vRxNsB0VklCHDk4+jzNDTz1c6fFpVZRItNMdklaOBph8QyObYMIVV7TOkaa7GR6pnKZ6KSA5EpYDEZxueXimIhpohAMhPGqMvGXA6TPq4Paw4LXvY87H+cDImMgkQkRWRqARp52+NpWmG55kRlH/n63nt98zYYmQsbuzar+uhp/y1B7eeff7ZIWXMCgUAgVB5MM1adpBSFxykFaOrjgDOvVAsotlZsMBkMDG3grXUOn8NCiVgKprGMrRYao6FxQuGdFe5hB1suCwwwwGIyNBLwm3vt6oYl7ifE1RY5JSLkKnKuRGcVo3uoG6wV721lXrs6Yen7iUjKNzlfTE2zJZtt3hRZuWjr7OyM9HTtHxmVee3qhiXv5/Dhw6hTpw6++eYbfP/993T+uqq4dnXAnPvJz8/H3r17sXfvXtjY2GDIkCGYP38+ZsyYAVdXV4hEImRn6xc+iC11k5ycjLdv36JTp044cuQIOnTogO3bt1fJtasL5v75Ty0Qom0ACw297ZFZLNLphY4y1UIlMgocFtNosn11ytNWF7qeiQ48jvH5JQMme1RV1JZChW1srFh6vfasrViQyDS9xQqFEthw5J76VWlLGJkLG6K6TTdqThIWE1i8eDHy8/Ppf4mJie96SAQCgUAoA59jXgje26xiMADUcrWm9xWLJJBRFP6JTMFfj5Ppf/sikmjBhV+OvGQ8jvmPT13jtLFioX2QMx4m5WH/Y/lYk/M1vaz4Frh2dcJcWzIYQLCLNey5bIxo5I0RjbzRIdgFTAZDw7aVce3qhrnfHfOuXbNs6eBguDqdMVJTU5GRkYG2bduW+1xHR8OV7d43LJl8XSwWY9WqVcjMzMSSJUtgZ2dnsH1Ns6WdnZ1FQp2Ki4tx4MAB8Hg8uLu7IysrC1ZWVnBx0Z9ItKbZ0tra2mLC1qVLl9C5c2c0a9YMDAYDDx8+NNi+ptmSzWSAbabCEp1djAaednhrpKp7Wcrz3KuMZ6RJ88tyXJfJYFQoT26BUIJCoQSBzvrnPSUiKdhMJnhq/dtasVBcgXHyLGRLXXNhQ3DZzGq3gFezZj9G4HK5sLe31/hHIBAIhOqFs7VpCVH1QQGISM5HA0/V33iBRIbEvFK08nekJyo8NhP+jqqKZS42puclc+Jbmb1CpmucygmpQCIDBcDHgQdvex59nMtmwvodiiaVgQOPA5YZE3E/Bz6sWEwcf5mOY8/T6H9PUvIR4qK/pD2HyYC9gRL27yO2VixYvYM4CCYDJicyfl9wcnIy+0fv77//jkGDBqF3796wtZV/Fr28vDB9+nS4urrqPIfBYCAgIMCs61Y3bG1t4eHhYbH+pFIpfvnlF6SlpWHJkiUG5/OBgYEWu251gMvlmlyZUx0bGxuMHDkS3t7eYDAYsLKywgcffIDCwkKkpKQgPz8f9+/fx9SpU+Ho6AgGg4HAwED6cwtFzruaBJvNtth37datW3B0dMSECRNw7do1nTkD1alptmQwGHC2Ni+364v0Ipx/nYnEfMOpGspSnuu6mDlGXZgyv3RSyy8qEUuwbeE+LPtwHQ6sOobHl5+hOF9TRKzoOO8l5KKBpz3quNuCy5KPxZ7LRtsAJ9hYyb3lUgsEaO7nCDaTARsrFhp62SM6W359dVs+u/kKP41diy2f78LFP64j4VUyZDKVZ5ulbKlrLmyIyngPzeW9nkkWFRXh7du39HZsbCweP34MZ2fnGpXMlUAgEP5LWOJhmZBXivqedhoraDdic9DY2wH96nqAy2ZCIJYiLqeEzrNVnuuymAw48TjIMaGse3nGmS+Q4GlqAXqGuoHBYCAxr1QjP4iLtVW1SsRqCZgMBpz5HJOruZYlxM0GsTklKBBoJsh9mVGEcE87eNpxkVaoHUrgXANtqfxRo+t+KxMnvpVZomh1JTg4GBERERU+PyIiAj/99BOGDh2KkSNHAgCysrJw7do1vfmVfH19weVyK3zN6kpQUFC5Q18NIZVKsWbNGsydOxdLly7Ft99+q5EsHgA8PDw0BKGaQlBQULmjbCQSCZydnbF48WI4ODhAJBIhNjYWP/30E51fesOGDRg3bhyWLVsGHo+H5ORkOrG+k5MTnJycKuV+3iVBQUGIjo42ux+BQIDbt2+jS5cuuHTpksG2NjY2cHd3N/ua1Q0Xaw4y9FRrNAWRVIbUcj67KIrCZ03moUH7OmjYsR4adKwLjwA3vc92cxds9WFsfnlmzXGcfZuMBh3qgsli4p+VRwEAF/9QFVZx93eFo7sD6rQKQdsFQ5BSgVTvSfkCXHiTiYZe9miiyPVWJJIgJrsEpQovtGsx2Wjl74ShDbwgpSjEZJfgWVohmAzASa0QxObPduH1A83vBs+WB48AVzi6OWDM18PAtHfQyqVWEXTN2fXhUknvoTkwKOr9zch75coVdOnSRWv/hAkTsGvXLqPnFxQUwMHBAfn5+cRbjUAgEKoJQokUB56kVmnCeD6HhWENvcrlRh6RlIenaYbz91ialn6OqOthOMTpfeRJSj4eV2T2aAZNfRzQwKvmPfufpxXggY5KnZVJIy97NPYxL0SyOnLu3DmjuZAszYABAzBu3LgqvWZVcOXKFWzatKlKr9m7d29Mnjy5Sq9ZFdy6dQtr166t0mt27doV06dPr9JrVgUPHjzAihUrqvSa7du3x5w5c6r0mlVBSr4A598YLshkaRIuR+LaQs3f/G5+LmjQoS4C6vnBN9QLvqHe8K7tCZ61fKHizKsMpJsh/FWEUx+uRk5UssntR60YD3bnxpU6prL42PPQPdSN3v7yg59w75T+4i8cLhufP1mH5ALTiwlYgj5h7nC3q16LTu+1h1rnzp3xHuuBBAKBQNABl81CoDMf0dnaVR4ri1A3m3LnZAh1s8WztEJU1VOIzWSglotNFV2tagl1s0VkaoFFVjpNgckAQlxrpi1ru9rgUXJBlQnSDIWXYE2kQ4cO2LdvHwSCqvnBwGAw0LNnzyq5VlXTtm1b7N69G8XF5cuPZA411ZYtW7akHQKqippqy6ZNm8LV1RVZWforGFuaXr16Vdm1qhIvey7suWwUCCUmtLYMoleJ4FixIRaprpmZmI1Lf97Qauvm5wLfUG8E9mgMm65NqmyMxXHpEKTqr/iqi4f7b6BlkxAwHKru2Zpz9xW2bDmJtPhMpMdlIvGVYQGQb8tDmLttlQpqTnwO3GyrX8jnfyqHGoFAIBDeD+q4V50XFpMBhLqWPyzIlsuGr1qOjMom2NkaVhVIVPs+wOewEOBkWkJaSxDobG2xhLrVDS6bhSCXqrOlvxMfNlbv9fqsXvh8Pjp16lRl12vSpEmNDAUDACsrK3Tt2rXKrhceHl6hXGPvA2w2G927d6+y64WEhCA4OLjKrleVMJlM9OjRo8quFxgYiNDQ0Cq7XlXCYDAQ5l51Idb2PDa+2z4Nh3N3YdXlpZjw7Ug07d6A9kQrS2ZiNh5dfIqjX/2JksyqE6Mf77qIkoLyLRC/eRiDuxtPVtqYylKUko3tk9bj4NqTuHn4Ht4+ioWwVH8aDu9aHtjyaCV8HHiwtaq6uVSYu221TNVRM2fmBAKBQHivcbWxQq0qEgUaeNrDuoITgma+DmBVwcOdy2LWyJA6dZr6OJhdJcwUOEwGmtZwWzb2tgenCooTsJkMNPWpWdXqyjJs2DCjlSQtAYfDqZGhnuoMHjy4SvJwsVgsTJgwodKv8y7p37+/3sIWloTBYGDSpEmVfp13Sd++fS1aNMMQEydOrJaCgKUIc7OFA69qFlha+jmBwWCAy+eiUadwjPt6GJaf+waHc3dhc8QKfLX/c0z8fhR6jO+Euq1DYOcsF/tkEikerjlaJWPMfBqHuDOaFV85XDZsHLTnt0wWE64+zmCx5fPR6OP3kBOVVCXjfLD6CCi1EAEmiwmPAFdwuNr5ylr0aYItj1bCzdcVTAYDLfyrJreiszUHIdU0SqNmLikSCAQC4b2nhZ8TUgoEKBXLTGhdMZz4HLPyaDnwOGji44AHSXkWHVdZWvo7Vkq59+qELZeNZr6OuJtQvtCI8tLcz7HGelQpsbFio6WfE27G5VTqdZr6OMC+in48vSscHBzw0UcfVXrOqhEjRtRYjyoltra2mDp1aqXnrBoyZEiNq+5ZFmtra0yfPh0//PBDpV5nwIABqF27dqVe413D5XIxc+ZMLF26tFJTCfXp0wf16tWrtP6rAywmA+0CnXH6VUalpsMIcbWBjwNP5zE2h43ajYNQu7F2JdWC7EIkvUlF0utUpKRkgeFdeaK0TCIF+3mshlAFAGKhBOIyYbGObvb44cRihLWoDYlYgrS4TCS/TkF8ci5KZDIwmJXnAyV4nYSuXcPhMbkzPALd4BnoTgt7qz/ahDM7L9Nte07sjM+2TgObo3ru+zvyEexsjZicykvTwmQA7QKdwaymxY/e66IE5kKKEhAIBEL1JrVAgPOvM0DB8g9RKxYDveu4w4lvXj4GGUXh0tssJOdXTh6JWi7WaBfoXCNXtYvzi/Hizhs8OPsY1w7cBt+Oh9EHFyOl2LzqqfoIdOKjY7BLjbRlSWEpXt55jYfnI3Fl/01YcTn48MiXSCqpHFv6OfLRpVbNtGVZKIrCb7/9hosXL1ZK/40bN8aiRYvArMQfTdWJnTt34vTp05XSd3h4OL788kuw2TVb6FXyxx9/4OjRyvG2CQsLw9dffw0rq+qXs6gyOHDgAA4cOFApfdeqVQtLliwBj6dbBKppPEstwMPkygmrdOJz0LuOO6xY5v29FIilOPUqA4WVlPOtTYATQt1sMcJ7KnLT9C+68qy52PJ4JXxqe+k8/jK9EPcSK2fR1oHHRp867uCydS/YRlx8ioU9vgMAjPnfEEz8fpTOZ75QIsPpV+nIF1SOLVv6O6JuFaaCKS9EUCOCGoFAIFRbCnIKsXTGDtT/dCBYHMv9QOKwGOge4gZ3W/MqBVEUhTsnHuDkjkuw7dkcXi0tmxslQCEAlbdgQnXm/plHuHX0Pp7fikLcs0QtjwC/cF/U/qg3fNpbdiXfz5GHTsGuYFXTFc6KEHEhEjcO38PzW68Q9zQBsjIr4a0GNAe3XX34d2lo0et62/PQtXbNsqUxZDIZvvvuO7x48cKi/YaHh2PRokXgcqtX1bLKRCaT4eeff8aTJ08s2m9YWBj+97//gc+vutyW7xqKorBq1Srcv3/fov3WqlULX331FWxsqmeIVWVAURTWrVuHmzdvWrTfgIAAfP311/+p35pRD6KxY/d1hE/oZtF+HXhs9Apzt5jHfpFQgrNRGSgSSS3Sn5Lmvg4I95S/31EPovFJq0XQ5bLHYDCw/MLXaNKlgd6+Yp8lYNOGc6g/xbLFLOy4bPQKczPqsf/0+kuw2EzUaxNmsF2xSIKzUZkWFyibeDugoXf1/u4QQY0IagQCgVAtkclk+Kr/Mtw//QieLULQ6ecJ4Nibn1fNjstG/pkH2P/lH/AIdMPnv01Hw071TPa0oSgKMZHxuPzXDZzbfQW56fJVWKYVG60WDUOtD1qaPUYACHHm49dO/0NhVhF6f9QVE78dCXuX6rtCZwr3zzzC//r+ZLQdk81Ci/lDEDK4jUWuG+JijY3dvkZuai66f9gJk38cDUe39zuP2pOrzzGvy1KDbax4HIjFUjT7bCDqjOhgkevWcrbGb32+RWZ8JrqMaocpy8bC2bNqcqi8a+7fv4+LFy8iIiLCIv21b98eNjY2yMrKQvPmzdGlS5f/jJfa48ePcfbsWURERFgkzK5169ZwdnZGWloamjZtim7duoHFqtlh8kqePn2KM2fO4OHDh5DJzE+R0Lx5c3h6eiI5ORlNmjRB9+7d/zMefy9fvsTJkyfx8OFDSKXmiyyNGjVCUFAQ4uLi0KhRI/Ts2RMcjnZeqppEQXYhZjZfiPT4TISN7IDmnw4Ew0xvMgDwtOPiyvydeHTmERp0rIs5G6fAL8zH7H6LRRJcic5GVrH+JPymwmYy0NLfESFlCl39MnULTu/Q9nDm2/Gw8sIShLXQHVZdlFeMWS0XIeVtGkKGtEHLeUPA0ONNVh7cba1wZ+mfuHvoLuq1CcXczVMRUM/P7H5LxVJcic5GRpHQ7L5YDAZa+DsizK3qCl1UlP/GU5tAIBAI7x17vz2A+6cfAQBKY9PQO9gJQc7mCWp13W3Rv54Hzqw9DqlEipS3aZjXdSlmtVyEy3/fhFSifwJdkFOIfd//iyn1P8P0JvOxf8VRWkwDAJlIAu/CInSp7Qo+p+KPV1srFnqFuoHxPA45ybkQC8U4vuksRvtPx/pPtiMlOq3Cfb9rrHimhQ7JJFK45+aje4grrM1YibaxYqF7iBtsk9KREZcJsVCC09svYkzADKyd/hsSowyXha/OGLMll28FkUAMSiqDc1YueoS4wsaMalx8DgvdarvCq6gQqW9SIRFJcH7PVYwNnInVUzYj/kVihfuu7hQWFuLgwYOoV68eFi1ahKVLl5qVxNzBwQHz5s3DxIkTkZSUBIFAgNu3byMiIgLPnz9Henq6RcdfnSgpKcGhQ4cQHByMhQsX4vvvv4e3t3eF+7Ozs8Onn36K6dOnIz4+HkKhEPfu3cP9+/fx8uVLpKamWnT81QmBQIBDhw7Bz88P8+fPx48//gg/v4r/KLaxscEnn3yCTz/9FLGxsRCJRLh//z7u3LmDqKgoJCe/v38vjSEUCnH48GG4u7tj3rx5+Pnnn83Kw8fn8zF9+nQsWrQIb968gVgsRkREBG7evInXr18jMbFm/r2USqX4ccxapMdnAgCY8WnoV9cNLtYVDxtmMxlo5e+EnqFueHjyIaQSKR5feobJdT/FN4OW4+n1l2aJ8jZW8rDHZr4OMMfp2sOWiwHhnlpiGgBM+nG0zkIEpYUCfNbhaxzbdFbrHmQyGZZPWI+Ut4o5X1wa+tVxg5tNxW3JYjLQws8RvcPccefgHUglUjy9/hJT6n+OLz/4CY8vPzPLlnwOC73D3NDCz9EsD3Y3Gyv0D/d4L8Q0EA814qFGIBAI1ZF7px/hy35yTyYmk4Fl575Gk65yl/i0QgGiMooQn1cKU55gLCYDwc7WqONuC2fFpO7rActw58RDrbbu/q4Y+ukHGDi7t5Z3w+w2/8Oru2/0Xie4YQA2PVgOFpsFkUSGN1nFiMosMtn93YnPQaibLWq5WIPDYqIorxiDnSdqtWMwGGg3uCXGLxmOoAYBJvVdXaAoCismbsCFvdcMtvMN9cJvkavBseJALJXhbVYxXmUWocDE/BwOPDbC3G1R28UGHBYTghIh+tuN0wq5YDAYaN2/GcYvGYHaTbQTGFd31s74DSe3njfYJqRpENZc/x5cPhdiqQzR2cWIyihCnom2tOeqbGnFZkIilqAff4xWeCkAtOzbBB9+Mxx1WoZU+J6qI/v27UN6ejpmzZpF50ASCoW4du0azp07h/j4eJP68fDwQI8ePdC1a1fY2tqCoigsW7YMIpHKM4LFYkEqlaJfv35o3rx5pd3Tu2L//v1ISEjArFmzYG0t/4EpEolw48YNnD17FrGxsSb14+bmhh49eqBbt26ws7OjQx9LSlSJsZW27NmzJ9q0sYy3a3Xi4MGDePv2LWbNmgVbW/kPT4lEghs3buDcuXN4+/atSf24uLigR48e6N69O/17aM2aNSgoKKDbKG3ZtWtXdOhgGW/X6sTRo0fx4sULzJw5Ew4Ocu9liUSCW7du4fz584iKijKpHycnJ3Tv3h09evSAo6O8AvL69euRk6MqEKO0ZYcOHdC1a9dKuqN3w66v/8YfPx4EADi6O2Dzw+Vw9XGBjKIQn1uKqIwipJvovcRjMxHqZotQNxs6LFFfPrKwFrUw5suhaDughVnjLxJKcPDwAwjdHMF1MC3cOeVOFHp2roOm4T4GIx0OrzuFTZ/upLcDwv0Q/1wlrHYd0x6fbvkYfFt5yPpfPx/G71/+CQCwc7bFpgfL4RnoDhlFISG3FFGZRUgrNN2WtV1tEOZmC1uu3JZjA2cgIyFLq23tJkEY878h6DC0tUl966NYJMHhoxEodrAFz9m06ApPOy7C3Gzh78R/r1KdEEGNCGoEAoFQrcjNyMfHDb9AXobc+2vq8nEYMX+gVrsSkRTJBaXILhYjp0SEgmIh8rIKIRVJwAWFRk0C4GJtBR8HPrhsTY+xS3/dwM9jf9U7hkk/jMaY/w3R2Dez+QK8idD9Y4/BZOCvhC1w8XbW2E9RFNKLhMgoEiG7WIS8UjFysgohLBFCXCxAnTre8HG3g4ctF642VlqTsUl15yIpKkXnNfm2PPyd/Bus7d6ffEFR999iyeAVyE4xUMmTAex+swHewZoeQBRFIaNIhIwiIbJLRMgtFSM3qxCCYiEkJULUru0BP08HeNhy4WarbcvpTeYj+kmczkvyrLnYF7cJDq7vz1zg7eNYLBm0QueEWIn6JFwdiqKQWSxCRqGaLbOLICgWQlwiQFCgGwJ9nOBmawUPW66WLee0/RIv77zWeU0Ol4M90RvgWua78D5z5coVhIaG6vSkoigKb9++xcuXLxETE4P4+HiUlpaiqKgIfD4fYWFhCA4ORmhoKOrVq6cV0pmUlITff/+d9gqwtbVFixYtEB4eDhcXlyq7x6ri+vXrCAoK0lnRlKIoxMTE4MWLF7QtS0pKUFRUBB6Ph9DQUNqW9evX17JlamoqduzYQYfq2djYoGXLlqhbty7c3Nyq7B6rilu3bsHHxwcBAboXVuLi4vDs2TMtW1pZWWnZsuwCUkZGBn7//XcIhfIf7DweD61bt0adOnXM8s6srty5cwceHh4ICtK9sJKQkEDbMi4uDsXFxSgqKgKHw6FtGRISggYNGmiFx2ZmZmLXrl202Mvj8dCqVSvUqVMHnp6eVXJ/VUHktReY10VeKZXJYmLFhW/QqFO4Vru8UjFSCwTILhEhp0SMvLwSlBSWQiIQwcWejzphXnC1sYK3PU/Ly2ndrG04vvmc3jGsurQUjTprX7M8zG7zP7x5HAev1mH4aNPHKGWxUSAQQ0pRYDIY4LKZcLG2QsKdKPyzcA8KE7PQa1IXzNsx02C/ErEE87ouxfObURj2eX989PMYbFuwD4d+PUm3Cajni68PfIHSwlLMbfcVZFIZGAwGfjr9JZr3bKTVZ75AYUvFPDgvvwRF+SWQCsUoSMhEzqsktG4fhsGj2mrZcsu83Tj4ywm94/3x5P/Qsk+TCtlQybyuS/H05it4t66DiRumQMzlIl8ohlQmt2XiswTkvEpCblQy6oV64OX5J1j8x1x413q/vhf/jYB4AoFAILwXUBSF1R9tosW01h80w/B5A3S2tbZiIcTVFiGuwL7v/8XhDadQkFkIAGjWsxGmnPlK73XqtTFcPEDXKuPCvXPwWYevUZhTpHWsZe8mWmKash9POx487XgoyivCp+1/RE5aHt1H16vfoX5D/TlAGrSvq1dQY7FZoCyQL6cqoCgKp7dfxIY5v0MsNFx1snGX+lpiGhS29LDjwsOOi5KiUnza/mtkJWXTtvz5zFdo0ER/uFODDnX1CmqM9yy5/vk9V/HrjN8gLJV7NjFZTMik2p+FBbs+0RLToLCluy0X7rZcCEqF+KzD10iPy6RtufTQfDRort/7sUGHunoFtepa1r4iJCUl4fbt2xg2bJhezwMGg4GQkBCEhIRAKpXi2LFjyM3NRfPmzeHh4WFUfODxeODz+fSPbWtra3Ts2LFS7uddkpqaimvXrmH48OF688QxGAzUqlULtWrVgkwmw4kTJ5CZmYmWLVvCxcXFaGio0pZFRUX0dk20ZUZGBi5duoRhw4YZzG0WGBiIwMBAUBSFU6dOISUlBa1bt4aTk5NOQVMdHo8HKysrWlDjcrno1KmTxe/lXZOdnY3z589jyJAhBquZ+vv7w9/fHxRF4ezZs0hISECbNm3g4OAAf39/g9ewtrbWyJvGZrPRuXNni97Hu6YorxjLx6+nFwYmfjdKp5gGAI58Dhz5HFAUhaVDVuLp9Zf0s2fCtyPRpGsdvdcJb1vHoKBm7rO8ILsQUffegqIosLPz0b6u7sqbAMB5xUNhonxB6+yuy5j43Si4+uhfSGJz2FhxYQmyk3PgpZjjzFgzEeHtwrD6o80oKSxF/IskfNJyEfi2PPqZPubLITrFNABw4HHgwJN/tn4YuQYRFyO15qiiJ9EYNqad1rnhbesYFNSYZua9KyksxbMbryCTSCFLyUKnBtp/cz5oOx/CEvk8RukD+kmrxdgVte69yhlMcqgRCAQCodpwfPM53D0pT/jt6O6Az7fPMFosICU6DbuX7qfFNADISso2eI5HgBucPR11HvtgWg8M++IDrf3pcZkQFAl0ntN/pvHqSz+MXIv4F0kak51MI+PUJ/w5uNnjhxOLYWNiSMK7pLSoFMvHr8eaaVtpMS2wvh84eipLDZhh3JbLP1yP2Mh4DVsae8/r6rGlnbMtvj++6L3wThOUCLH6o01YMXEDLabVaVkbKy58A2t7TU/F/jN6ofUHzYz2uWbqFryNiLXI59LGwRrfHllQI7zTKIrCwYMHUVRUZHLBktu3byMyMhKJiYmIjo6mhR1D5Ofno6SkBD4+PvDz80N4uHneFdWVQ4cOoaCgwGRb3r9/H48ePUJSUhKioqJQXFxs9JyCggIUFRXBy8sLfn5+qFfPspWCqwuHDx9Gbm6uyUUXHj16hAcPHiAlJQXPnz83yZZFRUUoLCyEh4dHjbbl0aNHkZWVZbItnz59irt37yI1NRWRkZEm2bKkpAT5+flwc3OrsbZc/8l22lu6Qce6GLFA90KoOqe2nceto/fL9RzX9+xhspiYu/ljNOxonm0jLkTSomDzno0Ntk2NzVBtUMAXnb9BabHuOaISKy6HFtOUdBzWBhvvL0NgffmCoKBYSOfnDWtRGx9+M9zouC/9dR1XD9zSueAb/Uh3ZIVeWzIZmLl2kl4Rz1QeX35G5yVupseWNjoKjRXmFGFxnx9RXFCi85zqCBHUCAQCgVAtiH+ZhK3zdtPb836fCSd3w5UYKYrCupnbtHJjZSXn6DsFUHhC6BJYGAwGen/UDRwrzSpcVw/cxpJByyEWaeed4tvy0KSb/pLnAPDq3hs8PP9Ea39FRaCgBv5GveyqA7HPEjCr5WJc/OM6va9lnyZIfpOm05YcLhvNexuexEY/icPt4w+09ldUBPKr44MGHeoaPLc6kBiVjNmtF+PMzsv0vt6Tu2L1lW/RqFM4OgxR5Tvxq+ODj1d+aLTPhFfJuLL/ltb+bCPfH3229KrlgcZd6xu97vsARVGoW7cuBg8ebPI5GRmqH1gxMTE4cUL/6r8SX19fuLm5YeDAgZg8eTKaNm2KS5cuQSIxLcfd+wBFUQgNDcXQoUNNFtTUCzPExcXh2LFjRs/x9vaGh4cH+vfvj8mTJ6N169a4ePEixGLDXrHvG7Vr18bw4cMrZMuEhAQcPnzY6DkeHh7w9PRE3759MXnyZHTs2BEXL16kPdZqCkFBQRgxYoTJgpr6dzwxMREHDx40msTd1dUV3t7e6N27NyZPnoxu3brh4sWLKC0tNXv81YGLf1zHpT9vAIpFlUV7Zhu1Z3FBCX7/8m+t/ZnJhp/jnkHucNQxL7RzskGnEebnSXx08Sn9unkvw4JSarRm8ZiU6HQsHbISIiNe+LrwDfXG+js/o2EnTUFQLBIjO8Xw87i0WICtX+zR2q/0FhcJxHh1XzufoouXEzwCtEPh+fbW6DJa26OtvJhiS3tX3V5orx9E45uByyEsfT/+3hBBjUAgEAjvHJFQjJ/H/gqRQD4RGTirN1r1bWr0vKv/3MLD85Fa+4vz5Tk5DFG/nSqsgGvNBRQ//JaPXw9Bieohfub3S/hp9BpIxJoVQJU/Zvp93ANWXE0BTh2pRIq103/TeSwz0fDk0S/MW8PtnaO4zuNLz3B6u3YJ9urE2V2XMbvVYiS+kleGs7bjY9AnffDg3BOtsE/l78Lek7uBb8PT26dMJsOvM34DpSMhvjFbegS4aYRjWPHl4T0vbkXh6IYz5bu5KubSn9cxs/lCxD2TJzDmWXOxYPcn+GL7DFjxrPDkynOc230FAMDmsPC/P+aCp/hM64OiKPw64zedoaLGxEknD0d411blOOEqin28jYjFgVXHK3SP1Yk3b97g9OnT6NmzJ51Y3BAUReHhw4dISEig9zk7O5skinG5XMycOZPO8aVMhH7lyhUz76J6EBMTg+PHj6NHjx5wdjbNc/HRo0eIi1OFZyttaUy44HA4mD59Ory85GFaUqkUd+7cwYULF8y8i+pBfHw8jhw5gm7dusHV1dWkcyIjIzUKPTg7O0MqlUJmJF0Ai8XCtGnT6HBGmUyGe/fu4dw5/eF27xNJSUk4ePAgunTpAnd37bB4XTx79kyj0IMyx6Gx7zmDwcDUqVMRHBwMKP5ePHjwAGfOVO/njimkxWVg3axt9PbczR/D3d94vsJdX/2NguxCrf3GnuMMBgPh7cLobb6dfL6Qn1WIDbN3lHP02ry4LU9lwGQxUa9tmMG2MU+1i9FEnI/EsnG/GqwYr4+i3CLERGr2GfMkHjOaLcT9s4/1nrfvu3+Ro6NQA0stCuDo+tM6z63fXjUP5tvKbVmcV4y107aaVe0TaraEIk2ELnSlSlESefUFfhi5BhJx9V9cIoIagUAgEN45u7/+G9GP5T+gAur5YuqKcUbPKc4vxubPduk9nvwm1eD5faZ0Q8u+TdBuUAtsfbwSoc1rAQASXyVjx6I/AACHfj2J1VM20xUNOWrC2eyNU7DpwXJMWTbW4HWObjhD35vWGN8aHiOTycSsdZMR1qIWZv06GV//8zl9bPPnu4ye/y4QlAixcvJGrJq8iQ5LDG4UgGHzBuDoxjO0gGPFU9ly+i8TsOnBcsz6dZLBvk9tu4iXd3RXWjVmCwZDHsYQ1qIWPl45Ht8dWUAf275oH+JfJBo8/10gEoiwdtpW/DxuHQTFcpE3oJ4vNtz7GT0+lOczKswt0shdM+mH0SZVLL2w9xoir77QeczYdwcAZvwyEWEtauGjn8bgp1P/owXm3d/8jbePTavUWB0RCAQ4dOhQuTxxXr58iRMnTiA/P5/el5iYaLLooY6joyP69etHJ9Z/nxGJRDh48CAEAsNhUOq8fv2azkOnJDExES4uLiZ7ZCmxs7ND//79jYpH7wMSiQQHDx40KcRQSUxMDA4fPozMzEx6X3JyMlxcXPTmsdOHtbU1Bg4caPaP7OqATCbDv//+a1JItpKEhAQcPHhQw9svJSUFjo6OBvPY6YLL5WLQoEHl/jxXN6RSKZaPX4+SAvniZbdxHdBllHHPpqgH0Ti2SbeYmPI2zej39cNvhqNem1AMnNUbmx6sgK2jPPXFpT9v4PLfNyt0L1A8S+MUVTdrNwkyuLgHAHFPE3Tuv37wLv744WC5ri2TybBy0kYU5cq/34271odnkFzoLcguxFf9fsKpbdoLA7FP43FwjW5PaIlaFEDEBe2FZwAY/b8hCG8Xhn4f98DmiBVwUHiM3Txyn16kqwilxQK8VYSaBtTzhZ2Trc52noGGxdc7Jx5i51fanozVDSKoEQgEAuGd8vjyMxxYLfdqYXNYWLRvDrh8w941APD7l3/pXJVTkvAy2eD5NvbW+PHE/7D00AL41PbCwj2zaZHnyIbTWD5hg4Zg5+7nSntWtRvcEh9M64GQpsFgsfWHNmQmZWPXN/onA3HPjYs4XUe3x4a7yzBodh+06d8c/aZ2BxR5NlZM2FChldDKIv5lEma3Woxzu1QTsX5Tu6PT8DbYs2Q//WPM3d+V9kZs0acJBs/pZ9SWuel52LH4D/3Xfp5kdHwdhrbGhrvLMPyL/mjWoxEGz+kLKEIilo9fD7Go+oSGJb9NxZy2X+Kk2iS6x4ROWH/3ZwTUk+daUYY8Kz3KGncJx7Av+hvtuyC7UCO8uizxL5KM/nBu/UEzbLi7DKMWDUbDjuEYuUBeiVcilmL5h+shEohMvtfqRqNGjdCnTx+T2ycnJ8Pf35/2ZuNyuXB0dERcXBzi47W9GIzRpEkTdOnSBZcvXy6XGFUdadCgAfr162dy+5SUFPj6+tLePxwOBy4uLkhOTsabN7rFdEM0bNgQvXr1wuXLl+nCD+8r9erVw4ABxnNTKUlJSYGXlxftgcVms+Hu7o709HQ8f/68Qtfv168frly5Ui4xqrqhDOceNGiQyeekpqbCw8OD9n5ksVjw9PREdnY2Hj16VO4xhIWFYcCAAbhy5QoKCgrKfX514O9lR/DsxitA4QE+e/1HRs+RSqVyz2gdXuYAICwVGaxcDQC1GgXi15s/4pP1H8E3xAuzN06hj62buQ1ZRsJG9aG+WGcspUZ+VoHB+WfUA+0QS0McWnsSERfkIZIu3k74ev/n2PRgOVr3l+dBlckorJm2Ffu+/5d+NstkMqydsU3vHJCSUbRom5OWpzMnWUBdX6y9/gM+3fIxfGp74dOt0+hjm+buRGpsutY5pvD6fjS9eBpuwNPPN9RwoRkAeF1OW74LiKBGIBAIhHdGQU6hhnfN5J/GonZj4941RXnFBis9AUDCS+MCizr+dXwwdYUq79SFvVfp1816NkKGopqTi7cTPv9tukmry0c3nEapnkIGUIQ3qIeXmsK01ePhXUue1PbF7df4e/mRcp1fWVzYdw2ftFxEi4Q8Gy4W7Z0NBzd7jRXGZj0a0RNmRzd7zNthvPAEAJzYch5Fefq9M/KzClCQox1CYoiPfh4D/7ryKqtvImKx77t/y3V+ZXH1wG3MbLaQ9my04nHwxY6ZWLDzE41V8wv7rtE50OycbDB/1ycmeZ6c3nEJ+Vn6bVVaJEB2aq7e47oY/+0IBDeSVwaNe56I37/8q1znVweePHmCu3fvonfv3uDz+SacIad79+6YNGkSxo8fDxcXF4waNQozZswAi8VCUlL5/g4pkclkuHv37nsbFvbs2TNcv34dvXv3ho2N6cVTOnXqhMmTJ9O2HDFiBKZPnw4Oh4PkZMOLJPqgKAr379/HyZMnK3T+u+bly5e4dOkSevfuDTs70yvftWvXDlOnTsX48ePh6uqKYcOGYdq0aeDxeEhJ0V092hQePHiA48ffz9Du169f49y5c+jVqxccHAznaFWnVatWmDZtGj788EO4ublh8ODB+Pjjj2FtbY20tLQKjYXBYODRo0c4cqR6PMPLw6t7b7D32wOAIlfXor2zTSqSFHE+Em8exhhso0wTYSpdR7dHZ4VnXFFeMVZO3lQhr9QXt6Lo14ZEIABIeq3fi9vNzwUz1hj2tlcn+kkcfv/fn/T2gt2zYe9iBzsnW3x7eAGGfa5aJNu9ZD/Wz9oOqVSKp9dfaoxZF47uqmJLxzedNTqW9oNbodfELoCiSufKiRsr5C39XG1chkJnAxvor5BrxeOgzYDm+GTDFL1tqgtEUCMQCATCO2PzZ7voAgJNujXA0M9M82RgW7Hh7GU4t5Ep3l9l6Tetu1bZ8xELBiHyimo1f/7OWSaX89aV8LUsSVHl+2HDt+Vj4Z7ZdMLZvd8ewOuH0eXqw5IIS4VY8/EWee45RVhiYH0/rL/7M17dfYs/fzpEtx32RX88u/GS3v5ix0w4ezqZdB33AOPhc4mvymdLLp+LRXvn0J5xfy87rDERrGpEQjE2zN6BH0b+QucA9Avzxoa7P6P3pC4abbNScrDhE1XOmLlbpsHdz7QQQw8TbGnMw7MsHCsOFu2dQ1dvPbjmBB5fflauPt4lOTk5OHbsWIWKASgFYTs7O0yZMgWBgYHgcDho1qwZ7WlVXng8HgYOHPhehivm5+fj6NGjFSoGwGAwwGAwYGNjgylTpqB27dpgs9lo0aJFhUJoofByGzRo0HsZrlhUVIQjR45AJCq/x6fSlnw+H5MnT0ZYWBiYTCZatGhhct6wsrBYLAwZMqRC575rSktLyx3OrQ6DwQCXy8XEiRMRHh4OBoOBVq1awcPDw4Szdfc3ZMgQMJnM9+qzKRKKNbzjRy8egvrtTSvs4+LtDCbLsPxQ3mcPAMze8BFcvOVziYjzkTi20bh4VJbnt9UENbUcu7rwCnan54E2DpqVKrOTc8Ayco9KpBIpVkzYQBdpGvZ5fzRVK3LFZDIxbdV4fLxyPL3v+JZz+HHUGtg724LNMVz8wStYlev06j+3TRrTjLUT6VDMp9df4t/VxovrlOXFbdPEybLpKdRtOWvdR/juyEIE1PUt9/WrGiKoEQgEAuGd8OTqc1zYew0AYOtog/k7Z5mc14VnzcWOF2vx/bFFcPdX/chqN6gl/ePWlDxQ6kjEEqyYsFGrQui9Uw/pyc6Quf3QrIfppcT7z+iFLY9WYuRCVWhJUAN/+Iap3NzL60kHAPXahGHUInn1QalEnsfkXVRDSnqdgjltv8QptQIJvSZ2wdobP+DAqmM4skGVCHfWr5OR/CaVzqvW7+MeaP1BM5Ov1WtiF/wWuRrjvhlG7/Ov64uAeqrJVkVsGdI0GB8ukZell8korJiwHqVFVV99LTUmHZ91+BpHN6o8krqOaY8N95YhqEGAVvut8/bQoluP8Z3QabjpFc46j2yH7c9+waQfRtP7fEO9EaS2WlwRWwbV98fkn8bQ2ysmbjDoVVidYLFYaNmyJTp16lThPq5evYr9+/fT2z169ICPj0+F+1OGpV2/fv29CldkMplo1qwZunXrVuE+bt68iX379tHbXbt2pRPkV4TQ0FCMGDECN27ceK/CFRkMBho3bowePXpUuI87d+5g925ViHenTp0QFGTcE1wfwcHBGD16NG7duvXehSs2atQIvXr1qvD5Dx8+xI4dqoWM9u3bo3bt2hXuLyAgAOPGjcPdu3eRl6c/hLA68e/q40hULASGtail8Uw2RnDDAOyN2YjFf8yl9zm626NhR5UgV5Fnj72zHebvnEVvb1u4F/Hl6EcqkeLVXXnIp5ufC9x8DS+EOHs6YWfUr9gTvQEL98zWOCaTUdi/4qhJ1z2y/jRdiCC4YQAm/ThaZ7vhX/THwj2z6cW/6wfvYsOc37H18Sp89c9nYCgWWO2cbTUqbTt6qDzU4p7rzvlWFht7a8zf9Qk9l9719V+IfqI7D7AuZDIZ7Tnn4GoHnxAvvW0dXe0BRYACk8XE1we+oI8pc7C9DxBBjUAgEAhVjlgkxvpZ2+ntKcvGGp3AlMXG3hot+zZBfqZ8Qu8b6oWlh+YjIFwusCS/STU5v5igRIhvh67CFUVCW+XkBABdWdHd3xUTfxhVrjFCke/DQc2jbfgXAzB1uaroQkVWYwFg3DfDENI0iO5j/3LTJnCW4sr+m5jZfCFinsgng1y+FebvnIU5m6Zg9Ueb6DxqTCYD83fOgkegG24fewAAcPZyMqnwRFmC6vvD0U0VpjN4Tl/MWDOR3q6oLUctHETnTEmJTse+78uXUNhcbhy+ixnNFuD1A7mnIYfLwadbPsaivXNgbacdehhxIZL+rDq42mH66gnlvmZAPT84e6q8PPtP74k5arloKmrLIZ/2Q+Mu4YAipHn3N/uNnvOuiY6OxqtXr9CrV69yJxhXJzU1VSNU9MmTJ9i2bZvZ3ie3b99+b6orxsXF4enTp+jduzc4HP3Vj41R1pbPnj3Dli1bzLblvXv3cPq07op31Y3ExERERESgT58+4HKN5xXVR1lbRkVFYePGioVyqfPgwYP3Jow2OTkZd+/eRZ8+fcoVzl2WsraMjo7Ghg0bKuRBqM6jR49w7Ngxs/qoClJj0/HHD/LUCEwmA5/9Nh1sTvn+Zrr7uWqILK36NsN3RxfS2wnlDPlU0qxHIwz6RJ77UiQQY91M0//2xkTG0x72xrzTlNg728EryAN1W4fQ+5Ted+d2XUZWSo6Bs4Gs5GzsXiJ/PjIYDHy6dZrBivHdx3XE98cWgmcj/1sQefUFfhy9Fg4u9nTl82Y9G+HHE4vpCIbMxGza60siliLiou7iBGVp2LEehs8bQJ+3dvpvJntLJ0aloFBRXKFe2zCjKT2U9yyTylC7aSDd/tXd1wbPq04QQY1AIBAIVc6htacQ/0K+elinZW30mVIxT4a02Aza4ykgXJ6o3V/hHi4RS5ESbTy3SW56HuZ1WYI7Jx4CCjHjuyML0XZQS412s36dbLTqkz7i1CpIBoT7wr+Oymsl4VXFcixxrDgaK5b7VxxBWlxGhfoqDyKBCOtmbsOPo9fS+eH86/pgw71laNWvKRb0+A7XD94FFEUmvtr/OToOb4NNc3+n+5i2ajxs7K31XsMQ8WqhvIHhvvT7DTNsyWKzsGD3J3QV10NrTyDpdcVzDJmKWCTG5s924duhq1CcL/dA8q7tiXW3f0S/j3vonIiKhGKs/0RdjB5ncghyWdTDogPK2DKxgrZkMpmYv3MWeNbySf+xzWcR+7T8ifmrCqFQiEOHDlU4D5I6bdu2RceOHelta2trFBYWmlVYgMlkok+fPu+FV5VYLMahQ4eQmmp+9eFWrVqhSxdVmLONjQ1KS0vNtkOfPn3KVSnzXSGRSHDo0CGzcp0padGihYa3oLW1NUQikUZV2orwvthSJpPh8OHDFc5nqE6zZs3Qs2dPetva2hoSiUSjKm1F6NWrF0pLq94zurxs+nQnXVBo0Oy+qNUosEL9xGs8e/xg42ADZy95yGZFF3MA4KNlY+kcs5FXX+DaAdPCHNVTPYS3MZw/rSyObg70NZWIRRIc/MVwqOTWeXvoOVTfKd1Qt1WIwfYA0KJ3E6y6tJSuxhkTGY8fRq6hjwfW84MVz4quEJr4Khl1W6sKLBzfZPrCzITvRtIRAK/uvqEjSoyhntetngm25KstGuak5NGL4tFP4sudY/hdQQQ1AoFAIFQpGYlZ2PedKpnt7I1TTA71LIvSewyKiQQUxQWUGMupFf8yCXPa/A9R9+WeQdZ2fPx06n9o/UEzesKixDO4Yjln1MfJYDDgX9cXXsEedK6p8ub9Uiegnp9Gpcrf5u+pcF+mEPssAbPb/A/Ht6gmZd0/7IgNd38G24qNOW2/xPOb8skUz5qL744uRIehrfHXT4eQFpcJKMrBd1EkEK4IcWUm4q4+zuDbyoVOc2zpU9sLI9RWZDd/vsvoOeaQ8CoZn7b/God+VXl4dBzeBpseLDdYmOPf1cfphMj12oah58TOFR5DWVvau9jB0c1eMb6K29Ld3w2j/yfPsySTyrDp053VNkeQSCSCt7c3unbtalY/MpkMGRkZGnm+QkNDMWjQIPB4FRPilTRo0ACjRo3Cq1evqnVONbFYDA8PD3Tv3t2sfiiKQnp6OtzcVDkog4ODMXDgQNja2prVd926dfHhhx9We1tKpVK4urqaFeoJhS3T0tI0bBkQEICBAwfSVWkrSkhICCZPnoxXr16Z7e1WmUilUjg5OZkV6gmFLVNTUzVs6e3tjUGDBlU4v5+S4OBgfPzxx4iKiqpQHseq4Nax+7hzXL7w6OzlhPHfjqhwX3HPVOGHgQoBRVkgqCC7EPlZFQsl5llzNQoCbJ2/B6XFxhc0Xt5ReUOFtyufoAYAdRRimEwqA4crn9ud2HoOBdm6i/9EXIikCwo5uNpppEowRliL2lh74wc6z5m6rQJoW8r/FxQL0X6IanE48prp1X2tuBzMXKuy5fZF+3RWCi3Li9sqW9Y3wZbqERzRj2NRp6XKlm8jDBewqC4QQY1AIBAIVcrmz3bRq04fTO+J0Ga1KtxXWUEAAPzUvb8M5NB4fPkZPm33FS30uPm6YM3179G4S33ERMbj7M7LWuOuiCggk8mQoPDG8wxyB8+aCxabRYc8JL1OMTk0VRfjvhkGJw95GOT1g3cRcfFphfvSh1QqxYFVxzBLLcTTisfBZ79Nx4JdnyD6STzmtv0SKW/lXj7Ono5YffVbtOjdBIlRyTiwSh7KwuawMHvDFJOqeuqCoij6PXf2coKdky0YDAb9GRr4HQABAABJREFUnss9Fiu+ojly0SA69PjeqUe4e/JhhfvSh0wmw+F1pzCj6XxViKcVG7M3TMFXf39m0HOvbLjNHDPEaKh5Cdg62sBF4R2gtGVOai6K8yvufTLs8w/gFSxftX98+TmuH7xT4b4qi9zcXMTExGDs2LHlqp6oi6SkJJw9e1bDU4XFYoGiKGRmZpo91uLiYuzfvx8RERFm91UZ5Ofn4/Xr1xg7dmy5qifqIjU1FWfOnNGwG5PJBIvFQnp6utljFQgE+Oeff3Dv3j2z+6oMCgsL8fz5c4wdOxbOzs4mnKGfrKwsnD59WsNuDAYDHA7HIp6EIpEIBw4cwK1bt8zuqzIoKirCkydPMHbsWA0hrCLk5eXh5MmTGl6DykIFlvAklEqlOHDgAK5dM80TqCoRlAixae5Oenv66gkV9jIHgLgXqrkZHV2gMXeruJdaq35N0aJPE0AR8rjfhEroynkFi83SyCVqKnVbqbzA6iheC4qFOLJeO7zcEl7mvqHeWHvzR7qytpISheDlp5an183PlQ5FLcguQm6G6bn6mnZviPZDWgEActPz8cf3xiuhx6tFZNRqbNyDUemZCAAJLzQ96l7eeWPyWN8lRFAjEAgEQpVx7/Qj3DgkDwd0dHfQSIpeEdQf3IH1lSGf6uGUuidl5/dexeLeP9AJ02s1DsS6Oz8huGEAZDIZ1s3aBplU7r1g6ygvBf/40jN67OUhPT6TFhCVYwQAvzryCY9ELEVqTMV/JNrYW+Ojn8fS25s/3QmJ2HIr3Kmx6Zjf9Vv8tmAvXZwhMNwP6+/8jL5TuuHagdtY0P07eiVWfuwnhDarBYqisGH2DlUFqy8GaEyay0tueh4Kc+QhX+q2VL7nFEUZLGdvDL4NDx+v/JDe3vTZLoiE5a9UqI+MxCws6vWDRtiMX5g31t78AQNm9jIqNFoq3AYAivKK6QIcgfX96Gurvz/xZvyoseJZYfovqtxuW+ftqVbhGxRF4eDBg3j40DKiqUAgAI/Hg5OTZtXa27dv48GDB2b37+DggKZNmyIq6t1VodUHRVE4fPgw7t4t/99HXQiFQlhZWWlVSL17965FrmFjY4OWLVvi1atXZvdVGRw7dsxiApVAIACbzdbyoLp//z7u3DFf5ObxeGjbtm21/FwCwMmTJ3Hjxg2L9CUUCsFisbQqpD58+NAi7xebzUaHDh2qpS3//PEg0uPlAneTbg3QeWRbs/pTLuZY2/PpRSxTF0ONwWAwMOOXCXQFzH9WHkNqrP45lkwmo6ute9f2LHdOOACo00pVmMLexZZOxXFk/Sm6eJCSA6uOWcTL3MXLCb9c+RZcvhW9b92sHXhxO0ojfUNSVAp8Q1U56w6vO1Wu60xbNR5WPEU6jF9PGcxxR1EUHSng7u8Kvq3xfIXqFdyTo9NQV82WL+8RQY1AIBAIBBphqRAbZquqY01bNZ4WqyqK+qqicsLgF+ZNJ2SNfqxZmYiiKOz97gBWTNgAiVjuFdaybxP8cvU7uHrLPQHO77lKhy36hHjhs9+m0edv+WJ3uUWB+OdqK7H11EUg1YSn7DjLS4/xnVCnpXwSEvc8Ecc3m5/AnKIonN5xEdMazcPT6y8BxUR1+Bf9sfH+MgQ18Mf+FUfxw6g1ECtEp6bdG2Dtje/h7i/3BLj6zy1EXJB7zHkEuGHsV0PNGlOcmi0D1WwZYEFbdhrRFg0UFcdS3qbh0Frzk25TFIXze6/i44Zf4JGaB+Gg2X2w6eEKk7w0LRluA4DOYYiyn8t6lrNlm/7N0byXvCpuRkIW/jGx8llVIBKJUFxcbHZ4opKQkBDMnTtXq6iBj48PxGLLiLIffPABRowYYXa+JksjlUqRn5+vkVvKHAIDA/HZZ59pJeL38fGxWDhcr169MHbs2GpnS4qikJ2dbXZ4ohJfX198/vnnsLbW9Cay5Oeya9eumDBhAnJyDCdhfxdkZ2ejd+/eFunLw8MDX3zxhZY3q4+Pj9lFCZR06tQJU6ZMqVa21PYy/6jCXuYAUFxQgoyELECxAKfsK8CCzx6/MB8MmdsPACAWirF1nv50GBkJWfRClX8db73tDBHcMIC+j+zkHHQb1wEAUJhbjJNbz9PtUmPT8eeP8qJHTBYTczdNNcvLnMPlaCz6CUuE+LLfz2ApxEQAiH4Sh/ZDWtPbNw+XzzPXM9AdI+YPBBTVUDd/pj+FQ15GPr1Q7Wfi4ql3bU/6dVZyNvzr+dJiqFLorO4QQY1AIBAIVcL+5UdpT6yGneqh29gOZvUnlUiRqPCg8QnxBMdKvoLG5XMR1FDuBh/3LIEOWxOLxFg5eSP2LP2H7uODaT3w3ZGFdCXFgpxCbFuwlz7+yfqP0GFoazTrqRIFDqwsXyUuzVwhKuFCPQGtekLcisBkMjFr3WR6e/eS/cjLrHjC6dz0PHwzaDl+mbqFTprrGeiGVZeX4uOV48Fis/DrjG3YvmgffU6viV3w48n/wcZBLpIWF5Rg8+e76eMz106iE9VXFHVbBqjZso6aLV+YaUsGg4FZv06mRdk/fvjXaLUuQ+RnFeC74auxYsIGuvCAm68Llp//BrN+nWySTSwdbgMDn0sNW94235Yz1kyq8sIZxhCLxUhJScGcOXPg71/+8B5dnDx5Es+fa+en6devH/r372+RazAYDCQmJmL9+vUWCdezBBKJBAkJCZgzZw6CgvTn/isPZ8+exZMnT7T29+zZE4MHD7bINRgMBtLS0rBu3TokJiaacEblI5FIEBMTg9mzZyMkxHiCclO4ePGizjDhbt26YcQI80R5JQwGA1lZWVi/fj1iY2Mt0qe5SKVSREdHY8aMGahTx7Sqjca4evWqTg/Jjh07YswY03NgGSM/Px/r16/Hmzfv3juHoiis/2QHvQA5fN4A+IVV3MscBhZzQpvXop+7z8189gDAmK+G0pWsbx6+h4fntf+moEx4aUXvzYpnBVdf+aJs8ts0jFwwiBbY/v3lOL0Qq+Fl/kkfBDcMMNCrcRKjUugKn8p7Lcorxm/z99Ci1ItbURg0WyUqJ71OLXf+yJELB8HNT+5J+ODsE7qIV1k0bWmaOGmntrAuFkjAYrHoogqp0enVNv+qOkRQIxAIBEKlk5GYhb8VeSxYbPPyaClJeJVMhxKqiysAEN5WnghVJqPw4s4bFOUV4399f8L53VfpNh+v+BBzNk2lf+wDwL7v/kV+ljx0sdOINmjes5FCFJhIt/t7+WE69MEUop+oVlqVCWOhcPVX8uym+aFHdVqGoNdEeVW84vwS7Pzyrwr1c/3QXUxt8DntDQUAvSd3xZbHq9CwYz2UFJbi6wHLcPI31arrxO9G4YsdMzRCJf5edgQ5qXLvj9YfNEObAc3NuDs56rYMVLNlWMvadI4QS9iyVqNA9Jsm97YRFAs1hMPycOfEQ0xt8LlGqHC3cR3wW+RqNO3WwOR+/l193KLhNijjAaD+uQxpGkSHdzy7Yb4t/ev4VGnhDFM4e/YsDh48aPbfICVSqRRPnjzR6aUilUrx66+/IiPDMkJiQEAAXF1dcf/+fYv0Zy4XL17E/v37LWZLmUyGx48fQyjU9gSmKArr1q2zmJjo4+MDLy+vamPLq1ev4q+//rLYD0iKovDo0SOdtgSADRs2WExM9PT0hJ+fX7XJS3fz5k38+eefFk3wr+9zyWAwsHnzZouJiS4uLggKCqoWtrx19D7tVe0R4IYxX5rnZY4yzx71xRwbe2t6MTQ2MsGsHJ7K/qYsG0dvb9KTDiNRLYTRVK8qXfgoPK0Kc4rg5OGA9kPlucdy0vJwYNUxPDj3xKJe5ihjy37TeqJeG3n+sbyMAkDxN1keXsqg87TJpDLcPFK+zxbPmotpq1QpHDZ/tgsigfbzTj0cVD0Kw2DfNqpFReX7o/RaE5QIkZNmes63dwUR1AgEAoFQ6fz54yE6LHDwnL4ak6iKEnn1Bf26bJnz+u3r0q/vnYrAp+2/wuNLzwBFMv2v//kcw+cN0PgRmJmUjROK6pU8ay6mr1ZNHgLq+mLQ7D6AQhTYaqIoQFEUPU6+LQ9B9VXeMHZOtrQdoh/HobSoVG8/pvLRz2NgbS/3tju94xLelKNCUnF+MVZM3IDvhq2iRUVHdwd8e2QBvtg+Azb21shMysZnHb/G/TOPAUUy/UV752DsV0M1bJmbkY8jijwdHCs2Zq6dZJEf3Epbcrgc1G6i8obh2/AQ0lS+Hf8iCQU5uitrlYeJ342EnbO8ouDFfdfL5UVYUliKX6ZuwdcDliE3Xe4paO9ih6//+RyL9swpV6hzYW4R/v3lOKAIEflkvXnhNkoir72g+wxrocpZwrHiIEwRPpwWm2GWd56SsoUzHl2yfOGM8vDy5Ut06GCeh6w6DAYDderUQb169bSOsVgslJaWWszbhMViYdKkSejatWu1qFJZGbYMCwtDgwbagjOLxYJQKMTr1691nltemEwmxo8fjx49elQbW7Zv396sEDB1GAwGQkND0bBhQ53HxGKxxfJ1MRgMjB07Fn369Kk2tmzdujU4HI7F+qxduzYaN26stZ/BYEAmk1nUlqNGjcIHH3zwTm0pk8mw65u/6e0Zayaa7WUOtWcPANRrG6pxTLkYSlHyxVBz6TauA+q2lnt7JrxMxrGNZ7XaJGqIQBUX1LyCVaGLKdHpmPjdKJV39vIj2LZQFf0wbeWHZnuZo8w8uFHnevjx5P/oQgUSkUo8fHErCg07qp5Pp7ZfLPe1Og5rjUadwwEAqTHpOLhGOx2Ghi1NFCe5fNVnSqrwhPRWt6Wi2FV1hghqBAKBQKhUUmPTceb3SwAAazs+Ri+2TMjOk6uq8KqGnTR/yKqXPT+x5RwdYuDgaoeVF5eg47A2Wv39+eNB2uNtwKzecPXRTIj9oboo8O8dxETGGx1j0usUenWtfvs6Gt5wUPekk8rw8u5bE+7aME4ejhj39XBALV+cKTy69BRTG36B83tUHnztBrfEtqer0XZAC0ARlvpJq8V0lU87Jxv8fPYrnaG7+5cfoUMc+k7tTld7NIf0+Eykxcq9fOq2DoEVz0rjeHhbVVjPi1vm/+C2d7HDxO9G0dt7vv3HYHslT6+/xLTG83B6h2rC2qpfU2x7ulrn584Y/64+ToeK9pzQ2ayiDkpyM/Lp70Ros2A65FmJui2V+QTNoWzhjN1L9r+zMA6RSITZs2ejVatWFuuzqKgIXbt21VndksVioVu3bvD1NW213hT4fD5evnyJ7du3v9Mf3CKRCNOnT0e7du0s1mdRURE6duyoVdwBCqGhW7du8PMzf0FGCY/Hw9u3b7F161ZIpRWvtmwuIpEIU6ZMQadOnSzWZ3FxMdq1a6dVkAAKW3bp0gUBAeaFnKnD5XIRHx+PTZs2WdQzrLyIRCJMmDDBYvkRAaCkpAQtW7aEh4fuZ1mnTp0QGFjxIjFlsbKyQmpqKtavX2+x/Gzl5dqB24h7JvdgrNMqBG0HtjC7T4qiEHlFPnfj2/IQ0jRY43h4O7VnjwU8pJlMJmb9OplehPpr2WGtSuDqXlWmhinqQj0XWMrbNPjX8cGAmfJciMJSET13Cm4YgM6jLPM3UzkP5nA5qNsqBLaONlh29muNIgQAEHE+Ev1nqnJcViQ1hjwdxiQ6LPfAqqNaBRc0bGliPjorNZFWoqh4r27LZCKoEQgEAuG/zr7v/4VU8ZAcPLdvucuD60J9UmbjYK1VOtzN14X2AlLm/vAJ8cK62z+hXhlvNgBIi8ugRT++LQ8j5g/QamPjYIPRi4fQ23/+dNDoOJ9cUa0eNuwUrnU8vL26cGGZinMDP+kNVx95Lo/bxx5ohEmWRVgqxKZPd2JB9++QmZgNKKpuLdj1CZb8Ow+Obg6gKArHt5zDvC5L6BBOzyB3rL35IxrpuKeslBwc3yxfBbbicTD6f0O02lQEjZVYXbZUE1EtZct+H3enc3lEnI/Ey7v6V8xFQjG2LdiLLzovoYU/vi0Pn/02Hd8fWwRnT22BwBh5mfk49Kt8FZjNYWHc18MqfC/qqNtS1+eyfiXYssf4TvTq//ObURpjqCqys7OxcuVKZGdnW7Tf48eP49KlS3qPN2vWzOI/ir28vJCamoro6GiL9msqeXl5WLVqFdLT0y0W7gkAp0+fxvnz5/Ueb9KkCSQSiUUFWS8vL2RkZFjM8628FBYW4pdffkFSUpJFbXn27FmcOXNG7/HGjRtDJpNZ3JbZ2dl48aLqv99QCF9r165FXFycRW154cIFnDypv0BNw4YNwWAwLGpLT09PFBQU4NmzZxbr01SkUin2fKtakJvw7UiL2NPYImN99TnRLcs8e8Ja1EaHYfKk/HkZ+Ti1TdM7S+lV5ezlROeArQg+6oJatFwEGvfNMNg6afY5fukIi3ihZiToXmR0cnfA8vPf0DndAODc3quo0zKEzqtWUlBqsPKpPoIaBKDbuI6AouDCsU2aHn9KW9o62sDJw9GkPnnWqsVR2kNNzZap0URQIxAIBMJ/mKTXKbig8HqydbTBsM8tk5w7/kUSHZbYoGNdsFiqSZmgRIjl49fTlYagyLG17taP8K7lqbO/P77/lxbehsztBwdXe53t+kzpBkd3uRfKtQN3DJYPRxkvOqWrvDr11VdjzUymr8SKy6ErMgHAnz8d0tku6kE0ZjRbqFFCvXGXcGyLXI0e4zuBwWBAJBDhlymbsW7mNto+DTvVw7rbP+n1lPrrp0N00t0BM3vDxav8QpIuIo3YMrwSbMliszB6kcqjUlmdqyzRT+Iwq8VC/LPqGP2Dqn77Otj6eBX6TulW4R8i/6w4CkGxfDW9z5Tu8Ahwq1A/ZTFmS/X8fpayJZPJxJj/qfLv/KHHlpXJgwcPwOfz9XqZVJS0tDR4eur+26I8/ueff1osjxoU1RsHDx5s8XsxlYcPH4LD4cDLy8uE1qaTmppq0JZZWVn466+/LFqUwdPTE0OHDrX4vZjKo0ePwGAwLOrFCBM+l7m5ufj777+RkJCgt015cXV1xbBhwyx+L6by+PFjSKVSixUbUZKenm7QloWFhfj7778RE2N6mgVjODo6Yvjw4Ra/F1O49OcNWhyp374OmvXQDhuuCMYWGd39XOnk96/uvtWZ86wijFFb2Ptn5VG6MmZBTiHyMgsAMyp8KvGqpfpbrBTU7J3t0G5QS3o/z4ZrkXyyAPDEwCKju58rVl5cSueWFRQJ8PWAZRpVvPd+a1oEQ1lGLRpMz2kOqhVcKC0W0NVb/ep4mzzvUc+hplx899Zhy+oMEdQIBAKBUGns/e4AZIoKRMO+6F+u3FGGeHJFTRBQm0ikxWXg0/Zf4eIf1zXadx7RVq9nXNKbVJxTF/2+0C/68ay5GK44TlEU/vpZt1gFnaEN2hXwPIPc4awQnF7efm2xkKO+U7tphKfGv1RV1RKWCrHzq78wt+2X9ITZisfBjDUTsfz8N3D3l4s2GYlZ+LzTNziz8zJ97pC5/bD83NdwctcObYNixfS0IjcHz4aLkQsH6mxXEZ6o5U9T5kRRx8XLiQ4tfXXvrUYpeXPoMaETPcG/c+Ih3j5SJZ4WCcXY+90BfNJyER0aw7FiY+rycVh1ealZoa45abn06i+Hy8GY/1kmVBpqHmpMFlPDs0+Jen6/t49iLZLfDwA6j2xLrzw/uvjU7Cqi5aVx48YYM2YM2Gy2Ca1NZ9SoUQZDSN3d3cFms5GVlWXR6zZs2BB37961qCBSnmuPHTsWVlZWJrQ2neHDhxsMIXV1dYWVlZXFbVm/fn1ERERYVBAxlfDwcIwdOxY8Hs+i/Q4ZMgQdO3bUe9zJyQl8Pt/itgwPD8fTp0/fSZXKunXrYuzYsbC2Nj8/lToDBgxAly5d9B63s7ODra2txW1Zp04dvHr1Cq9eWcZbyxQkYomG2DLx+1EW8/YztsgINS81QYlQI+m+OdRqFEgLWVnJOTi36woA0J75KJMDrSKoL9imRsu9v6RSKV7eUXm+CoqFuLL/llnXURJ5xbAtfUO80OaDZqr2ZbzC1YsllQf/Oj7oNEKeviIvswCnfrsAAMhOVuVb1bd4rQuejervnlQqT2HgEehOh5amRJffk66qIYIagUAgECqFuOeJuPzXTUCRj0pZ6c8S6JqUPTz/BDObL6QnYMpKhQDw4o7+UJ593x2ATPEQH/a5cdHvg+k96WT1l/68oXf1rGxog3oFTCUMBoMWNEoKSxH71DI/jLl8LoZ/IQ9bVRf+Ii5E4uNG8/DnT4folcCQZsHY9HAFhsztR4chPLn6HLOaL0TU/WhFf1ZYtHcOZqyZqPM+lPzxgyoP3aDZfeHoplt4Ky8ZCZlIjZFPqnTlT1OitKVYKMbbchRkMATHioORCwbR20rPqshrLzC9yXzsWfoP7b0X3DAAG+4tw4j5AzW8JivCXz8fhrBUHibYf3pPrZx+FSU3Ix9xz+XiX2izYL2JkdXz+726Z35+P/yfvbMOb+p83/gda+ruQluqFJdSoLgXdxgwdPiwMWRsbGNjbGNjMAYbMNzd3SlQvKVQd3f3Rn9/nOQkadP2JDlh8P3lc127Rpo3b06fnuS853mf576VVPwd2fD+qtTu3r2LjIyMRqtM1CEhIQHx8fGNJun09PSwYMECeHt7NzhGXfLy8nDt2jUKI+nj4cOHSEpKgqOjZhUddUlOTkZ0dHSjQvIsFgvz5s1DixYtGhyjLvn5+bh27dp71fd78uQJYmJiaK/oSktLQ3h4eKMJTyaTiTlz5ig1gNCUwsJCXL169b1q/D1//hxv376lvaIrKysLr1+/bjThyWAwMHv2bLRv357W9waAoqIiXL169b3p0t06+JC83rbv11qpxII6UNlkhBY0PKVMkXMoPfnreQj4ApTklZI/k25CqouhiQHZwSBdFz48GYK0aMVOhj1rjpBVXZrQ1CYjAHQZrlgNlxSeSlatVVfU4OmV10pf1xTyFX8nf7sIXg1PIZbmDWy6KkO+Qk0kWZfqcTmwcSG0H3Utnzp06NCh4/8th76XCY9PXDWynvC5uojFYryTLCSMzAib9ZObLmJt0E8oL6oAJHppfz37mXzPyMcxSm+SUqPSce/YY0Ca9FvadNLP0MQAY5cNAyTJhhO/XFA6rimdKinybZ8RNIjwShk2fwBZlXfv2GN8O/pXrB74I+mYxOaw8Om347Et5Ce4SuzNxWIxzv15Fav6/0C2Qdi72WDrkw1KzQfkyUrMIavZDE0NMP5Letp70URrgzzaiuXgWX1gaU/ogTw+9xzfj/kNK3p/R1b4MVlMTFozGn89/xnN22gu8p2XXoCruwgdKX1DLiatGdXka6jyLpjaeSmv70dnLPt/2hO2zYiF8svrYYh7rX0NsMLCQjx+/Fgrc798+ZJShVhFRQWuXLlC+/v37dsX5ubUtGrooLS0FA8fPtRK0unVq1dITW3a7KWmpgYXL16k/Rj69OkDS0tLCiPpoaKiAvfv39dK0ik0NBQpKU1X9/B4PFy4cIH2Y+jZsydsbGzeW3Kyuroad+7c0Vosk5OTmxwnEAhw7tw52s0tevToAXt7+/eSnOTV8nF0wxny8YwfJtI2d2Z8dpObjKijoxbxJJq29/fx90SnQW0BADkp+bh37DFK8srI51VJAjWEpQPxXVxWWAGhQFGHzlfinp2fXogzmy9r9D556QWUNhnlYymtMpRuIAPAYYpmS3Vxb+2KwFGESUVRdjFu7r+PYjVjqdDyKXds0liWF1f+p4YxVNAl1HTo0KFDB+0kvEnGo7NEObmFnRlGLBpM29xp0RlksqdlNx/8POVP7FlzhGwtDRjaAdsliY0WXYmKkKKcEqV6Z4fWnyYX/BNWUk/6jfx8MAxNibG3Dz1AXlp+vTFUWhtQR/vrzX36xIcNjA0wZtlQAIBYJMbTi6/I51p198XOsN8w7fsJ5KJWqj33z/ID5IKrw4A22PHyV3i2U76TLM+RH8/IKv2WD4eppebmE1IUreHffyy5BlyM+1JmVPHkwgvy374BXvjn9SbM3jgZetyGK2tU4dhP58hKv5GfD6Ys7ksFqrFspaVYsjlsTFotSxA2pEtHJywWCx07dkS7du1on9vQ0BBt27ZtclxlZSXCw8NRUlJC6/s7ODhgzJgxiIqKei/JCwaDgfbt26Njx44URqsG1VhWVVUhMjKS9vY6W1tbjB8//r3Gsm3btujcuTOF0aphYGBA6XyvqalBdHQ0cnPpbauytrbGxIkTERMT896q1Fq3bo2uXVV3Um4KqrGsra1FbGwsMjMb11ZVFQsLC0yaNAnx8fFaTyzc2HuP1MHyD2qv1MRJXeSlOhrbzHFr5UKur94+jKL1d57yjczY5/jP51CUU0w+piOhJu1w4NfycWPfPWTGE1qPbXu3xMoDn5PVYSd/vYCCTPXNcZoyaZLi5OUAcxtCE5jDrZ/ATAhNRpWakg6T5Sr+Tvx6AYXZspZPVWJpYCyr/JRP9sl3i1SV0SM7oS10CTUdOnTo0EE7R36U7XBOWjMa+nK22JoiL2obH5qE4NNPyceffjseP1xcTV6IOw2U3Zw9vfRKYZ7UqHTytea2ZhixaBDlYzA2N8Koz4MAiYvoyU0XFZ4Xi8XkceobcRtsbQAAz/ZuMLMmkk+vb4XXs3RXl7SYTLy4HqrwM0NTAyzfPR+bH6yHq58L+XNl2nMTV43ExmtrKbmyZiXm4O6RYACAiYURxiyjr70XciL6HD02fAM8Gxzn6udMOpy+uRdRz9JdXTITsvH8qmJrhL4RF4u3f4atj3+kpSpNSl56Aek4a2hioGAwQQfSRC+TyVCqnybF3t2W1DuLeByDssJy2o5h0Mw+pHbgkwsvkfyu6aokdSkrK0NCQgKGDRumcRtuXUQiEfr27UspCdS8eXN4eHjQ+v5SiouLcfr0aa1rVlVUVCAmJgbDhw9vtC1THUQiEXr27EkpUefq6gpPT09anPLqUl5ejjNnzmjdpbKyshLv3r3D8OHDweXSd32E5PrTtWvXRnX9pDg7O8Pb25v2zwYkic8zZ87g7du3tM8tT3V1NcLCwjB8+HDadejEYjH8/f0b1fWT4uDgAF9fX9o/G5Ak686cOYOwsDDa55Yi4AsUdGGnr6evOg11Nhnb9PJrcByLxUKH/oQJQmlBOaKf0ue+2yrQl9xIyojLxrtHsgo4c1vlZlSqIJ8EOiYXyxk/TEQzXyeMWEisM2uqarF37TG130cxOdlwLBkMBjpK1sG8Gj46Bym2JIvFYhxR05zAu6MH/CXz5aUVIOzOO/I5CxViKV9dJ59QM5KLZUVxZb3XfUjoEmo6dOjQoYNWclPz8fTiS0BiQz5s3gBa5392RZYYK84lNBsMTQ2w/sKqenbk3Ub6k/8OufhCYZ6L22+Q/564aiQMjFRbiI9ZNpQsVb++9x4Ks2U7nfGhSSiSPG7do0WjumMsFgtdhhE6FzWVtQi7q1k1EK+Gh0Pfn8L8dl8iKkRxIdp9TACGfNZPIUaPzj7Dgg6rSO05fSMuvjn5BT77ZSrlm6xLf98kKwTHfjFcI+v5uqRGpZOitC26eoNr0PDNJ4PBQNcRxN+czxPg5Y03Gr03n8fH0Z/OYk7rFQi/H6nwXMDQDhixcBDtN6JXd90m9e1GLQ6ilNCkSnZyLmme4N3Jo0H9NEhi2U0SS5FQhOdXQxscqyp6+nqYSMGJlg7u3buHZ8+eaWXuhw8f4ujRo5TGcrlcTJw4EXw+PWYZ8tja2sLd3R2Jidptn3348CGePHmilblDQkJw4MABSmM5HA4mTpyolWodS0tLeHt7az2Wjx8/xqNHjyiMVJ3nz59j7969lMayWCxMmDBBKxV5pqamaNmypdaNHp4+faq1NuTQ0FDs3LmT0lgmk4nx48drJdErrd7U5nn55PwLFEiE5bsM7wifTvRtAPB5fLySXI8NjPXh3bF5o+Ol1x5INl3oZMo3ssqqd8HyCTXNK9SMzGXX1LxUotKvQ//WaNWd0Hz89LvxMLEg1kd3Dgcj5oXqmyBCoRAvrhHX48b006R0lYultYs1/LoqannePHBfyauoMVUulvKV7KrEUv7zolChZiaLZUWJLqGmQ4cOHTr+H3Fl5y0yuTJs3oAGtR3UIS8tH69uhiv8rFkLJ2x//rPCAkyKo4c93FoRlVgxzxPI8v7K0krcPkw4e+obcRE0u6/Kx2JmbYrh8wcCkvJ+qbslADw8Jauak7dMbwjFxJ/6i8c39yMwr92XOPzDabJl0M7VhjRoCD79lKzaqqmqxdZ5u/DD+M3kYsXR0x7bnm5Er/HU22aqK2twU6KdxuFyaE+gBp+WJUOoxFKq6wEATy+pH8uIx9FY0GEVDqw7Ab7EMdTa2ZJMooZceElr1RYk+jXX/iUcs1hsFoYvpF41SQVNYhmiQSyVMWRuf7IVJfjMM4WENJ0UFhZSqtRRh7i4OJWE+RMTE7Fz505UVVXRehwMBgOTJ09G//79tdqqWFBQgC5dumhl7ri4ODg5OVEen5qaip07d6KsrIzCaNWYMGECgoKCtNqqqM3zMj4+XqXzMiMjAzt37kRxMf2fwTFjxmDYsGFajWVBQQECAgK0kshS9bzMycnBzp07kZ9fXwZCU0aMGIHRo0drre3z4g7ZJuOYpUNpnTvsbgTKJVVGXYZ3bHSTEZINK2l7ZMill7R+r7Xr04pMKsknamhp+VSymSgfS1NLE0z7Xlb5t2XuLvB5qm2yRDyOIbXoOge1a3STEQD8B7cDR4+I98troVh36gtY2MtkJMoKKxD9XL0qQL+uPmjXtxVQpy1T3VhK7x1Qp9pPl1DToUOHDh3/b+DV8HBNklhic1gYOrc/bXPHvU7Eos5fKSys+k3tgb+e/QwXn4YXvNJEm1gsxrPLRNverYMPUVNJtFYO+LSX2hVVIz8PIoVeb+y7B5FIBLFYjOAzREKNyWIicHTTiYsOA9qAa0AkHp9efqXygrm0oAy/zdqBlf3WIyOO0OxgsVmYtGY09kRuwYBpvQFJBdz944+R9DYVi/xX46okeQMAPcd3xY4Xv8C9lWoOafePPSYXO30+CYSZteZtE/JIYwkAPcY2fTPfppcfqb/y/GooBHzVnNHKiyuwdd4uLO/5LVKjMgDJ33HcF8OxL2orhs4hzmk+T4A7h4NV/G0aJ/j0U1IfsMfYAFg70iuQLh/LnhSSpi26epNJr1c339DWjgyJ2ULQZ/0Aya70rQMPaJtbSm1tLWbMmAF///rJdjoYMGAA+vXrR3m8s7MzxGIx0tPTaT8WNpuN8+fP48aNGxRGq05tbS2mTJmiFY0qSMwVBgygnox3dHQEg8GgZAihKiwWC5cvX9aKiQQkRgATJkxAjx6NG72oS69evTB4MHXdUgcHB7DZbEqGEKrCZDJx48YNXLig3LxHU3g8HkaPHo0+ffpoZf4ePXpgyBDqEga2trbQ09OjZAihKkwmE3fv3sWZM2cojFaNpLepZPtjsxZOaNenFa3zy0tz9BzX9HeIqZUJWvcgqrqyEnKQFp1B27EwGAyMWjyk3s9MrYw1nruuS7xDczt0Gqyovzds/gBSJiLpbSqO/KDa31PVWBqaGKBdP8LJNz+jEEU5JfjuzJfk2hUAfp/1t0rHIM/oJfU/H2Y2qq0DpccilkuoKbR8ltC7CUU3uoSaDh06dOigjYennpJVOz3GdYGlvYXGc4pEIpz54zKWdvtawZZ76rfjsObQkiaNBLrJVeI8ufgCIpEIl/6W3XRqYphg52pDukblpubj9e23iA9NQk5yHgCgXZ+WMLdpeqdO35BL6lyU5JUi5nkCpfcXi8W4feghZrVYppCQ8OvqjX9e/4rZGydD35CLIXNkN/3HNp7D5wFfkVbuXAM9fPHvfHxzYnm9xSCV978oH8uF9JlPQNLumRJJJB/8uvnAxtmqyddw9DgIGNoBkOxqvg2m5hImFotx7/hjzGqxTCHR6N3JAzte/IJ5v0+DgbEBgubIksTX9tyhdef8khZjmZ2ci7hXRLuQZ3t3OHrYN/kaoh2Z0LSiox25LkGzZefl9b13aa1iEYvF2LNnD0JCQmibU57o6GiUlJTAyIj6Z8bY2BizZ8+Gu3vTJh/qYGdnh7CwMNqrgcRiMQ4cOIDgYHoTyFLi4uKQl5cHExPq7c0GBgaYPXs2vLwab3dSF3t7e7x9+5b2Fl2xWIzDhw/j3r17Cje0dJGYmIjMzEyYmVGvENHT08OsWbPg40OfAL08Dg4OiIiIQE1NDe1znzhxArdu3dJKLFNTU5GSkgILC+rrGDabjVmzZqFly4aF4jXB3t4eMTExqKykt2Ln0g7Faw+d8eTz+KTkhoGxPvwHUzOH0WbbZ+DozgpyCiZWxrTIN9RdQw2fP7DevGwOGysPLAKLTfz8xK8XKLd+CoVCPD5HGH5xuBx0Gd6J0usC5bsgLrxEy24+mLBSZrSUFp2J6BfqVakFDOkAK0fZZ0TfiKu6brLkdJNfT0lbYwGgUlehpkOHDh06/r9wccd18t8jFwVpPF9xbgm+GfYzdn15CAK+rGrLytEC076bQGkO747NSaH6sLsReHb5NVnF1bZ3S7i1dGlihsYJ+kyWYLm+545CuyeV3UMp8joXVNo+02IysWrAD9g0YzuZxDQyM8SSv+dgy6Mf4d5aJpTv3dGD3BHNSysgWxibt3XFjle/Imh2P7UW0JFPYpAUTlQ1+AZ40aq5gjotiqq0ocovxJ9SiGVmQjbWDvkJP0/5k0zaGhjrY9Gfs7Dt6U/wbC9LgLi2cCbF/FOjMhBFk2By7KtERD8jFtXN27gq2N3Tgbqx7EpTO7IyHJrboUN/Yuc8OykXb+ro1GlCZmYmCgoKtJa8unfvnlqVZiYmJrh48SJ4PB7tx9SlSxcMGDCA9ta33Nxc5OTkaC2WDx48UKvSzNTUFBcvXtRKoqZTp04YNGgQ2OzGW9NUpaioCBkZGXBzc6N1XikPHz5UqzrK3Nwcly5dor0dGQDatWuHoKAg6OnRJ/8AAKWlpUhOTtbaeRkcHIzk5GSVX2dhYYHLly+joqKC9mNq3bo1hgwZQquRRXlxBWlIZGhigAHTetE2N5S0ezbVoiil60hZskgT+QZl6HE5Cr8nXQlEjr7MkILFYWHQLOWVk57t3DF1HeE4KhKKsGnGDkoV4HXbPak608sn3qTyDZ/9MhUcOWfyrwb9hJL8UqWvbwwWm4VBM/ooPFYVskJNrGv51KFDhw4d/4+JeRGP2JdEBYxHO7d6wqeq8upWOOa1+1KpsHyfSd0pL4AYDAa6ShYT/FpCZF7KSA2q06R0Hd4RFnZENUDIxVe4f5IQ7aba7imly7AOYDIZknleNDiurLAcO5bsw9w2K/DmnqxiqNeErtgbtRXD5w+sd0Md/iASuWmKmi6jFgfhr6cb4drCmfIx1kVec4WOWNZF1XZPKf5B7cHmEIu6JxdfNFhFVlFSiZ0rDuKzlssVtPkCR3fG3qitGLU4SOmu9ZDPFKvU6EC+Om3kInorBKBGu6eUDv01a0duiiF1EtJ0YWNjg4kTJ6qkf0QVsVgMDoeD9u3bUxitiFAoRFRUFBISqFWhqgKXy4Wbmxvu379Pa+WkpaUlJkyYoLUkEJvNpuTuWRexWIzo6GjExsbSfkx6enrw8PDAvXv3aI2lqakpxo8fr7XKOjabjU6dqFWtyCMWixEbG4voaGoVvarA4XDg7e2Nu3fprUI1NjbGuHHj4OtL7+aDFCaTqXYs4+LiEBFBb0UvJH9fX19f3Lt3j7bv4lsHHqCmSiKBMa0X5SQNVVRtUZTi4G5HbgTGvEhAQVYRrccllRwAgKqyKlo+54lvZAlYjzZuMLVsuOp20ppR8JZsQqbHZOLAupNNzq9uLK0cLOAbQHznJL9LQ3YSYfQ0dJ7s+ltZWoUNE7eoLJMBAIPldIhrKmtU/pwzmPUTaoY6UwIdOnTo0PH/jUt/3yT/rUlCgM/jY/fKQ/hq8AbSxdPCzoxceEDFhADqtH3GvSaSfjbOVgpmAOrC5rAxcDqhUSYUCJGfRjg7UW33lGJuY4aWgcSNQUZcNtJiMhWe5/P4OLf1KmZ4L8aF7ddJJ0g7VxtsuPIVvjnxBawcFFtThAIhDqw7gZX91qNSToNC34iL2T9P0cgwojC7GI/OPpccu6nKf5OmUKfdU4qRqSEplJufXkg6mEoRCoS4uOMGpnstxtktV8jqRxtnK6w/vwrfn13Z6Pv1HN8VRpLF3sOTIags1WyxV1ZYjvvHiUSssbkR+kzurtF8dVGn3VOKviGXbGtWpR2ZKl1H+sPMmrjpeHL+BUoLNBeZLy8vx+XLl+Hh4aGVVrDq6mrMmDEDzZqppjcISfVKmzZtwOFwKIxWnfLycgQHByMzM5PC6KaprKzEpUuX0Lx5c63FcurUqWpVGZmYmKB9+/a0Vz5JqaiowOPHj2nTw6qursalS5fg5uamlVjW1NRg4sSJaiXrDA0N0alTJ1orn+SpqqpCSEgIbS6VtbW1uHDhAlxdXbViRlBbW4uxY8eiRYsWKr+Wy+Wic+fO0NdXzTmcKjU1NXj69CktiWSRSIRL/8jWbppIYChD3XZPKV1HyFepvWp0rKq4tnAmEzn8WoHG1eZisVhhA9g3wLPR8WwOG6sOLCKrxM5uuULq2ClD3XZPKYFKqs1nbvhEYUz4g0gc//m8SvNCkvxkSTYxhQKRwmYvFaSbyZDLabJYcp9r7Xnt0IIuoaZDhw4dOjSmJL8UD04QCQETCyP0+US9hEBqVDqWdV+H05svkz/zH9wOmx+sJ5Mits2s4du58YVKXdr2lgnVSy/MQ+cOUKs0XRnyO51SVNk9lKLQ9nmBWISKxWKEXHqJOa1X4J8vDpCtE/qGXEz7fgL2RG5BwJAO9ebKiMvCF72+xdGfzpK7fpYOhLNTTWWtwk6nOlzbfYdM6gV91g96XHoTBAotimrEUlF/RVbx9+J6GOa2XYHti/eSrbJ6+hxM+Xos9kZtoZRk1Tfkou9kQlC8tpqHe8ceq3x88lzfe49swx00ozcMjOi9EZOPJV3nJV0QrTdEQprPE+D2oYcaz/nixQutVIBJOXLkiEZ6YqNGjYKpKb3mHVLc3Nzg5uaG6upqCqOb5tWrV4iLo6etWRnHjx/HvXv31H79iBEjYGlpqRV3UxcXF3h4eNDWUhoWFqaVCjApp0+fxq1bt9R+/ZAhQ2BjY6OVWNrb28Pb25u2WL59+xaRkZFac7U9f/48rl+/TmGkcgYNGgRHR0etHJ+NjQ38/PxQW6u5SczrW+HISsgBALTv1xrNfOmt6FW33VOKogM6vdceSKoQpWhabf42OAp5kg1VALBxsW7yNa5+Lpj54yRAstb7beYOVFco/+6Wb/f0H0y93VOKvHzDE0ksDY0NFCQtAODohrNICFO91VnqJAo1YqksKS4UyqrcmKwPO2X1YR+dDh06dOj4KLi+5x74PKJMfPCsvioLkgoFQhzbeA4LOqwiK2nYHBbmb56ODVe+QuSTWDJ503NcV5V39zl6HHQcJNsZZbGZCkL9muLk6YC2fWQixAwmQ6V2TymBo2QLnrtHHyHhTTJWDfgB343ahMz4bPK5AdN7YX/sn/j02/H1Yi0UCnF682XMa/cluePKZDExe+NkfHPyC3KcvPC+qgj4AlzZfZuYm8nAsPkD1Z6rIRTaPcdRb/eUIr+zfe/YIyS9S8VXQRvw9dCNpCEDAPSd3B37Y/7EjB8nwcCY+gJV/vyROtuqg1AoxGW5CoHhCwepPVdDKLZ7qh7LLsM6kgva+yee0N72KZ+QvrbnrsY3ofr6+ujdu7dWqsAqKiqQnZ2tUStpZWUldu7cqZWkH5PJxPTp02FhYUHLzTyXy0XPnj21UrlUU1OD9PR0ODo6qj1HbW0tdu7ciZiYGFqPDRK5gKlTp8LW1paWWOrp6aF79+4wNDSkMFo1+Hw+kpOTNTovBQIBdu7cqZVWRQaDgU8++QSOjo60tH1yOBwEBgaqZGRBFZFIhISEBI3OS5FIhF27diEsLIzWY5Myfvx4uLq6avxdrHXZBjVbFKV4dWgOGxeiWjz0zjsUZhfTenzyn+uHJ0M0ai2UjyXqVlg1wpjlQ0ld1uykXPy7+qjScfKxVEUHVUozXyc4ezsAACIexSAnhTDPmvrteIVxQoEQv07/C7xa1QxZ5NflT86/UEmPjSGXUJN+P4h0CTUdOnTo0PH/ibtHZdUawxeolhBIepuKxV2+wv5vjpNJORcfR2x7uhFjlw8jrOKPPSLHq9ta2MxHtjg2tzWDhZ25WvM0RLvesoSaua2pSu2eUhw97OHXjVhYpUSmY0GHVQql8617tMCOl79g1f7PYe1UvyUxNToDy3usw+6Vh8CrIRZDDs3tsOXRj5i0ZjRaBfqSJgxRIbFkS6WqhN2LQJFkYdt1pD9sKezEqkJieIra7Z5SrJ2sSMH7rMRczG+/UkEnrUUXL/wZ8hO+OrIUts1sVJ7fs507fPyJNuSEsGSylVhVIp/EIjeV0LfzH9wOTp4Oas3TEBlxWQrtnurMb2Ztis5DCL2w/IxCvFKia6gJzXyd0Lon0VqVHpOJyCfqJ0cqKirg7e2NLl1UTxxSwdDQEOPHj9fIEdHIyAj29vZaq1YSi8XYtWsXXr3SrEWqqqoK7u7u6N6d3hZkKVwuF+PHj0erVq00msPZ2VkrCTUpe/fuxdOnmlX01tTUwMnJCb1796btuOThcDgYN24c2rZtq/YcbDYb7u7uWo3loUOH8PixZhW9tbW1sLW1Rb9+9G2KycNkMjF27Fi1dP3k5/Dw8NBqLI8ePYoHDx5QGKmckvxSskXRxsWKdHSmi5qqWrI6XJ12T0iSNP2n9gQkCRZ5N3M6kE/aaFJtXllaiWd1WlKpJoFYLBZW7l9Ebo5e/ucmQu+8VRjD5/ERfIaoNFen3RPSWH5KGDGIxWLc2EdUBgeO9IeBsWJVfEpEOg6vP63S/PKxFPCFuH2IehU3kyVLxkn1/KSb6NAl1HTo0KFDx/86KZHpSI3KAAC0DPSBQ3M7Sq8T8AU4/MNpLPJfjfhQorycyWRgwsqR+Cd0E7w6NAckSSJpUsnRw07ldk8pmQmyCq+i7GLkpRc0Ol5V5DXPygoqUFWuessVr4ZXTwcNAOzdbfHt6RXY/GA9vDvWd9IUCoQ48ct5LOiwinSKZDAYGL1kCHaF/w6/Lt7kz+SrgdRtrws+FUL+u9+UnmrN0RiX5fT4+qrZPsyr5SskTcUiYifatpk11h5bhj+f/ETGRV3kBfVvH1QzlnK7ztqI5SUaYol6RgzqV+RRmf+WmrEEgKtXr+L27ds0HZUiQqEQly5dgr29vUa6TQwGA5MmTUKPHj1oPT75+b28vDS+mb9x4wZu3LhBYaTqiEQiXLp0CTY2NhprYI0fPx69etHrTCiPp6enxrG8desWrl27RtsxySMWi3H58mVYWloqNVFRhTFjxqBv374URqoHHUmme/fu4dKlS7QdkzxisRjXrl2Dqampxg6vI0eOxIABA2g7trpoel4+Of+CTIL0mdSdNgkMKfePPyYrvrqPCVC53VNK0GzZmuX6XvqMLZTNc/uQegm7kEuvyA1hKaokgZw8HTD7lynk499n/62gzfro7HPSgbzL8I5qG0cMmtmHPK6b+++TSavuYwLqjT216QKinlFv95dPqEHFWMqfezUVNfXm0yXUdOjQoUPH/zTqlPQnvEnGos5rcOj7U6QgvKufM7Y++Qlzfp2qsPCST66MWKie2UFtdS2eXwklH4vFwM1991WepyGKc0vwWCLQD0mC69VN6lU8YrEYD04+wawWy/Do7DOF56avn4C9UVvRY2wXpb97ckQalnT7GnvXHiN1uJy8HPDHw/VYuHVmPT2uflN6kAKwTy407IDZEAK+AE8kgrb6Rlx0DlJ917kxyosrcPcoUZFoaGKgYG1PBbFYjEfnnmNOq+XkPFI++WoM9kVvRZ9JgbSIgvea2I2Sm2hDCIVC8u9N7DrTWyFQXVGNmweI81xPn4NBs/o0+ZqG6BzUHlaORLL32ZXXtLfe9BgbQO7Qa+ImmpqaqpbAPRWio6MRHh5OS8urmZkZnj9/jjdv6K32kzJ06FAMHKhZK7Y2YxkfH483b95AIFDdUa4upqamePPmjcYVeQ0RFBSEoKAgjeZIS0vTWiyTkpIQGhoKHo+n8VzGxsaIjIzEs2fPKIxWnYEDB2LYsGEazaHN8zI9PR0vX76kRZ/MyMgIcXFxGlfkNUS/fv0wcuRItV+vrvMzFcRiMW3tpA7N7chq8+ykXLy5H0nLMconbKTXnpgXCSjILFR5LvlYSlE1CTRi4SAFM6UdS/eTawq6YmntaImAoYTmbkFmEVmhOGvj5HpjRSIxfp+5A7XV1D4LUs0zfSMilsnv0pCVmEPptfLrsdpq4ntM/u9DtX32v+LDPjodOnTo0PHBo7Aoa0Lris/j48C3J/B556+QFJ4KSBYdn3w1Gn+/3oQWAYruZJVlVbh1kNjl0jfkYuAM9dplXt0MR3WFohjy9X13adOCurbnbr3dSamLUlPEvIjHsh7r8NMnW8nWP3nMbMyUCv4L+AIc3XAWCzvKdOeYTAbGrxiOXW9+Q6vuyt3JzKxN0bI74SaaGV/fTbQpwu5FoLyoAgDQZXgntXedG+LWgQdkyf+Aab1U2omND03Cl32/xw/jfkdWYm69582sTWg9XiNTQ7TvRyz089MLVRbyjXwSqyAybGRKr7bSnSOPUFVGVEr2ndwDppbq6w2x2CwMnklUroiEItzcT19CGgC4Blx0lHMTlVZaqsr06dMREFB/t50OWCwWOnbsCBsb1VuElVFbW4v79+9rRbjcyMgIkZGRiI9XL44AMHnyZAQGBtJ6XFIYDAbatWsHBwd6Wpxra2vx4MED2qpX5DEwMEBcXJxGLboTJkxAz570V6BCEsvWrVvDxcWFlvl4PB4ePnxIS7KzLvr6+khOTsa7d+/UnmPcuHFaq6ITi8Xw8/OjLWHH5/Px6NEjWpKdddHT00NGRoZaSfmS/FIyMWXvbgvvjs1pPbbIkFjSSMq3syd8/NXrLJAiX8F8XUPzACnyCRszG5lJjKpuopWllXgtkZOQun9DjYQak8nEl3sXkmue24ce4vI/txAfmoSoEMLR1a2VC9r09FNp3rooVpsTsbR2tISTl+y7WBqP9Ngs7P/6OKV5pfE0sTAmf0Z1HcznyfTaLOzMFOaDrkJNhw4dOnT8L5MapdjuqUzXS0rsq0Qs7LQaRzecJcvM3Vs3w1/PNmLWT5OVJo3uHA4mE2H9pvRQuFCrwsPTshZF707EwjE/vRCvb71t5FXUEAqEuLpL1mIm1aJ4fjUUAn7DNyQZcVnYOGUrFndZSy6WAKDjwLZYd0pmHqBs8ZgYnoLFXdbiwLcnyAo/F18nbHm8AXN/m9Zk0kjeAfMpxQWPFPl2T3VEhhtDJBLh0t+yndgRFHdis5NysWnGdizyX4O3D6PIn7fr0xLfnf2SfHxtzx3akxcKDpiqxlJDwebGEIvFuESz4PTg2X3JnWQ6W2+kaHJeAsD9+/eRkZGhcQuhMng8HkxMTDSurpEnMDAQbm5utM1Xl5ycHDx58kSt1wYHByMlJUXjFkJl8Pl8GBgYaFRdU5euXbuiefPmtFSeKiM3N1ftSqOQkBDEx8dr3EKoDIFAADabjTFjxtD2u3fu3Bmenp5ai2VeXp7asXzx4gUiIyO1Yjgi3WAbP348bb97p06d4O3trbVY5ufnIzg4WOXrmny7pzpGT02hznW8MbqN8oe5JMnz5PwLlBaUaTwn5H5nEyu5JNAl1a498u2eXnKJSXVaaO1cbbB051zy8d/L9uPAuhPk45GLgjT+W/kPbgdrJ0tAsk4tyCoCAIz/cjg5praqFhzJmvzcn9fwNjiqgdkIxGIxeVxG5rKkItVYCuQ2pPUNiTW0QoUaze3IdKNLqOnQoUOHDrUJPi1rC2koIVBdUY1/Vx3Gkq5rkRJBCM2z2CxMXTcOO17+olQTDNKEAA2LstrqWjy7/BoAYGxuhAkrR5HPaWqTDsliKj+DaBHoMrwjAiTCvhUllXj3qH5FQ1ZiDjbN3I7Zfstw/7jsZtfF1wkbrnyFn69/jZ7jusK7ExGX+NBkxIcmARKx1v3fHMci/zVkNRSTycCk1aOwM3QTZU0wBSt6FRaP2m73fHUznKws69C/NZr5Nu5Yl5OShz/m7MQMnyW4fegheVPh6GmP9edXYdOd79B9dABa9yCq9dKiMxEpl7ykA3k3UVViKRQK8egc0SasjXbPtw+jSGOHloE+8GyvecWFvZstOgxoAwDISc5TMMygg4ChHWTtyBdfqnSTyOfz8fTpU1RVVdF6TFJu376Nixcv0jqnlZUVBgwYgKSkJFrnldK5c2e1XBCFQiFCQkK0Fsv79+/j3LlztM5pbm6OwYMHa8U5FZJYmpmpbjQjEokQEhKCykr13QMbIzg4GKdOnaJ1TlNTUwwZMgSJieoZrTRFp06d1IqlWCzGkydPUFFRoZXjCgkJwfHj1KpxqGJsbIxhw4YhKSlJK5WoHTt2hIVFfd3VptBmu2dhdjG5NjSzNlHLkbIuHD0OKf/A5wnU1n+VR4/LIZNGIqGIdBN9cy8ClWXUv/vkY+nZTnadVbeqqu8n3THuCyK5JRQI8eI64RRrZGaIflM0N4hhsVkYNJOQf5CvNg+a3Q9sPSLpX1NZi/6fEhW1YrEYv83cgeqKhnWBGQwGWZ3HrxWQbqKRj2MoJT+FAiJ5xmDKkoVCXYWaDh06dOj4/4B85Vfddk+xWIyHp0Iwq8UynPr9Ernb5NHODdtf/Izp6yeCo9fwLvOb+xFIiybaEVv3bIHmbVzVOkb5ds/AUZ0ROMoflvaEWP2zy69RlKOZFtSlHdfJf49cFIRA+WTVBVmCJSclD5s/+wczfZfi9sGHEElE8k2tTLBo2yzsDv8dAUM6kLt8Q+TMA679ewePzz/HbL9lOLbxHFnh59bKBdue/YzZP0+Bnr4e5WN29LCHWyuiPSj6WTxlPSxtt3vKJ1BHLmpYsygvvQB/LtiNmT5LiEopstXACPM3T8eeiD/QbaQ/GUt5IwY6kqjyWDtakkYZSeGpyE6u32qqjMgnsaRTqjbaPS9SjKWqDNFiLM2sTdFKkvxUtR2ZwWCgefPmGrkcNkZCQgJatmxJYaRqpKSk4OjRoygtLaV9bk9PTwwcOBDV1aoZpDAYDLi7u6N9+/a0HxMk+ml+fpq1LSkjPT0dx44dQ1FREe1zu7m5YciQISonGRkMBpo1a6aRY2RjaOu8zMrKwvHjx5GXl0f73C4uLhg5cqRaSUYXFxf4+/tTGKk62jovc3NzceLECWRnZ1MYrRqOjo4YO3asSrHUdrvntX/vkGuUoM/6q7Q2aQzF6/hdWhKUxpJqqsqSKrJCWsAX4qUkidUU8u2elg4WMLWUVbrJt3+qyme/TCHlJKT0n9oTBsbqmRHUJWh2P3J9dGPfPYhEIjCZTHQaKLt+RjyKRiuJPEhOch52rzzc6JyyWFai28jOgESH7dmV100ej3QNJ1+JVlEsO6c1ieX7QJdQ06FDhw4datFYu2dqdAZWDfgBGyZtQUEmcXPD4XIwff1EbH/+s8IuXkMoirCqnxBQSPqN7wo2h42BM4jdOaFAqJENe2pUOrkwdfZ2QIf+reEf1J4Uqg+59BK5aflk8ufGvnsKyZ9ZP03G4aQdGPV5ENgcxXagPp90J8Vdr+25i/Vjf0deGuFMyuawMOWbsdjx8lf4dFJe4dcUgZIFDwA8u0xNM0Sb7Z5ZiTl4cY1YxNo2s0bAsA71xhRkFWH74r2Y4bUYV3bdJttdjcwMMe37CTictANjlw+rl6jtOa4LjM2NJL/DU9J5jC7k2z6p6q9os90zP6MQT86/AABY2puj+5jOTb6GKl1HdFJovSnJpzcRpG7bZ0FBAUaMGAFTU1MKo1Vn2rRpWtHA8vLyApfLRXp6Ou1zQ+LUqaojYkFBAYYNGwZzc3MKo1VnypQpWtHAat68OYyMjJCamkr73ABw584dlSvrCgoKEBQUBCurhuUQNGHixIkam08ow83NDaamplqL5f3791WurCssLMTAgQNha2urlWMaO3YshgwZQvu8zs7OsLCwQEpKCu1zA8CjR49UqqzTZrungC/A1d2EBAaTycDw+fS5nLr4OKF1T2LDJT0mE5FPNHOLhaRrAZKOgm6jZNdJqtXm8u2ePcd2QWlhOfmcuY361yIWm4U1RxaDyZalagqzi2mrcrRztUHHgbJq87C7hKbhwj9nkmPSY7MweukQ0rDhyq7beH07vME5jeRiKV+5/7SJWPLk9NOka2dItFSlmGkQy/eBLqGmQ4cOHTrUQlm7Z1V5NXavPIR5bb9UaAfrPKQ9/n23GVPXjauXOFJGXlo+eTNt5WiBwFHq7UjXbfds349wUAqaLbuZu7zzVqNaZ41xcYeiAymTyYSRqSHp1JSXVoAZnvWTP9PXT8ThpB345KvRDYruM5gMOHraA3W0JDoMaIPdbzdjxg+TlOrOUaWrXCXdEwqJC223e17+5xa5WBw+f6CCdlNRTjH+WX4A0z0/x8UdN8gFrKGJAaZ8MxaHk3bg02/Hw8jMSOncXAMu+k3pAUgcpK7vvUfrscufn1R01LTd7nl1123ynBkyp3+jlaCqwtHjYOB0whxEwBfi6i56q9S6qXheQqIjdeDAAURG0uP+Jo9YLMbhw4e1ps3G5XKxZMkSrVTGQHIzr0q7mVAoxIEDBxAe3vCNkyYcP34cSUlJWtFm43A4WLRoEdq0aUP73JDEMiUlhbJ2oPTcCQ0NpTBadU6fPo3Y2FitxJLFYmH+/Pno0KH+xgYdODs7Iy0tjbLxgVgsxrFjx/DyperailQ4f/48IiMjtaJzx2QyMXfuXK2ZpTg7OyMrKws1NTUURmu33fPJhZcozCIqr7uO9IdtM3oMXKTIC+qf/+t6o2OpIE0CVZVVo1V3HzLB9vxqqIJQfkPUjaX8BpO5rWZJoLiXSRAJZN81j889xyU513tNkY/lBUksHdzt4NdNJh1y5IczmLPpU/LxjiX7GlwvS2Mn4Avh3qYZaS7w6mY4aTSljBKJMRMk6yHy53n0xVLb6BJqOnTo0KFDLR6ff07+u8fYLrh/4glmtViK05svk+X+9m42WH9hFTZc/gpOntTd3C7uuEm2RA6dO4BSEk4ZoXfeKbR7ShMLjh728A8i2pny0gpw58gjlecuL67AncOEjoe+ERcDpxP6HkU5xRDwZO6hAkks5JM/U9eNazD5IxaL8egc0d4pdUKFREPi6+PL8MuNb+Di07i2GBW8OzYnhWnf3H2HqvLG28LePozSWrtnVXk1bu4nklwcLgeDJQnPkvxS7F55CNM8Pse5P6+CV0MscPWNuJi0ehQOJ+3AjB8mUTKrGL5AVsVxZvMl8Groc11r1sKZTH6+exSNMrldamXEPE/QWrtnbXUtrv5LJLlYbBaGzqOvQkDK0HkDSK2zc39ebVRbRVUcmtvBvXUzAEDMc2rtyLm5uaitraXNmU+ejIwMJCUlwchI+eeVDgwMDPDnn38iKqpx4Wd18Pf3x6RJkyhXoRQWFqK6ulorsczJyUFcXJzWY/n333/j7VvNDWfq0r59e0yePJlyYrW4uBjl5eVo3pzeljpIKt+ioqK0Hsvdu3drJSHYpk0bTJ06lXICq6KiAsXFxVo5L0tKSvD27VsYGmqvrUxfXx/79+/HixcvaJ/bz88PU6dOBZfb9DW5vLhCa+2eYrEY57ddJR+PWKi5GUFdeowNgLktkah5dOaZyi7ldZG2KYrFYvCq+QgYSiSQq8qqFQyOlFFdWaPQ7tky0AcleTK9MOlxqot8LKX8s/xAkwYBVOk6ohNsnInK2WdXXiPhDaHL++XeheSY5Hdp8O3iCb9uPoCkau3yP7eUzmcsZ0ZQXV6DLsOIKrXaah5C7zT8fSztYgEAroGsPVhee03TWGobXUJNhw4dOnSoTGlBGZLeEske15Yu2DT9L2ycvJXcmeRwOZi6bhz2RG5BtxH+KrUUlOSXklpaHD02hszp3+RrGiL8vqxKTr4EHQCmfD2W/Pfxn8+RDl9UObP5Mpms6z+1J/g8AZn8eSP3vgwmA5PWjKaU/MmIy8JXQT/hh3G/Iz+dMDqQhk4kFKGmspa29gwGg0G2KvJ5Ary88abR8fK/U9fhnRodqyrnt11DuUQvo/ekbmAymdi79hg+bb4IpzdfRm01kfziGuhh/IrhOJS4A7N/ngJTK+qC665+LugxlqgQKMopobVKjcFgkK2KIqEIz682fgOqzVhe/ucWubPbfUxnWDta0jo/JAnpPpMJceSywnJc2Xm7ydeoQjcVW2gdHBywYMECWFtb03ockIiK9+rVSys38vLY29ur7XzYGGw2G5WVlXj69CmF0YC1tTXmz58PBwfqGyBUMTQ0RM+ePeHl5UX73PI4ODjg0SPVN0magsVigcfjUf47WVhYYP78+XBxcaH9WPT19dG9e3f4+vrSPrc82oolk8mESCTCw4fUxOWNjY0xb948rSQn9fT00L17d7Rq1Yr2ueWxt7dHcHAw7fMyGAwwGAzcv3+/ybHvHkWT1ctdh3eitd0z7O47RD4hTH+atXBC+770x5NrwMX4FYRgv1gsxvGfNTM3kVZVQZJslJdveHKh8WrIqJBYslq+67COYDKZ5LWXxWYpzK0qEU9iEHqHaMN0aG6HscuHAhKZkh8n/EEaYWkCm8PGhFUyp+VjG4lYuvg4kaZYALBlzi4s3DKDfHx4/Smlm4ZGcr8voaOmXE+4LvKbZlKZEwAolktOmlmrbq7zPtEl1HTo0KFDh8q8DZa5V6ZFZZA7ngDQZVhH7In4A9PXT1SriunkrxdRU0mUhw+Z0x9WDqo7WEkJl+wwMhgMUntDSstuPmjXhxBzzkrIwcOTIUrnUEZpQRnOb7sGSDQfGAxGveSPdKEqFokxanFQo8mf6opq7F17DHNaf4HXt2StVh0HtsXaY8vIx8d/OU9W/9GB/ILn1Y3GRXjD5XZr2/amTwS7oqQSZzZfBiRVePqGXHzafBFO/HKePA84XA7GLB2KQ4nbMfe3abBQc7dy8lpZEvXkpguUWjqoIh/Llzcbj+Xbh7LPS9s+9MWyuqIaJ3+9AEjOP/mkMd188tUY8hw/vfkSaqsbbulQFfl25FdNxBIALl26pBVHyry8PERFRaF379603ngqY8iQIejSpQuFkapTUFCA4OBgSm2fV69e1YqLYmFhIcLDw9GnTx+ttM7KM2jQIAQGBmplbmksqWzA3LhxQytmE8XFxXj16hX69eunlXZPefr3748ePXpoZe6ioiIEBweDz2/6e/j27dtaMZsoLS3Fs2fP0K9fP620e8rTt29f9O7dWytzFxcX4/Hjx022fb59ILv2tOtDX8JLLBbjwLcnyMdT143X2nfmsPkDYSIR/7937DGyEnPUnku+U6CypAr+g9uBI3G6fHWz8U3G8Afy13EiltKEmrmtqUa//0G5WE7+eizm/PopaVJQkleK9WN/o6XKPmh2X7I18/HZ50iNIrQ8v9wnq1JLCEsG15CLAZIujPLiShxef7reXMZysawoqUL7fq3IBNnLm28avP4Uy7V86hvpk/+WxtLEwohW2QptoEuo6dChQ4cOleDz+Dj/p6wUXXqRtHe3xQ8XV+PHS2vg6GGv1tyF2cVkdZqePgefrB2j9nGWF1cg8Q0hAty8rStMLesntKZ8M47897GN5yhr45zadJGsToNEh61u8mfEokHk81EhsUrnEfAFuPzPTUz3WowTv5wnddZsm1nj2zNf4ufrX6P3xEBSky0rIQcPVEj8NUXrHr6kCGxkA8cISWtD7IsEAICLj6NGSc66nN1yhTQJYDIZuPzPLbL9lKPHxshFg3EocTsWbJkBS3vN3tezvTu6DCP0yvLTC3H7EH3VAi26eJHivdJdemXweXzyedtm1rB3o09g++L2GyjJJ3Z1e03sBvfW6jnjUsG1hTN6SJx9i3NLcX0PfRV/Xh3cyd39yCexjSaCysrKEB4erpWE2tWrVxEb2/Dfkk7MzMxgZ2eHq1ev0iY8LcXPzw+WlpZNfr9VVVUhNDRULffFprh+/bpWWlqVYWJiAmdnZ1y+fJnydzpVWrRoAWtr6yb/RrW1tXj58iXKyxtv/1aHmzdvIiIigsJIzTE2Noa7uzsuXrxIWe+MKj4+PrCzs2vybyQQCPDixQuUlZU1Ok4d7ty5o5X2YGUYGhrCy8sLFy9epJREVAUvLy/Y29s3eV7KbzK26kFfdeOL62GIfhYPSNzHe02gV5tNHkMTA4xZSlRsiYQinPjlgtpzybcpVpRUwtDEAD4S1+7spNxGJQfkNxnb9PKDWCxGqeT6q0mLYti9d+QmtZOXAwZ82hMsNgvfnFgOezdCky72ZSL+mLNT4+83rgEX478kqtSIir/zAAD3Vs3g0c6NHPf77L8x66fJ5Brn0j83kRqdoTCXfEVeRUkluAZctAwkzrGi7GLkpCh3DJbXSpOXv5AlJz/sdk/oEmo6dOjQoYMqIpEI944/xqwWy/DukaxCjcNlY9p3E7An4g+N29eObzxH6mQNXzBIo8TNu0fR5OKybS/lVUBte7cktSFSozJIZ8TGCL37Fme2XCEfS5NgdZM/nQbKRPsjHiu6UYnFYgSfeYrPWn2BbYv2oDi3lJxj8tox2Bu1FT3GBJA7nFMVEn9nabtJ5Bpw4SXRUEmPzWrQsTEqJJasjGvTQCzVIeJJDI7/cp58LI0lm8PCsHkDcCD+L3z+12xa2xYny1VtnaCx4o/NYcM3gFiI56UVIC+9QOm42JeJZBVj294tadvFryytxKnfLgKSxOS078bTMm9jTJZLeJ/67SJ4tfTcJDKZTFIYuSS/DJnx2Y2OdXd310ormFAoRJ8+fWift7H3e/XqFaKjoymMpo6trS2mTZvWZFUVg8GAu7s7PDzUcw5uDD6fj379+tE+b0OIRCKEhobi3bt3tM5rZWWF6dOnN/kdzGAw4OrqCm9v70bHqQOfz0f//upLIaiKWCzGmzdvaDeqMDc3x4wZMyiMBFxcXLTS3srj8TBgAP06k40RHh6O169f0zqnqakpZs6c2ej1hMomozqIxWKFiqpp30/UehXqqMVBMDQlDJ1uH3qAvLR8teaR7xyQrsNaBcrOs4acRJVtMlaWVpFrGHWTQESl30ny8affjgeLzSKP9btzK0mdsbtHH+Hvpfs13oAZNq8/GYf7xx8jM4G43n6xex45JvZFAmorazFpzWhAksjc9eUhhXlMrGRyJtJYtpSsr6FkHSyltFBWEW0kSXDyanioKiM2VnUJNR06dOjQ8T/B69vhWOS/Bj9P+RM5ybJdJhNLY+yN2opPvxuvsUh9Xlo+rknE1PWNuJi4epRG88m3NrTppdxBj8FgYOo3sgTL0Z/OKl2ciMVivLoVjtWDfsTqAT8quG5y9NgYOrd+8kfeKSkyRLaQCH8QiSVd1+LHCX8oJAp6jOuC3e/+wMwNn5C7gPLH3zKQWJikRWfi8bnnoIuW3WSLx6iQOKVjwinEkipisRhh995h7dCNWN5jHYR82U0+m8PC4Fl9sT92G5b+Mxe2LvRrYrUI8EKHAYQLYHZSLu4dp0+3Sj6WDVWpKcSyJ33Ojue2ynTo+k3tSYtxRVN4tHUjtQnzMwpx++AD2uaWj2VEIxV/YrEYEydOhL6+foNjVEUsFiM1NRUzZ87UunaaPI6OjujcubNWWqUuXryI69cbd8UTCoWYMGEC7UL3aWlp+PTTT+Hp6UnrvI1ha2uLrl27auXG/tq1a7h8+XKjY/h8PiZMmAATE3q1f9LT0zFp0iSta6fJY2lpiR49emglljdv3sT58+cbHcPj8TB+/HiYm5vT+t4ZGRkYO3YsWrakb5OoKczMzNC7d2+ttJfeuXMHZ86cafB5+U1GOq89Ty68QHwoIWjv2d4d3Ud3pm3uhjA2N8Koz4MAyUbcyU0X1ZrHobkd+W9p62jLwKav4wqbjJJYFufKWhfVdaV8dfMN2dHg6ueM3pO6KTzv2c4da44sIU2BLu64gQPrTiidiyoGxgYYu3wYAEAkEuOEpErNu5Mn3FrK9B9/n/U3xq0YBhsXwsjg5fUwvLguk2SQj2W2CrEsl9Njk7byfkwOn9Al1HTo0KFDR2PEhyZh9aAfsWbQBiSEJdd7fvDMPnBwt1P6WlU59tM5UuB11OdBautkSWlMP02eToPakQKsiW9S8OKaTFCez+Pj1sEHmNfuS3w1eANCbyu2hoxZOhRHUv7Gsp31kz+mliZw9XMGACSEpSD6eRzWDt2IL/t+jxjJziYAtO7ZAtuebsS3p1bA2Uu5EDiDwVBoT20o8acO0kQdGtmNrdvaoA4CvgB3jz7Cwk6rsar/D3h5XVEba/iCgTic/DdW7FlAaxukMhQNKc6rbEjREC27N72zraCfRpMWXVlROc5skenQTV03rsnX0MWUOhV/Aj49bWGtKMQSAI4cOYKQEPraoAEgMTERBw4cQEGB8ipDbRIUFARjY2Pa9aLMzc2RlpbW6JgTJ07QLkCfmpqK/fv3Izc3l9Z5qTBw4EBYWlrS/nc0MzNDampqo2POnDlDSSReFTIzM7Fv3z5kZmrmbKgOffv2hb29PfLylLdtqQuV8/L8+fO4c+cOre+bm5uLvXv3Nvl31AY9e/aEi4sLcnLU1/5ShoWFBVJTUxtcG8hvMtJ17RGJRDj4nayiavr6iVrXm5QyZtlQUqPr+t57lByh6+LgUT+h1tBmqDwKG2OSWMpvNqtTVV+vOu27CUo1EruPDsAKOSfOYxvPkdXp6jJy0SCyZfP24WDkphIVf8vlqtQinsSgJK8Uc379lPzZzhUHyWu+o5JYtgjwBJNFpJsaimV5iUxiQFoply0XSystGCvRjS6hpkOHDh066pGdlIuNU7ZiYafVCkkkz/bu6DZKJhhO16IsOykXN/YTNx+GJgYY/+UIjearKKkkWxvc2zRrtLWhrnj7kQ1nUV5cgRO/XsCnzRfht5k7kPyu/oJ/zLKhTep6ScvdhQIhlnT9WiGJ5NbKBRuufIXN99ejRUDTrnedBrYlE39J4al4doWelhH5HcQIJYmL6soaxL0kEoDO3g4qLxQry6pwevNlTPP4HL98uk1pYnbovAFYsmOOVhwpldGmpx+ZZE2PycTjs/RU/Pl18SJvJpTFks/jk1WANi5WsHenJ3F4ZvNlsj1i0Iw+amsYqoOPvyc6DWoLAMhJyce9Y/RU/Pn4e8j0/RpIqPF4POTl5cHGxoaW95QSFRUFFxcX2NpqN7HbEM+fP8fp06dp1VLr1q1bo22CQqEQWVlZtDulRkZGwsHBAY6OjrTOS5WXL1/i5MmTtGqpdenSBYMGDWrwebFYjIyMDK2clzY2NmjWrBmt81Ll9evXOH78OG0bEADg7++PIUOGNDomIyOD9vMyOjoalpaWWmkVp8KbN29w7NgxWnXp2rdvj+HDhzeY0HobTG2TURWCTz9FSgQhZO8b4IWAoR1omZcKZtamGD5/IACAX8vH6d8vqTyH/LUyO5FI+stvhsaHJqO6sr7RgzSWkNtkTIuWJbqbtXBW+VieXn6FuFeJAIDmbVxJV3JlDJzeG4v+nEU+/nf1EVzZpb7btpGZEUYtJir+hAIhaW7k19UHzt6y7+7fZv6N3hO7wa8rkXRMj8kkXb7t3GzJyrksSSwNjA1ILbaUiHSUF9c3vKkslemfSt08NY3l+0aXUNOhQ4cOHSTFeaXYsXQfZrVYivvHn5A/t3ezwVdHlmDHy1+Qk0TsHDGZDIUqEk04suEMWT4/ZtnQRh0xqUBFP02eLsM7wr01cZMS8zwek5zmYu9XR1GYJdvx9GjnBiabuGwaGOsr6Ecpo7SgTKm1uY2LFVbuX4SdYb8hYEgHyru5RJWaLPF3YN0JWvS/LGzN4CSpjIt/nVTPOSr6aRypC0IlllLy0guwe+UhTG42H7tXHlKIRfM2rmSyRE+fg0+/1b7eV13kk6gHvztJi+OnkZkR3NsQ51Hy21TSXEFK3Ksk1FQR5hV06aeV5JcqOM7KnyPvC/lYHv7hNC3uY3X1/UoL6guS6+npYeLEifDzo699SSQSYeDAgZgyZcp7q7Soi7+/P/Lz82l12zQ2NkZlZWWD1VosFgsTJkxAmzZtaHtPkUiEfv36Yfr06f9pLIuLi2l12zQ0NERtbW2DVXcMBgPjxo1D+/btaXtPkUiEXr16YdasWVrXp2oIf39/VFRU0Fo9qa+vTyZzG2LMmDHo1EkzfVZ5xGIxunXrhs8++0zrLqkN0bFjR1RXV9Na8cflcsFkMpGenl7vuYqSSiSEUdtkpIpQKMQhObfH91mdJmXciuHQ0yccIK/svKWylpqhiQHpcpmZIKsYlG6GioQiUitNirx+mvwmY3qMLAnk4qua5IKySr+mPuejFgdhxg+TyMfbFv6rkYTF6KVDYGBMSCfc2HeP1FJbtnMuOSb8YSQKMouwYItM+/DQ9ydRVlQOPS4Hts2IxHdmfDa5BpfXpIt6Wl9WpLpMtk6S/i3kY9lMxVj+F+gSajp06NChAwWZhfh72X586r4QF/66TiZQTK1MsGDLDOyN/hN9J/dARXElkt4SLRKeHZorWI6rS2p0Bu4ceghIdDGkWg6aEK5ia0N8aDIpcAuANEZgMBgIHN0ZWx9vQPO2rhAJiCqHMUuHwsxaua5DUU4xdq88hKnuC/Hyhsx2ncVmYe6mT3EgdhsGTu+t1kK+6/BO8OpAaDolvU0lNec0Rdr2yecJyB1SKcpaGxojISwZv3y6DdM8PsdpucopSBKXmx+sh19Xb/IcG7FwMK2uoVTp0L8N+Xunx2bh4vYbtMwr1f4SicSIfqa4eFQ4L2kydzjx83nSYTbos/6wc6W3KoYKrbq3QIf+rQFJ28vpzY3rS1FFQZNOiQttVFQUhEIhbQkGsViMQ4cO4dmzZ+ByNdOE1ARXV1esWrWK9sTJy5cv8ezZM6XPxcbGgsfj0ZZgEIvFOHbsGB49evSfxtLJyQmrVq2Cnp4erRV/r1+/xtOnT5U+l5CQgKqqKlp1sk6fPo27d+/SqhWoKnZ2dli5ciUMDQ1pjWVYWBiePHmi9Lnk5GSUlpZCT0+Ptvc7d+4cbt68CQMDAwqjtYO1tTVWrlwJMzMzWmMZHh6Ox4/rJ1VU3WSkwp3DwWTio1V3X3QcQF8yniqW9hZklVptNQ+7Vx1WeQ4HSZVaUXYxWY3WmPZXQ5uMaQpJINUqcoNPP0VSOLG29u7kQWqTNsXkr8dg/IrhgOQ799dpf+Hp5VcqvbcUU0sTjF5CVIvyeQLsXHEQkKyhydZYMbD5s3/g29kL/T/tCQAoL67EYUliVRrLytIqlBcRG0ItmzB5qJGrAJR2fKTHyicn/5vqZlXQJdR06NCh4/8x2cm52Dp/N6Z5fI7z266R7oP6hlxM+XosDiX8hTFLh0KPS+wAyicI6BC1FYvF2L54L0QiYqE3bsVwBettdYl6KlsAte6hvLWBz+Pj4emnWNHnO3zeeU29RZNPZ0/si/kT359dCQC4fZBI+hmZGWLsF/WTfnlp+di+eC+mui/C6c2XySSHFK6BHsYsHwo9ffVvDBgMBhbKlfnvX3cCZXKCruoiv4NY14lJPpYN6acJ+AI8Pv8cqwb8gAUdV+Hu0Udk9RyHy8HQOf2xN2orfry4BvpG3DrmEyM1Pn51YDAYWLhV5op2eP1pFOWorsFSF/mqTXViqQrJEWm4IEkEcrgcTF47WuM51WX+HzNIrZQTP59v0OVUFRR01JQ4hD18+BCJiYn1fq4uCQkJSE1NhZubG21zqouenh62bt3aYAJMHTw9PVFdXa30uUePHiEhIUHpc+qQmpqKxMTEDyaWO3bsaDBpow5eXl4NxvLx48eIi1Nu8KIOmZmZiImJ+WBiuWvXLjx4QJ8BSWPnZUhICGJjGzYlUZXc3FxERER8MLHct28frfpwDcUyKoTea09FSSX2rDlKPp7xw6T/rAp16rfjyVbBh6eeKmxcUcHJU9b2mZNEVJ0qXMefKLouRzYQS2ly0dLBQqXN5qryagXHTFUq/RgMBuZs+hRD5xDt/CKhCD9O+ANv7kdQfn95Jq0ZBStHIqn17PJr0nRgyfbPyDGht9+iOK8EszdOJg20Lv19E9nJuQottDKTBzmnTyUJNel9BwBYOUmr/YiKVWNzI1jY0WtGog10CTUdOnTo+H9IemwmNs3cjhneS3B1923SDIBroIfRS4Zgf9w2zPhxUr1FQXKErJVAWimlCfdPPMGbe8SF397NhpbqNLFYjNTIDHLOuu2jGfHZ+Hf1EUx2mY8NE//AWznBfRNLYzAkGhCpEenQ0+dAKBBi28J/yTEzfpgEEwuZPXhWYg7+mLMT070W4+KOG+DXEtVtHC4HIxYOQucgou2nqryaPC5NaBXoi35TegAAyosqFERs1UVhB7FOJZBUH8XCzqyexll2Ui72rj2GKa4LsH7s7wi7+458ztTKBFPXjcPR1H+wbNc8NPN1glBIxFKaQJ26bjzMbf47S3Tvjh4Imt0XkPx99q09rvGcreRNHhqIpaGpgYIjljqIxWL8tWgPmbj8ZM1oWDtZaTSnJri3aoYRCwldqZqqWvy7+ojGc/p1k1uIK6lQA4AWLejRAoLEZXPixIkfxM02ALRr145Ww4V+/fph3DjlhhVisZjWWNra2mLChAnv1dmzMdq2bUtrQq1Xr16YNGlSg8/T2YZsZWWFcePGvVdnz8ag+7wMDAzE1KlTlT5H93lpbm6OsWPHolWrVrTNqQnt2rXDs2fPaNOl69y5M2bMmFHv5ymR8ms3zXXj9n9znHRi7D4mgDY9XXUwNjfCrI1TyMc7lu5TSQ5D/losbft0aG5Hth9GPY1T+PvIx9JTEsuywnKU5BOyBKpWpx354TQKMok2av+g9vAf3E6l1zMYDCz++zP0nhQISPTkvh35K6Kfx6s0DySaZ3M3yUwH/lm+H3weH50GtSOr38ViMf74bCesnaxIvWORUITTv11SNCaQxNLa0ZLUi419kVBPXkPaEQIANs6WqK6sIU0RXHwd/7NErSroEmo6dOjQ8f+I5Hep+OmTLZjttxy3Dz6ESEi0MBoY62PS6lE4nPw3Fm6d2aA4fGqUbCHhKmenrQ6VpZXYJSkpB4BF22aTu12akJ9eQGpXSY+RV8vHg5NPsLL/esz0WYJTv10kFz+Q6F0s3z0fJzJ2YeTCwYBcUuDi9huyNtf27hi+gGgvSI1Kxy/TtmGmzxJc33uXbAHQN+Ri3BfDcThpBxZv/wwd+svaIJTpR6jDZ79MId2tru66hcTwFI3mc/FxJBOP8lWIxXmlZJykseTz+Ag+8xSrB/2IaZ6f48Qv51GUI7OLd/S0x5K/5+Bo6j+Yvn6iglvr9T33EPuSqChy9XPGmGWNi1G/D2b+9AmMzAwBADcP3EfMC9UXofLYNrOBjTOR2Ip5Hk+KoVeVV5OLRLeWLhovEu8cDsa7R8TOuaOH3X9W6SfPtO8nkJUCD048URBuVgcFfb9XifUcROfNmwcvr6YNPajw4MEDPH369INJWgDAoEGDMGnSJNpawsRiMf744w9kZNRP7M+ePZu2xMXjx48RHBxMayJEU/r374+pU6fS2l63detWpKTU/+6dNm0aWrduTct7PHv2DHfu3EHLlvRoLtJBr169MH36dNpiyWAwsH37dqUVkpMnT0aHDvQI3b969Qo3btxAq1atPphYBgYGYubMmbS1dzMYDOzatQvR0YpVVdIkkIGxPqlzpS5xrxNx+Z9bgKTKXF5P679i0MzepOZm8rs0lQT65SvUpEkgBoNBbjRWlVWTFVMAkCqJJUePTb5Wvt3TxYe65ldyRBrObr1KzMfl4PNts9Q6N1ksFlYf/BxdhnUEAFRX1ODrIT8pNYFqij6fdCeryjLisnFh23UAwKJtM8kxz6+FoqyoXFF3bf99mMhtYCto0knm49XwkfRW0eRLugkNAMbmxsiMyyYfq6pF91+hS6jp0KFDx/8DYl8m4LvRmzC37Zd4cDKEXAibWBhh2ncTcCTlb8z+eYpC8kMZ0gobJpMBFx/NdA0OfneKTMR0G+lPLgQ0Rb6KztLBghDGd5mHnz7ZSlbDQSLg3ntiN2y68y32RPyBIZ/1g56+Hqatn0Amlx6ceIJ9Xx8DJAusJX/PQXJEGn6YsBlzWq/A3SOPyGorQ1MDTF47BkdS/sa836eRumCe7WWVfGnRmleoAYC1kxUpBC8SibFj6T6Nbm4YDAbpxFRaUI6SfGLnOVVuJ9bayRJ71hzB5GYL8OOEPxTcX1lsFnqM64Jfbn6D/TF/Yvj8gfWSoyX5pdi3VtYisnjHZ+DocdQ+ZrowtzHD9PUTycc7luzT2BHQoz0Ry+qKGhRIzBhSo2R/e1c/zZLR5cUV2L1S1iLy+V+zNWolpgsTC2PM+mky+XjHEtUqBZThKYklnydAdpJMBD46Ohrbtm3TaG4phYWFCA4OhrGxMYXR7w82mw0zMzNs3rxZaRJMVZhMJng8HlJTUxV+npCQgM2bN9OSICktLcX9+/dhZKR56z6dsFgsWFtbY/PmzfV+f3VgMBgQCoX1EmopKSn47bffaHEVraiowJ07dz7IWNrb2+OPP/6greVaJBLVi2VGRgZ+/fVX8PmaG8ZUV1f/57ppymAymXBycsIff/xBW2tr3VhWV1QjJ5kwP3D1c9YomSitMpd+V3z67XjYutDrwKoOLBZLwfXy4LcnlBrZKMNZbi2b9E723eDZTrZ2k16/+Tw+MiQJH2cfR7DYhOakgog+RVdKaZW5dGP7k69Ga+TQzeaw8c3J5WjXh6gWLC+uxIre36nc/slgMPD5ttkyOYwfTqMwuxhdh/vDWtKSKRaJsWXOLphYGGP4AqIynV/LV5BmSG4glmlRitcy6RpB+n6KWnQfvsMndAk1HTp06PjfRSQS4cX1MKwZvAGfB3yFkIsvyefMbc0w++cpOJz8Nz79bjwlxyehUEgmhJy8HDS6gU94k4yL24ldL66BHhZundnka6iSJFetdX3PXZzefBmlBTKdMScvB8zd9CmOZ+zC18eXo33f1gq7w0RS4BPysVTfodPgdjjy42ks6LAKj848IxeUplYmmPHjJBxN+QczN3xSz6ygWQvZDpv8QkFTxiwfRpbXvwuOxsNTmrXgyDspSS3Lk97KYnnncDBObrpItnlA0hYx++cpOJ6+E9+eWoGOA9o2uNO+Z/VRlBdXAgD6Te1BmzAyHQxfMBBukgq8mBcJuC0xyVAX+UVgqiSW8slJt1aaJdT2f3OCrBzsMTYA/oPpcxPUlEGz+tBqnCEfS+l5CQBpaWm0CehzuVz06tULnTt3pmU+OjEwMICpqSnu37+v8VwMBgN9+/aFq6urws+lsaSjaofD4aBHjx7o2rWrxnPRjZ6eHiwtLXH37l1a5uvduzfc3RWlD9LS0sBgMGiJJZvNRvfu3dG9e3eN56IbFosFGxsb2mLZq1cvNG+u2IqYnp4OsVhMi7kDi8VCYGAgevXqpfFcdMNgMODg4ECbllr37t0VKnflvzfdNOwsqF9lPlSj+eikZTcfBaH8A+tOUHqde+tm4JA6wbIKdYW1m2TtmxGXTSaA5K/jig6f1Dab61WZr9K8ypxrwMX6C6tJuYSq8mqsDfoJD08rN1BpCM/27hgi0WWrrqjBXslm6PzN08kxTy6+QEVJBcYuH0rG7+HpELJ7QjGW8tfxOgk1SUJRqsGqTiz/a3QJNR06dOj4H6OyrAoX/rqOWS2W4euhG/H6Vjj5nLWTJRZunYnDSTswafUoGJkaUp43JzmP1DrQpN1TJBIRu3KSyq4p34yjxZkwNToDO784oGDjLoWjx0afTwLx+73vsT/mT4z/ckSj2l2DZ/eFo1wbAIPBwMvrYXhxLYz8mYWdGeb+Ng1HkndgytdjGzRTMLc1I5+jq0INAPS4HCzYIktE7l55mHSoUgf50vrwB5H4d9Vh7P3qWL1xbA4LvSZ0xa+3v8WBuG2YtHpUk6KxEY+jcfMAkRAwMjNU0Oj4EGBz2Fggl9Td+9VRVJZWqj2ffCzTJTcz8rormtzUxL5KxJWdsnab+X/89+028rBYLFqNM1yUJHoBwNfXF3379tXgSAni4uLw6tUr9OrVi3ZXTTpgMpkYP348/P39aZlPmXaUl5cX+vfvr/HciYmJePr0KXr37k2rwyVdMBgMjBkzBl26dKFlvpYtW9Y7Zzw9PTFw4ECNE2opKSkIDg5G7969weH895W8dWEwGBg1ahS6detGy3wtWrSolyB3d3fHoEGDNI5lWloa7t69i969e/+njrONMWLECPTs2ZOWuXx9fRU+f/LXHk3WbsV59avM2ZwP63M+++cpZAvi1d13KLU8cvQ45CZQVkIOeb1SuPbE1N8Yk680j5d7H1e/pquqtFllbmhigF9vrUPAUKJVms8T4KdJW3Bxh2pO5jM3TCLXrrcPPkTUszj0mtANlvbEek8sEuPPBf/C0t4Cg2cR1+KaylqYSzpdCjKLkC+p0JdPjMlvLItEIkBSGM3mEJ//BBVj+SHw4a0cdOjQoUOHWmTEZ2PH0n2Y7DIfO5buQ2a8TIfA3t0Wy3bOxcGE7Ri9ZIhaWmXygvqaXORu7r9Paom5+Dph3Ar1jQhqqmpx50gwvuj1LT5ruRxnt16FgCfTWXLysse836fheMYurD26DG17U9OhyYzLRnGuTBdMvhXKtpk1Pv9rNg4n7cD4FcNhYNx4CwmDwSB3OvPTC1FdodzNTB0ChnaAv8T0ID+jEMd+Oqf2XA7Nbcl/H/r+FE79fklBLNbe3RZzfp2KY+m78M2JL9ChX2tKCQihQIhti/aQj2du+IS0Rv+Q6NCvNXqMDQAAFOeW4tD39ROzVFFWlUiH/mDddptp3034INpt6tIq0Bf9psqMM/Z9rb7Zg2IsZd9BPB6vXkWLqtTW1uLChQsoLS2lMPq/w8LCAjY2Njh06FCDbohUiYiIwJEjRxS+02prazU2D+Dz+bhw4QJKSkoojP7vMDc3h6OjIw4dOoSKigqN5oqOjsahQ4cU2jtramo0jqVQKMSFCxdQVFSk0TzaxtTUFK6urjh48CDKyqi11zVEXFwcDh06BIFAdv2urq7WWCNRJBLh4sWLKCws1GgebWNsbAwPDw8cPHgQxcWauU0nJSXh4MGDqKkhNthSaUqo7VlzhKwy7/9pzw+qylyKtaMlpnxDGK+IxWJsX7KXUvu1b2fZeSYV83fysq9XNaVsY0woECJG8hobZytK5kD7vz4uqzIf14X2KnN9Qy6+P7cSg2b0AaSxWLwX+785Trm138zaFNN/kMlhbF+8F0KBEHM2yQxEgs88Q1VFNSasHEHGqihbdv5K42LnagOuAZEwlK9Ak2/L5XA5EIvFpJmTqZWJRi2w7xNdQk2HDh06PmLEYjFe3QrHN8N/xizfpbjw13VSkB8A2vdrjfUXVuFA3DYMnTsAelz1d7qTI2RCoupW2JQVlitYrS/ePltlHS0+j49nV17jl0+3YYL9Z/h12l9k2bw8Vo6W2B+zDeO+GF6vDVMZYrEYYffe4dtRv2J2y+WoLles9jK1MsG6U1/gUMJ2jFw0GFwD6klJhXZKOXFbTWEwGFjwx3RyZ+/UbxdVEtUX8AV4cT0Mm2Zsx4YJWxocZ2plgoPxf2HCypFN6uzV5cJf15H8jjh3vDq4Y9j8ASq9/n0y97dp0NMnzsfz264pPa+ooPj3JpJAUv1BEwsjcodXVa79exdxr4h2G7eWLhi99L83dWiIz36ZKjPO2H0br2+HN/kaZTh7O8i0VSQVajU1NTh27BiSk1UXXJZHKBTCw8MD/fr102ie94G+vj4yMzPx6NEjjeaxsrJCbW0teDyilV0gEODYsWNKBeFVQSQSwc3NDQMGfLifbylcLhc5OTl4+FCz1m5LS0sIBAIyySkSiXDs2DGNtbBEIhFcXFwwaNAgjeZ5H+jp6SE/P1/jlmQrKyuIRCIyySkWi3HixIl64vqqIhaL4ejoiKCgII3meR9wOBwUFRXh3r17Gs1jaUnoXEljSUd1dMTjaNw68AD4QKvM5Rm9dAhpZhP5JBbn/7zW5GtadJEl1KRJII4eh5TVyIjNIrTplCQnk9+loaayFgDg1827yfeKfZVImiboG3GxQEtV5mwOGyv2LsCkNaPJnx3beA5/zNlJWdt0+PyBZGtr/OsknNx0Ef2n9oKZDbGmFglF2DJnJ+zdbNF3MtGaLr8RK40lk8kkteoyE3JIp8/EcJnOmqGpAdJjs1BeRJy3ft28PxjzkKbQJdR06NCh4yOkuqIal/6+idktl+OrwRvw/GoouevENdDD0Dn9sfvtZmy6/S26jfBXW2soPTYTm2f/jd9n/Y17xx+TP6+t5qE4T/Wqjp1fHiTL6ft8Eoj2fak5oQmFQoTde4c/5uzERIc5WDfiF9w9+gjVFbKkl6GpAbw7eZCPbVysEB+a1OTuZE1VLa7uvo25bVZgVf8f8PTSK4Xn2XpES0NZYTlqKmtJEVpVaEw/QlNcfJzwyVdjAMni5tdpf6GmqrbB8SKRCOEPI7F1/m5MdJyLr4duxO1DDxXaRRkMBnz868YyWcE6ngrZybk4+N1Jcs7FO+bQpnulDezdbDHte2JHViwWY9P0v1BZVqXyPMbmsqRZzPN4/DF3JwoyiWoTSwcLxL5MUFmsPz+jEPvWylpwP8R2G3msHS0xe+MU8vHvs/5GebHqFUFcAy7s3YnqyfSYTIjFYlRWElUSNjbqt4rn5+fj3bt3GDt27AdnRqAMIyMjjBkzBnZ2dhrN4+HhgTlz5pCtb5WVlRCLxbC2Vr/SsbCwEKGhoRg7dixMTZvevPivMTAwwJgxY+Dg4KDRPK6urpgzZw5pGlBdXQ2hUKjReVlcXIwXL15g7NixsLD48Cp568LlcjFmzBg4OmqmdeTk5IQ5c+bAzIzYsOHxeODxeBqdl6WlpQgJCcGYMWNgZdV01dB/DYfDwZgxY+DkpJmzoZ2dHbq37o1/lx/F1nm7yIofrqEeclPyVJaG4NXw8OeCf8nHMzd80qTMw3+JHpeDZTvnko/3rj2mkAhThm+AYoWagC9ARUkluXarrebhl6nb8PYh4VzN5rBQlF2MqvJqRDyRCfG37Na4SzSfx8fWebsUqsylruDagMFgYPbGyVi4dSaZnLqx7x6+H/tbo+tEKSw2C8t3zQOTSbz20PenEB+ahNk/y67tD089RV5aPiatHlXv9dHP4yEUCFFRUkm20IqEItJNNemNTKfXwt4cUSGyzYimYvkhoUuo6dChQ8dHREJYMrYv3otPXObjr8/3KJRO2zazlrTk7cSyXfPg3qqZxu+3/5vjuLH/Pm4euK/gzPP7rL8x2WUewh9EUp4r+MxT3D5IVAQYmhhg3u/TGx0vFosR9SyObGNd1f8HXN97l2w5gCRx0V3SpldVVk1W70CSyFjkvwarB/ygtMQ96W0q/ll+AJNd5mHr/N1KF1xD5/bH2mPLyMc7luxDTkoe5d9ZinzbWjqNxgRSJn89hkyAZcRl499VhxWeF4vFiH2ZgJ1fHMDkZvPxZZ/vcXX3bQVtK0NTA5hYGsuNl8Uy8U0KPu+8Bl/0/JZyu4BQIMSv0/4ik55DPuuHFgGate+8D8atGIbWPVoAAHJS8rFz+QG15nGQ7GzzawW4vkcm3J0alYHFXdbi84CvKCcoRSIRfpu5AxUlsnabNj391Dqu98mIRYPQYUAbQKKn8tfne5p8jTKkn5/qihoUZBbB0tISixYtUjtxIRAIcPLkSY2rX943Pj4+cHV1xZkzZ8h2LlVhMBiIjo4mXQDNzMywaNEitRMiQqEQp06dQkSEak5y/zWenp7w8vLCmTNnUFWletIckljGxcWRTpdGRkZYtGgRmjVT79orFotx+vRpvH37lsLoD4fmzZvDz88Pp0+fRnm5+nqJSUlJiI8nKlq4XC4WLVqkdlu3WCzG2bNnERYW9tFUuUCSpG3bti1Onz6tUSv6mV0XEB76Flf/vYOqMqKCsraKh+U9v8W05osoO2ACwJ41R8n10YdeZS6lXZ9WGCsxTODX8vHLp9vIqihl2LnawMyGMOd6cz8CY21mYbTlDPBqeOSY+yeekNVTAr4QK3p/h6luCxB27x05RmoG0BCHvjtFaoS9zyrz0UuGYO2xpWQ3w7PLr7F64I8oK2r68+rX1YescpOu6/p+EggbFyIRKBaLsX7cZrj6uSBwtKKxT2RILMbZzsZoyxmokNtQk1aby+up2bnakMlfSEwmPhZ0CTUdOnTo+MApLSjDuT+vYl77L7Gg4ypc3HEDlaWyG4A2vfzw7ZkvcShhOyasHEnJsZMqjekzCfhCspWvKfIzCrF13i7y8ed/zYaVQ/3dd7FYjKS3qdj71VFM81iEpd2+xoW/rqMoR6bLo2/ERd/J3fHDxdU4lfMvlu+aB45ew5U68aHJZBKorKgcF7Zfx8JOqzCv3Zc49+dVhQSdtbMl+W9nbwfM2zwdPcYEYMB0whmsqrwav83cQUmTQx5l4rZ0wuawsfrQYlKj4tLfN/HyRhhSItOx/5vjmOG9GJ8HfIWzW6+iMEumb8E10EOvCV3x/bmVOJ2zB/5B7Rp9n8Q3KZQrq078cgGRT4jFkb27Leb89uG2iMjDYrGw6uDnMDQhtPFu7L+PJxdeqDyPvGCxMpLfpSno/TXG2S1XEXaXWLRbO1liwZYPy4igIZhMJlbuWwgTC6KC5/7xJwqVrlRx8XEC15wDY0cDpEal49GjR3j9+rXax8Xj8WBsbIxhw9TXb/yvYLPZSEhIwO3bt9WeIyYmBs+eEU7FISEhePHiBeVEeV0EAgEMDAwwYsQItY/nv4LFYiEpKQk3b95Ue47Y2Fg8fUo46L148QIhISEaxVJPTw8jR2ru9ve+YbPZSE1NxfXr19WeIy4uDiEhhFv169evNWpvFovFYLFYGD16NIXRHxZsNhsZGRm4cuWK2nNYeJrArq3yKrKS/DLkpRVQmuflzTc4v41omeRwOVh54PMPuspcnlkbJ5N6v4lvUpTqoorFYlzfexfLeqxDaT6RXBLyhWQSUt4hXhnlxZWIfkokgfUNufBo69rg2PCHkTi56SIgqXBbdfDz91pl3ntiIH669jW5tokKicUXPb9FXnrT58LUb8eRxg2pURnYt/Y4vpbbbI57lYiXt8JQWaJo5iQSisiNwOJcWYJYug7OSZJtUDt7O5IJNTaHBe9Ommmkvk8+3F4BHTp06Ph/jFAgxMsbb3DzwH08u/wKAr5iEkNPn4O+n3THyMVB8GznrrXjGDSzD85uvar0OXMbU/Sd0r3JOUQiETbN2E4mrnpN6Epam0vJiM/GgxNPcP/EYwUnPykcPTY6D2mP3hMDETCsIwyM9GXPWXIQOLozHpwMUfr+o5YE4fWtcNzYfx9PL74Ev04Sg8PloPfEbmgZ6IM/5xNtDSw2C18dXUq+z6KtMxF+PxJ5aQV4+zAKZ7dcxfgVw5v83aXYudmAw+WAX8tX+vvRgYuPE+b+No2sAlo34hcIBfUTf2wOC50Gt0OfiYHoOqKTgqlC89ZuuIeGEx4jPw+itACMfh6PQ+tPAQCYTAZWH1qskqPsf429my0WbJ2JzbP/BgBsmbsTfl29VWpzaapCdPj8gZR0+BLeJJPOagwGA6sOfk5r0lzbWDtZYfGOOdg4eSsA4K9Fe9C6RwuV2lyatXCCbWtzuPa1Q/DLBygXEAvz6upqZGdnY/z48ZRbwzIyMlBUVIQZMz6OpGRdjI2NMW7cOOTn56s9h4mJCWJjY3H8+HGyIqimpga5ubkYPXo07O2pCUFnZWUhNzf3o42loaEhxo8fj8xM9b+TTU1NERcXh+PHjyMujjDb4fP5yM/Px/Dhwym37+Xm5iIjI+OjjSWXy8WECRM00jU0NTVFZGSkQiwFAgGKioowePBguLo2nKyQJz8/HykpKZg+vfEq+A8VDoeD8ePHk59NdfD08MTLB8o3Hdr2bgnP9k2vG0vyS/H7zB3k4zm/TqWl8+F9oaevhzWHl2Bxl68g4AtxatMFBAxpj1bdW5Bj3j2Kxh9zdjY4RzNfJ8S/Tmrwea8O7ogPJc55n86eDa6Pyosr8Ou0v8hk+/QfJsGrw/tPGHXo1xqbH6zH2iE/oTi3lKiYD/gK35z8gqzMVwZHj4PVhxZjQcfV4Nfyce7PqwgY1hEtu/mQSbC1QRtJx05lNPN1QqKkxVPaqVGQJTNecXCzIX/u2aG5SjrF/zW6CjUdOnTo+IBIi8nEv6uPYHKz+Vg34hc8PvdcIZnmG+CFZTvn4lT2v1ixd6FWk2kA4N7aVUFbQp55m6dTurE/+8cVvLlHtAPZOFth6T+EtkVaTCZO/XYRC/1XY6bPEhz87qRCsonJYqLjwLb4ct9CnMrZg+/PrULviYEKyTQpQbOVi4qbWBjhxt57WDtkI4JPP1VIpnl38sDi7Z/hZNZuLNw6E8d+Okcudmb8MBHeHWUaYkZmRlh18HOydWT/18eQ9DYFV3bdxtqhG5sUr2exWHCRCLJmJeRAwKdWmUSVjLgsnPnjMm4dlAlD102mWTtZYtmuuTiZ/S9+vLgGfSf3qOdQKt+aWhc7VxtM/XZck8dSXVGNXz7dBpGQeP9P1o5Bq8CPRwtDyqAZvRE4yh+Q7FL/MWcnCjILsWnmdmyZu7PJv2FjsbRytMCMDZOaPIba6lr8POVP8jtg3BfDKOsOfkj0mRSIPp8EAgAqSirx+6wdKMopJvUZ5dtqlNGshTMKokohFonJZBoAhIeHo6ysjNSwaoqqqiocP36cbNH7WPH09ET79u1x7tw5tdwVhw0bBgaDoXDD/u7dO5SUlMDEhFqytqamBidOnNDopv9DwN3dHZ07d8a5c+fUcigdOnQomEwmmQCCxEm1sLCQcix5PB6OHz+usZnBf02zZs0QGBiIc+fOqeWqOWTIELBYLIVYRkVFIT8/n7I2n0AgwIkTJxAVFaXy+39IODs7o1evXjh//jzy8lSXmZg4eywyg+v/DdgcFpb8PafJNlixWIwtc3eR3QH+g9th1OIP39ihLp7t3TF9PaGLKhKJ8ev07SjOK8WeNUfw/djfwNFjNdrh0Lpnw0kmJouJ3pNkm8p+XZUbEojFYmxbtAf56cTfo00vP4z/kvqGLN14tnfHn09+Ig0XinJK8GXf73H690uNVte6+rngs1/kdFFn7sCsnz+RDWiiMLdVjxakFptUS1hedkQk9/qWDcTyQ0VXoaZDhw4d/zHlxRUIPv0UNw/cR/Sz+jcnlvbm6D+1JwbO6N1kG5k2CJrVl3TqkdKubyv0m9KjydcmhCVj39eEkDqDwcCoxUE49P0pPL8aiuykXKWvadXdF30mdUePcV0oO0q269sK9m42yElRrNooL64E5Fo6zW1M0W9qTwya0RvurWW73RunbCVbIFr3bIHxK+u3L7Xt1RLjvhiG05svg88TYEXv78lS9sKsIuwK+73RY3TydkDS21QIBULkpxfCobn64uJ8Hh/vHsXgxdXXeHY1FJnx2Q2OlVbGFWQWwdjcuNEkqLN3wyLdi7fPVprMrMvfyw6QgrO+AV6Yuq7pJNyHCIPBwLJd8xAZEoeSvFI8u/Ia7x5Fk+3Wrbq3wIBpvRp8fWOxXLh1JqWKvX9XHSGTzB7t3DBjwydNvuZDZfH2z/AuOBoFmUUIvfMOs/2Wk58f3wAvDJvXsC6Ps7cDqgt5eL0jDh0X+oAh6Tjy8vJCYGAgDAwMGnytPFVVVbCxsfkonCibgsViISUlBVeuXMHkyZNVem15eTlYLBYYDAb4fEJXyMPDA926daOcnKyuroaFhQUGDx6s1vF/SLBYLKSnp+PSpUuYNm2aSq+tqKgAg8EAl8tFbS0h8u3u7o6uXbtSTgLV1NTAzMwMQ4Z8uK69VGEymcjKysKFCxcwe/ZslV5bUVEBkUgEQ0NDUtfO1dUVXbt2pWzQUFtb+9G2c9eFwWAgJycH58+fx7x581R6ba2wFh2XeeHln7GoLZVph01cPUrBhbohrv17ByEXXwIAzKxN8OW+hR+VFp0841eOwLOrrxH5JBY5yXmY02o52cppaW+Br44tw4YJmyES1c8I+Xb2gqW9uYLsiJSxy4aiMFNWYdWQ5tfdo4/w4MQTQKL7u/rQ4v+8bdahuR22PvkJGydvxZt7ERAJRdi96jAiQ2Lw5b5FMDZXfh0YtTgIz668Rtjdd8jPKMSKXt9Tfk/P9u6wdbVBTnIesiWtntXl1eTzmQmydWxTWnQfGrqEmo6PBqFQiNSodCSEpSAjLhs5SbkoyCpGaX4ZKksrUVNZC36t5KLBYIAh/T+j/mMGGGAwpT9nAAziwsVgAAwmEwZG+jC3M4ONixWcvR3g1aE5WnX3hbkNtZt7HTqaoqywHCEXXyL4zFOE3nlXT5eKzWGhy/BOGDSjD/wHt1PLWZIuek8KxPbFe8nqLhabiSU7PmtycVVTVYsNk7aQ1TUsNhP/rj6idKxXx+boMzEQvSZ2a1S3TRnlxRV4eukV6cZZFyaLiYChHTBoRh8EDO1QryT/7tFHuH+cWOwYmRliTSOLnRkbPsGzq6+RHpNFJgMAIPltGipLK2Fk1vDNqK1ci1tBZpHKCbXivFK8uBaK59dC8fpmOKrkFiLyeLRzg6ufC+4dI/RnyO9FABGPotFrfNcG38O6gTa87mMCEDC0Y5PH+Ojcc9zYdw+QaN2tObz4g3aibApzGzOs2LMA60b8AgAK2oXvHkU3mlCzdLAAk8mot0j3H9wePcZ2afK9n18LxcUdNwBJi/dXR5dCj8vR4Lf5bzGxMMbK/YuweuCPgKRSTUrE4+hGE2qmVibQ0+dALCJ2+xlggMVioXfv3pTF9BMTEyESiT7alrq6SNvC5Kuanj9/jsrKSvTt27fR1zIYDAgEArDZxGeTyWSiR48elFvqkpOTUVtbi5kzZ2r4W3wYsFgsjB8/XsFY4fXr1ygsLMTAgQObfL1QKCSvh0wmE4GBgfDw8GjydQCQlpaGioqK/5lYMplMjBs3DmFhYeTP3rx5g+zsbAQFNV7hxGAwIBaLwePxyMddunSBjw+1m+uMjAwUFxf/z8SSwWBg3LhxpMYhg8FAZGQkkpKSMHx44xVODOJmB/qWemRCzbaZNT75qmlNufTYTOz84iD5+Is9C2Bp/+E7zjYEi8XC6oOL8VnrL8Cr5inookU8jsaSHZ9h+b8LSIkHKUwWEy6+TrBxsaqXULOwN8en343Hit7fkT9r0aV+VVV2ci7+WiQz41n6zxyV17jawsLWDL/c/AaHvjuFYxvPAQCeXHiJ5Herse70CqUdMEwmEyv3L8Jsv2Wk4RRV3Fq6wMbFCjnJeagoqURVeRV5f8DhshEp55aqS6jp0KEiKRFpuHvsEWKeJ6A4rwSVJVWoqawBr4YPAV9IiH+rp++qNiUoRXZyLqKfKX+eyWKCrceGvqEejMyMYG5LJN+a+TrCo527LvmmQymlBWV4cv4Fgs8+w5t7EUrF3Zu3ccWgGX3Qd0r3D+YcMjQxgEc7d8S8IKrU+k7pARcf5TucIpEI8aHJeHE1FBf/voHSfFk7knzrKovNQuueLRAwpAO6DO8EZ6+Gq3mUUVZUjpALLxF89hnC7rytpzEHAC4+jgj6rD/6T+3RoPZVTkoeti2S2cEv/WcubJs17ByYEJqkVKRWLBYj+nkCOg1s2+BrrZxkyar8jKbbYcRiMRLfpODZldd4fi0UsS8SlJbjM1lMtOruiy5DO6LL8I6wd7fF30v3K50z6lmc0p9LMTDSh4mFkYJRA4PJwMKtTd+gFGQWYstcmRbJoj9nwclTtb/rh4ZQIEToHeWOe9FNxJLNYcPC3lzBBILBYGDxjtlNJqOL80rx+yzZ4n7ub9Pg2sJZ5eP/kBAKhaSxQl2injYeSwaDAWsnS+Sk5Uv6ShgQiUTQ12+6YhIACgsLceLECXTp0gVeXh++0yxVXFxc4OTkhFOnTkEoFCIrKwsikQh9+vRp9BxzcnJCz5498ewZsciRVgVRoaSkBCdOnECHDh3g6/vxtXI3hKOjIxwcHHDmzBnw+XxkZ2ejtrYWAwYMaDSW9vb26N27N549ewaBQKBSLMvLy3H8+HG0bNkSfn4fvmsvVezt7REUFITz58+jtrYWOTk5qKysxKBBg8BkNqw2ZGVlhb59++LFixeoqKiAWCymXDFZWVmJ48ePw8vLC61bf3xt8Q1hY2ODoUOH4tKlS6isrER+fj5KS0sRFBREJsSVYW5ujv79++PN9t3kzz7fPrtJXSo+j4+fp25DTRVRbTl07gB0G+FP42/03/DmfoRSE6CUiHRUllVh8Mw+qCqtwj9fyFy9Ta1MoMflwNrZSsH1HADm/T4NNVU8Uj/No50bTK0Uq/+ljpjSzc/+n/ZE74mBWvoN1YPFYmHmhk/g19Ubv077C+XFlchKzMXSbl9j8fbPMHhW/c2Z8AeR4NU27JiqDENTQxiaGChop757LEug6Rvrkx06Lj6OsHa0VDrPh4ouoabjvRH1LBYPT4YgMiQW2cl5qCypouwW96EhEorAq+aBV81DWWEFspOUJ99YHBZMLIzh7OOI9n1bYdDMPrBr5GZdx/8exXmleHL+BR6dfYo39yNJXSl5bJtZo8eYAPSb2hOe7d0/yLL6pf98htUDN8DM2gRL/56j8Fx1RTVC77zDsyuv8eJaqNLSeEjaLf2HtEfAkI7oNLBNo9VcyigtKMOTCy/x6OxThN1VnpDkGnAgEIgwfP5ALNw6s9FYCoWSxU6ZbLHTZ1LDi52inGKsGbShwV256KdxjSbUbOQcROXbBOSprqxB2N13eHGVqEQraGCciaUxOg9pjy5DO6LjwLYwsTAmn9u79hiu7FLuAJj4JgW11bWNLqqtnCxRXlwJBoMBfSMuJqwa1aSAvEgkwm8zd5CW8j3GBmDQzD6NvuZj4PjP50mHs7qkRmU0WZVo7WRJJtT0jfUxeskQOLg3XpkoFovxx2f/oCSP0ArrPKQ9RiwcpNHv8SFwbstVnPj1gtLnspNyUZxX2miLt7WzFbIScxF/KRPtp/qgf//+sLSktuguLy+Hq6srevbsSWH0xwWPx0NMTAyZbKdiKMBiseDs7IwBAwbgwYMH6NmzJ2xsqK1NysvL4eTkhN69e2t87B8aAoEA0dHRpIszlZgwmUw4OTlh4MCBuHfvHrp06QIHB2obCRUVFbCzs0O/fso1QD9mhEIhIiMjIRQS12krq6ZNSKSx7NevH+7evYtOnTrBxYWazEVlZSWsra3/J9q56yISifDu3TsIBERCyMLCosl1IoPBgJOTE6Z8NxaHvj6N9n1bo+uwTk2+16HvT5Mi/C4+jpi3WbUW6A+RV7fCGzQeEIvFiH2RgA7922DMsqHITsnFhW2EU625DdGyLZ/c0TfkonXPFug3uQfuHAkmf+4/qL5Del2n88//Uq0F+n0SMLQj/n69CT9O+ANxrxLBq+Fj82f/IOJxDBbvkCViQ+++xa/T/qI0p0d7NySGESYELDaRSJePZYSc9jBXXw/lQmL92ElJLD90dAm1D4wavhA55bUorOKhqIqPGoEQYjHAZDBgqs+GlSEH1kZc2BjrgfkB3nQLhUK8uReB4DNPEfsyEbmp+agqq1aaRFAVBoNBVoZxDfRgYKIPE0tjWNqZw9rZEk6eDnD0tIcelw2BQAghXwSBQAAhXwiBQAShQACxEBAKBBAKhBAKRHX+L4RIKAK/lo+81ALkpRegJL8MVaXVqK2uJarlVPw9hHwhSvJKUZJXiohH0Ti8nrBs5nA5MLc1hXtrVwQM7YABn/asJw7+IVErECGnvAaFVXwUVfJQTZ6XgAmXDStDPVgZ6cHOmEsKTr5vxGIxiqr5yK+oRWEVH6XVfAgkrVZ6LCYsDTmwMtSDnQkXxlztfvUVZBXh6UWieurtg0iFli+OkT7sOnqgWRcfuHbzhYmDJfQMuWAxgEwuGzU55WQsWf9hLIur+civ4KGwioeSaj4EeoaY/mAj9FhMhOVWQlCQhawXcQi99BJvH0TWc86Ux39wO0z9djx8/D1U1o0oyinG00uvyKo++c8g25ALuw4ecAnwhntgC5g4WUHPQA8sJgNGemy8yymHlaEe7E2Ux/LAupOIkOyQ2bvZNLnYqa3ioVaya6uMiCfKjQmKJedlpasDBu7+HBwjfZRbmeB6TB4sDNgQFpYh+2U8Qi+9xJt7EQotmvK4t26GgKEd0WVYR/gGeDYYy7KChkXKhQIh4l4l1XNz4gtFyJVce9quHIcWAJgcNtz8nGBmyEV4VimsjYjPD1tJhcHxjecReoeoPrJytMCynfM+yMSwqpQ2EsuGqhIFQhFyKmpRWMmD35KRaC4Sg8lmwbWFE8yM9RGeVUqel2xW/Vie+eMKnl0h3NnMbUzx5d6PV7tGnsZiCUlCuttIxUoIoUhMXHsq+fCaGwSnWYPA5LDh4u2AImN9vJGLJUdJLCExLrC2tsbUqVNp/X0+BNLT05GWlka2ykFSmcLn86Gnp6cwVigSk5/xwioeEjOqYGBkAZ8hU1HOYeFNZiksjYhY6jUQy4iICJiamqqsM/YxkJGRgfT0dIWfmZubg8fjgctV3IAQisTIq6hFQSURy6SMKugbmMA7aAqqOSyEZZbCypADexN96LGVxzI6Ohr6+vr/My3I8mRlZSEjI0PhZyYmJqitra2ndyiSxrKKh8JKHpIyKqHHNYL34Cngc1gIzSiBleS85DYgfREbGws2m/0/0+opT3Z2dr1YGhsbo7a2tl4lpEgsf17ykZReAU5HX8x5+hv02Sy8zighvi9NudBXEssX18NwUrLpwWKzsObIEkq6qR86ja2JACDyaSw69G8DAFi4ZSYqS6oQERKLz/5diMiccpgN6ojBHX3A4nJg18wa1jameJ1RgojkfHAtjFFbXFEvCfTmfsRH53Ru72aLLY9+xM7lB3B55y0AwM0D9xEfloRvT68Am8PGxsl/Up5v6Jz+2LZwD8BgwLqVKyKyS2HUuy0G+7mDxeVAYMxFv7/sUBSXCV5OMSruvUVNYflHmVBjiBuzc/gfp6ysDGZmZigtLaUsHKot8ipqEZtXgZTiKijRRKyHkR4LPjbG8LI2gj7nv9FWEgqFCD7zFJd23ETy2zRUV1QrFXRsCiaLCUMTfVg5WcLayQo2TpZw9LSHa0tneLRz/yArunLT8hH1NBYJYSnIjM9GQUYhSvLKUFlWBV41DwKeQOVYMBgA15ALa2creHdsjl4TuiJgaMf/VLiysJKHmPwKJBdVQUjh9zHgMOFtbQxvG2MY6r2f4+YLRUguqkJMXgWKq6mVIDuZ6sPH1hjOZvq03KgK+AJEhsTi5fUwvLzxBklvU+uNMfd0QLtZ/eHUuw0YFPTQ9NlMeNkYw8fGCEaNOBDRiUBExDI2rwKFVdRimf08FnFnQ5ARHAGxSAw9fQ44XA6pNdVleEf8cGE15TgLBUJEPY3DyxtELBPCkuuNMWtuh3Yz+sO5X1swKOhzcdlMeFkbwcfGmEymPj7/HOvHEiYCTBYTmx+sp+RE+fJGGPavO6HURp3NYeFq9TEwmUwIRWKkFFUhJr8CBZWNOxhKyXmVgLizT5D+4B3EQhH09Dlo17cVugztiIChHRptRZWnqrwaB9adwPW9d1FTWT8BOHrpECzcQtx4lNbwEZNXgcTCSvCFTX/G9VhMeFobwdfWGCaSWL64HoZvhv1Marz8cmsdOvT732i5qamqxaHvTuLq7jtKNeuCPuuHL3bPBwCU1fARm1+BhIJK8CjEksNiwNPKCD62xjDTJ7TR3tyPwOoBP5DXjw2X11DSrvsY4NXwcHj9aVzeeUtBi05K38nd8dWRpQCA8loBYvMqkFBYiVpB0xtZHCYDHpLPuLmBTGcuNjYWJ06cwKhRo9C2bcPVox8rO3fuRG6uorkLk8lEQEAAqf1VUStAXH4F4gsqUUMhlmwmA82tDOFrYwwLQ1lSLjExEUeOHMHQoUPRqVPTlS4fG3v37kVGRoZCcpLJZKJDhw4YOnQoAKCSJ0BcfiXiCypQzW86liwmA80tDeFrawxLuVimpqbi4MGDGDhwILp0aVpP8WPj0KFDSE5OVoglg8FAmzZtMGrUKABAFU+IuIIKxOVXolqJZENdWAwG3CwN4GtrAmsjWSwzMjKwf/9+9O7dGz16NG2U9LFx/PhxxMXFKcQSAPz8/DB+/HgAQDVfiPj8SsQVVKCS13QsmQzAzZL4jNsYE8ni7KRcLPJfTco9zP55CiatHqW13+t9IhaLcXH7DZz6/SLptCmPW0sX/PvuD0BS2BJfUIm4/ApUUIilkC9AZnAkZs/tA0cLolo9L70AizqtRolE8mTqunGk0+jHwt2jj7B13i6y9dfARB+OHvZIfCOpOOOwIGzic7s97DdcvvoG+i1cYUJBN04kECIjOBLTZ/aEi7XxR7WRqEuo/ccJtRq+EM/TipFSrFxcuik4TAY6uZjDy9pI6yeeUCjEw5MhuPTPTSSGp6JGRTFCFpsJQ1ND2LnZoEUXb/Se0A0tA33+c6cTbSEUCvH6zjs8PPkEMc8TkJ9RiJrKGohVTLRxuBy4+Dph0IxeGPl50HuJF08gwsv0EiQUVlIYXR8Wk4EOTmZoYavdL8TM0ho8TS2itIBQho2RHgLdLcmbWVXISy/Aqxtv8OJGGMLuvGtQIN6lpQt6rJsIZnNqwtl1YTKA9o5m8LM30WpVanZZDUJSiigtIJQhyC+FF1OIZ8cf4fahhwAARw87bH/xi0I7ojIKMgvx8sYbvLz5BqG33yq92QYARx9H9Pp2Elhe6mlJMRlAGwdTmJWWY2mXteTfbP7m6Ri7nLojmFgsxtvgKJzZfJmsJJKyP+ZPcBysEJJShLLahqv2GkNQWAYPsQBdevpC37BxvZPGKC+uwNXdd3B+2zUUZct0vFz9nLHz7WaEZZYhKre+HhwVGAygtb0pbGuqsbjzGnIRPnPDJ5i8dozax/yhUllaiWt77uH8n1cV9O8cmtthf9xfCM8qRUROuVpynwwALe1N4CjiY4n/GnIRPuXrsZjx4yQaf4sPg6ryatzYR8RS3pXXxtkKh1P+wbucMrzNLoO6q9MWtsbo4GQGNouJ0NBQ5OXlYdCgQR/V4pwqPB4PERERMDAwwKtXr5CURCT67e3tMWfuXETmlONNVimljVpl+NgYo6OzGTgsJsLDw5GRkYEhQ4b8T8aSz+cjIiIC+vr6CAsLQ3w8oedjZWWFhYsWITq3HGGZZRCqeWJ6WRuhk4s59FhMREZGIjExEcOGDWtUU+xjRSAQICIiAhwOBxEREYiNjYVYLIaZmRmWLl2KmLwKhGaWkl0EquJhZQh/Fwtw2UzExsYiKioKI0aM+J+8n5C2zjKZTMTExCAqKorUlluxYgXiCirxKr1E7Vi6WRqinbUhVvVah6RwYjO420h/fHf2y/+5c1PAFyD49FOc3nxZYbOWrcfGtepjSCisxMv0Ekqbi8poZm6ADvbG+Kb/esS8SAAAdBrUFhuufPVRnpspken4YdzvSI/NUvp8vyk9kBGXVU9fruPAtmg7pRfQqjl4anaoOZvpo6ur5XsrztAUXULtP0yopZdU40lKEaXd16ZwNNVHD3dLStVqSe9S4Orn0uSHW90EGovDgrG5ERw97OHXzRt9PgmET0dPyr/L/zrV1bV4eDIETy+9ROKbFBTnloJXTa2CBQC4Bnpwa+WCYQsGYcCnPWn/ks4pq8Gj5CJUUdgxbApbYz30bG5Fe4WVUCTGi7RixBWol/CTh8VgoKOLGVrYmjQ6jlfLR+STGLIKLSUyvcGx3p084D+4HdqMDkASi6t2wk8eayM99GpuRXu7qkgkxrPUIsQXKk9iqTgZXv91BdFHH4BroIdtTzeieZv6rnECvgCRT2LJKjRlFX1SvDq4o9Ogdmg3uguS9fTVTvjJU56Si7tf7EVFRgF6TwrE2qNL1b5BTI3OwM4vDuD1rbcwtzPDF09+RmxBFZFx0gAGA2jnYIbWDiYa37zyeXzcPhyM3SsPobK0CtP+mAnjvu3VTvjJU5lRgLtf7EFZSt7/7CJcHgFfgPsnnuCf5QdQXlyBSRumwHp4AEpqNI9ldXYR7n6xFyWJ2R/1IpwqQgFR5b5j6X6U5pdhzDfj4DSxF+VK48Yw1mOBnRODvl39YWLS+Hf7/wq5ubm4dOkSsrKy0HtgEMrNmlGuNG4MIz0WODmx6B3QAWZmH4ZRjrbJz8/HpUuXkJGRge59+qHWxgv5FCuNG8OQw4RefgJ6dGhNWf/vY6ewsBCXL19GamoqunTvCbFTS+RWNCydQBUDNhP6hcno2saHsv7fx05JSQkuXbqE5ORkdAroCo57O2SXax5LYVUNHn51CFlPY+Ds7YDtz39WWeP2Y0IsFuPN/QhsW/gvMuKy0XFoR/TfPBuZZaoViihDVMND8DeHkREcCXs3G+x49StMLT/ea1BVeTV++XQbnl56Ve85A2N97Iv5E1kJOfhr0R6kRKajVZ9WGL5rEdJL1CsUkkePxUBXV0u4WX7YrbLQJdT+u4RaYmElniQX0WpeaabPxkBv2wazuUKhEJ84z0NxbinYemxcqTyisFgXCoW4f/wxLv9zC0nv0igl0FhsJmxdbNB1REcMWzAILt7qVeHoILSibh18gNe33iItJgNlhRVKHWnqom+sD892bhizdCh6jNWsdSCtuBoPkwrU3s1WhpEeCwO9bWGq33giKD+jEEXZxfDu5NFoAkEgEuF+QiGyaLjwydPK3gQdnMzI9xbwBYgPTUbEo2i8fRSFN/cilLbPQeIE1GlQW/gPbo+OA9vCwtYMmaXVuJ9QqPZutjIMOCwM8raBmUHjFXWF2cXITc1HiwAvpbEsL65A/OskRDyLQ2kzB5j6NaPtGAEg+vhDDOjoin6TifYLoUCIhLBkvHsUjXePovHmXkSDFX0mlsboOLAt/Ae1Q6dBbWFpb4HsshrcSyhQewdWGdWFZYjeegG/nFnRqEZIcW4JspNy4RvgpTRRVFFSifjQJESExKHE2RamrdxoO0YA8LYxQpdmTQsQUyW3vAZ3EwrU3oFVRk1JBSJ+P4tfTi5vdBFeWlCG9Ngs+HX1/p9IuuVX1OJOfIHaO7DKqC2rQvimM/j52JJGF+FlReVIi8pAi67e/xNJt8JKIpZUWhKpIhLw0dvdAu52Fo2OqyipRNLbVLTs5gMWhXb8D53iKh5ux+dTakmkikgoQKCLCbwdG2/bqSyrQuKbFLTo4gWOnuqV3x8apdU83I4voGVTTIpYKERnR0P4udg2Oq66ohpxr5PQoos39LgffyzLa/i4FZdPy6aYFLFIiA62XLRxa9wEoqaqFrEvE9AiwAt6+nqNjv0YqKjl43ZcAS2bYlJEAiFe/nwaq3+eBFe/ho0gaqtrEfM8Ab4Bnk06hn4MVPEEuB2XT8ummBSRUIRXm85i+Tej4dnevcFxvBoeop/Fw9vf44PWqvth/GY8OqvEea+OVEM1X4A7cQUoomFTTJ6AZhbwtW280+W/RpdQ+w8SaqnFVXiYWEhrMk2KuT4bg33twK0jgioUCjHRYQ5KC2TtPdPXT0DLQB8cWHcSSW9TG0wWyMNis2DbzBrdRvnjk7VjYPYRZ90/Bng8Hs5tuYo7h4ORmZBDKcFmaGoAn06eGLdyBDqrIOyYXVaDO/H5tCbTpBjrsRDka9dgsvfBySfYNH07+DwB1h5b1qDTokgsxv2EAmSU0ptMk2JXU438u+F4+ygKMc/iSe0AZfh29kTnoA7wD2oHr47NFW5qc8trcTsun9ZkmhRDDgtDWtg2WPUXcvElfvpkC3g1fKzYuxCBo/wR/zoJca+TEB+ahPjXSchOygUYDPTYOA2u/bSjK2THq0XB3Td49zgaUSGxjX6/eHV0R8CQjvAf3A4+nRXF9gsqa3EzNp/WZJoUPQYwrJUDqQVWlxfXw/DjhM2oqazF4u2foe/k7mQM40OTEPcqEVmJhH5R4PopcA/SjtaVn50x/F0aTwpQoaiKhxuxebQm06SwAQxrZd9g+3TYvXf4fvRvqCqvxtzfpmH8iuGU5uXz+MhPL0ROSj6qyqrAYrMk/zHBZDEVHtf9N5PFBIfLgaWDOe1Jp5JqPq7H5NGaTJPCghhDW9rDwkD5jV/E42isG/ErKkoqMX39RExdN47SvAK+QBLLPFSWymJJxLHhWErjzNZjw8rBgvakU1kNEUs6k2lS2EwGBvvYwspIeSyjn8dj3fCfUVpQjklrRmP2xsmU5hUKhMjPKERuSj7Kiyvk4qj8XKwbZ7YeG5b25mBT0IBUhYpaAa7F5NKaTJPCYjIw0NsGtsbKb6ITwpKxdshPKM4txZilQ7FgCzWxfaFAiILMIuSk5KG8qILS51r+MZvDgqWDBe2xrOQJcD0mj9ZkmhQmAxjgbQN7E+U30ckRaVgb9BMKMoswdO4ALNs5l9K8QoEQhVlFyEnJR1lheaOxVPYcm8OChb057cnQar4Q12JyUVGrnVj29bSBk5nyWKbHZmJt0E/IScnHgGm9sOrA55TmFQqFKMwqRm5KPkoLyhqMZUPfn2wOC+Z25rQnQ2sEQtyIyUMpjQkgErEYfb1s4GKu3CQtOykXawZvQFZCDnqO74p1J7+gNK1QKERRdglyU/JQkq88lk19f1rY0x9LnkCEG7F5tFRF10MsRi8P6warq/LS8vFV0E9Ii85El2Ed8eOlNZSmFYlEKMouRk5KPkrySuvFsqnvTxabBXNbU8rJ0OSINMxts6LRMd+fW4nOwzvhZmweLVXRyujubgkPqw+3alKXUHvPCbVKngAXI3O0ckMjpbmlIXo0l9lTC4VCTHSci9L8xl1OlKFLoH1YVFdU48SvF/DwVAhyUvKbFIQEAGMLI3Qa2BYLtsyApb3ym/IagRAXI3K0ckMjxclUH/28rOtV2pzbehX/fHGAfOw/uB02XvsakOze5KbmIyclH3mp+cjlcMFq3fBuj6aIRSLcmr8D+W/qC+Ez2UyI5OKz5dGPaBXoC7FYjJL8MuSm5CE3JR/Z6YWo7ugDphZdW5nF5WheVQlnbwc4NLcjFxln/riM3asOkzp9HH0O+DXKL24+E7rD/0vtal3dWfQPcl7G1/s5i82EUC6Wv95ahw7920AsFqO0oAy5KcTfPCetAFUdvME00V65N6O0As3Ly+Hi7QAHD3sylpf+voEdS/aR4vAcLhv8BnaDPUcGoMvX2hWcNU3KhIe9KZy9HWBhZ65yxZpQJMblqBztLMIlWBpyMNTXrp7T7/0TT7Bp+l8QSL6v3Fs3w+7wzUCdhJn0M5STSvw/NyUfBZlF0HSZwtFjw765HZy9HeDs5QBnb0c4eTvAycsBVg6qV/8JRWJcjc7VziJcgrk+G8P87Ou50z469xw/T/mTdIJ19LTHwTjCwl4+YUZ8hvKQm5pP/rsws0gt4yB52BwWHJrbwcnbAc5ejnDyciDi6u0AK0dLlWMpEotxLToPhVWat9M1hCmXjeF+dvUcVZ9ffY0NE7eQGyfWTpY4lrYTDAaDiKUkYUaem6n5ZGwLMgo1jiWLzYJDc1vifPS0h5O3oySWjrBytFC5ilMsFuNGbD7yaGinawgjPRZGtrSv56j6+nY41o/9HdWSzgYTS2Oczt0DFoulkHzMqfMZz0vNR156ocZO8EwWE/butpLPOBFHJ29HOHvZw9rZSq1Y3o7PR3aZ9mJpwGFiZEuHehvg4Q8j8d2oTaSWqIGxPs4V7gebw1ZIPuam5JOf79zUPOSk5CM/vRBCgWZJKyaTAXt3W0n8HOQ+446wcVEvlve0uBEKiYnTyJb29WRvop7FYd3wX1BWSBQTcLgcnC/aD64BVyFhRsYzJQ85kpjmpRXQEks7N1s4edkT35eSODp7O8DGxUqtjZ6HiQVq625TQY/FwMiWDvU2wONeJ+LroT+jJK8UkHzmzhXuh5GpoULCLCclv871Jw95aQXk9V9dGAwG7FytyfNSeh139nKArau1WrF8nFyIRDrkThqAzWRgZEv7elItye9S8VXQTyjMIrRtGQwGTuX8C3MbM4WEmcK5Kf2MpxWAT6G4ojEYDAZsm1mT8XPykp2Xdq42CptmeekFmOG9pEH3eQDw8ffE1FMrEZuvuQxPQ7CYDIzws4OpGprX7wNdQu09JtTEYjHuxhfQ0qPdFH08rdHM3ECSTJuD0nxqwtO6BNrHRWlROY7/dBaPz79AfkahQsJHGXoGemjV3RcLNk+HWytZm19wUiGSi7R3UZES6GYJT2tih0EkEmHP6iM4vfmywhgmiwmvju7ITytEUU4J+XNTN1sMPbwCLC23PpSl5ePqlN8hrOWDzWHBzMYU5cWV9XTuHD3tweawkJuSj1q557p8PQGeI7Xv2vX81zOIPxsCBoMBPQMO+DxBk39/KcZOVhh27EuwtVyuX5FdhKuTfwO/shYsDgtm1qaoLK1CbZ3KP/vmtuDq6yE3JV+hKrDTl6PhO0H7rl2vt15E9LGHAIPQKBTwhJQX0oZ25hh2fBX0jLVbrl+VX4orkzaBV14NQxMDOHnZKywspUmNhlouK2oFqOAJIBCKEZxcSG7q2BrrIcjXDifeZNKi59ne0QxtHGXX0zN/XMauLw/VG+fT2RNFWcW0JMw0wcBYn7xhdJJbWLr4OMLYXHks32SWIjxb9Q0qVWntYIoOTjLNqkt/38T2xXvrxcunkweKcktoSZhpgr4RVxZLT9kNj4uPY4PGJO+yyxCaWar1Y6tb5Xlj3z1smberXiLHq2NzlOaX0ZIw0wR9Qy4cPe3JGx5nuWSbqZXydVl0bjlepJcofY5OvG2M0NVVpv919+gj/DZzR73vTM8O7igvrCDWJlqo5KSKnj5H7jPuSH7WXXwcYWatfO0fl1+Bp6nFSp+jEw8rQ3R3l22AB595il+mbqt3w+zRzg2VJZW0JB81QU+fA0dPezIJTJ6XPo4wt1Gur5dYWInHyUVaPzY3CwP08pC1JD+78hobJv6hsD4DgOZtXVFVVk1L8lETOHpsSSxl56U0nhZ25kpfk1pchQeJ9V0q6cbZTB99PWUb4K9uheOHcbKEuRT3Nq6orayhJWGmCRw9Nhw87Ij4Sa7j0uSlpb3yDciMkmrcTSjQ+rE5mHAxwNuGPIbwB5H4dtSvqCpTTIq6tXIBr4aPvNT8/zSWbA4LDh72ZBLY2dsBxhZGKMkrRVV5DQoyCpGfUYishBxkxudALBZh3sElKPOiVzpGGbbGehjsY/tBmuLoEmrvMaGWVlyN+4mKH166b2akGOmxMKa1A4YaTG6yTdDa2RK9JnTTJdD+B8jPLMSRH07jxfUwFGUVN3pDwOaw4NneHZN+m44EA8UbRwYDGOxjC3N9DkJSi5BaXA0bIz10cjGHSCyud1NOFT0WE+PaOEAsEOK7UZvw6uYbyq/t++dcOHb1bfQYpWj6uQrfeR3v9t1W+XWWLZwx5KCsBL6hY7Q20kN7RzMwGIRTaaQaTou8ihqcH/4D+JWqJ+h7bpqJZr1bK/ysoWMNaGYOS0M9MAC8zixFrooCuBH77+DNP9dUPkb/sV2wbP/n9c43L2sjeFobQSQW40my+q6k8ghqeDg/4kfUlqi+uzZx32KMGBegcJzm+hyNPyvKiD7+EK+3XGx0jHvrZmjdowXa9PRDqx4tYOVggfIaPi5F5UIgEsPbxghcNhPvsolzrrcHYRpyJz6flmsQkwGMae0AAzYTv83cgTuHg9Wey9zWDPZuNrBzs4Gdqy1MLI0hEoogFAgl/4kgEgghJH8meSz3s5rKWmQl5iArIQe8Bqo1G8LVz5mIZa+WaN3DF9ZOVqioFeBcRDbpQNnQ96KmnxtI3D9Ht3aAsR4LW+fvxrV/76g8hxRzG1Mijm62sHe1gYmViUIsiX8ria1cLGurapGdlIfM+Ox6N6lN4eLrhDY9WqB1Tz+07tkCti7WqOYLceZtloLMgD6biT6e1hCJxWCAgWepxeCwGLR8nka1tIepPht/Lz+AC9tU/06SYmplAjs3G+LcdLWFmY0pREJRvXOz0VhW85CdlIus+JxGpQWU4eztgNY9iDi26ekHO1cb1AqEOPM2G2wmo178Smr4tFxz5BnuZwcLAw72fHUUpzY1/p3UGCaWxpLPuC3sXG1gbmsGsUgsFztqscxJJs5LKtIl8jh62iucl/ZuthCIxDj9Ngt8objeWkIb158gX1vYGnNx8PuTOPLjGairB2NiYUTE0c0G9tJYikE5liKhCLXVPOSm5CEjLrte8qQpHJrboXXPFmjdww9teraAQ3M7CMVinHmbXe/aomyNRsf90EBvGziY6uPEr+exb+1xtTdrjM2NFD7jFnYUYykUQSgUQiQQgVfDQ05KPjLjshvUjG0IO1cbtOnlh9aSc9PJ0x4iMXD2XTaqJcmWuvGi45ojTz9PazibG+Ds1ivYvfKw2olcQ1MD2Lvbwl7yGbe0N280lgrXImksa4lEU3psVr1EVFPYuFihTU9ZLF18HCEGcP5dNip4Qkxu70RWSL/LLgdfKKJ9/daruRXcLA1xeedN7FiyT6FDQxUMTYhYEmsiG1g5WCiNpdJrkVws89MKkB6bRVbBUsXayfL/2rvv+DbK+w/gH+0tecl778RxNoRMdkjYuxRKoYyW1UJpyyhtKYUftKWlFAqltFBGC2VvQgiQSfYe3ntvy0u2te73h2TZsmVbsuWZz/v18suydHr0+Ht3urvvPcNjH4+fEwsA+OhEf++HwfGsae8J6PFnunb9ZEJtEhNqX+Y3DJmNJdAXMwNlq0S4P/unIy4TFG7AO3X/Cujn0vRRU1yLfz34Bg5sPDLsAX3V/12PxHMXDXleJRMj3aiFqduK8tZuqGRiWOwC7F4uyv2xPCEYfz3/URQcKBlxuZCo4P6L6awESNcuHbWOfca7Xzm6enDwl68gb1eBz+/RBmmw6nfXIey0TI/nB9dRLALOTAnDlpJm2MfZAmLfn95H/ts7fF5eIhUjblEyVj57G0Reum0MrqtOIcXyhGB8WdAItUyCNckh+CK/0a86Cj0WHPn1qzi+Ndfn92gMaqz9/fehPyXDY3vLb+jCOWlh2JDXgBC1HPMiddhaEpi7tQef/QQ5r2/2eXmxRIyYefE476W7YXV1A+yrZ1FTV0D2lcEEixWFf3gHlScqUV/W4FMLmpi0KJx23+VQLUgBAKSGaqCUiXG8rgOxBiX0SiniglTYUtwcsGPQgmg93r/jH9j18b4RlxucMHNfWCcaER4fFtBBeh0OB5qqmlFVUOv6qUF1kfNxXWmDTxcL0SkRWPazy6BZmu5+ztv3YllL97j3mz7zInXYeN+r2Py/kffzwQkz94V1ohHhCcbAx7K6BVUFtagurEV1QQ2qCp2xrC2p9ymWkUnhOO2nl0B72hyP50XozydE6BRIC9PgQJUpIPvTnHAttj/6P3zx0jcjLmcI03kkJiISB2ybCWFQBbA7v8PhQHNNK6oLB2yXhc7ftSUNPrWgCY8Pw2l3XwT96myv8dtZ1hKwY06ftDANDj39IT58ZsOIyw1OmEUO2i41+sB15xcEAc21rah2xbGqoNa9j9cW1/nU6sMYG4pld52PoLOc50QDzyUEARNy/EkOUaPwpY1484kPRlxucMKsfx93bpeBnJVREAS01Jlc22PdgH28BjVFvsUyNDoYy25bj5B1Q8/dvJ2jBeJ6KD5Ihdq3t+Hfv3pzxOUGJ8zccXQlKoZrnTwWgiCgtd6E6sK6/u2y0BXXoroRu9L1CYkMwqm3nouwi5a7nxsYL7lEHLBjTp8YvRLtG/bi7z99ZcTlBifM3HF0xTTQsTQ1tju3R9fxp2+7rC70LZZB4Qac+oOzEH6Fs/fDxVmR+PhEnfv1QF3rDBSpU8Dx7XE8dcvfR1xOpVUiKjnCvR1GJnpum9ogTcBaZ/UNseKOo2u77PvblxuQhjAdll5/BqK+e6b7ucHxDOQ1D1wNEi6YEzHucgItsCN40rDaeqxDkmmxBiUaOnsRFzQxs501SEbvGtfRMv6LPJq+olOi8Ju3nYNJdnd248X7/oNt7+xyjyehCtUh/sz5Xt87eFDjgX87HMBYU/H5DZ2oLW0YcZmUBYl44dCTgGuQ3W25tajoHfqB3gZeDsR+JdYocc7PLkHelU/6/B6LICB4UcqodTRqFLA5BJyREgoxRNhfZRrzWExLblmLyi8O+HzHzm5zwLA0zWsyzVtde6x22BwCRADkUvGYxtgTKeU49/4rcHzrYz6/p9dqhzwz3n3w7dvewjRy1HX0QgDQbLaMOnOsPxbeeDYqP9+PjmbfvhMddgcMS1LRM+AEoa+egdpXBhPJZbjhX3ci3aiFpdeKutIG54mk6wKy8FApig+VeiTa6iqaIHbNgKaQiJERrsVXhc4T7YxwLTYXNQ0ZgPi8DOdg2YNvAmVF6LA0Lgg59R3YN0LXsoLGLlTkVY/4vxiMerxV8+KkzfYpFosRHm9EeLwRi8/x/M6zWvpi2X9iWXSoBIUHSz2SQ3XlTRAnec4m521dj2e/uSQrEgeqTO7xhgqbulCaWzXiezQGNf5X/eKkzVApFosRHheG8LgwLD7bs6WrzWpztxbqSxAVHS5D4YESj+RQfXkjRImRQ8oeuKvIJWK0mq0B25+KmrtQmjNyLOUqOd6o/MekzaooFothjA2FMTYUC8+c5/Ga3WZHnau1UN8+XnykDAX7iz0SGg2VzUCCM5be4hfIY06fkhYzSk6MHEupTIL/lj0f0ATkSEQiEcKiQxAWHYIFZ2R5vGa32VFf3jhgH3fFcl+xR/fKxqpmCPHOWA4+l5io409ZqxlFOSN/X4rFIrxS+OyIM/8GkkgkQmhUMEKjgrHg9EGxtNvRUN6EqsL+7bLkWDny9hR5JDSaa1rh8DKTqbdztLGetw3+vqw0dY/6fQkA/zrxF4RGjX+iH1+IRCKERAYjJDIY2as9byDY7XY0VjZ7JNNLj1Ugd3eBR0Kjpc4Ee7TR/ffgeAXiXG2w6vYe1ObVjLrcCwefRFTy5CQ4RCIRgsMNCA43YN4qz1g6HA5XLGvcycvS4xXI3VXg0aLa1NAGa1R/12CNTIJ1GUZ0WezYW2GakPO3uo5emHJH3scB4JldjyMxa/gZVgNJJBIhyGhAkNGAeSs9GwJ43DRzJS9Ljzu3y4GtgNuaOmCNDPV47+B4Bqlk4zr+DN7Hm7osaO6yDDvR0FSZ8Qm15557Dk8++STq6uqwYMECPPvsszj11FOnulpDVJmGXvCOdDFT0dqN3IZOj+dvWBqHj0/U+bwh1nda8Ln1LeR+m4c9nx9E/t4i1JbUo72pA709FgiCgBWXTr9Y0cRQaVW4+/lbcffzt8Jut+O/j72HoyVNEPt5ETb4orxPuFaO7Cg9jBoFRAA6LTaUtJiRW9/h0aWnpduKB9//Bf79s1dhamhDS23rkObPlfnV+N1Vf0JlnvME4/w374MuLgy+GGm/Ctcq8GlO/2DiMokI1y6KxbtHa4bM5BWyMAXn33oOjmw5gbamdnS2Du0OuO6ms6AP0eLIthxYgvU+je+mlksQpJLhs9x6aOQSLE8IwRf5/QnGKJ0CC6INCFHLIAhAQ1cvDlW3ocXLzDniIC0e3vArvHzPy2ipM6Gl1jSkRYNYIkbS/HjUltTD3NaN2NXzhpQzHKtDQJfFhsvmRUEiFnl0WT8vwwijRgHHgLONA1VtyG/sHFKOOjUGl9y5Dgc2HUFbUwc6WoYuc871axAaFYyj23LQpVJC5mpRM3B7i9YrPWZVHHifzt/1O5hYp8ZvvvgVXrrrX2ipaUVLXeuQu/AikQh3PnsTTnybh2Pbcj1i6W2/8PbceOtZaepGulELuUKG+MwYxGfGeLze1W5Gzq4CHNuWg2Pbc2FyiKAwqCERi3B6Sij2VrSi1+ZAcogalabuYWf1beu2IjVM45FQSw3TwOTD8afbasdP374XL9/+IpqqW9BSZxoy9EBbYzusvVafZ5qaSDK5DHEZMYjL8Ixld2e3K5a5OLo9B01mG1TDjF81cF2PtN/oFVIsjQuCUSOHWCxCt8WOouYuHK9zJnI/GnBnFwB6bQ78+L/34N+3vYDGyma01LUOmRyjq82MrnbzpF1sj0Qqk7rGAYrGsgv6n+/u6kHu7kL3dlnX0gXNMJPkGJRSrEgMgUYu8RgvyNv+NFo8B7LaBfzo33fh3z98AQ3ljWipMw1p0WDptqC9qR1hMaFD3j/ZJFIJYlKd49Hh/P7ne8y9yNtT6N4uq2pM0Mf3X2wPjp9OIR3xmAMAKxKDkRamxYfHa32auMTuEHDj32/Dqz98HnWlDWitNw1p0WCz2tFSZ0JM6uQk1EYikUoQnRKJ6JRIYH1/i/ze7l7k7S3CsW25OLY9B2UljQhOdSbNB59LKKTiYY8/8OMcaDCHAFzz1I2wdXajtrgeLfWmIWO2OhwCmqtbpsU+LpE4JyaJSo7AKQNmkrf0WJC/rxhHXft4cW41wrKGjqvk7RzN23PXLur/PpaIRRAEuM836jt78XVh05DvSwHApY9dh57GdlQV1qK1zuS1e3pDRdOkJdRGIpFIEJnobN21dG3/jOuWXisKD5Tg2LYcHN2ei4LDZYhYkup+fXC8RjrmYBzb5voHL0dnZRMqcqvQ2tDmtUt1Q0XTpCXURiIWixGR4GzZteTc/lhaLVYUHix17+O5+4oRdWp/K/P3jzu7JKeGarAoxoDdFc6xE4c7f/P1vHewNT++AM2FNSg7XonW+jb0eBmupaGiadISaiMZ7qaZzWpD0aFS97HnxM4CxKzwTGwOjmd9Z++wxx9fzocH7+NwnQczoRZAb731Fu6991688MILWLZsGZ5++mmcd955yM/PR3j40LsiU6lp0MXwaBczgdJstmD+mrmYv2buxH4QzSgSiQTff/hq7C5v9elA4H7foIvyPrEGJdYkh+JQdRt2lLag1+aAXilFdqQeKplkSJKgpLwZ2avmoL68ATUl9agrafAYr8PSY8X29/YAAOQ6lc/JtNH2K4vNgcUxBp8GIm0xW3DXszehs7UL7S2dqMitRs7OfBQfKXN1ebCh8GAJWutMaK1vw6IfX+hTHXttDjR09sLmENDWY4Nc0n9aHmdQYnVyKPZVmvBVoRliEZBu1GJdRviw01EXlTZi3spM1JU3oq6kAbUldTB39MfSYXeg+FAZAECilMOQ5PuJT7ReAYVUgveP10IlE+PsVCM+za13v36gyjQk8e9Ns9mCH/35++hs7UJHaxcq86pxYmc+ig+XoabY2Uy/7FgFDn51DK11Jsz/4XnO+g7a3iw2B4JV/UnLwavZn/XrjSYhHM/uehxwnYSVHa9E4YESFBwoQU1xHVZccgouuWMdLrljHWx2B944VA1hmP1iuH1lvPUcbTZEjV6NU85b6L7QOVTRgmMNXTg9ORR5DZ1o7HK+P0glQ6hGjvggFYJVMqxJCsWmASeOpa1mzAnXQiYRwWoXEOY6eWnq8vx8tUyClUkhCNPI0dFjQ3mrGelGLarauvHXb/8PcJ2ElZ1wxrLwQAkqC2qw7PzF0yKZNhKVVoUl5y5wn5wfrWrFobqh2/vgdT3SfnN2WhjKWszYWuIc9N6glMKgGjkRLw7R4S/bHgVcsazIrUbBgRIU7C9GZX41Fp89f9hB/6cLlUaJxWdnu0/Oc2rasK/G+8QObT02bMhrQLBKhuUJwfg8r2HY/cnfeDq0ajy15RHA1WqpIrcKBa7tsiKvGtmr5iA0OmTY908HSrUCC8+c527Rll/fjt2V/RM7DI7f4Zr2YY85cM1ElxisRo/NjrQwDfZXjTxJRF+3UotSjj9981vA1dKmMq/G9X1ZjPKcKmSemupMYE1jCpUCC07PcrfCKm7swI5yk9dziZGOP/6eAw3WI5Hij5t+A7hiWVVQ6/6+LDtRgdSFSUiYBhfaI5Er5c5xqlytsMqbu7Bl0GQE3uI63HnbG4f6W/QM19DAG7MgwhNf/ApwtbSpLqx1H8dLj1cgcW4c0pcmj/O/nVhyhQxZKzKQtSID1zxwGapazfjadXPBW7xGOuaMZdvs28fb7cBjnz4IuGJZU1zv2i6LUXy0HDGpUchamTFZYRkTmVyGuaelY+5p6fjOfZegrr0bGwv6z736jielrWakG53dU0c6f/P1vHewNqsDv/vwfsDV3bK2pB4F+4tReKAExUfLEZlgxMKzfL/hPRWkMikyT01D5qlpuOrnF6Opswef5Xk2rhgczwpT94jHn7GcD0/krOBjNaMTak899RRuvfVW/OAHPwAAvPDCC/jss8/w8ssv44EHHpjq6nloGXQRMtrFzGikYhGWxBoQa1BBIhahpq0Heypbhwyc2NxlRaRuYmefo5nLny8lkWtgzYEX5X1OjQ/G8boOj4NMe48N35Z5n9lp384CHPnHF6N+pkwuxZzzho7vNpzR9qv8xk7MCdchQqtAfefIA7a2dllwUdCNsPcMH6O+Ka8BICQz1qc6NnX1Yn6U8y6zUirGwF32FFccC5v6W8Mdr+twt8LY6GVMjAN7i3Hwmc9G/VypTILMcxdALPGnS4XIfXC02gVIxWMbu6HTYselxpthGWFgXo9YZsR63d4auyyYH62HCECwWob2QS0pRlu/o31vNndZkebK3crkMqQtTkba4mScf+vQ+rb12iAMs1+MtK/4Us+5EVpkGLVQySTosTqQU9+BPFfiu9vqgNliHzKl/XDarA4khagRoVVAJhFhToQWVaYej5kVz8swYlup51hAFpsD1W09SApRo6CxC6lhGhQ1dSFoULJiTXII2nps+KawCRq5BOekGd2xdMddJkXqwiSkLkzC+pvP9qne01GbZWg3Gu/r2vt+o5CKoVfKkN/Y5e7ObOqxwTRgO74iOwp7K02oHNCqfWAiXSqTInl+ApLnJ2DdD/rHLZlpTMMkGMQiuC8ULXaHuxuTt/3Jl3gONvCYJ5FKkJSdgKTsBJx348yNZVtvfyy9xW+kYw4AJIWoYXMIOFTdhkUxBhyobvPo5nRFdhTyGzudx1W1DJ/lNsDUbfWMpUSCxKw4JGbF4dzvnz7R//KEMbli6e1cYmtJ87DHH1/OgUb6Xh8cy4Q5sUiYE4tzvrdmkv7zwDP1Dt0PvcW12WwZ8/WQ9+/L/liKxWJ36+Ozrp34GcMnysBYeovhifqOYc/VfNk2h93HuzxjGZvmnHX4zGtWTsJ/PTFaB+y3UrEIdocAAUCkVoH2Xtuo52/DGf38sr8skUjkbjF7xndmcCy7Pfdxb/Ec7fgz2vnwaPv4dDFjE2oWiwUHDhzAgw8+6H5OLBbjnHPOwa5du7y+p7e3F729/SurvX3ip73vYx7UdWi0i5nRrEwMgUMQ8HFOHQQBWJEQjGXxwUOmpu6ewql3afobafs4PTkUoRo5rHYHwjRytJqtQy7KT9Q7kz06hRSlLb7PkKgaML26SCSC2qCG1qCGNlgDQ5gehjAd1AY1FCo5RF7G4BiujgeqRt6vem0OHKtrx+JYAzbkjTyOm0gihipEi86a4ad7F4lECIkKgjEuDKHDtPzyVseiJjPWZYRDLAL2u8ai6otjSfPQOJa0mHFuuhESkQj2QQM6DIwlRM4WStogNbRBWhjCdNAb9VDrVVCqFUDUyN2YBtf1YFUbkkPVWJcRDolYhCO1Y//OVBn1IybURCIRgiODEB4XCmNalNck0In6DhQ3d2FdZjgcgoCdZa0eZYy2fkf73hz8PT2SbldCwFs9u612r3X3tZ6dvXZszG+E2WpHpE6Bs9PC0NxtQWOnxV1PXxNqZosdjV0WlLQMP5uTt0QtXGNOLYo2oLjJjIQgFT46UYclsUHu19UyCSJ0SmwuroZdENDea0N+Yycyw7V+xXKm8PY/eVv/OfUdXvebXpsDbd1WrEwKQUFjJ5q6LKO2XIFrHc42w20foWo5Fsc6Z9QTiYB9laZhvwvGEs/ZHktv8bPYBa/HnD6pYRqUNJtR2mLGKXFBiDOoUDFomJLUMA2+KWxCR68NfWNid8/iWHo7R7fYHV6PP76eA430vT4rvy+9bB/e4jqwBdBYroeGfO4sj6XXbdPm8HrM8ef83Os+PstjqXd1j7faHXA4gJ3lLcMeb0YTyPPLmWLw/+QtnqMdf/y5LuvTbXXAIQgQB2iChkCYsQm1pqYm2O12RER4XsRGREQgLy/P63ueeOIJPPLII5NUQ0+DL4IH8nYxszjWgIXRBq/LK6RixAer8Nbhanfm+1BNOy7JisS3pS0ezdAdJ+8kruSDkWZc8TZ7lbeLcoXM2eLJlwvDPgPHbRMEAV2mLnSZulBfPnRfSL1kGU5bnT3k+eHq2Ge4JEFufSfmhGsRF6RCXcfI08JnnJYGmdUGXYgW+mAtwmJDYYwLgzE2BGGxoQiJDIJU5vwafe9oDTq9xMBbHYuau1A0KHHWF0dvB91uqx1ikQgKqXjI6x5j4Amu8ZTazKgvH9p8OvG8xVh15sIhz49U18FJ+oEGf0+9c7QGtmG2qbSlKZBmxUIXrIWuL5axIe54hkQFu2P54fFa56DXXra3gsYuFDQOf3I43Pr15XvTl1kz+/R9pw9Xz5ESWCPVE4DHxWxdRy9q2noQqVO4E2r+fK+PdOwZTW17L1YkSDA/Wo/GLsuQgY7VcglsDofHBVGXa6y02Xjs8fY/Dbf+h9tvvshvwLxIPRZGG6BXStHeY8PeylbUtg/fYnZWxnKYfa2xyzLku7vFbB12f/I3nhM9zMZUGLh9eIsfhjnmwDXeWrhWgd3lrbA5BFSYupEWphmSUMtv6ES7q5VM38fNylh6+acGxtPb8cfXc6CRvtcdgZlgeVoZ7djjbTsd7rzNH7NyuxwmlgPj5e2Y48/5ubd9fHBrotlgYCxbzFZ8mlPv8fpwx/Q+3s57JWLR6OeXgvN6J1CzdE4Hg7cPb/HECMefPv5cl/URBC8DWU6hGZtQG4sHH3wQ9957r/vv9vZ2xMVNzpgEEpEINj9Oig9WtXmdlAAAtHIpxCIRrsiOHvI+lUziccE9nbK3NP1IxtiFb6Be14w4GrkEHb2+JdUc1tEHPe5jt/i+rE/lCQIO17RjcYwBX+SN3O3zof/eA53Ct69J8Thj2RdHtUwyJDGnkkngEASvU8n7E0t/lvWFt++p4dz/77uGdBccjmQc31vDrV9fvjf92R/GU8eR6glXq6esCB20CglEEEEiFnlsE/589njrWdzchflReo/B4fuYLXZIxWIopGL3tqmRO/eX2XjsCcT/1GNzYH+VCfurnLMwzo/S48yUMLx7tNZjwPOBxrsOp6NAHHswhnhyu/SUFqZFi9niHhC6uKkL56QboR50Luntgny8x7zpaCzbpa/nQCN9rwdqf5hOpup/4j7ez5/zc2/7+Kw89ozzf/J23mtQykY9vxSLMKuSaQAgCdC/4891WZ/p9pU5YxNqYWFhkEgkqK/3zITW19cjMtL7IKgKhQIKxdQMgqyRS3yaOckXXRYbHIKAt4/WjNjCCAA0Cv9mcKSTi0Y++mC5o2nvtaGj14bEEDWO1Y7eLBoAVq1fhCvPngtBEFw/ztsNgiA47xALAqRyKWQKGbrlMuSMq4ZDFTV1IStCh5Qw9bDLiETO5JavtHLpkDG9/NHea0Nnrw1JoUPjmBSiRkNnr9c7vqedPQ+XrfqtT7HslctwfMw1HB9fuygCgEYhRYsf02oP5m39+vK9qfGrjuP/bvVWT41cglVJIfiqoBF1Hb0QAJyZMmhacj9j6c84IIPl1HeivqMXdV7GtjBb7ajv6MXiGAP2Vpiglkvcg/pq/ajjTKGVSwH4drLnC4vdgcM1bciKdF5kt5i9J9Rm43G8L/EaSL7EU8tYuolEQHKoGjKxCFcv6L8QFItESAnzPA55+8b053tophhLLH05Bxrte302xlI7Afu4b587C2Pp443dwfw5Pz9p9vExxnIkvpxfTtX+MJEC+T/5cl3WRyOXTLvk5Ixdu3K5HEuWLMHXX3+NSy+9FHDNQPL111/jrrvumurqDRGqkQcsodZjc6DS1I1l8UE4UNWGXpsDSqkY4VrFkGb6oerpNa0sTS+hajkaOsc/uOPeilasSQ6F1S6gtNmMXrsDeoUU8yJ1OFLbPiRplxgbjIz4kcfz6mO1O5AzYLanQBBc41AsTxh+2nSV4AAcDkAsgc1qw1O3voD8fUVIyIpD+uJkpC1x/vRNYx+ilqGm3bemysPZV2nCqqQQdFsdKGsxQyQCMoxaJIWo8WWB964QcVFByEp0jqR/dFsOnvvJy1BqlR51jM+MgUQqgd0h4MShKkx2DzKl4IDE9aF2ux1/ve2fOLEzD/FzYp0D/y9JRvqSZBjC9ACAULXMYwBSf3lbv758byqs/Um83D2F+OvtL0KudE1OsCQF6UuSkTA3FhKpBAalDBLXAKyBrGffYMI9NgcEADEGJaL1ShS4JqrQyCVQuhK9DocDf/vxyzi8+TjiM6PddUxbkowg19h6oWoZhpkbxCcWuwO1HcMnkbaXNmNFYgiuXhiNjh4bSprNSApVe8RyJhAEAS/c+yr2bTyMuIxoj+0yOMI5blyoRoaicQzvI5eIkBWhQ3GLGR09NojFzr97bPYRk/EKy8yKJQC89OB/8e1H+xCTFon0xSnu76LQKOe2HqqRAePs3TWWeM7EWL7227ex5e2diE6J8NguQ6NDIBKJEKr2reXvYHEGFeQSMT7OqYNlQOvnzHAt0kK1o16AKyzWGdeF6c0nPsCm17ciMincfYxMX5qCsJjxxXK0c6DRvtcV1pkXy3ef+gSf/+trRCSEuY+RGUuTYYwLc44vO8ZYjtdMjOVHz32Bj5//AsY4Zyz7juMRCcZxx9Lf8/OBlLaZF8vP//U13vvLJwiLCfE4d4tMCnft44G/Lvbl/FJps824WG56fSve+sOHCI4M8rimiE6JdG6XmsDF0pfrsj4h0zC3IRKEmTs4x1tvvYUbbrgB//jHP3Dqqafi6aefxttvv428vLwhY6t5097eDoPBgLa2Nuj1+gmta259B/YOGohvOMNND33D0jh8fKIOrd1WSMUiLIw2ID5YBYVUjB6rHWUtZhwaMA29YHdA+Hw3Vl68FGmLk2fUTkzjZ7fb8cR1f8W+DYcRGhOCmFTnjDJRKRGISgpHdFokLKFBI46R5Y9wrRzzo/QwapytQDstzovr3IaOIWNavLv+YWiUMpx2wWLMPz0L89fMQVjM8Am2D4/Xjjsh7W2/Oj8zHEatAu8erRlyUlH44W4ce/YTZK3MQFxmDN5/2vtMmmq9CsbYUNz25r04EYDGK9F6JeZH6RGilkEA0NjZi0PV7cPOavPBJY9CDgHLz1+CspxK5OwqGLKMVCaBNliLNVeehsQ7LkSLefwXlf5MY1/6xQEc/ON7mLsiA0nZ8Xj3z594XU6ukiMkMgg/efcXyLH7d2fUl/U72vfmx1f/Hnq5BNmr56KqsAbHtuUO+RyJTAJtkAbLL16KOfde7nfrL1/quTBajwyjFiKRCJWmbkjEInRb7dhXaUJ8kApnpjoTqK31Jlwd5WUKUgAyhRTBEUG4++2fI1c8eScf8yJ1iNIr8dNlD0Bpt2P+6jnIXjMX2WvmIDIxfNoeh7razbg06AavrylUcoREB+P2f9+FAqVmzJ8hFYuwLD4YETqFc7Yrh4AWsxWHatrQ5NqOvM1otfGWZyDt7Eb2mjnIXj0X89fMQVRyxLSNpdVixfnKa72+ptQoEBwRhB+9eBuK9N7HifWVL/Ec7Ku7XoBQ34r5p89FtmvbjEmNnLaxFAQB6+TXwOGl+6pSo4DBqMetf7sVZeFhfpd9dloYeqyOIbNxK6RiXDk/Cl8XNqGuo9frNgkAW372EnrL6jB/TX8s4zKip20sAeBi/fXo7hx640upUcAQpsPNf/kBKmKjxlT2aOdAI32vb//la+jKrfDYx+PnxE7rWF4VeQtMDW1DnleoFdCHanHjH76H2tSEgHzWcOcb3rbNnY+8CdPBIsx3xTJ7zRwkzI2FWOzPDOeT63tJd3gdQ1ihkkMfqsO1j1yNluw0r63IfDHatjncPr7nD++iaccJ5zF89RzMXzMXifPipnUsb5p7Dyrzht6El6vk0Ido8Z0HL0PHsqwxjbU30nnvaOeXB57+CLWbDmHe6jnuWCbNj4dEMn1bAd6+5D4UHSod8rxcKYMuRIsr7r0IljMWDTt28mh8OR/2tm0uijZgfvTE5m38NaMTagDwt7/9DU8++STq6uqwcOFCPPPMM1i2bJlP753MhFpnrw3vH6sd85fhWFRuPY6tv3gZABAeH4YVl5yCVZctw7xVmZBIp+8OTIHR3tKBK8JuGnGZ069bg8R7LhvXwOX+ajhcgi9/+Lchz0cmhSNlQQJi0qIRmx6F2HTn76BwAw7VtOPYOGaYHIuvf/Iiand7n+DEm+wz52HJkzeP+cAyFs25ldhww1/8es+juc8iv2NyW2lsve/fqNxyzOflNSFafGfTY8OOKTURTCV1+PSaP/r1nt8e+QuKeif3ELo6KQTJoc6kTndXDy7WXT/i8mKpBDft/fOQCQUCJUQtg80hoL3HhhC1DGenGrEnpwaPL/kZBjeFNMaGImVhImLS+vfv2PQod0ubqdTbY8GF6utGXEYkFuGHB58edzd5f3TVm/DhpY9BGLQvhEYHI3VREmLTohDjimVMWhTCYkKm/GLH0mvBJYYbYBth/Eu5So5bdv/JPQj2ZOhp7cT7Fz4Cx6CJXUIig5C6OAmxadGubdP5ExYbOuWxtFqsuCXrXtQU1w27THCEAd/76jH3OGiTwdLRjfcueAT2Hs/EZZBRj7QlyYP28WgY46Y+ljarDbcvvg9lJyqHXUYXosXN238/bEJ2QurV3Yv3LngE1kGJPkOYDmlLkp3bpWv/jk2PQnh82JRfhNttdvxkxUMo2F887DIqnQp37v0T6kZo4RzwellseP/CR9Br8hwAXReidcXSc7sMT5gesfz5Wb/F8R3Dn28qVHLcc+hpVI+zF4Q/HDY7PrjkMXQ3eiZNtUEapC9NHnKuHpFgnPJrS7vdjl+ufxwHvzo67DJSuRT3HX92SI+uiSQ4HPjo8sfRWeN580KtVyF9aQri0qMRmx6NmLRIxKRHIzLR6J6ka6rY7Xb89vInsfuTA8MuI5aI8av850edhCvQLsmK9HlM5skyY7t89rnrrrumZRfPwbQKKWKDlKg0Td6XYeF7O92PGyqa8OGzG/DhsxugD9Vh+UVLseKSU7DgjLnQGMZ+x52mL12wFlHJEagtGTrjSp/c7Tk483fXjTj7SqAVvPut1+frShtQVzp0ymS1ToWkZWlY+NgNEE3SKJSW5nbYahohkUlg93Gq69LDpYjbmYuQ0zInvH59hovlSN64/QUsfuIHEEkm5+LG2tYFS1kdpDIJbD7GsqulE7VbjiJ09bwJr1+f1j150AZp0GnyfV944/YXsPTJmyGepBMfoceC//30JdQX16OurBEtta2jvsdhsyPdqMXRCUpIK6USnJYQDJVUjB6bAwVNnSg/UorsVZnI21MI64CkSmNVMxqrhvaZVKoViE6LdJ6Yuy54YtKjEJsWBX2oLiD1tPRa0VDRhPqyBtSXNaKurAH15Y2oK2tEfVkDWmpHb0EuOASkh2k8WoJPNHVrO7JXZSJ3dyGsvf0Jk+aaVjTXtGLPoOUVKjli0qLc8RuY2NCH6gKSuLRa+mLZHz9nLJ2xba5pxWj3ai3dFqSFqXGgevJiqWxuw/xVmcjZVQBLT38sW+pM2Pv5IezFIY/l5UqZM5ZpUR6Jy9j0KBjC9AGLZVNVizt2fdtl3+Pm6pZRZx+et2oOMsK12F0++vdBoMibTJi/MgM5O/PR292ffDI1tmPfF4ex74vDHsvLFDLEpEa6t0vnxWOU+6ZZIGJps9rQWNU87HbZVNU8aiznLEtDplGLHV2BabnvC1lTG7KXpyNnZz56uvqTT21NHdi/8Qj2bzziubxciujUSGcSPdVzuwyOCApILO02+4BYurbNcufv+rJGNFY1e201OVD6kmRkGLWTmlCTNZkw/7Q0HN+R59ESsaOlEwc3HcXBTZ6JFplciqiUCPc+7j72pEcjJDJwsWyq7t/HPWPZgIbK0WOZPD8BGeHaSU2oSZvbkX1KMo7vyIO5vT/51GnqwsGvjuHgV543SaUyCaKSI1z7eP9NnkDeNLPb7WiubnHt3/3bZn15A+rKGtFY2Qy7beTzzIQ5scgM105qQk3S2oF5i5NwrKsHXW39ySdzezcOf3Mch7/xHN1YIpUgKjncuT2mRg7Yx6MRGh0ckJsTdrsdzTWtnnEsa0Cd6/jTUNE0aixj0qKQEa6d1IRapE4x7ZJpmA0t1MZjMluoAUBte8+w4yAFml4pxZpQBXZ/cgDffrgXh74+5vViViwWIW1JMhacMQ8Lz5qHeasyodIoJ6WOFHiCIKA8pwqHNx/Hrk/249BXx4a9sJHKpXh8w0OIPzUdn+YOn3QLJKVUhJK/fIDt7+yCtce/u+mrn7gBCWcvmLC6DbT/qQ+R979tfr/PkBSBC974BcSTkKzqae3EBxc/Cnuv/60SVvz2WiSfv3RC6jXYoec+w4lXv/b7fdqYUFz8zgMQT8IdT0tHNz64+Hewdvl/4r/sgauQdvnyCanXYEf/9SWOvviFX+8JiQrCy6V/x/vHasfUxcFfUrEIV2RHQSmToLe7F3l7i3BsWy6Obc9Bzq4CjwtGX+hCtIhOiYBCrYBEKoFEKnb99nwsloghkTj/FkslkEjEaG/p8EiYjfd0R6qQ4v32/+C9Y7XjGjvPVxKRCJdnR0Etl8DSa0XBviIc3ZaLo9tykLMz32vXtZHogjWISomEUuM9lmLJgL8HxbKjtdOvhNlo0pem4Kmdj+O9ozWwTkIsxSLgsnlR0CqksPRaUXigBMe25eDo9lyc+NbzgtEXGoMa0amRUGmVHrHsj+EwsZSK0Wnq8ithNpIrf3YRfvjH62FzCHjvaC16J6FVrwjAJfMiYVDKYLVYUXiw1L2PH9+R53HB6Au1XoWY1EiodKoBMfS+nw+OZVeb2a+E2UguvvM83PXMzXAIwLtHayasVe9gF82NQIhaDpvVhqJDzlge3Z6DEzvy0NHq381OtU7l3C51Su/xGymW7Wa/EmYjWXfzWfjpP34EQIT3j9dOWqvevu5idpsdRYfLcGxbDo5tz8XxHXlob/Zt0qw+Kq0S0amRUOtV/sVSIoa5s9uvhNlIzrp2Ne579U6IxGJ8eLwOHZPUqve8DCMidUrY7XaUHq3A0b5Ybs+FqdG/GyFKjQLRqZHQGNQ+xXLgsai7s8evhNlIVl+xDL984x5IpBJ8fKIOpgCNbT6ac9LCEGNQwW63o+x4pXsfP7Yt12u36ZEo1a5YBo0cS+c5kedrPV09fiXMRrLsgsV4+L2fQyqT4rPcejQHYCgZX5yZEor44NEnLphsTKhNYkINALaVNKN0EjK5fV+EfbraurDns4PY8eFe7NtwaNiLGolUgsxlqVjoSrDNXZ4OuXL6Df5HTg6HA+U5VTiy5YTzYLc1x6cDnS5Eiye/fhgpCxIBALvLW5HfOPpYWON1ZkoY4oNVAIDGqiY8/aMXceCroz61AlNHBOHCN++DXDuxCd+WvCps+MHTEOwO5wCm0cGISDRCrVdj3wbPFgwyhRTzVs2Bud2MqoJadLWZsejHFyLr+rMmtI4AsP2h11C+6bC7HlKZFD1dvT5d6KpCdbjwf/dDYZjYg5KppA6fX//nIV2shiMSixCXEYOW2lZ0mrow/9bzMP/W8ya0jgCw83dvouTTfYCrhU9EohERieGoKapDdWGtx7IRiUbEpUejpqQedaUNkGlVuPB/90EVoJZUw+mobMKn1z7pVwI1KTseLx75MwDgWG07Dlb7d+I2Fsvig5AZ7j0WDocDzTWtqCqoQVVBLaoLalBVWIvqwlrUljSM6+RuommD1Hi7/l+QyWTIqe/APh/HRB2PpbEGZEV6PzcRBAHNNS2oKqh1/dSguqgW1QW1qCmun7JYyuRSj1aJ3pyyfhEe/eh+SKQSFDR2YtcktKxaGK3HgmjvY7YJgoDm2lZUFzi3xSrXdllVUIva4jqfW9YGWpBRj4hEI8JiQ7Hro30eySKxWIS7X/gRzr/lbPdzxc1dARsTdSTZkTosjg3y+pogCGitN7m3y4H7eE1R3ajbxkQxhOkQkRgOY1wodn96wOOcQyQS4Y6//gCX3rXe/VxZixlbS8YxA4mP5oRrcWq890G4BUGAqaGtf/8urHXGsqAW1UV1Hi1WJ5M+VOc8RsaHYc/nh4bU44dPfh9X/ewi999Vpm58XdQ04fVKN2qwPCHE62uCIMDU2O7av/u3S2dcpy6WuhAtIhONCE8w4sDGI+gxe16b3fjoNbj2l5e7W3dNVsOMlFA1ViV5H9dYEAS0N3e4t8uqglpUFzrjWF1Y69FidTLpgjUITzAiIiEMhzefGHKT5NpfXo4bH73GHcuGjl5syB/aKybQEoJVOCNl+DEunbHsi2Nt/3ZZMHWxVOtViEwKR2RiOI5tz0VHi+f14ZX3XoRb//g9d0u55i4LPsutn/BhrWINSpyVGjblQ4R4w4TaJCfUemx2fHS8bkLvfGWGa7FsmAM0APR297qa6x7F4c3HUXZ8+PEkZAoZslakY+GZ2VhwZhYyTkmBTD79mlqeLDwSaFtP4OjWHLQ1DX/XLTw+DOaObnQOuMupC9bgj18/jNSFSe7nrHYHPj5Rh84JvIuYHKLG6mTvB+iiI6V4/u5/I2dnPuwj7BuplyzDaQ99Z8LqKDgcCCmoQGykARGJRhjjwiBXOLd3h8OBqyNvccc7JCoYj3/+S3dSsu+ErbKwFkcFGewTmIgWN7QirqsLUYlGRCQaPbofvfLw//DfR98btYzE8xZj1aPfm7A6OuwObLz5GTTnVAx5LSQqCK31bRAGXCDKlTL8fuOvkb16jvuEraKgFkftEthUigmrp7ipDXHt7Yh0JdGCjP2x3PTaVvzxxv7x/s678Uzc848fuse2sFqsqC9rRG55C2qCxzfA+kgEhwNf3vYcGg8PHRx2OLHpUXgp52n3CY9DEPB5bsOwk1sEQqROgbXpxjGd7NisNtSVNTovdNwJojpUFdSgsXJ8F7YhkUGISDRCG6RBbUk96ssbYfXjLr9Kp8Q79f+CQuncDgVBwBf5jWjonLiuTEaNHOsywyEeQyztNjvqyhr6T9BdFzxVBbVoqBjfhW1whAERieGITDTCYNSjs7ULFfnVKDlcNuJ3d59FZ2fjsU8ecN+oEwQBmwoaR5xJdrxC1DJckBkB8RiGDLDb7GioaHJf8PQl22oKa1Ff3jSulnpB4QZEJIQ545ng/P6JSDS6L7AH9hb4xdm/xeHNJwBX0v+h//0Uyy/ybGUsCAK+KWpCVdvEdQsLUkpx4dxISMYSS3tfLGv7k5eu7bK+rHFcsexLmEUkGt2x7PtOj0gIg0qrci/70IWPY+/nzptjMoUMD7z+Y6y5cmgr463FTShrnbhuYTqFFBfPjYB0DC3a7XY7Giub3fu3O+FWUIv6soZxtdTrS5hFJhoRkdC3TTp/RyQYodb1x/J3V/0J299zdjyXyiT4+ct34uzrVg8pc0dpM4qbJ64xgUYuwSVZkZCNIZYOhwNNVc0eNyf6ksB1pQ3jal3WlzBzbof9cezbxzX6/puaf7jhWXz1urNnhFgixk//8SOsu2nozdld5S0oaJy4YVpUMjEuyYqCQjrGWFa3uJOW/QmiWtSW1I8vlsGaIfu4e9tMCPMYvujpH/0Dn/3zK8CVML/r2Ztx8R1Db87uq2xFTv3ENSZQSMW4NCvSPTO7P/puQA7dx2vGfQNSG6QZso9HJBjd8dQG9cfy+Xv+jQ+e+dz994/+9H1cee9FQ8o8WN02oWNdyyUiXJLlbLE/HTGhNskJNQCo6+jBpoLGCel+E66V49w0o18H6NaGNhzdcgKHvjmOI1uOo6qgdthllRoF5q3KxMIzs7HwrHlIXZQ45QN6zmb+JtA0BjWy18zBgtOzsPCseUhZkIhXH34L/33MmWDRBWvwx68eRuqipCHvbe6yYGN+w4R0vwlWybAuIxzyUQ7QgiAgf18RXvn1/3B0W47Xi97lv74GKRedGvA6AsDyhGCkG7XDvv7vX72JNx5/H/FzYvB/n/0SkYnhXpdrNVvw6bFaOCag66dBKcW6zHAoh+kKaWpsw63z7kVbUwcu+NE5qC9vwpHNxz3GDOpzyn1XIOPKlQGvIwDs+9P7yH97B+DqOjFvVSbmn56FRWfNQ9qSZPz64j9g7+cHAdcA5U9seAjz18wdUk5bjxUb8hrQOwE3IXQKKdZnhkM1zMlOR2snbpl3L1rrTPjug5d53N0cbCJPzA7+7VPkvPbNkOdDo4Nx1nWrse3tnagv70+URCQY8Vrx34aMs9HRa8OGvHp0WwMfS41cgvWZ4dDIAz+enN1md/7YHXDY7LDbHP3PDXjssDvcf9usdmgMalQX1OC9v36GnJ35IybRxBIx0hYnob2lE7XF/V3g5UoZ3q7/JzQ6z7FGuyw2bMhrmJCuTGqZM5ZaxQTE0t4fs+Fi6Yyj3SOWar0KEQlGdLZ2YscHe/HtB3twdGuO1wv3sJgQnHnNSpga27Hpta3u5+ecloY/fPlrj+QGAJgtdmzIq5+QGzpKqRjrM8OhVwb+RuBoseyP46BY6pRDEmaj2fr2Tjx2zV8QZNTjkY/ux9zT0r0u12O1Y0New4RM9qCQiLEuM3xCxq8ZKZYD9+vBsVRplUMSZqPZ+fE+PHzpH6EL0eK37//C63EHAHptDnyR3wDTBEz2IJOIsC4jHCHqwN94GzaWo3x/KtSKIQmz0RzYdAQPnPcY1HoVfvPOz7DkXO/DcljsDmzMbwjIDOODScUirE03wqgN/I03h8MBm9XuGUv76Pu8XCkbkjAbzbHtufjZGQ9DqVHgoTfvwbILlnhdzmp3YFNBo98zjPtCIhbh3DQjInSTEMsB+/VI+7xMIRuSMBtN/r4i/GTFQ5ArZLjvtR9j9eXeJyu0O5w3dOon4OaYWASck2ZElD7wvWr6YuntGDPSPi+VSxGRYPRImI2m5Gg57jzlfojEYvz85Ttw1ndXeV3O7hDwdVEjatsDH0uRCDgrNQyxBt+/myYbE2pTkFADgOq2bmwubg7oOCxGjRznpBlHTVqMpqm6GYc3n3AOlLj5uNepnPuo9SqkLExE0rx4JM6LR1J2PBKz4vzaWalfd2c3KnKrkbun0O8E2oIzspC8IGFIgrOlrhU/P/O3sNvs+NVb9yJtcfKw5TV09OKrokZY7YHbLoNVMizRyRAd5/+gpGU5lfjPI+9gz+cH3d2URRIxVvzmu0ha7/1kY6xOjQvCnIiRu+0JgoCa4jpEJoaPOJtReW4VfnPDc1j5xI0B7VZpUEpxbrpx1KSFuaMb5nYzwmL6WwRW5lfjP4++i12f7Ed3h6sFg0iE0355FVIvOS1gdQSAY//YAHl1I+a7tsu0xUlDZizqNHXinlW/RlebGQ/85ydYcHrWsOW1mC3YVNAY0Ja9OoUUa9ONoyYturt60NHSifC44Zvsw7Vt7KkwBbzr9JEXv8Cxf30JuLrEJmXHY+0NZ+Ci29a6W/nUlNTihtSfAABCo0Pwn7LnIJV6/79M3VZ8WdAQ0KSaRi7B2vRw6JVTP89Rj7kHX72+HZ/+40uUHqsY8Y64RCbBnFPTcP3DV2LhWdkQi8UwNZpwVcStgGucyTeq/oHgMO/nB209VmwqaAxoUk0tk2BtuhGGaTTobm1JPba/txs7PtiD3N2FXpcJiwnBqsuWYdXlyzBvdSYkEgnsdjtunnMPqovqkJQdjz9veQS6YO83LDp6bfiyoAGdvYGLpVIqxtp0I4InIGkxFRoqGqEP00OpHvlit8tiw5f5jQFNqimkYpybZkSoZpbEsrIJuhDtqElNs8WOTQUNAR1rSS4R4ew0I8InIAE0FZqqm6HWq0dNxPVY7dhU0IiWACYoZWIRzkoL8xjiZiZrrm2FUi0fNXnUa3Pgq8LGgM5GKxWLcGZKGKINsyOWrfUmSOXSYY85fSx2B74ubApoi3OJSIQzUkIRGzR9E0D+MDW2QSwWjzpJlNXuwOaipoC2OBeLgDXJoUiYhuOmDcSE2hQl1ACgsbMX20tbAjLAZEqoGsvig8fU3Hk0taX1OLL5BA5vdibYmmtGH+/EGBfqTLD1JdnmxSF+Tqy7+9zJrqO1ExW51SjPqUJFTiUq8pyPR+uO40sCbTgOh8OnmWFazBZsL20JyF3ZhGAVvrjnnzjw2UGodErc+ofvYe0NZ0Axhi58taX1eOsPH2LrO7vQaTIj++ZzkX3TueMetF4uEWF5QggSQwLzZd3VbsaPlz2Iyvwa6BPDsf5vt0EW7n28GX/EGpRYmRgypqbjgzVUNOLtJz/CN29+i46WTmR9/yzM/9E6SMY7W6XVhhSJA8sXJ/o8fbqv22V7jxXbSloC0mUxRq/EyqSQYVumjZUgCMip78TBatO4WyBbOnuw/6kPULnpEOYsS8eFt6/F6VctHzZW1cW1yN9dhDO+u3LUeHb02rC9pDkgd7gjdQqsSgqZkJZpvnA4HNjz+SF8+epmHNlyAh3NIyc05UoZFp8zH9f+6gpknpLqNcmfs6sA37y5Azc/8V2oNCOfEHdZbNhR2hKQmezCtQqsTgqZkJZp/uib3GbH+3uw/f3dKDlS7nW56JQIrLr8NKy+YhnSl6Z43e6aa1txfHsuTr1gsU/Jix1lzQG5w23UyLEqKXRaJHmnQrfVjp1lLQHp/hmqlmF1cigME9DKbybotdnxbVkrKgMwK2CwSobVySEIVs2OxKS/LDYHdpW3BKQrrUEpxZrk0Alp5TcTWO0O7K5oRUkAutLqFVKsTg5BmGZ2JHn9ZbM7sLfShMKm8Xel1SokWJ0UOmsS5v6yOwTsqwzMzWWNXIJVSSEzImHOhNoUJtTg2okPVrcht2FsG55aJsHyhOBJy4ILgoCqghpnC7bNx3Hi2zyfEmxwdamJSYtCUna8q0VbHJKy4xGZFD4ru432jalVkVOFitwqlOdUoTy3ChU5VWip821Aa41Bjfmnz3Un0JLmx09KrOwOAUdq23G8rh1j+YZQSMU4LT4YiSFqXBZyIzpN/QepIKMeF9+xDhfdsRZBxrGNO9VU3YyPnt+IXVtykHXnhQhJjxlTORWbj2LfH99HSIjG3brSmQCOR0xqpM9JoT6CIOCRK/+Ebz/YC7imOn9qx6MoarfgaG37mJIscokYp8YHITlEHbCBONubO5zJ3Nwq5O8rxqFvjqFHIsHyX30HoXPjx1Rm1Y4T2Pv7dxGkU7pjmDQvHonZ8YhNi/I7lt44BAEn6jpwuKZtTLGUSUQ4JS4IqaGawMWypQMVudWoyHHu4xV5VWhq60bGLefBOH9o12pf1B8oQs/OE7j05jMxf83wLffGwyEIyK3vxKGatjG1lJaKRVgaG4R0Y+Bi6auiw6X49IUvcfCro6gra/QYi88btV6FlZeeiqt/cQkS5sYGvL6CICC/sRMHqtpgG2MsF8cYkBmunbLBdgVBQMGBEux4fw92vL972KEfkrLj3S3RkrLjJySWhU1d2F9lGlNLaYlIhIUxesyN0I1p/LnZRBAEFDebsa+yFZYxxFIsAhZEGTAvUjem8edmE0EQUNpixt5K05iGHxCJgPmRemRH6cc0/txsU9Zixp6K1jG1OhcByIrUYWG0gbEEUGHqxu7yljG1OhcBmBOhxaIYA6Q+3Nic7arburGzrBXmMU5EkxmuxeIYw4Q0bplpatt7sLOsZcxDOaSHabAkLgjyGRJLJtSmOKHWp6PXhoLGThQ2dfl0sA7TyJFp1CIxRD3lB5T2lg6UHa9E6bEKlB2vQOnxCpQdr/R56nSFSo7wBCNCIoMQHGFAULgBwRFB/X+7HgeF66fNhAg2qw0dLZ1oa+pAW1M72ps70d7UjramDjSUN7pbnPkzTbfGoEb8nBgkzIlFUnYC5p8+d9ISaMPpsthQ0NiFgsZOn058glUyZIZrkRSidh9QfnXRE9jz2cEhy8qVMqy76Sz88Mnrx9RirU9rgwnffHUCFd02BGcnQjTKSYGtx4KyjQdR8N5OtORVDbucTCFDZKIRQRHO7TE43IDgyCDn4wiDx/bZ1/LynT9/ghd/8RrgGvTzuX2/R3RKJOBqfVHY1In8xi50+3CwDlJKkRGuQ0qo2ueDs91mR3tLJ9qbO9Det202daCtqQONlU3u7XLYabpFIkQtS0f6FSsRs2ouxKN8rr3XirJNh1Dw7k6vkw/0kcmliEg0IjgiCEERBoRE9McxyB1L59++zCrcbbWjsMm5XfrS3c6glCLDqEVKqMbnLvF2u929j3c0d7j29Q60N7WjsaoZFblVqMitHjE5HnlKGtKvWInYNVmjtqR0WG2wltVjxYJYZM2JmbTESo/VjqKmLuQ3dvp04qNXSJFu1CI1TDOmQYvHoqmmBZ/9YxN2fbIfFblVPk0oYAjT4dwbTsdFt53n3gcnWq/NjqImM/IbO31qea5VSJDhiuVwYyJOJEuPBce/zceeTw9gxwd7hm0hnXFKClZdfhpWXXYqYtOjJ6duNgeKmruQ39DpU9dFjbw/loFueTrTWewOlDR3Ia+hE20+dF1UyyRIN2qQbtQyloNY7Q6UtJiR39CJVh9a8atkYqSHaZFm1ExZK97pymp3oNQVS1+6gSqlYqQZtUgP00x5K97pxuZwoKylG3kNnT614ldIxUgL0yDDqGUsB7E7BJS1OrdLX1rxKyRipIZpkG7UTMhYnTOZ3SGgwuTcLn3pUiuTiJAaqkFGuHbGtYhmQm2aJNT62B0Cms0WNHdZ0Gy2oNfmgENwDhSpV0gRqpEjVC2f9t0YBEFAY1Vzf6LtRAVKj1WgIrd6XNNT64I17gTb4OSbWq+CSCyGWCyCSCyCWCx2/RYBIpHr+ZFft/ba0N7cf+Hc1tSBtmZnUqL/+Q6PFlf+MoTpED83FglzYhE/JxYJc2MRPzcWoVHB03IqYABw9G2XZitazBY01Lchd28R7BYrIsMNOPP8hQhzbZeD/4eNr2zGn256ftiyf/DYd3HtLy8PSD0bmzqwe0c+CgrrYIYIEoUMcAiwdPWgtaAaLXlVaM6pgLUrsINmagxqaIM0aKhodLfoO+f6NchePRfaILXHdicSi9Erk6JXLkePTAq7WAxBJIIYgBwOaAQBGjigAiB2bZ82iw3tzZ1oc22T7a4kbt+22fdcR+vYt0tdsMZjuwxJikBTZy8q60zocgASpRxwCLB29aC1sAbNeVVoPlEBa1dgZ5RT61XuBNvg5JsmSAOxxDOWFpkUPXIZemSyQbEUoBEc0AgOqEQDYmm1D0g4DtrPByTGO1u7xjXr3ECKIA3CsuIRkhmHoJRISFUKSOUSaNQKxMcEY9HSJBi1yklLUHnjEAS0dlvdxx6zxe469gBqmRShGhlC1XIEq2QT/j1VerwCm9/YgUObj6EipxrmDt+6ByVkxeKCW87F6iuXeYwfONmEvliaLWjusqLLYoNDcLb40cglCFXLEaqZnFgOrldFbhUOfHkU+788jKNbc9DbPfSCQSQSYd7qTKy+/DSsvPQUhMcbJ62OgwmCAFO3Fc1mZzy7LDbYHc5YqvtiqZYjWC076VukjUYQBLT12NDcZUHToFiqZBL3+WUIYzkqdyxd5+udFjvsDsEdyxC1HKFq53fmyd66bzSCIKC91+Y+9nT09sdSKZO44xiilk95A4KZoL3HiqYu5/l6R6+tP5ZSCUJcx/FQxtInHb02Zyy7LGgfEEuFVOyOY6iGsfRFZ18szRa09zhjKXLFMsQdS9mMbSnJhNo0S6jNdnabHdVFdc6WbMcqUHaiEmXHK9BU3eIedH62CI0OdibLMp0Js4S5sYifEzPmbo7TSV1ZA65PvhMAsPrK0/Cbt3827LKV+dW4ac49w77+yAf3YcUlpwS8jt2d3dj3xWHs23AIuz7ZP+LkDoOJxCJIpBIIggD7GJt+T1fBEQYkzI1FXKZzm+z7CQo3DHtx32Puxf6Nh7H380PY/el+tNYP08LNC3csHcK4pvmejmSuO7tWiw0Y5Uiq0iqRuigJp1+1HOfeeAbUfsxKN5v1mHuw7d092P3JfhTsL0ZTdTPsPnYDEotFWHj2PJxx9UqsuOQUGIaZPOBk1t7cgYNfHcWBL4/gwKajaKxq9rqcRCrBorPnYfXlp2H5xUsRHDH+cR+JiIiIZjsm1JhQmza6u3pgqm9DS50JrfUmtNa3uf5uRWtDG1rr29Dqem2qkm+6YA30YXoYwnTQh+qgD9PBEKrzeC44MgjxmTGzeqZTq8WK85XXAgDmnJaGZ3Y+PuyygiDgCuNN6GjxHCdQLBXjvn/fhbOvWz3h9RUEAWUnKrF/4xHs++IQjm7N8Su5IxKJoAvRICIhHNGpkQiNCoLVYoepwYSWOhNKj1fC7GMX54mgDdJAH6rt3w7DdDCE6qEP1bn/Do4IQlxG9Kiz9IxGEARU5FXjwMYj2LfxEA5/cxw2P5KOIhGgDdYiItGI6OQIhMWGwmaxufd5548J5vbxD1o8FhqD2hUzPfShWhjC9LDb7KivaEJjRRNMDW2w9IzeylYqlyI+MwbLLlyMC3947pS28plOig6X4ps3duDo1hOozK/xez0HRxqw7PwlWLp2AZaet2DU2dBONjarDbm7C7F/42Ec2HQEBftLhm1pGRodjCVrF2DJuQtwyrqFo86GRkRERESemFBjQm1G6u7s9rj4bq1zJtkEQYDDIUBwCHA4HBAGPhb6HgsQXK+5HwvO2eIkUgkMA5MSYXro+5JnIdqADKw+W1wVeQtMDW0wxobijYoXRlz2oQsfx97PDw15/k/f/BYLzpiYQddH0mPuxbFtOdj3xWHs//IwKvNq/C5DLBHDYNRDH6xFea5zLDa5UoZHProfap3KnRzu7ugesl3aLDZ89NwXHknGZRcuQeLc2P7tUuhfXiIRD03kuv7WhWghHe/snOPQ292LY9vzsH+jM5blJ4Yfl244YolzOu6Y1EhknJKCJectwJzlGehq7fJIpJvbh8aybx93Pu/wvo8PiqUuVOexn/clHhVaJXJ3FeDgpqMo2FeMqqIatNa1wWEfvcWUxqBGXGY0Fp2ZjTOuWYHk+YljjOjsYLPZcGxbLg5sOor8vUWoKqxFS22rT7EcSKaQYuFZ2Vi6dgGWrF2A+MzJG19upqgprsP+jUdwYNMRHP7m+LBdZOVKGeafPhdLzl2ApectnJAJGoiIiIhOJkyoMaFGNCZ3LL0PhQdLIZaI8Zn5vyMmdd7508d48b7XAQARCUbUlzcCAMLjw/DikT9NeSuThopG7N94BPu/PIyDXx3zeUINb5QaJcLjQpE03zmxxPKLlsIY6zme038few+v/OZ/Hs9lr5mDp7b8bsyfO100VjXjwJdHsG/jYRz66ui4xnVTahQIiwlF0vx4LFgzF8svXhqwll6lxyuw9/ODOLEzHxU5VWiqaUWv2beWrxKpBMa4UGSckorlFy/FyktPgVI9/af1nijluVXOWH6bj/KcynF34U9ZmIgl5zoTaPNWZbon/SAnU2Mbju/Ic3fjrC2pH3bZpOx4dzJy3qrMcU0AQ0RERESemFBjQo1oTB79zlPY9s4uAMDLuU8jLiNm2GV7zL145VdvwmA04LJ7zsdD5z+Oo1tzAADnfv903PfKXZNW79HYbXbk7nF1mfryCPL3FY97cHqJVAxdiBah0SEIjgjCwa+PwuFlnKh/5/110mbRmwx2ux35+4pxwJWszNtTCIdjfLEUS/piGYzo5EgkZcch87Q0ZK3IhEav9ljWZrOh5HAZ8vYWIW9vEUqOlqO+vBFdJrNf61QbpEH83BgsPDMbZ127CglzYsf1P8xEDocDJUfLkbOrAAX7i1F8uAz15Y3oNHVBGOc6DY4wuLseLj4nGyGRwQGr90zncDhQmVeNEzsLcGJnHnJ25qOqoHbY5YOMeiw+d74zlufOR1h0yKTWl4iIiOhkwoQaE2pEY/Lqw2/hP4++CwD47fu/wMpLT/X5vfXljfjh/J+5uyb95p2fYfUVp01YXcejb1Dv/RuP4Oi2nBFbg4xXVHI4Vl+5HBlLU5C9Zg6Cw2fXwOAdrZ04+NUx7N94GEe35aCmqC6wHyCCc3Y6kcjdDdQfEpmzy3dMaiTSlqRg8TnZWHTWPMiV8sDWc5pqqGjEiV0FKDxQgsq8atSVNaC1vg1dbWbYLLaAfY5MLsW81XNcXQ8XICk7HuIZOrNToHV39aBgXzFO7MzHiZ15yN1VMGIrT6lMgqyVme5WaCkLExlLIiIioknChBoTakRjsvl/3+Lxa58GANz0f9fiuw9e5tf7N722FX+88W8AAH2oDi8e/TNCo6Z/y5Tm2lZsfXsnXvzFaz7PRjhWIrEICpUcKq0S2iANDEY9QqNDEB4fhuiUSMRlRCNhXhyCZujshq31Jhz/Nh8nvs3DiW/zUHiwdNJmAhVLxFBpVQiLDUHa4iQsv2QpslfNviQmAJg7u1GVV43qwjrUlNajsaIJzTWtaK03obmmFR2tnejttow6U+lYyRQypC9NRtbyDCw4cx6y18yBSnPydpEdqLGqGTk783H82zzk7CpA8eGyEfcBmVyKtCXJmLs8AwvOyMKCM+ZCxRljiYiIiKbE1I1kTUQzWvyc/i6eFXn+D0R/zvVrsOuTfdj+3h60N3fgz7f8Hf/36YPTfpDs4AgDtr69051MO//Wc3DGd1bg+I48nNiZj9xdBcMOCu4vwSGgp6sXPV29aK1vQ2X+8JMnSGQSKFRyaAxq6IK1UGmVUOlV0OjV0BjU0AZroA/RQheihcFoQHC4HoZwPUKjggM+/pfD4YC53Yy2xg60t3Sgo7UTXa1mdLR2orPNDHN7N8xtZudMvg1taG/uQGdbF2RKKYRuwe+B68dUR7sDXW1d6GrrQvmJSnz1+jb3a32xVOvV0AVroNapoNKroNapoA3SQBusgS5I45wcwmhAUJgOQZGGiY1lcwfamwbE0tSFTlOXO5amxna01pnQ3tKBTpMZPZ096O2xwO7HDKwjEUvEkEjFcNiFUZOeQeEGZK3MQNaKTGStSEfq4mSOg+bqTl5ytBwnvs3HiV35yNmZj4aKphHfE2TUY+6KDGStyMDcFRlIX5J80rSYJCIiIprumFAjojGJTY+CSCSCIAiozKv2+/0ikQh3//2HOL4jD631bdi34RA+e/ErXPijcyekvoGy8d+bkbOrAAAQlxGNO56+EQqVAovOygZc44aVHqtwJ9hO7MhDY1XzyIWKnJMZ6ILUkCnk6OnqQW/GfNoAADDCSURBVHdHD3q6e30en8putcNs7Ya5vRuNlaN8nrcqiEQQiUWux65KDf4lGvi661kRAEGA3eYYUzfLQBOJRDCE6aAJ0jgTkmZXLM1ji2XTaOtumDqMJ5YOuwMO++TGUiwRQ6lRQq1TQqFWQCwWobfbgpa6VtgsdledhiY6RSIREufFuRM+WSsyEJUcMe0T4xOt09SFkqPlKDlSjpKj5Sg9Vo7SYxXOloAjSMzqj+XcFRmISY086WNJRERENF2xyye7fBKN2fUpd6KutAFqnQofml4d04Xfns8P4lcXPgEA0BjUeKXgGQQZDRNQ2/Fra2rHDzLvRkdLJwDgya8fxsIz5436voaKRhzfkefu3lhytNynzwuLCUFSdjzCYkOh1CohEgR0tXejuaYFrfXOll3m9m70dlsCOsbVVJPIJFAo5VBqldAGqaEP0SE4MghhMcFQuyYeaGtsR+6eQpQeLfdpooPQ6GBnLGNcsQRg7jg5YilXypzdhg0a6EN1MBj1UGjkEEEEu92BjtYOVJyoHj3xC0ClVWLOaWmYu9yV9Dktbcpn6Z1KdrsdNUV17sRZ389oLc8AQKlWIHNZKrJWZGLuigzMOS0NumDtpNSbiIiIiMaPCTUm1IjG7KELH8fezw8BAN6oeAHG2NAxlfPkTc/hy1e2AADW33w27v3nbQGtZ6A8desL2PDS1wCAs65dhQf/c/eYyjn0zTHcd87vAADRqZFQqhUoz6nyafwwlVaJ5AUJSJ6fiNSFiUhZmIjEeXFQqBRob+lAeU4Vqgpq0dbQ5uwW2OrqGtjRje72bnR39aC3qxe9PVZYeyyw9tpgs9pgtzngcLhaIA04KgiefwxLJBZBLBa5ugZKIJFJIJVJIZNLIVPIIFfKIFfJoVDJodQooFQrERSuR1hcKKKTIhCTFomY9OghM3WOpqvdjKJDpSg+XIbiI2UoPlyG8hOVsPnQ1VGpUSB5fgJSFiQieYEzlknZ8VCqPWPZ3tSO9pZOdLZ2oavNjK52M7rbu9FjdnbH7e22wNprhbXXCpslALEUiSCWDIilVAKpfFAslXIo1M5YKlQKBIXrYYwPQ2RiOGLSohCX4Yxle0sHSo9WoPhIGUqPlqP4aDnKT1TC0mMdNT4ikQgxaZFIW5Ls7L65MgNJ8+IhkUpGfe9s1NHa6Wxt1hfPY+UoO145aqszuGIZlRKB9AGxTJ6fcNLGkoiIiGg2YEKNCTWiMfvHz1/Du099AgD4/cZfYcm5C8ZUTmu9CTdm/ATm9m6IRCI8u+cJZCxNCXBtxydndwHuXvEQAECtV+Hl3L+OeRKFja9sxp9ueh4A8KM/fR9X3nsRLL1WVORWORNDA5JDXW3mUcsTiUQwxoUiOjUSMSmRiE51/sSkRiIqxZmwO5lYLVZU5Faj+HAZSo70x3Kk2RIHMsaGuuMXnRo1IJYR03IwfbvNjobKJtQW16O2pB41xfUoO1GBkiPlaKpu8akMjUGN5PkJ/T8LEpA4L/6k23bsdjsaK5tRW1KP2uJ61BTXoTynCsVHynzuSq3Wq5A8PwFJ2QlIWZCApPkJSJoXx8kDiIiIiGYZjqFGRGM2cGKCyryaMSfUgiOCcP1vrsI/fv4aBEHA83e/jL9sfxRisTiAtR07u82OZ+74p/vvG393zbhmJC07Xul+nJAVBwCQK2RIXZiE1IVJ7tcEQUB9eaM7yVZy1Pm7rqzRozxBENBQ0YSGiiYc/ub4kM8LiwlxJtlS+pJEkYhJi0J0SsSsvMiXyWVIWZCIlAWJ7ucEQUBjZROKBiUs60obhry/saoZjVXNOLLlxJDXQqODByQuowYk3iKh1k1cLLs7u1HjSpj1JXpqSxtQW1yH+vImn2dH7Wt1lrwgEcnZCa7WjgkIjw87acbq6u7qQZ0r8eiOaUkdaorr0VDe6FPrRgxodZbiajHal4iMSDCeNLEkIiIiOpkxoUZEYxY/J9b9uCLX/5k+B7rkrnX4/F9fozKvGjm7CvD1f7fj3OtPD0Atx+/j5zei+HAZACBlYSIuvuO8cZVXntOfUEuaFzfsciKRCJGJ4YhMDMfKS091P9/X9az4cBmKDpeiMrca1UV17rHdBmuqbkFTdQuObs0Z8lpIZJC7RVt0ivMnJCoIIZFBCIkKhlqnmhXJAZFIhPB4I8LjjVhx8Snu57vaulBytMKVtCxFWU4Vaorq0N7c4bWc5ppWNNe04ti23CGvBUcY+lsHpkQhKjkcodEh7niq9ephYykIAlrqTKgtrhuQ5HElzkoaYGpo8/t/PllbnQmCgNZ6kzOOfa32SpxxrC2uQ2u9/7FkqzMiIiIiGoxdPtnlk2jMOk1duCzkRgBA5qmpeHb3E+Mqb/+XR/DguscAV6Ln3/nPTGirH18017bipjl3w9zeDQD467ePYe7yjHGVeW3CbWisbIbGoMYHLa8ELGHV3tKB2uJ6VBfWorqoDjXFdagpqkN1YS3amrwniEajVCsQHBmE4MgghEYFITjCmWjrS7j1/Q4y6mfVeFAdrZ3OFkyu+NUU1zljWlQ3puQWAEjlUqi0SsiVMnesbFYbes0WdHf09I+75geVVomolAhEJUcgOjkCUSmRiEqOQFxG9KxqdWa329He1IHW+jaYGtrQWt+G1nqT83eDCaaGdphcf5sa2nxuZTaQUqNAdEokopLDEZXsjGNUSgRi06MQmRg+a2JJRERERIHBFmpENGbaIA3i58SgIrcahQdL0WPuHVfrl6VrF2DFJadg50f70FJnwn8few+3/uF7Aa2zv178xWvuZNr6m88edzKtq93sHospISsuoBfp+hAd9CE6ZJySOuS1TlNXf4KtqA7VRbWocSWIRmqx02PudbeWGolYLILBqHcl3oKdSbhwA1Q6FVRaJdQ6FVQ6FdQ6JVRapeuxCkqtEmqdEnKlfFolLHTBWmQs1SJlQQJ6unrR09Xj/G3uhamhDdWFdagrrUddaQPqK5rQUmtCR0vHiIP92yy2YVsRjkShkkMXooXBqEdIZDDCYkMQkWBEdEoEwmJCodJ5xne6xbKP3WZHT1cPurt6PWPqetxpMsNUb3ImzAYkzUwN7WhvavdpNtfRhEQFIyo53Jk4S3ImzKJdCcmgcMO0jBsRERERTU9MqBHRuGStyERFbjXsNjvy9xVhwelZ4yrvtj/fgH1fHIa114r3n/4U628+C7Hp0QGrrz/y9hbimzd2AAD0oTrc8vvrxl1m4YES9+OkrOG7ewaaNkiD9CUpSF8ydLIHc0e3swVWYR0ayhvRUmdCS12r83dtK1rrTKMO6O9wCK4ESBtKjpT7XT+xRDwg8eaZdFNplVCoXEkikQjOX4Meo+8552+R6zUMeNy3nN3ucCXHetBrtgxJ7Ax8PJaWToHW221Br6vbbjHKRl1+YCz7EpYDE5uBjKXDIThjZvYev77HveZeWC22CY2TWCJGkFGPoAgDQqNDnC32XK3MolyPZ3t3VyIiIiKaPEyoEdG4ZK3MwIaXvgYAHN+RN+6EWlRyBK762UV44/H3YbPa8Y9fvIZHP3ogQLX1zyu/ecv9+MbffQf6UN24yxw40H3WqsxxlxcIap1qyIQIg1l6LGitb3Mn2QYm25rrnL9bak1oqTP5PED+QA67A11tZp9mNZ3uZAoZgiMMrp8gBIUbEBTe/7cuWAOxVAy7zYHe7l601rU54+dKZLbWmdDsiu1YEnqzMZbu+IUbEBQR5Po9MMZ66EN102YiEyIiIiKa/ZhQI6JxmTcgKXRiZ35Ayrzmwcvw5atb0FTdgt2fHEDhwRKkLU4OSNm+Or4jFwe+PAIAiEw0Yt3NZwWk3KPb+icGWHD63ICUORnkSjkiEoyISDCOuJzD4UBnaxeaa1vR3tQBc0c3uju60d3ZA3NHD7o7umHu6EZPZw/Mnd3o7uhxvdbteq0HPZ3O5yZ7iE+pTAKFWgGlRgGlRun6Peix2vXYtZxar3Ynz4IighAcYQjYRA6CIKCjpRMtdSa0NbY7Y9TZ4xEnd9w6+17r6Y9vR398JzuWEqnEe/w0SijVctdvz9f7YtmffDSMOJEDEREREdFUYkKNiMYlOiUSQeEGmBrakLMzHw6HY9ytRFQaJb774OV49q5/AQD++3/v4bfv/SJANfbNwNZp3/vNVZDJZeMu09JjQe7uQsDVEi88fuTk1EwkFouhD9WNuzWfw+FAr7nXnYizdFsgCIIzMSTA/didJxrwt3OZoY/hSlKJxSKvCTOpbHodEkUiUUBiKQgCesy97kTceGPpWsRrLPsSkoHYX4iIiIiIprPpdfVARDOOSCTCvFWZ2PH+HnS1mVF+ohJJ2QnjLnfdTWfiv//3HlpqW/HtB3tRerwCSfPiA1Ln0Rz65pi7a2ZsehTO+d6agJSbu7sQ1l7noPUzqXXaVBCLxVBpVVBpVQiJnOrazGwikQgqjRIqjZKxJCIiIiIKEA42QkTjlrWif+bL498GptunXCnH1T+/2P33G4+/H5ByRyMIAl759f/cf1//m6sgkUoCUvbA8dPmnzG+seaIiIiIiIho6jChRkTjlrVywDhq3+YFrNzzf3gODGHO7m5b39qJyvzqgJU9nH1fHEbOrgIAQMLcWJz+nRUBK3umjp9GREREREREnphQI6JxS12UCIVKDgQ4oabSKHHlvRcBrpZjb/7+g4CV7Y0gCHjlN/2t02545DuQSALTOs3SY3En6iKTwmfl+GlEREREREQnCybUiGjcZHIZMpelAQDqyhpRXVQbsLIvuuM86II1AICv/7MdtaX1ASt7sJ0f7UPhgRIAQMrCRKy87NSAlZ27Z+D4aezuSURERERENJMxoUZEAXHKukXuxzs/2h+wcjV6NS77yQUAAIfdgbd+/2HAyh5IEAT89//ec/99wyPfGfdspQMd2dw/ftoCjp9GREREREQ0ozGhRkQBsfLSU9yPd360N6BlX/qT9VDrVACAja9sRlN1c0DLh6sFWV/rtNRFSTjtwiUBLf/bATFZcCYTakRERERERDMZE2pEFBCx6dGIy4wBAOTszEdrQ1vAytYFa3HxHecBAGxWO754eXPAyu7z8fNfuB9f+uP1EIlEASu7qrAWJUfKAQCZp6YiPC4sYGUTERERERHR5GNCjYgCZuUlzlZqDoeAPZ8eCGjZF9621p3k+uLlb+BwOAJWdmu9Cdve3gUA0IfqcEYAZ/YEgG3v7HI/XnPl8oCWTURERERERJOPCTUiCpjllwzo9vnxvoCWHZFgxNLzFgAA6ssbcWDT0YCV/fm/vobVYgMArLvpLChUioCVDQBb39npfrzmKibUiIiIiIiIZjom1IgoYDJPTUVIZBAA4OCmo+gx9wa0/PW3nON+vOFfXwWkTLvNjs/+sQkAIBKJcNHtawNSbp/B3T0jEowBLZ+IiIiIiIgmHxNqRBQwYrEYyy9aCgDo7bbgwJdHAlr+8ouWIDjCALhmEm2tN427zJ0f70djlXOSg9MuWoLIxPBxlzkQu3sSERERERHNPkyoEVFATWS3T6lMirU3nAG4WpZ9+erWcZf58XMb3I8vvmPduMsbjN09iYiIiIiIZh8m1IgooBadNQ8qrRIAsPuTA7BZbQEtf/0tZ7sfb3jpawiCMOayynMqcXjzCQBAbHoUFp+THZA69mF3TyIiIiIiotmJCTUiCii5Uo5Tz18EAGhv7sDezw8FtPyY1CgsPGseAKC6sBZHt+aMuayPn9/ofnzxHesgFgf2K5HdPYmIiIiIiGYnJtSIKODW3nCm+/HnAZo8YKDzB0xOMNby7Ta7O+GlUMmx9obTA1Y/ABAEAV+93t8lld09iYiIiIiIZg8m1Igo4JasnY/w+DAAwL4Nh9yD/gfKystOhT5UBwDY8f4edHf1+F3Gka05MDW2AwBOvWAxNAZNQOt46OtjqMyvAQDMP30uu3sSERERERHNIkyoEVHASSQSrPvBWQAAh0PAFy9/E9Dy5QoZVl9xGgDA0mMd02yiA7tjnj4B3TE/eu4L9+NL7gz8ZAdEREREREQ0dZhQI6IJcd5NZ0IsFgEAvnj5G9jt9oCWv2Ics4nabXZ8+8EewNXd89QLFge0bnVlDdj9yX4AQFhMiEddiYiIiIiIaOZjQo2IJkR4XBhOWe+cnKChogkHNx0NaPkLB8wmuufTg7DbfE/YDe7uqdIoA1q3T1/4Eg6Hc/bRC3+0FlKZNKDlExERERER0dRiQo2IJozn5AFfB7RsuULmTti1N3fg+Ld5Pr93Irt7Wnos2PCSs4urVCbB+beeHdDyiYiIiIiIaOoxoUZEE2bZBYsREhUMANj18X601psCWv6Ki/u7Uu76yLdunxPd3XPLWzvR3twBuGb2DI4ICmj5RERERERENPWYUCOiCSORSnDejWcArkTWxle2BLT8U89fBIlUAgD49qN9EARh1PdMZHdPQRDw4d82uP/mZARERERERESzExNqRDSh1t/c3+Xx4+e+gNViDVjZumAt5p8+FwBQV9qAsuMVo75nIrt75u0tQuGBEgBA2uIkzDktPaDlExERERER0fTAhBoRTaio5AicdtESAEBjVTM2vbo1oOUPnEHz2w9H7vYpCAJ2uWbfnIjunu8//an78cV3rodIJApo+URERERERDQ9MKFGRBPuuoeucD9+8/cf+DUj52hWXLzU/XjnR3tHXLaqoAYtta0AgPlnZAW0u2fp8QpsfdvZ+s0QpsOZ16wIWNlEREREREQ0vTChRkQTLvPUNCxZuwBwdc385o0dASs7PN6IlIWJAIDCg6Vob+kYdtkjW3LcjxecnhWwOgDAa7992z2G23fuvwwKlSKg5RMREREREdH0wYQaEU2K7/1qQCu1J96H3R64VmoDk2M5OwuGXe7I1hP97zljbsA+v+hQKXa875w5NCQyCBfdvjZgZRMREREREdH0w4QaEU2KeavmuCcQqMyvwfZ3dwew7Ez34+M7cr0uIwgCjm5xJtRUWiXSFicH7PNfffgt9+Pv/vJyKNVsnUZERERERDSbMaFGRJPmul9d6X783/97Dw6HIyDlZq3McD8+sTPf6zJVBTVoqTMBAOatngOJVBKQz87ZXYDdnx4AABjjQnH+recEpFwiIiIiIiKavphQI6JJs+iseZhzWhoAoOx4JXZ9vD8g5YZEBiM6JQIAkL+vGJZe65Bljm6dmPHTBrZOu+6hKyBXyAJWNhEREREREU1PTKgR0aQRiUSerdQee9c9kP94Za10dvu09lpReKBkyOsTMX7ase25OLjpKAAgMikc5/3gzICUS0RERERERNMbE2pENKlOXb8IaYuTANesnFve2hmQcrNWDOj2+W2ex2uCILhn+AzU+GmCIOCV3/zP/ff3fn0lpDLpuMslIiIiIiKi6Y8JNSKaVCKRCDf87hr33y/+4jV0d/WMu9yBExMMHketurAWLbWt7uUCMX7a/o2H3d1IY9OjcM731oy7TCIiIiIiIpoZmFAjokm37PzFWHbBYgBAU3UL/vfEB+MuMy4zBrpgDeBqoTawK2nunkL34+zV4+/uaemx4G8/edn99/UPXx2wSQ6IiIiIiIho+mNCjYimxG1P3QipzJmEeudPH6OmuG5c5YnFYvc4am1NHagqqHG/Vn6i0v04ZWHiuD4HAN7640eoKXLWN3v1HJx5zcpxl0lEREREREQzBxNqRDQlYtOicMVPLwQAWC02/OPnr427zIHjqOXtLXI/Ls+pcj9OzIod12fUFNfhTVeLOrFEjB8/dwtEItG4yiQiIiIiIqKZhQk1Ipoy1z50BUKiggEAOz/ah/1fHhlXeUnZ8e7HFbnV7sdlxysAAGqdCsa4sDGXLwgC/vbjl2DttQIArrjnAiTNix/1fURERERERDS7MKFGRFNGrVPh1j98z/338/f8Gzarbczlxc/pb31Wme9MqHV3dqOurBEAkJAVO67WZDs+2It9XxwGAITFhOD6h68ac1lEREREREQ0czGhRkRT6uzrVmPu8nQAQGVeNT762xdjLis8IQxypQwY0EJtYEu1hLlxYy67u7Mbf//pv91/3/H0D6DSqsZcHhEREREREc1cTKgR0ZQSiUS485mb3C3HXnvkbTRVN4+pLIlEgtj0aABATVEdbFYbygZMSJCYNfaE2n8efQ+Nlc56LT1vAVZdvmzMZREREREREdHMxoQaEU259CUpWH/zWQAAc3s3nrzpeTgcjjGVFT8nBgBgt9lRXVSHsuP9CbWEMSbUyk5U4r2/fAoAkClkuOvZmzkRARERERER0UmMCTUimhZu/v11CIsJAQAc3HQUHz+/cUzlxGf2j6P2m4t/j02vb3X/nbenAMd35EIQBJ/Ls9vseOrWv8NuswMArrn/UsSkRo2pbkRERERERDQ7MKFGRNOCPkSHn798h/vvf973Oiryqkd8jzdxmdHuxzXF9WhrbHf//erDb+Ona36DXR/v97m8N/7vfeTuLgQARKdE4Dv3X+J3nYiIiIiIiGh2YUKNiKaNJecuwKV3rQcAWHqs+MP3n/V71s+BM30Ox9Jj8amsnF35+M9j7wIAxBIx7n/9J1CoFH7Vh4iIiIiIiGYfJtSIaFq5+ffXIS7TOQ5awf5i/Pex9/x6f2z6yN0xk+cn+DShgLmjG7+//lk47M6x3L73qysx97R0v+pCREREREREsxMTakQ0rSjVCtz/2o8hkUoAAG88/j4Ofn0Mf7zxb7g2/jbs+mTk7ppypRxRyRFeXxOJRLj7hR9CKpOOWo/n7n4ZtSX1AIC5y9Nx7UOXj+n/ISIiIiIiotmHCTUimnYylqbg+t9cBQBw2B146ILHsem1rWisasbrv3tn1PfHpEV6ff6CH57jUyuzbe/uwpevbAEAqHUqPPD6T9wJPiIiIiIiIiIm1IhoWrrmgUsRP8fZ9dNm6R9HreRIOXrMvSO+NywmdMhzGoMaNz1+7aif21jVjKd/9A/333c+c9OwLd6IiIiIiIjo5MSEGhFNS5/8/UtUFdQOed5us6Ngf/GI7zXGDk2oXfvLy6EL1o74PofDgT/e+Dd0tHYBAE6/ejnO/f7pftediIiIiIiIZjcm1Iho2ik6VIrn7n7ZPSHAYDm7CkZ8f9iAhFp4fBjOvm41rvr5xaN+7ntPfYrD3xwHXEm5u//+Q4hEIr/rT0RERERERLPb6CNzExFNMqVWCblSBkuP1evrR7eewDX3X+rxnNXuQHlrNxq7etGRlYRrtj4BqUoBQRCgkIrxZUEjQtRyROoUiDEoIR6UKDu2PRcv/fINwDV5wX2v3jVqizYiIiIiIiI6OYkEQRCmuhJTpb29HQaDAW1tbdDr9VNdHSIaoORoOd7644fY8tbOIS3VZAopPjO/AZFIhPYeK3LqO1HS3AWrw7evM41cgrQwDTLDdVBIxWiqacEdS+5Da30bAOCa+y/FzU9cNyH/FxEREREREc18TKgxoUY0rTVUNOL9v36Oz/75FXo6e9zPf9j2Kkq7bDhU3QYf82hDqGRinBKjx9OX/N7djXTR2dl4YsNDnNWTiIiIiIiIhsUx1IhoWguPN+K2P9+A/1W+gEt/vB4agxrLLj8NW6s6cKBq7Mk0AOi2OrCtzATdmQshkogRHh+GX75xN5NpRERERERENCK2UGMLNaIZxWyxY2NBA9p7bAEtt2r7CVy+Og1zlqYEtFwiIiIiIiKafTgpARHNGFa7A18VNgY8mQYAsauz0BSqhiAInNmTiIiIiIiIRsQun0Q0YxyoakNrt/eZPwOhpNmM0hbzhJVPREREREREswMTakQ0I9S29yC/sXPCP2dvhQndVvuEfw4RERERERHNXOzySUTTniAI2F9l8nhOJALWZYQjSCnDzvIWlLd2QykV48zUMDgEASKIsLu8FaYe/1q09dodOFrbjmXxwQH+L4iIiIiIiGi2YAs1Ipr2mrosaDF7JsYEAdhS3ISchg73c702BzbkNWBjfiMO1bRhXpRuTJ9X3NwFq90x7noTERERERHR7MSEGhFNe8N19ey2eia9Bk5ZLJeI0Woe23hrVrvAsdSIiIiIiIhoWDM2ofZ///d/WLFiBdRqNYKCgqa6OkQ0gWrae3xe1qCUYn1mOJbFB6G+s9f9/HkZRly/JBbBKpn7OZlEhBuWxkEjl4zrM4mIiIiIiOjkMmMTahaLBVdddRVuv/32qa4KEU0gs8U+pCXaSNp6bNiQ14CvC5twapxnst1ic2BxjMGncprNFr/rSkRERERERCeHGTspwSOPPAIAeOWVV6a6KkQ0gVr8SGyJRYDD1e/TYnfA5hA8Xs9v7MSccB0itAqP1mvedPbaYbE5IJfO2PsORERERERENEFmbEJtLHp7e9Hb238R3d7ePqX1IaLR9diGb512enIoQjVyWO0OhGnkqGjtxuJYAwTBOQvovkrPmUF7bQ4cq2vH4lgDNuQ1+PTZTKgRERERERHRYCdVQu2JJ55wt2wjoplBEIRhX9ta0jzkuY35jSOWl1vfiTnhWsQFqVDXMfI4aSN9NhEREREREZ28plXTiwceeAAikWjEn7y8vDGX/+CDD6Ktrc39U1lZGdD6E1HgScSigJZnFwQcrmnH4hgDxBi57EB/NhEREREREc0O06qF2s9+9jPceOONIy6TnJw85vIVCgUUCsWY309Ek0+vDPzXVFFTF7IidEgJUw+7jEQsgtrL7J9ERERERERE0yqhZjQaYTQap7oaRDSNBKvkEImAQPa+FAAcrG7D8oTgYZcJUckgFrGFGhEREREREQ01rRJq/qioqEBLSwsqKipgt9tx+PBhAEBqaiq0Wu1UV4+IAkQiFiFEJUOz2RrQcitM3ZgXqYNS5r0VWphGHtDPIyIiIiIiotlDJMzQUbdvvPFGvPrqq0Oe37x5M8444wyfymhvb4fBYEBbWxv0ev0E1JKIAiGnvmPIjJ0T7YI5EUyqERERERERkVczNqEWCEyoEc0MvTYH3jlaA7tjcr6uQtVyXDg3YlI+i4iIiIiIiGaeaTXLJxGRNwqpGGlhmkn7vKxI3aR9FhEREREREc08TKgR0YywKMYAzSTMuhlrUCIxWDXhn0NEREREREQzFxNqRDQjyCViLE8ImeDPEGF5QghEnN2TiIiIiIiIRsCEGhHNGDEGJZbEGiakbLEIOCMlDOpJaAVHREREREREM5t0qitAROSPeZF6CAJwsLotYGVKxSKckRKGKL0yYGUSERERERHR7MWEGhHNONlRehiUUuwqb0WPzTGusoJVMqxKCkGIWh6w+hEREREREdHsxoQaEc1I8cFqhGsV2FdpQkmL2e/3S8UiZEXqkB2ph0TMMdOIiIiIiIjIdyJBEISprsRUaW9vh8FgQFtbG/R6/VRXh4jGqLPXhoLGThQ1d6HbOnKLNYNSigyjFimhGsilHEaSiIiIiIiI/MeEGhNqRLOGIAjostjRbLbA1G2FzeH8epNLxAhRyxCqlkMp46QDREREREREND7s8klEs4ZIJIJWIYVWIUVC8FTXhoiIiIiIiGYr9nciIiIiIiIiIiLyAxNqREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+YEJNSIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFAjIiIiIiIiIiLyAxNqREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+UE61RWYSoIgAADa29unuipERERERERERDQN6HQ6iESiEZc5qRNqHR0dAIC4uLiprgoREREREREREU0DbW1t0Ov1Iy4jEvqaaZ2EHA4HampqfMo80sja29sRFxeHysrKUTc6mvm4vk8+XOcnF67vkw/X+cmH6/zkwvV98uE6P7lwfQceW6iNQiwWIzY2dqqrMavo9XruwCcRru+TD9f5yYXr++TDdX7y4To/uXB9n3y4zk8uXN+Ti5MSEBERERERERER+YEJNSIiIiIiIiIiIj8woUYBoVAo8PDDD0OhUEx1VWgScH2ffLjOTy5c3ycfrvOTD9f5yYXr++TDdX5y4fqeGif1pARERERERERERET+Ygs1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFCjcfn73/+O+fPnQ6/XQ6/XY/ny5diwYcNUV4smUHV1Nb73ve8hNDQUKpUK2dnZ2L9//1RXiyZIR0cH7rnnHiQkJEClUmHFihXYt2/fVFeLAmTbtm246KKLEB0dDZFIhA8//ND9mtVqxf3334/s7GxoNBpER0fj+9//Pmpqaqa0zjQ+I61zALjxxhshEok8ftatWzdl9aXxGW19d3Z24q677kJsbCxUKhXmzp2LF154YcrqS+PzxBNP4JRTToFOp0N4eDguvfRS5Ofneyzz4osv4owzzoBer4dIJILJZJqy+tL4+bLO+wiCgPXr13v9LqCZYbT1XVZWNuQY3vfzzjvvTGndZysm1GhcYmNj8fvf/x4HDhzA/v37cdZZZ+GSSy7BiRMnprpqNAFaW1uxcuVKyGQybNiwATk5Ofjzn/+M4ODgqa4aTZBbbrkFmzZtwuuvv45jx45h7dq1OOecc1BdXT3VVaMA6OrqwoIFC/Dcc88Nec1sNuPgwYP49a9/jYMHD+L9999Hfn4+Lr744impKwXGSOu8z7p161BbW+v+efPNNye1jhQ4o63ve++9F1988QX+85//IDc3F/fccw/uuusufPzxx5NeVxq/rVu34s4778Tu3buxadMmWK1WrF27Fl1dXe5lzGYz1q1bh1/+8pdTWlcKDF/WeZ+nn34aIpFoSupJgTHa+o6Li/M4ftfW1uKRRx6BVqvF+vXrp7r6s5JIEARhqitBs0tISAiefPJJ3HzzzVNdFQqwBx54AN9++y22b98+1VWhSdDd3Q2dToePPvoIF1xwgfv5JUuWYP369XjsscemtH4UWCKRCB988AEuvfTSYZfZt28fTj31VJSXlyM+Pn5S60eB522d33jjjTCZTGy9MAt5W9/z5s3Dd77zHfz61792P8fv+NmjsbER4eHh2Lp1K9asWePx2pYtW3DmmWeitbUVQUFBU1ZHCqzh1vnhw4dx4YUXYv/+/YiKihr1eE8zw0j7eJ9FixZh8eLFeOmllya9ficDtlCjgLHb7fjf//6Hrq4uLF++fKqrQxPg448/xtKlS3HVVVchPDwcixYtwj//+c+prhZNEJvNBrvdDqVS6fG8SqXCjh07pqxeNHXa2togEol48TXLbdmyBeHh4cjIyMDtt9+O5ubmqa4STZAVK1bg448/RnV1NQRBwObNm1FQUIC1a9dOddUoANra2gDXzW46OXhb52azGddeey2ee+45REZGTmHtKNBG28cPHDiAw4cPs6HLBGJCjcbt2LFj0Gq1UCgUuO222/DBBx9g7ty5U10tmgAlJSX4+9//jrS0NGzcuBG33347fvKTn+DVV1+d6qrRBNDpdFi+fDkeffRR1NTUwG634z//+Q927dqF2traqa4eTbKenh7cf//9+O53vwu9Xj/V1aEJsm7dOrz22mv4+uuv8Yc//AFbt27F+vXrYbfbp7pqNAGeffZZzJ07F7GxsZDL5Vi3bh2ee+65YVs60MzhcDhwzz33YOXKlZg3b95UV4cmwXDr/Kc//SlWrFiBSy65ZErrR4Hlyz7+0ksvYc6cOVixYsWk1+9kIZ3qCtDMl5GRgcOHD6OtrQ3vvvsubrjhBmzdupVJtVnI4XBg6dKlePzxxwFXE+Ljx4/jhRdewA033DDV1aMJ8Prrr+Omm25CTEwMJBIJFi9ejO9+97s4cODAVFeNJpHVasXVV18NQRDw97//faqrQxPommuucT/Ozs7G/PnzkZKSgi1btuDss8+e0rpR4D377LPYvXs3Pv74YyQkJGDbtm248847ER0djXPOOWeqq0fjcOedd+L48eNsUX4S8bbOP/74Y3zzzTc4dOjQlNaNAm+0fby7uxtvvPGGR5d+Cjy2UKNxk8vlSE1NxZIlS/DEE09gwYIF+Otf/zrV1aIJEBUVNSRROmfOHFRUVExZnWhipaSkYOvWrejs7ERlZSX27t0Lq9WK5OTkqa4aTZK+ZFp5eTk2bdrE1mknmeTkZISFhaGoqGiqq0IB1t3djV/+8pd46qmncNFFF2H+/Pm466678J3vfAd/+tOfprp6NA533XUXPv30U2zevBmxsbFTXR2aBMOt82+++QbFxcUICgqCVCqFVOpsT3PFFVfgjDPOmMIa03j4so+/++67MJvN+P73vz/p9TuZsIUaBZzD4UBvb+9UV4MmwMqVK4dMxV1QUICEhIQpqxNNDo1GA41Gg9bWVmzcuBF//OMfp7pKNAn6kmmFhYXYvHkzQkNDp7pKNMmqqqrQ3NyMqKioqa4KBZjVaoXVaoVY7Hl/XSKRwOFwTFm9aOwEQcCPf/xjfPDBB9iyZQuSkpKmuko0wUZb5w888ABuueUWj+eys7Pxl7/8BRdddNEk15bGy599/KWXXsLFF18Mo9E4qXU82TChRuPy4IMPYv369YiPj0dHRwfeeOMNbNmyBRs3bpzqqtEE6BuD4fHHH8fVV1+NvXv34sUXX8SLL7441VWjCbJx40YIgoCMjAwUFRXhF7/4BTIzM/GDH/xgqqtGAdDZ2enR8qi0tBSHDx9GSEgIoqKicOWVV+LgwYP49NNPYbfbUVdXB7gGv5XL5VNYcxqrkdZ5SEgIHnnkEVxxxRWIjIxEcXEx7rvvPqSmpuK8886b0nrT2Iy0vuPj43H66afjF7/4BVQqFRISErB161a89tpreOqpp6a03jQ2d955J9544w189NFH0Ol07u9sg8EAlUoFAKirq0NdXZ17uzh27Bh0Oh3i4+M5ecEMNNo6j4yM9DoRQXx8PBOuM5Av+zgAFBUVYdu2bfj888+nsLYnCYFoHG666SYhISFBkMvlgtFoFM4++2zhyy+/nOpq0QT65JNPhHnz5gkKhULIzMwUXnzxxamuEk2gt956S0hOThbkcrkQGRkp3HnnnYLJZJrqalGAbN68WQAw5OeGG24QSktLvb4GQNi8efNUV53GaKR1bjabhbVr1wpGo1GQyWRCQkKCcOuttwp1dXVTXW0ao5HWtyAIQm1trXDjjTcK0dHRglKpFDIyMoQ///nPgsPhmOqq0xgM953973//273Mww8/POoyNHP4ss69veeDDz6Y1HpSYPi6vh988EEhLi5OsNvtU1bXk4VIcK4YIiIiIiIiIiIi8gEnJSAiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+YEJNSIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIjoJGY1GiESiEX9+9KMfTXU1iYiIiKYl6VRXgIiIiIgml81mw1/+8hevr7W3t+PnP/85ent7cemll0563YiIiIhmApEgCMJUV4KIiIiIpl5vby/WrVuHLVu24Pnnn8ftt98+1VUiIiIimpbY5ZOIiIiIYLfbce2112LLli347W9/y2QaERER0QjYQo2IiIiI8MMf/hD//Oc/ceedd+Jvf/vbVFeHiIiIaFpjCzUiIiKik9xDDz2Ef/7zn7j66qvxzDPPTHV1iIiIiKY9tlAjIiIiOok988wzuPvuu3HOOefgs88+g1wun+oqEREREU17TKgRERERnaTefPNNXHfddViyZAk2b94MrVY71VUiIiIimhGYUCMiIiI6CW3cuBEXXXQRkpKSsGPHDhiNxqmuEhEREdGMwYQaERER0Ulmz549OPvssxEUFIRvv/0WCQkJU10lIiIiohmFCTUiIiKik0hubi5Wr14Nh8OB7du3Iysra6qrRERERDTjMKFGREREdJIwmUyYP38+Kisrcccdd2D58uVelwsPD8fatWsnvX5EREREMwUTakREREQniS+//BLnnXfeqMt9//vfx6uvvjopdSIiIiKaiZhQIyIiIiIiIiIi8oN4qitAREREREREREQ0kzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFAjIiIiIiIiIiLyAxNqREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvLD/wPAtYosKDWgkgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = net.plot(rotated=True, curved_edges=True, size=(1500, 800), hide_xalpha=True, node_size=400, node_font_size=9)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "1bb5fe10-6a76-4ec5-ba8a-5472c80669fd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "using approximate rate Co55 + n + n ⟶ Co57 + 𝛾\n", + "using approximate rate Co57 ⟶ Co55 + n + n\n", + "removing rate Co55 + n ⟶ Co56 + 𝛾\n", + "removing rate Co56 + n ⟶ Co57 + 𝛾\n", + "removing rate Co57 ⟶ n + Co56\n", + "removing rate Co56 ⟶ n + Co55\n", + "looking to remove Co56 + n ⟶ p + Fe56\n", + "looking to remove Ni56 + n ⟶ p + Co56\n", + "looking to remove Fe56 + p ⟶ n + Co56\n", + "looking to remove Co56 + p ⟶ n + Ni56\n", + "looking to remove Co56 + e⁻ ⟶ Fe56 + 𝜈\n", + "looking to remove Co56 ⟶ Ni56 + e⁻ + 𝜈\n", + "looking to remove Fe56 ⟶ Co56 + e⁻ + 𝜈\n", + "looking to remove Ni56 + e⁻ ⟶ Co56 + 𝜈\n" + ] + } + ], + "source": [ + "net.make_nn_g_approx(intermediate_nuclei=[\"fe53\", \"fe55\", \"co56\", \"ni57\"])\n", + "net.remove_nuclei([\"fe53\", \"fe55\", \"co56\", \"ni57\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "51a9d176-d848-4ba8-9ba4-619a23e4edb3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNQAAAKrCAYAAAA57NCnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yW1f3/8dc9svciIZsZIGxQZKqAA7ei1rqttnXUUdt+1U77+9aqXd9q3aNu6wLrwIWA7L3DhiSEkL13cq/fH3dy5Q7ZA4Hwfj4effS67utc55xc8tf7cc75mFwulwsRERERERERERHpEvOJnoCIiIiIiIiIiMipRIGaiIiIiIiIiIhINyhQExERERERERER6QYFaiIiIiIiIiIiIt2gQE1ERERERERERKQbFKiJiIiIiIiIiIh0gwI1ERERERERERGRblCgJiIiIiIiIiIi0g2ndaDmcrmoqKjA5XKd6KmIiIiIiIiIiMgp4rQO1CorKwkJCaGysvJET0VERERERERERE4Rp3WgJiIiIiIiIiIi0l0K1ERERERERERERLpBgZqIiIiIiIiIiEg3KFATERERERERERHpBgVqIiIiIiIiIiIi3aBATUREREREREREpBsUqImIiIiIiIiIiHSDAjUREREREREREZFuUKAmIiIiIiIiIiLSDQrUREREREREREREukGBmoiIiIiIiIiISDcoUBMREREREREREekGBWoiIiIiIiIiIiLdoEBNRERERERERESkGxSoiYiIiIiIiIiIdIMCNRERERERERERkW5QoCYiIiIiIiIiItINCtRERERERERERES6QYGaiIiIiIiIiIhINyhQExERERERERER6QYFaiIiIiIiIiIiIt2gQE1ERERERERERKQbFKiJiIiIiIiIiIh0gwI1ERERERERERGRblCgJiIiIiIiIiIi0g0K1ERERERERERERLpBgZqIiIiIiIiIiEg3KFATERERERERERHpBgVqIiIiIiIiIiIi3aBATUREREREREREpBsUqImIiIiIiIiIiHSDAjUREREREREREZFuUKAmIiIiIiIiIiLSDQrUREREREREREREukGBmoiIiIiIiIiISDcoUBMREREREREREekG64megIiIiIiIiIjIycTlcmFzuHC4XJgAL4sZi9l0oqclJxEFaiIiIiIiIiJy2iuvs5FeXENRdQPFNQ3U253GM7MJQv28iPD3JjbYl8RQP8wK2E5rCtRERERERERE5LSVXV7L7rxKcivr223jdEFJjY2SGhsHiqrx8zIzPDKQUdFBeFt1mtbpSIGaiIiIiIiIiJx26mwO1h8pI7Okptvv1tqcbM+t4EBRNVOTw4gP8Tsuc5STl2JUERERERERETmtFFbV88muvB6FaZ5qbA6WHChiQ1YpLperz+YnJz8FaiIiIiIiIiJy2sivrOeb/YXUeZyR1lt7CqpYnVmiUO00okBNRERERERERE4LZbU2lhwsxO7s++DrUHENm7LL+7xfOTkpUBMRERERERGRfs/pcrEqowSb4/itItudX0luRd1x619OHipKICIiIiIiIiL93q68SoprGrh+QhzFNQ0A7MytJKeijsgAbybEhmAywdHyOnblV/Z4nDWZJVyWGoOXRWuY+jMFaiIiIiIiIiLSrzU4nOzIrQCgqsHB1/sKjWdmE4wbGMzSQ0U4+mAraFWDg/2FVaTGBPe6Lzl5KS4VERERERERkX4tvbjaODctwMvChSlRzBwUjo/FTFSAD3ani3OGRHDesCjC/Lx6Pd6+wmoVKOjntEJNRERERERERPq1/YXVxvXCtFzq7U6GRgQwIS6E/Kp6Qv28WLQnnwBvC1OTwvlqXwEAF6REERXgg9MjHNucXc6+wqoOx6ust5NbWU9ssO9x/KvkROo3K9SeeOIJTCYTDzzwwImeioiIiIiIiIicJOpsDkprbcZ9vd0JQEZpDeH+XtTbnRRU1WN3uiivs+NtMbV4f3N2Ge9uPWr8r7MwrUmeihP0a/1ihdrGjRt58cUXGTt27ImeioiIiIiIiIicRJoKEABYzSYcThcuICbQh4p6O0XV9YwdGASAr9VMV4uAWs0mJsWHEB/ih8VsIqe8jvVHSo0qosU1tk77kFPXKb9CraqqihtuuIGXX36ZsLCwEz0dERERERERETmJlHgEW8G+Vi4eFc0FKVGMig5i69FyGhwuDhbVcGHKAGYPjWTTkbIu9Ts9ORxvi5lPd+excGcuZhNMSWzOJUo8gjzpf075FWr33HMPF198MXPnzuVPf/pTh23r6+upr6837isqKr6HGYqIiIiIiIjIidLgcBrXJTU2Pt+d36rNweJqDhZXt/odYGJ8CONjQ4z7D3fkYDGbSAzz4/1tR40VaVtzKrg8NYbVGSW4gHqPcaX/OaUDtffee48tW7awcePGLrV//PHH+eMf/3jc5yUiIiIiIiIiJwdnL4ttbskuZ09By3PTQny9MJtMzB8T26q9n5eFGpsDlwtcLhcmk6lVGzn1nbKB2pEjR7j//vtZvHgxvr5dq5rxyCOP8OCDDxr3FRUVJCQkHMdZioiIiIiIiMiJ5GXu+0CrusGO0+Xigx05ONpJ7Kxmk8K0fuyUDdQ2b95MQUEBEydONH5zOBysWLGCZ555hvr6eiwWS4t3fHx88PHxOQGzFREREREREZETIdi376OPOruTI2W1TEkMZXN2OfV2J75WMwMCfcgqqwUg5DiMKyePU/a/7pw5c9i5c2eL32677TZGjBjBQw891CpMExEREREREZHTT0SA93Hpd1VGCeNjQ7h4ZDQ+VjN1NgeZJTVGoHa8xpWTwykbqAUFBTF69OgWvwUEBBAREdHqdxERERERERE5PQX7WPGxmHtUJODrfYXtPrM7XWzKLmNTdttVQSMVqPVr5hM9ARERERERERGR48VkMjE4wv97HdNqNpEU9v2OKd+vU3aFWlu+++67Ez0FERERERERETnJpAwIbFWp83gaHOGPt0VrmPoz/dcVERERERERkX4txNeLhFC/72UsswlGDQj6XsaSE0eBmoiIiIiIiIj0e2clhuFtMR33ccYNDCHEz+u4jyMnlgI1EREREREREen3/L0tnJkQdlzHiPD3YnSMVqedDhSoiYiIiIiIiMhpYUhkwHELvAK9LZw7NBKz+fivgpMTT4GaiIiIiIiIiJw2JsaFMKaPQ7UgHyvO1TtZ/Z+VuFyuPu1bTk4m12n8X7qiooKQkBDKy8sJDg4+0dMRERERERERke9JZkkN67JKqbc7e9XP4Ah/0t9Zxtu/fx+AAYmR3PT7a5h9w0y8fXSWWn+lFWoiIiIiIiIictpJDvfn8tQYBof743J0P1QL9rFy7tBIZg6KoLq40vi9IKuIv9/xPDcNupt3HltAhccz6T8UqImIiIiIiIjIacnPy8L4MB8+ufIxCrZupK6krMP2VrMJ34ZKgrIymB0XSGKoHwDn33JOq7YleWW8/rv3uCHpLr58dclx+xvkxFCgJiIiIiIiIiKnrbWfbqIqr5SVv16A86uNXDc+lvOGRzElMYyD7yxj498+Zv2f3uPy1Gjmj4pkz1cfsGPHUu694FfkZRYAMGhMIr6Bvm32X1dTz7uPLfie/yo53hSoiYiIiIiIiMhpa+WCdUSMCCZ6Yjizrp6Oj9VCbLAvIwYEUrczg30frOTApxvwarBx9OhRTBZ3Fc/BF8XwwNm/JTc9H4vFwogzh7Y7xqV3XfA9/kXyfVCgJiIiIiIiIiKnpeqKGjZ/s52BZ4YTEhfAyLOGtXgeGRduXBdml2CxWLDXOTCZ3KGaJcLFw5f9kez9OYw6a3ibY9zxxA1c+6vLj/NfIt83BWoiIiIiIiIiclpa//lmbA12aovqiQtLwGxuGZNExkUY10VHS/A1++FyugAwmU0MuzSOwddE85tr/tQifPO05pONOOyO4/yXyPdNgZqIiIiIiIiInJZWLFgHJji6tpg5l5/b6nlUfHOglp9ZwIcLP8TL3wqAy+WiOr8OW40dSxi88fv3CQwNAGD45CFEJ0UCsHvtft7/yyff298k3w/riZ6AiIiIiIiIiMj3rbaqlo1fbiVmUjhJ50STOj2lVZv44QON66y92ZSGlFBTWIdvuA91pQ3s/zibmsJ6o83tj19PQkocZ8ybwMEt6fx85u9wOl28+egHnHHheIZNHPy9/X1yfGmFmoiIiIiIiIicdjZ8sZWGOhtBcX74eflhsVhatUkcGWdcH9mbQ4Q5hh2vZbDmT7so3FFGQ6XdeD75gnFcdMdcpl9xJt4+XoyamsJ1D18JgMPu4Imbnqa+tr7VGHJqUqAmIiIiIiIiIqedFQvWAXB0TREzzprVZpuI2HD8g/wAyNpzlAivKOy1DkwWEwlnDyAyNRiAJxf/jse//C3BEUEt3r/x91czbOIg4/1XH3n3OP9V8n1RoCYiIiIiIiIip5W6mno2LNqCxdtM4rRopp5/RpvtTCaTsUot/3Ah5996Dj/4n8u56bfX4Ic/Vj/3SVp71h5o830vby8eevNevH29APj46S/YsmTncfu75PujQE1ERERERERETis7V+ymrqaesGGBRI4Pxma3tds2wWPbZ0luGXc8cSM3/eEabvnRzWSvKgRgxYK17b6fNCqBO5640bj/223PUlNZ22d/i5wYCtRERERERERE5LSy5Vv3KjGzxUywXygBAQHttk0cEW9cZ+3JNq7Nfiam/k8qFl8z6dsPc/Rgbrt9XP6zC5k4dwwAhdnFvPvYgj76S+REUaAmIiIiIiIiIqeVrUvdgVphWjk/+tFtHbZNHNG8Qi1r71Hj2svLC4ufieB4fwBWf7yh3T7MZjMPvPBTvHzcWz8X/N/nZB9oP4CTk58CNRERERERERE5bZQVlnNoWyYmM5z1q5EUlRd22N6z0qdnoBYWFsbYUeOoKXJX7uzsbLSBg6O59peXAWC3OXjhwdd7+ZfIiaRATUREREREREROG9uX7QLAJ9Qbi68Zs7njaGTg4Gi8vN3FB47saQ7UTCYTs88/l8jEcADSVu7B1tD+WWwAP3j4CqLiIwBYv2gL6xdt7vXfIyeGAjUREREREREROW1s+XYHAPXlNobEDiMhIaHD9harhbhhAwHI3p+D3WZv7mvLFgZfEu3ur7aBPevarvbZxC/Al5/89Sbj/vkH36ChvuMQTk5OCtRERERERERE5LTRtDXTP8yHqeechdVq7fSdQWMToXGr5qHth43fQ0NDMXubjPttS9M67evsa6cxZtZIAI4eyOXjp77o0d8hJ5YCNRERERERERE5LeSm55OXUQDA6KuGsHzld116L3XaCON61+q9xvXYsWO56rKrjfttyzoP1EwmE/c89SPMZncQ986fPqIop6Rbf4eceArUREREREREROS0sNWjcEBIbDARERFdei91eopxneYRqJnNZg4c3kfSBHfhgj3r9lNbXddpf0PGJXPxT88HoLaqjlcfeadbf4eceArUREREREREROS0sGXJDuN6ztlzOP/887v03qAxifgH+QGwa/U+XC6X8SwtLY1hZydB45bQtFV72+3H063/7wcEhQcC8O1bKziwJb1bf4ucWArURERERERERKTfczqdxhlnAeH+HMjdi91u7/Q9AIvFwsipwwEoyS0lL9O9bdRkMpGSkkLyyESjbVfOUQMIjgji5kevNe7feWxBt/4eObEUqImIiIiIiIhIv5e+4zDlRZUAjLtgBHv37aW6urrL76dO89j26bEKbf78+cy55BzjfuvSna3ebc9Fd8whIjYMgNUfbyAjLavL78qJpUBNRERERERERPq9rd82B10jzxhOfHw8kZGRXX5/9AzPwgT7jOsNGzaw8LMFDB7r3vZ5cEsGlaVVXerT29eba395uXH/7p8Xdnk+cmIpUBMRERERERGRfs9z5diU887g5ptvxmq1dvn9EVOGYba4YxTPSp9Wq5W8vDzGnZsKgMvlYsfy3V3u96KfzCU0KhiA5e+v4ci+o11+V04cBWoiIiIiIiIi0q/ZGmzsXLEHgIjYMI4UZ/LOO92rrOkX4MuQ8ckAZO46YqxCGzFiBHPnzmXinLFGW89qop3x9fdh/oOXQmMY958nPu7WvOTEUKAmIiIiIiIiIv3annUHqKupB2Di3LGUlJTgdDq73c/o6c3bPnevcW/79Pf3JygoiNEzRxgr2LYt61phgiaX3X0BQWEBACx5eyW56fndnpt8vxSoiYiIiIiIiEi/tuXbHcb1hNljmDhxIrNmzep2P2NmjTKu13+xFYDi4mIWLlxIeVUZwycPAeDw7mxK8kq73K9/kB9X3n8xAE6Hk/ef/G+35ybfLwVqIiIiIiIiItKveW7BnDBnNE6nk4iIiG73M+m8sXh5u89dW/vpRlwuF35+fphMJhwOBxNmjzbablvavVVqV953Ef7BfgB8/foyCo4UdXt+8v1RoCYiIiIiIiIi/VZ1RQ17NxwEIGFEHJFxEXz66ads3bq12335B/kxfs4YAIqOlrB/czoBAQHcddddJCQkMH72GKPt1m4GaoGhAVzxs3kA2G0OFv5zUbfnJ98fBWoiIiIiIiIi0m/tWL4bp8N9XtrExjDM4XAQHBzco/6mX36Gcb32k40AbNq0iezsbFKnDcfLxwt6cI4awFUPXGy8v/jN5TTU23o0Rzn+FKiJiIiIiIiISL/leX7axLnuSpy33XYbEyZM6FF/Z1062bhe86k7UNu9ezfp6en4+PmQOm04AHkZBeRmdK+4QEhkMLOuPguAiuJKVn+8oUdzlONPgZqIiIiIiIiI9FtNZ5mZzSbGnj0Km83GV199RW1tbY/6ixgYxsizhgGQsTOL3PR8Bg8eTGhoKADjz23e9tndc9QA5t0xx7j+4pVvezRHOf4UqImIiIiIiIhIv1RVVk3mriMADJs0mMDQAMrLy9m3bx/FxcU97nfaZc3bPtd8spHLLruMMWPcQdp4z8IEPdj2OXbWKOKHD3S/vzSNowdzezxPOX4UqImIiIiIiIhIv5SxM8u4Hj5pCACBgYFER0cTFhbW436nXXGmcb36kw18/PHHfPPNNwCknDEEv0BfaAzEXC5Xt/o2mUzMu715ldqXryzp8Tzl+FGgJiIiIiIiIiL9kmegNmhsEgC+vr786Ec/6nFRAoDEEXHGKrJdq/ZSVlpOTU0NAFYvK6NnjgSgJK+MvIyCbvd/3i3nYPWyAPDNG99ht9l7PFc5PhSoiYiIiIiIiEi/lL7jsHE9aEwiABUVFTz55JOUlJT0qu9pl7tXqTmdLvzrg5g4caLxbOj4ZOO6actpd4QNCGFqYzXR0vxy1n62uVdzlb6nQE1ERERERERE+qWMnR6B2ugEAGpra3E6ncaKsp5qqsYJsOnzHS1WvCWPTjSuM9O6H6gBXHTHXOP6SxUnOOkoUBMRERERERGRfsfpdBpbPmOSowgICQAgMjKSs88+m5iYmF71P3zyEGPVGwMb+Orzr41nyakJxvXh3T0L1CbOHUNMchQAm77eTkFWYa/mK31LgZqIiIiIiIiI9Dv5hwupraoDj/PTAMxmM5GRkVgsll71bzKZjFVkToeLI3tyjGfxKbGYLe7IJSMtq90+OmI2m7ngttkAuFwuVny0rlfzlb6lQE1ERERERERE+p2MHR4FCTy2YObn57NgwQIKCrpfLOBYc26cibevFwc+PcqmN3fRUNcAgLePF3HD3EULjuzNwWF39Kj/WddMNa7XfLqx1/OVvqNATURERERERET6Hc+CBIM9VqhZrdYW/98bQWGBzLz6LCJHBmMOhpUL1hvPkhvPbLPV28g5lNej/hNHxJGQEguN1UTLiyp6PWfpGwrURERERERERKTfSfcsSOARqEVGRnLnnXcSERHRJ+NcdMdcosaEED4siC88igckj2o+R62nhQkApl7mrvbpdLpY97mqfZ4sFKiJiIiIiIiISL+T2ViQwNvXi7ihzQUInE4nq1evpqKib1Z7jZk5ElODhZrCenYs3032fvdZak0r1AAyd/U8UJt+xRnG9ZpPtO3zZKFATURERERERET6lbqaeo4eyAUgKTUBi7W5AEFDQwM7d+7kyJGeh1yeTCYTZ6ROIWd9MQBfvrLEGLdJbwK1EVOGERYdAsDmb7ZTV1Pf6zlL7ylQExEREREREZF+5fDubJxOFwCDxiS2eObj40NsbCyBgYF9MpbL5SLLdIDIEcEAfPPGdzTU24gbGoOXt/uctsO9CNTMZjNnXTIZgPraBrYs3tEn85beUaAmIiIiIiIiIv1KhmdBgjFJLZ6ZTCZuv/12EhIS2niz++rq6qiurmbU9OEAlBVWsPiN77B6WUkYEQdA9v5cbA22Ho+hbZ8nHwVqIiIiIiIiItKveFb49CxI0OStt95i7dq1fTKWr68vM2bM4PJbLzF+e++Jj7Hb7CSlxgPgsDvI3p/b4zEmzBmDb4APAOs+34TD4eiDmUtvKFATERERERERkX4lIy3LuB48NrHV84aGBoqLi/tkLJfLRUJCAmOnpzL5gnEA5GUWsvTdVSSnNo/dm0qf3r7enHHheADKiyrZs3Z/H8xcekOBmoiIiIiIiIj0Gy6Xi/Tt7hVq4TGhhEaFtGozY8YMxo4d2yfjHTx4kP/85z/U1dVxw2/mG7//5/GFJDZu+aSX56gBTLl4knG9/bvdvepLek+BmoiIiIiIiIj0GyV5ZVQUVwKQPKb16jSAgQMH4u3t3SfjNTQ0YLFY8Pb2ZvSMkYw7JxUaz00rOFJktMvcldVBL50bM3Okcb1rzd5e9SW9p0BNRERERERERPqN9A4KEjRZv349n376aZ+Ml5KSwo9//GPMZnfEcr3HKrUvX12Ct68XAJm7sns1zsDB0YRFu1fb7VqzT+eonWAK1ERERERERESk38jc6Xl+WtuBWlhYGNXV1X0y3oEDB8jKah5zwuzRjJrqrviZmXaEiLhwAHIO5lFfW9/jcUwmE6nTRwBQU1HL4V4GdNI7CtREREREREREpN9I3+lZ4bPtLZ+TJk3i5ptv7pPxtm7dysGDB417k8nUYpVaVak7uHO5XGTtOdqrsUY3BmoAu1Zr2+eJpEBNRERERERERPqNpi2fZouZxJHxbbYxmUwsX76c8vLyXo8XEBDAkCFDWvx25rwJDJs4CIDKkirj98xeFiZInZ5iXKcpUDuhFKiJiIiIiIiISL/gcrnI3pcDQNywgXj7eLXZzul0snv3bg4dOtTrMS+55BLOPPPMFr8du0qtSWZa7wK1oRMG4ePnLqawa/W+XvUlvaNATURERERERET6hZqKGhrqbABExYe3285qtTJ8+HD8/Px6NV5paSlPPPEEZWVlrZ5Nv+JM4yy1Jr2t9Gn1sjJiyjAA8g8XUphd3Kv+pOcUqImIiIiIiIhIv1CS1xxshcWEdtj22muvZejQob0aLy8vD4fDgZdX65VwJpOJe57+ESaTyfgtN72gV+MBpE5r3vapc9ROHAVqIiIiIiIiItIvtAjUBnQcqK1evZq33nqrV+PFxcVx/vnn4+/v3+bz4ZOGMO/22cZ9/uHCXo0HMHqGZ2ECbfs8URSoiYiIiIiIiEi/UJbfXGQgvJMVal5eXuTl5eFyuXo8XlVVFUOGDGmxCu1Ytz32Q8xm9/OG2gb2rD/Q4/EARp7VvI304LaMXvUlPadATURERERERET6he5s+Rw9ejRz587tMAzrzBdffMH69es7bBMaFULssIHG/b/ueQWn09njMQNDA4iIDQMga8/RHvcjvaNATURERERERET6hRaBWnRIh20DAwMJCAigsrKyx+PV1NQQGRnZabuhE5KN6wNb0ln85vIejwmQODIegIriSsoKyzttL31PgZqIiIiIiIiI9Atl+c2BWmdbPgGWLl3K2rVrezzeLbfcwplnntlpu2PPc3v1kXeoLq/u8biJI+KMa61SOzEUqImIiIiIiIhIv1CS3/UtnwCJiYlUVFT0aKzMzEy+/fZbLBZLp21DooJb3Jfml/PqI+/2aFw8VqgBHNmrQO1EsJ7oCYiIiIiIiIiI9IXSxi2fZouZ4IigTttfdNFFPS5KsHPnTgoKCrrUNtQjULN6WbHb7Hz2wjdMvWwyZ1w4odtjJ47UCrUTTSvURERERERERKRfaDpDLXRACGZz1yKP1157jZKSkm6PFRERwaRJk7rU1nOF2uQLxxvXf7v9eSqKu3+GW4Lnls+92d1+X3pPgZqIiIiIiIiInPKcTidlBe7tm105Pw3AZDJRWFjIgQMHuj3e8OHDu3R+GsesUBs4aACTLxgHQEluKf+866Vur5ILjwklIMQftELthFGgJiIiIiIiIiKnvMqSKhx2B3Tx/DQAq9XKtGnTjEqd2dnZVFd3XiwgIyODZ599ltra2i6N47lCraKkkl+8ejdB4YEArPxoHUveWdmlfpqYTCZj22dBVhG1VV2bh/QdBWoiIiIiIiIicspr2u4JEBYd0uX3goKC+Oabb1i4cCFvvPEGu3bt6vSdnJwc/P398fX17dIYnoFaeWEFkbHh3P/8T4zf/vWzVyjIKgQge38O9bX1nfaZOKK5MEH2/twuzUP6jooSiIiIiIiIiMgpr9QjUAuP7niFWk1NDW+99RZJSUls3bqVhoYGo8BA02q1jowZM4akpCRMJlOX5hYYGoDZYsbpcFJe6N6WevY1U1n72UyWvL2SmopaHr/xacJiQln50ToSR8bx4ra/YfVqP7bxLExwZO9Rhk0c3KW5SN/QCjUREREREREROeWV5pcb151t+fT29qayspINGzbQ0NBg/D5jxgwGDRrU4bsul4sNGzYQHBzcYTtPZrOZkEh31dGyxkAN4GdP305UQgQAaav2svKjddB4LtqBLRkd9hkzaIBxXXCkuMtzkb6hQE1ERERERERETnmeWz47K0pgtVq58847OffccwkKCjJ+r6mp6XTVWU5ODqtXr6asrKzDdsdq2vZZXlhhFCEIDA1g/gOXtNl+z9r9HfYXGRduXBdlK1D7vilQExEREREREZFTXmleqXEd1smWT4DAwEBmzpxJcnKyEaIVFhZ2+l59fT1RUVHExcV12tZTSKQ7UGuos1FXXQfAkndW8vJDb7fZfve6fR32FxkfYVwX5ZR0ay7SezpDTUREREREREROeaUFXd/y6WnmzJns27ePhoYG4uPdB/2XlJSQl5dHQ0MDFouF4OBg4uLisFqtxMfHc9ddd3X5/LQmnoUJygor8Av04+WH3jIqkx5rdycr1EIGhBA+PA7vEH8agvzJq6wjxNcLPy9Lt+YlPaNATUREREREREROed3Z8ukpKiqKO++8k2effZb169ezYMECSktLW7Xz8vIiISGBmpoabr31ViZOnNit+TWtUKNx2+fAQdGcfc00Fj61qM32hUeKKTpaTGRc80q0yno7+wuryK2oo7TWxkVv/8J49vU+9+o6fy8LkQHeDI7wJyHUD3M3gz/pGgVqIiIiIiIiInLKa6ry6eVtJSDEv0vv2O12Pv/8c7744otOz0Sz2Wykp6cD8OSTTzJp0iSuv/56Y1VbZ0KjWgZqAHf9362cc910PvrHZ6xasA6n09XinWXvreaaX1xGSU0DW46Wc7S8rtNxamwOsspqySqrxd/LwsjoQEZFBylY62MK1ERERERERETklNcUqIXFhHZpO2ZmZibPPvsshw8f7vZYLpeLTZs2sX37dq655houvfRSLJaOt1oeu+Wzycgpw/jd+w+Sm5HPwn8u4vMXF2NvsANQXlTJ9pxyduRWcEzW1iU1Ngebs8vJLKlh+qBwwvy8u9+JtElFCURERERERETklFdZWg1AcERQp21XrFjBI4880qMwzZPNZuPdd9/lz3/+M7W1tR229VyhVlFU2er5wEHR3PPUj3g/5yXOv+Vszr3lHGJvnsO2nJ6FaZ6Ka2x8vjufzJKa3nUkBgVqIiIiIiIiInLKczqcAFisHUcd3333Hc888wwOR9vFAHpi586dPPbYY9TVtb8ls70VascKDg/i/pfvZuyv5lNYbeuzOTpdsDy9mPTi6j7r83SmQE1ERERERERETnkul3sZV0fbPdPS0nj++eePy/j79+/n6aefNuZxLC8fL+PaYbO324/L5WJ5ejHFNX0XpnlalVlCQVX9cen7dKJATUREREREREROaZ4hlsncdqBWW1vL888/327g1Rc2bdrEihUrujDH9uOY/YXV5FR0Xnygp1wuWJ1Rgr1xRZ/0jIoSiIiIiIiIiMgprUVY1c4KtXfeeYfCwkLefPNNDh06BMB///tftm/f3uZvPfX6668zduxYwsLCWs7R6TnHtt+tqrezKbuM6yfEUVzTAMDO3EqqG+ycleTuz2o2YwI+35Pf4zlW1NvZmlPBGQmhPe7jdKdATUREREREREROaS3CqjZWqJWWlrJkyRIACgoK+OMf/9jieVu/9VR1dTVffvkl119/fcs5dmGF2u78SuxOF1UNDr7eV9jiWdN9SlQg3tbOq5h2Zm9BJWMGBuFr7bg6qbRNWz5FRERERERE5JTmGVaZ2wirlixZYhQhiIyM5NFHH+Xee+8lMDCw3d96Y9myZdhsLc9A62yFms3h5GBjwYAALwsXpkQxc1A4PpaWf8+gcH8yintfrdPpgoNFKlDQU1qhJiIiIiIiIiKnNKdHWMUxYZXL5WLp0qXG/b333ktlZSXnnnsuP/zhD3n55Zfb/A3gD3/4A8OHD29REfTtt9/mm2++6XA+5eXlbN68mbPOOqvFPIwpthH6ZZXVYnO42yxMy6Xe7mRoRAAT4kJYl1UKQIC3BZMJqhqa5zMg0JsxA4OJCvDBBFQ12EkvqWFPfiXOTo6LO1BYzeiY4I4bSZtO2UDt+eef5/nnnyczMxOA1NRUfv/73zNv3rwTPTURERERERER+T51sEKtuLiYoqIi476yshKA1atXM3fu3HZ/a/LOO+/wxRdfdHtKe/fubRGoOTtZoVZQ2Vx5s97uLhiQUVrD8KgA4/dB4f5kljSvTosP8WXW4Ai2Hi1nVUYJ9XYnwb5WxsQE4+dlodojeGtLRb2dOpsDXy9t++yuUzZQi4+P54knnmDYsGG4XC7eeOMNLr/8crZu3UpqauqJnp6IiIiIiIiIfE86CqvS09ONax8fHxoaGnC5XIwaNYq8vLw2f+sKHx8fbrjhBiZPnoyXlxfbtm3j3//+N7W1tQBkZGS0fKGTbalNRQisZhMOpwsXEBPoQ0W93WiTHO7Pt/ubz1Y7MzGMtLxK9hRUGb9V1NlZnVli3PtazUxJDCMmyAe700V6SQ3bjpbj8hg3LsSvS3+zNDtlA7VLL720xf1jjz3G888/z7p16xSoiYiIiIiIiJxGOtpOmZWVZVzHxsZy5513Ultbi81m44UXXmjzt664++67cTgc/PKXv8ThcHDnnXdy++2388wzzwBw+PDhFu0725ZaWus+cy3Y18q05HBsDidOJ6w57A7HQn2t1Nud1DWuXgv2sRLkYyWjpONz0GYNjqDW5mDBzlx8rGbmDovC7nCyM8+9Kq+01qZArQdO2UDNk8Ph4MMPP6S6upqpU6e2266+vp76+uYllBUVFd/TDEVERERERETkeOnowP+mFWM0rhp76KGHWjwvLi5u9Zun66+/nmuuuca4v/POO/H29mbKlCncfvvt1NS4t2C+//77/OMf/+DZZ5/F5XJRW1uLy+XC1DihjgonOF0Y552V1Nj4fHd+q3mU1dlZ7LE6zcfL3UdH2zr9vSwMDPbl/W1HsTtd2Bsc7MitYFxssBGo2R2dHLQmbTqlA7WdO3cydepU6urqCAwM5OOPP2bUqFHttn/88cf7rAyuiIiIiIiIiJwcOlqhZmrrwLJuePfdd1udoRYfH4/ZbDZWozVxOp2EhoZSWlqKyWRqMXbL0K/lnHoyw3qbe6VagLeFyvq2QzV/bwt2Z/OqNoDKejsBOjOt107pQC0lJYVt27ZRXl7ORx99xC233MLy5cvbDdUeeeQRHnzwQeO+oqKChISE73HGIiIiIiIiItLXOlqh5uvr2+fjFRUV4XQ6+elPf0pDQ0Obbfz8Wm6jbBn6HROomcBsotOqnJ4q6u1U1ttJDvdnZ25lm21qGhxYzWZ8rWYjVAv0tlBtaw7gvCy9CxxPV61PwTuFeHt7M3ToUCZNmsTjjz/OuHHjeOqpp9pt7+PjQ3BwcIv/iYiIiIiIiMipraMVaomJiX0+Xnl5ORs3buT2228nKCgIgJCQEM4444x2x+1whZrJRJifV7fnsSGrlDExwYwYEIiPxf13B/tYmZYURoC3hRqbg9yKOiYnhGI1mwjwtjB2YDCHipvPXQv18+72uHKKr1A7ltPpbHFGmoiIiIiIiIj0fx2tUBs8ePBxGfPZZ5/l2muv5fHHHycwMJDy8nLWrFnDxo0bARg0aFDLOXawQg0gwt+b4hpbt+aQXV7HtwcKGTswmAmxIQBUNdhJL66htnEV2or0YqYkhjF/zEAcLhfpxTWk5TWvaIsI6H6QJ6dwoPbII48wb948EhMTqays5N133+W7777j66+/PtFTExEREREREZHvUUcH/kdERBAVFUVhYWEbb3aso3PY6+rqePPNN3nzzTfbfD5ixIiWc+xghRrAgCAf9hd1XLGzLQVVDXx7oKj9edqdLE8vbvNZsK8VX6vOU+uJU3bLZ0FBATfffDMpKSnMmTOHjRs38vXXX3Peeeed6KmJiIiIiIiIyPfI6Xn42DFZlclk4txzz/1e5xMSEsLkyZNb/NbZCrWkUD+8v+fzzIZHBnyv4/Unp+wKtVdfffVET0FERERERERETgYdrFADmDNnDgsWLMDhaLsaZl+bPXs2VmvLyMXZyQo1q8XM0MgAdudXfS9ztJhMDFGg1mOn7Ao1ERERERERERFahVWtn4eFhTF37tzvZS4BAQHMmzev1e8up9O4NrexQg1gVHQQ1nae9bURAwK13bMXFKiJiIiIiIiIyCmtoyqfTW644QaioqKO+1xuu+02QkNDW/3uMcW2Uz8gwNvK5ITW7/a1YB8r4+OCj/s4/ZkCNRERERERERE5pXVU5bOJr68vd999d5tbQvvKmWeeycyZM9t81pUVajSeaxYX7Htc5gdgNsH0QeFYj+N3OB3o64mIiIiIiIjIKc3q3Xxema3e3m671NRU7r777jbPMOutlJQU7r333nb79lyh1tH4JpOJKQMDqcrI6/M5moCZgyIYEOjT532fbhSoiYiIiIiIiMgpLTg80LguK6zosO2sWbO49957sVj67vywsWPH8pvf/AYfn/aDKoe9uSBCW1U+m7hcLp6/91UW/ehp8rcc6rM5mk0QkV/Ev656ku8+WNNim6x0nwI1ERERERERETmlWawWghpDtfJOAjWAGTNm8MQTTzBo0KBejevl5cVNN93Er3/9a3x9O96mWVFcaVwHRwS12+6z579h8ZvLsVXXsepX/ybZ6g7DeiMywJtLR8XwzPy/sGPFbh677v+4c+KvWPbe6hZBn3SdAjUREREREREROeWFRrkP2e9KoAaQlJTEY489xo033kh4eHi3xjKbzZx55pn89a9/5dJLL+3SuWyleWXGdVh0SJttdq/dx/M/f824/8XLd3L2+AQuGRVNsM2Gy+Fs8732BHhbOCMhlHkjBhDq54WXx9bY9O2H+fP1/+TmoT9jwf99Tk1lbbf6Pt0pUBMRERERERGRU15IY6BWU1lLQ72tS+9YrVYuu+wynn32WcaOHcvQoUOJiIhos623tzfDhg1jxIgR/OQnP+EXv/gFsbGxXZ5fSb5HoBbTupJnVVk1j/3wn9ht7hVjVz94KWdfO83d3s+bI28vZekD/0fx7i1419ZhabdSqIUoHyjfupLS979leIQ/5sa2Z8yb0Kp9QVYRL/ziDW4Zdi/ZB3K7/Pec7qxdaCMiIiIiIiIiclILiWzeRllRVEFkXNvBWFvMZjMPP/wwFosFk8lEeXk5ubm5NDQ0YLVaCQoKIjY2lrq6Ov7xj3+wcuVKHA4H5513XpfHKM0vN67D2wjU/vWzVyjIKgJgzMyR3PHEDcYzh8PB6o/XU5JXRsmuD/jg6Cv4BviyYdVevlu4nl1r92Ovs3Hx9TO4+qHLeevf71Cac5BCp4Ofz/0N/7f4T1i9rEyYPYYVH65tc35lBeXsWr2X+GEDu/w3nc4UqImIiIiIiIjIKS8kMti4LivsXqC2fv16MjMzue6669x9hYQQEtJ6W+aRI0dwOt3bLteuXcusWbM6LETgqWnLp+d5b02WvLOSpe+uAiAgxJ+H37oXi7W5aMLuNfspKypn0r3D8C0Jwj/Ij+wDOfz+3D+0KC5QlDEMgJyco+6xvM3Yg2v532v/wW/e+zmjpg5vd36jpqUYK+Kkc9ryKSIiIiIiIiKnvKYtn3TjHLUmaWlpeHl5ddouPDycgIAAaKzGuWTJEvbv39+lMUoaA7XQAcEtzlzLyyzg6XteNu7ve+7HDEiMavHuio/WEpzoj1+4DxPPHQ/AP+98qVWlzqKjxQB4Od0hn8lsInRwIEdKMvnjD/7CwCHR+Af5tZpbRGwYTy7+Hb7+XQsHRYGaiIiIiIiIiPQDoVHNK8q6G6iNHj2aqVOndtrOYrFQX19v3G/cuJH//Oc/7N27t8P3nE4nZQXuLZ+e2z0dDgd/ueUZaircBQHm3DiT2T+c0erdVQvXU1vcQPaqImZfNZM1n2xk+7JdrcYpOlqCy+WivrLB+M03zJvEcwbgGlzLo1c+yfDJQ1q9V5xTypcvL+n075dmCtRERERERERE5JTnuUKtrBuBWn19PREREV0qMPCf//wHu91u3KekpDB48GCqq6s7fK+iuBJnY4VOz4IE7z/5CTtX7gEgOimKe/91e6t39244SNHREnxCvIgOGojFauGZ+15tc5zc9Hz27dtHQ2ANNK6is9c6yNlQTF15A9tX7Kau1h0IhkQG8eMnbzTefeXhtzm8J7vTbyBuOkNNRERERERERE55Pd3yuX79ejZs2MAvf/nLDtu5XC7KysoYPHgwlZWVREdHc+GFFxpbQDvSdH4aQNgAd6C2b+NB3nz0AwDMZhMPv3UvASGt+1r50Towwajrkxgak8ibj35I4ZHiNsepqajlSGY2TpuTwl3l+A/wJXd9EQU7mgsilOaW8ebBZwiLCcXX34fC7GL++68vaaiz8eRNT/PUmsfw8u58++vpTivUREREREREROSUF9rDQK20tJS4uLhO25lMJm644Qauv/567rrrLpxOJzabrUtjlHgGajGh1FbV8viNT+OwOwD44SNXMXrGyFbvuVwuVi5Yh3eAFauPhWGjhrLwqUUdjhXgCCbtzUwOfHKUrO8K8A1rPhctdXoKD791LwMHRxvnpd3xxA0kjHD//Qe2ZPDO/y7o0t90ulOgJiIiIiIiIiKnvBZbPou6Hqidd955XH755V1qO2jQICwWC06nk/3797Nnz54uvVea37xCLDwmlBd/8SZHD+QCMOLModz4+6vbfG//5nTyDxfSUGWnfpsZX1OAsXW0PYWZxUZRAv8oH+KmRbhXuE0dzj9X/qlVcOfj59Oiquh/Hl/I7rX7uvR3nc4UqImIiIiIiIjIKa8nWz4rKyv56KOPsFgs3RrLYrEwfvx4fH19u9Tec8tndXk1i17+FgDfAB8eeus+rF5tn8i18qO1AMRNi2TY2cmMPzeVO/9+CzOuPBOzpTHSMbV8J2vPUf665A888MJP+Plf78ZW4cRkMrF3/QHKCsvbGAWGTxrCTX+4BgCn08WTN/+L2qraLv1tpysFaiIiIiIiIiJyyvP28cI/yA+6EagdPHiQjIyMHo130UUXMWzYsC619dzy+c0by43rHz12PfHDBrb73qZvtgMQMymc8KRgzGYz839+Cfc8/SNjpdoZF4zn7YxnjXey9h4lISWOi39yHuOmjmFQwDBMZndQtuaTTe2Odd1DVzDyLPffk3Mon1cfebdLf9vpSoGaiIiIiIiIiPQLwZFB0I0qn4GBgUycOBEfH58utG4pJyeHf/7zn1RWVnbatrSgOVDLTc8HYOiEQVx29wXtvlNWWM6hbZkAmOrMTDpjkvEsI+2IcZ00KoHopAGENP7tWXuOtujHlGRj0AUxAKxcsLbd8SxWCw+9ea9xttpnz39Nxs7Dnf5tpysFaiIiIiIiIiLSLzQVJqgqrTYO/O9IZGQkF110UY/GCg4OxuFwkJOT02lbzy2fTe599g7j3LK2bF+2CwCz1URi2GDi4+ONZ4d3NQdqyaMTAEgc6X5ekltKdXm18TwuKZbwwe7vsnVJGjWV7W/ljBs6kB/++ipo3Pr57P2v4XK5Ov37TkcK1ERERERERESkX2g6R83lclFRUtVhW5vNxnPPPceBAwd6NFZQUBDz588nISGh07YlxwRqF90xh1FnDe/wnS3f7gAg9qxIasNbvt8iUEttDNRGNFcqzdrbHPJNnz6dcHM0AA67g50rOy6kcPWDlzBwsLv99u92seKjdZ3+facjBWoiIiIiIiIi0i90pzBBeXk5drudgICAHo8XERHRpTPYCo8UG9fBEUHc/vgNnb6zZclOAAKjfQmLCm3xLHN3tnGdONIdpCV4Bmp7mp+HhIQwcEQUVj/3arhtS9M6HNfb15s7/3GLcf/iL9+grqa+0/mebhSoiYiIiIiIiEi/EBrZ9UAtPDycq666qsVWyu7as2cP33zzTYdtaqpqqS6vMe7veOIGgiOCOnwnNz2fvIwCAPzrg1tsS3W5XMYKtZjkKPwC3YUYmoI1jlnB5nQ6OZS/n8hRIQBsXbqz079r6qWTmXzBOGgMA99/8r+dvnO6UaAmIiIiIiIiIv2C5wq1zgoT5ObmAmAymXo83sCBA7Hb7R2eM/buYwuM66CwAC647dxO+926pDn0SjgjpsUquoKsImqr6gBISm3ebjp0wiDjeve6/ca12WwmJiaGAckRABzalklFcceFFEwmE3f9323GGW/v/+UTcjPyO5336USBmoiIiIiIiIj0Cy0CtYLyDttu2LCBTZs29Wq8ESNGcP/997cbyhUcKWLhP78w7sedOxqzufMoZssS9/lpPiFeFDvzycvLM55lpmUZ18kegVpYdCixQ93VPPdvPERDXYPx7LbbbmNYUopxv/27XZ3OIXFEHFfe514ZZ6u38dKv3ur0ndOJAjURERERERER6RcGJEYa10cP5HbY1m63ExcX12Gbrnj99dc5evRom8/e+d+PsNXbjHvPAKw9TqfTOOfMP8QPq9VKdHS08Txt1V7j2nNVGkDqdHdoZmuws39zuvH73r17MSU1B2yeK+A6cuPvryYs2r1VdNXC9UahBFGgJiIiIiIiIiL9RPLoROP68O4jHba9+uqrmTt3bq/HLC4uJjMzs9XvOYfy+Oq1ZS1+C48JbdXuWOk7DlNe5N6SOXJCCg8//DBBQc1nrm1f3ry6bOzZo1q8O3raCON61+p9xnVNTQ2F5flYvBoLEyzruDBBk4Bg/xYFFF55+O0Ot7eeThSoiYiIiIiIiEi/EDYghJBId/iUmdZ+oFZbW8u//vUvSktLezWeyWTirLPOYuDAga2evf2/H+F0OFv85lmJsz1blzSHXXHTIlm0aFHzvKtq2b8p3egrPCasxbupMzwCtTXNK9mGDRtGamoqKWcMBeDIvhyKjhbTFefdfLaxEu7Algw2fLm1S+/1dwrURERERERERKTfaFqlVpJX1u7h+/n5+ZSWlvbJaqupU6cSGtpy5VnW3qMseXsFgHGwP8CgMYmt3j/W1iUe2yoDHdTV1Rm3u9bsx2F3ADDumNVpAAkpsQSFB7rbrt5n/H3h4eFMmzaN8bNTm8dZ2rVVamazmet/M9+4f+dPH2mVmgI1EREREREREelPkkbFG9eZu9pepRYWFsakSZMIDw/v9XhbtmzhrbdaHtj/1v/7EKfTHTpZvd2BWvjAMEIig9vso4mtwcbOFXsAiIgNY+yEMYwfP9547llMYNw5qa3eN5vNxjlqFcWVHNmXYzx7/fXXCR/ZvHW0q9s+AaZfcYZx/tuedQe6HMb1ZwrURERERERERKTf8DxHrb1tn97e3kydOrVLFTc7ExAQQHl5OU6ne3tnxs7DfPfeagCCI4Kor3EXAxg8tvPVaXvWHaCuph6AiXPHkpSUxODBg43nOzo4P61Jqsc5ap4FDAICAvCP8MHb1wuAbUvTurzSzGw288NfX2Xcv/vYgi69158pUBMRERERERGRfmPQ6OZKmu2tUFu1ahULFy7sk/FSU1O5/vrrjXDujUc/MJ7NuPJM43rwmKRO+/Ksojn2nFG88sorHDx4EIDa6jr2bTwEjVs7jz0/rcnoxhVqHHOO2lVXXcWUs6YwuvGctYKsInIO5XX57zz72qnEDXOfFbf9u12krdrT5Xf7IwVqIiIiIiIiItJvJKV6BmpZbbapqanBx8enz8bMzMzEZrOxf/MhVn+8ARq3eA5IijLaJHfp/LSdxvXI6UNxOp3GPHev2Wecnzb27NbbPZsMnzwEL28rAGkrm0OvmpoacnJyGH/uGOO3bd3YummxWPjhI1ca9++c5qvUFKiJiIiIiIiISL8RFBZIRKx79dbhXdltbmucOXMm8+bN65PxSktLWb16Nbm5ubzpsTrth49cyZG9R437wWM7XqFWXVHD3g3u1WiJI+NIGpbI9ddfT3JyMnTh/LQm3r7ejJw6HICcQ/lkNc5hx44drFu3jvGzRxttu3OOGsCcG2YSk+wOCTd9vZ29Gw506/3+RIGaiIiIiIiIiPQrTavUKoorKc0va/U8IyOD+vr6PhkrKCgIb29vio+Wsn7RFgCiEiK46MdzydjpXiFnsVpIGBHXYT87lu/G6XCfwzZh9hiqqqrIympeYbd5scd20HbOT2sy9dLJxvWa/7pXzEVERODt7c3wSYPxD/aDxhVqTWe/dYXVy8oPHmpepfbun/tm2+ypSIGaiIiIiIiIiPQrg1ps+8xu9XzFihXs37+/T8by9fXloYceYs1/Nhu/XXX/xZhMkLXHPXbCiFi8fbw67Mfz/LSJc8dy6NAhVq1ahcPhIC+zgP2b3OenDZ0wiIiBbZ+f1mTa5WcY12s+3QjArFmz+OEPf4jFajECubLCCg63c85ce86/9Rwi49zVUdd+uokj+452+k5/pEBNRERERERERPqVFueopbU+R83b25sBAwb02XhvvP4G61e5V4L5+HlzwW3nkr0vB7vNfeZZZ9s98TjPzGw2MfbsUXh7exMWFobVamXFh2uNdrOuntppX7FDYkhuLM6wZ90BinNLSU9P59///jcAEzzOUdvajXPUALx9vLjq/ouN+y9fWdKt9/sLBWoiIiIiIiIi0q8kj24uANDWCqy7776b1NT2zyHrrtyjeXiFWgCYff1MgsICSd/RHOQNGt1xQYLi3FKjIunwM4YSGBrAyJEjuffeewFY8ZFHoHbNWV2a0/TLmyuMrvtsE5WVlWRnZ2O325kwp/kcta1Ld7bTQ/vOu+VsrF7uv3fxm8uxNdi63cepToGaiIiIiIiIiPQrSaPijevMYwK12tpannrqKcrKWp+t1hMul4vC7eVUZFUDcNk9FwCQvuOw0WZQJyvUPKttTpzjXj22cuVKPv/8c/IyC9i3sXm7Z9zQgV2a19Rjtn0mJyczfvx4LBYLSakJhEYFQ+PZbU3VQ7sqNCqE6Ve6A7uywgrWfLKpW+/3BwrURERERERERKRf8Q/yIzrJXY0yc9eRFpU+q6urKS8vp7Kysk/G2v7dLvYvPkx1Xh2jZ4xg6PhBAGR4bDXtbMvn3vXN1TKbKngWFRVRXFzc7e2eTYZPGmycdbb12514mb2ZMmUKJpMJs9lsVPusqahl/+b0Lvfb5KI75hrXX7zybbffP9UpUBMRERERERGRficp1b1KraailsLsYuP3kJAQxo0bR1RUVJ+M8+lzXzH0kjiS5kRz2d0XGr9nNK5QCwoLMIKt9qTvbF7NNmR8MgApKSmMGTOmR9s9AUwmE1Mvc69SszXY+e6Tlbz44ouUlpYCMP5cj22fS7q/7XP87NHEDHKfQ7dl8Q5yM/K73cepTIGaiIiIiIiIiPQ7yanN55ZlpjVv+/Ty8uLMM8/E19e312MUHCli9X83Yraa8A3wYcZV7m2QFcWVFB0tcc9jTCImk6ndPlwulxG+RcSGERLp3oqZmJhIiG+Ysd1zyPjkLm/3bOJZ7XP78l0AOJ1O8FgJB7B/08Fu9QtgNptbrFL76tWl3e7jVKZATURERERERET6nWSPSp+ehQlKSkp4+eWXKSgo6PUYi15cjNPhJOObPEYPH4OXtxcAGTs9tnuO6Xi7Z3FOCZWl7vPXPLeGLlmyhE8WfmLcn33NtG7Pb9w5o/AP9gNg/YJtXHHZFYSHu1fLxQ6NwcfPG4DMXdnd7hvg/FvPwWxxR0tfv76s22exncoUqImIiIiIiIhIv5M8ujlQy9jVHHA5HO7Qp2mlVk85HA6+em0ZAH4RPpxx6fjm8XZ2/fy0FtVAPcI3h8NBcV6pcd+d7Z5NvLy9mHHVFADqaurYtGKrcZ6c2WwmsbF4Q87BPOpr67vdf8TAMKZeOgmA4pxS1n+xpdt9nKoUqImIiIiIiIhIv5M4Ms7YannYYwVWZGQk1157LTExMb3qf9fqfZTkugOvlHmJZGQ3H+zfnQqfLdqOad6mmhgxiF0fufvsTnXPY827fQ4AQbH+ZJcdblHdtGkVn8vl4sjenJ7177Ht88tXl/Soj1ORAjURERERERER6Xd8/HwYOCQagKzd2caKNIfDQU5OjrFSrac8q29GREcQEBBg3Gd4FBlIbiyO0B7Ptp6r2b59fzk+oe4tmZf89LwezzN1WgqJI+Ow1dhx2p0UZpV4zM1jFZ9HVdLumHzBOKPowuavt1NTWdvjuZ5KFKiJiIiIiIiISL80qHHbZ11NPUf2uVdgFRYWsmrVKgoLC3vcr8PhYOXC9QB4+Xhxy+03M3v2bONZUxGE2CHR+AX6ddhX0wo1i9VCwohYaCxqkFuWzcAzwgkI8Wf2DTN7PFeTycRFd8ylprCedU/uYdlbq41nSe2cM9cdFovFKH5ga7Cz8attPZ7rqUSBmoiIiIiIiIj0S6OmphjX25e5q1z6+flhsVjw9/fvcb+e2z0nXzCOVWtXsmnTJgBy0wuoq3GfR9bZdk9bg83Yapk4Ms4oavDlq0upr7TRUGXnwtvOxS+gdxVJ5940i8ABfoy7fTBL/rOChnqbe34e58xl9jBQ45hqoms/3diruZ4qFKiJiIiIiIiISL80fvZo43rbsp0AhIaG8vDDDxMSEtLjfj23e866eipHjx4lPz8fgAObm89SGzQ6sc33mxzZm2NUxmw6P83hcPD5C19z6IscDn52lEvuuqDH82wSEhnMxEvGEBDjR21NLWv+uwGAqIRI/IPcK+h6ukINYOzZowgIcQeU6xdtwW6z93rOJzsFaiIiIiIiIiLSLw0Zn0xgqPtss23LduF0OrHb7bz00ks93vJ57HbPqZdNJiUlhSFDhrjHWbrTaJs6fUSHfbUsSOBezbbhi63kZRYSMzGMqXeNIX5Yz4oRHGvO/FkU7S6nodrOF6+4iweYTCaSGs94y8sspLaqZ+efeXl7ceZFEwCoKqtmx4o9fTLnk5kCNRERERERERHplywWC+POTQWgsqSK9O2HcTqdFBYWGivKuuvY7Z4Bwf6MGTOGlBT39tItS9yBmpe3ldEzOg7UMna0LkjwybNfAeAT6k1gfMfnr3XHpNnjqdlnx+VwsXXJTnIO5QGQNMrjHLXd2R300LFpl3ls+/yk/2/7VKAmIiIiIiIiIv3W+HObt31uXZqGl5cXEyZMYMCAAT3q79jtnk6nk+eff569e/eSm55PXkYBAKnTU/D19+mwr/QWFT4TObLvKJu/2Q6AudqL8RPH9WiObdm8eTNDrmpe7fbFy9/CMdtSm4op9MQZ8yZg9bIAsPqTDbhcrl7N92SnQE1ERERERERE+q0Jx5yjZjKZmDVrVo/OUHM6na22ezY0NGCz2bBYLGxd0rzdc/zsMZ32l74jC4Cg8EAiYsP59LmvjWdzrzqXCRMmdHuO7amqqiIoNNAIvT574RuqyqpJ7qPCBAHB/saZdYVHijm0LbMPZn3yUqAmIiIiIiIiIv1W4sh4wmNCAdi5Yg92m50PP/yQVatWdbuvzLQjxnbPSeeNJSDYH19fX+bPn8/QoUPZsmSH0Xbi3LEd9lVeVGH0NWhMImUF5Xz16lIAvH29GDl3MC+88AJ1dXXdnmdbJk+ezOVXXM75t5wDQE1FLf/915ckpfZNoAYw7fIzjevVjYUP+isFaiIiIiIiIiLSb5lMJmPlVG1VHfs2HsJisVBTU9PtvrZ/t8u4njDHvQKtvr6esrIyTCYT25amARAQ4s/wSYM77CtjZ5ZxPXhMEu898V/qauoBuOiOuQSFBuJ0OvssUCssLMRkMnHdw1ditrjjoIVPLcI3wIeg8EDoZaVPgKmXTTau132+uZczPrkpUBMRERERERGRfs3zHLVtS9OYN28eU6dO7XY/25c3B2pjzx4FQHp6OkuWLGHv5gOUF1UCMO6cVCxWS4d9eVb4jEqM4LMXvgHAx8+bH/76ShITE5k/f36Ptqa25bvvvmP79u0MHBzNnBtmQmOhhs+e/4bkxlVqRUdLqCqr7vEYkbHhDBmfDMChbZlUl/e8r5OdAjURERERERER6dfGH3OOmsPh6HaVT6fTyY7luwEICgswqnKazWb8/f3ZtXyf0bZp9VpHPCt87ll3AFu9DYDL7r6A8JgwTCYTpaWlfbZCzWw2ExERAcAPH7kSk8kEwIJ/fEb88FijXW+3faZOc1c7dblc7F53oFd9ncwUqImIiIiIiIhIvzZwUDQxg9xVPXet2c+O7TtYtmxZt/rITDtCZUkVAGNmjcJsdkcqw4cP5/7772fbsjSjbWfnpwGkN275NJlMrP10IwC+AT5c+z+XA2C321m6dCn79+/v1jzbc+uttzJlyhQAElLiOPsH0wAoK6ygsrSqxd/ZG6NnjDSud63e26u+TmYK1ERERERERESk32va9mmrt2GvAIfD0a33m1anAYw7O9W4Xr9+PUu+XcLOFXsAiIgNIyElts0+mjgcDuO8Mr8gXxx2JwBX3ncRoVHuLZ5eXl5ERkZ2e55tqa+v57XXXqO0tNT47fpHrmz+21Y0/229PUctdXqKca1ATURERERERETkFDbBY9tnYVop99xzT7feb3F+2jmjjOt9+/aRnXnUKCgwce5YYztle3IP5VNf2wCN1TYB/IP9uPoXl7Zo99Of/pQJEyZ0a55tKSgoIDc3F5vNZvw2aEwS0690V+WsaDz7DSBzV1abfXTVgIRIBiRGArB3/UHsNnuv+jtZKVATERERERERkX6v5Tlqu3jxxRe7fI5ae+enAQwaNAhbnsu4nzC78/PTPAsSNLn655cSHB7U4rft27fz8ccfd2mOHQkODmb06NFERUW1+P36X19lXJvN7hAwc1d2r8drWqVWV1PPoW2Zve7vZKRATURERERERET6vfCYMJJGxQOwf+NBSkpKOHy4dbDVlsO7jlBR7F7F5Xl+GkBKSgr7ljSHRhPmjG6zD085B/Na3AeFB3LVAxe1aldbW8v+/ftxuVytnnWH1Wrl/PPPx2JpWXl0+KQhnHmRewWc0+keo6ygnLLC8l6NN3q65zlq+zpse6pSoCYiIiIiIiIip4Wmc9ScDhfJAwYTExPTpfe2t3N+Wn5+Pi+88AKZB9zbJBNHxhEZF9FpfyX5ZS3ur/3lZQSEBLRqN2LECMaMGdPpFtLOfPnll3z99ddtPvvxkzdhtrSMhw73cpWa5zlqaWv65zlqCtRERERERERE5LQwYU7zdsyKfXUEBgZ26b307c0r2UacNcy4LikpAaC+0n0eWle2ewLs35RuXIfHhHL5vfPabBcZGcmECRNwOp1d6rc9JSUlBAS0DuwAklMTuPyeC1v8VpxT0qvxkkcn4B/sB8CuVXt7vcLuZKRATUREREREREROC2PPHmWs9srIOcR7773XpfcO726ufNm0bRRg8ODBBFdE4ah3B14T547ttK/aqlr2bzpo3P/kLzfhF+DbZlun08m///1vdu3a1ebzrpo3bx4zZsxo9/nNj16LX1DzHHav3d+r8SwWC6OmDgegJK+MvIyCXvV3MlKgJiIiIiIiIiKnhaCwQIZOHARA/qEiSktLO1095XK5yNzlDtQGJEYSEOxvPDt06BCHtrvPTzObTYzzqP7Znrf/30fY6t2VL80WM7NvmNluW7PZTEBAAGVlZe226UxDQwN79uzB39+/3TaBoQHM+9Ec4375h2tx2B09HhNgxJnNK/kydvaucujJSIGaiIiIiIiIiJw2JjSeo1awvYzU2LGdnk9WdLSEmopaAJJSE1o8W7Z0GXa/egCGnzG0zXPQPGXuOsKCfy4y7iNiwzod/7rrrmP8+PGd/FUdjJmZydq1a6muru6w3RyPYK+soJwvXv62x2MCJI5sXsmXtaf3lUNPNgrUREREREREROS0Mb7xHDWn3cXetP3k5eV12L5pdRpAssd2T4DayjoqjtQAMHFOx+enuVwunr7n5RYrv6ISIjudr5eXFxs3buy0XUfjhoaGEhQU1GG7sJjQFvev/e49o7JpTySMiDWus/Ye7XE/JysFaiIiIiIiIiJy2hg9YwRePl4AVDhK2bx5c4ftM9M8zk87ZoWa84APhTvc2zE7Oz/t27dXsHPFnha/hR8TYrWlsLCQlStXUlnZs3Br+PDh3HfffZ2uhAuJCm5xX1lSxeu/f79HYwIkpMQaY2qFmoiIiIiIiIjIKcwvwJdJ57vDr4K0MkryOj6f7LDnCrXRicZ1WloapYHu1W0+ft6MbDyEvy2VpVW89Ku3Wv0eFt15oJaYmEhISAgNDQ2dtj2Wy+XixRdf7FJRA28fL/yD3JU5m4Kwz1/4hp0r93TyZtt8/HyITo4C4MjenH5X6VOBmoiIiIiIiIicVmbNnwrA4aX5VKa1DqqqK2rY+PU20lbt4cCWQ8bviSPjjOttm7Zhq7UBMHrmSLwbV7215bXf/IeygnIAo/olQFh0SKdzDQgI4P777yc0tPPw7VgVFRXk5+fj5dX+3DwFR7q3hXr7utu7XC7+cusz1FTWdntsPL5XTWUtxTklPerjZKVATUREREREREROK2ddOgmrlwWLt5n8wMMsfOkz/nnnS2z6ZjsAv7/8SX497zF+Puv3pO9orFBpgp+M/QV/v/057DY7VVkNZK0oBODMCye0O9amb7bz2QvfAOAb4MPUy88wnnVlyyfAsmXLeP/97m+/9Pf3Z+rUqQwePLhL7UMbt33W1zaQOj0FgLyMAp7/+evdHhsgIaU5gMza07/OUVOgJiIiIiIiIiKnFR8/b5JSE3DYnLicTj59YxGLXlrMkzc9DUBJbmnrl1zucOmr15axY+Vu9qzfT+kB97lmM+ZPaXOc8qIK/nrrM8b9jx67Hnu93bg/thBAe/z8/MjIyOj2tsni4mLGjx/f5RVqnueo3fWPW/AL9AXgq38vZc0n3S+M0LLSpwI1EREREREREZFT0mfPf801MXdwaFsmuODg5zmUHqoCIHiYP8XFxZx9zbR23w8KC6C0upjwM/2w+lkYedYwBrRRrdPlcvGPH79gnNE2+YJxXHHvPErzm89s6+oKtXHjxnHOOecAUFVV1eWqn59++ikbNmzoUluOCdS8/Xy4+6kfGff/95MXWsy9Kzy3yPa3Sp8K1ERERERERETktPHa796jpqL5TLDgpADG/3gI424fTMLcCNLT07ngR+e2+/4dT97E3u0HqC2px17rYGbjeWzH+vKVJcaqrpDIIH7573swmUwtQqmuFCUAKC8vZ9OmTfzpT3/itdde49tvv+30HZfLRUlJCfHx8Z22bRIa2RyolRdWcMGt5zD9CvcW1bLCCv7xkxdwuVwc3n2ElQvXY7fZO+gNEkc0B2pH9vavSp/WEz0BEREREREREZHvy/k3n82nL3/NlF+OoDyziqB4f8xWM0Hx/uCCuLg4BsZGM3HuGLZ8u7PFu6nTU7jwR+fys6lfk7nHXf1zZhvbPbP357Q4d+zBl+8iYmAYQIuqop0VJVi8eDFbt24lMDCQsjL3eyUlJV06E81kMvHTn/60W8UMPFeolRdWYDKZeODFn7JrzX7KCspZ99lmHrv+n6z8aB1Oh5Pb/3w91z18Zbv9BUcEERoVTFlhBdn7c7s8j1OBVqiJiIiIiIiIyGnjJ3+7mfOuP5uyjCqCEwMwW5ujkZCGKGJjYwGYd/ucFu+ZLWbuf/4n5BzKw2uYE6uvheGThxCTPKBFO7vNzuM3Pk1dTT0AF/94LtM8ChGU5rurfQaGBuDt693hXFNSUqitraWoqMj4LSgoiOuuu67Tv3PXrl2sW7cOk8nUadsmnoFaWWEFAKFRITz48p3G78vfX4PT4QRg7WebOu1zQFIUNJ5L57A7ujyXk50CNRERERERERE5bZjNZh544acMDkoh7a1MKnObt3+6gmzG9bQrzsTq3byx7+KfzGXQ6EQWL1hK+LAgzBYTM69qvTrtzUc/YP+mQwDEDx/IT/9xS4vnpY0r1LpSkCAxMZF77rmHiy++2PitoaGBgoKCTt/dvHkzpaVtFFfoQOgxK9SaDJ88hNABwa3aH9icTkO9rdXvnqLiwwFwOl0tVued6hSoiYiIiIiIiMhpxWQy8bOnb+e8q2ZTnVuHy+nC5XJhsjSv5vL28WLKxRMB8PH34cd/uQmA7Ut3U7CzjOr8OmbMP6tFvztW7Oa9J/4LgMVq4ZF37scvwNd4XltVS21VHXRhu2eTyMhIRo4cadzX19djt3d8dhnAgAEDOOOMMzpt56nFls8id6BWklfKPWc8RFlBRav2tgY7B7dmdNhnRGy4cV2YXdyt+ZzMdIaaiIiIiIiIiJx2TCYTP/nrTfzvDQXUlJXgF+7DyNQU6mwOimsaqKi3M/+ZnzLjF1cQlxhJndlCeWYBGTuyqC1uYPC4JOKHDTT6Ky+q4Mmb/4XL5QLglj/+gOGThrQYs2m7J92o8Ang7+/PpZdeymeffYa3tzfR0dFkZWWRkZFBZWUlTqcTb29vBg4cyODBg/H29mby5MlERrauPtqRtgK19Yu2UJzT/kq33Wv2Meqs4W0+q7M7iBg7iOHXzMDq48Whinp8iqoJ9/cixM8Lcze2o55sFKiJiIiIiIiIyGnJZDLx+3d/ycYVu9hfW0FFdALvb89p2cjbl6N5VZBXBQ4HF7xyJ2mvL2fa+BFGE4fDwZ+v/ycFWe6zzsbMGsm1/3NZq/E8A7WuVvhsMn78ePLy8li6dCl33HEHDQ0N7bYNCgoiKiqK//mf/yE8PLzddscKiWy95XPa5Wfw9evL2LV6X5vvbPxyK1c/eKlxX91g50BhNYdKqqmqd8DE4Zw50R24lQCrMksAsJhNxAT6kDIgkLgQ31MuXFOgJiIiIiIiIiKnpVqbg41Hysj0D8blH4zd7ur4BYuFgJgkpjx8M94myCqtJTHMj9d/975RETR0QAi/fud+LBZLq9c9zxDrzgq1NWvW8M4771BYWNil9pWVlVRWVnL33XczY8YMbr75ZoKDW5+Bdiy/QF+8fLyw1duMogQhkcH834r/ZceK3Xz0989Y9/nmFu/sXLUHgDqbg03ZZaQX19DJVwTA4XRxtKKOoxV1BHhbmBwfSnK4f5f+vpOBAjUREREREREROe2kF1ezIauM+saKld1V64Jlh4oIrK5h4fNfQ2Ml0N++/3Mi4yLafKfUI1AL7cIKtfLycl599VXWrVvXozk6nU5WrFjBtm3buOOOOzjrrLM6bG8ymQiNCqYwu7hFUQKTycS4s1MZd3Yqh/dk8+HfP+Wb177D5XJh9bZyuLSGdYdLqbP37FtWNzhYnl5MZmkNUxLD8PNqHUaebFSUQEREREREREROGy6Xi83ZZazMKOlxmOapKsCfef9+gICBYfzkLzcx7uzUdtvWVNQY10FhAR32m5ubyyOPPNLjMM1TRUUF//jHP/jggw+MM97a03SOWnmR+2y2YyWNjOeXr9zNWxnPcd3DV/KLFX/mu0PFPQ7TPB0urWXRnnwq6jquHHoyUKAmIiIiIiIiIqcFd5hWTlpeZZ/2G5QQyaVvPcgFd1/Qbhun08nmxTuMe5O5/TPDCgoKePTRRykqKurTeX700Ud88MEHHbYJjgwCwOlwUlNR22676MRIJt1zMZl9nH1VNzj4al8hlfWdVzI9kRSoiYiIiIiIiMhp4VBxDbvy+zZMa2INDmDZoWKcztYrwGwNNv5yyzNsW5Zm/OZ0tG7ncDg4eiiHP/7+j5SWtl9ZszcWLFjAt98safe5xdq83bKtFWpNMkpq2J5b0e7z3qi1OVh6oBBHG9/yZKEz1ERERERERESk36tusLPhyPEJqZqU1NjYmVfBuNgQ47eaylr+OP+vRtGCJsveW0nGzsPkZxaSf7iAvMxCCo8U4zXCgd+I41vx8oVnX+D5W98iflAcccMHEj8slvjhA4kbNhCHrXllmKmdypu1Ngfrs47vtyyrs7M9p5yJ8d2rhvp9Mbk62zzbj1VUVBASEkJ5eXmXql2IiIiIiIiIyKlp6cFCjpTVcf2EOIprGgDYmVtJTkUdAAMCvZk3Ipr3th2lvhfngZlNcOmoGEL9vCjJK+XX8x7j0PbDXXrXEgJBc+Gtt97i0KFDAPz3v/9l+/btDBkyhOuuuw6LxcLWrVv57LPPejxHgIYjLqrXd9xm/gMXM/G8caROG05ASPOZb8sPFZFZ6t4O2tb3nJIYSri/NyZg89Fy8ivrezRHE3DJqGjC/b179P7xpBVqIiIiIiIiItKvldXaOFLmDs6qGhx8va+wVZtR0UEUVTf0eiynC/bkVxJbU8M9ZzxEfW3X+gwKC8D/TBMNpmoKCgr44x//aDyzWq1cc801/PWvf6WhofdzBPCON1G704Wzpv02C/65iAX/XITZbGLI+GTGzBzFiHNHkxUbbbQ59nsG+VgJ8fXiy70F+HtZmDU4nK/a+N5d4QJ25Vcyc1DbVVNPJAVqIiIiIiIiItKv7S+sMq4DvCxcmBJFdYODDVll1DucxIf4UlBVT0Jo3xw1n15Sw3dPf9JpmPY/b/6MIWOTiU6KxGFycOedd4IdIiMjefTRRykuLua1114jISGBhoYGHnzwQSwWC2+99RZZWVm9m6QJrn/mEmZMOJvs/bkcPZBL9oEc1vx3I9XlLVM2p9PFgS0ZHNiSwXg7jL6lOVA79nvW2RzYnS5MgLfV3O3qn5enxrA5u4zscncAmllSwxnxofh6WTp99/ukQE1ERERERERE+i2Xy8Wh4uaAaGFaLvV2J0MjApgQF8K6rFJSBgSy7GARCaF+Ld69ICWKqAAfnB6nZW3OLmefR0DXFrvTxbQ7L2DVh2to6CBUC40MZvDYJAC++uor7Hb3+WX33nsvlZWVnHvuufzwhz9k9+7dxMfH88gjjxAZGclPf/pTfv/73xv9pKSkcNVVVzFs2DBMJhOFhYWsWrWKRYsW4XA42h1/zdo13HzLzQwZl2z89qsjf2TbUnfxhP9582fsW3+QnSv3kLEzC5fLxeCLJrfoo63vWd1g58rRA7GYTSw71Fyp9IKUKAYE+vD57nxKa93lQb0sJq6fEM9HO3KobnDwya68Fv07XZBZWsOIAUEdfvPv2ykbqD3++OMsXLiQvXv34ufnx7Rp03jyySdJSUk50VMTERERERERkZNERb2dBkfzKqmm89EySmsYHhXA4HB/jpTV0l5Byc3ZZewp6DhAa4v3wHAWVb9DUU4JBzanc2BzOkveXUnOQXdg5B/kR8KIOKP9wYMHjevKSncl0tWrVzN37lw2bNjAvn37qK+v5+jRo/j7+xttJ06cyP3338/777/PM888Q2VlJbGxsVxxxRWEhYVRVFREe0pLSykuLiYyMtL4zeXxIWbNP4vzbjwbgIqSSratPUBGVEiLPo79nrHBPvhYLSxMy8XPy8ycoVF8viffaN9gdzIxLoQlB9uf17H6YituX+ubtYwnwPLly7nnnntYt24dixcvxmazcf7551NdXX2ipyYiIiIiIiIiJ4lijzDGajbRVLcyJtCHino7oX5eJIX5M3dYJGF+Xszq4nldVrOJKYmhzB8zkGvHxTIjORwvS3NVzKZxI2PDmXrpZG5+9FpmXT3VeP6b9x4gJnmAcd9UhMDHx8eorjlq1Cjy8vI4ePAgAwcOxGQyERIS0uIctdtuu41PPvmEL774wgjicnJyeO6554wwLSQkhJ///Oe88sorPPfcc1x33XWYze5IKD09vcXf5Vm70rPKZ3B4EEnTRrT6Bsd+TzAZIZvN4cJqblkpdF9hFQMCfYgO9Gnzu84fM7DVSsGTMVA7ZVeoffXVVy3uX3/9dQYMGMDmzZuZNWvWCZuXiIiIiIiIiJw8yuvsxnWwr5VpyeHYHE6cTlhzuITqhuYtkRekRLEio7hL/U5PDsfpcvHp7jxcLpiWFMaUxDBWZZS0GtfgEVZ5+3p7/OwiJycHgNjYWO68805qa2ux2Wy88MILVFdXs3z5ch599FHjDDWAgQMHEh0dzerVqzuc63333UdZWRn33HMPQUFBPPLII9TX1/Pxxx8b4xpz8VihZjomDKs45m9q63vWNDgYHOHPhSkDsJhNbM+taPFOvd3JzrwKJsaH8OXegg7n7Tmuy+VqEfCdaKdsoHas8vJyAMLDw9ttU19fT319c6nWioqKdtuKiIiIiIiIyKnP7hEQldTY+Hx3frtt26r+OTE+hPGxzdscP9yRg8VsIjHMj/e3HcXmcPe/NaeCy1NjWJ1Rgqtx3GNDIGc7YZXdbjdWhmVkZPDQQw+1mseyZctYtmxZi9+Cg4Pdf1dJSbt/U1hYGGPGjOHHP/6xkYssXLiQa665ho8//rhFTkIHK9Q45lvSwfdsChXbsye/ipEDAkkI9SOvsq7DtjRW+3S6wHLy5Gn9I1BzOp088MADTJ8+ndGjR7fb7vHHH29RdlZERERERERE+jdzL0OYLdnlrc5QC/H1wmwyMX9MbKv2fl4WamwOTKbWgRTthFVN2y+7q2mhUHh4OPn5bQeFERERNDQ0GAuRAAoKCoiIiGhz7PZCP9yFQfuEw+ViW04FE+NC+GpvfRfegJNocRr0l0DtnnvuIS0tjVWrVnXY7pFHHuHBBx807isqKkhISPgeZigiIiIiIiIiJ4K3pe+Pj69usON0ufhgRw6OdqoZ+LQxrmdYZfYIqywWC76+vtTVdb5ay1Nubi4FBQVMmzaNjz/+uM02xcXFeHt7ExISYoRqUVFRFBe7t7YGBAS0fKGDFWo+1r77lgeLqkmNDmJIpH+nba1mE+aTLFE7ZYsSNPnZz37G559/zrJly4iPj++wrY+PD8HBwS3+JyIiIiIiIiL9V7i/V5/3WWd3cqSslimJoUbI5Gs1k+hxmH64v3er9zy3Ux675Co5OblHc/n3v//NFVdcwYUXXkhgYCA0nq125513EhkZSWlpKWlpadx00034+PgQERHBVVddxfLlywEYNGiQ0VdeZgGF2c1nyDk9qqMChPXht3QBW46WMyam82ymrW95op2yK9RcLhf33nsvH3/8Md99912LfwAiIiIiIiIiIgARxymMWZVRwvjYEC4eGY2P1UydzUFmSQ1ZZbUAbHx/FYdKyxkzaxRjZo4kOCKoxYH/5mO2Uw4ePJi9e/d2ex5btmzhz3/+M/Pnz+cHP/gBAEVFRaxYsYLS0lIAnnrqKW6//XaeffZZGhoaWLVqFZ9++ikmk6lFnvK3Hz1H4ZHmQO2K0FsYPC6J+JRYIgaGc+nPLuzBl2pfVlkto2OC8PWydNguMqDvQ9HeMrlaxKOnjrvvvpt3332XTz75hJSUFOP3kJAQ/Pz8Ony3SUVFhbHkUavVRERERERERPqnT3flUVpr+17H/Pae58nbeMC4T05NwGQ2kbEzC4DHv/wNky8YbzzftGkTf/nLX77XOQ4bNozHHnvMuP/l7EfZ/t2udtsHhPjz4zV/oai64XuaodvsoZEkhHYt6/m+nLKBWnulUl977TVuvfXWLvWhQE1ERERERESk/9tbUMX6rNLvbbzavFIWXP6nFueRtSUoLIC44bHEDx9I7NAYlh38iqrayu9tnpfMvpxo31jyMwvJO1zAjuW7yc9sXem0ibevN09lvcTqzI6rePalAG8LV40ZeNKdoXbKBmp9QYGaiIiIiIiISP9nczj5cHsOtnYKCPS1yfGhJHhD2qq97Fyxh50rd3NgS0arM8mO5TsC/EZ/P8GRs95F+SKg4ykZ/AJ9+X+fPMTos0fx0fZc6jv5W/rKhNgQxsaefJmNAjUFaiIiIiIiIiL9XlpuBZuPlh/3cQJ9LFw2KgavY6p81lTW8viNT7Hus80ApJwxlNL8MgqyipobWSHkfDD7H/9QrWari/pDXWubkBLL41/9luikKAD25Fey4UjZ8Z0g4O9l4fLUGLz7sLpoXzllixKIiIiIiIiIiHTVqJggDpfVHvfzv6Ynh7cK0wD8g/yIiosw7u9//scMmziYupp6cg/lkb0/l+z9uezak8b+up3HdY7WWh8mjxtLzGUDiEkeQHRyFDHJUQxIiuKG5LuoLqsx2o6aOpz//fRhgiOCjN9GDAjkcGkt+VX1x3We05LDTsowDQVqIiIiIiIiInI6MJtMzEgOZ9HefGyO47NZLzU6iJgg33afOz22nDadDe/r78OgMUkMGpPU+ORKXn31Vb7++uvjMsfAwED+/PSfiYmJafO5f5CfEahNvWwyv373AXz9fVq0MZlMTB8Uzue782k4Tls/RwwIJC7k5CpE4OnkjPlERERERERERPpYiJ8XtuU7sFXX9XnfQyL8mRQf0mEbHz9v47qugzncdtttTJs2rU/nB+Dn58evf/3rdsM0Git5Anj5WPnDR79sFaY1CfKx4lqbRkNVbZ/PMzncnzMSQvu8376kQE1ERERERERETgvrPt/M2w++xrf3vEBtUUWf9Zvsb+GVeX/kzgm/Ytfafe22C4lqPr+9rLD98c1mM/fddx/nn39+n80xPDycRx99lKFDh3bYzt5gB8DLxwuL1dJuu82Lt/PGfa+y+M7nqM7vuwqqKVEBzBwUftJV9TyWAjURERERERER6feOHszliZueBqB4dxahuzMYHO7fqz4DvC3MHRbF+r8s5Oj+XNJ3HOaB6b/ll7MfZf2izTidLbdDhnoEauUdBGo0hmp33HEHDz30EGFhYb2a57nnnsvf//53Bg0a1GnbsoKKVnM9Vv7hQv58/VM4nS5K9x8lcNtBhkYE9GqOfl5m5gyN5Kykkz9MQ2eoiYiIiIiIiEh/V1dTzx/n/43qcvfZYDPnT+EHP78Yk8nE4Ah/Ply4ibAxyV3uz8/LTEpUICOjg/C2mBk+eQiL31xuPN/+3S62f7eLhBFxXP3gpcy9aRbePl4tVqiVF1V2aaxJkybx97//nUWLFvHNN99QWdm190wmE+PHj+fSSy9l9OjRXXqnod5GVVk1AGExbW+5bKi38cer/0ZFsXseUy6eyI2PXIHZbGZwhD/vL9hI6Ogk44y4zvhZzQyLCmRUdBA+J2kBgracOjMVEREREREREemBl371Fhk7swBIGBHHL/99jxH42I8Wsej2p9n5ymvkr9xEfIgvvscEO06bnQh/L4ZHBVC5cw1bnn2RQwtW4d1YzXPGVVPaHPfI3qP8309eMFbGhUQ2V8rsbIWap8DAQH7wgx/w29/+lvHjxzN79mwGDRqExdJyS2ZYWBiTJk1izpw5jBw5kptuuqnLYRpAWX6ZcR3eTqD22m/+w4HN6QDEDonmoTfvxWxu/F7F5Sy6/Wl2vPBvcr9bT3yIL35eLb+l2QTh/l4Miwyges96tr7wMvvf++6UCtPQCjURERERERER6c/Wfb6Zz553V8z08fPmDwt+iX9Qc/XIlQvWYzKb2PXmbqb9eRJzhkVReKSQv//0JY6mF1CcU4LL5uDzqreoqKjgm6y9+MVZ+G7tUnx8vbn4x+cRGRvOgMRICrKK2pxD9r4cOOYMtfIenOE2YMAAHnnkkeYw0G6nvr4eh8OBt7c3vr7uCqMffvgheXl5vPbaa9x8880kJSV10rNbSV5zoBY6oHWgtuXbHXz0j88A8PK28vuPfklQWKDxfNWC9WCCPe/t5YzfjmPOsCjKCsp44kfPM/zModz46/lYzSbMZhOVlZUsTt+F70ATa7evxOspC1fdf0m3v8mJokBNRERERERERPql0vwy/n77c8b9T/9+C0kj41u0WblgHUmzBxAU78+Mq87E5XLxq7n/j6MH8lq0KyuoIL8017gPSQrg6ftewWQyc9Edcxg1dXibgVp4TCi/ePVu9ztdLErQltraWp566imuvfZao7CA1WrFam0d7RQUFADgcrnYsWNHjwK1Y1eoVRRX8pdbnzHub3/8BoaMa7lNdsWCdSTOGkDY8CBmznev2vvV3P8lMy2LzV9sYfK5qYydOQqA3NzmbxkU788rv3kbs8XCFT+b16W5nmin1no6EREREREREZEucLlc/O3254zg6qxLJ3HJT89r0SZ7fw7pOw4TOjgQH7MvAxKjWP3fDa3CNICi7GJiomOoK28AwOprYdQPEvnwjY/47zNfMvKs4W3O44bfXk3K5CEABIYGYG7cJtqdLZ8A2dnZ2Gw2oqKiOm07bNgw4xvs3LmT9957zwjZOlKWX25cewZqLpeLf975IsU57mqeE+eO4cr7L2rxbkFWIXvXHyB0SCAWu5X44bFs/GormWlZRpuvXl1qXMfExFBX2vgtfSykXJPApws+44O/fdrpPE8GCtREREREREREpN/57Plv2PDFVgBCB4Tw4Mt3tToof+WC9QAcXprPmOFjqams5dn7/t1mf4XZxRzYdQjvgOYVYaGDAkmeG8PCt/5LXmbbgdVrv/0PRUeLobFyZ9M5at0N1OLj47nmmmsICQnpsJ3NZqO0tLTF/f79+3n++eex2Wwdvuu5Qs2zKMHXr39nfKug8EB+9frPms9Na7Rq4QYAsr7LZ0TSKOpq6nn6nldatFn76Sbqa+sByNiXiTWg+Qy40ORAks6J5ouPv+DdPy/scJ4nAwVqIiIiIiIiItKvHN59hBd/+YZx/6vX7iFsQOsgauWCtfiEeOEf5cO518zkzT+8T9HRkjb7zD2Uz3erl2K2mnG5XLhcLnI3FpOxOI+60gY+fuoLRp41HP9gP+78+y2c/YNpAFSVVfPXHz2H0+kEj22fZYUVuFyuLv9Nu3fvJiIiotN2e/fuZe/evca9j48PV111FVOnTu303RaBWrT7ex09mMuz971q/P7gy3cSGRve6t0VC9biHWQlYKAfs6+ZxbuPLSAvo2XIWFVWbQRv3y5bjNXbYnzLvK0lpH+dS21xA6/99j9s/Hpbp/M9kXSGmoiIiIiIiIj0Gw31Nh6/8Wka6tyrsS6/50LOnDehVbvc9HwObMkgafYAYs+IpLqsho+f/qLdfg/vOUJDUgPZa4uw+pqpzqsjb3MpLkdzKHbdw1cw5eKJWCwWKkoq2bVqL0VHS9iyeAefPvs1V9w7j9DGQM1Wb6O2qq5FgYT22O12vvzySy644AKio6M7bFtdXU1QUBDTp0+nqKiI8ePHExcX16Vqn6XHVPm02+w8cdO/qKt2ryq78EezmXFl64qmRUeL2bV6Hwkzo4ifEYXL6eTDdrZufvnqEubcMJO6+jpyNhRh9jJTnV9P/uYSnPbmb1ldVt3pfE8krVATERERERERkX7jjd+9x6FtmQAkjYrnx3+5sc12KxesA8DiYyHcP4LXf/8eTmf7K8bSt2cR05BM5jd5HPo8h4FnROAf5QPAmJkjeeTt+5h66WQsFvc2xuDwIH7577uN919+6C2y9h5tWemzi9s+6+vrMZvNJCcnd9p28uTJ3HnnnUyZMoWYmBjWrl3bpTE4JlALjQ7lnT8tYO/6AwDEDo3h7n/e2uZ7qz52rzqz+JoJ9grlzT9+iN3maLPt9u92kX0glwTzUNK/zOPgpznETAwjIMZdoXTU1OH86rV7OPvaaV2e94mgQE1ERERERERE+oWdK/fw4d8/A8DL28rDb9+Hj59Pm22bArX0L3O56tr52Oo7Pl/syL6jDB/nLi7gcoJ3oJXw4e7z0H74yJXMvn5mqzPaJp03jivudVetbKiz8cRNTxMcHmQ872qlT39/fx5++OEuFSSwWq34+/sD4HA42LNnD3a7vUvjlDZu+QwKCyB9eybvPrYAALPFzCNv34dfYNur6Zq+ZebifK686opOv+XuNftIGT/UuPcOsBI+3B00XvPLyzj/lnNafcuTjQI1ERERERERETnl2W12nr77ZeNcstseu56h4we12bYwu5i9Gw7iG+7N1IdHEZkQxq/ffYB7nvoRo6ePMNoNSIzE6u0+Lauuup6xs0bx0o6/88aBfzFyUCqVR2vBo7hBW+544gYSRsQBcGBzOpm7jxjPurpCbdGiRSxevLhLbT2NHDmScePGGavmOtN0hlrIgBCevvtlY8XezX+4lhFnDmvznbLCcnau2INPiBdTHxpFVHIEv3rtHn72r9sZe3aq0S4qIYKw6BBSzhjC5AvGMeXiSbyS9g9e2/c041MnUJldA8Cqhe1/y5NJlwO1u+66i2+++eb4zkZEREREREREpAc+fuoLMne5w6qUM4Zw1QMXtdt28+IdAIQODsTibcbb25uQyGCuuHcekQnNB///+Ytfc8lPzzPus/YcZdDoRGKHxHDZdZdgtbjDttX/3YDD3vYWRx8/Hx5+614sVneolbZyj/GsvKhrgdr+/fuxWrt/DH5QUBBnnXUWlZWVnbatrao1zkpzOZ0c2JIBwOCxSVz38BXtvrd1SRoul4uQQQFYfMz4+PgQHB7E5fdcyMBBA4x2jy78FR/kvsIz658gPCYMgKRRCcQPG8gl116Et7c3AGs/20RDJyvcTgZdDtRefPFFLr74Yl566aXjOyMRERERERERkW4oOFLEm3/8AACTycR9z/24w1VZ25buBKAyu4ZxKeNbhFWZaVkAWL0sxA0bSGLj6jKArL1HjevS8hJG/DAe33BvKoor2bFid7vjDZ80hBt+Ox8Az8KeXV2hNmnSJCZMaF1YoSu+/fbbLi2QKs0vN67zMguN63ufvcMIA9uydYn7W1bl1DIyORUfn+Yttpm73N/SZDKRODK+3T7KyssYOn8g/gN8qKmoZeu3O7rwl51Y3dry6e3tzV133cWf/vSnDtstXryY2267rbdzExERERERERHp1AsPvm6srrrkzvMZPmlIu21dLpcRAgVG+jP3kjnGM7vNTva+HADih8di9bK2CIKy9mQb11FRUZgw4R/pDpDWfba5wzn+4KEriB3SskJnVwK1qqoqkpKSCA8P77RtW6KjoyksLOy0XdN2TwBHY0GBC249t8UW2LZsXeIOv/zCfDn/srnG706nk8O73d8rZtAAfP3bPssOICIiArPJbBR5WNvJtzwZdCtQ+9vf/sasWbP4wx/+wP33399uu4KCAt58882+mJ+IiIiIiIiISLs2frXVOMMsdEAIt/3pug7bH96dTUleGRYfM8Pmx5J1JMt4dvRgnlGdMnl0AgCJI9teoebr68uN199EeUY1ANuWpXU4rrePF3f+o2WVzOK80k7/vnXr1rFo0aJO27Vn5syZzJ8/v9N2pR6BGo2FCe548oYO38lNzycvsxCTxcSIHySQld38LQuyioyQMym1/dVpAF5eXtxy861UZLjPUevsW54MuhWohYSE8PXXX3PFFVfwr3/9i+uvv77LlSJERERERERERPpSQ10Dz9z7qnH/k7/eRFBYYIfvbGncTujl797mGRHRfGba4V3NBQOSRrkDtdABIQSFBQBwZM/RFn05sDPmKne1yvQdhykrLKcjZ10yifHnNh/Uv3f9gU7/xurq6hZz7C4vLy/WrFlDSUlJh+0Ks4tb3N/++A2ERoV0+E7zt7RgMrX/LZMbv2VH7E4bY68eDsDRA7kUHCnq9J0TqdtVPr29vfnwww+54447eO+997jkkkuoqak5PrMTEREREREREWnH+09+Qs6hfADGzBrJ3BtndfpO03bPutIGLpt7OdHRzdswD+9q3tKZlOoOgUwmEwmN2z4Ls4upLK0y2uTk5BCc4mfcb1+2q8OxTSYTP/vX7c3vH8wnNyO/w3fmzp3LpZde2unf1ZG0tDQOHOg4vFv72SbjOn54LPPumNNhe4Atjd+yodLOhTMuIi6ueTVfZhvfsiO5ubn4DWo+y27b0pN7lVq3AzUAs9nMSy+9xCOPPMI333zD7NmzKS4u7sKbIiIiIiIiIiK9l3Moj/888TEAFquFe5+5A5PJ1OE7dpudHcvdxQMSpsRQbmu5zTFjV/OWxWSPbYrDJw02rvesaw6mBg0aRHBQsHG/tQshUNKoBLx9vaDxPLeXfvVWu22dTidfffUVdXV1nfbbHpPJxIgRI/Dz82u3TUFWITs9iirc+PurMZs7joycTqcReg0cF0GFs+W3zPT8lqM7D9SSk5MJCWpeEXeyb/vsUaDW5LHHHuOf//wnGzduZObMmWRnZ3fhLRERERERERGR3nn+wdex1dsAmP/AxQwandjpO/s2HqKmshaA5OkxZGVltXieseMwAF4+XsQOiTF+Hz1jpHGdtmqPcZ2YmMitP7oVq5e7CmZXQ6ABiZHG9aqF642tk8cqKSkhLS2NioquVQNtz/z58xk5cmS7z1/6n7dw2J3G/YTZozvtM337YSqKKwEYPCu+1bdMb/yWZrOpRaXU9sTFxXHHT27Hx88bGleouTxLop5kehWoAdx33328/fbbHDp0iOnTp7N3796+mZmIiIiIiIiISBt2r9tvVNWMjAvnxt9f3aX3PIOrmNgYhg8fbtyX5peRvT8XgKETkrFYLcaz1OkpxvWuNfuMa5fLxXMvPMuYi7p39lfs0JgW98/e/2/sttZn1Ht5eTFw4EBiYmJaPeuO9evX89prr7X57OC2DJZ/sLbFbyGRwW229dTiW8bFkJLS/I2qyqrJ2OEO2JJHJ+Lt691pfy6Xi+eef46xl7urihZmF3P0QG6n750oXQ7UIiMj2332wx/+kE8//ZSSkhJmzJjBunXr+mp+IiIiIiIiIiItvPGH943rG393NX6B7W9n9LR16U7j+sJLzmfKlCnGfdNWUIBx57RcoRUZG05MchQ0FhKwNbhXxplMJqxWK/HjmgOvrpz9lZzacjVd1p6jLH13Vat2AQEB3HbbbR1u1+wKq9VKXl4eTqez1bM3H/2gxX1YdEiLMLE9nt9yzoWzmT59unG/c+UeY3XZuHNS23z/WE3fMjY1ymOMk3fbZ5cDtYKCAn7wgx+0+/yCCy7g22+/xWQy8dxzz/XV/EREREREREREDDtX7mHLYvfqqIGDo7ngtnO79F5tVS171u4HIGFMLG9+8AYFBQXG8+3fNRcUaCsESp3hXjnVUGfj4NZM4/d58+Yx4cwJxn1Xtn0mt3FI/38eX4jD4Wjx25IlS/joo4+68Nd1bNSoUcydO7fVuWj7Nh5k7aebWvzWlQICDfU2dq5wb30dMDiCDz77D0ePNldA7exbtueCCy5g0lkTjfuT+Ry1bm35tFg6TiinTJnCihUrWlR1EBERERERERHpCy6Xi9d+9x/j/sbfXY3Vy9rhO012rtyL3eYOrEadMxSHw4G3d/NWxO3L3SGQxWohddrwVu+nThthXO9a3XzcVXx8PNFDIoyzv7Yu2dnp2V+eh/SHxYQCkL0/lxUfttzxl5eX12KOPeXv709ISEir4gaeK/2aDB6T1Gl/e9bup762AYDRc1Ow2+34+PgYz3c0fkuTycSYWe2f3XasuLg4IhJCCQwNgMbVfm2tqjsZ9PoMtWONHDmSnTt38tVXX/V11yIiIiIiIiJyGtu6ZKexMip++EDm3DCzW+82mTBtHBdddBGhoe4wqzS/jKw97hVWwycPbnML6WiPc9TSPAK1tLQ0Pvn0E0bPdAdHRUdLOj37K2FEnFGRNCDY3/j93T8vaBEgTZ06tcVWyt749NNP2bZtW4u/YeNX7vug8EDj90FjOi/u0OJbTh3LhRdeaBwVVlVWbazgGzQmkeDwoC7Pce/evSxYsIBx57i/ZUVxJRk7szp970To80ANICQkhPPOO+94dC0iIiIiIiIipyGXy8Xrv3/PuL/pD9d26ayvJluWuLeJmkwmhk5OJiwszAi1WpyfdnbbWxSTUhMICHGHX7tW7zNWoUVGRtLQ0NBia2NnZ3/5+vswcEg0NB6+P/KsYQBkph1hzScbjXZ1dXWEhIR0+W/sSEREBPX19cb9Gx7fMnFk807DQWM7X6HW9C0Bhk8Z3OJbep6fNvbsUd2eo8PhYKzHGXZdOZPuROhWoLZ7925uvvlmzjjjDObNm8cbb7zR5jLGd955p9PtoSIiIiIiIiIiXbXhy63sWXcAGs8gO+cH07r8bllhOenbD0NjBc9d+9JYsmSJ8dzzzK+x7Zz5ZTabGTXNvUqtrKCcowfzAEhJSeGee+5h4tyxRlvPA/vb03SOWn1NPRfdMdf4/d3HFuByuairq+Pjjz8mIyOjy39nR66//nqmTp0KjWeTbVvm/ptjh8YY2zfNZhNJo+I77Ke6vJp9Gw9BYxB36MhBFi9ebDzv6flpAEOGDHF/yznd+5YnQpcDtQMHDjBlyhQ+/PBDXC4XaWlp3HbbbcyaNYu8vLzjO0sREREREREROW25XK4W533d/Oi1rQ7Y74jnKqcJc8bicrlarPxqOj/NbDG32Np5rNRpzc+aVrXV19ezaNEi4kZEGyvYti/b1enZX56FCYIjgxg2aTAAB7ZksOHLrUaBgr5aobZv3z42b97caqXfDb+ZT9bubADihg3E19+ng15g+/LdOB3uv23inLE4nU6Cg4ON503npwGMndW9FWo2m40vvviCiMRQwqJDGvvbjd1m71Y/34cu/+v77W9/S2BgIDt37mTTpk0cOXKEN998k507dzJ16lT27dt3fGcqIiIiIiIiIqeltZ9t4sDmdACGThjE9CvP7Nb7W75tXuU0ce4Y5s6dy+WXXw5AaUG5cX5ayhlD2jw/rcmEOWM85uTemlldXc3BgwcpLi42VmR15ewvz2qah3dlc8Nv5hv37/zpI/z9/XnggQf6rPBjVlYWe/fuZcu3O9i12p3hJI6MY/jkITTU2QBI7sr5aR7fcsLcMZx77rlcffXV0Hh+2qFt7vPTBo9NIjii6+enAdTW1nLw4EHy8/MZP9u97bO2qo79jf/tTyZdDtTWrVvHvffey9ChQ43fbrzxRtatW4fZbGbGjBls2LDheM1TRERERERERE5THz+1yLju7uo0PLYNenlbSZ0+gu+++47MTHfws/HLrUa7zlZUjThzKOGNVTm3LN5BbXUdwcHBxMXFERgYyITZzYGb58H9bRnkUenz8O4jTL1sslH9c8+6A6z8fC2LFi3qsyqXSUlJxMTEsNDzW/7hWg7vOmLcd6XCZ9O3NJtNjDt7FCtXruTQIfcW0M3fbMfpbDw/rZur0wACAwNJSEggODiY8ed2/VueCF3+F1hcXExMTEyr30eMGMGaNWuIj49nzpw5fP311309RxERERERERE5TR3efcQ47yt++ECmXDyxW+/npueTl1EAQOr0FHz9fUhLSyM/Px+AFR+tNdpOveyMDvsym81MvXQyAA11NrYs3oGXlxc33XQTYWFhxqoqGs8p60jc8FjMFncsk5GWhdlsbrFK7duFyzhw4ECbZ9f3xIQJExiZnMrGL92VPQckRjJj/hTSdxw22gzupCBBUU4Jhxu3h6acOZSAkAB27dplHAW2vMW3nNztOVosFm688UYiIyOZ0I1veSJ0OVBLTk5mx44dbT6Ljo5m+fLlTJgwgcsuu4wPP/ywL+coIiIiIiIiIqepT55tXrhz2d0Xdnt12pZvm7OMCY2H3SckJJCYmEhVWTWbv9kOQGRcuFFtsyPTrmjebrr6E/dOvZdeeont27eTNCq+y2d/eft4ET98IABH9ubgsDuYefVZRCVEALBn+QEGJQ3us6KPu3fv5q333jQCukvvugCLxUJGWvPW1EFjO97y6blSrKlwQHx8PElJSdRW17Fh0RYAQiKDul2QoMmrr77Kpk2bGDg4mpjkKGisqtpQ19Cj/o6XLv8rPOecc/jwww+x29v+xxAcHMzixYu58P+zd9bhUVxdGH9nNdm4u0ISkuDu7g7FChQrFCtUoC3t15aWKhQKRauUQgVK0eLuDiEQJBDi7rpZn++P3Z3sJmvZ3YSQ3t/z8LAzc+feOye7O7PnnvOewYNx8OBBa86RQCAQCAQCgUAgEAgEwn+QipIKnNx+DgBgY8fHwOm9at2HZpVItQba8OHDERoaiisHbkImVYr/9xzXxSRnXeu+zWFrbwMAuH7oDuQyOeRyOYqKikBRlLb2161nBvtS66hJxVJkPssGm83G4Jl9AQAlaUIglVfr69WHqFIMBUsOik2By+diyKvKcZJUEWoCB1t4BXkY7EOXLQcPHoymTZvixuE7TLXQ7mM6gc0xzxGoUChQVFQEAGjdR2lLqViKB1calna/yQ61GTNmoGvXrrh165beNnw+H/v27cPixYvRs2dPa82RQCAQCAQCgUAgEAgEwn+Qk9svQFQhBgD0n9oTdk52tTqfpmmmwqedkwDh7UJRXl6ONWvWICcnRyvds+f4Lib1yeNz0WFIG0BVfCDu8mMMHDgQ0dHKiCwt7a8zhlMVQ6KrIsKSHyhTKQfP6gOKohDczwv3U2KtpqGWcScPicezQMtp9J7UFU7ujqgoqUB2ch4AILh5gFGH4t3Tyuvh2/IQ2SUclZWV+Pbbb5GZmamV7mmqLXXRr18/tGypjH5rraFJd9eILesbkx1q7du3x+7du9G5c2fDHbJYWLduHc6ePWuN+REIBAKBQCAQCAQCgUD4D0LTNA5uPsZsj1w4uNZ95KbmoyS/DFDpp7E5bIhEImUUVH5xrdM91XTV0Fq7euAmnJycQFEUANRK+yso2p95naxKvfQM9ED7wa3BFXAgV8hw+6Ru+a3aQNM0Dm85CZlQGY03auEQAEBSXFVBghAjBQmKcoqRl14AAIjsHAYenwuJRAK5XI7S4lKrpHsC0LJlbTTp6pvaJR4TCAQCgUAgEAgEAoFAINQDMafvIy0+EwDQqnc0Qpob1vfShbbgfjAAwM3NDQMGDEDyzYxap3uq6Ti0DZPSeOXgLZw6dQqXL18GgFppfwVrXFPKwyrn1tDZ/ZB5owCpF3Jx9OdTtbhi3Ty4Eo+8/FyEj/FHdN9wRLRvAgBIul+ln2asIIF2W6UtHR0dMXDgQGTdz7dKuicAnDt3DhcuXAAAuPm4IDDSDwDw+EYChGWVZvdrbYhDjUAgEAgEAoFAIBAIBEKD48Cmqui0UWZEp6GGQ63KYWRra4tLe64x27VNUXRwsUfLXlGAqoqoVCQDl8tljjfvEQmotL/UVTF14dfUG1weBwCQrBEt1nl4O9g72UEhUeDKgVsoyimu1fyqc2DTMShkymIEA6ZU6dAladnHsMNS05Yh1Wx5ce91ZrvnhK4WzZXD4YDHq9KOa9FdaUuFXKE1h+cNcagRCAQCgUAgEAgEAoFAaFDkpOTh2r9KDXd3P1d0HdXB6Dm6SLpf02GUn5+PgwcP4vH9J0z/tUn3VKOZ9qlI4aJfv37MtmY0XfKDtBrnqmFz2AhopozASn+SBalECgDgcDlo8VJTBPbxglwmx4nfztd6fmoKsopw8Z9rqMgR4cmfmRgwuQ9zLFHDPsFGIgATddiyuLgYBw4cwKPYx4A63VPlaDSXYcOGYeDAgVXzaqERxWfAlvUNcagRCAQCgUAgEAgEAoFAaFCc2nEBCoUyomrYawPMTiFUpylyeRz4h/sCqggoAJAIZYAZ6Z5qek3owswr5k4M4uOrqlBqOqc0I890odZRk8vkSH+SxewPDPeHXKJMST36y2nQNF3rOQLAmT8vQS6Tgytgo+XEMFCqS6VpGkn31Lpt7rB3NlzwIVllSxaLQlCUcs5qW4rKlIUjLE33BID79+9r2TKkFrasT6ziUHvy5AnKysqs0RWBQCAQCAQCgUAgEAiE/zjnd19hXg+c3stgW31IRBKkqzTYgqIDGEePs7Mz8s9UojJf6QTqPambWf27eDmjy8j2AACBHxc3LtxijgVrFBvQ1EbTRXC07gis0eNGwabYCQCQ8TQLcZcemzXPCypbCjxtIGJXMP6bnJQ8RpPMmH6aXCZnqpD6hfuCb8sHADg4OKDsqhwV2SIAQJ+Xu5s1R03i4+Px7NkzZlurcIMRW9YnFjvUxGIxIiMjsW/fPuvMiEAgEAgEAoFAIBAIBMJ/lrT4DCayLLJzGDwDPczqJ+VhOhPlFqKRNnjv8kOw/KVg81kIaxuCZh2bmj3XobOVaZ5lmZVIu1sVXeYR4A6Bgy1gQlRVcHQA81qz7YMHD9BiRFUq6iUNnTJTyUnJw+MbCQAATx8PeHp6ws5OGYmmWWRA0z66SH+aBalYWqNt/J0ESF0rwBGwERjpx+jKWYKvry+8vb2ZbWcPJzh7Kh2LjS5CzdywQwKBQCAQCAQCgUAgEAgETS7s1igWMK52xQI00RLRb1EVgXXktxNwDXeEjQsPIxcMBkVRZo/RdkBLeAa6I/lkDm7suI/ctHwAAEVRTGSVZiSYLrQcVLcSmNcJCQmAnUyjmujNWvtfLvxTZctuQztj9uzZ4POV0WX67KMLreIFGm0P/XIcrhGOsHXjW2xLNX369EHXrtqFDYKbK52OxbklKM4rsXgMa0A01AgEAoFAIBAIBAKBQCA0GDTTPXuO62x2P7oqWBblluDqntsoz64El8VDn5fNS/dUw2azMXhWX0ROCIB/Tw8c33qWOaaVymmg0qd3iCfcfF0AAHEXHzOFCXx9fREYHIhWvZVRX9lJuVpRZaZwQcOWzfuHY9WqVaisVDr3dBVs0Id2hU9l27KiclzceR3lWZVgSVkYMM281Nzq7N27FydPntTaFxxVFcWX8kC/LesT4lAjEAgEAoFAIBAIBAKB0CCwVronACTFVTmf1BphR38+jcpiMe5tTcLAyb0ZLTBLGDyrL3gOXHDtODi69TTkcmUhAc1UTkPVKSmKQuu+zQEAIqEY8aoUzW7duqFbt27oolFN9MqBmybPSzPdM7RVEOzdBZDJZJBIJKBpmhmHy+cyBRv0ocuWJ7adQ0VRJe79moTeL3VnUlwtpby8HEKhUGufOkINRqqm1ifEoUYgEAgEAoFAIBAIBAKhQWCtdE8ASFRVsHT2cISLlzPkMjkO/XACLC6FTu80Q4dxrSyeLwB4+LvBptIeuTFFyEsrwK3jsUB1J1Cc4ciyNn1bMK9jTscBAC5evIi//voLXVWFD6BK+zQVzXTPnuO6wM/PD71794ajoyOyEnOQnZwHAIjuFmG0Mqe6GqjAwRZeQR5QKBQ4uOU4KBaFjksi0H5cC4Pn14bOnTujbdu2WvuCok23ZX1BHGoEAoFAIBAIBAKBQCAQGgTWSvcsyilGca5SaytEFVF19d9byEsrAGiAzWWBZWOFCavoMKAthKqqoUd/PgVUdwIZSPkEgNZ9mjOvY87eBwDIZDIUFRXBM9ADYW1DAABPbycyOm3G0Ez37DW+C2QyGQIDA0FRFGJO32eOaTrzdFFRUoGcFKXzLbiF8vzbJ2KRmZANWkGDzWOD58AxaU6mwOPx4OGhHZmoFe1nxJb1BXGoEQgEAoFAIBAIBAKBQHjuWDPdM1FLRF+p+XVg0zEAgEJGIyq4BUJCQiyeMwDI5XLcTbqFgI7KypRX/72N3NQ8uHo7w8HVHjAhqsoryAO+TbwAAI+uPoFIKEarVq3Qq5dSl0wz7fPqwVtG51Q93dM/3Be3b9/GgQMHAAB3NBxqbfsbdqhp6rZVtyUARPpHIzQ01OicTIGmafz11194/Pix1n57Zzu4+7kCKls2hOKYxKFGIBAIBAKBQCAQCAQC4blzcc915rWl6Z6aTqCQlkFIfpCGu2eUqZR+YT5o37MNo3VmKTKZDADQtldLAIBCrsDf3xwERVFMZFVBZhHKisoN9qOOFJNJ5Yi79BiOjo7g8XgAgG6jOzLtrhy4YXROl/bWtKVUKoW9vT0UCgVjCzsnAcLaGXaGaTnUWgYh81k2bhyJAQB4BrqjU7/2UCgURudkCnK5HDRNw87OrsYxdQptWVEFCrKKrDKeJRCHGoFAIBAIBAKBQCAQCITnTszpe8zrbmM6GmxrjEStCpZB+OPzf5jtkfMH4fjx47h27Zqes2sHn8/H3Llz8fKicbCxUxY5OPLzaRRkFZlcmAAAU5gAAO6euY/k5GTs3r0bQqEQIS0C4R2sjNiLPfcQ5cUVBvu6o2HL7ipbduvWDePHj0dibApKC8qUY/aJBpttWD9Nu8JnEP74Yg8TITZ87kCcPnMaV65cMdCD6XA4HMydOxfh4eE1jgVFmW7L+oA41AgEAoFAIBAIBAKBQCA8VyQiCR5efQIA8A72gE+Il0X9qUX0WSwKCrkC53YpHT7OHo4YMrsvE6llDUpLS3Hp0iU4uNpjxLyBAACpWIp/1vyrpaOWFGfYCdRKQ0ft7tk42Nsr00XlcjkoimLSPuUyOW6fiNXbj1wmR9xFZcqki5cTAiP9lX3evYv09HTcOVXlbGvTr6XR60vUiFDj2XBxavt5QJWGOWL+QNjb21st2q+iogLnz5/X2V9w80DmdbIRW9YHFjvUeDwezp49i0GDBllnRgQCgUAgEAgEAoFAIBD+Uzy+kQCJSAoAaNk72qK+5DI5I1zvF+6Lv77exxyb+N5o2NrbYvTo0ejTp4+Fs1aSlpaGuLg4SKVSjFsyAjwbLgDg0Pcn4BHgyrQzFlXl4umEEJVG2dPbiXAUOGHBggVwcHAAALQf1JppG3fpsd5+EmKSICyrBAC06h0NiqIAlUMtJSUFMWdM10+jaRrJKoeaV5AH9qw9BIVCGZ02bskI2DvbYfjw4RgwYIDBfkwlPT0dDx8+RGVlZY1jIZpVUxtDhBpFUejVqxe8vCzzHhMIBAKBQCAQCAQCgUD4b3Lv/EPmdateljnU0p9mQSpWOuc8AtxweZ9Sc8zVxwUj5isjyNLS0nDrlnFxf1Owt7eHv78/+Hw+XL1dMHR2fwCASChG7Lmq6zLFCaSu9qlQ0Ig99wDnz59HUZFSLyyqSzjjHHtwRb9DTdOWLXtGMa/d3d3h7eWD+xceKbf9XOEf7mtwPjkpeYxzzjvEE2f/ugwAcHRzwJjFQwEAGRkZuHHDuK6bKdjb28PHx0enhlpgpB/zulE41AgEAoFAIBAIBAKBQCAQLCH2/APmdcteUQbbGiNJQ/MrNyWPef3y+2PAt1VqnKWnp+POnTsWjaPG398fM2fOZJxd498ZCQ5XqUt27JczcPJwBEzU/dLUUYs5ex8PHjxAUlISoEqxVAvzP7ubzDi6qqNlS41ovzFjxoBdxoO4UgIAaNO/BTNnfWjqpxVmFzPaaRPfHQWBgy0AIDMz02rOSR8fH8yePRssVk13la29LbxDPAGVLZ93pU/iUCMQCAQCgUAgEAgEAoHw3JCIpXh4JR5Q6ad5B3ta1J+mEyj9SRagilQbOqc/s79JkyZwdXXVeX5tOX36NP75p6rogWeAOwbNUKaTCssqYWtvAwAozitFUW6Jwb5a9YoCi6V0csWeeYCIiAgIBALmeHTXCEAVwfb4+tMa58tlcty/qIxAc/Z0QmAzZVSXUCjEqlWrcP30TaatuqqoIdRadACQ9jgDUOmyjVw4mNkfGhoKNzc3o32Zwrlz57Bz5069x9VFHirLRchNzbfKmOZCHGoEAoFAIBAIBAKBQCAQnhvxGvppLSyMTgOAJA0RfTVTPxwHHp/LbIeGhmLChAkWjwVVyiOHw9HaN/G90WCxlS6XgswiZr+xKDU7JzuEt28CqNIaB/QaiNDQUOZ4dLdmzOsHl+NrnJ9wNxnCUrV+WhQTgZaXlwepVIqH16qccG36GXeoaVZLVfPy+2NhI+Az24GBgZg8ebLRvkxBly010aya+rzTPolDjUAgEAgEAoFAIBAIBMJzI/ZcVYqipfppqBahBgA+oV4YOKO31j6pVIrVq1cjJaWmw6i2dOjQAZ06daoxZr+pPZRjqfTcYGJ1ytYa1T4P7T2CP/74g9lu3r3KoRanQ0ftnoYtW/assqWnpyd6dOuBR2eVDrWgKH+4+xqP0EuqZksPfzcMe62/1j6FQoE1a9YgISHBaH/GaN++Pbp06aL3uGbV1Odd6bPOHGrPnj2rq64JBAKBQCAQCAQCgUAgNBI0Nb9aWVrhUy5HfnqB1r5XPh4PDlc76onD4YCiKGRlZVk0Hk3TUCgU8PHxqXFs8vtjmSg1NaZEVWlGjmUl5CA7O5vRC/MK8oCbrwsA4NHVJ5DL5FrnatuyKtqvrKwM4nw5U6HTlHRPmqaRo6FBBwCT//cSeDY8rX0sFgscDgfZ2dlG+zQ2nkwmg6+v/kIJwRqVPlMevuAOtaysLJw4cQLffvstZs2ahQ4dOsDe3h7h4eHWmSGBQCAQCAQCgUAgEAiERolcLsejq08AAJ6B7hbrp5XklTJOIwAIiPBF3ynda7SjKAojRoxAWFiYReOlp6dj3759KCwsrHHMP9wXozS0xgAg9VG60T6jukaAy1M6AONPJqN///5M6iZFUUyUWmW5SCu9laZpxF1SRq05ezgiMNKfOXbq1CncvRfDbLfpb9yhJiwVMqm4UOnbDZrZW2fbYcOGISIiwmifhsjJycHevXuRm5urt01gMz9GYy7loXFb1iX6E1OrUVxcjLi4OObf/fvKahPq8q0AYGtri9DQUAwYMABNmjSpqzkTCAQCgUAgEAgEAoFAaARkPcthqk5GdGxqcX+Zz3K0tuesegVsNltnW19fX5SUlFgkqC8UCsHhcODk5KTz+LRPJuDMnxdRkl8GAMhKzNHZThMbAR+RXcJx7/xDpD/MRmWpCGKxGHy+UrcsumsznP/7KgAg7vJjNG0TAgDISy9ARYkQABDeoYlWBU+hUIi8Z0r/DYvNQisTtOqykrQdW69+NQVcHldnWx8fHxQWFsLDw8Nov/oQCoVgs9lwcXHR24Znw4OzpxMKs4tRlF1s9ljWwOQINTc3N/Tq1QsLFizAH3/8AalUilGjRmHlypXYvHkzaJrG9u3bce/ePezbtw+rV6+u25kTCAQCgUAgEAgEAoFAeKFJ0tDBCo4KMNjWFP5Z8y/z2i/cB11GtNfb9t69ezh48KBF4zVt2hQLFy4El6vb0WTvbIdZX05htguzimukaeqCScmkgLOXziAuLo45Ft2tKhLs4dWqwgTJBmw5oNdAPNinlOaK6NAEdk52Ruewe3WVLT2D3NFrQle9bR88eID9+/cb7dMQwcHBeP3112FjY2OwnZOHI6CqmqpOhX0emOxQoygKwcHBOHfuHIqKinDlyhX88ssvWLp0Kfr3729CDwQCgUAgEAgEAoFAIBAIVWhWvdTUxzKHZ7HJuHLgBrPdb3IPg+09PDwgEokscspcvXoViYmJBtsMmtkbNnbK6DKFQoF/txw32m/rvqrCBDRAiVkQiUTMsdCWQeBwlVF3mk40bVsGMq8rKiqwf99+UKpUybb9WhodP/VxBs7tusRs957QTSvirToeHh4Qi8VQKBRG+9bHjRs38OTJE6Pt1A41qViKynKR0fZ1hckOtbi4OLRo0QIDBgzAvHnzLBbuIxAIBAKBQCAQCAQCgfDfRlNYXrOCY21RKBRYv/BnaPrGgqL8DZ2C6OhoLFiwwKCjyBixsbHIyTGcxslms9GkdTCzvW35LpQWlBk8p1nHpowT7vGuDHTs2JE5xuFy4NvUGwCQ/iQLcrky4i1Zy5ZV156amoriyiKwOMrrNKafRtM0Nrz+MxTyKmMac3ZGRETg9ddfB4tlvlR/bGysSYUNnFUONag0854XJl9ps2bNsH//fpw9exYPHz5E06ZN8e677+oU3iMQCAQCgUAgEAgEAoFAMIa66iWHy4afyklkDie2ncPDK/Fa+1y9nQ2eQ1EUTp48iYSEBLPH9fb2NqkoY0B4VeXKimIhfv3wL4PtOVwOWvRU6pyJpEJs/3WHViSduuCAVCxFtkrrTB2hRlGUVkECgUCAshQRpEI5+LY8RHY2PN+zOy/j7pk4rX2m2PLcuXOIj4832M4QXl5eJhU2cHRzYF4XvwgONTVdu3bFhQsX8Ndff+Ho0aMIDQ3FN998Y5FHl0AgEAgEAoFAIBAIBMJ/C5lUhvT4TACAf4QvOFyT6yZqUVpQhp/e+73GfhcjTiAAKCgo0NInqw0KhcLkooxOGlFVAHD4x1NIiEkyeE77Aa0AAGw+G+lZaVoBTYHN/JjXaY8zoVAokPJAWfXSO8QTNgI+c1xUJMG9HUr9tBY9I8Hj69Z7A4CKkgr8sOS3GvuNOdQAoLCwEPfv3zfaThc0TaNPnz4mOdScPaoKQLwQEWrVGTlyJGJjY/Htt9/iyJEjoGkap06dQmnp87sYAoFAIBAIBAKBQCAQCC8GGU+zIJMq0xU1Nb9qyy/v/8GkUDp7VjlbXLyMO4HatWsHT09Ps8a9efMmfv31V5PaOnloVwGlaRrfzNoEiViq95xuY5RpnmVpQoiyZeDxeMwxzQi01EfpyEnJg0goBqqlZ9I0jX8O7oZnS6UtjOmnbft4FwpV1TOdvarm7GyCLdu2bQsvLy+j7XRx584d/PTTTya11XROluS/gA41AGCxWJg1axaePn2Kr776Cjt37kRgYCCWLVtmUt4rgUAgEAgEAoFAIBAIhP8ONE3j1O8XsGvVARzcfILZ7xngzmiB1YYHV+Jx9JczAACBgy3snAQAABsBH7b2hqtFQuVQa9q0qVmFCdLT0+HsbNzRhGq6X64+ynMSY1Ow45O/9Z7jFeSBiA5NIJcocHf7U2Qn5zLHAppVpZCe+/sK9q8/ymx7BnowlUSLioogo6UQFUsAAG366ddPe3L7GQ5uOgYA4NvymDmz2Cw4utkbvcZWrVohIiKizm3p9KJpqBmCz+fjvffeQ2JiIubMmYP169cjNDTUGl0TCAQCgUAgEAgEAoFAaCSc//sKVk7bgJ+X/Y6Dm48x+//+5gBGO0/H8W1nTe6rolSIr19Zzzhwpq+YyESquXg7myRNVVlZiS1btiApyXD6pS46d+6MwYMHm9TW0b1K96vz8PZMlc5dqw4g7tIjved1H9sZAODf3QN//vEnPhr5NT4Y+gVsHWyZNk9vJ2Lvd4eZ7QMbj2KU0zT8+/0JcCkuEg5moCSpAh7+bghtFaRzHJFQjK+nrodCobTl1I/GobyoAlBF/bHZbKPXKJVKsWXLFpMqdVanY8eOGDZsmEltX7iiBKbg7OyMb775BvHx8Zg0aZI1uyYQCAQCgUAgEAgEAoHwgsPm6HfMiCrEOP3HRZP72vTGVkaQP6prBIbM7oeywnLARP00ALCxsYFAIEBWVpbJ4wKAWCzG48eP4eHhYVJ7TScQm83C9E8nAqqIvZXTNqCiVFjjHIlIAht7pRZaZYEYCq4M1w7dxs1jd3Fl/80aumxa86uU4NTvF3Dk7xOoVEWndR/bSW8Vzh+W/IY0lZ5dWLtQjHlzKIpySgAT9dMAgMvlwtHRsda2lEgkePjwocmpt5rXXfyipnzqIyAgAFu3bq2LrgkEAoFAIBAIBAKBQCC8oHQa1hYOLnZ6j/ed3MOkfs7vvoqTv50HVKmey3YsYpxpAODi5WTg7CooisLkyZMRGBgIkUiEkydPIi0tzeh58fHxuHTpEiQSiUnjVHcCjX9nJKK7KQX4s5Pz8P1b27Tap8Vn4JUmr2PTIqVvJTe2GI93p8HWjQeBBx95ikw0aR1scMx+k3vgUfIDuDVTjt1zXGed7a7+ewuHfjgJqFJl3/99MUTlYiZt1FRbAsDEiRPRpEkTVFZW4syZM0hOTjZ6TkJCAi5duoTKykqTxmgoKZ/mldAgEAgEAoFAIBAIBAKBQKglPBse+k3tif0bjtY41qJHJAbN6G20j9y0fKyb+wOz/frGV+ET4oX4W8+Yfa4miOhXVFRAIBDg8OHDyMrKgpOTE0pKSuDq6oqAgACD54rFYgQEBMDGxrhOG3Q4gdhsNt77bRHmtl6KynIRjv16Fl1GdkDTtiE48uMpCMsrUZhVBBaXBdA0HIPs0GxCICgWIBcrUCIrQnBUAO6cvKdzvIgOTdD75W64/sVFFD0tg6uPC6K61qygWZhdhG9nb2G25307HQERfkh+UOVUNCXar6KiAnZ2djh27BjS0tLg6OiIsrIy2NnZITjYsONPLBbD29sb9vbGddoAwNHNHhRFgaZp4lAjEAgEAoFAIBAIBAKB8N9gyKv9ajjUOFw23tgyx6jumUKhwDczNqK8WKnv1XtiV/Sf2hMAUKSqTgkTnEClpaVYu3Yt7O3tUV6ujGwrKSmBra0tQkJCjF5D+/bt0a5dO6Pt1Nja2YBvy4O4UsI4gXxCvbBg3UysUTm0vpmxERSbhbLCcvBsuPCP8AUvlIZvRzfIxHKw2ErbsPkshASGwMHdTedYLBaFN7+fi1vH7uLG2niABkYuGFQj3ZOmaayetRnFqvl0HdUBQ+f0BwCm0idMcE4KhUKsXr0adnZ2qKhQ/l1KS0tNtmXr1q3RqlUro+3UsNlsOLjao7SgjJn786BOUj4JBAKBQCAQCAQCgUAgEHQR2jKohjj++KUjERRlOCoMAP5Z8y/unn0AAPAIcMPizVVOOE0nkIsRJ5CDgwM6deoEoVBbu2zw4MFwdXU1eK5YLMbatWuRmZlpdL6aqKPUNKOqBs3sgy4j2wMAykuETNqqRCTFlP+9BFYhD1KhDJp+RlGhBGPHjYFnoLvOccYsHoqmbUJw8fxFRL2stHPPcV1qtDuw6RhuHrsLqHTS3vpxLmPLolrYUiAQoHv37jVs2a9fP6O6aFKpFN999x1SU1MNtquOLlvWN8ShRiAQCAQCgUAgEAgEAqFe6TqqA/Na4GiLyf97yeg5T+8k4tcP/wJU2mfv/bYIDi5VaYKaTiBjQvoURWHQoEFYsmQJQkNDmf3Xr183Oo+UlBSUlZVBIBAYbauJ2glUWlAGhUIBAJBJZbBz1q0pl/ooHSsPLUfhOTHifk+GXKo8h+/MQ0ZWBtz9ajr+bOz4mPbpRFRWiFCuKIFcLIezhyOa92im1S75QRp+fGcHs7106wI4e1RppRXWItoPKufZ0qVLER4ezuwzxZbp6ekoKSmpvS1VVVMry0WQiEzTsbM2xKFGIBAIBAKBQCAQCAQCoV4Zt2QEBI62oFgUFn43CzYCvsH2IqEYX01dD5lUKZQ/4Z2RaNU7WqtNUU7tnEAURUEgEMDb25vZZ2env2CCGg8PD/Tr189oJFt11JU+FQqaiURbPWszTm0/r7P9o2tP4OjmgFXHl8PDXVlNlKZpsNgUbGxs4OFflfLJ5rJBURTmrHoFAgdb3Dp2F9l3i5B+KR/dxnQCm11VXVUiluKrKd9BKpYCAEYvGoIOg9tojV2cY7pzUo1AIICPj4/WtjFcXV3Rp08fk6ulqtEq8vCcotSIhhqBQCAQXkhomkaFRI4CoQQFQimEEhkUNMCmKNjx2XAX8OBmx4MtV39p9vpArqBRKJSgQChBcaUUUjkNUACXxYKrgAs3AQ/OtlywWYb1QghKWxZVSpBfIVXZUsHY0sWWCzc7LlxsecSWJiBX0CiulCJfKEGRUAqpQgHQAJdNwdlW+b50FRBbmoJMJkNqaioSExORmpoKoVAImqZhY2ODgIAAhIaGIjg4GDwe73lPtcEjk8mQnp6OxMREJCcnM7bk8/latuTzDf/oJgByuVzLlhUVFYwt/f39GVuaKqb+X0ahUGjZsry8HAqFAjY2NvD19UVoaChCQ0OJLU1AQdMoFclQUCFBYaUEYpkCS+6sBZsCnG25yC4TwU3AA5ddM+6HpmlsWvQL0h5nAADC2oZg+oqJNdoVmuEEAoC+ffsiPz8fT548gb+/P+7fv4/ExERkZWVBIpGAzWbD0dERISEhCAkJQWFhYa3009RoFSbIL4OTuyPuX3ikt/2j6wmQy+Swd7bDmjMrsHjAMvj1cwGXy4XA2R15lVJ0eHs0OPY2cHB1QNcR7eBky0VWqQgXjt6AuFiCihxRjeqePyz5DYn3UgAAwdEBmP31lBpjF9bSOammZ8+eyMvLw8OHDxEYGIi4uDgkJiYiMzOTsaWDgwOCg4MRGhqK4uJitGvXzqh2XnWc3atsWZpfBs8A3emvdQlxqBEIBALhhUIqVyCxUIj43HIUVUqNtve05yHCwx5BLoJ6dQ4UCiV4nFuOpEIhZAraYFsum0JTNztEeNjDyZZbb3N8USgSShCfV45nBSbYkkUh1M0OEZ72cCG2rEFxpVRlywqlc9cAHBaFUDcBIjzs4SogzqDqZGZm4sSJEzh//jwjwKwPPp+Pbt26YeDAgVppRQQl2dnZOHnyJM6ePcsIg+uDy+UytmzatGm9zfFFITc3F6dOncKZM2dQWmo4YoPD4aBLly4YNGgQwsLCav1jtrGTn5+PU6dO4fTp0ygpKTHYls1mo1OnThg0aBCaNWtGbFkNoUSOJ/nleJJXgUpVdJk+KAoIdLZFhIc9vB34jC2P/HQKx349CwDg2/Kw7Pc3wOXVvM9r63451Tiuf1wKERERuH//PjZt2gSaNvK8weWiX79+GDduHBwdHQ221cTJXbvSJ5r54Z1tC7Fh4c9Ii6+pxyYWipFwNwkR7ZvC3skOmy6vQ0xSDlLKpDj4KBcAEDGpJ9M+oaBKw8zvtVFwGNQSD3+6hBY9I5n9J3ecx8HNx5XXwePg/T/eAN+25kJFoZm2BICIiAjExsbixx9/ZFJb9cHlctGrVy9MmDABzs6mO+4aQoQaRRt7pzRiSktLmbK4tfkQEAgEAqH+oWkaCfkVuJVeDIkRR4AubLlsdA5yQaCzbZ3MT02FRIZrKUVILxGZdX6IqwAdA51hw3m+kXUNgUqpHNdSipBaXGnW+UEutugU6PLcoxQbAiKpHNdTi5BcZJ4tA5xt0TnQBQIesWV5eTm2bduGCxcumHV+mzZtMGfOHLi71/9KekOjoqIC27dvx7lz54z+eNVFixYtMHfuXKOC1/8FKisr8fvvv+PUqVNm2TIyMhLz5s3TStX6ryISibBz504cPXrULFuGh4dj3rx58Pf3r5P5vUjIFArczSjFw9wymON1cBNw0S3YFdn3U7Ck18eQSmQAgGU7FqPflB46z5kRsRgZT7Ng5yTA/qLfTBonISEBW7ZsQVpaWq3nyOVyMXr0aIwZMwYcjvF4pZ1f78MvH/wJAPj4n6XoMbYToIqEvHEkBrvXHMS98w+1zhnzxlDMXTMDsZkleJBTBiNrizpxteWia7Arip5k4I1u/4NEpFyUfvuneRjyaj+d58xtvRSJ91LA5XFwuPJPkxzFiYmJ+P7775GcnFzrObLZbIwcORLjxo0Dl2t8UXTvd4ex5a1tgJH3RF1CItQIBAKB0OARSuS4nFyIzFLznFRQOWfOJuQj1FWAToEu4HGsLyP6rKAC11OLjEb+GCKpUIisUhG6BLvWufOvIZNUKMT1lCKI5YZXNQ2RUlSJ7DIxOge6INi1dkK3jYmUIiGupRRBJDPflmnFlcgpE6FToAtC3YxryzRW7ty5g++//x7FxcUmtNZNTEwMlixZghkzZqBPnz5Wnd+LxL1797B582YUFhaa3cf9+/exZMkSTJs2Df379//PRgU9ePAAmzdvRl5entl9PHr0CO+88w4mT56MIUOG/GdtGR8fj40bNyInJ8fsPp48eYL33nsPEydOxIgRI/6ztsyvEONiUiFKRTKz+ygQSvHvwxzE77wKqSqybfSiIQYdJ+oINVPSPWUyGf7++28cOHDALOcpVBUqd+/ejZs3b+L1119HYGCgwfZaKZ8aUVUsFgudh7dD5+HtEH/rGbb+70/cOXkPANC0V3McepSDYhMyM/RRWCnF4Uc5eLb7GmPLobP76XWmQSNCzcXb2ej7WC6XY8+ePdi7d6/RiDRDfezbtw+3bt3CokWLEBwcbLC9sx5b1ifEoUYgEAiEBk2pSIoTT/JQITGcImAqiYVCFFdK0T/cw2qRSzRNIzazFLFZ1rmZi2QKnE3IR6dAZzTzdLBKny8S97NKcSfDcHqNqYhlCpxPLECFRIZo7/9eNPrDnDLcTDPf+aOJRE7jYlIhysVytPT979ny1KlT+Omnn8z+0aVJZWUltmzZgpycHEycOPE/94P7/Pnz2Lx5s1VsKRaL8dNPPyErKwuvvPLKf86WV65cwYYNGyCXW36PlEgk2LZtGzIzMzFr1iywWP+t+nU3btzAunXrIJOZ7wBSI5VK8fvvvyMjIwNz5879z9kyvaQS5xIKILfCZ5wGED6lD7hujig9HYO5q6cZbF9ZrozEtrE3rGknkUjw7bff4s6dOxbPEQCSk5Px0UcfYdmyZYiMjNTbTp9DTZOI9k2w8vhHyErKQZ5IhvuVNGQWONPU0ABCx3cHx80ReQeuYOGGVw22F1UoF7JtjdhSJpPhu+++M6mipymkpaXho48+wrvvvosWLVrobaed8mmd58ba8t/6ZBMIBALhhaJCIrOqM01NYaUUJ5/kQWJBxI4m97PKrOZM0+R6ajGe5BnWE2psPMgus5ozTZNb6SV4lFNm9X4bMo9zy63mTNMkJrMEcXXwfm/InDt3Dj/++KNVHECa7N27F//8849V+2zoXL582WrONE0OHTqEP//806p9NnRu3LiB7777zirONE1OnDiB3377zep/o4ZMTEwM1q5daxVnmiZnz561miP+RSGrVISzCflWcaZpEjK4HYZumge2AUmMKwdvMqmlMqn+v6VcLsfatWut5kxTU1lZia+++goJCQl62zi62jOvy4oMP+Ox3J1xr5I2qh9bWwL7tsSw7xeAwzMSX6UaljKgQaxQKLB+/XqrOdPUiMVirFy5Eo8fP9bbxkHDluVFhrVM6wriUCMQCARCg0RB0zj/rMDqzjQ1RZVSXE0xP9VITWaJCDGZdbcqdi2lCAUVkjrrvyGRUybGrXTrO4DU3EgrRm65uM76b0jklYtxI7Wozvq/nVGCLAtSsF8kkpOT8cMPP9RZ/7t370ZMTEyd9d+QyMjIqBNnmpoDBw5Y/UddQyUnJwcbNmyoM1sePXoUly9frpO+Gxr5+flYt26d1R2Tak6fPo0zZ87USd8NjUqpHOefFZil8WUKGUIZHufqdkId/vEkPh37DbNdWqDdTi6XIzc1D/cuPMQ3y7/F7du362SOIpEIX372JR7eioe4suYzB2VitKJIJse5Z/mQ15Exs8UKPMw2vNCoTt00FGH577//4tq1a1afH1RRhGvWrEFZme55NoTIT5LySSAQCIQGyaOcMuTVsSMpuagSwUVCBLmYp68lkStwxQpOOUPQAC4nF2JYpFe9Vimtb6RyBS4n160tAeByUiFGRHuB0wAewuoKuYLG5eRC1HU8xJXkQoyM9gaX3XhtKZPJsHnz5jr7oa3mhx9+wJo1a2Bn13j16RQKBTZv3gyp1PK0JUP8/PPPiIyMbNQFxxQKBbZs2QKxuG4XCLZu3YrmzZvXqureiwZN0/jhhx9QWWlewRZT2b59O1q1atWoi5HQNI2rFmqfmsKdjBL4OdnC0YbDjLv9k7/x+2fa0b4leaVYPWszclJykZ2ch7y0AshlcrCdAId+hqOuLKW8shzvz/8QlXcoeAa6wy/MG35hvvAP94FcI3LOUIr6jdRii7RPTSEmswT+zrZw1lMVnTYSoZaeno6///67LqeIkpIS/Prrr1i8eHGNY1pabc8p3Z841AgEAoHQ4KiUyuBpz8egCA/I5DQuJBVApqAxOMITzjZcXEkpRIqZ1Qqrcy2lCH6ONuCY4RRIyC9Hz1A3KGiamSebotCnqTsUNA0KFK6lFKFYZNkPyKJKKR7mlKGFT+P9gXg/qxRlYuVDpocdD+0DnLXsKlBVaQUADosFCsChR7UXjS4VyxCXVYbWfrUr//4iEZddipJqItA2HFaN92WJWGrRZ6pcIkdsZinaBzTeH9tHjx5lKpU5OTlh6dKlkMvlYLFY+Omnn5CWlobt27fj2bNnAID9+/cjNja21uMUFhZi165dmDVrltWvoaFw8uRJPH36lNnWZc/09HTMmzcPXl5eEAqF2LRpEyoqapfGU1JSgj///BPz5s2rg6toGJw/fx4PHyqrAEZEROCzzz7Dq6++ChaLpfM9ai7l5eXYvn27zh+yjYUrV67o/Mxq2tXR0RGzZ88GANjY2ICiKCxbtqxW41RWVmLbtm1YunSp1ebe0EgrEaFHiCsKhMrF0PtZZcgqE1n92U2moHEjtQj9wz0gl8nxzcxNOP3HxZrtJDIc33a2xn5BO6WDqPp3d3JyslU/P/wQCpIUGjkpechJycOdU/drtDm5/RzElRK07BmJFj2j4OajfM7JLBEhqVCIyW38tOyZWSrSuc9cFLTyOXhwM92VkmmVw0qf4++nn35iFkmq2zM/P9/iz42aS5cuoVevXmjVqpX2/DRWDlnPadGZONQIBAKB0OBIyBciNqsUcgWNcA87NPO0x/2sMpx7lo9wD3sTejAdkUyBpCIhwtxr169UrkB8bjnuSLXnGZdVhqOPcwEAXg58NPdxwKUkyyOvHueWI9rbAaxGKLgtUyjwJK/qR3O5Sjuv+t//eLyygl2Ehz14HPPtEJ9XjhY+jo0y4k+uoBGvQ3dPLFPofF9a+pl6kl+OVr6OjTJKTaFQ4OjRo8x2aWkpPv74Y9A0jaioKIwePRobNmxAbm4uPv30U4vHO3v2LCZNmgSBoPFVpFUoFDhy5IjWPl32vH79OioqKvDJJ5+gXbt2GDVqlFm6aBcuXMDkyZMbZZQaTdNathw+fDij16TvPWoJV65cwdSpU+Hq6mrx3Bsi1d+XajTtmpGRwXzGBw0aZPZn9ObNm8jNzYWnp27nxYvOo5wyOPA5zL1aTV08u2WUilBcKcV7Xd5H4r0Uo+3tnATwCvaAY4gAKRylJlf1726Koqz++XHvaI/yKzTKi3UvDJTkl+HfLcfx75bjAADfpt5o2SMSflP7Ag52KJfIa9hT1z5LyCkXo0AogZuAV+OYoQi1xMREPHr0iNnWdS+0xudGzZEjR2o61DQi1J5XQZrG9/RDIBAIhBcauYLGw5wyRjNCoai6oVdK6yb0/XFuea11aJ4VCFEqlteYp2YvPDYLRULrpDcJpXKkFddtSsrzIrmwUitFpFKq0Pn3VxPiKkBSgbBWY7zUwgcBzraAyomaUlS7818UUosrdX5O9L0vLf1MSeU0kgobpy3v3LmD/Px8ZpumaeZ7ws7Ojolcc3d3xyeffIJFixbB3r52Pxo3btyIDh06ACoB5vPnz1v1GhoKcXFxyMrK0tqny54+Pj5ITEwEACQlJSEqKsqs8WQyGc6erRmZ0hiIj49HSorSgdC2bVs8fvyYSf3U9x61BIVCgdOnT1vcT0MkMTFRK2pSTXW7atKtWzezteVomsbJkyfNOrehU1wpRXaZGHZcNgZHeKBHiCv4qoWWunp2i88tR9L9VINtuo/thH2F27C/6Df8ELMaAb2rUm6rf3fXxedHal+Jn5+uwT+5v2Ddpc+xdOsC9J3cnTle3QeUmZCNS8djIbJTPq/osqeufZYSr0eXzlCE2okTJ7S2Dd0LzfncrFmzBm3btmW27969i5wc7cwEzefDukzhNcQL7VC7cOECRowYAV9fX1AUhf379z/vKREIBALBQnLKxIxmBJ/NQoSnPZ7mG075GRThgVfa+cNFQwOCy6YwvX0A7Hj6q0GpKRRKmXRDU0nWcCJUn6eTDQdDmnmiU6AzcjRE8C2dZ3IjdVzouy5df387HhsUpVyhrU7XYBdMbx8AJxvjAfiN1Qlk6D2i732pi0ERHpja1h+T2/hhUmtfDIrwgKtAt8ZKY31fXrlypcY+Pz8/fPbZZ5g5cyaTcrdo0SJ88skniIuLw8svv6zVPiIiAu+//z62bt2KX3/9FatWrcLIkSPBZuv+vOsaszGg77qq2zM1NZWJQGjZsqWWptzy5csxdOhQZtvLywsbNmzA9OnTazXmi476uiiKwsCBA2v8qNX1HgUAHx8fvPfee/j555+xbds2rF27FqNGjarVmI0NXdelz64A4OHhARaLhdxcZbTvsmXLdKZp29raYseOHYiOjjZpzMaA+j6wNy4Lx+LzkFUqRhsj0gqDIjwwvX0AfBz4WvujvRwwvX0AOhiRE0guEmL04qEQONrqlc8qzC6GvbPye0Qmk+HGjRvMMV3f3fo+P8uXL8cff/yB7du3M/8GDhxozCxQKBS4fv06nNwdEd01AoNm9MHgWX2Z42PfHI4vj/4PL78/Bs27NwOXx0Fg/9ZM4QJd9jRkY097HvqFuWNSaz+83NoPI6K8VNkNhueZXCTUubCs3lU9nVKhUNQoRKDvXlj9c7N8+XLs3LkTgYGBTBuBQIC///4bHh4ezL4lS5ZoVWGlaRpXr17Vnh+JULOMiooKtGrVCps2bXreUyEQCASClVDrQrBZFHo1ccON1CKITRBllcgUaGuBLlZ+LQog0DRtcJ4lIhmOPs7F6af56FjtgdCSeeYLG1+1T5qmdV6Xvr9/iKtApwOHw6IQ7CKASCZHmLtxYfeCRmhLGLkuQ+9LXdxOL8afMRn4OzYThUIp+jbVLaZdIJTUWaXB54laC0aTjIwMfPTRR1i5ciXzQ1pdfezy5csIDg5m2rZt2xYffPABYmNj8cYbb2DmzJlYt24d/P394eLionPMpKSkOi+A8DzQZUvosGdMTAwKCgqwfPlyeHt7o7BQd7p8YGAgVqxYgfPnz+O3337T2SY1NRUSSeP7nKtt2b17d9y+fbtGkQdd71EAeP/995GcnIwFCxZg5syZWLNmTY1oD31kZmbWuWj/80DX+1KfXQGga9euWlE2Z8+eRffu3cHhaC/idOvWDUVFRXjw4EGNPvLy8lBaWmq1a2goqO/j6vt1UpFQ7yKMJiWVUjStds9u6m6H4krj0f0imQLTV07FgeLtOFj2O767/DnmrpnGHOdw2Rg0vTeznZ6ervWdoOu7W9/nBwD++OMPTJs2jfmny+mqC3XUrRrN2yXflocOg1pj1heTsfbCZ9hXtA195g1ijuuypz4b+zvZoH+YBzJLRNgXl4W/7mbgfGIBnG24sOUaXrSVymmU6lhYZu7t1ZxV2dnZEAq1n8X03Qurf26g0mecPHmywTnpwpAtSYSaGQwZMgSff/45xowZ87ynQiAQCAQrUSCUgALQK9QNj3PLTa70GZ9XDk97Przs+TqPc1gUOgU646UWPpjQyhfdg13BZVfdfAtqkZpZKpJBpqB1zlPzfi6RKyCrVu7c2DyjvOwxprk3Jrfxw9jmPmimoTtSLpab5Fx8kaiQ1LwmQ3//YFeBzuiyEFcBZAoad9JLEOpmZ7TYU6VUAaGOKLcXGZFUjgo912TsfWkIBQ08zauAHY+jM71EIqdRJm5cthQKhTVSFDV/NFdUVEAsFoPP5zOr4lFRUcjOzmbazJw5EwcOHMCRI0eYHxqZmZnYvHmzViqpJhKJBBkZGXV0Vc8HiUSC9PT0Gvt12RMAdu7ciU8//RTp6em4efNmjfMiIiKwfPly7Nu3D//880+N42rkcjlSUw2ng71oyOVyJt0zMDAQnTp1wgcffICgoCAsXrxYr00dHBzg7e2NU6dOQSJROsDT09O1IkxsbW0xa9YsbNq0Cdu2bcOXX34JNzc3QPWjOikpqd6vty7Rd0267Kqma9euWhFmt27dglwuZ9K21fTu3dtgynF1p8CLDk3TKKiQgMOioL7VeNvzdTpoqpNUJISfkw3zPOZup9Txqr7I+VILH0R7O2BoM09MbuOHQREeEHDZKFC1sxHwEdUlAsPnVkWNNe8RiaFz+jPbmnbX9d2t7/NjDD6fj1mzZmHz5s346aefsHDhQtja2uocF0aiqvi2fMgFNoDqubW6PQ3ZuGOgC+Kyy/Aot5x5rioVyXA5uZB5NrDhsNAr1A0TW/nipRY+aOPnxPRXUM3mmgtl1SPUql+ToXth9c8NVOmiERERiIyM1GlTVJNE0DduQ4hQI0UJCAQCgdCgKBPLEOIqgJc9H1w2hUgve6QXi/Agpwy9Qt3gZseDVK6Aux0Pt9NLmPPEMgXuZ5eirb8TI76uSbdgVyhoGgcfZoOmga5BLugU6MIUDCivRcpnmUTZVtc8c8vFaOvvBJpWLujdTCvWOtfYPMvFSrFZoVQObwc++oW5o6BSgrxyCTNPPqemcOyLii676/v7O9twIJYpdJaRb+puh8QCIZIKhegQ4IwAJ1ukGtGcKxfLIDAh1fZFwVDaspuAp/N9aegzpYbNohDmYYdysUxL606TcokMjiak2r4o5OXVFHwOCQnBlClToFAoQFHKCnG+vr6YN28eKisrIZVK8f333wOq9DovLy+ztJZyc3O1UmFedAoKCnRG3emyp4ODA95++23I5XJkZGRg+/btWuc0b94cEyZMwC+//IKLF2tW9atObm4umjZtatXreZ4UFxczETZ//PEHs3/58uVYv369TptCFTmSkZGB+fPn4/Tp03j69GkNp+6CBQvA5/Px4Ycfori4GEFBQVrRPLm5uWZr2jVEysvLa0TYQI9dAcDf3x9lZWUoKan6jpTL5bhw4QL69OnDpKL5+fmhSZMmWLNmjd6x1alvjQU5TUMkU8BVwEXXYFdI5QooFMCVFOXzlaH7jESmQEaJCCGuAjzJq0BTdzsk5FfA2bZmdFuoqwBnE/IhlMrRp6k72vg51VjMMeRg0YzI1PXdre/zY4wFCxZALpczFULnzZuHV199FRs3bqwxLoxEVdE0zUhaONpwathT1z4AcORz4MDnIKnQsERKz1A3VErl2HM/C3wOC/3DPCCTK3A/uwzl1Wyp0LBl9VXK6tek716o63MD1efvwIEDmDx5Mj766CODc9YkNzcXCoUCLFVKLKnyWc+IxWItT3NjDLclEAiEFx25gkZioRCJOqKQzicWGDz3UU45Ij3tEeBsi+yyqjLifA4LgS622HU3A1K58u4bk1mKUdHeuJxUCFo1rqkoVG31zdNY9SV984RKVF5NdpkYmSUieDvwGYeavJGl1um6Hn12LRbJcPJJTds62XDgac/HtZQiyBQ0UosrEeZuZ9Sh9l+wpZq8ConO96Whz1Rbfye09nWCnKZRKJTgTILuqCrU8vPzIqAr3evp06f45JNPaux/7733auxTV5fUl7JoiMaWpqjLljBgT0MVU6OiolBSUoKYmBiTxv6v2FJts7KyMp02BYBPPvkEI0eOxLhx4+Dn54fMzEz8+uuvuH//PpycnNCpUyfMnz8fRUVFAFBDkP2/YktNNN+L6enp+Pzzz2u0OXPmDNasWQM3NzcUFBSgb9++iI2NZeyoi8ZmS7XfpVAoxaGHNdOIjT27JRRUoI2vE57lCxHkbIsDD7LRzr+mLEF8XjnjbEosEKKFtwPSSrSfoQw5qzT/5klJSTW+uwsKCvR+fgBg8uTJGD9+PLM9b9488Hg8dOrUCa+++irjoN21axe+/fZbbNq0CTRNQyqVgqZpxsFnyOmneSvVZc8KiVynjflcFnNcHwIuGz6ONth1NwMyBQ2ZRI57WaVo5euI+9llNZ8hDDirqn9+dNkTBj43AHD48GEMHjwYHTp00JkerQ+ZTAYeT7mwbMjpV1/8pxxqX331lVXKmhMIBAKh7mBZcEOU0zTuZpairZ8Tjj2uWkCx53HAoii81MK3xjm2XDaEUnmtVrYsmaOheUIVnRXt5QB7PhsUKLBZlJYAv6VjNzSscT1h7vYoFEpQpNJceZZfgf7hynQQoVT/wyWxpWHupJfgkZ7KX3U99vOmuiZSbVEv2rq6upqsU2WtsRsa1ryeffv2oVmzZvj444/x2WefMam09TF2Q8CS6ykpKcGOHTuwY8cO2NnZYezYsXjnnXcwf/58uLu7QyKRoKBAv+OD2FI3GRkZSEhIQK9evbB//3706NEDP//8c72M3VCw9Os/q1SMrkFstPR1RF6FRGcUOqpVC5UpaHDZrBpi+4acVZba/c8//8SRI0e09vn7+4PFYjHRaGoUCgWcnZ1RVFQEDoejNRdDTj9zbSlW2caOx9YrwSDgsSFTaEf5l4llsFPpq1W3paIObQmVU2737t14+eWX8fHHH5t8ntbYJEKtfnn//ffx9ttvM9ulpaUICAh4rnMiEAgEgja2XDbjGDGHhPwKRHs5oIm7gNlXIZFBQdP4+16m3kgaW47psqI2XMslSHXN047HRvcQV5x6kofsMjFoAH2auGnP0wpjNyQstSVFAaFuAnBZFCa0qnKYsigKTdwFuJ+l/we3Nf6ODQljosN1O3bjsqWTk/kFTgAgKysLubm56Nq1K/bt21erc52djReMeJFQR+tZA6lUitWrV+Ptt9/G8uXL8emnnxp0qjU2Wzo4OICiKIuLgFRUVGD37t0YMWIEPD09kZ+fDx6Px0RZ6aKx2VIgEIDD4UAmq12Fb12cOXMGo0ePRlpaGiiKwu3btw22b2y25LAocFhUrbQ5q/OsoAItfRxx7pnhaLbqVL/vGUoBtPR7XRf5+flQKBSYO3eu3sjD6uMacvqxKAp8DqvWermlYhnKxDIEu+p/7hFK5OCwWLDhsBinmj2PjQrVwqMhW1Z3/FnLlmfOnMHw4cPRq1cvk9o7ODgw6Z5oIBFqjevpxwh8Ph+Ojo5a/wgEAoHQsDClKpQhaAB3MkrQwrvqO14kUyCtuBKdAp3BVznObDgsBDpXica62ZmuS+Ziy7P4vq1rnhzVA4tIpgANwM/JBr6ONsxxPocFwXN0mtQFTjZcsC1YVQxwsgWPzcK/j3Jw8EE28y82swRhbvZ6z+OyKDjyG9e6oj2PDR67/h8oWZTy79iYcHFxsfhH79atWzF69GgMHjwY9vbK96KPjw/mzZsHd3fdFVMpikJQUJBF4zY07O3t4eXlZbX+5HI5vv32W2RnZ2P58uUGn+c1K801Bvh8Pvz9/Wt9np2dHSZOnAhfX19QFAUej4fhw4ejrKwMmZmZKCkpwc2bNzFnzhw4OzuDoigEBwcz71uoNO8aExwOx2qftStXrsDZ2RnTp0/HhQsXjFbqbWy2pCgKrgLLtF0f5pTj5JM8pJXUrpps9XENOVhCQ0MtmqMu1J+dV199FQ4ODoDK2aQppq85rkwqw7FfqwpW5KTkoqJEW/fMzUxb3kgtQgtvRzTztGcKCDnyOega5AI7njJiP6tUhPYBzuCwKNjx2Gjp44hnBcrxq9vSkOPPWrakaRo7d+40uchk9XGJhpqFlJeXIyEhgdlOSkrC3bt34erq2qjEXAkEAuG/hLkPEpqkFleiubcDbDScT5eSCtHa1wnDIr3A57AgksqRXChkdLZqMy6bRcHFhotCCyLpdM2zRCTD/axSDAz3AEVRSCuu1NIHcRPwnlsVo7qCRVFwteWaXM21OmEedkgqFKJUpB1l8Ci3HNHeDvB24CO7rGalLtdGaEv1jxpd11uXuNjyLHKKNlRCQ0Nx584ds8+/c+cOvvzyS7z00kuYOHEioIpmuHDhgl59JX9/f/D5uisAv8iEhITUOvXVEHK5HGvXrsUbb7yBTz75BJ9++mkN0WsvLy8th1BjISQkBGlpabU6RyaTwdXVFe+//z6cnJwgkUiQlJSEL7/8ktGX3rhxI6ZOnYqvv/4aNjY2yMjIYIT1XVxc4OLiUifX8zwJCQnBs2fPLO5HJBLh6tWr6NOnD86cOWOwrZ2dHTw9PS0es6HhJuAit9z8e49ErkBWLe9dNE3jrTZL0aJ7M7TsGYUWPSNha1+1CFndwRISEmKVCM/qbNq0CRMmTMBXX30Fe3t7lJSU4MqVK0yVYk0n0I0jMbi09zqzfWzrWRzbehaege5w9nRCs05h6PruWGSaIfWeXiLCqad5aOnjiDa+ygiycokMiQVCVKqi0C4kFqBToAteauEDOU0jsUCIuOwysCjApVohCEMRaoGBgWCz2Uadx6Zw/fp1jBgxwqRgpxoOtQZQ5ZOirf2OqkfOnTuHPn361Ng/ffp0bNu2zej5paWlcHJyQklJCYlWIxAIhAaCWCbH7tisehWMt+WyMa6lT610oO6kF+N+tmH9HmvTMcAZkV4O9TpmfRCbWYK75jw9WkBbPye08Gl89/4H2aW4paNSZ13SyscRrf2sn0rzvDlx4oRRLSRrM3LkSEydOrVex6wPzp07h82bN9frmIMHD8asWbPqdcz64MqVK1i3bl29jtm3b1/MmzevXsesD27duoVVq1bV65jdu3fH4sWL63XM+iCzRISTTw0XZLI2qWfv4cJ72r/53XxdUJCpXLAIaxuKpVsXwLepN2wEyoWKTz75BA8fPqzXeX799deMI+jBlXi82f1Dg+0nrZoGTu/W9TQ7JX6ONugf7qG1r7K8EiMdpwEA2vRrgVUntXXOvvzyS9y9e7de57lixQo0a9aM2b55/C4+GPIFAGDqR+Mw/dOJ9TofvOgRar1797a6h5lAIBAIzxc+h41gV1s8K6hZ5bGuCPewq7WoeriHPeKyy1BfdyEOi0ITN7t6Gq1+Cfewx72sUtRXoUgWBYS5N05bNnW3Q0xGab05pClVlGBjpEePHvj9998hEolMaG05FEVh4MCB9TJWfdO1a1f89ttvqKioMKG1dWistuzYsSMTEFBfNFZbtm3bFu7u7sjP11/B2NoMGjSo3saqT3wc+XDkc1AqtlyTzlQkj9PA5XEglVSNqXamAcDTO4mY23opAMAjwA3+4b7gB9SvbIaHsxcu77iNPSlHkZuSh6ykXKPneDnZQmHLtUhPuLZEeNaM5jUUoQbV90J9OtSCgoIQERGhvVNjks8rQu0/paFGIBAIhBeDZp71F4XFooBw99qnBdnzOfDX0GCra0JdBeDVonDCi4Qtl40gF4EJLa1DsKtAKx24McHnsBHiVn+2DHSxhR3vhV6f1Yutra3JQsnWoE2bNo0yFQwAeDwe+vbtW2/jRUdHm6U19iLA4XDQv3//ehsvLCysTrSnGgIsFgsDBgyot/GCg4MRHh5eb+PVJxRF6XTK1BWONhys+Hku9hVtw+qzn2D6pxPRtn8L8G11y3fkpRUg5vR9XPvtHhSV9ReQk3wiG9s//Rsntp3D3bMPkJOsP4qPYlF49avJGD6nP5rVoy3teWz4OdnU2G8snbJt27bw8PCosb+uGDhwYI15KDRWYnU5/eqDxvlkTiAQCIQXGnc7HprUk1OghbcjBDzznCvt/J3ArocVMT6b1ShT6jRp6+fEFGWoS7gsCm0buS1b+zqCWw/FCTgsCm39Gle1uuqMGzeOEZquS7hcbqNM9dRkzJgx9aLDxWazMX369Dof53kyYsQIvYUtrAlFUZg5c2adj/M8GTp0qFWLZhhixowZjU67U5MID3s42dTPAkvHABdQFAW+LR+tekVj6kfjsPLEx9j6qCodOjDSHwOm9UJk5zA4uKocVDQgjK2XKUJWQEOSqr3PwcWuai4a2Njx8cWh9zHpPaU4f1M3O7ja1k+xnw6BLjqzNIwJ/rNYrHr7fggJCdEp9UUi1AgEAoFA0EOHABfYcuv2NuViy7VIR8vJhos29eCc6RjoXKOceWPDns9BO/+6d860D3ButBFVaux4HHQMqHvHRVs/JzjW04+n54WTkxNeffXVOh9nwoQJjTaiSo29vT3mzJlT5+OMHTu20VX3rI5AIKgXTbORI0eiadOmdT7O84TP52PBggV1/mN8yJAhiIqKqtMxnjdsFoVuwa6oa7dGmLudzogqAGCxq54bAyP98O6217H+ypfYm/8r9uRtxXdXvsCbny2El71vnc6Roil0i+qFBetm4tP97+KHu6uxv2gb9hZsw7TlE7TaOns4YvWZT9BhcJuq62BR6BbianFFeWOEugq0Kt5rYqhiqpr27duje/fudTU9QLVIsmDBAnA4NZ83SIQagUAgEAh64HNY6BHiBqqOVMp4bAo9Ql0trk4Y6WWv98HOGjRxEyDEtf5S+OqTipIK3Dx+F1ve3oaXA+ZiVe//wdeu7lZkg11sG612mrCsErdPxuLHd3dgctA8fN51GfwFdWfLAGfbek1JeZ506dIF/fr1q7P+W7dujREjRtRZ/w2J9u3bY8iQIXXWf3R0NMaMGVNn/TckWrZsiVGjRtVZ/xERERg/fnyd9d+QiIyMxLhx4+qs/yZNmuDll1+us/4bEh72/DqNAnex5aJ9gP7FNy3dr2qPd45uDojqHI6B03vji3Ur6jQy8bV5r2HJhtcxZvFQdB3ZAaEtg2DnpHz+cPasWsh1cLXHusufI6JDTce1q4CHDnW40Ohkw0HHQAP9G7ClJrNmzYKfn591J6fB9OnTERQUpPMY3QAi1Br3siKBQCAQXmjsZFLc/WYvmr85Cmyu9W5ZXDaFfmEecNGjtWEqNE3j+qFbOPfLGdgPbA+fjtbVRglysUXXYNdGlSJy81gMrhy4iQdX4pEcl1ajuNBfE1ai6auD4dfduiv5Ac426B7i1qhseefUPVzadwMPrjxG8v1UrZVaADj7wW/gd2uOwD4trTqur6MNeoU2LlsagqIozJkzB1lZWVavDhcdHY0lS5aAxfrvrHFPnz4dmZmZiI21bt5VREQE3n33XZ1RDI2VyZMnIzMzEzdv3rRqv02aNMGyZcvA41l2j3yRGDduHDIzM3H58mWr9hsUFIT3338fNjZ1t/DW0OBm5OHBbxcRPd26CxFONhwMCPcAj63/+1LgUGXnihL9xa0cHR3x0Ucf4dNPP0VennWrk77yyisGF2E079UT3hkFv6Y+etva5BUh7ucTaD7busUsHPhKW/I5+rMfbOxNs6W9vT0+/PBDfPrpp8jOzrbqPCdNmoTBgwfrPU5r2FJXWmp98N+5exMIBALhhUKhUODrVzbg/u7LOPvmT5CWWqfqpwOfA/GpGExznY7p4YsQe+5BrSpG0zSNZ7HJ+HnZ75joOwcfj1qF6wdv4ezbP+PZoRtWmSMAhLnaYkvvDzBcMAXrX/8ZpQVlVuv7eXHzWAw+GPolDv1wEkn3U3XaPe1BOs6/+yue7rtqtXHD3AT4ZeByjLCbjG9f+x7FefVXHa+uiD3/AO8N/Az/bjmOxNiUGs40AIg5EYuLH2zH478vWm3cJq4C7BjxGYYLJmPVjI0ozC4y4awXHxaLhWHDhqFt27ZW67N79+7w9/fHunXrcPr0ae30mkaM2pbt2rWzmlO2c+fOaNKkCb777jucOHECcrncKv02dCiKwuDBg9GhQwerOWXbt2+PyMhIrF+/HseOHYNMVn9VG58n6iq7HTt2BJttHYmFVq1aoU2bNti4cSMOHz4MqbT+qjY+L0oLyvDZ+DWI2XQYN9fsAy23zveatwMf1z/YjjF2U/BO/0+RFp+hs53AUQCOSiKjOK/UYJ+enp747LPPEBYWZpU58vl8zJ8/32jEsURU9T6wc9Rf3Kq8uAKfjP0Gd388jutf7wYts873mqc9D7Ff7MRL9lPxdq+PkfIwTWc7Hp8LgYNyfiVGbOnm5oYVK1YgMjLSKnPkcrmYM2cOxo4da7Cdpi05z0nOgzjUCAQCgdAg2fHpbtw8GgMAqEzKxuBQF4tTHyM97TEiygvH1v0LuUyOzIRsLO37CRZ2XIazOy9DbuBhpbSwDL9/9g9mN38L89q8g12rDqAop8oxo5DI4FtWjj5N3S3SfrPnsTEo3APUg2QUZhRBKpbi383H8XLgPGx4/WdkPrPu6l99wrMxLdpBIZPDs6gE/cPcIbBAO86Ox0b/MA/Yp+cgNzkPUrEMR38+jclB87Fu3o96H8hfBIzZkm/Lg0QkBS1XwDW/CAPC3GFnZvENqCqx9mvqDp/yMmQ9zYJMIsPJ7ecxJXgB1szeoveBvDFQVlaGPXv2ICoqCsuWLcMnn3xiUaqQk5MTli5dihkzZiA9PR0ikQhXr17FnTt38ODBA+Tk5Fh1/g0JoVCIvXv3IjQ0FO+99x4+++wz+Pqar2Xk4OCAN998E/PmzUNKSgrEYjFu3LiBmzdv4tGjR8jKyrLq/BsSIpEIe/fuRUBAAN555x188cUXCAgIMLs/Ozs7vP7663jzzTeRlJQEiUSCmzdv4tq1a4iPj0dGxov7fWkMsViMffv2wdPTE0uXLsVXX31lkQ6fra0t5s2bh2XLluHp06eQSqW4c+cOLl++jCdPniAtrXF+X8rlcnwxeR1yUpQRX6yUbAyL9ICbwPxIRw6LQqdAFwwM98Dtw7chl8lx90wcZkW+iY9Hr8T9i49qpP05uitTKkvzjS9Eurq6YsWKFZg6dSq4XPNlEqKiorB69WrdwvnVKM4pZl47e+pOj1UoFFg5fQMyE1TPfMnZGNbMAx525tuSzaLQIcAZgyM8cW3PNchlcty/+Aizm7+N/w3/EnfPxtVY6HTyUNrSmEMNAJydnbF8+XLMmDHDoujWiIgIfPPNNyZV4C0ywZZ1DUXXZlm+kVFaWgonJyeUlJTA0dF8UWoCgUAgWJcbR2Pwv2FfAqoQ7q9PfIQ2fVsAALLLRIjPLUdKcSVMuYOxWRRCXQVo5mkPV9VD3Ucjv8a1Q7drtPUMdMdLbw7HqEWDa6xQL+ryAR5ff6p3nNCWQdh8ayXYHDYkMgWe5lcgPq8cZWLTVvddbLkI97BHEzcBuGwWyosrMMZ1Ro12FEWh25iOmLZ8PEJa6NaUaKjQNI1VMzbi1I4LBtv5h/vgx3trwOVxIZUrkJBfgcd55SgVmWZLJxsOIjzt0dTNDlw2CyKhGCMcpqK6HB9FUeg8oh2mLZ+Apm1CLLm058K6+T/i8A8nDbYJaxuCtRc/A9+WD6lcgWcFFYjPLUexibZ05FfZksdhQSaVYZjtZJ0RcR2HtsErH49Hs47WWe1vKPz+++/IycnBwoULmbQtsViMCxcu4MSJE0hJSTGpHy8vLwwYMAB9+/aFvb09aJrG119/DYlEwrRhs9mQy+UYNmwY2rdvX2fX9LzYtWsXUlNTsXDhQggEygUSiUSCS5cu4fjx40hKSjKpHw8PDwwYMAD9+vWDg4MDaJrG6tWrIRRWRTKrbTlw4EB06dKlzq7pebFnzx4kJCRg4cKFsLdX6hnKZDJcunQJJ06cQEJCgkn9uLm5YcCAAejfvz/ze2jt2rUoLa36Aa22Zd++fdGjR486uqLnx4EDB/Dw4UMsWLAATk7KH+UymQxXrlzByZMnER8fb1I/Li4u6N+/PwYMGABnZ6U21YYNG1BYWMi0UduyR48e6Nu3bx1d0fNh20c78ccXewCVc2PL7ZVw93ODgqaRUlSJ+Nxy5JSLTerLhsNCuIc9wj3smEJCE3znoCi7uEbbiA5NMPl/L6HryA4AgLmtlyLxXgq4PA4OV/5pciRsbm4uTpw4gaNHj5ocTdiiRQsMGjQI7du3NzlKdPObv2Lf+iMAgLUXP0Pzbs1qtPnrq33Y+r8/AZXO2uZbK+Ed7AkFTSO1qBLxeeXILjPdlk3d7RDhYQ97vtKWU4LnIzc1v0bbpm1CMPmDsejxUmeg2rPvUfFf4Jgov5Kfn48TJ07gyJEjWvc4Q0RHR2PQoEHo2LGjybb85f0/sHPlfgDAyhMfoW1/60pcmMJ/R2SAQCAQCC8ERbkl+GbmJmb71a+mMM40APB2sIG3gw2EEjkySitRUCFFoVCC0goxivPLIJfIwAeNVm2C4Cbgwc/JFnyO9o25z8vddTrUclPzseXtbRAJxZj8gXaYuVyq3wFBsSh8eeQDsFVaFDwOC9HeDojyskdOuRi55RIUVEhQXClFYX4ZxEIxpBUiNGvmCz9PB3jZ8+Fux9N66LN3toN/hC/S4zO1xqJpGpf2XsftE7HYmfEjE47/IvDk1jPEnL5vuBEFfHHkf+DylCvFXDYLkV4OaOZpj9xyCXLLxSgQSlBUKUVRfhlEFWLIhGI0beqFAG8neNnz4WGvbUsbAR9NWgbjWWyy1lA0TePqwVuIOXUfvydvhpP7i7O4lnA3iYng1IeDqz0+/mcp+LZ8QGXLZp4OiPCwR16FBLllGrYsKIeoQgypUISQYA8E+7nAw54HL3u+li05XA4iOobh0bUnNca7cSQGMafjsP3ZRrj7utbBVT8f/P390bdvXy0NJD6fzzghEhIS8OjRIyQmJiIlJQWVlZUoLy+Hra0tIiIiEBoaivDwcERFRWn9SKAoCq+88gq2bt3KRAXY2tqiQ4cOCAl58Ry8puDr64tu3boxzjQA4PF46Nu3L/r06YPExEQ8fPiQsaVQKER5eTlsbGwQHh7O2LJ58+Y1bDl16lT88ssvTLqnjY0NOnbs2GirVPr4+KB9+/aMMw0AOBwOevfujd69eyM5ORlxcXE1bMnj8WrYsvoC0pQpU7B161aIxcof7FwuFz169EB4uHV1QhsKXl5eaNmyJeNMg8qWPXv2RM+ePZGamsrYMjk5GRUVFSgvLweXy2VsGRYWhhYtWtTQ8Js0aRK2bdvGOHu5XC66d++OZs1qOlFeZO5deIg/v9wLqCptfrjrLbj7uSm3KQohrsoCS8WVUmSVilAglKBQKEVxsRDCskrIRBK4OdqiWYQP3O148HW0qVE0qvuYjvh3y4kaY8fffIblo1dh9ZlP0Kp3NBNVJZXIICyrhJ2jadkNnp6emDp1Kjw8PCCXy1FcXIykpCRkZWVBIpGAzWbD0dERISEhCAkJwa1bt+Dl5VXju90YRblV2Q2u3jWLAjy+8RTbPt4JqL7bPvjzTXgHezK2DHYVINhVgBKRypaq5+DiEiHKS4SQi6VwsecjMtIP7nY8+OmwZY9xnbHn20M1xk6IScKK8WvwxeEP0HFIGzh7VD0XlRWWw8XLtCIJ7u7umDx5Mry8vCASiVBWVobExETGliwWC/b29ggJCUFoaChiYmLg6uqK6Ojo2tlSI1PERYct6wPiUCMQCARCg4Gmaax5dTOKVQ8bnYe3w/ilI3W2FfDYCHO3R5g78Ptn/2DfxiMozVOG97cb2Aqzj32od5yoLoZ/FOhazXxvx2K81eMjlBWW1zjWcXAbuOlwIFAUxTgAy4vL8Wb3L1CYXcz00ff8CjRvqb8yUovukTUcamrYHDboF0RziaZpHP35NDYu3gqp2PCqb+s+zeEbWjOdjqIoeDnw4eXAh7C8Em92/wj56QWMLb869iFatNGf7tSiR2QNhxrT93MSsjWXk9vP47v5P0JcqVz1ZbFZUOjQqXl32+vMQ7gmFEXB054PT3s+RJVivNXjI+Qk5zG2/GTvO2jRXn/0Y4sekTodaniOosB1QXp6Oq5evYpx48bpjXCgKAphYWEICwuDXC7HwYMHUVRUhPbt28PLy8toaqiNjQ1sbW2ZH9sCgQA9e/ask+t5nmRlZeHChQsYP3683h9LFEWhSZMmaNKkCRQKBQ4dOoS8vDx07NgRbm5uRlND1bYsLy9nthujLXNzc3HmzBmMGzfOYAGG4OBgBAcHg6ZpHDlyBJmZmejcuTNcXFzg7+9vcAwbGxvweDzGocbn89GrVy+rX8vzpqCgACdPnsTYsWMNpqgFBgYiMDAQNE3j+PHjSE1NRZcuXeDk5ITAwECDYwgEAq1UQrXTszFRXlyBldM2MAsDM1ZMQqte0TrbOtty4WzLBU3T+GTsN7h/8RFz75n+6US06avf0RjdtZlOh5oa9b3cScMJVJJXarJDDaq09JYtW8LHR3+hAADIycnBtWvXkJGRgR07dmDu3LkmO4I0o+xcvLTTFCvLK/HV1PXMPX3y/8ai/cBWOvtxsuHCyUb53vp84lrcOX2PseWkZWPQtr/+4k7RXZvpdKipYakKP2guNBbnlZrsUAOAyspKNGvWzGgF0IKCAly/fh3Z2dnYtm0bFixYYLKOYWGOflvWF0RDjUAgEAgNhn+3nMD1w3cAVbrA2z/PNxqqn/ksG799sotxpgFAfnqBwXO8gjx0rgoCwPC5AzBuyfAa+3OS8yAqF+k8Z8QC49WXPp+4DikP07UccnlG5qnP8efk4YjPD73PlGBvyFSWV2LltA1YO/cHxpkW3DwAXD3isSPnG7flylc2IOleipYtjf3NI/XY0sHVHp/9u+yFiE4TCcVY8+pmrJqxkXGmNevYFKtOfQxBNWHjEfMHofPwdkb7XDvneyTcSbLK+9LOSYBP97/bKKLTaJrGnj17UF5ebnK60NWrV3Hv3j2kpaXh2bNnjGPHECUlJRAKhfDz80NAQACio3X/CH3R2bt3L0pLS0225c2bNxETE4P09HTEx8ejoqLC6DmlpaUoLy+Hj48PAgICEBVl3UrBDYV9+/ahqKjI5B+cMTExuHXrFjIzM/HgwQOTbFleXo6ysjJ4eXk1alseOHAA+fn5Jtvy/v37uH79OrKysnDv3j2TbCkUClFSUgIPD49Ga8sNr//MpA+26BmJCe/qXgjV5MhPJ3HlwM1a3cf13XtYbBbe2PIaWvZU2ta5mhOoNpw8eRJHjx412q6goGqupaWlJr0X1BSqHGo2dnzY2mvfuze/uY3RTWvWKQyvfDzeaH9n/rqI87uvaNsyw0xbsigsWDeTceJVd07WhrNnz+Lw4cNG22nasqKiAmVlphfhUjsnWWwWHN0cajU/a0EcagQCgUBoEKQ8SscPS39jtpduXQAXIwKjNE1j/YKfamhj5WcU6jsFUEVC6HKwUBSFwa/2Y9IN1ZzffRXLR6+EVFIz7dPW3gZt+rWosV+Txzee4vbJ2Br7zXUChbQINBpl1xBIikvFwo7v4/QfVVUmOw5pg4yn2TptyeVz0H5wa4N9PotNxtV/b9XYb64TKKCZH1r0sE5VqrokLT4Dizq/j2O/nmX2DZ7VF2vOfYpWvaLRY2xnZn9AMz+89s0rRvtMfZyBc7uu1NhfYOTzo8+WPk280Lpvc6PjvgjQNI3IyEiMGTPG5HNyc3OZ14mJiTh0SP/qvxp/f394eHhg1KhRmDVrFtq2bYszZ840qsqKNE0jPDwcL730kskONc3CDMnJyTh48KDRc3x9feHl5YURI0Zg1qxZ6Ny5M06fPt3oKis2bdoU48ePN8uWqamp2Ldvn9FzvLy84O3tjaFDh2LWrFno2bMnTp8+zUSsNRZCQkIwYcIEkx1qmp/xtLQ07Nmzx2iVcHd3d/j6+mLw4MGYNWsW+vXrh9OnT6OystLi+TcETv9xEWf+vASoFlWWbV9k1J4VpUJs/d/OGvvzjDiBvEM8dQrPO7jYodeEKp1ES5xA2dnZJhX3aNKkCaM5KBKJsHXrVuzevdukCsPqogTVF3Yv7r2OY1vPACpn27IdixgpEX1UVojww5LtNfYbe75083GBV5BHjf22jgL0ebkbs+1sgS2zsrKMRsNCFU3r4uICqPRJf/vtN+zcudOk7251UQIXLyerVTquLcShRiAQCITnjkQsxVdTvmPKX49aOBidhrY1et75v6/g9sl7NfZXlCg1OQyhKQLLFyg1pmiaxsppGyASVv1oOLb1DL58eS1kUu2HJPWPmWGvDQCPr78ylFwmx7p5P+o8lpdm+IEnIMJXa8WNqxrn7pk4HP35tMFznzfHt53Fok7vI+2xsjKcwMEWo18fglsnYmukfap/Fw6e1Q+2dja6ugNUVa++m/8jaB2C+MZs6RXkAXe/qsgpnq0yvefhlXgc2HisdhdXz5z58yIWtH8PyXHKynA2Aj7e/e11LPl5Png2PMSee4ATv50DAHC4bHzwxxuwUb2n9UHTNL6b/6POVFFjzkkXL2f4NvVmtvmqYh8Jd5Kwe/W/Zl1jQ+Lp06c4evQoBg4cyAiLG4Kmady+fRupqanMPldXV5OcYnw+HwsWLICHh/KHjVoI/dy5cxZeRcMgMTER//77LwYMGABXV9MiF2NiYpCcXJWerbalMccFl8vFvHnzmFQtuVyOa9eu4dSpUxZeRcMgJSUF+/fvR79+/eDu7m7SOffu3dMq9ODq6gq5XA6FEbkANpuNuXPnMumMCoUCN27cwIkT+tPtXiTS09OxZ88e9OnTB56eNdPidREXF6dV6MHNTakPZuxzTlEU5syZg9DQUED1fXHr1i0cO9aw7zumkJ2ci/ULf2K239jyGjwDazppqrPtw50oLagZhWTsPk5RFKK7RTDbtg7K54WS/DJsXPQLs98Sh9pLL71kUnpzbGysVuGO4uJiPHz4EBcuGC66JBFLUVakjGbT1PzKzyjA2te+Z7YXrn8Vfk0Np50CwO8r/mEi3jTJNWJLAGjeveo52NZeacuK4gqsm/sD832racvaRvuNGTMG/fr1M9ouLi4OJSVVWmjFxcWIj4/H2bNnDZ6nUCgYDTV9WSf1AXGoEQgEAuG589tHO/HsrvIHVFCUP+asmmr0nIqSCmx5a5ve4xlPswyeP2R2P3Qc2gbdRnfAD3e/QXj7JgCAtMcZ+GXZHwCAvd8dxprZW5iKhlwNx9miTbOx+dZKzP56isFxDmw8xlxbjTkmGJ4ji8XCwvWzENGhCRZ+Nwsf/f02c2zL29uMnv88EAnF+GbWJqyetZlJSwxtFYRxS0fiwKZjjAOHZ1Nly3nfTsfmWyux8LuZBvs+8tNpPLqmu9KqMVtQlDKNIaJDE7z2zTSs2P8uc+znZb8j5WFara6zPpCIJFg39wd8NXU9RBVKJ29QlD823vgKA15RPvCXFZVradfM/PxlkyqWntpxAffOP9R5zNhnBwDmfzsDER2a4NUvJ+PLIx8wDubfPt6JhLumVWpsiIhEIuzdu7dWkTiPHj3CoUOHtH4QpKWlmez00MTZ2RnDhg0zKcqhoSORSLBnzx6IRLpT5XXx5MkTRodOTVpaGtzc3EyOyFLj4OCAESNGGHUevQjIZDLs2bOnVmlliYmJ2LdvH/Ly8ph9GRkZcHNzq3Ukh0AgwKhRo4w6NV8EFAoF/vnnH5NSstWkpqZiz549WtF+mZmZcHZ2Nqhjpws+n4/Ro0fX+v3c0JDL5Vg5bQOEpcrFy35Te6DPpG5Gz4u/9QwHN+t2JmYmZBv9vL7y8XhEdQnHqIWDsfnWKtg7K6Uvzvx5CWd3XgaqRVXVxgmUmZmJy5cvG9TTU6Ne9FD/Hfv164dZs2YZTdsv1tL8UjqBFAoFvpm5iUnZ7PFSJwyaYVxnL+l+Cvas1R0JnZOcB5mBYloA8PIHYxHdLQLDXhuALXdWwclduYB7ef9NZpHOXOdkTk4Ozp07Bz7f8OIeAJw/fx4KhYKxZa9evfDqq6+iZUvDFTtLC8qYZ0rnWmi7WRtSlIBAIBAIz5W7Z+Owe40yqoXDZWPZ74uZqoSG2Pq/v3SuyqlJfZSBsLaheo/bOQrwxaEPmO33ti/C/LbvQCKSYv/GoygvEeLUjvPMcc8Ad+SmKTVCuo3piOFzBxh9IM5LL2AqNeki+YFxJ07fl7uj78vdme1hc/rj8E+nIKoQY9X0jfj2/AqjKQH1RcqjdHw+4Vut6xo2pz88g9zx64dVdvAMdGf0VjoMaYMxi4cZtWVRTjF+ef8P/WM/SDc6vx4vdWZKwQPAmMVDsW/9EUhEUqyctgHfXfmiRrrv8yIjIQufTfhWyxk7YHovLNo4m4niU6c8qyPKWveJxrglI4z2XVpQppVeXZ2Uh+mgadrg36Tz8HZaGm0T3x2FnSv3QyaVY+UrG7Dp5tfg2Rj/UdIQadWqVa0E2DMyMhAYGIjS0lIUFxeDz+dDIBAgOTkZKSkpCArSX+BBF23atIFEIsHZs2fRpUsXreqiLxotWrRAjx49TG6fmZkJf39/VFZWoqCgAFwuF46OjsjIyMDTp08RFhZWq/FbtmyJqKgonD17Fp06ddKqLvqiERUVhW7djDss1GRmZsLHxwdyuRy5ubngcDhwdXVFTk4OHjx4UGu9vqioKERERODcuXM1qou+SKjTuTt37mxCayVZWVnw8vICi8VCVlYW2Gw2PDw8kJ2djZiYGLRtazyiXpOIiAiEhYXh3LlzaNu2LZM6+CKx8+v9iLv0GFBFgC/a8KrRc+RyuTIyWkeUOQCIKyXITc3XWUxHTZNWwfju8hfM9qJNs/HVlO8AAOsX/IQWPZqZ7QS6d++eVnSsPmiaBpfLxeDBgyESieDq6oomTZqY5CTVqkqpcgLtXXcYd04pK6C7+brgze/nGu1LoVBg3fyfIJfpXnyRy+TISMhGUKT+lMugSH+su/g5s/3mD3Px6UurAQCb3/gVLXtFme2cvH//PpKSkow+S0BVqGPkyJGQyWRwdnZG06ZNa21L1+foUCMRagQCgUB4bpQWlmlF18z6cgqatjYeXVNeXGGw0hMApD4y7mDRJLCZH+asqtKd0nSmtRvYinGmufm64O0f55l0sz+w8Sgq9RQygCq9QTO91BTmrpkG3ybKyoEPrz7BzpX7a3V+XXHq9wt4veMyxpmm1v9w8nDUcqa1G9CKcaY5ezhi6S/GC08AwKHvT6K8WH90Rkl+KUoLTReyBYBXv5qMwEhl9amnd5Lw+4p/anV+XXF+91UsaPce40zj2XCx5JcFePfX17VSYk/9foHRQHNwscM72143KfLk6C9nUJKv31aV5SIUZBXpPa6LaZ9OQGgrpeMo+UEatv7vr1qd3xCIjY3F9evXMXjwYNja2ppwhpL+/ftj5syZmDZtGtzc3DBp0iTMnz8fbDYb6em1+x5So1AocP369Rc2LSwuLg4XL17E4MGDYWdnevGUXr16YdasWYwtJ0yYgHnz5oHL5SIjI8OsudA0jZs3b5okjt0QefToEc6cOYPBgwfDwcF00e1u3bphzpw5mDZtGtzd3TFu3DjMnTsXNjY2yMzUXT3aFG7duoV//30xU7ufPHmCEydOYNCgQXByMr0iYKdOnTB37ly88sor8PDwwJgxY/Daa69BIBAgOzvbrLlQFIWYmBjs398w7uG14fGNp9jx6W5AJWK/bMcik4ok3Tl5D09vJxpso5aJMJW+L3dHb1VkXHlxBb6ZtRkOrlXO3pJ8051ADg4OaNOmjdF2FEXhzTffRMuWLdG2bVvs3LlTK7XaEJoLwa7ezngWm4ytH/zJ7Hv3t0Umievfv/gID6/EG2xTW1t2H9MJg2b0AQAIyyrxzYxNsHep+rvWxpb29vZo06aNSc93r7/+Otq0aYP27dtj9+7dePJEdxXx6mhVSyUpnwQCgUD4L7LlrW1MAYE2/VrgpbeGmXQeh8eBq4/hm6cp0V/VGTa3v5bOFgBMeHc07p17wGy/8+tCkysJ6RJ8rU56fO1+2Nja2+K97YvAUpWH3/Hpbjy5/axWfVgTcaUYa1/7Xqk9p0pLDG4egA3Xv8Lj6wn488u9TNtxS0Yg7tIjZnvJLwvg6u1i0jieQcbT59Ie186WfFs+lu1YzET47fx6Hx4YeUCtSyRiKTYu+gWfT/yW0QAMiPDFxutfYfDMPlpt8zMLsfH1Ks2YN76fC88A01IMvUywZeqj2j2Ic3lcLNuxmKneumftIdw9G1erPp4nhYWFOHjwoFnFANQ/GBwcHDB79mwEBweDy+WiXbt2jM5SbbGxscGoUaNeyHTFkpISHDhwwKxiABRFgaIo2NnZYfbs2WjatCk4HA46dOhgVgotVNpqo0ePfiHTFcvLy7F//35IJJJan6u2pa2tLWbNmoWIiAiwWCx06NDBZN2w6rDZbIwdO9asc583lZWVtU7n1oSiKPD5fMyYMQPR0dGgKAqdOnWCl5eX2f2NHTsWLBbrhXpvSsRSrJq+kYmMevn9sWje3bTCPm6+rmCxDbsfanvvAYBFG1+Fm6/yWeLOyXu4plG4qDZOoBYtWqBnz54mtVV/77PZbNja2iIlJcWk8zSdQM4ejlg1fSNTpGnc2yPQ1kiRKzVuPi7gcA1nJ5hjy/nrZsA7WPnsev/iI5z96zJzrDbRflFRUejTp48JLatsSVEU7O3tTbZldefk84I41AgEAoHwXIg9/wCndijFW+2d7fDOrwtN1nWxEfDxy8N1+OzgMngGVv3I6ja6I3NjNkUHShOZVIZV0zfVqBB648ht5mFn7BvD0G5AK5P7HDF/EL6P+QYT3xvN7AtpEQj/CF9mu7aRdAAQ1SUCk5Ypqw/KZUodE3Fl/VdfS3+SicVd/4cjGgUSBs3og3WXPsfu1Qexf2NV6fmF381CxtMsRldt2GsDtFIGjTFoRh/8eG8Npn48jtkXGOmPoKiqdAZzbBnWNhSvLFeWpVcoaKyavgGV5fVffS0rMQdv9fgIBzZVRST1ndwdG298jZAWNVMGf1i6nXG6DZjWC73Gd6nRRh+9J3bDz3HfYubnLzP7/MN9EdIikNk2x5YhzQMx68vJzPaqGRsNRhU2JNhsNjp27FirVM/qnD9/Hrt27WK2BwwYAD8/P7P7i4yMxOjRo3Hx4kUIhUKz+6lvWCwW2rVrZ5IYtT4uX76M33//ndnu27cvI5BvDuHh4ZgwYQIuXbpUK+2s5w1FUWjdujUGDBhgdh/Xrl3Db79VpXj36tULISHGI8H1ERoaipdffhlXrlzREmV/EWjVqhUGDRpk9vm3b9/GL79ULWR0794dTZs2Nbu/oKAgTJ06FdevX0dxsX4Ji4bEP2v+RZpqITCiQxOte7IxQlsGYUfiJrz/xxvMPmdPR7TsWeWQM+fe4+jqgHd+Xchs71ixm3kWNNUJlJGRgbVr19b6+4GiKIwcORKRkaY5FTWdQI9vJSDxntJ5FNoyCDO/eNnAmdr4h/tiR+ImfPj3W6BUC6wOrvZalbZTH9felnaOAryz7XXGfr9/thtcvnKhzFRb5uTkYO3atVq6oqYybNgwNG9uWrVwrQg1L9MjTq0NcagRCAQCod6RSqTYsPBnZnv211Pg4V+7SA47RwE6Dm3D3OD9w33wyd53EBStdLBkPM3Sqy1RHZFQjE9fWo1zKkFb9cMJAKayomegO2Z8PqlWc4RK78NJI6Jt/JKRmLOyquiCOSuIADD143EIaxvC9LFr5QGz+jGXc7suY0H795AYq3wY5Nvy8M6vC7F482yseXUzTmxTCtqyWBTe+XUhvII9cPWgctXY1cfFpMIT1QlpHghnj6qHpjGLh2L+2hnMtrm2nPTeaER1CQcAZD7Lwe+f7TGrH3O5tO865rd7F09uKSMNuXwu3vz+NSzbsRgCh5qph3dO3WPeq07uDpi3ZnqtxwyKCtBa0R0xbyAWb5rNbJtry7FvDkPrPkptpry0Avz28S6j5zxvnj17hsePH2PQoEG1FhjXJCsrSytVNDY2Fj/99JPF0SdXr159YaorJicn4/79+xg8eDC4XPP1CKvbMi4uDt9//73Ftrxx4waOHj1qQsvnT1paGu7cuYMhQ4aYJOytj+q2jI+Px6ZNmywufHHr1q0XJo02IyMD169fx5AhQ2qVzl2d6rZ89uwZNm7caFYEoSYxMTE4ePCgRX3UB1lJOfjjc6U0AotF4a0f54HDrd13pmeAO/zCqqpXdhraDisOvMdsp9YyTVFNuwGtMPr1IQAAqVgGFkfp5jDVCZSWlgYul2uWzmJAQABSUlJM+n4q0ihKwDxzUhTe/GGuwYrxunD3c0NQZABT+bzdwFb44tD7TAaDuffxlj2jMH7pSACAXKaA+rJM1VBLT08Hm802S2cxICAAqampJkVna9qSpHwSCAQC4T/F3nVHkPJQuXLWrGNTDJltXiRDdlIuE/EUFB0AqKKWAEAmlSPzmXFtk6KcYiztsxzXDt0GVM6MFfvfQ9fRHbXaLfxulpZ+VW1I1qggGRTtj8BmVVEr5qwgQpVi9972RUy64q5V+5GdnGtWX7VBIpJg/YKf8MXL6xh9uMBIP2y88TU6DWuLdweswMU91wFVkYkPd72NnuO7YPMbW5k+5q6eBjtH88TBUzRSeYOj/Zm/NyywJZvDxru/vc5Ucd277hDSn5ivMWQqUokUW97ahk9fWo2KEmUEkm9Tb6y/+gWGvaa76IVELMWG1zWd0VNNTkGujmZadFA1W6aZaUsWi4V3fl0IG4HSAXBwy3Ek3TctfeN5IBaLsXfvXrN1kDTp2rWrVrqQQCBAWVlZrapcVofFYmHIkCEvRFSVVCrF3r17kZVlefXhTp06aaUL2dnZobKy0mI7DBkypFaVMp8XMpkMe/futUjrTE2HDh20ogUFAgEkEolZ0SOavCi2VCgU2Ldvn9l6hpq0a9cOAwcOZLYFAgFkMplWVVpzGDRoECor6z8yurZsfvNXSETKVO7Ri4aiSatgs/pJ0br3BMDOyQ6uPsqUTXOdQADw6tdTGI1ZuVTpMDbVCdSsWTNMnDix1hVwASA/Px/Hjh3TqgKrD00nkFiofH4dOrsfIjvVruCKGq1noqgA8Gx48A5RpnSnPc4wWzZg+oqJTAaATJWlUVpQZlJ/YWFhmDhxolkLVIWFhTh+/LhJmpmFOSTlk0AgEAj/QXLT8vH7iiox20WbZpv1AAON6DGoHiSgKi6gxpimVsqjdCzu8gHibyojgwQOtvjyyAfoPLwdUz5cjXeoeZozmvOkKAqBkf7wCfVitKZqq/ulSVBUAMYsHgoAkIik+PGd7Wb3ZQpJcalY1OUD/Pt9VbRM/1d6YuP1r8DhcbC46//w4LJSg8xGwMeKA++hx0ud8deXe5GdnAcAaN23OfpMMr1SXXWSqz2Iu/u5wtZe6ei0xJZ+TX0wQbUiK5PKseXtbWb3ZQqpjzPwZvePsPe7qgiPnuO7YPOtlQYLc/yz5l+kP1E6LKK6RmDgjN5mz6G6LR3dHJiKXqkW2NIz0AMvf6DUWVLIFdj85q8NViNIIpHA19cXffv2tagfhUKB3NxcLZ2v8PBwjB492uIqnS1atMCkSZPw+PHjBq2pJpVK4eXlhf79+1vUD03TyMnJgYdHlQZlaGgoRo0aZXFlycjISLzyyisN3pZyuRzu7u4WpXpCZcvs7GwtWwYFBWHUqFFwdrbsB2hYWBhmzZqFx48fWxztVpfI5XK4uLhYlOoJlS2zsrK0bOnr64vRo0ebre+nJjQ0FK+99hri4+PN0nGsD64cvIlr/yoXHl19XDDt0wlm95Ucl8q8DlZlFagLBJUWlNVK90wTGwEf89fO1NonqhAblcSgaRoPHjww++/o5eUFGxsblJUZL4xUvTq9k7uDllRCbUnSsGUQY0vl/6IKcQ0ZE1Ph8blYsE7blgq5AuVFxp3oDx8+NNuWHh4eEAgEJi2eaKd8EocagUAgEP4jbHlrG1PZcvi8gQhv18Tsvqo7BAAgQDP6y4AWx92zcXiz24eMo8fD3w1rL36G1n2aI/FeCo7/erbGvM1xCigUCqSqovG8QzxhI+CDzWEzKQ/pTzJNTk3VxdSPxzHaERf3XMed0/fN7ksfcrkcu1cfxEKNFE+eDRdv/TgP7257Hc9iU/BG1/8hM0EZ5ePq7Yw15z9Fh8FtkBafgd2rlaksHC4bizbONqnqky5ommb+5q4+LnBwsQdFUczfXBmxaL6W3MRlo5nU4xtHYnD98G2z+9KHQqHAvvVHML/tO1UpnjwOFm2cjQ93vmUwcq96us1iC5zR0FjZtne2g5sqOkBty8KsIlSUmB99Mu7t4fAJVUYK3D37ABf3XDO7r7qiqKgIiYmJmDJlSq2qJ+oiPT0dx48f14pUYbPZoGkaeXl5Fs+1oqICu3btwp07dyzuqy4oKSnBkydPMGXKlFpVT9RFVlYWjh07pmU3FosFNpttUgSIMUQiEf7++2/cuHHD4r7qgrKyMjx48ABTpkyBq6urCWfoJz8/H0ePHtWyG0VR4HK5VokklEgk2L17N65cuWJxX3VBeXk5YmNjMWXKFC1HmDkUFxfj8OHDWlGD6kIF1ogklMvl2L17Ny5cuGBxX9ZGJBRj8xu/Mtvz1kw3O8ocAJIfVj2bMdkFWs9u5kepdRrWFh2GaFfqNJb2KRQKcerUKbP/jlwuF2+99ZZJenrVHWqWRJkDYLI9ACBY/RyspdNrvi3b9m+J7mM7ae0zFvEnFotx/PhxpKXVvjAYVPfNN954A82aNTPatihHGWXL5XNh52T++9FSiEONQCAQCPXGjaMxuLRXmQ7o7OmkJYpuDikaqZTBzdUpn5rplLofJE7uOI/3B3/OCKY3aR2M9de+RGjLICgUCqxf+BMUcmX0gr2zsmT43TNxzNxrQ05KHuNAVM8RAAKaKR94ZFI5shLN/5Fo5yjAq19NYba3vPkrZFLrrXBnJeXgnb6f4sd3dzDFGYKjA7Dh2lcYOrsfLuy+inf7r0BpQZnGsS8R3q4JaJrGxkW/VFWwWjJS66G5thTlFKOsULlqqWlL9d+cpmkmesscbO1s8No3rzDbm9/aBom49pUK9ZGblo9lgz7XSpsJiPDFusufY+SCQUYdjdZKtwGA8uIKZuU6uHkAM7bm3yfFggdxng0P876t0nb7Yel25nPQEKBpGnv27MHt29ZxmopEItjY2MDFRbtq7dWrV3Hr1i2955mKk5MT2rZti/j451eFVh80TWPfvn24fr3234+6EIvF4PF4NSqkXr9+3Spj2NnZoWPHjnj8+LHFfdUFBw8etJqDSiQSgcPh1IgWuXnzJq5ds9zJbWNjg65duzbI9yUAHD58GJcuXbJKX2KxGGw2u0aF1Nu3b1vl78XhcNCjR48Gacs/v9iDnBSlg7tNvxboPbGrRf2pF3MEjrbMIpapi6HGoCgK87+drqWFm3A32eA5MpkMHA4H3t7eZo8bFxeH/fv3G22Xl1bAvLY0yhwatuTyufBRpbtqSWFYYEuoJDo0K7OqFwL1IZPJwGaz4evra7CdIR4/fox//vnHaDt1hJqrt7PZC7XWgDjUCAQCgVAviCvF2LioqjrW3NXTGGeVuaijldgcNvzDlRFfARG+jCDrs2oPUTRNY8eK3Vg1fSNkKn2NjkPb4NvzK+Duq4wEOLn9PJO26Bfmg7d+nMuc//2S32rtFEh5oLESG6XpBKp64Kk+z9oyYFovNOuoXBlNfpCGf7dYLmBO0zSO/nIac1stxf2LjwDVg+r4JSOw6ebXCGkRiF2rDuDzSWshVTmd2vZvgXWXPoNnoDIS4PzfV3DnlDJizivIA1M+fMmiOSVr2DJYw5ZBVrRlrwld0UJVcSwzIRt711kuuk3TNE7uOI/XWi5BjEYE4ehFQ7D59iqTojStmW6DaqvaWu/LKOvZssuI9mg/SFkVNzc1H3+vqt/CGYaQSCSoqKiwOD1RTVhYGN54440amjF+fn6QSq3jlB0+fDgmTJhgsV6TtZHL5SgpKdHSlrKE4OBgvPXWWzWE+P38/KyWDjdo0CBMmTKlwdmSpmkUFBRYnJ6oxt/fH2+//XYNoXVrvi/79u2L6dOno7DQvNSyuqSgoACDBw+2Sl9eXl5YsmRJjWhWPz8/i4sSqOnVqxdma8QMqQABAABJREFUz57doGxZM8r8VYucFxWlQuSm5gOqBTh1X0FWvPcERPghsmOVJtmuVYYdXU5OTli2bFmNBZHaIBQKER8fbzCTISkuldEjA4A3Ns+xKMpcIpIgQ5UZEBjpBzZbqamrdR+PtcyW3sGeaNkzitn+59uDBq/Rzs4O77//vkVp0EKhEE+ePDE4jkwqQ0m+ciH3eRYkAHGoEQgEAqG+2LXyABOJ1bJXFPpN6WFRf3KZHGmqCBq/MG9weUpBeb4tHyEtgwCVToc6bU0qkeKbWZuw/ZO/mT6Gzx2AFfvfYyoplhaW4ad3dzDHX9/wKnq81BntBlY5BXZ/U7tKXNpaIVWOC00B2gdXLFuRZrFYWLh+FrP92/JdKM4zX3C6KKcYH49eiW/nfM8UHvAO9sDqs5/gtW+mgc1h47v5P+HnZb8z5wya0QdfHP4Adk5KJ2lFqRBb3v6NOb5g3UxGqN5ckrW0Qqps2UzDlg8ttCVFUVj43SzGKfvH5/8gP9P8Hzcl+aVYMX4NVk3fyBQe8PB3w8qTH2Phd7NMsom1021g4H2pZcurltty/tqZ9V44wxhSqRSZmZlYvHgxAgMDrdLn4cOH8eDBgxr7hw0bhhEjRlhlDIqikJaWhg0bNlglXc8ayGQypKamYvHixQgJ0a/9VxuOHz+O2NjYGvsHDhyIMWPGWGUMiqKQnZ2N9evXm52aZG1kMhkSExOxaNEihIWZJ1BendOnT+tME+7Xrx8mTLDMKa+Goijk5+djw4YNSEpKskqfliKXy/Hs2TPMnz/fpNQxUzh//rzOCMmePXti8mTzNbCqU1JSgg0bNuDp06dW69NcaJrGhtd/YRYgxy8diYAI86PMYWAxJ7x9E+a++8DCew8AdB3dgXn98MoT3D5Z8ztFzfXr13HggGULPhEREYiOjjbYZvObVfdx/3AfhKqeVc0lLT6TyabQvI83bR3M6PRa+kwEQCvt89ndFKaIly7u3LmDPXssq5QeHh6O5s2bG2xTnFfKONzUsifPC+JQIxAIBEKdk5uWj50rlSuEbI5lOlpqUh9nMKmEms4VAIjuGgEAUChoPLz2FOXFFfhg6Jc4+dt5ps1rq17B4s1zmB/7APD7in+YFa9eE7qg/cBWKqfADKbdzpX7mNQHU9BcHVQLxkIV6q8m7rLlqUfNOoZh0AxlVbyKEiF+/d9fZvVzce91zGnxNhMNBQCDZ/XF93dXo2XPKAjLKvHRyK9x+MeTzPEZKyZhyS/zweFWRefs/Ho/CrOU0R+dh7dDl5HtLbg6JZq2DNawZUTHpkxKgjVs2aRVMIbNVUbbiCrEWo7D2nDt0G3MafG2Vqpwv6k98OO9NWjbr4XJ/fyz5l+rptugWgSA5vsyrG0IeDZK53TcJcttGdjMr14LZ5jC8ePHsWfPHquliMjlcsTGxuqMUpHL5fjuu++Qm2sdR2JQUBDc3d1x8+ZNq/RnKadPn8auXbusZkuFQoG7d+9CLK4ZCUzTNNavX281Z6Kfnx98fHwajC3Pnz+Pv/76y2oFPGiaRkxMjE5bAsDGjRut5kz09vZGQEBAg9Glu3z5Mv7880+rCvzre19SFIUtW7ZYzZno5uaGkJCQBmHLKwduMlHVXkEemPw/y6LMUe3eo+kEsnMUMIuhSfdSLdLwhKo4jiabDchhJCYmWlxl1cPDA+3bt9f7+b11IhZ3z8Qx2637GHYYmYLWfVzDOcmz4SGsXSgAIP1JFopyLavoq07LVbPlrW2QiHRHZSYmJkIoFFo0nqurKzp16mSwcExxTtU1uT7HggQgDjUCgUAg1Ad/frGXSQscs3io1kOUudw7/5B5Hd0lQutY8+6RzOsbR+7gze4fMg8yPBsuPvr7bYxfOlLrR2BeegEOqapX2gj4mLemSv8pKNIfoxcNAVROgR9MdArQNM3M09beBiHNq6JhHFzsGTs8u5uMynLLHuYA4NWvJkPgqIy2O/rLGTy9k2jyuRUlFVg1YyNWjFvNOBWdPZ3w6f53seTn+bBzFCAvvQBv9fwIN4/dBVRi+st2LMaUD1/SsmVRbgn2rz/CtFmwbqZVfnCrbcnlc9G0TVU0jK2dDcLaKrdTHqajtNB4pS1jzFgxEQ6uyoqCp3+/WKsoQmFZJb6d8z0+Gvk1I5rr6OaAj/5+G8u2L65VqnNZUTn++fZfAACLzcLrGyxLt1Fz78JDps+IDlVCylweFxGq9OHspFyLovPUVC+cEXPG+oUzasOjR4/Qo4dlEbKaUBSFZs2aISoqqsYxNpuNyspKq0WbsNlszJw5E3379m0QVSrrwpYRERFo0aKmw5nNZkMsFuPJkydWGYvFYmHatGkYMGBAg7Fl9+7dLUoB04SiKISHh6Nly5Y6j0mlUqvpdVEUhSlTpmDIkCENxpadO3cGl8u1Wp9NmzZF69ata+ynKAoKhcKqtpw0aRKGDx/+XG2pUCiw7eOdzPb8tTMsjjKHxr0HAKK6hmsdUy+G0rRyMdQS1DIgalIfZeDgpuM624aFhaFt27YWjUfTNH755Redkco0TWPbR9qLnF5BlhXJQLXn4Oq2bN6tKjLT0ig1v2q2zErMwZ61uuUwmjZtivbtLVtApWkav/76q85IZTWaxR1IyieBQCAQGjVZSTk4tvUMAEDgYIuX37dOyk7s+aqHlpa9tH/IRnercrAd+v4Ek2Lg5O6Ab04vR89xXWr09+cXe5iIt5ELB8PdT3tF7hVNp8A/15B4L8XoHNOfZDI3/ebdm2lFw0Ezkk6uwKPrCSZctWFcvJwx9aPxgIZenCnEnLmPOS2X4OT2qgi+bmM64qf7a9B1pDJt4sGVeLze6X2myqeDix2+Ov6hztTdXSv3M1pzQ+f0Z6o9WkJOSh6yk5RRPpGdw8Cz4Wkdj+6q+fBo+Q9uRzcHzFgxidne/unfBturuX/xEea2Xoqjv5xm9nUa1hY/3V+j831njH/W/Mukig6c3tuiog5qinJLmM9EeLtQJuVZjaYt1XqCllC9cMZvy3dZLQqntkgkEixatAidOnUyobVplJeXo2/fvjqrW7LZbPTr1w/+/v46zzUHW1tbPHr0CD///PNz/cEtkUgwb948dOvWzWp9lpeXo2fPnjq1jCiKQr9+/RAQYPmCjBobGxskJCTghx9+gFxufrVlS5FIJJg9ezZ69epltT4rKirQrVs3nVpGFEWhT58+CAqyLOVMEz6fj5SUFGzevNmqkWG1RSKRYPr06VbTR4RK06ljx47w8tJ9L+vVqxeCg80vElMdHo+HrKwsbNiwwWr6bLXlwu6rSI5TRjA26xSGrqM6GD3HGDRN49455bObrb0NwtqGah2P1nACPbAwQjow0q/G4tNfX+/TWQncy8sLERERNfbXBoqiYGdnh+Li4hrHrh26jfib2mL+bn6WVfCFxnMwl8/VkhFBNVtaGm3u19SbSSFVs3v1AQjLai4Eu7u7IzIyssb+2kBRFBwcHHTaUo1mMS93K9jSEohDjUAgEAh1yu+f/QO5TPlDZcwbQy0qD65G86HMzkmA0FbaPwo8/N2YKCC19odfmA/WX/0SUV1qPjRlJ+cyTj9bextMeGdkjTZ2TnZ4+f2xzPafXxrXiIg9V7V62LJXTW2N6O6ajgvrVJwb9fpg5uHi6sFbBgVpxZVibH7zV7zbfwVTeUrgaIt3t72O5f8shbOHE2iaxr/fn8DSPsuZFE7vEE+su/wFWum4pvzMQvy7RbkKzLPh4uUPxtZoYw6aK7G6xtV0olrLlsNe6w/vEGVFtzsn7+HRdf0r5hKxFD+9uwNLei9nHH+29jZ468d5+OzgMrh6117suDivBHu/U64Cc7hsTP1onNnXoommLXW9L5vXgS0HTOvFVGN9cDleaw71RUFBAb755hsUFBSY0Np0/v33X5w5c0bv8Xbt2ln9R7GPjw+ysrLw7Jnhimt1RXFxMVavXo2cnByrVlc7evQoTp48qfd4mzZtIJPJrOqQ9fHxQW5urtUi32pLWVkZvv32W6Snp1vVlsePH8exY8f0Hm/dujUUCoXVbVlQUICHD+v/8w2V42vdunVITk62qi1PnTqFw4f1F6hp2bIlKIqyqi29vb1RWlqKuLg4E1pbF7lcju2fVi3ITf90olXsaWyRsbnmM9EVy+49fFs+U/VSLQlRnFuCIz+d1mpXWFiIrVu3Ijs726LxAGDixIk1ohirR/qp0cxYMIfcVMOLjJoRa5baksPlwD9CWbVT/T4oK6rAwc3aEX+lpaX45ZdfkJ5uWWVRAHjppZfQrl07vceTNBa1gy20paUQhxqBQCAQ6oz0J5k4pYp6sne2w7i3rSPOnfIwnUlLbNEzkqlsBJWA+8ppG1BeXKW/EdGxKdZf+QK+TXSXRP/js38Yx9vYN4bByd1RZ7shs/vB2VMZhXJh9zWkPs4wOE/NKLpWvXU5LjQfHq2TLsLjczHhnVHM9p9f7tXZLv7WM8xv9x72qVIzAaB1n2j8dG8NBkzrBYqiIBFJ8O3sLVi/4CfGPi17RWH91S/1Rkr99eVeSETK9N6RCwbDzcf8qlma3DNiy+g6sCWbw8bLy6oiKv/8QrcT9VlsMhZ2eA9/r66qftW8ezP8cHc1hs7uZ/YPkb9XHYCoQrmaPmR2f6ukiMAEW2rq+1nLliwWC5M/qNLf+UOPLeuSW7duwdbWVm+UiblkZ2fD21v3d4v6+J9//mk1HTWoqjeOGTPG6tdiKrdv3waXy4WPj48JrU0nKyvLoC3z8/Px119/WbUog7e3N1566SWrX4upxMTEgKIoq0YxwoT3ZVFREXbu3InU1FS9bWqLu7s7xo0bZ/VrMZW7d+9CLpdbrdiImpycHIO2LCsrw86dO5GYaLrMgjGcnZ0xfvx4q1+LKZz58xLSVM83zbs3Q7sBNdOGzcHYIqNngDs8ApTZAY+vJ+jVPDOVkObKaFa1cD8A/P3NAUjEVRVu1VFQ1au3mgNN03j06JHWvkt7rzOR/XxbpdOLxWYxC0zmEmtkkdHZwwkBKifY09uJOiPzakOwypaaTuM93/7LZCNAVVADABwddT9D1waKogw65pM0Cys1t17UsjkQhxqBQCAQ6owdK3ZDoVDefMctGVEr7ShDxJ7TcAhoPEhkJ+fize4f4vQfF7Xa957QVW9kXPrTLJzQdPot0e/0sxHwMV51nKZp/PWVbmcVdKY21KyA5x3iCVeVw+nR1SdWSzkaOqefVnpqyqOq1UJxpRi/fvgX3uj6P+aBmWfDxfy1M7Dy5MeMkG9uWj7e7vUxjv16ljl37BvDsPLER3Dx1F1RKTc1D0d/Vq7+2tjxMfG9UTrbmUOshn5aZOeaFfDcfFyY1NLHNxK0HpgtYcD0XswD/rVDt5EQUyU8LRFLsWPFbrzecRmTGsPlcTBn5VSsPvuJRamuhdlFzOovl8/F5A+skyoNjQg1FpulFdmnRlPfLyEmySr6fgDQe2JX+DZV/iiNOX3f4iqitaV169aYPHkyOByOCa1NZ9KkSQZTSD09PcHhcJCfn2/VcVu2bInr169b1SFSm7GnTJkCHo9nQmvTGT9+vMEUUnd3d/B4PKvbsnnz5rhz545VHSKmEh0djSlTpsDGxsaq/Y4dOxY9e/bUe9zFxQW2trZWt2V0dDTu37//XKpURkZGYsqUKRAILKuCXJ2RI0eiT58+eo87ODjA3t7e6rZs1qwZHj9+jMePrRMpbAoyqQw7NKLTZnw2yWrRfsYWGaERpSYSirVE981BU6hfrQ2an1GIE9vOMfsDAwMxc+ZMqzjUkpOTcfr0acbpJJfLtSrLqx2EARG+NSLKasu9c8ZtqZYVkUnlNVJOa4umLSO7KKPfivNKceTHU8x+X19fTJ8+XWfKfm1JTU3F6dOndcoaKBQKJN1X3ve8QzwtrnpuKcShRiAQCIQ6IflBGs7+dRlQ6VGpK/1ZA10PZbdPxmJB+/eYBzB1pUIAeHhNfyrP7yt2M6uX49427vQbPm8gI1Z/5s9LyHymO02gemqDZgVMNRRFMQ4NYVkl84BgKXxbPsYvUaatajr+7py6h9daLcWfX+5l0nDD2oVi8+1VGPvGMEYMO/b8Ayxs/x7zAMa35WHZjsWYv3aGzutQ88fnVTp0oxcNhbOHdUqZ56bmMXoZulIb1KhtKRVLkVCLggyG4PK4mPjuaGZbHVl178JDzGvzDrZ/8jcTvRfaMggbb3yNCe+M0oqaNIe/vtoHcaUyTXDEvIE1NP3MpSi3BMkPlM6/8Haheh9ENfX9Ht+wXN8POiL+fv+8/qLUTp8+jfT0dINRJuaQkJCAp0+fGnTS8Xg8zJ8/H+Hh4XrbmEtubi6OHDliQkvrcf78eSQmJsLX19eq/SYlJeHRo0cGheTZbDbmzp1rsUaPLvLy8nDkyJF61fe7fPkyHj9+bPWIrtTUVMTGxhp0eLJYLMyZM0dnAQhLKSgowOHDh+tV4+/69eu4d++e1SO6MjMzcfv2bYMOT4qi8Oqrr6JNmzZWHRuqlMTDhw/Xmy7did/OM/fbNv1a6Ix+MgdTFhlhZQ1PzVTA8HZNmNe7Vu5jnFsZGRlWSfeEqnIwj8djvkPO77rC6JU2aRUMuUz5eVBXM7UEY4uMqB65b6EtNVNUQzVe7/rmAFPxMysry6q25PP5Or9DcpLzUFkuUs7FCra0FOJQIxAIBEKdsP2TKuHxie+OqiF8bi40TeO+6kHCzklZZn3XqgP4YMgXKCssB1R6aRuufcWM+eDSY50/klIepuHMn5cAtdPvDeNOP4GDLV56czigcjbs/Hq/znbGdKrUNLeicKwmw+cNYKLyzvx5CR+PWYn3Bn6GzATlww6Hy8YrH4/H+itfIChS+WOOpmns/e4w3u2/AsV5pQAA72APrLv8uc7iA5pkPstmotkEjrYYv9Q66b0wIbVBTV3ZcvCsPnBVVZG6tPc6Phn7DZb0Xs5E+LHYLExaNgYbrn9llYe73LR8HP5BqSNlI+Bj0rLRRs8xlfsXTHtfaur7WdOW/V/pCc9ApUj6zaMxeHK77jXACgoKcOnSpTrp++bNmyZFiJWXl+PQoUNWH79v375wdq6/CmclJSU4f/58nTidbt26hZQU48VeRCIRDhw4YPU59OnTB66u9SduXV5ejrNnz9aJ0+nOnTtITjYe3SORSLB//36rz6Fnz57w8PCoN+dkZWUlTp06VWe2TEpKMtpOJpNh7969Vi9u0aNHD3h7e9eLc1IiluKPz/9htmesmGi1vjOeZhldZEQ1HbW4y490tjGV4OgqR3VFSQXaD2oFAMhO/j97Zx3e1Pm+8TtedxfqQqFQpBR3K+4wYOiQjTGmMN93rmyMwQYb7u7u2kKhQKm7a+oe//1xkpOkTdrICSv75XNdu0aSc96cPD3Jec/zPs99c8m5X3x8PJ4+farX+5Dv5+2Nd999F3Q6HSKhsg5dn/FyF1G99dPyyzVaZKQyll4Ksazm1mDAFMKkorK4Cpelc7/ExETExsbq9T4y3N3d8f7776tcrFI0BdM3llRgTKgZMWLEiBHKyXiWjbvHHwIAbJ2tMWnVWMrGzksuIJM9XfoH4ft5v2Pbh/vI1tKI8T2xSZrYkJWlV5ZUq9Q72/PlUXLCP+sDzZN+k98cCzMrYture26hLI/bahtNWhvQYgXx2U3qxIdNLUwx7e3xAACJWILo04/J17oODMaWpz9jwf9mkZNamfbcX+/sIiv2eo7qhs2PfoR/mOqVZEX2fX1MXun3zkRY2enfPiFDyZDgX4glx5SDGe/LjSrun4oh/x0cEYC/Yn/C0u/mgs1RX1mjDQe+PUFW+k1+cyxsnalLmGgay64GiiWTxcScdfIEoTpdOiphMBjo1atXK7FoKjAzM0P37t3b3a6hoQFxcXFtupbpgqurK6ZNm4akpKQXkryg0Wjo0aNHm2LRuqJpLBsbG5GYmEh5e52TkxNmzpz5QmPZvXt39OnTh/KxTU1NNTrfm5ubkZycjNLS0na31QYHBwfMnj0bKSkpL6xKLTQ0FP36ae+k3B6axpLH4yE1NRWFhW1rq2qLra0t5syZg/T0dIM70V7afgNlecT3Kjyyh0oTJ11RlOpoazHHu6snOb96fjtJr8/sEeRGGh/kJORj3qdyY5+D3xPJT1NTU8oql+vr6/Hbb7+htrYWV/feQWE6ofXYfWgXSBR03PRdeGvPpEmGe4ArbBwJPbOEeykQ8HWXwnDxcSI14HISCzD3E7km6qEfT0HAF8DExISyWDY1NeG3335DZWVlq9eUEmrGCjUjRowYMfJfZN/X8hXOOR9OhYkZh7KxFUVt059k4c7RaPLxq5/PxFen15Ftm71Hy2/Oos88VhonNymf3NfGyRqTVo3R+BgsbMwx5c1IQKpNcfin00qvSyQS8jhNzDlqWxsAwL+HN6wdiORT7JU4vYVjZeSlFCLm4hOl58ysTPHO3yux/taXSnoYqrTnZq+djO8ufKyRK2tRZgmu77sDALC0Nce0t6lr74WCiD6LzURwhL/a7bxCPEiH02c3ElRauutCYUYxHp5XXnU1Medg9abXsOHe15S2HJTll5OOs2aWpkoGE1QgS/TS6TSV+mkyXHycSL2zhHspqK2oo+wYxiweRmoH3j/1CNnx7Vcl6UptbS0yMjIwYcIEvdtwWyIWizF8+HCNkkC+vr7w8/NrdztdqKqqwtGjRw2uWVVfX4+UlBRMnDixzbZMXRCLxRg8eLBGiTovLy/4+/uTLepUUldXh2PHjhncpbKhoQHx8fGYOHEiOBzqro+QXn/69evXpq6fDA8PDwQGBlL+3YA08Xns2DE8f/6c8rEVaWpqwtOnTzFx4kTKdegkEgnCw8Pb1PWT4erqiuDgYMq/G5Am644dO0ZZJZUqhAKhki7swi+pq05Di0XGbkNC1G7HYDDQcyRhglBTXofkaN3dd1lsFtwDiOtYfkohOkcEkAtJBWnFuHP0AUaMGIHJk6m5zvL5fNTV1YHL5SotFi36araSiL5vN/2qqpSTk+pjSaPR0Es6D26sbdLLXZvBYJBGCkUZJfAK8UB4JNHiXJZXjuv77mLIkCGYPn16OyNphlAoRF1dncqFEypjSQXGhJoRI0aMGKGU0lwuok8/AgDYudpiwopRlI7/4Jw8MVZVSjgKmVmZ4stTa7Hgf7OUbrL6Tw4n/x11OkZpnNObLpH/nr12MkzNtZuIT3t7PEzMiRuhi9tvoKK4inwt/UkWKqWPQwd1blN3jMFgoO+E3gCA5gYenl7XrxqI38zHnv8dwcqw95EUpTwRHTgtAuNeG6EUo7vHH+D1nmtJ7TkTcw4+PfwuXvthvsY3WWf+vExWCE5/dyLMrakxn4A08VmUKW1t6BcIjqn6m08ajYZ+k4i/uYAvxKNLz/R6bwFfgP3fHsey0PcQdzNR6bWI8T0x6Y0xlN+Int96ldS3m7I6UqOEpqYUZ5eS5gmBvf3aFPKl0WjoL42lWCTGw/NP1G6rLWwTNmZr4ERLBTdu3MCDBw8MMvbt27exf/9+jbblcDiYPXs2BAJqzDIUcXJygo+PDzIzDds+e/v2bdy/f98gY0dFRWHXrl0abctisTB79myDVOvY2dkhMDDQ4LG8d+8e7t69q8GW2vPw4UNs375do20ZDAZmzZplkIo8KysrdOnSxeBGD9HR0QZrQ37y5Am2bNmi0bZ0Oh0zZ840SKJXVr1pyPPy/skYlBcS1UB9J/ZCUG/qFgAEfAEeS6/HphYmCOzl2+b2smsPpIsu+iDTURPwhSjMKMG8T+UJnwPfHsf+/fvx6JF+7yHD2toaPXv2RH5cCdmS2XNkKLoO7ExWVZlbm8HR00Hn9xCJRIi5QFyP29JPk9HPALGUSCTITynCfIVYHvz+BA4fPozo6Og2RtAcc3Nz9O7dW6WTdbY0lmwTFrnw929iTKgZMWLEiBFKObflCplcmbBilN5ORoqU5XHx+HKc0nOdOrtj08PvlSZgMtz8XEg77ZSHGagsIZJcDTUNuLqXcPY0MecgculwrY/F2sEKE1eOBqQi+DJ3SwC4fUQ+oRgwpf12HuXEn+4Tnmc3E7Ai7H3s/eoo2TLo7OVIGjTcORpNVm01N/KwYcVWfDVzPeqrGwAAbv4u2Bj9HYbM1LxtpqmhmdTPYHFYlCdQ7xyVJ0M0iaVM1wMAos/oHsuEe8l4veda7PrsEARSx1AHDzsyiRp16hGlVVuQ6tdc+IdwzGIwGZj4huZVk5qgTyyj9IilKsYtH0m2otw59kApIU0lFRUVGlXq6EJaWppWwvyZmZnYsmULGhsbKT0OGo2GuXPnYuTIkQZtVSwvL0ffvn0NMnZaWhrc3d013j43NxdbtmxBbW0t5ccya9YsREZGGrRV0ZDnZXp6ulbnZUFBAbZs2YKqKuq/g9OmTcOECRMMGsvy8nJEREQYJJGl7XlZUlKCLVu2gMttLQOhL5MmTcLUqVMN1vZ5erN8kXHamvGUjv30egLqqoh5Rt+JvdpcZIR0wYrOIP6eUWce6fW7JnOsBoDcxHyEDeuKEKkcSE5iPvJy89HURE01O4PBQJ8+fXBp2w3yuWlrxqOuqh7c/AoAgE9oJ71cUxPupZBadH0iw9pcZASA8LFhYLGJeD84+5iyWGYn5CGkXxDChncFABRlliInK5ey6xudTkd4eHirqtPmRh4K0wktYK8ungaprtUWY0LNiBEjRoxQBr+ZjwvSxBKTxcD45SMpGzstNhOr+nykNBkYMX8Q/njwPTyD1E94ZYk2iUSCB2eJtr0ru2+juYForRz16hCdK6omvxlJTowu7bgBsVgMiUSCO8eIhBqdQceAqe0nLnqO6kZqU0Sffaz1hLmmvBY/L9mMD0Z8iYI0QrODwWRgzodTsS3xN4xaMBSQVsDdPHgPWc9zsSp8Hc7/I7c7HzyzHzbH/KC1wOvNA/fIhNywVwbA2sFKq/3bQxZLABg0vf2b+W5DQkj9lYfnn5BOXppSV1WPDSu24p3Bn5PuXHQGHTPenYgdSRswfhlxTgv4Qlzbe0fLT9M2d45Gk/qAg6ZHwMGNWoF0xVgO1iBp2rlfIJn0enz5GWXtyJCaLUS+NgKQVsBd2XWLsrFl8Hg8LFq0COHhrZPtVDBq1CiMGDFC4+09PDyIlf38fMqPhclk4uTJk7h06ZIGW2sPj8fDvHnzDKJRBam5wqhRmifj3dzcQKPRNDKE0BYGg4GzZ88axEQC0rawWbNmYdCgto1edGXIkCEYO1Zz3VJXV1cwmUyNDCG0hU6n49KlSzh1SrV5j77w+XxMnToVw4YNM8j4gwYNwrhxmksYODk5gc1ma2QIoS10Oh3Xr1/HsWPHNNhaO7Ke5yL+LiFa36mzO8KGdaV0fEVpjsEz2v8NsbK3ROggwsm3KKMEeckFOr+3YhIoJyEfNBoNU1bL/6bCEiAoiDqtuD2796K4itDRc/V1Ru+xYUoO7j6h+klEaBtLM0tThI0gnHy5BRVI18MB3atFchIApr4lj2VjjoBSB+bDhw8jJka5uyQ3MZ+8D/DVM5ZUYUyoGTFixIgRyrh9JJqs2hk0oy/sXGz1HlMsFuPYr2expv8nqC6rIZ+f//kMfLjnrXaNBPorVOLcPx0DsViMM3/Kbzr1MUxw9nIkXaNKc7mIvfoc6U+yUJJdBgAIG9YFNo7W7Y5jYsYhdS6qy2qQ8jBDo/eXSCS4uuc2lnR+WykhEdIvEH/F/oil382FiRkH45bJb/oPfHcCb0Z8hLxkYsLHMWXj3X9W4tND75Dac5oikUhwWjGWb1BnPgFpu2eOdNIW0j8Ijh727e7DYrMQIXXTqq9uwPM7mjlbSSQS3Dh4D0s6v62UaAzs7YfNMT9gxS8LYGphishl8iTxhW3XKK0IOmPAWBZnlyLtMdEu5N/DB25+7bdJEO3IhKYVFe3ILYlcKj8vL26/TmkVi0QiwbZt2xAVFUXZmIokJyejuroa5uaaf2csLCywdOlS+Pi0b/KhC87Oznj69Cnl1UASiQS7du3CnTvUJpBlpKWloaysDJaWmrc3m5qaYunSpQgIaLvdSVdcXFzw/Plzylt0JRIJ9u7dixs3buhVpaKOzMxMFBYWwtq6/euODDabjSVLllCaVFDE1dUVCQkJaG5upnzsQ4cO4cqVKwaJZW5uLnJycmBrq/k8hslkYsmSJejSRb1QvD64uLggJSUFDQ0NlI57ZrPytYfKeAr4AlJyw9TCBOFjNTOHoartU9alAAA5ScR8YsDUPqScQsKFNJgwqHGhBwBePQ9MU6JqauLK0WAwGEoJNX00V0UiEe6dIAy/WBwW+k7srdF+AxS7IPSIpY9iLKVzs4hxPWHvRnxHEq+kgyWhThOSzWa3+t2gKpZUYkyoGTFixIgRyji9+SL578mrIvUer6q0Gp9O+B5b398DoUBetWXvZosFX8zSaIzAXr6kUP3T6wl4cDaWrOLqPrSL0uqlLkS+Jk+wXNx2TandU5PVQxmKOheatH3mpRRi7aiv8NOiTWQS09zaDG/9uQy/3f1aaRU0sJcfOfEoyysnWxh9u3th8+MfEbl0hE4T6MT7KciKI6oagiMCKNVcQYsWRW3aUBUn4tEaxLIwoxgfj/sW38/7nUzamlqYYNXvS7Ax+lv495AnQLw6e5Bi/rlJBUjSQzBZkdTHmUh+QIjK+3bzUrK7pwJdY9mPonZkVbj6OqPnSGLlvDirFM9a6NTpQ2FhIcrLyw2WvLpx44ZOlWaWlpY4ffo0+Hw+5cfUt29fjBo1ivLWt9LSUpSUlBgslrdu3dKp0szKygqnT582SKKmd+/eGDNmDJjMtlvTtKWyshIFBQXw9vamdFwZt2/f1qk6ysbGBmfOnKG8HRkAwsLCEBkZCTabOvkHAKipqUF2drbBzss7d+4gOztb6/1sbW1x9uxZ1NfXU35MoaGhGDduHKVGFnVV9aQhkZmlKUYtGELZ2FDR7tlei6KMfpPlySJ95Bvc/FzIlsccqZg9m8PCqAVDwLFmIeRVL5zddbGdUTSjqb4JCQezUfy4EmwTFsYsISonsxVcKfUR0W/Z7qmpM71i4k0f+QZHTwfyPWUVagwmA2MWDQPLnIHQRT44vfO8zuO3ZMqUKa1a45UdPv99QwIYE2pGjBgxYoQqUmLSkfqIqIDxC/MmNSp05fGVOKwIe1+lsPywOQM1TgDRaDT0k04mBDxCZF7GZD2q02T0m9gLts5ENUDU6ce4eZgQ7da03VNG3wk9QafTpOPEqN2utqIOm9/ageXd3sOzG/KKoSGz+mF70gZMXDm61Q113K1ElOYpa7pMWR2JP6K/g1dnD42PsSWKmitUxLIl2rZ7ygiP7AEmi1ghvn86Rm0VWX11A7a8txuvdXlHSZtvwNQ+2J60AVNWR6rU5xj3mnKVGhUoVqdNXkVthQB0aPeU0XOkfu3I7TGuRUKaKhwdHTF79myt9I80RSKRgMVioUePHlrvKxKJkJSUhIwMzapQtYHD4cDb2xs3b96ktHLSzs4Os2bNMlgSiMlkauTu2RKJRILk5GSkpqZSfkxsNht+fn64ceMGpbG0srLCzJkzDVZZx2Qy0bu3ZlUrikgkEqSmpiI5WbOKXm1gsVgIDAzE9evUVqFaWFhgxowZCA6mdvFBBp1O1zmWaWlpSEigtqIX0r9vcHAwbty4Qdlv8ZVdt9DcKJXAWDBE4ySNpmjboijD1ceZXAhMiclAeVGlTu/PYDLgKXWnLEwvAV+6oBj52ghAepmNOq2fTpuMa/vugsaRwNzZBMPnDoKVHVEFl6XgZO2tpayGIrrG0t7VFsERxG9OdnweaZigLTQaDV5diDljSQ4XTfWE9tzYpcMB6Zzl4YUnlH3Pq6qqUFxcrPScoiu4T6gxoWbEiBEjRv5DnPnzMvlvfRICAr4Af3+wBx+N/YZ08bR1tkagQvWTNgkBtGj7TIslkn6OHvZKZgC6wmQxMXohoVEmEorAzSMsvjVt95Rh42iNLgOIG4OCtGLkpRQqvS7gC3Biw3ksClyNU5sukk6Qzl6O+ObcR/j00Luwd1VuTREJRdj12SF8MOJLNFTLKw9MzDlY+v08vQwjKoqrcPf4Q+mxW2n9N2kPXdo9ZZhbmZFCudz8CtLBVIZIKMLpzZewMGA1jv92jqx+dPSwx5cn1+J/xz9o8/0Gz+wHc2vCIfP24Sg01OjXflNbUYebB4lErIWNOYbNHajXeC3Rpd1ThokZh2xr1qYdWVP6TQ6HtQNx03H/ZAxqyvUXma+rq8PZs2fh5+dnkFawpqYmLFq0CJ06aT+Zt7W1Rbdu3cBisSg/Lkg/+507d1BYWKjB1u3T0NCAM2fOwNfX12CxnD9/vk5VRpaWlujRowfllU8y6uvrce/ePcr0sJqamnDmzBl4e3sbJJbNzc2YPXu2Tsk6MzMz9O7dm9LKJ0UaGxsRFRVFmUslj8fDqVOn4OXlZRAzAh6Ph+nTp+ukB8XhcNCnT59WYupU0dzcjOjoaEoSyWKxGGf+ks/d9JHAUIWu7Z4y+k1SrFJ73Oa2bSHrRBAJRShMKwKk1eYBXf0Qvycb6fdz9a42l0gkOPPnJbj0toNTNxtykVEsFpNtii4+TjonLHVt95QxgKJqc68QBR01qc6sq48zQvuFIH5PNnIeFiot9upDbGwsnj2TL6pLJBJkPSdiaedio9Uc25AYE2pGjBgxYkRvqrk1uHWISAhY2ppj2Cu6JQRyk/Lx9sDPcHT9WfK58LFhWH/rSzIp4tTJAcF9/LUat/tQuVA9pIuQ45ePAoNJjTuQTFxdEW1WD2UotX2eIiahEokEUWceYVnoe/jr3V1k64SJGQcL/jcL2xJ/Q8S4nq3GKkgrwrtDPsf+b4+TK692rjaAVA9LcaVTFy78fY1M6kW+NgJsDrUJAqUWRR1iqay/Iq/4i7n4FMu7v4dNq7eTrbJsExbmfTId25N+0yjJamLGwfC5hKA4r4mPGwfuaX18ilzcfoNswx2zaChMzam9EVOMJVXnJVUQrTdEQlrAF+Lqntt6jxkTE2OQCjAZ+/bt00tPbMqUKbCyota8Q4a3tze8vb0pc617/Pgx0tKoaWtWxcGDB3Hjxg0NtlTNpEmTYGdnZxB3U09PT/j5+VHWUvr06VODVIDJOHr0KK5cuaLz/uPGjYOjo6NBYuni4oLAwEDKYvn8+XMkJiYazNX25MmTuHhR9zbAMWPGwM3NzSDH5+joiJCQEPB4+pvExF6JQ1EG4ZjYY0QoOgVTW9Gra7unDGUHdN2vPd5d5IsfOYlyg4OxS4fDLtASdBZN72rz53eSkJOQD369EJZWlqRUREl2GWmCpY/ml2K7Z/hYzds9ZSjKN9zXI5aKxlU5CXLZA1ksGWw6ZZX7FhYWStqaFcVV5LzNp4Pop8GYUDNixIgRI1RwcdsNCPiEm+LYJcNhYqbdpEkkFOHAdyfwes+1ZCUNk8XAyvUL8c25j5B4P5VM3gye0U/r1X0Wm4VeY+QrowwmXUmoX1/c/V3RfZhchJhGp2nV7iljwBT5hOf6/rvIeJaNtaO+whdTfkJhurzsfdTCIdiZ+jte/Xxmq1iLRCIcXX8WK8LeJ1dc6Qw6ln43F58efpfcTlF4X1uEAiHO/X2VGJtOw4SVo3UeSx1K7Z4zNG/3lKG4sn3jwF1kxefio8hv8Mn470hDBgAYPncgdqb8jkVfz4GpheYTVMXzR+ZsqwsikQhnFSoEJr4xRuex1KHc7ql9LPtO6AU6g5gy3jx0n/K2T8WE9IVt1/W+CTUxMcHQoUMNUgVWX1+P4uJivVpJGxoasGXLFoMk/eh0OhYuXAhbW1tKbuY5HA4GDx5skMql5uZm5Ofnw83NTecxeDwetmzZgpSUFEqPDdL2pvnz58PJyYmSWLLZbAwcOBBmZmaUHJ8iAoEA2dnZep2XQqEQW7ZsMUirIo1GwyuvvAI3NzdK2sFYLBYGDBiglZGFpojFYmRkZOh1XorFYmzduhVPnz6l9NhkzJw5E15eXnr/FhtctkHHFkUZAT194ehJVIs/uRaPiuIqnY5D1qYIBR01AAgZ6g/3vg4wdzLB7cNRpGO5LshimXaiQMmxWNnhk5p2T210UGV0CnaHR6ArACDhbgpKcsp0Og6lWCbKE2ohg4lYWria4v7JGFRza9SMoDmTJ09GZKRcj1nJkKCDtHvCmFAzYsSIESNUcH2/vFpj4uvaJQSynudidd+PsPPTg2RSzjPIDRujv8P0dyYQVvEH7pLb69pa2ClIPjm2cbKGrbONTuOoI2yoPKFm42SlUym6m58LQvoTgvc5ifl4vedapdL50EGdsfnRD1i78004uLduScxNLsA7gz7D3x/sAb+ZqHhy9XXGb3e/xpwPp6LrgGCy9SEpKlVpMqQNT28koFI6se03ORxOng46jaOOzLgcnds9ZTi425OC90WZpVjZ4wMlnbTOfQPwe9S3+GjfGjh1ctR6fP8wHwSFE23IGU+zyVZibUm8n4rSXELfLnxsGNz9XXUaRx0FaUVK7Z66jG/tYIU+4wi9MG5BBR6r0DXUh07B7ggdTLRW5acUIvG+7smR+vp6BAYGom9f7ROHmmBmZoaZM2fq5Yhobm4OFxcXg1UrSSQSbN26FY8f694iBWmbno+PDwYOpLYFWQaHw8HMmTPRtWtXvcbw8PAwSEJNxvbt2xEdrV9Fb3NzM9zd3TF06FDKjksRFouFGTNmoHv37jqPwWQy4ePjY9BY7tmzB/fu6VfRy+Px4OTkhBEjqFsUU4ROp2P69Ok66fopjuHn52fQWO7fvx+3bt3SYEvVVHNrSI1aR0970tGZKpobeWR1uC7tnpAmYkfOHwwAEIvESm7m2qBUVaUw77GxswEkNPDrhXpVmzfUNOCBtCW18wxvsNzlCfgsJUMC3aqqBHwB7hwjKs11afeELJavEoYTEokEl3boVhnsrSaWllaWoElo4NUKIBSIcHWP/q7Qly5dwu3b8qr1bCVDAmOFmhEjRowY+Y+Qk5hP6ih0GRAEV19njfYTCoTY+9VRrApfh/QnhJMWnU7DrA8m468nPyGgpy8gTRLJkkpufs5at3vKKMyQV3hVFlehLL9cp3HUoah5Vltej8Y67Vuu+M38VjpokOpufH70Pay/9SUCe7V20hQJRTj0w0m83nMt6RRJo9Ew9a1x2Br3C0L6BpLPKVYD6dped+dIFPnvEfMG6zRGW5xV0OMbrmP7MJ8nUEqaSsTEBNepkwM+PvA2fr//LRkXXVEU1L+6W8dYKqw6GyKWZyiIJVoZMehekafJ+Fd0jCUAnD9/HlevXqXoqJQRiUQ4c+YMXFxc9NJtotFomDNnDgYNGkTp8SmOHxAQoPfN/KVLl3Dp0iUNttQesViMM2fOwNHRUW8NrJkzZ2LIEGqdCRXx9/fXO5ZXrlzBhQsXKDsmRSQSCc6ePQs7OzuVJiraMG3aNAwfPpyyY2sJFUmmGzdu4MyZM5QdkyISiQQXLlyAlZWV3g6vkydPVqpUohp9z8v7J2MgFhHVgsPmDKRMAkPGzYP3yIqvgdMitG73lBG5VD5nubhdN2MLZ29HsppfKQlkaYn5UxeAV0MsQF7do1vCLurMY3JB2DnQDlXV8ko6KkT07x5/SDqQ953YS2cdtjGLh5HV5pd33iQ7P7TBzsUGlrbmgILTJ6SLTUvmvobmSsLBWtdYKlJWVobycvlcPasDGhLAmFAzYsSIESP6oktJf8azbKzq8yH2/O8IKQjvFeKBDfe/xbIf5ytNvBSTK5Pe0M3sgNfEw8NzT8jHEglwecdNrcdRR1VpNe5JBfohTXA9vqx5FY9EIsGtw/expPPbuHv8gdJrC7+che1JGzBoel+Vnz07IQ9v9f8E2z8+QOpwuQe44tfbX+KNDYtb6XGNmDeIdBO9f0q9A6Y6hAIh7ksFbU3MOegTqf2qc1vUVdXj+n6iItHM0hSjFmh3oyyRSHD3xEMs6/oOOY6MVz6ahh3JGzBszgBKRMGHzO6vkZuoOkQiEfn3Jladqa0QaKpvwuVdxHnONmFhzJJhOo/VJ7IH7N2IZO+Dc7E6t96oY9D0CPKGRx830dzcXJ0E7jUhOTkZcXFxlLS8Wltb4+HDh0qCy1Qyfvx4jB6tXyu2IWOZnp6OZ8+eQSgU6j2WlZUVnj17pndFnjoiIyOV2o50IS8vz2CxzMrKwpMnT8Dn8/Uey8LCAomJiXjw4IEGW2vP6NGjMWHCBL3GMOR5mZ+fj0ePHlGiT2Zubo60tDS9K/LUMWLECEyePFnn/XV1ftYEiURCWTupq68zWW1enFWKZzcTtR6DTqejUwjRqlicWUq6mtbV1eHMjZPwDyccjFNiMlBeWKH1+Iqx7BLSBYGB8sU6mYg+24QFN3/NDYEUoSqWDm52iBhPaO6WF1aSFYraQKPRyCq18sJK1FXVA9KK5qPnD6PLULmbaFFmic7HCgBdunRRcvHNlsaSzqCjkx4O9VRjTKgZMWLEiBG9UJqUtaN1JeALsOvzQ3izz0fIiiNWmugMOl75aCr+jP0JnSOU3ckaahtxZTexymVixsHoRbq1yzy+HIememUx5Is7rlOmBXVh23VydVKGpi5KKTHpeHvQZ/j2lQ1k658i1o7WKgX/hQIh9n9zHG/0kuvO0ek0zHxvIrY++xldB6p2J7N2sEKXgcQEpTC9tZtoezy9kYC6SmIC1Xdib51XndVxZdctcrI7asEQrVZi059k4f3h/8NXM35BUWZrW3hrB0tKj9fcygw9RhATfW5+BTKeZmu1f+L9VCWRYXMrarWVru27i8ZaolJy+NxBsLLTXW+IwWRg7GKickUsEuPyTuoS0gDAMeWgl4KbqKzSUlsWLlyIiIgISo9NBoPBQK9eveDoqH2LsCp4PB5u3rxpEOFyc3NzJCYmIj1dtzgCwNy5czFgwABKj0sGjUZDWFgYXF2paXHm8Xi4desWJfpcLTE1NUVaWppeLbqzZs3C4MHUV6BCGsvQ0FB4enpqsHX78Pl83L59m5JkZ0tMTEyQnZ2N+Ph4nceYMWOGwaroJBIJQkJCKEvYCQQC3L17l5JkZ0vYbDYKCgp0SspXc2vIxJSLjxMCe/lSemyJUamkkVRwH38EhevWWSBDsYL5oo6C9zLNLYlEgtQYQr+yrq4OtbW16DFW3naurZtoQ00DYqVyEnauthgSOQheXkQ7YnMjjzR98O7aSacK0vQnWUiKSpWO4Ylug0O0HkMR5Wpz3WKpWB0mu1Y3NDSgtrYW3UbJ5U/0cRMFgICAAPK7KBQIkZdMdMN0Cnan3AhLH4wJNSNGjBgxojO5Scrtnqp0vWSkPs7EG73XYf83x8kyc5/QTvjjwXdY8u1clRfHa3vvkImwEfMGwdLWQqfjvH1U3qIY2JuYOHLzKxB75blO4ykiEopwfqu8xczUgqgIe3j+CYQC9TckBWlF+G7eBqzu+zE5WQKAXqO747MjcvMAVZPHzLgcrO77MXZ9fois8PMMdsdv977B8p8XtJs0UnTAjNZywqPY7qmLyHBbiMVinPlTvhI7ScOV2OKsUvy0aBNWhX+I57eTyOfDhnXBF8ffJx9f2HaN8uSFkgOmtrHUU7C5LSQSCc5QLDg9dulwsrJP19abttDnvASAmzdvoqCgQO8WQlXw+XxYWlrqXV2jyIABA+Dt7U3ZeC0pKSnB/fv3ddr3zp07yMnJ0buFUBUCgQCmpqZ6Vde0pF+/fvD19aWk8lQVpaWlOlcaRUVFIT09Xe8WQlUIhUIwmUxMmzaNss/ep08f+Pv7GyyWZWVlOscyJiYGiYmJBjEckS2wzZw5k7LP3rt3bwQGBhosllwuF3fu3NH6uqbY7qmL0VN76HIdb4v+U8Jh40g4I98/GYOa8lqtx+imoHP79AaR0LW3t0e3bt0wcLx8MTjqjHbXHsV2z8HT++L06dOkC3RuYj75t9FVRF/5Oh6p998qfGwYHNztAOk8tbyoUusxuivE8pk0ljY2NujevTsGjZfPZbSNZUvOnj1LukDnpxaR812fbh2n3RPGhJoRI0aMGNGHO0flbSHqEgJN9U34Z+1evNXvY9Jim8FkYP5nM7D50Q8qNcEgSwhQMCnjNfHw4GwsAMDCxhyzPphCvkaFtXfUmcfgFhAtAn0n9kKEVNi3vroB8XdbVzQUZZbgp8WbsDTkbdw8KL/Z9Qx2xzfnPsL3Fz/B4Bn9ENibiEv6k2ykP8kCpKudOz89iFXhH5LVUHQ6DXPWTcGWJz9prAmmZEWvxYTH0O2ejy/HkZVlPUeGolNw2451JTll+HXZFiwKegtX99wmJ65u/i748uRa/HTtCwycGoHQQUS1Xl5yIRIVkpdUoOgmqk0sRSIR7p4g2oQN0e75/HYSqRXTZUAQ/HvoX3Hh4u2EnqO6AQBKssuUDDOoIGJ8T3k78ulHWt0kCgQCREdHo7GxkdJjknH16lWcPn2a0jHt7e0xatQoZGVlUTqujD59+ujkgigSiRAVFWWwWN68eRMnTpygdEwbGxuMHTvWIM6pkMbS2lp7oxmxWIyoqCg0NOjuHtgWd+7cwZEjRygd08rKCuPGjUNmpm5GK+3Ru3dvnWIpkUhw//591NfXG+S4oqKicPDgQUrHtLCwwIQJE5CVlWWQStRevXrB1ra17mp7GLLds6K4ipwbWjtY6uRI2RIWm0XKPwj4Qp30X3sMl1ehPbtJXLs4HA4iIiIQ3DuAdBN9diMBDbWa//a1jKVQKCSTs4rzDd/u2i+e1FbU4cZBIvlsbm2GEfP0N4hhMBkYs5iQf9C12lwpoSaNJYvFQkREBPy6epNuoon3UnRKfsoQCoXkwp3iwrNvN8MtROmCMaFmxIgRI0Z0RrHyq2W7p0Qiwe0jUVjS+W0c+eUMuRrqF+aNTTHfY+GXs8Fiq19lfnYzAXnJRDti6ODOOrsjKbZ7DpjSBwOmhMPOhRCrf3A2FpUl+mlBndl8kfz35FWRGKCYrDolT7CU5JRh/Wt/YXHwGlzdfRtiqUi+lb0lVm1cgr/jfkHEuJ7k6uM4BfOAC/9cw72TD7E05G0c+O4EWeHn3dUTGx98j6XfzwPbhK3xMbv5ucC7K9EelPwgXWM9LEO3eyomUCevUq9ZVJZfjt9f/xuLg94iKqWk55alrTlWrl+IbQm/ov/kcDKWikYMVCRRFXFwsyONMrLiclGc3brVVBWJ91NJp1RDtHue1jCW2jLOgLG0drBCV2nyU9t2ZBqNBl9fX71cDtsiIyMDXbp00WBL7cjJycH+/ftRU1ND+dj+/v4YPXo0mpq0M0ih0Wjw8fFBjx49KD8mSPXTQkL0a1tSRX5+Pg4cOIDKSu0rLtrD29sb48aN0zrJSKPR0KlTJ70cI9vCUOdlUVERDh48iLKyMsrH9vT0xOTJk3VKMnp6eiI8PFyDLbXHUOdlaWkpDh06hOLiYg221g43NzdMnz5dq1gaut3zwj/XyDlK5GsjtZqbtIXydfy61glKB3d7eErd3lMeZqCpvgk8Hg///PMPsrOzyQppoUCERxefajRmy3bPLgOCEBkZSbbKP70ub20OG6b99/TyzpukY/uYRcNgaqGbGUFLIpeOIOdHl3bc0Lra3NrBCn5hRFIr42kOaivrIBQK8c8//yAtLQ39J/cBAIjFEjw4F6vzcY4ePZo073miZywNiTGhZsSIESNGdKKtds/c5AKsHfUVvpnzG8oLiZsbFoeFhV/OxqaH38M/rP1qmdObqUkIKCX9ZvYDk8XE6EXE6pxIKNLZhh3SGMgmph6Brug5MhThkT1IofqoM49Qmsclkz+XdtxQSv4s+XYu9mZtxpQ3I8FkKbcDDXtlIEzMiYTVhW3X8eX0X1CWR7gdMVkMzPt0OjY/+hFBvVVX+LXHAOmEBwAenNVMM8SQ7Z5FmSWIuUBMYp06OSBiQs9W25QXVWLT6u1YFLAa57ZeJcv/za3NsOB/s7A3azOmvzOhVaJ28Iy+sLAxl36GaNJ5jCoU2z411V8xZLsnt6AC90/GAFJHroHT+rS7j6b0m9RbqfWmmkttIkjXts/y8nJMmjQJVlZWlB6PjAULFhhEAysgIAAcDgf5+fkabK09ly5d0toRsby8HBMmTICNjY0GW2vPvHnzDKKB5evrC3Nzc+Tm5mqwtfZcu3ZN68q68vJyREZGwt5evRyCPsyePVtv8wlVeHt7w8rKymCxvHnzptaVdRUVFRg9ejScnJwMckzTp0/HuHHjKB/Xw8MDtra2yMnJoXxsALh7965WlXWGbPcUCoQ4/zchgUGn0zBxJXUup55B7ggdTCy45KcUIvG+9g6nYcOIKjWRUIT4uylgMpmg0WhobGxE/yny66Sm1eYt2z3pdDpyc3NBo9EgFAhJCQobJ2tSyF9TRCIRzvwlN+Wa+MYYrfZvC2cvR/QaLa82V0z8aYoslhKJBHG3ksBgMECn09HU1KTUBRGtR9tnXh5hQiAWi8mKeHNrMwRQnATWF2NCzYgRI0aM6ISqds/Guib8/cEerOj+vlI7WJ9xPfBP/HrM/2xGq8SRKsryuOTNtL2bLQZM0W1FumW7Z48RxAQgcqn8Zu7slittap21xenNyg6kdDod5lZmCJO2FpTllWORf+vkz8IvZ2Nv1ma88tFUtaL7NDqNdISSTX4BoOeobvj7+Xos+mqOXqKs/RQmPPc1SFwYut3z7F9XyBXniStHK2k3VZZU4a93dmGh/5s4vfkSOYE1szTFvE+nY2/WZrz6+UyYW5urHJtjysGIecQqJ6+Jj4vbb1B67IrnpyY6aoZu9zy/9Sp5zoxbNrLNSlBtYbFZGL2QMAcRCkQ4v5XaKrX+Wp6XkLaF7Nq1C4mJ2ru/tYdEIsHevXsNps3G4XDw1ltvGaQyBtKbeW3azUQiEXbt2oW4uDiDHM/BgweRlZVlEG02FouFVatWoVu3bpSPDWksc3JyNK7mkJ07T5480WBr7Tl69ChSU1MNEksGg4GVK1eiZ8/WCxtU4OHhgby8PI2NDyQSCQ4cOIBHj/TTZFLHyZMnkZiYaBCdOzqdjuXLlxvMLMXDwwNFRUVobm7WYGvDtnveP/UIFUVE5XW/yeFw6kSNgYsMRUH9k39cbHNbVYQptn3eiAeDwcCrr76KwMBAdBvcmVx4e3j+CQR8QbvjtYylQCDA1atXkZubi9RHmWisI6qDe4zoqnXi8tHFZyjJJipEe4/pDo8AagxcZCjG8pQOsezRIpY0Gg3z589H586dERzhD1tnoq378eU40mhKG8RiMS5fvozs7GxkxeWitqIOkFanGeI3Tx+MCTUjRowYMaIT904+JP89aHpf3Dx0H0s6r8HR9WfJcn8Xb0d8eWotvjn7Edz9NZ8MnN58mWyJHL98lEZJOFU8uRav1O4pSyy4+bkgPJJoZyrLK8e1fXe1Hruuqh7X9hI6HibmHIxeSOh7VJZUQciXu4cKpbFQTP7M/2yG2uSPRCLB3RNEe6fMCRVSN9RPDr6NHy59Cs+gtrXFNCGwly8pTPvsejw58VPH89tJBmv3bKxrwuWdRJKLxWFhrDThWc2twd8f7MECvzdx4vfzZOuDiTkHc9ZNwd6szVj01RyNzComvi6v4ji2/gz4zdS5rnXq7EEmP+PvJpMTP3WkPMwwWLsnr4mH8/8QSS4Gk4HxK6irEJAxfsUoUuvsxO/n0VSvXUthW7j6OpMOYikPNWtHLi0tBY/Ho8yZT5GCggJkZWXB3Fz195UKTE1N8fvvvyMpKUmDrbUjPDwcc+bM0fhmrqKiAk1NTQaJZUlJCdLS0gweyz///BPPn+tvONOSHj16YO7cuRonVquqqlBXVwdfX+qrKcrLy5GUlGTwWP79998GSQh269YN8+fP1ziBVV9fj6qqKoOcl9XV1Xj+/DnMzKhtu1fExMQEO3fuRExMDOVjh4SEYP78+eBw2r8m11XVG6zdUyKR4OTG8+TjSW/ob0bQkkHTI2DjRCRq7h57oLVLuSrtr+rqanC5XDBZTESMJxLIjbVNSgZHqmhqaG7V7imRSMBisWBvb48n1+S/QT1HaJ/kV4wllbINMvpN6g1HD6Jy9sG5WGQ8086lPHRwCOgM4rdQFsva2lqUlZWBwWCg7wRCX5bXxFeKhabIYung4KC0fw8dYmlojAk1I0aMGDGiNTXltch6TiR7vLp44qeFf+C7uRvIlUkWh4X5n83AtsTf0H9SuFYrc9XcGlJLi8VmYtyyke3uo464m/IqOUXxeACY98l08t8Hvz9BishqyrH1Z8lk3cj5gyHgC8nkzzOF96XRaZjz4VSNkj8FaUX4KPJbfDXjF3DzCaMDWejEIjGaG3iUtWfQaDSyVVHAF+LRpWdtbq/4mfpN7N3mttpycuMF1FURbZhD5/QHnU7H9o8P4FXfVTi6/ix4TUTyi2PKxsz3JmJP5mYs/X4erOw1F1z3CvHEoOlEhUBlSTWlVWo0Go1sVRSLxHh4vu0bUEPG8uxfV1BdRrRhDpzWBw5udpSOD2lCethcQhy5tqIO57ZcbXcfbeivZQutq6srXn/9dTg4OFB6HJCKig8ZMsQgN/KKuLi46Ox82BZMJhMNDQ2Ijo7WYGvAwcEBK1euhKsrtdUQAGBmZobBgwcjICCA8rEVcXV1xd272i+StAeDwQCfz9f472Rra4uVK1fC09OT8mMxMTHBwIEDERwcTPnYihgqlnQ6HWKxGLdvayYub2FhgRUrVhgkOclmszFw4EB07dpVg611x8XFhXR/pBIajQYajYabN9sXl4+/m0xWL/eb2JvSds+n1+OReJ8Qju/U2V2pgokqOKYczHxvIiBNuBz8XrsWbFXaXw8fPiQT8IryDfdPtV0NmRSVSlbL95vQC3Q6HWw2G+vWrYO7uzvpJAqpyZI2JNxPwZNrxP6uvs4Ip7gjAACYLCZmrZU7LR/4TrtYmlmakvqxecmFKC+qRExMDJ4+JaQ7+qvRE9YUBoOBtWvXwsvLS69YvgiMCTUjRowYMaI1z+/I3SvzkgrIFU8A6DuhF7Yl/IqFX87WqYrp8I+n0dxAlIePWzYS9q7aO1jJiJOuMNJoNFJ7Q0aX/kGksGlRRgluH45SOYYqasprcXLjBUCqZ0aj0Volf2QTVYlYgimrI9tM/jTVN2H7xwewLPRdxF6Rt1r1Gt0dHx94m3x88IeTZPUfFShOeB5faluEN05htVZxlVdf6qsbcGz9WUBahWdixsGrvqtw6IeT5HnA4rAwbc147MnchOU/L4Ctk/YOcQAw92N5EvXwT6c0aunQFMVYPrrcdiyf35Z/X7pTKK7bVN+Ewz+eAqTnn2LSmGpe+WgaeY4fXX8GvCbtWzrUodiO/LidWALAmTNnDOJIWVZWhqSkJAwdOpTSG09VjBs3Dn379tVgS+0pLy/HnTt3NGr7PH/+vEFcFCsqKhAXF4dhw4YZpHVWkTFjxpCi4FQji6UmCzCXLl0yiNlEVVUVHj9+jBEjRhi89WnkyJGkKDjVVFZW4s6dOxAI2v8dvnr1qkHMJmpqavDgwQOMGDHCIO2eigwfPhxDhw41yNhVVVW4d+9eu22fz2/Jrz0yDSwqkEgk2PX5IfLx/M9mGuw3c8LK0bC0IxYmbxy4h6LMEq32b6n95eDgABaL6F4IHxsGFps4Dx5fbnuRMe6W4nWcGJPL5WLr1q2orapFcnQaIHUd17b1dbdCLOd+Mt1g3/PIpcPJ1sx7xx8iN0k7LU/FcyjuZiIcHBzAZhMmFD1GdCV1gB9dfqa1iURVVRX++usv1NXWI156z+HgbgePQDetxnkRGBNqRowYMWJEKwR8AU7+Li9Fl10kXXyc8NXpdfj6zIdw83PRaeyK4iqyOo1twsIrH0/T+TjrquqR+YwQAfbt7gUru9YJrXmfziD/feC7Expr4xz56TRZnQapDlvL5M+kVXIBWUW7b0WEAiHO/nUZCwNW49APJ0mdNadODvj82Pv4/uInGDp7AKn7UZRRgltaJP7aI3RQMGmgkKjmGCFtbUiNyQAAeAa56ZXkbMnx386RJgF0Og1n/7pCtp+y2ExMXjUWezI34fXfFsHORb/39e/hg74TCL0ybn4Fru6hrlqgc98AmJgRk0fZKr0qBHwB+bpTJwe4eFMnsH160yVUcwmL+iGz+8MnVDdnXE3w6uyBQVJn36rSGlzcRl3FX0BPH1LLJvF+apsT8draWsTFxRkkoXb+/Hmkpqr/W1KJtbU1nJ2dcf78ea1vPNojJCQEdnZ27f6+NTY24smTJzq5L7bHxYsXDdLSqgpLS0t4eHjg7NmzWrvXtUfnzp3h4ODQ7t+Ix+Ph0aNHqKtru/1bFy5fvoyEhAQNttQfCwsL+Pj44PTp0xrrnWlKUFAQnJ2d2/0bCYVCxMTEoLa2ltL3h9RowhDtwaowMzNDQEAATp8+rVESURsCAgLg4uLS7nmpuMjYdRB11Y0xF58i+UE6IHUfHzKLWm02RcwsTTFtzXhAWhF+6IdTWu3fUvtr2rRpGDlyJDl2kLTqqjirtE3JAcVFxm5DCA3MkpIScLlcJNxPJedzPUdoV1H19EY8uUjtHuCKUa9Sb4Yjg2PKwcz3iSo1ouLvpFb791D4bM9uxGPSpEkYO3YsOXaXAcQ5VllchZIc7RyDS0pKUFFRgeQHaeRCdY+RoQZf3NIFY0LNiBEjRoxohFgsxo2D97Ck89uIvyuvUGNxmFjwxSxsS/hV7/a1g9+dIHWyJr4+Rq/ETfzdZHJy2X2I6iqg7kO7IKR/EAAgN6mAdEZsiyfXn+PYb+fIx7JJU8vkT+/R8hL9hHvKblQSiQR3jkXjta7vYuOqbagqrSHHmPvxNGxP2oBB0yLIicN8pcTfccpuEjmmHNItKT+1SK1jY1JUKlkZ101NLHUh4X4KDv4gn8DJYslkMTBhxSjsSv8Db/6xlNK2xbkKVVuHKKz4Y7KYCI4gJuJleeUoyy9XuV3qo0xycth9aBfKJocNNQ048vNpQJqYXPDFTErGbYu5CgnvIz+fBp9HzU0inU5HSP9AAEA1txaF6cVtbuvj42OQVjCRSIRhw4ZRPm5b7/f48WMkJydrsLXmODk5YcGCBe1WVdFoNPj4+MDPTzfn4LYQCAQYMWIE5eOqQywW48mTJ4iP1969ri3s7e2xcOHCdn+DaTQavLy8EBgYSOn7QxpLWQLgRSCRSPDs2TPKjSpsbGywaNEijbb19PQ0SHsrn8/HqFHU60y2RVxcHGJjYykd08rKCosXL27zeqLJIqMuSCQSpYqqBf+bbfAq1CmrI2FmRRg6Xd1zC2V5XI33VdT+enojAY8ePVJyQu46QH6eqXMSVbfI6OzsjJ49e+L5LXmyredIzTW/iEq/w+TjVz+fCQbTsFWoE1aMJDsobh68h8IM9dfbloT0CwRLao719EYCnj59quSE3EU6v4aKeXB7ODk5ISwsDIl35YtaumjRvQiMCTUjRowYMdIusVfjsCr8Q3w/73fSdQgALO0ssD1pA179YqbeIvVleVxckIqpm5hzMHvdFL3GU2xtkK0etoRGo2H+p/IEy/5vj6tc4ZVIJHh8JQ7rxnyNdaO+VnLdZLGZGL+8dfJHlhAAgMQo+UQi7lYi3ur3Mb6e9atSomDQjL74O/5XLP7mFbLSSfH4uwwgJiZ5yYW4d+IhqKJLf/nkMSkqTeU2cRrEUlMkEgme3ojHx+O/wzuDPoNIIL/JZ7IYGLtkOHambsSav5bDyZN6TazOEQHoOYqYlBVnleLGQep0qxRjqa5KTSmWg6lzdjyxQa5DN2L+YEqMK9rDr7s3qU3ILajA1d23KBtbMZYJbVT8SSQSzJ49GyYmJpS9t0QiQW5uLhYvXmxw7TRF3Nzc0KdPH4OswJ8+fRoXL7bt5CYSiTBr1izKhe7z8vLw6quvwt/fn9Jx28LJyQn9+vUzyI39hQsXcPbs2Ta3EQgEmDVrFiwtqUlayMjPz8ecOXMMrp2miJ2dHQYNGmSQWF6+fBknT7ZdFcPn8zFz5kzY2NhQ+t4FBQWYPn06unShbpGoPaytrTF06FCDtJdeu3YNx44dU/u64iIjldee+6dikP6EELT37+GDgVP7UDa2OixszDHlTUKoXygQ4fBPpzXeV1H7Kz+lEOWlFcjMzCRf7zKg/eu40iKjQixlmptPrxOJfBqNppWsw+PLz8iOBq8QDwyd01/jfXXF1MIU09+ZAAAQiyU4pEWVGtuETc5NS3O5KC0oQ0ZGBvm6JrFUh5mZGYYOHUrGEi1cWjsSxoSaESNGjBhRS/qTLKwb8zU+HPMNMp62dgAau3gYXH2cKXmvA9+eIAVep7wZqbNOloy29NMU6T0mDIG9iYqMzGc5iLkgF5QX8AW4svsWVoS9j4/GfoMnV5VbQ6atGY99OX/i7S2tkz9WdpbwCvEApOK3yQ/T8PH47/D+8P8hJUY+4Qgd3Bkbo7/D50feU2uLTqPRlNpT1SX+dEE2GUIbq7GqWhu0RSgQ4vr+u3ij9zqsHfkVHl1U1saa+Ppo7M3+E+9te53SNkhVKBtSnNTakEIdXQa2v7KtpJ9GkRZdbWUdjv0m16Gb/9mMdvehinktKv6EAmrawrpqEEsA2LdvH6KiqGuDBoDMzEzs2rUL5eWqqwwNSWRkJCwsLCjXi7KxsUFeXl6b2xw6dIhyAfrc3Fzs3LkTpaWllI6rCaNHj4adnR3lf0dra2vk5ua2uc2xY8c0EonXhsLCQuzYsQOFhdo5G1LB8OHD4eLigrIy7dq22kOT8/LkyZO4du0ape9bWlqK7du3t/t3NASDBw+Gp6cnSkq00/5qD1tbW+Tm5qqdGyguMlJ17RGLxdj9hbyiauGXs19YS960t8eTGl0Xt9/QyBFahqL2l7AcSklVdYuhiigtjCnE8urVqzh54hTp0O7f00fjSsBW1WlfzDK4RqKMyavGkDILV/feQWmu5hV/PYbL2z6bioQIDZU/7hzhT1YDqoulOm7cuIETx0+QlYBeIR4GMVmiAmNCzYgRI0aMtKI4qxTfzduAN3qvU0oi+ffwQf8pcsFwqiZlxVmluLSTuPkwszTFzPcn6TVefXUD2drg061TmxOaluLt+745jrqqehz68RRe9V2FnxdvRnZ86wn/tLfHt6vrJSt3FwlFeKvfJ0pJJO+unvjm3EdYf/NLdI5o3/Wu9+juZOIvKy4XD85R0zKiuIKYoCJx0dTQjLRHxITGI9BV6wlNQ20jjq4/iwV+b+KHVzeqTMyOXzEKb21e9sImS90Gh5BJ1vyUQtw7Tk3FX0jfAPJmQlUsBXwBWQXo6GkPFx9qEofH1p9FYy2hOzdm0TCdNQx1ISjcH73HdAcAlORwceMANRV/QeF+cn0/NQk1Pp+PsrIyODpqJ/jcHklJSfD09ISTk2ETu+p4+PAhjh49SqmWWv/+/dtsExSJRCgqKqLcKTUxMRGurq5wc/t3hKQfPXqEw4cPU6ql1rdvX4wZM0bt6xKJBAUFBQY5Lx0dHdGpUydKx9WU2NhYHDx4kLIFCAAIDw/HuHHj2tymoKCA8vMyOTkZdnZ2BmkV14Rnz57hwIEDlOrS9ejRAxMnTlSb0Hp+R7NFRm24czQaOQmEkH1wRAAixvekZFxNsHawwsSVowEAAp4AR3850+4+MhQrnTLu56Br167k763iYmj6k2w0NbQ2epDFEi0WGSsrK9FcLTfoUUw2tUf02cdIe0xUyvl28yJdyV8E5tbmmLKaqPgTCUWkuZEmKMYy9V4munfvTv7emlqYkq6qOQn5qKvS3PCmsrIS/HohxGLi76JNLF80xoSaESNGjBghqSqrweY1O7Ck8xrcPHiffN7F2xEf7XsLmx/9gJIsYoWaTqcpVZHow75vjpHl89PeHt+mI6YmaKKfpkjfib3gE0rcpKQ8TMcc9+XY/tF+VBTJVzz9wrxBZxKXTVMLEyX9KFXUlNeCW1DR6nlHT3t8sHMVtjz9GRHjemq8mktUqckTf7s+O0SJ/petkzXcpZVx6bFZ4DfzlV5Pjk4jtc00iaWMsvxy/P3BHszttBJ/f7BHKRa+3bzIZAnbhIVXPze83ldLFJOou784TInjp7m1OXy6EedR9vNc0lxBRtrjLDQ3EpNtqvTTqrk1So6ziufIi0Ixlnu/OtrqHNKFlvp+NeWtBcnZbDZmz56NkBDq2pfEYjFGjx6NefPm/Wvix+Hh4eByuZS6bVpYWKChoUFttRaDwcCsWbPQrRt1GjVisRgjRozAwoUL/9VYVlVVUeq2aWZmBh6Pp7bqjkajYcaMGejRowdl7ykWizFkyBAsWbLE4PpU6ggPD0d9fT2l1ZMmJiZkMlcd06ZNQ+/e+umzKiKRSNC/f3+89tprL6wCqCW9evVCU1MTpRV/HA4HdDod+fmtnRrrqxuQ8VSzRUZNEYlE2PPlUfLxi6xOkzHjvYlgmxAaXue2XNFYS61L/yBS++vZ7QRs27ZNyYBGthgqFonJCikZivppLRcZR48ejboU+fWv50jNkkCqKv1e9Pd86ppxMLUgpBMu7bihsZZaUG8/mFkSenbPbiZgx44dSgY0ipp0SdGqZUVUMXLkSPCy5ItKPTSM5b+BMaFmxIgRI0ZQXliBP9/eiVd93sCpPy6SCRQre0u8/tsibE/+HcPnDkJ9VQOynstK2X1hbq2/1k5ucgGu7bkNSHUxZFoO+hCnZWtD+pNsUuAWAGmMQKPRMGBqH2y49w18u3tBLCRW3aatGQ9rByuVY1WWVOHvD/Zgvs8beHRJbrvOYDKw/KdXsSt1I0YvHKrTRL7fxN4I6EloOmU9zyU15/RF1vYp4AvJFVIZ6lob1JHxNBs/vLoRC/zexFGFyilIE5frb32JkH6B5Dk26Y2xlLqGakrPkd3Iz52fWoTTmy5RMq5M+0ssliD5gfLkUem8pMjc4dD3J0mH2cjXRsLZi9qqGE3oOrAzeeNQkl2Go+vb1pfSFCVNOhUutElJSRCJRJTdeEgkEuzZswcPHjwAh6OfJqQ+eHl5Ye3atZTfUD169AgPHjxQ+Vpqair4fD5lCQaJRIIDBw7g7t27/2os3d3dsXbtWrDZbEor/mJjYxEdHa3ytYyMDDQ2NlKqk3X06FFcv36dUq1AbXF2dsYHH3wAMzMzSmP59OlT3L9/X+Vr2dnZqKmpAZvNpuz9Tpw4gcuXL8PU1FSDrQ2Dg4MDPvjgA1hbW1May7i4ONy717pKWNtFRk24tvcO8lOI9uOuA4PRa9SLF4y3c7Elq9R4TXz8vXavRvspan+VZHHBYXNQXV1Nvt6W9pe6RUaBQIDExEQ8v0Ekk1gclsaLzneORpNtooG9/Uht0heJlZ0lpr5FVIsK+EJseW+3RvsxmAyySq+qpAYmHJM2YqlZ26dIJEJCQgLibxEGPXQGHd311O81JMaEmhEjRoz8P6Y4uxQbVv6NBX5v4uTGC6T7oIkZB/M+mY49GX9g2prxYEtX8hQTBFSI2kokEmxavZ0s6Z7x3kRSx0EfkqLlE6DQQapbGwR8AW4fjcZ7w77Am30+bDVpCurjjx0pv+N/xz8AAFzdTST9zK3NMP3d1km/sjwuNq3ejvk+q3B0/VkyySGDY8rGtHfGg22i+40BjUbDG78vIR/v/OwQaivqdB5PhuIKYksnJsVYqtNPEwqEuHfyIdaO+gqv91qL6/vvktVzLA4L45eNxPakDfj69IcwMee0MJ+YrPfx6wKNRsMbG+SuaHu/PIrKEs01WNShOIHWJZbakJ2Qh1PSRCCLw8Lcj6fqPaaurPx1EamVcuj7k2pdTrVBSUdNhUPY7du3lcSk9SUjIwO5ubnw9vambExdYbPZ2LBhg9oEmC74+/ujqalJ5Wt3795VEpPWl9zcXGRmZnaYWG7evFlt0kYXAgIC1Mby3r17SEvTvBKjPQoLC5GSktJhYrl161bcukWdAUlb52VUVJRS5ZC+lJaWIiEhocPEcseOHZTqw6mLZVIUtdee+uoGbPtwP/l40Vdz/rUq1Pmfz4S1A1Fxd/tItNLCVVso6qj5WgcraX8pXcfvK7suJ6qJZUFBAaKjo1FVSSSTuvQP1Misq7GuCVvf30M+/jcq/WTM+XAK7N2IBc4HZ2MR00LrVh2KsXRn+SAsTO5yr6jTq0oKQxXFxcWIiooCt5SYRwSF+1GygG8ojAk1I0aMGPl/SH5qIX5avAmLAt/C+b+vkmYAHFM2pr41DjvTNmLR13NaXcCyE+StBLJKKX24eeg+nt1IAKRtpVRUp0kkEuQmFpBjtmwfLUgvxj/r9mGu50p8M/tXPFcQ3Le0swCNTkxkchPywTZhQSQUYeMb/5DbLPpqDixtLcjHRZkl+HXZFiwMWI3Tmy9BwCOq21gcFia9MQZ9Iom2n8a6JvK49KHrgGCMmDcIAFBXWa8kYqsrSiuILSqBZPoots7WrTTOirNKsf3jA5jn9Tq+nP6LkhuTlb0l5n82A/tz/8LbW1egU7A7RCIilrIE6vzPZsLGUT/zCX0I7OWHyKXDAenfZ8fHB/Ues6uiyYOaWJpZmcLVVz8zD4lEgj9WbSMTl698OBUO7vZ6jakPPl07YdIbhK5UcyMP/6zbp/eYIf0VJuIqKtQAoHNnarSAIHXZnD17doe42QaAsLAwSg0XRowYgRkzVBtWSCQSSmPp5OSEWbNmvVBnz7bo3r07pQm1IUOGYM6cOWpfp7IN2d7eHjNmzHihzp5tQfV5OWDAAMyfP1/la1SflzY2Npg+fTq6du0YboFhYWF48OABZbp0ffr0waJFi1o9n5OoOHfTXzdu56cHUV1GtFEPnBZBmZ6uLljYmGPJd/PIx5vX7NBIDqPHCHkCLS02Q6lN0dXXGbbOxNwkKTpN6e+jGEt/hVhKJBKw6GzwqvnS8TWr2Nv31VGUFxJt1OGRPRA+NqzdfQyFqYUplv/0Kvn4r3d2aiSHoaSj9jgDiYnypKaDmx2pF5sak6HReGKxGCwGC00VxMJ0Tw1j+W9hTKgZMWLEyP8jsuNz8e0rv2FpyDu4uvs2xCKZcKgJ5qybgr3Zf+KNDYvVisPnJsknEl5dPPU6loaaBmxVKClftXEpTMz0bw3i5peT2lWyY+TzBLh1+D4+GPklFge9hSM/n0Y1V67J5Bnsjnf+XolDBVsx+Y2xgEJS4PSmS/I21x4+mPg60V6Qm5SPHxZsxOKgt3Bx+3WyBcDEjIMZ707E3qzNWL3pNfQcKZ8IaKMf0Rav/TCPdLc6v/UKMuNy9BrPM8iNTDwqViFWldWQcZLFUsAX4M6xaKwb8zUW+L+JQz+cRGWJvLzfzd8Fb/25DPtz/8LCL2crubVe3HYDqY+IiiKvEA9Me7ttMeoXweJvX4G5tRkA4PKum0iJSddrPKdOjnD0IBJbKQ/TSXHexrom0jnLu4un3ivQ1/beQfxdYuXczc/5X6v0U2TB/2aRlQK3Dt1XEm7WBSV9v8eZrRxEV6xYgYCA9g09NOHWrVuIjo7uMEkLABgzZgzmzJlDWUuYRCLBr7/+ioKC1on9pUuXUpa4uHfvHu7cuUNpIkRfRo4cifnz51PaXrdhwwbk5LT+7V2wYIFStYs+PHjwANeuXUOXLtRoLlLBkCFDsHDhQspiSaPRsGnTJpUVknPnzkXPntQI3T9+/BiXLl1C165dO0wsBwwYgMWLF1PW3k2j0bB161YkJytXVcmSQKYWJnDqpJ/BQ1psJs7+dQWQVpm//lvrBN6LZszioaTmZnZ8Hs5tvdruPoraX8WlRbhz5w75Go1GIxcaG2ubkJ8i1/jLlcaSxWbC3V9uAOTr6wtRIhsSqf+JJvpp2Ql5OL7hPDEeh4U3Ny7518/NYa8MJKvKCtKKcWrjxXb38QntRF77i8uKcPPmTaXfB9l4/GYBsp637eoLAJ06dQIj0xJiodSQoAPrp8GYUDNixIiR/x+kPsrAF1N/wvLu7+PW4SjyQmdpa44FX8zCvpw/sfT7eUrJD1XIKmzodBo8g/Rzbdv9xREyEdN/cjj6Tuil13gyFKvo7FxtCWF8zxX49pUNZDUcpALuQ2f3x0/XPse2hF8x7rURYJuwseDLWWRy6dah+9jxyQFAOsF6689lyE7Iw1ez1mNZ6Hu4vu8uWW1lZmWKuR9Pw76cP7HilwWkLph/D3klX16y/hVqAODgbk8KwYvFEmxes0OvmxsajUY6MdWU16GaS6w85yqsxDq422Hbh/swt9Pr+HrWr0rurwwmA4Nm9MUPlz/FzpTfMXHl6FbJ0WpuDXZ8LG8RWb35NbDYLJ2PmSpsHK2x8MvZ5OPNb+3Q2xHQrwcRy6b6ZpRLzRhyk+R/e68Q/ZLRdVX1+PsDeYvIm38s1auVmCosbS2w5Nu55OPNb2lWKdAW/tJYCvhCFGfJReCTk5OxceNGvcaWUVFRgTt37sDCwkKDrV8cTCYT1tbWWL9+vcokmLbQ6XTw+Xzk5uYqPZ+RkYH169dTkiCpqanBzZs3YW7esdpzGAwGHBwcsH79+lafXxdoNBpEIlGrhFpOTg5+/vlnSlxF6+vrce3atQ4ZSxcXF/z666+UtVyLxeJWsSwoKMCPP/4IgUB/w5impqZ/XTdNFXQ6He7u7vj1118pa21tGcum+iaUZBPmB14hHnolbGRV5rLfilc/nwknT2odWHWBwWBglYIcxu7PD6k0slHah8kg3U7LUioBMZR+A/3D5HM32fVbwBegII0Q6/cIcgODKdecPHPmDIrriO3Mrc3IBJ86ZFXmsoXtVz6a+kIdutVBo9Hw5salcjmMr46iorhtOQw6nY7u0rbPivQa0EFXG8u8pPavZRcvXkRhLZF445iy0blvoM6f50VgTKgZMWLEyH8UsViMmItP8eHYb/BmxEeIOv2IfM3GyRpLv5+Hvdl/4tUvZmrk+CQSiciEkHuAq1438BnPsnF6E7HqxTFl440Ni3UeqyVZCtVaF7ddx9H1Z1FTLtcZcw9wxfKfXsXBgq345OA76DE8VGl1mEgKvEI+lunK9R4bhn1fH8XrPdfi7rEHcot1e0ss+noO9uf8hcXfvNLKrKBTZ3fy33lSAV8qmPbOBLj5EW2D8XeScfuIfi04nYIVjjOZOM6s5/JYXtt7B4d/Ok22eUDaFrH0+3k4mL8Fnx95D71GdVe70r5t3X7UVTUAAEbMH0SZMDIVTHx9NLylFXgpMRm4KjXJ0JVOwR7kv3OlsVRMTnp31S+htvPTQ2Tl4KDpEQgfS52boL6MWTKMUuMMxVjKzksAyMvLo0xAn8PhYMiQIejTpw8l41GJqakprKyscPPmTb3HotFoGD58OLy8vJSel8WSisoIFouFQYMGoV+/fnqPRTVsNht2dna4fv06JeMNHToUPj7K0gd5eXmg0WiUxJLJZGLgwIEYOHCg3mNRDYPBgKOjI2WxHDJkCHx9lRMQ+fn5kEgklJg7MBgMDBgwAEOGDNF7LKqh0WhwdXWlTEtt4MCBSpW7ir+b3np2FrSuMh+v13hU0qV/EEa+OhgAUFfVgF2fHWp3nx7Dicqn6qwG+LCVq5OV5m7SuW9BWjG5SNTyOp6emk4mf8OGdWn3+tSqynztv19lLsO/hw/GLRsJSBcGtysshqpDpqNWm9cITwQo/QZ26qx4HW8/oZaWkgZeM9HuGTq4M6nj3FGhzn7GiBEjRox0CBpqG3F1922c2nQRhenKttcO7naY9cFkRL42Quv2ypLsMtL9Up92T7FYTKzKSSu75n06gxJnwtzkAlz85xpO/3m51WssNhMDp0dg/LJR6DYkpN2bnbFLh+PIL2dQlFECSCe8j1qIs9o6W2Pm+5MxYcVImFqoX/W2cbKGhY056qsbKKtQAwA2h4XXf1uMzyb9AAD4+4O9iJjQC6bmurnAeSok1OJuJeLhuVic2tS61J/JYmDA1D4Yt2wUwoZ10ahVJeFeMi7vIhIC5tZmShodHQEmi4nXNyzGulFfAQC2f7QfA6f20VkEVzGW+cmFCB8TpqS7os9NTerjTJzbIm+3Wfnrv99uowiDwcAbvy/BO4M+A6TGGUNm9W+lZagpni0SvQOmEP8ODg6Gh4eH+h01JC0tDUVFRRg6dKjeYxkCOp2OmTNnorS0VIOt26dr166oqlKuNggICICDg/5VJpmZmcjJycGIESP0HssQ0Gg0TJs2DUVFRRps3T5dunRBebmy+Ya/vz+srKz0Tqjl5OQgLS0No0eP1vMoDQONRsOUKVOQl9d++5YmdO7cudU57uPjAzabrXcs8/LykJiYiMjISD2P0nBMmjQJ2dnZlIwVHByM4mL53E/x2qPP3K2qrHWVOZPVsVIJS7+fh/snY9BU34zzf1/D+OWjlLoEWqKo/fW8MBa+ce6koL7StSel9cJYy0pzU4EluPHEgmN7+mkdtcpckcXfzMHtI1Gor27A1d23MWHFaIS0USmmqEmXXPYcsbGe6N2bcCv1DJZ3tGiysGwqtERZHNHB0tH102CsUDNixIiR/w4F6cXYvGYH5nquxOY1O5SSaS4+Tnh7y3LsztiEqW+N00mrTFFQ3ytE9xvZyztvklpinsHumPGe7kYEzY08XNt3B+8O+RyvdXkHxzech5Av11lyD3DBil8W4GDBVny8/210H6qZDk1hWjGqSuW6YIql606dHPDmH0uxN2szZr43sc1kGqQ3HrKVTm5+BZrqVbuZ6ULE+J4Il5oecAsqcODbEzqP5errRP57z/+O4MgvZ8gEKqTn0LIf5+NA/lZ8euhd9BwRqlEyTSQUYeOqbeTjxd+8AjsXW52P01D0HBGKQdMjAABVpTXY87+jOo+lqiqRCv3Blu02C76Y1SHabVrSdUAwRsyXG2fs+ER3swflWMp/g/h8fquKFm3h8Xg4deoUampqNNj638PW1haOjo7Ys2ePWjdETUlISMC+ffuUftN4PJ7e5gECgQCnTp1CdXW1Blv/e9jY2MDNzQ179uxBfX29XmMlJydjz549Su2dzc3NesdSJBLh1KlTqKys1GscQ2NlZQUvLy/s3r0btbVtt9e1R1paGvbs2QOhUH79bmpq0lsjUSwW4/Tp06ioqNBrHENjYWEBPz8/7N69u1XCW1uysrKwe/duNDc3Ay2TQHok1LZ9uI+sMh/56uAOVWUuw8HNDvM+JYxXJBIJNr21vc32a5/QTqSrZV1lA1KS5W237gEupHN1vvQ6rm5hjMfjoTCuFA2lRMwVk0uq2PnJQXmV+Yy+HarKXIa1gxUWfiWXw9i0enubEg7u/i6k2VJteT2Sk+SOns5ejuCYEgnD/HYSanw+H0XxpagvIq517cWyI2BMqBkxYsTIS4xEIsHjK3H4dOL3WBK8Bqf+uEgK8kN6Ifry1FrsStuI8ctH6VU2nZ0gX4nWtcKmtqJOyWp99aalWutoCfgCPDgXix9e3YhZLq/hxwV/kGXziti72WFnykbMeHdiqzZMVUgkEjy9EY/Pp/yIpV3eQVNds9LrVvaW+OzIu9iTsQmTV43VyA5dhlI7ZQo11RGQJute/3UhmCyiteDIz6e1EtUXCoSIufgUPy3ahG9m/aZ2Oyt7S+xO/wOzPpjcrs5eS079cRHZ8cS5E9DTBxNWjtJq/xfJ8p8XgG1CnI8nN15QeV5pgvLfm0gCyfQHLW3NYedio9O4F/65jrTHRLuNdxdPTF3z75s6qOO1H+bLjTP+vorYq3E6jeMR6EomwWWtS83NzThw4IDeFR0ikQh+fn4dtqJKERMTExQWFuLu3bt6jWNvbw8ejwc+n2hlFwqFOHDggEpBeG0Qi8Xw9vbGqFEd9/stg8PhoKSkBLdv69fabWdnB6FQSCY5xWIxDhw4oLcWllgshqenJ8aMGaPXOC8CNpsNLperd0uyvb09xGIxmeSUSCQ4dOhQK3F9bZFIJHBzc+vQ1WkyWCwWKisrcePGDb3GsbMjTKVksaSiOjrhXjKu7LoFdNAqc0WmrhlHmtkk3k/Fyd8vqN2WTqdj4FRiIS3vVhnodfL5KIvNImU1ClKLCG06NcnJe/fuQ+JOtCg6uNu1qTGc+jiTNE0wMefg9Q5WZa7IxJWjydbW9NgsHP7ptNptaTQaBk3vCwAouMsFvVYeSzqdDg9pTAozStp0+nz48CGErsRvqpW9JXy7e6ndtqNgTKgZMWLEyEtIU30Tzvx5GUu7vIOPxn6Dh+efkBUHHFM2xi8bib+fr8dPVz9H/0nhOmsN5acWYv3SP/HLkj9x4+A98nleEx9VZdpXdWx5fzdqKwg9s2GvDCD1K9pDJBLh6Y14/LpsC2a7LsNnk37A9f130VQvT3qZWZkisLcf+djR0x7pT7LaFYdubuTh/N9Xsbzbe1g78itEn3ms9DqTTbQ01FbUobmBpyRCqyna6kdog2eQO175aBoAQCwS48cFf6C5kad2e7FYjLjbidiw8m/MdluOT8Z/h6t7bqOpQR5LGo2GoPCWscxWso7XhOLsUuz+4jA55urNyyjTvTIELt5OWPA/YkVWIpHgp4V/oKG2UetxLGzkSbOUh+n4dfkWlBcS1SZ2rrZIfZShtVg/t6ACOz4+QD7uiO02iji42WHpd/PIx78s+RN1VdpXBHFMOXDxIaon81MKIZFI0NBAVEk4OureKs7lchEfH4/p06d3ODMCVZibm2PatGlwdnbWaxw/Pz8sW7YMHA6R7GxoaIBEItGr5bOiogJPnjzB9OnTYWXV/uLFv42pqSmmTZsGV1dXvcbx8vLCsmXLSNOApqYmiEQivc7LqqoqxMTEYPr06bC17XiVvC3hcDiYNm0a3Nz0Mylyd3fHsmXLYG1NLNjw+Xzw+Xy9zsuamhpERUVh2rRpsLe31+v4XgQsFgvTpk2Du7u7Blurx9nZGQNDh+Kfd/Zjw4qtSIwiErwcMzZKc8qUrvWawG/m4/fX/yEfL/7mFdg667Yo9CJgc1h4e8ty8vH2jw8oJcJaIksCVWfVIzkmTWmeI5u78Zr4+GH+Rjy/TThXM1kMVBZXkQvYmclZShVV6johBHwBNqzYqlRlLnMF74gwmAy8s3UF6HTi8+z53xGkP8lSu72syr8mtwHJD9OVKk5lLbRikZiUU1FFRlIW6ouIeVfY8K6UOeAako5/hEaMGDFihCTjaTY2rd6OVzxX4o83tymVTjt1cpC25G3B21tXwKdrJ73fb+enB3Fp501c3nVTyZnnlyV/Yq7nCsTdStR4rDvHonF1N1ERYGZpihW/LGxze4lEgqQHaWQb69qRX+Hi9utkywGkiYuB0gt4Y20TWb0DaSJjVfiHWDfqK5XudVnPc/HXO7sw13MFNqz8W+WEa/zykfj4wNvk481v7UBJTpnGn1mGYttae+XuujD3k2lkAqwgrRj/rN2r9LpEIkHqowxseXcX5nZaifeH/Q/n/75KJjchTUha2lkobC+PZeazHLzZ50O8O/hzjZ0ARUIRflzwB5n0HPfaCHSO0K9950Uw470JCB1EOH+V5HCx5Z1dOo3jKl3ZFvCEuLhNLtydm1SA1X0/xpsRH2mcoBSLxfh58WbUV8vbbboNDtHpuF4kk1aNQc9RhP5JeWEl/nhzW7v7qEL2/Wmqb0Z5YSXs7OywatUqnRMXQqEQhw8f1rv65UUTFBQELy8vHDt2jGzn0hYajYbk5GTSBdDa2hqrVq3SOSEiEolw5MgRJCQkaLB1x8Hf3x8BAQE4duwYGhu1T5pDGsu0tDTS6dLc3ByrVq1Cp066XXslEgmOHj2K58+fa7B1x8HX1xchISE4evQo6urqNNhDNVlZWUhPJyqsORwOVq1apXNbt0QiwfHjx/H06VNKDCJeFF5eXujevTuOHj2qVyv6sa2nEPfkOc7/cw2NtUSih9fIxzuDP8cC31XtOmAqsu3D/eT8qKNXmcsIG9YV06WGCQKeAD+8ulFtVVTXQcGwcbQCw4QOePLwydyvMdFiPjau2qZUbX7z0H3UVRKLQkKBCO8N/QLzvV9HRXEVap43I/0cMbfrPzlc7XHt+eIIMp4SldUdvcpcRki/IMz5cCqgMK/jNaletA0K94ejpz3oTBpY/iJ89uq3mGgxH+uX/qnS+EoVdYk8pJ0iXh/QRiw7EsaEmhEjRox0cGrKa3Hi9/NY0eN9vN5rLU5vvoSGGvkNQLchIfj82PvYk7EJsz6YrJFjp6a0pc8kFIjIVr724BZUYMOKreTjN/9YCnvX1qvvEokEWc9zsf2j/Vjgtwpr+n+CU39cRGWJXJfHxJyD4XMH4qvT63Ck5B+8s3UFWGz1lTrpT7LJJFBtZR1ObbqIN3qvxYqw93Hi9/NKCToHDzvy3x6BrlixfiEGTYvAqIWEM1hjXRN+Xry53aq3lqgSt6USJouJdXtWkxoVZ/68jEeXniInMR87Pz2IRYGr8WbERzi+4TwqiuT6LBxTNobM6of/nfgAR0u2ITwyrM33yXyWo3Fl1aEfTiHxPrEy7uLjhGU/d9wWEUUYDAbW7n4TZpaENt6lnTdx/1SM1uO0FCxuSXZ8npLeX1sc/+08nl6PB6TtJK//1nFbRBSh0+n4YMcbsLQlKnhuHryvVOmqKZ5B7uDYsGDhZorcpHzcvXsXsbGxOh8Xn8+HhYUFJkzQXb/x34LJZCIjIwNXr17VeYyUlBQ8eEA4FUdFRSEmJkbjRHlLhEIhTE1NMWnSJJ2P59+CwWAgKysLly+3NrLRlNTUVERHRwMAYmJiEBUVpVcs2Ww2Jk/uOG5/msJkMpGbm4uLF1sb2WhKWloaoqIIt+rY2Fi92pslEgkYDAamTp2q8xj/FkwmEwUFBTh37pzOY9j6W8K5u+oqsmpuLcryylW+1pJHl5/h5EaiZZLFYeGDXW926CpzRZZ8N5fU+818lqNSF1XAF+DeiRhwzDkQNYvRVMFDSUEJmht5uLr7ltLcTRV1VQ1Ij89ECT8fIp4YJuYchI9VPY+Ku51ItkwyWcQ8oyNXmSsy//MZpHt3blIBdnzcWhdVKBDi3skYsDgsiIUSNJQ0obS4FM2NPFzZcxueQe3Pg+vq6pBXnw0RXwwWm4mICb0M+Kmo4+X4KxoxYsTI/zNEQhEeXXqGy7tu4sHZxxAKlJMYbBMWhr8yEJNXR8I/TL2Dkb6MWTwMxzecV/majaMVhs8b2O4YYrEYPy3aRCauhszqR1qbyyhIL8atQ/dx89A9lStXLDYTfcb1wNDZA1o5WbLsWBgwtQ9uHY5S+f5T3opE7JU4XNp5E9GnH0HQIonB4rAwdHZ/dBkQhN9XEm0NDCYDH+1fQ77Pqg2LEXczEWV55Xh+OwnHfzuPme9NbPezy3D2dgSLw4KAJ2hzZU4fPIPcsfznBWQV0GeTfoBI2Drxx2Qx0HtsGIbNHoB+k3ormSr4hnrjBtQnPCa/GanRBDD5YTr2fHkEAECn07Buz2qYW5np+MlePC7eTnh9w2KsX/onAOC35VsQ0i9QqzaX9ipEJ64crZEOX8azbNJZjUajYe3uNylNmhsaB3d7rN68DN/N3QAA+GPVNoQO6qxVm0unzu5wCrWB13Bn3Hl0C3VConKjqakJxcXFmDlzpsatYQUFBaisrMSiRS9HUrIlFhYWmDFjBrhcrs5jWFpaIjU1FQcPHiQrgpqbm1FaWoqpU6fCxcVFo3GKiopQWlr60sbSzMwMM2fORGGh7r/JVlZWSEtLw8GDB5GWRpjtCAQCcLlcTJw4UeP2vdLSUhQUFLy0seRwOJg1a5ZeuoZWVlZITExUiqVQKERlZSXGjh0LLy/NtJS4XC5ycnKwcGHbVfAdFRaLhZkzZ5LfTV3w9/PHo1uqFx26D+3SpvOljGpuDX5ZvJl8vOzH+ZR0Prwo2CZsfLj3Lazu+xGEAhGO/HQKEeN6oOvAzuQ2X0z9WcnBPWFfNizczGBqz0bnaZ3AsGs7Od65bwCKSgth6WUKGp0wilJ1Xa+rqsePC/4gk+0Lv5qDgJ76meq8SFhsFtbtWY3Xe62DgCfAid/PI2JCL/RUMAz49pUNuHfiIfk46VAuLNxMYebIQcB4D4it+ORr6jo17ly+D0svE9AZNPQa1f2lmTcaE2pGjBgx0oHISynE5Z03cW3vbaWqLBnBEQEYu3gYhs7uD3Nrc4Mfj0+oF4IjApDysPXEbsX6hRrd2B//9Rye3SDagRw97LHmL0LbIi+lEA/OPsatI1FIj22tyUBn0NFjRCiGzRmAAVP6wMJG/eeNXDpCZULN0tYcl7bfwP6vj7d6LbC3H8YsGoZhrwwAjUbDirD3ycnOoq9mI7CXXEPM3Noca3e/iQ+GfwmJRIKdnxxAr1GhSIpOR9SZR3jlw6lkm6AqGAwGPIPckPU8F0UZJRAKhJSuTBakFeHBuVjcOnyffK5lMs3B3Q7zP5+BQdP7qv27KbamtsTZyxHzP5/R7rE01Tfhh1c3Qiwi3v+Vj6eh64BgLT5Nx2DMoqF4cPYR7p96hJryOvy6bAvW/LUMOz49CBaL2a6GWVuxtHezxaJv5rR7DLwmHr6f9zuZUJ/x7gSNdQc7EsPmDED02Ue4efA+6qsb8MuSzVi3ZzV2fnIQEgnw1p+vgW3CVrt/p84eKE+qQaehTmQyDQDi4uJgYmJCali1R2NjIw4ePAh/f39069aNks/2b+Dv7w8PDw+cOHECI0eO1Fq3bMKECdi0aZPSDXt8fDzYbDYsLTVL1jY3N+PQoUPw8PBAjx4dz6FOU3x8fODu7o4TJ05g+PDhsLHRThtq/PjxyMjIIBNAkDqpMplMjWPJ5/Nx8OBBODk5oVevl6MiQxWdOnWCm5sbTpw4gSFDhmitWzZu3DikpKQoxTIpKQkMBkPjc1woFOLQoUOwsrJCePjL0S6mCg8PD7i5ueHkyZMYMGAAnJycNNhLzuyl03HqqyutnmeyGHjrz2XttsFKJBL8tnwrOQ8NHxuGKas7vrFDS/x7+GDhl7Ox/eMDEIsl+HHhJmyM/g7Hfz2LgvRiZMVJW999zFFX0IjuS/3BtmBCyBOByWHAykm9viadQcfbW1bg+I5TKM2uglggwaDp/VptJ5FIsHHVNnDzCafZbkNCMPN9zRdkOwpeIZ547Yd5+Esqg/HL4s3Y/OgHnN50CTmJeciMywUAWHubo66wEd0W+4JjzYaQJwKDTYeFnRnodBrEYolaLeH0h1koy6yGsFmEwSpi2VExJtSMGDFi5F+mrqoed45G4/Kum0h+0DpxZedig5HzB2P0oqHttpEZgsglw1sl1MKGd8WIeYPa3TfjaTZ2fEIIqdNoNExZHYk9/zuCh+efoDirVOU+XQcGY9icgRg0o6/GjpJhw7vCxdsRJTnKVRt1VQ2AQkunjaMVRswfjDGLhsInVL7a/d28DWQLROjgzpj5Qev2pe5DumDGuxNwdP1ZCPhCvDf0f6SmVUVRJbY+/aXNY3QPdEXW81yIhCJw8ytIe3FdEPAFiL+bgpjzsXhw/gkK04vVbiurjCsvrISFjUWbSVCPQPUi3as3LVWqDFTHn2/vIgVngyMCMP+z9pNwHREajYa3t65AYlQaqstq8OBcLOLvJpPt1l0HdsaoBUPU7t9WLN/YsFijldd/1u4jKxr9wryx6JtXdPosHYHVm15D/J1klBdW4sm1eCwNeYf8/gRHBGDCCvW6PB6Brmiq4CN2cxp6vREEmrTjKCAgAAMGDICpqanafRVpbGyEo6PjS+FE2R4MBgM5OTk4d+4c5s6dq9W+dXV1YDAYoNFoEAgIXSE/Pz/0799f4+RkU1MTbG1tMXbsWJ2OvyPBYDCQn5+PM2fOYMGCBVrtW19fDxqNBg6HAx6P0BXy8fFBv379NE4CNTc3w9raGuPGdXw9pfag0+koKirCqVOnsHTpUq32ra+vh1gshpmZGalr5+XlhX79+mls0MDj8V7adu6W0Gg0lJSU4OTJk1ixYoVW+/JEPPR6OwCPfk8Fr0auHTZ73RQlLSt1XPjnGqJOPwIAWDtY4v0db7xUWnSKzPxgEh6cj0Xi/VSUZJdhWdd3UFNOaP1FjO+JJl4TQhf4QCySgM4gPiOTwwCNz0DnLp1h52KjcoF7+tvj4dXFA0/OJKI8twocUzb6qJDNuL7/Lm4dIhY7LWzMsW7P6pembbYlU1ZH4sG5WDy9Hg9uQQWWhb5LxrL3mDDUVtcidGHrWIJHR3DnYDh5OaIkuwzFWa21iMViMZ6cTUBxOhdMFgN9J748iwvGhJqRlwaRSITcpHxkPM1BQVoxSrJKUV5UhRpuLRpqGtDcwIOAJ71o0Gigyf5Pa/2YBhpodNnzNIBGXLhoNIBGp8PU3AQ2ztZw9LSHR6ArAnr6ouvAYNg4anZzb8RIe9RW1CHq9CPcORaNJ9fiW+lSEReT3hizaBjCx4bp5CxJFUPnDMCm1dvJVkkGk463Nr/W7uSquZGHb+b8RlbXMJh0/LNun8ptA3r5YtjsARgyu3+bum2qqKuqR/SZx6QbZ0voDDoixvfEmEXDEDG+Z6uqouv77+LmQWKyY25thg/bmOws+uYVPDgfi/yUIjIZAADZz/PQUNPQZtWgk0KLW3lhpdYJtaqyGsRceIKHF54g9nIc6S7VEr8wb3iFeOLGAUJ/hvxdBJBwNxlDZqpf9XNQ04Y3cFoEIsa3P7m5e+IhLu24AUi17j7cu/ql0QhRhY2jNd7b9jo+m/QDAChpF8bfTW4zoWbnakuuxioSPrYH6SrWFg8vPMHpzZcAaYv3R/vXgM1htbtfR8XS1gIf7FyFdaO/BgCl70/CveQ2E2pW9pZgm7AgEROr/TTQwGAwMHToUI3F9DMzMyEWi1/alrqWyNrCUlNTyecePnyIhoYGDB8+vM19aTQahEIhmEziu0mn0zFo0CCNW+qys7PB4/GwePFiPT9Fx4DBYGDmzJlKxgqxsbGoqKjA6NGj291fJBKR10M6nY4BAwbAz8+v3f0AIC8vD/X19f+ZWNLpdMyYMQNPn8rb6J49e4bi4mJERrZd4USj0SCRSMDn88nHffv2RVBQkEbvXVBQgKqqqv9MLGk0GmbMmEFqHNJoNCQmJiIrKwsTJ7Zd4UQjbnZgYscmE2pOnRzwykfta8rlpxZiy7u7ycfvbnsddi4d33FWHQwGA+t2r8Zroe+C38QnE0AAUJZXjs/2v48/PtsCjyEOYJvL5yv2bCdYWFjA0dO+VULN1sUGr34xE7HXnyFwnisE+/kI7dlVSUIDUqfzP1bJzXjW/LVM6zluR4JOp+ODnauwNORtNNU3K8WyKLMEX534EOvf+wOdhjuCrhBLa5otrKys4Ohpj5LsMtRXN6CpoVlpkTY+KhneMxzRfKQJ/gEBsLTt+O7bMl7eWa6R/ww5CXm4fuAuUh5moKqsGg3VjWhuaAa/WQChQESIf+um76oz1ahBcXYpkh+ofp3OoIPJZsLEjA1za3PYOBHJt07BbvAL8zEm34yopKa8FvdPxuDO8Qd4diNBpbi7bzcvjFk0DMPnDeww55CZpSn8wnyQEkNUqQ2fN0hJXFQRsViM9CfZiDn/BKf/vIQartxJSlEHjsFkIHRwZ0SM64m+E3vDI0B9NY8qaivrEHXqEe4cf4Cn15630pgDAM8gN0S+NhIj5w9Sq31VklOGjavkdvBr/loOp07qnQMznmQpTSBkSCQSJD/MQO/R3dXua+8uT1ZxCyra/HyyMTOf5eDBuVg8vPAEqTEZKsWu6Qw6ug4MRt/xvdB3Yi+4+DjhzzU7VY6Z9CBN5fMyTM1NYGlrrmTUQKPT8MaG9m9Qygsr8NvyLeTjVb8vgbu/dn/XjoZIKMKTa6od95LbiSWTxYSti42SCQSNRsPqzUvbTUZXldXglyV/ko+X/7wAXp09tD7+joRIJCKNFVqSFN12LGk0Ghzc7VCSxwUxIaBBLBbDxKT9ikkAqKiowKFDh9C3b18EBHR8p1lN8fT0hLu7O44cOQKRSISioiKIxWIMGzaszXPM3d0dgwcPxoMHxCRHVhWkCdXV1Th06BB69uyJ4OCXr5VbHW5ubnB1dcWxY8cgEAhQXFwMHo+HUaNGtRlLFxcXDB06FA8ePIBQKNQqlnV1dTh48CC6dOmCkJCO79qrKS4uLoiMjMTJkyfB4/FQUlKChoYGjBkzBnS6ej88e3t7DB8+HDExMaivr4dEItG4YrKhoQEHDx5EQEAAQkNfvrZ4dTg6OmL8+PE4c+YMGhoawOVyUVNTg8jISDIhrgobGxuMHDkSzzb9TT735qal7ep2CvgCfD9/I5obiWrL8ctHof+kl7d1VsazmwkqTYByEvLRuW8A3v3xTXw68Xt4jXWEY1divtjIJuZ6Dh72Sq7nALDilwUwtTDF3UtRoFvT0chtbrVQJnPElC1+jnx1MIbOHmDAT/liiLuVCD6vtWNqUUYJvEI8sG7jO/h43LdwH2YH5zAiEdtsQswpFbVTKwor4REoXxC7fe4uGKZ0NHJ5GPxh+4uOHQljQs3ICyPpQSpuH45CYlQqirPL0FDdqLFbXEdDLBKD38QHv4mP2op6FGepTr4xWAxY2lrAI8gNPYZ3xZjFw+Dcxs26kf8eVWU1uH8yBnePR+PZzURSV0oRp04OGDQtAiPmD4Z/D58OWVa/5q/XsG70N7B2sMSaP5cpvdZU34Qn1+Lx4FwsYi48UVkaD2m7Zfi4HogY1wu9R3fTWgOuprwW9089wt3j0Xh6XXVCkmPKglAoxsSVo/HGhsVtxlIkkk52auWTnWFz1E92Kkuq8OGYb9BU36zy9eTotDYTao4KDqIVhZUqt2lqaMbT6/GIOU9UopWr2c7SzgJ9xvVA3/G90Gt0d6WVvO0fH8C5raodADOf5YDXxGtzUm3vboe6qgbQaDSYmHMwa+2UdgXkxWIxfl68mbSUHzQ9AmMWD2tzn5eBg9+fJB3OWpKbVNBuVaKDux2ZUDOxMMHUt8bB1aftykSJRIJfX/sL1WWEVlifcT0w6Y0xen2OjsCJ387j0I+nVL5WnFWKqrKaNlu8HTzsUZRZivQzhegxPwgjR46EnZ2d2u0Vqaurg5eXFwYPHqzB1i8XfD4fKSkpZLJdE0MBBoMBDw8PjBo1Crdu3cLgwYPh6KjZ3KSurg7u7u4YOnSo3sfe0RAKhUhOTiZdnDWJCZ1Oh7u7O0aPHo0bN26gb9++cHXVbCGhvr4ezs7OGDFihN7H3tEQiURITEyESERcpzXRU5PFcsSIEbh+/Tp69+4NT0/NZC4aGhrg4ODwn2jnbolYLEZ8fDyEQiIhZGtr2+48kUajwd3dHfO+mI49nxxFj+Gh6Dehd7vvted/R0lNW88gN6xYr10LdEfk8ZU4/Lpsi8rXJBIJUmMy0HNkN3x/6VP8svZ3OHYlXrMwJa7tDm7y64yJGQehgztjxNxBEIvFiD2ZACGbDwiJTghFWjqdv/mHdi3QHZHnd5Lw44I/1L6e/CAd/Sb2xk9XP8e3b/4CZ2kHrCmHqNxTjCW3oIJMqEkkEsSejEczrQmCehH6T365krjGhFoHo1kgQkkdDxWNfFQ2CtAsFEEiAeg0GqxMmLA3Y8HBnANHCzboHfCmWyQS4dmNBNw5Fo3UR5kozeWisbZJZRJBW2g0GlkZxjFlw9TSBJZ2FrBztoGDhx3c/V3h5u8CNocJoVAEkUAMoVAIkUAEoVAMkVAIiQgQCYUQCUUQCcUt/i+CWCSGgCdAWW45yvLLUc2tRWNNE3hNPKJaTsvPIRKIUF1Wg+qyGiTcTcbeLwnLZhaHBRsnK/iEeiFifE+MenVwqzLhjgRPKEZJXTMqGgWobOCjiTwvAUsOE/ZmbNibs+FswQGd/u+clxKJBJVNAnDreahoFKCmSQChtNWKzaDDzowFezM2nC05sOAY9qevvKgS0aeJ6qnntxKVWr5Y5iZw7uWHTn2D4NU/GJaudmCbccCgAYUcJppL6shYMv7FWFY1CcCt56OikY/qJgGEbDMsvPUd2Aw6npY2QFhehKKYNDw58wjPbyW2cs5UJHxsGOZ/PhNB4X5a60ZUllQh+sxjsqpP8TvINOPAuacfPCMC4TOgMyzd7cE2ZYNBp8GczUR8SR3szdhwsVQdy12fHUbCvRQAgIu3Y7uTHV4jHzzpqq0qEu4nq3y+SnpeNni5YvTfb4JlboI6e0tcTCmDrSkToopaFD9Kx5Mzj/DsRoJSi6YiPqGdEDG+F/pO6IXgCH+1sawtr1X5PKQrpmmPs1oZKAhEYpRKrz3dP5iBzgDoLCa8Q9xhbcZBXFENHMyJ7w9TRYXBwe9O4sk1ovrI3s0Wb29Z0SETw9pS00Ys1VUlCkVilNTzUNHAR8hbk+ErloDOZMCrszusLUwQV1RDnpdMRutYHvv1HB6cI9zZbByt8P72l1e7RpG2YglpQrrlJFoklhDXngYBApZHwn3JGNBZTHgGuqLSwgTPFGLJUhFLSI0LHBwcMH/+fEo/T0cgPz8feXl5ZKscpJUpAoEAbLayyYNILCG/4xWNfGQWNMLU3BZB4+ajjsXAs8Ia2JkTsWSriWVCQgKsrKy01hl7GSgoKEB+fr7SczY2NuDz+eBwlBcgRGIJyup5KG8gYplV0AgTU0sERs5DE4uBp4U1sDdjwcXSBGym6lgmJyfDxMTkP9OCrEhRUREKCpRFxy0tLcHj8VrpHYplsWzko6KBj6yCBrA55ggcOw8CFgNPCqphLz0vOWqkL1JTU8FkMv8zrZ6KFBcXt4qlhYUFeDxeq0pIsUTxvBQgK78erF7BWBb9M0yYDMQWVBO/l1YcmKiIZczFpzgsXfRgMBn4cN9bGummdnTamhMBQGJ0KnqO7IauA4Kx/MMl2L15H9z62SN00AAkltTBekwvjO0VBAaHBedODnBwtEJsQTUa8spg3c0a+bcL0HuMsiPls5sJL7XTuTpqK1p3aCiSFJ2KfhN7IyjcH2u+eQNbf9oGt/526DZ4IJJK62A+tDvGhviAwWEhmWUKbmoZ7MzY4JVWwjTIHBX3qhA2vCus7F8eJ3MAoElU9Y/8P6G2thbW1taoqanR2iGJasrqeUgtq0dOVSPEGvxFzNkMBDlaIMDBHCasf0dbSSQS4c6xaJzZfBnZz/PQVN/USitGE+gMOswsTWDvbgcHd3s4utvBzd8FXl084Bfm0yErukrzuEiKTkXG0xwUphejvKAC1WW1aKhtBL+JDyFfqHUsaDSAY8aBg4c9Anv5YsisfogY3+tfFa6saOAjhVuP7MpGiDT4PKYsOgIdLBDoaAEz9os5boFIjOzKRqSU1aOqSXUioiXuViYIcrKAh7UJJTeqQoEQiVGpeHTxKR5deoas57mttrHxd0XYkpFwH9oNNA300EyYdAQ4WiDI0RzmarTBqEYoJmKZWlaPikbNYln8MBVpx6NQcCcBErEEbBMWWBwWqTXVd2IvfHVqncZxFglFSIpOw6NLRCwznma32sba1xlhi0bCY0R30DTQ5+Iw6QhwMEeQowWZTL138iG+nE6YCNAZdKy/9aVGTpSPLj3Fzs8OqXQlZbIYON90AHQ6HSKxBDmVjUjh1qO8ga9yrJaUPM5A2vH7yL8VD4lIDLYJC2HDu6Lv+F6IGN+zzVZURRrrmrDrs0O4uP06mhtaJwCnrhmHN34jbjxqmgVIKatHZkUDBKL2v+NsBh3+DuYIdrKApTSWMRef4tMJ35MaLz9c+UzJSv1lprmRhz1fHMb5v6+p1KyLfG0E3v17JQCgtlmAVG49MsobwNcgliwGDf725ghysoC1CaGN9uxmAtaN+oq8fnxz9kONtOteBvjNfOz98ijObrmipEUnY/jcgfho3xoAQB1PiNSyemRUNIAnbH8hi0WnwU/6HbcxlevMpaam4tChQ5gyZQq6d1dfPfqysmXLFpSWKpu70Ol0REREkNpf9Twh0rj1SC9vQLMGsWTSafC1N0OwowVszeRJuczMTOzbtw/jx49H797tV7q8bGzfvh0FBQVKyUk6nY6ePXti/PjxAIAGvhBp3Aakl9ejSdB+LBl0GnztzBDsZAE7hVjm5uZi9+7dGD16NPr2fblamzRhz549yM7OVooljUZDt27dMGXKFABAI1+EtPJ6pHEb0KRCsqElDBoN3namCHayhIO5PJYFBQXYuXMnhg4dikGD2jdKetk4ePAg0tLSlGIJACEhIZg5cyYAoEkgQjq3AWnl9Wjgtx9LOg3wtiO+444WRLK4OKsUq8LXkXIPS7+fhznrphjsc71IJBIJTm+6hCO/nCadNhXx7uKJf+J/BaSFLenlDUgqqUGzBk1UErEIhfcT0N3TARNmEN/lsvxyrOq9DtVSyZP5n83Awi9nU/2x/hUkEgnO/30Nh3882coEDADc/F2wO42oYOMJxcgor0dicQ2aNIqlGMUPkxBsb4Upr/R/qRYSjQm1fzmh1iwQ4WFeFXKqVItLtweLTkNvTxsEOJgb/MQTiUS4fTgKZ/66jMy4XDSraXtSB4NJh5mVGZy9HdG5byCGzuqPLgOCXlqnk/YQiUSIvRaP24fvI+VhBrgFFWhuaIZEy0Qbi8OCZ7A7xiwagslvRr6QePGFYjzKr0ZGRYMGW7eGQaehp7s1OjtZGPS8LKxpRnRupUYTCFU4mrMxwMeOvJnVhrL8cjy+9Awxl57i6bV4tQLxnl08Meiz2aD7aiac3RI6DejhZo0QF0uDVqUW1zYjKqcS9TrGUsitQQBdhAcH7+LqntsAADc/Z2yK+aFdYdHywgo8uvQMjy4/w5Orz1XebAOAW5Abhnw+B4wA3bSk6DSgm6sVrGvqsKbvx+TfbOX6hZj+juaOYBKJBM/vJOHY+rNkJZGMnSm/g+Vqj6icStTy1FfttYWwohZ+EiH6Dg6GiVnbeidtUVdVj/N/X8PJjRdQWSzX8fIK8cCW5+vxtLAWSaVtrzaqg0YDQl2s4NTchNV9PiQn4Yu/eQVzP56m8zF3VBpqGnBh2w2c/P28kv6dq68zdqb9gbiiGiSU1Okk90kD0MXFEm5iAd4K/5CchM/7ZDoWfT2Hwk/RMWisa8KlHUQsFSfkjh722JvzF+JLavG8uBa6zk47O1mgp7s1mAw6njx5grKyMowZM+almpxrCp/PR0JCAkxNTfH48WNkZRGJfhcXFyxbvhyJJXV4VlSj0UKtKoIcLdDLwxosBh1xcXEoKCjAuHHj/pOxFAgESEhIgImJCZ4+fYr0dEIz1N7eHm+sWoXk0jo8LayFSMcTM8DBHL09bcBm0JGYmIjMzExMmDChTU2xlxWhUIiEhASwWCwkJCQgNTUVEokE1tbWWLNmDVLK6vGksIbsItAWP3szhHvagsOkIzU1FUlJSZg0adJ/8n5C1jpLp9ORkpKCpKQkUlvuvffeQ1p5Ax7nV+scS287M4Q5mGHtkM+QFUcsBvefHI4vjr//nzs3hQIh7hyNxtH1Z5UWa5lsJi40HUBGRQMe5VdrtLioik42pujpYoFPR36JlJgMAEDvMd3xzbmP/nPnpkgowr0TD3F0/RklfTk6g45L/EPIrmzEw7xq8HXsUPOwNkE/L7sXVpyhL8aE2r+YUMuvbsL9nEqNVl/bw83KBIN87DSqVsuKz4FXiGe7X25dE2gMFgMWNuZw83NBSP9ADHtlAIJ6+Wv8Wf7rNDXxcPtwFKLPPELmsxxUldaA36RZBQsAcEzZ8O7qiQmvj8GoVwdT/iNdUtuMu9mVaNRgxbA9nCzYGOxrT3mFlUgsQUxeFdLKdUv4KcKg0dDL0xqdndouL+bzBEi8n0JWoeUk5qvdNrC3H8LHhqHb1AhkMTg6J/wUcTBnY4ivPeXtqmKxBA9yK5FeoTqJpeVgiP3jHJL33wLHlI2N0d/Bt1tr1zihQIjE+6lkFZqqij4ZAT190HtMGMKm9kU220TnhJ8idTmluP7udtQXlGPonAH4eP8anW8Qc5MLsOXdXYi98hw2ztZ49/73SC1vJDJOekCjAWGu1gh1tdT75lXAF+Dq3jv4+4M9aKhpxIJfF8NieA+dE36KNBSU4/q721CbU/afnYQrIhQIcfPQffz1zi7UVdVjzjfz4DAxAtXN+seyqbgS19/djurM4v/sJFwRkZCoct+8ZidquLWY9ukMuM8eonGlcVtYsBlglqRgeL9wWFq+XK0julJaWoozZ86gqKgIQ0dHos66k8aVxm1hzmaAVZKKoRE9YW3dMYxyDA2Xy8WZM2dQUFCAgcNGgOcYAK6GlcZtYcaig83NwKCeoRrr/73sVFRU4OzZs8jNzUXfgYMhce+C0nr10gmaYsqkw6QiG/26BWms//eyU11djTNnziA7Oxu9I/qB5ROG4jr9YylqbMbtj/agKDoFHoGu2PTwe601bl8mJBIJnt1MwMY3/kFBWjF6je+FkeuXorBWu0IRVYib+bjz6V4U3EmEi7cjNj/+EVZ2/91rkEQiQfzdZPyxahtyEvPRdVhXTNy6CvnVuhUKKcJm0NDPyw7edh2/VdaYUPuXEmqZFQ24n11JqXmltQkTowOd1GZzRSIRXvFYgarSGjDZTJxr2Kc0WReJRLh58B7O/nUFWfF5GiXQGEw6nDwd0W9SL0x4fQw8A3WrwjFCaEVd2X0LsVeeIy+lALUV9SodaVpiYmEC/zBvTFszvpXDjLbkVTXhdla5zqvZqjBnMzA60AlWJm0ngrgFFagsrkJgb782EwhCsRg3MypQRMGFT5GuLpbo6W5NvrdQIET6k2wk3E3G87tJeHYjQWX7HABY2Vui95juCB/bA71Gd4etkzUKa5pwM6NC59VsVZiyGBgT6Ahr07Yr6iqKq1Cay0XniACVsayrqkd6bBYSHqShppMrrEI6UXaMAJB88DZG9fLCiLlE+4VIKELG02zE301G/N1kPLuRoLaiz9LOAr1Gd0f4mDD0HtMddi62KK5txo2Mcp1XYFXRVFGL5A2n8MOx99rUCKkqrUZxVimCIwJUJorqqxuQ/iQLCVFpqPZwglVXb8qOEQACHc3Rt1P7AsSaUlrXjOsZ5TqvwKqiuboeCb8cxw+H32lzEl5TXov81CKE9Av8TyTduPU8XEsv13kFVhW82kbE/XQM3x94q81JeG1lHfKSCtC5X+B/IulW0UDEUpOWRE0RCwUY6mMLH2fbNrerr25A1vNcdOkfBIYG7fgdnapGPq6mczVqSdQUsUiIAZ6WCHRzaHO7htpGZD7LQee+AWCxta/87mjUNPFxNb2ckkUxGRKRCH3czBDi6dTmdk31TUiLzULnvoFgc17+WNY1C3AljUvJopgMiViEnk4cdPNu2wSiuZGH1EcZ6BwRALYJu81tXwbqeQJcTSunZFFMhlgowqPvj2Ld93PgFaLeCILXxEPKwwwER/i36xj6MtDIF+JqGpeSRTEZYpEYj386jnc+nQr/Hj5qt+M385H8IB2B4X7/Ca26JoEQ19LKUUnBopgiEZ1sEezUdqfLv40xofYvJNRyqxpxO7OC0mSaDBsTJsYGO4PTQgRVJBJhtusy1JTL23sWfjkLXQYEYddnh5H1PFdtskARBpMBp04O6D8lHK98PA3W/+Gse0eAz+fjxG/ncW3vHRRmlGiUYDOzMkVQb3/M+GAS+owJ0/i9imubcS2dS2kyTYYFm4HIYGe1yd5bh+/jp4WbIOAL8fGBt9U6LYolEtzMKEdBDbXJNBnOzU3gXo/D87tJSHmQTtqGqyK4jz/6RPZEeGQYAnr5Kt3UltbxcDWNS2kyTYYZi4FxnZ3UVv1FnX6Eb1/5DfxmAd7b/gYGTAlHemwW0mKzkP4kC+mxWSjOKgVoNAz6bgG8RhhGV8iZz0P59WeIv5eMpKjUNn9fAnr5IGJcL4SPDUNQH2Wx/fIGHi6ncilNpslg04AJXV1JLbCWxFx8iq9nrUdzAw+rN72G4XMHkjFMf5KFtMeZKMok9IsGfDkPPpGG0boKcbZAuGfbSQFNqGzk41JqGaXJNBlMABO6uqhtn356Ix7/m/ozGuuasPznBZj53kSNxhXwBeDmV6Akh4vG2kYwmAzpf3TQGXSlxy3/TWfQweKwYOdqQ3nSqbpJgIspZZQm02QwIMH4Li6wNVV945dwLxmfTfoR9dUNWPjlbMz/bIZG4woFQmksy9BQI48lEUf1sZTFmclmwt7VlvKkU20zEUsqk2kymHQaxgY5wd5cdSyTH6bjs4nfo6a8DnM+nIql383VaFyRUARuQQVKc7ioq6pXiKPqc7FlnJlsJuxcbMDUQANSG+p5QlxIKaU0mSaDQadhdKAjnCxU30RnPM3Gx+O+RVVpDaatGY/Xf9NMbF8kFKG8sBIlOWWoq6zX6Hut+JjJYsDO1ZbyWDbwhbiYUkZpMk0GnQaMCnSEi6Xqm+jshDx8HPktygsrMX75KLy9ZblG44qEIlQUVaIkh4vairo2Y6nqNSaLAVsXG8qToU0CES6klKKeZ5hYDvd3hLu16ljmpxbi48hvUZLDxagFQ7B215sajSsSiVBRVIXSHC5qymvVxlLd7yeTxYCNsw3lydBmoQiXUspQQ2ECiEQiwfAAR3jaqDZJK84qxYdjv0FRRgkGz+yHzw6/q9GwIpEIlcXVKM0pQzVXdSzb+/20daE+lnyhGJdSyyipim6FRIIhfg5qq6vK8rj4KPJb5CUXou+EXvj6zIcaDSsWi1FZXIWSHC6qy2paxbK9308GkwEbJyvKk6ECkRiXU8soqYpWxUAfO/jZd9yqSWNC7QUn1Br4QpxOLDHIDY0MXzszDPKV21OLRCLMdluOGm7bLieqMCbQOhZN9U049OMp3D4ShZIcLkQatGVa2Jqj9+jueP23RbBzUX1T3iwU4XRCiUFuaGS4W5lgRIBDq0qbExvO4693d5GPw8eG4bsLnwDS1ZvSXC5Kcrgoy+WilMUBI1T9ao++SMRiXFm5GdxnrYXw6Uw6xArx+e3u1+g6IBgSiQTV3FqU5pShNIeL4vwKNPUKAt2Arq30qjr4NjbAI9AVrr7O5CTj2K9n8ffavaROH8uEBUGz6otb0KyBCH/fsFpX11b9hZJH6a2eZzDpECnE8scrn6HnyG6QSCSoKa9FaQ7xNy/JK0djz0DQLQ1X7k2rqYdvXR08A13h6udCxvLMn5ew+a0dpDg8i8OEQM1qsP/kCPT9xLCCs1ZZhfBzsYJHoCtsnW20rlgTiSU4m1RimEm4FDszFsYHO7dy+r156D5+WvgHhNLfK5/QTvg7bj3QImEm+w6V5BL/L83horywEvpOU1hsJlx8neER6AqPAFd4BLrBPdAV7gGusHfVvvpPJJbgfHKpYSbhUmxMmJgQ4tLKnfbuiYf4ft7vpBOsogCwYsKM+A6VoTSXS/67orBSJ+MgRZgsBlx9neEe6AqPADe4B7gScQ10hb2bndaxFEskuJBchopG/dvp1GHFYWJiiHMrR9WH52PxzezfyIUTB3c7HMjbAhqNRsRSmjAjz81cLhnb8oIKvWPJYDLg6utEnI/+LnAPdJPG0g32brZaV3FKJBJcSuWijIJ2OnWYsxmY3MWllaNq7NU4fDn9FzRJOxss7SxwtHQbGAyGUvKxpMV3vCyXi7L8Cr2d4OkMOlx8nKTfcSKO7oFu8AhwgYOHvU6xvJrORXGt4WJpyqJjchfXVgvgcbcT8cWUn0gtUVMLE5yo2Akmi6mUfCzN4ZLf79LcMpTkcMHNr4BIqF/Sik6nwcXHSRo/V4XvuBscPXWL5Q0DLoRCauI0uYtLK9mbpAdp+GziD6QzIYvDwsnKneCYcpQSZmQ8c8pQIo1pWV45JbF09naCe4AL8XspjaNHoCscPe11Wui5nVmus+62JrAZNEzu4tpqATwtNhOfjP8e1WU1gPQ7d6JiJ8ytzJQSZiU53BbXnzKU5ZWT139dodFocPZyIM9L2XXcI8AVTl4OOsXyXnYFMqmQO1EDk07D5C4uraRasuNz8VHkt6goIrRtaTQajpT8AxtHa6WEmdK5KfuO55VDoEFxRVvQaDQ4dXIg4+ceID8vnb0cdVo0e5BbiVSu/jI86mDQaZgU4gwrHTSvXwTGhNoLTKhJJBJcTy+npEe7PYb5O6CTjak0mbYMNVzNhKeNCbSXi5rKOhz89jjunYwBt6BCKeGjCrYpG10HBuP19Qvh3VXe5ncnqwLZlYa7qMgY4G0HfwdihUEsFmPbun04uv6s0jZ0Bh0BvXzAzatAZUk1+byVtxPG730PDAO3PtTmcXF+3i8Q8QRgshiwdrRCXVVDK507N38XMFkMlOZwwVN4re8ns+A/2fCuXQ9/PIb041Gg0Whgm7Ig4Avb/fvLsHC3x4QD74Np4HL9+uJKnJ/7MwQNPDBYDFg7WKGhphG8FpV/Lr5O4JiwUZrDVaoK7P3+VATPMrxrV+yG00g+cBugERqFQr5I44m0mbMNJhxcC7aFYcv1G7k1ODfnJ/DrmmBmaQr3ABeliaUsqaGu5bKeJ0Q9XwihSII72RXkoo6TBRuRwc449KyQEj3PHm7W6OYmv54e+/Ustr6/p9V2QX38UVlURUnCTB9MLUzIG0Z3hYmlZ5AbLGxUx/JZYQ3iirVfoNKWUFcr9HSXa1ad+fMyNq3e3ipeQb39UFlaTUnCTB9MzDnyWPrLb3g8g9zUGpPEF9fiSWGNwY+tZZXnpR038NuKra0SOQG9fFHDraUkYaYPJmYcuPm7kDc8HgrJNit71fOy5NI6xORXq3yNSgIdzdHPS67/dX3/Xfy8eHOr30z/nj6oq6gn5iYGqOTUFLYJS+E77kZ+1z2D3GDtoHrun8atR3RulcrXqMTP3gwDfeQL4HeOReOH+Rtb3TD7hXmjobqBkuSjPrBNWHDzdyGTwOR5GeQGG0fV+nqZFQ24l11p8GPztjXFED95S/KDc7H4ZvavSvMzAPDt7oXG2iZKko/6wGIzpbGUn5eyeNo626jcJ7eqEbcyW7tUUo2HtQmG+8sXwB9ficNXM+QJcxk+3bzAa2imJGGmDyw2E65+zkT8pNdxWfLSzkX1AmRBdROuZ5Qb/NhcLTkYFehIHkPcrUR8PuVHNNYqJ0W9u3qC3yxAWS73X40lk8WAq58LmQSWnZfugeoXIItrm3ElrbXjJ9U4WbAxNsipQ5riGBNqLzChllfVhJuZyl9eqm9mZJizGZgW6orxpnPbbRN08LDDkFn9jQm0/wDcwgrs++ooYi4+RWVRVZs3BEwWA/49fDDn54XIMFW+caTRgLFBTrAxYSEqtxK5VU1wNGejt6cNxBJJq5tyTWEz6JjRzRUSoQhfTPkJjy8/03jf4b8vh1u/4DaPUYa+36u4LRcRv+Oq1vvZdfbAuN3yEnh1x+hgzkYPN2vQaIRTaaIOTov8+macnPgVBA3aJ+gH/7QYnYaGKj2n7lgjOtnAzowNGoDYwhqUaimAm7DzGp79dUHrYwyf3hdv73yz1fkW4GAOfwdziCUS3M/W3ZVUEWEzHycnfQ1etfara7N3rMakGRFKx2ljwtL7u6KK5IO3Efvb6Ta38QnthNBBndFtcAi6DuoMe1db1DULcCapFEKxBIGO5uAw6YgvJs65oX6Eaci1dC4l1yA6DZgW6gpTJh0/L96Ma3vv6DyWjZM1XLwd4eztCGcvJ1jaWUAsEkMkFEn/E0MsFEFEPid9rPBccwMPRZklKMooAV9NtaY6vEI8iFgO6YLQQcFwcLdHPU+IEwnFpAOlut9Ffb83kLp/Tg11hQWbgQ0r/8aFf65pPYYMG0crIo7eTnDxcoSlvaVSLIl/q4itQix5jTwUZ5WhML241U1qe3gGu6PboM4IHRyC0MGd4eTpgCaBCMeeFynJDJgw6Rjm7wCxRAIaaHiQWwUWg0bJ92lKFxdYmTDx5zu7cGqj9r9JMqzsLeHs7Uicm15OsHa0glgkbnVuthnLJj6Ks0pRlF7SprSAKjwCXRE6iIhjt8EhcPZyBE8owrHnxWDSaa3iV90soOSao8jEEGfYmrKw7aP9OPJT279JbWFpZyH9jjvB2csRNk7WkIglCrHTLJYl2cR5qYl0iSJu/i5K56WLtxOEYgmOPi+CQCRpNZcwxPUnMtgJThYc7P7fYez7+hh01YOxtDUn4ujtCBdZLCXQOJZikRi8Jj5Kc8pQkFbcKnnSHq6+zggd3Bmhg0LQbXBnuPo6QySR4Njz4lbXFlVzNCruh0YHOsLVygSHfjyJHR8f1HmxxsLGXOk7buusYSxFYohEIoiFYvCb+SjJ4aIwrVitZqw6nL0c0W1ICEKl56a7vwvEEuB4fDGapMmWlvGi4pqjyAh/B3jYmOL4hnP4+4O9OidyzaxM4eLjBBfpd9zOxabNWCpdi2Sx5BGJpvzUolaJqPZw9LRHt8HyWHoGuUEC4GR8Mer5Iszt4U5WSMcX10EgElM+fxviaw9vOzOc3XIZm9/aodShoQ1mlkQsiTmRI+xdbVXGUuW1SCGW3Lxy5KcWkVWwmuLgbqf0He/U2QMAcDpR3v3QMp5Ftc2UXn86auunMaH2AhNqV1LLWrmxUH0zo0ioKQ3rQt9pcxsbJ2scLdlG6fsa6TgUZRZj20cHEHs5Tu0FfeC3r8J7VI9Wz5uy6Ah0tEB1kwC5VU0wZdHBF0kgUnFTrg39vGzx+7ivkRab1eZ2dq628pvpLl5gju7d7jHK0Pd7JW5oxpOPdyElOk3jfSxszDHwq3lw6Bus9HzLY6TTgGF+DriVVQGRnhUQj345gdQj9zTensGkw7OHLwb8sRI0FW0bLY/VksNEPy9bXEnjwozFwGBfO1xK1W4VStLMR9xnu5FwO1njfcytzTD6hwWwCg9SOt9SyxowMsABF1PKYGfGRlcXS9zOoma19skfZ5G096bG29MZdLh37YQx29dAIG0DlB1nRnkDJd+Vlkj4AqT/eBT5ifkozSnTqILGPcAVfddOg2l3PwCAv705TFh0JJTUwcPaBFYmTHjamOJWZgVl16DublY48cZWRJ951OZ2LRNm5I21tyOcOjlQKtIrFotRXlCBgrRi6X9FKMwg/l2SXabRzYKb3/+1d9/xjdf1H8Bf2TvpSvfeN3p33B0cN9nHHVuWiCLIUBkqojJERYQfqCgiCCIKAioIstdxHHCT27N31733bpq2aZv1/f2RNF1pm7Rp0/Zez8ejj6bJN598+v7udz4jCit+8jVolmd6nvN2XKxo65n0ftNvYbQOm+99BVv/O/Z+Pjxh5rmxTjYiMskY+FjWtqGmqB61xfWoLapDTbErlvVljT7FMjolEmf++HJoz5w35HkRBvIJUToFMiI0OFRjCsj+NC9Si52P/BefvvjlmMsZInRDEhNRyYO2zaQIqALYnd/pdKK1rh21xYO2y2LX7/qyJp9a0EQmRuDMH10K/docr/HbXdEWsHNOv4wIDY489R7ee3rTmMsNT5hFD9suNfrAdecXBAGt9e2odcexpqjes4/Xlzb41OrDGB+OFXddhJBzXddEg68lBAFTcv5JDVOj+MXNeP3xd8dcbnjCbGAfd22XgZyVURAEtDWY3Ntjw6B9vA51Jb7FMjw2FCu+vxFhG0Zeu3m7RgvE/VBiiAr1b+7AP3/x+pjLDU+YeeLoTlSM1jp5IgRBQHujCbXFDQPbZbE7riUNnu77YwmLDsEZt12AiEtXep4bHC+5RBywc06/OL0S5k378dcfvzzmcsMTZp44umMa6Fiams2u7dF9/unfLmuLfYtlSKQBZ3znXERe5er9cNmCaHxwssHzeqDudQaL1ing/OoEnrz1r2Mup9IqEZMa5dkOo5OHbpvaEE3AWmf1D7HiiaN7u+z/25cvIA0ROiy/4WzEfOMcz3PD4xnIex64GyRcPC9q0uUEWmBH8KRRdfTaRiTT4g1KNHX1ISFkamY7a5KM3zWus23yN3k0c8WmxeBXb/4EcI+/9sK9/8aO/+3xjCehCtch8ZxFXt87fFDjwX87ncBEU/GFTV2oL28ac5m0xcl4/sgTgHuQ3R359ajqG/mB3gZeDsR+JdYocf5PLkfB1U/4/B6rICD0tLRx62jUKGB3Cjg7LRxiiHCwxjThsZiW3boe1Z8e8vkbO4fdCcPyDK/JNG917bU5YHcKEAGQS8UTGmNPpJTjgvuuwontj/r8nj6bA/LsRM/Jt397i9DI0dDZBwFAq8U67syx/lhy03mo/uQgOlt9OyY6HU4YlqWjd9AFQn89A7WvDCeSy3DjP+5EplELa58NDeVNrgtJ9w1k8ZFylB4pH5Joa6hqgdg9A5pCIkZWpBafF7sutLMitdha0jJiAOILs1yDZQ//EmhBlA7LE0KQ19iJA2N0LStq7kZVQe2Y/4vBqMcbdS9M22yfYrEYkYlGRCYasfT8occ8m7U/lgMXliVHylB8uHxIcqihsgXilKGzyXlb15PZby5fEI1DNSbPeEPFLd0oz68Z8z0agxr/rX1h2maoFIvFiEyIQGRCBJaeN7Slq91m97QW6k8QlRytQPGhsiHJocbKZoiSo0eUPXhXkUvEaLfYArY/lbR2ozxv7FjKVXK8Vv23aZtVUSwWwxgfDmN8OJacs3DIaw67Aw3u1kL9+3jpsQoUHSwdktBoqm4Fklyx9Ba/QJ5z+pW1WVB2cuxYSmUS/KfiuYAmIMciEokQERuGiNgwLD57wZDXHHYHGiubB+3j7lgeKB3SvbK5phVCoiuWw68lpur8U9FuQUne2MdLsViEl4ufGXPm30ASiUQIjwlFeEwoFp81LJYOB5oqW1BTPLBdlh2vRMG+kiEJjda6dji9zGTq7Rptotdtw4+X1aaecY+XAPCPk39CeMzkJ/rxhUgkQlh0KMKiQ5GzdugXCA6HA83VrUOS6eXHq5C/t2hIQqOtwQRHrNHz9/B4BeJabbhacy/qC+rGXe75w08gJnV6EhwikQihkQaERhqwcM3QWDqdTncs6zzJy/ITVcjfUzSkRbWpqQO2mIGuwRqZBBuyjOi2OrC/yjQl128NnX0w5Y+9jwPA03seQ/KC0WdYDSSRSIQQowEhRgMWrh7aEGDIl2bu5GX5Cdd2ObgVcEdLJ2zR4UPeOzyeISrZpM4/w/fxlm4rWruto040FCyzPqH27LPP4oknnkBDQwMWL16MZ555BmeccUawqzVCjWnkDe9YNzNV7T3Ib+oa8vyNyxPwwckGnzfExi4rPrG9gfyvCrDvk8Mo3F+C+rJGmFs60ddrhSAIWHXFzIsVTQ2VVoUfPXcbfvTcbXA4HPjPo28jt6wFYj9vwobflPeL1MqRE6OHUaOACECX1Y6yNgvyGzuHdOlp67HhgXd+hn/+5BWYmjrQVt8+ovlzdWEtfnPNH1Bd4LrAuOj1e6FLiIAvxtqvIrUKfJQ3MJi4TCLC9afF463cuhEzeYUtScNFt52PY9tOoqPFjK72kd0BN9x8LvRhWhzbkQdrqN6n8d3UcglCVDJ8nN8IjVyClUlh+LRwIMEYo1NgcawBYWoZBAFo6u7DkdoOtHmZOUccosVDm36Bl+5+CW0NJrTVm0a0aBBLxEhZlIj6skZYOnoQv3bhiHJGY3MK6Lba8bWFMZCIRUO6rF+YZYRRo4Bz0NXGoZoOFDZ3jShHnR6Hy+/cgENbjqGjpROdbSOXOf+GdQiPCUXujjx0q5SQuVvUDN7eYvXKIbMqDv6ezt/1O5xYp8avPv0FXrzrH2ira0dbQ/uIb+FFIhHufOZmnPyqAMd35A+Jpbf9wttzk61ntakHmUYt5AoZErPjkJgdN+T1brMFeXuKcHxHHo7vzIfJKYLCoIZELMJZaeHYX9WOPrsTqWFqVJt6Rp3Vt6PHhvQIzZCEWnqEBiYfzj89Ngd+/OY9eOn2F9BS24a2BtOIoQc6ms2w9dkCPtPURMjkMiRkxSEha2gse7p63LHMR+7OPLRY7FCNMn7V4HU91n6jV0ixPCEERo0cYrEIPVYHSlq7caLBlch9f9A3uwDQZ3fiB/+5G//8/vNorm5FW0P7iMkxujss6DZbpu1meyxSmdQ9DlAsVlw88HxPdy/y9xZ7tsuGtm5oRpkkx6CUYlVyGDRyyZDxgrztT+PFczCbQ8D3/nkX/vnd59FU2Yy2BtOIFg3WHivMLWZExIWPeP90k0gliEt3jUeHiwae77X0oWBfsWe7rKkzQZ84cLM9PH46hXTMcw4ArEoORUaEFu+dqPdp4hKHU8BNf/0+Xvnuc2gob0J7o2lEiwa7zYG2BhPi0qcnoTYWiVSC2LRoxKZFAxsHWuT39fShYH8Jju/Ix/Gdeagoa0ZouitpPvxaQiEVj3r+gR/XQMM5BeC6J2+CvasH9aWNaGs0jRiz1ekU0FrbNiP2cYnENTFJTGoUTh80k7y114rCA6XIde/jpfm1iFiQOOL93q7RvD13/WkDx2OJWARBgOd6o7GrD18Ut4w4XgoArnj0m+htNqOmuB7tDSav3dObqlqmLaE2FolEguhkV+uu5esHZly39tlQfKgMx3fkIXdnPoqOViBqWbrn9eHxGuucg0lsmxsfuBJd1S2oyq9Be1OH1y7VTVUt05ZQG4tYLEZUkqtl17ILBmJps9pQfLjcs4/nHyhFzBkDrczfOeHqkpwersFpcQbsrXKNnTja9Zuv173DrfvBxWgtrkPFiWq0N3ag18twLU1VLdOWUBvLaF+a2W12lBwp95x7Tu4uQtyqoYnN4fFs7Oob9fzjy/Xw8H0c7utgJtQC6I033sA999yD559/HitWrMBTTz2FCy+8EIWFhYiMHPmtSDC1DLsZHu9mJlBaLVYsWjcfi9bNn9oPollFIpHg2w9di72V7T6dCDzvG3ZT3i/eoMS61HAcqe3ArvI29Nmd0CulyInWQyWTjEgSlFW2ImfNPDRWNqGurBENZU1Dxuuw9tqw8+19AAC5TuVzMm28/cpqd2JpnMGngUjbLFbc9czN6GrvhrmtC1X5tcjbXYjSYxXuLg92FB8uQ3uDCe2NHTjtB5f4VMc+uxNNXX2wOwV09NohlwxclicYlFibGo4D1SZ8XmyBWARkGrXYkBU56nTUJeXNWLg6Gw2VzWgoa0J9WQMsnQOxdDqcKD1SAQCQKOUwpPh+4ROrV0AhleCdE/VQycQ4L92Ij/IbPa8fqjGNSPx702qx4nt//Da62rvR2d6N6oJanNxdiNKjFagrdTXTrzhehcOfH0d7gwmLvnuhq77Dtjer3YlQ1UDScvhq9mf9eqNJisQzex4D3BdhFSeqUXyoDEWHylBX2oBVl5+Oy+/YgMvv2AC7w4nXjtRCGGW/GG1fmWw9x5sNUaNX4/QLl3hudI5UteF4UzfOSg1HQVMXmrtd7w9RyRCukSMxRIVQlQzrUsKxZdCFY3m7BfMitZBJRLA5BES4L15auod+vlomweqUMERo5OjstaOy3YJMoxY1HT3481f/B7gvwipOumJZfKgM1UV1WHHR0hmRTBuLSqvCsgsWey7Oc2vacaRh5PY+fF2Ptd+clxGBijYLtpe5Br03KKUwqMZOxIvDdPjTjkcAdyyr8mtRdKgMRQdLUV1Yi6XnLRp10P+ZQqVRYul5OZ6L87y6Dhyo8z6xQ0evHZsKmhCqkmFlUig+KWgadX/yN55OrRpPbnsYcLdaqsqvQZF7u6wqqEXOmnkIjw0b9f0zgVKtwJJzFnpatBU2mrG3emBih+HxO1pnHvWcA/dMdMmhavTaHciI0OBgzdiTRPR3K7Uq5fjDl78G3C1tqgvq3MfLUlTm1SD7jHRXAmsGU6gUWHzWAk8rrNLmTuyqNHm9lhjr/OPvNdBwvRIpfr/lV4A7ljVF9Z7jZcXJKqQvSUHSDLjRHotcKXeNU+VuhVXZ2o1twyYj8BbX0a7bXjsy0KJntIYG3lgEER7/9BeAu6VNbXG95zxefqIKyfMTkLk8dZL/7dSSK2RYsCoLC1Zl4br7v4aadgu+cH+54C1eY51zJrJt9u/jZgfw6EcPAO5Y1pU2urfLUpTmViIuPQYLVmdNV1gmRCaXYf6ZmZh/Zia+fu/laDD3YHPRwLVX//mkvN2CTKOre+pY12++XvcO12Fz4jfv3Qe4u1vWlzWi6GApig+VoTS3EtFJRiw51/cvvINBKpMi+4wMZJ+RgWt+ehlaunrxccHQxhXD41ll6hnz/DOR6+GpnBV8omZ1Qu3JJ5/Ebbfdhu985zsAgOeffx4ff/wxXnrpJdx///3Brt4QbcNuQsa7mRmPVCzCsngD4g0qSMQi1HX0Yl91+4iBE1u7bYjWTe3sczR7+XNQErkH1hx8U97vjMRQnGjoHHKSMffa8VWF95mdDuwuwrG/fTruZ8rkUsy7cOT4bqMZb78qbO7CvEgdorQKNHaNPWBre7cVl4bcBEfv6DHqn/IaAMKy432qY0t3HxbFuL5lVkrFGLzLnu6OY3HLQGu4Ew2dnlYYm72MiXFofykOP/3xuJ8rlUmQfcFiiCX+dKkQeU6ONocAqXhiYzd0WR24wngLrGMMzDskllnxXre35m4rFsXqIQIQqpbBPKwlxXjrd7zjZmu3DRnu3K1MLkPG0lRkLE3FRbeNrG9Hnx3CKPvFWPuKL/WcH6VFllELlUyCXpsTeY2dKHAnvntsTlisjhFT2o+mw+ZESpgaUVoFZBIR5kVpUWPqHTKz4oVZRuwoHzoWkNXuRG1HL1LC1Chq7kZ6hAYlLd0IGZasWJcaho5eO74sboFGLsH5GUZPLD1xl0mRviQF6UtSsPGW83yq90zUYR3Zjcb7uva+3yikYuiVMhQ2d3u6M5t67TAN2o6vyonB/moTqge1ah+cSJfKpEhdlITURUnY8J2BcUtmG9MoCQaxCJ4bRavD6enG5G1/8iWeww0+50mkEqTkJCElJwkX3jR7Y9nRNxBLb/Eb65wDAClhatidAo7UduC0OAMO1XYM6eZ0VU4MCpu7XOdVtQwf5zfB1GMbGkuJBMkLEpC8IAEXfPusqf6Xp4zJHUtv1xLby1pHPf/4cg001nF9eCyT5sUjaV48zv/Wumn6zwPP1DdyP/QW11aLdcL3Q96PlwOxFIvFntbH514/9TOGT5XBsfQWw5ONnaNeq/mybY66j3cPjWV8hmvW4XOuWz0N//XUaB+030rFIjicAgQA0VoFzH32ca/fRjP+9eVAWSKRyNNi9uyvz+JY9gzdx73Fc7zzz3jXw+Pt4zPFrE2oWa1WHDp0CA888IDnObFYjPPPPx979uzx+p6+vj709Q2sLLN56qe972cZ1nVovJuZ8axODoNTEPBBXgMEAViVFIoViaEjpqbuCeLUuzTzjbV9nJUajnCNHDaHExEaOdotthE35ScbXckenUKK8jbfZ0hUDZpeXSQSQW1QQ2tQQxuqgSFCD0OEDmqDGgqVHCIvY3CMVsdDNWPvV312J443mLE03oBNBWOP4yaSiKEK06KrbvTp3kUiEcJiQmBMiED4KC2/vNWxpMWCDVmREIuAg+6xqPrjWNY6Mo5lbRZckGmERCSCY9iADoNjCZGrhZI2RA1tiBaGCB30Rj3UehWUagUQM3Y3puF1PVzTgdRwNTZkRUIiFuFY/cSPmSqjfsyEmkgkQmh0CCITwmHMiPGaBDrZ2InS1m5syI6EUxCwu6J9SBnjrd/xjpvDj9Nj6XEnBLzVs8fm8Fp3X+vZ1efA5sJmWGwOROsUOC8jAq09VjR3WT319DWhZrE60NxtRVnb6LM5eUvUwj3m1GmxBpS2WJAUosL7JxuwLD7E87paJkGUTomtpbVwCALMfXYUNnchO1LrVyxnC2//k7f1n9fY6XW/6bM70dFjw+qUMBQ1d6Gl2zpuyxW41+FcM9r2Ea6WY2m8a0Y9kQg4UG0a9VgwkXjO9Vh6i5/VIXg95/RLj9CgrNWC8jYLTk8IQYJBhaphw5SkR2jwZXELOvvs6B8Tu2cOx9LbNbrV4fR6/vH1Gmis4/qcPF562T68xXVwC6CJ3A+N+Nw5Hkuv26bd6fWc48/1udd9fI7HUu/uHm9zOOF0Arsr20Y934wnkNeXs8Xw/8lbPMc7//hzX9avx+aEUxAgDtAEDYEwaxNqLS0tcDgciIoaehMbFRWFgoICr+95/PHH8fDDD09TDYcafhM8mLebmaXxBiyJNXhdXiEVIzFUhTeO1noy30fqzLh8QTS+Km8b0gzdeepO4ko+GGvGFW+zV3m7KVfIXC2efLkx7Dd43DZBENBt6ka3qRuNlSP3hfTLV+DMtTkjnh+tjv1GSxLkN3ZhXqQWCSEqNHSOPS181pkZkNns0IVpoQ/VIiI+HMaECBjjwxARH46w6BBIZa7D6Nu5dejyEgNvdSxp7UbJsMRZfxy9nXR7bA6IRSIopOIRrw8ZA09wj6fUYUFj5cjm08kXLsWac5aMeH6sug5P0g82/Dj1v9w62EfZpjKWp0G6IB66UC10/bGMD/PEMywm1BPL907Uuwa99rK9FTV3o6h59IvD0davL8dNX2bN7Nd/TB+tnmMlsMaqJ4AhN7MNnX2o6+hFtE7hSaj5c1wf69wznnpzH1YlSbAoVo/mbuuIgY7VcgnsTueQG6Ju91hpc/Hc4+1/Gm39j7bffFrYhIXReiyJNUCvlMLca8f+6nbUm0dvMTsnYznKvtbcbR1x7G6z2Ebdn/yN51QPsxEMg7cPb/HDKOccuMdbi9QqsLeyHXangCpTDzIiNCMSaoVNXTC7W8n0f9ycjKWXf2pwPL2df3y9BhrruO4MzATLM8p45x5v2+lo123+mJPb5SixHBwvb+ccf67Pve3jw1sTzQWDY9lmseGjvMYhr492Tu/n7bpXIhaNf30puO53AjVL50wwfPvwFk+Mcf7p5899WT9B8DKQZRDN2oTaRDzwwAO45557PH+bzWYkJEzPmAQSkQh2Py6KD9d0eJ2UAAC0cinEIhGuyokd8T6VTDLkhnsmZW9p5pFMsAvfYH3uGXE0cgk6+3xLqjlt4w963M9h9X1Zn8oTBBytM2NpnAGfFozd7fPB/9wNncK3w6R4krHsj6NaJhmRmFPJJHAKgtep5P2JpT/L+sLbcWo09/3zrhHdBUcjmcRxa7T168tx05/9YTJ1HKuecLd6WhClg1YhgQgiSMSiIduEP5892XqWtnZjUYx+yODw/SxWB6RiMRRSsWfb1Mhd+8tcPPcE4n/qtTtxsMaEgzWuWRgXxehxTloE3sqtHzLg+WCTXYczUSDOPZhAPLldDpURoUWbxeoZELq0pRvnZxqhHnYt6e2GfLLnvJloItulr9dAYx3XA7U/zCTB+p+4jw/w5/rc2z4+J889k/yfvF33GpSyca8vxSLMqWQaAEgC9O/4c1/Wb6YdMmdtQi0iIgISiQSNjUMzoY2NjYiO9j4IqkKhgEIRnEGQNXKJTzMn+aLbaodTEPBmbt2YLYwAQKPwbwZHOrVo5OMPljsec58dnX12JIepcbx+/GbRALBm42m4+rz5EATB/eP6ukEQBNc3xIIAqVwKmUKGHrkMeZOq4UglLd1YEKVDWoR61GVEIldyy1dauXTEmF7+MPfZ0dVnR0r4yDimhKnR1NXn9RvfM89biK+t+bVPseyTy3BiwjWcHF+7KAKARiFFmx/Tag/nbf36ctzU+FXHyR9bvdVTI5dgTUoYPi9qRkNnHwQA56QNm5bcz1j6Mw7IcHmNXWjs7EODl7EtLDYHGjv7sDTOgP1VJqjlEs+gvlo/6jhbaOVSAL5d7PnC6nDiaF0HFkS7brLbLN4TanPxPN6feA0kX+KpZSw9RCIgNVwNmViEaxcP3AiKRSKkRQw9D3k7YvpzHJotJhJLX66Bxjuuz8VYaqdgH/ftc+dgLH38Ync4f67PT5l9fIKxHIsv15fB2h+mUiD/J1/uy/pp5JIZl5yctWtXLpdj2bJl+OKLL3DFFVcA7hlIvvjiC9x1113Brt4I4Rp5wBJqvXYnqk09WJEYgkM1HeizO6GUihGpVYxoph+unlnTytLMEq6Wo6lr8oM77q9qx7rUcNgcAspbLehzOKFXSLEwWodj9eYRSbvk+FBkJY49nlc/m8OJvEGzPQWC4B6HYmXS6NOmqwQn4HQCYgnsNjuevO15FB4oQdKCBGQuTUXGMtdP/zT2YWoZ6sy+NVUezYFqE9akhKHH5kRFmwUiEZBl1CIlTI3Pirx3hUiICcGCZNdI+rk78vDsD1+CUqscUsfE7DhIpBI4nAJOHqnBdPcgUwpOSNwf6nA48Ofv/x0ndxcgcV68a+D/ZanIXJYKQ4QeABCulg0ZgNRf3tavL8dNhW0giZe/rxh/vv0FyJXuyQmWpSFzWSqS5sdDIpXAoJRB4h6ANZD17B9MuNfuhAAgzqBErF6JIvdEFRq5BEp3otfpdOIvP3gJR7eeQGJ2rKeOGctSEeIeWy9cLcMoc4P4xOpwor5z9CTSzvJWrEoOw7VLYtHZa0dZqwUp4eohsZwNBEHA8/e8ggObjyIhK3bIdhka5Ro3LlwjQ8kkhveRS0RYEKVDaZsFnb12iMWuv3vtjjGT8Qrr7IolALz4wH/w1fsHEJcRjcylaZ5jUXiMa1sP18iASfbumkg8Z2MsX/31m9j25m7EpkUN2S7DY8MgEokQrvat5e9wCQYV5BIxPshrgHVQ6+fsSC0ywrXj3oArrLZZ14Xp9cffxZZ/bUd0SqTnHJm5PA0RcZOL5XjXQOMd1xW22RfLt578EJ/84wtEJUV4zpFZy1NhTIhwjS87wVhO1myM5fvPfooPnvsUxgRXLPvP41FJxknH0t/r88GU9tkXy0/+8QXe/tOHiIgLG3LtFp0S6d7HA39f7Mv1pdJun3Wx3PKv7Xjjd+8hNDpkyD1FbFq0a7vUBC6WvtyX9QubgbkNkSDM3sE53njjDdx4443429/+hjPOOANPPfUU3nzzTRQUFIwYW80bs9kMg8GAjo4O6PX6Ka1rfmMn9g8biG80o00PfePyBHxwsgHtPTZIxSIsiTUgMVQFhVSMXpsDFW0WHBk0Db3gcEL4ZC9WX7YcGUtTZ9VOTJPncDjw+Df/jAObjiI8Lgxx6a4ZZWLSohCTEonYjGhYw0PGHCPLH5FaORbF6GHUuFqBdlldN9f5TZ0jxrR4a+ND0ChlOPPipVh01gIsWjcPEXGjJ9jeO1E/6YS0t/3qouxIGLUKvJVbN+Kiovi9vTj+zIdYsDoLCdlxeOcp7zNpqvUqGOPD8f3X78HJADReidUrsShGjzC1DAKA5q4+HKk1jzqrzbuXPwI5BKy8aBkq8qqRt6doxDJSmQTaUC3WXX0mku+4BG2Wyd9U+jONffmnh3D4929j/qospOQk4q0/fuh1OblKjrDoEPzwrZ8hz+HfN6O+rN/xjpsfXPtb6OUS5Kydj5riOhzfkT/icyQyCbQhGqy8bDnm3XOl362/fKnnklg9soxaiEQiVJt6IBGL0GNz4EC1CYkhKpyT7kqgtjeacG2MlylIAcgUUoRGheBHb/4U+eLpu/hYGK1DjF6JH6+4H0qHA4vWzkPOuvnIWTcP0cmRM/Y81G224IqQG72+plDJERYbitv/eReKlJoJf4ZULMKKxFBE6RSu2a6cAtosNhyp60CLezvyNqPV5lufhrSrBznr5iFn7XwsWjcPMalRMzaWNqsNFymv9/qaUqNAaFQIvvfC91Gi9z5OrK98iedwn9/1PITGdiw6az5y3NtmXHr0jI2lIAjYIL8OTi/dV5UaBQxGPW77y22oiIzwu+zzMiLQa3OOmI1bIRXj6kUx+KK4BQ2dfV63SQDY9pMX0VfRgEXrBmKZkBU7Y2MJAJfpb0BP18gvvpQaBQwROtzyp++gKj5mQmWPdw001nF9589fRXd+1ZB9PHFe/IyO5TXRt8LU1DHieYVaAX24Fjf97luoT08KyGeNdr3hbdvc/fDrMB0uwSJ3LHPWzUPS/HiIxf7McD69vpVyh9cxhBUqOfThOlz/8LVoy8nw2orMF+Ntm6Pt4/t+9xZadp10ncPXzsOidfORvDBhRsfy5vl3o7pg5JfwcpUc+jAtvv7A19C5YsGExtob67p3vOvLQ0+9j/otR7Bw7TxPLFMWJUIimbmtAG9fdi9KjpSPeF6ulEEXpsVV91wK69mnjTp28nh8uR72tm2eFmvAotipzdv4a1Yn1ADgL3/5C5544gk0NDRgyZIlePrpp7FixQqf3judCbWuPjveOV4/4YPhRFRvP4HtP3sJABCZGIFVl5+ONV9bgYVrsiGRztwdmALD3NaJqyJuHnOZs765Dsl3f21SA5f7q+loGT777l9GPB+dEom0xUmIy4hFfGYM4jNdv0MiDThSZ8bxScwwORFf/PAF1O/1PsGJNznnLMSyJ26Z8IllIlrzq7Hpxj/59Z5H8p9BYef0ttLYfu8/Ub3tuM/La8K0+PqWR0cdU2oqmMoa8NF1v/frPb8+9ieU9E3vKXRtShhSw11JnZ7uXlymu2HM5cVSCW7e/8cREwoESphaBrtTgLnXjjC1DOelG7Evrw6PLfsJhjeFNMaHI21JMuIyBvbv+MwYT0ubYOrrteIS9TfHXEYkFuG7h5+adDd5f3Q3mvDeFY9CGLYvhMeGIv20FMRnxCDOHcu4jBhExIUF/WbH2mfF5YYbYR9j/Eu5So5b9/7BMwj2dOht78I7lzwM57CJXcKiQ5C+NAXxGbHubdP1ExEfHvRY2qw23LrgHtSVNoy6TGiUAd/6/FHPOGjTwdrZg7cvfhiO3qGJyxCjHhnLUoft47EwJgQ/lnabHbcvvRcVJ6tHXUYXpsUtO387akJ2SurV04e3L34YtmGJPkOEDhnLUl3bpXv/js+MQWRiRNBvwh12B3646kEUHSwddRmVToU79/8BDWO0cA54vax2vHPJw+gzDR0AXRemdcdy6HYZmTQzYvnTc3+NE7tGv95UqOS4+8hTqJ1kLwh/OO0OvHv5o+hpHpo01YZokLk8dcS1elSSMej3lg6HAz/f+BgOf5476jJSuRT3nnhmRI+uqSQ4nXj/ysfQVTf0ywu1XoXM5WlIyIxFfGYs4jKiEZcZi+hko2eSrmBxOBz49ZVPYO+Hh0ZdRiwR4xeFz407CVegXb4g2ucxmafLrO3y2e+uu+6akV08h9MqpIgPUaLaNH0Hw+K3d3seN1W14L1nNuG9ZzZBH67DykuXY9Xlp2Px2fOhMUz8G3eauXShWsSkRqG+bOSMK/3yd+bhnN98c8zZVwKt6K2vvD7fUN6EhvKRUyardSqkrMjAkkdvhGiaRqG0tpphr2uGRCaBw8eprsuPliNhdz7Czsye8vr1Gy2WY3nt9uex9PHvQCSZnpsbW0c3rBUNkMoksPsYy+62LtRvy0X42oVTXr9+7fsKoA3RoMvk+77w2u3PY/kTt0A8TRc+Qq8V//3xi2gsbURDRTPa6tvHfY/T7kCmUYvcKUpIK6USnJkUCpVUjF67E0UtXag8Vo6cNdko2FcM26CkSnNNK5prRvaZVKoViM2Idl2Yu2944jJjEJ8RA324LiD1tPbZ0FTVgsaKJjRWNKOhogmNlc1oqGhGY0UT2urHb0EuOAVkRmiGtASfaup2M3LWZCN/bzFsfQMJk9a6drTWtWPfsOUVKjniMmI88Ruc2NCH6wKSuLRZ+2M5ED9XLF2xba1rx3jf1Vp7rMiIUONQ7fTFUtnagUVrspG3pwjW3oFYtjWYsP+TI9iPI0OWlytlrlhmxAxJXMZnxsAQoQ9YLFtq2jyx698u+x+31raNO/vwwjXzkBWpxd7K8Y8HgSJvMWHR6izk7S5EX89A8snUbMaBT4/iwKdHhywvU8gQlx7t2S5dN48xni/NAhFLu82O5prWUbfLlprWcWM5b0UGso1a7OoOTMt9X8haOpCzMhN5uwvR2z2QfOpo6cTBzcdwcPOxocvLpYhNj3Yl0dOHbpehUSEBiaXD7hgUS/e2Wen63VjRjOaaVq+tJgfLXJaKLKN2WhNqshYTFp2ZgRO7Coa0ROxs68LhLbk4vGVookUmlyImLcqzj3vOPZmxCIsOXCxbagf28aGxbEJT9fixTF2UhKxI7bQm1KStZuScnooTuwpgMQ8kn7pM3Tj8+XEc/nzol6RSmQQxqVHufXzgS55AfmnmcDjQWtvm3r8Hts3GyiY0VDSjuboVDvvY15lJ8+KRHamd1oSapL0TC5em4Hh3L7o7BpJPFnMPjn55Ake/HDq6sUQqQUxqpGt7TI8etI/HIjw2NCBfTjgcDrTWtQ+NY0UTGtznn6aqlnFjGZcRg6xI7bQm1KJ1ihmXTMNcaKE2GdPZQg0A6s29o46DFGh6pRTrwhXY++EhfPXefhz54rjXm1mxWISMZalYfPZCLDl3IRauyYZKo5yWOlLgCYKAyrwaHN16Ans+PIgjnx8f9cZGKpfisU0PIvGMTHyUP3rSLZCUUhHK/vQudv5vD2y9/n2bvvbxG5F03uIpq9tgB598DwX/3eH3+wwpUbj4tZ9BPA3Jqt72Lrx72SNw9PnfKmHVr69H6kXLp6Rewx159mOcfOULv9+njQvHZf+7H+Jp+MbT2tmDdy/7DWzd/l/4r7j/GmRcuXJK6jVc7j8+Q+4Ln/r1nrCYELxU/le8c7x+Ql0c/CUVi3BVTgyUMgn6evpQsL8Ex3fk4/jOPOTtKRpyw+gLXZgWsWlRUKgVkEglkEjF7t9DH4slYkgkrr/FUgkkEjHMbZ1DEmaTvdyRKqR4x/xvvH28flJj5/lKIhLhypwYqOUSWPtsKDpQgtwd+cjdkYe83YVeu66NRReqQUxaNJQa77EUSwb9PSyWne1dfiXMxpO5PA1P7n4Mb+fWwTYNsRSLgK8tjIFWIYW1z4biQ2U4viMPuTvzcfKroTeMvtAY1IhNj4ZKqxwSy4EYjhJLqRhdpm6/EmZjufonl+K7v78BdqeAt3Pr0TcNrXpFAC5fGA2DUgab1Ybiw+WeffzEroIhN4y+UOtViEuPhkqnGhRD7/v58Fh2d1j8SpiN5bI7L8RdT98CpwC8lVs3Za16h7t0fhTC1HLYbXaUHHHFMndnHk7uKkBnu39fdqp1Ktd2qVN6j99YsTRb/EqYjWXDLefix3/7HgAR3jlRP22tevu7iznsDpQcrcDxHXk4vjMfJ3YVwNzq26RZ/VRaJWLTo6HWq/yLpUQMS1ePXwmzsZx7/Vrc+8qdEInFeO9EAzqnqVXvhVlGROuUcDgcKM+tQm5/LHfmw9Ts3xchSo0CsenR0BjUPsVy8Lmop6vXr4TZWNZetQI/f+1uSKQSfHCyAaYAjW0+nvMzIhBnUMHhcKDiRLVnHz++I99rt+mxKNXuWIaMHUvXNdHQ13q7e/1KmI1lxcVL8dDbP4VUJsXH+Y1oDcBQMr44Jy0ciaHjT1ww3ZhQm8aEGgDsKGtF+TRkcvsPhP26O7qx7+PD2PXefhzYdGTUmxqJVILsFelY4k6wzV+ZCbly5g3+Ry5OpxOVeTU4tu2k62S3Pc+nE50uTIsnvngIaYuTAQB7K9tR2Dz+WFiTdU5aBBJDVQCA5poWPPW9F3Do81yfWoGpo0Jwyev3Qq6d2oRvW0ENNn3nKQgOp2sA09hQRCUbodarcWDT0BYMMoUUC9fMg8VsQU1RPbo7LDjtB5dgwQ3nTmkdAWDng6+icstRTz2kMil6u/t8utFVhetwyX/vg8IwtSclU1kDPrnhjyO6WI1GJBYhISsObfXt6DJ1Y9FtF2LRbRdOaR0BYPdvXkfZRwcAdwufqGQjopIjUVfSgNri+iHLRiUbkZAZi7qyRjSUN0GmVeGS/94LVYBaUo2ms7oFH13/hF8J1JScRLxw7I8AgOP1Zhyu9e/CbSJWJIYgO9J7LJxOJ1rr2lFTVIeaonrUFtWhprgetcX1qC9rmtTF3VTThqjxZuM/IJPJkNfYiQM+jok6GcvjDVgQ7f3aRBAEtNa1oaao3v1Th9qSetQW1aOutDFosZTJpUNaJXpz+sbT8Mj790EilaCouQt7pqFl1ZJYPRbHeh+zTRAEtNa3o7bItS3WuLfLmqJ61Jc2+NyyNtBCjHpEJRsRER+OPe8fGJIsEotF+NHz38NFt57nea60tTtgY6KOJSdah6XxIV5fEwQB7Y0mz3Y5eB+vK2kYd9uYKoYIHaKSI2FMCMfejw4NueYQiUS448/fwRV3bfQ8V9FmwfayScxA4qN5kVqckeh9EG5BEGBq6hjYv4vrXbEsqkdtScOQFqvTSR+uc50jEyOw75MjI+rx3Se+jWt+cqnn7xpTD74oaZnyemUaNViZFOb1NUEQYGo2u/fvge3SFdfgxVIXpkV0shGRSUYc2nwMvZah92Y3PXIdrv/5lZ7WXdPVMCMtXI01Kd7HNRYEAebWTs92WVNUj9piVxxri+uHtFidTrpQDSKTjIhKisDRrSdHfEly/c+vxE2PXOeJZVNnHzYVjuwVE2hJoSqcnTb6GJeuWPbHsX5guywKXizVehWiUyIRnRyJ4zvz0dk29P7w6nsuxW2//5anpVxrtxUf5zdO+bBW8QYlzk2PCPoQId4woTbNCbVeuwPvn2iY0m++siO1WDHKCRoA+nr63M11c3F06wlUnBh9PAmZQoYFqzKx5JwcLD5nAbJOT4NMPvOaWp4qhiTQtp9E7vY8dLSM/q1bZGIELJ096Br0LacuVIPff/EQ0pekeJ6zOZz44GQDuqbwW8TUMDXWpno/QZccK8dzP/on8nYXwjHGvpF++Qqc+eDXp6yOgtOJsKIqxEcbEJVshDEhAnKFa3t3Op24NvpWT7zDYkLx2Cc/9yQl+y/YqovrkSvI4JjCRLS4qR0J3d2ISTYiKtk4pPvRyw/9F/955O1xy0i+cCnWPPKtKauj0+HE5lueRmte1YjXwmJC0N7YAWHQDaJcKcNvN/8SOWvneS7YqorqkeuQwK5STFk9xS0dSDCbEe1OooUYB2K55dXt+P1NA+P9XXjTObj7b9/1jG1hs9rQWNGM/Mo21IVOboD1sQhOJz77/rNoPjpycNjRxGfG4MW8pzwXPE5BwCf5TaNObhEI0ToF1mcaJ3SxY7fZ0VDR7LrR8SSIGlBTVIfm6snd2IZFhyAq2QhtiAb1ZY1orGyGzY9v+VU6Jf7X+A8olK7tUBAEfFrYjKauqevKZNTIsSE7EuIJxNJhd6ChomngAt19w1NTVI+mqsnd2IZGGRCVHInoZCMMRj262rtRVViLsqMVYx67+512Xg4e/fB+zxd1giBgS1HzmDPJTlaYWoaLs6MgnsCQAQ67A01VLZ4bnv5kW11xPRorWybVUi8k0oCopAhXPJNcx5+oZKPnBntwb4GfnfdrHN16EnAn/R/874+x8tKhrYwFQcCXJS2o6Zi6bmEhSikumR8NyURi6eiPZf1A8tK9XTZWNE8qlv0Js6hkoyeW/cf0qKQIqLQqz7IPXvIY9n/i+nJMppDh/n/9AOuuHtnKeHtpCyrap65bmE4hxWXzoyCdQIt2h8OB5upWz/7tSbgV1aOxomlSLfX6E2bRyUZEJfVvk67fUUlGqHUDsfzNNX/AzrddHc+lMgl++tKdOO+ba0eUuau8FaWtU9eYQCOX4PIF0ZBNIJZOpxMtNa1DvpzoTwI3lDdNqnVZf8LMtR0OxLF/H9foB77U/N2Nz+Dzf7l6RoglYvz4b9/DhptHfjm7p7INRc1TN0yLSibG5QtioJBOMJa1bZ6k5UCCqB71ZY2Ti2WoZsQ+7tk2kyKGDF/01Pf+ho///jngTpjf9cwtuOyOkV/OHqhuR17j1DUmUEjFuGJBtGdmdn/0fwE5ch+vm/QXkNoQzYh9PCrJ6ImnNmQgls/d/U+8+/Qnnr+/94dv4+p7Lh1R5uHajikd61ouEeHyBa4W+zMRE2rTnFADgIbOXmwpap6S7jeRWjkuyDD6dYJub+pA7raTOPLlCRzbdgI1RfWjLqvUKLBwTTaWnJODJecuRPppyUEf0HMu8zeBpjGokbNuHhaftQBLzl2ItMXJeOWhN/CfR10JFl2oBr///CGkn5Yy4r2t3VZsLmyaku43oSoZNmRFQj7OCVoQBBQeKMHLv/wvcnfkeb3pXfnL65B26RkBryMArEwKRaZRO+rr//zF63jtsXeQOC8O//fxzxGdHOl1uXaLFR8dr4dzCrp+GpRSbMiOhHKUrpCm5g7ctvAedLR04uLvnY/GyhYc23piyJhB/U6/9ypkXb064HUEgAN/eAeFb+4C3F0nFq7JxqKzFuC0cxciY1kqfnnZ77D/k8OAe4Dyxzc9iEXr5o8op6PXhk0FTeibgi8hdAopNmZHQjXKxU5nexduXXgP2htM+MYDXxvy7eZwU3lhdvgvHyHv1S9HPB8eG4pzv7kWO97cjcbKgURJVJIRr5b+ZcQ4G519dmwqaESPLfCx1Mgl2JgdCY088OPJOewO14/DCafdAYfdOfDcoMdOh9Pzt93mgMagRm1RHd7+88fI2104ZhJNLBEjY2kKzG1dqC8d6AIvV8rwZuPfodENHWu022rHpoKmKenKpJa5YqlVTEEsHQMxGy2Wrjg6hsRSrVchKsmIrvYu7Hp3P756dx9yt+d5vXGPiAvDOdethqnZjC2vbvc8P+/MDPzus18OSW4AgMXqwKaCxin5QkcpFWNjdiT0ysB/ETheLAfiOCyWOuWIhNl4tr+5G49e9yeEGPV4+P37MP/MTK/L9doc2FTQNCWTPSgkYmzIjpyS8WvGiuXg/Xp4LFVa5YiE2Xh2f3AAD13xe+jCtPj1Oz/zet4BgD67E58WNsE0BZM9yCQibMiKRJg68F+8jRrLcY6fCrViRMJsPIe2HMP9Fz4KtV6FX/3vJ1h2gfdhOawOJzYXNgVkhvHhpGIR1mcaYdQG/os3p9MJu80xNJaO8fd5uVI2ImE2nuM78/GTsx+CUqPAg6/fjRUXL/O6nM3hxJaiZr9nGPeFRCzCBRlGROmmIZaD9uux9nmZQjYiYTaewgMl+OGqByFXyHDvqz/A2iu9T1bocLq+0Gmcgi/HxCLg/AwjYvSB71XTH0tv55ix9nmpXIqoJOOQhNl4ynIrcefp90EkFuOnL92Bc7+xxutyDqeAL0qaUW8OfCxFIuDc9AjEG3w/Nk03JtSCkFADgNqOHmwtbQ3oOCxGjRznZxjHTVqMp6W2FUe3nnQNlLj1hNepnPup9SqkLUlGysJEJC9MREpOIpIXJPi1s9KAnq4eVOXXIn9fsd8JtMVnL0Dq4qQRCc62hnb89Jxfw2F34Bdv3IOMpamjltfU2YfPS5phcwRuuwxVybBMJ0Nsgv+DklbkVePfD/8P+z457OmmLJKIsepX30DKRu8XGxN1RkII5kWN3W1PEATUlTYgOjlyzNmMKvNr8Ksbn8Xqx28KaLdKg1KKCzKN4yYtLJ09sJgtiIgbaBFYXViLfz/yFvZ8eBA9ne4WDCIRzvz5NUi//MyA1REAjv9tE+S1zVjk3i4zlqaMmLGoy9SFu9f8Et0dFtz/7x9i8VkLRi2vzWLFlqLmgLbs1SmkWJ9pHDdp0dPdi862LkQmjN5kH+5tY1+VKeBdp4+98CmO/+MzwN0lNiUnEetvPBuXfn+9p5VPXVk9bkz/IQAgPDYM/654FlKp9//L1GPDZ0VNAU2qaeQSrM+MhF4Z/HmOei29+PxfO/HR3z5D+fGqMb8Rl8gkmHdGBm546GosOTcHYrEYpmYTrom6DXCPM/lazd8QGuH9+qCj14YtRc0BTaqpZRKszzTCMIMG3a0va8TOt/di17v7kL+32OsyEXFhWPO1FVhz5QosXJsNiUQCh8OBW+bdjdqSBqTkJOKP2x6GLtT7FxadfXZ8VtSErr7AxVIpFWN9phGhU5C0CIamqmboI/RQqse+2e222vFZYXNAk2oKqRgXZBgRrpkjsaxugS5MO25S02J1YEtRU0DHWpJLRDgvw4jIKUgABUNLbSvUevW4ibhemwNbiprRFsAEpUwswrkZEUOGuJnNWuvboVTLx00e9dmd+Ly4OaCz0UrFIpyTFoFYw9yIZXujCVK5dNRzTj+rw4kvilsC2uJcIhLh7LRwxIfM3ASQP0zNHRCLxeNOEmVzOLG1pCWgLc7FImBdajiSZuC4aYMxoRakhBoANHf1YWd5W0AGmEwLV2NFYuiEmjuPp768Ece2nsTRra4EW2vd+OOdGBPCXQm2/iTbwgQkzov3dJ871XW2d6EqvxaVeTWoyqtGVYHr8XjdcXxJoI3G6XT6NDNMm8WKneVtAflWNilUhU/v/jsOfXwYKp0St/3uW1h/49lQTKALX315I9743XvY/r896DJZkHPLBci5+YJJD1ovl4iwMikMyWGBOVh3my34wYoHUF1YB31yJDb+5fuQRXofb8Yf8QYlVieHTajp+HBNVc1484n38eXrX6GzrQsLvn0uFn1vAySTna3SZkeaxImVS5N9nj7d1+3S3GvDjrK2gHRZjNMrsTolbNSWaRMlCALyGrtwuNY06RbI1q5eHHzyXVRvOYJ5KzJxye3rcdY1K0eNVW1pPQr3luDsb6weN56dfXbsLGsNyDfc0ToF1qSETUnLNF84nU7s++QIPntlK45tO4nO1rETmnKlDEvPX4Trf3EVsk9P95rkz9tThC9f34VbHv8GVJqxL4i7rXbsKm8LyEx2kVoF1qaETUnLNH/0T26z65192PnOXpQdq/S6XGxaFNZceSbWXrUCmcvTvG53rfXtOLEzH2dcvNSn5MWuitaAfMNt1MixJiV8RiR5g6HH5sDuiraAdP8MV8uwNjUchilo5Tcb9Nkd+KqiHdUBmBUwVCXD2tQwhKrmRmLSX1a7E3sq2wLSldaglGJdaviUtPKbDWwOJ/ZWtaMsAF1p9Qop1qaGIUIzN5K8/rI7nNhfbUJxy+S70moVEqxNCZ8zCXN/OZwCDlQH5stljVyCNSlhsyJhzoRaEBNqcO/Eh2s7kN80sQ1PLZNgZVLotGXBBUFATVGdqwXb1hM4+VWBTwk2uLvUxGXEICUn0d2iLQEpOYmITomck91G+8fUqsqrQVV+DSrzalCZX4OqvBq0Nfg2oLXGoMais+Z7EmgpixKnJVYOp4Bj9WacaDBjIkcIhVSMMxNDkRymxtfCbkKXaeAkFWLU47I7NuDSO9YjxDixcadaalvx/nObsWdbHhbceQnCMuMmVE7V1lwc+P07CAvTeFpXuhLAiYhLj/Y5KdRPEAQ8fPUf8NW7+wH3VOdP7noEJWYrcuvNE0qyyCVinJEYgtQwdcAG4jS3drqSufk1KDxQiiNfHkevRIKVv/g6wucnTqjMml0nsf+3byFEp/TEMGVhIpJzEhGfEeN3LL1xCgJONnTiaF3HhGIpk4hwekII0sM1gYtlWyeq8mtRlefax6sKatDS0YOsWy+EcdHIrtW+aDxUgt7dJ3HFLedg0brRW+5NhlMQkN/YhSN1HRNqKS0Vi7A8PgSZxsDF0lclR8vx0fOf4fDnuWioaB4yFp83ar0Kq684A9f+7HIkzY8PeH0FQUBhcxcO1XTAPsFYLo0zIDtSG7TBdgVBQNGhMux6Zx92vbN31KEfUnISPS3RUnISpySWxS3dOFhjmlBLaYlIhCVxesyP0k1o/Lm5RBAElLZacKC6HdYJxFIsAhbHGLAwWjeh8efmEkEQUN5mwf5q04SGHxCJgEXReuTE6Cc0/txcU9Fmwb6q9gm1OhcBWBCtw5JYA2MJoMrUg72VbRNqdS4CMC9Ki9PiDJD68MXmXFfb0YPdFe2wTHAimuxILZbGGaakcctsU2/uxe6KtgkP5ZAZocGyhBDIZ0ksmVALckKtX2efHUXNXShu6fbpZB2hkSPbqEVymDroJxRzWycqTlSj/HgVKk5UofxEFSpOVPs8dbpCJUdkkhFh0SEIjTIgJNKA0KiQgb/dj0Mi9TNmQgS7zY7Oti50tHSio8UMc2sXzC1mdLR0oqmy2dPizJ9pujUGNRLnxSFpXjxScpKw6Kz505ZAG0231Y6i5m4UNXf5dOETqpIhO1KLlDC154Tyi0sfx76PD49YVq6UYcPN5+K7T9wwoRZr/dqbTPjy85Oo6rEjNCcZonEuCuy9VlRsPoyit3ejraBm1OVkChmik40IiXJtj6GRBoRGh7geRxmGbJ/9LS//98cP8cLPXgXcg34+e+C3iE2LBtytL4pbulDY3I0eH07WIUopsiJ1SAtX+3xydtgdMLd1wdzaCXP/ttnSiY6WTjRXt3i2y1Gn6RaJELMiE5lXrUbcmvkQj/O5jj4bKrYcQdFbu71OPtBPJpciKtmI0KgQhEQZEBY1EMcQTyxdf/syq3CPzYHiFtd26Ut3O4NSiiyjFmnhGp+7xDscDs8+3tna6d7XO2FuMaO5phVV+TWoyq8dMzkefXoGMq9ajfh1C8ZtSem02WGraMSqxfFYMC9u2hIrvTYHSlq6Udjc5dOFj14hRaZRi/QIzYQGLZ6Ilro2fPy3Ldjz4UFU5df4NKGAIUKHC248C5d+/0LPPjjV+uwOlLRYUNjc5VPLc61Cgix3LEcbE3EqWXutOPFVIfZ9dAi73t03agvprNPTsObKM7Hma2cgPjN2eupmd6KktRuFTV0+dV3UyAdiGeiWp7Od1eFEWWs3Cpq60OFD10W1TIJMowaZRi1jOYzN4URZmwWFTV1o96EVv0omRmaEFhlGTdBa8c5UNocT5e5Y+tINVCkVI8OoRWaEJuiteGcau9OJirYeFDR1+dSKXyEVIyNCgyyjlrEcxuEUUNHu2i59acWvkIiRHqFBplEzJWN1zmYOp4Aqk2u79KVLrUwiQnq4BlmR2lnXIpoJtRmSUOvncApotVjR2m1Fq8WKPrsTTsE1UKReIUW4Ro5wtXzGd2MQBAHNNa0DibaTVSg/XoWq/NpJTU+tC9V4EmzDk29qvQoisRhisQgisQhisdj9WwSIRO7nx37d1meHuXXgxrmjpRMdra6kxMDznUNaXPnLEKFD4vx4JM2LR+K8eCTNj0fi/HiEx4TOyKmAAcDZv11abGizWNHU2IH8/SVwWG2IjjTgnIuWIMK9XQ7/Hza/vBV/uPm5Ucv+zqPfwPU/vzIg9Wxu6cTeXYUoKm6ABSJIFDLAKcDa3Yv2olq0FdSgNa8Ktu7ADpqpMaihDdGgqarZ06Lv/BvWIWftfGhD1EO2O5FYjD6ZFH1yOXplUjjEYggiEcQA5HBCIwjQwAkVALF7+7Rb7TC3dqHDvU2a3Unc/m2z/7nO9olvl7pQzZDtMiwlCi1dfahuMKHbCUiUcsApwNbdi/biOrQW1KD1ZBVs3YGdUU6tV3kSbMOTb5oQDcSSobG0yqTolcvQK5MNi6UAjeCERnBCJRoUS5tjUMJx2H4+KDHe1d49qVnnBlOEaBCxIBFh2QkISYuGVKWAVC6BRq1AYlwoTlueAqNWOW0JKm+cgoD2Hpvn3GOxOtznHkAtkyJcI0O4Wo5QlWzKj1PlJ6qw9bVdOLL1OKryamHp9K17UNKCeFx86wVYe/WKIeMHTjehP5YWK1q7bei22uEUXC1+NHIJwtVyhGumJ5bD61WVX4NDn+Xi4GdHkbs9D309I28YRCIRFq7Nxtorz8TqK05HZKJx2uo4nCAIMPXY0GpxxbPbaofD6Yqluj+WajlC1bJTvkXaeARBQEevHa3dVrQMi6VKJvFcX4YxluPyxNJ9vd5ldcDhFDyxDFPLEa52HTNP9dZ94xEEAeY+u+fc09k3EEulTOKJY5haHvQGBLOBudeGlm7X9Xpnn30gllIJwtzn8XDG0iedfXZXLLutMA+KpUIq9sQxXMNY+qKrP5YWK8y9rliK3LEM88RSNmtbSjKhNsMSanOdw+5AbUmDqyXb8SpUnKxGxYkqtNS2eQadnyvCY0NdybJsV8IsaX48EufFTbib40zSUNGEG1LvBACsvfpM/OrNn4y6bHVhLW6ed/eorz/87r1YdfnpAa9jT1cPDnx6FAc2HcGeDw+OObnDcCKxCBKpBIIgwDHBpt8zVWiUAUnz45GQ7dom+39CIg2j3tz3WvpwcPNR7P/kCPZ+dBDtjaO0cPPCE0unMKlpvmcimfubXZvVDoxzJlVplUg/LQVnXbMSF9x0NtR+zEo3l/VaerHjrX3Y++FBFB0sRUttKxw+dgMSi0VYct5CnH3taqy6/HQYRpk84FRmbu3E4c9zceizYzi0JRfNNa1el5NIJTjtvIVYe+WZWHnZcoRGTX7cRyIiIqK5jgk1JtRmjJ7uXpgaO9DWYEJ7owntjR3uv9vR3tSB9sYOtLtfC1byTReqgT5CD0OEDvpwHfQROhjCdUOeC40OQWJ23Jye6dRmteEi5fUAgHlnZuDp3Y+NuqwgCLjKeDM624aOEyiWinHvP+/Ced9cO+X1FQQBFSercXDzMRz49Ahyt+f5ldwRiUTQhWkQlRSJ2PRohMeEwGZ1wNRkQluDCeUnqmHxsYvzVNCGaKAP1w5shxE6GML10IfrPH+HRoUgISt23Fl6xiMIAqoKanFo8zEc2HwER788AbsfSUeRCNCGahGVbERsahQi4sNht9o9+7zrxwSLefKDFk+ExqB2x0wPfbgWhgg9HHYHGqta0FzVAlNTB6y947eylcqlSMyOw4pLluKS714Q1FY+M0nJ0XJ8+dou5G4/ierCOr/Xc2i0ASsuWobl6xdj+YWLx50N7VRjt9mRv7cYBzcfxaEtx1B0sGzUlpbhsaFYtn4xll2wGKdvWDLubGhERERENBQTakyozUo9XT1Dbr7bG1xJNkEQ4HQKEJwCnE4nhMGPhf7HAgT3a57Hgmu2OIlUAsPgpESEHvr+5FmYNiADq88V10TfClNTB4zx4Xit6vkxl33wksew/5MjI57/w5e/xuKzp2bQ9bH0WvpwfEceDnx6FAc/O4rqgjq/yxBLxDAY9dCHalGZ7xqLTa6U4eH374Nap/Ikh3s6e0Zsl3arHe8/++mQJOOKS5YheX78wHYpDCwvkYhHJnLdf+vCtJBOdnbOSejr6cPxnQU4uNkVy8qTo49LNxqxxDUdd1x6NLJOT8OyCxdj3sosdLd3D0mkW8wjY9m/j7ued3rfx4fFUheuG7Kf9yceFVol8vcU4fCWXBQdKEVNSR3aGzrgdIzfYkpjUCMhOxannZODs69bhdRFyROM6Nxgt9txfEc+Dm3JReH+EtQU16Otvt2nWA4mU0ix5NwcLF+/GMvWL0Zi9vSNLzdb1JU24ODmYzi05RiOfnli1C6ycqUMi86aj2UXLMbyC5dMyQQNRERERKcSJtSYUCOakDuW34viw+UQS8T42PKfMZM6//vDB3jh3n8BAKKSjGisbAYARCZG4IVjfwh6K5OmqmYc3HwMBz87isOfH/d5Qg1vlBolIhPCkbLINbHEykuXwxg/dDyn/zz6Nl7+1X+HPJezbh6e3PabCX/uTNFc04pDnx3Dgc1HceTz3EmN66bUKBARF46URYlYvG4+Vl62PGAtvcpPVGH/J4dxcnchqvJq0FLXjj6Lby1fJVIJjAnhyDo9HSsvW47VV5wOpXrmT+s9VSrza1yx/KoQlXnVk+7Cn7YkGcsucCXQFq7J9kz6QS6m5g6c2FXg6cZZX9Y46rIpOYmeZOTCNdmTmgCGiIiIiIZiQo0JNaIJeeTrT2LH//YAAF7KfwoJWXGjLttr6cPLv3gdBqMBX7v7Ijx40WPI3Z4HALjg22fh3pfvmrZ6j8dhdyB/n7vL1GfHUHigdNKD00ukYujCtAiPDUNoVAgOf5ELp5dxov5Z8Odpm0VvOjgcDhQeKMUhd7KyYF8xnM7JxVIs6Y9lKGJTo5GSk4DsMzOwYFU2NHr1kGXtdjvKjlagYH8JCvaXoCy3Eo2Vzeg2Wfxap9oQDRLnx2HJOTk49/o1SJoXP6n/YTZyOp0oy61E3p4iFB0sRenRCjRWNqPL1A1hkus0NMrg6Xq49PwchEWHBqzes53T6UR1QS1O7i7Cyd0FyNtdiJqi+lGXDzHqsfSCRa5YXrAIEbFh01pfIiIiolMJE2pMqBFNyCsPvYF/P/IWAODX7/wMq684w+f3NlY247uLfuLpmvSr//0Ea686c8rqOhn9g3of3HwMuTvyxmwNMlkxqZFYe/VKZC1PQ866eQiNnFsDg3e2d+Hw58dxcPNR5O7IQ11JQ2A/QATX7HQikacbqD8kMleX77j0aGQsS8PS83Nw2rkLIVfKA1vPGaqpqhkn9xSh+FAZqgtq0VDRhPbGDnR3WGC32gP2OTK5FAvXznN3PVyMlJxEiGfpzE6B1tPdi6IDpTi5uxAndxcgf0/RmK08pTIJFqzO9rRCS1uSzFgSERERTRMm1JhQI5qQrf/9Co9d/xQA4Ob/ux7feOBrfr1/y6vb8fub/gIA0Ifr8ELuHxEeM/NbprTWt2P7m7vxws9e9Xk2wokSiUVQqORQaZXQhmhgMOoRHhuGyMQIxKZFIyErFkkLExAyS2c3bG804cRXhTj5VQFOflWA4sPl0zYTqFgihkqrQkR8GDKWpmDl5cuRs2buJTEBwNLVg5qCWtQWN6CuvBHNVS1orWtHe6MJrXXt6GzvQl+PddyZSidKppAhc3kqFqzMwuJzFiJn3TyoNKduF9nBmmtakbe7ECe+KkDeniKUHq0Ycx+QyaXIWJaK+SuzsPjsBVh89nyoOGMsERERUVAEbyRrIprVEucNdPGsKvB/IPrzb1iHPR8ewM6398Hc2ok/3vpX/N9HD8z4QbJDowzY/uZuTzLtotvOx9lfX4UTuwpwcnch8vcUjToouL8Ep4De7j70dvehvbED1YWjT54gkUmgUMmhMaihC9VCpVVCpVdBo1dDY1BDG6qBPkwLXZgWBqMBoZF6GCL1CI8JDfj4X06nExazBR3NnTC3daKzvQvd7RZ0tnehq8MCi7kHlg6Laybfpg6YWzvR1dENmVIKoUfwe+D6CdXR4UR3Rze6O7pRebIan/9rh+e1/liq9WroQjVQ61RQ6VVQ61TQhmigDdVAF6JxTQ5hNCAkQoeQaMPUxrK1E+aWQbE0daPL1O2JpanZjPYGE8xtnegyWdDb1Yu+XiscfszAOhaxRAyJVAynQxg36RkSacCC1VlYsCobC1ZlIn1pKsdBc3cnL8utxMmvCnFyTyHydheiqaplzPeEGPWYvyoLC1ZlYf6qLGQuSz1lWkwSERERzXRMqBHRhMRnxkAkEkEQBFQX1Pr9fpFIhB/99bs4sasA7Y0dOLDpCD5+4XNc8r0LpqS+gbL5n1uRt6cIAJCQFYs7nroJCpUCp52bA7jHDSs/XuVJsJ3cVYDmmtaxCxW5JjPQhaghU8jR292Lns5e9Pb0+Tw+lcPmgMXWA4u5B83V43yetyqIRBCJRe7H7koN/yUa/Lr7WREAQYDD7pxQN8tAE4lEMETooAnRuBKSFncsLROLZct4626UOkwmlk6HE07H9MZSLBFDqVFCrVNCoVZALBahr8eKtoZ22K0Od51GJjpFIhGSFyZ4Ej4LVmUhJjVqxifGp1qXqRtluZUoO1aJstxKlB+vRPnxKldLwDEkLxiI5fxVWYhLjz7lY0lEREQ0U7HLJ7t8Ek3YDWl3oqG8CWqdCu+ZXpnQjd++Tw7jF5c8DgDQGNR4uehphBgNU1DbyetoMeM72T9CZ1sXAOCJLx7CknMWjvu+pqpmnNhV4OneWJZb6dPnRcSFISUnERHx4VBqlRAJArrNPWita0N7o6tll8Xcg74ea0DHuAo2iUwChVIOpVYJbYga+jAdQqNDEBEXCrV74oGOZjPy9xWjPLfSp4kOwmNDXbGMc8cSgKXz1IilXClzdRs2aKAP18Fg1EOhkUMEERwOJzrbO1F1snb8xC8AlVaJeWdmYP5Kd9LnzIygz9IbTA6HA3UlDZ7EWf/PeC3PAECpViB7RToWrMrG/FVZmHdmBnSh2mmpNxERERFNHhNqTKgRTdiDlzyG/Z8cAQC8VvU8jPHhEyrniZufxWcvbwMAbLzlPNzz9+8HtJ6B8uRtz2PTi18AAM69fg0e+PePJlTOkS+P497zfwMAiE2PhlKtQGVejU/jh6m0SqQuTkLqomSkL0lG2pJkJC9MgEKlgLmtE5V5NagpqkdHU4erW2C7u2tgZw96zD3o6e5FX3cf+nptsPVaYeuzw26zw2F3wul0t0AadFYQhv4xKpFYBLFY5O4aKIFEJoFUJoVMLoVMIYNcKYNcJYdCJYdSo4BSrURIpB4RCeGITYlCXEY04jJjR8zUOZ5uswUlR8pRerQCpccqUHq0ApUnq2H3oaujUqNA6qIkpC1ORupiVyxTchKhVA+NpbnFDHNbF7rau9HdYUG32YIecw96La7uuH09Vtj6bLD12WC3BiCWIhHEkkGxlEoglQ+LpVIOhdoVS4VKgZBIPYyJEYhOjkRcRgwSslyxNLd1ojy3CqXHKlCeW4nS3EpUnqyGtdc2bnxEIhHiMqKRsSzV1X1zdRZSFiZCIpWM+965qLO9y9XarD+exytRcaJ63FZncMcyJi0KmYNimboo6ZSNJREREdFcwIQaE2pEE/a3n76Kt578EADw282/wLILFk+onPZGE27K+iEs5h6IRCI8s+9xZC1PC3BtJydvbxF+tOpBAIBar8JL+X+e8CQKm1/eij/c/BwA4Ht/+DauvudSWPtsqMqvcSWGBiWHujss45YnEolgTAhHbHo04tKiEZvu+olLj0ZMmithdyqxWW2oyq9F6dEKlB0biOVYsyUOZowP98QvNj1mUCyjZuRg+g67A03VLagvbUR9WSPqShtRcbIKZccq0VLb5lMZGoMaqYuSBn4WJyF5YeIpt+04HA40V7eivqwR9aWNqCttQGVeDUqPVfjclVqtVyF1URJScpKQtjgJKYuSkLIwgZMHEBEREc0xHEONiCZs8MQE1QV1E06ohUaF4IZfXYO//fRVCIKA5370Ev608xGIxeIA1nbiHHYHnr7j756/b/rNdZOakbTiRLXncdKCBACAXCFD+pIUpC9J8bwmCAIaK5s9SbayXNfvhormIeUJgoCmqhY0VbXg6JcnRnxeRFyYK8mW1p8kikZcRgxi06Lm5E2+TC5D2uJkpC1O9jwnCAKaq1tQMixh2VDeNOL9zTWtaK5pxbFtJ0e8Fh4bOihxGTMo8RYNtW7qYtnT1YM6d8KsP9FTX96E+tIGNFa2+Dw7an+rs9TFyUjNSXK3dkxCZGLEKTNWV093LxrciUdPTMsaUFfaiKbKZp9aN2JQq7M0d4vR/kRkVJLxlIklERER0amMCTUimrDEefGex1X5/s/0Odjld23AJ//4AtUFtcjbU4Qv/rMTF9xwVgBqOXkfPLcZpUcrAABpS5Jx2R0XTqq8yryBhFrKwoRRlxOJRIhOjkR0ciRWX3GG5/n+rmelRytQcrQc1fm1qC1p8IztNlxLbRtaatuQuz1vxGth0SGeFm2xaa6fsJgQhEWHICwmFGqdak4kB0QiESITjYhMNGLVZad7nu/u6EZZbpU7aVmOirwa1JU0wNza6bWc1rp2tNa14/iO/BGvhUYZBloHpsUgJjUS4bFhnniq9epRYykIAtoaTKgvbRiU5HEnzsqaYGrq8Pt/PlVbnQmCgPZGkyuO/a32ylxxrC9tQHuj/7FkqzMiIiIiGo5dPtnlk2jCukzd+FrYTQCA7DPS8czexydV3sHPjuGBDY8C7kTPPwufntJWP75orW/HzfN+BIu5BwDw568exfyVWZMq8x1qIWYAACmsSURBVPqk76O5uhUagxrvtr0csISVua0T9aWNqC2uR21JA+pKG1BX0oDa4np0tHhPEI1HqVYgNDoEodEhCI8JQWiUK9HWn3Dr/x1i1M+p8aA627tcLZjc8asrbXDFtKRhQsktAJDKpVBplZArZZ5Y2W129Fms6OnsHRh3zQ8qrRIxaVGISY1CbGoUYtKiEZMahYSs2DnV6szhcMDc0on2xg6YmjrQ3tiB9kaT63eTCaYmM0zuv01NHT63MhtMqVEgNi0aMamRiEl1xTEmLQrxmTGITo6cM7EkIiIiosBgCzUimjBtiAaJ8+JQlV+L4sPl6LX0Tar1y/L1i7Hq8tOx+/0DaGsw4T+Pvo3bfvetgNbZXy/87FVPMm3jLedNOpnWbbZ4xmJKWpAQ0Jt0fZgO+jAdsk5PH/Fal6l7IMFW0oDaknrUuRNEY7XY6bX0eVpLjUUsFsFg1LsTb6GuJFykASqdCiqtEmqdCiqdCmqdEiqt0v1YBaVWCbVOCblSPqMSFrpQLbKWa5G2OAm93X3o7e51/bb0wdTUgdriBjSUN6KhvAmNVS1oqzehs61zzMH+7Vb7qK0Ix6JQyaEL08Jg1CMsOhQR8WGISjIiNi0KEXHhUOmGxnemxbKfw+5Ab3cverr7hsbU/bjLZIGp0eRKmA1KmpmazDC3mH2azXU8YTGhiEmNdCXOUlwJs1h3QjIk0jAj40ZEREREMxMTakQ0KQtWZaMqvxYOuwOFB0qw+KwFkyrv+3+8EQc+PQpbnw3vPPURNt5yLuIzYwNWX38U7C/Gl6/tAgDow3W49bffnHSZxYfKPI9TFoze3TPQtCEaZC5LQ+aykZM9WDp7XC2wihvQVNmMtgYT2hraXb/r29HeYBp3QH+nU3AnQDpQdqzS7/qJJeJBibehSTeVVgmFyp0kEong+jXsMfqfc/0WuV/DoMf9yzkcTndyrBd9FuuIxM7gxxNp6RRofT1W9Lm77ZaiYtzlB8eyP2E5OLEZyFg6nYIrZhbv8et/3Gfpg81qn9I4iSVihBj1CIkyIDw2zNViz93KLMb9eK53dyUiIiKi6cOEGhFNyoLVWdj04hcAgBO7CiadUItJjcI1P7kUrz32Duw2B/72s1fxyPv3B6i2/nn5V294Ht/0m69DH66bdJmDB7pfsCZ70uUFglqnGjEhwnDWXivaGzs8SbbBybbWBtfvtnoT2hpMPg+QP5jT4UR3h8WnWU1nOplChtAog/snBCGRBoREDvytC9VALBXDYXeir6cP7Q0drvi5E5ntDSa0umM7kYTeXIylJ36RBoREhbh/D46xHvpw3YyZyISIiIiI5j4m1IhoUhYOSgqd3F0YkDKve+Br+OyVbWipbcPeDw+h+HAZMpamBqRsX53YlY9Dnx0DAEQnG7HhlnMDUm7ujoGJARafNT8gZU4HuVKOqCQjopKMYy7ndDrR1d6N1vp2mFs6YensQU9nD3q6emHp7EVPZw8snT3o7eqFpasHPZ297td63K/1orfL9dx0D/EplUmgUCug1Cig1Cjdv4c9Vrsfu5dT69We5FlIVAhCowwBm8hBEAR0tnWhrcGEjmazK0ZdvUPi5IlbV/9rvQPx7RyI73THUiKVeI+fRgmlWu7+PfT1/lgOJB8NY07kQEREREQUTEyoEdGkxKZFIyTSAFNTB/J2F8LpdE66lYhKo8Q3HrgSz9z1DwDAf/7vbfz67Z8FqMa+Gdw67Vu/ugYyuWzSZVp7rcjfWwy4W+JFJo6dnJqNxGIx9OG6Sbfmczqd6LP0eRJx1h4rBEFwJYYEeB578kSD/nYtM/Ix3EkqsVjkNWEmlc2sU6JIJApILAVBQK+lz5OIm2ws3Yt4jWV/QjIQ+wsRERER0Uw2s+4eiGjWEYlEWLgmG7ve2YfuDgsqT1YjJSdp0uVuuPkc/Of/3kZbfTu+enc/yk9UIWVhYkDqPJ4jXx73dM2Mz4zB+d9aF5By8/cWw9bnGrR+NrVOCwaxWAyVVgWVVoWw6GDXZnYTiURQaZRQaZSMJRERERFRgHCwESKatAWrBma+PPFVYLp9ypVyXPvTyzx/v/bYOwEpdzyCIODlX/7X8/cNv7oGEqkkIGUPHj9t0dmTG2uOiIiIiIiIgocJNSKatAWrB42j9lVBwMq96LvnwxDh6u62/Y3dqC6sDVjZoznw6VHk7SkCACTNj8dZX18VsLJn6/hpRERERERENBQTakQ0aemnJUOhkgMBTqipNEpcfc+lgLvl2Ou/fTdgZXsjCAJe/tVA67QbH/46JJLAtE6z9lo9ibrolMg5OX4aERERERHRqYIJNSKaNJlchuwVGQCAhopm1JbUB6zsS++4ELpQDQDgi3/vRH15Y8DKHm73+wdQfKgMAJC2JBmrv3ZGwMrO3zd4/DR29yQiIiIiIprNmFAjooA4fcNpnse73z8YsHI1ejW+9sOLAQBOhxNv/Pa9gJU9mCAI+M//ve35+8aHvz7p2UoHO7Z1YPy0xRw/jYiIiIiIaFZjQo2IAmL1Fad7Hu9+f39Ay77ihxuh1qkAAJtf3oqW2taAlg93C7L+1mnpp6XgzEuWBbT8rwbFZPE5TKgRERERERHNZkyoEVFAxGfGIiE7DgCQt7sQ7U0dAStbF6rFZXdcCACw2xz49KWtASu73wfPfep5fMUPNkIkEgWs7JriepQdqwQAZJ+RjsiEiICVTURERERERNOPCTUiCpjVl7taqTmdAvZ9dCigZV/y/fWeJNenL30Jp9MZsLLbG03Y8eYeAIA+XIezAzizJwDs+N8ez+N1V68MaNlEREREREQ0/ZhQI6KAWXn5oG6fHxwIaNlRSUYsv3AxAKCxshmHtuQGrOxP/vEFbFY7AGDDzedCoVIErGwA2P6/3Z7H665hQo2IiIiIiGi2Y0KNiAIm+4x0hEWHAAAOb8lFr6UvoOVvvPV8z+NN//g8IGU67A58/LctAACRSIRLb18fkHL7De/uGZVkDGj5RERERERENP2YUCOigBGLxVh56XIAQF+PFYc+OxbQ8ldeugyhUQbAPZNoe6Np0mXu/uAgmmtckxyceekyRCdHTrrMwdjdk4iIiIiIaO5hQo2IAmoqu31KZVKsv/FswN2y7LNXtk+6zA+e3eR5fNkdGyZd3nDs7klERERERDT3MKFGRAF12rkLodIqAQB7PzwEu80e0PI33nqe5/GmF7+AIAgTLqsyrxpHt54EAMRnxmDp+TkBqWM/dvckIiIiIiKam5hQI6KAkivlOOOi0wAA5tZO7P/kSEDLj0uPwZJzFwIAaovrkbs9b8JlffDcZs/jy+7YALE4sIdEdvckIiIiIiKam5hQI6KAW3/jOZ7HnwRo8oDBLho0OcFEy3fYHZ6El0Ilx/obzwpY/QBAEAR8/q+BLqns7klERERERDR3MKFGRAG3bP0iRCZGAAAObDriGfQ/UFZ/7Qzow3UAgF3v7ENPd6/fZRzbngdTsxkAcMbFS6ExaAJaxyNfHEd1YR0AYNFZ89ndk4iIiIiIaA5hQo2IAk4ikWDDd84FADidAj596cuAli9XyLD2qjMBANZe24RmEx3cHfOsKeiO+f6zn3oeX35n4Cc7ICIiIiIiouBhQo2IpsSFN58DsVgEAPj0pS/hcDgCWv6qScwm6rA78NW7+wB3d88zLl4a0Lo1VDRh74cHAQARcWFD6kpERERERESzHxNqRDQlIhMicPpG1+QETVUtOLwlN6DlLxk0m+i+jw7DYfc9YTe8u6dKowxo3T56/jM4na7ZRy/53npIZdKAlk9ERERERETBxYQaEU2ZoZMHfBHQsuUKmSdhZ27txImvCnx+71R297T2WrHpRVcXV6lMgotuOy+g5RMREREREVHwMaFGRFNmxcVLERYTCgDY88FBtDeaAlr+qssGulLued+3bp9T3d1z2xu7YW7tBNwze4ZGhQS0fCIiIiIiIgo+JtSIaMpIpBJceNPZgDuRtfnlbQEt/4yLToNEKgEAfPX+AQiCMO57prK7pyAIeO8vmzx/czICIiIiIiKiuYkJNSKaUhtvGejy+MGzn8JmtQWsbF2oFovOmg8AaChvQsWJqnHfM5XdPQv2l6D4UBkAIGNpCuadmRnQ8omIiIiIiGhmYEKNiKZUTGoUzrx0GQCguaYVW17ZHtDyB8+g+dV7Y3f7FAQBe9yzb05Fd893nvrI8/iyOzdCJBIFtHwiIiIiIiKaGZhQI6Ip980Hr/I8fv237/o1I+d4Vl223PN49/v7x1y2pqgObfXtAIBFZy8IaHfP8hNV2P6mq/WbIUKHc65bFbCyiYiIiIiIaGZhQo2Iplz2GRlYtn4x4O6a+eVruwJWdmSiEWlLkgEAxYfLYW7rHHXZY9vyPI8Xn7UgYHUAgFd//aZnDLev3/c1KFSKgJZPREREREREMwcTakQ0Lb71i0Gt1B5/Bw5H4FqpDU6O5e0uGnW5Y9tPDrzn7PkB+/ySI+XY9Y5r5tCw6BBcevv6gJVNREREREREMw8TakQ0LRaumeeZQKC6sA4739obwLKzPY9P7Mr3uowgCMjd5kqoqbRKZCxNDdjnv/LQG57H3/j5lVCq2TqNiIiIiIhoLmNCjYimzTd/cbXn8X/+7204nc6AlLtgdZbn8cndhV6XqSmqQ1uDCQCwcO08SKSSgHx23t4i7P3oEADAmBCOi247PyDlEhERERER0czFhBoRTZvTzl2IeWdmAAAqTlRjzwcHA1JuWHQoYtOiAACFB0ph7bONWCZ3+9SMnza4ddo3H7wKcoUsYGUTERERERHRzMSEGhFNG5FINLSV2qNveQbyn6wFq13dPm19NhQfKhvx+lSMn3Z8Zz4Ob8kFAESnROLC75wTkHKJiIiIiIhoZmNCjYim1RkbT0PG0hTAPSvntjd2B6TcBasGdfv8qmDIa4IgeGb4DNT4aYIg4OVf/dfz97d+eTWkMumkyyUiIiIiIqKZjwk1IppWIpEIN/7mOs/fL/zsVfR090663METEwwfR622uB5t9e2e5QIxftrBzUc93UjjM2Nw/rfWTbpMIiIiIiIimh2YUCOiabfioqVYcfFSAEBLbRv++/i7ky4zITsOulAN4G6hNrgraf6+Ys/jnLWT7+5p7bXiLz98yfP3DQ9dG7BJDoiIiIiIiGjmY0KNiILi+0/eBKnMlYT63x8+QF1pw6TKE4vFnnHUOlo6UVNU53mt8mS153HakuRJfQ4AvPH791FX4qpvztp5OOe61ZMuk4iIiIiIiGYPJtSIKCjiM2Jw1Y8vAQDYrHb87aevTrrMweOoFewv8TyuzKvxPE5eED+pz6grbcDr7hZ1YokYP3j2VohEokmVSURERERERLMLE2pEFDTXP3gVwmJCAQC73z+Ag58dm1R5KTmJnsdV+bWexxUnqgAAap0KxoSICZcvCAL+8oMXYeuzAQCuuvtipCxMHPd9RERERERENLcwoUZEQaPWqXDb777l+fu5u/8Ju80+4fIS5w20PqsudCXUerp60FDRDABIWhA/qdZku97djwOfHgUARMSF4YaHrplwWURERERERDR7MaFGREF13jfXYv7KTABAdUEt3v/LpxMuKzIpAnKlDBjUQm1wS7Wk+QkTLrunqwd//fE/PX/f8dR3oNKqJlweERERERERzV5MqBFRUIlEItz59M2elmOvPvwmWmpbJ1SWRCJBfGYsAKCupAF2mx0VgyYkSF4w8YTavx95G83Vrnotv3Ax1ly5YsJlERERERER0ezGhBoRBV3msjRsvOVcAIDF3IMnbn4OTqdzQmUlzosDADjsDtSWNKDixEBCLWmCCbWKk9V4+08fAQBkChnueuYWTkRARERERER0CmNCjYhmhFt++01ExIUBAA5vycUHz22eUDmJ2QPjqP3qst9iy7+2e/4u2FeEE7vyIQiCz+U57A48edtf4bA7AADX3XcF4tJjJlQ3IiIiIiIimhuYUCOiGUEfpsNPX7rD8/ff7/0Xqgpqx3yPNwnZsZ7HdaWN6Gg2e/5+5aE38eN1v8KeDw76XN5r//cO8vcWAwBi06Lw9fsu97tORERERERENLcwoUZEM8ayCxbjirs2AgCsvTb87tvP+D3r5+CZPkdj7bX6VFbenkL8+9G3AABiiRj3/euHUKgUftWHiIiIiIiI5h4m1IhoRrnlt99EQrZrHLSig6X4z6Nv+/X++Myxu2OmLkryaUIBS2cPfnvDM3A6XGO5fesXV2P+mZl+1YWIiIiIiIjmJibUiGhGUaoVuO/VH0AilQAAXnvsHRz+4jh+f9NfcH3i97Hnw7G7a8qVcsSkRnl9TSQS4UfPfxdSmXTcejz7o5dQX9YIAJi/MhPXP3jlhP4fIiIiIiIimnuYUCOiGSdreRpu+NU1AACnw4kHL34MW17djuaaVvzrN/8b9/1xGdFen7/4u+f71Mpsx1t78NnL2wAAap0K9//rh54EHxERERERERETakQ0I113/xVInOfq+mm3DoyjVnasEr2WvjHfGxEXPuI5jUGNmx+7ftzPba5pxVPf+5vn7zufvnnUFm9ERERERER0amJCjYhmpA//+hlqiupHPO+wO1B0sHTM9xrjRybUrv/5ldCFasd8n9PpxO9v+gs627sBAGdduxIXfPssv+tOREREREREcxsTakQ045QcKcezP3rJMyHAcHl7isZ8f8SghFpkYgTO++ZaXPPTy8b93Lef/AhHvzwBuJNyP/rrdyESifyuPxEREREREc1t44/MTUQ0zZRaJeRKGay9Nq+v524/ievuu2LIczaHE5XtPWju7kPnghRct/1xSFUKCIIAhVSMz4qaEaaWI1qnQJxBCfGwRNnxnfl48eevAe7JC+595a5xW7QRERERERHRqUkkCIIQ7EoEi9lshsFgQEdHB/R6fbCrQ0SDlOVW4o3fv4dtb+we0VJNppDiY8trEIlEMPfakNfYhbLWbticvh3ONHIJMiI0yI7UQSEVo6WuDXcsuxftjR0AgOvuuwK3PP7NKfm/iIiIiIiIaPZjQo0JNaIZramqGe/8+RN8/PfP0dvV63n+vY5XUN5tx5HaDviYRxtBJRPj9Dg9nrr8t55upKedl4PHNz3IWT2JiIiIiIhoVBxDjYhmtMhEI77/xxvx3+rnccUPNkJjUGPFlWdie00nDtVMPJkGAD02J3ZUmKA7ZwlEEjEiEyPw89d+xGQaERERERERjYkt1NhCjWhWsVgd2FzUBHOvPaDl1uw8iSvXZmDe8rSAlktERERERERzDyclIKJZw+Zw4vPi5oAn0wAgfu0CtISrIQgCZ/YkIiIiIiKiMbHLJxHNGodqOtDe433mz0Aoa7WgvM0yZeUTERERERHR3MCEGhHNCvXmXhQ2d0355+yvMqHH5pjyzyEiIiIiIqLZi10+iWjGEwQBB2tMQ54TiYANWZEIUcqwu7INle09UErFOCc9Ak5BgAgi7K1sh6nXvxZtfQ4ncuvNWJEYGuD/goiIiIiIiOYKtlAjohmvpduKNsvQxJggANtKW5DX1Ol5rs/uxKaCJmwubMaRug4sjNFN6PNKW7thczgnXW8iIiIiIiKam5hQI6IZb7Sunj22oUmvwVMWyyVitFsmNt6azSFwLDUiIiIiIiIa1axNqP3f//0fVq1aBbVajZCQkGBXh4imUJ251+dlDUopNmZHYkViCBq7+jzPX5hlxA3L4hGqknmek0lEuHF5AjRyyaQ+k4iIiIiIiE4tszahZrVacc011+D2228PdlWIaApZrI4RLdHG0tFrx6aCJnxR3IIzEoYm2612J5bGGXwqp9Vi9buuREREREREdGqYtZMSPPzwwwCAl19+OdhVIaIp1OZHYkssApzufp9WhxN2pzDk9cLmLsyL1CFKqxjSes2brj4HrHYn5NJZ+70DERERERERTZFZm1CbiL6+PvT1DdxEm83moNaHiMbXax+9ddpZqeEI18hhczgRoZGjqr0HS+MNEATXLKAHqofODNpnd+J4gxlL4w3YVNDk02czoUZERERERETDnVIJtccff9zTso2IZgdBEEZ9bXtZ64jnNhc2j1lefmMX5kVqkRCiQkPn2OOkjfXZREREREREdOqaUU0v7r//fohEojF/CgoKJlz+Aw88gI6ODs9PdXV1QOtPRIEnEYsCWp5DEHC0zoylcQaIMXbZgf5sIiIiIiIimhtmVAu1n/zkJ7jpppvGXCY1NXXC5SsUCigUigm/n4imn14Z+MNUSUs3FkTpkBahHnUZiVgEtZfZP4mIiIiIiIhmVELNaDTCaDQGuxpENIOEquQQiYBA9r4UAByu7cDKpNBRlwlTySAWsYUaERERERERjTSjEmr+qKqqQltbG6qqquBwOHD06FEAQHp6OrRabbCrR0QBIhGLEKaSodViC2i5VaYeLIzWQSnz3gotQiMP6OcRERERERHR3CESZumo2zfddBNeeeWVEc9v3boVZ599tk9lmM1mGAwGdHR0QK/XT0EtiSgQ8ho7R8zYOdUunhfFpBoRERERERF5NWsTaoHAhBrR7NBnd+J/uXVwOKfncBWuluOS+VHT8llEREREREQ0+8yoWT6JiLxRSMXIiNBM2+ctiNZN22cRERERERHR7MOEGhHNCqfFGaCZhlk34w1KJIeqpvxziIiIiIiIaPZiQo2IZgW5RIyVSWFT/BkirEwKg4izexIREREREdEYmFAjolkjzqDEsnjDlJQtFgFnp0VAPQ2t4IiIiIiIiGh2kwa7AkRE/lgYrYcgAIdrOwJWplQswtlpEYjRKwNWJhEREREREc1dTKgR0ayTE6OHQSnFnsp29NqdkyorVCXDmpQwhKnlAasfERERERERzW1MqBHRrJQYqkakVoED1SaUtVn8fr9ULMKCaB1yovWQiDlmGhEREREREflOJAiCEOxKBIvZbIbBYEBHRwf0en2wq0NEE9TVZ0dRcxdKWrvRYxu7xZpBKUWWUYu0cA3kUg4jSURERERERP5jQo0JNaI5QxAEdFsdaLVYYeqxwe50Hd7kEjHC1DKEq+VQyjjpABEREREREU0Ou3wS0ZwhEomgVUihVUiRFBrs2hAREREREdFcxf5OREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+YEJNSIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFAjIiIiIiIiIiLyAxNqREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+YEJNSIiIiIiIiIiIj9Ig12BYBIEAQBgNpuDXRUiIiIiIiIiIpoBdDodRCLRmMuc0gm1zs5OAEBCQkKwq0JERERERERERDNAR0cH9Hr9mMuIhP5mWqcgp9OJuro6nzKPNDaz2YyEhARUV1ePu9HR7Mf1ferhOj+1cH2ferjOTz1c56cWru9TD9f5qYXrO/DYQm0cYrEY8fHxwa7GnKLX67kDn0K4vk89XOenFq7vUw/X+amH6/zUwvV96uE6P7VwfU8vTkpARERERERERETkBybUiIiIiIiIiIiI/MCEGgWEQqHAQw89BIVCEeyq0DTg+j71cJ2fWri+Tz1c56cervNTC9f3qYfr/NTC9R0cp/SkBERERERERERERP5iCzUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUKNJ+etf/4pFixZBr9dDr9dj5cqV2LRpU7CrRVOotrYW3/rWtxAeHg6VSoWcnBwcPHgw2NWiKdLZ2Ym7774bSUlJUKlUWLVqFQ4cOBDsalGA7NixA5deeiliY2MhEonw3nvveV6z2Wy47777kJOTA41Gg9jYWHz7299GXV1dUOtMkzPWOgeAm266CSKRaMjPhg0bglZfmpzx1ndXVxfuuusuxMfHQ6VSYf78+Xj++eeDVl+anMcffxynn346dDodIiMjccUVV6CwsHDIMi+88ALOPvts6PV6iEQimEymoNWXJs+Xdd5PEARs3LjR67GAZofx1ndFRcWIc3j/z//+97+g1n2uYkKNJiU+Ph6//e1vcejQIRw8eBDnnnsuLr/8cpw8eTLYVaMp0N7ejtWrV0Mmk2HTpk3Iy8vDH//4R4SGhga7ajRFbr31VmzZsgX/+te/cPz4caxfvx7nn38+amtrg101CoDu7m4sXrwYzz777IjXLBYLDh8+jF/+8pc4fPgw3nnnHRQWFuKyyy4LSl0pMMZa5/02bNiA+vp6z8/rr78+rXWkwBlvfd9zzz349NNP8e9//xv5+fm4++67cdddd+GDDz6Y9rrS5G3fvh133nkn9u7diy1btsBms2H9+vXo7u72LGOxWLBhwwb8/Oc/D2pdKTB8Wef9nnrqKYhEoqDUkwJjvPWdkJAw5PxdX1+Phx9+GFqtFhs3bgx29eckkSAIQrArQXNLWFgYnnjiCdxyyy3BrgoF2P3334+vvvoKO3fuDHZVaBr09PRAp9Ph/fffx8UXX+x5ftmyZdi4cSMeffTRoNaPAkskEuHdd9/FFVdcMeoyBw4cwBlnnIHKykokJiZOa/0o8Lyt85tuugkmk4mtF+Ygb+t74cKF+PrXv45f/vKXnud4jJ87mpubERkZie3bt2PdunVDXtu2bRvOOecctLe3IyQkJGh1pMAabZ0fPXoUl1xyCQ4ePIiYmJhxz/c0O4y1j/c77bTTsHTpUrz44ovTXr9TAVuoUcA4HA7897//RXd3N1auXBns6tAU+OCDD7B8+XJcc801iIyMxGmnnYa///3vwa4WTRG73Q6HwwGlUjnkeZVKhV27dgWtXhQ8HR0dEIlEvPma47Zt24bIyEhkZWXh9ttvR2tra7CrRFNk1apV+OCDD1BbWwtBELB161YUFRVh/fr1wa4aBUBHRwfg/rKbTg3e1rnFYsH111+PZ599FtHR0UGsHQXaePv4oUOHcPToUTZ0mUJMqNGkHT9+HFqtFgqFAt///vfx7rvvYv78+cGuFk2BsrIy/PWvf0VGRgY2b96M22+/HT/84Q/xyiuvBLtqNAV0Oh1WrlyJRx55BHV1dXA4HPj3v/+NPXv2oL6+PtjVo2nW29uL++67D9/4xjeg1+uDXR2aIhs2bMCrr76KL774Ar/73e+wfft2bNy4EQ6HI9hVoynwzDPPYP78+YiPj4dcLseGDRvw7LPPjtrSgWYPp9OJu+++G6tXr8bChQuDXR2aBqOt8x//+MdYtWoVLr/88qDWjwLLl338xRdfxLx587Bq1appr9+pQhrsCtDsl5WVhaNHj6KjowNvvfUWbrzxRmzfvp1JtTnI6XRi+fLleOyxxwB3E+ITJ07g+eefx4033hjs6tEU+Ne//oWbb74ZcXFxkEgkWLp0Kb7xjW/g0KFDwa4aTSObzYZrr70WgiDgr3/9a7CrQ1Pouuuu8zzOycnBokWLkJaWhm3btuG8884Lat0o8J555hns3bsXH3zwAZKSkrBjxw7ceeediI2Nxfnnnx/s6tEk3HnnnThx4gRblJ9CvK3zDz74AF9++SWOHDkS1LpR4I23j/f09OC1114b0qWfAo8t1GjS5HI50tPTsWzZMjz++ONYvHgx/vznPwe7WjQFYmJiRiRK582bh6qqqqDViaZWWloatm/fjq6uLlRXV2P//v2w2WxITU0NdtVomvQn0yorK7Flyxa2TjvFpKamIiIiAiUlJcGuCgVYT08Pfv7zn+PJJ5/EpZdeikWLFuGuu+7C17/+dfzhD38IdvVoEu666y589NFH2Lp1K+Lj44NdHZoGo63zL7/8EqWlpQgJCYFUKoVU6mpPc9VVV+Hss88OYo1pMnzZx9966y1YLBZ8+9vfnvb6nUrYQo0Czul0oq+vL9jVoCmwevXqEVNxFxUVISkpKWh1oumh0Wig0WjQ3t6OzZs34/e//32wq0TToD+ZVlxcjK1btyI8PDzYVaJpVlNTg9bWVsTExAS7KhRgNpsNNpsNYvHQ79clEgmcTmfQ6kUTJwgCfvCDH+Ddd9/Ftm3bkJKSEuwq0RQbb53ff//9uPXWW4c8l5OTgz/96U+49NJLp7m2NFn+7OMvvvgiLrvsMhiNxmmt46mGCTWalAceeAAbN25EYmIiOjs78dprr2Hbtm3YvHlzsKtGU6B/DIbHHnsM1157Lfbv348XXngBL7zwQrCrRlNk8+bNEAQBWVlZKCkpwc9+9jNkZ2fjO9/5TrCrRgHQ1dU1pOVReXk5jh49irCwMMTExODqq6/G4cOH8dFHH8HhcKChoQFwD34rl8uDWHOaqLHWeVhYGB5++GFcddVViI6ORmlpKe69916kp6fjwgsvDGq9aWLGWt+JiYk466yz8LOf/QwqlQpJSUnYvn07Xn31VTz55JNBrTdNzJ133onXXnsN77//PnQ6neeYbTAYoFKpAAANDQ1oaGjwbBfHjx+HTqdDYmIiJy+YhcZb59HR0V4nIkhMTGTCdRbyZR8HgJKSEuzYsQOffPJJEGt7ihCIJuHmm28WkpKSBLlcLhiNRuG8884TPvvss2BXi6bQhx9+KCxcuFBQKBRCdna28MILLwS7SjSF3njjDSE1NVWQy+VCdHS0cOeddwomkynY1aIA2bp1qwBgxM+NN94olJeXe30NgLB169ZgV50maKx1brFYhPXr1wtGo1GQyWRCUlKScNtttwkNDQ3BrjZN0FjrWxAEob6+XrjpppuE2NhYQalUCllZWcIf//hHwel0BrvqNAGjHbP/+c9/epZ56KGHxl2GZg9f1rm397z77rvTWk8KDF/X9wMPPCAkJCQIDocjaHU9VYgE14ohIiIiIiIiIiIiH3BSAiIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1IiIiolOQ0WiESCQa8+d73/tesKtJRERENCNJg10BIiIiIppedrsdf/rTn7y+Zjab8dOf/hR9fX244oorpr1uRERERLOBSBAEIdiVICIiIqLg6+vrw4YNG7Bt2zY899xzuP3224NdJSIiIqIZiV0+iYiIiAgOhwPXX389tm3bhl//+tdMphERERGNgS3UiIiIiAjf/e538fe//x133nkn/vKXvwS7OkREREQzGluoEREREZ3iHnzwQfz973/Htddei6effjrY1SEiIiKa8dhCjYiIiOgU9vTTT+NHP/oRzj//fHz88ceQy+XBrhIRERHRjMeEGhEREdEp6vXXX8c3v/lNLFu2DFu3boVWqw12lYiIiIhmBSbUiIiIiE5BmzdvxqWXXoqUlBTs2rULRqMx2FUiIiIimjWYUCMiIiI6xezbtw/nnXceQkJC8NVXXyEpKSnYVSIiIiKaVZhQIyIiIjqF5OfnY+3atXA6ndi5cycWLFgQ7CoRERERzTpMqBERERGdIkwmExYtWoTq6mrccccdWLlypdflIiMjsX79+mmvHxEREdFswYQaERER0Snis88+w4UXXjjuct/+9rfxyiuvTEudiIiIiGYjJtSIiIiIiIiIiIj8IA52BYiIiIiIiIiIiGYTJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFAjIiIiIiIiIiLyAxNqREREREREREREfvh/Wr45L7DV93QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = net.plot(rotated=True, curved_edges=True, size=(1500, 800), hide_xalpha=True, node_size=400, node_font_size=9)" + ] + }, + { + "cell_type": "markdown", + "id": "645d99fa-570b-4615-be99-110a36b0afda", + "metadata": {}, + "source": [ + "Now we'll add in the electron capture onto Ni56, but we'll change the end point to be Fe56 -- this is what `aprox21` does" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "f9bcaaa4-3bad-46fd-ac51-c3adf2a6a9e0", + "metadata": {}, + "outputs": [], + "source": [ + "fig.savefig(\"newnet.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "2dcf2c8b-2dc7-4aa9-bb80-ec6f91244f5c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(Ni56 + e⁻ ⟶ Co56 + 𝜈, Fe56 ⟶ Co56 + e⁻ + 𝜈)" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ni56_cap = weak_lib.get_rate_by_name(\"ni56(,)co56\")\n", + "ni56_cap_r = weak_lib.get_rate_by_name(\"fe56(,)co56\")\n", + "ni56_cap, ni56_cap_r" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "391a9630-9efa-4842-8f36-fb88d0e26b5f", + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'TabularRate' object has no attribute 'modify_products'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[35], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mni56_cap\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodify_products\u001b[49m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfe56\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 2\u001b[0m ni56_cap_r\u001b[38;5;241m.\u001b[39mmodify_prducts(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mni56\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 3\u001b[0m ni56_cap, ni56_cap_r\n", + "\u001b[0;31mAttributeError\u001b[0m: 'TabularRate' object has no attribute 'modify_products'" + ] + } + ], + "source": [ + "ni56_cap.modify_products(\"fe56\")\n", + "ni56_cap_r.modify_prducts(\"ni56\")\n", + "ni56_cap, ni56_cap_r" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6d0c5f46-f3f9-4d1f-92cb-0d2b51658e52", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "42587393-219a-429e-8774-c84872304c1d", + "metadata": {}, + "outputs": [], + "source": [ + "tr = [r for r in net.get_rates() if isinstance(r, pyna.rates.TabularRate)]" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "35305678-c257-4ccb-9f8f-b37bcc2b8312", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[n ⟶ p + e⁻ + 𝜈, p + e⁻ ⟶ n + 𝜈]" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tr" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "8447e10c-3280-4bc3-a5cd-b4548cfad99a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "91" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(net.get_rates())" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "e7a88fb1-332f-42ad-95b6-283fb024e7ef", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "29" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(net.unique_nuclei)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a38f8c7c-d76e-49f5-af6a-1595d274edd4", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From f7f114f1dd9be58ccddd765e55dd4a63887d464c Mon Sep 17 00:00:00 2001 From: Michael Zingale Date: Tue, 12 Nov 2024 14:52:34 -0500 Subject: [PATCH 2/8] add the network --- .../56co-56fe_electroncapture.dat | 148 + .../56co-56ni_betadecay.dat | 148 + .../56fe-56co_betadecay.dat | 148 + .../56ni-56co_electroncapture.dat | 148 + networks/He-C-Fe-group-simple/Make.package | 14 + networks/He-C-Fe-group-simple/_parameters | 2 + .../He-C-Fe-group-simple/actual_network.H | 485 ++ .../actual_network_data.cpp | 152 + networks/He-C-Fe-group-simple/actual_rhs.H | 2325 +++++ .../inputs.burn_cell.VODE | 56 + .../He-C-Fe-group-simple/n-p_betadecay.dat | 148 + .../neutron_approximation.ipynb | 148 +- networks/He-C-Fe-group-simple/newnet.png | Bin 0 -> 146964 bytes .../p-n_electroncapture.dat | 148 + .../partition_functions.H | 960 +++ networks/He-C-Fe-group-simple/pynucastro.net | 37 + networks/He-C-Fe-group-simple/reaclib_rates.H | 7547 +++++++++++++++++ networks/He-C-Fe-group-simple/table_rates.H | 429 + .../He-C-Fe-group-simple/table_rates_data.cpp | 101 + networks/He-C-Fe-group-simple/tfactors.H | 34 + 20 files changed, 13132 insertions(+), 46 deletions(-) create mode 100644 networks/He-C-Fe-group-simple/56co-56fe_electroncapture.dat create mode 100644 networks/He-C-Fe-group-simple/56co-56ni_betadecay.dat create mode 100644 networks/He-C-Fe-group-simple/56fe-56co_betadecay.dat create mode 100644 networks/He-C-Fe-group-simple/56ni-56co_electroncapture.dat create mode 100644 networks/He-C-Fe-group-simple/Make.package create mode 100644 networks/He-C-Fe-group-simple/_parameters create mode 100644 networks/He-C-Fe-group-simple/actual_network.H create mode 100644 networks/He-C-Fe-group-simple/actual_network_data.cpp create mode 100644 networks/He-C-Fe-group-simple/actual_rhs.H create mode 100644 networks/He-C-Fe-group-simple/inputs.burn_cell.VODE create mode 100644 networks/He-C-Fe-group-simple/n-p_betadecay.dat create mode 100644 networks/He-C-Fe-group-simple/newnet.png create mode 100644 networks/He-C-Fe-group-simple/p-n_electroncapture.dat create mode 100644 networks/He-C-Fe-group-simple/partition_functions.H create mode 100644 networks/He-C-Fe-group-simple/pynucastro.net create mode 100644 networks/He-C-Fe-group-simple/reaclib_rates.H create mode 100644 networks/He-C-Fe-group-simple/table_rates.H create mode 100644 networks/He-C-Fe-group-simple/table_rates_data.cpp create mode 100644 networks/He-C-Fe-group-simple/tfactors.H diff --git a/networks/He-C-Fe-group-simple/56co-56fe_electroncapture.dat b/networks/He-C-Fe-group-simple/56co-56fe_electroncapture.dat new file mode 100644 index 000000000..f6baf63fd --- /dev/null +++ b/networks/He-C-Fe-group-simple/56co-56fe_electroncapture.dat @@ -0,0 +1,148 @@ +!56co -> 56fe, e- capture +!Q=-4.055 MeV +! +!Log(rhoY) Log(temp) mu dQ Vs Log(e-cap-rate) Log(nu-energy-loss) Log(gamma-energy) +!Log(g/cm^3) Log(K) erg erg erg Log(1/s) Log(erg/s) Log(erg/s) +1.000000 7.000000 -4.806530e-09 0.00 0.00 -7.705836 -1.359829e+01 -100.00 +1.000000 8.000000 -9.292624e-08 0.00 0.00 -7.707962 -1.360129e+01 -100.00 +1.000000 8.301030 -2.146917e-07 0.00 0.00 -7.692263 -1.357029e+01 -100.00 +1.000000 8.602060 -4.902661e-07 0.00 0.00 -7.032866 -1.269229e+01 -100.00 +1.000000 8.845098 -8.058948e-07 0.00 0.00 -6.284874 -1.190729e+01 -100.00 +1.000000 9.000000 -8.187123e-07 0.00 0.00 -5.970341 -1.158929e+01 -100.00 +1.000000 9.176091 -8.187123e-07 0.00 0.00 -5.642062 -1.124329e+01 -100.00 +1.000000 9.301030 -8.187123e-07 0.00 0.00 -5.178082 -1.068229e+01 -100.00 +1.000000 9.477121 -8.187123e-07 0.00 0.00 -4.093715 -9.477290e+00 -100.00 +1.000000 9.698970 -8.187123e-07 0.00 0.00 -2.791284 -8.079290e+00 -100.00 +1.000000 10.000000 -8.187123e-07 0.00 0.00 -1.100233 -6.190290e+00 -100.00 +1.000000 10.477121 -8.187123e-07 0.00 0.00 1.756545 -2.941290e+00 -100.00 +1.000000 11.000000 -8.187123e-07 0.00 0.00 4.567038 3.947104e-01 -100.00 +2.000000 7.000000 -1.602177e-09 0.00 0.00 -7.679753 -1.357129e+01 -100.00 +2.000000 8.000000 -6.088271e-08 0.00 0.00 -7.698752 -1.359129e+01 -100.00 +2.000000 8.301030 -1.522068e-07 0.00 0.00 -7.685687 -1.356429e+01 -100.00 +2.000000 8.602060 -3.636941e-07 0.00 0.00 -7.031660 -1.269129e+01 -100.00 +2.000000 8.845098 -7.145708e-07 0.00 0.00 -6.284674 -1.190729e+01 -100.00 +2.000000 9.000000 -8.107014e-07 0.00 0.00 -5.970255 -1.158929e+01 -100.00 +2.000000 9.176091 -8.187123e-07 0.00 0.00 -5.642021 -1.124329e+01 -100.00 +2.000000 9.301030 -8.187123e-07 0.00 0.00 -5.178082 -1.068229e+01 -100.00 +2.000000 9.477121 -8.187123e-07 0.00 0.00 -4.093715 -9.477290e+00 -100.00 +2.000000 9.698970 -8.187123e-07 0.00 0.00 -2.791284 -8.079290e+00 -100.00 +2.000000 10.000000 -8.187123e-07 0.00 0.00 -1.100233 -6.190290e+00 -100.00 +2.000000 10.477121 -8.187123e-07 0.00 0.00 1.756545 -2.941290e+00 -100.00 +2.000000 11.000000 -8.187123e-07 0.00 0.00 4.567038 3.947104e-01 -100.00 +3.000000 7.000000 3.204353e-09 0.00 0.00 -7.527841 -1.341529e+01 -100.00 +3.000000 8.000000 -2.883918e-08 0.00 0.00 -7.617156 -1.350629e+01 -100.00 +3.000000 8.301030 -8.811971e-08 0.00 0.00 -7.625169 -1.350229e+01 -100.00 +3.000000 8.602060 -2.355200e-07 0.00 0.00 -7.019812 -1.268329e+01 -100.00 +3.000000 8.845098 -5.030835e-07 0.00 0.00 -6.282127 -1.190529e+01 -100.00 +3.000000 9.000000 -7.450121e-07 0.00 0.00 -5.969199 -1.158829e+01 -100.00 +3.000000 9.176091 -8.107014e-07 0.00 0.00 -5.641444 -1.124229e+01 -100.00 +3.000000 9.301030 -8.171101e-07 0.00 0.00 -5.177793 -1.068229e+01 -100.00 +3.000000 9.477121 -8.187123e-07 0.00 0.00 -4.093715 -9.477290e+00 -100.00 +3.000000 9.698970 -8.187123e-07 0.00 0.00 -2.791284 -8.079290e+00 -100.00 +3.000000 10.000000 -8.187123e-07 0.00 0.00 -1.100233 -6.190290e+00 -100.00 +3.000000 10.477121 -8.187123e-07 0.00 0.00 1.756545 -2.941290e+00 -100.00 +3.000000 11.000000 -8.187123e-07 0.00 0.00 4.567038 3.947104e-01 -100.00 +4.000000 7.000000 1.922612e-08 0.00 0.00 -7.143978 -1.302429e+01 -100.00 +4.000000 8.000000 8.010883e-09 0.00 0.00 -7.218464 -1.309829e+01 -100.00 +4.000000 8.301030 -2.082830e-08 0.00 0.00 -7.274399 -1.314829e+01 -100.00 +4.000000 8.602060 -1.073458e-07 0.00 0.00 -6.917460 -1.261229e+01 -100.00 +4.000000 8.845098 -2.787787e-07 0.00 0.00 -6.257215 -1.188529e+01 -100.00 +4.000000 9.000000 -4.838573e-07 0.00 0.00 -5.953899 -1.157529e+01 -100.00 +4.000000 9.176091 -7.434100e-07 0.00 0.00 -5.634532 -1.123529e+01 -100.00 +4.000000 9.301030 -7.962818e-07 0.00 0.00 -5.174694 -1.067929e+01 -100.00 +4.000000 9.477121 -8.123036e-07 0.00 0.00 -4.093030 -9.476290e+00 -100.00 +4.000000 9.698970 -8.171101e-07 0.00 0.00 -2.791062 -8.079290e+00 -100.00 +4.000000 10.000000 -8.187123e-07 0.00 0.00 -1.100233 -6.190290e+00 -100.00 +4.000000 10.477121 -8.187123e-07 0.00 0.00 1.756545 -2.941290e+00 -100.00 +4.000000 11.000000 -8.187123e-07 0.00 0.00 4.567038 3.947104e-01 -100.00 +5.000000 7.000000 8.491536e-08 0.00 0.00 -6.531161 -1.240329e+01 -100.00 +5.000000 8.000000 8.331318e-08 0.00 0.00 -6.535828 -1.240729e+01 -100.00 +5.000000 8.301030 7.530230e-08 0.00 0.00 -6.547748 -1.241729e+01 -100.00 +5.000000 8.602060 4.165659e-08 0.00 0.00 -6.451858 -1.223429e+01 -100.00 +5.000000 8.845098 -4.165659e-08 0.00 0.00 -6.068661 -1.173129e+01 -100.00 +5.000000 9.000000 -1.570133e-07 0.00 0.00 -5.819785 -1.145429e+01 -100.00 +5.000000 9.176091 -3.941355e-07 0.00 0.00 -5.540428 -1.114429e+01 -100.00 +5.000000 9.301030 -6.136337e-07 0.00 0.00 -5.135174 -1.064329e+01 -100.00 +5.000000 9.477121 -7.626361e-07 0.00 0.00 -4.086733 -9.469290e+00 -100.00 +5.000000 9.698970 -8.042927e-07 0.00 0.00 -2.789275 -8.077290e+00 -100.00 +5.000000 10.000000 -8.155079e-07 0.00 0.00 -1.099233 -6.190290e+00 -100.00 +5.000000 10.477121 -8.187123e-07 0.00 0.00 1.756545 -2.941290e+00 -100.00 +5.000000 11.000000 -8.187123e-07 0.00 0.00 4.567038 3.947104e-01 -100.00 +6.000000 7.000000 3.444680e-07 0.00 0.00 -5.665057 -1.151229e+01 -100.00 +6.000000 8.000000 3.428658e-07 0.00 0.00 -5.665057 -1.151029e+01 -100.00 +6.000000 8.301030 3.412636e-07 0.00 0.00 -5.661938 -1.150729e+01 -100.00 +6.000000 8.602060 3.316506e-07 0.00 0.00 -5.615084 -1.142629e+01 -100.00 +6.000000 8.845098 3.028114e-07 0.00 0.00 -5.425421 -1.113829e+01 -100.00 +6.000000 9.000000 2.579504e-07 0.00 0.00 -5.254582 -1.091629e+01 -100.00 +6.000000 9.176091 1.490024e-07 0.00 0.00 -5.034578 -1.064429e+01 -100.00 +6.000000 9.301030 1.602177e-09 0.00 0.00 -4.780142 -1.031029e+01 -100.00 +6.000000 9.477121 -3.396614e-07 0.00 0.00 -4.003284 -9.385290e+00 -100.00 +6.000000 9.698970 -6.729142e-07 0.00 0.00 -2.769201 -8.050290e+00 -100.00 +6.000000 10.000000 -7.866687e-07 0.00 0.00 -1.092706 -6.183290e+00 -100.00 +6.000000 10.477121 -8.155079e-07 0.00 0.00 1.756545 -2.940290e+00 -100.00 +6.000000 11.000000 -8.187123e-07 0.00 0.00 4.567038 3.947104e-01 -100.00 +7.000000 7.000000 1.140750e-06 0.00 0.00 -4.358806 -1.014129e+01 -100.00 +7.000000 8.000000 1.139148e-06 0.00 0.00 -4.357806 -1.014029e+01 -100.00 +7.000000 8.301030 1.139148e-06 0.00 0.00 -4.355800 -1.013829e+01 -100.00 +7.000000 8.602060 1.134341e-06 0.00 0.00 -4.333132 -1.010029e+01 -100.00 +7.000000 8.845098 1.123126e-06 0.00 0.00 -4.232138 -9.941290e+00 -100.00 +7.000000 9.000000 1.103900e-06 0.00 0.00 -4.122810 -9.784290e+00 -100.00 +7.000000 9.176091 1.060641e-06 0.00 0.00 -3.965142 -9.572290e+00 -100.00 +7.000000 9.301030 9.965539e-07 0.00 0.00 -3.811776 -9.359290e+00 -100.00 +7.000000 9.477121 8.171101e-07 0.00 0.00 -3.421915 -8.813290e+00 -100.00 +7.000000 9.698970 2.996070e-07 0.00 0.00 -2.535933 -7.770290e+00 -100.00 +7.000000 10.000000 -5.046856e-07 0.00 0.00 -1.027814 -6.111290e+00 -100.00 +7.000000 10.477121 -7.850666e-07 0.00 0.00 1.759514 -2.937290e+00 -100.00 +7.000000 11.000000 -8.155079e-07 0.00 0.00 4.567038 3.947104e-01 -100.00 +8.000000 7.000000 3.101814e-06 0.00 0.00 -2.446998 -8.087290e+00 -100.00 +8.000000 8.000000 3.101814e-06 0.00 0.00 -2.445998 -8.086290e+00 -100.00 +8.000000 8.301030 3.100212e-06 0.00 0.00 -2.444998 -8.085290e+00 -100.00 +8.000000 8.602060 3.098610e-06 0.00 0.00 -2.437989 -8.073290e+00 -100.00 +8.000000 8.845098 3.093803e-06 0.00 0.00 -2.402943 -8.018290e+00 -100.00 +8.000000 9.000000 3.085792e-06 0.00 0.00 -2.360894 -7.952290e+00 -100.00 +8.000000 9.176091 3.064964e-06 0.00 0.00 -2.288815 -7.849290e+00 -100.00 +8.000000 9.301030 3.036125e-06 0.00 0.00 -2.213574 -7.743290e+00 -100.00 +8.000000 9.477121 2.954414e-06 0.00 0.00 -2.025688 -7.469290e+00 -100.00 +8.000000 9.698970 2.693259e-06 0.00 0.00 -1.520319 -6.764290e+00 -100.00 +8.000000 10.000000 1.573337e-06 0.00 0.00 -0.491245 -5.552290e+00 -100.00 +8.000000 10.477121 -4.838573e-07 0.00 0.00 1.790233 -2.906290e+00 -100.00 +8.000000 11.000000 -7.882709e-07 0.00 0.00 4.568038 3.957104e-01 -100.00 +9.000000 7.000000 7.480563e-06 0.00 0.00 0.248000 -5.230290e+00 -100.00 +9.000000 8.000000 7.480563e-06 0.00 0.00 0.248000 -5.230290e+00 -100.00 +9.000000 8.301030 7.480563e-06 0.00 0.00 0.249000 -5.229290e+00 -100.00 +9.000000 8.602060 7.480563e-06 0.00 0.00 0.250000 -5.228290e+00 -100.00 +9.000000 8.845098 7.477358e-06 0.00 0.00 0.252000 -5.222290e+00 -100.00 +9.000000 9.000000 7.474154e-06 0.00 0.00 0.256000 -5.213290e+00 -100.00 +9.000000 9.176091 7.464541e-06 0.00 0.00 0.266001 -5.195290e+00 -100.00 +9.000000 9.301030 7.450121e-06 0.00 0.00 0.281001 -5.170290e+00 -100.00 +9.000000 9.477121 7.413271e-06 0.00 0.00 0.324015 -5.099290e+00 -100.00 +9.000000 9.698970 7.291506e-06 0.00 0.00 0.456193 -4.874290e+00 -100.00 +9.000000 10.000000 6.724335e-06 0.00 0.00 0.881313 -4.206290e+00 -100.00 +9.000000 10.477121 2.340780e-06 0.00 0.00 2.077294 -2.616290e+00 -100.00 +9.000000 11.000000 -5.191052e-07 0.00 0.00 4.576037 4.037104e-01 -100.00 +10.000000 7.000000 1.699429e-05 0.00 0.00 2.669000 -2.340290e+00 -100.00 +10.000000 8.000000 1.699429e-05 0.00 0.00 2.669000 -2.340290e+00 -100.00 +10.000000 8.301030 1.699429e-05 0.00 0.00 2.669000 -2.340290e+00 -100.00 +10.000000 8.602060 1.699429e-05 0.00 0.00 2.669000 -2.340290e+00 -100.00 +10.000000 8.845098 1.699269e-05 0.00 0.00 2.669000 -2.340290e+00 -100.00 +10.000000 9.000000 1.699108e-05 0.00 0.00 2.668000 -2.340290e+00 -100.00 +10.000000 9.176091 1.698628e-05 0.00 0.00 2.668000 -2.339290e+00 -100.00 +10.000000 9.301030 1.697987e-05 0.00 0.00 2.669000 -2.337290e+00 -100.00 +10.000000 9.477121 1.696224e-05 0.00 0.00 2.673000 -2.330290e+00 -100.00 +10.000000 9.698970 1.690617e-05 0.00 0.00 2.688001 -2.302290e+00 -100.00 +10.000000 10.000000 1.664181e-05 0.00 0.00 2.759017 -2.169290e+00 -100.00 +10.000000 10.477121 1.386203e-05 0.00 0.00 3.178192 -1.483290e+00 -100.00 +10.000000 11.000000 2.164541e-06 0.00 0.00 4.659032 4.867104e-01 -100.00 +11.000000 7.000000 3.752778e-05 0.00 0.00 4.604000 2.371039e-02 -100.00 +11.000000 8.000000 3.752778e-05 0.00 0.00 4.604000 2.371039e-02 -100.00 +11.000000 8.301030 3.752778e-05 0.00 0.00 4.604000 2.371039e-02 -100.00 +11.000000 8.602060 3.752778e-05 0.00 0.00 4.604000 2.371039e-02 -100.00 +11.000000 8.845098 3.752618e-05 0.00 0.00 4.603000 2.371039e-02 -100.00 +11.000000 9.000000 3.752618e-05 0.00 0.00 4.603000 2.271039e-02 -100.00 +11.000000 9.176091 3.752298e-05 0.00 0.00 4.603000 2.271039e-02 -100.00 +11.000000 9.301030 3.752137e-05 0.00 0.00 4.603000 2.271039e-02 -100.00 +11.000000 9.477121 3.751176e-05 0.00 0.00 4.603000 2.371039e-02 -100.00 +11.000000 9.698970 3.748613e-05 0.00 0.00 4.605000 2.771039e-02 -100.00 +11.000000 10.000000 3.736436e-05 0.00 0.00 4.619000 5.271039e-02 -100.00 +11.000000 10.477121 3.605538e-05 0.00 0.00 4.727005 2.397104e-01 -100.00 +11.000000 11.000000 2.244810e-05 0.00 0.00 5.265010 1.107710e+00 -100.00 diff --git a/networks/He-C-Fe-group-simple/56co-56ni_betadecay.dat b/networks/He-C-Fe-group-simple/56co-56ni_betadecay.dat new file mode 100644 index 000000000..79018561c --- /dev/null +++ b/networks/He-C-Fe-group-simple/56co-56ni_betadecay.dat @@ -0,0 +1,148 @@ +!56co -> 56ni, beta-decay +!Q=1.624 MeV +! +!Log(rhoY) Log(temp) mu dQ VS Log(beta-decay-rate) Log(nu-energy-loss) Log(gamma-energy) +!Log(g/cm^3) Log(K) erg erg erg Log(1/s) Log(erg/s) Log(erg/s) +1.000000 7.000000 -4.806530e-09 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +1.000000 8.000000 -9.292624e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +1.000000 8.301030 -2.146917e-07 0.00 0.00 -69.758981 -7.612229e+01 -100.00 +1.000000 8.602060 -4.902661e-07 0.00 0.00 -37.768387 -4.395729e+01 -100.00 +1.000000 8.845098 -8.058948e-07 0.00 0.00 -23.052703 -2.897729e+01 -100.00 +1.000000 9.000000 -8.187123e-07 0.00 0.00 -17.768950 -2.366129e+01 -100.00 +1.000000 9.176091 -8.187123e-07 0.00 0.00 -13.483500 -1.931729e+01 -100.00 +1.000000 9.301030 -8.187123e-07 0.00 0.00 -11.090722 -1.689029e+01 -100.00 +1.000000 9.477121 -8.187123e-07 0.00 0.00 -8.426201 -1.416229e+01 -100.00 +1.000000 9.698970 -8.187123e-07 0.00 0.00 -6.028675 -1.151229e+01 -100.00 +1.000000 10.000000 -8.187123e-07 0.00 0.00 -3.404715 -8.551290e+00 -100.00 +1.000000 10.477121 -8.187123e-07 0.00 0.00 0.008204 -4.678290e+00 -100.00 +1.000000 11.000000 -8.187123e-07 0.00 0.00 2.897241 -1.273290e+00 -100.00 +2.000000 7.000000 -1.602177e-09 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +2.000000 8.000000 -6.088271e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +2.000000 8.301030 -1.522068e-07 0.00 0.00 -69.758998 -7.612329e+01 -100.00 +2.000000 8.602060 -3.636941e-07 0.00 0.00 -37.910850 -4.424529e+01 -100.00 +2.000000 8.845098 -7.145708e-07 0.00 0.00 -23.428328 -2.937629e+01 -100.00 +2.000000 9.000000 -8.107014e-07 0.00 0.00 -17.788058 -2.368129e+01 -100.00 +2.000000 9.176091 -8.187123e-07 0.00 0.00 -13.485050 -1.931829e+01 -100.00 +2.000000 9.301030 -8.187123e-07 0.00 0.00 -11.090722 -1.689129e+01 -100.00 +2.000000 9.477121 -8.187123e-07 0.00 0.00 -8.426201 -1.416229e+01 -100.00 +2.000000 9.698970 -8.187123e-07 0.00 0.00 -6.028675 -1.151229e+01 -100.00 +2.000000 10.000000 -8.187123e-07 0.00 0.00 -3.404715 -8.551290e+00 -100.00 +2.000000 10.477121 -8.187123e-07 0.00 0.00 0.008204 -4.678290e+00 -100.00 +2.000000 11.000000 -8.187123e-07 0.00 0.00 2.897241 -1.273290e+00 -100.00 +3.000000 7.000000 3.204353e-09 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +3.000000 8.000000 -2.883918e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +3.000000 8.301030 -8.811971e-08 0.00 0.00 -69.760000 -7.612429e+01 -100.00 +3.000000 8.602060 -2.355200e-07 0.00 0.00 -37.929051 -4.428929e+01 -100.00 +3.000000 8.845098 -5.030835e-07 0.00 0.00 -24.062933 -3.017529e+01 -100.00 +3.000000 9.000000 -7.450121e-07 0.00 0.00 -17.970447 -2.387829e+01 -100.00 +3.000000 9.176091 -8.107014e-07 0.00 0.00 -13.496085 -1.933129e+01 -100.00 +3.000000 9.301030 -8.171101e-07 0.00 0.00 -11.092307 -1.689329e+01 -100.00 +3.000000 9.477121 -8.187123e-07 0.00 0.00 -8.426201 -1.416329e+01 -100.00 +3.000000 9.698970 -8.187123e-07 0.00 0.00 -6.028675 -1.151229e+01 -100.00 +3.000000 10.000000 -8.187123e-07 0.00 0.00 -3.404715 -8.551290e+00 -100.00 +3.000000 10.477121 -8.187123e-07 0.00 0.00 0.008204 -4.678290e+00 -100.00 +3.000000 11.000000 -8.187123e-07 0.00 0.00 2.897241 -1.273290e+00 -100.00 +4.000000 7.000000 1.922612e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +4.000000 8.000000 8.010883e-09 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +4.000000 8.301030 -2.082830e-08 0.00 0.00 -69.773000 -7.614229e+01 -100.00 +4.000000 8.602060 -1.073458e-07 0.00 0.00 -37.938809 -4.430529e+01 -100.00 +4.000000 8.845098 -2.787787e-07 0.00 0.00 -24.275558 -3.058529e+01 -100.00 +4.000000 9.000000 -4.838573e-07 0.00 0.00 -18.541193 -2.458029e+01 -100.00 +4.000000 9.176091 -7.434100e-07 0.00 0.00 -13.600964 -1.944629e+01 -100.00 +4.000000 9.301030 -7.962818e-07 0.00 0.00 -11.108896 -1.691229e+01 -100.00 +4.000000 9.477121 -8.123036e-07 0.00 0.00 -8.428553 -1.416629e+01 -100.00 +4.000000 9.698970 -8.171101e-07 0.00 0.00 -6.028675 -1.151329e+01 -100.00 +4.000000 10.000000 -8.187123e-07 0.00 0.00 -3.404715 -8.551290e+00 -100.00 +4.000000 10.477121 -8.187123e-07 0.00 0.00 0.008204 -4.678290e+00 -100.00 +4.000000 11.000000 -8.187123e-07 0.00 0.00 2.897241 -1.273290e+00 -100.00 +5.000000 7.000000 8.491536e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +5.000000 8.000000 8.331318e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +5.000000 8.301030 7.530230e-08 0.00 0.00 -69.870000 -7.627929e+01 -100.00 +5.000000 8.602060 4.165659e-08 0.00 0.00 -38.016985 -4.441029e+01 -100.00 +5.000000 8.845098 -4.165659e-08 0.00 0.00 -24.356950 -3.072629e+01 -100.00 +5.000000 9.000000 -1.570133e-07 0.00 0.00 -18.824908 -2.506929e+01 -100.00 +5.000000 9.176091 -3.941355e-07 0.00 0.00 -13.980828 -1.990129e+01 -100.00 +5.000000 9.301030 -6.136337e-07 0.00 0.00 -11.234267 -1.706829e+01 -100.00 +5.000000 9.477121 -7.626361e-07 0.00 0.00 -8.446387 -1.419329e+01 -100.00 +5.000000 9.698970 -8.042927e-07 0.00 0.00 -6.033804 -1.151929e+01 -100.00 +5.000000 10.000000 -8.155079e-07 0.00 0.00 -3.405601 -8.552290e+00 -100.00 +5.000000 10.477121 -8.187123e-07 0.00 0.00 0.008204 -4.678290e+00 -100.00 +5.000000 11.000000 -8.187123e-07 0.00 0.00 2.897241 -1.273290e+00 -100.00 +6.000000 7.000000 3.444680e-07 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +6.000000 8.000000 3.428658e-07 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +6.000000 8.301030 3.412636e-07 0.00 0.00 -70.529000 -7.717829e+01 -100.00 +6.000000 8.602060 3.316506e-07 0.00 0.00 -38.608000 -4.518429e+01 -100.00 +6.000000 8.845098 3.028114e-07 0.00 0.00 -24.815753 -3.129129e+01 -100.00 +6.000000 9.000000 2.579504e-07 0.00 0.00 -19.175805 -2.548729e+01 -100.00 +6.000000 9.176091 1.490024e-07 0.00 0.00 -14.229062 -2.020929e+01 -100.00 +6.000000 9.301030 1.602177e-09 0.00 0.00 -11.447153 -1.735229e+01 -100.00 +6.000000 9.477121 -3.396614e-07 0.00 0.00 -8.563413 -1.437729e+01 -100.00 +6.000000 9.698970 -6.729142e-07 0.00 0.00 -6.077307 -1.158329e+01 -100.00 +6.000000 10.000000 -7.866687e-07 0.00 0.00 -3.412800 -8.560290e+00 -100.00 +6.000000 10.477121 -8.155079e-07 0.00 0.00 0.008204 -4.679290e+00 -100.00 +6.000000 11.000000 -8.187123e-07 0.00 0.00 2.897241 -1.273290e+00 -100.00 +7.000000 7.000000 1.140750e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +7.000000 8.000000 1.139148e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +7.000000 8.301030 1.139148e-06 0.00 0.00 -80.670000 -8.774329e+01 -100.00 +7.000000 8.602060 1.134341e-06 0.00 0.00 -43.872000 -5.066029e+01 -100.00 +7.000000 8.845098 1.123126e-06 0.00 0.00 -27.608968 -3.396729e+01 -100.00 +7.000000 9.000000 1.103900e-06 0.00 0.00 -20.520799 -2.667329e+01 -100.00 +7.000000 9.176091 1.060641e-06 0.00 0.00 -14.782228 -2.084629e+01 -100.00 +7.000000 9.301030 9.965539e-07 0.00 0.00 -11.862087 -1.787129e+01 -100.00 +7.000000 9.477121 8.171101e-07 0.00 0.00 -8.885633 -1.480829e+01 -100.00 +7.000000 9.698970 2.996070e-07 0.00 0.00 -6.353840 -1.200229e+01 -100.00 +7.000000 10.000000 -5.046856e-07 0.00 0.00 -3.490730 -8.644290e+00 -100.00 +7.000000 10.477121 -7.850666e-07 0.00 0.00 0.005223 -4.682290e+00 -100.00 +7.000000 11.000000 -8.155079e-07 0.00 0.00 2.897241 -1.273290e+00 -100.00 +8.000000 7.000000 3.101814e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +8.000000 8.000000 3.101814e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +8.000000 8.301030 3.100212e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +8.000000 8.602060 3.098610e-06 0.00 0.00 -57.166000 -6.396229e+01 -100.00 +8.000000 8.845098 3.093803e-06 0.00 0.00 -34.496000 -4.105829e+01 -100.00 +8.000000 9.000000 3.085792e-06 0.00 0.00 -25.279993 -3.169429e+01 -100.00 +8.000000 9.176091 3.064964e-06 0.00 0.00 -17.977924 -2.423329e+01 -100.00 +8.000000 9.301030 3.036125e-06 0.00 0.00 -14.248711 -2.039929e+01 -100.00 +8.000000 9.477121 2.954414e-06 0.00 0.00 -10.427337 -1.643629e+01 -100.00 +8.000000 9.698970 2.693259e-06 0.00 0.00 -7.230557 -1.301329e+01 -100.00 +8.000000 10.000000 1.573337e-06 0.00 0.00 -4.034886 -9.249290e+00 -100.00 +8.000000 10.477121 -4.838573e-07 0.00 0.00 -0.025538 -4.713290e+00 -100.00 +8.000000 11.000000 -7.882709e-07 0.00 0.00 2.896241 -1.274290e+00 -100.00 +9.000000 7.000000 7.480563e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +9.000000 8.000000 7.480563e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +9.000000 8.301030 7.480563e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +9.000000 8.602060 7.480563e-06 0.00 0.00 -91.260000 -9.805129e+01 -100.00 +9.000000 8.845098 7.477358e-06 0.00 0.00 -53.829000 -6.038529e+01 -100.00 +9.000000 9.000000 7.474154e-06 0.00 0.00 -38.713997 -4.512229e+01 -100.00 +9.000000 9.176091 7.464541e-06 0.00 0.00 -26.825968 -3.306929e+01 -100.00 +9.000000 9.301030 7.450121e-06 0.00 0.00 -20.800883 -2.693229e+01 -100.00 +9.000000 9.477121 7.413271e-06 0.00 0.00 -14.679373 -2.066129e+01 -100.00 +9.000000 9.698970 7.291506e-06 0.00 0.00 -9.649275 -1.543829e+01 -100.00 +9.000000 10.000000 6.724335e-06 0.00 0.00 -5.349182 -1.070929e+01 -100.00 +9.000000 10.477121 2.340780e-06 0.00 0.00 -0.314835 -5.005290e+00 -100.00 +9.000000 11.000000 -5.191052e-07 0.00 0.00 2.888245 -1.283290e+00 -100.00 +10.000000 7.000000 1.699429e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 8.000000 1.699429e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 8.301030 1.699429e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 8.602060 1.699429e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 8.845098 1.699269e-05 0.00 0.00 -96.456875 -1.030123e+02 -100.00 +10.000000 9.000000 1.699108e-05 0.00 0.00 -68.515998 -7.492229e+01 -100.00 +10.000000 9.176091 1.698628e-05 0.00 0.00 -46.652977 -5.289529e+01 -100.00 +10.000000 9.301030 1.697987e-05 0.00 0.00 -35.641916 -4.177129e+01 -100.00 +10.000000 9.477121 1.696224e-05 0.00 0.00 -24.534564 -3.051129e+01 -100.00 +10.000000 9.698970 1.690617e-05 0.00 0.00 -15.515939 -2.129929e+01 -100.00 +10.000000 10.000000 1.664181e-05 0.00 0.00 -8.277386 -1.369229e+01 -100.00 +10.000000 10.477121 1.386203e-05 0.00 0.00 -1.500293 -6.204290e+00 -100.00 +10.000000 11.000000 2.164541e-06 0.00 0.00 2.805283 -1.366290e+00 -100.00 +11.000000 7.000000 3.752778e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 8.000000 3.752778e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 8.301030 3.752778e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 8.602060 3.752778e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 8.845098 3.752618e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 9.000000 3.752618e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 9.176091 3.752298e-05 0.00 0.00 -89.673979 -9.591429e+01 -100.00 +11.000000 9.301030 3.752137e-05 0.00 0.00 -67.899925 -7.402629e+01 -100.00 +11.000000 9.477121 3.751176e-05 0.00 0.00 -46.030612 -5.200129e+01 -100.00 +11.000000 9.698970 3.748613e-05 0.00 0.00 -28.401609 -3.417629e+01 -100.00 +11.000000 10.000000 3.736436e-05 0.00 0.00 -14.685801 -2.010129e+01 -100.00 +11.000000 10.477121 3.605538e-05 0.00 0.00 -3.782003 -8.507290e+00 -100.00 +11.000000 11.000000 2.244810e-05 0.00 0.00 2.173693 -2.000290e+00 -100.00 diff --git a/networks/He-C-Fe-group-simple/56fe-56co_betadecay.dat b/networks/He-C-Fe-group-simple/56fe-56co_betadecay.dat new file mode 100644 index 000000000..3acdfa17a --- /dev/null +++ b/networks/He-C-Fe-group-simple/56fe-56co_betadecay.dat @@ -0,0 +1,148 @@ +!56fe -> 56co, beta-decay +!Q=4.055 MeV +! +!Log(rhoY) Log(temp) mu dQ VS Log(beta-decay-rate) Log(nu-energy-loss) Log(gamma-energy) +!Log(g/cm^3) Log(K) erg erg erg Log(1/s) Log(erg/s) Log(erg/s) +1.000000 7.000000 -4.806530e-09 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +1.000000 8.000000 -9.292624e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +1.000000 8.301030 -2.146917e-07 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +1.000000 8.602060 -4.902661e-07 0.00 0.00 -62.854802 -6.958329e+01 -100.00 +1.000000 8.845098 -8.058948e-07 0.00 0.00 -37.268611 -4.373429e+01 -100.00 +1.000000 9.000000 -8.187123e-07 0.00 0.00 -27.644755 -3.392829e+01 -100.00 +1.000000 9.176091 -8.187123e-07 0.00 0.00 -19.855923 -2.592829e+01 -100.00 +1.000000 9.301030 -8.187123e-07 0.00 0.00 -15.693996 -2.162029e+01 -100.00 +1.000000 9.477121 -8.187123e-07 0.00 0.00 -11.062186 -1.678829e+01 -100.00 +1.000000 9.698970 -8.187123e-07 0.00 0.00 -6.686280 -1.221529e+01 -100.00 +1.000000 10.000000 -8.187123e-07 0.00 0.00 -2.996418 -8.200290e+00 -100.00 +1.000000 10.477121 -8.187123e-07 0.00 0.00 0.330264 -4.328290e+00 -100.00 +1.000000 11.000000 -8.187123e-07 0.00 0.00 3.050101 -1.107290e+00 -100.00 +2.000000 7.000000 -1.602177e-09 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +2.000000 8.000000 -6.088271e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +2.000000 8.301030 -1.522068e-07 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +2.000000 8.602060 -3.636941e-07 0.00 0.00 -63.853019 -7.058129e+01 -100.00 +2.000000 8.845098 -7.145708e-07 0.00 0.00 -37.680995 -4.414629e+01 -100.00 +2.000000 9.000000 -8.107014e-07 0.00 0.00 -27.666587 -3.394929e+01 -100.00 +2.000000 9.176091 -8.187123e-07 0.00 0.00 -19.856877 -2.592929e+01 -100.00 +2.000000 9.301030 -8.187123e-07 0.00 0.00 -15.693996 -2.162029e+01 -100.00 +2.000000 9.477121 -8.187123e-07 0.00 0.00 -11.062186 -1.678829e+01 -100.00 +2.000000 9.698970 -8.187123e-07 0.00 0.00 -6.686280 -1.221529e+01 -100.00 +2.000000 10.000000 -8.187123e-07 0.00 0.00 -2.996418 -8.200290e+00 -100.00 +2.000000 10.477121 -8.187123e-07 0.00 0.00 0.330264 -4.328290e+00 -100.00 +2.000000 11.000000 -8.187123e-07 0.00 0.00 3.050101 -1.107290e+00 -100.00 +3.000000 7.000000 3.204353e-09 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +3.000000 8.000000 -2.883918e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +3.000000 8.301030 -8.811971e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +3.000000 8.602060 -2.355200e-07 0.00 0.00 -64.836633 -7.156029e+01 -100.00 +3.000000 8.845098 -5.030835e-07 0.00 0.00 -38.621182 -4.508829e+01 -100.00 +3.000000 9.000000 -7.450121e-07 0.00 0.00 -27.870529 -3.415429e+01 -100.00 +3.000000 9.176091 -8.107014e-07 0.00 0.00 -19.871187 -2.594329e+01 -100.00 +3.000000 9.301030 -8.171101e-07 0.00 0.00 -15.697494 -2.162329e+01 -100.00 +3.000000 9.477121 -8.187123e-07 0.00 0.00 -11.062186 -1.678929e+01 -100.00 +3.000000 9.698970 -8.187123e-07 0.00 0.00 -6.686280 -1.221629e+01 -100.00 +3.000000 10.000000 -8.187123e-07 0.00 0.00 -2.996418 -8.200290e+00 -100.00 +3.000000 10.477121 -8.187123e-07 0.00 0.00 0.330264 -4.328290e+00 -100.00 +3.000000 11.000000 -8.187123e-07 0.00 0.00 3.050101 -1.107290e+00 -100.00 +4.000000 7.000000 1.922612e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +4.000000 8.000000 8.010883e-09 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +4.000000 8.301030 -2.082830e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +4.000000 8.602060 -1.073458e-07 0.00 0.00 -65.710200 -7.239829e+01 -100.00 +4.000000 8.845098 -2.787787e-07 0.00 0.00 -39.555480 -4.603329e+01 -100.00 +4.000000 9.000000 -4.838573e-07 0.00 0.00 -28.663301 -3.495229e+01 -100.00 +4.000000 9.176091 -7.434100e-07 0.00 0.00 -20.004525 -2.607829e+01 -100.00 +4.000000 9.301030 -7.962818e-07 0.00 0.00 -15.724463 -2.165129e+01 -100.00 +4.000000 9.477121 -8.123036e-07 0.00 0.00 -11.065920 -1.679229e+01 -100.00 +4.000000 9.698970 -8.171101e-07 0.00 0.00 -6.686696 -1.221629e+01 -100.00 +4.000000 10.000000 -8.187123e-07 0.00 0.00 -2.997055 -8.200290e+00 -100.00 +4.000000 10.477121 -8.187123e-07 0.00 0.00 0.330264 -4.328290e+00 -100.00 +4.000000 11.000000 -8.187123e-07 0.00 0.00 3.050101 -1.107290e+00 -100.00 +5.000000 7.000000 8.491536e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +5.000000 8.000000 8.331318e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +5.000000 8.301030 7.530230e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +5.000000 8.602060 4.165659e-08 0.00 0.00 -66.280944 -7.293929e+01 -100.00 +5.000000 8.845098 -4.165659e-08 0.00 0.00 -40.233201 -4.675229e+01 -100.00 +5.000000 9.000000 -1.570133e-07 0.00 0.00 -29.472432 -3.579129e+01 -100.00 +5.000000 9.176091 -3.941355e-07 0.00 0.00 -20.635643 -2.672229e+01 -100.00 +5.000000 9.301030 -6.136337e-07 0.00 0.00 -15.962004 -2.189129e+01 -100.00 +5.000000 9.477121 -7.626361e-07 0.00 0.00 -11.098460 -1.682529e+01 -100.00 +5.000000 9.698970 -8.042927e-07 0.00 0.00 -6.690003 -1.222029e+01 -100.00 +5.000000 10.000000 -8.155079e-07 0.00 0.00 -2.997418 -8.201290e+00 -100.00 +5.000000 10.477121 -8.187123e-07 0.00 0.00 0.330264 -4.328290e+00 -100.00 +5.000000 11.000000 -8.187123e-07 0.00 0.00 3.050101 -1.107290e+00 -100.00 +6.000000 7.000000 3.444680e-07 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +6.000000 8.000000 3.428658e-07 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +6.000000 8.301030 3.412636e-07 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +6.000000 8.602060 3.316506e-07 0.00 0.00 -67.639813 -7.445329e+01 -100.00 +6.000000 8.845098 3.028114e-07 0.00 0.00 -41.062948 -4.760029e+01 -100.00 +6.000000 9.000000 2.579504e-07 0.00 0.00 -30.122111 -3.646829e+01 -100.00 +6.000000 9.176091 1.490024e-07 0.00 0.00 -21.260917 -2.738129e+01 -100.00 +6.000000 9.301030 1.602177e-09 0.00 0.00 -16.518405 -2.245629e+01 -100.00 +6.000000 9.477121 -3.396614e-07 0.00 0.00 -11.315505 -1.704429e+01 -100.00 +6.000000 9.698970 -6.729142e-07 0.00 0.00 -6.724397 -1.226129e+01 -100.00 +6.000000 10.000000 -7.866687e-07 0.00 0.00 -3.003133 -8.208290e+00 -100.00 +6.000000 10.477121 -8.155079e-07 0.00 0.00 0.330264 -4.328290e+00 -100.00 +6.000000 11.000000 -8.187123e-07 0.00 0.00 3.050101 -1.107290e+00 -100.00 +7.000000 7.000000 1.140750e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +7.000000 8.000000 1.139148e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +7.000000 8.301030 1.139148e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +7.000000 8.602060 1.134341e-06 0.00 0.00 -73.044885 -7.985329e+01 -100.00 +7.000000 8.845098 1.123126e-06 0.00 0.00 -43.824626 -5.039029e+01 -100.00 +7.000000 9.000000 1.103900e-06 0.00 0.00 -31.873401 -3.821729e+01 -100.00 +7.000000 9.176091 1.060641e-06 0.00 0.00 -22.193492 -2.828029e+01 -100.00 +7.000000 9.301030 9.965539e-07 0.00 0.00 -17.093479 -2.302529e+01 -100.00 +7.000000 9.477121 8.171101e-07 0.00 0.00 -11.651187 -1.739629e+01 -100.00 +7.000000 9.698970 2.996070e-07 0.00 0.00 -6.909866 -1.248929e+01 -100.00 +7.000000 10.000000 -5.046856e-07 0.00 0.00 -3.060643 -8.280290e+00 -100.00 +7.000000 10.477121 -7.850666e-07 0.00 0.00 0.327313 -4.331290e+00 -100.00 +7.000000 11.000000 -8.155079e-07 0.00 0.00 3.050101 -1.107290e+00 -100.00 +8.000000 7.000000 3.101814e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +8.000000 8.000000 3.101814e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +8.000000 8.301030 3.100212e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +8.000000 8.602060 3.098610e-06 0.00 0.00 -87.073958 -9.383229e+01 -100.00 +8.000000 8.845098 3.093803e-06 0.00 0.00 -51.036924 -5.748829e+01 -100.00 +8.000000 9.000000 3.085792e-06 0.00 0.00 -36.357882 -4.265529e+01 -100.00 +8.000000 9.176091 3.064964e-06 0.00 0.00 -24.714784 -3.083529e+01 -100.00 +8.000000 9.301030 3.036125e-06 0.00 0.00 -18.729642 -2.472029e+01 -100.00 +8.000000 9.477121 2.954414e-06 0.00 0.00 -12.542089 -1.837029e+01 -100.00 +8.000000 9.698970 2.693259e-06 0.00 0.00 -7.403073 -1.306929e+01 -100.00 +8.000000 10.000000 1.573337e-06 0.00 0.00 -3.424626 -8.764290e+00 -100.00 +8.000000 10.477121 -4.838573e-07 0.00 0.00 0.296708 -4.362290e+00 -100.00 +8.000000 11.000000 -7.882709e-07 0.00 0.00 3.049101 -1.108290e+00 -100.00 +9.000000 7.000000 7.480563e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +9.000000 8.000000 7.480563e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +9.000000 8.301030 7.480563e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +9.000000 8.602060 7.480563e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +9.000000 8.845098 7.477358e-06 0.00 0.00 -69.154998 -7.570329e+01 -100.00 +9.000000 9.000000 7.474154e-06 0.00 0.00 -48.719996 -5.511629e+01 -100.00 +9.000000 9.176091 7.464541e-06 0.00 0.00 -32.644989 -3.887129e+01 -100.00 +9.000000 9.301030 7.450121e-06 0.00 0.00 -24.496976 -3.060529e+01 -100.00 +9.000000 9.477121 7.413271e-06 0.00 0.00 -16.231906 -2.218229e+01 -100.00 +9.000000 9.698970 7.291506e-06 0.00 0.00 -9.513029 -1.528229e+01 -100.00 +9.000000 10.000000 6.724335e-06 0.00 0.00 -4.483336 -9.984290e+00 -100.00 +9.000000 10.477121 2.340780e-06 0.00 0.00 0.010989 -4.653290e+00 -100.00 +9.000000 11.000000 -5.191052e-07 0.00 0.00 3.041103 -1.116290e+00 -100.00 +10.000000 7.000000 1.699429e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 8.000000 1.699429e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 8.301030 1.699429e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 8.602060 1.699429e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 8.845098 1.699269e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 9.000000 1.699108e-05 0.00 0.00 -78.494997 -8.489429e+01 -100.00 +10.000000 9.176091 1.698628e-05 0.00 0.00 -52.453992 -5.868529e+01 -100.00 +10.000000 9.301030 1.697987e-05 0.00 0.00 -39.326983 -4.544229e+01 -100.00 +10.000000 9.477121 1.696224e-05 0.00 0.00 -26.089934 -3.204829e+01 -100.00 +10.000000 9.698970 1.690617e-05 0.00 0.00 -15.400331 -2.117629e+01 -100.00 +10.000000 10.000000 1.664181e-05 0.00 0.00 -7.403972 -1.292829e+01 -100.00 +10.000000 10.477121 1.386203e-05 0.00 0.00 -1.170819 -5.852290e+00 -100.00 +10.000000 11.000000 2.164541e-06 0.00 0.00 2.959117 -1.199290e+00 -100.00 +11.000000 7.000000 3.752778e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 8.000000 3.752778e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 8.301030 3.752778e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 8.602060 3.752778e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 8.845098 3.752618e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 9.000000 3.752618e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 9.176091 3.752298e-05 0.00 0.00 -95.484987 -1.017163e+02 -100.00 +11.000000 9.301030 3.752137e-05 0.00 0.00 -71.596985 -7.771229e+01 -100.00 +11.000000 9.477121 3.751176e-05 0.00 0.00 -47.599940 -5.355729e+01 -100.00 +11.000000 9.698970 3.748613e-05 0.00 0.00 -28.306391 -3.407929e+01 -100.00 +11.000000 10.000000 3.736436e-05 0.00 0.00 -13.865952 -1.938129e+01 -100.00 +11.000000 10.477121 3.605538e-05 0.00 0.00 -3.478059 -8.171290e+00 -100.00 +11.000000 11.000000 2.244810e-05 0.00 0.00 2.328257 -1.833290e+00 -100.00 diff --git a/networks/He-C-Fe-group-simple/56ni-56co_electroncapture.dat b/networks/He-C-Fe-group-simple/56ni-56co_electroncapture.dat new file mode 100644 index 000000000..cd5be5dc8 --- /dev/null +++ b/networks/He-C-Fe-group-simple/56ni-56co_electroncapture.dat @@ -0,0 +1,148 @@ +!56ni -> 56co, e- capture +!Q=-1.624 MeV +! +!Log(rhoY) Log(temp) mu dQ Vs Log(e-cap-rate) Log(nu-energy-loss) Log(gamma-energy) +!Log(g/cm^3) Log(K) erg erg erg Log(1/s) Log(erg/s) Log(erg/s) +1.000000 7.000000 -4.806530e-09 0.00 0.00 -8.684000 -1.486129e+01 -100.00 +1.000000 8.000000 -9.292624e-08 0.00 0.00 -9.164000 -1.533229e+01 -100.00 +1.000000 8.301030 -2.146917e-07 0.00 0.00 -9.291000 -1.544729e+01 -100.00 +1.000000 8.602060 -4.902661e-07 0.00 0.00 -9.387000 -1.551729e+01 -100.00 +1.000000 8.845098 -8.058948e-07 0.00 0.00 -8.777000 -1.485829e+01 -100.00 +1.000000 9.000000 -8.187123e-07 0.00 0.00 -7.439000 -1.346429e+01 -100.00 +1.000000 9.176091 -8.187123e-07 0.00 0.00 -6.183988 -1.211329e+01 -100.00 +1.000000 9.301030 -8.187123e-07 0.00 0.00 -5.405627 -1.124729e+01 -100.00 +1.000000 9.477121 -8.187123e-07 0.00 0.00 -4.316341 -1.001729e+01 -100.00 +1.000000 9.698970 -8.187123e-07 0.00 0.00 -2.714602 -8.181290e+00 -100.00 +1.000000 10.000000 -8.187123e-07 0.00 0.00 -0.608944 -5.723290e+00 -100.00 +1.000000 10.477121 -8.187123e-07 0.00 0.00 2.014581 -2.678290e+00 -100.00 +1.000000 11.000000 -8.187123e-07 0.00 0.00 4.728024 5.607104e-01 -100.00 +2.000000 7.000000 -1.602177e-09 0.00 0.00 -7.705000 -1.388129e+01 -100.00 +2.000000 8.000000 -6.088271e-08 0.00 0.00 -8.165000 -1.433229e+01 -100.00 +2.000000 8.301030 -1.522068e-07 0.00 0.00 -8.291000 -1.444829e+01 -100.00 +2.000000 8.602060 -3.636941e-07 0.00 0.00 -8.387000 -1.451729e+01 -100.00 +2.000000 8.845098 -7.145708e-07 0.00 0.00 -8.364000 -1.444529e+01 -100.00 +2.000000 9.000000 -8.107014e-07 0.00 0.00 -7.418000 -1.344329e+01 -100.00 +2.000000 9.176091 -8.187123e-07 0.00 0.00 -6.181989 -1.211229e+01 -100.00 +2.000000 9.301030 -8.187123e-07 0.00 0.00 -5.405627 -1.124729e+01 -100.00 +2.000000 9.477121 -8.187123e-07 0.00 0.00 -4.316341 -1.001729e+01 -100.00 +2.000000 9.698970 -8.187123e-07 0.00 0.00 -2.714602 -8.181290e+00 -100.00 +2.000000 10.000000 -8.187123e-07 0.00 0.00 -0.608944 -5.723290e+00 -100.00 +2.000000 10.477121 -8.187123e-07 0.00 0.00 2.014581 -2.678290e+00 -100.00 +2.000000 11.000000 -8.187123e-07 0.00 0.00 4.728024 5.607104e-01 -100.00 +3.000000 7.000000 3.204353e-09 0.00 0.00 -6.834000 -1.300929e+01 -100.00 +3.000000 8.000000 -2.883918e-08 0.00 0.00 -7.171000 -1.333829e+01 -100.00 +3.000000 8.301030 -8.811971e-08 0.00 0.00 -7.293000 -1.344929e+01 -100.00 +3.000000 8.602060 -2.355200e-07 0.00 0.00 -7.388000 -1.351729e+01 -100.00 +3.000000 8.845098 -5.030835e-07 0.00 0.00 -7.417000 -1.349729e+01 -100.00 +3.000000 9.000000 -7.450121e-07 0.00 0.00 -7.212000 -1.323729e+01 -100.00 +3.000000 9.176091 -8.107014e-07 0.00 0.00 -6.167989 -1.209729e+01 -100.00 +3.000000 9.301030 -8.171101e-07 0.00 0.00 -5.402630 -1.124429e+01 -100.00 +3.000000 9.477121 -8.187123e-07 0.00 0.00 -4.315361 -1.001729e+01 -100.00 +3.000000 9.698970 -8.187123e-07 0.00 0.00 -2.714602 -8.181290e+00 -100.00 +3.000000 10.000000 -8.187123e-07 0.00 0.00 -0.608944 -5.723290e+00 -100.00 +3.000000 10.477121 -8.187123e-07 0.00 0.00 2.014581 -2.678290e+00 -100.00 +3.000000 11.000000 -8.187123e-07 0.00 0.00 4.728024 5.607104e-01 -100.00 +4.000000 7.000000 1.922612e-08 0.00 0.00 -6.118000 -1.228929e+01 -100.00 +4.000000 8.000000 8.010883e-09 0.00 0.00 -6.220000 -1.238529e+01 -100.00 +4.000000 8.301030 -2.082830e-08 0.00 0.00 -6.310000 -1.246529e+01 -100.00 +4.000000 8.602060 -1.073458e-07 0.00 0.00 -6.392000 -1.252029e+01 -100.00 +4.000000 8.845098 -2.787787e-07 0.00 0.00 -6.418000 -1.249829e+01 -100.00 +4.000000 9.000000 -4.838573e-07 0.00 0.00 -6.393000 -1.241829e+01 -100.00 +4.000000 9.176091 -7.434100e-07 0.00 0.00 -6.026992 -1.195629e+01 -100.00 +4.000000 9.301030 -7.962818e-07 0.00 0.00 -5.371655 -1.121229e+01 -100.00 +4.000000 9.477121 -8.123036e-07 0.00 0.00 -4.310459 -1.001129e+01 -100.00 +4.000000 9.698970 -8.171101e-07 0.00 0.00 -2.713745 -8.180290e+00 -100.00 +4.000000 10.000000 -8.187123e-07 0.00 0.00 -0.608944 -5.723290e+00 -100.00 +4.000000 10.477121 -8.187123e-07 0.00 0.00 2.014581 -2.678290e+00 -100.00 +4.000000 11.000000 -8.187123e-07 0.00 0.00 4.728024 5.607104e-01 -100.00 +5.000000 7.000000 8.491536e-08 0.00 0.00 -5.384000 -1.153229e+01 -100.00 +5.000000 8.000000 8.331318e-08 0.00 0.00 -5.388000 -1.153329e+01 -100.00 +5.000000 8.301030 7.530230e-08 0.00 0.00 -5.399000 -1.153829e+01 -100.00 +5.000000 8.602060 4.165659e-08 0.00 0.00 -5.421000 -1.153729e+01 -100.00 +5.000000 8.845098 -4.165659e-08 0.00 0.00 -5.423000 -1.149429e+01 -100.00 +5.000000 9.000000 -1.570133e-07 0.00 0.00 -5.395000 -1.141429e+01 -100.00 +5.000000 9.176091 -3.941355e-07 0.00 0.00 -5.304998 -1.123129e+01 -100.00 +5.000000 9.301030 -6.136337e-07 0.00 0.00 -5.086821 -1.092729e+01 -100.00 +5.000000 9.477121 -7.626361e-07 0.00 0.00 -4.258432 -9.960290e+00 -100.00 +5.000000 9.698970 -8.042927e-07 0.00 0.00 -2.706884 -8.174290e+00 -100.00 +5.000000 10.000000 -8.155079e-07 0.00 0.00 -0.608116 -5.722290e+00 -100.00 +5.000000 10.477121 -8.187123e-07 0.00 0.00 2.014581 -2.678290e+00 -100.00 +5.000000 11.000000 -8.187123e-07 0.00 0.00 4.728024 5.607104e-01 -100.00 +6.000000 7.000000 3.444680e-07 0.00 0.00 -4.448000 -1.050329e+01 -100.00 +6.000000 8.000000 3.428658e-07 0.00 0.00 -4.447000 -1.050129e+01 -100.00 +6.000000 8.301030 3.412636e-07 0.00 0.00 -4.444000 -1.049429e+01 -100.00 +6.000000 8.602060 3.316506e-07 0.00 0.00 -4.432000 -1.047129e+01 -100.00 +6.000000 8.845098 3.028114e-07 0.00 0.00 -4.403000 -1.041229e+01 -100.00 +6.000000 9.000000 2.579504e-07 0.00 0.00 -4.363000 -1.033429e+01 -100.00 +6.000000 9.176091 1.490024e-07 0.00 0.00 -4.278000 -1.017529e+01 -100.00 +6.000000 9.301030 1.602177e-09 0.00 0.00 -4.169978 -9.994290e+00 -100.00 +6.000000 9.477121 -3.396614e-07 0.00 0.00 -3.831179 -9.531290e+00 -100.00 +6.000000 9.698970 -6.729142e-07 0.00 0.00 -2.635446 -8.105290e+00 -100.00 +6.000000 10.000000 -7.866687e-07 0.00 0.00 -0.601480 -5.714290e+00 -100.00 +6.000000 10.477121 -8.155079e-07 0.00 0.00 2.015573 -2.677290e+00 -100.00 +6.000000 11.000000 -8.187123e-07 0.00 0.00 4.728024 5.607104e-01 -100.00 +7.000000 7.000000 1.140750e-06 0.00 0.00 -3.134000 -8.963290e+00 -100.00 +7.000000 8.000000 1.139148e-06 0.00 0.00 -3.134000 -8.962290e+00 -100.00 +7.000000 8.301030 1.139148e-06 0.00 0.00 -3.132000 -8.960290e+00 -100.00 +7.000000 8.602060 1.134341e-06 0.00 0.00 -3.127000 -8.951290e+00 -100.00 +7.000000 8.845098 1.123126e-06 0.00 0.00 -3.113000 -8.927290e+00 -100.00 +7.000000 9.000000 1.103900e-06 0.00 0.00 -3.091000 -8.892290e+00 -100.00 +7.000000 9.176091 1.060641e-06 0.00 0.00 -3.039000 -8.809290e+00 -100.00 +7.000000 9.301030 9.965539e-07 0.00 0.00 -2.963999 -8.700290e+00 -100.00 +7.000000 9.477121 8.171101e-07 0.00 0.00 -2.726778 -8.397290e+00 -100.00 +7.000000 9.698970 2.996070e-07 0.00 0.00 -2.078197 -7.561290e+00 -100.00 +7.000000 10.000000 -5.046856e-07 0.00 0.00 -0.527602 -5.637290e+00 -100.00 +7.000000 10.477121 -7.850666e-07 0.00 0.00 2.018548 -2.674290e+00 -100.00 +7.000000 11.000000 -8.155079e-07 0.00 0.00 4.728024 5.607104e-01 -100.00 +8.000000 7.000000 3.101814e-06 0.00 0.00 -1.311000 -6.966290e+00 -100.00 +8.000000 8.000000 3.101814e-06 0.00 0.00 -1.311000 -6.966290e+00 -100.00 +8.000000 8.301030 3.100212e-06 0.00 0.00 -1.310000 -6.965290e+00 -100.00 +8.000000 8.602060 3.098610e-06 0.00 0.00 -1.305000 -6.960290e+00 -100.00 +8.000000 8.845098 3.093803e-06 0.00 0.00 -1.293000 -6.948290e+00 -100.00 +8.000000 9.000000 3.085792e-06 0.00 0.00 -1.275000 -6.929290e+00 -100.00 +8.000000 9.176091 3.064964e-06 0.00 0.00 -1.232000 -6.883290e+00 -100.00 +8.000000 9.301030 3.036125e-06 0.00 0.00 -1.177000 -6.819290e+00 -100.00 +8.000000 9.477121 2.954414e-06 0.00 0.00 -1.038995 -6.646290e+00 -100.00 +8.000000 9.698970 2.693259e-06 0.00 0.00 -0.718361 -6.191290e+00 -100.00 +8.000000 10.000000 1.573337e-06 0.00 0.00 0.045499 -5.049290e+00 -100.00 +8.000000 10.477121 -4.838573e-07 0.00 0.00 2.049328 -2.643290e+00 -100.00 +8.000000 11.000000 -7.882709e-07 0.00 0.00 4.729024 5.607104e-01 -100.00 +9.000000 7.000000 7.480563e-06 0.00 0.00 1.069000 -4.277290e+00 -100.00 +9.000000 8.000000 7.480563e-06 0.00 0.00 1.069000 -4.277290e+00 -100.00 +9.000000 8.301030 7.480563e-06 0.00 0.00 1.069000 -4.277290e+00 -100.00 +9.000000 8.602060 7.480563e-06 0.00 0.00 1.070000 -4.276290e+00 -100.00 +9.000000 8.845098 7.477358e-06 0.00 0.00 1.071000 -4.274290e+00 -100.00 +9.000000 9.000000 7.474154e-06 0.00 0.00 1.073000 -4.270290e+00 -100.00 +9.000000 9.176091 7.464541e-06 0.00 0.00 1.078000 -4.262290e+00 -100.00 +9.000000 9.301030 7.450121e-06 0.00 0.00 1.085000 -4.250290e+00 -100.00 +9.000000 9.477121 7.413271e-06 0.00 0.00 1.104000 -4.217290e+00 -100.00 +9.000000 9.698970 7.291506e-06 0.00 0.00 1.159008 -4.117290e+00 -100.00 +9.000000 10.000000 6.724335e-06 0.00 0.00 1.386790 -3.681290e+00 -100.00 +9.000000 10.477121 2.340780e-06 0.00 0.00 2.334798 -2.353290e+00 -100.00 +9.000000 11.000000 -5.191052e-07 0.00 0.00 4.737024 5.697104e-01 -100.00 +10.000000 7.000000 1.699429e-05 0.00 0.00 3.035000 -1.889290e+00 -100.00 +10.000000 8.000000 1.699429e-05 0.00 0.00 3.034000 -1.889290e+00 -100.00 +10.000000 8.301030 1.699429e-05 0.00 0.00 3.034000 -1.889290e+00 -100.00 +10.000000 8.602060 1.699429e-05 0.00 0.00 3.034000 -1.889290e+00 -100.00 +10.000000 8.845098 1.699269e-05 0.00 0.00 3.035000 -1.888290e+00 -100.00 +10.000000 9.000000 1.699108e-05 0.00 0.00 3.035000 -1.888290e+00 -100.00 +10.000000 9.176091 1.698628e-05 0.00 0.00 3.036000 -1.887290e+00 -100.00 +10.000000 9.301030 1.697987e-05 0.00 0.00 3.037000 -1.885290e+00 -100.00 +10.000000 9.477121 1.696224e-05 0.00 0.00 3.040000 -1.879290e+00 -100.00 +10.000000 9.698970 1.690617e-05 0.00 0.00 3.048000 -1.864290e+00 -100.00 +10.000000 10.000000 1.664181e-05 0.00 0.00 3.084016 -1.782290e+00 -100.00 +10.000000 10.477121 1.386203e-05 0.00 0.00 3.420155 -1.226290e+00 -100.00 +10.000000 11.000000 2.164541e-06 0.00 0.00 4.819021 6.527104e-01 -100.00 +11.000000 7.000000 3.752778e-05 0.00 0.00 4.825000 2.827104e-01 -100.00 +11.000000 8.000000 3.752778e-05 0.00 0.00 4.825000 2.827104e-01 -100.00 +11.000000 8.301030 3.752778e-05 0.00 0.00 4.825000 2.827104e-01 -100.00 +11.000000 8.602060 3.752778e-05 0.00 0.00 4.825000 2.827104e-01 -100.00 +11.000000 8.845098 3.752618e-05 0.00 0.00 4.825000 2.827104e-01 -100.00 +11.000000 9.000000 3.752618e-05 0.00 0.00 4.825000 2.827104e-01 -100.00 +11.000000 9.176091 3.752298e-05 0.00 0.00 4.826000 2.827104e-01 -100.00 +11.000000 9.301030 3.752137e-05 0.00 0.00 4.826000 2.837104e-01 -100.00 +11.000000 9.477121 3.751176e-05 0.00 0.00 4.826000 2.847104e-01 -100.00 +11.000000 9.698970 3.748613e-05 0.00 0.00 4.827000 2.867104e-01 -100.00 +11.000000 10.000000 3.736436e-05 0.00 0.00 4.831000 2.977104e-01 -100.00 +11.000000 10.477121 3.605538e-05 0.00 0.00 4.926005 4.587104e-01 -100.00 +11.000000 11.000000 2.244810e-05 0.00 0.00 5.424006 1.272710e+00 -100.00 diff --git a/networks/He-C-Fe-group-simple/Make.package b/networks/He-C-Fe-group-simple/Make.package new file mode 100644 index 000000000..39c65eca7 --- /dev/null +++ b/networks/He-C-Fe-group-simple/Make.package @@ -0,0 +1,14 @@ +CEXE_headers += network_properties.H + +ifeq ($(USE_REACT),TRUE) + CEXE_sources += actual_network_data.cpp + CEXE_headers += actual_network.H + CEXE_headers += tfactors.H + CEXE_headers += partition_functions.H + CEXE_headers += actual_rhs.H + CEXE_headers += reaclib_rates.H + CEXE_headers += table_rates.H + CEXE_sources += table_rates_data.cpp + USE_SCREENING = TRUE + USE_NEUTRINOS = TRUE +endif diff --git a/networks/He-C-Fe-group-simple/_parameters b/networks/He-C-Fe-group-simple/_parameters new file mode 100644 index 000000000..e7a017d5a --- /dev/null +++ b/networks/He-C-Fe-group-simple/_parameters @@ -0,0 +1,2 @@ +@namespace: network + diff --git a/networks/He-C-Fe-group-simple/actual_network.H b/networks/He-C-Fe-group-simple/actual_network.H new file mode 100644 index 000000000..a19a20f73 --- /dev/null +++ b/networks/He-C-Fe-group-simple/actual_network.H @@ -0,0 +1,485 @@ +#ifndef actual_network_H +#define actual_network_H + +#include +#include +#include + +#include +#include + +using namespace amrex; + +void actual_network_init(); + +const std::string network_name = "pynucastro-cxx"; + +namespace network +{ + + template + AMREX_GPU_HOST_DEVICE AMREX_INLINE + constexpr amrex::Real bion () { + using namespace Species; + + static_assert(spec >= 1 && spec <= NumSpec); + + // Set the binding energy of the element + + if constexpr (spec == N) { + return 0.0_rt; + } + else if constexpr (spec == H1) { + return 0.0_rt; + } + else if constexpr (spec == He4) { + return 28.295662457999697_rt; + } + else if constexpr (spec == C12) { + return 92.16173498399803_rt; + } + else if constexpr (spec == N13) { + return 94.10522604799917_rt; + } + else if constexpr (spec == N14) { + return 104.65860734799753_rt; + } + else if constexpr (spec == O16) { + return 127.6193154119992_rt; + } + else if constexpr (spec == F18) { + return 137.36950247599816_rt; + } + else if constexpr (spec == Ne20) { + return 160.64482384000075_rt; + } + else if constexpr (spec == Ne21) { + return 167.40598973999658_rt; + } + else if constexpr (spec == Na22) { + return 174.14457080400098_rt; + } + else if constexpr (spec == Na23) { + return 186.56435240400242_rt; + } + else if constexpr (spec == Mg24) { + return 198.2570479679962_rt; + } + else if constexpr (spec == Al27) { + return 224.95193723199915_rt; + } + else if constexpr (spec == Si28) { + return 236.53684539599638_rt; + } + else if constexpr (spec == P31) { + return 262.9161999600037_rt; + } + else if constexpr (spec == S32) { + return 271.78016372399725_rt; + } + else if constexpr (spec == Ar36) { + return 306.7167469519991_rt; + } + else if constexpr (spec == Ca40) { + return 342.05218528000114_rt; + } + else if constexpr (spec == Ti44) { + return 375.47496160800074_rt; + } + else if constexpr (spec == Cr48) { + return 411.4679399359957_rt; + } + else if constexpr (spec == Mn51) { + return 440.321747199996_rt; + } + else if constexpr (spec == Fe52) { + return 447.6996182639923_rt; + } + else if constexpr (spec == Fe54) { + return 471.76475446399854_rt; + } + else if constexpr (spec == Fe56) { + return 492.2599506639962_rt; + } + else if constexpr (spec == Co55) { + return 476.82912552799826_rt; + } + else if constexpr (spec == Co56) { + return 486.91094362799777_rt; + } + else if constexpr (spec == Co57) { + return 498.28746172798856_rt; + } + else if constexpr (spec == Ni56) { + return 483.9956965919919_rt; + } + else if constexpr (spec == Ni58) { + return 506.4596327920008_rt; + } + + + // Return zero if we don't recognize the species. + return 0.0_rt; + } + + template + AMREX_GPU_HOST_DEVICE AMREX_INLINE + constexpr amrex::Real mion () { + static_assert(spec >= 1 && spec <= NumSpec); + + constexpr amrex::Real A = NetworkProperties::aion(spec); + constexpr amrex::Real Z = NetworkProperties::zion(spec); + + return (A - Z) * C::Legacy::m_n + Z * (C::Legacy::m_p + C::Legacy::m_e) - bion() * C::Legacy::MeV2gr; + } + + // Legacy (non-templated) interfaces + + AMREX_GPU_HOST_DEVICE AMREX_INLINE + amrex::Real bion (int spec) { + using namespace Species; + + amrex::Real b = 0.0_rt; + + // Set the binding energy of the element + constexpr_for<1, NumSpec+1>([&] (auto n) { + if (n == spec) { + b = bion(); + } + }); + + return b; + } + + AMREX_GPU_HOST_DEVICE AMREX_INLINE + amrex::Real mion (int spec) { + using namespace Species; + + amrex::Real m = 0.0_rt; + + constexpr_for<1, NumSpec+1>([&] (auto n) { + if (n == spec) { + m = mion(); + } + }); + + return m; + } +} + +namespace Rates +{ + + enum NetworkRates + { + k_p_C12_to_N13 = 1, + k_He4_C12_to_O16 = 2, + k_He4_N14_to_F18 = 3, + k_He4_O16_to_Ne20 = 4, + k_He4_F18_to_Na22 = 5, + k_He4_Ne20_to_Mg24 = 6, + k_p_Ne21_to_Na22 = 7, + k_p_Na23_to_Mg24 = 8, + k_He4_Mg24_to_Si28 = 9, + k_p_Al27_to_Si28 = 10, + k_He4_Si28_to_S32 = 11, + k_p_P31_to_S32 = 12, + k_He4_Cr48_to_Fe52 = 13, + k_p_Mn51_to_Fe52 = 14, + k_He4_Mn51_to_Co55 = 15, + k_He4_Fe52_to_Ni56 = 16, + k_p_Co55_to_Ni56 = 17, + k_C12_C12_to_p_Na23 = 18, + k_C12_C12_to_He4_Ne20 = 19, + k_He4_N13_to_p_O16 = 20, + k_C12_O16_to_p_Al27 = 21, + k_C12_O16_to_He4_Mg24 = 22, + k_O16_O16_to_p_P31 = 23, + k_O16_O16_to_He4_Si28 = 24, + k_He4_F18_to_p_Ne21 = 25, + k_p_Na23_to_He4_Ne20 = 26, + k_p_Al27_to_He4_Mg24 = 27, + k_p_P31_to_He4_Si28 = 28, + k_He4_Cr48_to_p_Mn51 = 29, + k_He4_Fe52_to_p_Co55 = 30, + k_He4_He4_He4_to_C12 = 31, + k_C12_C12_to_Mg24_modified = 32, + k_O16_O16_to_S32_modified = 33, + k_C12_O16_to_Si28_modified = 34, + k_p_Fe54_to_Co55 = 35, + k_He4_Fe54_to_Ni58 = 36, + k_p_Fe56_to_Co57 = 37, + k_n_Co55_to_Co56 = 38, + k_n_Co56_to_Co57 = 39, + k_p_Co57_to_Ni58 = 40, + k_He4_Mn51_to_p_Fe54 = 41, + k_He4_Co55_to_p_Ni58 = 42, + k_n_Co56_to_p_Fe56 = 43, + k_p_Co57_to_He4_Fe54 = 44, + k_n_Ni56_to_p_Co56 = 45, + k_He4_S32_to_Ar36_removed = 46, + k_p_Cl35_to_Ar36_removed = 47, + k_p_Cl35_to_He4_S32_removed = 48, + k_He4_Ar36_to_Ca40_removed = 49, + k_p_K39_to_Ca40_removed = 50, + k_p_K39_to_He4_Ar36_removed = 51, + k_He4_Ca40_to_Ti44_removed = 52, + k_p_Sc43_to_Ti44_removed = 53, + k_p_Sc43_to_He4_Ca40_removed = 54, + k_He4_Ti44_to_Cr48_removed = 55, + k_He4_Ti44_to_p_V47_removed = 56, + k_p_V47_to_Cr48_removed = 57, + k_n_Fe52_to_Fe53_removed = 58, + k_n_Fe53_to_Fe54_removed = 59, + k_n_Fe54_to_Fe55_removed = 60, + k_n_Fe55_to_Fe56_removed = 61, + k_n_Ni56_to_Ni57_removed = 62, + k_n_Ni57_to_Ni58_removed = 63, + k_Co56_to_Fe56 = 64, + k_Co56_to_Ni56 = 65, + k_Fe56_to_Co56 = 66, + k_n_to_p = 67, + k_Ni56_to_Co56 = 68, + k_p_to_n = 69, + k_S32_He4_to_Ar36_approx = 70, + k_Ar36_to_S32_He4_approx = 71, + k_Ar36_He4_to_Ca40_approx = 72, + k_Ca40_to_Ar36_He4_approx = 73, + k_Ca40_He4_to_Ti44_approx = 74, + k_Ti44_to_Ca40_He4_approx = 75, + k_Ti44_He4_to_Cr48_approx = 76, + k_Cr48_to_Ti44_He4_approx = 77, + k_Fe52_n_n_to_Fe54_approx = 78, + k_Fe54_to_Fe52_n_n_approx = 79, + k_Fe54_n_n_to_Fe56_approx = 80, + k_Fe56_to_Fe54_n_n_approx = 81, + k_Ni56_n_n_to_Ni58_approx = 82, + k_Ni58_to_Ni56_n_n_approx = 83, + k_N13_to_p_C12_derived = 84, + k_O16_to_He4_C12_derived = 85, + k_F18_to_He4_N14_derived = 86, + k_Ne20_to_He4_O16_derived = 87, + k_Na22_to_p_Ne21_derived = 88, + k_Na22_to_He4_F18_derived = 89, + k_Mg24_to_p_Na23_derived = 90, + k_Mg24_to_He4_Ne20_derived = 91, + k_Si28_to_p_Al27_derived = 92, + k_Si28_to_He4_Mg24_derived = 93, + k_S32_to_p_P31_derived = 94, + k_S32_to_He4_Si28_derived = 95, + k_Fe52_to_p_Mn51_derived = 96, + k_Fe52_to_He4_Cr48_derived = 97, + k_Co55_to_He4_Mn51_derived = 98, + k_Ni56_to_p_Co55_derived = 99, + k_Ni56_to_He4_Fe52_derived = 100, + k_C12_to_He4_He4_He4_derived = 101, + k_p_O16_to_He4_N13_derived = 102, + k_He4_Ne20_to_p_Na23_derived = 103, + k_p_Ne21_to_He4_F18_derived = 104, + k_He4_Mg24_to_p_Al27_derived = 105, + k_He4_Si28_to_p_P31_derived = 106, + k_p_Mn51_to_He4_Cr48_derived = 107, + k_p_Co55_to_He4_Fe52_derived = 108, + k_Co55_to_p_Fe54_derived = 109, + k_Co56_to_n_Co55_derived = 110, + k_Co57_to_n_Co56_derived = 111, + k_Co57_to_p_Fe56_derived = 112, + k_Ni58_to_p_Co57_derived = 113, + k_Ni58_to_He4_Fe54_derived = 114, + k_p_Fe54_to_He4_Mn51_derived = 115, + k_He4_Fe54_to_p_Co57_derived = 116, + k_p_Fe56_to_n_Co56_derived = 117, + k_p_Co56_to_n_Ni56_derived = 118, + k_p_Ni58_to_He4_Co55_derived = 119, + k_He4_S32_to_p_Cl35_derived_removed = 120, + k_Ar36_to_He4_S32_derived_removed = 121, + k_Ar36_to_p_Cl35_derived_removed = 122, + k_He4_Ar36_to_p_K39_derived_removed = 123, + k_Ca40_to_He4_Ar36_derived_removed = 124, + k_Ca40_to_p_K39_derived_removed = 125, + k_He4_Ca40_to_p_Sc43_derived_removed = 126, + k_Ti44_to_He4_Ca40_derived_removed = 127, + k_Ti44_to_p_Sc43_derived_removed = 128, + k_Cr48_to_He4_Ti44_derived_removed = 129, + k_Cr48_to_p_V47_derived_removed = 130, + k_p_V47_to_He4_Ti44_derived_removed = 131, + k_Fe54_to_n_Fe53_derived_removed = 132, + k_Fe53_to_n_Fe52_derived_removed = 133, + k_Fe56_to_n_Fe55_derived_removed = 134, + k_Fe55_to_n_Fe54_derived_removed = 135, + k_Ni58_to_n_Ni57_derived_removed = 136, + k_Ni57_to_n_Ni56_derived_removed = 137, + NumRates = k_Ni57_to_n_Ni56_derived_removed + }; + + // number of reaclib rates + + const int NrateReaclib = 117; + + // number of tabular rates + + const int NrateTabular = 6; + + // rate names -- note: the rates are 1-based, not zero-based, so we pad + // this vector with rate_names[0] = "" so the indices line up with the + // NetworkRates enum + + static const std::vector rate_names = { + "", // 0 + "p_C12_to_N13", // 1, + "He4_C12_to_O16", // 2, + "He4_N14_to_F18", // 3, + "He4_O16_to_Ne20", // 4, + "He4_F18_to_Na22", // 5, + "He4_Ne20_to_Mg24", // 6, + "p_Ne21_to_Na22", // 7, + "p_Na23_to_Mg24", // 8, + "He4_Mg24_to_Si28", // 9, + "p_Al27_to_Si28", // 10, + "He4_Si28_to_S32", // 11, + "p_P31_to_S32", // 12, + "He4_Cr48_to_Fe52", // 13, + "p_Mn51_to_Fe52", // 14, + "He4_Mn51_to_Co55", // 15, + "He4_Fe52_to_Ni56", // 16, + "p_Co55_to_Ni56", // 17, + "C12_C12_to_p_Na23", // 18, + "C12_C12_to_He4_Ne20", // 19, + "He4_N13_to_p_O16", // 20, + "C12_O16_to_p_Al27", // 21, + "C12_O16_to_He4_Mg24", // 22, + "O16_O16_to_p_P31", // 23, + "O16_O16_to_He4_Si28", // 24, + "He4_F18_to_p_Ne21", // 25, + "p_Na23_to_He4_Ne20", // 26, + "p_Al27_to_He4_Mg24", // 27, + "p_P31_to_He4_Si28", // 28, + "He4_Cr48_to_p_Mn51", // 29, + "He4_Fe52_to_p_Co55", // 30, + "He4_He4_He4_to_C12", // 31, + "C12_C12_to_Mg24_modified", // 32, + "O16_O16_to_S32_modified", // 33, + "C12_O16_to_Si28_modified", // 34, + "p_Fe54_to_Co55", // 35, + "He4_Fe54_to_Ni58", // 36, + "p_Fe56_to_Co57", // 37, + "n_Co55_to_Co56", // 38, + "n_Co56_to_Co57", // 39, + "p_Co57_to_Ni58", // 40, + "He4_Mn51_to_p_Fe54", // 41, + "He4_Co55_to_p_Ni58", // 42, + "n_Co56_to_p_Fe56", // 43, + "p_Co57_to_He4_Fe54", // 44, + "n_Ni56_to_p_Co56", // 45, + "He4_S32_to_Ar36_removed", // 46, + "p_Cl35_to_Ar36_removed", // 47, + "p_Cl35_to_He4_S32_removed", // 48, + "He4_Ar36_to_Ca40_removed", // 49, + "p_K39_to_Ca40_removed", // 50, + "p_K39_to_He4_Ar36_removed", // 51, + "He4_Ca40_to_Ti44_removed", // 52, + "p_Sc43_to_Ti44_removed", // 53, + "p_Sc43_to_He4_Ca40_removed", // 54, + "He4_Ti44_to_Cr48_removed", // 55, + "He4_Ti44_to_p_V47_removed", // 56, + "p_V47_to_Cr48_removed", // 57, + "n_Fe52_to_Fe53_removed", // 58, + "n_Fe53_to_Fe54_removed", // 59, + "n_Fe54_to_Fe55_removed", // 60, + "n_Fe55_to_Fe56_removed", // 61, + "n_Ni56_to_Ni57_removed", // 62, + "n_Ni57_to_Ni58_removed", // 63, + "Co56_to_Fe56", // 64, + "Co56_to_Ni56", // 65, + "Fe56_to_Co56", // 66, + "n_to_p", // 67, + "Ni56_to_Co56", // 68, + "p_to_n", // 69, + "S32_He4_to_Ar36_approx", // 70, + "Ar36_to_S32_He4_approx", // 71, + "Ar36_He4_to_Ca40_approx", // 72, + "Ca40_to_Ar36_He4_approx", // 73, + "Ca40_He4_to_Ti44_approx", // 74, + "Ti44_to_Ca40_He4_approx", // 75, + "Ti44_He4_to_Cr48_approx", // 76, + "Cr48_to_Ti44_He4_approx", // 77, + "Fe52_n_n_to_Fe54_approx", // 78, + "Fe54_to_Fe52_n_n_approx", // 79, + "Fe54_n_n_to_Fe56_approx", // 80, + "Fe56_to_Fe54_n_n_approx", // 81, + "Ni56_n_n_to_Ni58_approx", // 82, + "Ni58_to_Ni56_n_n_approx", // 83, + "N13_to_p_C12_derived", // 84, + "O16_to_He4_C12_derived", // 85, + "F18_to_He4_N14_derived", // 86, + "Ne20_to_He4_O16_derived", // 87, + "Na22_to_p_Ne21_derived", // 88, + "Na22_to_He4_F18_derived", // 89, + "Mg24_to_p_Na23_derived", // 90, + "Mg24_to_He4_Ne20_derived", // 91, + "Si28_to_p_Al27_derived", // 92, + "Si28_to_He4_Mg24_derived", // 93, + "S32_to_p_P31_derived", // 94, + "S32_to_He4_Si28_derived", // 95, + "Fe52_to_p_Mn51_derived", // 96, + "Fe52_to_He4_Cr48_derived", // 97, + "Co55_to_He4_Mn51_derived", // 98, + "Ni56_to_p_Co55_derived", // 99, + "Ni56_to_He4_Fe52_derived", // 100, + "C12_to_He4_He4_He4_derived", // 101, + "p_O16_to_He4_N13_derived", // 102, + "He4_Ne20_to_p_Na23_derived", // 103, + "p_Ne21_to_He4_F18_derived", // 104, + "He4_Mg24_to_p_Al27_derived", // 105, + "He4_Si28_to_p_P31_derived", // 106, + "p_Mn51_to_He4_Cr48_derived", // 107, + "p_Co55_to_He4_Fe52_derived", // 108, + "Co55_to_p_Fe54_derived", // 109, + "Co56_to_n_Co55_derived", // 110, + "Co57_to_n_Co56_derived", // 111, + "Co57_to_p_Fe56_derived", // 112, + "Ni58_to_p_Co57_derived", // 113, + "Ni58_to_He4_Fe54_derived", // 114, + "p_Fe54_to_He4_Mn51_derived", // 115, + "He4_Fe54_to_p_Co57_derived", // 116, + "p_Fe56_to_n_Co56_derived", // 117, + "p_Co56_to_n_Ni56_derived", // 118, + "p_Ni58_to_He4_Co55_derived", // 119, + "He4_S32_to_p_Cl35_derived_removed", // 120, + "Ar36_to_He4_S32_derived_removed", // 121, + "Ar36_to_p_Cl35_derived_removed", // 122, + "He4_Ar36_to_p_K39_derived_removed", // 123, + "Ca40_to_He4_Ar36_derived_removed", // 124, + "Ca40_to_p_K39_derived_removed", // 125, + "He4_Ca40_to_p_Sc43_derived_removed", // 126, + "Ti44_to_He4_Ca40_derived_removed", // 127, + "Ti44_to_p_Sc43_derived_removed", // 128, + "Cr48_to_He4_Ti44_derived_removed", // 129, + "Cr48_to_p_V47_derived_removed", // 130, + "p_V47_to_He4_Ti44_derived_removed", // 131, + "Fe54_to_n_Fe53_derived_removed", // 132, + "Fe53_to_n_Fe52_derived_removed", // 133, + "Fe56_to_n_Fe55_derived_removed", // 134, + "Fe55_to_n_Fe54_derived_removed", // 135, + "Ni58_to_n_Ni57_derived_removed", // 136, + "Ni57_to_n_Ni56_derived_removed" // 137, + }; + +} + +#ifdef NSE_NET +namespace NSE_INDEX +{ + constexpr int H1_index = 1; + constexpr int N_index = 0; + constexpr int He4_index = 2; + + // Each row corresponds to the rate in NetworkRates enum + // First 3 row indices for reactants, followed by 3 product indices + // last index is the corresponding reverse rate index. + + extern AMREX_GPU_MANAGED amrex::Array2D rate_indices; +} +#endif + +#endif diff --git a/networks/He-C-Fe-group-simple/actual_network_data.cpp b/networks/He-C-Fe-group-simple/actual_network_data.cpp new file mode 100644 index 000000000..cd7f18600 --- /dev/null +++ b/networks/He-C-Fe-group-simple/actual_network_data.cpp @@ -0,0 +1,152 @@ +#include + + +#ifdef NSE_NET +namespace NSE_INDEX +{ + AMREX_GPU_MANAGED amrex::Array2D rate_indices { + -1, 1, 3, -1, -1, 4, 84, + -1, 2, 3, -1, -1, 6, 85, + -1, 2, 5, -1, -1, 7, 86, + -1, 2, 6, -1, -1, 8, 87, + -1, 2, 7, -1, -1, 10, 89, + -1, 2, 8, -1, -1, 12, 91, + -1, 1, 9, -1, -1, 10, 88, + -1, 1, 11, -1, -1, 12, 90, + -1, 2, 12, -1, -1, 14, 93, + -1, 1, 13, -1, -1, 14, 92, + -1, 2, 14, -1, -1, 16, 95, + -1, 1, 15, -1, -1, 16, 94, + -1, 2, 20, -1, -1, 22, 97, + -1, 1, 21, -1, -1, 22, 96, + -1, 2, 21, -1, -1, 25, 98, + -1, 2, 22, -1, -1, 28, 100, + -1, 1, 25, -1, -1, 28, 99, + -1, 3, 3, -1, 1, 11, -1, + -1, 3, 3, -1, 2, 8, -1, + -1, 2, 4, -1, 1, 6, 102, + -1, 3, 6, -1, 1, 13, -1, + -1, 3, 6, -1, 2, 12, -1, + -1, 6, 6, -1, 1, 15, -1, + -1, 6, 6, -1, 2, 14, -1, + -1, 2, 7, -1, 1, 9, 104, + -1, 1, 11, -1, 2, 8, 103, + -1, 1, 13, -1, 2, 12, 105, + -1, 1, 15, -1, 2, 14, 106, + -1, 2, 20, -1, 1, 21, 107, + -1, 2, 22, -1, 1, 25, 108, + 2, 2, 2, -1, -1, 3, 101, + -1, 3, 3, -1, -1, 12, -1, + -1, 6, 6, -1, -1, 16, -1, + -1, 3, 6, -1, -1, 14, -1, + -1, 1, 23, -1, -1, 25, 109, + -1, 2, 23, -1, -1, 29, 114, + -1, 1, 24, -1, -1, 27, 112, + -1, 0, 25, -1, -1, 26, 110, + -1, 0, 26, -1, -1, 27, 111, + -1, 1, 27, -1, -1, 29, 113, + -1, 2, 21, -1, 1, 23, 115, + -1, 2, 25, -1, 1, 29, 119, + -1, 0, 26, -1, 1, 24, 117, + -1, 1, 27, -1, 2, 23, 116, + -1, 0, 28, -1, 1, 26, 118, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, 26, -1, -1, 24, 66, + -1, -1, 26, -1, -1, 28, -1, + -1, -1, 24, -1, -1, 26, -1, + -1, -1, 0, -1, -1, 1, 69, + -1, -1, 28, -1, -1, 26, 65, + -1, -1, 1, -1, -1, 0, -1, + -1, 2, 16, -1, -1, 17, 71, + -1, -1, 17, -1, 2, 16, -1, + -1, 2, 17, -1, -1, 18, 73, + -1, -1, 18, -1, 2, 17, -1, + -1, 2, 18, -1, -1, 19, 75, + -1, -1, 19, -1, 2, 18, -1, + -1, 2, 19, -1, -1, 20, 77, + -1, -1, 20, -1, 2, 19, -1, + 0, 0, 22, -1, -1, 23, 79, + -1, -1, 23, 0, 0, 22, -1, + 0, 0, 23, -1, -1, 24, 81, + -1, -1, 24, 0, 0, 23, -1, + 0, 0, 28, -1, -1, 29, 83, + -1, -1, 29, 0, 0, 28, -1, + -1, -1, 4, -1, 1, 3, -1, + -1, -1, 6, -1, 2, 3, -1, + -1, -1, 7, -1, 2, 5, -1, + -1, -1, 8, -1, 2, 6, -1, + -1, -1, 10, -1, 1, 9, -1, + -1, -1, 10, -1, 2, 7, -1, + -1, -1, 12, -1, 1, 11, -1, + -1, -1, 12, -1, 2, 8, -1, + -1, -1, 14, -1, 1, 13, -1, + -1, -1, 14, -1, 2, 12, -1, + -1, -1, 16, -1, 1, 15, -1, + -1, -1, 16, -1, 2, 14, -1, + -1, -1, 22, -1, 1, 21, -1, + -1, -1, 22, -1, 2, 20, -1, + -1, -1, 25, -1, 2, 21, -1, + -1, -1, 28, -1, 1, 25, -1, + -1, -1, 28, -1, 2, 22, -1, + -1, -1, 3, 2, 2, 2, -1, + -1, 1, 6, -1, 2, 4, -1, + -1, 2, 8, -1, 1, 11, -1, + -1, 1, 9, -1, 2, 7, -1, + -1, 2, 12, -1, 1, 13, -1, + -1, 2, 14, -1, 1, 15, -1, + -1, 1, 21, -1, 2, 20, -1, + -1, 1, 25, -1, 2, 22, -1, + -1, -1, 25, -1, 1, 23, -1, + -1, -1, 26, -1, 0, 25, -1, + -1, -1, 27, -1, 0, 26, -1, + -1, -1, 27, -1, 1, 24, -1, + -1, -1, 29, -1, 1, 27, -1, + -1, -1, 29, -1, 2, 23, -1, + -1, 1, 23, -1, 2, 21, -1, + -1, 2, 23, -1, 1, 27, -1, + -1, 1, 24, -1, 0, 26, -1, + -1, 1, 26, -1, 0, 28, -1, + -1, 1, 29, -1, 2, 25, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1 + }; +} +#endif + +void actual_network_init() +{ + +} diff --git a/networks/He-C-Fe-group-simple/actual_rhs.H b/networks/He-C-Fe-group-simple/actual_rhs.H new file mode 100644 index 000000000..ef9196956 --- /dev/null +++ b/networks/He-C-Fe-group-simple/actual_rhs.H @@ -0,0 +1,2325 @@ +#ifndef actual_rhs_H +#define actual_rhs_H + +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +using namespace amrex; +using namespace ArrayUtil; + +using namespace Species; +using namespace Rates; + +using namespace rate_tables; + + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void ener_gener_rate(T const& dydt, amrex::Real& enuc) +{ + + // Computes the instantaneous energy generation rate (from the nuclei) + + // This is basically e = m c**2 + + enuc = 0.0_rt; + + for (int n = 1; n <= NumSpec; ++n) { + enuc += dydt(n) * network::mion(n); + } + + enuc *= C::Legacy::enuc_conv2; +} + + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void evaluate_rates(const burn_t& state, T& rate_eval) { + + + // create molar fractions + + amrex::Array1D Y; + for (int n = 1; n <= NumSpec; ++n) { + Y(n) = state.xn[n-1] * aion_inv[n-1]; + } + + [[maybe_unused]] amrex::Real rhoy = state.rho * state.y_e; + + // Calculate Reaclib rates + + using number_t = std::conditional_t; + number_t temp = state.T; + if constexpr (do_T_derivatives) { + // seed the dual number for temperature before calculating anything with it + autodiff::seed(temp); + } + plasma_state_t pstate{}; + fill_plasma_state(pstate, temp, state.rho, Y); + + tf_t tfactors = evaluate_tfactors(state.T); + + fill_reaclib_rates(tfactors, rate_eval); + + + + // Evaluate screening factors + + amrex::Real ratraw, dratraw_dT; + amrex::Real scor, dscor_dt; + [[maybe_unused]] amrex::Real scor2, dscor2_dt; + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 6.0_rt, 12.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_C12_to_N13); + rate_eval.screened_rates(k_p_C12_to_N13) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_C12_to_N13); + rate_eval.dscreened_rates_dT(k_p_C12_to_N13) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 6.0_rt, 12.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_C12_to_O16); + rate_eval.screened_rates(k_He4_C12_to_O16) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_C12_to_O16); + rate_eval.dscreened_rates_dT(k_He4_C12_to_O16) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 7.0_rt, 14.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_N14_to_F18); + rate_eval.screened_rates(k_He4_N14_to_F18) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_N14_to_F18); + rate_eval.dscreened_rates_dT(k_He4_N14_to_F18) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 8.0_rt, 16.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_O16_to_Ne20); + rate_eval.screened_rates(k_He4_O16_to_Ne20) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_O16_to_Ne20); + rate_eval.dscreened_rates_dT(k_He4_O16_to_Ne20) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 9.0_rt, 18.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_F18_to_Na22); + rate_eval.screened_rates(k_He4_F18_to_Na22) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_F18_to_Na22); + rate_eval.dscreened_rates_dT(k_He4_F18_to_Na22) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_He4_F18_to_p_Ne21); + rate_eval.screened_rates(k_He4_F18_to_p_Ne21) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_F18_to_p_Ne21); + rate_eval.dscreened_rates_dT(k_He4_F18_to_p_Ne21) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 10.0_rt, 20.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_Ne20_to_Mg24); + rate_eval.screened_rates(k_He4_Ne20_to_Mg24) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Ne20_to_Mg24); + rate_eval.dscreened_rates_dT(k_He4_Ne20_to_Mg24) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_He4_Ne20_to_p_Na23_derived); + rate_eval.screened_rates(k_He4_Ne20_to_p_Na23_derived) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Ne20_to_p_Na23_derived); + rate_eval.dscreened_rates_dT(k_He4_Ne20_to_p_Na23_derived) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 10.0_rt, 21.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_Ne21_to_Na22); + rate_eval.screened_rates(k_p_Ne21_to_Na22) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Ne21_to_Na22); + rate_eval.dscreened_rates_dT(k_p_Ne21_to_Na22) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_Ne21_to_He4_F18_derived); + rate_eval.screened_rates(k_p_Ne21_to_He4_F18_derived) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Ne21_to_He4_F18_derived); + rate_eval.dscreened_rates_dT(k_p_Ne21_to_He4_F18_derived) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 11.0_rt, 23.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_Na23_to_Mg24); + rate_eval.screened_rates(k_p_Na23_to_Mg24) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Na23_to_Mg24); + rate_eval.dscreened_rates_dT(k_p_Na23_to_Mg24) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_Na23_to_He4_Ne20); + rate_eval.screened_rates(k_p_Na23_to_He4_Ne20) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Na23_to_He4_Ne20); + rate_eval.dscreened_rates_dT(k_p_Na23_to_He4_Ne20) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 12.0_rt, 24.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_Mg24_to_Si28); + rate_eval.screened_rates(k_He4_Mg24_to_Si28) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Mg24_to_Si28); + rate_eval.dscreened_rates_dT(k_He4_Mg24_to_Si28) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_He4_Mg24_to_p_Al27_derived); + rate_eval.screened_rates(k_He4_Mg24_to_p_Al27_derived) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Mg24_to_p_Al27_derived); + rate_eval.dscreened_rates_dT(k_He4_Mg24_to_p_Al27_derived) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 13.0_rt, 27.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_Al27_to_Si28); + rate_eval.screened_rates(k_p_Al27_to_Si28) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Al27_to_Si28); + rate_eval.dscreened_rates_dT(k_p_Al27_to_Si28) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_Al27_to_He4_Mg24); + rate_eval.screened_rates(k_p_Al27_to_He4_Mg24) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Al27_to_He4_Mg24); + rate_eval.dscreened_rates_dT(k_p_Al27_to_He4_Mg24) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 14.0_rt, 28.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_Si28_to_S32); + rate_eval.screened_rates(k_He4_Si28_to_S32) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Si28_to_S32); + rate_eval.dscreened_rates_dT(k_He4_Si28_to_S32) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_He4_Si28_to_p_P31_derived); + rate_eval.screened_rates(k_He4_Si28_to_p_P31_derived) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Si28_to_p_P31_derived); + rate_eval.dscreened_rates_dT(k_He4_Si28_to_p_P31_derived) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 15.0_rt, 31.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_P31_to_S32); + rate_eval.screened_rates(k_p_P31_to_S32) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_P31_to_S32); + rate_eval.dscreened_rates_dT(k_p_P31_to_S32) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_P31_to_He4_Si28); + rate_eval.screened_rates(k_p_P31_to_He4_Si28) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_P31_to_He4_Si28); + rate_eval.dscreened_rates_dT(k_p_P31_to_He4_Si28) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 24.0_rt, 48.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_Cr48_to_Fe52); + rate_eval.screened_rates(k_He4_Cr48_to_Fe52) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Cr48_to_Fe52); + rate_eval.dscreened_rates_dT(k_He4_Cr48_to_Fe52) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_He4_Cr48_to_p_Mn51); + rate_eval.screened_rates(k_He4_Cr48_to_p_Mn51) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Cr48_to_p_Mn51); + rate_eval.dscreened_rates_dT(k_He4_Cr48_to_p_Mn51) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 25.0_rt, 51.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_Mn51_to_Fe52); + rate_eval.screened_rates(k_p_Mn51_to_Fe52) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Mn51_to_Fe52); + rate_eval.dscreened_rates_dT(k_p_Mn51_to_Fe52) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_Mn51_to_He4_Cr48_derived); + rate_eval.screened_rates(k_p_Mn51_to_He4_Cr48_derived) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Mn51_to_He4_Cr48_derived); + rate_eval.dscreened_rates_dT(k_p_Mn51_to_He4_Cr48_derived) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 25.0_rt, 51.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_Mn51_to_Co55); + rate_eval.screened_rates(k_He4_Mn51_to_Co55) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Mn51_to_Co55); + rate_eval.dscreened_rates_dT(k_He4_Mn51_to_Co55) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_He4_Mn51_to_p_Fe54); + rate_eval.screened_rates(k_He4_Mn51_to_p_Fe54) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Mn51_to_p_Fe54); + rate_eval.dscreened_rates_dT(k_He4_Mn51_to_p_Fe54) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 26.0_rt, 52.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_Fe52_to_Ni56); + rate_eval.screened_rates(k_He4_Fe52_to_Ni56) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Fe52_to_Ni56); + rate_eval.dscreened_rates_dT(k_He4_Fe52_to_Ni56) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_He4_Fe52_to_p_Co55); + rate_eval.screened_rates(k_He4_Fe52_to_p_Co55) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Fe52_to_p_Co55); + rate_eval.dscreened_rates_dT(k_He4_Fe52_to_p_Co55) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 27.0_rt, 55.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_Co55_to_Ni56); + rate_eval.screened_rates(k_p_Co55_to_Ni56) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Co55_to_Ni56); + rate_eval.dscreened_rates_dT(k_p_Co55_to_Ni56) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_Co55_to_He4_Fe52_derived); + rate_eval.screened_rates(k_p_Co55_to_He4_Fe52_derived) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Co55_to_He4_Fe52_derived); + rate_eval.dscreened_rates_dT(k_p_Co55_to_He4_Fe52_derived) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(6.0_rt, 12.0_rt, 6.0_rt, 12.0_rt); + + + static_assert(scn_fac.z1 == 6.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_C12_C12_to_p_Na23); + rate_eval.screened_rates(k_C12_C12_to_p_Na23) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_C12_C12_to_p_Na23); + rate_eval.dscreened_rates_dT(k_C12_C12_to_p_Na23) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_C12_C12_to_He4_Ne20); + rate_eval.screened_rates(k_C12_C12_to_He4_Ne20) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_C12_C12_to_He4_Ne20); + rate_eval.dscreened_rates_dT(k_C12_C12_to_He4_Ne20) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_C12_C12_to_Mg24_modified); + rate_eval.screened_rates(k_C12_C12_to_Mg24_modified) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_C12_C12_to_Mg24_modified); + rate_eval.dscreened_rates_dT(k_C12_C12_to_Mg24_modified) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 7.0_rt, 13.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_N13_to_p_O16); + rate_eval.screened_rates(k_He4_N13_to_p_O16) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_N13_to_p_O16); + rate_eval.dscreened_rates_dT(k_He4_N13_to_p_O16) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(6.0_rt, 12.0_rt, 8.0_rt, 16.0_rt); + + + static_assert(scn_fac.z1 == 6.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_C12_O16_to_p_Al27); + rate_eval.screened_rates(k_C12_O16_to_p_Al27) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_C12_O16_to_p_Al27); + rate_eval.dscreened_rates_dT(k_C12_O16_to_p_Al27) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_C12_O16_to_He4_Mg24); + rate_eval.screened_rates(k_C12_O16_to_He4_Mg24) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_C12_O16_to_He4_Mg24); + rate_eval.dscreened_rates_dT(k_C12_O16_to_He4_Mg24) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_C12_O16_to_Si28_modified); + rate_eval.screened_rates(k_C12_O16_to_Si28_modified) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_C12_O16_to_Si28_modified); + rate_eval.dscreened_rates_dT(k_C12_O16_to_Si28_modified) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(8.0_rt, 16.0_rt, 8.0_rt, 16.0_rt); + + + static_assert(scn_fac.z1 == 8.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_O16_O16_to_p_P31); + rate_eval.screened_rates(k_O16_O16_to_p_P31) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_O16_O16_to_p_P31); + rate_eval.dscreened_rates_dT(k_O16_O16_to_p_P31) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_O16_O16_to_He4_Si28); + rate_eval.screened_rates(k_O16_O16_to_He4_Si28) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_O16_O16_to_He4_Si28); + rate_eval.dscreened_rates_dT(k_O16_O16_to_He4_Si28) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_O16_O16_to_S32_modified); + rate_eval.screened_rates(k_O16_O16_to_S32_modified) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_O16_O16_to_S32_modified); + rate_eval.dscreened_rates_dT(k_O16_O16_to_S32_modified) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 2.0_rt, 4.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + + { + constexpr auto scn_fac2 = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 4.0_rt, 8.0_rt); + + + static_assert(scn_fac2.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac2, scor2, dscor2_dt); + + } + + + ratraw = rate_eval.screened_rates(k_He4_He4_He4_to_C12); + rate_eval.screened_rates(k_He4_He4_He4_to_C12) *= scor * scor2; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_He4_He4_to_C12); + rate_eval.dscreened_rates_dT(k_He4_He4_He4_to_C12) = ratraw * (scor * dscor2_dt + dscor_dt * scor2) + dratraw_dT * scor * scor2; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 26.0_rt, 54.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_Fe54_to_Co55); + rate_eval.screened_rates(k_p_Fe54_to_Co55) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Fe54_to_Co55); + rate_eval.dscreened_rates_dT(k_p_Fe54_to_Co55) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_Fe54_to_He4_Mn51_derived); + rate_eval.screened_rates(k_p_Fe54_to_He4_Mn51_derived) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Fe54_to_He4_Mn51_derived); + rate_eval.dscreened_rates_dT(k_p_Fe54_to_He4_Mn51_derived) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 26.0_rt, 54.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_Fe54_to_Ni58); + rate_eval.screened_rates(k_He4_Fe54_to_Ni58) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Fe54_to_Ni58); + rate_eval.dscreened_rates_dT(k_He4_Fe54_to_Ni58) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_He4_Fe54_to_p_Co57_derived); + rate_eval.screened_rates(k_He4_Fe54_to_p_Co57_derived) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Fe54_to_p_Co57_derived); + rate_eval.dscreened_rates_dT(k_He4_Fe54_to_p_Co57_derived) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 26.0_rt, 56.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_Fe56_to_Co57); + rate_eval.screened_rates(k_p_Fe56_to_Co57) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Fe56_to_Co57); + rate_eval.dscreened_rates_dT(k_p_Fe56_to_Co57) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_Fe56_to_n_Co56_derived); + rate_eval.screened_rates(k_p_Fe56_to_n_Co56_derived) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Fe56_to_n_Co56_derived); + rate_eval.dscreened_rates_dT(k_p_Fe56_to_n_Co56_derived) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 27.0_rt, 57.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_Co57_to_Ni58); + rate_eval.screened_rates(k_p_Co57_to_Ni58) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Co57_to_Ni58); + rate_eval.dscreened_rates_dT(k_p_Co57_to_Ni58) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_Co57_to_He4_Fe54); + rate_eval.screened_rates(k_p_Co57_to_He4_Fe54) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Co57_to_He4_Fe54); + rate_eval.dscreened_rates_dT(k_p_Co57_to_He4_Fe54) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 27.0_rt, 55.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_Co55_to_p_Ni58); + rate_eval.screened_rates(k_He4_Co55_to_p_Ni58) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Co55_to_p_Ni58); + rate_eval.dscreened_rates_dT(k_He4_Co55_to_p_Ni58) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 8.0_rt, 16.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_O16_to_He4_N13_derived); + rate_eval.screened_rates(k_p_O16_to_He4_N13_derived) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_O16_to_He4_N13_derived); + rate_eval.dscreened_rates_dT(k_p_O16_to_He4_N13_derived) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 27.0_rt, 56.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_Co56_to_n_Ni56_derived); + rate_eval.screened_rates(k_p_Co56_to_n_Ni56_derived) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Co56_to_n_Ni56_derived); + rate_eval.dscreened_rates_dT(k_p_Co56_to_n_Ni56_derived) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 28.0_rt, 58.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_Ni58_to_He4_Co55_derived); + rate_eval.screened_rates(k_p_Ni58_to_He4_Co55_derived) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Ni58_to_He4_Co55_derived); + rate_eval.dscreened_rates_dT(k_p_Ni58_to_He4_Co55_derived) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 16.0_rt, 32.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_S32_to_Ar36_removed); + rate_eval.screened_rates(k_He4_S32_to_Ar36_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_S32_to_Ar36_removed); + rate_eval.dscreened_rates_dT(k_He4_S32_to_Ar36_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_He4_S32_to_p_Cl35_derived_removed); + rate_eval.screened_rates(k_He4_S32_to_p_Cl35_derived_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_S32_to_p_Cl35_derived_removed); + rate_eval.dscreened_rates_dT(k_He4_S32_to_p_Cl35_derived_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 17.0_rt, 35.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_Cl35_to_Ar36_removed); + rate_eval.screened_rates(k_p_Cl35_to_Ar36_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Cl35_to_Ar36_removed); + rate_eval.dscreened_rates_dT(k_p_Cl35_to_Ar36_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_Cl35_to_He4_S32_removed); + rate_eval.screened_rates(k_p_Cl35_to_He4_S32_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Cl35_to_He4_S32_removed); + rate_eval.dscreened_rates_dT(k_p_Cl35_to_He4_S32_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 18.0_rt, 36.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_Ar36_to_Ca40_removed); + rate_eval.screened_rates(k_He4_Ar36_to_Ca40_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Ar36_to_Ca40_removed); + rate_eval.dscreened_rates_dT(k_He4_Ar36_to_Ca40_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_He4_Ar36_to_p_K39_derived_removed); + rate_eval.screened_rates(k_He4_Ar36_to_p_K39_derived_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Ar36_to_p_K39_derived_removed); + rate_eval.dscreened_rates_dT(k_He4_Ar36_to_p_K39_derived_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 19.0_rt, 39.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_K39_to_Ca40_removed); + rate_eval.screened_rates(k_p_K39_to_Ca40_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_K39_to_Ca40_removed); + rate_eval.dscreened_rates_dT(k_p_K39_to_Ca40_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_K39_to_He4_Ar36_removed); + rate_eval.screened_rates(k_p_K39_to_He4_Ar36_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_K39_to_He4_Ar36_removed); + rate_eval.dscreened_rates_dT(k_p_K39_to_He4_Ar36_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 20.0_rt, 40.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_Ca40_to_Ti44_removed); + rate_eval.screened_rates(k_He4_Ca40_to_Ti44_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Ca40_to_Ti44_removed); + rate_eval.dscreened_rates_dT(k_He4_Ca40_to_Ti44_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_He4_Ca40_to_p_Sc43_derived_removed); + rate_eval.screened_rates(k_He4_Ca40_to_p_Sc43_derived_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Ca40_to_p_Sc43_derived_removed); + rate_eval.dscreened_rates_dT(k_He4_Ca40_to_p_Sc43_derived_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 21.0_rt, 43.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_Sc43_to_Ti44_removed); + rate_eval.screened_rates(k_p_Sc43_to_Ti44_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Sc43_to_Ti44_removed); + rate_eval.dscreened_rates_dT(k_p_Sc43_to_Ti44_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_Sc43_to_He4_Ca40_removed); + rate_eval.screened_rates(k_p_Sc43_to_He4_Ca40_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_Sc43_to_He4_Ca40_removed); + rate_eval.dscreened_rates_dT(k_p_Sc43_to_He4_Ca40_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(2.0_rt, 4.0_rt, 22.0_rt, 44.0_rt); + + + static_assert(scn_fac.z1 == 2.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_He4_Ti44_to_Cr48_removed); + rate_eval.screened_rates(k_He4_Ti44_to_Cr48_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Ti44_to_Cr48_removed); + rate_eval.dscreened_rates_dT(k_He4_Ti44_to_Cr48_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_He4_Ti44_to_p_V47_removed); + rate_eval.screened_rates(k_He4_Ti44_to_p_V47_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_He4_Ti44_to_p_V47_removed); + rate_eval.dscreened_rates_dT(k_He4_Ti44_to_p_V47_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + { + constexpr auto scn_fac = scrn::calculate_screen_factor(1.0_rt, 1.0_rt, 23.0_rt, 47.0_rt); + + + static_assert(scn_fac.z1 == 1.0_rt); + + + actual_screen(pstate, scn_fac, scor, dscor_dt); + } + + + ratraw = rate_eval.screened_rates(k_p_V47_to_Cr48_removed); + rate_eval.screened_rates(k_p_V47_to_Cr48_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_V47_to_Cr48_removed); + rate_eval.dscreened_rates_dT(k_p_V47_to_Cr48_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + ratraw = rate_eval.screened_rates(k_p_V47_to_He4_Ti44_derived_removed); + rate_eval.screened_rates(k_p_V47_to_He4_Ti44_derived_removed) *= scor; + if constexpr (std::is_same_v) { + dratraw_dT = rate_eval.dscreened_rates_dT(k_p_V47_to_He4_Ti44_derived_removed); + rate_eval.dscreened_rates_dT(k_p_V47_to_He4_Ti44_derived_removed) = ratraw * dscor_dt + dratraw_dT * scor; + } + + + // Fill approximate rates + + fill_approx_rates(tfactors, state.rho, Y, rate_eval); + + // Calculate tabular rates + + [[maybe_unused]] amrex::Real rate, drate_dt, edot_nu, edot_gamma; + + rate_eval.enuc_weak = 0.0_rt; + + tabular_evaluate(j_Co56_Fe56_meta, j_Co56_Fe56_rhoy, j_Co56_Fe56_temp, j_Co56_Fe56_data, + rhoy, state.T, rate, drate_dt, edot_nu, edot_gamma); + rate_eval.screened_rates(k_Co56_to_Fe56) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Co56_to_Fe56) = drate_dt; + } + rate_eval.enuc_weak += C::Legacy::n_A * Y(Co56) * (edot_nu + edot_gamma); + + tabular_evaluate(j_Co56_Ni56_meta, j_Co56_Ni56_rhoy, j_Co56_Ni56_temp, j_Co56_Ni56_data, + rhoy, state.T, rate, drate_dt, edot_nu, edot_gamma); + rate_eval.screened_rates(k_Co56_to_Ni56) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Co56_to_Ni56) = drate_dt; + } + rate_eval.enuc_weak += C::Legacy::n_A * Y(Co56) * (edot_nu + edot_gamma); + + tabular_evaluate(j_Fe56_Co56_meta, j_Fe56_Co56_rhoy, j_Fe56_Co56_temp, j_Fe56_Co56_data, + rhoy, state.T, rate, drate_dt, edot_nu, edot_gamma); + rate_eval.screened_rates(k_Fe56_to_Co56) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Fe56_to_Co56) = drate_dt; + } + rate_eval.enuc_weak += C::Legacy::n_A * Y(Fe56) * (edot_nu + edot_gamma); + + tabular_evaluate(j_n_p_meta, j_n_p_rhoy, j_n_p_temp, j_n_p_data, + rhoy, state.T, rate, drate_dt, edot_nu, edot_gamma); + rate_eval.screened_rates(k_n_to_p) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_n_to_p) = drate_dt; + } + rate_eval.enuc_weak += C::Legacy::n_A * Y(N) * (edot_nu + edot_gamma); + + tabular_evaluate(j_Ni56_Co56_meta, j_Ni56_Co56_rhoy, j_Ni56_Co56_temp, j_Ni56_Co56_data, + rhoy, state.T, rate, drate_dt, edot_nu, edot_gamma); + rate_eval.screened_rates(k_Ni56_to_Co56) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ni56_to_Co56) = drate_dt; + } + rate_eval.enuc_weak += C::Legacy::n_A * Y(Ni56) * (edot_nu + edot_gamma); + + tabular_evaluate(j_p_n_meta, j_p_n_rhoy, j_p_n_temp, j_p_n_data, + rhoy, state.T, rate, drate_dt, edot_nu, edot_gamma); + rate_eval.screened_rates(k_p_to_n) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_to_n) = drate_dt; + } + rate_eval.enuc_weak += C::Legacy::n_A * Y(H1) * (edot_nu + edot_gamma); + + +} + +#ifdef NSE_NET +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void get_ydot_weak(const burn_t& state, + amrex::Array1D& ydot_nuc, + amrex::Real& enuc_weak, + [[maybe_unused]] const amrex::Array1D& Y) { + /// + /// Calculate Ydots contribute only from weak reactions. + /// This is used to calculate dyedt and energy generation from + /// weak reactions for self-consistent NSE + /// + + + // initialize ydot_nuc to 0 + + for (int i = 1; i <= neqs; ++i) { + ydot_nuc(i) = 0.0_rt; + } + + rate_t rate_eval; + + [[maybe_unused]] amrex::Real rate, drate_dt, edot_nu, edot_gamma; + [[maybe_unused]] amrex::Real rhoy = state.rho * state.y_e; + + rate_eval.enuc_weak = 0.0_rt; + + // Calculate tabular rates and get ydot_weak + + tabular_evaluate(j_Co56_Fe56_meta, j_Co56_Fe56_rhoy, j_Co56_Fe56_temp, j_Co56_Fe56_data, + rhoy, state.T, rate, drate_dt, edot_nu, edot_gamma); + rate_eval.screened_rates(k_Co56_to_Fe56) = rate; + rate_eval.enuc_weak += C::Legacy::n_A * Y(Co56) * (edot_nu + edot_gamma); + + tabular_evaluate(j_Co56_Ni56_meta, j_Co56_Ni56_rhoy, j_Co56_Ni56_temp, j_Co56_Ni56_data, + rhoy, state.T, rate, drate_dt, edot_nu, edot_gamma); + rate_eval.screened_rates(k_Co56_to_Ni56) = rate; + rate_eval.enuc_weak += C::Legacy::n_A * Y(Co56) * (edot_nu + edot_gamma); + + tabular_evaluate(j_Fe56_Co56_meta, j_Fe56_Co56_rhoy, j_Fe56_Co56_temp, j_Fe56_Co56_data, + rhoy, state.T, rate, drate_dt, edot_nu, edot_gamma); + rate_eval.screened_rates(k_Fe56_to_Co56) = rate; + rate_eval.enuc_weak += C::Legacy::n_A * Y(Fe56) * (edot_nu + edot_gamma); + + tabular_evaluate(j_n_p_meta, j_n_p_rhoy, j_n_p_temp, j_n_p_data, + rhoy, state.T, rate, drate_dt, edot_nu, edot_gamma); + rate_eval.screened_rates(k_n_to_p) = rate; + rate_eval.enuc_weak += C::Legacy::n_A * Y(N) * (edot_nu + edot_gamma); + + tabular_evaluate(j_Ni56_Co56_meta, j_Ni56_Co56_rhoy, j_Ni56_Co56_temp, j_Ni56_Co56_data, + rhoy, state.T, rate, drate_dt, edot_nu, edot_gamma); + rate_eval.screened_rates(k_Ni56_to_Co56) = rate; + rate_eval.enuc_weak += C::Legacy::n_A * Y(Ni56) * (edot_nu + edot_gamma); + + tabular_evaluate(j_p_n_meta, j_p_n_rhoy, j_p_n_temp, j_p_n_data, + rhoy, state.T, rate, drate_dt, edot_nu, edot_gamma); + rate_eval.screened_rates(k_p_to_n) = rate; + rate_eval.enuc_weak += C::Legacy::n_A * Y(H1) * (edot_nu + edot_gamma); + + auto screened_rates = rate_eval.screened_rates; + + ydot_nuc(N) = + (-screened_rates(k_n_to_p)*Y(N) + screened_rates(k_p_to_n)*Y(H1)); + + ydot_nuc(H1) = + (screened_rates(k_n_to_p)*Y(N) + -screened_rates(k_p_to_n)*Y(H1)); + + ydot_nuc(He4) = 0.0_rt; + + ydot_nuc(C12) = 0.0_rt; + + ydot_nuc(N13) = 0.0_rt; + + ydot_nuc(N14) = 0.0_rt; + + ydot_nuc(O16) = 0.0_rt; + + ydot_nuc(F18) = 0.0_rt; + + ydot_nuc(Ne20) = 0.0_rt; + + ydot_nuc(Ne21) = 0.0_rt; + + ydot_nuc(Na22) = 0.0_rt; + + ydot_nuc(Na23) = 0.0_rt; + + ydot_nuc(Mg24) = 0.0_rt; + + ydot_nuc(Al27) = 0.0_rt; + + ydot_nuc(Si28) = 0.0_rt; + + ydot_nuc(P31) = 0.0_rt; + + ydot_nuc(S32) = 0.0_rt; + + ydot_nuc(Ar36) = 0.0_rt; + + ydot_nuc(Ca40) = 0.0_rt; + + ydot_nuc(Ti44) = 0.0_rt; + + ydot_nuc(Cr48) = 0.0_rt; + + ydot_nuc(Mn51) = 0.0_rt; + + ydot_nuc(Fe52) = 0.0_rt; + + ydot_nuc(Fe54) = 0.0_rt; + + ydot_nuc(Fe56) = + (screened_rates(k_Co56_to_Fe56)*Y(Co56) + -screened_rates(k_Fe56_to_Co56)*Y(Fe56)); + + ydot_nuc(Co55) = 0.0_rt; + + ydot_nuc(Co56) = + (-screened_rates(k_Co56_to_Fe56)*Y(Co56) + screened_rates(k_Fe56_to_Co56)*Y(Fe56)) + + (screened_rates(k_Ni56_to_Co56)*Y(Ni56) + -screened_rates(k_Co56_to_Ni56)*Y(Co56)); + + ydot_nuc(Co57) = 0.0_rt; + + ydot_nuc(Ni56) = + (-screened_rates(k_Ni56_to_Co56)*Y(Ni56) + screened_rates(k_Co56_to_Ni56)*Y(Co56)); + + ydot_nuc(Ni58) = 0.0_rt; + + enuc_weak = rate_eval.enuc_weak; +} +#endif + + +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rhs_nuc(const burn_t& state, + amrex::Array1D& ydot_nuc, + const amrex::Array1D& Y, + const amrex::Array1D& screened_rates) { + + using namespace Rates; + + ydot_nuc(N) = + (-screened_rates(k_n_Co55_to_Co56)*Y(Co55)*Y(N)*state.rho + screened_rates(k_Co56_to_n_Co55_derived)*Y(Co56)) + + (-screened_rates(k_n_Co56_to_Co57)*Y(Co56)*Y(N)*state.rho + screened_rates(k_Co57_to_n_Co56_derived)*Y(Co57)) + + (-screened_rates(k_n_Co56_to_p_Fe56)*Y(Co56)*Y(N)*state.rho + screened_rates(k_p_Fe56_to_n_Co56_derived)*Y(Fe56)*Y(H1)*state.rho) + + (-screened_rates(k_n_Ni56_to_p_Co56)*Y(Ni56)*Y(N)*state.rho + screened_rates(k_p_Co56_to_n_Ni56_derived)*Y(Co56)*Y(H1)*state.rho) + + (-2.0*screened_rates(k_Fe52_n_n_to_Fe54_approx)*Y(Fe52)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) + 2.0*screened_rates(k_Fe54_to_Fe52_n_n_approx)*Y(Fe54)) + + (-2.0*screened_rates(k_Fe54_n_n_to_Fe56_approx)*Y(Fe54)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) + 2.0*screened_rates(k_Fe56_to_Fe54_n_n_approx)*Y(Fe56)) + + (-2.0*screened_rates(k_Ni56_n_n_to_Ni58_approx)*Y(Ni56)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) + 2.0*screened_rates(k_Ni58_to_Ni56_n_n_approx)*Y(Ni58)) + + (-screened_rates(k_n_to_p)*Y(N) + screened_rates(k_p_to_n)*Y(H1)); + + ydot_nuc(H1) = + (-screened_rates(k_p_C12_to_N13)*Y(C12)*Y(H1)*state.rho + screened_rates(k_N13_to_p_C12_derived)*Y(N13)) + + (-screened_rates(k_p_Ne21_to_Na22)*Y(Ne21)*Y(H1)*state.rho + screened_rates(k_Na22_to_p_Ne21_derived)*Y(Na22)) + + (-screened_rates(k_p_Na23_to_Mg24)*Y(Na23)*Y(H1)*state.rho + screened_rates(k_Mg24_to_p_Na23_derived)*Y(Mg24)) + + (-screened_rates(k_p_Al27_to_Si28)*Y(Al27)*Y(H1)*state.rho + screened_rates(k_Si28_to_p_Al27_derived)*Y(Si28)) + + (-screened_rates(k_p_P31_to_S32)*Y(P31)*Y(H1)*state.rho + screened_rates(k_S32_to_p_P31_derived)*Y(S32)) + + (-screened_rates(k_p_Mn51_to_Fe52)*Y(Mn51)*Y(H1)*state.rho + screened_rates(k_Fe52_to_p_Mn51_derived)*Y(Fe52)) + + (-screened_rates(k_p_Co55_to_Ni56)*Y(Co55)*Y(H1)*state.rho + screened_rates(k_Ni56_to_p_Co55_derived)*Y(Ni56)) + + 0.5*screened_rates(k_C12_C12_to_p_Na23)*amrex::Math::powi<2>(Y(C12))*state.rho + + (screened_rates(k_He4_N13_to_p_O16)*Y(He4)*Y(N13)*state.rho + -screened_rates(k_p_O16_to_He4_N13_derived)*Y(O16)*Y(H1)*state.rho) + + screened_rates(k_C12_O16_to_p_Al27)*Y(C12)*Y(O16)*state.rho + + 0.5*screened_rates(k_O16_O16_to_p_P31)*amrex::Math::powi<2>(Y(O16))*state.rho + + (screened_rates(k_He4_F18_to_p_Ne21)*Y(F18)*Y(He4)*state.rho + -screened_rates(k_p_Ne21_to_He4_F18_derived)*Y(Ne21)*Y(H1)*state.rho) + + (-screened_rates(k_p_Na23_to_He4_Ne20)*Y(Na23)*Y(H1)*state.rho + screened_rates(k_He4_Ne20_to_p_Na23_derived)*Y(He4)*Y(Ne20)*state.rho) + + (-screened_rates(k_p_Al27_to_He4_Mg24)*Y(Al27)*Y(H1)*state.rho + screened_rates(k_He4_Mg24_to_p_Al27_derived)*Y(He4)*Y(Mg24)*state.rho) + + (-screened_rates(k_p_P31_to_He4_Si28)*Y(P31)*Y(H1)*state.rho + screened_rates(k_He4_Si28_to_p_P31_derived)*Y(He4)*Y(Si28)*state.rho) + + (screened_rates(k_He4_Cr48_to_p_Mn51)*Y(Cr48)*Y(He4)*state.rho + -screened_rates(k_p_Mn51_to_He4_Cr48_derived)*Y(Mn51)*Y(H1)*state.rho) + + (screened_rates(k_He4_Fe52_to_p_Co55)*Y(Fe52)*Y(He4)*state.rho + -screened_rates(k_p_Co55_to_He4_Fe52_derived)*Y(Co55)*Y(H1)*state.rho) + + (-screened_rates(k_p_Fe54_to_Co55)*Y(Fe54)*Y(H1)*state.rho + screened_rates(k_Co55_to_p_Fe54_derived)*Y(Co55)) + + (-screened_rates(k_p_Fe56_to_Co57)*Y(Fe56)*Y(H1)*state.rho + screened_rates(k_Co57_to_p_Fe56_derived)*Y(Co57)) + + (-screened_rates(k_p_Co57_to_Ni58)*Y(Co57)*Y(H1)*state.rho + screened_rates(k_Ni58_to_p_Co57_derived)*Y(Ni58)) + + (screened_rates(k_He4_Mn51_to_p_Fe54)*Y(He4)*Y(Mn51)*state.rho + -screened_rates(k_p_Fe54_to_He4_Mn51_derived)*Y(Fe54)*Y(H1)*state.rho) + + (screened_rates(k_He4_Co55_to_p_Ni58)*Y(Co55)*Y(He4)*state.rho + -screened_rates(k_p_Ni58_to_He4_Co55_derived)*Y(Ni58)*Y(H1)*state.rho) + + (screened_rates(k_n_Co56_to_p_Fe56)*Y(Co56)*Y(N)*state.rho + -screened_rates(k_p_Fe56_to_n_Co56_derived)*Y(Fe56)*Y(H1)*state.rho) + + (-screened_rates(k_p_Co57_to_He4_Fe54)*Y(Co57)*Y(H1)*state.rho + screened_rates(k_He4_Fe54_to_p_Co57_derived)*Y(Fe54)*Y(He4)*state.rho) + + (screened_rates(k_n_Ni56_to_p_Co56)*Y(Ni56)*Y(N)*state.rho + -screened_rates(k_p_Co56_to_n_Ni56_derived)*Y(Co56)*Y(H1)*state.rho) + + (screened_rates(k_n_to_p)*Y(N) + -screened_rates(k_p_to_n)*Y(H1)); + + ydot_nuc(He4) = + (-screened_rates(k_He4_C12_to_O16)*Y(C12)*Y(He4)*state.rho + screened_rates(k_O16_to_He4_C12_derived)*Y(O16)) + + (-screened_rates(k_He4_N14_to_F18)*Y(He4)*Y(N14)*state.rho + screened_rates(k_F18_to_He4_N14_derived)*Y(F18)) + + (-screened_rates(k_He4_O16_to_Ne20)*Y(He4)*Y(O16)*state.rho + screened_rates(k_Ne20_to_He4_O16_derived)*Y(Ne20)) + + (-screened_rates(k_He4_F18_to_Na22)*Y(F18)*Y(He4)*state.rho + screened_rates(k_Na22_to_He4_F18_derived)*Y(Na22)) + + (-screened_rates(k_He4_Ne20_to_Mg24)*Y(He4)*Y(Ne20)*state.rho + screened_rates(k_Mg24_to_He4_Ne20_derived)*Y(Mg24)) + + (-screened_rates(k_He4_Mg24_to_Si28)*Y(He4)*Y(Mg24)*state.rho + screened_rates(k_Si28_to_He4_Mg24_derived)*Y(Si28)) + + (-screened_rates(k_He4_Si28_to_S32)*Y(He4)*Y(Si28)*state.rho + screened_rates(k_S32_to_He4_Si28_derived)*Y(S32)) + + (-screened_rates(k_He4_Cr48_to_Fe52)*Y(Cr48)*Y(He4)*state.rho + screened_rates(k_Fe52_to_He4_Cr48_derived)*Y(Fe52)) + + (-screened_rates(k_He4_Mn51_to_Co55)*Y(He4)*Y(Mn51)*state.rho + screened_rates(k_Co55_to_He4_Mn51_derived)*Y(Co55)) + + (-screened_rates(k_He4_Fe52_to_Ni56)*Y(Fe52)*Y(He4)*state.rho + screened_rates(k_Ni56_to_He4_Fe52_derived)*Y(Ni56)) + + 0.5*screened_rates(k_C12_C12_to_He4_Ne20)*amrex::Math::powi<2>(Y(C12))*state.rho + + (-screened_rates(k_He4_N13_to_p_O16)*Y(He4)*Y(N13)*state.rho + screened_rates(k_p_O16_to_He4_N13_derived)*Y(O16)*Y(H1)*state.rho) + + screened_rates(k_C12_O16_to_He4_Mg24)*Y(C12)*Y(O16)*state.rho + + 0.5*screened_rates(k_O16_O16_to_He4_Si28)*amrex::Math::powi<2>(Y(O16))*state.rho + + (-screened_rates(k_He4_F18_to_p_Ne21)*Y(F18)*Y(He4)*state.rho + screened_rates(k_p_Ne21_to_He4_F18_derived)*Y(Ne21)*Y(H1)*state.rho) + + (screened_rates(k_p_Na23_to_He4_Ne20)*Y(Na23)*Y(H1)*state.rho + -screened_rates(k_He4_Ne20_to_p_Na23_derived)*Y(He4)*Y(Ne20)*state.rho) + + (screened_rates(k_p_Al27_to_He4_Mg24)*Y(Al27)*Y(H1)*state.rho + -screened_rates(k_He4_Mg24_to_p_Al27_derived)*Y(He4)*Y(Mg24)*state.rho) + + (screened_rates(k_p_P31_to_He4_Si28)*Y(P31)*Y(H1)*state.rho + -screened_rates(k_He4_Si28_to_p_P31_derived)*Y(He4)*Y(Si28)*state.rho) + + (-screened_rates(k_He4_Cr48_to_p_Mn51)*Y(Cr48)*Y(He4)*state.rho + screened_rates(k_p_Mn51_to_He4_Cr48_derived)*Y(Mn51)*Y(H1)*state.rho) + + (-screened_rates(k_He4_Fe52_to_p_Co55)*Y(Fe52)*Y(He4)*state.rho + screened_rates(k_p_Co55_to_He4_Fe52_derived)*Y(Co55)*Y(H1)*state.rho) + + (-0.5*screened_rates(k_He4_He4_He4_to_C12)*amrex::Math::powi<3>(Y(He4))*amrex::Math::powi<2>(state.rho) + 3.0*screened_rates(k_C12_to_He4_He4_He4_derived)*Y(C12)) + + (-screened_rates(k_He4_Fe54_to_Ni58)*Y(Fe54)*Y(He4)*state.rho + screened_rates(k_Ni58_to_He4_Fe54_derived)*Y(Ni58)) + + (-screened_rates(k_He4_Mn51_to_p_Fe54)*Y(He4)*Y(Mn51)*state.rho + screened_rates(k_p_Fe54_to_He4_Mn51_derived)*Y(Fe54)*Y(H1)*state.rho) + + (-screened_rates(k_He4_Co55_to_p_Ni58)*Y(Co55)*Y(He4)*state.rho + screened_rates(k_p_Ni58_to_He4_Co55_derived)*Y(Ni58)*Y(H1)*state.rho) + + (screened_rates(k_p_Co57_to_He4_Fe54)*Y(Co57)*Y(H1)*state.rho + -screened_rates(k_He4_Fe54_to_p_Co57_derived)*Y(Fe54)*Y(He4)*state.rho) + + (-screened_rates(k_S32_He4_to_Ar36_approx)*Y(He4)*Y(S32)*state.rho + screened_rates(k_Ar36_to_S32_He4_approx)*Y(Ar36)) + + (-screened_rates(k_Ar36_He4_to_Ca40_approx)*Y(Ar36)*Y(He4)*state.rho + screened_rates(k_Ca40_to_Ar36_He4_approx)*Y(Ca40)) + + (-screened_rates(k_Ca40_He4_to_Ti44_approx)*Y(Ca40)*Y(He4)*state.rho + screened_rates(k_Ti44_to_Ca40_He4_approx)*Y(Ti44)) + + (-screened_rates(k_Ti44_He4_to_Cr48_approx)*Y(He4)*Y(Ti44)*state.rho + screened_rates(k_Cr48_to_Ti44_He4_approx)*Y(Cr48)); + + ydot_nuc(C12) = + (-screened_rates(k_p_C12_to_N13)*Y(C12)*Y(H1)*state.rho + screened_rates(k_N13_to_p_C12_derived)*Y(N13)) + + (-screened_rates(k_He4_C12_to_O16)*Y(C12)*Y(He4)*state.rho + screened_rates(k_O16_to_He4_C12_derived)*Y(O16)) + + -screened_rates(k_C12_C12_to_p_Na23)*amrex::Math::powi<2>(Y(C12))*state.rho + + -screened_rates(k_C12_C12_to_He4_Ne20)*amrex::Math::powi<2>(Y(C12))*state.rho + + -screened_rates(k_C12_O16_to_p_Al27)*Y(C12)*Y(O16)*state.rho + + -screened_rates(k_C12_O16_to_He4_Mg24)*Y(C12)*Y(O16)*state.rho + + (0.16666666666666667*screened_rates(k_He4_He4_He4_to_C12)*amrex::Math::powi<3>(Y(He4))*amrex::Math::powi<2>(state.rho) + -screened_rates(k_C12_to_He4_He4_He4_derived)*Y(C12)) + + -screened_rates(k_C12_C12_to_Mg24_modified)*amrex::Math::powi<2>(Y(C12))*state.rho + + -screened_rates(k_C12_O16_to_Si28_modified)*Y(C12)*Y(O16)*state.rho; + + ydot_nuc(N13) = + (screened_rates(k_p_C12_to_N13)*Y(C12)*Y(H1)*state.rho + -screened_rates(k_N13_to_p_C12_derived)*Y(N13)) + + (-screened_rates(k_He4_N13_to_p_O16)*Y(He4)*Y(N13)*state.rho + screened_rates(k_p_O16_to_He4_N13_derived)*Y(O16)*Y(H1)*state.rho); + + ydot_nuc(N14) = + (-screened_rates(k_He4_N14_to_F18)*Y(He4)*Y(N14)*state.rho + screened_rates(k_F18_to_He4_N14_derived)*Y(F18)); + + ydot_nuc(O16) = + (screened_rates(k_He4_C12_to_O16)*Y(C12)*Y(He4)*state.rho + -screened_rates(k_O16_to_He4_C12_derived)*Y(O16)) + + (-screened_rates(k_He4_O16_to_Ne20)*Y(He4)*Y(O16)*state.rho + screened_rates(k_Ne20_to_He4_O16_derived)*Y(Ne20)) + + (screened_rates(k_He4_N13_to_p_O16)*Y(He4)*Y(N13)*state.rho + -screened_rates(k_p_O16_to_He4_N13_derived)*Y(O16)*Y(H1)*state.rho) + + -screened_rates(k_C12_O16_to_p_Al27)*Y(C12)*Y(O16)*state.rho + + -screened_rates(k_C12_O16_to_He4_Mg24)*Y(C12)*Y(O16)*state.rho + + -screened_rates(k_O16_O16_to_p_P31)*amrex::Math::powi<2>(Y(O16))*state.rho + + -screened_rates(k_O16_O16_to_He4_Si28)*amrex::Math::powi<2>(Y(O16))*state.rho + + -screened_rates(k_O16_O16_to_S32_modified)*amrex::Math::powi<2>(Y(O16))*state.rho + + -screened_rates(k_C12_O16_to_Si28_modified)*Y(C12)*Y(O16)*state.rho; + + ydot_nuc(F18) = + (screened_rates(k_He4_N14_to_F18)*Y(He4)*Y(N14)*state.rho + -screened_rates(k_F18_to_He4_N14_derived)*Y(F18)) + + (-screened_rates(k_He4_F18_to_Na22)*Y(F18)*Y(He4)*state.rho + screened_rates(k_Na22_to_He4_F18_derived)*Y(Na22)) + + (-screened_rates(k_He4_F18_to_p_Ne21)*Y(F18)*Y(He4)*state.rho + screened_rates(k_p_Ne21_to_He4_F18_derived)*Y(Ne21)*Y(H1)*state.rho); + + ydot_nuc(Ne20) = + (screened_rates(k_He4_O16_to_Ne20)*Y(He4)*Y(O16)*state.rho + -screened_rates(k_Ne20_to_He4_O16_derived)*Y(Ne20)) + + (-screened_rates(k_He4_Ne20_to_Mg24)*Y(He4)*Y(Ne20)*state.rho + screened_rates(k_Mg24_to_He4_Ne20_derived)*Y(Mg24)) + + 0.5*screened_rates(k_C12_C12_to_He4_Ne20)*amrex::Math::powi<2>(Y(C12))*state.rho + + (screened_rates(k_p_Na23_to_He4_Ne20)*Y(Na23)*Y(H1)*state.rho + -screened_rates(k_He4_Ne20_to_p_Na23_derived)*Y(He4)*Y(Ne20)*state.rho); + + ydot_nuc(Ne21) = + (-screened_rates(k_p_Ne21_to_Na22)*Y(Ne21)*Y(H1)*state.rho + screened_rates(k_Na22_to_p_Ne21_derived)*Y(Na22)) + + (screened_rates(k_He4_F18_to_p_Ne21)*Y(F18)*Y(He4)*state.rho + -screened_rates(k_p_Ne21_to_He4_F18_derived)*Y(Ne21)*Y(H1)*state.rho); + + ydot_nuc(Na22) = + (screened_rates(k_He4_F18_to_Na22)*Y(F18)*Y(He4)*state.rho + -screened_rates(k_Na22_to_He4_F18_derived)*Y(Na22)) + + (screened_rates(k_p_Ne21_to_Na22)*Y(Ne21)*Y(H1)*state.rho + -screened_rates(k_Na22_to_p_Ne21_derived)*Y(Na22)); + + ydot_nuc(Na23) = + (-screened_rates(k_p_Na23_to_Mg24)*Y(Na23)*Y(H1)*state.rho + screened_rates(k_Mg24_to_p_Na23_derived)*Y(Mg24)) + + 0.5*screened_rates(k_C12_C12_to_p_Na23)*amrex::Math::powi<2>(Y(C12))*state.rho + + (-screened_rates(k_p_Na23_to_He4_Ne20)*Y(Na23)*Y(H1)*state.rho + screened_rates(k_He4_Ne20_to_p_Na23_derived)*Y(He4)*Y(Ne20)*state.rho); + + ydot_nuc(Mg24) = + (screened_rates(k_He4_Ne20_to_Mg24)*Y(He4)*Y(Ne20)*state.rho + -screened_rates(k_Mg24_to_He4_Ne20_derived)*Y(Mg24)) + + (screened_rates(k_p_Na23_to_Mg24)*Y(Na23)*Y(H1)*state.rho + -screened_rates(k_Mg24_to_p_Na23_derived)*Y(Mg24)) + + (-screened_rates(k_He4_Mg24_to_Si28)*Y(He4)*Y(Mg24)*state.rho + screened_rates(k_Si28_to_He4_Mg24_derived)*Y(Si28)) + + screened_rates(k_C12_O16_to_He4_Mg24)*Y(C12)*Y(O16)*state.rho + + (screened_rates(k_p_Al27_to_He4_Mg24)*Y(Al27)*Y(H1)*state.rho + -screened_rates(k_He4_Mg24_to_p_Al27_derived)*Y(He4)*Y(Mg24)*state.rho) + + 0.5*screened_rates(k_C12_C12_to_Mg24_modified)*amrex::Math::powi<2>(Y(C12))*state.rho; + + ydot_nuc(Al27) = + (-screened_rates(k_p_Al27_to_Si28)*Y(Al27)*Y(H1)*state.rho + screened_rates(k_Si28_to_p_Al27_derived)*Y(Si28)) + + screened_rates(k_C12_O16_to_p_Al27)*Y(C12)*Y(O16)*state.rho + + (-screened_rates(k_p_Al27_to_He4_Mg24)*Y(Al27)*Y(H1)*state.rho + screened_rates(k_He4_Mg24_to_p_Al27_derived)*Y(He4)*Y(Mg24)*state.rho); + + ydot_nuc(Si28) = + (screened_rates(k_He4_Mg24_to_Si28)*Y(He4)*Y(Mg24)*state.rho + -screened_rates(k_Si28_to_He4_Mg24_derived)*Y(Si28)) + + (screened_rates(k_p_Al27_to_Si28)*Y(Al27)*Y(H1)*state.rho + -screened_rates(k_Si28_to_p_Al27_derived)*Y(Si28)) + + (-screened_rates(k_He4_Si28_to_S32)*Y(He4)*Y(Si28)*state.rho + screened_rates(k_S32_to_He4_Si28_derived)*Y(S32)) + + 0.5*screened_rates(k_O16_O16_to_He4_Si28)*amrex::Math::powi<2>(Y(O16))*state.rho + + (screened_rates(k_p_P31_to_He4_Si28)*Y(P31)*Y(H1)*state.rho + -screened_rates(k_He4_Si28_to_p_P31_derived)*Y(He4)*Y(Si28)*state.rho) + + screened_rates(k_C12_O16_to_Si28_modified)*Y(C12)*Y(O16)*state.rho; + + ydot_nuc(P31) = + (-screened_rates(k_p_P31_to_S32)*Y(P31)*Y(H1)*state.rho + screened_rates(k_S32_to_p_P31_derived)*Y(S32)) + + 0.5*screened_rates(k_O16_O16_to_p_P31)*amrex::Math::powi<2>(Y(O16))*state.rho + + (-screened_rates(k_p_P31_to_He4_Si28)*Y(P31)*Y(H1)*state.rho + screened_rates(k_He4_Si28_to_p_P31_derived)*Y(He4)*Y(Si28)*state.rho); + + ydot_nuc(S32) = + (screened_rates(k_He4_Si28_to_S32)*Y(He4)*Y(Si28)*state.rho + -screened_rates(k_S32_to_He4_Si28_derived)*Y(S32)) + + (screened_rates(k_p_P31_to_S32)*Y(P31)*Y(H1)*state.rho + -screened_rates(k_S32_to_p_P31_derived)*Y(S32)) + + 0.5*screened_rates(k_O16_O16_to_S32_modified)*amrex::Math::powi<2>(Y(O16))*state.rho + + (-screened_rates(k_S32_He4_to_Ar36_approx)*Y(He4)*Y(S32)*state.rho + screened_rates(k_Ar36_to_S32_He4_approx)*Y(Ar36)); + + ydot_nuc(Ar36) = + (screened_rates(k_S32_He4_to_Ar36_approx)*Y(He4)*Y(S32)*state.rho + -screened_rates(k_Ar36_to_S32_He4_approx)*Y(Ar36)) + + (-screened_rates(k_Ar36_He4_to_Ca40_approx)*Y(Ar36)*Y(He4)*state.rho + screened_rates(k_Ca40_to_Ar36_He4_approx)*Y(Ca40)); + + ydot_nuc(Ca40) = + (screened_rates(k_Ar36_He4_to_Ca40_approx)*Y(Ar36)*Y(He4)*state.rho + -screened_rates(k_Ca40_to_Ar36_He4_approx)*Y(Ca40)) + + (-screened_rates(k_Ca40_He4_to_Ti44_approx)*Y(Ca40)*Y(He4)*state.rho + screened_rates(k_Ti44_to_Ca40_He4_approx)*Y(Ti44)); + + ydot_nuc(Ti44) = + (screened_rates(k_Ca40_He4_to_Ti44_approx)*Y(Ca40)*Y(He4)*state.rho + -screened_rates(k_Ti44_to_Ca40_He4_approx)*Y(Ti44)) + + (-screened_rates(k_Ti44_He4_to_Cr48_approx)*Y(He4)*Y(Ti44)*state.rho + screened_rates(k_Cr48_to_Ti44_He4_approx)*Y(Cr48)); + + ydot_nuc(Cr48) = + (-screened_rates(k_He4_Cr48_to_Fe52)*Y(Cr48)*Y(He4)*state.rho + screened_rates(k_Fe52_to_He4_Cr48_derived)*Y(Fe52)) + + (-screened_rates(k_He4_Cr48_to_p_Mn51)*Y(Cr48)*Y(He4)*state.rho + screened_rates(k_p_Mn51_to_He4_Cr48_derived)*Y(Mn51)*Y(H1)*state.rho) + + (screened_rates(k_Ti44_He4_to_Cr48_approx)*Y(He4)*Y(Ti44)*state.rho + -screened_rates(k_Cr48_to_Ti44_He4_approx)*Y(Cr48)); + + ydot_nuc(Mn51) = + (-screened_rates(k_p_Mn51_to_Fe52)*Y(Mn51)*Y(H1)*state.rho + screened_rates(k_Fe52_to_p_Mn51_derived)*Y(Fe52)) + + (-screened_rates(k_He4_Mn51_to_Co55)*Y(He4)*Y(Mn51)*state.rho + screened_rates(k_Co55_to_He4_Mn51_derived)*Y(Co55)) + + (screened_rates(k_He4_Cr48_to_p_Mn51)*Y(Cr48)*Y(He4)*state.rho + -screened_rates(k_p_Mn51_to_He4_Cr48_derived)*Y(Mn51)*Y(H1)*state.rho) + + (-screened_rates(k_He4_Mn51_to_p_Fe54)*Y(He4)*Y(Mn51)*state.rho + screened_rates(k_p_Fe54_to_He4_Mn51_derived)*Y(Fe54)*Y(H1)*state.rho); + + ydot_nuc(Fe52) = + (screened_rates(k_He4_Cr48_to_Fe52)*Y(Cr48)*Y(He4)*state.rho + -screened_rates(k_Fe52_to_He4_Cr48_derived)*Y(Fe52)) + + (screened_rates(k_p_Mn51_to_Fe52)*Y(Mn51)*Y(H1)*state.rho + -screened_rates(k_Fe52_to_p_Mn51_derived)*Y(Fe52)) + + (-screened_rates(k_He4_Fe52_to_Ni56)*Y(Fe52)*Y(He4)*state.rho + screened_rates(k_Ni56_to_He4_Fe52_derived)*Y(Ni56)) + + (-screened_rates(k_He4_Fe52_to_p_Co55)*Y(Fe52)*Y(He4)*state.rho + screened_rates(k_p_Co55_to_He4_Fe52_derived)*Y(Co55)*Y(H1)*state.rho) + + (-screened_rates(k_Fe52_n_n_to_Fe54_approx)*Y(Fe52)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) + screened_rates(k_Fe54_to_Fe52_n_n_approx)*Y(Fe54)); + + ydot_nuc(Fe54) = + (-screened_rates(k_p_Fe54_to_Co55)*Y(Fe54)*Y(H1)*state.rho + screened_rates(k_Co55_to_p_Fe54_derived)*Y(Co55)) + + (-screened_rates(k_He4_Fe54_to_Ni58)*Y(Fe54)*Y(He4)*state.rho + screened_rates(k_Ni58_to_He4_Fe54_derived)*Y(Ni58)) + + (screened_rates(k_He4_Mn51_to_p_Fe54)*Y(He4)*Y(Mn51)*state.rho + -screened_rates(k_p_Fe54_to_He4_Mn51_derived)*Y(Fe54)*Y(H1)*state.rho) + + (screened_rates(k_p_Co57_to_He4_Fe54)*Y(Co57)*Y(H1)*state.rho + -screened_rates(k_He4_Fe54_to_p_Co57_derived)*Y(Fe54)*Y(He4)*state.rho) + + (screened_rates(k_Fe52_n_n_to_Fe54_approx)*Y(Fe52)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) + -screened_rates(k_Fe54_to_Fe52_n_n_approx)*Y(Fe54)) + + (-screened_rates(k_Fe54_n_n_to_Fe56_approx)*Y(Fe54)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) + screened_rates(k_Fe56_to_Fe54_n_n_approx)*Y(Fe56)); + + ydot_nuc(Fe56) = + (-screened_rates(k_p_Fe56_to_Co57)*Y(Fe56)*Y(H1)*state.rho + screened_rates(k_Co57_to_p_Fe56_derived)*Y(Co57)) + + (screened_rates(k_n_Co56_to_p_Fe56)*Y(Co56)*Y(N)*state.rho + -screened_rates(k_p_Fe56_to_n_Co56_derived)*Y(Fe56)*Y(H1)*state.rho) + + (screened_rates(k_Fe54_n_n_to_Fe56_approx)*Y(Fe54)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) + -screened_rates(k_Fe56_to_Fe54_n_n_approx)*Y(Fe56)) + + (screened_rates(k_Co56_to_Fe56)*Y(Co56) + -screened_rates(k_Fe56_to_Co56)*Y(Fe56)); + + ydot_nuc(Co55) = + (screened_rates(k_He4_Mn51_to_Co55)*Y(He4)*Y(Mn51)*state.rho + -screened_rates(k_Co55_to_He4_Mn51_derived)*Y(Co55)) + + (-screened_rates(k_p_Co55_to_Ni56)*Y(Co55)*Y(H1)*state.rho + screened_rates(k_Ni56_to_p_Co55_derived)*Y(Ni56)) + + (screened_rates(k_He4_Fe52_to_p_Co55)*Y(Fe52)*Y(He4)*state.rho + -screened_rates(k_p_Co55_to_He4_Fe52_derived)*Y(Co55)*Y(H1)*state.rho) + + (screened_rates(k_p_Fe54_to_Co55)*Y(Fe54)*Y(H1)*state.rho + -screened_rates(k_Co55_to_p_Fe54_derived)*Y(Co55)) + + (-screened_rates(k_n_Co55_to_Co56)*Y(Co55)*Y(N)*state.rho + screened_rates(k_Co56_to_n_Co55_derived)*Y(Co56)) + + (-screened_rates(k_He4_Co55_to_p_Ni58)*Y(Co55)*Y(He4)*state.rho + screened_rates(k_p_Ni58_to_He4_Co55_derived)*Y(Ni58)*Y(H1)*state.rho); + + ydot_nuc(Co56) = + (screened_rates(k_n_Co55_to_Co56)*Y(Co55)*Y(N)*state.rho + -screened_rates(k_Co56_to_n_Co55_derived)*Y(Co56)) + + (-screened_rates(k_n_Co56_to_Co57)*Y(Co56)*Y(N)*state.rho + screened_rates(k_Co57_to_n_Co56_derived)*Y(Co57)) + + (-screened_rates(k_n_Co56_to_p_Fe56)*Y(Co56)*Y(N)*state.rho + screened_rates(k_p_Fe56_to_n_Co56_derived)*Y(Fe56)*Y(H1)*state.rho) + + (screened_rates(k_n_Ni56_to_p_Co56)*Y(Ni56)*Y(N)*state.rho + -screened_rates(k_p_Co56_to_n_Ni56_derived)*Y(Co56)*Y(H1)*state.rho) + + (-screened_rates(k_Co56_to_Fe56)*Y(Co56) + screened_rates(k_Fe56_to_Co56)*Y(Fe56)) + + (screened_rates(k_Ni56_to_Co56)*Y(Ni56) + -screened_rates(k_Co56_to_Ni56)*Y(Co56)); + + ydot_nuc(Co57) = + (screened_rates(k_p_Fe56_to_Co57)*Y(Fe56)*Y(H1)*state.rho + -screened_rates(k_Co57_to_p_Fe56_derived)*Y(Co57)) + + (screened_rates(k_n_Co56_to_Co57)*Y(Co56)*Y(N)*state.rho + -screened_rates(k_Co57_to_n_Co56_derived)*Y(Co57)) + + (-screened_rates(k_p_Co57_to_Ni58)*Y(Co57)*Y(H1)*state.rho + screened_rates(k_Ni58_to_p_Co57_derived)*Y(Ni58)) + + (-screened_rates(k_p_Co57_to_He4_Fe54)*Y(Co57)*Y(H1)*state.rho + screened_rates(k_He4_Fe54_to_p_Co57_derived)*Y(Fe54)*Y(He4)*state.rho); + + ydot_nuc(Ni56) = + (screened_rates(k_He4_Fe52_to_Ni56)*Y(Fe52)*Y(He4)*state.rho + -screened_rates(k_Ni56_to_He4_Fe52_derived)*Y(Ni56)) + + (screened_rates(k_p_Co55_to_Ni56)*Y(Co55)*Y(H1)*state.rho + -screened_rates(k_Ni56_to_p_Co55_derived)*Y(Ni56)) + + (-screened_rates(k_n_Ni56_to_p_Co56)*Y(Ni56)*Y(N)*state.rho + screened_rates(k_p_Co56_to_n_Ni56_derived)*Y(Co56)*Y(H1)*state.rho) + + (-screened_rates(k_Ni56_n_n_to_Ni58_approx)*Y(Ni56)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) + screened_rates(k_Ni58_to_Ni56_n_n_approx)*Y(Ni58)) + + (-screened_rates(k_Ni56_to_Co56)*Y(Ni56) + screened_rates(k_Co56_to_Ni56)*Y(Co56)); + + ydot_nuc(Ni58) = + (screened_rates(k_He4_Fe54_to_Ni58)*Y(Fe54)*Y(He4)*state.rho + -screened_rates(k_Ni58_to_He4_Fe54_derived)*Y(Ni58)) + + (screened_rates(k_p_Co57_to_Ni58)*Y(Co57)*Y(H1)*state.rho + -screened_rates(k_Ni58_to_p_Co57_derived)*Y(Ni58)) + + (screened_rates(k_He4_Co55_to_p_Ni58)*Y(Co55)*Y(He4)*state.rho + -screened_rates(k_p_Ni58_to_He4_Co55_derived)*Y(Ni58)*Y(H1)*state.rho) + + (screened_rates(k_Ni56_n_n_to_Ni58_approx)*Y(Ni56)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) + -screened_rates(k_Ni58_to_Ni56_n_n_approx)*Y(Ni58)); + +} + + +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void actual_rhs (burn_t& state, amrex::Array1D& ydot) +{ + for (int i = 1; i <= neqs; ++i) { + ydot(i) = 0.0_rt; + } + + + // Set molar abundances + amrex::Array1D Y; + for (int i = 1; i <= NumSpec; ++i) { + Y(i) = state.xn[i-1] * aion_inv[i-1]; + } + + // build the rates + + rate_t rate_eval; + + constexpr int do_T_derivatives = 0; + + evaluate_rates(state, rate_eval); + + rhs_nuc(state, ydot, Y, rate_eval.screened_rates); + + // ion binding energy contributions + + amrex::Real enuc; + ener_gener_rate(ydot, enuc); + + // include any weak rate neutrino losses + enuc += rate_eval.enuc_weak; + + // Get the thermal neutrino losses + + amrex::Real sneut, dsneutdt, dsneutdd, dsnuda, dsnudz; + constexpr int do_derivatives{0}; + sneut5(state.T, state.rho, state.abar, state.zbar, sneut, dsneutdt, dsneutdd, dsnuda, dsnudz); + + // Append the energy equation (this is erg/g/s) + + ydot(net_ienuc) = enuc - sneut; + +} + + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void jac_nuc(const burn_t& state, + MatrixType& jac, + const amrex::Array1D& Y, + const amrex::Array1D& screened_rates) +{ + + amrex::Real scratch; + + scratch = -4.0*screened_rates(k_Fe52_n_n_to_Fe54_approx)*Y(Fe52)*Y(N)*amrex::Math::powi<2>(state.rho) - 4.0*screened_rates(k_Fe54_n_n_to_Fe56_approx)*Y(Fe54)*Y(N)*amrex::Math::powi<2>(state.rho) - 4.0*screened_rates(k_Ni56_n_n_to_Ni58_approx)*Y(Ni56)*Y(N)*amrex::Math::powi<2>(state.rho) - screened_rates(k_n_Co55_to_Co56)*Y(Co55)*state.rho - screened_rates(k_n_Co56_to_Co57)*Y(Co56)*state.rho - screened_rates(k_n_Co56_to_p_Fe56)*Y(Co56)*state.rho - screened_rates(k_n_Ni56_to_p_Co56)*Y(Ni56)*state.rho - screened_rates(k_n_to_p); + jac.set(N, N, scratch); + + scratch = screened_rates(k_p_Co56_to_n_Ni56_derived)*Y(Co56)*state.rho + screened_rates(k_p_Fe56_to_n_Co56_derived)*Y(Fe56)*state.rho + screened_rates(k_p_to_n); + jac.set(N, H1, scratch); + + scratch = -2.0*screened_rates(k_Fe52_n_n_to_Fe54_approx)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho); + jac.set(N, Fe52, scratch); + + scratch = -2.0*screened_rates(k_Fe54_n_n_to_Fe56_approx)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) + 2.0*screened_rates(k_Fe54_to_Fe52_n_n_approx); + jac.set(N, Fe54, scratch); + + scratch = 2.0*screened_rates(k_Fe56_to_Fe54_n_n_approx) + screened_rates(k_p_Fe56_to_n_Co56_derived)*Y(H1)*state.rho; + jac.set(N, Fe56, scratch); + + scratch = -screened_rates(k_n_Co55_to_Co56)*Y(N)*state.rho; + jac.set(N, Co55, scratch); + + scratch = screened_rates(k_Co56_to_n_Co55_derived) - screened_rates(k_n_Co56_to_Co57)*Y(N)*state.rho - screened_rates(k_n_Co56_to_p_Fe56)*Y(N)*state.rho + screened_rates(k_p_Co56_to_n_Ni56_derived)*Y(H1)*state.rho; + jac.set(N, Co56, scratch); + + scratch = screened_rates(k_Co57_to_n_Co56_derived); + jac.set(N, Co57, scratch); + + scratch = -2.0*screened_rates(k_Ni56_n_n_to_Ni58_approx)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) - screened_rates(k_n_Ni56_to_p_Co56)*Y(N)*state.rho; + jac.set(N, Ni56, scratch); + + scratch = 2.0*screened_rates(k_Ni58_to_Ni56_n_n_approx); + jac.set(N, Ni58, scratch); + + scratch = screened_rates(k_n_Co56_to_p_Fe56)*Y(Co56)*state.rho + screened_rates(k_n_Ni56_to_p_Co56)*Y(Ni56)*state.rho + screened_rates(k_n_to_p); + jac.set(H1, N, scratch); + + scratch = -screened_rates(k_p_Al27_to_He4_Mg24)*Y(Al27)*state.rho - screened_rates(k_p_Al27_to_Si28)*Y(Al27)*state.rho - screened_rates(k_p_C12_to_N13)*Y(C12)*state.rho - screened_rates(k_p_Co55_to_He4_Fe52_derived)*Y(Co55)*state.rho - screened_rates(k_p_Co55_to_Ni56)*Y(Co55)*state.rho - screened_rates(k_p_Co56_to_n_Ni56_derived)*Y(Co56)*state.rho - screened_rates(k_p_Co57_to_He4_Fe54)*Y(Co57)*state.rho - screened_rates(k_p_Co57_to_Ni58)*Y(Co57)*state.rho - screened_rates(k_p_Fe54_to_Co55)*Y(Fe54)*state.rho - screened_rates(k_p_Fe54_to_He4_Mn51_derived)*Y(Fe54)*state.rho - screened_rates(k_p_Fe56_to_Co57)*Y(Fe56)*state.rho - screened_rates(k_p_Fe56_to_n_Co56_derived)*Y(Fe56)*state.rho - screened_rates(k_p_Mn51_to_Fe52)*Y(Mn51)*state.rho - screened_rates(k_p_Mn51_to_He4_Cr48_derived)*Y(Mn51)*state.rho - screened_rates(k_p_Na23_to_He4_Ne20)*Y(Na23)*state.rho - screened_rates(k_p_Na23_to_Mg24)*Y(Na23)*state.rho - screened_rates(k_p_Ne21_to_He4_F18_derived)*Y(Ne21)*state.rho - screened_rates(k_p_Ne21_to_Na22)*Y(Ne21)*state.rho - screened_rates(k_p_Ni58_to_He4_Co55_derived)*Y(Ni58)*state.rho - screened_rates(k_p_O16_to_He4_N13_derived)*Y(O16)*state.rho - screened_rates(k_p_P31_to_He4_Si28)*Y(P31)*state.rho - screened_rates(k_p_P31_to_S32)*Y(P31)*state.rho - screened_rates(k_p_to_n); + jac.set(H1, H1, scratch); + + scratch = screened_rates(k_He4_Co55_to_p_Ni58)*Y(Co55)*state.rho + screened_rates(k_He4_Cr48_to_p_Mn51)*Y(Cr48)*state.rho + screened_rates(k_He4_F18_to_p_Ne21)*Y(F18)*state.rho + screened_rates(k_He4_Fe52_to_p_Co55)*Y(Fe52)*state.rho + screened_rates(k_He4_Fe54_to_p_Co57_derived)*Y(Fe54)*state.rho + screened_rates(k_He4_Mg24_to_p_Al27_derived)*Y(Mg24)*state.rho + screened_rates(k_He4_Mn51_to_p_Fe54)*Y(Mn51)*state.rho + screened_rates(k_He4_N13_to_p_O16)*Y(N13)*state.rho + screened_rates(k_He4_Ne20_to_p_Na23_derived)*Y(Ne20)*state.rho + screened_rates(k_He4_Si28_to_p_P31_derived)*Y(Si28)*state.rho; + jac.set(H1, He4, scratch); + + scratch = 1.0*screened_rates(k_C12_C12_to_p_Na23)*Y(C12)*state.rho + screened_rates(k_C12_O16_to_p_Al27)*Y(O16)*state.rho - screened_rates(k_p_C12_to_N13)*Y(H1)*state.rho; + jac.set(H1, C12, scratch); + + scratch = screened_rates(k_He4_N13_to_p_O16)*Y(He4)*state.rho + screened_rates(k_N13_to_p_C12_derived); + jac.set(H1, N13, scratch); + + scratch = screened_rates(k_C12_O16_to_p_Al27)*Y(C12)*state.rho + 1.0*screened_rates(k_O16_O16_to_p_P31)*Y(O16)*state.rho - screened_rates(k_p_O16_to_He4_N13_derived)*Y(H1)*state.rho; + jac.set(H1, O16, scratch); + + scratch = screened_rates(k_He4_F18_to_p_Ne21)*Y(He4)*state.rho; + jac.set(H1, F18, scratch); + + scratch = screened_rates(k_He4_Ne20_to_p_Na23_derived)*Y(He4)*state.rho; + jac.set(H1, Ne20, scratch); + + scratch = -screened_rates(k_p_Ne21_to_He4_F18_derived)*Y(H1)*state.rho - screened_rates(k_p_Ne21_to_Na22)*Y(H1)*state.rho; + jac.set(H1, Ne21, scratch); + + scratch = screened_rates(k_Na22_to_p_Ne21_derived); + jac.set(H1, Na22, scratch); + + scratch = -screened_rates(k_p_Na23_to_He4_Ne20)*Y(H1)*state.rho - screened_rates(k_p_Na23_to_Mg24)*Y(H1)*state.rho; + jac.set(H1, Na23, scratch); + + scratch = screened_rates(k_He4_Mg24_to_p_Al27_derived)*Y(He4)*state.rho + screened_rates(k_Mg24_to_p_Na23_derived); + jac.set(H1, Mg24, scratch); + + scratch = -screened_rates(k_p_Al27_to_He4_Mg24)*Y(H1)*state.rho - screened_rates(k_p_Al27_to_Si28)*Y(H1)*state.rho; + jac.set(H1, Al27, scratch); + + scratch = screened_rates(k_He4_Si28_to_p_P31_derived)*Y(He4)*state.rho + screened_rates(k_Si28_to_p_Al27_derived); + jac.set(H1, Si28, scratch); + + scratch = -screened_rates(k_p_P31_to_He4_Si28)*Y(H1)*state.rho - screened_rates(k_p_P31_to_S32)*Y(H1)*state.rho; + jac.set(H1, P31, scratch); + + scratch = screened_rates(k_S32_to_p_P31_derived); + jac.set(H1, S32, scratch); + + scratch = screened_rates(k_He4_Cr48_to_p_Mn51)*Y(He4)*state.rho; + jac.set(H1, Cr48, scratch); + + scratch = screened_rates(k_He4_Mn51_to_p_Fe54)*Y(He4)*state.rho - screened_rates(k_p_Mn51_to_Fe52)*Y(H1)*state.rho - screened_rates(k_p_Mn51_to_He4_Cr48_derived)*Y(H1)*state.rho; + jac.set(H1, Mn51, scratch); + + scratch = screened_rates(k_Fe52_to_p_Mn51_derived) + screened_rates(k_He4_Fe52_to_p_Co55)*Y(He4)*state.rho; + jac.set(H1, Fe52, scratch); + + scratch = screened_rates(k_He4_Fe54_to_p_Co57_derived)*Y(He4)*state.rho - screened_rates(k_p_Fe54_to_Co55)*Y(H1)*state.rho - screened_rates(k_p_Fe54_to_He4_Mn51_derived)*Y(H1)*state.rho; + jac.set(H1, Fe54, scratch); + + scratch = -screened_rates(k_p_Fe56_to_Co57)*Y(H1)*state.rho - screened_rates(k_p_Fe56_to_n_Co56_derived)*Y(H1)*state.rho; + jac.set(H1, Fe56, scratch); + + scratch = screened_rates(k_Co55_to_p_Fe54_derived) + screened_rates(k_He4_Co55_to_p_Ni58)*Y(He4)*state.rho - screened_rates(k_p_Co55_to_He4_Fe52_derived)*Y(H1)*state.rho - screened_rates(k_p_Co55_to_Ni56)*Y(H1)*state.rho; + jac.set(H1, Co55, scratch); + + scratch = screened_rates(k_n_Co56_to_p_Fe56)*Y(N)*state.rho - screened_rates(k_p_Co56_to_n_Ni56_derived)*Y(H1)*state.rho; + jac.set(H1, Co56, scratch); + + scratch = screened_rates(k_Co57_to_p_Fe56_derived) - screened_rates(k_p_Co57_to_He4_Fe54)*Y(H1)*state.rho - screened_rates(k_p_Co57_to_Ni58)*Y(H1)*state.rho; + jac.set(H1, Co57, scratch); + + scratch = screened_rates(k_Ni56_to_p_Co55_derived) + screened_rates(k_n_Ni56_to_p_Co56)*Y(N)*state.rho; + jac.set(H1, Ni56, scratch); + + scratch = screened_rates(k_Ni58_to_p_Co57_derived) - screened_rates(k_p_Ni58_to_He4_Co55_derived)*Y(H1)*state.rho; + jac.set(H1, Ni58, scratch); + + scratch = screened_rates(k_p_Al27_to_He4_Mg24)*Y(Al27)*state.rho + screened_rates(k_p_Co55_to_He4_Fe52_derived)*Y(Co55)*state.rho + screened_rates(k_p_Co57_to_He4_Fe54)*Y(Co57)*state.rho + screened_rates(k_p_Fe54_to_He4_Mn51_derived)*Y(Fe54)*state.rho + screened_rates(k_p_Mn51_to_He4_Cr48_derived)*Y(Mn51)*state.rho + screened_rates(k_p_Na23_to_He4_Ne20)*Y(Na23)*state.rho + screened_rates(k_p_Ne21_to_He4_F18_derived)*Y(Ne21)*state.rho + screened_rates(k_p_Ni58_to_He4_Co55_derived)*Y(Ni58)*state.rho + screened_rates(k_p_O16_to_He4_N13_derived)*Y(O16)*state.rho + screened_rates(k_p_P31_to_He4_Si28)*Y(P31)*state.rho; + jac.set(He4, H1, scratch); + + scratch = -screened_rates(k_Ar36_He4_to_Ca40_approx)*Y(Ar36)*state.rho - screened_rates(k_Ca40_He4_to_Ti44_approx)*Y(Ca40)*state.rho - screened_rates(k_He4_C12_to_O16)*Y(C12)*state.rho - screened_rates(k_He4_Co55_to_p_Ni58)*Y(Co55)*state.rho - screened_rates(k_He4_Cr48_to_Fe52)*Y(Cr48)*state.rho - screened_rates(k_He4_Cr48_to_p_Mn51)*Y(Cr48)*state.rho - screened_rates(k_He4_F18_to_Na22)*Y(F18)*state.rho - screened_rates(k_He4_F18_to_p_Ne21)*Y(F18)*state.rho - screened_rates(k_He4_Fe52_to_Ni56)*Y(Fe52)*state.rho - screened_rates(k_He4_Fe52_to_p_Co55)*Y(Fe52)*state.rho - screened_rates(k_He4_Fe54_to_Ni58)*Y(Fe54)*state.rho - screened_rates(k_He4_Fe54_to_p_Co57_derived)*Y(Fe54)*state.rho - 1.5*screened_rates(k_He4_He4_He4_to_C12)*amrex::Math::powi<2>(Y(He4))*amrex::Math::powi<2>(state.rho) - screened_rates(k_He4_Mg24_to_Si28)*Y(Mg24)*state.rho - screened_rates(k_He4_Mg24_to_p_Al27_derived)*Y(Mg24)*state.rho - screened_rates(k_He4_Mn51_to_Co55)*Y(Mn51)*state.rho - screened_rates(k_He4_Mn51_to_p_Fe54)*Y(Mn51)*state.rho - screened_rates(k_He4_N13_to_p_O16)*Y(N13)*state.rho - screened_rates(k_He4_N14_to_F18)*Y(N14)*state.rho - screened_rates(k_He4_Ne20_to_Mg24)*Y(Ne20)*state.rho - screened_rates(k_He4_Ne20_to_p_Na23_derived)*Y(Ne20)*state.rho - screened_rates(k_He4_O16_to_Ne20)*Y(O16)*state.rho - screened_rates(k_He4_Si28_to_S32)*Y(Si28)*state.rho - screened_rates(k_He4_Si28_to_p_P31_derived)*Y(Si28)*state.rho - screened_rates(k_S32_He4_to_Ar36_approx)*Y(S32)*state.rho - screened_rates(k_Ti44_He4_to_Cr48_approx)*Y(Ti44)*state.rho; + jac.set(He4, He4, scratch); + + scratch = 1.0*screened_rates(k_C12_C12_to_He4_Ne20)*Y(C12)*state.rho + screened_rates(k_C12_O16_to_He4_Mg24)*Y(O16)*state.rho + 3.0*screened_rates(k_C12_to_He4_He4_He4_derived) - screened_rates(k_He4_C12_to_O16)*Y(He4)*state.rho; + jac.set(He4, C12, scratch); + + scratch = -screened_rates(k_He4_N13_to_p_O16)*Y(He4)*state.rho; + jac.set(He4, N13, scratch); + + scratch = -screened_rates(k_He4_N14_to_F18)*Y(He4)*state.rho; + jac.set(He4, N14, scratch); + + scratch = screened_rates(k_C12_O16_to_He4_Mg24)*Y(C12)*state.rho - screened_rates(k_He4_O16_to_Ne20)*Y(He4)*state.rho + 1.0*screened_rates(k_O16_O16_to_He4_Si28)*Y(O16)*state.rho + screened_rates(k_O16_to_He4_C12_derived) + screened_rates(k_p_O16_to_He4_N13_derived)*Y(H1)*state.rho; + jac.set(He4, O16, scratch); + + scratch = screened_rates(k_F18_to_He4_N14_derived) - screened_rates(k_He4_F18_to_Na22)*Y(He4)*state.rho - screened_rates(k_He4_F18_to_p_Ne21)*Y(He4)*state.rho; + jac.set(He4, F18, scratch); + + scratch = -screened_rates(k_He4_Ne20_to_Mg24)*Y(He4)*state.rho - screened_rates(k_He4_Ne20_to_p_Na23_derived)*Y(He4)*state.rho + screened_rates(k_Ne20_to_He4_O16_derived); + jac.set(He4, Ne20, scratch); + + scratch = screened_rates(k_p_Ne21_to_He4_F18_derived)*Y(H1)*state.rho; + jac.set(He4, Ne21, scratch); + + scratch = screened_rates(k_Na22_to_He4_F18_derived); + jac.set(He4, Na22, scratch); + + scratch = screened_rates(k_p_Na23_to_He4_Ne20)*Y(H1)*state.rho; + jac.set(He4, Na23, scratch); + + scratch = -screened_rates(k_He4_Mg24_to_Si28)*Y(He4)*state.rho - screened_rates(k_He4_Mg24_to_p_Al27_derived)*Y(He4)*state.rho + screened_rates(k_Mg24_to_He4_Ne20_derived); + jac.set(He4, Mg24, scratch); + + scratch = screened_rates(k_p_Al27_to_He4_Mg24)*Y(H1)*state.rho; + jac.set(He4, Al27, scratch); + + scratch = -screened_rates(k_He4_Si28_to_S32)*Y(He4)*state.rho - screened_rates(k_He4_Si28_to_p_P31_derived)*Y(He4)*state.rho + screened_rates(k_Si28_to_He4_Mg24_derived); + jac.set(He4, Si28, scratch); + + scratch = screened_rates(k_p_P31_to_He4_Si28)*Y(H1)*state.rho; + jac.set(He4, P31, scratch); + + scratch = -screened_rates(k_S32_He4_to_Ar36_approx)*Y(He4)*state.rho + screened_rates(k_S32_to_He4_Si28_derived); + jac.set(He4, S32, scratch); + + scratch = -screened_rates(k_Ar36_He4_to_Ca40_approx)*Y(He4)*state.rho + screened_rates(k_Ar36_to_S32_He4_approx); + jac.set(He4, Ar36, scratch); + + scratch = -screened_rates(k_Ca40_He4_to_Ti44_approx)*Y(He4)*state.rho + screened_rates(k_Ca40_to_Ar36_He4_approx); + jac.set(He4, Ca40, scratch); + + scratch = -screened_rates(k_Ti44_He4_to_Cr48_approx)*Y(He4)*state.rho + screened_rates(k_Ti44_to_Ca40_He4_approx); + jac.set(He4, Ti44, scratch); + + scratch = screened_rates(k_Cr48_to_Ti44_He4_approx) - screened_rates(k_He4_Cr48_to_Fe52)*Y(He4)*state.rho - screened_rates(k_He4_Cr48_to_p_Mn51)*Y(He4)*state.rho; + jac.set(He4, Cr48, scratch); + + scratch = -screened_rates(k_He4_Mn51_to_Co55)*Y(He4)*state.rho - screened_rates(k_He4_Mn51_to_p_Fe54)*Y(He4)*state.rho + screened_rates(k_p_Mn51_to_He4_Cr48_derived)*Y(H1)*state.rho; + jac.set(He4, Mn51, scratch); + + scratch = screened_rates(k_Fe52_to_He4_Cr48_derived) - screened_rates(k_He4_Fe52_to_Ni56)*Y(He4)*state.rho - screened_rates(k_He4_Fe52_to_p_Co55)*Y(He4)*state.rho; + jac.set(He4, Fe52, scratch); + + scratch = -screened_rates(k_He4_Fe54_to_Ni58)*Y(He4)*state.rho - screened_rates(k_He4_Fe54_to_p_Co57_derived)*Y(He4)*state.rho + screened_rates(k_p_Fe54_to_He4_Mn51_derived)*Y(H1)*state.rho; + jac.set(He4, Fe54, scratch); + + scratch = screened_rates(k_Co55_to_He4_Mn51_derived) - screened_rates(k_He4_Co55_to_p_Ni58)*Y(He4)*state.rho + screened_rates(k_p_Co55_to_He4_Fe52_derived)*Y(H1)*state.rho; + jac.set(He4, Co55, scratch); + + scratch = screened_rates(k_p_Co57_to_He4_Fe54)*Y(H1)*state.rho; + jac.set(He4, Co57, scratch); + + scratch = screened_rates(k_Ni56_to_He4_Fe52_derived); + jac.set(He4, Ni56, scratch); + + scratch = screened_rates(k_Ni58_to_He4_Fe54_derived) + screened_rates(k_p_Ni58_to_He4_Co55_derived)*Y(H1)*state.rho; + jac.set(He4, Ni58, scratch); + + scratch = -screened_rates(k_p_C12_to_N13)*Y(C12)*state.rho; + jac.set(C12, H1, scratch); + + scratch = -screened_rates(k_He4_C12_to_O16)*Y(C12)*state.rho + 0.5*screened_rates(k_He4_He4_He4_to_C12)*amrex::Math::powi<2>(Y(He4))*amrex::Math::powi<2>(state.rho); + jac.set(C12, He4, scratch); + + scratch = -2.0*screened_rates(k_C12_C12_to_He4_Ne20)*Y(C12)*state.rho - 2.0*screened_rates(k_C12_C12_to_Mg24_modified)*Y(C12)*state.rho - 2.0*screened_rates(k_C12_C12_to_p_Na23)*Y(C12)*state.rho - screened_rates(k_C12_O16_to_He4_Mg24)*Y(O16)*state.rho - screened_rates(k_C12_O16_to_Si28_modified)*Y(O16)*state.rho - screened_rates(k_C12_O16_to_p_Al27)*Y(O16)*state.rho - screened_rates(k_C12_to_He4_He4_He4_derived) - screened_rates(k_He4_C12_to_O16)*Y(He4)*state.rho - screened_rates(k_p_C12_to_N13)*Y(H1)*state.rho; + jac.set(C12, C12, scratch); + + scratch = screened_rates(k_N13_to_p_C12_derived); + jac.set(C12, N13, scratch); + + scratch = -screened_rates(k_C12_O16_to_He4_Mg24)*Y(C12)*state.rho - screened_rates(k_C12_O16_to_Si28_modified)*Y(C12)*state.rho - screened_rates(k_C12_O16_to_p_Al27)*Y(C12)*state.rho + screened_rates(k_O16_to_He4_C12_derived); + jac.set(C12, O16, scratch); + + scratch = screened_rates(k_p_C12_to_N13)*Y(C12)*state.rho + screened_rates(k_p_O16_to_He4_N13_derived)*Y(O16)*state.rho; + jac.set(N13, H1, scratch); + + scratch = -screened_rates(k_He4_N13_to_p_O16)*Y(N13)*state.rho; + jac.set(N13, He4, scratch); + + scratch = screened_rates(k_p_C12_to_N13)*Y(H1)*state.rho; + jac.set(N13, C12, scratch); + + scratch = -screened_rates(k_He4_N13_to_p_O16)*Y(He4)*state.rho - screened_rates(k_N13_to_p_C12_derived); + jac.set(N13, N13, scratch); + + scratch = screened_rates(k_p_O16_to_He4_N13_derived)*Y(H1)*state.rho; + jac.set(N13, O16, scratch); + + scratch = -screened_rates(k_He4_N14_to_F18)*Y(N14)*state.rho; + jac.set(N14, He4, scratch); + + scratch = -screened_rates(k_He4_N14_to_F18)*Y(He4)*state.rho; + jac.set(N14, N14, scratch); + + scratch = screened_rates(k_F18_to_He4_N14_derived); + jac.set(N14, F18, scratch); + + scratch = -screened_rates(k_p_O16_to_He4_N13_derived)*Y(O16)*state.rho; + jac.set(O16, H1, scratch); + + scratch = screened_rates(k_He4_C12_to_O16)*Y(C12)*state.rho + screened_rates(k_He4_N13_to_p_O16)*Y(N13)*state.rho - screened_rates(k_He4_O16_to_Ne20)*Y(O16)*state.rho; + jac.set(O16, He4, scratch); + + scratch = -screened_rates(k_C12_O16_to_He4_Mg24)*Y(O16)*state.rho - screened_rates(k_C12_O16_to_Si28_modified)*Y(O16)*state.rho - screened_rates(k_C12_O16_to_p_Al27)*Y(O16)*state.rho + screened_rates(k_He4_C12_to_O16)*Y(He4)*state.rho; + jac.set(O16, C12, scratch); + + scratch = screened_rates(k_He4_N13_to_p_O16)*Y(He4)*state.rho; + jac.set(O16, N13, scratch); + + scratch = -screened_rates(k_C12_O16_to_He4_Mg24)*Y(C12)*state.rho - screened_rates(k_C12_O16_to_Si28_modified)*Y(C12)*state.rho - screened_rates(k_C12_O16_to_p_Al27)*Y(C12)*state.rho - screened_rates(k_He4_O16_to_Ne20)*Y(He4)*state.rho - 2.0*screened_rates(k_O16_O16_to_He4_Si28)*Y(O16)*state.rho - 2.0*screened_rates(k_O16_O16_to_S32_modified)*Y(O16)*state.rho - 2.0*screened_rates(k_O16_O16_to_p_P31)*Y(O16)*state.rho - screened_rates(k_O16_to_He4_C12_derived) - screened_rates(k_p_O16_to_He4_N13_derived)*Y(H1)*state.rho; + jac.set(O16, O16, scratch); + + scratch = screened_rates(k_Ne20_to_He4_O16_derived); + jac.set(O16, Ne20, scratch); + + scratch = screened_rates(k_p_Ne21_to_He4_F18_derived)*Y(Ne21)*state.rho; + jac.set(F18, H1, scratch); + + scratch = -screened_rates(k_He4_F18_to_Na22)*Y(F18)*state.rho - screened_rates(k_He4_F18_to_p_Ne21)*Y(F18)*state.rho + screened_rates(k_He4_N14_to_F18)*Y(N14)*state.rho; + jac.set(F18, He4, scratch); + + scratch = screened_rates(k_He4_N14_to_F18)*Y(He4)*state.rho; + jac.set(F18, N14, scratch); + + scratch = -screened_rates(k_F18_to_He4_N14_derived) - screened_rates(k_He4_F18_to_Na22)*Y(He4)*state.rho - screened_rates(k_He4_F18_to_p_Ne21)*Y(He4)*state.rho; + jac.set(F18, F18, scratch); + + scratch = screened_rates(k_p_Ne21_to_He4_F18_derived)*Y(H1)*state.rho; + jac.set(F18, Ne21, scratch); + + scratch = screened_rates(k_Na22_to_He4_F18_derived); + jac.set(F18, Na22, scratch); + + scratch = screened_rates(k_p_Na23_to_He4_Ne20)*Y(Na23)*state.rho; + jac.set(Ne20, H1, scratch); + + scratch = -screened_rates(k_He4_Ne20_to_Mg24)*Y(Ne20)*state.rho - screened_rates(k_He4_Ne20_to_p_Na23_derived)*Y(Ne20)*state.rho + screened_rates(k_He4_O16_to_Ne20)*Y(O16)*state.rho; + jac.set(Ne20, He4, scratch); + + scratch = 1.0*screened_rates(k_C12_C12_to_He4_Ne20)*Y(C12)*state.rho; + jac.set(Ne20, C12, scratch); + + scratch = screened_rates(k_He4_O16_to_Ne20)*Y(He4)*state.rho; + jac.set(Ne20, O16, scratch); + + scratch = -screened_rates(k_He4_Ne20_to_Mg24)*Y(He4)*state.rho - screened_rates(k_He4_Ne20_to_p_Na23_derived)*Y(He4)*state.rho - screened_rates(k_Ne20_to_He4_O16_derived); + jac.set(Ne20, Ne20, scratch); + + scratch = screened_rates(k_p_Na23_to_He4_Ne20)*Y(H1)*state.rho; + jac.set(Ne20, Na23, scratch); + + scratch = screened_rates(k_Mg24_to_He4_Ne20_derived); + jac.set(Ne20, Mg24, scratch); + + scratch = -screened_rates(k_p_Ne21_to_He4_F18_derived)*Y(Ne21)*state.rho - screened_rates(k_p_Ne21_to_Na22)*Y(Ne21)*state.rho; + jac.set(Ne21, H1, scratch); + + scratch = screened_rates(k_He4_F18_to_p_Ne21)*Y(F18)*state.rho; + jac.set(Ne21, He4, scratch); + + scratch = screened_rates(k_He4_F18_to_p_Ne21)*Y(He4)*state.rho; + jac.set(Ne21, F18, scratch); + + scratch = -screened_rates(k_p_Ne21_to_He4_F18_derived)*Y(H1)*state.rho - screened_rates(k_p_Ne21_to_Na22)*Y(H1)*state.rho; + jac.set(Ne21, Ne21, scratch); + + scratch = screened_rates(k_Na22_to_p_Ne21_derived); + jac.set(Ne21, Na22, scratch); + + scratch = screened_rates(k_p_Ne21_to_Na22)*Y(Ne21)*state.rho; + jac.set(Na22, H1, scratch); + + scratch = screened_rates(k_He4_F18_to_Na22)*Y(F18)*state.rho; + jac.set(Na22, He4, scratch); + + scratch = screened_rates(k_He4_F18_to_Na22)*Y(He4)*state.rho; + jac.set(Na22, F18, scratch); + + scratch = screened_rates(k_p_Ne21_to_Na22)*Y(H1)*state.rho; + jac.set(Na22, Ne21, scratch); + + scratch = -screened_rates(k_Na22_to_He4_F18_derived) - screened_rates(k_Na22_to_p_Ne21_derived); + jac.set(Na22, Na22, scratch); + + scratch = -screened_rates(k_p_Na23_to_He4_Ne20)*Y(Na23)*state.rho - screened_rates(k_p_Na23_to_Mg24)*Y(Na23)*state.rho; + jac.set(Na23, H1, scratch); + + scratch = screened_rates(k_He4_Ne20_to_p_Na23_derived)*Y(Ne20)*state.rho; + jac.set(Na23, He4, scratch); + + scratch = 1.0*screened_rates(k_C12_C12_to_p_Na23)*Y(C12)*state.rho; + jac.set(Na23, C12, scratch); + + scratch = screened_rates(k_He4_Ne20_to_p_Na23_derived)*Y(He4)*state.rho; + jac.set(Na23, Ne20, scratch); + + scratch = -screened_rates(k_p_Na23_to_He4_Ne20)*Y(H1)*state.rho - screened_rates(k_p_Na23_to_Mg24)*Y(H1)*state.rho; + jac.set(Na23, Na23, scratch); + + scratch = screened_rates(k_Mg24_to_p_Na23_derived); + jac.set(Na23, Mg24, scratch); + + scratch = screened_rates(k_p_Al27_to_He4_Mg24)*Y(Al27)*state.rho + screened_rates(k_p_Na23_to_Mg24)*Y(Na23)*state.rho; + jac.set(Mg24, H1, scratch); + + scratch = -screened_rates(k_He4_Mg24_to_Si28)*Y(Mg24)*state.rho - screened_rates(k_He4_Mg24_to_p_Al27_derived)*Y(Mg24)*state.rho + screened_rates(k_He4_Ne20_to_Mg24)*Y(Ne20)*state.rho; + jac.set(Mg24, He4, scratch); + + scratch = 1.0*screened_rates(k_C12_C12_to_Mg24_modified)*Y(C12)*state.rho + screened_rates(k_C12_O16_to_He4_Mg24)*Y(O16)*state.rho; + jac.set(Mg24, C12, scratch); + + scratch = screened_rates(k_C12_O16_to_He4_Mg24)*Y(C12)*state.rho; + jac.set(Mg24, O16, scratch); + + scratch = screened_rates(k_He4_Ne20_to_Mg24)*Y(He4)*state.rho; + jac.set(Mg24, Ne20, scratch); + + scratch = screened_rates(k_p_Na23_to_Mg24)*Y(H1)*state.rho; + jac.set(Mg24, Na23, scratch); + + scratch = -screened_rates(k_He4_Mg24_to_Si28)*Y(He4)*state.rho - screened_rates(k_He4_Mg24_to_p_Al27_derived)*Y(He4)*state.rho - screened_rates(k_Mg24_to_He4_Ne20_derived) - screened_rates(k_Mg24_to_p_Na23_derived); + jac.set(Mg24, Mg24, scratch); + + scratch = screened_rates(k_p_Al27_to_He4_Mg24)*Y(H1)*state.rho; + jac.set(Mg24, Al27, scratch); + + scratch = screened_rates(k_Si28_to_He4_Mg24_derived); + jac.set(Mg24, Si28, scratch); + + scratch = -screened_rates(k_p_Al27_to_He4_Mg24)*Y(Al27)*state.rho - screened_rates(k_p_Al27_to_Si28)*Y(Al27)*state.rho; + jac.set(Al27, H1, scratch); + + scratch = screened_rates(k_He4_Mg24_to_p_Al27_derived)*Y(Mg24)*state.rho; + jac.set(Al27, He4, scratch); + + scratch = screened_rates(k_C12_O16_to_p_Al27)*Y(O16)*state.rho; + jac.set(Al27, C12, scratch); + + scratch = screened_rates(k_C12_O16_to_p_Al27)*Y(C12)*state.rho; + jac.set(Al27, O16, scratch); + + scratch = screened_rates(k_He4_Mg24_to_p_Al27_derived)*Y(He4)*state.rho; + jac.set(Al27, Mg24, scratch); + + scratch = -screened_rates(k_p_Al27_to_He4_Mg24)*Y(H1)*state.rho - screened_rates(k_p_Al27_to_Si28)*Y(H1)*state.rho; + jac.set(Al27, Al27, scratch); + + scratch = screened_rates(k_Si28_to_p_Al27_derived); + jac.set(Al27, Si28, scratch); + + scratch = screened_rates(k_p_Al27_to_Si28)*Y(Al27)*state.rho + screened_rates(k_p_P31_to_He4_Si28)*Y(P31)*state.rho; + jac.set(Si28, H1, scratch); + + scratch = screened_rates(k_He4_Mg24_to_Si28)*Y(Mg24)*state.rho - screened_rates(k_He4_Si28_to_S32)*Y(Si28)*state.rho - screened_rates(k_He4_Si28_to_p_P31_derived)*Y(Si28)*state.rho; + jac.set(Si28, He4, scratch); + + scratch = screened_rates(k_C12_O16_to_Si28_modified)*Y(O16)*state.rho; + jac.set(Si28, C12, scratch); + + scratch = screened_rates(k_C12_O16_to_Si28_modified)*Y(C12)*state.rho + 1.0*screened_rates(k_O16_O16_to_He4_Si28)*Y(O16)*state.rho; + jac.set(Si28, O16, scratch); + + scratch = screened_rates(k_He4_Mg24_to_Si28)*Y(He4)*state.rho; + jac.set(Si28, Mg24, scratch); + + scratch = screened_rates(k_p_Al27_to_Si28)*Y(H1)*state.rho; + jac.set(Si28, Al27, scratch); + + scratch = -screened_rates(k_He4_Si28_to_S32)*Y(He4)*state.rho - screened_rates(k_He4_Si28_to_p_P31_derived)*Y(He4)*state.rho - screened_rates(k_Si28_to_He4_Mg24_derived) - screened_rates(k_Si28_to_p_Al27_derived); + jac.set(Si28, Si28, scratch); + + scratch = screened_rates(k_p_P31_to_He4_Si28)*Y(H1)*state.rho; + jac.set(Si28, P31, scratch); + + scratch = screened_rates(k_S32_to_He4_Si28_derived); + jac.set(Si28, S32, scratch); + + scratch = -screened_rates(k_p_P31_to_He4_Si28)*Y(P31)*state.rho - screened_rates(k_p_P31_to_S32)*Y(P31)*state.rho; + jac.set(P31, H1, scratch); + + scratch = screened_rates(k_He4_Si28_to_p_P31_derived)*Y(Si28)*state.rho; + jac.set(P31, He4, scratch); + + scratch = 1.0*screened_rates(k_O16_O16_to_p_P31)*Y(O16)*state.rho; + jac.set(P31, O16, scratch); + + scratch = screened_rates(k_He4_Si28_to_p_P31_derived)*Y(He4)*state.rho; + jac.set(P31, Si28, scratch); + + scratch = -screened_rates(k_p_P31_to_He4_Si28)*Y(H1)*state.rho - screened_rates(k_p_P31_to_S32)*Y(H1)*state.rho; + jac.set(P31, P31, scratch); + + scratch = screened_rates(k_S32_to_p_P31_derived); + jac.set(P31, S32, scratch); + + scratch = screened_rates(k_p_P31_to_S32)*Y(P31)*state.rho; + jac.set(S32, H1, scratch); + + scratch = screened_rates(k_He4_Si28_to_S32)*Y(Si28)*state.rho - screened_rates(k_S32_He4_to_Ar36_approx)*Y(S32)*state.rho; + jac.set(S32, He4, scratch); + + scratch = 1.0*screened_rates(k_O16_O16_to_S32_modified)*Y(O16)*state.rho; + jac.set(S32, O16, scratch); + + scratch = screened_rates(k_He4_Si28_to_S32)*Y(He4)*state.rho; + jac.set(S32, Si28, scratch); + + scratch = screened_rates(k_p_P31_to_S32)*Y(H1)*state.rho; + jac.set(S32, P31, scratch); + + scratch = -screened_rates(k_S32_He4_to_Ar36_approx)*Y(He4)*state.rho - screened_rates(k_S32_to_He4_Si28_derived) - screened_rates(k_S32_to_p_P31_derived); + jac.set(S32, S32, scratch); + + scratch = screened_rates(k_Ar36_to_S32_He4_approx); + jac.set(S32, Ar36, scratch); + + scratch = -screened_rates(k_Ar36_He4_to_Ca40_approx)*Y(Ar36)*state.rho + screened_rates(k_S32_He4_to_Ar36_approx)*Y(S32)*state.rho; + jac.set(Ar36, He4, scratch); + + scratch = screened_rates(k_S32_He4_to_Ar36_approx)*Y(He4)*state.rho; + jac.set(Ar36, S32, scratch); + + scratch = -screened_rates(k_Ar36_He4_to_Ca40_approx)*Y(He4)*state.rho - screened_rates(k_Ar36_to_S32_He4_approx); + jac.set(Ar36, Ar36, scratch); + + scratch = screened_rates(k_Ca40_to_Ar36_He4_approx); + jac.set(Ar36, Ca40, scratch); + + scratch = screened_rates(k_Ar36_He4_to_Ca40_approx)*Y(Ar36)*state.rho - screened_rates(k_Ca40_He4_to_Ti44_approx)*Y(Ca40)*state.rho; + jac.set(Ca40, He4, scratch); + + scratch = screened_rates(k_Ar36_He4_to_Ca40_approx)*Y(He4)*state.rho; + jac.set(Ca40, Ar36, scratch); + + scratch = -screened_rates(k_Ca40_He4_to_Ti44_approx)*Y(He4)*state.rho - screened_rates(k_Ca40_to_Ar36_He4_approx); + jac.set(Ca40, Ca40, scratch); + + scratch = screened_rates(k_Ti44_to_Ca40_He4_approx); + jac.set(Ca40, Ti44, scratch); + + scratch = screened_rates(k_Ca40_He4_to_Ti44_approx)*Y(Ca40)*state.rho - screened_rates(k_Ti44_He4_to_Cr48_approx)*Y(Ti44)*state.rho; + jac.set(Ti44, He4, scratch); + + scratch = screened_rates(k_Ca40_He4_to_Ti44_approx)*Y(He4)*state.rho; + jac.set(Ti44, Ca40, scratch); + + scratch = -screened_rates(k_Ti44_He4_to_Cr48_approx)*Y(He4)*state.rho - screened_rates(k_Ti44_to_Ca40_He4_approx); + jac.set(Ti44, Ti44, scratch); + + scratch = screened_rates(k_Cr48_to_Ti44_He4_approx); + jac.set(Ti44, Cr48, scratch); + + scratch = screened_rates(k_p_Mn51_to_He4_Cr48_derived)*Y(Mn51)*state.rho; + jac.set(Cr48, H1, scratch); + + scratch = -screened_rates(k_He4_Cr48_to_Fe52)*Y(Cr48)*state.rho - screened_rates(k_He4_Cr48_to_p_Mn51)*Y(Cr48)*state.rho + screened_rates(k_Ti44_He4_to_Cr48_approx)*Y(Ti44)*state.rho; + jac.set(Cr48, He4, scratch); + + scratch = screened_rates(k_Ti44_He4_to_Cr48_approx)*Y(He4)*state.rho; + jac.set(Cr48, Ti44, scratch); + + scratch = -screened_rates(k_Cr48_to_Ti44_He4_approx) - screened_rates(k_He4_Cr48_to_Fe52)*Y(He4)*state.rho - screened_rates(k_He4_Cr48_to_p_Mn51)*Y(He4)*state.rho; + jac.set(Cr48, Cr48, scratch); + + scratch = screened_rates(k_p_Mn51_to_He4_Cr48_derived)*Y(H1)*state.rho; + jac.set(Cr48, Mn51, scratch); + + scratch = screened_rates(k_Fe52_to_He4_Cr48_derived); + jac.set(Cr48, Fe52, scratch); + + scratch = screened_rates(k_p_Fe54_to_He4_Mn51_derived)*Y(Fe54)*state.rho - screened_rates(k_p_Mn51_to_Fe52)*Y(Mn51)*state.rho - screened_rates(k_p_Mn51_to_He4_Cr48_derived)*Y(Mn51)*state.rho; + jac.set(Mn51, H1, scratch); + + scratch = screened_rates(k_He4_Cr48_to_p_Mn51)*Y(Cr48)*state.rho - screened_rates(k_He4_Mn51_to_Co55)*Y(Mn51)*state.rho - screened_rates(k_He4_Mn51_to_p_Fe54)*Y(Mn51)*state.rho; + jac.set(Mn51, He4, scratch); + + scratch = screened_rates(k_He4_Cr48_to_p_Mn51)*Y(He4)*state.rho; + jac.set(Mn51, Cr48, scratch); + + scratch = -screened_rates(k_He4_Mn51_to_Co55)*Y(He4)*state.rho - screened_rates(k_He4_Mn51_to_p_Fe54)*Y(He4)*state.rho - screened_rates(k_p_Mn51_to_Fe52)*Y(H1)*state.rho - screened_rates(k_p_Mn51_to_He4_Cr48_derived)*Y(H1)*state.rho; + jac.set(Mn51, Mn51, scratch); + + scratch = screened_rates(k_Fe52_to_p_Mn51_derived); + jac.set(Mn51, Fe52, scratch); + + scratch = screened_rates(k_p_Fe54_to_He4_Mn51_derived)*Y(H1)*state.rho; + jac.set(Mn51, Fe54, scratch); + + scratch = screened_rates(k_Co55_to_He4_Mn51_derived); + jac.set(Mn51, Co55, scratch); + + scratch = -2.0*screened_rates(k_Fe52_n_n_to_Fe54_approx)*Y(Fe52)*Y(N)*amrex::Math::powi<2>(state.rho); + jac.set(Fe52, N, scratch); + + scratch = screened_rates(k_p_Co55_to_He4_Fe52_derived)*Y(Co55)*state.rho + screened_rates(k_p_Mn51_to_Fe52)*Y(Mn51)*state.rho; + jac.set(Fe52, H1, scratch); + + scratch = screened_rates(k_He4_Cr48_to_Fe52)*Y(Cr48)*state.rho - screened_rates(k_He4_Fe52_to_Ni56)*Y(Fe52)*state.rho - screened_rates(k_He4_Fe52_to_p_Co55)*Y(Fe52)*state.rho; + jac.set(Fe52, He4, scratch); + + scratch = screened_rates(k_He4_Cr48_to_Fe52)*Y(He4)*state.rho; + jac.set(Fe52, Cr48, scratch); + + scratch = screened_rates(k_p_Mn51_to_Fe52)*Y(H1)*state.rho; + jac.set(Fe52, Mn51, scratch); + + scratch = -screened_rates(k_Fe52_n_n_to_Fe54_approx)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) - screened_rates(k_Fe52_to_He4_Cr48_derived) - screened_rates(k_Fe52_to_p_Mn51_derived) - screened_rates(k_He4_Fe52_to_Ni56)*Y(He4)*state.rho - screened_rates(k_He4_Fe52_to_p_Co55)*Y(He4)*state.rho; + jac.set(Fe52, Fe52, scratch); + + scratch = screened_rates(k_Fe54_to_Fe52_n_n_approx); + jac.set(Fe52, Fe54, scratch); + + scratch = screened_rates(k_p_Co55_to_He4_Fe52_derived)*Y(H1)*state.rho; + jac.set(Fe52, Co55, scratch); + + scratch = screened_rates(k_Ni56_to_He4_Fe52_derived); + jac.set(Fe52, Ni56, scratch); + + scratch = 2.0*screened_rates(k_Fe52_n_n_to_Fe54_approx)*Y(Fe52)*Y(N)*amrex::Math::powi<2>(state.rho) - 2.0*screened_rates(k_Fe54_n_n_to_Fe56_approx)*Y(Fe54)*Y(N)*amrex::Math::powi<2>(state.rho); + jac.set(Fe54, N, scratch); + + scratch = screened_rates(k_p_Co57_to_He4_Fe54)*Y(Co57)*state.rho - screened_rates(k_p_Fe54_to_Co55)*Y(Fe54)*state.rho - screened_rates(k_p_Fe54_to_He4_Mn51_derived)*Y(Fe54)*state.rho; + jac.set(Fe54, H1, scratch); + + scratch = -screened_rates(k_He4_Fe54_to_Ni58)*Y(Fe54)*state.rho - screened_rates(k_He4_Fe54_to_p_Co57_derived)*Y(Fe54)*state.rho + screened_rates(k_He4_Mn51_to_p_Fe54)*Y(Mn51)*state.rho; + jac.set(Fe54, He4, scratch); + + scratch = screened_rates(k_He4_Mn51_to_p_Fe54)*Y(He4)*state.rho; + jac.set(Fe54, Mn51, scratch); + + scratch = screened_rates(k_Fe52_n_n_to_Fe54_approx)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho); + jac.set(Fe54, Fe52, scratch); + + scratch = -screened_rates(k_Fe54_n_n_to_Fe56_approx)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) - screened_rates(k_Fe54_to_Fe52_n_n_approx) - screened_rates(k_He4_Fe54_to_Ni58)*Y(He4)*state.rho - screened_rates(k_He4_Fe54_to_p_Co57_derived)*Y(He4)*state.rho - screened_rates(k_p_Fe54_to_Co55)*Y(H1)*state.rho - screened_rates(k_p_Fe54_to_He4_Mn51_derived)*Y(H1)*state.rho; + jac.set(Fe54, Fe54, scratch); + + scratch = screened_rates(k_Fe56_to_Fe54_n_n_approx); + jac.set(Fe54, Fe56, scratch); + + scratch = screened_rates(k_Co55_to_p_Fe54_derived); + jac.set(Fe54, Co55, scratch); + + scratch = screened_rates(k_p_Co57_to_He4_Fe54)*Y(H1)*state.rho; + jac.set(Fe54, Co57, scratch); + + scratch = screened_rates(k_Ni58_to_He4_Fe54_derived); + jac.set(Fe54, Ni58, scratch); + + scratch = 2.0*screened_rates(k_Fe54_n_n_to_Fe56_approx)*Y(Fe54)*Y(N)*amrex::Math::powi<2>(state.rho) + screened_rates(k_n_Co56_to_p_Fe56)*Y(Co56)*state.rho; + jac.set(Fe56, N, scratch); + + scratch = -screened_rates(k_p_Fe56_to_Co57)*Y(Fe56)*state.rho - screened_rates(k_p_Fe56_to_n_Co56_derived)*Y(Fe56)*state.rho; + jac.set(Fe56, H1, scratch); + + scratch = screened_rates(k_Fe54_n_n_to_Fe56_approx)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho); + jac.set(Fe56, Fe54, scratch); + + scratch = -screened_rates(k_Fe56_to_Co56) - screened_rates(k_Fe56_to_Fe54_n_n_approx) - screened_rates(k_p_Fe56_to_Co57)*Y(H1)*state.rho - screened_rates(k_p_Fe56_to_n_Co56_derived)*Y(H1)*state.rho; + jac.set(Fe56, Fe56, scratch); + + scratch = screened_rates(k_Co56_to_Fe56) + screened_rates(k_n_Co56_to_p_Fe56)*Y(N)*state.rho; + jac.set(Fe56, Co56, scratch); + + scratch = screened_rates(k_Co57_to_p_Fe56_derived); + jac.set(Fe56, Co57, scratch); + + scratch = -screened_rates(k_n_Co55_to_Co56)*Y(Co55)*state.rho; + jac.set(Co55, N, scratch); + + scratch = -screened_rates(k_p_Co55_to_He4_Fe52_derived)*Y(Co55)*state.rho - screened_rates(k_p_Co55_to_Ni56)*Y(Co55)*state.rho + screened_rates(k_p_Fe54_to_Co55)*Y(Fe54)*state.rho + screened_rates(k_p_Ni58_to_He4_Co55_derived)*Y(Ni58)*state.rho; + jac.set(Co55, H1, scratch); + + scratch = -screened_rates(k_He4_Co55_to_p_Ni58)*Y(Co55)*state.rho + screened_rates(k_He4_Fe52_to_p_Co55)*Y(Fe52)*state.rho + screened_rates(k_He4_Mn51_to_Co55)*Y(Mn51)*state.rho; + jac.set(Co55, He4, scratch); + + scratch = screened_rates(k_He4_Mn51_to_Co55)*Y(He4)*state.rho; + jac.set(Co55, Mn51, scratch); + + scratch = screened_rates(k_He4_Fe52_to_p_Co55)*Y(He4)*state.rho; + jac.set(Co55, Fe52, scratch); + + scratch = screened_rates(k_p_Fe54_to_Co55)*Y(H1)*state.rho; + jac.set(Co55, Fe54, scratch); + + scratch = -screened_rates(k_Co55_to_He4_Mn51_derived) - screened_rates(k_Co55_to_p_Fe54_derived) - screened_rates(k_He4_Co55_to_p_Ni58)*Y(He4)*state.rho - screened_rates(k_n_Co55_to_Co56)*Y(N)*state.rho - screened_rates(k_p_Co55_to_He4_Fe52_derived)*Y(H1)*state.rho - screened_rates(k_p_Co55_to_Ni56)*Y(H1)*state.rho; + jac.set(Co55, Co55, scratch); + + scratch = screened_rates(k_Co56_to_n_Co55_derived); + jac.set(Co55, Co56, scratch); + + scratch = screened_rates(k_Ni56_to_p_Co55_derived); + jac.set(Co55, Ni56, scratch); + + scratch = screened_rates(k_p_Ni58_to_He4_Co55_derived)*Y(H1)*state.rho; + jac.set(Co55, Ni58, scratch); + + scratch = screened_rates(k_n_Co55_to_Co56)*Y(Co55)*state.rho - screened_rates(k_n_Co56_to_Co57)*Y(Co56)*state.rho - screened_rates(k_n_Co56_to_p_Fe56)*Y(Co56)*state.rho + screened_rates(k_n_Ni56_to_p_Co56)*Y(Ni56)*state.rho; + jac.set(Co56, N, scratch); + + scratch = -screened_rates(k_p_Co56_to_n_Ni56_derived)*Y(Co56)*state.rho + screened_rates(k_p_Fe56_to_n_Co56_derived)*Y(Fe56)*state.rho; + jac.set(Co56, H1, scratch); + + scratch = screened_rates(k_Fe56_to_Co56) + screened_rates(k_p_Fe56_to_n_Co56_derived)*Y(H1)*state.rho; + jac.set(Co56, Fe56, scratch); + + scratch = screened_rates(k_n_Co55_to_Co56)*Y(N)*state.rho; + jac.set(Co56, Co55, scratch); + + scratch = -screened_rates(k_Co56_to_Fe56) - screened_rates(k_Co56_to_Ni56) - screened_rates(k_Co56_to_n_Co55_derived) - screened_rates(k_n_Co56_to_Co57)*Y(N)*state.rho - screened_rates(k_n_Co56_to_p_Fe56)*Y(N)*state.rho - screened_rates(k_p_Co56_to_n_Ni56_derived)*Y(H1)*state.rho; + jac.set(Co56, Co56, scratch); + + scratch = screened_rates(k_Co57_to_n_Co56_derived); + jac.set(Co56, Co57, scratch); + + scratch = screened_rates(k_Ni56_to_Co56) + screened_rates(k_n_Ni56_to_p_Co56)*Y(N)*state.rho; + jac.set(Co56, Ni56, scratch); + + scratch = screened_rates(k_n_Co56_to_Co57)*Y(Co56)*state.rho; + jac.set(Co57, N, scratch); + + scratch = -screened_rates(k_p_Co57_to_He4_Fe54)*Y(Co57)*state.rho - screened_rates(k_p_Co57_to_Ni58)*Y(Co57)*state.rho + screened_rates(k_p_Fe56_to_Co57)*Y(Fe56)*state.rho; + jac.set(Co57, H1, scratch); + + scratch = screened_rates(k_He4_Fe54_to_p_Co57_derived)*Y(Fe54)*state.rho; + jac.set(Co57, He4, scratch); + + scratch = screened_rates(k_He4_Fe54_to_p_Co57_derived)*Y(He4)*state.rho; + jac.set(Co57, Fe54, scratch); + + scratch = screened_rates(k_p_Fe56_to_Co57)*Y(H1)*state.rho; + jac.set(Co57, Fe56, scratch); + + scratch = screened_rates(k_n_Co56_to_Co57)*Y(N)*state.rho; + jac.set(Co57, Co56, scratch); + + scratch = -screened_rates(k_Co57_to_n_Co56_derived) - screened_rates(k_Co57_to_p_Fe56_derived) - screened_rates(k_p_Co57_to_He4_Fe54)*Y(H1)*state.rho - screened_rates(k_p_Co57_to_Ni58)*Y(H1)*state.rho; + jac.set(Co57, Co57, scratch); + + scratch = screened_rates(k_Ni58_to_p_Co57_derived); + jac.set(Co57, Ni58, scratch); + + scratch = -2.0*screened_rates(k_Ni56_n_n_to_Ni58_approx)*Y(Ni56)*Y(N)*amrex::Math::powi<2>(state.rho) - screened_rates(k_n_Ni56_to_p_Co56)*Y(Ni56)*state.rho; + jac.set(Ni56, N, scratch); + + scratch = screened_rates(k_p_Co55_to_Ni56)*Y(Co55)*state.rho + screened_rates(k_p_Co56_to_n_Ni56_derived)*Y(Co56)*state.rho; + jac.set(Ni56, H1, scratch); + + scratch = screened_rates(k_He4_Fe52_to_Ni56)*Y(Fe52)*state.rho; + jac.set(Ni56, He4, scratch); + + scratch = screened_rates(k_He4_Fe52_to_Ni56)*Y(He4)*state.rho; + jac.set(Ni56, Fe52, scratch); + + scratch = screened_rates(k_p_Co55_to_Ni56)*Y(H1)*state.rho; + jac.set(Ni56, Co55, scratch); + + scratch = screened_rates(k_Co56_to_Ni56) + screened_rates(k_p_Co56_to_n_Ni56_derived)*Y(H1)*state.rho; + jac.set(Ni56, Co56, scratch); + + scratch = -screened_rates(k_Ni56_n_n_to_Ni58_approx)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho) - screened_rates(k_Ni56_to_Co56) - screened_rates(k_Ni56_to_He4_Fe52_derived) - screened_rates(k_Ni56_to_p_Co55_derived) - screened_rates(k_n_Ni56_to_p_Co56)*Y(N)*state.rho; + jac.set(Ni56, Ni56, scratch); + + scratch = screened_rates(k_Ni58_to_Ni56_n_n_approx); + jac.set(Ni56, Ni58, scratch); + + scratch = 2.0*screened_rates(k_Ni56_n_n_to_Ni58_approx)*Y(Ni56)*Y(N)*amrex::Math::powi<2>(state.rho); + jac.set(Ni58, N, scratch); + + scratch = screened_rates(k_p_Co57_to_Ni58)*Y(Co57)*state.rho - screened_rates(k_p_Ni58_to_He4_Co55_derived)*Y(Ni58)*state.rho; + jac.set(Ni58, H1, scratch); + + scratch = screened_rates(k_He4_Co55_to_p_Ni58)*Y(Co55)*state.rho + screened_rates(k_He4_Fe54_to_Ni58)*Y(Fe54)*state.rho; + jac.set(Ni58, He4, scratch); + + scratch = screened_rates(k_He4_Fe54_to_Ni58)*Y(He4)*state.rho; + jac.set(Ni58, Fe54, scratch); + + scratch = screened_rates(k_He4_Co55_to_p_Ni58)*Y(He4)*state.rho; + jac.set(Ni58, Co55, scratch); + + scratch = screened_rates(k_p_Co57_to_Ni58)*Y(H1)*state.rho; + jac.set(Ni58, Co57, scratch); + + scratch = screened_rates(k_Ni56_n_n_to_Ni58_approx)*amrex::Math::powi<2>(Y(N))*amrex::Math::powi<2>(state.rho); + jac.set(Ni58, Ni56, scratch); + + scratch = -screened_rates(k_Ni58_to_He4_Fe54_derived) - screened_rates(k_Ni58_to_Ni56_n_n_approx) - screened_rates(k_Ni58_to_p_Co57_derived) - screened_rates(k_p_Ni58_to_He4_Co55_derived)*Y(H1)*state.rho; + jac.set(Ni58, Ni58, scratch); + + +} + + + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void actual_jac(const burn_t& state, MatrixType& jac) +{ + + // Set molar abundances + amrex::Array1D Y; + for (int i = 1; i <= NumSpec; ++i) { + Y(i) = state.xn[i-1] * aion_inv[i-1]; + } + + + jac.zero(); + + rate_derivs_t rate_eval; + + constexpr int do_T_derivatives = 1; + + evaluate_rates(state, rate_eval); + + // Species Jacobian elements with respect to other species + + jac_nuc(state, jac, Y, rate_eval.screened_rates); + + // Energy generation rate Jacobian elements with respect to species + + for (int j = 1; j <= NumSpec; ++j) { + auto jac_slice_2 = [&](int i) -> amrex::Real { return jac.get(i, j); }; + ener_gener_rate(jac_slice_2, jac(net_ienuc,j)); + } + + // Account for the thermal neutrino losses + + amrex::Real sneut, dsneutdt, dsneutdd, dsnuda, dsnudz; + constexpr int do_derivatives{1}; + sneut5(state.T, state.rho, state.abar, state.zbar, sneut, dsneutdt, dsneutdd, dsnuda, dsnudz); + + for (int j = 1; j <= NumSpec; ++j) { + amrex::Real b1 = (-state.abar * state.abar * dsnuda + (zion[j-1] - state.zbar) * state.abar * dsnudz); + jac.add(net_ienuc, j, -b1); + } + + + // Evaluate the Jacobian elements with respect to energy by + // calling the RHS using d(rate) / dT and then transform them + // to our energy integration variable. + + amrex::Array1D yderivs; + + rhs_nuc(state, yderivs, Y, rate_eval.dscreened_rates_dT); + + for (int k = 1; k <= NumSpec; k++) { + jac.set(k, net_ienuc, temperature_to_energy_jacobian(state, yderivs(k))); + } + + + // finally, d(de/dt)/de + + amrex::Real jac_e_T; + ener_gener_rate(yderivs, jac_e_T); + jac_e_T -= dsneutdt; + jac.set(net_ienuc, net_ienuc, temperature_to_energy_jacobian(state, jac_e_T)); + +} + + +AMREX_INLINE +void actual_rhs_init () { + + init_tabular(); + +} + + +#endif diff --git a/networks/He-C-Fe-group-simple/inputs.burn_cell.VODE b/networks/He-C-Fe-group-simple/inputs.burn_cell.VODE new file mode 100644 index 000000000..98dc0cc86 --- /dev/null +++ b/networks/He-C-Fe-group-simple/inputs.burn_cell.VODE @@ -0,0 +1,56 @@ +unit_test.run_prefix = "react_pynucastro_" + +unit_test.small_temp = 1e5 +unit_test.small_dens = 1e5 + +integrator.burner_verbose = 0 + +# Set which jacobian to use +# 1 = analytic jacobian +# 2 = numerical jacobian +integrator.jacobian = 1 + +integrator.renormalize_abundances = 0 + +integrator.rtol_spec = 1.0e-6 +integrator.rtol_enuc = 1.0e-6 +integrator.atol_spec = 1.0e-6 +integrator.atol_enuc = 1.0e-6 + + +unit_test.tmax = 1.0 +unit_test.nsteps = 1000 + +unit_test.density = 1.0e7 +unit_test.temperature = 1.0e8 + +unit_test.X1 = 1.0 +unit_test.X2 = 0.0 +unit_test.X3 = 0.0 +unit_test.X4 = 0.0 +unit_test.X5 = 0.0 +unit_test.X6 = 0.0 +unit_test.X7 = 0.0 +unit_test.X8 = 0.0 +unit_test.X9 = 0.0 +unit_test.X10 = 0.0 +unit_test.X11 = 0.0 +unit_test.X12 = 0.0 +unit_test.X13 = 0.0 +unit_test.X14 = 0.0 +unit_test.X15 = 0.0 +unit_test.X16 = 0.0 +unit_test.X17 = 0.0 +unit_test.X18 = 0.0 +unit_test.X19 = 0.0 +unit_test.X20 = 0.0 +unit_test.X21 = 0.0 +unit_test.X22 = 0.0 +unit_test.X23 = 0.0 +unit_test.X24 = 0.0 +unit_test.X25 = 0.0 +unit_test.X26 = 0.0 +unit_test.X27 = 0.0 +unit_test.X28 = 0.0 +unit_test.X29 = 0.0 +unit_test.X30 = 0.0 diff --git a/networks/He-C-Fe-group-simple/n-p_betadecay.dat b/networks/He-C-Fe-group-simple/n-p_betadecay.dat new file mode 100644 index 000000000..31ddea3b8 --- /dev/null +++ b/networks/He-C-Fe-group-simple/n-p_betadecay.dat @@ -0,0 +1,148 @@ +!n -> p, beta-decay +!Q=-1.2933 MeV +! +!Log(rhoY) Log(temp) mu dQ VS Log(beta-decay-rate) Log(nu-energy-loss) Log(gamma-energy) +!Log(g/cm^3) Log(K) erg erg erg Log(1/s) Log(erg/s) Log(erg/s) +1.000000 7.000000 -4.806530e-09 0.00 0.00 -2.959000 -9.072290e+00 -100.00 +1.000000 8.000000 -9.292624e-08 0.00 0.00 -2.959000 -9.072290e+00 -100.00 +1.000000 8.301030 -2.146917e-07 0.00 0.00 -2.959000 -9.072290e+00 -100.00 +1.000000 8.602060 -4.902661e-07 0.00 0.00 -2.959000 -9.072290e+00 -100.00 +1.000000 8.845098 -8.058948e-07 0.00 0.00 -2.958959 -9.072290e+00 -100.00 +1.000000 9.000000 -8.187123e-07 0.00 0.00 -2.957841 -9.067290e+00 -100.00 +1.000000 9.176091 -8.187123e-07 0.00 0.00 -2.941107 -8.997290e+00 -100.00 +1.000000 9.301030 -8.187123e-07 0.00 0.00 -2.874417 -8.765290e+00 -100.00 +1.000000 9.477121 -8.187123e-07 0.00 0.00 -2.540055 -8.086290e+00 -100.00 +1.000000 9.698970 -8.187123e-07 0.00 0.00 -1.720786 -7.027290e+00 -100.00 +1.000000 10.000000 -8.187123e-07 0.00 0.00 -0.414110 -5.490290e+00 -100.00 +1.000000 10.477121 -8.187123e-07 0.00 0.00 1.802004 -2.852290e+00 -100.00 +1.000000 11.000000 -8.187123e-07 0.00 0.00 4.347000 1.987104e-01 -100.00 +2.000000 7.000000 -1.602177e-09 0.00 0.00 -2.959000 -9.072290e+00 -100.00 +2.000000 8.000000 -6.088271e-08 0.00 0.00 -2.959000 -9.072290e+00 -100.00 +2.000000 8.301030 -1.522068e-07 0.00 0.00 -2.959000 -9.072290e+00 -100.00 +2.000000 8.602060 -3.636941e-07 0.00 0.00 -2.959000 -9.072290e+00 -100.00 +2.000000 8.845098 -7.145708e-07 0.00 0.00 -2.958984 -9.072290e+00 -100.00 +2.000000 9.000000 -8.107014e-07 0.00 0.00 -2.957898 -9.067290e+00 -100.00 +2.000000 9.176091 -8.187123e-07 0.00 0.00 -2.941192 -8.997290e+00 -100.00 +2.000000 9.301030 -8.187123e-07 0.00 0.00 -2.874417 -8.765290e+00 -100.00 +2.000000 9.477121 -8.187123e-07 0.00 0.00 -2.540055 -8.086290e+00 -100.00 +2.000000 9.698970 -8.187123e-07 0.00 0.00 -1.720786 -7.027290e+00 -100.00 +2.000000 10.000000 -8.187123e-07 0.00 0.00 -0.414110 -5.490290e+00 -100.00 +2.000000 10.477121 -8.187123e-07 0.00 0.00 1.802004 -2.852290e+00 -100.00 +2.000000 11.000000 -8.187123e-07 0.00 0.00 4.347000 1.987104e-01 -100.00 +3.000000 7.000000 3.204353e-09 0.00 0.00 -2.959000 -9.072290e+00 -100.00 +3.000000 8.000000 -2.883918e-08 0.00 0.00 -2.959000 -9.072290e+00 -100.00 +3.000000 8.301030 -8.811971e-08 0.00 0.00 -2.959000 -9.072290e+00 -100.00 +3.000000 8.602060 -2.355200e-07 0.00 0.00 -2.959000 -9.072290e+00 -100.00 +3.000000 8.845098 -5.030835e-07 0.00 0.00 -2.958998 -9.072290e+00 -100.00 +3.000000 9.000000 -7.450121e-07 0.00 0.00 -2.958314 -9.069290e+00 -100.00 +3.000000 9.176091 -8.107014e-07 0.00 0.00 -2.941776 -9.000290e+00 -100.00 +3.000000 9.301030 -8.171101e-07 0.00 0.00 -2.874975 -8.767290e+00 -100.00 +3.000000 9.477121 -8.187123e-07 0.00 0.00 -2.540055 -8.087290e+00 -100.00 +3.000000 9.698970 -8.187123e-07 0.00 0.00 -1.721736 -7.027290e+00 -100.00 +3.000000 10.000000 -8.187123e-07 0.00 0.00 -0.414110 -5.490290e+00 -100.00 +3.000000 10.477121 -8.187123e-07 0.00 0.00 1.802004 -2.852290e+00 -100.00 +3.000000 11.000000 -8.187123e-07 0.00 0.00 4.347000 1.987104e-01 -100.00 +4.000000 7.000000 1.922612e-08 0.00 0.00 -2.961000 -9.076290e+00 -100.00 +4.000000 8.000000 8.010883e-09 0.00 0.00 -2.961000 -9.075290e+00 -100.00 +4.000000 8.301030 -2.082830e-08 0.00 0.00 -2.961000 -9.075290e+00 -100.00 +4.000000 8.602060 -1.073458e-07 0.00 0.00 -2.961000 -9.075290e+00 -100.00 +4.000000 8.845098 -2.787787e-07 0.00 0.00 -2.960000 -9.074290e+00 -100.00 +4.000000 9.000000 -4.838573e-07 0.00 0.00 -2.959896 -9.073290e+00 -100.00 +4.000000 9.176091 -7.434100e-07 0.00 0.00 -2.947722 -9.020290e+00 -100.00 +4.000000 9.301030 -7.962818e-07 0.00 0.00 -2.881381 -8.783290e+00 -100.00 +4.000000 9.477121 -8.123036e-07 0.00 0.00 -2.544233 -8.091290e+00 -100.00 +4.000000 9.698970 -8.171101e-07 0.00 0.00 -1.721736 -7.028290e+00 -100.00 +4.000000 10.000000 -8.187123e-07 0.00 0.00 -0.414110 -5.491290e+00 -100.00 +4.000000 10.477121 -8.187123e-07 0.00 0.00 1.802004 -2.852290e+00 -100.00 +4.000000 11.000000 -8.187123e-07 0.00 0.00 4.347000 1.987104e-01 -100.00 +5.000000 7.000000 8.491536e-08 0.00 0.00 -2.980000 -9.105290e+00 -100.00 +5.000000 8.000000 8.331318e-08 0.00 0.00 -2.979000 -9.104290e+00 -100.00 +5.000000 8.301030 7.530230e-08 0.00 0.00 -2.979000 -9.103290e+00 -100.00 +5.000000 8.602060 4.165659e-08 0.00 0.00 -2.978000 -9.100290e+00 -100.00 +5.000000 8.845098 -4.165659e-08 0.00 0.00 -2.975000 -9.096290e+00 -100.00 +5.000000 9.000000 -1.570133e-07 0.00 0.00 -2.972990 -9.092290e+00 -100.00 +5.000000 9.176091 -3.941355e-07 0.00 0.00 -2.967462 -9.076290e+00 -100.00 +5.000000 9.301030 -6.136337e-07 0.00 0.00 -2.925218 -8.906290e+00 -100.00 +5.000000 9.477121 -7.626361e-07 0.00 0.00 -2.577269 -8.139290e+00 -100.00 +5.000000 9.698970 -8.042927e-07 0.00 0.00 -1.729383 -7.036290e+00 -100.00 +5.000000 10.000000 -8.155079e-07 0.00 0.00 -0.415108 -5.491290e+00 -100.00 +5.000000 10.477121 -8.187123e-07 0.00 0.00 1.802004 -2.852290e+00 -100.00 +5.000000 11.000000 -8.187123e-07 0.00 0.00 4.347000 1.987104e-01 -100.00 +6.000000 7.000000 3.444680e-07 0.00 0.00 -3.140000 -9.345290e+00 -100.00 +6.000000 8.000000 3.428658e-07 0.00 0.00 -3.140000 -9.343290e+00 -100.00 +6.000000 8.301030 3.412636e-07 0.00 0.00 -3.138000 -9.340290e+00 -100.00 +6.000000 8.602060 3.316506e-07 0.00 0.00 -3.131000 -9.325290e+00 -100.00 +6.000000 8.845098 3.028114e-07 0.00 0.00 -3.116000 -9.295290e+00 -100.00 +6.000000 9.000000 2.579504e-07 0.00 0.00 -3.097999 -9.262290e+00 -100.00 +6.000000 9.176091 1.490024e-07 0.00 0.00 -3.069766 -9.215290e+00 -100.00 +6.000000 9.301030 1.602177e-09 0.00 0.00 -3.041782 -9.153290e+00 -100.00 +6.000000 9.477121 -3.396614e-07 0.00 0.00 -2.813017 -8.512290e+00 -100.00 +6.000000 9.698970 -6.729142e-07 0.00 0.00 -1.806664 -7.116290e+00 -100.00 +6.000000 10.000000 -7.866687e-07 0.00 0.00 -0.423096 -5.500290e+00 -100.00 +6.000000 10.477121 -8.155079e-07 0.00 0.00 1.801004 -2.852290e+00 -100.00 +6.000000 11.000000 -8.187123e-07 0.00 0.00 4.347000 1.987104e-01 -100.00 +7.000000 7.000000 1.140750e-06 0.00 0.00 -5.499000 -1.257129e+01 -100.00 +7.000000 8.000000 1.139148e-06 0.00 0.00 -5.442000 -1.246129e+01 -100.00 +7.000000 8.301030 1.139148e-06 0.00 0.00 -5.306000 -1.221829e+01 -100.00 +7.000000 8.602060 1.134341e-06 0.00 0.00 -4.989000 -1.170729e+01 -100.00 +7.000000 8.845098 1.123126e-06 0.00 0.00 -4.592000 -1.112229e+01 -100.00 +7.000000 9.000000 1.103900e-06 0.00 0.00 -4.297000 -1.071129e+01 -100.00 +7.000000 9.176091 1.060641e-06 0.00 0.00 -3.954978 -1.025629e+01 -100.00 +7.000000 9.301030 9.965539e-07 0.00 0.00 -3.726186 -9.962290e+00 -100.00 +7.000000 9.477121 8.171101e-07 0.00 0.00 -3.408689 -9.420290e+00 -100.00 +7.000000 9.698970 2.996070e-07 0.00 0.00 -2.366458 -7.714290e+00 -100.00 +7.000000 10.000000 -5.046856e-07 0.00 0.00 -0.508967 -5.587290e+00 -100.00 +7.000000 10.477121 -7.850666e-07 0.00 0.00 1.798004 -2.855290e+00 -100.00 +7.000000 11.000000 -8.155079e-07 0.00 0.00 4.347000 1.987104e-01 -100.00 +8.000000 7.000000 3.101814e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +8.000000 8.000000 3.101814e-06 0.00 0.00 -65.570000 -7.295929e+01 -100.00 +8.000000 8.301030 3.100212e-06 0.00 0.00 -35.616000 -4.271029e+01 -100.00 +8.000000 8.602060 3.098610e-06 0.00 0.00 -20.209000 -2.701829e+01 -100.00 +8.000000 8.845098 3.093803e-06 0.00 0.00 -13.299000 -1.988929e+01 -100.00 +8.000000 9.000000 3.085792e-06 0.00 0.00 -10.394000 -1.685929e+01 -100.00 +8.000000 9.176091 3.064964e-06 0.00 0.00 -8.019984 -1.436829e+01 -100.00 +8.000000 9.301030 3.036125e-06 0.00 0.00 -6.772438 -1.305429e+01 -100.00 +8.000000 9.477121 2.954414e-06 0.00 0.00 -5.436532 -1.153729e+01 -100.00 +8.000000 9.698970 2.693259e-06 0.00 0.00 -3.791028 -9.205290e+00 -100.00 +8.000000 10.000000 1.573337e-06 0.00 0.00 -1.150873 -6.234290e+00 -100.00 +8.000000 10.477121 -4.838573e-07 0.00 0.00 1.768005 -2.886290e+00 -100.00 +8.000000 11.000000 -7.882709e-07 0.00 0.00 4.346000 1.977104e-01 -100.00 +9.000000 7.000000 7.480563e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +9.000000 8.000000 7.480563e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +9.000000 8.301030 7.480563e-06 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +9.000000 8.602060 7.480563e-06 0.00 0.00 -54.663000 -6.147129e+01 -100.00 +9.000000 8.845098 7.477358e-06 0.00 0.00 -33.000000 -3.959029e+01 -100.00 +9.000000 9.000000 7.474154e-06 0.00 0.00 -24.198000 -3.066429e+01 -100.00 +9.000000 9.176091 7.464541e-06 0.00 0.00 -17.245984 -2.359429e+01 -100.00 +9.000000 9.301030 7.450121e-06 0.00 0.00 -13.715440 -1.999829e+01 -100.00 +9.000000 9.477121 7.413271e-06 0.00 0.00 -10.109646 -1.621129e+01 -100.00 +9.000000 9.698970 7.291506e-06 0.00 0.00 -6.677964 -1.209729e+01 -100.00 +9.000000 10.000000 6.724335e-06 0.00 0.00 -2.765936 -7.852290e+00 -100.00 +9.000000 10.477121 2.340780e-06 0.00 0.00 1.478006 -3.179290e+00 -100.00 +9.000000 11.000000 -5.191052e-07 0.00 0.00 4.338000 1.897104e-01 -100.00 +10.000000 7.000000 1.699429e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 8.000000 1.699429e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 8.301030 1.699429e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 8.602060 1.699429e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +10.000000 8.845098 1.699269e-05 0.00 0.00 -75.759000 -8.234929e+01 -100.00 +10.000000 9.000000 1.699108e-05 0.00 0.00 -54.136000 -6.060229e+01 -100.00 +10.000000 9.176091 1.698628e-05 0.00 0.00 -37.214984 -4.356329e+01 -100.00 +10.000000 9.301030 1.697987e-05 0.00 0.00 -28.703440 -3.498629e+01 -100.00 +10.000000 9.477121 1.696224e-05 0.00 0.00 -20.122703 -2.622429e+01 -100.00 +10.000000 9.698970 1.690617e-05 0.00 0.00 -12.726964 -1.814629e+01 -100.00 +10.000000 10.000000 1.664181e-05 0.00 0.00 -5.885901 -1.097129e+01 -100.00 +10.000000 10.477121 1.386203e-05 0.00 0.00 0.277010 -4.383290e+00 -100.00 +10.000000 11.000000 2.164541e-06 0.00 0.00 4.255000 1.057104e-01 -100.00 +11.000000 7.000000 3.752778e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 8.000000 3.752778e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 8.301030 3.752778e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 8.602060 3.752778e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 8.845098 3.752618e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 9.000000 3.752618e-05 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +11.000000 9.176091 3.752298e-05 0.00 0.00 -80.281984 -8.663029e+01 -100.00 +11.000000 9.301030 3.752137e-05 0.00 0.00 -61.008440 -6.729129e+01 -100.00 +11.000000 9.477121 3.751176e-05 0.00 0.00 -41.669646 -4.777129e+01 -100.00 +11.000000 9.698970 3.748613e-05 0.00 0.00 -25.673964 -3.109329e+01 -100.00 +11.000000 10.000000 3.736436e-05 0.00 0.00 -12.403901 -1.748929e+01 -100.00 +11.000000 10.477121 3.605538e-05 0.00 0.00 -2.049990 -6.710290e+00 -100.00 +11.000000 11.000000 2.244810e-05 0.00 0.00 3.625000 -5.272896e-01 -100.00 diff --git a/networks/He-C-Fe-group-simple/neutron_approximation.ipynb b/networks/He-C-Fe-group-simple/neutron_approximation.ipynb index 9276d2ea8..d3eed8640 100644 --- a/networks/He-C-Fe-group-simple/neutron_approximation.ipynb +++ b/networks/He-C-Fe-group-simple/neutron_approximation.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 20, "id": "32a423ae-1c45-48f9-8890-886e7947eff2", "metadata": {}, "outputs": [], @@ -49,7 +49,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 21, "id": "d338da52-327c-4ab1-ab6b-40da8430ac6d", "metadata": {}, "outputs": [], @@ -60,10 +60,29 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 22, "id": "097e87ee-561b-4737-8a71-36989ba312b4", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rate c12(c12,n)mg23 not found\n" + ] + }, + { + "ename": "AttributeError", + "evalue": "'NoneType' object has no attribute 'modify_products'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[22], line 10\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m r, mp \u001b[38;5;129;01min\u001b[39;00m other_rates:\n\u001b[1;32m 9\u001b[0m _r \u001b[38;5;241m=\u001b[39m reaclib_lib\u001b[38;5;241m.\u001b[39mget_rate_by_name(r)\n\u001b[0;32m---> 10\u001b[0m \u001b[43m_r\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodify_products\u001b[49m(mp)\n\u001b[1;32m 11\u001b[0m core_lib\u001b[38;5;241m.\u001b[39madd_rate(_r)\n", + "\u001b[0;31mAttributeError\u001b[0m: 'NoneType' object has no attribute 'modify_products'" + ] + } + ], "source": [ "# in this list, we have the reactants, the actual reactants,\n", "# and modified products that we will use instead\n", @@ -80,7 +99,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 23, "id": "f062fc6c-1e9f-486f-a4f1-535ada0f2a57", "metadata": {}, "outputs": [ @@ -390,13 +409,11 @@ "cell_type": "code", "execution_count": 15, "id": "147e433a-a0d4-49ff-bde4-cfea39ea6233", - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNQAAAKrCAYAAAA57NCnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddZiU5f7H8ffEdics7C7dLSACii1itz+7O496VDz2MY96jt2FgR1YCLYC0t0N29059ftjZp6dYWeXXRrm87ouruvJ+7ln9a/P9b3vr8nlcrkQERERERERERGRNjHv7QmIiIiIiIiIiIjsTxSoiYiIiIiIiIiItIMCNRERERERERERkXZQoCYiIiIiIiIiItIOCtRERERERERERETaQYGaiIiIiIiIiIhIOyhQExERERERERERaQcFaiIiIiIiIiIiIu0Q1IGay+WisrISl8u1t6ciIiIiIiIiIiL7iaAO1KqqqoiLi6OqqmpvT0VERERERERERPYTQR2oiYiIiIiIiIiItJcCNRERERERERERkXZQoCYiIiIiIiIiItIOCtRERERERERERETaQYGaiIiIiIiIiIhIOyhQExERERERERERaQcFaiIiIiIiIiIiIu2gQE1ERERERERERKQdFKiJiIiIiIiIiIi0gwI1ERERERERERGRdlCgJiIiIiIiIiIi0g4K1ERERERERERERNpBgZqIiIiIiIiIiEg7KFATERERERERERFpBwVqIiIiIiIiIiIi7aBATUREREREREREpB0UqImIiIiIiIiIiLSDAjUREREREREREZF2UKAmIiIiIiIiIiLSDgrURERERERERERE2kGBmoiIiIiIiIiISDsoUBMREREREREREWkHBWoiIiIiIiIiIiLtoEBNRERERERERESkHRSoiYiIiIiIiIiItIMCNRERERERERERkXZQoCYiIiIiIiIiItIOCtRERERERERERETaQYGaiIiIiIiIiIhIOyhQExERERERERERaQcFaiIiIiIiIiIiIu2gQE1ERERERERERKQdFKiJiIiIiIiIiIi0gwI1ERERERERERGRdlCgJiIiIiIiIiIi0g4K1ERERERERERERNrBurcnICIiIiIiIiKyL3G5XNgcLhwuFyYgxGLGYjbt7WnJPkSBmoiIiIiIiIgEvYp6GxtLaimuaaSktpEGu9O4ZzZBfEQISZGhdIoNJzM+ArMCtqCmQE1EREREREREglZ2RR0r86vIq2po8RmnC0prbZTW2lhXXENEiJneydH07xBDqFW7aQUjBWoiIiIiIiIiEnTqbQ7mZJWzubS23e/W2ZwsyatkXXENo7smkB4XsVvmKPsuxagiIiIiIiIiElSKqhuYsiJ/h8I0X7U2B7+sK2bu1jJcLtcum5/s+xSoiYiIiIiIiEjQKKhqYPraIup99kjbWasKq5m5uVShWhBRoCYiIiIiIiIiQaG8zsYv64uwO3d98LWhpJb52RW7fFzZNylQExEREREREZEDntPlYsamUmyO3VdFtrKgirzK+t02vuw71JRARERERERERA54K/KrKKlt5PxhnSmpbQRgWV4VuZX1JEeFMqxTHCYT5FTUs6Kgaoe/M2tzKacM6EiIRTVMBzIFaiIiIiIiIiJyQGt0OFmaVwlAdaODaWuKjHtmEwxJi+XXDcU4dsFS0OpGB2uLqhnQMXanx5J9l+JSERERERERETmgbSypMfZNiwqxcHyfFA7rlkiYxUxKVBh2p4sjeiRxbK8UEiJCdvp7a4pq1KDgAKcKNRERERERERE5oK0tqjGOv1yeR4PdSc+kKIZ1jqOguoH4iBC+X1VAVKiF0V0S+XFNIQDj+6SQEhWG0yccW5BdwZqi6la/V9VgJ6+qgU6x4bvxV8nedMBUqD3xxBOYTCZuvfXWvT0VEREREREREdlH1NsclNXZjPMGuxOATWW1JEaG0GB3UljdgN3poqLeTqjF5Pf+guxyJi/KMf5tL0zzyldzggPaAVGhNm/ePF577TUGDx68t6ciIiIiIiIiIvsQbwMCAKvZhMPpwgV0jA6jssFOcU0Dg9NiAAi3mmlrE1Cr2cTw9DjS4yKwmE3kVtQzJ6vM6CJaUmvb7hiy/9rvK9Sqq6u54IILeOONN0hISNjb0xERERERERGRfUipT7AVG27lxP4dGN8nhf4dYliUU0Gjw8X64lqO75PKUT2TmZ9V3qZxx3ZNJNRi5puV+Xy5LA+zCUZlNuUSpT5Bnhx49vsKtRtuuIETTzyRY445hkceeaTVZxsaGmhoaDDOKysr98AMRURERERERGRvaXQ4jePSWhvfrSxo9sz6khrWl9Q0uw5wUHocQzvFGeefLc3FYjaRmRDBJ4tzjIq0RbmVnDqgIzM3leICGny+Kwee/TpQ+/jjj1m4cCHz5s1r0/OPP/44Dz300G6fl4iIiIiIiIjsG5w72WxzYXYFqwr9902LCw/BbDJx5qBOzZ6PCLFQa3PgcoHL5cJkMjV7RvZ/+22glpWVxS233MJPP/1EeHjbumZMnDiR2267zTivrKwkIyNjN85SRERERERERPamEPOuD7RqGu04XS4+XZqLo4XEzmo2KUw7gO23gdqCBQsoLCzkoIMOMq45HA7+/PNPXnzxRRoaGrBYLH7vhIWFERYWthdmKyIiIiIiIiJ7Q2z4ro8+6u1OssrrGJUZz4LsChrsTsKtZlKjw9haXgdA3G74ruw79tv/ukcffTTLli3zu3bZZZfRt29f7rrrrmZhmoiIiIiIiIgEn6So0N0y7oxNpQztFMeJ/ToQZjVTb3OwubTWCNR213dl37DfBmoxMTEMHDjQ71pUVBRJSUnNrouIiIiIiIhIcIoNsxJmMe9Qk4Bpa4pavGd3upifXc787MBdQZMVqB3QzHt7AiIiIiIiIiIiu4vJZKJ7UuQe/abVbKJLwp79puxZ+22FWiC///773p6CiIiIiIiIiOxj+qRGN+vUuTt1T4ok1KIapgOZ/uuKiIiIiIiIyAEtLjyEjPiIPfItswn6p8bskW/J3qNATUREREREREQOeIdkJhBqMe327wxJiyMuImS3f0f2LgVqIiIiIiIiInLAiwy1cHBGwm79RlJkCAM7qjotGChQExEREREREZGg0CM5arcFXtGhFo7smYzZvPur4GTvU6AmIiIiIiIiIkHjoM5xDNrFoVpMmBXnzGXM/OgvXC7XLh1b9k0mVxD/l66srCQuLo6KigpiY2P39nREREREREREZA/ZXFrL7K1lNNidOzVO96RINn74Gx/c/wkAqZnJXHT/2Rx1wWGEhmkvtQOVAjUFaiIiIiIiIiJBqc7mYH5WORtLasDUvqWasWFWauas4v3rXiMkLISG2ga/+4kd4znlhuM5+drjiE3SvmoHGgVqCtREREREREREgtrTN7xJnh26HT+cmIzkFp+zmk10jA6le1wYXVNjOSH8POw2R6tjh0eGcf1zlzHhiqN3w8xlb7Hu7QmIiIiIiIiIiOwtTqeTuV/OpqyggtXv/wqhIST26Uxy785EJ8dQlleOs76Bxz66BWujjf/rdDUNdY1ceP9ZWEOt2w3U6msbmPzoFwrUDjAK1EREREREREQkaG1cuoWyggoAug7MZO38DeTPWwclFVi7prLm1+UAhDTa+Pub+TTUNQLwwb8/JzUjmfqahlbHBzj5uvG7+VfInqYunyIiIiIiIiIStOZPW2IcJ3SIM46TOiaQ3DnROC/KLqUkv7zpRRcUZZVsd/wrn7iAc/556q6csuwDFKiJiIiIiIiISNBaPmOVcWw2N8UkHbulktw5yTgvzilly4osv3fbsi39rCnzcNhbXxYq+x8FaiIiIiIiIiISlJxOJytnrQEgLjmGytIq417n3p1ISW8K1Ao2F7Jp2da2DWyCmIRoAFb+vZZP/jNlV09d9jIFaiIiIiIiIiISlLLW5FJVVgNA/zF9KM1rWtLZfXAX0nunGedbVmWzZWV2m8ZNyUjike/uxmw2AfDeg5+ybuHGXT5/2XsUqImIiIiIiIhIUPJWpwEMGNPXr0Kt9/DuZPbrbJyvW7ARW4OtxbEi4yKN46KtJWxZlcP/3X06AA67gycuep6Guu03MJD9gwI1EREREREREQlKK2b6Bmq9qa/2BF4mSElPIqlTIpExEQDkrs8POMbhZ4/mXx/dypSySYw7e7Rx/ZVb3+H8e8+k10HdANi6Koe3Jk7evT9I9hgFaiIiIiIiIiISlFb+7Q7UrCEWug3JNJoHhIaFAGAymYwqtdL8cs78x4kcesYoDj97jDHGgLF9OeLcsQDcNelGQsKsANRV1/PGnR9w13s3ERruHu+r539g4S/L9vCvlN1BgZqIiIiIiIiIBJ2K4kqy1uQC0Gt4d/I2FBr3ImOblm9m+Cz7PObCw3ng8zs4965TjWur5qw1jkPDQ7ngvrOM8+9enU5a9w5c+cSFxrWnL3uJ2qq63fSrZE9RoCYiIiIiIiIiQWfl301BWP/RfVi/aJNxHpccYxxn9k03jreucjcl6DYo06g6Wz1nvd+4F9xzJjGJ7g6fDruDl255h1NvPJ6DjhkEQFF2CZMf/WK3/S7ZMxSoiYiIiIiIiEjQ8WtIMLYvRdmlxnlskm+g1lShtnV1DgDWECu9R/QAIG9jAWWFFX5jX/rwucbx9Hd/w253cOur1xDiWUr6xf++I3td3m75XbJnKFATERERERERkaCzduFG47jfIb2oKqk0zqPjo4xj306f3kANoN+oXsbx6jnr/MY+5frjiYp3Lxu12xy8dvt7pHXvwDl3nGJce/W2d3f5b5I9R4GaiIiIiIiIiASdLE84FpMYTVJaApUl1ca96ISmQC2tewdCQt2NBrJWNQVqfVsJ1AAuvLdpL7Wpb/6M3W7n3LtPIyU9CYA53y9kzvcLdvnvkj1DgZqIiIiIiIiIBJW66jqKskoAyOjbGZPJRFVZU6AW67OHmsVqoXOvNACy1+Zit9lhm0Btnc/+a15n3HoikTERANga7Lw9cTIRUeFc/dRFxjOv3DaJxgbbbvmNsnspUBMRERERERGRoOLt7gmQ2acTADXltca1+ORYv+e7Dc4Ez1LNDUu2AJCSnkR4ZBgAeRvym33DbDZzjk830Ckv/YjT6eTwc8YwaFw/AHLW5fHVcz/s4l8ne4ICNREREREREREJKlmrmwK1DE/TgdqqOuNaXGqc3/MDxvQ1jlfMXA2AyWQirUcHAPI3FeKwO5p957y7Tyc8yh26NdbbePf+jzGZTNzw3OWYzSYAPnzkc4pzS5u9K/s2BWoiIiIiIiIiElSyfJoLZPZLB6Cupt64ltgx3u/5AWP7GMfLPYEaQKeeHcFTuVaYVdzsO2azmbNuO9k4//LZ73E6nfQY0pUTrznO/d3qet6a+OEu+mWypyhQExEREREREZGgsnV1tnGc0de95LOxttG4ltQpwe/5boMyjf3QVsxcg8vlAqBzj47GM3kbCgJ+66IHziYsIhSAhtpGPnz0SwAuffhcYhKjAfj5/T9Z59N1VPZ9CtREREREREREJKh4l3yGhFrp2DUVgIb6pkAt2dOJ08tisdBvdG8ASvPKyN9cCECaT6CWs775Pmp4qtROvWmCcf7ZU1NwOp3EJsVw8YPnGNc/fPSLXfTrZE9QoCYiIiIiIiIiQcNhd5CzLg+Azr3SsFgtANgb7MYzsZ7KMV8Dxvgs+5zhXvbpXfJJC40JvC575P8ICQsBzxLPz57+BoATrjzaqIab+dVcNi3futO/T/YMBWoiIiIiIiIiEjQKtxZja3SHZ97lnnj2QQPA5K4q29bAQ30bE6wBoJOnKQFAbiuBmtVq5aRrjjHOP3r8KwBCw0M5546mTqCTH/tyR3+W7GEK1EREREREREQkaJQVlBvHyZ2blnY6HU4ALJbAUUnfUb0we+55O32mZCRhDXFXuLW05NPryv9chDXUCkBNRS1fPvc9ACdcfQzxKbEA/PHJLLLW5LQ6juwbFKiJiIiIiIiISNAoL6w0juNT4wBwOp1GowFLiDXgexFR4fQY2hWAzSuyqCqrxmKxkNolBYCirJJWvxsaGsLxlx1pnL//8GcAhEeGcaanE6jL5eKjJ77ayV8oe4ICNREREREREREJGuWFFcaxN1CrLq8xroWEBg7UAAaObVr2uXKWe9mnd7+12so6nE5nq9++7n+XGnu2VZfV8N1rPwFwyvXjiUmIAuCXD/4ib2PgjqGy71CgJiIiIiIiIiJBo8wvUHMvtSzObqouC40IbfHdQeP6G8dzflgEQFS8OwhzuVzUVta1+u3Q8FCOuWiccf7ufR8BEBkTwem3nAiepaefPPl1u3+X7FkK1EREREREREQkaASqUCvOLTWuhUW2HKgNP3awUcH29zfzcLlcRMdHGvd9K91acuMLl2OxuuOYiuIqpk/6DYDTbz6ByNgIAKa9+xuFWcU78OtkT1GgJiIiIiIiIiJBo7yoaQ+1BE+gVprX1KggPDKsxXcjYyIYevQgAIpzSlm7YCPRcVHG/bYEauGR4Rx+zhjj/M2JkwGIjo/itBsngKfj6JfPft/OXyZ7kgI1EREREREREQka5QGWfJYXNF3zVom1ZOypI43jv6fMM5Z8AtSU17ZpDje/fJXRMbQsv5zfPpkJwBm3nkhIWAgAP733B40Ntjb+KtnTFKiJiIiIiIiISNDwBmphEaGER4UDUFlSZdyP8qk4C+SQk0cYx7O+mUd0fPsq1ACiYiMZe/rBxvnrd7wHQFxyLOPOOsSY08yv5rbxV8mepkBNRERERERERIJGhWfJZ1xKLCaTyX3NJ1DzdttsSVJaAv0O6QXApmVbcdjtxr22BmoAt71+DSaz+/vFOaVsXLoZgAlXHm0888ObP7d5PNmzFKiJiIiIiIiISNBorHcvowzz2SutqrTaOI5JjNnuGGNOaVr2mb0uzzhu65JPgOj4aCOYw2cvtcHj+pPeOw2Axb8uJ2d9XotjyN6jQE1EREREREREgobD7gDAYmmKRHyDsNik6O2OMea0puWa6xdtMo7rquvbNZdLH/4/43jRz0txOp2YTCYmXNFUpTb1zV/aNabsGQrURERERERERCRoOB1OAKMpAEBtZZ1xHO/p/NmazL6djSqyratyjOu+Y7bFsKMGERUfCZ7Ont++PA2AYy85AmuIBYDpk37HbrO3Oo7seQrURERERERERCRoBArUfAMrb6OC7RlzqrtKzeV0GdfaG6gBHPV/hxrHXzz3PQAJqXGM9nQTLSuo4O9vF7R7XNm9FKiJiIiIiIiISNDwBmoWa1MkYg2xGse2hsY2jePtxulrRwK1Sx9pWvaZt6GAwq1FAJxw5THG9alqTrDPUaAmIiIiIiIiIkHB5XLh9FSU+YZfllCLcdxQ27ZArfeIHnQblOl3zbIDgVpsYgxdB2QY52/d425OcNAxg+jYNQWA+dOWGEGb7BsUqImIiIiIiIhIUHA6ncaxb6AW4lOh1ljXtkDNZDL5VZEBmK07FrOcf88ZxvGsKfPcY5nNjL/sKPAEgX9+PnuHxpbdQ4GaiIiIiIiIiAQF73JPtgnUrKE+gVp92wI1gKMvPMxoHgDg8gns2uPI8w4lLCIUgPqaBv78/G8Axp092nhm1jfzdmhs2T0UqImIiIiIiIhIUHDYmwIv3+WZ1rCmQK2h3tbm8WISouk1vIdxvnHJlh2e2yEnjzCOP3z0C/B0E83o0wmAFTNWU1FcucPjy66lQE1EREREREREgkKIb3Dms7QzxKdCzdaOCjWAgWP7GMfLZ67e4bld9eQFxvHGpVuoqawFYPQp7m6fTqeL2d+p2+e+QoGaiIiIiIiIiAQFi8VCZGwEANXltcb1kLAQ47ixHRVqACkZycZx9to8stfm7tDcOnRJNZoQ4IJJ938MwNjTRhrPePdXk71PgZqIiIiIiIiIBI3o+CgAqsuqjWuhOxGobbsMc+qbv+zw3E67+QTj+OcP/gKg76heJHSIA2DB9CXU1zbs8Piy6yhQExEREREREZGgYQRqPhVqoZ6GAOxIoFbkH6hNn/Q7jQ3tG8Pr9JtPwGJ1NzmoKq1m6Z8rMJvNHHKSe3+1hrpGFv60dIfGll1LgZqIiIiIiIiIBI2o+EgAbA02o6On75JPWzvDsPJtArXyokp+mvT7Ds3NbDYz5IgBxvk792rZ575KgZqIiIiIiIiIBA1vhRpAdXkNAKHhPoFao71d45UXVjS79vETX2G3tW8cryueaGpOsPLvtTQ22hh29CDCo8IAmP3dfBwOxw6NLbuOAjURERERERERCRr+gZp72WeYz5JPe8OOBWqRsRGMGD8EgPzNRfw6ecYOza/3Qd2JT3XvmeZ0OPnsP1MIDQ9l5PFDAagormLV32t3aGzZdRSoiYiIiIiIiEjQCFShFuJXodbOJZ+F7iWf8alxXPCvM43rHz3+5Q5Xko2/7Ejj+NvXpgMw6sThxrUlv6/coXFl11GgJiIiIiIiIiJBwzdQqyp1d/r0q1Brx1JNW6PNCOXiU+MYeGg/Yw+07LV5/PnZ7B2a44X3nYnJbAKgJKeMLauyGXRYP+P+ilmrd2hc2XUUqImIiIiIiIhI0EhMSzCOC7cWAxAWEWZcsze2vaqsorjKOE5IjQXgfJ8qtcmPfYHT6Wz3HMMjw+k9oodx/tbdH5LWvQMJHdxLQVfMWqN91PYyBWoiIiIiIiIiEjQ69exoHOdtyAcgdAcr1Epyy4zj+BR32DXsqIH0H90bgM3Ls/j7m/k7NM9LHzrXOJ4/fTEmk4kBY/sCUFtZx5YV2Ts0ruwaCtREREREREREJGh09gnUcj2BWnhkU6DmsLW98it7Ta5x7A3qTCaTX5Xah498jsvlavc8R4wfSmRMBAC2Bjvzf1rCQE+gBrBippZ97k0K1EREREREREQkaCSnJ2INsQCQs94dqIVF+iz5tLc9UMtanWMcZ/TtbBwfPGEYvQ7qBsC6hZuY+8PCHZrrwMOaArRvX57GgLF9jPPlCtT2KgVqIiIiIiIiIhI0LBYLad07AJC3oQCXy0W4T6DWngq1raubll1m9msK1LatUnvtn++3aymp1wlXHWscL/trFT2HdTMaKKyYuabd48muo0BNRERERERERIJKWg93oNZQ10hJXhlhUT6BWrsq1NxLPkNCrXTsmup3b+xpBxt7qWWtzuHrF6a2e56jTx6O2eKObqpKq6ksqaLvqF4AFGwpoii7pN1jyq6hQE1EREREREREgkqnHr6NCQqIiA43zh32tnXldNgd5KzLA6BzrzQsVovffZPJxA3PX47JZALg/Yc+ozS/LOBYLTGbzWT06WScf/38VAaMaVr2qX3U9h4FaiIiIiIiIiISVHwDtZz1+UTsQIVa3qZCbI3uZZwZfTsFfKb38B5MuOIoAGqr6nj7no/aPdfDzjzEOJ759VwGHurbmEDLPvcWBWoiIiIiIiIiElQ6+XT6zF6TQ3xqnHHeWG9r0xi+DQky+6a3+Nxlj55HVFwkANPe/Y3Vc9e1a66n3jShaa7r8uhzcE/jfP3iTe0aS3YdBWoiIiIiIiIiElS6D+5iHK9dsJHQ8FBMZvfSzMb6xjaN0VKHz23Fp8RxyUPnGucv3fw2TmfblpUCxCfHEpccA4DT4WTxr8tJ6pQAwNZVOdt5W3YXBWoiIiIiIiIiElRS0pNI7pwIwJq563E4HEb3TJfTRW113XbH2Lwyyzhuacmn18nXHUfXARkArJ67np/e+6Nd8x18xADj+Ic3fyGzn7sirrKkivKiinaNJbuGAjURERERERERCTrebpm1VXVkrc41lmUCbFqyZbvvr56zHgCL1UKX/i0v+QSwhli57tnLjPO3Jn5ITUVNm+d66vXHG8erZq8l06ciTlVqe4cCNREREREREREJOv08gRqekCouOdY437C09UCtsqTKWPLZ66BuhEWEtfo8wEFHD+KwM0cBUFZQwVsTJ7d5rkOOGIA11ApAbWUdsSkxxj3fpaey5yhQExEREREREZGg09cvUFtHkmcJKJ5GBa1Z+fda43jAmD5t/ubVT11sLC399tXpzPtxUZvf7TYw0zjesLgp8FOF2t6hQE1EREREREREgk6v4d0xW9yxyLIZq6ivrjfu5W8qavXdFbPWGMf92xGodeyaytVPXWycP33FK1SWVLXp3SPOHWMcr1uwwTjeujq7zd+XXUeBmoiIiIiIiIgEFYfDwcYlW4hNci+dzF6Ty7K/Vhn3i7JLWn1/5d87FqjhaVAwYvwQAErzynj2utdxuVzbfe+k645rml9WibHnmyrU9g4FaiIiIiIiIiISNMqLKrh68O3ceui9lBcG7pBZXlTZ4vt2m501c90NCTp2TSG5U2KLzwZiMpm4/a3riUmMBuCvz2fzy4d/bfe9yOgIEtMSjHNvGFi4tZi6NnQllV1LgZqIiIiIiIiIBI0Nizdvt6qrprzlDpwbFm+moa4RdqA6zSu5UyK3vHK1cf7CjW9SuNW9zDR7bS4NdQ0B3xt+7GDjuM5niWr22rwdmofsOAVqIiIiIiIiIhI0hhwxgH6H9Gr1GW9gFojf/mmjdyxQAzj87NEcfeFh4Onc+fiFz/PwOc9wWd9buH7EXdht9mbvnHbzCcZxVVm1caxOn3ueAjURERERERERCRrWECuPfn8P3QZltviM0+GksdEW8J5voDZg7I4HagA3Pn8FKRlJACyfsZq/Pp8Nnn3R1i3c1Oz53gd1J9TTJdRhcxjXC7Na3/NNdj0FaiIiIiIiIiISVGISonli2r106tmxxWc2L89qds3hcLD41+UARMZE0G1gy6FcW0THR3HmrScFvLfq77UBr/ca1q3ZteLtNFGQXU+BmoiIiIiIiIgEncSOCTw5/T5jc38Ai7UpJtm4ZHOzd9Yv3ERlSRUAw44eiMVq2ak5/PLhX7xx1wcB762cvSbg9WMuOrzZteLc0p2ah7SfAjURERERERERCUodu6by5PR7MVvc8UhsciwAEcmxZBVVk1NRR15lPaW1jTidLuZPW2K8O2L8sJ3+/ht3vY/D7gh4b2ULFWrHXXYEmMBstZDQqxMdR/aiMSaS/Kp66myBx5Jdz+RyuVx7exJ7S2VlJXFxcVRUVBAbG7u3pyMiIiIiIiIie0FBVjGLVuSwtaoRR3QEkSlxzZ4xm6BqcyEbf17Muq9n89rfj9Kxa+pOffeVf7zLl8993+L9j7JeJblzknFe1WBnbVE1s2auJSojBUuotdk7kSEWkqNC6Z4USUZ8BGaTaafmKIEpUFOgJiIiIiIiIhKUHE4XKwuqWFVYRZ3N2eb3XE4nmYlRHNQ5jviIkJ2aw6o56/j8v98y44vZOJ3+Ec3VT13E2befQmltIwtzKsipqG/X2JEhFvp1iKZ/hxgFa7uYAjUFaiIiIiIiIiJBp7S2kRmbSimrC9zNsy3MJhjaKY4BHXc+sMrbVMCXz37Pd6/9hL3RDsC5d53GyJtOYmleJc6dSG+SIkMY2y2RBE+HUNl5CtQUqImIiIiIiIgElQ0lNczcXMquSkTSYsI4smcyIZad36q+srSK126fhA0TQ+88k6KaHQ/8fJlNcFi3JLomRu6S8YKdAjUFaiIiIiIiIiJBY32xO0zb1VKiQjm2d8ouCdUa7U6mry2kpHbXhGm+DuuWSPekqF0+brBRl08RERERERERCQp5lfXM2g1hGkBRTSN/bSplZ+uWXC4Xf2ws2S1hGsCMzaUUVjfslrGDiQI1ERERERERETng2RxO9zLP3fiNrPI6NpbU7tQYa4tqyK1sX/OB9nC5YOamUuyOtjdhkOaa91cVERERERERETnALMiuoKbRwfnDOlNS2wjAsrwqcivrA17bUXOzykiLDScy1NLud6sb7MzPLm82n5pGO4d0SQDAajZjAr5bVbDDc6xssLMot5KRGfE7PEawU6AmIiIiIiIiIge02kYHa4urAahudDBtTZHf/UDXdlSjw8XqwioOSm9/WLWyoAq70xVwPt7zPinRhFp3rqMowOrCKgalxRBubX/wJ1ryKSIiIiIiIiIHuHXF1UZHz6gQC8f3SeGwbomEeRoIBLq2c9+rweFs3+JSm8PJ+pKa7c6nW2Ikm3ZyWSmA0+Vu0CA7RhVqIiIiIiIiInLAcrlcrPMJjr5cnkeD3UnPpCiGdY5j9taygNcAxvdJISUqDKdPo4EF2RWsKapu9Zv1didZ5XV0TYxs8zy3ltdhc7hanCNAVKgFk8ldUeeVGh3KoLRYUqLCMAHVjXY2ltayqqCK7WV664pqGNgxts1zlCb7bYXaK6+8wuDBg4mNjSU2NpbRo0czderUvT0tEREREREREdmH1Noc1PgEUA1292b8m8pqSYwMafGa14LsciYvyjH+bS9M82pvJ83CqqbnW5pPt8RINpc2Vaelx4VzTK8Ucivq+Wp5Hh8tzuGPjSXEh4cQEbL9pZyVDXbqbY7tPifN7bcVaunp6TzxxBP06tULl8vFpEmTOPXUU1m0aBEDBgzY29MTERERERERkX1ASU2jcWw1m3A4XbiAjtFhVDbYA15rC6vZxPD0ONLjIrCYTeRW1DMnq8yoMiuptbVvnp4mBK3Np2tiJD+vbdpb7eDMBJbnV7GqsCnkq6y3M3NzqXEebjUzKjOBjjFh2J0uNpbWsjinwuh2WlLbSOe4iHbNVfbjQO3kk0/2O3/00Ud55ZVXmD17tgI1EREREREREQGgrK4p2IoNtzKmayI2hxOnE2ZtKQ14rS3Gdk3E6XLxzcp8XC4Y0yWBUZkJzNhU6vlu43bH8HK5XMY8W5pPfLiVBruTek/1WmyYlZgwK5tKW98HbVz3JOpsDr5YlkeY1cwxvVKwO5wsy68y/j4K1Npvvw3UfDkcDj777DNqamoYPXp0i881NDTQ0NBUQllZWbmHZigiIiIiIiIie4O3YgygtNbGdysL/O7XNDqaXfN1UHocQzvFGeefLc3FYjaRmRDBJ4tzjPEX5VZy6oCOzNxUiguwO1y4XC5Mpu135HS6MPY7CzRHgPJ6Oz/5VKeFhZiN+bckMsRCWmw4nyzOwe50YW90sDSvkiGdYo1Aze5oX/MEcduvA7Vly5YxevRo6uvriY6O5quvvqJ///4tPv/444/z0EMP7dE5ioiIiIiIiMj+a2F2hd+SSoC48BDMJhNnDurU7PmIEAu1nn3J2hKmAbTtKX8NNnelWlSohaqGwKFaZKgFu7Opqg2gqsFOVBv2V5PW7deBWp8+fVi8eDEVFRV8/vnnXHLJJfzxxx8thmoTJ07ktttuM84rKyvJyMjYgzMWERERERERkT0pxLIjcVXrahrtOF0uPl2ai6OFVprt+a7JBGYT2+3K6auywU5Vg52uiZEsy6sK+ExtowOr2Uy41WyEatGhFmp8GhHsjr9PMNhvu3wChIaG0rNnT4YPH87jjz/OkCFDeO6551p8PiwszOgK6v0nIiIiIiIiIgeuhIiQNjzVPvV2J1nldYzKjCfM6o5Wwq1mMuOb9iKLjwht83gmk2mH5jl3axmDOsbSNzWaMIt7HrFhVsZ0SSAq1F0pl1dZz4iMeKxmE1GhFganxbKhpGnftfbMU5rs1xVq23I6nX57pImIiIiIiIhIcEuK2j2B0YxNpQztFMeJ/ToQZjVTb3OwubSWreV17u9Gti8gS4oMbXdn0OyKen5eV8TgtFiGefZ5q260s7GkljpPFdqfG0sYlZnAmYPScLhcbCypZXl+U0VbUtSuDxyDwX4bqE2cOJEJEyaQmZlJVVUVkydP5vfff2fatGl7e2oiIiIiIiIiso+IDLEQFWppdfP+lkxbU9TiPbvTxfzscuZnlwe83yEmrF3fSo0JY21x6x07AymsbuTndcUt3q+3O/ljY0nAe7HhVsKt2k9tR+y3gVphYSEXX3wxeXl5xMXFMXjwYKZNm8axxx67t6cmIiIiIiIiIvsIk8lEr+QoFudW7rFvhlvNpMdFtOHJJl3iI5hrMdG4B7tu9k6O2mPfOtDst4HaW2+9tbenICIiIiIiIiL7gV7J0SzJq8S1h7KqXslRWMzt2+zfajHTMzmKlQXVbXh651lMJnooUNth+22gJiIiIiIiIiLSFpGhFnonR7OmaPeHVaEWE1unzufzr+cyeFx/Mvt1JjUjmZSMJGKTYjCZWg7a+neIYW1RDfb2tPvcQX1To7XccyeYXK49lc/ueyorK4mLi6OiokIdP0VEREREREQOYDaHk29W5FO9A3uptcdBSeHc1uP6gPfCIkLp3DuNa5+5hGFHDQr4zJqiamZvKdutc4wNs3LygA5Yzebd+p0Dmf5yIiIiIiIiInLAC7GYGds1kfYtxGyfzPgIeqTGYLYEjlsa6hrZuGQLn//32xbH6J0cRefY8N02R7MJxnZLVJi2k/TXExEREREREZGg0DE2nLHdEnfL2KnRoRzWLZHIqHAue+S8Vp8defywFu+ZTCZGpUVTvSl/l8/RBBzWLYnU6PZ1IJXmFKiJiIiIiIiISNDokRTFYd0SaWfPgFZ1jApl7gOT+e+Vr1BZWsXZd5xMj6FdAz6b0CGO8Zcf1eJYLpeLV256i+8vf56ChRt22RzNJkgqKOaFM57k909nEcQ7gO0S2kNNe6iJiIiIiIiIBJ3S2kZmbi6ltNa2w2NYTCaGdY7l539/zHev/ASANdTKydcex4CxfXjk3P8FfK/3iB7c9+ltdOya2uzeNy9P44Ub3wQgIiaC2/94lK0O2Jk+BclRoYztmsh5CRdjb7QD0H1IF/7vrtMZd9YhWNScoN0UqClQExEREREREQlKTqeLlYVVLNpYjDM0pO3vORxkxEUw579f8/ubP2MymZpVfJnNJpLTkyjcWmxcs1jNOOxOAGISorjr/ZsZdcJBxv2Vf6/h9iMewG5zN0649+N/cPg5Yyira2RhdgVZpbWYWtifLZCoUAu9kyK4q+f12BvsmM0mnNskc6mZyZxxy4lMuPJoImMi2jx2sNOSTxEREREREREJSmaziYEdY9nw3y/548532PrrUmoKAnfYtNc3UrpyK0vfmMZXpzxC7a+L+evd38CzTHNbTqfLL0zrPrgLz858hLTuHQCoKqvh3pMe5517P8LhcFBdXsOj5z1rhGln3XYyh58zBoCEiFB62hv46rRHWPbWdMpWZ2OvD1xZV51Xin1rAcm5hYxLCKXo92XYG+zGnLZVuLWYV2+fxCW9biJ7Xd4O/BWDk3VvT0BEREREREREZG+x2+ws+mkptVV1lC/eSFV5DWEJ0XQckEl8WgJ56/NpqKimcksROF1GePbWxA+JiA6nurxmu9+ISYzmiWn3ktAhnpfnP8lTl73ErCnzAJj82JesmrOOqLgII4AbdFg/rnziAr8x5v+4mNqCcpa89iO538+lOK+c2C6pdBnalcKsEuz1NqqyimgoryGhQxxlBRVYrGbunHRDm/4O5YUVrJi5mvReaTvwVww+CtREREREREREJGitmr2O2qo6ADL7p7Ni1hoayqqxF5QREhVC4aLAjQFqq+qISYre7vghoVb+8fq1JHSIByA6PooHv/wnnz39DW/dMxmnw8miX5YZz0fFRXL3+zc129ds/vTFxrHd5sDlcFKxMZ+lG5t3A60oqQLAYXfy0i3vtunv0H9MH6MiTrZPSz5FREREREREJGgtmL7EOI5NijGOkzslktwpsdV3q0qqtzv+9c9fzmFnjPK7ZjKZOOefp/LULw8Ql+K/p/shJw8nJSPZ71pjfSNL/1gJQEpGEnXVDa1+0+nZpw2gsrhqu3NM6pTAkz/dR3hk2HafFTcFaiIiIiIiIiIStJbPXG0cO332QuvYPZXk9KSdHv/T/0wxKuC2NWBsH2NPNa9fPviLf5/zDDWVtca1dQs30ejZM23oUQNpqG09UGuvktwypr7xyy4d80CnQE1EREREREREgpLdZmfN3PXg6XZZXlhh3Mvs25nUzKZKMbO17RGKNcxK14GZAORtLODV2yYFfO6TJ6ewes46ACJjmzps/vXFHG48+G7yNhUAsMIn9OvaPz1gE4Qd0XdUL+P4zbs/YMuq7F0ybjBQoCYiIiIiIiIiQWnDki3Ue6q9BoztQ1l+uXGv+9CuZPTpZJzHxG9/vzSvsIhQHvzyDiKiwwGY+tYv/P3tfL9n1sxbz3sPfgqebqOPfjeRh6fcRXR8FADZa/O4dey9bFiymZV/rzHeW/Tr8h3+vds69PSDOe2mCQA01tt48qLnsTUG7h4q/hSoiYiIiIiIiEhQWjmrKajqP7oPVWVNe6L1Ht6dzH7pxnlIeEirY3Uf3AWzxR2z1JTXMvWtX7nuf5ca9/971auUeSrg6qrrePzC53HYHQCcN/EMBh7aj9Enj+Dl+U+S0bczAKX55dx2+P0s/t29f1pkbATzpy0J8PW2MVvMDDligHE+6cFPufjhc43vrVu4iQ///cUOjx9MFKiJiIiIiIiISFDyrfwaOLYvDbWN4GkaEJsYQ2xSDHHJ7kYF9bX1LY4TmxzDc7Me5azbTzauff7Mtxx21iGMPmUEAOWFFTx7zWu4XC5eu/09ctblAdD34J5ceP9Zxntp3Tvw7F//pt8h7uWYtZV11JTXAJDRp/MO/c6UjCRemvcEUxs+4onp9xLmaT5gq7fx0o1v+XUV/ejxL/3+LhKYAjURERERERERCUorZrqDo/CoMNJ6pOJ0uLtjhkaEGs94q9SqS2uM5Zjbqiyu4se3f+WKx84nKj4SAIfdwZMXvcA/Xr+WeE8nz1lT5vH2PZP5/o2fje/e9f7NWEOsfuPFJsXwn58fYNSJB/ldj+8QS+deHf0/bgr820YcP5QOXdx7wJUXVtJtUCZmsxmr1crV/7nQeO7XyTOIT4nlogfOBsDpdPHkxS9QVx24kYK4KVATERERERERkaBTmFVMUXYJeDbn37wsy7gXFRdpHGf2baoKGzC2T4vjffrUFBx2B7e8crVxbc73C3E5nfzjjWuNa588NcU4vvzR80nvlRZwvPDIMB788p+k9266P+e7hVSVVvs9N3L8UD7Y9FKz9yOiwxl4aD8AbA02Ni7datw75frjSclwdzB1uVw8ddnL/N9dpxlVcbkbCnhr4uQWf6soUBMRERERERGRIOS7f9qAMX3YsHSLcR6fGmsc++6j1mdkz2bjhIS5q8uKskr4dfIMjjx3LB27pYInrHrmylcYc8pIjr/sSPc1p7tDZ89h3Tjl+vGtztEaYsUSYvG7VlniH6h16Z9Bhy6pxtJUr6KsYvoe3NTFc9XstX73//nODcbx4t+XU1ZYwV3v3US4Zznot69MY9OyLUhgCtREREREREREJOis2CZQKy9o6vAZk9DU0TOjX1OFWn11PWGRofiyNdiN40+e/BqHw8GNL1xhXJs3dTHlxZWcedtJfsszT7zmWGPfspZUl9ewdWUOACnpiZhMzdd3dh2YAdsEfwDlBRVGxRnA6jnr/O4PO2oQad07uE9c8MyVr9C5Zxrn3XMGeJZ+vnTLO7hcrlbnGKwUqImIiIiIiIhI0NmwZLNx3HdULyqKq4xz373SuvgEalvX5NB7eI9mY2V6nslak8vMr+Yy6oSD/JZU/u+qV/nw0S/BJ5v6/rWfcDgcrc5x07KtRqB1yEkjuGfyLc2eSc1w75PmuzQVoKqshu5DuhAS5u5OumqbQA3gxhcvN44XTFtCWWE5Z912khG0Lfl9BX9+PrvVOQYrBWoiIiIiIiIiEnSyVrkrvxLTEohJiKaypClQi0lsqlBLTk8ylkFuXZXDsZcc0Wws3+6bHz3+FS6Xi+v+d6lxbdY38/j945kAmC3uKGb9ok38+Navrc5x66ps47jLgAyOOHcs2xapvXn3B9RW1ZGxTaBWX9tASGgIvQ7qBkDu+nwqiiv9njn4+INIzXQHcu7g7zVCw0O59r+XGM+8dsck6msbWp1nMFKgJiIiIiIiIiJBpbKkivIid7iU2bcTeJZXevkGamazmQzPM/kbCzjsrFHNll5WV9TQa3h38ARl86ct5rAzDiGpU4L7AZ/KtLNuP9k4fvtfH1FV5r8nmq+s1TnGsTcw23YF5toFG7n/1CdJ657qd91hc+B0Ouk9oqmibtOyrWzr+ueaqtRmf7+AytIqRp88ghHjh4Bnb7hPnvy6xTkGKwVqIiIiIiIiIhJUstbkGsfe6rKailrjWnxKrN/zPYa6q7ycThcbFm2mQ7cUv/v5Gws5b+IZxvnkx74E4JqnLvZ7rs/BPbnisfM58ryx4An23nvg0xbnudVnnpl9O9HYaPO7721YsOT3FUx5eVqz9xvrG0nv3ck4z91Q0OyZsaeOJKmzO/hzOV08e83rmEwmrvvfZcYeb5/8Zwp5m5q/G8wUqImIiIiIiIhIUPGt/PJu5l9XVW9ci+8Q7/f8wEP7GscrZq5h9EnD/e4Xbi1m5IShRhXZ8hmrmTt1EQN83gOIT47FbDZz1ZMXGctIv2mlm6Z3npExESR1SqQsr8zv/pHnjiEiOhyAhT8tNY696qrr6dSzo3Geuz4v4HeuebppiefMr+ZQU1lLZt/OnH7zCQDYGmy8/s/3A74brBSoiYiIiIiIiEhQ8d2bzLucs76mKVBLTPMP1AaMbQrGls9czem3nOh33+VyUbS1mIsfONu49urtk3j/oc/8nps/fTH1tfWkpCc1ddN0OHn51ubdNBvqGijYXGTM0WQyUZxd6vfMqBOH8+9v7jYaD9RV1/vdr62qo1OPDsZ57sbAVWZHnjuWhI7u3+x0unju2tcBuPD+s0joEAfAjC/nsPDnpQHfD0YK1EREREREREQkqPgt+fRUldXXNhrXkjsl+j3fuWdHYxnoqr/X0qFLCpGxEX7P5K7P5/BzxtB/TB/3N1bnMO3d39w3PVuuOexOXrr5HQC/bpqLf1vBvB8X+42XvTbPCNm8cyzZpkJt8OH9GXLEAO7/7HZjeaavhpoGOnRJMRoh5K7Pb/FvcuUTFxrHf3z2N/W19UTFRnLF4xcY19+8+4NmwV+wUqAmIiIiIiIiIkFlq2cpZXhUGCnpSeDZb8wr2bOnmJfJZDKWb1aX17BlZTb9R/f2eyZ3QwEmk4nrfbp7upzu8OngCQcZ1356/w8a6xsJDQ/lyieawqoPH/3CL6zya0jg2eetYGuRcS0kPITEju55HnLScO5676ZmzRLqaxqwhljp2NW951vehoIWA7HjLj6cOE9o6HQ4eeHGtwA49uLD6TnMvYfcuoWbmDt1UcD3g40CNREREREREREJGo0NNvI9Sx8z+nY2Qih7o914Jjo+utl7A8b4LPucsZoJVxztd99b/dVnZE/GnDrSuB4SFsI9H95MdEIUeLpvvnrbJAAOPWMUXQdkALBy1hqW/L7CeC9rtU9Dgn7uQG39ws3GtdhE/zke+X9jufnlK/2u/fzBnwCk9XDvo1ZbVWd0Nw3kskf+zzj+5YO/aKxvxGw2c/6/zjSuf/jI56pSU6AmIiIiIiIiIsGkYHMhTk/lWHrvNOO63eYATzVaIH6NCWat5tAzRmGxNsUqa+atM459Ayd7o53i3DIuvO8s49rUt3/FbrdjNpuNvdTwhFVeORuaGgh4O3X67v2WnO6/LBXgpGuOwxratPTz21em8+M7v9GpR1NjgrwNLS/7PPGqY5uCP7uDl291L08de9pII/hbNXsdi35d3uIYwUKBmoiIiIiIiIgEjfLCpgqtpLSmUMrpdAJgtgaOSnoO60pouHvz/xUzVmM2mxl8+ADj/oYl7k6dm5Zt4e9v5hvXXS4Xr93xHqfffIKx75q90c4bd34IwOHnjKZzL3ewt/i3FSyfubr5PDu5l3YW+iz59A3JfEXHR/md/++qV3DYHcZ5Tiv7qAFc/OA5xvG0d3+nsdHWLPib/OgXrY4RDBSoiYiIiIiIiEjQKC+sMI7jU90dLJ1OJ3iKyqwhzTf3BwgJDaHPwT0ByN9cRHFuKVc+fr5xv7HeRmOjjUkPfmpci4qPBGDe1EXMn7aEc+86zbj37avTsNvtWCwWzpt4unHdG1Z552mxWoiOj6Kupp7K0mrjuZSM5IDzjIzxb5bgdLr4dfJfxnlJblmAt5qcftMJRMW5521vtPP6He/DNsHfkt9XsHzGqlbHOdApUBMRERERERGRoOEfqMU2uxYSFtLiuwPH+uyj9tcqeo/o6ddd8+Wb32bmV3MBSExL4PpnLzfuvXbHJM667STCo8IBsNXbePe+TwA4+oLDjMYB835czJr5G4w5xafGYjKZWDlrjRH6AUbX0W1FesIwAGuoFTzNCbxqymta+/MAcL5PNdoPb/wUMPj7MMir1BSoiYiIiIiIiEjQ8F1K6a1QK84uMa55l3UGMuSIpiWes79fAEBKRpJxbfqkP4zj8yaezrEXjTO6gW5dlcMPr//C2befZDzz9fM/4HQ6sYZYOfcun7Dqkc+NeXrn6NuwACChQ1zAOfrO395oJ617qt/9qrLqAG/5O+v2k4mI9gR/DXbenjgZtgn+5k9bwuq561od50CmQE1EREREREREgkZZgCWfJXlNyyDDIsNafHfw4f2NfdDmfLcQu81OrxHdjPu2Bht4QrYTrjoGk8nEdf+71Lj/3oOfcMqNxxMWEQpAQ10jHzz8GQDHXXoEyZ3de7r9/c18Y98z7xwX/LTUby6JaQkB5xgS4h8Ijjn1YCMcA1g5e/shmNls5ux/nmqcT3l5WsDgb/JjX253rAOVAjURERERERERCRrlRU2BWoJnyWdpfrlxzTd82lZIaAgHn3AQANXlNSz7axXxSc0rxc645URCPUtH+x7ci2MuGgdAVVkN7/7rY067+QTj2c+e+Q6n00loWAjn+IRYXvGpseRvLmTt/A1+15M6Ne/yCWANs/qdr/x7Dbe+drVxvmnpFub9uKjF3+h1wb/OMMLFxrpGJj3g3htu2+Ava03Odsc6EClQExEREREREZGg4btfWpxnH7LyoqZloNtu6r+tMaeMNI5nfT2PqG26agIce8nhfudXPHY+4VHucOr7N35m4GH9CfEszayvqefjJ78GYMKVRzfr0hmfEsefn/3d7BveUGtbIaH+gdqq2esYeFg/v2uPnf8cOevzWv2dZrOZM25tCv6++F9T8HfGLSca16e++Uur4xyoFKiJiIiIiIiISNDw7k0WGRNBWIQ75Kr0CdS2DbS2dfCEoUYn0FnfzDM6YvryNibwSu6cxNX/ucg4f/7a1xh/6ZHG+adPTQEgPDKMYy4c5/dufGocf37ePFCLim3+XVpoqjDvh0VExDRV3lWX1/Dg6U9RV13X6m+99OH/M/Zka6ht4LOnvwFPYOj9G/z03h/YGm2tjnMgUqAmIiIiIiIiIkGjstgdnsUmxzRdK2naqD86IbrV96Piohhy5EAACrcWU1tV2+yZz57+ttm1k649joOOGQRAUXYJdVV1RihVU17L/GmLATjhqqO3edPFmnn+yz1NJlOL8wvZZsknnuAvxvO7zBZ3FLR5RRZPXf4yLper2fNeZrOZk6451jj/+sUfwVM1N/b0g8FT3TdryvwWxzhQKVATERERERERkaBha7TDNt0wfTtfxia2XqEGMPbUpmWfy/9a3ex+9tpcSvPL/K6ZTCZuf/M6o6nBLx/+RfchXYz7kx78BIBug7qQ2iXFuL741+XNxjdbW45zfCvUvM0PFv28zFjKarGYjTn89flsPn7i61Z/6yX//j8jwCvOLjH2TDvhymOMZ3548+dWxzgQKVATERERERERkaDhdDjBp1ILT4WYV6xnX7XWjD5lhHG8dsFG49h3WeVb90xu9l5qZgrX/e8y4zxvU4FxvGbeBupr6wHof0gv4/rK2WubjWMNaV6F5hXqE6h5O4HaGu00ejqQ2hrt3P3+zUZI9s69H7H4t+ahnVdkdAS9hnc3zt+8+0MAhh41kI7dUgFY+NNSv98SDBSoiYiIiIiIiEjQCBSo1frsJZaQ2rxr57aSOyfRe0QP8Owt5nXQ0YOM47++mB3w3fGXHsEhJw0HoKqkhtAIdwDmcrqY/MiXAHQb3FS5VlflDtm69E83rgVa1mncCw81juN8wsGqUncVntlsYvTJI7j4wXPc33W5ePryl6mtank/Ne+zAPN+XITT6cRsNvtVqf341q8tvn8gUqAmIiIiIiIiIkHDG6hZfAI17zUAa2jzTf0DGeOz7NOr76hexpLLuqp6/v5uQbNnTCYTt752DTEJ7qWljXVNG/r/+M6vnrlZmr036sThxrHZ3HKcE+azlDUiJtxY3llTXuN+1/O7z//XGQw+vD8ABVuKeO32SS2OOeqEg4zqO1uDnWnv/g7AcZceYYw37d3fcNgdLY5xoFGgJiIiIiIiIiJBw2FvXqHmu4Sysa6xTeMcduYhza5ZQ6yMPH6ocf7+Q58GfDcpLYGbXrqq2fWyggrWLtzoF/B5jTu76XuB7nuFRDRVqDltTg49Y5T72OluPuD93WazmTvevp7wKHen0x/e/IV5Py5qcdxxZ402jj/zdCVNSktg9MnuoK8kt4w5Pyxs8f0DjQI1EREREREREQkKLpfL6GrpF6iFNlWENdQ1BHx3W+WFFc2umS1mrnziAuN8/cJNfstJfR1x7hgOO6t5KPf2PZMDBmZmn86erQVqvhVqNpuNCVf4dw31/d1p3TpwzdOXGOfPXPmKX4MGX5c/ep5xnLWmqenCBJ9ln1Pf+qXFeR1oFKiJiIiIiIiISFDwDaJaqlBraGOF2p+f/d3smtliJqNPZ1IyksAT4H3w0GcB3zeZTNz80pXEb7Nn2+Jfl+Ow25s9//e3TctHnc5WAjWfCjVbg50BY/qQ2a+z33d9nXj1MQw/bgh4qsxevvWdgOMmdkwgvXcn4/ztf30EwIjxQ0junAjAgmlLWt2L7UCiQE1EREREREREgoKjhUAtxGffNFu9rdl7zcdx8NeXc5pdt3k6aZ507XHGtenv/dHiOPEpcdz66tX+Y9sdLP1zVbNnZ06Zaxy3VqFWV11vHIeEWTGZTH7NA+zb7HNmMpm4/c3riIqLBODn9/9k5tdzCeScO081jv/63N10wWKxGPvJ2RrtzPtxcYtzO5AoUBMRERERERGRoODyqezy3djfGta+CrUVM9dQmude8hiXHGNcXzt/IwDn/PMUI7CrKKpk1Zy1LY419rSDOe7SI/yurfx7jXEcHe9uXrBxyRbjmnc/tEDKiyuN46g497vHXDTOuGZvsNPY4B8apqQncf2zlxnnz177OhU+43iNv/QIo8NobVWd0XTBt0HD39/Ma3FuBxIFaiIiIiIiIiISFELCQjCb3Use62t8KrlCfZoStKFCzXe554CxfY3j5TNW4XK5sFqtDDq0n3H97Xs+anW8m168kq6DMo1zW0PTks9B4/o1e97VSqBWWVxlHHs7icYlxxIW6V4K6nK5mBWgAu3Yiw9n9CkjwLM/3HPXv2HsN+dlNpsZMb6p6cIHD7uXsw4+vL9R4Tbn+4XYbc2XrB5oFKiJiIiIiIiISFAwm81G8FNdXmtcDwnzWfLZ0Hqg5rvcMyQshH6jehn3inNKWT13PQCXP9a0if/SP1e22JwAIDwyjEe+udtvGapX34N7Nbu2bdDlq7q8xjiOSWyqnrNamxov/PBm8+YBJpOJW1+9mpjEaPAs6fz9k1nNnrvqyQuN43ULNlJfW09IaAgHnzDM+H6gJasHGgVqIiIiIiIiIhI0ojxLKGt8gqdQn86YjdtZ8um73HPE+CHUVPoHZT+88TMA/Uf3MRoOOB1OXrjhrVbH7dAlhfPvOaPZ9fCoMDr16OB3rbUKtRqfoDAuJRY8+7L5znPRL8vI3ZDf7N3Ejgnc8vJVxvkLN75Jiee3emX06UxyelPThfcf/hyAMaf4LPuccuAv+1SgJiIiIiIiIiJBw7snWVVZjVHp5ReobadCzXe557izRlNR5L/X2O8fzzSqxC575P+M6799NIPG+tbDuqPOP7TZtey1uYw59WC/ay5aDtRqfYIz7/5ulSVVzZ7zBn/bOvycMRx+zmgAqkqrefW2d5s9c9K1xxrH0975DYCRE4ZhDXFXwc2cMrfVKroDgQI1EREREREREQka0fHuJZ8Ou4P62gbYJlBrbcmn0+n0W+45+pQRlBdV+D1TX9vA1y9MBeCEK48xllA67A5euuWdVuf2zcvTml37dfIMhh410P9iK1lVnc/S0sSO8QCU+4R+Js8ect++Ot1veaivm1680gjjfv9kFitmrfG7f/Yd/k0X1s5fT1RspDHPoqwSNize3Opv3d8pUBMRERERERGRoOFd8onPss+Q8FDjmq2x5Q31Ny/PMpZ7Dj92MFGxkZQXNgVq3pDpy+e+p7bKHWxd8uA5xv3p7/5GY2PgwK6soJwf3/q12fWailq+ev57v26irfGGhABJnRLA02TAq9tAd/OD2so6I/jbVlxyLJc83FRd98o/3sHp0yE1NDSEgT7NGN6cOBnAr5JuZoDGBwcSBWoiIiIiIiIiEjSi45oCNW9jgjCfCjV7Q8uB2pLfVxjHw44eBEB5obv6KyYx2liyWVVazbevTAfg1BsnGI0Q7DYHr93+XsCxP37iayMMi4gO97u3YPpSEtMS/K7Z7YHn6dulNLlzkt8cAUadeFDA4G9bJ1x5NF0HZgCwZt4GfvnwL7/7lz/q03ThjxXY7XajSyjA7O8WBBz3QKFATURERERERESChnfJJz4dMUN9KtTsrVSoLfmjKVAbfHh/8Kn+ik+N47yJZ2AyuZdUfv7fb42A7IJ7zzTem/rmz83CsOKcEr591R3AhUWEcuZtJzb79qZlW/3OG2oD78fmu2Q1oWOc3xwBMvulc/QFh4En+Au0zBTAYrVw3f8uM87fmvghdTX1xvmAsX19lrM6+eq5H0julEiPoV0B2LB4MzUVgZeUHggUqImIiIiIiIhI0IhOiDaOvZv1h0b4LPm0BQ7UnE4nS/9YCUBMQhTdB3ehoa6Bump3yBSfGktm386MO/sQ8IRYU9/8BYAz/3ESETHuqjNbg5037/7Qb+zJj31lBGGnXD+eC+87e7u/w/vdbfkGglar1ZiLlzv4O90I/r7wCf62ddDRg4yqs5LcMj79zxS/+8deNM44nvLijwAMGNMHPB1AV85et93fsb9SoCYiIiIiIiIiQSMlI8k4LthcBEBYZFOg5mh0BHxv8/IsqkqrARg0rj9ms9mvw2d8qrsa7Px7mqrRPn1qCo0NNsxmM+f+81Tj+rcvTzOq1Aq2FDH1TXfHzfCoMM6581QsFovfnGID7J9WVVYdcJ4Oh3uvM++yTpoFarFk9OnM4eeOcd8rquSH1wN3/AS4+qmLje6dnz41hcKtRca9ix861wjmCrYUkbepgIGH9jPur5i5usVx93cK1EREREREREQkaHTq0dE4zl2fD55lll72FirUvNVpAEMOHwBAUXapcS3BE6h1H9yFMaeOBKA4p5Tp7/4OwHn3nEF4VBh49jl77/5PAfjwkS+w29wh3uk3n0B8insc79JJgKqSKkaddJDffGZ6uo1uy+V0twC1WC3GtaIcn3l2cHf+PH/i6ca1T5+eQmN94CWk6b3SOPXGCca835zYVF0XFRtJ9yFdjPO375nMgLF9jHMFaiIiIiIiIiIiB4BOPX0CtY2eQC0yzLjmDbe25bd/2hHu/dOyVucY19J7dzKOz/9XU5XaJ09+hd1mx2w2c8atJxnXv3z+e7LW5jDt3d8AiIyN4KzbTzbu9xjSzTh2ueDQ00ZhsTbFOB89/jXZa3P95lhb3dRgICTUahx75xkZE0FiR3eg1m1QF8ae7u7KWZJbxrR3fgv4uwEuvO8sYpPcVXK/fTSTFbPWGPd8K+8W/bKM1IxkUjOTAVg9Z32LAeX+ToGaiIiIiIiIiASNxI7xhHsCNKNCzWd5ZaDumYH2TwPYuirbeCazX2fjuM+IHow8figA+ZuLmD7pDwAueegcY7+2htpGHjn3fzg9SzTP+sfJxCY2Le3s7BP8Afzy4V/GslKAxvpG7jz2Yb8lmCU+lWghns6lDXUNxtLWjL6djCWaAOffc4Zx/PGTX9NQF3gvtej4KC59+Fzj/NXb3sXpdM/78HPHGMtLK4qrKC+uNKrU6msb2LB4c8Ax93cK1EREREREREQkaJhMJtJ6dAAgf1MhDofDCNgAHAEq1LasyDIaGHj3TwPIWtNUIZbRt7PfOxfce5Zx/M69H1FTUYPZbObUG443rm9csgWAmMRozrj1BL/3O20TqK2eu56I6HC/a0VZJdx57L8pKygHzxJTL29ImLMuH5fLFXCOvYf34OAThgFQuLWYz5/5LuDfDOCEq46h64AMYy6/Tp4BgNlsJr1XmvHclBemMnCs7z5qawKMtv9ToCYiIiIiIiIiQcUbVtltDoqySgiPjjDuOezOZs8vCbB/GsBWz1LK8Kgwkjsn+r0zYEwfDjurqePn+w9/DsDlj51HSFiI37Pn3HEKUXFR/nP0hH5e9TX1xv5ovnLW5XH3+EeoKqumNL/cuB4R5Q7ffKvoMvp0bvb+VU9eZFSYffT4lxRmFTd7Bs+ebNf+9xLj/K2JHxoVbWNPO9i4/tcXs/32UVs+68DcR02BmoiIiIiIiIgElU7dm8Kq3PX5REQ1Vag5Hc0r1LyVZAB9D+kFniWX+RsLAMjo08moWvN1zVMXE+pZevn1C1PZsiobq9XKsKMHGc+YTHDqTROavZvWvYPf8kwCdPaMTnCHcBuXbuFfJz7mt/wz3FPNlrW65So6gK4DMoyquYa6Rt648/1mz3gNP3YIh5w0HDzVcNPecTdcOO3mpvlnrckls386kbHukHLFjNVGhdyBRIGaiIiIiIiIiASVTj2blijmrM8nPKppKWWgCrUtK7OM4y790433nJ6Kscx+6QG/06FLCv931+mecR288o93qa2qZcPiTcYzLhdMffOXZu+GhoeSnO5f9VZbVe93Puyogca+aqtmr+O7134y7kXFRgKwdU1T4wTffd58XfzgOcQlu/dv+/2TWX4NGLZ1ic9eap8+NQW7zU5ixwRiEqMBcDqczP1hEf1H9wagNL+c/E2FLY63v1KgJiIiIiIiIiJBxXd/sqzVOSR0bNrsv6HWf2N+l8vF5hXuQC01M9kIqnw7fAZaSul1zp2n0KFLCgALpi/hP5e8SElumd8z7z/8WcB3t21MYG/0b5hQsKWYJ6bdS3S8u1KtcEvTck1v9Zp3nmaLudkyUuPZ+Cguf+wC4/zlW97BYQ/c7bTn0G6MnDDM8/0ifvtoJgCDx/U3nvnhjZ/oe3Av43zTsq0Bx9qfKVATERERERERkaDSc2hX43jNvPVYrVZjHzFbg39oVZxTSm1lHQBdPJvyA2xd5ROo9e3U4rfCIsK45umLjfOZX88DwBJiwWJ1f7O6rMavusyrx9Burf6OrNU5dB/chUe/n0i4z7JV93dDcDqdZHsaJ3Tq0YGQ0JAWRoLxlx1Br+HdwbOE9Ic3fm7x2fMnnm4cf/TEVzidTk667jjj2oqZa/yq9nz3cTtQKFATERERERERkaASmxRDZ09nynULN9HYYDM6fbpcLipLq4xnvdVpAF37p/tcb6q6CrQ3ma9DzxjF0KMG+l07f+IZHH3hOOP83fs+avZev0N6tzpuXXU9xTml9B/dhyd/uh+L1WLcm/XNfBb9upyGusY2zdFisXDDc5cb5+/c97HR2XRbAw/tx6DD3J08s1bnMPPreYw4dgiWEPf3aypqiYpravSw1aea70ChQE1EREREREREgk7fUT0BsDXY2LhkM1Hxkca99Yua9jjbvNxn/zSfCrWVf68FIDwyjMzthFUmk6lZI4KjLjiUm168wqiMqyiuYvqk3/ze6+eZY2u81V/9D+ntVylXU17Lw2c+ZZz3Ht5ju2MNGNOHYy5yh3xVpdW8e/8nLT57nm+V2uNf4nK56Orz95k7dbHRVEEVaiIiIiIiIiIiB4B+o5qqv1bPWW9s7s82e35t8a1QG5gJQGFWMUVZJeAJ5nwrwwKpKqvmq+d+MM5dLnjlH+8SFhHGEeeOMa6/cdeHfu+lZCSTmJbQ6ti+S0+91Whevk0M+o/p0+o4Xlc8fgERng6h3706nWV/rQr43IjxQ+k5zL0kdd2CjSz4aSnjzh5t3J/34yI6dHXvHZe1OveA6/SpQE1EREREREREgk7fUU2b5q+as5bkzk0dNTct28q8aYtZPmMV6xZuMK57u2Su8lSnAfQfvf2g6p1/fUR5YQUAIWHufczm/rCI71//mZtfvsqoUisvrODz/35rvGcymbZbpeZb/VVVWm0c9xnpX5FWuKVtnTaTOyVy0QPngGf5638ufZHaqrpmz5lMpmZVaqfecLxxnrehwKiYq62qoyS3tE3f318oUBMRERERERGRoNN9cCah4e5wa/Gvy8nf1BQ4zfx6LvdMeJR/jLufjUs91WomuHrw7Txzxcss/XOl8eyAsX1b/c786Uv49tXpAIRHhXHLK1cZ9167fRLlhRUce/HhxrV37v2Ixkabcd53VOv7qPnuT1ZX3VSR9vCUu/yee+bKV/nif9+1OpbXGbeewMBD3b8rf1Mhr/zj3YDPjT39YDL6uEOzpX+sZNOyrSR0jAdPGOdy+sxz1YG1j5oCNREREREREREJKmUF5fz49m+ERoQCUJpf7rfMs6GmoflLLne49OM7v7Hw52XG5X6H9Gr+rEdFcSVPXfqicX75o+cz/tIjOfHqYwGor23gyYtf4KaXriDMM5fGehvPXv0aLpeLH9/+hZWz17T6W7I8gZrdbsdhc4CnCs4IAn28evsk3rjzfZxOZ7N7viwWC3dOutFY+vnj278ya8q8gM+de9dpxvnHT3zFQT57xfmGlArURERERERERET2U/mbC7m83608f/0bVJfVBHzGEtrynmjRCVHkrM8DoEv/dGISogM+53K5+O9Vr1KaXw7AiPFDOO2mCQBc8/RFdOrZEYBVs9fx+dPfccUTFxjv/vTeH5wSexHPXPkqf0+Z3+rvKSuooKqsmqzVuca1yNgIVs5qCuIOPWOUcfzp09/w5MUvUF8bIDT0kdatA9f7dP3839WvUlZQ3uy5o84/lJSMJADmfL+Q4ccNNu4Vbi0yjg+0Tp8K1EREREREREQkaBRllVBdHjhI83LaW95Af8LlR+Fyuu8PaGWj/6lv/mJUdcUlx3DH2zcYXS8joiO4672bMJvd5+8//Bn9R/choWNTY4T6QFVyLdi6Kod1C5r2eotPiWXFrNXG+bXPXOLeq83zvV8nz+Dm0feQvTY34Hhe4y89grGnjQSgvKiS/179Ki6Xiy0rs/jryznYbXZCQkM4545TjXfm/rDIWErbWN+0dDVr9YHV6VOBmoiIiIiIiIgEjYGH9uXoCw5r9Rlbo42DjhnU7PqAsX2IiosyzlvqnJm9Ntdv37Hb3riOpG26dfY/pDfnTTwDAIfdwcTjH6Esv6Ldv8f7vc3Lm7qRJnVOZNXsdQAkd04kNTOZk689jvs+u53wqDDwNF64YeTd/Pn53y2OazKZuPW1a4wOqLO/XcCj5z/L1UPu4OGznubzZ9wNFI6/4ijiU2IB+PPz2WT2TzfG8IZr2Wvzdui37asUqImIiIiIiIhI0DCZTNzx9vUccvLwFp9xOV0ctU3oZraYueWVq/32NAtUoWa32Xn8wueNJZUnXnUMY04dGfA7F95/Fr2Gd4dtOnS2V3F2KdnrmgKr6LhIo0FB/zF9jMq4Q08fxYtzHje6ldZW1fHvc/7Lq7e9i91mDzh2fEoct71xrXH+xyezcDrce7D9/a17OWp4ZBgnXuPeF87pcJLYId543vtsaV4ZDrtjh3/jvkaBmoiIiIiIiIgEFWuIlfs+uY0hRwzwv2FqOuyYmYI11Gqcn3j1MXTulcbSP9wdPhM6xNG5V1qzsd978FPWzncvv0zvncY1/72kxXlYrBYOPuGg7c7XG4i1pCi7hKKtJca5zdYUXA06tJ/fs136Z/DinMc58ryxxrUvnv2e2498kOKcEgLpPaIH8amxza6vW7CRxgb3ss4Trz4Ws8UdM61ftMl4xu6Zi9PpMvaTOxAoUBMRERERERGRoBMaHsrDU+4io29n45rF2tSMYMvqHEad6A67wiLDuOo/F7Fi5mpjb7Phxw1pFnQt/XMlHz/xtTHWxA9vISIqvMU5vP/QZ3z478+3O9e0Hqmt3i/JLaWssCmsKsoqNo5HjB/S7PmI6AgmfnALN714JdYQ929eOWsN1x10Jwt/Xur3bGl+GTeMvIvywspm49ga7UZ4lpKexGhP1V9pfjmxyTHNni/KDhzY7Y8UqImIiIiIiIhIUIqMieCZ3x8kKj4SgA5dkgmLjyLtkL7ku8yc+eI13DXjMZ5a/QL1Zgvzpy0x3h05fqjfWBXFlTx58Qu4XO6GBZc8dC69h/do9fvfvTa9TfOsLK7i3LvcG/9HRIdjspiJ75FGtxNG0Pe8cYT070KHI4eQNqo3oXGRbFq6BYCO3VIDVtHhqXo75frx/O+vf5OamQyexgN3j3+EDx/5AqfTid1m56nLXqYkt6zFufl2Ez35uvHGcUioldC4SNJG9ab32YfS/8Ij2VDZwIbiGspqG3G6Wm78sD8wuVz7+S/YCZWVlcTFxVFRUUFsbPPSRRERERERERE58FU12FiVU8GKLaWYYyJafM7RYCNvzhrWffk3//vyNhJS3XuFORwO7pnwKAt/XgbAoHH9eOqXB7BYLC2OBfDdaz/x2u2TjP3WWhIaHsK3NR+yqbCSjeUNbC2qwhoe2vLvyS5m09QFdI0J5aanL97Or4fKkiqeuPgF5k1dZFwbOWEYPYd25aPHv2r13YOOHsSTP90PgNPp5Nox9xIzpDvdJgwnJj25xfcsZhMdo8PokxpN57hwzNtZ1rqvUaCmQE1EREREREQkKNXZHMzLKmdzaS3tDUdiwqyMSI8nMyGCt+6ZzMdPuIOn+NQ4XlnwJMmdk9o0TmVJFd++Op0pL06lrMC/y2d4VBiN9TaueO8WzAO6UtPYzk39XS66J0cxMj2e8JDWwz2n08lHj33FpAc+oaWoqP/o3qz8e63ftZAwKz/UfUS9zcH87HI2FNdAO8OxqFALI9Lj6ZoY2a739iYFagrURERERERERILOxpIa5m4tp8HThXJHRdfU8vZpj9FYUYvZYuY/P9/PkMMHtOFNf431jfw6eQaTHviE4pxSAK5+7nJSThjJlrK6nZpjuNXMIV0S6JKw/cBq4c9Leez8Z6kormp2r/vgLtz9/s188dx3TH/nd1wuFxEx4byw+TVmbymj3r5zf8suCRGMykwgYjvh375AgZoCNREREREREZGg4XK5WJhTwfL85oHRjqrKKubnG1/hojtO4cx/nLRTYzmdTqZP+p16lwn7iD7tr0prxZC0WIZ0it1u19AP/v0Zkx74NOC9m1+6kpOvG0/B1mK+e3U6Pc89jM22XTZFokItHNc7hdjwkF036G6gQE2BmoiIiIiIiEhQcLlcLMiuYEXBrgvTvOyVNZw7tgfRYYGDIKfTyQcPf86Pb//KuXedxqk3HN/iWFUNdqauLqTOtuvCNK/BabEM6xzX4v2K4kou7Hp9i/u6hYaH8P7Gl0jsmMDinAqW5DXv/rmzIkIsTOibSkyYdZePvauoy6eIiIiIiIiIBIUNJbW7JUwDsMZG8duGEpzO5nVLtkYb/7nkRd5/+DOKskt48+4PsDU2L+tyOBzkbSnkhyXZuyVMA1iaV8nKrSUt3s/fXNRqk4TGehvPXPkqm0prd0uYhmdvu1/XFeEI8LfcV+y7UZ+IiIiIiIiIyC5S02hnblbZbv1Gaa2NZfmVDOnUVAFWW1XHQ2c+ZXQABaivaeC9Bz8jNDyEgs1FFGwpJH9zEUVZJQy6+ngGXnr0bp3nX2sLeeToB0lJjaVz7zTSe3UivXcanXulkdG3E9f991LmT19MUVYJhVnF1Fb67+EWlRrHnK27929ZXm9nSW4FB6XH79bv7Cgt+dSSTxEREREREZED3q/ri8gqr+f8YZ0pqW0EYFleFbmV9QCkRocyoW8HPl6cQ8NObK5vNsHJ/TsSHxFCaX4Z90x4lA1LtrTp3YRenZjw3m1cOCKj2RyTo0IZ1ikOkwlyKup3utJu8/RFzLj3/YD3UtKT6Nw7jb4jezJoXH+6DsygtrKO9Ys2UVtZS+xxw9lS7v67Bfp7jsqMJzEyFBOwIKeCgqqWK95aYwJO6t+BxMjQnfilu4cq1ERERERERETkgFZeZyPLEwBVNzqYtqao2TP9O8RQXNO4099yumBVQRWdamu5YeRdNNS1bcyYhCgOvvEkzBZzszmaTe6GAr9uKN5lyyC7HDOURS99R01e80qzouwSirJLWPzrcj5+8mvMZhM9hnZl0GH96XvkQCNMI8DfMybMSlx4CFNXFxIZYmFc90R+DPD3bgsXsKKgisO6Je3gr9x9FKiJiIiIiIiIyAFtbVG1cRwVYuH4PinUNDqYu7WcBoeT9LhwCqsbyIjfNVvNbyyt5ffnp7Qeppngzkk30mNwVzp0ScYSGc5nS3NxuprPMT4iBLvTxRE9kjBjYn52OWV1O9da02Q2MXHGYyRXVpO9No+cdXlkr8slZ20e2WvzqCxpqoBzOl2sW7iJdQs3MdQOAy/pYNzbdq71Ngd2pwsTEGo1U9/Oar9TB3RkQXY52RXu0G5zaS0j0+MJD7Hs1O/d1RSoiYiIiIiIiMgBy+VysaGk1jj/cnkeDXYnPZOiGNY5jtlby+iTGs1v64vJiI/we3d8nxRSosJw+uyWtSC7gjU+AV0gdqeLMdeOZ8Zns2hsKVRzQXxyLN0HdwFgdWEV3uKzbedYUN1AfEQI368qICrUwuguify4ptAYKjU6lEFpsaREhWECqhvtbCytZVVB05iBbKls4ODBXegxpGuzeyV5ZSyfsZplf65k2V+r2LRsKy6Xi+4njPB7LtDfs6bRzukD07CYTfy2odjv75kaHcZ3KwuMQDDEYuL8Yel8vjSXmkYHU1bk+43vdMHmslr6psa0+jff0/bbQO3xxx/nyy+/ZPXq1URERDBmzBiefPJJ+vTps7enJiIiIiIiIiL7iMoGO42Opiop7/5om8pq6Z0SRffESLLK61oMnhZkl7OqsPUALZDQtES+r/mQ4txS1i3YyLoFG1m7YAPrFmykNL+cmMRoMvp2Np4v8lluuu0ct5bXUVjdgN3poqLeTqjFZDybHhfOuO5JLMqpYMamUhrsTmLDrQzqGEtEiIWaxpa7hdbZnNTaHESFNo+HktISOPzs0Rx+9mgAKkurWPz3OjalxPk9t+1cO8WGEWa18OXyPCJCzBzdM4XvVhUYzzfanRzUOY5f1hfTVrtiKe6utt8Gan/88Qc33HADI0eOxG63c88993DcccexcuVKoqKi9vb0RERERERERGQfUOITxljNJhxOFy6gY3QYlQ124iNCSIoKJTM+goSIEMZ1S+Knddvf88tqNjE8PY70uAgsZhO5FfXMySrD5nD5fTe5UyLJnRIZfXJTZVdZYQWRMeGERYQ1m2egORbXNDA4zV2hFW414/AJ/w7OTGB5fpVf6FdZb2fm5lLjPNxqZlRmAh1jwrA7XWwsrWVxTgUuz3cDBWrbik2MocuYvmzaUNLq3xNMRshmc7iwmk1+46wpqqZfagwdosMoqG7erODMQWnMzSonq7yps6gCtV3oxx9/9Dt/9913SU1NZcGCBYwbN26vzUtERERERERE9h0V9XbjODbcypiuidgcTpxOmLWl1K+Ca3yfFP7cVNLCSP7Gdk3E6XLxzcp8XC4Y0yWBUZkJzNhU2uy720pI9a/ycrlcVHqeDzTHRoeL9cW1HN8nFbMJ5meVu58NsxITZmVTaU2rcx3XPYk6m4MvluURZjVzTK8U7A4ny/KrWp3ntiq3eTbQXGsbHXRPiuT4PqlYzCaW5FX6vdNgd7Isv5KD0uOYurqQtqist+NyuTCZTG14es/YbwO1bVVUVACQmJjY4jMNDQ00NDSln5WVlS0+KyIiIiIiIiL7P7vPWs7SWhvfrSxo8dlA3T8PSo9jaKemAOyzpblYzCYyEyL4ZHGOUZG2KLeSUwd0ZOamUlye77Y1BHK63B0tW5vj+pIa1pf4B2dhIe4mCq0t64wMsZAWG84ni3OwO13YGx0szatkSKdYluVX+f19tmfbZ1uaqzdUbMmqgmr6pUaTER9BflV9q8/i6fbpdIFl38nTDoxAzel0cuuttzJ27FgGDhzY4nOPP/44Dz300B6dm4iIiIiIiIjsPeadDGEWZlc020MtLjwEs8nEmYM6NXs+IsRCrc2ByUSbK6p2tPCqweZeWhkVaqGqIXCoFhlqwe50+nXbrGqwE+Xpmtmeb++qPMvhcrE4t5KDOsfx4+rmyz4DfnsfCtM4UAK1G264geXLlzNjxoxWn5s4cSK33XabcV5ZWUlGRsYemKGIiIiIiIiI7A2hFvMuH7Om0Y7T5eLTpbk4WqjwCmvHd80mE1azqV3VYngaLlQ12OmaGMmyvKqAz9Q2OrCazYRbzUaoFh1qocbmaPc8w6y77m+5vriGAR1i6JEcud1nrWYT5n0sUdv1/1ftYTfeeCPfffcdv/32G+np6a0+GxYWRmxsrN8/ERERERERETlwJUaG7PIx6+1OssrrGJUZb4RM4VYzmfERPt8N3SPznLu1jEEdY+mbGm2EY7FhVsZ0SSAq1F0tl1dZz4iMeKxmE1GhFganxbLBs3zUd575mwv5+ImvmPbub2xatgWH3b/qLWEX/i1dwMKcCgZ13H42096/5Z6w31aouVwubrrpJr766it+//13unXrtrenJCIiIiIiIiL7mKTdFMbM2FTK0E5xnNivA2FWM/U2B5tLa9nq6U4575MZbCirYNC4/gw6rB+xSTHbnWdhdfu7WWZX1PPzuiIGp8UyzLPXW3WjnY0ltdR5qtD+3FjCqMwEzhyUhsPlYmNJLcvz3RVtvkHe05e/zJLfVxjnYRGhdB/ShfQ+nUhKS+TkG49v9/xas7W8joEdYwj3LD9tSXLUrg9Fd5bJ5XK1r55wH3H99dczefJkpkyZQp8+fYzrcXFxREREtPquV2VlJXFxcVRUVKhaTUREREREROQA9c2KfMrqbHv0mz/f8Ar589YZ510HZDDosH70ObgnGX06kd67k1/IllVex6/ri/foHJOjQjmxXwfj/I6jHvQL1LYVFRfJVbP+Q3FN+4O/nXFUz2Qy4tuW9ewp+22g1tLGfu+88w6XXnppm8ZQoCYiIiIiIiJy4FtdWM2crWV77Ht1+WV8ceojsJ3IJSYhis69O5HeO43OvTvB0QfhsO65xYQZ9XXY1udQsLmI/C2FLP1jJQWbm3c69QoND+W5ra8zc3PrXTx3pahQC2cMStvn9lDbbwO1XUGBmoiIiIiIiMiBz+Zw8tmSXGzt3PR/R41IjycjFJbPWM2yP1ex7K+VrFu4CafD2ep7Ay87hqHXnbBH5thQUcOXJz2Mo6FtlXsR0eE8POUuBh7en8+X5NGwnd+yqwzrFMfgTvteZrPf7qEmIiIiIiIiItIWIRYzg9NiWZBTsdu/FR1m4ft/fcDSX5fR66Bu9BjajZOvG09sUgwVxZVUFlWRv7mQ7HV55KzLo3Br0zLPNZ/OoNcZo4nqkLDb57n0jWkBwzSTycS2tVcZfTrx+I/30qFLCgBDOsUyN6t8t88xMsRC39To3f6dHaEKNVWoiYiIiIiIiBzwnC4XU1cX7vb9vw5OCOXmXje2eD80PISbX76K8ZceCUB9bQN5G/LJXptH9to8CuttxJ88erfOsXJtDqVfzqBDlxQ6dk2lQ9cUOnZNIbVLCv+7+lX++PRv49n+o3vz72/u9tvvzeVyMW1NEQXVDbt1nsf0SqZz3L61d5qXAjUFaiIiIiIiIiJBoaLOxverC7A5dk8UMqBDDMM6xXBq7MU01LUc3I068SAe+XZii/dnbyljTVH1bpljmMXMCf06EBseeNHir5P/4vELnwdg9CkjuGfyrYRHhjV7rqrBzncrC2jcTUs/+6ZGMypz91fq7Sgt+RQRERERERGRoBAXEYLtj6XYhvUiJCp8l47dIymS4elxmEwm7v7gZh468+kWnz3+8qNaHatXqIvf/lxOp3EDd+kcQywmju6V3GKYBnDkeYdSVVaD2WLmhCuPxmK1BHwuJsyK6+/lNPbvRmj0rq0i65oYyciM+F065q5m3tsTEBERERERERHZE2Z/t4APbnuHn294lbriyl02btdIC29OeIhrh/2TFX+vYexpBzNywrCAz8Ylx9DvkN4tjmW32Xn0vGf57c53WPP5zF02x8gQC3XT53Njn5t4+R/vUFddF/A5k8nEqTccz8nXHtdimAaw4KclTLr5LX669mVqCnZdB9U+KVEc1i1xn+vquS0FaiIiIiIiIiJywMtZn8cTF7mXMpas3Er8yk10T4zcqTGjQi0c0yuFOf/5kpy1eWxcuoVbx97LP49+iDGnjMAa0jyQqiiu4vrhd7LkjxUBx3zjzg9Y9ucqXE4Xmz78jYOTI4gI2bn4plt8OCMiXHx230eU5pXx1XM/8H/p1/DWxA8pzi1t93gFW4p47PzncDpdlK3NIXrxenomRe3UHCNCzBzdM5lDuuz7YRraQ017qImIiIiIiIgc6OprG7h59D1sWrYVgMPOHMV9n96OyWQip6KOX+dsxJnY9lygtqiCod1TGN4zhVCLma9fnMpLN7/d7LmYxGiqSpv2QotOiKK6rAYAs9nEZY+ez7l3norJEyD9/slMHj3vWQCsIRae+eNh+h/Smwa7kxX5FcxbmUd4Ykyz77Skc1w4meEWbuhyDQAmE2ybAllDLBx5/qGcffspdBuYud0xGxts3HrovaxbsBE8+8E9POUuzGYzeZX1/Dp3I7bYKEzmtoWAESFmeiVH079DDGHW/afua/+ZqYiIiIiIiIjIDnj9n+8bYVpG387c8fYNRojVOS6C5U9/wZQzH2PJ6z+SZIHwbYIdR6OdkpVb2fjtXP648x2+OuXfrP3od0It7ucOPWNUwO/6hmmjTjyIt1Y+y7CjBwHgdLp4a+KHPHD6f6guryF/cyH/u+Y14/nrn7uc/p6loWFWM5G5xXx50sP8OXESW6ctoGRVFg6b3e97tUUVZP+5nIJpCyib/CvRa7aQNaOpEi5QSZXd5uCnSX9ww4i7WD133Xb/lu/86yMjTOvUowN3vXcTZk94lhYbzuoXvmHKGY+x+NUfSMDZrLrOYbNTsiqL9VNmk5hbSP4bU+mXGL5fhWmoQk0VaiIiIiIiIiIHstnfLeC+U54AICwilJfmP0mXfunG/bqaes5Mugxbo53UzGQ+2PQyxdnFPHPN6+RsLKQktxR7XSOubbpZWqwWvql8j9DwUAAu6HodhVuLA84hNTOZd9c+T0hoCA6Hg/cf+owPH/nCuJ/WPZXI2Eg2LN4MwNEXHMZd791khH4A7z/8Ge89+CkAyelJFGeXYLKYSemeSkVhFY5GG3ZPZ1GzxYzTM98bXriMl256p01/q3s//geHnzOmxfsLf17KXcf9G4CQUCsvzHmcHkO6GvdtjTbOSLqM+poG4lPj+CT3dSqLK3ni8lfofXBPLrznTM5IuJiGmga/cTv3SuONZc8QEhrSpnnuC/av+E9EREREREREpI3KCsp55oqXjfNrnrnEL0wDWPrHSmyN7kqvkeOHAvDPYx5mwY+LyV+bi626vlmYBuCwO7jnhMdwOt33+o8O3GggsWM8939+hxEWWSwWLn34/3j0+3uISYwGIG9joRGmdeiSzE0vXuEXpgHMn77EOLY32gBwOZwUrsunoaLGCNMAI0wDeO3299v0tzr+siM59MzAlXYAlSVV/OfSF43zKx6/wC9MA1gxcw31nrBsxPghmM1m/nnMv1nww0I+evBTVv+9mvDIsGZj56zL48mLX8DhcLRprvsCBWoiIiIiIiIicsBxuVw8fcXLlBe5u3kecvJwTrrm2GbPLfxpqXE8fPxQZn49l5x1+W36xpLfV/DKre/icrla7Nx5wb1n0WdEj2bXD54wjFcW/IfM/v4BX5f+GVhCrH7XaiprWT17LQCZ/TpTV1XfpvkB2Bvt230moWM8N754BRZL4K6eLpeLZ699jZJcdzfPg44ZxOm3nNDsuQU+f8sRxw1l3o+L2Lx8q3Htx7d+JS4p8B5wf3z6N89d+wb7y0JKBWoiIiIiIiIicsD59pXpzP1hEQDxqXHc9sZ1zaq+AFbMWm0c9x7ePWBzgdZ8/eJUJj3wSYsVau/c+xHFOSUB78UmRWNrsPldmzt1EbeM+RfZ6/KMa6vnrMPpdAdNQ44YSINPNdquUJZfzjv/+qjF+9Pe/Z2/vpgDnkYL/3z3RmPfNF++f8u+h/Ti+Rve9Lv/9zfziU+Na/E7U9/6hdf/+f5+EaopUBMRERERERGRA8qWlVm8dsck4/yf79xAQoAgp762gfWL3EstM/t15qvnvqc4pzTgmNZQa8DrAB8+8gWblm5l1IkHERkbwbXPXMLh57r3Iqsur+Gpy182lob6euUfk8jbUACeDf7Do9zLITcu3cKNB9/N0j9XArBy1lrjnZTM5Db/HbbnzNtOJCTMvRT1i2e/Z+Evy5o9k7M+j5dufss4v+2Na0nulNjsObvNzpq56wHo2DWFaW//Sv6mQr9nqstrcG4nLPv8v9/yzcvTdvg37SkK1ERERERERETkgNHYYOPxC5+nsd5d+XXqDcdz8IRhAZ9dO38DDrt736703p346vkfWhw3JiGq1e/+/tksHvl2Il+WvMOZ/ziJm1+6kuTO7uBp4U9L+eYl/5BoxldzmPrWLwCER4Xx2NR/8eLcJ8js1xmAmopa7h7/CDO+msNyn8qvGV/+3ca/xPbVVzdwxWPnG+dPX/YS1eU1xrndZueJi14w9kU7/vKjOPT0wPusbVi82fibdxmQwWdPfxPwueLswNV6vn7/ZGa7f8uepkBNRERERERERA4Yk+772Njgv0v/dK76z4UtPrty1hrjOH9TobGsMpBAy0W9ouIiOe/u08HTdAAgNjGGO96+3njmjbveZ+vqHACKc0v571WvGvdueO5yOvdMo0u/dF6c8zgjPQGgrcHGv89+hmV/rgIgLjmGtfM2tuGvEFhsUjRn33Gycf7Dm79wxHljGHrkAACKskt40aca7cNHvmD1nHUAdOrZkeufvbTFsVf4/C2Lc0qx2wI3GNi2am1bHbqkcP6/zmzHr9o7FKiJiIiIiIiIyAFh2V+r+OyZbwEICbVy9wc3ExbRvKukl28I5F1u2ZKq8uoW79ltDroNymx2ffixQzjtpgkANNbbeOKi57E12vjvla9QVeoe77AzRzH+siONdyKiI3j46zs59pLDAXA6XcY+a10DfKMtOnRNYUrFe3xR9A5X/+diEjq4l7+6nC4ePfdZ/vnODUTFRQLwywd/8cens1g9dx2TH/0CALPFzMQPbiYiOqLFb/j+LSNjW35uW7455bXPXML7G18yuq3uyxSoiYiIiIiIiMh+z26z8/z1TV0iL3v0fHoO7dbi8y6XywiBYpNieOjrO7nhucsZOLav8UxqZrKxd5qt3k5S54SAYzXUNrS4XPTKJy4go697Gee6BRt5/ILnmPfjYgCSOiVw66vXNKt+s4ZY+efbN3Dunaf6XbfV2+g6KMPvWmh4iLG0dFvecYu2FmMyN33jzndvNI6X/bWK0oIKbnrxSuPas9e+xn+vetWo2Lv4gXPoe3CvgN/A+7ec6V6WGhEdzn2f3saNL1zB4MMHGM+kZCSR0CGOPiObOp6aLWbufO8m47wkt7TVSsB9SZsDteuuu47p06fv3tmIiIiIiIiIiOyAr577gc0rsgDoM7IHZ9x6QqvPZ6/NNarE+o/pTXxKHKfdNIHkjCTjmcd+uIeTrjnWOB84tl/zgTz5z5QXf6SmsrbZ7bCIMO5+/yYsVvdSUG+3TICbXryS2KSYgPMzmUxc+cSF9Bre3bi28u+15G/0XzI58vihvLXy2YBjeMNFp9PFugVNS0VHjB9Kz2FNYeN/r3yFo84/lHFnjwaguryWTcu2AtB9cBf+7+7TAo7vVZRVTEluGQB9R/UiITWeU284nrRuqcYzD375Tz7Ne5MX5zxhhJROh5NhRw8ynlnlWV66P2hzoPbaa69x4okn8vrrr+/eGYmIiIiIiIiItENhVjHvPfQpeIKom1++ytjLrCUrZjYtURwwpqkqbfNyd5BkDbHQuVcamZ7qMoBug7s0G8fqCcqqy2v47tWfAn6r9/AeXHCv/75gB08YxphTR273t3lDPy9vgwCvLv0ziIyJaLFKzWvVbP+w6p7JtxjHm5ZtZcOSzdzy8lXEJfsHfDe9dKURBrZkud/fso9xvHmF+29pMpnI7JduXI+IDvf5PfWkde8Ango+u83e6rf2Fe1a8hkaGsp1113HI4880upzP/30E5dddtnOzk1EREREREREZLteve1dI2g66drj6D28x3bf8d3zyxsC2W12stfkgqfrpzXE6hcElReUEx3v3+3TbnMYyxS/+N+3NNT5B15eo04a7nc+csKw7S5vLM0vMzbx7zowwy+I8uoywL0E1NsdtCWr5qz1O8/o09lv+eUzV7xCbFIMnXt1Mq5FxUXS9+CerY7LNs0d+nv+lk6nky0rswHo2C2V8MimPepiE6ON4w2LNtN3lPsbDXWNRmXcvq5dgdrTTz/NuHHjeOCBB7jllltafK6wsJD33ntvV8xPRERERERERKRF835cZCyjjE+N47JH/q9N73kr0Uwmk7GsMmd9vtGdsuvA5kHV1tU5DBjbp9lYvUa43y8rqGDaO783u+9yuXjl1nf8rn361BTqawOHb16+4dLwY4fw9G8PNnsm0hOyZfZNb3bP16rZ64wloF63v9XUhXT9ok1Me/c3Vv7dFI7VVNTyzUvTWh0XYNPypnl6Q7rCrcVGyNllgP/cEjrGG8ebV2TRb1Rvv3nuD9oVqMXFxTFt2jROO+00XnjhBc4//3zs9v2jFE9EREREREREDiyN9Y28eNNbxvnVT11ETEJ0q+/gCbi2rs4BoEOXZKN6aotnDzY8SynxhHQxCe6qtKxVOZx4zXHNxkvNSDaOP31qSrNliz+99wfLZ7g37Q+LDAWgKKuET578utV5Zq3ONY4z+6W7K++2KWp77vo3KNhStN0KtdK8MoqyS/yudRuYSY+hXY3z5294s9l7kx78hLLCiu3M0/23jE+NIzbRvWTU92/Ztb9/I4XUzKa/V+76fPqOamp4sG0l3b6q3V0+Q0ND+eyzz7jyyiv5+OOPOemkk6itbb7pnoiIiIiIiIjI7vTJk1PI3VAAwKBx/TjmwnFteq80v5zayjoAMnyWdG5ZkW0ce5dSmkwm45mi7BL6j+6Fxeofp5QXVnDwCcMAKNhSxG8fzTTuVZVV88ad7xvnNzx/ubEn2Sf/mULepoIW5+kN/fCtlPMvMqM4p5Q7j32Y+A5x2/3d3iWYvm578zrjuLGuEYC+B/dk/KVHAFBbWcfb90xuccyqsmrKCir85whsDvC39Orcs6NxXLi1mB5Du2L2dCENNMd9UbsDNQCz2czrr7/OxIkTmT59OkcddRQlJSVteFNEREREREREZOflbsjnoye+AsBitXDTi1dud08yryzfoKpP055hm1Y0LV3s6rNMsbdPp801czeQ0de/Gix3QwHnTTzDOP/oia9wONxLR9/510eUF1UCcNhZhzDh8qM54xZ3B1Jbg43X//k+Lcla4zPPvp2pr633u+/dUy13fT6T7v9ku787b0Pz8K73Qd1J75Xmd+2ml67kiscvIDI2AoBp7/zGmnnrW5hjUxVdRh/fQM3nbznQP1CLS441jutrGwgNCzGq1nLX5zdbmrov2qFAzevRRx/l2WefZd68eRx22GFkZ+8fKaKIiIiIiIiI7N9eue1dbA02AM689US6Dcxs87tbVzUFVb7h2KalWwAICQuhU4+mKqqBh/YzjpfPWMVhZx7iN15pXhk9hnZl0Dj3c1mrc5j2zu9sWLKZ715zd/4Mjwrjuv9eCsAF951FgqeibMaXc1j489JW5xmXHENsUgwlOWV+9ydccbQRRG1ZmW0sJ/UKjwrzO89dnxfwOykZSX7ncckxJHSI5+IHzgHPEtmXbnkbp9PZ4hzZpkJto+dvaTab/DqlAoT6NChwePasS/P8vWsqapt1Nt0X7VSgBnDzzTfzwQcfsGHDBsaOHcvq1at3zcxERERERERERAJYOXsts79dAEBy50QuvP+sdr3vW6HmDdTKCsrJXusOnHoO62osywT8GhGsmLWG026a0GzMvA0FXPbv84zzd+79iLcmfmhUW110/9mkpLuDq6jYSK584kLj2ZduebvZvms1FTWU5pX5zbE4p9TvmWFHD+LJn+43wrmG2ka/+92HdPE7z9mQ32ze6xdvYtGvy/2uPXXZywCceuPxRki2avY6fn7/z2bvB/pbVpfXsGmpu0Kt68BMQsNbDvq8v9s3wMxZ33ye+5o2B2rJyckt3jvvvPP45ptvKC0t5dBDD2X27Nm7an4iIiIiIiIiIn4mPdC0vPHC+84iIjqiXe9vXdO8qmrpHyuNa0OOGOj3fHKnRDp2TQFg9Zx1RESHE5cS6/dM7oZ8Bh3Wj3FnjwbPvmrzflwMQEp6UrMQ7piLxhmb8W9dlcOvk2f43fddSumt8PIGbF6DDutLeq80npx+n9E4wdchJw33Ow+05PO9Bz9tdm3JHysoyi7BGmLl+mcvM66//9CnzYK/bZelAiz7a5URJA45YkCz8cN9Kum8FWq++6rlBQj+9jVtDtQKCws599xzW7w/fvx4fv75Z0wmEy+//PKump+IiIiIiIiIiGHZX6tY+JN7iWRa9w6Mv+zIdo+R5VmmGJMYbeznteT3Fcb9QCHQgEP7AtBYb2P9os0MPdI/dMv1VFVd+cQFhISF+N07/19nNqvSMpvNXPPURcb5R49/aey7RgvLUnM2NgVNYVFhRMW5Q7Rug7rw6A//IizSf4ln/0N6YzI37SuXvS7Pb9nmmnnr+fub+eCp9Evr3sF9wwXPXPkKAMOPHcKI8UMAyN9cxC8f/uX3De88wyPDjKWj2/tb+s7TYfcu+exgXDugKtQALBZLq/dHjRrFn3/+SefOrbdqFRERERERERFpL5fLxTv3fWScX3jfWVhDrO0ao7aqjqJsd2PFjL6djUYGS/5wh0AWq4UBY3o3e2/AmL7G8YqZqzn1xuP97nu7jaZ168C4s5r2WAuLDGP8ZUcEnMvAQ/sZgVP22jz+/KxpxV+gpZQbFm02rsUlxfiN1W9ULx759m6/ax8/NYVOPkGVw+agJLepys230u/8f53Jza9cZZwv/GkppfnuZy+4t2lJ7UePNzVcaGywkbfR/bvT+3TCbHbHTEs9f0uTyWTsK+cr3CdQs9vdAZ9fhdrGljuf7it2eg+1bfXr149ly5bx448/7uqhRURERERERCSILfplGcv+XAVAeu80jr7gsHaPUbi12Dju3Msd4pQVlBuVVr1HdA+4hHSgzz5qy2euZtCh/QiLCPW75lXg842G2gZWzlrb4nwuuPdM43jyY18YFWT5W4p85unuwum7DNS7H5uvoUcOJDSiqTpu/tTFxKfG+T3jraRbPnO1sSS1Y9cUjr/8SEYcO4QOXdxLW10uF/+96lXPb+/L0CPdwV/Oujz++PRvAEpySnE6PIGY529ZXV7Dek/w121QJrGJ/sEf2+yh5vRUqHXsfgBXqLVVXFwcxx577O4YWkRERERERESCkMvl4t37PzbOL3rgHL/GAW1VXlhhHCd2iIdt9087vPkSRYAuAzKIiosEYMXMNbhcLsacOtK4n7PWHXYt+nUZy/9a5ffuK7e967ec09fQIwfSf7S7Im7z8ixmTZnXfJ4d3fMsyvYJA3unBRzPuwzUa8XMNX7nC39xL5ed5PO3vODeswgJdQdxNzzftGfa3KmLqCytAk8Fm9dHj32J0+mkzGeOCZ6/pe/+aYMP7x9wjmE+gZrDE8hFRIWTmJYAB9oeagArV67k4osvZuTIkUyYMIFJkyYZfyRfH3744XaXh4qIiIiIiIiItNXcqYtYNXsdAF0HZHDEuWN2aBzfoMpbveW759fgAHt+4dnzrP+YPsYYOevzufKJC4z7dpuDqrIq3r2vKajyVnttWLyZ6e/+HnBck8nkt6Ry8qNf4HK5jHmGhocQER1OZUkVtRV1xnNJnRICjhcV23qDht8/nsXi35az+Df3b+7UsyPHXny4cX/0ySNJ9lS/uZwu/nfVa+AN/jy/f/OKLGZ+PW+7f8tA+6fhCc+8vHuoAaSkJwJQXljpt9fbvqjNgdq6desYNWoUn332GS6Xi+XLl3PZZZcxbtw48vP3/eRQRERERERERPZPLpfLb7+vix88x9ivq73KCyuNYyME8uz5ZbaY/ZZ2bmvAmKZ7S/9YSWpmil8DgicueoGVf7uXd3bpn84db19v3Hvn3o+oqawNOO7I44fSa3h3ANYt3MTcqYuMecanxmEymVj650q/d+JT4gKOFekTqAXaXy53Yz7v+IR+F91/drNKv+v+e4lxPHPKXKrLq93Bn0+V2uRHv6C8wKdCzfO39O6fBjB4XOAKtfDopkDNu2QUICreXV3ncrmoq6oL+O6+os3/9917771ER0ezbNky5s+fT1ZWFu+99x7Lli1j9OjRrFmzpg2jiIiIiIiIiIi0z9/fzmfdgo0A9BzWjbGnH7zDY21bVVVWWGHsn9ZnZI+A+6d5DTt6kM+c3EszO/Vs2vtr/rQlxvElD53L0CMHcpinQUFZQQUfP/5VwHG3Das++PdnVBY3BWpssywVIMGzDHRb3qWbAHabnd4jevg/4IKVs9wZTma/zhx53thmY4w7azSJae7xXU4Xz133BmwT/K1ftIllM5qWtsanxlFdXsOGxe7907oP7kJsUvP909imKYHT0bTyMTq+ablqdXng8HFf0eZAbfbs2dx000307NnTuHbhhRcye/ZszGYzhx56KHPnzt1d8xQRERERERGRIPXVc98bxztTnUazQC2WeVMXGectVVR59T24p7Gf2cKfllJXU0/3IV2M+95qq+5Duhih31VPXkhIqLtS7Iv/fddiB8vRp4yg68AMAFbPWY/T6TLm6HK5mOszT4CktMCBmjXUvyptwNg+ARsYAFz8wDktbtl11ZMXGsd/fj6b2uq6ZsHfgp+WGsfxqbEsmL7EmHdrf0vf/34un6Wd0Z496vA0N9iXtfn/wJKSEjp27Njset++fZk1axbp6ekcffTRTJs2bVfPUURERP6fvbOObiJrw/gTa5K6u0NboLi7O4u7LLaw2AIr6LcC6+jC4iyw6ArL4u7uUKBogbq7t/H5/kgySRptk5bSvb9zOGRm7ty58ybp3Dz3FQKBQCAQCIT/KPEvEul8X76hXmjVr6lZ/eVlanqoXfv3Nr3dZkALPWfJYTKZaNO/OQBAJBAj4nwk7J20vbCGfdafFo28gjww9LMPAABikQTrZm3TmY+eyWRqiFXqY4yJjEfym1SN/S5ezjrHyOFqCmoR5yOx+M85Wu1cvJ3QfmgrvffafVwnOLrbAwqhcP2sHYBC+Atq4A8AyE3L0xjnVQ1bNtfbtzrqudI0PdRqiKAWGBiIyMhIncc8PDxw9epVNGnSBAMGDMCBAwcsOUYCgUAgEAgEAoFAIBAI/1GOblQ57gyY2dss7zQAyFXLocZis/DwnDxM09XHGXVbhxg9v+0gVbjpzaP3NEQgJW0GaYpJo/83hC4i8ODsE5zeflFn3x2GtYabn6Y3maObA64duK3V1sVHd1EC9ZBPAIh/kaQz3xqHxzFaUHLyT6qiC5f/ug5BiQBMJhNDPv1Aqy3Xhot7JyMAAA6udnoLEtAw5P8pPdqglkMNAIprSshn586dceDAAUgkEp3H7e3tcf78efTu3RvHjh2z5BgJBAKBQCAQCAQCgUAg/Acpzi/G+T3y6pg8Gy56Tuhk9BxjKEM+7ZxscP/0I0jE8iqTHYe1MUmsa9y1PviKpPp3T0SAb6edc+3QmpMa29Z2fHz223R6e8sXu5EWl6F1HovFQu9JXTX2Obrb46oOQY1nzdPaBwBsrnYhgjvHH8LW0VpjX1pMBjISs3T2oaTP5K6wc7YFAEglMmxf9CcAoNOINhrFD6x4HDy9+gLCUhEAoP3gVlqFDsrCYMgVNUpNULNzqoEeahMnTkTbtm3x4MEDvW24XC4OHz6MOXPmoGPHjpYaI4FAIBAIBAKBQCAQCIT/IOf3XIOgWAgA6D6uI2wctL3BykthThEAwM7FTiPcs+PwNiadb8XloEWfJgCAguxC5KbnabU5te2C1r5WfZui92S5WFZaJMCqyZs0wh2V9J7cRWO7tEigFe7JYDIMjq8sN4/eA1OHwDWvy1KIBCK9fQHA6MWD6dcX/7gGAODb8NBtTAfVNXlWuHbwDr1tii1pQY3S7aFWYwS15s2b48CBA2jdurXhDplMrF27FpcvX7bE+AgEAoFAIBAIBAKBQCD8B6EoCsc2naG3B8zqbZF+pQqPNCaTWe5wTyVt1XKtPSlTfRMAslNyEfssQWv/9F8mwN3fVX7elec4tlE7D727vxv86/rS2w/OPtZqY8j7i6MmqCm9yJ7fjEJpkUCrbWpMOn6dqTunm5Khn30AFkd+vaLcYkRek+ez6zu1O91GUCIsX7inmiiofm2NHGq5NURQIxAIBAKBQCAQCAQCgUCoKh5dfIrEqBQAQKPO4Qiq72+RfpWVOAXFgnKHeypp2bcJLWrFPY2n9zu4qgoU7Fj8h9Z5NvbWmPf7THp7+6J9SHqdotWuTqva9Ou3j+K0jrM52mGdSqx4KkHN2VOVZ00sEOtsf27XFZzfc1Vvf0wmE4271Ke3d371NwCgdpMgMFlym0lEknKFe8r7VXjZqWl5bI7qPKlEarSPdwkR1AgEAoFAIBAIBAKBQCBUO45uVHmnDbSQdxoASBWCWklhKb3P1HBPJXZOtmjYqR4A0KIcALT6QFWB9OH5SJ0hnU26NqDvR1gqwspJGyGVaopHfmE+9GuxUC6EqXvQla3kqQ5HTVBTF/iUMBgMeNf21Ni36dOdyEzK1tvn5J/G0K9f3H4NkUg+Jo6V9jg6jmirtx+NcegQMJXvDQBarKuuVO/REQgEAoFAIBAIBAKBQPjPkR6fiTvH5TncXX2c0XZgC6PnmIqsjKBW3nBPJephn0oC6vrBxkGe/F8ikuDE1vM6z/1o2Vha1Hpx+zX+XX3C6PVa92tGv2boT6Gm4aFmxbeCo7tmhU8Wm4mhn/bT2FecX4LVUzbrDf0MbRoMJw95PzKpDPuXHwUAMNmaspK9iy0aKYRGYzDV8sAphUcZEdQIBAKBQCAQCAQCgUAgECrGhb3XIFNUf+z3cQ+TQghNhRZtFNpRecM9lbQd2FxrH5PFROeRKg+tQ2t0C2V8Gx7m75xFJ+bf/c3fiHueqD1GNdoNbUW/luo4roTLs1K1E0vhV8db4ziLzcIH03uCXca77OG5Jzj5m3YxBSXq1UdP/nYOAEBJNQW4wPr+Jr9X6oKZsjDCf05Qe/36NQoLCy3RFYFAIBAIBAKBQCAQCIT/OFcP3KJf95zQyWL9UhSl5YXVeVS7CvUV/SReax+LzcLEH0bT28lv05CVkqPz/Prt6mDY5x8AAMQiCVZM3ACJWALoEdRyknPp17qOK+Fac+nXYrFEK7k/g8kAk8lE0+4NtM7dOm83UmPSdfY75qshdCGB7ORcxD1P1BL2lBVUTUFdMFMWTFC/L0uKqJWB2YKaUChE3bp1cfjwYcuMiEAgEAgEAoFAIBAIBMJ/lsSoZMQ+lVfIrNs6BO7+bhbru6wQFdI0CHVa1tbb3hDX/r2ttY/JYsLR1R4B9VRVOncs/lNvHxO/HwX/uvJ8aW8exuDPHw/pHCcA3DnxUO0+9FflVM9rVlpYStuyLFOWjdPaJygWYtVHm3TmfuNZ8xDWopbaff2hlfst7lkictPz9I5NHXWvQEGxECgrqP0XPNQMlVclEAgEAoFAIBAIBAKBQDCVawfu0K87DitfsQBjlK0cOWBmbzrssjyIhGLcOnpfvqF2enF+CQBg1KJB9L4bh+7q7ceKZ4UFuz6hvbX2ff8v7p95hPxs7SjAW8fu068pHYKXkqI8lUeaQOH5pY6yiEJQfX84eznS+5W53yKvvsCR9ad19j1h6Uj69YNzTyCTaI6DoigN4c8QSm88ALB3kRdP+M+FfBIIBAKBQCAQCAQCgUAgWAL1cM+Ow1pbtO/c9Hz6NYvNRJfRFQv3fHjuCUoK5EUN3Hxc6P0v77wGAHQd04EuDiAoFuDm0ft6egLCWtTG+CUjAIUg9dOYX/H85iv6uFL0SovNoPcp88vpokBNjCtUE9eUwp9EJEFxvnx/v6nd6cPqRQJ2LP4DiVHJWn0379UY1vZ8uh+6a7Vzbxm4V3XUz7exl4t5pMongUAgEAgEAoFAIBAIBEI5qcxwTwC4sO8a/drexQ5cPtdge32oi36NutanXz+/FQWpVAomk4lWalU59313wGB/o/83GO0GyauGFuUVI0YtP1vjLtq5ziiDgpoqj1lxntxjLrhRAHg2qnu99OcNAMCoRYNpMawwt5gWGEUCMVZO2qjl0QcAnYa31dpnY28NZy8nAEDEhUiUFmt7xpVF6Smn7iGofj0iqBEIBAKBQCAQCAQCgUAgmEBlh3ue/O08vc3hcirUj0goxu1jDwAA1vZ8BNTxoY8V5hThwdknAICPlo2h9799HIuMhEy9fTKZTMzf9Qn8FH2pp9aq1ThAq72hkM/CXO3CAB2HtdEQrk5tvwgoQk7rtg6h96fHZcInxAsA8PLOGxxYdUyrr0k/jtLax2Iz0aa/vOqpSCDGw3NP9I5PiTJPG5OtVpygUCXEqQuA1REiqBEIBAKBQCAQCAQCgUCoFlRmuOft4w+QmZhNb5fqyC9mCurhnu0GtURhmSqap7dfAAD41PKCT21P+U4KWD1li8F+beytsfTQfI3QSyjEtpCmQRr7DKWyV3qlqdN2UAsNserto1i8fhgNAJi2cjy9/8Xt15iybAw9hj1L/0HsU81qpk7ujnDzc9HYV1okoD3sYELYp0wmAxT3wOaoqnnmZahCcp08HHWdWm0gghqBQCAQCAQCgUAgEAiEd05lh3se3XhGY7s4r7hCRRY1Rb82yMvM1zh++/hD2httzuap9P5HF58iJy3XYN9FuUVa+dFeP4xGmwEtNPYZGndJYanGdnCjANg52Wq1O77pLACgXpsw+IZ60fuPbTyHYZ/3BwCIRRKs/2SH1vXsnGw0tkUCMeq2CYW1nTy/2p0TD3WGiyrJSVNVAlX3FMzLLKBfO7jZ6z2/OkAENQKBQCAQCAQCgUAgEAjvnOsHVdUwLR3uGfc8EY8vPQMAcPlWgCKxf1nxyRhikWa4Z9MeDTW8qqCoVPnPSnmoZNNuDeEZ5A4oRLDVUzYb7L+s6AcANw7e1fJQM0TZ/GUdh7XRGCPbig0o8snRwt8mNeHv8lP0m96TDv18ev0lrh9UheKmRKchJjJB67pigRgt+jQGFKGvz2680mqjJCclh35txbOiX6uLk07uRFAjEAgEAoFAIBAIBAKBQDDIo4uR9Ot2g1tatO8/fviXfu2j5o1VnFes5wzdvH4QQ4d7turXFFZcDvIy5F5VDIYq79ep7ReRnSr3Rvtk/Uf0+fdPP0ZeVoHOvhOjknHl75sAABsHa3q/WCTB9kV/wD3A1aQxCkuEGtvtB7ekxwgAYS1qAYqiAPtXHAUANOnaAF7BHvIGFLD+k+2YtkoVCrptwV6IBCIAwB8/HtR53aK8YrQdYFrYp9I2KJMrTV34Ix5qBAKBQCAQCAQCgUAgEAgGEAlEeHH7NQDAM9ANXkEeFus79mk8ruyXh2k6utmjduNA+liRjnxjhnhy5Tn9Wll9UykCObg5oP/0ngAAsVCMf1cfBwC06tuUzjlGURTWTNWdS23PtwfocM8BM3trHIt/kQQ2h62xTyQS6+xHWCKiXzu42cO/rq+GUNWqb1NaxDq945JK+NswmW7z8OwThLWshabd5feYFpeJQ2tPIul1Ci7suQoAsLbla1w3KyUXLfs2BYstz4l25+RDneNDmZBPvi2Pfq0U/qzt+BWuwFpVmC2oWVlZ4fLly+jVq5dlRkQgEAgEAoFAIBAIBALhP8Wre28hEsgFooadwy3a9+6l/9CvRy4cBAdXledTUTk91J5cVQlqjTrXA0VRtFjl6G6PYV/0hxVPnhPsxJZzyFd4o81YM5E+7/bxByjK06zEGfssAVfVRL9hn/ejjzFZcukm5W2axjmiMp5o9H6BSlBr3CUcDAZDQ1DzDPLAgBlyDUcsFNOVPFv2bgp3f7kXHEVRWPvxb5i+egJdoODPnw5h++I/aNFvxMKBsLZXiWpHN56GraMN6rSqTY83N10lnKmTl64aj6agprJldcdsQY3BYKBTp07w8LCcekwgEAgEAoFAIBAIBALhv0Pk1Rf060adLCeovYmIwc3D9wAAzl5O6D+jJ2zVEvTnZ+oOv9SFRCzBi5tRAABXH2d41/KEoFhAC4GO7g5w9nRC3yndAQCCEiEOrjkBAOgwpDWcvZwAAJSMwpppv2n0vWfpP3Ti/xELBsHexZ7O9ebs5QQGQ7PyJwCUFukW1CRiVTEApS3VBbWywt/Jrefp3GUzf1V5qd05+RAuPs7oO7W74noC2pb2LnYYPKcvGnSoS7ePOCcP2Q1vW4fe90xhr7Lkq4W92jra0PYtzCmibVndISGfBAKBQCAQCAQCgUAgEN4p6p5fDTvVs1i/u5fsp1+PXjwYXD4XnoGq6qGpMekm9/X6QTQECq+wRp2Vnl8qYUgpAg2fPwBsjjzs8eiGMyjMlYtE09Vykt04dBclRfJcbG8fxeLGIXlBBmdPR/SfIQ8b9VCMMz+zAJN+GK01nrLFEJRQalVCld5+Zcfp5OFIC2Vy4e8kAKDdwBZw8VEJf2un/YYJ343UyOkGACMXDIS1HR89JnSm95UWCfDy7mvUb68S1J7f1F2YoCBb5aGnFDjzswq1bFmdIYIagUAgEAgEAoFAIBAIhHeGSCjGi1tyTybPQDd4BrpbpN8Xt6Nw92QEAMDNz4UWkLxre9JtUqJNF9SeXFF50TVUeH6lx2fS+1w8HQEA7n6u6DWxCwCgpLAUR9afBgB0Gd2eFopkUhnWz9wOaIl+Q8Cz5mqMUywUo9u4Dhgxf6DGeE5tu6g1RqlEqrHtX8dHPs4EtXEqPOVGzB8IjqLi57GNKuFv2qoJdNubh++Cw+Wg90dd6X1sDgv9Z8pDRv3DvDWut3vJPwhvG0Zv6xPU1ENt7V3s5GNUs6WzwpbVGSKoEQgEAoFAIBAIBAKBQHhnRKnlT2tQSd5p474aBiuuPMTRu5a6oJam81xd6PKiS3yVTO/zU4hXUORqU+Y+O/zrSZQUyr3RPvp5DN3m8t838OTqc9w5IU/e7+brgr5Tu9HHfdTGmRqdjinLxoKjuAcAOPHbOTy69FRjjE+vq0Q/FodFh4oqx+ngakcLWG6+LuipLvytUwh/I9vBSSFoyWQU1s3chsQo1X1KxFI8OPsEAOAZrJn+6+Xt17B3saNt8SYilvbqU6dYrRiEg5udQVtWV4igRiAQCAQCgUAgEAgEAuGdoV4501L50yKvvUDEBbnY5BXsgZ4TVaGJds62dN6uson+9SERS/D8htzbysXbCT4K77GEl7pFIK9gD3Qb1wEAUJhbTOdS6z2pKy1oSSUy/Dx2HX3O2K+GwopnRW971/aiXye/TQODwYCTh1ooJAV8M3A5Xt59Q+9SeuQBoHOkFecXIzslV2uMADBq0SC6KuehX0/Suc2mLBtHt7ny903cO/lI47zf5u+BSCgG34ZH54aDQphLfpOK+u3qKO5Riqj7b7XsqRQYAcDJw9GgLasrlSaoRUdHV1bXBAKBQCAQCAQCgUAgEGoImpUzzRfUKIrCrq//prc//GY42Bw2vc1gMOhwyszELIiEYqN96sqfBgAJUfpFoDGLh9BeavuXH0FGYhYAYMJ3I+k22Sk5AADPIHf0mtRF43yvWirvr1SFJ52yUIESQbEQX/b9ETGR8QCApzdUIZY2dvIKnIlRKaoxhmmO0TPQHT3GdwIUYZhKu/Uc3wkOrnLhT6aWk015flpsBg7/egoAaHFRyaF1pxDeThX2+eyGdthnaZGAfq0Mg1X3gvP/LwhqqampOHfuHH755RdMnjwZLVq0gK2tLUJDQy0zQgKBQCAQCAQCgUAgEAg1EqlUipe3XwMA3P1dLZI/7cr+W3h6/SUAwC/MG13Httdq460Qq2QyCulxGUb7VBeFGnZUhaUmKryq7Jxs4Ohmr3GOb6g3Bs7qDQAQloqwbcFeAMCAGb1oDzkl474epiH6oYxQlawQ1FiKYgfqFOYWY1Gv75H4OgVxTxPo/TaKayS+UhPUdAhVE78fBb4tDwBw8rcLePsoFgAw6UfNQgju/i5YtG82mEy5mPjnjwdRkF2oIfwBwL1TEZqFCW5pV/oUqoWBung7KcYptyXPmgs3Pxetc6obJgtqeXl5uHHjBrZs2YJPPvkEnTp1gqurK3x9fdGnTx/Mnz8f//zzD4RCIXr06IHPPvusckdOIBAIBAKBQCAQCAQC4b0mNTodwlIRACCsZW2z+ysuKMGWL3bT21NXfAgWS1uE0sijZkLYZ+wzlVClHGdJYSkyk7IBAH51fWmvNXXGLx1Be3pd2X+L9sZr2FktVxwD6Diirda5HgFudDimcoxlRTePAHkl0Nz0fMzvupS2JQBYKypzJqjlJvOvqy2ouXg5YdzXwwCFd9/Gub+Doih0HdMBDKbqnnxCvBHarBb6fNSNvv8j609r2BIA0uMy4ernQnuevbgVBZlMptFGKFCN083XGWKRmC4Q4RvmDSaz+mcoM3mELi4u6NSpE2bOnIk//vgDYrEYAwcOxPLly7Fp0yZQFIU9e/YgMjIShw8fxqpVqyp35AQCgUAgEAgEAoFAIBDea2KfJdKvA+v5md3fniX/ICdVni+szYDmaNO/uc52XrXKV+kzTjFOJpNBhyMmvVZ5fpWtdqnE1tEGk38aS29vmrsTGYlZiDgfqWpEAbu+/FPrXBabBY8AV0AhPFIUBbaVpjgY0iwYQQ38AYDOk6bERiGoJb5KUo1TTyjl4Ll94Rsqz9n27MYrXP77Jv788RAotXDPp9dfQiQSY/T/htBC35H1p+Di7azRF0VRuLj3Gh32WZxfopEfDQAkQgn92sHVHilv0yCTykU3vzq6bVndMFlQYzAYCAwMxJUrV5Cbm4tbt25hx44dmDdvHrp37165oyQQCAQCgUAgEAgEAoFQ44h/riao1TdPUIt+Eocj6+V5vbh8K8xcO0lvW98QlaAWp+Z9pgupVIqEl3JRyru2J104wNQk+r0mdUZIs2AAQExkPL4duhKCYs3Kl8e3nodEItE61ydELnKVFJYiMzELTu6OGseT36Ri2dmv6Jxw6tgpQj4TFCGfHC4H7gqBriwcKw5mrFHZa8vnu3Bg1VGNNhKRBNsX7IVHgJtGwYWYJ3Fa/Z3ffRWhzWrR22VtLBFL5S8YAJPJpMcIHXneqismC2rPnj1DgwYN0KNHD0yfPh2pqamVOzICgUAgEAgEAoFAIBAINZr4FypBLSC84oKaTCbDulnb6QT6Y74cajAfW63GgXQusFf3tKtQqpMWmwGRQKw1xkSNUEpfveezWCzM+nUyvf36QQwAwNbJBjwbLgBALBBj51d/a52rLkq9vPsWXsGa95T0OhUObvZYcf4bui8lMqkMErGEDhf1C/PWGf6qpGWfJmj9QTNAEUIqlcg9xhp3rU+3OaEQ/kYuGESHuF7ZfxNsK81Q1DcRMRrhpep53JRjk9uGqThumi2rEyYLanXq1MGRI0dw+fJlvHjxArVr18aCBQuQk5NTuSMkEAgEAoFAIBAIBAKBUCOJU3iosTksrWqR5eHcrit4oUh+7xfmjWFf9DfYnm/LR6AiVDLuWQJKi0r1to1/rgqZVA9LjXkaT782FqYY3jYMXcdoFkf4eMWHGK42zqPrT2vlGqvbOoR+/eruG/jV0RSbxEIx0mIz4BHgpuWldvPIPZzdfQVSidSkMQLA9F8m0OGcAODq64zvji6gixaIhRL8/r+/4F/HB+2HtgIU4purj2bYp3ouNwBIUAs7lclkoCi58Km8VqyaLf1rWsinkrZt2+LatWv466+/cPr0aQQHB2PlypU6k+8RCAQCgUAgEAgEAoFAIOhCIpYgKUruueQb5q2VcN9UCrILsW3hPnr7kw1TYMXlGD2vbku5WCWTUbTXmC7UCxIoPdQoisKLW/LqpHbOtvAK9tB7vhI3X83KlbUaB2LcN8PB5ctDSIWlIuz77oBGG/VCDS/vvkZwQ3+tfhNfpUAmkyHljWZxBYlYinXTf1P11SJE69yyOLrZg8NVvQ8u3s7g2/AxfP5Aet/RjWcgk8kwetFgel9BdqFWXzeP3qMFM/Xw2KK8Yvo1R/E+Pb8pF0N5Ntya56FWlgEDBuDJkyf45ZdfcOrUKVAUhQsXLqCgoMCyIyQQCAQCgUAgEAgEAoFQ40h+k0rn0gqsry0UmcqOxX/Qgk7nUe3QtFsDk86r0zqUfv3y7hu97dTDUpV53pJep9DXDG8bZrQqZVpcBo6sP62xb/WUzZCIpRg0py+9759VxzVyqTm6OcC7llyse/MwBv71tPOLJbxMQnp8JgQlQq1jMrWiAsoiAYbY9c1+jfxuUffe4tJfNzD2yyHgWstDSkWlIvz+5V8IaRqM5r0aAQBKCrQ9/B5deEp7zSVGpUAqlb/X8S9U3mo8Gy4yErPoaql1W4dqeMhVZ8yqQ8pkMjF58mS8efMGP//8M/7++2/4+/tj0aJFSEszXnaWQCAQCAQCgUAgEAgEwn8HiqJwYd817F9xFMc2naP3u/u50oJLeXh+Kwqnd1wCAFjb8TFt1XiTz9UMp3ytcSz5bSr+WXkUxzadxXNFKCmTxYSLt5Piuqr29doYFqooisKG2TvoMEg7Z1sAQMyTeOxd+g8mfj8SVjy5p5awRIhNc3aWGadc+BMJxEh5mw4GUzNC8Mo/t3BknaZYBwBdR3fQ2L5x8A4daqmL1w+jcWzjGQDQyIm2ftZ2ZCXnYMinKuHv31+Oo6SoFKMXD9HbX3ZKLnwUxR/EQjEy4rMAAG8fxdJtnNwd6VBdAKjXJlRHT9UTswQ1JVwuFwsXLkRMTAymTp2KdevWITg42BJdEwgEAoFAIBAIBAKBQKghXP3nFpaPX4/ti/bh2KYz9P5/Vh7FIMcJOLvrssl9FReUYNmH62iRaMJ3I+Hq7Wz0PCV+Yd6wtucDACIuPMWctv/D2MAZuHvyIb4dugrbFu7D+k+200KQTCrDUNfJmNliISKvPKf7qdfWsAh0atsF3D0ZAQBw9nLCt0cWgM2Re2HtX3EUr+68wdivh9HtT267gLwsVfRfnZYq4W/9rB1aotibhzE49OtJresGN9L0+juw+jhWfbQJErF2NVFBiRDLxq2jPdomLB2BbmPlglxRXjFWTd6E8UtH0PaSiqVYNm4dGnSoq+35pqb3pcVm0K+VlVIT1DzU3Pxd6HBPKLz93hcsIqgpcXR0xMqVKxEVFYVRo0ZZsmsCgUAgEAgEAoFAIBAI7zmGwvkExUJc/OO6yX1tnPs7LdjUaxuGgbN6m3zuizuvsX7WdoiFcnGptEiAl3feICMhC2d3XTY4zjcPY/Dk6nP6fsJa1NbbNjEqGZs/20Vvz908FQ3a18WEb0cCCu+15ePXY+Cs3nBwswcUwt0PI35BYW4Rvur/M46qCY+v7r0B9DuZaXB2p7Y4eW7XFSwZvAKlxQKN/Vu/2I1ERT67kGbBGPr5B/hk/Ud03rdHF5/i2MazmL3hI/qc28cfIOl1CkKb1tK8iNr4UqLT6dfKPGrq+3xDvPD8tlxQYzAYtDfe+4BFBTUlfn5++P333yujawKBQCAQCAQCgUAgEAjvKa36NYWdk43e413HdNB7TJ2rB27j/O6rgCLUc9He2Sbn3op+EodP232FE1vPQywUax138XJG93Ed9Z7vEeiGjAS511rtJoHgKXKLlUUsEuPncevoUM9+H/dA2wEtAADD5w+gPbvS4jKx5bNdmL9zFn3ukyvPMdRtMu6ejKALN5QXV7UiCCPmDwBHEcZ579QjzOuyFOnxmYBCGDux9TwAgGfNxeJ9c8Cx4sDW0Qbz1Ma0fdEfCGkarKomSgHTGs/H4fWn9I5BLFDZV+mhlp2SQ+/zru2J6MdxAICAcF/YOur/bFQ3KkVQIxAIBAKBQCAQCAQCgUAoixXPCt30iFUNOtRFr4mdjfaRkZiFtdO20tufbPgIXkHGq2wqoSjKYC6xoAb+6P5hRzossyy9J3WlXxvKn7Zn6QG8eSivHuoX5o1pq1X53VgsFhbung2+LQ8AcGbnZUjFUngGuavGKTPRFU0HXL6VRpGC4fMG4OczX9Ehm68fRGNGswW49Od1/DJlM91u+i8T4BemKnzQtFsDDJnbD1DkQVv24XrM36US2XQJkuqo2zlBIQzmZarCWVlsFmRSGQAg3EguuuoGEdQIBAKBQCAQCAQCgUAgVBl9PuqmtY/NYWHu5qlgMBg6z1Eik8mwcuIGFOUVAwA6j2xr0JtMF7UbB2Hi9/rTVAU1DICDqz3aDW6pdazzyLYQCUT0tr6cX5HXXmD/8iOAQjRatG8O+DY8jTZewR6YuXYSvf3d8FUaOcfMoVaTILxViHk+IV5wdHNAo87hWHPte1q0K8wpws/j1tECV9uBLdB3anetvib/NBoB9XwBRUGBLzotKddYrPhWAICUN6lAmYqgWYkqb7V671H+NBBBjUAgEAgEAoFAIBAIBEJVEtwwAMGNAjT2DZ83AAH1/Iye++/q43h8WZ6/zM3PBXM2GRfhdDHmf0Mw/Iv+Oo8FhsvFo7LCH8+Gi+m/TMSzm6/ofbpEoKK8Yo1iCRO/G4nQZrW02gFAr0ld0GZAcwCAVCIr933ow9XbGWKRPD+cetGA4IYB2PRgOVr3b6bRnm3FxuSfxui0JZfPxaK9c8BkySUkpUeZqUjF8uqteZkFEAnFtFcbi8PCi7tqBQnKFjeo5hBBjUAgEAgEAoFAIBAIBEKV0nZgC/q1tT0fY74cavScNxEx2PnVX4Aigf3C3bNh52RboeszGAxMXfGhlmhm72IHvq08LLJJtwbgquVHG/PlUPBteXhx6zWg8DBzU8tTpmTdrG3ITMwGADToWBfD5w/QOw6JWAIbE/KGsfSEn+pDWKIqOtCgQz2NY3ZOtpj0w2iw2CpJSCKSYFHP7/H8VhR0IZVIwbPRnSvOGFKJlH79+sFb+jXfhoun114CAFy8neBdy7NC/b8riKBGIBAIBAKBQCAQCAQCoUoZ9kV/WNvzwWAyMOvXyXoT+ysRlAjx87h1kCi8nUbMH4BGncPNGgODwcDcLVPRtEdDep+tozX9mslkYvCcPgAAz0B3jJg/AI8vPaMFoua9Gmv1efGP67j8100AgI2DNRbtmQ0WS78YtmryJlzYc9XoWL2C3DUEsLKUFdzS4lSho817NdI4JhKKsfzD9bRHHFcRkpmVnIMvOi/BobUnNXKfxb9IxOedvtEI1dSHi48z/ZrB1PZ2U3oXAgDXmksXbGjes3GFPA3fJex3PQACgUAgECoCRVEoFkmRXSJCdokYJSIJZBTAYjBgw2XB1doKLjZW4JdzNc/SSGUUckpEyC4RIa9UDLGUAhgAh8mEszUHLtZWcORzwNIx4SBoIpVRyC0VIatYrLCljLalE58DFxsOnPhWxJYmIJVRyCsVI6tEhNwSMcQyGUABHBYDjnz559LZmtjSFCQSCRISEhATE4OEhASUlJSAoijweDz4+fkhODgYgYGBsLKyetdDrfZIJBIkJSUhJiYGcXFxtC25XK6GLbncinlI/JeQSqUatiwuLqZt6evrS9uSx+OZ0Nt/G5lMpmHLoqIiyGQy8Hg8eHt7Izg4GMHBwcSWJiCjKBQIJMguFiGnVAShRIYvItaAxQAc+RykFQrgYm0FDktbNKIoChtn70Diq2QAQEjTIEz4bqRFxsVisfDD8UWY3WoxEl+nYuy3I5FaIEB2sQgFQglCp/TGN1N6g8dhIj5PgIjbbwAGA6AotOitKaglRiVj3cxt9PbczR/D3d/N4PWVHlrGyErOxfyds7Bm2m/wCHBFvkAC5zBfOIX5gOtgDTtnOxRmFSA/LgPZLxOR8kpeUTO4YQBcvZ01+tr6xW7ERMYDAALD/fDd0YVYOXkjnl57CalEis2f78KzW6/wxfYZAEXhh1FrIBIYLj6gZOT8Adj06S4AgK2bHax93eFS1w92/m5gcznI93FG07kDkBuVDFluAbJT83Ta8n2ACGoEAoFAeK8QS2WIySlBVEYRckuNP9jdba0Q5maLACfrKhUHckpEeJVRhNicEkiMVGjisBio7WKDMDdbOPA5VTbG94XcEhGiMosQnW2CLZkMBLvYIMzdFk7EllrklYoVtiyWi7sGYDMZCHaxRpibLZytiRhUlpSUFJw7dw5Xr15FcXGxwbZcLhft2rVDz549ERwcXGVjfF9IS0vD+fPncfnyZRQVFRlsy+FwaFvWrl27ysb4vpCRkYELFy7g0qVLKCgoMNiWzWajTZs26NWrF0JCQt47z5DKJisrCxcuXMDFixeRn59vsC2LxUKrVq3Qq1cv1KlTh9iyDCUiKV5nFeF1ZjFKxVKDbRkMwN+RjzA3W3jacWlbntp2AWd2XgYU3lSL9s0Fx8pyz3k2h42vrnyPqIwiJOcLkPo6U29bu2EdMKhtPUQfvYs6HerS+0uLSvHt0FUoKZR7cXUb1wFdRrUzeu35u2Zh/aztSFRUwNQLg0LbEe3g2qUR3mQVo1ikbUt3tdcyiRRJN17AiyGvaKq05fm9V3Fs01kAAMeKjcV/zIVXsAdWXliC37/8C/+sPAoAuP7vHcRGxiOogT/iniXKh8BgGKyOCgCBDQPQckIX8OoFwLdDOJhs7cXteg2C6NdN03Lx9sht1DXT2/BdwKCMWaMGU1BQAAcHB+Tn58Pe3v5dD4dAIBAIBqAoCm+zivEgKQ8iI0KALvgcFloHOMHfkV8p41NSLJLgTnwukvIFJrTWJsjZGi39HcHTMfn4r1EqluJOfC4S8oyHF+giwImPVv5O79xLsTogEEtxNyEXcbkVs6WfIx+t/Z1gbUVsWVRUhF27duHatWsVOr9JkyaYOnUqXF1dLT62943i4mLs2bMHV65cMfoDTRcNGjTAtGnT4O7ubkLrmk1paSn27duHCxcuVMiWdevWxfTp0+Hl5VUp43ufEAgE+Pvvv3H69OkK2TI0NBTTp0+Hr69vpYzvfUIik+FxcgFeZBSiIqqDizUH7QKdkfY0Hl90+oZOsL9o7xx0G9vBYuPMLBLiVlwO8gSScp/LZAANvOzRwNMOP41ei2sHbgMKr691t3+kc7EZQyaT4d6pRziw+hgir77QOObm7wqxSIKPj/4PaUw2jKwt6sSZz0HbQGfkvk7G3HZf0t5mn2+brpVD7tbR+1gxcQOK80t09tV2UEs8vfochbmai0mO7vao27spWswfihwTFr3LwmQA4R52aOTt8N54yBNBjQhqBAKBUO0pEUlxMy4HKQUVE6nUCXa2Rit/J1gZyEFRUaKzi3E3Ideo548xeGwm2gQ6V7r4V52JzSnB3fhcCMtZRaosXDYTrf2dEOhsbULrmkl8bgnuxOdCYGblMCsWA638nRDsYjxxck0lIiICW7ZsQV5enln98Pl8TJw4EV26dLHY2N43IiMjsWnTJuTk5JjVD5fLxfjx49G9e/f/rFfQ8+fPsWnTJmRm6veoMQUrKyuMGTMGffr0+c/aMioqChs2bEB6erpZ/XA4HIwcORL9+/f/z9oyq1iI67E5KKiASKUOA0DUH5dxb90JgKIwaHYfzPp1skXGKJNReJSSj+dphTBXFGEUluDY1A3Ij0mDtT0fG+8vh29IxQTqqAfR+P3LPxFxPhIAMP/QApSG+CGvAiKVxhgBRB+4gdu/HAEllaHvlG747LfpOtumRKdh6dCViI1M0Drm6uOMTQ+W4+qB2/j9yz9RWiiAq68zFt5egcjUArNt6cjnoEOQ83vhHU8ENSKoEQgEQrWmQCDGudeZOt3aK4ozn4PuoW4W81yiKApPUgrwJNVweE15aeXviDrudhbt833gaWoBIpINh9eUl+a+Dgj3/O8961+kF+J+onniT1maeDugofd/z5YXLlzAtm3bKuSxoo8hQ4Zg5MiR/7kf3FevXsWmTZssassPPvgAH3744X/Olrdu3cL69eshlVruGdmzZ09MnjwZTOZ/q37dvXv3sHbtWkgk5glA6nTp0gXTpk37z9kyKb8UV95mQ2rB73jsmYcouPgIK859DTZHf+YqQYkQTBYTVlzD4aBSGYUr0VkVjijQhaioFJc/345Plg5H2wEtDLYtzC0yWp00NTYdmQIJnpZSRlNelIeES5HIPHoLqy4tNWinjXN/x5H1p3UeG714MCb/OAZSqRTPbr9GtrsLEguEFhsjm8lA19qu8LKv3rkJ/1vfbAKBQCC8VxSLJBYX0wAgp1SM868zITLTY0fJ09RCi4tpAHA3IQ+vMw3nE6ppPE8rtLiYBgAPkvLxMr3Q4v1WZ15lFFlcTAOARyn5eFYJn/fqzJUrV/Dbb79ZVAACgEOHDuHff/+1aJ/VnZs3b1pcTAOAEydO4M8//7Ron9Wde/fu4ddff7WomAYA586dw+7duy3+HlVnHj16hDVr1lhUTAOAy5cvW1yIr+6kFghw+W2WRcU0AAjq3Qx9N04Hy0BKjFvH7mOUz8cY6TUVqbH6vQxllOXFNACwsuWj56aZCO3WUG+b0mIBlg5diSEuk7Bh9g6D/TFdHRFpYTENAPy7NkS/LTPBttIvTKbHZ+LYxjN6j/+97AjePo4Fg8lErpebRcU0AJDIKFx8m4X0Qsv2a2mIoEYgEAiEaomMonA1OtviYpqS3FIxbsebF2oEACn5AjxKsbwApOROfC6yi0WV1n91Ir1QiAdJlheAlNxLzENGUfWemFmKzCIh7iXkVlr/D5PzkWqBEOz3gbi4OGzdurXS+j9w4AAePXpUaf1XJ5KTkytFTFNy9OhR3L17t1L6rm6kp6dj/fr1lWbL06dP4+bNm5XSd3UjKysLa9eutbgwqeTixYu4dOlSpfRd3SgVS3E1OrtCOb5MIblEglcZuhcaT/52Ht8OWYni/BIU5RXj3K4rGselUikyEjIRee0FjpyOtLiYpoTBZuHM01S8eZoAYanmnCMvMx8Lun2Lm4fv0WMuLdLMbVpcUILYp/G4ceIhzj5NhrSSjJkmlOHCrbfISsnR+XdEUCyAzMC1KYrCxjk78SKtEPEVzM9qDKUXoUBSOd9NS0CqfBIIBAKhWvIyvRCZlSwkxeWWIjC3BAFOFcuvJZLKcMsCopwhKAA343LQr67He5OgtSKIpTLcjKtcWwLAzdgc9A/3ALsGh99IZRRuxuWYncPEGLficjAg3BMcVs21pUQiwaZNmyrth7aSrVu3YvXq1bCxqbn56WQyGTZt2gSx2LwcQMbYvn076tatW6PTuchkMmzevBlCYeUuEPz++++oX78+HB0dK/U67xKKorB161aUllaOIKBkz549aNSoUY0uRkJRFG5bIPepMSKS8+HjwIc9j01fd8/Sf7Dve01v37O7LiMzMRvp8RlIi8tEZmI2pBIpnEK80Wf3Z5XqWSRls7Dnnzu4+9MBuPu7wifEE44ejnh47gnyM1Ue3hKxFMs+XA8mi4n0OPk4C3PkgmG778chqFflFlxJAgtb238NUWY+fEO94RvqBZ/aXvAJ9YJvqDeWHp6Pl7dfIzMpG5mJ2chMzEJGYjZkive4Xo9GlbqoDAACiQz3EvLQMdilUq9TUUgONZJDjUAgEKodpWIJioRSSCkKEimFa7HZkMgo9A5zhyOPg1vxORZbDeOxmRjawAvsCogCL9IL4GrDhUxtnCwGA11qu0JGUWCAgTvxucgTmP8DsqmPAxp41dxnVURSHp6myUMy3Wys0NzPUcOu1ooqrQDAZjLBAHDiZcWSRjfyskdjHweLjr868SQlH49TNEMyeWym1ucyXyg2+zsV7mGH5n4198f28ePHsXfvXgCAg4MD5s2bB6lUCiaTiW3btiExMRF79uxBdHQ0AODIkSN48uRJha7Vu3dvTJ5smUTb1ZGzZ89ixw5VeJMueyYlJWH69Onw8PBASUkJNm7ciOLiYoP96qJr166YPl13ou2awOXLl7F582YAQFhYGL7//nt89NFHYDKZOj+j5tC+fXvMmTPHQiOvfty8eRO//vqr1n51u9rb22PKlCkAAB6PBwaDgUWLFpX7Wi1btsS8efMsMu7qSEJeKbzsuMgukS+GPk0tRGqhoFLmbj72PHQPdYNUIsXKSRtx8Y/rJp/be+encA33x5gmPhpjzSkRWXz+dvbj9ch8HFvu8zxbhqL7hulaY0wpEOjcZw7pEdE4P32j3uMOrnYIa1kbDTrUQ8OOdRHcOBCF2YUQCcV4KmYhXeH5X3ZcxSKJxeZtANA9xA0+DtUvnxrxUCMQCARCteNtVgmepBZAKqMQ6maDOu62eJpaiCvRWQh1M5zAtbwIJDLE5pYgxLV8/YqlMkRlFCFCrDnOZ6mFOP0qAwDgYcdFfS873Ig13/PqVUYRwj3twKyBCbclMhleZ6p+NBcpcueVff/PRskr2IW52cKKXXE7RGUWoYGXfY30+JPKKETpyLsnlMh0fi7N/U69zipCI2/7GumlJpPJcPq0KhlzQUEBvvnmG1AUhXr16mHQoEFYv349MjIy8O2335p9vcuXL2PUqFGwtq55FWllMhlOnTqlsU+XPe/evYvi4mIsXboUzZo1w8CBAyuUF+3atWsYM2ZMjVwwpyhKw5YffPAB3r59Cxj4jJrDrVu3MG7cODg7O5s99upI2c+lEnW7Jicn09/xXr16Vfg7ev/+fWRkZMDdvXK9jt4VL9MLYcdl089qJZUxd0suECCvVIyFbRYjJjLeaHsbB2t4BLohoF09uIb7AwCKRFKNsTIAi8/fWszoi0ufb4eg2DRvUhabCXtXe7SY2VfnGPXtMwePprUQ2q0h3l55RnueqZOfVYh7px7h3il5agIu3wp124SiQb/moDqocsXpGpel5m0A8DKjsFoKajVv9kMgEAiE9xqpjMKL9EI6Z4RMBih9qUvFlRNG8CqjqNx5aKKzS1AglGqNU70XKxYTuSWWCW8qEUuRmFe5ISnviricUo0QkVKxTOf7ryTI2Rqx2SXlusbQBl7wc+QDChE1Prd8578vJOSV6vye6PtcmvudEkspxObUTFtGREQgKyuL3qYoiv47YWNjg7i4OACAq6srli5ditmzZ8PWtnw/Gjds2IAWLeSV4IRCIa5evWrRe6guPHv2DKmpqRr7dNnTy8sLMTExAIDY2FjUq1evQteTSCS4fPmyBUZe/YiKikJ8vFxAaNq0KV69ekWHfur7jJqDTCbDxYsXze6nOhITE4M3b95o7S9rV3XatWtX4dxyFEXh/PnzFTq3upNXKkZaoRA2HBZ6h7mhQ5AzuIqFlsqau0VlFCH2aYLBNu2HtMLhnF04krsbWx+tQofPB9LHyo61MuZvLk1qod3oDia3l0pkEDOZsK/jq3OM+vaZy9hts3CieB9+f7kW3x9bhGmrxqPfxz3QuEs4HN00FyaEpSI8vvQMr8vMwwyNqyLztoHhnvBVE9CS8wUoFFq2aIgleK8FtWvXrqF///7w9vYGg8HAkSNH3vWQCAQCgWAm6YVCCBTVN7ksJsLcbfEmy3DIT68wN3zYzBdOfFXpbw6LgQnN/WBjpb8alJKcEnG5H9JxaiJC2XE68NjoU8cdrfwdaVd4S4wzroYKF/ruS9f7b2PFAoMhXwktS9tAJ0xo7gcHnnEH/JoqAhn6jOj7XOqiV5gbxjX1xZgmPhjV2Bu9wtzgbM3R2bamfi5v3bqltc/Hxwfff/89Jk2ahBcvXgAAZs+ejaVLl+LZs2cYPXq0RvuwsDAsXrwYv//+O3bu3IkVK1ZgwIABYLF0f991XbMmoO++ytozISEBjRo1AgA0bNhQI6fckiVL0LdvX3rbw8MD69evx4QJE8p1zfcd5X0xGAz07NkT586d0ziu6zMKAF5eXli4cCG2b9+OXbt2Yc2aNRg4cKBW/4auWdPQdV/67AoAbm5uYDKZyMiQezEtWrRIZ5g2n8/H3r17ER4ebtI1awLK58ChZ6k4E5WJ1AIhmhhJrdArzA0TmvvBy46rsT/cww4TmvuhhZF0AnG5JRg0py+s7fnQ57yfk5YHW0f53xGZjEK82sKkrrEamr8pn4nKf2EmeN1RALp81h/etTzB4eqfm3Qa3gb129cBx4oN/+6NwVDkedU1RkM2dre1QrcQV4xq7IPRjX3Qv56HIrrB8DjjckvA5rDhF+aD1h80w7DP++PTLR9j5cWl+CdtO35/uRafbZ2GbuM6wM3PBWAwENCtkUYf+sZVdt5m6lz46PM0rcIR1XG+8V6HfBYXF6NRo0aYPHkyhgwZ8q6HQyAQCAQLoMy/wGIy0KmWC+4l5EIoMb66KZLI0NTHARffZhltq4usYhHseboFg7JQFGVwnPkCCU6/yoATn4M2AU44pQghMHecWSU1r9onRVE670vf+x/kbK1zQsVmMhDoZA2BRIoQVxs8SDKcJDe7BtoSRu7L0OdSFw+T8vAyowhMBtDM1xFda7vi38hUrXbZJSJQFAVGDQtHVuZFUyc5ORlff/01AgIC8PHHH+PLL79EYaE899/NmzfRvXt3um3Tpk0xd+5c7N+/Hxs2bEBhYSG8vb0xaNAgODk5aXi/KYmNjYVUKtUruL2v6LIl9NgzLCwMS5YsQVRUFHJydIdb+fv748svv8T58+fx77//6myTkJAAkUgEKysri97Lu0Zpy/bt2+Phw4daRR502RQAFi9ejJs3b2LNmjUQi8Xw8fGBr6+vSddMSUlBaWkp+Hx+JdzRu0PX51KfXQGgbdu2Gt5ply9fxrRp07Bnzx5IJKpFuXbt2iE3NxfPnz/X6iMzMxMFBQU1LhxZ+RxXPq9jc0sQ6ma8yEp+qRi1XW2QWqgSr2q72iCv1Lh3mEAiw4Tl4zBzzUQISoSIeRKH1w9j8PphNN48jEFeRgF6TehMt88TiDUqZuoaq6HnpPKZWF5EPC52v5FX5M1IyMLrhzF48zAabyJiEP04Dp5B7pizaSrsXewgLBXi9JNkKGcwusaoz8a+Djx0DHbBo+R83IjNgVAigz2PjQae9uBzWCjWsRCpRCylUCCUwEHHPJjBYMAvzAd+YT7oO1X+jIuOTseNXM35hr5x6Zq3VXQuXB3nbu+1oNanTx/06dPnXQ+DQCAQCBYku0QEBoBOwS54lVFkcqXPqMwi1HW3g4ctV6f3DZvJQDNfB/g68MFiMpCSL8DdxFyIpZTiumKYWkCoQCCBREbpHCeTAbpcvEgqg6RMyXFj46znYYswN1vwOSwIxDK8SC/EK0VOrCKhFEKJDFz2e+1grkGxSKolmBp6/wOdrXHhtXbukCBna0hkFB4l56OJjwMeJudrhYqqUyqWoUQkhbUJnoHvCwKxVO+E2djn0hAyCniTWYx6HnbgsphaFdxEUgqFQildca0mUFJSohWiyGaz6R/NxcXFEAqF4HK5EIlEdM6qtLQ0uv2kSZNw9OhRjRxNKSkp2LRpk97rikQiJCcnw9/fv1Lu610gEomQlJSktV+XPQHg77//BhTCRl5entZ5YWFhWLBgAQ4cOIAzZ87ova5UKkVCQgJq165twbt5t0ilUjrc09/fH0FBQWjRogUCAgIwZ84cLF++XKdN7ezs4OnpiQsXLkAkkv9NTUpK0nhf+Hw+Ro8ejWbNmsHGxgYpKSlYvXo1srOzQVGUWSG41RHlPZVFl11//PFHQCGo/fTTT3TbBw8eYMqUKWjRogVu375N7+/cubPBkOOYmBg0btzY4vf0rqAoCtnFIrCZDEhlFCgAnrZcFJjg+R+bW4K67rbgsBgQSym42sgF8Kwyz/6hDbzwKrMIAY58OPI5yC4R4XpMDrKLRbCxYoNnzUW9NmGo1yZM77Wy1frUNdaKPieNzi8V12UwGPAIcINHgBs6DGmlsy8unwupNQ8QSXWO0ZCNW/o74VlaoYboVyCQaFRQ57GZaOXvBE87LiQyCjE5JXicnA9KMU5dgpouGI62QK6qX0Pj0jVvMzYXhuI9v5eYp5HuJNvE3wRVSc2Z+RAIBAKhRlAolCDI2RoetlxwWAzU9bBFUp4Az9ML0SnYBS42VhBLZXC1scJDNS8koUSGp2kFaOrrQCeVVaddoDNkFIVjL9JAUUDbACe08neiE84WlSPks1Akb6trnBlFQjT1dQBFAQwGcD9R8wehsXEWCeVJXUvEUnjacdEtxBXZpSJkFonocXLZNcfjQpfd9b3/jjw2hBIZHRKsTm1XG8RklyA2pwQt/Bzh58BHgpGcc0VCSY0S1AyFLbtYW+n8XBr6TilhMRkIcbNBkVCiJaYpKRJJapSglpmpQ7QNCsLYsWMhk8nAYDCwZ88eeHt7Y/r06SgtLYVYLMaWLVsARXidh4dHhXItZWRk1ChBLTs7G1KpttCry552dnb4/PPPIZVKkZycjD179micU79+fYwYMQI7duzA9evGq/plZGTUKEEtLy+PFsT++OMPev+SJUuwbt06nTYFgMLCQiQnJ2PGjBm4ePEi3rx5o+UhOXPmTHC5XHz11VfIy8tDQEAAfS0obFmTBLWioiKUlGh7O+uyKwD4+vqisLAQ+fmqv5FSqRTXrl1Dly5daEHNx8cHtWrVwurVq/VeWxkyWlOQUhQEEhmcrTloG+gMsVQGmQy4FS+fXxl6zogkMiTnCxDkbI3XmcWo7WqDt1nFcORrCzvBzta4/DYLJWIputR2RRMfBxQK9XtdlUX9GWnPY2uNVd9z0hjG55emj5GiKDo0UtcYde0DAHsuG3ZcNmJzDKdI6RjsglKxFAefpoLLZqJ7iBskUhmephWWa5xl5xv6xqVv3mZsLqyPIpG02nnE15yZjwkIhUKN5JIFBQUG2xMIBAKh6pEqVsxidIT1XY3JNnjuy/Qi1HW3hZ8jH2mFqrwLXDYT/k587H+cTK8YPkopwMBwT9yMzQGluK6pyBRt9Y3TWPUlfeOEIqm8krRCIVLyBfC049KCmrScxROqO7ruR59d8wQSnNfhnebAY8Pdlos78bmQyCgk5JUixNXGqKD2X7Clksxikc7PpaHvVFNfBzT2doCUopBTIsIlA6EZ5fn+vA/oCvd68+YNli5dqrV/4cKFWvuU4Vz6QhYNoS5i1AR02RIG7GmoYmq9evWQn5+PR48emXTt/4otlTYrLCzUaVMAWLp0KQYMGIBhw4bBx8cHKSkp2LlzJ54+fQoHBwe0atUKM2bMQG5uLgBoFTT4r9hSHfXPYlJSEn744QetNpcuXcLq1avh4uKC7OxsdO3aFU+ePKHtqIuaZkuZQivJKRHjxIt0rePG5m5vs4vRxNsB0VklCHDk4+jzNDTz1c6fFpVZRItNMdklaOBph8QyObYMIVV7TOkaa7GR6pnKZ6KSA5EpYDEZxueXimIhpohAMhPGqMvGXA6TPq4Paw4LXvY87H+cDImMgkQkRWRqARp52+NpWmG55kRlH/n63nt98zYYmQsbuzar+uhp/y1B7eeff7ZIWXMCgUAgVB5MM1adpBSFxykFaOrjgDOvVAsotlZsMBkMDG3grXUOn8NCiVgKprGMrRYao6FxQuGdFe5hB1suCwwwwGIyNBLwm3vt6oYl7ifE1RY5JSLkKnKuRGcVo3uoG6wV721lXrs6Yen7iUjKNzlfTE2zJZtt3hRZuWjr7OyM9HTtHxmVee3qhiXv5/Dhw6hTpw6++eYbfP/993T+uqq4dnXAnPvJz8/H3r17sXfvXtjY2GDIkCGYP38+ZsyYAVdXV4hEImRn6xc+iC11k5ycjLdv36JTp044cuQIOnTogO3bt1fJtasL5v75Ty0Qom0ACw297ZFZLNLphY4y1UIlMgocFtNosn11ytNWF7qeiQ48jvH5JQMme1RV1JZChW1srFh6vfasrViQyDS9xQqFEthw5J76VWlLGJkLG6K6TTdqThIWE1i8eDHy8/Ppf4mJie96SAQCgUAoA59jXgje26xiMADUcrWm9xWLJJBRFP6JTMFfj5Ppf/sikmjBhV+OvGQ8jvmPT13jtLFioX2QMx4m5WH/Y/lYk/M1vaz4Frh2dcJcWzIYQLCLNey5bIxo5I0RjbzRIdgFTAZDw7aVce3qhrnfHfOuXbNs6eBguDqdMVJTU5GRkYG2bduW+1xHR8OV7d43LJl8XSwWY9WqVcjMzMSSJUtgZ2dnsH1Ns6WdnZ1FQp2Ki4tx4MAB8Hg8uLu7IysrC1ZWVnBx0Z9ItKbZ0tra2mLC1qVLl9C5c2c0a9YMDAYDDx8+NNi+ptmSzWSAbabCEp1djAaednhrpKp7Wcrz3KuMZ6RJ88tyXJfJYFQoT26BUIJCoQSBzvrnPSUiKdhMJnhq/dtasVBcgXHyLGRLXXNhQ3DZzGq3gFezZj9G4HK5sLe31/hHIBAIhOqFs7VpCVH1QQGISM5HA0/V33iBRIbEvFK08nekJyo8NhP+jqqKZS42puclc+Jbmb1CpmucygmpQCIDBcDHgQdvex59nMtmwvodiiaVgQOPA5YZE3E/Bz6sWEwcf5mOY8/T6H9PUvIR4qK/pD2HyYC9gRL27yO2VixYvYM4CCYDJicyfl9wcnIy+0fv77//jkGDBqF3796wtZV/Fr28vDB9+nS4urrqPIfBYCAgIMCs61Y3bG1t4eHhYbH+pFIpfvnlF6SlpWHJkiUG5/OBgYEWu251gMvlmlyZUx0bGxuMHDkS3t7eYDAYsLKywgcffIDCwkKkpKQgPz8f9+/fx9SpU+Ho6AgGg4HAwED6cwtFzruaBJvNtth37datW3B0dMSECRNw7do1nTkD1alptmQwGHC2Ni+364v0Ipx/nYnEfMOpGspSnuu6mDlGXZgyv3RSyy8qEUuwbeE+LPtwHQ6sOobHl5+hOF9TRKzoOO8l5KKBpz3quNuCy5KPxZ7LRtsAJ9hYyb3lUgsEaO7nCDaTARsrFhp62SM6W359dVs+u/kKP41diy2f78LFP64j4VUyZDKVZ5ulbKlrLmyIyngPzeW9nkkWFRXh7du39HZsbCweP34MZ2fnGpXMlUAgEP5LWOJhmZBXivqedhoraDdic9DY2wH96nqAy2ZCIJYiLqeEzrNVnuuymAw48TjIMaGse3nGmS+Q4GlqAXqGuoHBYCAxr1QjP4iLtVW1SsRqCZgMBpz5HJOruZYlxM0GsTklKBBoJsh9mVGEcE87eNpxkVaoHUrgXANtqfxRo+t+KxMnvpVZomh1JTg4GBERERU+PyIiAj/99BOGDh2KkSNHAgCysrJw7do1vfmVfH19weVyK3zN6kpQUFC5Q18NIZVKsWbNGsydOxdLly7Ft99+q5EsHgA8PDw0BKGaQlBQULmjbCQSCZydnbF48WI4ODhAJBIhNjYWP/30E51fesOGDRg3bhyWLVsGHo+H5ORkOrG+k5MTnJycKuV+3iVBQUGIjo42ux+BQIDbt2+jS5cuuHTpksG2NjY2cHd3N/ua1Q0Xaw4y9FRrNAWRVIbUcj67KIrCZ03moUH7OmjYsR4adKwLjwA3vc92cxds9WFsfnlmzXGcfZuMBh3qgsli4p+VRwEAF/9QFVZx93eFo7sD6rQKQdsFQ5BSgVTvSfkCXHiTiYZe9miiyPVWJJIgJrsEpQovtGsx2Wjl74ShDbwgpSjEZJfgWVohmAzASa0QxObPduH1A83vBs+WB48AVzi6OWDM18PAtHfQyqVWEXTN2fXhUknvoTkwKOr9zch75coVdOnSRWv/hAkTsGvXLqPnFxQUwMHBAfn5+cRbjUAgEKoJQokUB56kVmnCeD6HhWENvcrlRh6RlIenaYbz91ialn6OqOthOMTpfeRJSj4eV2T2aAZNfRzQwKvmPfufpxXggY5KnZVJIy97NPYxL0SyOnLu3DmjuZAszYABAzBu3LgqvWZVcOXKFWzatKlKr9m7d29Mnjy5Sq9ZFdy6dQtr166t0mt27doV06dPr9JrVgUPHjzAihUrqvSa7du3x5w5c6r0mlVBSr4A598YLshkaRIuR+LaQs3f/G5+LmjQoS4C6vnBN9QLvqHe8K7tCZ61fKHizKsMpJsh/FWEUx+uRk5UssntR60YD3bnxpU6prL42PPQPdSN3v7yg59w75T+4i8cLhufP1mH5ALTiwlYgj5h7nC3q16LTu+1h1rnzp3xHuuBBAKBQNABl81CoDMf0dnaVR4ri1A3m3LnZAh1s8WztEJU1VOIzWSglotNFV2tagl1s0VkaoFFVjpNgckAQlxrpi1ru9rgUXJBlQnSDIWXYE2kQ4cO2LdvHwSCqvnBwGAw0LNnzyq5VlXTtm1b7N69G8XF5cuPZA411ZYtW7akHQKqippqy6ZNm8LV1RVZWforGFuaXr16Vdm1qhIvey7suWwUCCUmtLYMoleJ4FixIRaprpmZmI1Lf97Qauvm5wLfUG8E9mgMm65NqmyMxXHpEKTqr/iqi4f7b6BlkxAwHKru2Zpz9xW2bDmJtPhMpMdlIvGVYQGQb8tDmLttlQpqTnwO3GyrX8jnfyqHGoFAIBDeD+q4V50XFpMBhLqWPyzIlsuGr1qOjMom2NkaVhVIVPs+wOewEOBkWkJaSxDobG2xhLrVDS6bhSCXqrOlvxMfNlbv9fqsXvh8Pjp16lRl12vSpEmNDAUDACsrK3Tt2rXKrhceHl6hXGPvA2w2G927d6+y64WEhCA4OLjKrleVMJlM9OjRo8quFxgYiNDQ0Cq7XlXCYDAQ5l51Idb2PDa+2z4Nh3N3YdXlpZjw7Ug07d6A9kQrS2ZiNh5dfIqjX/2JksyqE6Mf77qIkoLyLRC/eRiDuxtPVtqYylKUko3tk9bj4NqTuHn4Ht4+ioWwVH8aDu9aHtjyaCV8HHiwtaq6uVSYu221TNVRM2fmBAKBQHivcbWxQq0qEgUaeNrDuoITgma+DmBVwcOdy2LWyJA6dZr6OJhdJcwUOEwGmtZwWzb2tgenCooTsJkMNPWpWdXqyjJs2DCjlSQtAYfDqZGhnuoMHjy4SvJwsVgsTJgwodKv8y7p37+/3sIWloTBYGDSpEmVfp13Sd++fS1aNMMQEydOrJaCgKUIc7OFA69qFlha+jmBwWCAy+eiUadwjPt6GJaf+waHc3dhc8QKfLX/c0z8fhR6jO+Euq1DYOcsF/tkEikerjlaJWPMfBqHuDOaFV85XDZsHLTnt0wWE64+zmCx5fPR6OP3kBOVVCXjfLD6CCi1EAEmiwmPAFdwuNr5ylr0aYItj1bCzdcVTAYDLfyrJreiszUHIdU0SqNmLikSCAQC4b2nhZ8TUgoEKBXLTGhdMZz4HLPyaDnwOGji44AHSXkWHVdZWvo7Vkq59+qELZeNZr6OuJtQvtCI8tLcz7HGelQpsbFio6WfE27G5VTqdZr6OMC+in48vSscHBzw0UcfVXrOqhEjRtRYjyoltra2mDp1aqXnrBoyZEiNq+5ZFmtra0yfPh0//PBDpV5nwIABqF27dqVe413D5XIxc+ZMLF26tFJTCfXp0wf16tWrtP6rAywmA+0CnXH6VUalpsMIcbWBjwNP5zE2h43ajYNQu7F2JdWC7EIkvUlF0utUpKRkgeFdeaK0TCIF+3mshlAFAGKhBOIyYbGObvb44cRihLWoDYlYgrS4TCS/TkF8ci5KZDIwmJXnAyV4nYSuXcPhMbkzPALd4BnoTgt7qz/ahDM7L9Nte07sjM+2TgObo3ru+zvyEexsjZicykvTwmQA7QKdwaymxY/e66IE5kKKEhAIBEL1JrVAgPOvM0DB8g9RKxYDveu4w4lvXj4GGUXh0tssJOdXTh6JWi7WaBfoXCNXtYvzi/Hizhs8OPsY1w7cBt+Oh9EHFyOl2LzqqfoIdOKjY7BLjbRlSWEpXt55jYfnI3Fl/01YcTn48MiXSCqpHFv6OfLRpVbNtGVZKIrCb7/9hosXL1ZK/40bN8aiRYvArMQfTdWJnTt34vTp05XSd3h4OL788kuw2TVb6FXyxx9/4OjRyvG2CQsLw9dffw0rq+qXs6gyOHDgAA4cOFApfdeqVQtLliwBj6dbBKppPEstwMPkygmrdOJz0LuOO6xY5v29FIilOPUqA4WVlPOtTYATQt1sMcJ7KnLT9C+68qy52PJ4JXxqe+k8/jK9EPcSK2fR1oHHRp867uCydS/YRlx8ioU9vgMAjPnfEEz8fpTOZ75QIsPpV+nIF1SOLVv6O6JuFaaCKS9EUCOCGoFAIFRbCnIKsXTGDtT/dCBYHMv9QOKwGOge4gZ3W/MqBVEUhTsnHuDkjkuw7dkcXi0tmxslQCEAlbdgQnXm/plHuHX0Pp7fikLcs0QtjwC/cF/U/qg3fNpbdiXfz5GHTsGuYFXTFc6KEHEhEjcO38PzW68Q9zQBsjIr4a0GNAe3XX34d2lo0et62/PQtXbNsqUxZDIZvvvuO7x48cKi/YaHh2PRokXgcqtX1bLKRCaT4eeff8aTJ08s2m9YWBj+97//gc+vutyW7xqKorBq1Srcv3/fov3WqlULX331FWxsqmeIVWVAURTWrVuHmzdvWrTfgIAAfP311/+p35pRD6KxY/d1hE/oZtF+HXhs9Apzt5jHfpFQgrNRGSgSSS3Sn5Lmvg4I95S/31EPovFJq0XQ5bLHYDCw/MLXaNKlgd6+Yp8lYNOGc6g/xbLFLOy4bPQKczPqsf/0+kuw2EzUaxNmsF2xSIKzUZkWFyibeDugoXf1/u4QQY0IagQCgVAtkclk+Kr/Mtw//QieLULQ6ecJ4Nibn1fNjstG/pkH2P/lH/AIdMPnv01Hw071TPa0oSgKMZHxuPzXDZzbfQW56fJVWKYVG60WDUOtD1qaPUYACHHm49dO/0NhVhF6f9QVE78dCXuX6rtCZwr3zzzC//r+ZLQdk81Ci/lDEDK4jUWuG+JijY3dvkZuai66f9gJk38cDUe39zuP2pOrzzGvy1KDbax4HIjFUjT7bCDqjOhgkevWcrbGb32+RWZ8JrqMaocpy8bC2bNqcqi8a+7fv4+LFy8iIiLCIv21b98eNjY2yMrKQvPmzdGlS5f/jJfa48ePcfbsWURERFgkzK5169ZwdnZGWloamjZtim7duoHFqtlh8kqePn2KM2fO4OHDh5DJzE+R0Lx5c3h6eiI5ORlNmjRB9+7d/zMefy9fvsTJkyfx8OFDSKXmiyyNGjVCUFAQ4uLi0KhRI/Ts2RMcjnZeqppEQXYhZjZfiPT4TISN7IDmnw4Ew0xvMgDwtOPiyvydeHTmERp0rIs5G6fAL8zH7H6LRRJcic5GVrH+JPymwmYy0NLfESFlCl39MnULTu/Q9nDm2/Gw8sIShLXQHVZdlFeMWS0XIeVtGkKGtEHLeUPA0ONNVh7cba1wZ+mfuHvoLuq1CcXczVMRUM/P7H5LxVJcic5GRpHQ7L5YDAZa+DsizK3qCl1UlP/GU5tAIBAI7x17vz2A+6cfAQBKY9PQO9gJQc7mCWp13W3Rv54Hzqw9DqlEipS3aZjXdSlmtVyEy3/fhFSifwJdkFOIfd//iyn1P8P0JvOxf8VRWkwDAJlIAu/CInSp7Qo+p+KPV1srFnqFuoHxPA45ybkQC8U4vuksRvtPx/pPtiMlOq3Cfb9rrHimhQ7JJFK45+aje4grrM1YibaxYqF7iBtsk9KREZcJsVCC09svYkzADKyd/hsSowyXha/OGLMll28FkUAMSiqDc1YueoS4wsaMalx8DgvdarvCq6gQqW9SIRFJcH7PVYwNnInVUzYj/kVihfuu7hQWFuLgwYOoV68eFi1ahKVLl5qVxNzBwQHz5s3DxIkTkZSUBIFAgNu3byMiIgLPnz9Henq6RcdfnSgpKcGhQ4cQHByMhQsX4vvvv4e3t3eF+7Ozs8Onn36K6dOnIz4+HkKhEPfu3cP9+/fx8uVLpKamWnT81QmBQIBDhw7Bz88P8+fPx48//gg/v4r/KLaxscEnn3yCTz/9FLGxsRCJRLh//z7u3LmDqKgoJCe/v38vjSEUCnH48GG4u7tj3rx5+Pnnn83Kw8fn8zF9+nQsWrQIb968gVgsRkREBG7evInXr18jMbFm/r2USqX4ccxapMdnAgCY8WnoV9cNLtYVDxtmMxlo5e+EnqFueHjyIaQSKR5feobJdT/FN4OW4+n1l2aJ8jZW8rDHZr4OMMfp2sOWiwHhnlpiGgBM+nG0zkIEpYUCfNbhaxzbdFbrHmQyGZZPWI+Ut4o5X1wa+tVxg5tNxW3JYjLQws8RvcPccefgHUglUjy9/hJT6n+OLz/4CY8vPzPLlnwOC73D3NDCz9EsD3Y3Gyv0D/d4L8Q0EA814qFGIBAI1ZF7px/hy35yTyYmk4Fl575Gk65yl/i0QgGiMooQn1cKU55gLCYDwc7WqONuC2fFpO7rActw58RDrbbu/q4Y+ukHGDi7t5Z3w+w2/8Oru2/0Xie4YQA2PVgOFpsFkUSGN1nFiMosMtn93YnPQaibLWq5WIPDYqIorxiDnSdqtWMwGGg3uCXGLxmOoAYBJvVdXaAoCismbsCFvdcMtvMN9cJvkavBseJALJXhbVYxXmUWocDE/BwOPDbC3G1R28UGHBYTghIh+tuN0wq5YDAYaN2/GcYvGYHaTbQTGFd31s74DSe3njfYJqRpENZc/x5cPhdiqQzR2cWIyihCnom2tOeqbGnFZkIilqAff4xWeCkAtOzbBB9+Mxx1WoZU+J6qI/v27UN6ejpmzZpF50ASCoW4du0azp07h/j4eJP68fDwQI8ePdC1a1fY2tqCoigsW7YMIpHKM4LFYkEqlaJfv35o3rx5pd3Tu2L//v1ISEjArFmzYG0t/4EpEolw48YNnD17FrGxsSb14+bmhh49eqBbt26ws7OjQx9LSlSJsZW27NmzJ9q0sYy3a3Xi4MGDePv2LWbNmgVbW/kPT4lEghs3buDcuXN4+/atSf24uLigR48e6N69O/17aM2aNSgoKKDbKG3ZtWtXdOhgGW/X6sTRo0fx4sULzJw5Ew4Ocu9liUSCW7du4fz584iKijKpHycnJ3Tv3h09evSAo6O8AvL69euRk6MqEKO0ZYcOHdC1a9dKuqN3w66v/8YfPx4EADi6O2Dzw+Vw9XGBjKIQn1uKqIwipJvovcRjMxHqZotQNxs6LFFfPrKwFrUw5suhaDughVnjLxJKcPDwAwjdHMF1MC3cOeVOFHp2roOm4T4GIx0OrzuFTZ/upLcDwv0Q/1wlrHYd0x6fbvkYfFt5yPpfPx/G71/+CQCwc7bFpgfL4RnoDhlFISG3FFGZRUgrNN2WtV1tEOZmC1uu3JZjA2cgIyFLq23tJkEY878h6DC0tUl966NYJMHhoxEodrAFz9m06ApPOy7C3Gzh78R/r1KdEEGNCGoEAoFQrcjNyMfHDb9AXobc+2vq8nEYMX+gVrsSkRTJBaXILhYjp0SEgmIh8rIKIRVJwAWFRk0C4GJtBR8HPrhsTY+xS3/dwM9jf9U7hkk/jMaY/w3R2Dez+QK8idD9Y4/BZOCvhC1w8XbW2E9RFNKLhMgoEiG7WIS8UjFysgohLBFCXCxAnTre8HG3g4ctF642VlqTsUl15yIpKkXnNfm2PPyd/Bus7d6ffEFR999iyeAVyE4xUMmTAex+swHewZoeQBRFIaNIhIwiIbJLRMgtFSM3qxCCYiEkJULUru0BP08HeNhy4WarbcvpTeYj+kmczkvyrLnYF7cJDq7vz1zg7eNYLBm0QueEWIn6JFwdiqKQWSxCRqGaLbOLICgWQlwiQFCgGwJ9nOBmawUPW66WLee0/RIv77zWeU0Ol4M90RvgWua78D5z5coVhIaG6vSkoigKb9++xcuXLxETE4P4+HiUlpaiqKgIfD4fYWFhCA4ORmhoKOrVq6cV0pmUlITff/+d9gqwtbVFixYtEB4eDhcXlyq7x6ri+vXrCAoK0lnRlKIoxMTE4MWLF7QtS0pKUFRUBB6Ph9DQUNqW9evX17JlamoqduzYQYfq2djYoGXLlqhbty7c3Nyq7B6rilu3bsHHxwcBAboXVuLi4vDs2TMtW1pZWWnZsuwCUkZGBn7//XcIhfIf7DweD61bt0adOnXM8s6srty5cwceHh4ICtK9sJKQkEDbMi4uDsXFxSgqKgKHw6FtGRISggYNGmiFx2ZmZmLXrl202Mvj8dCqVSvUqVMHnp6eVXJ/VUHktReY10VeKZXJYmLFhW/QqFO4Vru8UjFSCwTILhEhp0SMvLwSlBSWQiIQwcWejzphXnC1sYK3PU/Ly2ndrG04vvmc3jGsurQUjTprX7M8zG7zP7x5HAev1mH4aNPHKGWxUSAQQ0pRYDIY4LKZcLG2QsKdKPyzcA8KE7PQa1IXzNsx02C/ErEE87ouxfObURj2eX989PMYbFuwD4d+PUm3Cajni68PfIHSwlLMbfcVZFIZGAwGfjr9JZr3bKTVZ75AYUvFPDgvvwRF+SWQCsUoSMhEzqsktG4fhsGj2mrZcsu83Tj4ywm94/3x5P/Qsk+TCtlQybyuS/H05it4t66DiRumQMzlIl8ohlQmt2XiswTkvEpCblQy6oV64OX5J1j8x1x413q/vhf/jYB4AoFAILwXUBSF1R9tosW01h80w/B5A3S2tbZiIcTVFiGuwL7v/8XhDadQkFkIAGjWsxGmnPlK73XqtTFcPEDXKuPCvXPwWYevUZhTpHWsZe8mWmKash9POx487XgoyivCp+1/RE5aHt1H16vfoX5D/TlAGrSvq1dQY7FZoCyQL6cqoCgKp7dfxIY5v0MsNFx1snGX+lpiGhS29LDjwsOOi5KiUnza/mtkJWXTtvz5zFdo0ER/uFODDnX1CmqM9yy5/vk9V/HrjN8gLJV7NjFZTMik2p+FBbs+0RLToLCluy0X7rZcCEqF+KzD10iPy6RtufTQfDRort/7sUGHunoFtepa1r4iJCUl4fbt2xg2bJhezwMGg4GQkBCEhIRAKpXi2LFjyM3NRfPmzeHh4WFUfODxeODz+fSPbWtra3Ts2LFS7uddkpqaimvXrmH48OF688QxGAzUqlULtWrVgkwmw4kTJ5CZmYmWLVvCxcXFaGio0pZFRUX0dk20ZUZGBi5duoRhw4YZzG0WGBiIwMBAUBSFU6dOISUlBa1bt4aTk5NOQVMdHo8HKysrWlDjcrno1KmTxe/lXZOdnY3z589jyJAhBquZ+vv7w9/fHxRF4ezZs0hISECbNm3g4OAAf39/g9ewtrbWyJvGZrPRuXNni97Hu6YorxjLx6+nFwYmfjdKp5gGAI58Dhz5HFAUhaVDVuLp9Zf0s2fCtyPRpGsdvdcJb1vHoKBm7rO8ILsQUffegqIosLPz0b6u7sqbAMB5xUNhonxB6+yuy5j43Si4+uhfSGJz2FhxYQmyk3PgpZjjzFgzEeHtwrD6o80oKSxF/IskfNJyEfi2PPqZPubLITrFNABw4HHgwJN/tn4YuQYRFyO15qiiJ9EYNqad1rnhbesYFNSYZua9KyksxbMbryCTSCFLyUKnBtp/cz5oOx/CEvk8RukD+kmrxdgVte69yhlMcqgRCAQCodpwfPM53D0pT/jt6O6Az7fPMFosICU6DbuX7qfFNADISso2eI5HgBucPR11HvtgWg8M++IDrf3pcZkQFAl0ntN/pvHqSz+MXIv4F0kak51MI+PUJ/w5uNnjhxOLYWNiSMK7pLSoFMvHr8eaaVtpMS2wvh84eipLDZhh3JbLP1yP2Mh4DVsae8/r6rGlnbMtvj++6L3wThOUCLH6o01YMXEDLabVaVkbKy58A2t7TU/F/jN6ofUHzYz2uWbqFryNiLXI59LGwRrfHllQI7zTKIrCwYMHUVRUZHLBktu3byMyMhKJiYmIjo6mhR1D5Ofno6SkBD4+PvDz80N4uHneFdWVQ4cOoaCgwGRb3r9/H48ePUJSUhKioqJQXFxs9JyCggIUFRXBy8sLfn5+qFfPspWCqwuHDx9Gbm6uyUUXHj16hAcPHiAlJQXPnz83yZZFRUUoLCyEh4dHjbbl0aNHkZWVZbItnz59irt37yI1NRWRkZEm2bKkpAT5+flwc3OrsbZc/8l22lu6Qce6GLFA90KoOqe2nceto/fL9RzX9+xhspiYu/ljNOxonm0jLkTSomDzno0Ntk2NzVBtUMAXnb9BabHuOaISKy6HFtOUdBzWBhvvL0NgffmCoKBYSOfnDWtRGx9+M9zouC/9dR1XD9zSueAb/Uh3ZIVeWzIZmLl2kl4Rz1QeX35G5yVupseWNjoKjRXmFGFxnx9RXFCi85zqCBHUCAQCgVAtiH+ZhK3zdtPb836fCSd3w5UYKYrCupnbtHJjZSXn6DsFUHhC6BJYGAwGen/UDRwrzSpcVw/cxpJByyEWaeed4tvy0KSb/pLnAPDq3hs8PP9Ea39FRaCgBv5GveyqA7HPEjCr5WJc/OM6va9lnyZIfpOm05YcLhvNexuexEY/icPt4w+09ldUBPKr44MGHeoaPLc6kBiVjNmtF+PMzsv0vt6Tu2L1lW/RqFM4OgxR5Tvxq+ODj1d+aLTPhFfJuLL/ltb+bCPfH3229KrlgcZd6xu97vsARVGoW7cuBg8ebPI5GRmqH1gxMTE4cUL/6r8SX19fuLm5YeDAgZg8eTKaNm2KS5cuQSIxLcfd+wBFUQgNDcXQoUNNFtTUCzPExcXh2LFjRs/x9vaGh4cH+vfvj8mTJ6N169a4ePEixGLDXrHvG7Vr18bw4cMrZMuEhAQcPnzY6DkeHh7w9PRE3759MXnyZHTs2BEXL16kPdZqCkFBQRgxYoTJgpr6dzwxMREHDx40msTd1dUV3t7e6N27NyZPnoxu3brh4sWLKC0tNXv81YGLf1zHpT9vAIpFlUV7Zhu1Z3FBCX7/8m+t/ZnJhp/jnkHucNQxL7RzskGnEebnSXx08Sn9unkvw4JSarRm8ZiU6HQsHbISIiNe+LrwDfXG+js/o2EnTUFQLBIjO8Xw87i0WICtX+zR2q/0FhcJxHh1XzufoouXEzwCtEPh+fbW6DJa26OtvJhiS3tX3V5orx9E45uByyEsfT/+3hBBjUAgEAjvHJFQjJ/H/gqRQD4RGTirN1r1bWr0vKv/3MLD85Fa+4vz5Tk5DFG/nSqsgGvNBRQ//JaPXw9Bieohfub3S/hp9BpIxJoVQJU/Zvp93ANWXE0BTh2pRIq103/TeSwz0fDk0S/MW8PtnaO4zuNLz3B6u3YJ9urE2V2XMbvVYiS+kleGs7bjY9AnffDg3BOtsE/l78Lek7uBb8PT26dMJsOvM34DpSMhvjFbegS4aYRjWPHl4T0vbkXh6IYz5bu5KubSn9cxs/lCxD2TJzDmWXOxYPcn+GL7DFjxrPDkynOc230FAMDmsPC/P+aCp/hM64OiKPw64zedoaLGxEknD0d411blOOEqin28jYjFgVXHK3SP1Yk3b97g9OnT6NmzJ51Y3BAUReHhw4dISEig9zk7O5skinG5XMycOZPO8aVMhH7lyhUz76J6EBMTg+PHj6NHjx5wdjbNc/HRo0eIi1OFZyttaUy44HA4mD59Ory85GFaUqkUd+7cwYULF8y8i+pBfHw8jhw5gm7dusHV1dWkcyIjIzUKPTg7O0MqlUJmJF0Ai8XCtGnT6HBGmUyGe/fu4dw5/eF27xNJSUk4ePAgunTpAnd37bB4XTx79kyj0IMyx6Gx7zmDwcDUqVMRHBwMKP5ePHjwAGfOVO/njimkxWVg3axt9PbczR/D3d94vsJdX/2NguxCrf3GnuMMBgPh7cLobb6dfL6Qn1WIDbN3lHP02ry4LU9lwGQxUa9tmMG2MU+1i9FEnI/EsnG/GqwYr4+i3CLERGr2GfMkHjOaLcT9s4/1nrfvu3+Ro6NQA0stCuDo+tM6z63fXjUP5tvKbVmcV4y107aaVe0TaraEIk2ELnSlSlESefUFfhi5BhJx9V9cIoIagUAgEN45u7/+G9GP5T+gAur5YuqKcUbPKc4vxubPduk9nvwm1eD5faZ0Q8u+TdBuUAtsfbwSoc1rAQASXyVjx6I/AACHfj2J1VM20xUNOWrC2eyNU7DpwXJMWTbW4HWObjhD35vWGN8aHiOTycSsdZMR1qIWZv06GV//8zl9bPPnu4ye/y4QlAixcvJGrJq8iQ5LDG4UgGHzBuDoxjO0gGPFU9ly+i8TsOnBcsz6dZLBvk9tu4iXd3RXWjVmCwZDHsYQ1qIWPl45Ht8dWUAf275oH+JfJBo8/10gEoiwdtpW/DxuHQTFcpE3oJ4vNtz7GT0+lOczKswt0shdM+mH0SZVLL2w9xoir77QeczYdwcAZvwyEWEtauGjn8bgp1P/owXm3d/8jbePTavUWB0RCAQ4dOhQuTxxXr58iRMnTiA/P5/el5iYaLLooY6joyP69etHJ9Z/nxGJRDh48CAEAsNhUOq8fv2azkOnJDExES4uLiZ7ZCmxs7ND//79jYpH7wMSiQQHDx40KcRQSUxMDA4fPozMzEx6X3JyMlxcXPTmsdOHtbU1Bg4caPaP7OqATCbDv//+a1JItpKEhAQcPHhQw9svJSUFjo6OBvPY6YLL5WLQoEHl/jxXN6RSKZaPX4+SAvniZbdxHdBllHHPpqgH0Ti2SbeYmPI2zej39cNvhqNem1AMnNUbmx6sgK2jPPXFpT9v4PLfNyt0L1A8S+MUVTdrNwkyuLgHAHFPE3Tuv37wLv744WC5ri2TybBy0kYU5cq/34271odnkFzoLcguxFf9fsKpbdoLA7FP43FwjW5PaIlaFEDEBe2FZwAY/b8hCG8Xhn4f98DmiBVwUHiM3Txyn16kqwilxQK8VYSaBtTzhZ2Trc52noGGxdc7Jx5i51fanozVDSKoEQgEAuGd8vjyMxxYLfdqYXNYWLRvDrh8w941APD7l3/pXJVTkvAy2eD5NvbW+PHE/7D00AL41PbCwj2zaZHnyIbTWD5hg4Zg5+7nSntWtRvcEh9M64GQpsFgsfWHNmQmZWPXN/onA3HPjYs4XUe3x4a7yzBodh+06d8c/aZ2BxR5NlZM2FChldDKIv5lEma3Woxzu1QTsX5Tu6PT8DbYs2Q//WPM3d+V9kZs0acJBs/pZ9SWuel52LH4D/3Xfp5kdHwdhrbGhrvLMPyL/mjWoxEGz+kLKEIilo9fD7Go+oSGJb9NxZy2X+Kk2iS6x4ROWH/3ZwTUk+daUYY8Kz3KGncJx7Av+hvtuyC7UCO8uizxL5KM/nBu/UEzbLi7DKMWDUbDjuEYuUBeiVcilmL5h+shEohMvtfqRqNGjdCnTx+T2ycnJ8Pf35/2ZuNyuXB0dERcXBzi47W9GIzRpEkTdOnSBZcvXy6XGFUdadCgAfr162dy+5SUFPj6+tLePxwOBy4uLkhOTsabN7rFdEM0bNgQvXr1wuXLl+nCD+8r9erVw4ABxnNTKUlJSYGXlxftgcVms+Hu7o709HQ8f/68Qtfv168frly5Ui4xqrqhDOceNGiQyeekpqbCw8OD9n5ksVjw9PREdnY2Hj16VO4xhIWFYcCAAbhy5QoKCgrKfX514O9lR/DsxitA4QE+e/1HRs+RSqVyz2gdXuYAICwVGaxcDQC1GgXi15s/4pP1H8E3xAuzN06hj62buQ1ZRsJG9aG+WGcspUZ+VoHB+WfUA+0QS0McWnsSERfkIZIu3k74ev/n2PRgOVr3l+dBlckorJm2Ffu+/5d+NstkMqydsU3vHJCSUbRom5OWpzMnWUBdX6y9/gM+3fIxfGp74dOt0+hjm+buRGpsutY5pvD6fjS9eBpuwNPPN9RwoRkAeF1OW74LiKBGIBAIhHdGQU6hhnfN5J/GonZj4941RXnFBis9AUDCS+MCizr+dXwwdYUq79SFvVfp1816NkKGopqTi7cTPv9tukmry0c3nEapnkIGUIQ3qIeXmsK01ePhXUue1PbF7df4e/mRcp1fWVzYdw2ftFxEi4Q8Gy4W7Z0NBzd7jRXGZj0a0RNmRzd7zNthvPAEAJzYch5Fefq9M/KzClCQox1CYoiPfh4D/7ryKqtvImKx77t/y3V+ZXH1wG3MbLaQ9my04nHwxY6ZWLDzE41V8wv7rtE50OycbDB/1ycmeZ6c3nEJ+Vn6bVVaJEB2aq7e47oY/+0IBDeSVwaNe56I37/8q1znVweePHmCu3fvonfv3uDz+SacIad79+6YNGkSxo8fDxcXF4waNQozZswAi8VCUlL5/g4pkclkuHv37nsbFvbs2TNcv34dvXv3ho2N6cVTOnXqhMmTJ9O2HDFiBKZPnw4Oh4PkZMOLJPqgKAr379/HyZMnK3T+u+bly5e4dOkSevfuDTs70yvftWvXDlOnTsX48ePh6uqKYcOGYdq0aeDxeEhJ0V092hQePHiA48ffz9Du169f49y5c+jVqxccHAznaFWnVatWmDZtGj788EO4ublh8ODB+Pjjj2FtbY20tLQKjYXBYODRo0c4cqR6PMPLw6t7b7D32wOAIlfXor2zTSqSFHE+Em8exhhso0wTYSpdR7dHZ4VnXFFeMVZO3lQhr9QXt6Lo14ZEIABIeq3fi9vNzwUz1hj2tlcn+kkcfv/fn/T2gt2zYe9iBzsnW3x7eAGGfa5aJNu9ZD/Wz9oOqVSKp9dfaoxZF47uqmJLxzedNTqW9oNbodfELoCiSufKiRsr5C39XG1chkJnAxvor5BrxeOgzYDm+GTDFL1tqgtEUCMQCATCO2PzZ7voAgJNujXA0M9M82RgW7Hh7GU4t5Ep3l9l6Tetu1bZ8xELBiHyimo1f/7OWSaX89aV8LUsSVHl+2HDt+Vj4Z7ZdMLZvd8ewOuH0eXqw5IIS4VY8/EWee45RVhiYH0/rL/7M17dfYs/fzpEtx32RX88u/GS3v5ix0w4ezqZdB33AOPhc4mvymdLLp+LRXvn0J5xfy87rDERrGpEQjE2zN6BH0b+QucA9Avzxoa7P6P3pC4abbNScrDhE1XOmLlbpsHdz7QQQw8TbGnMw7MsHCsOFu2dQ1dvPbjmBB5fflauPt4lOTk5OHbsWIWKASgFYTs7O0yZMgWBgYHgcDho1qwZ7WlVXng8HgYOHPhehivm5+fj6NGjFSoGwGAwwGAwYGNjgylTpqB27dpgs9lo0aJFhUJoofByGzRo0HsZrlhUVIQjR45AJCq/x6fSlnw+H5MnT0ZYWBiYTCZatGhhct6wsrBYLAwZMqRC575rSktLyx3OrQ6DwQCXy8XEiRMRHh4OBoOBVq1awcPDw4Szdfc3ZMgQMJnM9+qzKRKKNbzjRy8egvrtTSvs4+LtDCbLsPxQ3mcPAMze8BFcvOVziYjzkTi20bh4VJbnt9UENbUcu7rwCnan54E2DpqVKrOTc8Ayco9KpBIpVkzYQBdpGvZ5fzRVK3LFZDIxbdV4fLxyPL3v+JZz+HHUGtg724LNMVz8wStYlev06j+3TRrTjLUT6VDMp9df4t/VxovrlOXFbdPEybLpKdRtOWvdR/juyEIE1PUt9/WrGiKoEQgEAuGd8OTqc1zYew0AYOtog/k7Z5mc14VnzcWOF2vx/bFFcPdX/chqN6gl/ePWlDxQ6kjEEqyYsFGrQui9Uw/pyc6Quf3QrIfppcT7z+iFLY9WYuRCVWhJUAN/+Iap3NzL60kHAPXahGHUInn1QalEnsfkXVRDSnqdgjltv8QptQIJvSZ2wdobP+DAqmM4skGVCHfWr5OR/CaVzqvW7+MeaP1BM5Ov1WtiF/wWuRrjvhlG7/Ov64uAeqrJVkVsGdI0GB8ukZell8korJiwHqVFVV99LTUmHZ91+BpHN6o8krqOaY8N95YhqEGAVvut8/bQoluP8Z3QabjpFc46j2yH7c9+waQfRtP7fEO9EaS2WlwRWwbV98fkn8bQ2ysmbjDoVVidYLFYaNmyJTp16lThPq5evYr9+/fT2z169ICPj0+F+1OGpV2/fv29CldkMplo1qwZunXrVuE+bt68iX379tHbXbt2pRPkV4TQ0FCMGDECN27ceK/CFRkMBho3bowePXpUuI87d+5g925ViHenTp0QFGTcE1wfwcHBGD16NG7duvXehSs2atQIvXr1qvD5Dx8+xI4dqoWM9u3bo3bt2hXuLyAgAOPGjcPdu3eRl6c/hLA68e/q40hULASGtail8Uw2RnDDAOyN2YjFf8yl9zm626NhR5UgV5Fnj72zHebvnEVvb1u4F/Hl6EcqkeLVXXnIp5ufC9x8DS+EOHs6YWfUr9gTvQEL98zWOCaTUdi/4qhJ1z2y/jRdiCC4YQAm/ThaZ7vhX/THwj2z6cW/6wfvYsOc37H18Sp89c9nYCgWWO2cbTUqbTt6qDzU4p7rzvlWFht7a8zf9Qk9l9719V+IfqI7D7AuZDIZ7Tnn4GoHnxAvvW0dXe0BRYACk8XE1we+oI8pc7C9DxBBjUAgEAhVjlgkxvpZ2+ntKcvGGp3AlMXG3hot+zZBfqZ8Qu8b6oWlh+YjIFwusCS/STU5v5igRIhvh67CFUVCW+XkBABdWdHd3xUTfxhVrjFCke/DQc2jbfgXAzB1uaroQkVWYwFg3DfDENI0iO5j/3LTJnCW4sr+m5jZfCFinsgng1y+FebvnIU5m6Zg9Ueb6DxqTCYD83fOgkegG24fewAAcPZyMqnwRFmC6vvD0U0VpjN4Tl/MWDOR3q6oLUctHETnTEmJTse+78uXUNhcbhy+ixnNFuD1A7mnIYfLwadbPsaivXNgbacdehhxIZL+rDq42mH66gnlvmZAPT84e6q8PPtP74k5arloKmrLIZ/2Q+Mu4YAipHn3N/uNnvOuiY6OxqtXr9CrV69yJxhXJzU1VSNU9MmTJ9i2bZvZ3ie3b99+b6orxsXF4enTp+jduzc4HP3Vj41R1pbPnj3Dli1bzLblvXv3cPq07op31Y3ExERERESgT58+4HKN5xXVR1lbRkVFYePGioVyqfPgwYP3Jow2OTkZd+/eRZ8+fcoVzl2WsraMjo7Ghg0bKuRBqM6jR49w7Ngxs/qoClJj0/HHD/LUCEwmA5/9Nh1sTvn+Zrr7uWqILK36NsN3RxfS2wnlDPlU0qxHIwz6RJ77UiQQY91M0//2xkTG0x72xrzTlNg728EryAN1W4fQ+5Ted+d2XUZWSo6Bs4Gs5GzsXiJ/PjIYDHy6dZrBivHdx3XE98cWgmcj/1sQefUFfhy9Fg4u9nTl82Y9G+HHE4vpCIbMxGza60siliLiou7iBGVp2LEehs8bQJ+3dvpvJntLJ0aloFBRXKFe2zCjKT2U9yyTylC7aSDd/tXd1wbPq04QQY1AIBAIVc6htacQ/0K+elinZW30mVIxT4a02Aza4ykgXJ6o3V/hHi4RS5ESbTy3SW56HuZ1WYI7Jx4CCjHjuyML0XZQS412s36dbLTqkz7i1CpIBoT7wr+Oymsl4VXFcixxrDgaK5b7VxxBWlxGhfoqDyKBCOtmbsOPo9fS+eH86/pgw71laNWvKRb0+A7XD94FFEUmvtr/OToOb4NNc3+n+5i2ajxs7K31XsMQ8WqhvIHhvvT7DTNsyWKzsGD3J3QV10NrTyDpdcVzDJmKWCTG5s924duhq1CcL/dA8q7tiXW3f0S/j3vonIiKhGKs/0RdjB5ncghyWdTDogPK2DKxgrZkMpmYv3MWeNbySf+xzWcR+7T8ifmrCqFQiEOHDlU4D5I6bdu2RceOHelta2trFBYWmlVYgMlkok+fPu+FV5VYLMahQ4eQmmp+9eFWrVqhSxdVmLONjQ1KS0vNtkOfPn3KVSnzXSGRSHDo0CGzcp0padGihYa3oLW1NUQikUZV2orwvthSJpPh8OHDFc5nqE6zZs3Qs2dPetva2hoSiUSjKm1F6NWrF0pLq94zurxs+nQnXVBo0Oy+qNUosEL9xGs8e/xg42ADZy95yGZFF3MA4KNlY+kcs5FXX+DaAdPCHNVTPYS3MZw/rSyObg70NZWIRRIc/MVwqOTWeXvoOVTfKd1Qt1WIwfYA0KJ3E6y6tJSuxhkTGY8fRq6hjwfW84MVz4quEJr4Khl1W6sKLBzfZPrCzITvRtIRAK/uvqEjSoyhntetngm25KstGuak5NGL4tFP4sudY/hdQQQ1AoFAIFQpGYlZ2PedKpnt7I1TTA71LIvSewyKiQQUxQWUGMupFf8yCXPa/A9R9+WeQdZ2fPx06n9o/UEzesKixDO4Yjln1MfJYDDgX9cXXsEedK6p8ub9Uiegnp9Gpcrf5u+pcF+mEPssAbPb/A/Ht6gmZd0/7IgNd38G24qNOW2/xPOb8skUz5qL744uRIehrfHXT4eQFpcJKMrBd1EkEK4IcWUm4q4+zuDbyoVOc2zpU9sLI9RWZDd/vsvoOeaQ8CoZn7b/God+VXl4dBzeBpseLDdYmOPf1cfphMj12oah58TOFR5DWVvau9jB0c1eMb6K29Ld3w2j/yfPsySTyrDp053VNkeQSCSCt7c3unbtalY/MpkMGRkZGnm+QkNDMWjQIPB4FRPilTRo0ACjRo3Cq1evqnVONbFYDA8PD3Tv3t2sfiiKQnp6OtzcVDkog4ODMXDgQNja2prVd926dfHhhx9We1tKpVK4urqaFeoJhS3T0tI0bBkQEICBAwfSVWkrSkhICCZPnoxXr16Z7e1WmUilUjg5OZkV6gmFLVNTUzVs6e3tjUGDBlU4v5+S4OBgfPzxx4iKiqpQHseq4Nax+7hzXL7w6OzlhPHfjqhwX3HPVOGHgQoBRVkgqCC7EPlZFQsl5llzNQoCbJ2/B6XFxhc0Xt5ReUOFtyufoAYAdRRimEwqA4crn9ud2HoOBdm6i/9EXIikCwo5uNpppEowRliL2lh74wc6z5m6rQJoW8r/FxQL0X6IanE48prp1X2tuBzMXKuy5fZF+3RWCi3Li9sqW9Y3wZbqERzRj2NRp6XKlm8jDBewqC4QQY1AIBAIVcrmz3bRq04fTO+J0Ga1KtxXWUEAAPzUvb8M5NB4fPkZPm33FS30uPm6YM3179G4S33ERMbj7M7LWuOuiCggk8mQoPDG8wxyB8+aCxabRYc8JL1OMTk0VRfjvhkGJw95GOT1g3cRcfFphfvSh1QqxYFVxzBLLcTTisfBZ79Nx4JdnyD6STzmtv0SKW/lXj7Ono5YffVbtOjdBIlRyTiwSh7KwuawMHvDFJOqeuqCoij6PXf2coKdky0YDAb9GRr4HQABAABJREFUnss9Fiu+ojly0SA69PjeqUe4e/JhhfvSh0wmw+F1pzCj6XxViKcVG7M3TMFXf39m0HOvbLjNHDPEaKh5Cdg62sBF4R2gtGVOai6K8yvufTLs8w/gFSxftX98+TmuH7xT4b4qi9zcXMTExGDs2LHlqp6oi6SkJJw9e1bDU4XFYoGiKGRmZpo91uLiYuzfvx8RERFm91UZ5Ofn4/Xr1xg7dmy5qifqIjU1FWfOnNGwG5PJBIvFQnp6utljFQgE+Oeff3Dv3j2z+6oMCgsL8fz5c4wdOxbOzs4mnKGfrKwsnD59WsNuDAYDHA7HIp6EIpEIBw4cwK1bt8zuqzIoKirCkydPMHbsWA0hrCLk5eXh5MmTGl6DykIFlvAklEqlOHDgAK5dM80TqCoRlAixae5Oenv66gkV9jIHgLgXqrkZHV2gMXeruJdaq35N0aJPE0AR8rjfhEroynkFi83SyCVqKnVbqbzA6iheC4qFOLJeO7zcEl7mvqHeWHvzR7qytpISheDlp5an183PlQ5FLcguQm6G6bn6mnZviPZDWgEActPz8cf3xiuhx6tFZNRqbNyDUemZCAAJLzQ96l7eeWPyWN8lRFAjEAgEQpVx7/Qj3DgkDwd0dHfQSIpeEdQf3IH1lSGf6uGUuidl5/dexeLeP9AJ02s1DsS6Oz8huGEAZDIZ1s3aBplU7r1g6ygvBf/40jN67OUhPT6TFhCVYwQAvzryCY9ELEVqTMV/JNrYW+Ojn8fS25s/3QmJ2HIr3Kmx6Zjf9Vv8tmAvXZwhMNwP6+/8jL5TuuHagdtY0P07eiVWfuwnhDarBYqisGH2DlUFqy8GaEyay0tueh4Kc+QhX+q2VL7nFEUZLGdvDL4NDx+v/JDe3vTZLoiE5a9UqI+MxCws6vWDRtiMX5g31t78AQNm9jIqNFoq3AYAivKK6QIcgfX96Gurvz/xZvyoseJZYfovqtxuW+ftqVbhGxRF4eDBg3j40DKiqUAgAI/Hg5OTZtXa27dv48GDB2b37+DggKZNmyIq6t1VodUHRVE4fPgw7t4t/99HXQiFQlhZWWlVSL17965FrmFjY4OWLVvi1atXZvdVGRw7dsxiApVAIACbzdbyoLp//z7u3DFf5ObxeGjbtm21/FwCwMmTJ3Hjxg2L9CUUCsFisbQqpD58+NAi7xebzUaHDh2qpS3//PEg0uPlAneTbg3QeWRbs/pTLuZY2/PpRSxTF0ONwWAwMOOXCXQFzH9WHkNqrP45lkwmo6ute9f2LHdOOACo00pVmMLexZZOxXFk/Sm6eJCSA6uOWcTL3MXLCb9c+RZcvhW9b92sHXhxO0ojfUNSVAp8Q1U56w6vO1Wu60xbNR5WPEU6jF9PGcxxR1EUHSng7u8Kvq3xfIXqFdyTo9NQV82WL+8RQY1AIBAIBBphqRAbZquqY01bNZ4WqyqK+qqicsLgF+ZNJ2SNfqxZmYiiKOz97gBWTNgAiVjuFdaybxP8cvU7uHrLPQHO77lKhy36hHjhs9+m0edv+WJ3uUWB+OdqK7H11EUg1YSn7DjLS4/xnVCnpXwSEvc8Ecc3m5/AnKIonN5xEdMazcPT6y8BxUR1+Bf9sfH+MgQ18Mf+FUfxw6g1ECtEp6bdG2Dtje/h7i/3BLj6zy1EXJB7zHkEuGHsV0PNGlOcmi0D1WwZYEFbdhrRFg0UFcdS3qbh0Frzk25TFIXze6/i44Zf4JGaB+Gg2X2w6eEKk7w0LRluA4DOYYiyn8t6lrNlm/7N0byXvCpuRkIW/jGx8llVIBKJUFxcbHZ4opKQkBDMnTtXq6iBj48PxGLLiLIffPABRowYYXa+JksjlUqRn5+vkVvKHAIDA/HZZ59pJeL38fGxWDhcr169MHbs2GpnS4qikJ2dbXZ4ohJfX198/vnnsLbW9Cay5Oeya9eumDBhAnJyDCdhfxdkZ2ejd+/eFunLw8MDX3zxhZY3q4+Pj9lFCZR06tQJU6ZMqVa21PYy/6jCXuYAUFxQgoyELECxAKfsK8CCzx6/MB8MmdsPACAWirF1nv50GBkJWfRClX8db73tDBHcMIC+j+zkHHQb1wEAUJhbjJNbz9PtUmPT8eeP8qJHTBYTczdNNcvLnMPlaCz6CUuE+LLfz2ApxEQAiH4Sh/ZDWtPbNw+XzzPXM9AdI+YPBBTVUDd/pj+FQ15GPr1Q7Wfi4ql3bU/6dVZyNvzr+dJiqFLorO4QQY1AIBAIVcL+5UdpT6yGneqh29gOZvUnlUiRqPCg8QnxBMdKvoLG5XMR1FDuBh/3LIEOWxOLxFg5eSP2LP2H7uODaT3w3ZGFdCXFgpxCbFuwlz7+yfqP0GFoazTrqRIFDqwsXyUuzVwhKuFCPQGtekLcisBkMjFr3WR6e/eS/cjLrHjC6dz0PHwzaDl+mbqFTprrGeiGVZeX4uOV48Fis/DrjG3YvmgffU6viV3w48n/wcZBLpIWF5Rg8+e76eMz106iE9VXFHVbBqjZso6aLV+YaUsGg4FZv06mRdk/fvjXaLUuQ+RnFeC74auxYsIGuvCAm68Llp//BrN+nWySTSwdbgMDn0sNW94235Yz1kyq8sIZxhCLxUhJScGcOXPg71/+8B5dnDx5Es+fa+en6devH/r372+RazAYDCQmJmL9+vUWCdezBBKJBAkJCZgzZw6CgvTn/isPZ8+exZMnT7T29+zZE4MHD7bINRgMBtLS0rBu3TokJiaacEblI5FIEBMTg9mzZyMkxHiCclO4ePGizjDhbt26YcQI80R5JQwGA1lZWVi/fj1iY2Mt0qe5SKVSREdHY8aMGahTx7Sqjca4evWqTg/Jjh07YswY03NgGSM/Px/r16/Hmzfv3juHoiis/2QHvQA5fN4A+IVV3MscBhZzQpvXop+7z8189gDAmK+G0pWsbx6+h4fntf+moEx4aUXvzYpnBVdf+aJs8ts0jFwwiBbY/v3lOL0Qq+Fl/kkfBDcMMNCrcRKjUugKn8p7Lcorxm/z99Ci1ItbURg0WyUqJ71OLXf+yJELB8HNT+5J+ODsE7qIV1k0bWmaOGmntrAuFkjAYrHoogqp0enVNv+qOkRQIxAIBEKlk5GYhb8VeSxYbPPyaClJeJVMhxKqiysAEN5WnghVJqPw4s4bFOUV4399f8L53VfpNh+v+BBzNk2lf+wDwL7v/kV+ljx0sdOINmjes5FCFJhIt/t7+WE69MEUop+oVlqVCWOhcPVX8uym+aFHdVqGoNdEeVW84vwS7Pzyrwr1c/3QXUxt8DntDQUAvSd3xZbHq9CwYz2UFJbi6wHLcPI31arrxO9G4YsdMzRCJf5edgQ5qXLvj9YfNEObAc3NuDs56rYMVLNlWMvadI4QS9iyVqNA9Jsm97YRFAs1hMPycOfEQ0xt8LlGqHC3cR3wW+RqNO3WwOR+/l193KLhNijjAaD+uQxpGkSHdzy7Yb4t/ev4VGnhDFM4e/YsDh48aPbfICVSqRRPnjzR6aUilUrx66+/IiPDMkJiQEAAXF1dcf/+fYv0Zy4XL17E/v37LWZLmUyGx48fQyjU9gSmKArr1q2zmJjo4+MDLy+vamPLq1ev4q+//rLYD0iKovDo0SOdtgSADRs2WExM9PT0hJ+fX7XJS3fz5k38+eefFk3wr+9zyWAwsHnzZouJiS4uLggKCqoWtrx19D7tVe0R4IYxX5rnZY4yzx71xRwbe2t6MTQ2MsGsHJ7K/qYsG0dvb9KTDiNRLYTRVK8qXfgoPK0Kc4rg5OGA9kPlucdy0vJwYNUxPDj3xKJe5ihjy37TeqJeG3n+sbyMAkDxN1keXsqg87TJpDLcPFK+zxbPmotpq1QpHDZ/tgsigfbzTj0cVD0Kw2DfNqpFReX7o/RaE5QIkZNmes63dwUR1AgEAoFQ6fz54yE6LHDwnL4ak6iKEnn1Bf26bJnz+u3r0q/vnYrAp+2/wuNLzwBFMv2v//kcw+cN0PgRmJmUjROK6pU8ay6mr1ZNHgLq+mLQ7D6AQhTYaqIoQFEUPU6+LQ9B9VXeMHZOtrQdoh/HobSoVG8/pvLRz2NgbS/3tju94xLelKNCUnF+MVZM3IDvhq2iRUVHdwd8e2QBvtg+Azb21shMysZnHb/G/TOPAUUy/UV752DsV0M1bJmbkY8jijwdHCs2Zq6dZJEf3Epbcrgc1G6i8obh2/AQ0lS+Hf8iCQU5uitrlYeJ342EnbO8ouDFfdfL5UVYUliKX6ZuwdcDliE3Xe4paO9ih6//+RyL9swpV6hzYW4R/v3lOKAIEflkvXnhNkoir72g+wxrocpZwrHiIEwRPpwWm2GWd56SsoUzHl2yfOGM8vDy5Ut06GCeh6w6DAYDderUQb169bSOsVgslJaWWszbhMViYdKkSejatWu1qFJZGbYMCwtDgwbagjOLxYJQKMTr1691nltemEwmxo8fjx49elQbW7Zv396sEDB1GAwGQkND0bBhQ53HxGKxxfJ1MRgMjB07Fn369Kk2tmzdujU4HI7F+qxduzYaN26stZ/BYEAmk1nUlqNGjcIHH3zwTm0pk8mw65u/6e0Zayaa7WUOtWcPANRrG6pxTLkYSlHyxVBz6TauA+q2lnt7JrxMxrGNZ7XaJGqIQBUX1LyCVaGLKdHpmPjdKJV39vIj2LZQFf0wbeWHZnuZo8w8uFHnevjx5P/oQgUSkUo8fHErCg07qp5Pp7ZfLPe1Og5rjUadwwEAqTHpOLhGOx2Ghi1NFCe5fNVnSqrwhPRWt6Wi2FV1hghqBAKBQKhUUmPTceb3SwAAazs+Ri+2TMjOk6uq8KqGnTR/yKqXPT+x5RwdYuDgaoeVF5eg47A2Wv39+eNB2uNtwKzecPXRTIj9oboo8O8dxETGGx1j0usUenWtfvs6Gt5wUPekk8rw8u5bE+7aME4ejhj39XBALV+cKTy69BRTG36B83tUHnztBrfEtqer0XZAC0ARlvpJq8V0lU87Jxv8fPYrnaG7+5cfoUMc+k7tTld7NIf0+Eykxcq9fOq2DoEVz0rjeHhbVVjPi1vm/+C2d7HDxO9G0dt7vv3HYHslT6+/xLTG83B6h2rC2qpfU2x7ulrn584Y/64+ToeK9pzQ2ayiDkpyM/Lp70Ros2A65FmJui2V+QTNoWzhjN1L9r+zMA6RSITZs2ejVatWFuuzqKgIXbt21VndksVioVu3bvD1NW213hT4fD5evnyJ7du3v9Mf3CKRCNOnT0e7du0s1mdRURE6duyoVdwBCqGhW7du8PMzf0FGCY/Hw9u3b7F161ZIpRWvtmwuIpEIU6ZMQadOnSzWZ3FxMdq1a6dVkAAKW3bp0gUBAeaFnKnD5XIRHx+PTZs2WdQzrLyIRCJMmDDBYvkRAaCkpAQtW7aEh4fuZ1mnTp0QGFjxIjFlsbKyQmpqKtavX2+x/Gzl5dqB24h7JvdgrNMqBG0HtjC7T4qiEHlFPnfj2/IQ0jRY43h4O7VnjwU8pJlMJmb9OplehPpr2WGtSuDqXlWmhinqQj0XWMrbNPjX8cGAmfJciMJSET13Cm4YgM6jLPM3UzkP5nA5qNsqBLaONlh29muNIgQAEHE+Ev1nqnJcViQ1hjwdxiQ6LPfAqqNaBRc0bGliPjorNZFWoqh4r27LZCKoEQgEAuG/zr7v/4VU8ZAcPLdvucuD60J9UmbjYK1VOtzN14X2AlLm/vAJ8cK62z+hXhlvNgBIi8ugRT++LQ8j5g/QamPjYIPRi4fQ23/+dNDoOJ9cUa0eNuwUrnU8vL26cGGZinMDP+kNVx95Lo/bxx5ohEmWRVgqxKZPd2JB9++QmZgNKKpuLdj1CZb8Ow+Obg6gKArHt5zDvC5L6BBOzyB3rL35IxrpuKeslBwc3yxfBbbicTD6f0O02lQEjZVYXbZUE1EtZct+H3enc3lEnI/Ey7v6V8xFQjG2LdiLLzovoYU/vi0Pn/02Hd8fWwRnT22BwBh5mfk49Kt8FZjNYWHc18MqfC/qqNtS1+eyfiXYssf4TvTq//ObURpjqCqys7OxcuVKZGdnW7Tf48eP49KlS3qPN2vWzOI/ir28vJCamoro6GiL9msqeXl5WLVqFdLT0y0W7gkAp0+fxvnz5/Ueb9KkCSQSiUUFWS8vL2RkZFjM8628FBYW4pdffkFSUpJFbXn27FmcOXNG7/HGjRtDJpNZ3JbZ2dl48aLqv99QCF9r165FXFycRW154cIFnDypv0BNw4YNwWAwLGpLT09PFBQU4NmzZxbr01SkUin2fKtakJvw7UiL2NPYImN99TnRLcs8e8Ja1EaHYfKk/HkZ+Ti1TdM7S+lV5ezlROeArQg+6oJatFwEGvfNMNg6afY5fukIi3ihZiToXmR0cnfA8vPf0DndAODc3quo0zKEzqtWUlBqsPKpPoIaBKDbuI6AouDCsU2aHn9KW9o62sDJw9GkPnnWqsVR2kNNzZap0URQIxAIBMJ/mKTXKbig8HqydbTBsM8tk5w7/kUSHZbYoGNdsFiqSZmgRIjl49fTlYagyLG17taP8K7lqbO/P77/lxbehsztBwdXe53t+kzpBkd3uRfKtQN3DJYPRxkvOqWrvDr11VdjzUymr8SKy6ErMgHAnz8d0tku6kE0ZjRbqFFCvXGXcGyLXI0e4zuBwWBAJBDhlymbsW7mNto+DTvVw7rbP+n1lPrrp0N00t0BM3vDxav8QpIuIo3YMrwSbMliszB6kcqjUlmdqyzRT+Iwq8VC/LPqGP2Dqn77Otj6eBX6TulW4R8i/6w4CkGxfDW9z5Tu8Ahwq1A/ZTFmS/X8fpayJZPJxJj/qfLv/KHHlpXJgwcPwOfz9XqZVJS0tDR4eur+26I8/ueff1osjxoU1RsHDx5s8XsxlYcPH4LD4cDLy8uE1qaTmppq0JZZWVn466+/LFqUwdPTE0OHDrX4vZjKo0ePwGAwLOrFCBM+l7m5ufj777+RkJCgt015cXV1xbBhwyx+L6by+PFjSKVSixUbUZKenm7QloWFhfj7778RE2N6mgVjODo6Yvjw4Ra/F1O49OcNWhyp374OmvXQDhuuCMYWGd39XOnk96/uvtWZ86wijFFb2Ptn5VG6MmZBTiHyMgsAMyp8KvGqpfpbrBTU7J3t0G5QS3o/z4ZrkXyyAPDEwCKju58rVl5cSueWFRQJ8PWAZRpVvPd+a1oEQ1lGLRpMz2kOqhVcKC0W0NVb/ep4mzzvUc+hplx899Zhy+oMEdQIBAKBUGns/e4AZIoKRMO+6F+u3FGGeHJFTRBQm0ikxWXg0/Zf4eIf1zXadx7RVq9nXNKbVJxTF/2+0C/68ay5GK44TlEU/vpZt1gFnaEN2hXwPIPc4awQnF7efm2xkKO+U7tphKfGv1RV1RKWCrHzq78wt+2X9ITZisfBjDUTsfz8N3D3l4s2GYlZ+LzTNziz8zJ97pC5/bD83NdwctcObYNixfS0IjcHz4aLkQsH6mxXEZ6o5U9T5kRRx8XLiQ4tfXXvrUYpeXPoMaETPcG/c+Ih3j5SJZ4WCcXY+90BfNJyER0aw7FiY+rycVh1ealZoa45abn06i+Hy8GY/1kmVBpqHmpMFlPDs0+Jen6/t49iLZLfDwA6j2xLrzw/uvjU7Cqi5aVx48YYM2YM2Gy2Ca1NZ9SoUQZDSN3d3cFms5GVlWXR6zZs2BB37961qCBSnmuPHTsWVlZWJrQ2neHDhxsMIXV1dYWVlZXFbVm/fn1ERERYVBAxlfDwcIwdOxY8Hs+i/Q4ZMgQdO3bUe9zJyQl8Pt/itgwPD8fTp0/fSZXKunXrYuzYsbC2Nj8/lToDBgxAly5d9B63s7ODra2txW1Zp04dvHr1Cq9eWcZbyxQkYomG2DLx+1EW8/YztsgINS81QYlQI+m+OdRqFEgLWVnJOTi36woA0J75KJMDrSKoL9imRsu9v6RSKV7eUXm+CoqFuLL/llnXURJ5xbAtfUO80OaDZqr2ZbzC1YsllQf/Oj7oNEKeviIvswCnfrsAAMhOVuVb1bd4rQuejervnlQqT2HgEehOh5amRJffk66qIYIagUAgECqFuOeJuPzXTUCRj0pZ6c8S6JqUPTz/BDObL6QnYMpKhQDw4o7+UJ593x2ATPEQH/a5cdHvg+k96WT1l/68oXf1rGxog3oFTCUMBoMWNEoKSxH71DI/jLl8LoZ/IQ9bVRf+Ii5E4uNG8/DnT4folcCQZsHY9HAFhsztR4chPLn6HLOaL0TU/WhFf1ZYtHcOZqyZqPM+lPzxgyoP3aDZfeHoplt4Ky8ZCZlIjZFPqnTlT1OitKVYKMbbchRkMATHioORCwbR20rPqshrLzC9yXzsWfoP7b0X3DAAG+4tw4j5AzW8JivCXz8fhrBUHibYf3pPrZx+FSU3Ix9xz+XiX2izYL2JkdXz+726Z35+P/yfvbMOb+p83/gda+ruQluqFJdSoLgXdxgwdPiwMWRsbGNjbGNjMAYbMNzd3SlQvKVQd3f3Rn9/nOQkadP2JDlh8P3lc127Rpo3b06fnuS853mf576VVPwd2fD+qtTu3r2LjIyMRqtM1CEhIQHx8fGNJun09PSwYMECeHt7NzhGXfLy8nDt2jUKI+nj4cOHSEpKgqOjZhUddUlOTkZ0dHSjQvIsFgvz5s1DixYtGhyjLvn5+bh27dp71fd78uQJYmJiaK/oSktLQ3h4eKMJTyaTiTlz5ig1gNCUwsJCXL169b1q/D1//hxv376lvaIrKysLr1+/bjThyWAwMHv2bLRv357W9waAoqIiXL169b3p0t06+JC83rbv11qpxII6UNlkhBY0PKVMkXMoPfnreQj4ApTklZI/k25CqouhiQHZwSBdFz48GYK0aMVOhj1rjpBVXZrQ1CYjAHQZrlgNlxSeSlatVVfU4OmV10pf1xTyFX8nf7sIXg1PIZbmDWy6KkO+Qk0kWZfqcTmwcSG0H3Utnzp06NCh4/8th76XCY9PXDWynvC5uojFYryTLCSMzAib9ZObLmJt0E8oL6oAJHppfz37mXzPyMcxSm+SUqPSce/YY0Ca9FvadNLP0MQAY5cNAyTJhhO/XFA6rimdKinybZ8RNIjwShk2fwBZlXfv2GN8O/pXrB74I+mYxOaw8Om347Et5Ce4SuzNxWIxzv15Fav6/0C2Qdi72WDrkw1KzQfkyUrMIavZDE0NMP5Letp70URrgzzaiuXgWX1gaU/ogTw+9xzfj/kNK3p/R1b4MVlMTFozGn89/xnN22gu8p2XXoCruwgdKX1DLiatGdXka6jyLpjaeSmv70dnLPt/2hO2zYiF8svrYYh7rX0NsMLCQjx+/Fgrc798+ZJShVhFRQWuXLlC+/v37dsX5ubUtGrooLS0FA8fPtRK0unVq1dITW3a7KWmpgYXL16k/Rj69OkDS0tLCiPpoaKiAvfv39dK0ik0NBQpKU1X9/B4PFy4cIH2Y+jZsydsbGzeW3Kyuroad+7c0Vosk5OTmxwnEAhw7tw52s0tevToAXt7+/eSnOTV8nF0wxny8YwfJtI2d2Z8dpObjKijoxbxJJq29/fx90SnQW0BADkp+bh37DFK8srI51VJAjWEpQPxXVxWWAGhQFGHzlfinp2fXogzmy9r9D556QWUNhnlYymtMpRuIAPAYYpmS3Vxb+2KwFGESUVRdjFu7r+PYjVjqdDyKXds0liWF1f+p4YxVNAl1HTo0KFDB+0kvEnGo7NEObmFnRlGLBpM29xp0RlksqdlNx/8POVP7FlzhGwtDRjaAdsliY0WXYmKkKKcEqV6Z4fWnyYX/BNWUk/6jfx8MAxNibG3Dz1AXlp+vTFUWhtQR/vrzX36xIcNjA0wZtlQAIBYJMbTi6/I51p198XOsN8w7fsJ5KJWqj33z/ID5IKrw4A22PHyV3i2U76TLM+RH8/IKv2WD4eppebmE1IUreHffyy5BlyM+1JmVPHkwgvy374BXvjn9SbM3jgZetyGK2tU4dhP58hKv5GfD6Ys7ksFqrFspaVYsjlsTFotSxA2pEtHJywWCx07dkS7du1on9vQ0BBt27ZtclxlZSXCw8NRUlJC6/s7ODhgzJgxiIqKei/JCwaDgfbt26Njx44URqsG1VhWVVUhMjKS9vY6W1tbjB8//r3Gsm3btujcuTOF0aphYGBA6XyvqalBdHQ0cnPpbauytrbGxIkTERMT896q1Fq3bo2uXVV3Um4KqrGsra1FbGwsMjMb11ZVFQsLC0yaNAnx8fFaTyzc2HuP1MHyD2qv1MRJXeSlOhrbzHFr5UKur94+jKL1d57yjczY5/jP51CUU0w+piOhJu1w4NfycWPfPWTGE1qPbXu3xMoDn5PVYSd/vYCCTPXNcZoyaZLi5OUAcxtCE5jDrZ/ATAhNRpWakg6T5Sr+Tvx6AYXZspZPVWJpYCyr/JRP9sl3i1SV0SM7oS10CTUdOnTo0EE7R36U7XBOWjMa+nK22JoiL2obH5qE4NNPyceffjseP1xcTV6IOw2U3Zw9vfRKYZ7UqHTytea2ZhixaBDlYzA2N8Koz4MAiYvoyU0XFZ4Xi8XkceobcRtsbQAAz/ZuMLMmkk+vb4XXs3RXl7SYTLy4HqrwM0NTAyzfPR+bH6yHq58L+XNl2nMTV43ExmtrKbmyZiXm4O6RYACAiYURxiyjr70XciL6HD02fAM8Gxzn6udMOpy+uRdRz9JdXTITsvH8qmJrhL4RF4u3f4atj3+kpSpNSl56Aek4a2hioGAwQQfSRC+TyVCqnybF3t2W1DuLeByDssJy2o5h0Mw+pHbgkwsvkfyu6aokdSkrK0NCQgKGDRumcRtuXUQiEfr27UspCdS8eXN4eHjQ+v5SiouLcfr0aa1rVlVUVCAmJgbDhw9vtC1THUQiEXr27EkpUefq6gpPT09anPLqUl5ejjNnzmjdpbKyshLv3r3D8OHDweXSd32E5PrTtWvXRnX9pDg7O8Pb25v2zwYkic8zZ87g7du3tM8tT3V1NcLCwjB8+HDadejEYjH8/f0b1fWT4uDgAF9fX9o/G5Ak686cOYOwsDDa55Yi4AsUdGGnr6evOg11Nhnb9PJrcByLxUKH/oQJQmlBOaKf0ue+2yrQl9xIyojLxrtHsgo4c1vlZlSqIJ8EOiYXyxk/TEQzXyeMWEisM2uqarF37TG130cxOdlwLBkMBjpK1sG8Gj46Bym2JIvFYhxR05zAu6MH/CXz5aUVIOzOO/I5CxViKV9dJ59QM5KLZUVxZb3XfUjoEmo6dOjQoYNWclPz8fTiS0BiQz5s3gBa5392RZYYK84lNBsMTQ2w/sKqenbk3Ub6k/8OufhCYZ6L22+Q/564aiQMjFRbiI9ZNpQsVb++9x4Ks2U7nfGhSSiSPG7do0WjumMsFgtdhhE6FzWVtQi7q1k1EK+Gh0Pfn8L8dl8iKkRxIdp9TACGfNZPIUaPzj7Dgg6rSO05fSMuvjn5BT77ZSrlm6xLf98kKwTHfjFcI+v5uqRGpZOitC26eoNr0PDNJ4PBQNcRxN+czxPg5Y03Gr03n8fH0Z/OYk7rFQi/H6nwXMDQDhixcBDtN6JXd90m9e1GLQ6ilNCkSnZyLmme4N3Jo0H9NEhi2U0SS5FQhOdXQxscqyp6+nqYSMGJlg7u3buHZ8+eaWXuhw8f4ujRo5TGcrlcTJw4EXw+PWYZ8tja2sLd3R2Jidptn3348CGePHmilblDQkJw4MABSmM5HA4mTpyolWodS0tLeHt7az2Wjx8/xqNHjyiMVJ3nz59j7969lMayWCxMmDBBKxV5pqamaNmypdaNHp4+faq1NuTQ0FDs3LmT0lgmk4nx48drJdErrd7U5nn55PwLFEiE5bsM7wifTvRtAPB5fLySXI8NjPXh3bF5o+Ol1x5INl3oZMo3ssqqd8HyCTXNK9SMzGXX1LxUotKvQ//WaNWd0Hz89LvxMLEg1kd3Dgcj5oXqmyBCoRAvrhHX48b006R0lYultYs1/LoqannePHBfyauoMVUulvKV7KrEUv7zolChZiaLZUWJLqGmQ4cOHTr+H3Fl5y0yuTJs3oAGtR3UIS8tH69uhiv8rFkLJ2x//rPCAkyKo4c93FoRlVgxzxPI8v7K0krcPkw4e+obcRE0u6/Kx2JmbYrh8wcCkvJ+qbslADw8Jauak7dMbwjFxJ/6i8c39yMwr92XOPzDabJl0M7VhjRoCD79lKzaqqmqxdZ5u/DD+M3kYsXR0x7bnm5Er/HU22aqK2twU6KdxuFyaE+gBp+WJUOoxFKq6wEATy+pH8uIx9FY0GEVDqw7Ab7EMdTa2ZJMooZceElr1RYk+jXX/iUcs1hsFoYvpF41SQVNYhmiQSyVMWRuf7IVJfjMM4WENJ0UFhZSqtRRh7i4OJWE+RMTE7Fz505UVVXRehwMBgOTJ09G//79tdqqWFBQgC5dumhl7ri4ODg5OVEen5qaip07d6KsrIzCaNWYMGECgoKCtNqqqM3zMj4+XqXzMiMjAzt37kRxMf2fwTFjxmDYsGFajWVBQQECAgK0kshS9bzMycnBzp07kZ9fXwZCU0aMGIHRo0drre3z4g7ZJuOYpUNpnTvsbgTKJVVGXYZ3bHSTEZINK2l7ZMill7R+r7Xr04pMKsknamhp+VSymSgfS1NLE0z7Xlb5t2XuLvB5qm2yRDyOIbXoOge1a3STEQD8B7cDR4+I98troVh36gtY2MtkJMoKKxD9XL0qQL+uPmjXtxVQpy1T3VhK7x1Qp9pPl1DToUOHDh3/b+DV8HBNklhic1gYOrc/bXPHvU7Eos5fKSys+k3tgb+e/QwXn4YXvNJEm1gsxrPLRNverYMPUVNJtFYO+LSX2hVVIz8PIoVeb+y7B5FIBLFYjOAzREKNyWIicHTTiYsOA9qAa0AkHp9efqXygrm0oAy/zdqBlf3WIyOO0OxgsVmYtGY09kRuwYBpvQFJBdz944+R9DYVi/xX46okeQMAPcd3xY4Xv8C9lWoOafePPSYXO30+CYSZteZtE/JIYwkAPcY2fTPfppcfqb/y/GooBHzVnNHKiyuwdd4uLO/5LVKjMgDJ33HcF8OxL2orhs4hzmk+T4A7h4NV/G0aJ/j0U1IfsMfYAFg70iuQLh/LnhSSpi26epNJr1c339DWjgyJ2ULQZ/0Aya70rQMPaJtbSm1tLWbMmAF///rJdjoYMGAA+vXrR3m8s7MzxGIx0tPTaT8WNpuN8+fP48aNGxRGq05tbS2mTJmiFY0qSMwVBgygnox3dHQEg8GgZAihKiwWC5cvX9aKiQQkRgATJkxAjx6NG72oS69evTB4MHXdUgcHB7DZbEqGEKrCZDJx48YNXLig3LxHU3g8HkaPHo0+ffpoZf4ePXpgyBDqEga2trbQ09OjZAihKkwmE3fv3sWZM2cojFaNpLepZPtjsxZOaNenFa3zy0tz9BzX9HeIqZUJWvcgqrqyEnKQFp1B27EwGAyMWjyk3s9MrYw1nruuS7xDczt0Gqyovzds/gBSJiLpbSqO/KDa31PVWBqaGKBdP8LJNz+jEEU5JfjuzJfk2hUAfp/1t0rHIM/oJfU/H2Y2qq0DpccilkuoKbR8ltC7CUU3uoSaDh06dOigjYennpJVOz3GdYGlvYXGc4pEIpz54zKWdvtawZZ76rfjsObQkiaNBLrJVeI8ufgCIpEIl/6W3XRqYphg52pDukblpubj9e23iA9NQk5yHgCgXZ+WMLdpeqdO35BL6lyU5JUi5nkCpfcXi8W4feghZrVYppCQ8OvqjX9e/4rZGydD35CLIXNkN/3HNp7D5wFfkVbuXAM9fPHvfHxzYnm9xSCV978oH8uF9JlPQNLumRJJJB/8uvnAxtmqyddw9DgIGNoBkOxqvg2m5hImFotx7/hjzGqxTCHR6N3JAzte/IJ5v0+DgbEBgubIksTX9tyhdef8khZjmZ2ci7hXRLuQZ3t3OHrYN/kaoh2Z0LSiox25LkGzZefl9b13aa1iEYvF2LNnD0JCQmibU57o6GiUlJTAyIj6Z8bY2BizZ8+Gu3vTJh/qYGdnh7CwMNqrgcRiMQ4cOIDgYHoTyFLi4uKQl5cHExPq7c0GBgaYPXs2vLwab3dSF3t7e7x9+5b2Fl2xWIzDhw/j3r17Cje0dJGYmIjMzEyYmVGvENHT08OsWbPg40OfAL08Dg4OiIiIQE1NDe1znzhxArdu3dJKLFNTU5GSkgILC+rrGDabjVmzZqFly4aF4jXB3t4eMTExqKykt2Ln0g7Faw+d8eTz+KTkhoGxPvwHUzOH0WbbZ+DozgpyCiZWxrTIN9RdQw2fP7DevGwOGysPLAKLTfz8xK8XKLd+CoVCPD5HGH5xuBx0Gd6J0usC5bsgLrxEy24+mLBSZrSUFp2J6BfqVakFDOkAK0fZZ0TfiKu6brLkdJNfT0lbYwGgUlehpkOHDh06/r9wccd18t8jFwVpPF9xbgm+GfYzdn15CAK+rGrLytEC076bQGkO747NSaH6sLsReHb5NVnF1bZ3S7i1dGlihsYJ+kyWYLm+545CuyeV3UMp8joXVNo+02IysWrAD9g0YzuZxDQyM8SSv+dgy6Mf4d5aJpTv3dGD3BHNSysgWxibt3XFjle/Imh2P7UW0JFPYpAUTlQ1+AZ40aq5gjotiqq0ocovxJ9SiGVmQjbWDvkJP0/5k0zaGhjrY9Gfs7Dt6U/wbC9LgLi2cCbF/FOjMhBFk2By7KtERD8jFtXN27gq2N3Tgbqx7EpTO7IyHJrboUN/Yuc8OykXb+ro1GlCZmYmCgoKtJa8unfvnlqVZiYmJrh48SJ4PB7tx9SlSxcMGDCA9ta33Nxc5OTkaC2WDx48UKvSzNTUFBcvXtRKoqZTp04YNGgQ2OzGW9NUpaioCBkZGXBzc6N1XikPHz5UqzrK3Nwcly5dor0dGQDatWuHoKAg6OnRJ/8AAKWlpUhOTtbaeRkcHIzk5GSVX2dhYYHLly+joqKC9mNq3bo1hgwZQquRRXlxBWlIZGhigAHTetE2N5S0ezbVoiil60hZskgT+QZl6HE5Cr8nXQlEjr7MkILFYWHQLOWVk57t3DF1HeE4KhKKsGnGDkoV4HXbPak608sn3qTyDZ/9MhUcOWfyrwb9hJL8UqWvbwwWm4VBM/ooPFYVskJNrGv51KFDhw4d/4+JeRGP2JdEBYxHO7d6wqeq8upWOOa1+1KpsHyfSd0pL4AYDAa6ShYT/FpCZF7KSA2q06R0Hd4RFnZENUDIxVe4f5IQ7aba7imly7AOYDIZknleNDiurLAcO5bsw9w2K/DmnqxiqNeErtgbtRXD5w+sd0Md/iASuWmKmi6jFgfhr6cb4drCmfIx1kVec4WOWNZF1XZPKf5B7cHmEIu6JxdfNFhFVlFSiZ0rDuKzlssVtPkCR3fG3qitGLU4SOmu9ZDPFKvU6EC+Om3kInorBKBGu6eUDv01a0duiiF1EtJ0YWNjg4kTJ6qkf0QVsVgMDoeD9u3bUxitiFAoRFRUFBISqFWhqgKXy4Wbmxvu379Pa+WkpaUlJkyYoLUkEJvNpuTuWRexWIzo6GjExsbSfkx6enrw8PDAvXv3aI2lqakpxo8fr7XKOjabjU6dqFWtyCMWixEbG4voaGoVvarA4XDg7e2Nu3fprUI1NjbGuHHj4OtL7+aDFCaTqXYs4+LiEBFBb0UvJH9fX19f3Lt3j7bv4lsHHqCmSiKBMa0X5SQNVVRtUZTi4G5HbgTGvEhAQVYRrccllRwAgKqyKlo+54lvZAlYjzZuMLVsuOp20ppR8JZsQqbHZOLAupNNzq9uLK0cLOAbQHznJL9LQ3YSYfQ0dJ7s+ltZWoUNE7eoLJMBAIPldIhrKmtU/pwzmPUTaoY6UwIdOnTo0PH/jUt/3yT/rUlCgM/jY/fKQ/hq8AbSxdPCzoxceEDFhADqtH3GvSaSfjbOVgpmAOrC5rAxcDqhUSYUCJGfRjg7UW33lGJuY4aWgcSNQUZcNtJiMhWe5/P4OLf1KmZ4L8aF7ddJJ0g7VxtsuPIVvjnxBawcFFtThAIhDqw7gZX91qNSToNC34iL2T9P0cgwojC7GI/OPpccu6nKf5OmUKfdU4qRqSEplJufXkg6mEoRCoS4uOMGpnstxtktV8jqRxtnK6w/vwrfn13Z6Pv1HN8VRpLF3sOTIags1WyxV1ZYjvvHiUSssbkR+kzurtF8dVGn3VOKviGXbGtWpR2ZKl1H+sPMmrjpeHL+BUoLNBeZLy8vx+XLl+Hh4aGVVrDq6mrMmDEDzZqppjcISfVKmzZtwOFwKIxWnfLycgQHByMzM5PC6KaprKzEpUuX0Lx5c63FcurUqWpVGZmYmKB9+/a0Vz5JqaiowOPHj2nTw6qursalS5fg5uamlVjW1NRg4sSJaiXrDA0N0alTJ1orn+SpqqpCSEgIbS6VtbW1uHDhAlxdXbViRlBbW4uxY8eiRYsWKr+Wy+Wic+fO0NdXzTmcKjU1NXj69CktiWSRSIRL/8jWbppIYChD3XZPKV1HyFepvWp0rKq4tnAmEzn8WoHG1eZisVhhA9g3wLPR8WwOG6sOLCKrxM5uuULq2ClD3XZPKYFKqs1nbvhEYUz4g0gc//m8SvNCkvxkSTYxhQKRwmYvFaSbyZDLabJYcp9r7Xnt0IIuoaZDhw4dOjSmJL8UD04QCQETCyP0+US9hEBqVDqWdV+H05svkz/zH9wOmx+sJ5Mits2s4du58YVKXdr2lgnVSy/MQ+cOUKs0XRnyO51SVNk9lKLQ9nmBWISKxWKEXHqJOa1X4J8vDpCtE/qGXEz7fgL2RG5BwJAO9ebKiMvCF72+xdGfzpK7fpYOhLNTTWWtwk6nOlzbfYdM6gV91g96XHoTBAotimrEUlF/RVbx9+J6GOa2XYHti/eSrbJ6+hxM+Xos9kZtoZRk1Tfkou9kQlC8tpqHe8ceq3x88lzfe49swx00ozcMjOi9EZOPJV3nJV0QrTdEQprPE+D2oYcaz/nixQutVIBJOXLkiEZ6YqNGjYKpKb3mHVLc3Nzg5uaG6upqCqOb5tWrV4iLo6etWRnHjx/HvXv31H79iBEjYGlpqRV3UxcXF3h4eNDWUhoWFqaVCjApp0+fxq1bt9R+/ZAhQ2BjY6OVWNrb28Pb25u2WL59+xaRkZFac7U9f/48rl+/TmGkcgYNGgRHR0etHJ+NjQ38/PxQW6u5SczrW+HISsgBALTv1xrNfOmt6FW33VOKogM6vdceSKoQpWhabf42OAp5kg1VALBxsW7yNa5+Lpj54yRAstb7beYOVFco/+6Wb/f0H0y93VOKvHzDE0ksDY0NFCQtAODohrNICFO91VnqJAo1YqksKS4UyqrcmKwPO2X1YR+dDh06dOj4KLi+5x74PKJMfPCsvioLkgoFQhzbeA4LOqwiK2nYHBbmb56ODVe+QuSTWDJ503NcV5V39zl6HHQcJNsZZbGZCkL9muLk6YC2fWQixAwmQ6V2TymBo2QLnrtHHyHhTTJWDfgB343ahMz4bPK5AdN7YX/sn/j02/H1Yi0UCnF682XMa/cluePKZDExe+NkfHPyC3KcvPC+qgj4AlzZfZuYm8nAsPkD1Z6rIRTaPcdRb/eUIr+zfe/YIyS9S8VXQRvw9dCNpCEDAPSd3B37Y/7EjB8nwcCY+gJV/vyROtuqg1AoxGW5CoHhCwepPVdDKLZ7qh7LLsM6kgva+yee0N72KZ+QvrbnrsY3ofr6+ujdu7dWqsAqKiqQnZ2tUStpZWUldu7cqZWkH5PJxPTp02FhYUHLzTyXy0XPnj21UrlUU1OD9PR0ODo6qj1HbW0tdu7ciZiYGFqPDRK5gKlTp8LW1paWWOrp6aF79+4wNDSkMFo1+Hw+kpOTNTovBQIBdu7cqZVWRQaDgU8++QSOjo60tH1yOBwEBgaqZGRBFZFIhISEBI3OS5FIhF27diEsLIzWY5Myfvx4uLq6avxdrHXZBjVbFKV4dWgOGxeiWjz0zjsUZhfTenzyn+uHJ0M0ai2UjyXqVlg1wpjlQ0ld1uykXPy7+qjScfKxVEUHVUozXyc4ezsAACIexSAnhTDPmvrteIVxQoEQv07/C7xa1QxZ5NflT86/UEmPjSGXUJN+P4h0CTUdOnTo0PH/ibtHZdUawxeolhBIepuKxV2+wv5vjpNJORcfR2x7uhFjlw8jrOKPPSLHq9ta2MxHtjg2tzWDhZ25WvM0RLvesoSaua2pSu2eUhw97OHXjVhYpUSmY0GHVQql8617tMCOl79g1f7PYe1UvyUxNToDy3usw+6Vh8CrIRZDDs3tsOXRj5i0ZjRaBfqSJgxRIbFkS6WqhN2LQJFkYdt1pD9sKezEqkJieIra7Z5SrJ2sSMH7rMRczG+/UkEnrUUXL/wZ8hO+OrIUts1sVJ7fs507fPyJNuSEsGSylVhVIp/EIjeV0LfzH9wOTp4Oas3TEBlxWQrtnurMb2Ztis5DCL2w/IxCvFKia6gJzXyd0Lon0VqVHpOJyCfqJ0cqKirg7e2NLl1UTxxSwdDQEOPHj9fIEdHIyAj29vZaq1YSi8XYtWsXXr3SrEWqqqoK7u7u6N6d3hZkKVwuF+PHj0erVq00msPZ2VkrCTUpe/fuxdOnmlX01tTUwMnJCb1796btuOThcDgYN24c2rZtq/YcbDYb7u7uWo3loUOH8PixZhW9tbW1sLW1Rb9+9G2KycNkMjF27Fi1dP3k5/Dw8NBqLI8ePYoHDx5QGKmckvxSskXRxsWKdHSmi5qqWrI6XJ12T0iSNP2n9gQkCRZ5N3M6kE/aaFJtXllaiWd1WlKpJoFYLBZW7l9Ebo5e/ucmQu+8VRjD5/ERfIaoNFen3RPSWH5KGDGIxWLc2EdUBgeO9IeBsWJVfEpEOg6vP63S/PKxFPCFuH2IehU3kyVLxkn1/KSb6NAl1HTo0KFDx/86KZHpSI3KAAC0DPSBQ3M7Sq8T8AU4/MNpLPJfjfhQorycyWRgwsqR+Cd0E7w6NAckSSJpUsnRw07ldk8pmQmyCq+i7GLkpRc0Ol5V5DXPygoqUFWuessVr4ZXTwcNAOzdbfHt6RXY/GA9vDvWd9IUCoQ48ct5LOiwinSKZDAYGL1kCHaF/w6/Lt7kz+SrgdRtrws+FUL+u9+UnmrN0RiX5fT4+qrZPsyr5SskTcUiYifatpk11h5bhj+f/ETGRV3kBfVvH1QzlnK7ztqI5SUaYol6RgzqV+RRmf+WmrEEgKtXr+L27ds0HZUiQqEQly5dgr29vUa6TQwGA5MmTUKPHj1oPT75+b28vDS+mb9x4wZu3LhBYaTqiEQiXLp0CTY2NhprYI0fPx69etHrTCiPp6enxrG8desWrl27RtsxySMWi3H58mVYWloqNVFRhTFjxqBv374URqoHHUmme/fu4dKlS7QdkzxisRjXrl2Dqampxg6vI0eOxIABA2g7trpoel4+Of+CTIL0mdSdNgkMKfePPyYrvrqPCVC53VNK0GzZmuX6XvqMLZTNc/uQegm7kEuvyA1hKaokgZw8HTD7lynk499n/62gzfro7HPSgbzL8I5qG0cMmtmHPK6b+++TSavuYwLqjT216QKinlFv95dPqEHFWMqfezUVNfXm0yXUdOjQoUPH/zTqlPQnvEnGos5rcOj7U6QgvKufM7Y++Qlzfp2qsPCST66MWKie2UFtdS2eXwklH4vFwM1991WepyGKc0vwWCLQD0mC69VN6lU8YrEYD04+wawWy/Do7DOF56avn4C9UVvRY2wXpb97ckQalnT7GnvXHiN1uJy8HPDHw/VYuHVmPT2uflN6kAKwTy407IDZEAK+AE8kgrb6Rlx0DlJ917kxyosrcPcoUZFoaGKgYG1PBbFYjEfnnmNOq+XkPFI++WoM9kVvRZ9JgbSIgvea2I2Sm2hDCIVC8u9N7DrTWyFQXVGNmweI81xPn4NBs/o0+ZqG6BzUHlaORLL32ZXXtLfe9BgbQO7Qa+ImmpqaqpbAPRWio6MRHh5OS8urmZkZnj9/jjdv6K32kzJ06FAMHKhZK7Y2YxkfH483b95AIFDdUa4upqamePPmjcYVeQ0RFBSEoKAgjeZIS0vTWiyTkpIQGhoKHo+n8VzGxsaIjIzEs2fPKIxWnYEDB2LYsGEazaHN8zI9PR0vX76kRZ/MyMgIcXFxGlfkNUS/fv0wcuRItV+vrvMzFcRiMW3tpA7N7chq8+ykXLy5H0nLMconbKTXnpgXCSjILFR5LvlYSlE1CTRi4SAFM6UdS/eTawq6YmntaImAoYTmbkFmEVmhOGvj5HpjRSIxfp+5A7XV1D4LUs0zfSMilsnv0pCVmEPptfLrsdpq4ntM/u9DtX32v+LDPjodOnTo0PHBo7Aoa0Lris/j48C3J/B556+QFJ4KSBYdn3w1Gn+/3oQWAYruZJVlVbh1kNjl0jfkYuAM9dplXt0MR3WFohjy9X13adOCurbnbr3dSamLUlPEvIjHsh7r8NMnW8nWP3nMbMyUCv4L+AIc3XAWCzvKdOeYTAbGrxiOXW9+Q6vuyt3JzKxN0bI74SaaGV/fTbQpwu5FoLyoAgDQZXgntXedG+LWgQdkyf+Aab1U2omND03Cl32/xw/jfkdWYm69582sTWg9XiNTQ7TvRyz089MLVRbyjXwSqyAybGRKr7bSnSOPUFVGVEr2ndwDppbq6w2x2CwMnklUroiEItzcT19CGgC4Blx0lHMTlVZaqsr06dMREFB/t50OWCwWOnbsCBsb1VuElVFbW4v79+9rRbjcyMgIkZGRiI9XL44AMHnyZAQGBtJ6XFIYDAbatWsHBwd6Wpxra2vx4MED2qpX5DEwMEBcXJxGLboTJkxAz570V6BCEsvWrVvDxcWFlvl4PB4ePnxIS7KzLvr6+khOTsa7d+/UnmPcuHFaq6ITi8Xw8/OjLWHH5/Px6NEjWpKdddHT00NGRoZaSfmS/FIyMWXvbgvvjs1pPbbIkFjSSMq3syd8/NXrLJAiX8F8XUPzACnyCRszG5lJjKpuopWllXgtkZOQun9DjYQak8nEl3sXkmue24ce4vI/txAfmoSoEMLR1a2VC9r09FNp3rooVpsTsbR2tISTl+y7WBqP9Ngs7P/6OKV5pfE0sTAmf0Z1HcznyfTaLOzMFOaDrkJNhw4dOnT8L5MapdjuqUzXS0rsq0Qs7LQaRzecJcvM3Vs3w1/PNmLWT5OVJo3uHA4mE2H9pvRQuFCrwsPTshZF707EwjE/vRCvb71t5FXUEAqEuLpL1mIm1aJ4fjUUAn7DNyQZcVnYOGUrFndZSy6WAKDjwLZYd0pmHqBs8ZgYnoLFXdbiwLcnyAo/F18nbHm8AXN/m9Zk0kjeAfMpxQWPFPl2T3VEhhtDJBLh0t+yndgRFHdis5NysWnGdizyX4O3D6PIn7fr0xLfnf2SfHxtzx3akxcKDpiqxlJDwebGEIvFuESz4PTg2X3JnWQ6W2+kaHJeAsD9+/eRkZGhcQuhMng8HkxMTDSurpEnMDAQbm5utM1Xl5ycHDx58kSt1wYHByMlJUXjFkJl8Pl8GBgYaFRdU5euXbuiefPmtFSeKiM3N1ftSqOQkBDEx8dr3EKoDIFAADabjTFjxtD2u3fu3Bmenp5ai2VeXp7asXzx4gUiIyO1Yjgi3WAbP348bb97p06d4O3trbVY5ufnIzg4WOXrmny7pzpGT02hznW8MbqN8oe5JMnz5PwLlBaUaTwn5H5nEyu5JNAl1a498u2eXnKJSXVaaO1cbbB051zy8d/L9uPAuhPk45GLgjT+W/kPbgdrJ0tAsk4tyCoCAIz/cjg5praqFhzJmvzcn9fwNjiqgdkIxGIxeVxG5rKkItVYCuQ2pPUNiTW0QoUaze3IdKNLqOnQoUOHDrUJPi1rC2koIVBdUY1/Vx3Gkq5rkRJBCM2z2CxMXTcOO17+olQTDNKEAA2LstrqWjy7/BoAYGxuhAkrR5HPaWqTDsliKj+DaBHoMrwjAiTCvhUllXj3qH5FQ1ZiDjbN3I7Zfstw/7jsZtfF1wkbrnyFn69/jZ7jusK7ExGX+NBkxIcmARKx1v3fHMci/zVkNRSTycCk1aOwM3QTZU0wBSt6FRaP2m73fHUznKws69C/NZr5Nu5Yl5OShz/m7MQMnyW4fegheVPh6GmP9edXYdOd79B9dABa9yCq9dKiMxEpl7ykA3k3UVViKRQK8egc0SasjXbPtw+jSGOHloE+8GyvecWFvZstOgxoAwDISc5TMMygg4ChHWTtyBdfqnSTyOfz8fTpU1RVVdF6TFJu376Nixcv0jqnlZUVBgwYgKSkJFrnldK5c2e1XBCFQiFCQkK0Fsv79+/j3LlztM5pbm6OwYMHa8U5FZJYmpmpbjQjEokQEhKCykr13QMbIzg4GKdOnaJ1TlNTUwwZMgSJieoZrTRFp06d1IqlWCzGkydPUFFRoZXjCgkJwfHj1KpxqGJsbIxhw4YhKSlJK5WoHTt2hIVFfd3VptBmu2dhdjG5NjSzNlHLkbIuHD0OKf/A5wnU1n+VR4/LIZNGIqGIdBN9cy8ClWXUv/vkY+nZTnadVbeqqu8n3THuCyK5JRQI8eI64RRrZGaIflM0N4hhsVkYNJOQf5CvNg+a3Q9sPSLpX1NZi/6fEhW1YrEYv83cgeqKhnWBGQwGWZ3HrxWQbqKRj2MoJT+FAiJ5xmDKkoVCXYWaDh06dOj4/4B85Vfddk+xWIyHp0Iwq8UynPr9Ernb5NHODdtf/Izp6yeCo9fwLvOb+xFIiybaEVv3bIHmbVzVOkb5ds/AUZ0ROMoflvaEWP2zy69RlKOZFtSlHdfJf49cFIRA+WTVBVmCJSclD5s/+wczfZfi9sGHEElE8k2tTLBo2yzsDv8dAUM6kLt8Q+TMA679ewePzz/HbL9lOLbxHFnh59bKBdue/YzZP0+Bnr4e5WN29LCHWyuiPSj6WTxlPSxtt3vKJ1BHLmpYsygvvQB/LtiNmT5LiEopstXACPM3T8eeiD/QbaQ/GUt5IwY6kqjyWDtakkYZSeGpyE6u32qqjMgnsaRTqjbaPS9SjKWqDNFiLM2sTdFKkvxUtR2ZwWCgefPmGrkcNkZCQgJatmxJYaRqpKSk4OjRoygtLaV9bk9PTwwcOBDV1aoZpDAYDLi7u6N9+/a0HxMk+ml+fpq1LSkjPT0dx44dQ1FREe1zu7m5YciQISonGRkMBpo1a6aRY2RjaOu8zMrKwvHjx5GXl0f73C4uLhg5cqRaSUYXFxf4+/tTGKk62jovc3NzceLECWRnZ1MYrRqOjo4YO3asSrHUdrvntX/vkGuUoM/6q7Q2aQzF6/hdWhKUxpJqqsqSKrJCWsAX4qUkidUU8u2elg4WMLWUVbrJt3+qyme/TCHlJKT0n9oTBsbqmRHUJWh2P3J9dGPfPYhEIjCZTHQaKLt+RjyKRiuJPEhOch52rzzc6JyyWFai28jOgESH7dmV100ej3QNJ1+JVlEsO6c1ieX7QJdQ06FDhw4datFYu2dqdAZWDfgBGyZtQUEmcXPD4XIwff1EbH/+s8IuXkMoirCqnxBQSPqN7wo2h42BM4jdOaFAqJENe2pUOrkwdfZ2QIf+reEf1J4Uqg+59BK5aflk8ufGvnsKyZ9ZP03G4aQdGPV5ENgcxXagPp90J8Vdr+25i/Vjf0deGuFMyuawMOWbsdjx8lf4dFJe4dcUgZIFDwA8u0xNM0Sb7Z5ZiTl4cY1YxNo2s0bAsA71xhRkFWH74r2Y4bUYV3bdJttdjcwMMe37CTictANjlw+rl6jtOa4LjM2NJL/DU9J5jC7k2z6p6q9os90zP6MQT86/AABY2puj+5jOTb6GKl1HdFJovSnJpzcRpG7bZ0FBAUaMGAFTU1MKo1Vn2rRpWtHA8vLyApfLRXp6Ou1zQ+LUqaojYkFBAYYNGwZzc3MKo1VnypQpWtHAat68OYyMjJCamkr73ABw584dlSvrCgoKEBQUBCurhuUQNGHixIkam08ow83NDaamplqL5f3791WurCssLMTAgQNha2urlWMaO3YshgwZQvu8zs7OsLCwQEpKCu1zA8CjR49UqqzTZrungC/A1d2EBAaTycDw+fS5nLr4OKF1T2LDJT0mE5FPNHOLhaRrAZKOgm6jZNdJqtXm8u2ePcd2QWlhOfmcuY361yIWm4U1RxaDyZalagqzi2mrcrRztUHHgbJq87C7hKbhwj9nkmPSY7MweukQ0rDhyq7beH07vME5jeRiKV+5/7SJWPLk9NOka2dItFSlmGkQy/eBLqGmQ4cOHTrUQlm7Z1V5NXavPIR5bb9UaAfrPKQ9/n23GVPXjauXOFJGXlo+eTNt5WiBwFHq7UjXbfds349wUAqaLbuZu7zzVqNaZ41xcYeiAymTyYSRqSHp1JSXVoAZnvWTP9PXT8ThpB345KvRDYruM5gMOHraA3W0JDoMaIPdbzdjxg+TlOrOUaWrXCXdEwqJC223e17+5xa5WBw+f6CCdlNRTjH+WX4A0z0/x8UdN8gFrKGJAaZ8MxaHk3bg02/Hw8jMSOncXAMu+k3pAUgcpK7vvUfrscufn1R01LTd7nl1123ynBkyp3+jlaCqwtHjYOB0whxEwBfi6i56q9S6qXheQqIjdeDAAURG0uP+Jo9YLMbhw4e1ps3G5XKxZMkSrVTGQHIzr0q7mVAoxIEDBxAe3vCNkyYcP34cSUlJWtFm43A4WLRoEdq0aUP73JDEMiUlhbJ2oPTcCQ0NpTBadU6fPo3Y2FitxJLFYmH+/Pno0KH+xgYdODs7Iy0tjbLxgVgsxrFjx/DyperailQ4f/48IiMjtaJzx2QyMXfuXK2ZpTg7OyMrKws1NTUURmu33fPJhZcozCIqr7uO9IdtM3oMXKTIC+qf/+t6o2OpIE0CVZVVo1V3HzLB9vxqqIJQfkPUjaX8BpO5rWZJoLiXSRAJZN81j889xyU513tNkY/lBUksHdzt4NdNJh1y5IczmLPpU/LxjiX7GlwvS2Mn4Avh3qYZaS7w6mY4aTSljBKJMRMk6yHy53n0xVLb6BJqOnTo0KFDLR6ff07+u8fYLrh/4glmtViK05svk+X+9m42WH9hFTZc/gpOntTd3C7uuEm2RA6dO4BSEk4ZoXfeKbR7ShMLjh728A8i2pny0gpw58gjlecuL67AncOEjoe+ERcDpxP6HkU5xRDwZO6hAkks5JM/U9eNazD5IxaL8egc0d4pdUKFREPi6+PL8MuNb+Di07i2GBW8OzYnhWnf3H2HqvLG28LePozSWrtnVXk1bu4nklwcLgeDJQnPkvxS7F55CNM8Pse5P6+CV0MscPWNuJi0ehQOJ+3AjB8mUTKrGL5AVsVxZvMl8Groc11r1sKZTH6+exSNMrldamXEPE/QWrtnbXUtrv5LJLlYbBaGzqOvQkDK0HkDSK2zc39ebVRbRVUcmtvBvXUzAEDMc2rtyLm5uaitraXNmU+ejIwMJCUlwchI+eeVDgwMDPDnn38iKqpx4Wd18Pf3x6RJkyhXoRQWFqK6ulorsczJyUFcXJzWY/n333/j7VvNDWfq0r59e0yePJlyYrW4uBjl5eVo3pzeljpIKt+ioqK0Hsvdu3drJSHYpk0bTJ06lXICq6KiAsXFxVo5L0tKSvD27VsYGmqvrUxfXx/79+/HixcvaJ/bz88PU6dOBZfb9DW5vLhCa+2eYrEY57ddJR+PWKi5GUFdeowNgLktkah5dOaZyi7ldZG2KYrFYvCq+QgYSiSQq8qqFQyOlFFdWaPQ7tky0AcleTK9MOlxqot8LKX8s/xAkwYBVOk6ohNsnInK2WdXXiPhDaHL++XeheSY5Hdp8O3iCb9uPoCkau3yP7eUzmcsZ0ZQXV6DLsOIKrXaah5C7zT8fSztYgEAroGsPVhee03TWGobXUJNhw4dOnSoTGlBGZLeEske15Yu2DT9L2ycvJXcmeRwOZi6bhz2RG5BtxH+KrUUlOSXklpaHD02hszp3+RrGiL8vqxKTr4EHQCmfD2W/Pfxn8+RDl9UObP5Mpms6z+1J/g8AZn8eSP3vgwmA5PWjKaU/MmIy8JXQT/hh3G/Iz+dMDqQhk4kFKGmspa29gwGg0G2KvJ5Ary88abR8fK/U9fhnRodqyrnt11DuUQvo/ekbmAymdi79hg+bb4IpzdfRm01kfziGuhh/IrhOJS4A7N/ngJTK+qC665+LugxlqgQKMopobVKjcFgkK2KIqEIz682fgOqzVhe/ucWubPbfUxnWDta0jo/JAnpPpMJceSywnJc2Xm7ydeoQjcVW2gdHBywYMECWFtb03ockIiK9+rVSys38vLY29ur7XzYGGw2G5WVlXj69CmF0YC1tTXmz58PBwfqGyBUMTQ0RM+ePeHl5UX73PI4ODjg0SPVN0magsVigcfjUf47WVhYYP78+XBxcaH9WPT19dG9e3f4+vrSPrc82oolk8mESCTCw4fUxOWNjY0xb948rSQn9fT00L17d7Rq1Yr2ueWxt7dHcHAw7fMyGAwwGAzcv3+/ybHvHkWT1ctdh3eitd0z7O47RD4hTH+atXBC+770x5NrwMX4FYRgv1gsxvGfNTM3kVZVQZJslJdveHKh8WrIqJBYslq+67COYDKZ5LWXxWYpzK0qEU9iEHqHaMN0aG6HscuHAhKZkh8n/EEaYWkCm8PGhFUyp+VjG4lYuvg4kaZYALBlzi4s3DKDfHx4/Smlm4ZGcr8voaOmXE+4LvKbZlKZEwAolktOmlmrbq7zPtEl1HTo0KFDh8q8DZa5V6ZFZZA7ngDQZVhH7In4A9PXT1SriunkrxdRU0mUhw+Z0x9WDqo7WEkJl+wwMhgMUntDSstuPmjXhxBzzkrIwcOTIUrnUEZpQRnOb7sGSDQfGAxGveSPdKEqFokxanFQo8mf6opq7F17DHNaf4HXt2StVh0HtsXaY8vIx8d/OU9W/9GB/ILn1Y3GRXjD5XZr2/amTwS7oqQSZzZfBiRVePqGXHzafBFO/HKePA84XA7GLB2KQ4nbMfe3abBQc7dy8lpZEvXkpguUWjqoIh/Llzcbj+Xbh7LPS9s+9MWyuqIaJ3+9AEjOP/mkMd188tUY8hw/vfkSaqsbbulQFfl25FdNxBIALl26pBVHyry8PERFRaF379603ngqY8iQIejSpQuFkapTUFCA4OBgSm2fV69e1YqLYmFhIcLDw9GnTx+ttM7KM2jQIAQGBmplbmksqWzA3LhxQytmE8XFxXj16hX69eunlXZPefr3748ePXpoZe6ioiIEBweDz2/6e/j27dtaMZsoLS3Fs2fP0K9fP620e8rTt29f9O7dWytzFxcX4/Hjx022fb59ILv2tOtDX8JLLBbjwLcnyMdT143X2nfmsPkDYSIR/7937DGyEnPUnku+U6CypAr+g9uBI3G6fHWz8U3G8Afy13EiltKEmrmtqUa//0G5WE7+eizm/PopaVJQkleK9WN/o6XKPmh2X7I18/HZ50iNIrQ8v9wnq1JLCEsG15CLAZIujPLiShxef7reXMZysawoqUL7fq3IBNnLm28avP4Uy7V86hvpk/+WxtLEwohW2QptoEuo6dChQ4cOleDz+Dj/p6wUXXqRtHe3xQ8XV+PHS2vg6GGv1tyF2cVkdZqePgefrB2j9nGWF1cg8Q0hAty8rStMLesntKZ8M47897GN5yhr45zadJGsToNEh61u8mfEokHk81EhsUrnEfAFuPzPTUz3WowTv5wnddZsm1nj2zNf4ufrX6P3xEBSky0rIQcPVEj8NUXrHr6kCGxkA8cISWtD7IsEAICLj6NGSc66nN1yhTQJYDIZuPzPLbL9lKPHxshFg3EocTsWbJkBS3vN3tezvTu6DCP0yvLTC3H7EH3VAi26eJHivdJdemXweXzyedtm1rB3o09g++L2GyjJJ3Z1e03sBvfW6jnjUsG1hTN6SJx9i3NLcX0PfRV/Xh3cyd39yCexjSaCysrKEB4erpWE2tWrVxEb2/Dfkk7MzMxgZ2eHq1ev0iY8LcXPzw+WlpZNfr9VVVUhNDRULffFprh+/bpWWlqVYWJiAmdnZ1y+fJnydzpVWrRoAWtr6yb/RrW1tXj58iXKyxtv/1aHmzdvIiIigsJIzTE2Noa7uzsuXrxIWe+MKj4+PrCzs2vybyQQCPDixQuUlZU1Ok4d7ty5o5X2YGUYGhrCy8sLFy9epJREVAUvLy/Y29s3eV7KbzK26kFfdeOL62GIfhYPSNzHe02gV5tNHkMTA4xZSlRsiYQinPjlgtpzybcpVpRUwtDEAD4S1+7spNxGJQfkNxnb9PKDWCxGqeT6q0mLYti9d+QmtZOXAwZ82hMsNgvfnFgOezdCky72ZSL+mLNT4+83rgEX478kqtSIir/zAAD3Vs3g0c6NHPf77L8x66fJ5Brn0j83kRqdoTCXfEVeRUkluAZctAwkzrGi7GLkpCh3DJbXSpOXv5AlJz/sdk/oEmo6dOjQoYMqIpEI944/xqwWy/DukaxCjcNlY9p3E7An4g+N29eObzxH6mQNXzBIo8TNu0fR5OKybS/lVUBte7cktSFSozJIZ8TGCL37Fme2XCEfS5NgdZM/nQbKRPsjHiu6UYnFYgSfeYrPWn2BbYv2oDi3lJxj8tox2Bu1FT3GBJA7nFMVEn9nabtJ5Bpw4SXRUEmPzWrQsTEqJJasjGvTQCzVIeJJDI7/cp58LI0lm8PCsHkDcCD+L3z+12xa2xYny1VtnaCx4o/NYcM3gFiI56UVIC+9QOm42JeJZBVj294tadvFryytxKnfLgKSxOS078bTMm9jTJZLeJ/67SJ4tfTcJDKZTFIYuSS/DJnx2Y2OdXd310ormFAoRJ8+fWift7H3e/XqFaKjoymMpo6trS2mTZvWZFUVg8GAu7s7PDzUcw5uDD6fj379+tE+b0OIRCKEhobi3bt3tM5rZWWF6dOnN/kdzGAw4OrqCm9v70bHqQOfz0f//upLIaiKWCzGmzdvaDeqMDc3x4wZMyiMBFxcXLTS3srj8TBgAP06k40RHh6O169f0zqnqakpZs6c2ej1hMomozqIxWKFiqpp30/UehXqqMVBMDQlDJ1uH3qAvLR8teaR7xyQrsNaBcrOs4acRJVtMlaWVpFrGHWTQESl30ny8affjgeLzSKP9btzK0mdsbtHH+Hvpfs13oAZNq8/GYf7xx8jM4G43n6xex45JvZFAmorazFpzWhAksjc9eUhhXlMrGRyJtJYtpSsr6FkHSyltFBWEW0kSXDyanioKiM2VnUJNR06dOjQ8T/B69vhWOS/Bj9P+RM5ybJdJhNLY+yN2opPvxuvsUh9Xlo+rknE1PWNuJi4epRG88m3NrTppdxBj8FgYOo3sgTL0Z/OKl2ciMVivLoVjtWDfsTqAT8quG5y9NgYOrd+8kfeKSkyRLaQCH8QiSVd1+LHCX8oJAp6jOuC3e/+wMwNn5C7gPLH3zKQWJikRWfi8bnnoIuW3WSLx6iQOKVjwinEkipisRhh995h7dCNWN5jHYR82U0+m8PC4Fl9sT92G5b+Mxe2LvRrYrUI8EKHAYQLYHZSLu4dp0+3Sj6WDVWpKcSyJ33Ojue2ynTo+k3tSYtxRVN4tHUjtQnzMwpx++AD2uaWj2VEIxV/YrEYEydOhL6+foNjVEUsFiM1NRUzZ87UunaaPI6OjujcubNWWqUuXryI69cbd8UTCoWYMGEC7UL3aWlp+PTTT+Hp6UnrvI1ha2uLrl27auXG/tq1a7h8+XKjY/h8PiZMmAATE3q1f9LT0zFp0iSta6fJY2lpiR49emglljdv3sT58+cbHcPj8TB+/HiYm5vT+t4ZGRkYO3YsWrakb5OoKczMzNC7d2+ttJfeuXMHZ86cafB5+U1GOq89Ty68QHwoIWjv2d4d3Ud3pm3uhjA2N8Koz4MAyUbcyU0X1ZrHobkd+W9p62jLwKav4wqbjJJYFufKWhfVdaV8dfMN2dHg6ueM3pO6KTzv2c4da44sIU2BLu64gQPrTiidiyoGxgYYu3wYAEAkEuOEpErNu5Mn3FrK9B9/n/U3xq0YBhsXwsjg5fUwvLguk2SQj2W2CrEsl9Njk7byfkwOn9Al1HTo0KFDR2PEhyZh9aAfsWbQBiSEJdd7fvDMPnBwt1P6WlU59tM5UuB11OdBautkSWlMP02eToPakQKsiW9S8OKaTFCez+Pj1sEHmNfuS3w1eANCbyu2hoxZOhRHUv7Gsp31kz+mliZw9XMGACSEpSD6eRzWDt2IL/t+jxjJziYAtO7ZAtuebsS3p1bA2Uu5EDiDwVBoT20o8acO0kQdGtmNrdvaoA4CvgB3jz7Cwk6rsar/D3h5XVEba/iCgTic/DdW7FlAaxukMhQNKc6rbEjREC27N72zraCfRpMWXVlROc5skenQTV03rsnX0MWUOhV/Aj49bWGtKMQSAI4cOYKQEPraoAEgMTERBw4cQEGB8ipDbRIUFARjY2Pa9aLMzc2RlpbW6JgTJ07QLkCfmpqK/fv3Izc3l9Z5qTBw4EBYWlrS/nc0MzNDampqo2POnDlDSSReFTIzM7Fv3z5kZmrmbKgOffv2hb29PfLylLdtqQuV8/L8+fO4c+cOre+bm5uLvXv3Nvl31AY9e/aEi4sLcnLU1/5ShoWFBVJTUxtcG8hvMtJ17RGJRDj4nayiavr6iVrXm5QyZtlQUqPr+t57lByh6+LgUT+h1tBmqDwKG2OSWMpvNqtTVV+vOu27CUo1EruPDsAKOSfOYxvPkdXp6jJy0SCyZfP24WDkphIVf8vlqtQinsSgJK8Uc379lPzZzhUHyWu+o5JYtgjwBJNFpJsaimV5iUxiQFoply0XSystGCvRjS6hpkOHDh066pGdlIuNU7ZiYafVCkkkz/bu6DZKJhhO16IsOykXN/YTNx+GJgYY/+UIjearKKkkWxvc2zRrtLWhrnj7kQ1nUV5cgRO/XsCnzRfht5k7kPyu/oJ/zLKhTep6ScvdhQIhlnT9WiGJ5NbKBRuufIXN99ejRUDTrnedBrYlE39J4al4doWelhH5HcQIJYmL6soaxL0kEoDO3g4qLxQry6pwevNlTPP4HL98uk1pYnbovAFYsmOOVhwpldGmpx+ZZE2PycTjs/RU/Pl18SJvJpTFks/jk1WANi5WsHenJ3F4ZvNlsj1i0Iw+amsYqoOPvyc6DWoLAMhJyce9Y/RU/Pn4e8j0/RpIqPF4POTl5cHGxoaW95QSFRUFFxcX2NpqN7HbEM+fP8fp06dp1VLr1q1bo22CQqEQWVlZtDulRkZGwsHBAY6OjrTOS5WXL1/i5MmTtGqpdenSBYMGDWrwebFYjIyMDK2clzY2NmjWrBmt81Ll9evXOH78OG0bEADg7++PIUOGNDomIyOD9vMyOjoalpaWWmkVp8KbN29w7NgxWnXp2rdvj+HDhzeY0HobTG2TURWCTz9FSgQhZO8b4IWAoR1omZcKZtamGD5/IACAX8vH6d8vqTyH/LUyO5FI+stvhsaHJqO6sr7RgzSWkNtkTIuWJbqbtXBW+VieXn6FuFeJAIDmbVxJV3JlDJzeG4v+nEU+/nf1EVzZpb7btpGZEUYtJir+hAIhaW7k19UHzt6y7+7fZv6N3hO7wa8rkXRMj8kkXb7t3GzJyrksSSwNjA1ILbaUiHSUF9c3vKkslemfSt08NY3l+0aXUNOhQ4cOHSTFeaXYsXQfZrVYivvHn5A/t3ezwVdHlmDHy1+Qk0TsHDGZDIUqEk04suEMWT4/ZtnQRh0xqUBFP02eLsM7wr01cZMS8zwek5zmYu9XR1GYJdvx9GjnBiabuGwaGOsr6Ecpo7SgTKm1uY2LFVbuX4SdYb8hYEgHyru5RJWaLPF3YN0JWvS/LGzN4CSpjIt/nVTPOSr6aRypC0IlllLy0guwe+UhTG42H7tXHlKIRfM2rmSyRE+fg0+/1b7eV13kk6gHvztJi+OnkZkR3NsQ51Hy21TSXEFK3Ksk1FQR5hV06aeV5JcqOM7KnyPvC/lYHv7hNC3uY3X1/UoL6guS6+npYeLEifDzo699SSQSYeDAgZgyZcp7q7Soi7+/P/Lz82l12zQ2NkZlZWWD1VosFgsTJkxAmzZtaHtPkUiEfv36Yfr06f9pLIuLi2l12zQ0NERtbW2DVXcMBgPjxo1D+/btaXtPkUiEXr16YdasWVrXp2oIf39/VFRU0Fo9qa+vTyZzG2LMmDHo1EkzfVZ5xGIxunXrhs8++0zrLqkN0bFjR1RXV9Na8cflcsFkMpGenl7vuYqSSiSEUdtkpIpQKMQhObfH91mdJmXciuHQ0yccIK/svKWylpqhiQHpcpmZIKsYlG6GioQiUitNirx+mvwmY3qMLAnk4qua5IKySr+mPuejFgdhxg+TyMfbFv6rkYTF6KVDYGBMSCfc2HeP1FJbtnMuOSb8YSQKMouwYItM+/DQ9ydRVlQOPS4Hts2IxHdmfDa5BpfXpIt6Wl9WpLpMtk6S/i3kY9lMxVj+F+gSajp06NChAwWZhfh72X586r4QF/66TiZQTK1MsGDLDOyN/hN9J/dARXElkt4SLRKeHZorWI6rS2p0Bu4ceghIdDGkWg6aEK5ia0N8aDIpcAuANEZgMBgIHN0ZWx9vQPO2rhAJiCqHMUuHwsxaua5DUU4xdq88hKnuC/Hyhsx2ncVmYe6mT3EgdhsGTu+t1kK+6/BO8OpAaDolvU0lNec0Rdr2yecJyB1SKcpaGxojISwZv3y6DdM8PsdpucopSBKXmx+sh19Xb/IcG7FwMK2uoVTp0L8N+Xunx2bh4vYbtMwr1f4SicSIfqa4eFQ4L2kydzjx83nSYTbos/6wc6W3KoYKrbq3QIf+rQFJ28vpzY3rS1FFQZNOiQttVFQUhEIhbQkGsViMQ4cO4dmzZ+ByNdOE1ARXV1esWrWK9sTJy5cv8ezZM6XPxcbGgsfj0ZZgEIvFOHbsGB49evSfxtLJyQmrVq2Cnp4erRV/r1+/xtOnT5U+l5CQgKqqKlp1sk6fPo27d+/SqhWoKnZ2dli5ciUMDQ1pjWVYWBiePHmi9Lnk5GSUlpZCT0+Ptvc7d+4cbt68CQMDAwqjtYO1tTVWrlwJMzMzWmMZHh6Ox4/rJ1VU3WSkwp3DwWTio1V3X3QcQF8yniqW9hZklVptNQ+7Vx1WeQ4HSZVaUXYxWY3WmPZXQ5uMaQpJINUqcoNPP0VSOLG29u7kQWqTNsXkr8dg/IrhgOQ799dpf+Hp5VcqvbcUU0sTjF5CVIvyeQLsXHEQkKyhydZYMbD5s3/g29kL/T/tCQAoL67EYUliVRrLytIqlBcRG0ItmzB5qJGrAJR2fKTHyicn/5vqZlXQJdR06NCh4/8x2cm52Dp/N6Z5fI7z266R7oP6hlxM+XosDiX8hTFLh0KPS+wAyicI6BC1FYvF2L54L0QiYqE3bsVwBettdYl6KlsAte6hvLWBz+Pj4emnWNHnO3zeeU29RZNPZ0/si/kT359dCQC4fZBI+hmZGWLsF/WTfnlp+di+eC+mui/C6c2XySSHFK6BHsYsHwo9ffVvDBgMBhbKlfnvX3cCZXKCruoiv4NY14lJPpYN6acJ+AI8Pv8cqwb8gAUdV+Hu0Udk9RyHy8HQOf2xN2orfry4BvpG3DrmEyM1Pn51YDAYWLhV5op2eP1pFOWorsFSF/mqTXViqQrJEWm4IEkEcrgcTF47WuM51WX+HzNIrZQTP59v0OVUFRR01JQ4hD18+BCJiYn1fq4uCQkJSE1NhZubG21zqouenh62bt3aYAJMHTw9PVFdXa30uUePHiEhIUHpc+qQmpqKxMTEDyaWO3bsaDBpow5eXl4NxvLx48eIi1Nu8KIOmZmZiImJ+WBiuWvXLjx4QJ8BSWPnZUhICGJjGzYlUZXc3FxERER8MLHct28frfpwDcUyKoTea09FSSX2rDlKPp7xw6T/rAp16rfjyVbBh6eeKmxcUcHJU9b2mZNEVJ0qXMefKLouRzYQS2ly0dLBQqXN5qryagXHTFUq/RgMBuZs+hRD5xDt/CKhCD9O+ANv7kdQfn95Jq0ZBStHIqn17PJr0nRgyfbPyDGht9+iOK8EszdOJg20Lv19E9nJuQottDKTBzmnTyUJNel9BwBYOUmr/YiKVWNzI1jY0WtGog10CTUdOnTo+H9IemwmNs3cjhneS3B1923SDIBroIfRS4Zgf9w2zPhxUr1FQXKErJVAWimlCfdPPMGbe8SF397NhpbqNLFYjNTIDHLOuu2jGfHZ+Hf1EUx2mY8NE//AWznBfRNLYzAkGhCpEenQ0+dAKBBi28J/yTEzfpgEEwuZPXhWYg7+mLMT070W4+KOG+DXEtVtHC4HIxYOQucgou2nqryaPC5NaBXoi35TegAAyosqFERs1UVhB7FOJZBUH8XCzqyexll2Ui72rj2GKa4LsH7s7wi7+458ztTKBFPXjcPR1H+wbNc8NPN1glBIxFKaQJ26bjzMbf47S3Tvjh4Imt0XkPx99q09rvGcreRNHhqIpaGpgYIjljqIxWL8tWgPmbj8ZM1oWDtZaTSnJri3aoYRCwldqZqqWvy7+ojGc/p1k1uIK6lQA4AWLejRAoLEZXPixIkfxM02ALRr145Ww4V+/fph3DjlhhVisZjWWNra2mLChAnv1dmzMdq2bUtrQq1Xr16YNGlSg8/T2YZsZWWFcePGvVdnz8ag+7wMDAzE1KlTlT5H93lpbm6OsWPHolWrVrTNqQnt2rXDs2fPaNOl69y5M2bMmFHv5ymR8ms3zXXj9n9znHRi7D4mgDY9XXUwNjfCrI1TyMc7lu5TSQ5D/losbft0aG5Hth9GPY1T+PvIx9JTEsuywnKU5BOyBKpWpx354TQKMok2av+g9vAf3E6l1zMYDCz++zP0nhQISPTkvh35K6Kfx6s0DySaZ3M3yUwH/lm+H3weH50GtSOr38ViMf74bCesnaxIvWORUITTv11SNCaQxNLa0ZLUi419kVBPXkPaEQIANs6WqK6sIU0RXHwd/7NErSroEmo6dOjQ8f+I5Hep+OmTLZjttxy3Dz6ESEi0MBoY62PS6lE4nPw3Fm6d2aA4fGqUbCHhKmenrQ6VpZXYJSkpB4BF22aTu12akJ9eQGpXSY+RV8vHg5NPsLL/esz0WYJTv10kFz+Q6F0s3z0fJzJ2YeTCwYBcUuDi9huyNtf27hi+gGgvSI1Kxy/TtmGmzxJc33uXbAHQN+Ri3BfDcThpBxZv/wwd+svaIJTpR6jDZ79MId2tru66hcTwFI3mc/FxJBOP8lWIxXmlZJykseTz+Ag+8xSrB/2IaZ6f48Qv51GUI7OLd/S0x5K/5+Bo6j+Yvn6iglvr9T33EPuSqChy9XPGmGWNi1G/D2b+9AmMzAwBADcP3EfMC9UXofLYNrOBjTOR2Ip5Hk+KoVeVV5OLRLeWLhovEu8cDsa7R8TOuaOH3X9W6SfPtO8nkJUCD048URBuVgcFfb9XifUcROfNmwcvr6YNPajw4MEDPH369INJWgDAoEGDMGnSJNpawsRiMf744w9kZNRP7M+ePZu2xMXjx48RHBxMayJEU/r374+pU6fS2l63detWpKTU/+6dNm0aWrduTct7PHv2DHfu3EHLlvRoLtJBr169MH36dNpiyWAwsH37dqUVkpMnT0aHDvQI3b969Qo3btxAq1atPphYBgYGYubMmbS1dzMYDOzatQvR0YpVVdIkkIGxPqlzpS5xrxNx+Z9bgKTKXF5P679i0MzepOZm8rs0lQT65SvUpEkgBoNBbjRWlVWTFVMAkCqJJUePTb5Wvt3TxYe65ldyRBrObr1KzMfl4PNts9Q6N1ksFlYf/BxdhnUEAFRX1ODrIT8pNYFqij6fdCeryjLisnFh23UAwKJtM8kxz6+FoqyoXFF3bf99mMhtYCto0knm49XwkfRW0eRLugkNAMbmxsiMyyYfq6pF91+hS6jp0KFDx/8DYl8m4LvRmzC37Zd4cDKEXAibWBhh2ncTcCTlb8z+eYpC8kMZ0gobJpMBFx/NdA0OfneKTMR0G+lPLgQ0Rb6KztLBghDGd5mHnz7ZSlbDQSLg3ntiN2y68y32RPyBIZ/1g56+Hqatn0Amlx6ceIJ9Xx8DJAusJX/PQXJEGn6YsBlzWq/A3SOPyGorQ1MDTF47BkdS/sa836eRumCe7WWVfGnRmleoAYC1kxUpBC8SibFj6T6Nbm4YDAbpxFRaUI6SfGLnOVVuJ9bayRJ71hzB5GYL8OOEPxTcX1lsFnqM64Jfbn6D/TF/Yvj8gfWSoyX5pdi3VtYisnjHZ+DocdQ+ZrowtzHD9PUTycc7luzT2BHQoz0Ry+qKGhRIzBhSo2R/e1c/zZLR5cUV2L1S1iLy+V+zNWolpgsTC2PM+mky+XjHEtUqBZThKYklnydAdpJMBD46Ohrbtm3TaG4phYWFCA4OhrGxMYXR7w82mw0zMzNs3rxZaRJMVZhMJng8HlJTUxV+npCQgM2bN9OSICktLcX9+/dhZKR56z6dsFgsWFtbY/PmzfV+f3VgMBgQCoX1EmopKSn47bffaHEVraiowJ07dz7IWNrb2+OPP/6greVaJBLVi2VGRgZ+/fVX8PmaG8ZUV1f/57ppymAymXBycsIff/xBW2tr3VhWV1QjJ5kwP3D1c9YomSitMpd+V3z67XjYutDrwKoOLBZLwfXy4LcnlBrZKMNZbi2b9E723eDZTrZ2k16/+Tw+MiQJH2cfR7DYhOakgog+RVdKaZW5dGP7k69Ga+TQzeaw8c3J5WjXh6gWLC+uxIre36nc/slgMPD5ttkyOYwfTqMwuxhdh/vDWtKSKRaJsWXOLphYGGP4AqIynV/LV5BmSG4glmlRitcy6RpB+n6KWnQfvsMndAk1HTp06PjfRSQS4cX1MKwZvAGfB3yFkIsvyefMbc0w++cpOJz8Nz79bjwlxyehUEgmhJy8HDS6gU94k4yL24ldL66BHhZundnka6iSJFetdX3PXZzefBmlBTKdMScvB8zd9CmOZ+zC18eXo33f1gq7w0RS4BPysVTfodPgdjjy42ks6LAKj848IxeUplYmmPHjJBxN+QczN3xSz6ygWQvZDpv8QkFTxiwfRpbXvwuOxsNTmrXgyDspSS3Lk97KYnnncDBObrpItnlA0hYx++cpOJ6+E9+eWoGOA9o2uNO+Z/VRlBdXAgD6Te1BmzAyHQxfMBBukgq8mBcJuC0xyVAX+UVgqiSW8slJt1aaJdT2f3OCrBzsMTYA/oPpcxPUlEGz+tBqnCEfS+l5CQBpaWm0CehzuVz06tULnTt3pmU+OjEwMICpqSnu37+v8VwMBgN9+/aFq6urws+lsaSjaofD4aBHjx7o2rWrxnPRjZ6eHiwtLXH37l1a5uvduzfc3RWlD9LS0sBgMGiJJZvNRvfu3dG9e3eN56IbFosFGxsb2mLZq1cvNG+u2IqYnp4OsVhMi7kDi8VCYGAgevXqpfFcdMNgMODg4ECbllr37t0VKnflvzfdNOwsqF9lPlSj+eikZTcfBaH8A+tOUHqde+tm4JA6wbIKdYW1m2TtmxGXTSaA5K/jig6f1Dab61WZr9K8ypxrwMX6C6tJuYSq8mqsDfoJD08rN1BpCM/27hgi0WWrrqjBXslm6PzN08kxTy6+QEVJBcYuH0rG7+HpELJ7QjGW8tfxOgk1SUJRqsGqTiz/a3QJNR06dOj4H6OyrAoX/rqOWS2W4euhG/H6Vjj5nLWTJRZunYnDSTswafUoGJkaUp43JzmP1DrQpN1TJBIRu3KSyq4p34yjxZkwNToDO784oGDjLoWjx0afTwLx+73vsT/mT4z/ckSj2l2DZ/eFo1wbAIPBwMvrYXhxLYz8mYWdGeb+Ng1HkndgytdjGzRTMLc1I5+jq0INAPS4HCzYIktE7l55mHSoUgf50vrwB5H4d9Vh7P3qWL1xbA4LvSZ0xa+3v8WBuG2YtHpUk6KxEY+jcfMAkRAwMjNU0Oj4EGBz2Fggl9Td+9VRVJZWqj2ffCzTJTcz8rormtzUxL5KxJWdsnab+X/89+028rBYLFqNM1yUJHoBwNfXF3379tXgSAni4uLw6tUr9OrVi3ZXTTpgMpkYP348/P39aZlPmXaUl5cX+vfvr/HciYmJePr0KXr37k2rwyVdMBgMjBkzBl26dKFlvpYtW9Y7Zzw9PTFw4ECNE2opKSkIDg5G7969weH895W8dWEwGBg1ahS6detGy3wtWrSolyB3d3fHoEGDNI5lWloa7t69i969e/+njrONMWLECPTs2ZOWuXx9fRU+f/LXHk3WbsV59avM2ZwP63M+++cpZAvi1d13KLU8cvQ45CZQVkIOeb1SuPbE1N8Yk680j5d7H1e/pquqtFllbmhigF9vrUPAUKJVms8T4KdJW3Bxh2pO5jM3TCLXrrcPPkTUszj0mtANlvbEek8sEuPPBf/C0t4Cg2cR1+KaylqYSzpdCjKLkC+p0JdPjMlvLItEIkBSGM3mEJ//BBVj+SHw4a0cdOjQoUOHWmTEZ2PH0n2Y7DIfO5buQ2a8TIfA3t0Wy3bOxcGE7Ri9ZIhaWmXygvqaXORu7r9Paom5+Dph3Ar1jQhqqmpx50gwvuj1LT5ruRxnt16FgCfTWXLysse836fheMYurD26DG17U9OhyYzLRnGuTBdMvhXKtpk1Pv9rNg4n7cD4FcNhYNx4CwmDwSB3OvPTC1FdodzNTB0ChnaAv8T0ID+jEMd+Oqf2XA7Nbcl/H/r+FE79fklBLNbe3RZzfp2KY+m78M2JL9ChX2tKCQihQIhti/aQj2du+IS0Rv+Q6NCvNXqMDQAAFOeW4tD39ROzVFFWlUiH/mDddptp3034INpt6tIq0Bf9psqMM/Z9rb7Zg2IsZd9BPB6vXkWLqtTW1uLChQsoLS2lMPq/w8LCAjY2Njh06FCDbohUiYiIwJEjRxS+02prazU2D+Dz+bhw4QJKSkoojP7vMDc3h6OjIw4dOoSKigqN5oqOjsahQ4cU2jtramo0jqVQKMSFCxdQVFSk0TzaxtTUFK6urjh48CDKyqi11zVEXFwcDh06BIFAdv2urq7WWCNRJBLh4sWLKCws1GgebWNsbAwPDw8cPHgQxcWauU0nJSXh4MGDqKkhNthSaUqo7VlzhKwy7/9pzw+qylyKtaMlpnxDGK+IxWJsX7KXUvu1b2fZeSYV83fysq9XNaVsY0woECJG8hobZytK5kD7vz4uqzIf14X2KnN9Qy6+P7cSg2b0AaSxWLwX+785Trm138zaFNN/kMlhbF+8F0KBEHM2yQxEgs88Q1VFNSasHEHGqihbdv5K42LnagOuAZEwlK9Ak2/L5XA5EIvFpJmTqZWJRi2w7xNdQk2HDh06PmLEYjFe3QrHN8N/xizfpbjw13VSkB8A2vdrjfUXVuFA3DYMnTsAelz1d7qTI2RCoupW2JQVlitYrS/ePltlHS0+j49nV17jl0+3YYL9Z/h12l9k2bw8Vo6W2B+zDeO+GF6vDVMZYrEYYffe4dtRv2J2y+WoLles9jK1MsG6U1/gUMJ2jFw0GFwD6klJhXZKOXFbTWEwGFjwx3RyZ+/UbxdVEtUX8AV4cT0Mm2Zsx4YJWxocZ2plgoPxf2HCypFN6uzV5cJf15H8jjh3vDq4Y9j8ASq9/n0y97dp0NMnzsfz264pPa+ooPj3JpJAUv1BEwsjcodXVa79exdxr4h2G7eWLhi99L83dWiIz36ZKjPO2H0br2+HN/kaZTh7O8i0VSQVajU1NTh27BiSk1UXXJZHKBTCw8MD/fr102ie94G+vj4yMzPx6NEjjeaxsrJCbW0teDyilV0gEODYsWNKBeFVQSQSwc3NDQMGfLifbylcLhc5OTl4+FCz1m5LS0sIBAIyySkSiXDs2DGNtbBEIhFcXFwwaNAgjeZ5H+jp6SE/P1/jlmQrKyuIRCIyySkWi3HixIl64vqqIhaL4ejoiKCgII3meR9wOBwUFRXh3r17Gs1jaUnoXEljSUd1dMTjaNw68AD4QKvM5Rm9dAhpZhP5JBbn/7zW5GtadJEl1KRJII4eh5TVyIjNIrTplCQnk9+loaayFgDg1827yfeKfZVImiboG3GxQEtV5mwOGyv2LsCkNaPJnx3beA5/zNlJWdt0+PyBZGtr/OsknNx0Ef2n9oKZDbGmFglF2DJnJ+zdbNF3MtGaLr8RK40lk8kkteoyE3JIp8/EcJnOmqGpAdJjs1BeRJy3ft28PxjzkKbQJdR06NCh4yOkuqIal/6+idktl+OrwRvw/GoouevENdDD0Dn9sfvtZmy6/S26jfBXW2soPTYTm2f/jd9n/Y17xx+TP6+t5qE4T/Wqjp1fHiTL6ft8Eoj2fak5oQmFQoTde4c/5uzERIc5WDfiF9w9+gjVFbKkl6GpAbw7eZCPbVysEB+a1OTuZE1VLa7uvo25bVZgVf8f8PTSK4Xn2XpES0NZYTlqKmtJEVpVaEw/QlNcfJzwyVdjAMni5tdpf6GmqrbB8SKRCOEPI7F1/m5MdJyLr4duxO1DDxXaRRkMBnz868YyWcE6ngrZybk4+N1Jcs7FO+bQpnulDezdbDHte2JHViwWY9P0v1BZVqXyPMbmsqRZzPN4/DF3JwoyiWoTSwcLxL5MUFmsPz+jEPvWylpwP8R2G3msHS0xe+MU8vHvs/5GebHqFUFcAy7s3YnqyfSYTIjFYlRWElUSNjbqt4rn5+fj3bt3GDt27AdnRqAMIyMjjBkzBnZ2dhrN4+HhgTlz5pCtb5WVlRCLxbC2Vr/SsbCwEKGhoRg7dixMTZvevPivMTAwwJgxY+Dg4KDRPK6urpgzZw5pGlBdXQ2hUKjReVlcXIwXL15g7NixsLD48Cp568LlcjFmzBg4OmqmdeTk5IQ5c+bAzIzYsOHxeODxeBqdl6WlpQgJCcGYMWNgZdV01dB/DYfDwZgxY+DkpJmzoZ2dHbq37o1/lx/F1nm7yIofrqEeclPyVJaG4NXw8OeCf8nHMzd80qTMw3+JHpeDZTvnko/3rj2mkAhThm+AYoWagC9ARUkluXarrebhl6nb8PYh4VzN5rBQlF2MqvJqRDyRCfG37Na4SzSfx8fWebsUqsylruDagMFgYPbGyVi4dSaZnLqx7x6+H/tbo+tEKSw2C8t3zQOTSbz20PenEB+ahNk/y67tD089RV5aPiatHlXv9dHP4yEUCFFRUkm20IqEItJNNemNTKfXwt4cUSGyzYimYvkhoUuo6dChQ8dHREJYMrYv3otPXObjr8/3KJRO2zazlrTk7cSyXfPg3qqZxu+3/5vjuLH/Pm4euK/gzPP7rL8x2WUewh9EUp4r+MxT3D5IVAQYmhhg3u/TGx0vFosR9SyObGNd1f8HXN97l2w5gCRx0V3SpldVVk1W70CSyFjkvwarB/ygtMQ96W0q/ll+AJNd5mHr/N1KF1xD5/bH2mPLyMc7luxDTkoe5d9ZinzbWjqNxgRSJn89hkyAZcRl499VhxWeF4vFiH2ZgJ1fHMDkZvPxZZ/vcXX3bQVtK0NTA5hYGsuNl8Uy8U0KPu+8Bl/0/JZyu4BQIMSv0/4ik55DPuuHFgGate+8D8atGIbWPVoAAHJS8rFz+QG15nGQ7GzzawW4vkcm3J0alYHFXdbi84CvKCcoRSIRfpu5AxUlsnabNj391Dqu98mIRYPQYUAbQKKn8tfne5p8jTKkn5/qihoUZBbB0tISixYtUjtxIRAIcPLkSY2rX943Pj4+cHV1xZkzZ8h2LlVhMBiIjo4mXQDNzMywaNEitRMiQqEQp06dQkSEak5y/zWenp7w8vLCmTNnUFWletIckljGxcWRTpdGRkZYtGgRmjVT79orFotx+vRpvH37lsLoD4fmzZvDz88Pp0+fRnm5+nqJSUlJiI8nKlq4XC4WLVqkdlu3WCzG2bNnERYW9tFUuUCSpG3bti1Onz6tUSv6mV0XEB76Flf/vYOqMqKCsraKh+U9v8W05osoO2ACwJ41R8n10YdeZS6lXZ9WGCsxTODX8vHLp9vIqihl2LnawMyGMOd6cz8CY21mYbTlDPBqeOSY+yeekNVTAr4QK3p/h6luCxB27x05RmoG0BCHvjtFaoS9zyrz0UuGYO2xpWQ3w7PLr7F64I8oK2r68+rX1YescpOu6/p+EggbFyIRKBaLsX7cZrj6uSBwtKKxT2RILMbZzsZoyxmokNtQk1aby+up2bnakMlfSEwmPhZ0CTUdOnTo+MApLSjDuT+vYl77L7Gg4ypc3HEDlaWyG4A2vfzw7ZkvcShhOyasHEnJsZMqjekzCfhCspWvKfIzCrF13i7y8ed/zYaVQ/3dd7FYjKS3qdj71VFM81iEpd2+xoW/rqMoR6bLo2/ERd/J3fHDxdU4lfMvlu+aB45ew5U68aHJZBKorKgcF7Zfx8JOqzCv3Zc49+dVhQSdtbMl+W9nbwfM2zwdPcYEYMB0whmsqrwav83cQUmTQx5l4rZ0wuawsfrQYlKj4tLfN/HyRhhSItOx/5vjmOG9GJ8HfIWzW6+iMEumb8E10EOvCV3x/bmVOJ2zB/5B7Rp9n8Q3KZQrq078cgGRT4jFkb27Leb89uG2iMjDYrGw6uDnMDQhtPFu7L+PJxdeqDyPvGCxMpLfpSno/TXG2S1XEXaXWLRbO1liwZYPy4igIZhMJlbuWwgTC6KC5/7xJwqVrlRx8XEC15wDY0cDpEal49GjR3j9+rXax8Xj8WBsbIxhw9TXb/yvYLPZSEhIwO3bt9WeIyYmBs+eEU7FISEhePHiBeVEeV0EAgEMDAwwYsQItY/nv4LFYiEpKQk3b95Ue47Y2Fg8fUo46L148QIhISEaxVJPTw8jR2ru9ve+YbPZSE1NxfXr19WeIy4uDiEhhFv169evNWpvFovFYLFYGD16NIXRHxZsNhsZGRm4cuWK2nNYeJrArq3yKrKS/DLkpRVQmuflzTc4v41omeRwOVh54PMPuspcnlkbJ5N6v4lvUpTqoorFYlzfexfLeqxDaT6RXBLyhWQSUt4hXhnlxZWIfkokgfUNufBo69rg2PCHkTi56SIgqXBbdfDz91pl3ntiIH669jW5tokKicUXPb9FXnrT58LUb8eRxg2pURnYt/Y4vpbbbI57lYiXt8JQWaJo5iQSisiNwOJcWYJYug7OSZJtUDt7O5IJNTaHBe9Ommmkvk8+3F4BHTp06Ph/jFAgxMsbb3DzwH08u/wKAr5iEkNPn4O+n3THyMVB8GznrrXjGDSzD85uvar0OXMbU/Sd0r3JOUQiETbN2E4mrnpN6Epam0vJiM/GgxNPcP/EYwUnPykcPTY6D2mP3hMDETCsIwyM9GXPWXIQOLozHpwMUfr+o5YE4fWtcNzYfx9PL74Ev04Sg8PloPfEbmgZ6IM/5xNtDSw2C18dXUq+z6KtMxF+PxJ5aQV4+zAKZ7dcxfgVw5v83aXYudmAw+WAX8tX+vvRgYuPE+b+No2sAlo34hcIBfUTf2wOC50Gt0OfiYHoOqKTgqlC89ZuuIeGEx4jPw+itACMfh6PQ+tPAQCYTAZWH1qskqPsf429my0WbJ2JzbP/BgBsmbsTfl29VWpzaapCdPj8gZR0+BLeJJPOagwGA6sOfk5r0lzbWDtZYfGOOdg4eSsA4K9Fe9C6RwuV2lyatXCCbWtzuPa1Q/DLBygXEAvz6upqZGdnY/z48ZRbwzIyMlBUVIQZMz6OpGRdjI2NMW7cOOTn56s9h4mJCWJjY3H8+HGyIqimpga5ubkYPXo07O2pCUFnZWUhNzf3o42loaEhxo8fj8xM9b+TTU1NERcXh+PHjyMujjDb4fP5yM/Px/Dhwym37+Xm5iIjI+OjjSWXy8WECRM00jU0NTVFZGSkQiwFAgGKioowePBguLo2nKyQJz8/HykpKZg+vfEq+A8VDoeD8ePHk59NdfD08MTLB8o3Hdr2bgnP9k2vG0vyS/H7zB3k4zm/TqWl8+F9oaevhzWHl2Bxl68g4AtxatMFBAxpj1bdW5Bj3j2Kxh9zdjY4RzNfJ8S/Tmrwea8O7ogPJc55n86eDa6Pyosr8Ou0v8hk+/QfJsGrw/tPGHXo1xqbH6zH2iE/oTi3lKiYD/gK35z8gqzMVwZHj4PVhxZjQcfV4Nfyce7PqwgY1hEtu/mQSbC1QRtJx05lNPN1QqKkxVPaqVGQJTNecXCzIX/u2aG5SjrF/zW6CjUdOnTo+IBIi8nEv6uPYHKz+Vg34hc8PvdcIZnmG+CFZTvn4lT2v1ixd6FWk2kA4N7aVUFbQp55m6dTurE/+8cVvLlHtAPZOFth6T+EtkVaTCZO/XYRC/1XY6bPEhz87qRCsonJYqLjwLb4ct9CnMrZg+/PrULviYEKyTQpQbOVi4qbWBjhxt57WDtkI4JPP1VIpnl38sDi7Z/hZNZuLNw6E8d+Okcudmb8MBHeHWUaYkZmRlh18HOydWT/18eQ9DYFV3bdxtqhG5sUr2exWHCRCLJmJeRAwKdWmUSVjLgsnPnjMm4dlAlD102mWTtZYtmuuTiZ/S9+vLgGfSf3qOdQKt+aWhc7VxtM/XZck8dSXVGNXz7dBpGQeP9P1o5Bq8CPRwtDyqAZvRE4yh+Q7FL/MWcnCjILsWnmdmyZu7PJv2FjsbRytMCMDZOaPIba6lr8POVP8jtg3BfDKOsOfkj0mRSIPp8EAgAqSirx+6wdKMopJvUZ5dtqlNGshTMKokohFonJZBoAhIeHo6ysjNSwaoqqqiocP36cbNH7WPH09ET79u1x7tw5tdwVhw0bBgaDoXDD/u7dO5SUlMDEhFqytqamBidOnNDopv9DwN3dHZ07d8a5c+fUcigdOnQomEwmmQCCxEm1sLCQcix5PB6OHz+usZnBf02zZs0QGBiIc+fOqeWqOWTIELBYLIVYRkVFIT8/n7I2n0AgwIkTJxAVFaXy+39IODs7o1evXjh//jzy8lSXmZg4eywyg+v/DdgcFpb8PafJNlixWIwtc3eR3QH+g9th1OIP39ihLp7t3TF9PaGLKhKJ8ev07SjOK8WeNUfw/djfwNFjNdrh0Lpnw0kmJouJ3pNkm8p+XZUbEojFYmxbtAf56cTfo00vP4z/kvqGLN14tnfHn09+Ig0XinJK8GXf73H690uNVte6+rngs1/kdFFn7sCsnz+RDWiiMLdVjxakFptUS1hedkQk9/qWDcTyQ0VXoaZDhw4d/zHlxRUIPv0UNw/cR/Sz+jcnlvbm6D+1JwbO6N1kG5k2CJrVl3TqkdKubyv0m9KjydcmhCVj39eEkDqDwcCoxUE49P0pPL8aiuykXKWvadXdF30mdUePcV0oO0q269sK9m42yElRrNooL64E5Fo6zW1M0W9qTwya0RvurWW73RunbCVbIFr3bIHxK+u3L7Xt1RLjvhiG05svg88TYEXv78lS9sKsIuwK+73RY3TydkDS21QIBULkpxfCobn64uJ8Hh/vHsXgxdXXeHY1FJnx2Q2OlVbGFWQWwdjcuNEkqLN3wyLdi7fPVprMrMvfyw6QgrO+AV6Yuq7pJNyHCIPBwLJd8xAZEoeSvFI8u/Ia7x5Fk+3Wrbq3wIBpvRp8fWOxXLh1JqWKvX9XHSGTzB7t3DBjwydNvuZDZfH2z/AuOBoFmUUIvfMOs/2Wk58f3wAvDJvXsC6Ps7cDqgt5eL0jDh0X+oAh6Tjy8vJCYGAgDAwMGnytPFVVVbCxsfkonCibgsViISUlBVeuXMHkyZNVem15eTlYLBYYDAb4fEJXyMPDA926daOcnKyuroaFhQUGDx6s1vF/SLBYLKSnp+PSpUuYNm2aSq+tqKgAg8EAl8tFbS0h8u3u7o6uXbtSTgLV1NTAzMwMQ4Z8uK69VGEymcjKysKFCxcwe/ZslV5bUVEBkUgEQ0NDUtfO1dUVXbt2pWzQUFtb+9G2c9eFwWAgJycH58+fx7x581R6ba2wFh2XeeHln7GoLZVph01cPUrBhbohrv17ByEXXwIAzKxN8OW+hR+VFp0841eOwLOrrxH5JBY5yXmY02o52cppaW+Br44tw4YJmyES1c8I+Xb2gqW9uYLsiJSxy4aiMFNWYdWQ5tfdo4/w4MQTQKL7u/rQ4v+8bdahuR22PvkJGydvxZt7ERAJRdi96jAiQ2Lw5b5FMDZXfh0YtTgIz668Rtjdd8jPKMSKXt9Tfk/P9u6wdbVBTnIesiWtntXl1eTzmQmydWxTWnQfGrqEmo6PBqFQiNSodCSEpSAjLhs5SbkoyCpGaX4ZKksrUVNZC36t5KLBYIAh/T+j/mMGGGAwpT9nAAziwsVgAAwmEwZG+jC3M4ONixWcvR3g1aE5WnX3hbkNtZt7HTqaoqywHCEXXyL4zFOE3nlXT5eKzWGhy/BOGDSjD/wHt1PLWZIuek8KxPbFe8nqLhabiSU7PmtycVVTVYsNk7aQ1TUsNhP/rj6idKxXx+boMzEQvSZ2a1S3TRnlxRV4eukV6cZZFyaLiYChHTBoRh8EDO1QryT/7tFHuH+cWOwYmRliTSOLnRkbPsGzq6+RHpNFJgMAIPltGipLK2Fk1vDNqK1ci1tBZpHKCbXivFK8uBaK59dC8fpmOKrkFiLyeLRzg6ufC+4dI/RnyO9FABGPotFrfNcG38O6gTa87mMCEDC0Y5PH+Ojcc9zYdw+QaN2tObz4g3aibApzGzOs2LMA60b8AgAK2oXvHkU3mlCzdLAAk8mot0j3H9wePcZ2afK9n18LxcUdNwBJi/dXR5dCj8vR4Lf5bzGxMMbK/YuweuCPgKRSTUrE4+hGE2qmVibQ0+dALCJ2+xlggMVioXfv3pTF9BMTEyESiT7alrq6SNvC5Kuanj9/jsrKSvTt27fR1zIYDAgEArDZxGeTyWSiR48elFvqkpOTUVtbi5kzZ2r4W3wYsFgsjB8/XsFY4fXr1ygsLMTAgQObfL1QKCSvh0wmE4GBgfDw8GjydQCQlpaGioqK/5lYMplMjBs3DmFhYeTP3rx5g+zsbAQFNV7hxGAwIBaLwePxyMddunSBjw+1m+uMjAwUFxf/z8SSwWBg3LhxpMYhg8FAZGQkkpKSMHx44xVODOJmB/qWemRCzbaZNT75qmlNufTYTOz84iD5+Is9C2Bp/+E7zjYEi8XC6oOL8VnrL8Cr5inookU8jsaSHZ9h+b8LSIkHKUwWEy6+TrBxsaqXULOwN8en343Hit7fkT9r0aV+VVV2ci7+WiQz41n6zxyV17jawsLWDL/c/AaHvjuFYxvPAQCeXHiJ5Herse70CqUdMEwmEyv3L8Jsv2Wk4RRV3Fq6wMbFCjnJeagoqURVeRV5f8DhshEp55aqS6jp0KEiKRFpuHvsEWKeJ6A4rwSVJVWoqawBr4YPAV9IiH+rp++qNiUoRXZyLqKfKX+eyWKCrceGvqEejMyMYG5LJN+a+TrCo527LvmmQymlBWV4cv4Fgs8+w5t7EUrF3Zu3ccWgGX3Qd0r3D+YcMjQxgEc7d8S8IKrU+k7pARcf5TucIpEI8aHJeHE1FBf/voHSfFk7knzrKovNQuueLRAwpAO6DO8EZ6+Gq3mUUVZUjpALLxF89hnC7rytpzEHAC4+jgj6rD/6T+3RoPZVTkoeti2S2cEv/WcubJs17ByYEJqkVKRWLBYj+nkCOg1s2+BrrZxkyar8jKbbYcRiMRLfpODZldd4fi0UsS8SlJbjM1lMtOruiy5DO6LL8I6wd7fF30v3K50z6lmc0p9LMTDSh4mFkYJRA4PJwMKtTd+gFGQWYstcmRbJoj9nwclTtb/rh4ZQIEToHeWOe9FNxJLNYcPC3lzBBILBYGDxjtlNJqOL80rx+yzZ4n7ub9Pg2sJZ5eP/kBAKhaSxQl2injYeSwaDAWsnS+Sk5Uv6ShgQiUTQ12+6YhIACgsLceLECXTp0gVeXh++0yxVXFxc4OTkhFOnTkEoFCIrKwsikQh9+vRp9BxzcnJCz5498ewZsciRVgVRoaSkBCdOnECHDh3g6/vxtXI3hKOjIxwcHHDmzBnw+XxkZ2ejtrYWAwYMaDSW9vb26N27N549ewaBQKBSLMvLy3H8+HG0bNkSfn4fvmsvVezt7REUFITz58+jtrYWOTk5qKysxKBBg8BkNqw2ZGVlhb59++LFixeoqKiAWCymXDFZWVmJ48ePw8vLC61bf3xt8Q1hY2ODoUOH4tKlS6isrER+fj5KS0sRFBREJsSVYW5ujv79++PN9t3kzz7fPrtJXSo+j4+fp25DTRVRbTl07gB0G+FP42/03/DmfoRSE6CUiHRUllVh8Mw+qCqtwj9fyFy9Ta1MoMflwNrZSsH1HADm/T4NNVU8Uj/No50bTK0Uq/+ljpjSzc/+n/ZE74mBWvoN1YPFYmHmhk/g19Ubv077C+XFlchKzMXSbl9j8fbPMHhW/c2Z8AeR4NU27JiqDENTQxiaGChop757LEug6Rvrkx06Lj6OsHa0VDrPh4ouoabjvRH1LBYPT4YgMiQW2cl5qCypouwW96EhEorAq+aBV81DWWEFspOUJ99YHBZMLIzh7OOI9n1bYdDMPrBr5GZdx/8exXmleHL+BR6dfYo39yNJXSl5bJtZo8eYAPSb2hOe7d0/yLL6pf98htUDN8DM2gRL/56j8Fx1RTVC77zDsyuv8eJaqNLSeEjaLf2HtEfAkI7oNLBNo9VcyigtKMOTCy/x6OxThN1VnpDkGnAgEIgwfP5ALNw6s9FYCoWSxU6ZbLHTZ1LDi52inGKsGbShwV256KdxjSbUbOQcROXbBOSprqxB2N13eHGVqEQraGCciaUxOg9pjy5DO6LjwLYwsTAmn9u79hiu7FLuAJj4JgW11bWNLqqtnCxRXlwJBoMBfSMuJqwa1aSAvEgkwm8zd5CW8j3GBmDQzD6NvuZj4PjP50mHs7qkRmU0WZVo7WRJJtT0jfUxeskQOLg3XpkoFovxx2f/oCSP0ArrPKQ9RiwcpNHv8SFwbstVnPj1gtLnspNyUZxX2miLt7WzFbIScxF/KRPtp/qgf//+sLSktuguLy+Hq6srevbsSWH0xwWPx0NMTAyZbKdiKMBiseDs7IwBAwbgwYMH6NmzJ2xsqK1NysvL4eTkhN69e2t87B8aAoEA0dHRpIszlZgwmUw4OTlh4MCBuHfvHrp06QIHB2obCRUVFbCzs0O/fso1QD9mhEIhIiMjIRQS12krq6ZNSKSx7NevH+7evYtOnTrBxYWazEVlZSWsra3/J9q56yISifDu3TsIBERCyMLCosl1IoPBgJOTE6Z8NxaHvj6N9n1bo+uwTk2+16HvT5Mi/C4+jpi3WbUW6A+RV7fCGzQeEIvFiH2RgA7922DMsqHITsnFhW2EU625DdGyLZ/c0TfkonXPFug3uQfuHAkmf+4/qL5Del2n88//Uq0F+n0SMLQj/n69CT9O+ANxrxLBq+Fj82f/IOJxDBbvkCViQ+++xa/T/qI0p0d7NySGESYELDaRSJePZYSc9jBXXw/lQmL92ElJLD90dAm1D4wavhA55bUorOKhqIqPGoEQYjHAZDBgqs+GlSEH1kZc2BjrgfkB3nQLhUK8uReB4DNPEfsyEbmp+agqq1aaRFAVBoNBVoZxDfRgYKIPE0tjWNqZw9rZEk6eDnD0tIcelw2BQAghXwSBQAAhXwiBQAShQACxEBAKBBAKhBAKRHX+L4RIKAK/lo+81ALkpRegJL8MVaXVqK2uJarlVPw9hHwhSvJKUZJXiohH0Ti8nrBs5nA5MLc1hXtrVwQM7YABn/asJw7+IVErECGnvAaFVXwUVfJQTZ6XgAmXDStDPVgZ6cHOmEsKTr5vxGIxiqr5yK+oRWEVH6XVfAgkrVZ6LCYsDTmwMtSDnQkXxlztfvUVZBXh6UWieurtg0iFli+OkT7sOnqgWRcfuHbzhYmDJfQMuWAxgEwuGzU55WQsWf9hLIur+civ4KGwioeSaj4EeoaY/mAj9FhMhOVWQlCQhawXcQi99BJvH0TWc86Ux39wO0z9djx8/D1U1o0oyinG00uvyKo++c8g25ALuw4ecAnwhntgC5g4WUHPQA8sJgNGemy8yymHlaEe7E2Ux/LAupOIkOyQ2bvZNLnYqa3ioVaya6uMiCfKjQmKJedlpasDBu7+HBwjfZRbmeB6TB4sDNgQFpYh+2U8Qi+9xJt7EQotmvK4t26GgKEd0WVYR/gGeDYYy7KChkXKhQIh4l4l1XNz4gtFyJVce9quHIcWAJgcNtz8nGBmyEV4VimsjYjPD1tJhcHxjecReoeoPrJytMCynfM+yMSwqpQ2EsuGqhIFQhFyKmpRWMmD35KRaC4Sg8lmwbWFE8yM9RGeVUqel2xW/Vie+eMKnl0h3NnMbUzx5d6PV7tGnsZiCUlCuttIxUoIoUhMXHsq+fCaGwSnWYPA5LDh4u2AImN9vJGLJUdJLCExLrC2tsbUqVNp/X0+BNLT05GWlka2ykFSmcLn86Gnp6cwVigSk5/xwioeEjOqYGBkAZ8hU1HOYeFNZiksjYhY6jUQy4iICJiamqqsM/YxkJGRgfT0dIWfmZubg8fjgctV3IAQisTIq6hFQSURy6SMKugbmMA7aAqqOSyEZZbCypADexN96LGVxzI6Ohr6+vr/My3I8mRlZSEjI0PhZyYmJqitra2ndyiSxrKKh8JKHpIyKqHHNYL34Cngc1gIzSiBleS85DYgfREbGws2m/0/0+opT3Z2dr1YGhsbo7a2tl4lpEgsf17ykZReAU5HX8x5+hv02Sy8zighvi9NudBXEssX18NwUrLpwWKzsObIEkq6qR86ja2JACDyaSw69G8DAFi4ZSYqS6oQERKLz/5diMiccpgN6ojBHX3A4nJg18wa1jameJ1RgojkfHAtjFFbXFEvCfTmfsRH53Ru72aLLY9+xM7lB3B55y0AwM0D9xEfloRvT68Am8PGxsl/Up5v6Jz+2LZwD8BgwLqVKyKyS2HUuy0G+7mDxeVAYMxFv7/sUBSXCV5OMSruvUVNYflHmVBjiBuzc/gfp6ysDGZmZigtLaUsHKot8ipqEZtXgZTiKijRRKyHkR4LPjbG8LI2gj7nv9FWEgqFCD7zFJd23ETy2zRUV1QrFXRsCiaLCUMTfVg5WcLayQo2TpZw9LSHa0tneLRz/yArunLT8hH1NBYJYSnIjM9GQUYhSvLKUFlWBV41DwKeQOVYMBgA15ALa2creHdsjl4TuiJgaMf/VLiysJKHmPwKJBdVQUjh9zHgMOFtbQxvG2MY6r2f4+YLRUguqkJMXgWKq6mVIDuZ6sPH1hjOZvq03KgK+AJEhsTi5fUwvLzxBklvU+uNMfd0QLtZ/eHUuw0YFPTQ9NlMeNkYw8fGCEaNOBDRiUBExDI2rwKFVdRimf08FnFnQ5ARHAGxSAw9fQ44XA6pNdVleEf8cGE15TgLBUJEPY3DyxtELBPCkuuNMWtuh3Yz+sO5X1swKOhzcdlMeFkbwcfGmEymPj7/HOvHEiYCTBYTmx+sp+RE+fJGGPavO6HURp3NYeFq9TEwmUwIRWKkFFUhJr8CBZWNOxhKyXmVgLizT5D+4B3EQhH09Dlo17cVugztiIChHRptRZWnqrwaB9adwPW9d1FTWT8BOHrpECzcQtx4lNbwEZNXgcTCSvCFTX/G9VhMeFobwdfWGCaSWL64HoZvhv1Marz8cmsdOvT732i5qamqxaHvTuLq7jtKNeuCPuuHL3bPBwCU1fARm1+BhIJK8CjEksNiwNPKCD62xjDTJ7TR3tyPwOoBP5DXjw2X11DSrvsY4NXwcHj9aVzeeUtBi05K38nd8dWRpQCA8loBYvMqkFBYiVpB0xtZHCYDHpLPuLmBTGcuNjYWJ06cwKhRo9C2bcPVox8rO3fuRG6uorkLk8lEQEAAqf1VUStAXH4F4gsqUUMhlmwmA82tDOFrYwwLQ1lSLjExEUeOHMHQoUPRqVPTlS4fG3v37kVGRoZCcpLJZKJDhw4YOnQoAKCSJ0BcfiXiCypQzW86liwmA80tDeFrawxLuVimpqbi4MGDGDhwILp0aVpP8WPj0KFDSE5OVoglg8FAmzZtMGrUKABAFU+IuIIKxOVXolqJZENdWAwG3CwN4GtrAmsjWSwzMjKwf/9+9O7dGz16NG2U9LFx/PhxxMXFKcQSAPz8/DB+/HgAQDVfiPj8SsQVVKCS13QsmQzAzZL4jNsYE8ni7KRcLPJfTco9zP55CiatHqW13+t9IhaLcXH7DZz6/SLptCmPW0sX/PvuD0BS2BJfUIm4/ApUUIilkC9AZnAkZs/tA0cLolo9L70AizqtRolE8mTqunGk0+jHwt2jj7B13i6y9dfARB+OHvZIfCOpOOOwIGzic7s97DdcvvoG+i1cYUJBN04kECIjOBLTZ/aEi7XxR7WRqEuo/ccJtRq+EM/TipFSrFxcuik4TAY6uZjDy9pI6yeeUCjEw5MhuPTPTSSGp6JGRTFCFpsJQ1ND2LnZoEUXb/Se0A0tA33+c6cTbSEUCvH6zjs8PPkEMc8TkJ9RiJrKGohVTLRxuBy4+Dph0IxeGPl50HuJF08gwsv0EiQUVlIYXR8Wk4EOTmZoYavdL8TM0ho8TS2itIBQho2RHgLdLcmbWVXISy/Aqxtv8OJGGMLuvGtQIN6lpQt6rJsIZnNqwtl1YTKA9o5m8LM30WpVanZZDUJSiigtIJQhyC+FF1OIZ8cf4fahhwAARw87bH/xi0I7ojIKMgvx8sYbvLz5BqG33yq92QYARx9H9Pp2Elhe6mlJMRlAGwdTmJWWY2mXteTfbP7m6Ri7nLojmFgsxtvgKJzZfJmsJJKyP+ZPcBysEJJShLLahqv2GkNQWAYPsQBdevpC37BxvZPGKC+uwNXdd3B+2zUUZct0vFz9nLHz7WaEZZYhKre+HhwVGAygtb0pbGuqsbjzGnIRPnPDJ5i8dozax/yhUllaiWt77uH8n1cV9O8cmtthf9xfCM8qRUROuVpynwwALe1N4CjiY4n/GnIRPuXrsZjx4yQaf4sPg6ryatzYR8RS3pXXxtkKh1P+wbucMrzNLoO6q9MWtsbo4GQGNouJ0NBQ5OXlYdCgQR/V4pwqPB4PERERMDAwwKtXr5CURCT67e3tMWfuXETmlONNVimljVpl+NgYo6OzGTgsJsLDw5GRkYEhQ4b8T8aSz+cjIiIC+vr6CAsLQ3w8oedjZWWFhYsWITq3HGGZZRCqeWJ6WRuhk4s59FhMREZGIjExEcOGDWtUU+xjRSAQICIiAhwOBxEREYiNjYVYLIaZmRmWLl2KmLwKhGaWkl0EquJhZQh/Fwtw2UzExsYiKioKI0aM+J+8n5C2zjKZTMTExCAqKorUlluxYgXiCirxKr1E7Vi6WRqinbUhVvVah6RwYjO420h/fHf2y/+5c1PAFyD49FOc3nxZYbOWrcfGtepjSCisxMv0Ekqbi8poZm6ADvbG+Kb/esS8SAAAdBrUFhuufPVRnpspken4YdzvSI/NUvp8vyk9kBGXVU9fruPAtmg7pRfQqjl4anaoOZvpo6ur5XsrztAUXULtP0yopZdU40lKEaXd16ZwNNVHD3dLStVqSe9S4Orn0uSHW90EGovDgrG5ERw97OHXzRt9PgmET0dPyr/L/zrV1bV4eDIETy+9ROKbFBTnloJXTa2CBQC4Bnpwa+WCYQsGYcCnPWn/ks4pq8Gj5CJUUdgxbApbYz30bG5Fe4WVUCTGi7RixBWol/CTh8VgoKOLGVrYmjQ6jlfLR+STGLIKLSUyvcGx3p084D+4HdqMDkASi6t2wk8eayM99GpuRXu7qkgkxrPUIsQXKk9iqTgZXv91BdFHH4BroIdtTzeieZv6rnECvgCRT2LJKjRlFX1SvDq4o9Ogdmg3uguS9fTVTvjJU56Si7tf7EVFRgF6TwrE2qNL1b5BTI3OwM4vDuD1rbcwtzPDF09+RmxBFZFx0gAGA2jnYIbWDiYa37zyeXzcPhyM3SsPobK0CtP+mAnjvu3VTvjJU5lRgLtf7EFZSt7/7CJcHgFfgPsnnuCf5QdQXlyBSRumwHp4AEpqNI9ldXYR7n6xFyWJ2R/1IpwqQgFR5b5j6X6U5pdhzDfj4DSxF+VK48Yw1mOBnRODvl39YWLS+Hf7/wq5ubm4dOkSsrKy0HtgEMrNmlGuNG4MIz0WODmx6B3QAWZmH4ZRjrbJz8/HpUuXkJGRge59+qHWxgv5FCuNG8OQw4RefgJ6dGhNWf/vY6ewsBCXL19GamoqunTvCbFTS+RWNCydQBUDNhP6hcno2saHsv7fx05JSQkuXbqE5ORkdAroCo57O2SXax5LYVUNHn51CFlPY+Ds7YDtz39WWeP2Y0IsFuPN/QhsW/gvMuKy0XFoR/TfPBuZZaoViihDVMND8DeHkREcCXs3G+x49StMLT/ea1BVeTV++XQbnl56Ve85A2N97Iv5E1kJOfhr0R6kRKajVZ9WGL5rEdJL1CsUkkePxUBXV0u4WX7YrbLQJdT+u4RaYmElniQX0WpeaabPxkBv2wazuUKhEJ84z0NxbinYemxcqTyisFgXCoW4f/wxLv9zC0nv0igl0FhsJmxdbNB1REcMWzAILt7qVeHoILSibh18gNe33iItJgNlhRVKHWnqom+sD892bhizdCh6jNWsdSCtuBoPkwrU3s1WhpEeCwO9bWGq33giKD+jEEXZxfDu5NFoAkEgEuF+QiGyaLjwydPK3gQdnMzI9xbwBYgPTUbEo2i8fRSFN/cilLbPQeIE1GlQW/gPbo+OA9vCwtYMmaXVuJ9QqPZutjIMOCwM8raBmUHjFXWF2cXITc1HiwAvpbEsL65A/OskRDyLQ2kzB5j6NaPtGAEg+vhDDOjoin6TifYLoUCIhLBkvHsUjXePovHmXkSDFX0mlsboOLAt/Ae1Q6dBbWFpb4HsshrcSyhQewdWGdWFZYjeegG/nFnRqEZIcW4JspNy4RvgpTRRVFFSifjQJESExKHE2RamrdxoO0YA8LYxQpdmTQsQUyW3vAZ3EwrU3oFVRk1JBSJ+P4tfTi5vdBFeWlCG9Ngs+HX1/p9IuuVX1OJOfIHaO7DKqC2rQvimM/j52JJGF+FlReVIi8pAi67e/xNJt8JKIpZUWhKpIhLw0dvdAu52Fo2OqyipRNLbVLTs5gMWhXb8D53iKh5ux+dTakmkikgoQKCLCbwdG2/bqSyrQuKbFLTo4gWOnuqV3x8apdU83I4voGVTTIpYKERnR0P4udg2Oq66ohpxr5PQoos39LgffyzLa/i4FZdPy6aYFLFIiA62XLRxa9wEoqaqFrEvE9AiwAt6+nqNjv0YqKjl43ZcAS2bYlJEAiFe/nwaq3+eBFe/ho0gaqtrEfM8Ab4Bnk06hn4MVPEEuB2XT8ummBSRUIRXm85i+Tej4dnevcFxvBoeop/Fw9vf44PWqvth/GY8OqvEea+OVEM1X4A7cQUoomFTTJ6AZhbwtW280+W/RpdQ+w8SaqnFVXiYWEhrMk2KuT4bg33twK0jgioUCjHRYQ5KC2TtPdPXT0DLQB8cWHcSSW9TG0wWyMNis2DbzBrdRvnjk7VjYPYRZ90/Bng8Hs5tuYo7h4ORmZBDKcFmaGoAn06eGLdyBDqrIOyYXVaDO/H5tCbTpBjrsRDka9dgsvfBySfYNH07+DwB1h5b1qDTokgsxv2EAmSU0ptMk2JXU438u+F4+ygKMc/iSe0AZfh29kTnoA7wD2oHr47NFW5qc8trcTsun9ZkmhRDDgtDWtg2WPUXcvElfvpkC3g1fKzYuxCBo/wR/zoJca+TEB+ahPjXSchOygUYDPTYOA2u/bSjK2THq0XB3Td49zgaUSGxjX6/eHV0R8CQjvAf3A4+nRXF9gsqa3EzNp/WZJoUPQYwrJUDqQVWlxfXw/DjhM2oqazF4u2foe/k7mQM40OTEPcqEVmJhH5R4PopcA/SjtaVn50x/F0aTwpQoaiKhxuxebQm06SwAQxrZd9g+3TYvXf4fvRvqCqvxtzfpmH8iuGU5uXz+MhPL0ROSj6qyqrAYrMk/zHBZDEVHtf9N5PFBIfLgaWDOe1Jp5JqPq7H5NGaTJPCghhDW9rDwkD5jV/E42isG/ErKkoqMX39RExdN47SvAK+QBLLPFSWymJJxLHhWErjzNZjw8rBgvakU1kNEUs6k2lS2EwGBvvYwspIeSyjn8dj3fCfUVpQjklrRmP2xsmU5hUKhMjPKERuSj7Kiyvk4qj8XKwbZ7YeG5b25mBT0IBUhYpaAa7F5NKaTJPCYjIw0NsGtsbKb6ITwpKxdshPKM4txZilQ7FgCzWxfaFAiILMIuSk5KG8qILS51r+MZvDgqWDBe2xrOQJcD0mj9ZkmhQmAxjgbQN7E+U30ckRaVgb9BMKMoswdO4ALNs5l9K8QoEQhVlFyEnJR1lheaOxVPYcm8OChb057cnQar4Q12JyUVGrnVj29bSBk5nyWKbHZmJt0E/IScnHgGm9sOrA55TmFQqFKMwqRm5KPkoLyhqMZUPfn2wOC+Z25rQnQ2sEQtyIyUMpjQkgErEYfb1s4GKu3CQtOykXawZvQFZCDnqO74p1J7+gNK1QKERRdglyU/JQkq88lk19f1rY0x9LnkCEG7F5tFRF10MsRi8P6warq/LS8vFV0E9Ii85El2Ed8eOlNZSmFYlEKMouRk5KPkrySuvFsqnvTxabBXNbU8rJ0OSINMxts6LRMd+fW4nOwzvhZmweLVXRyujubgkPqw+3alKXUHvPCbVKngAXI3O0ckMjpbmlIXo0l9lTC4VCTHSci9L8xl1OlKFLoH1YVFdU48SvF/DwVAhyUvKbFIQEAGMLI3Qa2BYLtsyApb3ym/IagRAXI3K0ckMjxclUH/28rOtV2pzbehX/fHGAfOw/uB02XvsakOze5KbmIyclH3mp+cjlcMFq3fBuj6aIRSLcmr8D+W/qC+Ez2UyI5OKz5dGPaBXoC7FYjJL8MuSm5CE3JR/Z6YWo7ugDphZdW5nF5WheVQlnbwc4NLcjFxln/riM3asOkzp9HH0O+DXKL24+E7rD/0vtal3dWfQPcl7G1/s5i82EUC6Wv95ahw7920AsFqO0oAy5KcTfPCetAFUdvME00V65N6O0As3Ly+Hi7QAHD3sylpf+voEdS/aR4vAcLhv8BnaDPUcGoMvX2hWcNU3KhIe9KZy9HWBhZ65yxZpQJMblqBztLMIlWBpyMNTXrp7T7/0TT7Bp+l8QSL6v3Fs3w+7wzUCdhJn0M5STSvw/NyUfBZlF0HSZwtFjw765HZy9HeDs5QBnb0c4eTvAycsBVg6qV/8JRWJcjc7VziJcgrk+G8P87Ou50z469xw/T/mTdIJ19LTHwTjCwl4+YUZ8hvKQm5pP/rsws0gt4yB52BwWHJrbwcnbAc5ejnDyciDi6u0AK0dLlWMpEotxLToPhVWat9M1hCmXjeF+dvUcVZ9ffY0NE7eQGyfWTpY4lrYTDAaDiKUkYUaem6n5ZGwLMgo1jiWLzYJDc1vifPS0h5O3oySWjrBytFC5ilMsFuNGbD7yaGinawgjPRZGtrSv56j6+nY41o/9HdWSzgYTS2Oczt0DFoulkHzMqfMZz0vNR156ocZO8EwWE/butpLPOBFHJ29HOHvZw9rZSq1Y3o7PR3aZ9mJpwGFiZEuHehvg4Q8j8d2oTaSWqIGxPs4V7gebw1ZIPuam5JOf79zUPOSk5CM/vRBCgWZJKyaTAXt3W0n8HOQ+446wcVEvlve0uBEKiYnTyJb29WRvop7FYd3wX1BWSBQTcLgcnC/aD64BVyFhRsYzJQ85kpjmpRXQEks7N1s4edkT35eSODp7O8DGxUqtjZ6HiQVq625TQY/FwMiWDvU2wONeJ+LroT+jJK8UkHzmzhXuh5GpoULCLCclv871Jw95aQXk9V9dGAwG7FytyfNSeh139nKArau1WrF8nFyIRDrkThqAzWRgZEv7elItye9S8VXQTyjMIrRtGQwGTuX8C3MbM4WEmcK5Kf2MpxWAT6G4ojEYDAZsm1mT8XPykp2Xdq42CptmeekFmOG9pEH3eQDw8ffE1FMrEZuvuQxPQ7CYDIzws4OpGprX7wNdQu09JtTEYjHuxhfQ0qPdFH08rdHM3ECSTJuD0nxqwtO6BNrHRWlROY7/dBaPz79AfkahQsJHGXoGemjV3RcLNk+HWytZm19wUiGSi7R3UZES6GYJT2tih0EkEmHP6iM4vfmywhgmiwmvju7ITytEUU4J+XNTN1sMPbwCLC23PpSl5ePqlN8hrOWDzWHBzMYU5cWV9XTuHD3tweawkJuSj1q557p8PQGeI7Xv2vX81zOIPxsCBoMBPQMO+DxBk39/KcZOVhh27EuwtVyuX5FdhKuTfwO/shYsDgtm1qaoLK1CbZ3KP/vmtuDq6yE3JV+hKrDTl6PhO0H7rl2vt15E9LGHAIPQKBTwhJQX0oZ25hh2fBX0jLVbrl+VX4orkzaBV14NQxMDOHnZKywspUmNhlouK2oFqOAJIBCKEZxcSG7q2BrrIcjXDifeZNKi59ne0QxtHGXX0zN/XMauLw/VG+fT2RNFWcW0JMw0wcBYn7xhdJJbWLr4OMLYXHks32SWIjxb9Q0qVWntYIoOTjLNqkt/38T2xXvrxcunkweKcktoSZhpgr4RVxZLT9kNj4uPY4PGJO+yyxCaWar1Y6tb5Xlj3z1smberXiLHq2NzlOaX0ZIw0wR9Qy4cPe3JGx5nuWSbqZXydVl0bjlepJcofY5OvG2M0NVVpv919+gj/DZzR73vTM8O7igvrCDWJlqo5KSKnj5H7jPuSH7WXXwcYWatfO0fl1+Bp6nFSp+jEw8rQ3R3l22AB595il+mbqt3w+zRzg2VJZW0JB81QU+fA0dPezIJTJ6XPo4wt1Gur5dYWInHyUVaPzY3CwP08pC1JD+78hobJv6hsD4DgOZtXVFVVk1L8lETOHpsSSxl56U0nhZ25kpfk1pchQeJ9V0q6cbZTB99PWUb4K9uheOHcbKEuRT3Nq6orayhJWGmCRw9Nhw87Ij4Sa7j0uSlpb3yDciMkmrcTSjQ+rE5mHAxwNuGPIbwB5H4dtSvqCpTTIq6tXIBr4aPvNT8/zSWbA4LDh72ZBLY2dsBxhZGKMkrRVV5DQoyCpGfUYishBxkxudALBZh3sElKPOiVzpGGbbGehjsY/tBmuLoEmrvMaGWVlyN+4mKH166b2akGOmxMKa1A4YaTG6yTdDa2RK9JnTTJdD+B8jPLMSRH07jxfUwFGUVN3pDwOaw4NneHZN+m44EA8UbRwYDGOxjC3N9DkJSi5BaXA0bIz10cjGHSCyud1NOFT0WE+PaOEAsEOK7UZvw6uYbyq/t++dcOHb1bfQYpWj6uQrfeR3v9t1W+XWWLZwx5KCsBL6hY7Q20kN7RzMwGIRTaaQaTou8ihqcH/4D+JWqJ+h7bpqJZr1bK/ysoWMNaGYOS0M9MAC8zixFrooCuBH77+DNP9dUPkb/sV2wbP/n9c43L2sjeFobQSQW40my+q6k8ghqeDg/4kfUlqi+uzZx32KMGBegcJzm+hyNPyvKiD7+EK+3XGx0jHvrZmjdowXa9PRDqx4tYOVggfIaPi5F5UIgEsPbxghcNhPvsolzrrcHYRpyJz6flmsQkwGMae0AAzYTv83cgTuHg9Wey9zWDPZuNrBzs4Gdqy1MLI0hEoogFAgl/4kgEgghJH8meSz3s5rKWmQl5iArIQe8Bqo1G8LVz5mIZa+WaN3DF9ZOVqioFeBcRDbpQNnQ96KmnxtI3D9Ht3aAsR4LW+fvxrV/76g8hxRzG1Mijm62sHe1gYmViUIsiX8ria1cLGurapGdlIfM+Ox6N6lN4eLrhDY9WqB1Tz+07tkCti7WqOYLceZtloLMgD6biT6e1hCJxWCAgWepxeCwGLR8nka1tIepPht/Lz+AC9tU/06SYmplAjs3G+LcdLWFmY0pREJRvXOz0VhW85CdlIus+JxGpQWU4eztgNY9iDi26ekHO1cb1AqEOPM2G2wmo178Smr4tFxz5BnuZwcLAw72fHUUpzY1/p3UGCaWxpLPuC3sXG1gbmsGsUgsFztqscxJJs5LKtIl8jh62iucl/ZuthCIxDj9Ngt8objeWkIb158gX1vYGnNx8PuTOPLjGairB2NiYUTE0c0G9tJYikE5liKhCLXVPOSm5CEjLrte8qQpHJrboXXPFmjdww9teraAQ3M7CMVinHmbXe/aomyNRsf90EBvGziY6uPEr+exb+1xtTdrjM2NFD7jFnYUYykUQSgUQiQQgVfDQ05KPjLjshvUjG0IO1cbtOnlh9aSc9PJ0x4iMXD2XTaqJcmWuvGi45ojTz9PazibG+Ds1ivYvfKw2olcQ1MD2Lvbwl7yGbe0N280lgrXImksa4lEU3psVr1EVFPYuFihTU9ZLF18HCEGcP5dNip4Qkxu70RWSL/LLgdfKKJ9/daruRXcLA1xeedN7FiyT6FDQxUMTYhYEmsiG1g5WCiNpdJrkVws89MKkB6bRVbBUsXayfL/2rvv+DbK+w/gH+0tecl778RxNoRMdkjYuxRKoYyW1UJpyyhtKYUftKWlFAqltFBGC2VvQgiQSfYe3ntvy0u2te73h2TZsmVbsuWZz/v18suydHr0+Ht3urvvPcNjH4+fEwsA+OhEf++HwfGsae8J6PFnunb9ZEJtEhNqX+Y3DJmNJdAXMwNlq0S4P/unIy4TFG7AO3X/Cujn0vRRU1yLfz34Bg5sPDLsAX3V/12PxHMXDXleJRMj3aiFqduK8tZuqGRiWOwC7F4uyv2xPCEYfz3/URQcKBlxuZCo4P6L6awESNcuHbWOfca7Xzm6enDwl68gb1eBz+/RBmmw6nfXIey0TI/nB9dRLALOTAnDlpJm2MfZAmLfn95H/ts7fF5eIhUjblEyVj57G0Reum0MrqtOIcXyhGB8WdAItUyCNckh+CK/0a86Cj0WHPn1qzi+Ndfn92gMaqz9/fehPyXDY3vLb+jCOWlh2JDXgBC1HPMiddhaEpi7tQef/QQ5r2/2eXmxRIyYefE476W7YXV1A+yrZ1FTV0D2lcEEixWFf3gHlScqUV/W4FMLmpi0KJx23+VQLUgBAKSGaqCUiXG8rgOxBiX0SiniglTYUtwcsGPQgmg93r/jH9j18b4RlxucMHNfWCcaER4fFtBBeh0OB5qqmlFVUOv6qUF1kfNxXWmDTxcL0SkRWPazy6BZmu5+ztv3YllL97j3mz7zInXYeN+r2Py/kffzwQkz94V1ohHhCcbAx7K6BVUFtagurEV1QQ2qCp2xrC2p9ymWkUnhOO2nl0B72hyP50XozydE6BRIC9PgQJUpIPvTnHAttj/6P3zx0jcjLmcI03kkJiISB2ybCWFQBbA7v8PhQHNNK6oLB2yXhc7ftSUNPrWgCY8Pw2l3XwT96myv8dtZ1hKwY06ftDANDj39IT58ZsOIyw1OmEUO2i41+sB15xcEAc21rah2xbGqoNa9j9cW1/nU6sMYG4pld52PoLOc50QDzyUEARNy/EkOUaPwpY1484kPRlxucMKsfx93bpeBnJVREAS01Jlc22PdgH28BjVFvsUyNDoYy25bj5B1Q8/dvJ2jBeJ6KD5Ihdq3t+Hfv3pzxOUGJ8zccXQlKoZrnTwWgiCgtd6E6sK6/u2y0BXXoroRu9L1CYkMwqm3nouwi5a7nxsYL7lEHLBjTp8YvRLtG/bi7z99ZcTlBifM3HF0xTTQsTQ1tju3R9fxp2+7rC70LZZB4Qac+oOzEH6Fs/fDxVmR+PhEnfv1QF3rDBSpU8Dx7XE8dcvfR1xOpVUiKjnCvR1GJnpum9ogTcBaZ/UNseKOo2u77PvblxuQhjAdll5/BqK+e6b7ucHxDOQ1D1wNEi6YEzHucgItsCN40rDaeqxDkmmxBiUaOnsRFzQxs501SEbvGtfRMv6LPJq+olOi8Ju3nYNJdnd248X7/oNt7+xyjyehCtUh/sz5Xt87eFDjgX87HMBYU/H5DZ2oLW0YcZmUBYl44dCTgGuQ3W25tajoHfqB3gZeDsR+JdYocc7PLkHelU/6/B6LICB4UcqodTRqFLA5BJyREgoxRNhfZRrzWExLblmLyi8O+HzHzm5zwLA0zWsyzVtde6x22BwCRADkUvGYxtgTKeU49/4rcHzrYz6/p9dqhzwz3n3w7dvewjRy1HX0QgDQbLaMOnOsPxbeeDYqP9+PjmbfvhMddgcMS1LRM+AEoa+egdpXBhPJZbjhX3ci3aiFpdeKutIG54mk6wKy8FApig+VeiTa6iqaIHbNgKaQiJERrsVXhc4T7YxwLTYXNQ0ZgPi8DOdg2YNvAmVF6LA0Lgg59R3YN0LXsoLGLlTkVY/4vxiMerxV8+KkzfYpFosRHm9EeLwRi8/x/M6zWvpi2X9iWXSoBIUHSz2SQ3XlTRAnec4m521dj2e/uSQrEgeqTO7xhgqbulCaWzXiezQGNf5X/eKkzVApFosRHheG8LgwLD7bs6WrzWpztxbqSxAVHS5D4YESj+RQfXkjRImRQ8oeuKvIJWK0mq0B25+KmrtQmjNyLOUqOd6o/MekzaooFothjA2FMTYUC8+c5/Ga3WZHnau1UN8+XnykDAX7iz0SGg2VzUCCM5be4hfIY06fkhYzSk6MHEupTIL/lj0f0ATkSEQiEcKiQxAWHYIFZ2R5vGa32VFf3jhgH3fFcl+xR/fKxqpmCPHOWA4+l5io409ZqxlFOSN/X4rFIrxS+OyIM/8GkkgkQmhUMEKjgrHg9EGxtNvRUN6EqsL+7bLkWDny9hR5JDSaa1rh8DKTqbdztLGetw3+vqw0dY/6fQkA/zrxF4RGjX+iH1+IRCKERAYjJDIY2as9byDY7XY0VjZ7JNNLj1Ugd3eBR0Kjpc4Ee7TR/ffgeAXiXG2w6vYe1ObVjLrcCwefRFTy5CQ4RCIRgsMNCA43YN4qz1g6HA5XLGvcycvS4xXI3VXg0aLa1NAGa1R/12CNTIJ1GUZ0WezYW2GakPO3uo5emHJH3scB4JldjyMxa/gZVgNJJBIhyGhAkNGAeSs9GwJ43DRzJS9Ljzu3y4GtgNuaOmCNDPV47+B4Bqlk4zr+DN7Hm7osaO6yDDvR0FSZ8Qm15557Dk8++STq6uqwYMECPPvsszj11FOnulpDVJmGXvCOdDFT0dqN3IZOj+dvWBqHj0/U+bwh1nda8Ln1LeR+m4c9nx9E/t4i1JbUo72pA709FgiCgBWXTr9Y0cRQaVW4+/lbcffzt8Jut+O/j72HoyVNEPt5ETb4orxPuFaO7Cg9jBoFRAA6LTaUtJiRW9/h0aWnpduKB9//Bf79s1dhamhDS23rkObPlfnV+N1Vf0JlnvME4/w374MuLgy+GGm/Ctcq8GlO/2DiMokI1y6KxbtHa4bM5BWyMAXn33oOjmw5gbamdnS2Du0OuO6ms6AP0eLIthxYgvU+je+mlksQpJLhs9x6aOQSLE8IwRf5/QnGKJ0CC6INCFHLIAhAQ1cvDlW3ocXLzDniIC0e3vArvHzPy2ipM6Gl1jSkRYNYIkbS/HjUltTD3NaN2NXzhpQzHKtDQJfFhsvmRUEiFnl0WT8vwwijRgHHgLONA1VtyG/sHFKOOjUGl9y5Dgc2HUFbUwc6WoYuc871axAaFYyj23LQpVJC5mpRM3B7i9YrPWZVHHifzt/1O5hYp8ZvvvgVXrrrX2ipaUVLXeuQu/AikQh3PnsTTnybh2Pbcj1i6W2/8PbceOtZaepGulELuUKG+MwYxGfGeLze1W5Gzq4CHNuWg2Pbc2FyiKAwqCERi3B6Sij2VrSi1+ZAcogalabuYWf1beu2IjVM45FQSw3TwOTD8afbasdP374XL9/+IpqqW9BSZxoy9EBbYzusvVafZ5qaSDK5DHEZMYjL8Ixld2e3K5a5OLo9B01mG1TDjF81cF2PtN/oFVIsjQuCUSOHWCxCt8WOouYuHK9zJnI/GnBnFwB6bQ78+L/34N+3vYDGyma01LUOmRyjq82MrnbzpF1sj0Qqk7rGAYrGsgv6n+/u6kHu7kL3dlnX0gXNMJPkGJRSrEgMgUYu8RgvyNv+NFo8B7LaBfzo33fh3z98AQ3ljWipMw1p0WDptqC9qR1hMaFD3j/ZJFIJYlKd49Hh/P7ne8y9yNtT6N4uq2pM0Mf3X2wPjp9OIR3xmAMAKxKDkRamxYfHa32auMTuEHDj32/Dqz98HnWlDWitNw1p0WCz2tFSZ0JM6uQk1EYikUoQnRKJ6JRIYH1/i/ze7l7k7S3CsW25OLY9B2UljQhOdSbNB59LKKTiYY8/8OMcaDCHAFzz1I2wdXajtrgeLfWmIWO2OhwCmqtbpsU+LpE4JyaJSo7AKQNmkrf0WJC/rxhHXft4cW41wrKGjqvk7RzN23PXLur/PpaIRRAEuM836jt78XVh05DvSwHApY9dh57GdlQV1qK1zuS1e3pDRdOkJdRGIpFIEJnobN21dG3/jOuWXisKD5Tg2LYcHN2ei4LDZYhYkup+fXC8RjrmYBzb5voHL0dnZRMqcqvQ2tDmtUt1Q0XTpCXURiIWixGR4GzZteTc/lhaLVYUHix17+O5+4oRdWp/K/P3jzu7JKeGarAoxoDdFc6xE4c7f/P1vHewNT++AM2FNSg7XonW+jb0eBmupaGiadISaiMZ7qaZzWpD0aFS97HnxM4CxKzwTGwOjmd9Z++wxx9fzocH7+NwnQczoRZAb731Fu6991688MILWLZsGZ5++mmcd955yM/PR3j40LsiU6lp0MXwaBczgdJstmD+mrmYv2buxH4QzSgSiQTff/hq7C5v9elA4H7foIvyPrEGJdYkh+JQdRt2lLag1+aAXilFdqQeKplkSJKgpLwZ2avmoL68ATUl9agrafAYr8PSY8X29/YAAOQ6lc/JtNH2K4vNgcUxBp8GIm0xW3DXszehs7UL7S2dqMitRs7OfBQfKXN1ebCh8GAJWutMaK1vw6IfX+hTHXttDjR09sLmENDWY4Nc0n9aHmdQYnVyKPZVmvBVoRliEZBu1GJdRviw01EXlTZi3spM1JU3oq6kAbUldTB39MfSYXeg+FAZAECilMOQ5PuJT7ReAYVUgveP10IlE+PsVCM+za13v36gyjQk8e9Ns9mCH/35++hs7UJHaxcq86pxYmc+ig+XoabY2Uy/7FgFDn51DK11Jsz/4XnO+g7a3iw2B4JV/UnLwavZn/XrjSYhHM/uehxwnYSVHa9E4YESFBwoQU1xHVZccgouuWMdLrljHWx2B944VA1hmP1iuH1lvPUcbTZEjV6NU85b6L7QOVTRgmMNXTg9ORR5DZ1o7HK+P0glQ6hGjvggFYJVMqxJCsWmASeOpa1mzAnXQiYRwWoXEOY6eWnq8vx8tUyClUkhCNPI0dFjQ3mrGelGLarauvHXb/8PcJ2ElZ1wxrLwQAkqC2qw7PzF0yKZNhKVVoUl5y5wn5wfrWrFobqh2/vgdT3SfnN2WhjKWszYWuIc9N6glMKgGjkRLw7R4S/bHgVcsazIrUbBgRIU7C9GZX41Fp89f9hB/6cLlUaJxWdnu0/Oc2rasK/G+8QObT02bMhrQLBKhuUJwfg8r2HY/cnfeDq0ajy15RHA1WqpIrcKBa7tsiKvGtmr5iA0OmTY908HSrUCC8+c527Rll/fjt2V/RM7DI7f4Zr2YY85cM1ElxisRo/NjrQwDfZXjTxJRF+3UotSjj9981vA1dKmMq/G9X1ZjPKcKmSemupMYE1jCpUCC07PcrfCKm7swI5yk9dziZGOP/6eAw3WI5Hij5t+A7hiWVVQ6/6+LDtRgdSFSUiYBhfaI5Er5c5xqlytsMqbu7Bl0GQE3uI63HnbG4f6W/QM19DAG7MgwhNf/ApwtbSpLqx1H8dLj1cgcW4c0pcmj/O/nVhyhQxZKzKQtSID1zxwGapazfjadXPBW7xGOuaMZdvs28fb7cBjnz4IuGJZU1zv2i6LUXy0HDGpUchamTFZYRkTmVyGuaelY+5p6fjOfZegrr0bGwv6z736jielrWakG53dU0c6f/P1vHewNqsDv/vwfsDV3bK2pB4F+4tReKAExUfLEZlgxMKzfL/hPRWkMikyT01D5qlpuOrnF6Opswef5Xk2rhgczwpT94jHn7GcD0/krOBjNaMTak899RRuvfVW/OAHPwAAvPDCC/jss8/w8ssv44EHHpjq6nloGXQRMtrFzGikYhGWxBoQa1BBIhahpq0Heypbhwyc2NxlRaRuYmefo5nLny8lkWtgzYEX5X1OjQ/G8boOj4NMe48N35Z5n9lp384CHPnHF6N+pkwuxZzzho7vNpzR9qv8xk7MCdchQqtAfefIA7a2dllwUdCNsPcMH6O+Ka8BICQz1qc6NnX1Yn6U8y6zUirGwF32FFccC5v6W8Mdr+twt8LY6GVMjAN7i3Hwmc9G/VypTILMcxdALPGnS4XIfXC02gVIxWMbu6HTYselxpthGWFgXo9YZsR63d4auyyYH62HCECwWob2QS0pRlu/o31vNndZkebK3crkMqQtTkba4mScf+vQ+rb12iAMs1+MtK/4Us+5EVpkGLVQySTosTqQU9+BPFfiu9vqgNliHzKl/XDarA4khagRoVVAJhFhToQWVaYej5kVz8swYlup51hAFpsD1W09SApRo6CxC6lhGhQ1dSFoULJiTXII2nps+KawCRq5BOekGd2xdMddJkXqwiSkLkzC+pvP9qne01GbZWg3Gu/r2vt+o5CKoVfKkN/Y5e7ObOqxwTRgO74iOwp7K02oHNCqfWAiXSqTInl+ApLnJ2DdD/rHLZlpTMMkGMQiuC8ULXaHuxuTt/3Jl3gONvCYJ5FKkJSdgKTsBJx348yNZVtvfyy9xW+kYw4AJIWoYXMIOFTdhkUxBhyobvPo5nRFdhTyGzudx1W1DJ/lNsDUbfWMpUSCxKw4JGbF4dzvnz7R//KEMbli6e1cYmtJ87DHH1/OgUb6Xh8cy4Q5sUiYE4tzvrdmkv7zwDP1Dt0PvcW12WwZ8/WQ9+/L/liKxWJ36+Ozrp34GcMnysBYeovhifqOYc/VfNk2h93HuzxjGZvmnHX4zGtWTsJ/PTFaB+y3UrEIdocAAUCkVoH2Xtuo52/DGf38sr8skUjkbjF7xndmcCy7Pfdxb/Ec7fgz2vnwaPv4dDFjE2oWiwUHDhzAgw8+6H5OLBbjnHPOwa5du7y+p7e3F729/SurvX3ip73vYx7UdWi0i5nRrEwMgUMQ8HFOHQQBWJEQjGXxwUOmpu6ewql3afobafs4PTkUoRo5rHYHwjRytJqtQy7KT9Q7kz06hRSlLb7PkKgaML26SCSC2qCG1qCGNlgDQ5gehjAd1AY1FCo5RF7G4BiujgeqRt6vem0OHKtrx+JYAzbkjTyOm0gihipEi86a4ad7F4lECIkKgjEuDKHDtPzyVseiJjPWZYRDLAL2u8ai6otjSfPQOJa0mHFuuhESkQj2QQM6DIwlRM4WStogNbRBWhjCdNAb9VDrVVCqFUDUyN2YBtf1YFUbkkPVWJcRDolYhCO1Y//OVBn1IybURCIRgiODEB4XCmNalNck0In6DhQ3d2FdZjgcgoCdZa0eZYy2fkf73hz8PT2SbldCwFs9u612r3X3tZ6dvXZszG+E2WpHpE6Bs9PC0NxtQWOnxV1PXxNqZosdjV0WlLQMP5uTt0QtXGNOLYo2oLjJjIQgFT46UYclsUHu19UyCSJ0SmwuroZdENDea0N+Yycyw7V+xXKm8PY/eVv/OfUdXvebXpsDbd1WrEwKQUFjJ5q6LKO2XIFrHc42w20foWo5Fsc6Z9QTiYB9laZhvwvGEs/ZHktv8bPYBa/HnD6pYRqUNJtR2mLGKXFBiDOoUDFomJLUMA2+KWxCR68NfWNid8/iWHo7R7fYHV6PP76eA430vT4rvy+9bB/e4jqwBdBYroeGfO4sj6XXbdPm8HrM8ef83Os+PstjqXd1j7faHXA4gJ3lLcMeb0YTyPPLmWLw/+QtnqMdf/y5LuvTbXXAIQgQB2iChkCYsQm1pqYm2O12RER4XsRGREQgLy/P63ueeOIJPPLII5NUQ0+DL4IH8nYxszjWgIXRBq/LK6RixAer8Nbhanfm+1BNOy7JisS3pS0ezdAdJ+8kruSDkWZc8TZ7lbeLcoXM2eLJlwvDPgPHbRMEAV2mLnSZulBfPnRfSL1kGU5bnT3k+eHq2Ge4JEFufSfmhGsRF6RCXcfI08JnnJYGmdUGXYgW+mAtwmJDYYwLgzE2BGGxoQiJDIJU5vwafe9oDTq9xMBbHYuau1A0KHHWF0dvB91uqx1ikQgKqXjI6x5j4Amu8ZTazKgvH9p8OvG8xVh15sIhz49U18FJ+oEGf0+9c7QGtmG2qbSlKZBmxUIXrIWuL5axIe54hkQFu2P54fFa56DXXra3gsYuFDQOf3I43Pr15XvTl1kz+/R9pw9Xz5ESWCPVE4DHxWxdRy9q2noQqVO4E2r+fK+PdOwZTW17L1YkSDA/Wo/GLsuQgY7VcglsDofHBVGXa6y02Xjs8fY/Dbf+h9tvvshvwLxIPRZGG6BXStHeY8PeylbUtg/fYnZWxnKYfa2xyzLku7vFbB12f/I3nhM9zMZUGLh9eIsfhjnmwDXeWrhWgd3lrbA5BFSYupEWphmSUMtv6ES7q5VM38fNylh6+acGxtPb8cfXc6CRvtcdgZlgeVoZ7djjbTsd7rzNH7NyuxwmlgPj5e2Y48/5ubd9fHBrotlgYCxbzFZ8mlPv8fpwx/Q+3s57JWLR6OeXgvN6J1CzdE4Hg7cPb/HECMefPv5cl/URBC8DWU6hGZtQG4sHH3wQ9957r/vv9vZ2xMVNzpgEEpEINj9Oig9WtXmdlAAAtHIpxCIRrsiOHvI+lUziccE9nbK3NP1IxtiFb6Be14w4GrkEHb2+JdUc1tEHPe5jt/i+rE/lCQIO17RjcYwBX+SN3O3zof/eA53Ct69J8Thj2RdHtUwyJDGnkkngEASvU8n7E0t/lvWFt++p4dz/77uGdBccjmQc31vDrV9fvjf92R/GU8eR6glXq6esCB20CglEEEEiFnlsE/589njrWdzchflReo/B4fuYLXZIxWIopGL3tqmRO/eX2XjsCcT/1GNzYH+VCfurnLMwzo/S48yUMLx7tNZjwPOBxrsOp6NAHHswhnhyu/SUFqZFi9niHhC6uKkL56QboR50Luntgny8x7zpaCzbpa/nQCN9rwdqf5hOpup/4j7ez5/zc2/7+Kw89ozzf/J23mtQykY9vxSLMKuSaQAgCdC/4891WZ/p9pU5YxNqYWFhkEgkqK/3zITW19cjMtL7IKgKhQIKxdQMgqyRS3yaOckXXRYbHIKAt4/WjNjCCAA0Cv9mcKSTi0Y++mC5o2nvtaGj14bEEDWO1Y7eLBoAVq1fhCvPngtBEFw/ztsNgiA47xALAqRyKWQKGbrlMuSMq4ZDFTV1IStCh5Qw9bDLiETO5JavtHLpkDG9/NHea0Nnrw1JoUPjmBSiRkNnr9c7vqedPQ+XrfqtT7HslctwfMw1HB9fuygCgEYhRYsf02oP5m39+vK9qfGrjuP/bvVWT41cglVJIfiqoBF1Hb0QAJyZMmhacj9j6c84IIPl1HeivqMXdV7GtjBb7ajv6MXiGAP2Vpiglkvcg/pq/ajjTKGVSwH4drLnC4vdgcM1bciKdF5kt5i9J9Rm43G8L/EaSL7EU8tYuolEQHKoGjKxCFcv6L8QFItESAnzPA55+8b053tophhLLH05Bxrte302xlI7Afu4b587C2Pp443dwfw5Pz9p9vExxnIkvpxfTtX+MJEC+T/5cl3WRyOXTLvk5Ixdu3K5HEuWLMHXX3+NSy+9FHDNQPL111/jrrvumurqDRGqkQcsodZjc6DS1I1l8UE4UNWGXpsDSqkY4VrFkGb6oerpNa0sTS+hajkaOsc/uOPeilasSQ6F1S6gtNmMXrsDeoUU8yJ1OFLbPiRplxgbjIz4kcfz6mO1O5AzYLanQBBc41AsTxh+2nSV4AAcDkAsgc1qw1O3voD8fUVIyIpD+uJkpC1x/vRNYx+ilqGm3bemysPZV2nCqqQQdFsdKGsxQyQCMoxaJIWo8WWB964QcVFByEp0jqR/dFsOnvvJy1BqlR51jM+MgUQqgd0h4MShKkx2DzKl4IDE9aF2ux1/ve2fOLEzD/FzYp0D/y9JRvqSZBjC9ACAULXMYwBSf3lbv758byqs/Um83D2F+OvtL0KudE1OsCQF6UuSkTA3FhKpBAalDBLXAKyBrGffYMI9NgcEADEGJaL1ShS4JqrQyCVQuhK9DocDf/vxyzi8+TjiM6PddUxbkowg19h6oWoZhpkbxCcWuwO1HcMnkbaXNmNFYgiuXhiNjh4bSprNSApVe8RyJhAEAS/c+yr2bTyMuIxoj+0yOMI5blyoRoaicQzvI5eIkBWhQ3GLGR09NojFzr97bPYRk/EKy8yKJQC89OB/8e1H+xCTFon0xSnu76LQKOe2HqqRAePs3TWWeM7EWL7227ex5e2diE6J8NguQ6NDIBKJEKr2reXvYHEGFeQSMT7OqYNlQOvnzHAt0kK1o16AKyzWGdeF6c0nPsCm17ciMincfYxMX5qCsJjxxXK0c6DRvtcV1pkXy3ef+gSf/+trRCSEuY+RGUuTYYwLc44vO8ZYjtdMjOVHz32Bj5//AsY4Zyz7juMRCcZxx9Lf8/OBlLaZF8vP//U13vvLJwiLCfE4d4tMCnft44G/Lvbl/FJps824WG56fSve+sOHCI4M8rimiE6JdG6XmsDF0pfrsj4h0zC3IRKEmTs4x1tvvYUbbrgB//jHP3Dqqafi6aefxttvv428vLwhY6t5097eDoPBgLa2Nuj1+gmta259B/YOGohvOMNND33D0jh8fKIOrd1WSMUiLIw2ID5YBYVUjB6rHWUtZhwaMA29YHdA+Hw3Vl68FGmLk2fUTkzjZ7fb8cR1f8W+DYcRGhOCmFTnjDJRKRGISgpHdFokLKFBI46R5Y9wrRzzo/QwapytQDstzovr3IaOIWNavLv+YWiUMpx2wWLMPz0L89fMQVjM8Am2D4/Xjjsh7W2/Oj8zHEatAu8erRlyUlH44W4ce/YTZK3MQFxmDN5/2vtMmmq9CsbYUNz25r04EYDGK9F6JeZH6RGilkEA0NjZi0PV7cPOavPBJY9CDgHLz1+CspxK5OwqGLKMVCaBNliLNVeehsQ7LkSLefwXlf5MY1/6xQEc/ON7mLsiA0nZ8Xj3z594XU6ukiMkMgg/efcXyLH7d2fUl/U72vfmx1f/Hnq5BNmr56KqsAbHtuUO+RyJTAJtkAbLL16KOfde7nfrL1/quTBajwyjFiKRCJWmbkjEInRb7dhXaUJ8kApnpjoTqK31Jlwd5WUKUgAyhRTBEUG4++2fI1c8eScf8yJ1iNIr8dNlD0Bpt2P+6jnIXjMX2WvmIDIxfNoeh7razbg06AavrylUcoREB+P2f9+FAqVmzJ8hFYuwLD4YETqFc7Yrh4AWsxWHatrQ5NqOvM1otfGWZyDt7Eb2mjnIXj0X89fMQVRyxLSNpdVixfnKa72+ptQoEBwRhB+9eBuK9N7HifWVL/Ec7Ku7XoBQ34r5p89FtmvbjEmNnLaxFAQB6+TXwOGl+6pSo4DBqMetf7sVZeFhfpd9dloYeqyOIbNxK6RiXDk/Cl8XNqGuo9frNgkAW372EnrL6jB/TX8s4zKip20sAeBi/fXo7hx640upUcAQpsPNf/kBKmKjxlT2aOdAI32vb//la+jKrfDYx+PnxE7rWF4VeQtMDW1DnleoFdCHanHjH76H2tSEgHzWcOcb3rbNnY+8CdPBIsx3xTJ7zRwkzI2FWOzPDOeT63tJd3gdQ1ihkkMfqsO1j1yNluw0r63IfDHatjncPr7nD++iaccJ5zF89RzMXzMXifPipnUsb5p7Dyrzht6El6vk0Ido8Z0HL0PHsqwxjbU30nnvaOeXB57+CLWbDmHe6jnuWCbNj4dEMn1bAd6+5D4UHSod8rxcKYMuRIsr7r0IljMWDTt28mh8OR/2tm0uijZgfvTE5m38NaMTagDwt7/9DU8++STq6uqwcOFCPPPMM1i2bJlP753MhFpnrw3vH6sd85fhWFRuPY6tv3gZABAeH4YVl5yCVZctw7xVmZBIp+8OTIHR3tKBK8JuGnGZ069bg8R7LhvXwOX+ajhcgi9/+Lchz0cmhSNlQQJi0qIRmx6F2HTn76BwAw7VtOPYOGaYHIuvf/Iiand7n+DEm+wz52HJkzeP+cAyFs25ldhww1/8es+juc8iv2NyW2lsve/fqNxyzOflNSFafGfTY8OOKTURTCV1+PSaP/r1nt8e+QuKeif3ELo6KQTJoc6kTndXDy7WXT/i8mKpBDft/fOQCQUCJUQtg80hoL3HhhC1DGenGrEnpwaPL/kZBjeFNMaGImVhImLS+vfv2PQod0ubqdTbY8GF6utGXEYkFuGHB58edzd5f3TVm/DhpY9BGLQvhEYHI3VREmLTohDjimVMWhTCYkKm/GLH0mvBJYYbYBth/Eu5So5bdv/JPQj2ZOhp7cT7Fz4Cx6CJXUIig5C6OAmxadGubdP5ExYbOuWxtFqsuCXrXtQU1w27THCEAd/76jH3OGiTwdLRjfcueAT2Hs/EZZBRj7QlyYP28WgY46Y+ljarDbcvvg9lJyqHXUYXosXN238/bEJ2QurV3Yv3LngE1kGJPkOYDmlLkp3bpWv/jk2PQnh82JRfhNttdvxkxUMo2F887DIqnQp37v0T6kZo4RzwellseP/CR9Br8hwAXReidcXSc7sMT5gesfz5Wb/F8R3Dn28qVHLcc+hpVI+zF4Q/HDY7PrjkMXQ3eiZNtUEapC9NHnKuHpFgnPJrS7vdjl+ufxwHvzo67DJSuRT3HX92SI+uiSQ4HPjo8sfRWeN580KtVyF9aQri0qMRmx6NmLRIxKRHIzLR6J6ka6rY7Xb89vInsfuTA8MuI5aI8av850edhCvQLsmK9HlM5skyY7t89rnrrrumZRfPwbQKKWKDlKg0Td6XYeF7O92PGyqa8OGzG/DhsxugD9Vh+UVLseKSU7DgjLnQGMZ+x52mL12wFlHJEagtGTrjSp/c7Tk483fXjTj7SqAVvPut1+frShtQVzp0ymS1ToWkZWlY+NgNEE3SKJSW5nbYahohkUlg93Gq69LDpYjbmYuQ0zInvH59hovlSN64/QUsfuIHEEkm5+LG2tYFS1kdpDIJbD7GsqulE7VbjiJ09bwJr1+f1j150AZp0GnyfV944/YXsPTJmyGepBMfoceC//30JdQX16OurBEtta2jvsdhsyPdqMXRCUpIK6USnJYQDJVUjB6bAwVNnSg/UorsVZnI21MI64CkSmNVMxqrhvaZVKoViE6LdJ6Yuy54YtKjEJsWBX2oLiD1tPRa0VDRhPqyBtSXNaKurAH15Y2oK2tEfVkDWmpHb0EuOASkh2k8WoJPNHVrO7JXZSJ3dyGsvf0Jk+aaVjTXtGLPoOUVKjli0qLc8RuY2NCH6gKSuLRa+mLZHz9nLJ2xba5pxWj3ai3dFqSFqXGgevJiqWxuw/xVmcjZVQBLT38sW+pM2Pv5IezFIY/l5UqZM5ZpUR6Jy9j0KBjC9AGLZVNVizt2fdtl3+Pm6pZRZx+et2oOMsK12F0++vdBoMibTJi/MgM5O/PR292ffDI1tmPfF4ex74vDHsvLFDLEpEa6t0vnxWOU+6ZZIGJps9rQWNU87HbZVNU8aiznLEtDplGLHV2BabnvC1lTG7KXpyNnZz56uvqTT21NHdi/8Qj2bzziubxciujUSGcSPdVzuwyOCApILO02+4BYurbNcufv+rJGNFY1e201OVD6kmRkGLWTmlCTNZkw/7Q0HN+R59ESsaOlEwc3HcXBTZ6JFplciqiUCPc+7j72pEcjJDJwsWyq7t/HPWPZgIbK0WOZPD8BGeHaSU2oSZvbkX1KMo7vyIO5vT/51GnqwsGvjuHgV543SaUyCaKSI1z7eP9NnkDeNLPb7WiubnHt3/3bZn15A+rKGtFY2Qy7beTzzIQ5scgM105qQk3S2oF5i5NwrKsHXW39ySdzezcOf3Mch7/xHN1YIpUgKjncuT2mRg7Yx6MRGh0ckJsTdrsdzTWtnnEsa0Cd6/jTUNE0aixj0qKQEa6d1IRapE4x7ZJpmA0t1MZjMluoAUBte8+w4yAFml4pxZpQBXZ/cgDffrgXh74+5vViViwWIW1JMhacMQ8Lz5qHeasyodIoJ6WOFHiCIKA8pwqHNx/Hrk/249BXx4a9sJHKpXh8w0OIPzUdn+YOn3QLJKVUhJK/fIDt7+yCtce/u+mrn7gBCWcvmLC6DbT/qQ+R979tfr/PkBSBC974BcSTkKzqae3EBxc/Cnuv/60SVvz2WiSfv3RC6jXYoec+w4lXv/b7fdqYUFz8zgMQT8IdT0tHNz64+Hewdvl/4r/sgauQdvnyCanXYEf/9SWOvviFX+8JiQrCy6V/x/vHasfUxcFfUrEIV2RHQSmToLe7F3l7i3BsWy6Obc9Bzq4CjwtGX+hCtIhOiYBCrYBEKoFEKnb99nwsloghkTj/FkslkEjEaG/p8EiYjfd0R6qQ4v32/+C9Y7XjGjvPVxKRCJdnR0Etl8DSa0XBviIc3ZaLo9tykLMz32vXtZHogjWISomEUuM9lmLJgL8HxbKjtdOvhNlo0pem4Kmdj+O9ozWwTkIsxSLgsnlR0CqksPRaUXigBMe25eDo9lyc+NbzgtEXGoMa0amRUGmVHrHsj+EwsZSK0Wnq8ithNpIrf3YRfvjH62FzCHjvaC16J6FVrwjAJfMiYVDKYLVYUXiw1L2PH9+R53HB6Au1XoWY1EiodKoBMfS+nw+OZVeb2a+E2UguvvM83PXMzXAIwLtHayasVe9gF82NQIhaDpvVhqJDzlge3Z6DEzvy0NHq381OtU7l3C51Su/xGymW7Wa/EmYjWXfzWfjpP34EQIT3j9dOWqvevu5idpsdRYfLcGxbDo5tz8XxHXlob/Zt0qw+Kq0S0amRUOtV/sVSIoa5s9uvhNlIzrp2Ne579U6IxGJ8eLwOHZPUqve8DCMidUrY7XaUHq3A0b5Ybs+FqdG/GyFKjQLRqZHQGNQ+xXLgsai7s8evhNlIVl+xDL984x5IpBJ8fKIOpgCNbT6ac9LCEGNQwW63o+x4pXsfP7Yt12u36ZEo1a5YBo0cS+c5kedrPV09fiXMRrLsgsV4+L2fQyqT4rPcejQHYCgZX5yZEor44NEnLphsTKhNYkINALaVNKN0EjK5fV+EfbraurDns4PY8eFe7NtwaNiLGolUgsxlqVjoSrDNXZ4OuXL6Df5HTg6HA+U5VTiy5YTzYLc1x6cDnS5Eiye/fhgpCxIBALvLW5HfOPpYWON1ZkoY4oNVAIDGqiY8/aMXceCroz61AlNHBOHCN++DXDuxCd+WvCps+MHTEOwO5wCm0cGISDRCrVdj3wbPFgwyhRTzVs2Bud2MqoJadLWZsejHFyLr+rMmtI4AsP2h11C+6bC7HlKZFD1dvT5d6KpCdbjwf/dDYZjYg5KppA6fX//nIV2shiMSixCXEYOW2lZ0mrow/9bzMP/W8ya0jgCw83dvouTTfYCrhU9EohERieGoKapDdWGtx7IRiUbEpUejpqQedaUNkGlVuPB/90EVoJZUw+mobMKn1z7pVwI1KTseLx75MwDgWG07Dlb7d+I2Fsvig5AZ7j0WDocDzTWtqCqoQVVBLaoLalBVWIvqwlrUljSM6+RuommD1Hi7/l+QyWTIqe/APh/HRB2PpbEGZEV6PzcRBAHNNS2oKqh1/dSguqgW1QW1qCmun7JYyuRSj1aJ3pyyfhEe/eh+SKQSFDR2YtcktKxaGK3HgmjvY7YJgoDm2lZUFzi3xSrXdllVUIva4jqfW9YGWpBRj4hEI8JiQ7Hro30eySKxWIS7X/gRzr/lbPdzxc1dARsTdSTZkTosjg3y+pogCGitN7m3y4H7eE1R3ajbxkQxhOkQkRgOY1wodn96wOOcQyQS4Y6//gCX3rXe/VxZixlbS8YxA4mP5oRrcWq890G4BUGAqaGtf/8urHXGsqAW1UV1Hi1WJ5M+VOc8RsaHYc/nh4bU44dPfh9X/ewi999Vpm58XdQ04fVKN2qwPCHE62uCIMDU2O7av/u3S2dcpy6WuhAtIhONCE8w4sDGI+gxe16b3fjoNbj2l5e7W3dNVsOMlFA1ViV5H9dYEAS0N3e4t8uqglpUFzrjWF1Y69FidTLpgjUITzAiIiEMhzefGHKT5NpfXo4bH73GHcuGjl5syB/aKybQEoJVOCNl+DEunbHsi2Nt/3ZZMHWxVOtViEwKR2RiOI5tz0VHi+f14ZX3XoRb//g9d0u55i4LPsutn/BhrWINSpyVGjblQ4R4w4TaJCfUemx2fHS8bkLvfGWGa7FsmAM0APR297qa6x7F4c3HUXZ8+PEkZAoZslakY+GZ2VhwZhYyTkmBTD79mlqeLDwSaFtP4OjWHLQ1DX/XLTw+DOaObnQOuMupC9bgj18/jNSFSe7nrHYHPj5Rh84JvIuYHKLG6mTvB+iiI6V4/u5/I2dnPuwj7BuplyzDaQ99Z8LqKDgcCCmoQGykARGJRhjjwiBXOLd3h8OBqyNvccc7JCoYj3/+S3dSsu+ErbKwFkcFGewTmIgWN7QirqsLUYlGRCQaPbofvfLw//DfR98btYzE8xZj1aPfm7A6OuwObLz5GTTnVAx5LSQqCK31bRAGXCDKlTL8fuOvkb16jvuEraKgFkftEthUigmrp7ipDXHt7Yh0JdGCjP2x3PTaVvzxxv7x/s678Uzc848fuse2sFqsqC9rRG55C2qCxzfA+kgEhwNf3vYcGg8PHRx2OLHpUXgp52n3CY9DEPB5bsOwk1sEQqROgbXpxjGd7NisNtSVNTovdNwJojpUFdSgsXJ8F7YhkUGISDRCG6RBbUk96ssbYfXjLr9Kp8Q79f+CQuncDgVBwBf5jWjonLiuTEaNHOsywyEeQyztNjvqyhr6T9BdFzxVBbVoqBjfhW1whAERieGITDTCYNSjs7ULFfnVKDlcNuJ3d59FZ2fjsU8ecN+oEwQBmwoaR5xJdrxC1DJckBkB8RiGDLDb7GioaHJf8PQl22oKa1Ff3jSulnpB4QZEJIQ545ng/P6JSDS6L7AH9hb4xdm/xeHNJwBX0v+h//0Uyy/ybGUsCAK+KWpCVdvEdQsLUkpx4dxISMYSS3tfLGv7k5eu7bK+rHFcsexLmEUkGt2x7PtOj0gIg0qrci/70IWPY+/nzptjMoUMD7z+Y6y5cmgr463FTShrnbhuYTqFFBfPjYB0DC3a7XY7Giub3fu3O+FWUIv6soZxtdTrS5hFJhoRkdC3TTp/RyQYodb1x/J3V/0J299zdjyXyiT4+ct34uzrVg8pc0dpM4qbJ64xgUYuwSVZkZCNIZYOhwNNVc0eNyf6ksB1pQ3jal3WlzBzbof9cezbxzX6/puaf7jhWXz1urNnhFgixk//8SOsu2nozdld5S0oaJy4YVpUMjEuyYqCQjrGWFa3uJOW/QmiWtSW1I8vlsGaIfu4e9tMCPMYvujpH/0Dn/3zK8CVML/r2Ztx8R1Db87uq2xFTv3ENSZQSMW4NCvSPTO7P/puQA7dx2vGfQNSG6QZso9HJBjd8dQG9cfy+Xv+jQ+e+dz994/+9H1cee9FQ8o8WN02oWNdyyUiXJLlbLE/HTGhNskJNQCo6+jBpoLGCel+E66V49w0o18H6NaGNhzdcgKHvjmOI1uOo6qgdthllRoF5q3KxMIzs7HwrHlIXZQ45QN6zmb+JtA0BjWy18zBgtOzsPCseUhZkIhXH34L/33MmWDRBWvwx68eRuqipCHvbe6yYGN+w4R0vwlWybAuIxzyUQ7QgiAgf18RXvn1/3B0W47Xi97lv74GKRedGvA6AsDyhGCkG7XDvv7vX72JNx5/H/FzYvB/n/0SkYnhXpdrNVvw6bFaOCag66dBKcW6zHAoh+kKaWpsw63z7kVbUwcu+NE5qC9vwpHNxz3GDOpzyn1XIOPKlQGvIwDs+9P7yH97B+DqOjFvVSbmn56FRWfNQ9qSZPz64j9g7+cHAdcA5U9seAjz18wdUk5bjxUb8hrQOwE3IXQKKdZnhkM1zMlOR2snbpl3L1rrTPjug5d53N0cbCJPzA7+7VPkvPbNkOdDo4Nx1nWrse3tnagv70+URCQY8Vrx34aMs9HRa8OGvHp0WwMfS41cgvWZ4dDIAz+enN1md/7YHXDY7LDbHP3PDXjssDvcf9usdmgMalQX1OC9v36GnJ35IybRxBIx0hYnob2lE7XF/V3g5UoZ3q7/JzQ6z7FGuyw2bMhrmJCuTGqZM5ZaxQTE0t4fs+Fi6Yyj3SOWar0KEQlGdLZ2YscHe/HtB3twdGuO1wv3sJgQnHnNSpga27Hpta3u5+ecloY/fPlrj+QGAJgtdmzIq5+QGzpKqRjrM8OhVwb+RuBoseyP46BY6pRDEmaj2fr2Tjx2zV8QZNTjkY/ux9zT0r0u12O1Y0New4RM9qCQiLEuM3xCxq8ZKZYD9+vBsVRplUMSZqPZ+fE+PHzpH6EL0eK37//C63EHAHptDnyR3wDTBEz2IJOIsC4jHCHqwN94GzaWo3x/KtSKIQmz0RzYdAQPnPcY1HoVfvPOz7DkXO/DcljsDmzMbwjIDOODScUirE03wqgN/I03h8MBm9XuGUv76Pu8XCkbkjAbzbHtufjZGQ9DqVHgoTfvwbILlnhdzmp3YFNBo98zjPtCIhbh3DQjInSTEMsB+/VI+7xMIRuSMBtN/r4i/GTFQ5ArZLjvtR9j9eXeJyu0O5w3dOon4OaYWASck2ZElD7wvWr6YuntGDPSPi+VSxGRYPRImI2m5Gg57jzlfojEYvz85Ttw1ndXeV3O7hDwdVEjatsDH0uRCDgrNQyxBt+/myYbE2pTkFADgOq2bmwubg7oOCxGjRznpBlHTVqMpqm6GYc3n3AOlLj5uNepnPuo9SqkLExE0rx4JM6LR1J2PBKz4vzaWalfd2c3KnKrkbun0O8E2oIzspC8IGFIgrOlrhU/P/O3sNvs+NVb9yJtcfKw5TV09OKrokZY7YHbLoNVMizRyRAd5/+gpGU5lfjPI+9gz+cH3d2URRIxVvzmu0ha7/1kY6xOjQvCnIiRu+0JgoCa4jpEJoaPOJtReW4VfnPDc1j5xI0B7VZpUEpxbrpx1KSFuaMb5nYzwmL6WwRW5lfjP4++i12f7Ed3h6sFg0iE0355FVIvOS1gdQSAY//YAHl1I+a7tsu0xUlDZizqNHXinlW/RlebGQ/85ydYcHrWsOW1mC3YVNAY0Ja9OoUUa9ONoyYturt60NHSifC44Zvsw7Vt7KkwBbzr9JEXv8Cxf30JuLrEJmXHY+0NZ+Ci29a6W/nUlNTihtSfAABCo0Pwn7LnIJV6/79M3VZ8WdAQ0KSaRi7B2vRw6JVTP89Rj7kHX72+HZ/+40uUHqsY8Y64RCbBnFPTcP3DV2LhWdkQi8UwNZpwVcStgGucyTeq/oHgMO/nB209VmwqaAxoUk0tk2BtuhGGaTTobm1JPba/txs7PtiD3N2FXpcJiwnBqsuWYdXlyzBvdSYkEgnsdjtunnMPqovqkJQdjz9veQS6YO83LDp6bfiyoAGdvYGLpVIqxtp0I4InIGkxFRoqGqEP00OpHvlit8tiw5f5jQFNqimkYpybZkSoZpbEsrIJuhDtqElNs8WOTQUNAR1rSS4R4ew0I8InIAE0FZqqm6HWq0dNxPVY7dhU0IiWACYoZWIRzkoL8xjiZiZrrm2FUi0fNXnUa3Pgq8LGgM5GKxWLcGZKGKINsyOWrfUmSOXSYY85fSx2B74ubApoi3OJSIQzUkIRGzR9E0D+MDW2QSwWjzpJlNXuwOaipoC2OBeLgDXJoUiYhuOmDcSE2hQl1ACgsbMX20tbAjLAZEqoGsvig8fU3Hk0taX1OLL5BA5vdibYmmtGH+/EGBfqTLD1JdnmxSF+Tqy7+9zJrqO1ExW51SjPqUJFTiUq8pyPR+uO40sCbTgOh8OnmWFazBZsL20JyF3ZhGAVvrjnnzjw2UGodErc+ofvYe0NZ0Axhi58taX1eOsPH2LrO7vQaTIj++ZzkX3TueMetF4uEWF5QggSQwLzZd3VbsaPlz2Iyvwa6BPDsf5vt0EW7n28GX/EGpRYmRgypqbjgzVUNOLtJz/CN29+i46WTmR9/yzM/9E6SMY7W6XVhhSJA8sXJ/o8fbqv22V7jxXbSloC0mUxRq/EyqSQYVumjZUgCMip78TBatO4WyBbOnuw/6kPULnpEOYsS8eFt6/F6VctHzZW1cW1yN9dhDO+u3LUeHb02rC9pDkgd7gjdQqsSgqZkJZpvnA4HNjz+SF8+epmHNlyAh3NIyc05UoZFp8zH9f+6gpknpLqNcmfs6sA37y5Azc/8V2oNCOfEHdZbNhR2hKQmezCtQqsTgqZkJZp/uib3GbH+3uw/f3dKDlS7nW56JQIrLr8NKy+YhnSl6Z43e6aa1txfHsuTr1gsU/Jix1lzQG5w23UyLEqKXRaJHmnQrfVjp1lLQHp/hmqlmF1cigME9DKbybotdnxbVkrKgMwK2CwSobVySEIVs2OxKS/LDYHdpW3BKQrrUEpxZrk0Alp5TcTWO0O7K5oRUkAutLqFVKsTg5BmGZ2JHn9ZbM7sLfShMKm8Xel1SokWJ0UOmsS5v6yOwTsqwzMzWWNXIJVSSEzImHOhNoUJtTg2okPVrcht2FsG55aJsHyhOBJy4ILgoCqghpnC7bNx3Hi2zyfEmxwdamJSYtCUna8q0VbHJKy4xGZFD4ru432jalVkVOFitwqlOdUoTy3ChU5VWip821Aa41Bjfmnz3Un0JLmx09KrOwOAUdq23G8rh1j+YZQSMU4LT4YiSFqXBZyIzpN/QepIKMeF9+xDhfdsRZBxrGNO9VU3YyPnt+IXVtykHXnhQhJjxlTORWbj2LfH99HSIjG3brSmQCOR0xqpM9JoT6CIOCRK/+Ebz/YC7imOn9qx6MoarfgaG37mJIscokYp8YHITlEHbCBONubO5zJ3Nwq5O8rxqFvjqFHIsHyX30HoXPjx1Rm1Y4T2Pv7dxGkU7pjmDQvHonZ8YhNi/I7lt44BAEn6jpwuKZtTLGUSUQ4JS4IqaGawMWypQMVudWoyHHu4xV5VWhq60bGLefBOH9o12pf1B8oQs/OE7j05jMxf83wLffGwyEIyK3vxKGatjG1lJaKRVgaG4R0Y+Bi6auiw6X49IUvcfCro6gra/QYi88btV6FlZeeiqt/cQkS5sYGvL6CICC/sRMHqtpgG2MsF8cYkBmunbLBdgVBQMGBEux4fw92vL972KEfkrLj3S3RkrLjJySWhU1d2F9lGlNLaYlIhIUxesyN0I1p/LnZRBAEFDebsa+yFZYxxFIsAhZEGTAvUjem8edmE0EQUNpixt5K05iGHxCJgPmRemRH6cc0/txsU9Zixp6K1jG1OhcByIrUYWG0gbEEUGHqxu7yljG1OhcBmBOhxaIYA6Q+3Nic7arburGzrBXmMU5EkxmuxeIYw4Q0bplpatt7sLOsZcxDOaSHabAkLgjyGRJLJtSmOKHWp6PXhoLGThQ2dfl0sA7TyJFp1CIxRD3lB5T2lg6UHa9E6bEKlB2vQOnxCpQdr/R56nSFSo7wBCNCIoMQHGFAULgBwRFB/X+7HgeF66fNhAg2qw0dLZ1oa+pAW1M72ps70d7UjramDjSUN7pbnPkzTbfGoEb8nBgkzIlFUnYC5p8+d9ISaMPpsthQ0NiFgsZOn058glUyZIZrkRSidh9QfnXRE9jz2cEhy8qVMqy76Sz88Mnrx9RirU9rgwnffHUCFd02BGcnQjTKSYGtx4KyjQdR8N5OtORVDbucTCFDZKIRQRHO7TE43IDgyCDn4wiDx/bZ1/LynT9/ghd/8RrgGvTzuX2/R3RKJOBqfVHY1In8xi50+3CwDlJKkRGuQ0qo2ueDs91mR3tLJ9qbO9Det202daCtqQONlU3u7XLYabpFIkQtS0f6FSsRs2ouxKN8rr3XirJNh1Dw7k6vkw/0kcmliEg0IjgiCEERBoRE9McxyB1L59++zCrcbbWjsMm5XfrS3c6glCLDqEVKqMbnLvF2u929j3c0d7j29Q60N7WjsaoZFblVqMitHjE5HnlKGtKvWInYNVmjtqR0WG2wltVjxYJYZM2JmbTESo/VjqKmLuQ3dvp04qNXSJFu1CI1TDOmQYvHoqmmBZ/9YxN2fbIfFblVPk0oYAjT4dwbTsdFt53n3gcnWq/NjqImM/IbO31qea5VSJDhiuVwYyJOJEuPBce/zceeTw9gxwd7hm0hnXFKClZdfhpWXXYqYtOjJ6duNgeKmruQ39DpU9dFjbw/loFueTrTWewOlDR3Ia+hE20+dF1UyyRIN2qQbtQyloNY7Q6UtJiR39CJVh9a8atkYqSHaZFm1ExZK97pymp3oNQVS1+6gSqlYqQZtUgP00x5K97pxuZwoKylG3kNnT614ldIxUgL0yDDqGUsB7E7BJS1OrdLX1rxKyRipIZpkG7UTMhYnTOZ3SGgwuTcLn3pUiuTiJAaqkFGuHbGtYhmQm2aJNT62B0Cms0WNHdZ0Gy2oNfmgENwDhSpV0gRqpEjVC2f9t0YBEFAY1Vzf6LtRAVKj1WgIrd6XNNT64I17gTb4OSbWq+CSCyGWCyCSCyCWCx2/RYBIpHr+ZFft/ba0N7cf+Hc1tSBtmZnUqL/+Q6PFlf+MoTpED83FglzYhE/JxYJc2MRPzcWoVHB03IqYABw9G2XZitazBY01Lchd28R7BYrIsMNOPP8hQhzbZeD/4eNr2zGn256ftiyf/DYd3HtLy8PSD0bmzqwe0c+CgrrYIYIEoUMcAiwdPWgtaAaLXlVaM6pgLUrsINmagxqaIM0aKhodLfoO+f6NchePRfaILXHdicSi9Erk6JXLkePTAq7WAxBJIIYgBwOaAQBGjigAiB2bZ82iw3tzZ1oc22T7a4kbt+22fdcR+vYt0tdsMZjuwxJikBTZy8q60zocgASpRxwCLB29aC1sAbNeVVoPlEBa1dgZ5RT61XuBNvg5JsmSAOxxDOWFpkUPXIZemSyQbEUoBEc0AgOqEQDYmm1D0g4DtrPByTGO1u7xjXr3ECKIA3CsuIRkhmHoJRISFUKSOUSaNQKxMcEY9HSJBi1yklLUHnjEAS0dlvdxx6zxe469gBqmRShGhlC1XIEq2QT/j1VerwCm9/YgUObj6EipxrmDt+6ByVkxeKCW87F6iuXeYwfONmEvliaLWjusqLLYoNDcLb40cglCFXLEaqZnFgOrldFbhUOfHkU+788jKNbc9DbPfSCQSQSYd7qTKy+/DSsvPQUhMcbJ62OgwmCAFO3Fc1mZzy7LDbYHc5YqvtiqZYjWC076VukjUYQBLT12NDcZUHToFiqZBL3+WUIYzkqdyxd5+udFjvsDsEdyxC1HKFq53fmyd66bzSCIKC91+Y+9nT09sdSKZO44xiilk95A4KZoL3HiqYu5/l6R6+tP5ZSCUJcx/FQxtInHb02Zyy7LGgfEEuFVOyOY6iGsfRFZ18szRa09zhjKXLFMsQdS9mMbSnJhNo0S6jNdnabHdVFdc6WbMcqUHaiEmXHK9BU3eIedH62CI0OdibLMp0Js4S5sYifEzPmbo7TSV1ZA65PvhMAsPrK0/Cbt3827LKV+dW4ac49w77+yAf3YcUlpwS8jt2d3dj3xWHs23AIuz7ZP+LkDoOJxCJIpBIIggD7GJt+T1fBEQYkzI1FXKZzm+z7CQo3DHtx32Puxf6Nh7H380PY/el+tNYP08LNC3csHcK4pvmejmSuO7tWiw0Y5Uiq0iqRuigJp1+1HOfeeAbUfsxKN5v1mHuw7d092P3JfhTsL0ZTdTPsPnYDEotFWHj2PJxx9UqsuOQUGIaZPOBk1t7cgYNfHcWBL4/gwKajaKxq9rqcRCrBorPnYfXlp2H5xUsRHDH+cR+JiIiIZjsm1JhQmza6u3pgqm9DS50JrfUmtNa3uf5uRWtDG1rr29Dqem2qkm+6YA30YXoYwnTQh+qgD9PBEKrzeC44MgjxmTGzeqZTq8WK85XXAgDmnJaGZ3Y+PuyygiDgCuNN6GjxHCdQLBXjvn/fhbOvWz3h9RUEAWUnKrF/4xHs++IQjm7N8Su5IxKJoAvRICIhHNGpkQiNCoLVYoepwYSWOhNKj1fC7GMX54mgDdJAH6rt3w7DdDCE6qEP1bn/Do4IQlxG9Kiz9IxGEARU5FXjwMYj2LfxEA5/cxw2P5KOIhGgDdYiItGI6OQIhMWGwmaxufd5548J5vbxD1o8FhqD2hUzPfShWhjC9LDb7KivaEJjRRNMDW2w9IzeylYqlyI+MwbLLlyMC3947pS28plOig6X4ps3duDo1hOozK/xez0HRxqw7PwlWLp2AZaet2DU2dBONjarDbm7C7F/42Ec2HQEBftLhm1pGRodjCVrF2DJuQtwyrqFo86GRkRERESemFBjQm1G6u7s9rj4bq1zJtkEQYDDIUBwCHA4HBAGPhb6HgsQXK+5HwvO2eIkUgkMA5MSYXro+5JnIdqADKw+W1wVeQtMDW0wxobijYoXRlz2oQsfx97PDw15/k/f/BYLzpiYQddH0mPuxbFtOdj3xWHs//IwKvNq/C5DLBHDYNRDH6xFea5zLDa5UoZHProfap3KnRzu7ugesl3aLDZ89NwXHknGZRcuQeLc2P7tUuhfXiIRD03kuv7WhWghHe/snOPQ292LY9vzsH+jM5blJ4Yfl244YolzOu6Y1EhknJKCJectwJzlGehq7fJIpJvbh8aybx93Pu/wvo8PiqUuVOexn/clHhVaJXJ3FeDgpqMo2FeMqqIatNa1wWEfvcWUxqBGXGY0Fp2ZjTOuWYHk+YljjOjsYLPZcGxbLg5sOor8vUWoKqxFS22rT7EcSKaQYuFZ2Vi6dgGWrF2A+MzJG19upqgprsP+jUdwYNMRHP7m+LBdZOVKGeafPhdLzl2ApectnJAJGoiIiIhOJkyoMaFGNCZ3LL0PhQdLIZaI8Zn5vyMmdd7508d48b7XAQARCUbUlzcCAMLjw/DikT9NeSuThopG7N94BPu/PIyDXx3zeUINb5QaJcLjQpE03zmxxPKLlsIY6zme038few+v/OZ/Hs9lr5mDp7b8bsyfO100VjXjwJdHsG/jYRz66ui4xnVTahQIiwlF0vx4LFgzF8svXhqwll6lxyuw9/ODOLEzHxU5VWiqaUWv2beWrxKpBMa4UGSckorlFy/FyktPgVI9/af1nijluVXOWH6bj/KcynF34U9ZmIgl5zoTaPNWZbon/SAnU2Mbju/Ic3fjrC2pH3bZpOx4dzJy3qrMcU0AQ0RERESemFBjQo1oTB79zlPY9s4uAMDLuU8jLiNm2GV7zL145VdvwmA04LJ7zsdD5z+Oo1tzAADnfv903PfKXZNW79HYbXbk7nF1mfryCPL3FY97cHqJVAxdiBah0SEIjgjCwa+PwuFlnKh/5/110mbRmwx2ux35+4pxwJWszNtTCIdjfLEUS/piGYzo5EgkZcch87Q0ZK3IhEav9ljWZrOh5HAZ8vYWIW9vEUqOlqO+vBFdJrNf61QbpEH83BgsPDMbZ127CglzYsf1P8xEDocDJUfLkbOrAAX7i1F8uAz15Y3oNHVBGOc6DY4wuLseLj4nGyGRwQGr90zncDhQmVeNEzsLcGJnHnJ25qOqoHbY5YOMeiw+d74zlufOR1h0yKTWl4iIiOhkwoQaE2pEY/Lqw2/hP4++CwD47fu/wMpLT/X5vfXljfjh/J+5uyb95p2fYfUVp01YXcejb1Dv/RuP4Oi2nBFbg4xXVHI4Vl+5HBlLU5C9Zg6Cw2fXwOAdrZ04+NUx7N94GEe35aCmqC6wHyCCc3Y6kcjdDdQfEpmzy3dMaiTSlqRg8TnZWHTWPMiV8sDWc5pqqGjEiV0FKDxQgsq8atSVNaC1vg1dbWbYLLaAfY5MLsW81XNcXQ8XICk7HuIZOrNToHV39aBgXzFO7MzHiZ15yN1VMGIrT6lMgqyVme5WaCkLExlLIiIioknChBoTakRjsvl/3+Lxa58GANz0f9fiuw9e5tf7N722FX+88W8AAH2oDi8e/TNCo6Z/y5Tm2lZsfXsnXvzFaz7PRjhWIrEICpUcKq0S2iANDEY9QqNDEB4fhuiUSMRlRCNhXhyCZujshq31Jhz/Nh8nvs3DiW/zUHiwdNJmAhVLxFBpVQiLDUHa4iQsv2QpslfNviQmAJg7u1GVV43qwjrUlNajsaIJzTWtaK03obmmFR2tnejttow6U+lYyRQypC9NRtbyDCw4cx6y18yBSnPydpEdqLGqGTk783H82zzk7CpA8eGyEfcBmVyKtCXJmLs8AwvOyMKCM+ZCxRljiYiIiKbE1I1kTUQzWvyc/i6eFXn+D0R/zvVrsOuTfdj+3h60N3fgz7f8Hf/36YPTfpDs4AgDtr69051MO//Wc3DGd1bg+I48nNiZj9xdBcMOCu4vwSGgp6sXPV29aK1vQ2X+8JMnSGQSKFRyaAxq6IK1UGmVUOlV0OjV0BjU0AZroA/RQheihcFoQHC4HoZwPUKjggM+/pfD4YC53Yy2xg60t3Sgo7UTXa1mdLR2orPNDHN7N8xtZudMvg1taG/uQGdbF2RKKYRuwe+B68dUR7sDXW1d6GrrQvmJSnz1+jb3a32xVOvV0AVroNapoNKroNapoA3SQBusgS5I45wcwmhAUJgOQZGGiY1lcwfamwbE0tSFTlOXO5amxna01pnQ3tKBTpMZPZ096O2xwO7HDKwjEUvEkEjFcNiFUZOeQeEGZK3MQNaKTGStSEfq4mSOg+bqTl5ytBwnvs3HiV35yNmZj4aKphHfE2TUY+6KDGStyMDcFRlIX5J80rSYJCIiIprumFAjojGJTY+CSCSCIAiozKv2+/0ikQh3//2HOL4jD631bdi34RA+e/ErXPijcyekvoGy8d+bkbOrAAAQlxGNO56+EQqVAovOygZc44aVHqtwJ9hO7MhDY1XzyIWKnJMZ6ILUkCnk6OnqQW/GfNoAADDCSURBVHdHD3q6e30en8putcNs7Ya5vRuNlaN8nrcqiEQQiUWux65KDf4lGvi661kRAEGA3eYYUzfLQBOJRDCE6aAJ0jgTkmZXLM1ji2XTaOtumDqMJ5YOuwMO++TGUiwRQ6lRQq1TQqFWQCwWobfbgpa6VtgsdledhiY6RSIREufFuRM+WSsyEJUcMe0T4xOt09SFkqPlKDlSjpKj5Sg9Vo7SYxXOloAjSMzqj+XcFRmISY086WNJRERENF2xyye7fBKN2fUpd6KutAFqnQofml4d04Xfns8P4lcXPgEA0BjUeKXgGQQZDRNQ2/Fra2rHDzLvRkdLJwDgya8fxsIz5436voaKRhzfkefu3lhytNynzwuLCUFSdjzCYkOh1CohEgR0tXejuaYFrfXOll3m9m70dlsCOsbVVJPIJFAo5VBqldAGqaEP0SE4MghhMcFQuyYeaGtsR+6eQpQeLfdpooPQ6GBnLGNcsQRg7jg5YilXypzdhg0a6EN1MBj1UGjkEEEEu92BjtYOVJyoHj3xC0ClVWLOaWmYu9yV9Dktbcpn6Z1KdrsdNUV17sRZ389oLc8AQKlWIHNZKrJWZGLuigzMOS0NumDtpNSbiIiIiMaPCTUm1IjG7KELH8fezw8BAN6oeAHG2NAxlfPkTc/hy1e2AADW33w27v3nbQGtZ6A8desL2PDS1wCAs65dhQf/c/eYyjn0zTHcd87vAADRqZFQqhUoz6nyafwwlVaJ5AUJSJ6fiNSFiUhZmIjEeXFQqBRob+lAeU4Vqgpq0dbQ5uwW2OrqGtjRje72bnR39aC3qxe9PVZYeyyw9tpgs9pgtzngcLhaIA04KgiefwxLJBZBLBa5ugZKIJFJIJVJIZNLIVPIIFfKIFfJoVDJodQooFQrERSuR1hcKKKTIhCTFomY9OghM3WOpqvdjKJDpSg+XIbiI2UoPlyG8hOVsPnQ1VGpUSB5fgJSFiQieYEzlknZ8VCqPWPZ3tSO9pZOdLZ2oavNjK52M7rbu9FjdnbH7e22wNprhbXXCpslALEUiSCWDIilVAKpfFAslXIo1M5YKlQKBIXrYYwPQ2RiOGLSohCX4Yxle0sHSo9WoPhIGUqPlqP4aDnKT1TC0mMdNT4ikQgxaZFIW5Ls7L65MgNJ8+IhkUpGfe9s1NHa6Wxt1hfPY+UoO145aqszuGIZlRKB9AGxTJ6fcNLGkoiIiGg2YEKNCTWiMfvHz1/Du099AgD4/cZfYcm5C8ZUTmu9CTdm/ATm9m6IRCI8u+cJZCxNCXBtxydndwHuXvEQAECtV+Hl3L+OeRKFja9sxp9ueh4A8KM/fR9X3nsRLL1WVORWORNDA5JDXW3mUcsTiUQwxoUiOjUSMSmRiE51/sSkRiIqxZmwO5lYLVZU5Faj+HAZSo70x3Kk2RIHMsaGuuMXnRo1IJYR03IwfbvNjobKJtQW16O2pB41xfUoO1GBkiPlaKpu8akMjUGN5PkJ/T8LEpA4L/6k23bsdjsaK5tRW1KP2uJ61BTXoTynCsVHynzuSq3Wq5A8PwFJ2QlIWZCApPkJSJoXx8kDiIiIiGYZjqFGRGM2cGKCyryaMSfUgiOCcP1vrsI/fv4aBEHA83e/jL9sfxRisTiAtR07u82OZ+74p/vvG393zbhmJC07Xul+nJAVBwCQK2RIXZiE1IVJ7tcEQUB9eaM7yVZy1Pm7rqzRozxBENBQ0YSGiiYc/ub4kM8LiwlxJtlS+pJEkYhJi0J0SsSsvMiXyWVIWZCIlAWJ7ucEQUBjZROKBiUs60obhry/saoZjVXNOLLlxJDXQqODByQuowYk3iKh1k1cLLs7u1HjSpj1JXpqSxtQW1yH+vImn2dH7Wt1lrwgEcnZCa7WjgkIjw87acbq6u7qQZ0r8eiOaUkdaorr0VDe6FPrRgxodZbiajHal4iMSDCeNLEkIiIiOpkxoUZEYxY/J9b9uCLX/5k+B7rkrnX4/F9fozKvGjm7CvD1f7fj3OtPD0Atx+/j5zei+HAZACBlYSIuvuO8cZVXntOfUEuaFzfsciKRCJGJ4YhMDMfKS091P9/X9az4cBmKDpeiMrca1UV17rHdBmuqbkFTdQuObs0Z8lpIZJC7RVt0ivMnJCoIIZFBCIkKhlqnmhXJAZFIhPB4I8LjjVhx8Snu57vaulBytMKVtCxFWU4Vaorq0N7c4bWc5ppWNNe04ti23CGvBUcY+lsHpkQhKjkcodEh7niq9ephYykIAlrqTKgtrhuQ5HElzkoaYGpo8/t/PllbnQmCgNZ6kzOOfa32SpxxrC2uQ2u9/7FkqzMiIiIiGoxdPtnlk2jMOk1duCzkRgBA5qmpeHb3E+Mqb/+XR/DguscAV6Ln3/nPTGirH18017bipjl3w9zeDQD467ePYe7yjHGVeW3CbWisbIbGoMYHLa8ELGHV3tKB2uJ6VBfWorqoDjXFdagpqkN1YS3amrwniEajVCsQHBmE4MgghEYFITjCmWjrS7j1/Q4y6mfVeFAdrZ3OFkyu+NUU1zljWlQ3puQWAEjlUqi0SsiVMnesbFYbes0WdHf09I+75geVVomolAhEJUcgOjkCUSmRiEqOQFxG9KxqdWa329He1IHW+jaYGtrQWt+G1nqT83eDCaaGdphcf5sa2nxuZTaQUqNAdEokopLDEZXsjGNUSgRi06MQmRg+a2JJRERERIHBFmpENGbaIA3i58SgIrcahQdL0WPuHVfrl6VrF2DFJadg50f70FJnwn8few+3/uF7Aa2zv178xWvuZNr6m88edzKtq93sHospISsuoBfp+hAd9CE6ZJySOuS1TlNXf4KtqA7VRbWocSWIRmqx02PudbeWGolYLILBqHcl3oKdSbhwA1Q6FVRaJdQ6FVQ6FdQ6JVRapeuxCkqtEmqdEnKlfFolLHTBWmQs1SJlQQJ6unrR09Xj/G3uhamhDdWFdagrrUddaQPqK5rQUmtCR0vHiIP92yy2YVsRjkShkkMXooXBqEdIZDDCYkMQkWBEdEoEwmJCodJ5xne6xbKP3WZHT1cPurt6PWPqetxpMsNUb3ImzAYkzUwN7WhvavdpNtfRhEQFIyo53Jk4S3ImzKJdCcmgcMO0jBsRERERTU9MqBHRuGStyERFbjXsNjvy9xVhwelZ4yrvtj/fgH1fHIa114r3n/4U628+C7Hp0QGrrz/y9hbimzd2AAD0oTrc8vvrxl1m4YES9+OkrOG7ewaaNkiD9CUpSF8ydLIHc0e3swVWYR0ayhvRUmdCS12r83dtK1rrTKMO6O9wCK4ESBtKjpT7XT+xRDwg8eaZdFNplVCoXEkikQjOX4Meo+8552+R6zUMeNy3nN3ucCXHetBrtgxJ7Ax8PJaWToHW221Br6vbbjHKRl1+YCz7EpYDE5uBjKXDIThjZvYev77HveZeWC22CY2TWCJGkFGPoAgDQqNDnC32XK3MolyPZ3t3VyIiIiKaPEyoEdG4ZK3MwIaXvgYAHN+RN+6EWlRyBK762UV44/H3YbPa8Y9fvIZHP3ogQLX1zyu/ecv9+MbffQf6UN24yxw40H3WqsxxlxcIap1qyIQIg1l6LGitb3Mn2QYm25rrnL9bak1oqTP5PED+QA67A11tZp9mNZ3uZAoZgiMMrp8gBIUbEBTe/7cuWAOxVAy7zYHe7l601rU54+dKZLbWmdDsiu1YEnqzMZbu+IUbEBQR5Po9MMZ66EN102YiEyIiIiKa/ZhQI6JxmTcgKXRiZ35Ayrzmwcvw5atb0FTdgt2fHEDhwRKkLU4OSNm+Or4jFwe+PAIAiEw0Yt3NZwWk3KPb+icGWHD63ICUORnkSjkiEoyISDCOuJzD4UBnaxeaa1vR3tQBc0c3uju60d3ZA3NHD7o7umHu6EZPZw/Mnd3o7uhxvdbteq0HPZ3O5yZ7iE+pTAKFWgGlRgGlRun6Peix2vXYtZxar3Ynz4IighAcYQjYRA6CIKCjpRMtdSa0NbY7Y9TZ4xEnd9w6+17r6Y9vR398JzuWEqnEe/w0SijVctdvz9f7YtmffDSMOJEDEREREdFUYkKNiMYlOiUSQeEGmBrakLMzHw6HY9ytRFQaJb774OV49q5/AQD++3/v4bfv/SJANfbNwNZp3/vNVZDJZeMu09JjQe7uQsDVEi88fuTk1EwkFouhD9WNuzWfw+FAr7nXnYizdFsgCIIzMSTA/didJxrwt3OZoY/hSlKJxSKvCTOpbHodEkUiUUBiKQgCesy97kTceGPpWsRrLPsSkoHYX4iIiIiIprPpdfVARDOOSCTCvFWZ2PH+HnS1mVF+ohJJ2QnjLnfdTWfiv//3HlpqW/HtB3tRerwCSfPiA1Ln0Rz65pi7a2ZsehTO+d6agJSbu7sQ1l7noPUzqXXaVBCLxVBpVVBpVQiJnOrazGwikQgqjRIqjZKxJCIiIiIKEA42QkTjlrWif+bL498GptunXCnH1T+/2P33G4+/H5ByRyMIAl759f/cf1//m6sgkUoCUvbA8dPmnzG+seaIiIiIiIho6jChRkTjlrVywDhq3+YFrNzzf3gODGHO7m5b39qJyvzqgJU9nH1fHEbOrgIAQMLcWJz+nRUBK3umjp9GREREREREnphQI6JxS12UCIVKDgQ4oabSKHHlvRcBrpZjb/7+g4CV7Y0gCHjlN/2t02545DuQSALTOs3SY3En6iKTwmfl+GlEREREREQnCybUiGjcZHIZMpelAQDqyhpRXVQbsLIvuuM86II1AICv/7MdtaX1ASt7sJ0f7UPhgRIAQMrCRKy87NSAlZ27Z+D4aezuSURERERENJMxoUZEAXHKukXuxzs/2h+wcjV6NS77yQUAAIfdgbd+/2HAyh5IEAT89//ec/99wyPfGfdspQMd2dw/ftoCjp9GREREREQ0ozGhRkQBsfLSU9yPd360N6BlX/qT9VDrVACAja9sRlN1c0DLh6sFWV/rtNRFSTjtwiUBLf/bATFZcCYTakRERERERDMZE2pEFBCx6dGIy4wBAOTszEdrQ1vAytYFa3HxHecBAGxWO754eXPAyu7z8fNfuB9f+uP1EIlEASu7qrAWJUfKAQCZp6YiPC4sYGUTERERERHR5GNCjYgCZuUlzlZqDoeAPZ8eCGjZF9621p3k+uLlb+BwOAJWdmu9Cdve3gUA0IfqcEYAZ/YEgG3v7HI/XnPl8oCWTURERERERJOPCTUiCpjllwzo9vnxvoCWHZFgxNLzFgAA6ssbcWDT0YCV/fm/vobVYgMArLvpLChUioCVDQBb39npfrzmKibUiIiIiIiIZjom1IgoYDJPTUVIZBAA4OCmo+gx9wa0/PW3nON+vOFfXwWkTLvNjs/+sQkAIBKJcNHtawNSbp/B3T0jEowBLZ+IiIiIiIgmHxNqRBQwYrEYyy9aCgDo7bbgwJdHAlr+8ouWIDjCALhmEm2tN427zJ0f70djlXOSg9MuWoLIxPBxlzkQu3sSERERERHNPkyoEVFATWS3T6lMirU3nAG4WpZ9+erWcZf58XMb3I8vvmPduMsbjN09iYiIiIiIZh8m1IgooBadNQ8qrRIAsPuTA7BZbQEtf/0tZ7sfb3jpawiCMOayynMqcXjzCQBAbHoUFp+THZA69mF3TyIiIiIiotmJCTUiCii5Uo5Tz18EAGhv7sDezw8FtPyY1CgsPGseAKC6sBZHt+aMuayPn9/ofnzxHesgFgf2K5HdPYmIiIiIiGYnJtSIKODW3nCm+/HnAZo8YKDzB0xOMNby7Ta7O+GlUMmx9obTA1Y/ABAEAV+93t8lld09iYiIiIiIZg8m1Igo4JasnY/w+DAAwL4Nh9yD/gfKystOhT5UBwDY8f4edHf1+F3Gka05MDW2AwBOvWAxNAZNQOt46OtjqMyvAQDMP30uu3sSERERERHNIkyoEVHASSQSrPvBWQAAh0PAFy9/E9Dy5QoZVl9xGgDA0mMd02yiA7tjnj4B3TE/eu4L9+NL7gz8ZAdEREREREQ0dZhQI6IJcd5NZ0IsFgEAvnj5G9jt9oCWv2Ics4nabXZ8+8EewNXd89QLFge0bnVlDdj9yX4AQFhMiEddiYiIiIiIaOZjQo2IJkR4XBhOWe+cnKChogkHNx0NaPkLB8wmuufTg7DbfE/YDe7uqdIoA1q3T1/4Eg6Hc/bRC3+0FlKZNKDlExERERER0dRiQo2IJozn5AFfB7RsuULmTti1N3fg+Ld5Pr93Irt7Wnos2PCSs4urVCbB+beeHdDyiYiIiIiIaOoxoUZEE2bZBYsREhUMANj18X601psCWv6Ki/u7Uu76yLdunxPd3XPLWzvR3twBuGb2DI4ICmj5RERERERENPWYUCOiCSORSnDejWcArkTWxle2BLT8U89fBIlUAgD49qN9EARh1PdMZHdPQRDw4d82uP/mZARERERERESzExNqRDSh1t/c3+Xx4+e+gNViDVjZumAt5p8+FwBQV9qAsuMVo75nIrt75u0tQuGBEgBA2uIkzDktPaDlExERERER0fTAhBoRTaio5AicdtESAEBjVTM2vbo1oOUPnEHz2w9H7vYpCAJ2uWbfnIjunu8//an78cV3rodIJApo+URERERERDQ9MKFGRBPuuoeucD9+8/cf+DUj52hWXLzU/XjnR3tHXLaqoAYtta0AgPlnZAW0u2fp8QpsfdvZ+s0QpsOZ16wIWNlEREREREQ0vTChRkQTLvPUNCxZuwBwdc385o0dASs7PN6IlIWJAIDCg6Vob+kYdtkjW3LcjxecnhWwOgDAa7992z2G23fuvwwKlSKg5RMREREREdH0wYQaEU2K7/1qQCu1J96H3R64VmoDk2M5OwuGXe7I1hP97zljbsA+v+hQKXa875w5NCQyCBfdvjZgZRMREREREdH0w4QaEU2KeavmuCcQqMyvwfZ3dwew7Ez34+M7cr0uIwgCjm5xJtRUWiXSFicH7PNfffgt9+Pv/vJyKNVsnUZERERERDSbMaFGRJPmul9d6X783/97Dw6HIyDlZq3McD8+sTPf6zJVBTVoqTMBAOatngOJVBKQz87ZXYDdnx4AABjjQnH+recEpFwiIiIiIiKavphQI6JJs+iseZhzWhoAoOx4JXZ9vD8g5YZEBiM6JQIAkL+vGJZe65Bljm6dmPHTBrZOu+6hKyBXyAJWNhEREREREU1PTKgR0aQRiUSerdQee9c9kP94Za10dvu09lpReKBkyOsTMX7ase25OLjpKAAgMikc5/3gzICUS0RERERERNMbE2pENKlOXb8IaYuTANesnFve2hmQcrNWDOj2+W2ex2uCILhn+AzU+GmCIOCV3/zP/ff3fn0lpDLpuMslIiIiIiKi6Y8JNSKaVCKRCDf87hr33y/+4jV0d/WMu9yBExMMHketurAWLbWt7uUCMX7a/o2H3d1IY9OjcM731oy7TCIiIiIiIpoZmFAjokm37PzFWHbBYgBAU3UL/vfEB+MuMy4zBrpgDeBqoTawK2nunkL34+zV4+/uaemx4G8/edn99/UPXx2wSQ6IiIiIiIho+mNCjYimxG1P3QipzJmEeudPH6OmuG5c5YnFYvc4am1NHagqqHG/Vn6i0v04ZWHiuD4HAN7640eoKXLWN3v1HJx5zcpxl0lEREREREQzBxNqRDQlYtOicMVPLwQAWC02/OPnr427zIHjqOXtLXI/Ls+pcj9OzIod12fUFNfhTVeLOrFEjB8/dwtEItG4yiQiIiIiIqKZhQk1Ipoy1z50BUKiggEAOz/ah/1fHhlXeUnZ8e7HFbnV7sdlxysAAGqdCsa4sDGXLwgC/vbjl2DttQIArrjnAiTNix/1fURERERERDS7MKFGRFNGrVPh1j98z/338/f8Gzarbczlxc/pb31Wme9MqHV3dqOurBEAkJAVO67WZDs+2It9XxwGAITFhOD6h68ac1lEREREREQ0czGhRkRT6uzrVmPu8nQAQGVeNT762xdjLis8IQxypQwY0EJtYEu1hLlxYy67u7Mbf//pv91/3/H0D6DSqsZcHhEREREREc1cTKgR0ZQSiUS485mb3C3HXnvkbTRVN4+pLIlEgtj0aABATVEdbFYbygZMSJCYNfaE2n8efQ+Nlc56LT1vAVZdvmzMZREREREREdHMxoQaEU259CUpWH/zWQAAc3s3nrzpeTgcjjGVFT8nBgBgt9lRXVSHsuP9CbWEMSbUyk5U4r2/fAoAkClkuOvZmzkRARERERER0UmMCTUimhZu/v11CIsJAQAc3HQUHz+/cUzlxGf2j6P2m4t/j02vb3X/nbenAMd35EIQBJ/Ls9vseOrWv8NuswMArrn/UsSkRo2pbkRERERERDQ7MKFGRNOCPkSHn798h/vvf973Oiryqkd8jzdxmdHuxzXF9WhrbHf//erDb+Ona36DXR/v97m8N/7vfeTuLgQARKdE4Dv3X+J3nYiIiIiIiGh2YUKNiKaNJecuwKV3rQcAWHqs+MP3n/V71s+BM30Ox9Jj8amsnF35+M9j7wIAxBIx7n/9J1CoFH7Vh4iIiIiIiGYfJtSIaFq5+ffXIS7TOQ5awf5i/Pex9/x6f2z6yN0xk+cn+DShgLmjG7+//lk47M6x3L73qysx97R0v+pCREREREREsxMTakQ0rSjVCtz/2o8hkUoAAG88/j4Ofn0Mf7zxb7g2/jbs+mTk7ppypRxRyRFeXxOJRLj7hR9CKpOOWo/n7n4ZtSX1AIC5y9Nx7UOXj+n/ISIiIiIiotmHCTUimnYylqbg+t9cBQBw2B146ILHsem1rWisasbrv3tn1PfHpEV6ff6CH57jUyuzbe/uwpevbAEAqHUqPPD6T9wJPiIiIiIiIiIm1IhoWrrmgUsRP8fZ9dNm6R9HreRIOXrMvSO+NywmdMhzGoMaNz1+7aif21jVjKd/9A/333c+c9OwLd6IiIiIiIjo5MSEGhFNS5/8/UtUFdQOed5us6Ngf/GI7zXGDk2oXfvLy6EL1o74PofDgT/e+Dd0tHYBAE6/ejnO/f7pftediIiIiIiIZjcm1Iho2ik6VIrn7n7ZPSHAYDm7CkZ8f9iAhFp4fBjOvm41rvr5xaN+7ntPfYrD3xwHXEm5u//+Q4hEIr/rT0RERERERLPb6CNzExFNMqVWCblSBkuP1evrR7eewDX3X+rxnNXuQHlrNxq7etGRlYRrtj4BqUoBQRCgkIrxZUEjQtRyROoUiDEoIR6UKDu2PRcv/fINwDV5wX2v3jVqizYiIiIiIiI6OYkEQRCmuhJTpb29HQaDAW1tbdDr9VNdHSIaoORoOd7644fY8tbOIS3VZAopPjO/AZFIhPYeK3LqO1HS3AWrw7evM41cgrQwDTLDdVBIxWiqacEdS+5Da30bAOCa+y/FzU9cNyH/FxEREREREc18TKgxoUY0rTVUNOL9v36Oz/75FXo6e9zPf9j2Kkq7bDhU3QYf82hDqGRinBKjx9OX/N7djXTR2dl4YsNDnNWTiIiIiIiIhsUx1IhoWguPN+K2P9+A/1W+gEt/vB4agxrLLj8NW6s6cKBq7Mk0AOi2OrCtzATdmQshkogRHh+GX75xN5NpRERERERENCK2UGMLNaIZxWyxY2NBA9p7bAEtt2r7CVy+Og1zlqYEtFwiIiIiIiKafTgpARHNGFa7A18VNgY8mQYAsauz0BSqhiAInNmTiIiIiIiIRsQun0Q0YxyoakNrt/eZPwOhpNmM0hbzhJVPREREREREswMTakQ0I9S29yC/sXPCP2dvhQndVvuEfw4RERERERHNXOzySUTTniAI2F9l8nhOJALWZYQjSCnDzvIWlLd2QykV48zUMDgEASKIsLu8FaYe/1q09dodOFrbjmXxwQH+L4iIiIiIiGi2YAs1Ipr2mrosaDF7JsYEAdhS3ISchg73c702BzbkNWBjfiMO1bRhXpRuTJ9X3NwFq90x7noTERERERHR7MSEGhFNe8N19ey2eia9Bk5ZLJeI0Woe23hrVrvAsdSIiIiIiIhoWDM2ofZ///d/WLFiBdRqNYKCgqa6OkQ0gWrae3xe1qCUYn1mOJbFB6G+s9f9/HkZRly/JBbBKpn7OZlEhBuWxkEjl4zrM4mIiIiIiOjkMmMTahaLBVdddRVuv/32qa4KEU0gs8U+pCXaSNp6bNiQ14CvC5twapxnst1ic2BxjMGncprNFr/rSkRERERERCeHGTspwSOPPAIAeOWVV6a6KkQ0gVr8SGyJRYDD1e/TYnfA5hA8Xs9v7MSccB0itAqP1mvedPbaYbE5IJfO2PsORERERERENEFmbEJtLHp7e9Hb238R3d7ePqX1IaLR9diGb512enIoQjVyWO0OhGnkqGjtxuJYAwTBOQvovkrPmUF7bQ4cq2vH4lgDNuQ1+PTZTKgRERERERHRYCdVQu2JJ55wt2wjoplBEIRhX9ta0jzkuY35jSOWl1vfiTnhWsQFqVDXMfI4aSN9NhEREREREZ28plXTiwceeAAikWjEn7y8vDGX/+CDD6Ktrc39U1lZGdD6E1HgScSigJZnFwQcrmnH4hgDxBi57EB/NhEREREREc0O06qF2s9+9jPceOONIy6TnJw85vIVCgUUCsWY309Ek0+vDPzXVFFTF7IidEgJUw+7jEQsgtrL7J9ERERERERE0yqhZjQaYTQap7oaRDSNBKvkEImAQPa+FAAcrG7D8oTgYZcJUckgFrGFGhEREREREQ01rRJq/qioqEBLSwsqKipgt9tx+PBhAEBqaiq0Wu1UV4+IAkQiFiFEJUOz2RrQcitM3ZgXqYNS5r0VWphGHtDPIyIiIiIiotlDJMzQUbdvvPFGvPrqq0Oe37x5M8444wyfymhvb4fBYEBbWxv0ev0E1JKIAiGnvmPIjJ0T7YI5EUyqERERERERkVczNqEWCEyoEc0MvTYH3jlaA7tjcr6uQtVyXDg3YlI+i4iIiIiIiGaeaTXLJxGRNwqpGGlhmkn7vKxI3aR9FhEREREREc08TKgR0YywKMYAzSTMuhlrUCIxWDXhn0NEREREREQzFxNqRDQjyCViLE8ImeDPEGF5QghEnN2TiIiIiIiIRsCEGhHNGDEGJZbEGiakbLEIOCMlDOpJaAVHREREREREM5t0qitAROSPeZF6CAJwsLotYGVKxSKckRKGKL0yYGUSERERERHR7MWEGhHNONlRehiUUuwqb0WPzTGusoJVMqxKCkGIWh6w+hEREREREdHsxoQaEc1I8cFqhGsV2FdpQkmL2e/3S8UiZEXqkB2ph0TMMdOIiIiIiIjIdyJBEISprsRUaW9vh8FgQFtbG/R6/VRXh4jGqLPXhoLGThQ1d6HbOnKLNYNSigyjFimhGsilHEaSiIiIiIiI/MeEGhNqRLOGIAjostjRbLbA1G2FzeH8epNLxAhRyxCqlkMp46QDREREREREND7s8klEs4ZIJIJWIYVWIUVC8FTXhoiIiIiIiGYr9nciIiIiIiIiIiLyAxNqREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+YEJNSIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFAjIiIiIiIiIiLyAxNqREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+UE61RWYSoIgAADa29unuipERERERERERDQN6HQ6iESiEZc5qRNqHR0dAIC4uLiprgoREREREREREU0DbW1t0Ov1Iy4jEvqaaZ2EHA4HampqfMo80sja29sRFxeHysrKUTc6mvm4vk8+XOcnF67vkw/X+cmH6/zkwvV98uE6P7lwfQceW6iNQiwWIzY2dqqrMavo9XruwCcRru+TD9f5yYXr++TDdX7y4To/uXB9n3y4zk8uXN+Ti5MSEBERERERERER+YEJNSIiIiIiIiIiIj8woUYBoVAo8PDDD0OhUEx1VWgScH2ffLjOTy5c3ycfrvOTD9f5yYXr++TDdX5y4fqeGif1pARERERERERERET+Ygs1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFCjcfn73/+O+fPnQ6/XQ6/XY/ny5diwYcNUV4smUHV1Nb73ve8hNDQUKpUK2dnZ2L9//1RXiyZIR0cH7rnnHiQkJEClUmHFihXYt2/fVFeLAmTbtm246KKLEB0dDZFIhA8//ND9mtVqxf3334/s7GxoNBpER0fj+9//Pmpqaqa0zjQ+I61zALjxxhshEok8ftatWzdl9aXxGW19d3Z24q677kJsbCxUKhXmzp2LF154YcrqS+PzxBNP4JRTToFOp0N4eDguvfRS5Ofneyzz4osv4owzzoBer4dIJILJZJqy+tL4+bLO+wiCgPXr13v9LqCZYbT1XVZWNuQY3vfzzjvvTGndZysm1GhcYmNj8fvf/x4HDhzA/v37cdZZZ+GSSy7BiRMnprpqNAFaW1uxcuVKyGQybNiwATk5Ofjzn/+M4ODgqa4aTZBbbrkFmzZtwuuvv45jx45h7dq1OOecc1BdXT3VVaMA6OrqwoIFC/Dcc88Nec1sNuPgwYP49a9/jYMHD+L9999Hfn4+Lr744impKwXGSOu8z7p161BbW+v+efPNNye1jhQ4o63ve++9F1988QX+85//IDc3F/fccw/uuusufPzxx5NeVxq/rVu34s4778Tu3buxadMmWK1WrF27Fl1dXe5lzGYz1q1bh1/+8pdTWlcKDF/WeZ+nn34aIpFoSupJgTHa+o6Li/M4ftfW1uKRRx6BVqvF+vXrp7r6s5JIEARhqitBs0tISAiefPJJ3HzzzVNdFQqwBx54AN9++y22b98+1VWhSdDd3Q2dToePPvoIF1xwgfv5JUuWYP369XjsscemtH4UWCKRCB988AEuvfTSYZfZt28fTj31VJSXlyM+Pn5S60eB522d33jjjTCZTGy9MAt5W9/z5s3Dd77zHfz61792P8fv+NmjsbER4eHh2Lp1K9asWePx2pYtW3DmmWeitbUVQUFBU1ZHCqzh1vnhw4dx4YUXYv/+/YiKihr1eE8zw0j7eJ9FixZh8eLFeOmllya9ficDtlCjgLHb7fjf//6Hrq4uLF++fKqrQxPg448/xtKlS3HVVVchPDwcixYtwj//+c+prhZNEJvNBrvdDqVS6fG8SqXCjh07pqxeNHXa2togEol48TXLbdmyBeHh4cjIyMDtt9+O5ubmqa4STZAVK1bg448/RnV1NQRBwObNm1FQUIC1a9dOddUoANra2gDXzW46OXhb52azGddeey2ee+45REZGTmHtKNBG28cPHDiAw4cPs6HLBGJCjcbt2LFj0Gq1UCgUuO222/DBBx9g7ty5U10tmgAlJSX4+9//jrS0NGzcuBG33347fvKTn+DVV1+d6qrRBNDpdFi+fDkeffRR1NTUwG634z//+Q927dqF2traqa4eTbKenh7cf//9+O53vwu9Xj/V1aEJsm7dOrz22mv4+uuv8Yc//AFbt27F+vXrYbfbp7pqNAGeffZZzJ07F7GxsZDL5Vi3bh2ee+65YVs60MzhcDhwzz33YOXKlZg3b95UV4cmwXDr/Kc//SlWrFiBSy65ZErrR4Hlyz7+0ksvYc6cOVixYsWk1+9kIZ3qCtDMl5GRgcOHD6OtrQ3vvvsubrjhBmzdupVJtVnI4XBg6dKlePzxxwFXE+Ljx4/jhRdewA033DDV1aMJ8Prrr+Omm25CTEwMJBIJFi9ejO9+97s4cODAVFeNJpHVasXVV18NQRDw97//faqrQxPommuucT/Ozs7G/PnzkZKSgi1btuDss8+e0rpR4D377LPYvXs3Pv74YyQkJGDbtm248847ER0djXPOOWeqq0fjcOedd+L48eNsUX4S8bbOP/74Y3zzzTc4dOjQlNaNAm+0fby7uxtvvPGGR5d+Cjy2UKNxk8vlSE1NxZIlS/DEE09gwYIF+Otf/zrV1aIJEBUVNSRROmfOHFRUVExZnWhipaSkYOvWrejs7ERlZSX27t0Lq9WK5OTkqa4aTZK+ZFp5eTk2bdrE1mknmeTkZISFhaGoqGiqq0IB1t3djV/+8pd46qmncNFFF2H+/Pm466678J3vfAd/+tOfprp6NA533XUXPv30U2zevBmxsbFTXR2aBMOt82+++QbFxcUICgqCVCqFVOpsT3PFFVfgjDPOmMIa03j4so+/++67MJvN+P73vz/p9TuZsIUaBZzD4UBvb+9UV4MmwMqVK4dMxV1QUICEhIQpqxNNDo1GA41Gg9bWVmzcuBF//OMfp7pKNAn6kmmFhYXYvHkzQkNDp7pKNMmqqqrQ3NyMqKioqa4KBZjVaoXVaoVY7Hl/XSKRwOFwTFm9aOwEQcCPf/xjfPDBB9iyZQuSkpKmuko0wUZb5w888ABuueUWj+eys7Pxl7/8BRdddNEk15bGy599/KWXXsLFF18Mo9E4qXU82TChRuPy4IMPYv369YiPj0dHRwfeeOMNbNmyBRs3bpzqqtEE6BuD4fHHH8fVV1+NvXv34sUXX8SLL7441VWjCbJx40YIgoCMjAwUFRXhF7/4BTIzM/GDH/xgqqtGAdDZ2enR8qi0tBSHDx9GSEgIoqKicOWVV+LgwYP49NNPYbfbUVdXB7gGv5XL5VNYcxqrkdZ5SEgIHnnkEVxxxRWIjIxEcXEx7rvvPqSmpuK8886b0nrT2Iy0vuPj43H66afjF7/4BVQqFRISErB161a89tpreOqpp6a03jQ2d955J9544w189NFH0Ol07u9sg8EAlUoFAKirq0NdXZ17uzh27Bh0Oh3i4+M5ecEMNNo6j4yM9DoRQXx8PBOuM5Av+zgAFBUVYdu2bfj888+nsLYnCYFoHG666SYhISFBkMvlgtFoFM4++2zhyy+/nOpq0QT65JNPhHnz5gkKhULIzMwUXnzxxamuEk2gt956S0hOThbkcrkQGRkp3HnnnYLJZJrqalGAbN68WQAw5OeGG24QSktLvb4GQNi8efNUV53GaKR1bjabhbVr1wpGo1GQyWRCQkKCcOuttwp1dXVTXW0ao5HWtyAIQm1trXDjjTcK0dHRglKpFDIyMoQ///nPgsPhmOqq0xgM953973//273Mww8/POoyNHP4ss69veeDDz6Y1HpSYPi6vh988EEhLi5OsNvtU1bXk4VIcK4YIiIiIiIiIiIi8gEnJSAiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+YEJNSIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIjoJGY1GiESiEX9+9KMfTXU1iYiIiKYl6VRXgIiIiIgml81mw1/+8hevr7W3t+PnP/85ent7cemll0563YiIiIhmApEgCMJUV4KIiIiIpl5vby/WrVuHLVu24Pnnn8ftt98+1VUiIiIimpbY5ZOIiIiIYLfbce2112LLli347W9/y2QaERER0QjYQo2IiIiI8MMf/hD//Oc/ceedd+Jvf/vbVFeHiIiIaFpjCzUiIiKik9xDDz2Ef/7zn7j66qvxzDPPTHV1iIiIiKY9tlAjIiIiOok988wzuPvuu3HOOefgs88+g1wun+oqEREREU17TKgRERERnaTefPNNXHfddViyZAk2b94MrVY71VUiIiIimhGYUCMiIiI6CW3cuBEXXXQRkpKSsGPHDhiNxqmuEhEREdGMwYQaERER0Ulmz549OPvssxEUFIRvv/0WCQkJU10lIiIiohmFCTUiIiKik0hubi5Wr14Nh8OB7du3Iysra6qrRERERDTjMKFGREREdJIwmUyYP38+Kisrcccdd2D58uVelwsPD8fatWsnvX5EREREMwUTakREREQniS+//BLnnXfeqMt9//vfx6uvvjopdSIiIiKaiZhQIyIiIiIiIiIi8oN4qitAREREREREREQ0kzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFAjIiIiIiIiIiLyAxNqREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvLD/wPAtYosKDWgkgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAKpCAYAAAB5OgHrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddZRcRd7G8W/LuGsyGncnCSEJbsFdXtxdF1hsYRdYdFl2cVkkuBMIFhIgJBB3dx9317b3j+6+053pmcyE6MzzOSfn3Fu3bt3qgb+e86sqk8vlciEiIiIiIiIiIiKtMu/vCYiIiIiIiIiIiBwMFKSJiIiIiIiIiIi0gYI0ERERERERERGRNlCQJiIiIiIiIiIi0gYK0kRERERERERERNpAQZqIiIiIiIiIiEgbKEgTERERERERERFpAwVpIiIiIiIiIiIibdApgzSXy0VlZSUul2t/T0VERERERERERA4SnTJIq6qqIiYmhqqqqv09FREREREREREROUh0yiBNRERERERERESkvRSkiYiIiIiIiIiItIGCNBERERERERERkTZQkCYiIiIiIiIiItIGCtJERERERERERETaQEGaiIiIiIiIiIhIGyhIExERERERERERaQMFaSIiIiIiIiIiIm2gIE1ERERERERERKQNFKSJiIiIiIiIiIi0gYI0ERERERERERGRNlCQJiIiIiIiIiIi0gYK0kRERERERERERNpAQZqIiIiIiIiIiEgbKEgTERERERERERFpAwVpIiIiIiIiIiIibaAgTUREREREREREpA0UpImIiIiIiIiIiLSBgjQREREREREREZE2UJAmIiIiIiIiIiLSBgrSRERERERERERE2kBBmoiIiIiIiIiISBsoSBMREREREREREWkDBWkiIiIiIiIiIiJtoCBNRERERERERESkDRSkiYiIiIiIiIiItIGCNBERERERERERkTZQkCYiIiIiIiIiItIGCtJERERERERERETaQEGaiIiIiIiIiIhIGyhIExERERERERERaQMFaSIiIiIiIiIiIm2gIE1ERERERERERKQNFKSJiIiIiIiIiIi0gYI0ERERERERERGRNlCQJiIiIiIiIiIi0gbW/T0BEREREREREZEDgcvlwuZw4XC5MAFBFjMWs2l/T0sOIArSRERERERERKTTqqi3saWkluKaRkpqG2mwO41nZhPEhgWREB5ManQombFhmBWsdWoK0kRERERERESk08muqGNNfhV5VQ0t9nG6oLTWRmmtjY3FNYQFmembGMnALlEEW7VbVmekIE1EREREREREOo16m4P5WeVsK61t97t1NifL8yrZWFzD2O5xpMeE7ZU5yoFL8amIiIiIiIiIdApF1Q1MXp2/WyGar1qbg183FrNgRxkul2uPzU8OfArSRERERERERKTDK6hqYNqGIup99kD7s9YWVjN7W6nCtE5EQZqIiIiIiIiIdGjldTZ+3VSE3bnnA6/NJbUsyq7Y4+PKgUlBmoiIiIiIiIh0WE6Xi1lbS7E59l7V2JqCKvIq6/fa+HLg0GEDIiIiIiIiItJhrc6voqS2kYtHpFFS2wjAyrwqcivrSYwIZkRaDCYgp6Ke1QVVu/2dOdtKOWNQV4IsqlnqyBSkiYiIiIiIiEiH1OhwsiKvEoDqRgdT1xcZz8wmGJYSzfRNxTj2wJLP6kYHG4qqGdQ1+k+PJQcuxaQiIiIiIiIi0iFtKakx9kWLCLJwUr8kjugRT4jFTFJECHani6N7JXBCnyTiwoL+9PfWF9Xo4IEOThVpIiIiIiIiItIhbSiqMa4nrcyjweGkd0IEI9JiKKhuIDYsiB/WFhARbGFst3h+Wl8IwIR+SSRFhOD0CcUWZ1ewvqi61e9VNdjJq2ogNTp0L/4q2Z8O+oq0p556CpPJxJ133rm/pyIiIiIiIiIiB4h6m4OyOptx3+BwArC1rJb48CAa7E4KqxuwO11U1NsJtpj83l+cXc7HS3OMf7sK0bzydehAh3ZQV6QtXLiQ//3vfwwdOnR/T0VEREREREREDiDegwUArGYTDqcLF9A1MoTKBjvFNQ0MTYkCINRqpq2HelrNJkamx5AeE4bFbCK3op75WWXGqaAltbZdjiEHr4O2Iq26uppLLrmEN998k7i4uP09HRERERERERE5gJT6BFrRoVZOHdCFk/olMbBrFEtzKmh0uNhUXMtJ/ZI5tncii7LK2zTu+O7xBFvMfLsmn0kr8zCbYExmUy5R6hPgScdz0Fak3XLLLZx66qkcf/zxPP744632bWhooKGhwbivrKzcBzMUERERERERkf2l0bOUE0+o9v3agmZ9NpXUsKmkplk7wCHpMQxPjTHuv1iRi8VsIjMujM+W5RoVaEtzKzlzUFdmby3F5bOEVDqmgzJI+/TTT1myZAkLFy5sU/+nnnqKRx99dK/PS0REREREREQODM4/eXjmkuwK1hb674sWExqE2WTi3CEpzfqHBVmotTlwucDlcmEymZr1kYPfQRekZWVlcccddzBt2jRCQ9t2CsYDDzzAXXfdZdxXVlaSkZGxF2cpIiIiIiIiIvtTkHnPB1k1jXacLhefr8jF0UJSZzWbFKJ1YAddkLZ48WIKCwsZOXKk0eZwOPj99995+eWXaWhowGKx+L0TEhJCSEjIfpitiIiIiIiIiOwP0aF7PvKotzvJKq9jTGYsi7MraLA7CbWaSY4MYUd5HQAxe+G7cuA46P7rHnfccaxcudKv7aqrrqJ///7cd999zUI0EREREREREel8EiKC98q4s7aWMjw1hlMHdCHEaqbe5mBbaa0RpO2t78qB4aAL0qKiohg8eLBfW0REBAkJCc3aRURERERERKRzig6xEmIx79bm/1PXF7X4zO50sSi7nEXZgU/5TFSQ1qGZ9/cERERERERERET2NJPJRM+E8H36TavZRLe4fftN2bcOuoq0QGbMmLG/pyAiIiIiIiIiB5h+yZHNTt7cm3omhBNsUc1SR6b/uiIiIiIiIiLSIcWEBpERG7ZPvmU2wcDkqH3yLdl/FKSJiIiIiIiISId1WGYcwRbTXv/OsJQYYsKC9vp3ZP9SkCYiIiIiIiIiHVZ4sIVDM+L26jcSwoMY3FXVaJ2BgjQRERERERER6dB6JUbstaArMtjCMb0TMZv3ftWb7H8K0kRERERERESkwzskLYYhezhMiwqx4py9ktmf/IHL5dqjY8uByeTqhP+lKysriYmJoaKigujo6P09HRERERERERHZR7aV1jJvRxkNduefGqdnQjhbPvqND//+GQDJmYlc9vfzOfaSIwgO0V5pHZWCNAVpIiIiIiIiIp1Knc3BoqxytpTUgKl9SzKjQ6zUzF/LBze9QVBIEA21DX7P47vGcsYtJ3H6jScSnaB90zoaBWkK0kREREREREQ6pX/f8hZ5duhx0kiiMhJb7Gc1m+gaGUzPmBC6J0dzSuhF2G2OVscODQ/h5heu4uRrjtsLM5f9xbq/JyAiIiIiIiIisq85nU4WTJpHWUEF6z6YDsFBxPdLI7FvGpGJUZTlleOsb+DJT+7A2mjj/1Kvp6GukUv/fh7WYOsug7T62gY+fuIrBWkdjII0EREREREREel0tqzYTllBBQDdB2eyYdFm8hduhJIKrN2TWT99FQBBjTbmfruIhrpGAD7855ckZyRSX9PQ6vgAp980YS//CtnXdGqniIiIiIiIiHQ6i6YuN67jusQY1wld40hMizfui7JLKckvb3rRBUVZJbsc/9qnL+GCv565J6csBwAFaSIiIiIiIiLS6ayatda4Npub4pGuPZJJTEsw7otzStm+Osvv3bZsNz9n8kIc9taXf8rBR0GaiIiIiIiIiHQqTqeTNXPWAxCTGEVlaZXxLK1vKknpTUFawbZCtq7c0baBTRAVFwnAmrkb+Oxfk/f01GU/U5AmIiIiIiIiIp1K1vpcqspqABg4rh+leU1LN3sO7UZ63xTjfvvabLavyW7TuEkZCTz+/f2YzSYA3n/kczYu2bLH5y/7j4I0EREREREREelUvNVoAIPG9ferSOs7sieZA9KM+42Lt2BrsLU4VnhMuHFdtKOE7Wtz+L/7zwbAYXfw9GUv0lC364MJ5OCgIE1EREREREREOpXVs32DtL7UV3uCLhMkpSeQkBpPeFQYALmb8gOOcdT5Y/nbJ3cyuew9jjx/rNH+2p0Tufihc+lzSA8AdqzN4e0HPt67P0j2GQVpIiIiIiIiItKprJnrDtKsQRZ6DMs0DgUIDgkCwGQyGVVppfnlnPuXUzn8nDEcdf44Y4xB4/tz9IXjAbjvvVsJCrECUFddz5v3fsh9799GcKh7vK9f/JElv67cx79S9gYFaSIiIiIiIiLSaVQUV5K1PheAPiN7kre50HgWHt20TDPDZ3nn8ZcexT++vIcL7zvTaFs7f4NxHRwazCUPn2fcf//6NFJ6duHapy812v591SvUVtXtpV8l+4qCNBERERERERHpNNbMbQrABo7tx6alW437mMQo4zqzf7pxvWOt+7CBHkMyjSqzdfM3+Y17yYPnEhXvPrHTYXfwyh0TOfPWkzjk+CEAFGWX8PETX+213yX7hoI0EREREREREek0/A4aGN+fouxS4z46wTdIa6pI27EuBwBrkJW+o3oBkLelgLLCCr+xr3zsQuN62ru/Ybc7uPP1GwjyLBn96r/fk70xb6/8Ltk3FKSJiIiIiIiISKexYckW43rAYX2oKqk07iNjI4xr35M7vUEawIAxfYzrdfM3+o19xs0nERHrXh5qtzl44+73SenZhQvuOcNoe/2ud/f4b5J9R0GaiIiIiIiIiHQaWZ5QLCo+koSUOCpLqo1nkXFNQVpKzy4EBbsPEMha2xSk9W8lSAO49KGmvdKmvPULdrudC+8/i6T0BADm/7CE+T8s3uO/S/YNBWkiIiIiIiIi0inUVddRlFUCQEb/NEwmE1VlTUFatM8eaRarhbQ+KQBkb8jFbrPDTkHaRp/91bzOufNUwqPCALA12HnngY8Jiwjl+mcvM/q8dtd7NDbY9spvlL1LQZqIiIiIiIiIdAre0zoBMvulAlBTXmu0xSZG+/XvMTQTPEsyNy/fDkBSegKh4SEA5G3Ob/YNs9nMBT6ne05+5SecTidHXTCOIUcOACBnYx5fv/DjHv51si8oSBMRERERERGRTiFrXVOQluE5TKC2qs5oi0mO8es/aFx/43r17HUAmEwmUnp1ASB/ayEOu6PZdy66/2xCI9xhW2O9jXf//ikmk4lbXrgas9kEwEePf0lxbmmzd+XApiBNRERERERERDqFLJ9DAzIHpANQV1NvtMV3jfXrP2h8P+N6lSdIA0jt3RU8lWqFWcXNvmM2mznvrtON+0nP/4DT6aTXsO6cesOJ7u9W1/P2Ax/toV8m+4qCNBERERERERHpFHasyzauM/q7l3Y21jYabQmpcX79ewzJNPY7Wz17PS6XC4C0Xl2NPnmbCwJ+67J/nE9IWDAADbWNfPTEJACufOxCouIjAfjlg9/Z6HOKqBz4FKSJiIiIiIiISKfgXdoZFGyla/dkABrqm4K0RM/Jml4Wi4UBY/sCUJpXRv62QgBSfIK0nE3N90nDU5V25m0nG/dfPDsZp9NJdEIUlz9ygdH+0RNf7aFfJ/uCgjQRERERERER6fAcdgc5G/MASOuTgsVqAcDeYDf6RHsqxXwNGuezvHOWe3mnd2knLRw44HXV4/9HUEgQeJZyfvHvbwE45drjjOq32V8vYOuqHX/698m+oSBNRERERERERDq8wh3F2BrdoZl3WSeefc4AMLmryHY2+HDfAwfWA5DqOWwAILeVIM1qtXLaDccb95889TUAwaHBXHBP08meHz85aXd/luxjCtJEREREREREpMMrKyg3rhPTmpZwOh1OACyWwBFJ/zF9MHueeU/uTMpIwBrkrmhraWmn17X/ugxrsBWAmopaJr3wAwCnXH88sUnRAMz8bA5Z63NaHUcODArSRERERERERKTDKy+sNK5jk2MAcDqdxgECliBrwPfCIkLpNbw7ANtWZ1FVVo3FYiG5WxIARVklrX43ODiIk646xrj/4LEvAAgND+Fcz8meLpeLT57++k/+QtkXFKSJiIiIiIiISIdXXlhhXHuDtOryGqMtKDhwkAYweHzT8s41c9zLO737qdVW1uF0Olv99k3/vdLYk626rIbv3/gZgDNunkBUXAQAv374B3lbAp8AKgcOBWkiIiIiIiIi0uGV+QVp7iWVxdlN1WTBYcEtvjvkyIHG9fwflwIQEesOwFwuF7WVda1+Ozg0mOMvO9K4f/fhTwAIjwrj7DtOBc8S08+e+abdv0v2LQVpIiIiIiIiItLhBapIK84tNdpCwlsO0kaeMNSoWJv77UJcLheRseHGc9/Ktpbc+tLVWKzuGKaiuIpp7/0GwNm3n0J4dBgAU9/9jcKs4t34dbKvKEgTERERERERkQ6vvKhpj7Q4T5BWmtd0AEFoeEiL74ZHhTH8uCEAFOeUsmHxFiJjIoznbQnSQsNDOeqCccb9Ww98DEBkbARn3XoyeE4QnfT8D+38ZbIvKUgTERERERERkQ6vPMDSzvKCpjZvVVhLxp852rieO3mhsbQToKa8tk1zuP3V64wTQMvyy/nts9kAnHPnqQSFBAHw8/szaWywtfFXyb6mIE1EREREREREOjxvkBYSFkxoRCgAlSVVxvMInwqzQA47fZRxPefbhUTGtq8iDSAiOpzxZx9q3P/vnvcBiEmM5sjzDjPmNPvrBW38VbKvKUgTERERERERkQ6vwrO0MyYpGpPJ5G7zCdK8p2e2JCEljgGH9QFg68odOOx241lbgzSAu/53Ayaz+/vFOaVsWbENgJOvPc7o8+Nbv7R5PNm3FKSJiIiIiIiISIfXWO9eLhnisxdaVWm1cR0VH7XLMcad0bS8M3tjnnHd1qWdAJGxkUYgh89eaUOPHEh63xQAlk1fRc6mvBbHkP1HQZqIiIiIiIiIdHgOuwMAi6UpCvENwKITInc5xrizmpZlblq61biuq65v11yufOz/jOulv6zA6XRiMpk4+ZqmqrQpb/3arjFl31CQJiIiIiIiIiIdntPhBDA2+weorawzrmM9J3m2JrN/mlE1tmNtjtHuO2ZbjDh2CBGx4eA5qfO7V6cCcMIVR2MNsgAw7b0Z2G32VseRfU9BmoiIiIiIiIh0eIGCNN+gynsAwa6MO9NdleZyuoy29gZpAMf+3+HG9Vcv/ABAXHIMYz2ng5YVVDD3u8XtHlf2LgVpIiIiIiIiItLheYM0i7UpCrEGWY1rW0Njm8bxnq7pa3eCtCsfb1rembe5gMIdRQCccu3xRvsUHTpwwFGQJiIiIiIiIiIdmsvlwumpIPMNvSzBFuO6obZtQVrfUb3oMSTTr82yG0FadHwU3QdlGPdvP+g+dOCQ44fQtXsSAIumLjcCNjkwKEgTERERERERkQ7N6XQa175BWpBPRVpjXduCNJPJ5Fc1BmC27l68cvGD5xjXcyYvdI9lNjPhqmPBEwD+/uW83Rpb9g4FaSIiIiIiIiLSoXmXdbJTkGYN9gnS6tsWpAEcd+kRxqEAAC6foK49jrnocELCggGor2ng9y/nAnDk+WONPnO+XbhbY8veoSBNRERERERERDo0h70p6PJdhmkNaQrSGuptbR4vKi6SPiN7Gfdblm/f7bkddvoo4/qjJ74Cz+mgGf1SAVg9ax0VxZW7Pb7sWQrSRERERERERKRDC/INzHyWcAb5VKTZ2lGRBjB4fD/jetXsdbs9t+ueucS43rJiOzWVtQCMPcN9eqfT6WLe9zq980ChIE1EREREREREOjSLxUJ4dBgA1eW1RntQSJBx3diOijSApIxE4zp7Qx7ZG3J3a25duiUbhwvggvf+/ikA488abfTx7p8m+5+CNBERERERERHp8CJjIwCoLqs22oL/RJC283LLKW/9uttzO+v2U4zrXz78A4D+Y/oQ1yUGgMXTllNf27Db48ueoyBNRERERERERDo8I0jzqUgL9mz0z+4EaUX+Qdq092bQ2NC+MbzOvv0ULFb34QVVpdWs+H01ZrOZw05z75/WUNfIkp9X7NbYsmcpSBMRERERERGRDi8iNhwAW4PNOKHTd2mnrZ0hWPlOQVp5USU/vzdjt+ZmNpsZdvQg437iQ1reeaBSkCYiIiIiIiIiHZ63Ig2gurwGgOBQnyCt0d6u8coLK5q1ffr019ht7RvH65qnmw4dWDN3A42NNkYcN4TQiBAA5n2/CIfDsVtjy56jIE1EREREREREOjz/IM29vDPEZ2mnvWH3grTw6DBGTRgGQP62IqZ/PGu35tf3kJ7EJrv3RHM6nHzxr8kEhwYz+qThAFQUV7F27obdGlv2HAVpIiIiIiIiItLhBapIC/KrSGvn0s5C99LO2OQYLvnbuUb7J09N2u3KsQlXHWNcf/fGNADGnDrSaFs+Y81ujSt7joI0EREREREREenwfIO0qlL3yZ1+FWntWJJpa7QZYVxscgyDDx9g7HGWvSGP37+Yt1tzvPThczGZTQCU5JSxfW02Q44YYDxfPWfdbo0re46CNBERERERERHp8OJT4ozrwh3FAISEhRht9sa2V5FVFFcZ13HJ0QBc7FOV9vGTX+F0Ots9x9DwUPqO6mXcv33/R6T07EJcF/eSz9Vz1muftP1MQZqIiIiIiIiIdHipvbsa13mb8wEI3s2KtJLcMuM6Nskdco04djADx/YFYNuqLOZ+u2i35nnloxca14umLcNkMjFofH8Aaivr2L46e7fGlT1DQZqIiIiIiIiIdHhpPkFaridICw1vCtIctrZXemWvzzWuvQGdyWTyq0r76PEvcblc7Z7nqAnDCY8KA8DWYGfRz8sZ7AnSAFbP1vLO/UlBmoiIiIiIiIh0eInp8ViDLADkbHIHaSHhPks77W0P0rLW5RjXGf3TjOtDTx5Bn0N6ALBxyVYW/Lhkt+Y6+Iim4Oy7V6cyaHw/436VgrT9SkGaiIiIiIiIiHR4FouFlJ5dAMjbXIDL5SLUJ0hrT0XajnVNyyszBzQFaTtXpb3x1w/atWTU65TrTjCuV/6xlt4jehgHI6yevb7d48meoyBNRERERERERDqFlF7uIK2hrpGSvDJCInyCtHZVpLmXdgYFW+naPdnv2fizDjX2Sstal8M3L01p9zzHnj4Ss8Ud2VSVVlNZUkX/MX0AKNheRFF2SbvHlD1DQZqIiIiIiIiIdAqpvXwPHCggLDLUuHfY23bKpsPuIGdjHgBpfVKwWC1+z00mE7e8eDUmkwmADx79gtL8soBjtcRsNpPRL9W4/+bFKQwa17S8U/uk7T8K0kRERERERESkU/AN0nI25RO2GxVpeVsLsTW6l2tm9E8N2KfvyF6cfM2xANRW1fHOg5+0e65HnHuYcT37mwUMPtz3wAEt79xfFKSJiIiIiIiISKeQ6nNyZ/b6HGKTY4z7xnpbm8bwPWggs396i/2ueuIiImLCAZj67m+sW7CxXXM987aTm+a6MY9+h/Y27jct29qusWTPUZAmIiIiIiIiIp1Cz6HdjOsNi7cQHBqMyexegtlY39imMVo6sXNnsUkxXPHohcb9K7e/g9PZtuWjALGJ0cQkRgHgdDhZNn0VCalxAOxYm7OLt2VvUZAmIiIiIiIiIp1CUnoCiWnxAKxfsAmHw2GchulyuqitrtvlGNvWZBnXLS3t9Dr9phPpPigDgHULNvHz+zPbNd+hRw8yrn9861cyB7gr4CpLqigvqmjXWLJnKEgTERERERERkU7De/plbVUdWetyjeWXAFuXb9/l++vmbwLAYrXQbWDLSzsBrEFWbnr+KuP+7Qc+oqaips1zPfPmk4zrtfM2kOlTAaeqtP1DQZqIiIiIiIiIdBoDPEEannAqJjHauN+8ovUgrbKkylja2eeQHoSEhbTaH+CQ44ZwxLljACgrqODtBz5u81yHHT0Ia7AVgNrKOqKTooxnvktMZd9RkCYiIiIiIiIinUZ/vyBtIwmepZ54DiBozZq5G4zrQeP6tfmb1z97ubGE9LvXp7Hwp6VtfrfH4EzjevOypqBPFWn7h4I0EREREREREek0+ozsidnijkNWzlpLfXW98Sx/a1Gr766es964HtiOIK1r92Suf/Zy4/7f17xGZUlVm949+sJxxvXGxZuN6x3rstv8fdlzFKSJiIiIiIiISKfgcDjYsnw70QnuJZLZ63NZ+cda43lRdkmr76+Zu3tBGp6DB0ZNGAZAaV4Zz9/0P1wu1y7fO+2mE5vml1Vi7OmmirT9Q0GaiIiIiIiIiHR45UUVXD/0bu48/CHKCwOfeFleVNni+3abnfUL3AcNdO2eRGJqfIt9AzGZTNz99s1ExUcC8MeX8/j1oz92+V54ZBjxKXHGvTcELNxRTF0bThmVPUtBmoiIiIiIiIh0eJuXbdtlFVdNecsnam5eto2GukbYjWo0r8TUeO547Xrj/qVb36Jwh3s5afaGXBrqGgK+N/KEocZ1nc9S1OwNebs1D9l9CtJEREREREREpMMbdvQgBhzWp9U+3qAsEL/90cbuXpAGcNT5Yznu0iPAcxLnU5e+yGMXPMdV/e/g5lH3YbfZm71z1u2nGNdVZdXGtU7u3PcUpImIiIiIiIhIh2cNsvLEDw/SY0hmi32cDieNjbaAz3yDtEHjdz9IA7j1xWtIykgAYNWsdfzx5Tzw7Hu2ccnWZv37HtKTYM+pnw6bw2gvzGp9TzfZ8xSkiYiIiIiIiEinEBUXydNTHyK1d9cW+2xbldWszeFwsGz6KgDCo8LoMbjlMK4tImMjOPfO0wI+Wzt3Q8D2PiN6NGsr3sXhCLLnKUgTERERERERkU4jvmscz0x72Ni0H8BibYpHtizf1uydTUu2UllSBcCI4wZjsVr+1Bx+/egP3rzvw4DP1sxbH7D9+MuOatZWnFv6p+Yh7acgTUREREREREQ6la7dk3lm2kOYLe5YJDoxGoCwxGiyiqrJqagjr7Ke0tpGnE4Xi6YuN94dNWHEn/7+m/d9gMPuCPhsTQsVaSdedTSYwGy1ENcnla6j+9AYFU5+VT11tsBjyZ5ncrlcrv09iX2tsrKSmJgYKioqiI6O3t/TEREREREREZH9oCCrmKWrc9hR1YgjMozwpJhmfcwmqNpWyJZflrHxm3m8MfcJunZP/lPffe0v7zLphR9afP5J1uskpiUY91UNdjYUVTNn9gYiMpKwBFubvRMeZCExIpieCeFkxIZhNpn+1BwlMAVpCtJEREREREREOhWH08WagirWFlZRZ3O2+T2X00lmfASHpMUQGxb0p+awdv5GvvzPd8z6ah5Op380c/2zl3H+3WdQWtvIkpwKcirq2zV2eJCFAV0iGdglSoHaHqYgTUGaiIiIiIiISKdRWtvIrK2llNUFPp2zLcwmGJ4aw6Cufz6oyttawKTnf+D7N37G3mgH4ML7zmL0baexIq8S559IbRLCgxjfI544z4mf8ucpSFOQJiIiIiIiItIpbC6pYfa2UvZUEpISFcIxvRMJsvz5LegrS6t44+73sGFi+L3nUlSz+0GfL7MJjuiRQPf48D0yXmenIE1BmoiIiIiIiEiHt6nYHaLtaUkRwZzQN2mPhGmNdifTNhRSUrtnQjRfR/SIp2dCxB4ft7PRqZ0iIiIiIiIi0qHlVdYzZy+EaABFNY38sbWUP1un5HK5mLmlZK+EaACztpVSWN2wV8buTBSkiYiIiIiIiEiHZXM43cs59+I3ssrr2FJS+6fG2FBUQ25l+w4VaA+XC2ZvLcXuaPvhCtJc8/NSRUREREREREQ6iMXZFdQ0Orh4RBoltY0ArMyrIreyPmDb7lqQVUZKdCjhwZZ2v1vdYGdRdnmz+dQ02jmsWxwAVrMZE/D92oLdnmNlg52luZWMzojd7TE6OwVpIiIiIiIiItIh1TY62FBcDUB1o4Op64v8ngdq212NDhfrCqs4JL39IdWagirsTlfA+Xjv+ydFEmT9cyeEAqwrrGJIShSh1vYHfqKlnSIiIiIiIiLSQW0srjZO6IwIsnBSvySO6BFPiOdggEBtf+57NTic7VtEanM42VRSs8v5dI8PZ+ufXD4K4HS5D16Q3aOKNBERERERERHpcFwuFxt9AqNJK/NocDjpnRDBiLQY5u0oC9gGMKFfEkkRITh9DhBYnF3B+qLqVr9Zb3eSVV5H9/jwNs9zR3kdNoerxTkCRARbMJncFXReyZHBDEmJJikiBBNQ3WhnS2ktawuq2FWWt7GohsFdo9s8R2ly0FWkvfbaawwdOpTo6Giio6MZO3YsU6ZM2d/TEhEREREREZEDSK3NQY1P8NTg2WR/a1kt8eFBLbZ5Lc4u5+OlOca/XYVoXu09GbOwqql/S/PpER/OttKmarT0mFCO75NEbkU9X6/K45NlOczcUkJsaBBhQbteslnZYKfe5thlP2nuoKtIS09P5+mnn6Z3794AvPfee5x55pksXbqUQYMG7e/piYiIiIiIiMgBoKSm0bi2mk04nC5cQNfIECob7AHb2sJqNjEyPYb0mDAsZhO5FfXMzyozqspKam3tm6fncIHW5tM9PpxfNjTtnXZoZhyr8qtYW9gU7lXW25m9rdS4D7WaGZMZR9eoEOxOF1tKa1mWU2GcXlpS20haTFi75ioHYZB2+umn+90/8cQTvPbaa8ybN09BmoiIiIiIiIgAUFbXFGhFh1oZ1y0eu9OJwwVztpUGbGuL8d3jcbpcfLsmH5cLxnWLY0xmHLO2lnq+27jLMbxcLpcxz5bmExtqpcHupN7urlaLDrESFWJla2nr+5wd2TOBOpuDr1bmEWI1c3yfJOwOJyvzq4y/j4K09jvogjRfDoeDL774gpqaGsaOHdtiv4aGBhoamkolKysr99EMRURERERERGR/8FaIAZTW2vh+bYHf85pGR7M2X4ekxzA8Nca4/2JFLhazicy4MD5blmuMvzS3kjMHdWX21lJcgN3hwuVyYTLt+oRNpwtjP7NAcwQor7fzs081WkiQ2Zh/S8KDLKREh/LZshzsThf2Rgcr8ioZlhptBGl2R/sORRC3gzJIW7lyJWPHjqW+vp7IyEi+/vprBg4c2GL/p556ikcffXSfzlFEREREREREDl5Lsiv8lk4CxIQGYTaZOHdISrP+YUEWaj37jrUlRANoWy9/DTZ3ZVpEsIWqhsBhWniwBbuzqYoNoKrBTkQb9k+T1h2UQVq/fv1YtmwZ5eXlfPXVV1xxxRXMnDmzxTDtgQce4K677jLuKysrycjI2IczFhEREREREZF9KciyOzFV62oa7ThdLj5fkYujhaMx2/NdkwnMJnZ5yqavygY7VQ12useHszKvKmCf2kYHVrOZUKvZCNOiQqzU+BwwsDf+Pp3BQXdqJ0BwcDC9e/dm1KhRPPXUUwwbNowXXnihxf4hISHGKZ/efyIiIiIiIiLSccWFBbWhV/vU251kldcxJjOWEKs7Ugm1msmMbdprLDYsuM3jmUym3Zrngh1lDOkaTf/kSEIs7nlEh1gZ1y2OiGB3ZVxeZT2jMmKxmk1EBFsY0jWKzSVN+6q1Z57S5KCsSNuZy+Xy2wNNRERERERERDq3hIi9ExTN2lrK8NQYTh3QhRCrmXqbg22ltewor3N/N7x9wVhCeHC7T/rMrqjnl41FDE2JZoRnH7fqRjtbSmqp81Sd/b6lhDGZcZw7JAWHy8WWklpW5TdVsCVE7PmgsTM46IK0Bx98kJNPPpmMjAyqqqr49NNPmTFjBj/99NP+npqIiIiIiIiIHCDCgyxEBFta3ZS/JVPXF7X4zO50sSi7nEXZ5QGfd4kKade3kqNC2FDc+gmcgRRWN/LLxuIWn9fbnczcUhLwWXSolVCr9kvbHQddkFZQUMBll11GXl4eMTExDB06lJ9++okTTjhhf09NRERERERERA4QJpOJPokRLMut3GffDLWaSY8Ja0PPJt1iw1hgMdG4D0/R7JsYsc++1dEcdEHa22+/vb+nICIiIiIiIiIHgT6JkSzPq8S1jzKqPokRWMzt28TfajHTOzGCNQXVbej951lMJnopSNttB12QJiIiIiIiIiLSFuHBFvomRrK+aO+HVMEWEzumLOLLbxYw9MiBZA5IIzkjkaSMBKITojCZWg7YBnaJYkNRDfb2HN+5m/onR2pZ559gcrn2VS574KisrCQmJoaKigqd4CkiIiIiIiLSgdkcTr5dnU/1buyV1h6HJIRyV6+bAz4LCQsmrW8KNz53BSOOHRKwz/qiauZtL9urc4wOsXL6oC5Yzea9+p2OTH85EREREREREemwgixmxnePp30LLtsnMzaMXslRmC2BY5aGuka2LN/Ol//5rsUx+iZGkBYdutfmaDbB+B7xCtH+JP31RERERERERKRD6xodyvge8Xtl7OTIYI7oEU94RChXPX5Rq31HnzSixWcmk4kxKZFUb83f43M0AUf0SCA5sn0nikpzCtJEREREREREpMPrlRDBET3iaedZAK3qGhHMgn98zH+ufY3K0irOv+d0eg3vHrBvXJcYJlx9bItjuVwuXrvtbX64+kUKlmzeY3M0myChoJiXznmGGZ/PoRPu8LVHaY807ZEmIiIiIiIi0mmU1jYye1sppbW23R7DYjIxIi2aX/75Kd+/9jMA1mArp994IoPG9+PxC/8b8L2+o3rx8Od30bV7crNn3746lZdufQuAsKgw7p75BDsc8GfOH0iMCGZ893guirsce6MdgJ7DuvF/953NkecdhkWHDrSbgjQFaSIiIiIiIiKditPpYk1hFUu3FOMMDmr7ew4HGTFhzP/PN8x46xdMJlOzCi+z2URiegKFO4qNNovVjMPuBCAqLoL7PridMaccYjxfM3c9dx/9D+w294EID336F466YBxldY0sya4gq7QWUwv7rwUSEWyhb0IY9/W+GXuDHbPZhHOnRC45M5Fz7jiVk689jvCosDaP3dlpaaeIiIiIiIiIdCpms4nBXaPZ/J9JzLx3Ijumr6CmIPCJmfb6RkrX7GDFm1P5+ozHqZ2+jD/e/Q08yzF35nS6/EK0nkO78fzsx0np2QWAqrIaHjrtKSY+9AkOh4Pq8hqeuOh5I0Q7767TOeqCcQDEhQXT297A12c9zsq3p1G2Lht7feBKuuq8Uuw7CkjMLeTIuGCKZqzE3mA35rSzwh3FvH73e1zR5zayN+btxl+xc7Lu7wmIiIiIiIiIiOxrdpudpT+voLaqjvJlW6gqryEkLpKugzKJTYkjb1M+DRXVVG4vAqfLCM3efuAjwiJDqS6v2eU3ouIjeXrqQ8R1ieXVRc/w7FWvMGfyQgA+fnISa+dvJCImzAjehhwxgGufvsRvjEU/LaO2oJzlb/xE7g8LKM4rJ7pbMt2Gd6cwqwR7vY2qrCIaymuI6xJDWUEFFquZe9+7pU1/h/LCClbPXkd6n5Td+Ct2PgrSRERERERERKTTWTtvI7VVdQBkDkxn9Zz1NJRVYy8oIygiiMKlgTf8r62qIyohcpfjBwVb+cv/biSuSywAkbERPDLpr3zx7295+8GPcTqcLP11pdE/Iiac+z+4rdm+ZYumLTOu7TYHLoeTii35rNjS/HTPipIqABx2J6/c8W6b/g4Dx/UzKuBk17S0U0REREREREQ6ncXTlhvX0QlRxnViajyJqfGtvltVUr3L8W9+8WqOOGeMX5vJZOKCv57Js7/+g5gk/z3bDzt9JEkZiX5tjfWNrJi5BoCkjATqqhta/abTsw8bQGVx1S7nmJAaxzM/P0xoeMgu+4qbgjQRERERERER6XRWzV5nXDt99jrr2jOZxPSEPz3+5/+abFS87WzQ+H7Gnmlev374B/+84DlqKmuNto1LttLo2RNt+LGDaahtPUhrr5LcMqa8+eseHbOjU5AmIiIiIiIiIp2K3WZn/YJN4Dm9srywwniW2T+N5MymyjCzte3RiTXESvfBmQDkbSng9bveC9jvs2cms27+RgDCo5tOzPzjq/nceuj95G0tAGC1T9jXfWB6wMMNdkf/MX2M67fu/5Dta7P3yLidgYI0EREREREREelUNi/fTr2numvQ+H6U5Zcbz3oO705Gv1TjPip21/uheYWEBfPIpHsIiwwFYMrbvzL3u0V+fdYv3MT7j3wOntNDn/j+AR6bfB+RsREAZG/I487xD7F5+TbWzF1vvLd0+qrd/r07O/zsQznrtpMBaKy38cxlL2JrDHwaqPhTkCYiIiIiIiIincqaOU0B1cCx/agqa9rzrO/InmQOSDfug0KDWh2r59BumC3ueKWmvJYpb0/npv9eaTz/z3WvU+apeKurruOpS1/EYXcAcNED5zD48AGMPX0Ury56hoz+aQCU5pdz11F/Z9kM9/5o4dFhLJq6PMDX28ZsMTPs6EHG/XuPfM7lj11ofG/jkq189M+vdnv8zkRBmoiIiIiIiIh0Kr6VXoPH96ehthE8hwFEx0cRnRBFTKL7AIL62voWx4lOjOKFOU9w3t2nG21fPvcdR5x3GGPPGAVAeWEFz9/wBi6Xizfufp+cjXkA9D+0N5f+/TzjvZSeXXj+j38y4DD3ssvayjpqymsAyOiXtlu/MykjgVcWPs2Uhk94etpDhHgOFbDV23jl1rf9Tgn95KlJfn8XCUxBmoiIiIiIiIh0KqtnuwOj0IgQUnol43S4T7sMDgs2+nir0qpLa4xllzurLK7ip3emc82TFxMRGw6Aw+7gmcte4i//u5FYz8mccyYv5J0HP+aHN38xvnvfB7djDbL6jRedEMW/fvkHY049xK89tks0aX26+n/cFPi3jTppOF26ufd4Ky+spMeQTMxmM1arlev/danRb/rHs4hNiuayf5wPgNPp4pnLX6KuOvABCeKmIE1EREREREREOo3CrGKKskvAs+n+tpVZxrOImHDjOrN/UxXYoPH9Whzv82cn47A7uOO16422+T8sweV08pc3bzTaPnt2snF99RMXk94nJeB4oeEhPDLpr6T3bXo+//slVJVW+/UbPWE4H259pdn7YZGhDD58AAC2BhtbVuwwnp1x80kkZbhPJHW5XDx71av8331nGVVwuZsLePuBj1v8raIgTUREREREREQ6Ed/90QaN68fmFduN+9jkaOPad5+0fqN7NxsnKMRdTVaUVcL0j2dxzIXj6dojGTwh1XPXvsa4M0Zz0lXHuNuc7hM3e4/owRk3T2h1jtYgK5Ygi19bZYl/kNZtYAZduiUbS1C9irKK6X9o06mca+dt8Hv+14m3GNfLZqyirLCC+96/jVDPss/vXpvK1pXbkcAUpImIiIiIiIhIp7F6pyCtvKDpxM6ouKYTOjMGNFWk1VfXExIejC9bg924/uyZb3A4HNz60jVG28IpyygvruTcu07zW4Z56g0nGPuStaS6vIYda3IASEqPx2Rqvo6z++AM2CnwAygvqDAqzADWzd/o93zEsUNI6dnFfeOC5659jbTeKVz04DngWeL5yh0Tcblcrc6xs1KQJiIiIiIiIiKdxubl24zr/mP6UFFcZdz77oXWzSdI27E+h74jezUbK9PTJ2t9LrO/XsCYUw7xWzr53+te56MnJoFPJvXDGz/jcDhanePWlTuMIOuw00bx4Md3NOuTnOHeB813CSpAVVkNPYd1IyjEfdro2p2CNIBbX77auF48dTllheWcd9dpRsC2fMZqfv9yXqtz7KwUpImIiIiIiIhIp5G11l3pFZ8SR1RcJJUlTUFaVHxTRVpieoKx3HHH2hxOuOLoZmP5nqb5yVNf43K5uOm/Vxptc75dyIxPZwNgtrgjmE1Lt/LT29NbneOOtdnGdbdBGRx94Xh2Lkp76/4Pqa2qI2OnIK2+toGg4CD6HNIDgNxN+VQUV/r1OfSkQ0jOdAdx7sDvDYJDg7nxP1cYfd645z3qaxtanWdnpCBNRERERERERDqFypIqyovcoVJm/1TwLKP08g3SzGYzGZ4++VsKOOK8Mc2WWFZX1NBnZE/wBGSLpi7jiHMOIyE1zt3BpxLtvLtPN67f+dsnVJX573nmK2tdjnHtDcp2Xmm5YfEW/n7mM6T0TPZrd9gcOJ1O+o5qqqDbunIHO7v5haaqtHk/LKaytIqxp49i1IRh4Nn77bNnvmlxjp2VgjQRERERERER6RSy1uca195qspqKWqMtNinar3+v4e6qLqfTxeal2+jSI8nvef6WQi564Bzj/uMnJwFww7OX+/Xrd2hvrnnyYo65aDx4Ar33//F5i/Pc4TPPzP6pNDba/J57DyJYPmM1k1+d2uz9xvpG0vumGve5mwua9Rl/5mgS0tyBn8vp4vkb/ofJZOKm/15l7OH22b8mk7e1+budmYI0EREREREREekUfCu9vJv011XVG22xXWL9+g8+vL9xvXr2esaeNtLveeGOYkafPNyoGls1ax0LpixlkM97ALGJ0ZjNZq575jJjuei3rZyO6Z1neFQYCanxlOWV+T0/5sJxhEWGArDk5xXGtVdddT2pvbsa97mb8gJ+54Z/Ny3lnP31fGoqa8nsn8bZt58CgK3Bxv/++kHAdzsrBWkiIiIiIiIi0in47j3mXbZZX9MUpMWn+Adpg8Y3BWKrZq/j7DtO9Xvucrko2lHM5f8432h7/e73+ODRL/z6LZq2jPraepLSE5pOx3Q4efXO5qdjNtQ1ULCtyJijyWSiOLvUr8+YU0fyz2/vNw4UqKuu93teW1VHaq8uxn3ulsBVZcdcOJ64ru7f7HS6eOHG/wFw6d/PI65LDACzJs1nyS8rAr7fGSlIExEREREREZFOwW9pp6eKrL620WhLTI3365/Wu6ux3HPt3A106ZZEeHSYX5/cTfkcdcE4Bo7r5/7Guhymvvub+6FnSzWH3ckrt08E8Dsdc9lvq1n40zK/8bI35BnhmneOJTtVpA09aiDDjh7E37+421iG6auhpoEu3ZKMAw5yN+W3+De59ulLjeuZX8ylvraeiOhwrnnqEqP9rfs/bBb4dVYK0kRERERERESkU9jhWTIZGhFCUnoCePYT80r07BnmZTKZjGWa1eU1bF+TzcCxff365G4uwGQycbPPaZ0upzt0OvTkQ4y2nz+YSWN9I8GhwVz7dFNI9dETX/mFVH4HDXj2cSvYUWS0BYUGEd/VPc/DThvJfe/f1uwQhPqaBqxBVrp2d+/plre5oMUg7MTLjyLGExY6HU5euvVtAE64/Ch6j3DvEbdxyVYWTFka8P3ORkGaiIiIiIiIiHR4jQ028j1LHDP6pxnhk73RbvSJjI1s9t6gcT7LO2et4+RrjvN77q326je6N+POHG20B4UE8eBHtxMZFwGe0zRfv+s9AA4/ZwzdB2UAsGbOepbPWG28l7XO56CBAe4gbdOSbUZbdLz/HI/5v/Hc/uq1fm2/fPg7ACm93Puk1VbVGaeVBnLV4/9nXP/64R801jdiNpu5+G/nGu0fPf6lqtIUpImIiIiIiIhIZ1CwrRCnp1IsvW+K0W63OcBTfRaI34EDc9Zx+DljsFib4pT1Czca175Bk73RTnFuGZc+fJ7RNuWd6djtdsxms7FXGp6Qyitnc9PBAN6TN333dktM919+CnDaDSdiDW5a4vnda9P4aeJvpPZqOnAgb3PLyztPve6EpsDP7uDVO93LUMefNdoI/NbO28jS6ataHKOzUJAmIiIiIiIiIh1eeWFTRVZCSlMY5XQ6ATBbA0ckvUd0JzjUvan/6lnrMJvNDD1qkPF883L3yZtbV25n7reLjHaXy8Ub97zP2befYuyrZm+08+a9HwFw1AVjSevjDvSW/baaVbPXNZ9nqnsJZ6HP0k7fcMxXZGyE3/1/r3sNh91h3Oe0sk8awOWPXGBcT313Bo2NtmaB38dPfNXqGJ2BgjQRERERERER6fDKCyuM69hk94mUTqcTPEVk1qDmm/YDBAUH0e/Q3gDkbyuiOLeUa5+62HjeWG+jsdHGe498brRFxIYDsHDKUhZNXc6F951lPPvu9anY7XYsFgsXPXC20e4NqbzztFgtRMZGUFdTT2VptdEvKSMx4DzDo/wPQXA6XUz/+A/jviS3LMBbTc6+7RQiYtzztjfa+d89H8BOgd/yGatZNWttq+N0dArSRERERERERKTD8w/Sopu1BYUEtfju4PE++6T9sZa+o3r7nZb56u3vMPvrBQDEp8Rx8/NXG8/euOc9zrvrNEIjQgGw1dt49+HPADjukiOMAwEW/rSM9Ys2G3OKTY7GZDKxZs56I+wDjFNEdxbuCcEArMFW8Bw64FVTXtPanweAi32qz3588+eAgd9HnbwqTUGaiIiIiIiIiHR4vksmvRVpxdklRpt3+WYgw45uWso574fFACRlJBht096baVxf9MDZnHDZkcbpnjvW5vDj/37l/LtPM/p88+KPOJ1OrEFWLrzPJ6R6/Etjnt45+h5EABDXJSbgHH3nb2+0k9Iz2e95VVl1gLf8nXf36YRFegK/BjvvPPAx7BT4LZq6nHULNrY6TkemIE1EREREREREOryyAEs7S/KaljuGhIe0+O7QowYa+5zN/34JdpudPqN6GM9tDTbwhGunXHc8JpOJm/57pfH8/Uc+44xbTyIkLBiAhrpGPnzsCwBOvPJoEtPce7bN/XaRsa+Zd46Lf17hN5f4lLiAcwwK8g8Cx515qBGKAayZt+vwy2w2c/5fzzTuJ786NWDg9/GTk3Y5VkelIE1EREREREREOrzyoqYgLc6ztLM0v9xo8w2ddhYUHMShpxwCQHV5DSv/WEtsQvPKsHPuOJVgzxLR/of24fjLjgSgqqyGd//2KWfdforR94vnvsfpdBIcEsQFPuGVV2xyNPnbCtmwaLNfe0Jq81M7AawhVr/7NXPXc+cb1xv3W1dsZ+FPS1v8jV6X/O0cI1RsrGvkvX+4937bOfDLWp+zy7E6IgVpIiIiIiIiItLh+e6HFuPZZ6y8qGm5586b9e9s3Bmjjes53ywkYqdTMgFOuOIov/trnryY0Ah3KPXDm78w+IiBBHmWYNbX1PPpM98AcPK1xzU7dTM2KYbfv5jb7BveMGtnQcH+QdraeRsZfMQAv7YnL36BnE15rf5Os9nMOXc2BX5f/bcp8DvnjlON9ilv/drqOB2VgjQRERERERER6fC8e4+FR4UREuYOtyp9grSdg6ydHXrycONkzznfLjROuPTlPXDAKzEtgev/dZlx/+KNbzDhymOM+8+fnQxAaHgIx196pN+7sckx/P5l8yAtIrr5d2nhsISFPy4lLKqp0q66vIZHzn6Wuuq6Vn/rlY/9n7HnWkNtA1/8+1vwBIXev8HP78/E1mhrdZyOSEGaiIiIiIiIiHR4lcXu0Cw6MaqpraRpA/7IuMhW34+IiWDYMYMBKNxRTG1VbbM+X/z7u2Ztp914IoccPwSAouwS6qrqjDCqpryWRVOXAXDKdcft9KaL9Qv9l3WaTKYW5xe009JOPIFflOd3mS3uCGjb6iyevfpVXC5Xs/5eZrOZ0244wbj/5uWfwFMlN/7sQ8FTzTdn8qIWx+ioFKSJiIiIiIiISIdna7TDTqdb+p5kGR3fekUawPgzm5Z3rvpjXbPn2RtyKc0v82szmUzc/dZNxmEFv370Bz2HdTOev/fIZwD0GNKN5G5JRvuy6auajW+2thzj+FakeQ81WPrLSmPJqsViNubwx5fz+PTpb1r9rVf88/+M4K44u8TYE+2Ua483+vz41i+tjtERKUgTERERERERkQ7P6XCCT2UWnoowr2jPvmmtGXvGKON6w+ItxrXv8sm3H/y42XvJmUnc9N+rjPu8rQXG9fqFm6mvrQdg4GF9jPY18zY0G8ca1LzqzCvYJ0jznuxpa7TT6DlR1NZo5/4PbjfCsYkPfcKy35qHdV7hkWH0GdnTuH/r/o8AGH7sYLr2SAZgyc8r/H5LZ6AgTUREREREREQ6vEBBWq3PXmFxyc1P4dxZYloCfUf1As/eYV6HHDfEuP7jq3kB351w5dEcdtpIAKpKaggOcwdfLqeLjx+fBECPoU2VanVV7nCt28B0oy3Q8k3jWWiwcR3jEwpWlbqr7sxmE2NPH8Xlj1zg/q7Lxb+vfpXaqpb3S/P2BVj401KcTidms9mvKu2nt6e3+H5HpCBNRERERERERDo8b5Bm8QnSvG0A1uDmm/UHMs5neadX/zF9jKWVdVX1zP1+cbM+JpOJO9+4gag49xLSxrqmjfp/mjjdMzdLs/fGnDrSuDabW45xQnyWrIZFhRrLOGvKa9zven73xX87h6FHDQSgYHsRb9z9XotjjjnlEKPaztZgZ+q7MwA48cqjjfGmvvsbDrujxTE6GgVpIiIiIiIiItLhOezNK9J8l0o21jW2aZwjzj2sWZs1yMrok4Yb9x88+nnAdxNS4rjtleuatZcVVLBhyRa/YM/ryPObvhfouVdQWFNFmtPm5PBzxrivne5DBby/22w2c887NxMa4T659Me3fmXhT0tbHPfI88Ya1194ThlNSIlj7OnugK8kt4z5Py5p8f2ORkGaiIiIiIiIiHRoLpfLOKXSL0gLbqoAa6hrCPjuzsoLK5q1mS1mrn36EuN+05KtfstGfR194TiOOK95GPfOgx8HDMrMPid1thak+Vak2Ww2Tr7G/xRQ39+d0qMLN/z7CuP+uWtf8zt4wdfVT1xkXGetbzpM4WSf5Z1T3v61xXl1NArSRERERERERKRD8w2gWqpIa2hjRdrvX8xt1ma2mMnol0ZSRgJ4grsPH/0i4Psmk4nbX7mW2J32ZFs2fRUOu71Z/7nfNS0TdTpbCdJ8KtJsDXYGjetH5oA0v+/6OvX64xl54jDwVJW9eufEgOPGd40jvW+qcf/O3z4BYNSEYSSmxQOweOryVvda60gUpImIiIiIiIhIh+ZoIUgL8tkXzVZva/Ze83Ec/DFpfrN2m+dkzNNuPNFom/b+zBbHiU2K4c7Xr/cf2+5gxe9rm/WdPXmBcd1aRVpddb1xHRRixWQy+R0KYN9pHzOTycTdb91EREw4AL988Duzv1lAIBfce6Zx/ceX7sMULBaLsV+crdHOwp+WtTi3jkRBmoiIiIiIiIh0aC6fSi7fDfutIe2rSFs9ez2lee6ljTGJUUb7hkVbALjgr2cYQV1FUSVr529ocazxZx3KiVce7de2Zu564zoy1n0owZbl2402735ngZQXVxrXETHud4+/7Eijzd5gp7HBPyxMSk/g5uevMu6fv/F/VPiM4zXhyqONE0Nrq+qMwxR8D16Y++3CFufWkShIExEREREREZEOLSgkCLPZvbSxvsancivY57CBNlSk+S7rHDS+v3G9atZaXC4XVquVIYcPMNrfefCTVse77eVr6T4k07i3NTQt7Rxy5IBm/V2tBGmVxVXGtfdk0JjEaELC3Us+XS4XcwJUnJ1w+VGMPWMUePZ/e+HmN4395LzMZjOjJjQdpvDhY+5lq0OPGmhUtM3/YQl2W/OlqR2NgjQRERERERER6dDMZrMR+FSX1xrtQSE+SzsbWg/SfJd1BoUEMWBMH+NZcU4p6xZsAuDqJ5s251/x+5oWDx0ACA0P4fFv7/dbburV/9A+zdp2Drh8VZfXGNdR8U3VclZr04EKP77V/FAAk8nEna9fT1R8JHiWbs74bE6zftc9c6lxvXHxFupr6wkKDuLQU0YY3w+0NLWjUZAmIiIiIiIiIh1ehGepZI1P4BTsc9Jl4y6Wdvou6xw1YRg1lf4B2Y9v/gLAwLH9jIMEnA4nL93ydqvjdumWxMUPntOsPTQihNReXfzaWqtIq/EJCGOSosGz75rvPJf+upLczfnN3o3vGscdr15n3L9061uUeH6rV0a/NBLTmw5T+OCxLwEYd4bP8s7JHX95p4I0EREREREREenwvHuOVZXVGJVdfkHaLirSfJd1HnneWCqK/PcSm/HpbKMq7KrH/89o/+2TWTTWtx7SHXvx4c3asjfkMu7MQ/3aXLQcpNX6BGbe/dsqS6qa9fMGfjs76oJxHHXBWACqSqt5/a53m/U57cYTjOupE38DYPTJI7AGuaveZk9e0GrVXEegIE1EREREREREOrzIWPfSTofdQX1tA+wUpLW2tNPpdPot6xx7xijKiyr8+tTXNvDNS1MAOOXa442lkg67g1fumNjq3L59dWqztukfz2L4sYP9G1vJqOp8lpDGd40FoNwn7DN59oj77vVpfstAfd328rVGCDfjszmsnrPe7/n59/gfprBh0SYiosONeRZllbB52bZWf+vBTkGaiIiIiIiIiHR43qWd+CzvDAoNNtpsjS1vlL9tVZaxrHPkCUOJiA6nvLApSPOGS5Ne+IHaKnegdcUjFxjPp737G42NgYO6soJyfnp7erP2mopavn7xB7/TQVvjDQcBElLjwHN4gFePwe5DDWor64zAb2cxidFc8VhTNd1rf5mI0+fE0+DgIAb7HLLw1gMfA/hVzs0OcKBBR6IgTUREREREREQ6vMiYpiDNe+BAiE9Fmr2h5SBt+YzVxvWI44YAUF7orvaKio80lmZWlVbz3WvTADjz1pONAw7sNgdv3P1+wLE/ffobIwQLiwz1e7Z42griU+L82uz2wPP0PXU0MS3Bb44AY049JGDgt7NTrj2O7oMzAFi/cDO/fvSH3/Orn/A5TGHmaux2u3HqJ8C87xcHHLejUJAmIiIiIiIiIh2ed2knPidcBvtUpNlbqUhbPrMpSBt61EDwqfaKTY7hogfOwWRyL5388j/fGcHYJQ+da7w35a1fmoVgxTklfPe6O3gLCQvm3LtObfbtrSt3+N031Abeb813aWpc1xi/OQJkDkjnuEuOAE/gF2g5KYDFauGm/15l3L/9wEfU1dQb94PG9/dZturk6xd+JDE1nl7DuwOwedk2aioCLx3tCBSkiYiIiIiIiEiHFxkXaVx7N+EPDvNZ2mkLHKQ5nU5WzFwDQFRcBD2HdqOhroG6ane4FJscTWb/NI48/zDwhFdT3voVgHP/chphUe4qM1uDnbfu/8hv7I+f/NoIwM64eQKXPnz+Ln+H97s78w0CrVarMRcvd+B3thH4feUT+O3skOOGGFVmJbllfP6vyX7PT7jsSON68ss/ATBoXD/wnOi5Zt7GXf6Og5WCNBERERERERHp8JIyEozrgm1FAISENwVpjkZHwPe2rcqiqrQagCFHDsRsNvud2Bmb7K7+uvjBpuqzz5+dTGODDbPZzIV/PdNo/+7VqUZVWsH2Iqa85T5BMzQihAvuPROLxeI3p+gA+6NVlVUHnKfD4d7LzLt8k2ZBWjQZ/dI46sJx7mdFlfz4v8AneAJc/+zlxmmcnz87mcIdRcazyx+90AjkCrYXkbe1gMGHDzCer569rsVxD3YK0kRERERERESkw0vt1dW4zt2UD57llF72FirSvNVoAMOOGgRAUXap0RbnCdJ6Du3GuDNHA1CcU8q0d2cAcNGD5xAaEQKefcze//vnAHz0+FfYbe7w7uzbTyE2yT2Od4kkQFVJFWNOO8RvPrM9p4fuzOV0H+lpsVqMtqIcn3l2cZ/kefEDZxttn/97Mo31gZeKpvdJ4cxbTzbm/dYDTdV0EdHh9BzWzbh/58GPGTS+n3GvIE1ERERERERE5CCW2tsnSNviCdLCQ4w2b6i1M7/90Y5274+WtS7HaEvvm2pcX/y3pqq0z575GrvNjtls5pw7TzPaJ734A1kbcpj67m8AhEeHcd7dpxvPew3rYVy7XHD4WWOwWJvim0+e+obsDbl+c6ytbjo4ICjYalx75xkeFUZ8V3eQ1mNIN8af7T5lsyS3jKkTfwv4uwEuffg8ohPcVXG/fTKb1XPWG898K+2W/rqS5IxEkjMTAVg3f1OLweTBTkGaiIiIiIiIiHR48V1jCfUEZ0ZFms8yykCnYQbaHw1gx9pso0/mgDTjut+oXow+aTgA+duKmPbeTACuePQCYz+2htpGHr/wvzg9SzHP+8vpRMc3LeFM8wn8AH796A9j+ShAY30j957wmN9SyxKfyrMgz0mkDXUNxhLWjP6pxlJMgIsfPMe4/vSZb2ioC7xXWmRsBFc+dqFx//pd7+J0uud91IXjjGWkFcVVlBdXGlVp9bUNbF62LeCYBzsFaSIiIiIiIiLS4ZlMJlJ6dQEgf2shDofDCNYAHAEq0ravzjIOJvDujwaQtb6pIiyjf5rfO5c8dJ5xPfGhT6ipqMFsNnPmLScZ7VuWbwcgKj6Sc+48xe/91J2CtHULNhEWGerXVpRVwr0n/JOygnLwLCX18oaDORvzcblcAefYd2QvDj1lBACFO4r58rnvA/7NAE657ni6D8ow5jL941kAmM1m0vukGP0mvzSFweN990lbH2C0g5+CNBERERERERHpFLwhld3moCirhNDIMOOZw+5s1n95gP3RAHZ4lkyGRoSQmBbv986gcf044rymEzw/eOxLAK5+8iKCQoL8+l5wzxlExET4z9ET9nnV19Qb+5/5ytmYx/0THqeqrJrS/HKjPSzCHbr5Vs1l9Etr9v51z1xmVJR98tQkCrOKm/XBs+fajf+5wrh/+4GPjAq28WcdarT/8dU8v33SVs3pmPukKUgTERERERERkU4htWdTSJW7KZ+wiKaKNKejeUWat3IMoP9hfcCztDJ/SwEAGf1SjSo1Xzc8eznBniWW37w0he1rs7FarYw4bojRx2SCM287udm7KT27+C3DJMBJnZFx7vBty4rt/O3UJ/2WeYZ6qtey1rVcNQfQfVCGUSXXUNfIm/d+0KyP18gThnHYaSPBU/02daL7IIWzbm+af9b6XDIHphMe7Q4nV89aZ1TEdSQK0kRERERERESkU0jt3bQUMWdTPqERTUsmA1WkbV+TZVx3G5huvOf0VIhlDkgP+J0u3ZL4v/vO9ozr4LW/vEttVS2bl201+rhcMOWtX5u9GxwaTGK6f5VbbVW93/2IYwcb+6atnbeR79/42XgWER0OwI71TQci+O7j5uvyRy4gJtG9P9uMz+b4Haywsyt89kr7/NnJ2G124rvGERUfCYDT4WTBj0sZOLYvAKX55eRvLWxxvIOVgjQRERERERER6RR89x/LWpdDXNemTfwbav033He5XGxb7Q7SkjMTjYDK98TOQEsmvS649wy6dEsCYPG05fzripcpyS3z6/PBY18EfHfnAwfsjf4HIRRsL+bpqQ8RGeuuTCvc3rQs01ut5p2n2WJutlzU6BsbwdVPXmLcv3rHRBz2wKeX9h7eg9Enj/B8v4jfPpkNwNAjBxp9fnzzZ/of2se437pyR8CxDmYK0kRERERERESkU+g9vLtxvX7hJqxWq7FPmK3BP6wqzimltrIOgG6ezfYBdqz1CdL6p7b4rZCwEG749+XG/exvFgJgCbJgsbq/WV1W41dN5tVreI9Wf0fWuhx6Du3GEz88QKjP8lT3d4NwOp1kew5ESO3VhaDgoBZGgglXHU2fkT3Bs1T0xzd/abHvxQ+cbVx/8vTXOJ1OTrvpRKNt9ez1flV6vvu0dRQK0kRERERERESkU4hOiCLNc9LkxiVbaWywGSd3ulwuKkurjL7eajSA7gPTfdqbqqwC7T3m6/BzxjD82MF+bRc/cA7HXXqkcf/uw580e2/AYX1bHbeuup7inFIGju3HMz//HYvVYjyb8+0ilk5fRUNdY5vmaLFYuOWFq437iQ9/apxUurPBhw9gyBHukzmz1uUw+5uFjDphGJYg9/drKmqJiGk6wGGHT/VeR6EgTUREREREREQ6jf5jegNga7CxZfk2ImLDjWebljbtYbZtlc/+aD4VaWvmbgAgNDyEzF2EVCaTqdkBA8decji3vXyNUQlXUVzFtPd+83tvgGeOrfFWew08rK9fZVxNeS2Pnfuscd93ZK9djjVoXD+Ov8wd7lWVVvPu3z9rse9FvlVpT03C5XLR3efvs2DKMuOwBFWkiYiIiIiIiIgcxAaMaar2Wjd/k7FpPzvt6bXdtyJtcCYAhVnFFGWVgCeQ860EC6SqrJqvX/jRuHe54LW/vEtIWAhHXzjOaH/zvo/83kvKSCQ+Ja7VsX2XmHqrz7x8DycYOK5fq+N4XfPUJYR5Tvz8/vVprPxjbcB+oyYMp/cI99LTjYu3sPjnFRx5/ljj+cKfltKlu3tvuKx1uR3u5E4FaSIiIiIiIiLSafQf07QZ/tr5G0hMazohc+vKHSycuoxVs9aycclmo9176uVaTzUawMCxuw6oJv7tE8oLKwAICnHvU7bgx6X88L9fuP3V64yqtPLCCr78z3fGeyaTaZdVab7VXlWl1cZ1v9H+FWiF29t2cmZiajyX/eMC8Cxz/deVL1NbVdesn8lkalaVduYtJxn3eZsLjAq52qo6SnJL2/T9g4WCNBERERERERHpNHoOzSQ41B1qLZu+ivytTUHT7G8W8ODJT/CXI//OlhWe6jQTXD/0bp675lVW/L7G6DtofP9Wv7No2nK+e30aAKERIdzx2nXGszfufo/ywgpOuPwoo23iQ5/Q2Ggz7vuPaX2fNN/9x+qqmyrQHpt8n1+/5659na/++32rY3mdc+cpDD7c/bvytxby2l/eDdhv/NmHktHPHZatmLmGrSt3ENc1FjwhnMvpM8+1HWufNAVpIiIiIiIiItIplBWU89M7vxEcFgxAaX6533LOhpqG5i+53KHSTxN/Y8kvK43mAYf1ad7Xo6K4kmevfNm4v/qJi5lw5TGcev0JANTXNvDM5S9x2yvXEOKZS2O9jeevfwOXy8VP7/zKmnnrW/0tWZ4gzW6347A5wFP1ZgSAPl6/+z3evPcDnE5ns2e+LBYL9753q7HE86d3pjNn8sKA/S687yzj/tOnv+YQn73gfMNJBWkiIiIiIiIiIgeZ/G2FXD3gTl68+U2qy2oC9rEEt7znWWRcBDmb8gDoNjCdqLjIgP1cLhf/ue51SvPLARg1YRhn3XYyADf8+zJSe3cFYO28jXz57++55ulLjHd/fn8mZ0RfxnPXvs7cyYta/T1lBRVUlVWTtS7XaAuPDmPNnKYA7vBzxhjXn//7W565/CXqawOEhT5SenThZp9TPP97/euUFZQ363fsxYeTlJEAwPwfljDyxKHGs8IdRcZ1Rzu5U0GaiIiIiIiIiHR4RVklVJcHDtC8nPaWN8Y/+epjcTndzwe1soH/lLd+Naq4YhKjuOedW4xTLMMiw7jv/dswm933Hzz2BQPH9iOua9OBB/WBquJasGNtDhsXN+3lFpsUzeo564z7G5+7wr0Xm+d70z+exe1jHyR7Q27A8bwmXHk0488aDUB5USX/uf51XC4X29dk8cek+dhtdoKCg7jgnjONdxb8uNRYMttY37RENWtdxzq5U0GaiIiIiIiIiHR4gw/vz3GXHNFqH1ujjUOOH9KsfdD4fkTERBj3LZ2Emb0h129fsbvevImEnU7fHHhYXy564BwAHHYHD5z0OGX5Fe3+Pd7vbVvVdLpoQlo8a+dtBCAxLZ7kzEROv/FEHv7ibkIjQsBzoMIto+/n9y/ntjiuyWTizjduME40nffdYp64+HmuH3YPj533b758zn0wwknXHEtsUjQAv385j8yB6cYY3lAte0Pebv22A5WCNBERERERERHp8EwmE/e8czOHnT6yxT4up4tjdwrbzBYzd7x2vd+eZYEq0uw2O09d+qKxdPLU645n3JmjA37n0r+fR5+RPWGnEzfbqzi7lOyNTUFVZEy4cfDAwHH9jEq4w88ew8vznzJOH62tquOfF/yH1+96F7vNHnDs2KQY7nrzRuN+5mdzcDrce6zN/c697DQ0PIRTb3Dv++Z0OInvEmv09/YtzSvDYXfs9m880ChIExEREREREZFOwRpk5eHP7mLY0YP8H5iaLrtmJmENthr3p15/PGl9Ulgx031iZ1yXGNL6pDQb+/1HPmfDIvcyy/S+KdzwnytanIfFauHQUw7Z5Xy9QVhLirJLKNpRYtzbbE2B1ZDDB/j17TYwg5fnP8UxF4032r56/gfuPuYRinNKCKTvqF7EJkc3a9+4eAuNDe7lm6defwJmizte2rR0q9HH7pmL0+ky9ovrCBSkiYiIiIiIiEinERwazGOT7yOjf5rRZrE2HTKwfV0OY051h1wh4SFc96/LWD17nbF32cgThzULuFb8voZPn/7GGOuBj+4gLCK0xTl88OgXfPTPL3c515Reya0+L8ktpaywKaQqyio2rkdNGNasf1hkGA98eAe3vXwt1iD3b14zZz03HXIvS35Z4de3NL+MW0bfR3lhZbNxbI12IzRLSk9grKfKrzS/nOjEqGb9i7IDB3UHIwVpIiIiIiIiItKphEeF8dyMR4iIDQegS7dEQmIjSDmsP/kuM+e+fAP3zXqSZ9e9RL3ZwqKpy413R08Y7jdWRXElz1z+Ei6X+yCCKx69kL4je7X6/e/fmNameVYWV3Hhfe4N/cMiQzFZzMT2SqHHKaPof9GRBA3sRpdjhpEypi/BMeFsXbEdgK49kgNWzeGpcjvj5gn8949/kpyZCJ4DBe6f8DgfPf4VTqcTu83Os1e9SkluWYtz8z0d9PSbJhjXQcFWgmPCSRnTl77nH87AS49hc2UDm4trKKttxOlq+UCHg4HJ5TrIf8FuqKysJCYmhoqKCqKjm5coioiIiIiIiEjHV9VgY21OBau3l2KOCmuxn6PBRt789WycNJf/TrqLuGT3XmAOh4MHT36CJb+sBGDIkQN49td/YLFYWhwL4Ps3fuaNu98z9lNrSXBoEN/VfMTWwkq2lDewo6gKa2hwy78nu5itUxbTPSqY2/59+S5+PVSWVPH05S+xcMpSo230ySPoPbw7nzz1davvHnLcEJ75+e8AOJ1Obhz3EFHDetLj5JFEpSe2+J7FbKJrZAj9kiNJiwnFvIvlqwcaBWkK0kREREREREQ6lTqbg4VZ5WwrraW9oUhUiJVR6bFkxoXx9oMf8+nT7sApNjmG1xY/Q2JaQpvGqSyp4rvXpzH55SmUFfif2hkaEUJjvY1r3r8D86Du1DS2c7N+l4ueiRGMTo8lNKj1UM/pdPLJk1/z3j8+o6WIaODYvqyZu8GvLSjEyo91n1Bvc7Aou5zNxTXQzlAsItjCqPRYuseHt+u9/UlBmoI0ERERERERkU5jS0kNC3aU0+A5VXJ3RdbU8s5ZT9JYUYvZYuZfv/ydYUcNasOb/hrrG5n+8Sze+8dnFOeUAnD9C1eTdMpotpfV/ak5hlrNHNYtjm5xuw6qlvyygicvfp6K4qpmz3oO7cb9H9zOVy98z7SJM3C5XIRFhfLStjeYt72Mevuf+1t2iwtjTGYcYbsI/Q4ECtIUpImIiIiIiIh0eC6XiyU5FazKbx4U7a6qrGJ+ufU1LrvnDM79y2l/aiyn08m092ZQ7zJhH9Wv/VVorRiWEs2w1OhdngL64T+/4L1/fB7w2e2vXMvpN02gYEcx378+jd4XHsE22x6bIhHBFk7sm0R0aNCeG3QvUJCmIE1ERERERESkQ3O5XCzOrmB1wZ4L0bzslTVcOL4XkSGBAyCn08mHj33JT+9M58L7zuLMW05qcayqBjtT1hVSZ9tzIZrX0JRoRqTFtPi8oriSS7vf3OK+bcGhQXyw5RXiu8axLKeC5XnNT/P8s8KCLJzcP5moEOseH3tP0amdIiIiIiIiItKhbS6p3SshGoA1OoLfNpfgdDavU7I12vjXFS/zwWNfUJRdwlv3f4itsXkZl8PhIG97IT8uz94rIRrAirxK1uwoafF5/raiVg8/aKy38dy1r7O1tHavhGh49q6bvrEIR4C/5YHiwI34RERERERERET+pJpGOwuyyvbqN0prbazMr2RYalPFV21VHY+e+6xxoidAfU0D7z/yBcGhQRRsK6JgeyH524ooyiphyPUnMfjK4/bqPP/YUMjjxz1CUnI0aX1TSO+TSnrfFNL6pJDRP5Wb/nMli6YtoyirhMKsYmor/fdoi0iOYf6Ovfu3LK+3szy3gkPSY/fqd3aXlnZqaaeIiIiIiIhIhzV9UxFZ5fVcPCKNktpGAFbmVZFbWQ9AcmQwJ/fvwqfLcmj4E5vmm01w+sCuxIYFUZpfxoMnP8Hm5dvb9G5cn1ROfv8uLh2V0WyOiRHBjEiLwQTkVNT/6cq6bdOWMuuhDwI+S0pPIK1vCv1H92bIkQPpPjiD2so6Ni3dSm1lLdEnjmR7ufvvFujvOSYzlvjwYEzA4pwKCqparnBrjQk4bWAX4sOD/8Qv3TtUkSYiIiIiIiIiHVJ5nY0sT/BT3ehg6vqiZn0GdomiuKbxT3/L6YK1BVWk1tZyy+j7aKhr25hRcREceutpmC3mZnM0m9wHBUzfVLzHljt2O344S1/5npq85pVlRdklFGWXsGz6Kj595hvMZhO9hndnyBED6X/MYCNEI8DfMyrESkxoEFPWFRIeZOHInvH8FODv3RYuYHVBFUf0SNjNX7n3KEgTERERERERkQ5pQ1G1cR0RZOGkfknUNDpYsKOcBoeT9JhQCqsbyIjdM1vIbymtZcaLk1sP0Uxw73u30mtod7p0S8QSHsoXK3JxuprPMTYsCLvTxdG9EjBjYlF2OWV1f+6oTJPZxAOzniSxsprsDXnkbMwje2MuORvyyN6QR2VJU8Wb0+li45KtbFyyleF2GHxFF+PZznOttzmwO12YgGCrmfp2VvedOagri7PLya5wh3XbSmsZnR5LaJDlT/3ePU1BmoiIiIiIiIh0OC6Xi80ltcb9pJV5NDic9E6IYERaDPN2lNEvOZLfNhWTERvm9+6EfkkkRYTg9NkNa3F2Bet9grlA7E4X426cwKwv5tDYUpjmgtjEaHoO7QbAusIqvMVmO8+xoLqB2LAgflhbQESwhbHd4vlpfaExVHJkMENSokmKCMEEVDfa2VJay9qCpjED2V7ZwKFDu9FrWPdmz0ryylg1ax0rf1/Dyj/WsnXlDlwuFz1PGeXXL9Dfs6bRztmDU7CYTfy2udjv75kcGcL3awqMIDDIYuLiEel8uSKXmkYHk1fn+43vdMG2slr6J0e1+jff1w66IO2pp55i0qRJrFu3jrCwMMaNG8czzzxDv3799vfUREREREREROQAUdlgp9HRVBXV4LneWlZL36QIesaHk1Ve12LgtDi7nLWFrQdngQSnxPNDzUcU55aycfEWNi7ewobFm9m4eAul+eVExUeS0T/N6F/ks6x05znuKK+jsLoBu9NFRb2dYIvJ6JseE8qRPRNYmlPBrK2lNNidRIdaGdI1mrAgCzWNLZ/+WWdzUmtzEBHcPBZKSInjqPPHctT5YwGoLK1i2dyNbE2K8eu381xTo0MIsVqYtCqPsCAzx/VO4vu1BUb/RruTQ9Ji+HVTMW21J5bc7mkHXZA2c+ZMbrnlFkaPHo3dbudvf/sbJ554ImvWrCEiImJ/T09EREREREREDgAlPiGM1WzC4XThArpGhlDZYCc2LIiEiGAyY8OICwviyB4J/Lxx13t6Wc0mRqbHkB4ThsVsIreinvlZZdgcLr/vJqbGk5gaz9jTmyq5ygorCI8KJSQspNk8A82xuKaBoSnuiqxQqxmHT+h3aGYcq/Kr/MK+yno7s7eVGvehVjNjMuPoGhWC3eliS2kty3IqcHm+GyhI21l0fBTdxvVn6+aSVv+eYDIOa7A5XFjNJr9x1hdV0z85ii6RIRRUNz+E4NwhKSzIKiervOmkUAVpe8BPP/3kdz9x4kSSk5NZvHgxRx555H6bl4iIiIiIiIgcOCrq7cZ1dKiVcd3isTudOFwwZ1upX8XWhH5J/L61pIWR/I3vHo/T5eLbNfm4XDCuWxxjMuOYtbW02Xd3FpfsX9Xlcrmo9PQPNMdGh4tNxbWc1C8ZswkWZZW7+4ZYiQqxsrW0ptW5HtkzgTqbg69W5hFiNXN8nyTsDicr86tanefOKnfqG2iutY0OeiaEc1K/ZCxmE8vzKv3eabA7WZVfySHpMUxZV0hbVNbbcblcmEymNvTeNw66IG1nFRUVAMTHx7fYp6GhgYaGprSzsrKyxb4iIiIiIiIicvCz+6zZLK21+S0z3Fmg0zwPSY9heGpT8PXFilwsZhOZcWF8tizXqEBbmlvJmYO6MntrKS7Pd9sa/jhd7hMqW5vjppIaNpX4B2YhQe7DEVpbvhkeZCElOpTPluVgd7qwNzpYkVfJsNRoVuZX+f19dmXnvi3N1RsmtmRtQTUDkiPJiA0jv6q+1b54Tu90usBy4ORoB3eQ5nK5uOuuuzj88MMZPHhwi/2eeuopHn300X06NxERERERERHZf8x/MnxZkl3RbI+0mNAgzCYT5w5JadY/LMhCrc2ByUSbK6h2t9CqweZeQhkRbKGqIXCYFh5swe50+p2eWdVgJ8JzCmZ7vr2nciyHy8Wy3EoOSYvhp3XNl3cG/PYBFKJxsAdpt956KytWrGDWrFmt9nvggQe46667jPvKykoyMjL2wQxFREREREREZH8Itpj3+Jg1jXacLhefr8jF0UJFV0g7vms2mbCaTe2qDsNzkEJVg53u8eGszKsK2Ke20YHVbCbUajbCtKgQKzU2R7vnGWLdc3/LTcU1DOoSRa/E8F32tZpNmA+wJG3P/1+1j9x22218++23/Pbbb6Snp7faNyQkhOjoaL9/IiIiIiIiItJxxYcH7fEx6+1OssrrGJMZa4RLoVYzmbFhPt8N3ifzXLCjjCFdo+mfHGmEYtEhVsZ1iyMi2F0dl1dZz6iMWKxmExHBFoZ0jWKzZ5mo7zzztxXy6dNfM/Xd39i6cjsOu3+VW9we/Fu6gCU5FQzpuutspr1/y33hoKtIc7lc3HbbbXz99dfMmDGDHj167O8piYiIiIiIiMgBJmEvhTCztpYyPDWGUwd0IcRqpt7mYFtpLTs8p00u/GwWm8sqGHLkQIYcMYDohKhdzrOwuv2nU2ZX1PPLxiKGpkQzwrOXW3WjnS0ltdR5qs5+31LCmMw4zh2SgsPlYktJLavy3RVsvgHev69+leUzVhv3IWHB9BzWjfR+qSSkxHP6rSe1e36t2VFex+CuUYR6lpm2JDFiz4ehf5bJ5XK1r35wP7v55pv5+OOPmTx5Mv369TPaY2JiCAsLa/Vdr8rKSmJiYqioqFB1moiIiIiIiEgH9e3qfMrqbPv0m7/c8hr5Czca990HZTDkiAH0O7Q3Gf1SSe+b6heuZZXXMX1T8T6dY2JEMKcO6GLc33PsI35B2s4iYsK5bs6/KK5pf+D3ZxzbO5GM2LZlPfvKQRektbRh38SJE7nyyivbNIaCNBEREREREZGOb11hNfN3lO2z79Xll/HVmY/DLqKWqLgI0vqmkt43hbS+qXDcITis+27RYEZ9HbZNORRsKyJ/eyErZq6hYFvzk0u9gkODeWHH/5i9rfVTOfekiGAL5wxJOeD2SDvogrQ9QUGaiIiIiIiISMdnczj5YnkutnZu5r+7RqXHkhEMq2atY+Xva1n5xxo2LtmK0+Fs9b3BVx3P8JtO2SdzbKioYdJpj+FoaFulXlhkKI9Nvo/BRw3ky+V5NOzit+wpI1JjGJp64GU2B90eaSIiIiIiIiIibRFkMTM0JZrFORV7/VuRIRZ++NuHrJi+kj6H9KDX8B6cftMEohOiqCiupLKoivxthWRvzCNnYx6FO5qWc67/fBZ9zhlLRJe4vT7PFW9ODRiimUwmdq61yuiXylM/PUSXbkkADEuNZkFW+V6fY3iQhf7JkXv9O7tDFWmqSBMRERERERHpsJwuF1PWFe71/b0OjQvm9j63tvg8ODSI21+9jglXHgNAfW0DeZvzyd6QR/aGPArrbcSePnavzrFyQw6lk2bRpVsSXbsn06V7El27J5HcLYn/Xv86Mz+fa/QdOLYv//z2fr/93FwuF1PXF1FQ3bBX53l8n0TSYg6svdG8FKQpSBMRERERERHp0CrqbPywrgCbY+9EIIO6RDEiNYozoy+noa7lwG7MqYfw+HcPtPh83vYy1hdV75U5hljMnDKgC9GhgRcnTv/4D5669EUAxp4xigc/vpPQ8JBm/aoa7Hy/poDGvbTEs39yJGMy935l3u7S0k4RERERERER6dBiwoKwzVyBbUQfgiJC9+jYvRLCGZkeg8lk4v4Pb+fRc//dYt+Trj621bH6BLv47fdVpB45eI/OMchi4rg+iS2GaADHXHQ4VWU1mC1mTrn2OCxWS8B+USFWXHNX0TiwB8GRe7ZqrHt8OKMzYvfomHuaeX9PQERERERERERkb5r3/WI+vGsiv9zyOnXFlXts3O7hFt46+VFuHPFXVs9dz/izDmX0ySMC9o1JjGLAYX1bHMtus/PERc/z270TWf/l7D02x/AgC3XTFnFrv9t49S8TqauuC9jPZDJx5i0ncfqNJ7YYogEs/nk5793+Nj/f+Co1BXvuRNR+SREc0SP+gDulc2cK0kRERERERESkw8rZlMfTl7mXLJas2UHsmq30jA//U2NGBFs4vk8S8/81iZwNeWxZsZ07xz/EX497lHFnjMIa1DyIqiiu4uaR97J85uqAY75574es/H0tLqeLrR/9xqGJYYQF/bnYpkdsKKPCXHzx8CeU5pXx9Qs/8n/pN/D2Ax9RnFva7vEKthfx5MUv4HS6KNuQQ+SyTfROiPhTcwwLMnNc70QO63bgh2hojzTtkSYiIiIiIiLSUdXXNnD72AfZunIHAEecO4aHP78bk8lETkUd0+dvwRnf9lygtqiC4T2TGNk7iWCLmW9ensIrt7/TrF9UfCRVpU17nUXGRVBdVgOA2Wziqicu5sJ7z8TkCY5mfDabJy56HgBrkIXnZj7GwMP60mB3sjq/goVr8giNj2r2nZakxYSSGWrhlm43AGAywc7pjzXIwjEXH875d59Bj8GZuxyzscHGnYc/xMbFW8Cz39tjk+/DbDaTV1nP9AVbsEVHYDK3LfwLCzLTJzGSgV2iCLEePHVeB89MRURERERERETa4X9//cAI0TL6p3HPO7cY4VVaTBir/v0Vk899kuX/+4kEC4TuFOg4Gu2UrNnBlu8WMPPeiXx9xj/Z8MkMgi3ufoefMybgd31DtDGnHsLba55nxHFDAHA6Xbz9wEf84+x/UV1eQ/62Qv57wxtG/5tfuJqBniWgIVYz4bnFTDrtMX5/4D12TF1MydosHDa73/dqiyrI/n0VBVMXU/bxdCLXbydrVlPlW6ASKrvNwc/vzeSWUfexbsHGXf4tJ/7tEyNES+3Vhfvevw2zJzRLiQ5l3UvfMvmcJ1n2+o/E4WxWTeew2SlZm8WmyfOIzy0k/80pDIgPPahCNFSRpoo0ERERERERkY5o3veLefiMpwEICQvmlUXP0G1AuvG8rqaecxOuwtZoJzkzkQ+3vkpxdjHP3fA/crYUUpJbir2uEddOp1NarBa+rXyf4NBgAC7pfhOFO4oDziE5M5F3N7xIUHAQDoeDDx79go8e/8p4ntIzmfDocDYv2wbAcZccwX3v32aEfQAfPPYF7z/yOQCJ6QkUZ5dgsphJ6plMRWEVjkYbds9JoWaLGadnvre8dBWv3DaxTX+rhz79C0ddMK7F50t+WcF9J/4TgKBgKy/Nf4pew7obz22NNs5JuIr6mgZik2P4LPd/VBZX8vTVr9H30N5c+uC5nBN3OQ01DX7jpvVJ4c2VzxEUHNSmeR4IDq7YT0RERERERERkF8oKynnumleN+xueu8IvRANYMXMNtkZ3ZdfoCcMB+Ovxj7H4p2Xkb8jFVl3fLEQDcNgdPHjKkzid7mcDxwY+QCC+ayx///IeIySyWCxc+dj/8cQPDxIVHwlA3pZCI0Tr0i2R216+xi9EA1g0bblxbW+0AeByOCncmE9DRY0RogFGiAbwxt0ftOlvddJVx3D4uYEr6wAqS6r415UvG/fXPHWJX4gGsHr2euo9IdmoCcMwm8389fh/svjHJXzyyOesm7uO0PCQZmPnbMzjmctfwuFwtGmuBwIFaSIiIiIiIiLSYbhcLv59zauUF7lP5zzs9JGcdsMJzfot+XmFcT1ywnBmf7OAnI35bfrG8hmree3Od3G5XC2exHnJQ+fRb1SvZu2HnjyC1xb/i8yB/sFet4EZWIKsfm01lbWsm7cBgMwBadRV1bdpfgD2Rvsu+8R1jeXWl6/BYgl8SqfL5eL5G9+gJNd9Ouchxw/h7DtOadZvsc/fctSJw1n401K2rdphtP309nRiEgLv8Tbz87m8cOObHCwLJhWkiYiIiIiIiEiH8d1r01jw41IAYpNjuOvNm5pVeQGsnrPOuO47smfAQwNa883LU3jvH5+1WJE28aFPKM4pCfgsOiESW4PNr23BlKXcMe5vZG/MM9rWzd+I0+kOmIYdPZgGn+qzPaEsv5yJf/ukxedT353BH1/NB88BCn9991ZjXzRfvn/L/of14cVb3vJ7PvfbRcQmx7T4nSlv/8r//vrBQRGmKUgTERERERERkQ5h+5os3rjnPeP+rxNvIS5AgFNf28Cmpe4llZkD0vj6hR8ozikNOKY12BqwHeCjx79i64odjDn1EMKjw7jxuSs46kL3XmPV5TU8e/WrxhJQX6/95T3yNheAZ+P+0Aj3ssctK7Zz66H3s+L3NQCsmbPBeCcpM7HNf4ddOfeuUwkKcS85/er5H1jy68pmfXI25fHK7W8b93e9eSOJqfHN+tltdtYv2ARA1+5JTH1nOvlbC/36VJfX4NxFSPblf77j21en7vZv2lcUpImIiIiIiIjIQa+xwcZTl75IY7270uvMW07i0JNHBOy7YdFmHHb3vlzpfVP5+sUfWxw3Ki6i1e/O+GIOj3/3AJNKJnLuX07j9leuJTHNHTgt+XkF377iHw7N+no+U97+FYDQiBCenPI3Xl7wNJkD0gCoqajl/gmPM+vr+azyqfSaNWluG/8Su1Zf3cA1T15s3P/7qleoLq8x7u02O09f9pKx79lJVx/L4WcH3kdt87Jtxt+826AMvvj3twH7FWcHrs7zNeOz2e3+LfuagjQREREREREROei99/Cnxsb93Qamc92/Lm2x75o5643r/K2FxvLJQAItC/WKiAnnovvPBs9hAgDR8VHc887NRp837/uAHetyACjOLeU/171uPLvlhatJ651CtwHpvDz/KUZ7gj9bg41/nv8cK39fC0BMYhQbFm5pw18hsOiESM6/53Tj/se3fuXoi8Yx/JhBABRll/CyT/XZR49/xbr5GwFI7d2Vm5+/ssWxV/v8LYtzSrHbAh8csHOV2s66dEvi4r+d245ftX8oSBMRERERERGRg9rKP9byxXPfARAUbOX+D28nJKz5KZFevuGPd1llS6rKq1t8Zrc56DEks1n7yBOGcdZtJwPQWG/j6ctexNZo4z/XvkZVqXu8I84dw4SrjjHeCYsM47Fv7uWEK44CwOl0GfuodQ/wjbbo0j2JyRXv81XRRK7/1+XEdXEvc3U5XTxx4fP8deItRMSEA/Drh38w8/M5rFuwkY+f+AoAs8XMAx/eTlhkWIvf8P1bhke33G9nvvnkjc9dwQdbXjFOTz2QKUgTERERERERkYOW3WbnxZubTn286omL6T28R4v9XS6XEf5EJ0Tx6Df3cssLVzN4fH+jT3JmorE3mq3eTkJaXMCxGmobWlwWeu3Tl5DR371cc+PiLTx1yQss/GkZAAmpcdz5+g3Nqt2sQVb++s4tXHjvmX7ttnob3Ydk+LUFhwYZS0h35h23aEcxJnPTN+5991bjeuUfayktqOC2l6812p6/8Q3+c93rRoXe5f+4gP6H9gn4Dbx/y9nu5adhkaE8/Pld3PrSNQw9apDRJykjgbguMfQb3XSCqdli5t73bzPuS3JLW638O5AoSBMRERERERGRg9bXL/zIttVZAPQb3Ytz7jyl1f7ZG3KNqrCB4/oSmxTDWbedTGJGgtHnyR8f5LQbTjDuB48f0HwgT+4z+eWfqKmsbfY4JCyE+z+4DYvVveTTe/olwG0vX0t0QlTA+ZlMJq59+lL6jOxptK2Zu4H8Lf5LI0efNJy31zwfcAxvqOh0uti4uGlJ6KgJw+k9oilk/M+1r3HsxYdz5PljAagur2Xryh0A9Bzajf+7/6yA43sVZRVTklsGQP8xfYhLjuXMW04ipUey0eeRSX/l87y3eHn+00Y46XQ4GXHcEKPPWs8y0oNBm4O0a665htmzD/xN30RERERERESkcyjMKub9Rz8HTwB1+6vXGXuVtWT17KaliIPGNVWhbVvlDpCsQRbS+qSQ6akmA+gxtFuzcayegKy6vIbvX/854Lf6juzFJQ/57/t16MkjGHfm6F3+Nm/Y5+Xd+N+r28AMwqPCWqxK81o7zz+kevDjO4zrrSt3sHn5Nu549TpiEv2DvdteudYIAVuyyu9v2c+43rba/bc0mUxkDkg32sMiQ31+Tz0pPbuAp2LPbrO3+q0DRZuDtIkTJzJhwgR++eWXvTsjEREREREREZE2eP2ud42A6bQbT6TvyF67fMd3Ty9v+GO32clenwueUzytQVa/AKi8oJzIWP/TO+02h7Ec8av/fkdDnX/Q5TXmtJF+96NPHrHLZYyl+WXG5vzdB2f4BVBe3Qa5l3p6T/tsydr5G/zuM/ql+S2zfO6a14hOiCKtT6rRFhETTv9De7c6Ljsd2jDQ87d0Op1sX5MNQNceyYSGN+1BFx0faVxvXrqN/mPc32ioazQq4Q507V7aecYZZzBt2rQWn69evZpLLrnkz85LRERERERERKRFC39aaiyXjE2O4arH/69N73krz0wmk7F8MmdTvnHaZPfBzQOqHetyGDS+X7Ox+oxyv19WUMHUiTOaPXe5XLx250S/ts+fnUx9beDQzcs3VBp5wjD+/dsjzfqEe8K1zP7pzZ75Wjtvo7HU0+vut5tOFd20dCtT3/2NNXObQrGailq+fWVqq+MCbF3VNE9vOFe4o9gIN7sN8p9bXNdY43rb6iwGjOnrN8+DQbuCtHfeeYeuXbty1llnMWXKlIB9qqur+fTTT/fU/ERERERERERE/DTWN/LybW8b99c/exlRcZGtvoMn2NqxLgeALt0SjWqp7Z491vAsmcQTzkXFuavQstbmcOoNJzYbLzkj0bj+/NnJzZYn/vz+TFbNcm/GHxIeDEBRVgmfPfNNq/PMWpdrXGcOSHdX2u1UxPbCzW9SsL1olxVppXllFGWX+LX1GJxJr+HdjfsXb3mr2XvvPfIZZYUVu5in+28ZmxxDdLx7aajv37L7QP8DEpIzm/5euZvy6T+m6SCDnSvnDlTtCtK6d+/O77//TmpqKueccw4//PDD3puZiIiIiIiIiEgAnz0zmdzNBQAMOXIAx196ZJveK80vp7ayDoAMn6Wb21dnG9feJZMmk8noU5RdwsCxfbBY/WOU8sIKDj1lBAAF24v47ZOmveWryqp5894PjPtbXrza2HPss39NJm9rQYvz9IZ9+FbG+ReVUZxTyr0nPEZsl5hd/m7vUktfd711k3HdWNcIQP9DezPhyqMBqK2s450HP25xzKqyasoKKvznCGwL8Lf0Suvd1bgu3FFMr+HdMXtOFQ00xwNRu5d2pqenM3PmTDIyMjj33HP57rvv9s7MRERERERERER2krs5n0+e/hoAi9XCbS9fu8s9x7yyfAOqfk17gm1d3bREsbvPcsS+Pidnrl+wmYz+/tVfuZsLuOiBc4z7T57+GofDvUR04t8+obyoEoAjzjuMk68+jnPucJ8oamuw8b+/fkBLstb7zLN/GvW19X7PvXum5W7K572/f7bL3523uXlo1/eQnqT3SfFru+2Va7nmqUsIjw4DYOrE31i/cFMLc2yqmsvo5xuk+fwtB/sHaTGJ0cZ1fW0DwSFBRpVa7qb8ZktQD0TtDtIA0tLSmDlzJt27d+f8889n8uTJe35mIiIiIiIiIiI7ee2ud7E12AA4985T6TE4s83v7ljbFFD5hmJbV2wHICgkiNReTVVTgw8fYFyvmrWWI849zG+80rwyeg3vzpAj3f2y1uUwdeIMNi/fxvdvuE/yDI0I4ab/XAnAJQ+fR5yngmzWpPks+WVFq/OMSYwiOiGKkpwyv+cnX3OcEUBtX5NtLBv1Co0I8bvP3ZQX8DtJGQl+9zGJUcR1ieXyf1wAnqWwr9zxDk6ns8U5slNF2hbP39JsNvmdfAoQ7HPwgMOzJ12K5+9dU1Hb7KTSA9FuBWkAKSkpzJw5k549e3LBBRcwadKkPTszEREREREREREfa+ZtYN53iwFITIvn0r+f1673fSvSvEFaWUE52RvcQVPvEd2N5ZeA3wEDq+es56zbTm42Zt7mAq7650XG/cSHPuHtBz4yqqsu+/v5JKW7A6uI6HCuffpSo+8rd7zTbF+1mooaSvPK/OZYnFPq12fEcUN45ue/G6FcQ22j3/Oew7r53edszm82703LtrJ0+iq/tmevehWAM289yQjH1s7byC8f/N7s/UB/y+ryGraucFekdR+cSXBoywGf93f7Bpc5m5rP80Cz20EaQJcuXZgxYwZ9+vThoosu4ssvv9xzMxMRERERERER8fHeP5qWMV768HmERYa16/0d65tXUa2YucZoG3b0YL/+ianxdO2eBMC6+RsJiwwlJinar0/u5nyGHDGAI88fC5590xb+tAyApPSEZuHb8ZcdaWyyv2NtDtM/nuX33HfJpLeiyxuseQ05oj/pfVJ4ZtrDxoEIvg47baTffaClne8/8nmztuUzV1OUXYI1yMrNz19ltH/w6OfNAr+dl58CrPxjrREgDjt6ULPxQ30q57wVab77puUFCPwONG0O0hITEwO2JycnM2PGDPr27cvFF1+sEztFREREREREZI9b+cdalvzsXgqZ0rMLE646pt1jZHmWI0bFRxr7dS2fsdp4Hij8GXR4fwAa621sWrqN4cf4h225niqqa5++hKCQIL9nF//t3GZVWWazmRuevcy4/+SpSca+arSw/DRnS1PAFBIRQkSMOzzrMaQbT/z4N0LC/ZdyDjysLyZz075x2Rvz/JZnrl+4ibnfLgJPZV9Kzy7uBy547trXABh5wjBGTRgGQP62In796A+/b3jnGRoeYiwR3dXf0neeDrt3aWcXo61DVaQVFhYyatSogM8SExOZMWMGAwcO5MUXX9yT8xMRERERERGRTs7lcjHx4U+M+0sfPg9rkLVdY9RW1VGUXQKegMp7QMHyme7wx2K1MGhc32bvDRrX37hePXsdZ956kt9z7+mhKT26cOR5TXuohYSHMOGqowPOZfDhA4ygKXtDHr9/Mc94FmjJ5Oal24y2mIQov7EGjOnD49/d79f26bOTSfUJqBw2ByW5TVVtvpV9F//tXG5/7TrjfsnPKyjNd/e95KGmpbOfPNV0kEJjg428Le7fnd4vFbPZHS+t8PwtTSaTsW+cr1CfIM1udwd7fhVpW1o+yfRA0a6lnd4/TCAJCQlMnz6dYcOG7Yl5iYiIiIiIiIgAsPTXlaz8fS0A6X1TOO6SI9o9RuGOYuM6rY87vCkrKDcqq/qO6hlwqehgn33SVs1ex5DDBxASFuzX5lXg842G2gbWzNnQ4nwueehc4/rjJ78yKsbytxf5zNN9qqbvck/vfmu+hh8zmOCwpmq4RVOWEZsc49fHWzm3avY6Y+lp1+5JnHT1MYw6YRhdurmXsLpcLv5z3eue396f4ce4A7+cjXnM/HwuACU5pTgdniDM87esLq9hkyfw6zEkk+h4/8CPnfZIc3oq0rr27KAVaW0RHx/PrFmzmDZt2p4cVkREREREREQ6KZfLxbt/b9pG6rJ/XOB3IEBblRdWGNfxXWJh5/3Rjmq+FBGg26AMImLCAVg9ez0ul4txZ442nudscIdcS6evZNUfa/3efe2ud/2WbfoafsxgBo51V8BtW5XFnMkLm8+zq3ueRdk+IWDflIDjeZd7eq2evd7vfsmv7mWx7/n8LS956DyCgt0B3C0vNu2JtmDKUipLq8BTseb1yZOTcDqdlPnMMc7zt/TdH23oUQMDzjHEJ0hzeIK4sIhQ4lPioKPtkdZW4eHhHHfccXt6WBERERERERHphBZMWcraeRsB6D4og6MvHLdb4/gGVN5qLd89vYYG2NMLz+q8geP6GWPkbMrn2qcvMZ7bbQ6qyqp49+GmgMpb3bV52TamvTsj4Lgmk8lv6eTHT3yFy+Uy5hkcGkRYZCiVJVXUVtQZ/RJS4wKOFxHd+sELMz6dw7LfVrHsN/dvTu3dlRMuP8p4Pvb00SR6qt1cThf/ve4N8AZ+nt+/bXUWs79ZuMu/ZaD90fCEZl7ePdIAktLjASgvrPTby+1A1K4gbcaMGZx44okMGDCA888/n2XLljXrM3/+fCyW9ifDIiIiIiIiIiK+XC6X335elz9yQavbTrWmvLDSuDbCH8+eXmaL2W8J584GjWt6tmLmGpIzk/wOFnj6spdYM9e9jLPbwHTueedm49nEhz6hprI24LijTxpOn5E9Adi4ZCsLpiw15hmbHIPJZGLF72v83olNigk4VrhPkBZo/7jcLflM9An7Lvv7+c0q+276zxXG9ezJC6gur3YHfj5VaR8/8RXlBT4VaZ6/pXd/NIChRwauSAuNbArSvEtDASJi3dV0LpeLuqq6gO8eKNr8f9+SJUs48cQTWblyJampqfzyyy+MGTOG1157be/OUEREREREREQ6pbnfLWLj4i0A9B7Rg/FnH7rbY+1cRVVWWGHsj9ZvdK+A+6N5jThuiM+c3EswU3s37e21aOpy4/qKRy9k+DGDOcJz8EBZQQWfPvV1wHF3Dqk+/OcXVBY3BWnstPwUIM6z3HNn3iWaAHabnb6jevl3cMGaOe7lnpkD0jjmovHNxjjyvLHEp7jHdzldvHDTm7BT4Ldp6VZWzmpawhqbHEN1eQ2bl7n3R+s5tBvRCc33R2OnwwacDpdxHRnbtCy1ujxw6HigaHOQ9thjjzFq1Cg2bdrEr7/+yvbt2zn//PO59dZbeeaZZ/buLEVERERERESk0/n6hR+M6z9TjUazIC2ahVOWGvctVVB59T+0t7Ff2ZKfV1BXU0/PYd2M597qqp7Duhlh33XPXEpQsLsy7Kv/ft/iiZRjzxhF98EZAKybvwmn02XM0eVyscBnngAJKYGDNGuwfxXaoPH9Ah5MAHD5Py5ocTXhdc9calz//uU8aqvrmgV+i39eYVzHJkezeNpyY96t/S19//u5fJZwRnr2oMNzaMGBrM3/By5atIh77rmHiAh3ShgdHc2HH37Igw8+yIMPPsjjjz++N+cpIiIiIiIiIp3I9jVZxn5e6X1TGHPqIX9qvPIi/4q037+ca9yPPWN0C2+5mc1mxp4+CoDGehtLfl5BdFzzqqvz/nK6ERal9OjCuX/5f/bOOryp643j31iT1N0d2tIWd3dnuMuwwbAB24AB25DBBB0MGDLY0O03xnB3dyhQrAXq7po2nt8fSW6SRpo2aSnd+TwPD7n3nnvuuW+S3pPveeUjAIBIKMamWTupZPxl+1YXqdTHGBuZgJS3aRr7nTwcdY6RxdYU0iIuRmLxX3O02jl5OqD90FZ677X7uE6wd7UFFALh5lm/AwrBL6CBLwAgLz1fY5zXNWzZXG/f6qjnQtP0SKslQlp+fj5cXFy09q9cuRJLly7F0qVLsXz5cnOPj0AgEAgEAoFAIBAIBMJ/kOO/nqdeD5jZ2yRvNADIU8uRxmAy8PiCPBzT2csRoa2Dyj2/7SBVWOnt4w80xB8lbQZpikijvx5CFQd4dP4Zzu66rLPvDsNaw8VH03vM3sUONw7d1Wrr5KW72IB6aCcAJLxK1plPjcVhlZvbfvKPqmIKV/93E/wSPuh0OoZ8/pFWW7YVGw9ORwAA7Jxt9BYaoKDJ/1N6sEEtRxoA8GpLaKePjw9evXql89iyZcuwbNkyrFixAitWrDDn+AgEAoFAIBAIBAKBQCD8x+AV8HBxn7zaJceKjZ4TOpV7TnkoQzttHKzw8OwTiEXyqpEdh7UxSqRr3LU+uIpk+fdPRYBro51T7ciG0xrbljZcfPHbdGp7+7y9SI/P1DqPwWCg96SuGvvsXW1xXYeQxrHkaO0DACZbu8DAvZOPYW1vqbEvPTYTmUnZOvtQ0mdyV9g4WgMAJGIpdi36CwDQaUQbjaIGFhwWnl9/BUGpEADQfnArrQIGZaHR5EqaTE1Is3GohR5pbdu2xaFDh/QeX7ZsGb777jucPXvWXGMjEAgEAoFAIBAIBAKB8B/k4r4b4PMEAIDu4zrCyk7b+6uiFOUWAwBsnGw0wjo7Dm9j1PkWbBZa9GkCACjMKUJeRr5WmzM7L2nta9W3KXpPlotkpcV8rJu8VSOsUUnvyV00tkuL+VphnTQ6zeD4ynL7+APQdQhb87ssh5Av1NsXAIxePJh6ffnPGwAArhUH3cZ0UF2TY4Ebh+9R28bYkhLSZLo90mqNkDZu3Dg4OjoiO1u/arlkyRKsXbsWHTt2NNf4CAQCgUAgEAgEAoFAIPyHkMlkOLH1HLU9YFZvs/QrUXig0en0Cod1Kmmrlkvt2XXtqL2c1DzEvUjU2j/95wlw9XWWn3ftJU6oha0qcfV1gW+oN7X96PxTrTaGvL1YakKa0mvs5e1olBbztdqmxWbgl5m6c7YpGfrFR2Cw5NcrzuMh8oY8X13fqd2pNvwSQcXCOtXEQPVra+RIy6slQlqXLl3wzz//wNnZ2WC7efPm4erVq+YYG4FAIBAIBAKBQCAQCIT/GE8uP0dSdCoAoFHncATU9zVLv8rKmnwev8JhnUpa9m1CiVnxzxOo/XbOqsIDvy/+U+s8K1tLzP9jJrW9a9EBJL9J1WpXr1Vd6vW7J/Fax5ks7fBNJRYclZDm6K7Koybii3S2v7DnGi7uu663PzqdjsZd6lPbu7/9GwBQt0kA6Ay5zcRCcYXCOuX9Krzq1DQ8Jkt1nkQsKbeP94lpmfoIBAKBQCAQCAQCgUAgEMzI8V9V3mgDzeSNBgAShZBWUlRK7TM2rFOJjYM1GnYKAwBKjAOAVh+pKoo+vhipM3SzSdcG1P0ISoVYO+lXSCSaopFPiBf1WiSQC2DqHnNlK3Oqw1IT0tSFPSU0Gg2edd019m39fDeyknP09jn5xzHU61d330AolI+JZaE9jo4j2urtR2McOoRL5XsDgBLpaio1e3QEAoFAIBAIBAKBQCAQ/jNkJGTh3slHgCLssu3AFuWeYyzSMkJaRcM6laiHdyrxC/WBlZ08qb9YKMapHRd1nvvJqrGUmPXq7hv8u/5Uuddr3a8Z9ZqmP0WahkeaBdcC9q6aFTsZTDqGft5PYx+voATrp2zTG+IZ3DQQDm7yfqQSKQ6uPg4AoDM15SRbJ2s0UgiM5UFXy/OmFBylREgjEAgEAoFAIBAIBAKBQKgYl/bfgFRRzbHfpz2MChU0FkqsUWhGFQ3rVNJ2YHOtfXQGHZ1HqjyyjmzQLZBxrThYsHsWlXB/79K/Ef8ySXuMarQb2op6LdFxXAmbY6FqJ5LAp56nxnEGk4GPpvcEs4w32eMLz3D6N+0iCUrUq4me/u0CAEAm0RTe/Ov7Gv1eqQtlyoIHREgjEAgEAoFAIBAIBAKBQKgg1w/doV73nNDJbP3KZDItr6vOo9pVqq+YZwla+xhMBiZ+P5raTnmXjuzUXJ3n129XD8O+/AgAIBKKsWbiFohFYkCPkJabkke91nVcCduSTb0WicRaSftpdBrodDqadm+gde6O+XuRFpuhs98x3w6hCgTkpOQh/mWSlqCnrIhqDOpCmbIQgvp9mVM8rQpMFtIiIyORn69d8pVAIBAIBAKBQCAQCAQCwViSolMQ91xe8TK0dRBcfV3M1ndZASqoaQDqtayrt70hbvx7V2sfnUGHvbMt/MJUVTd/X/yX3j4mrhwF31B5PrS3j2Px1w9HdI4TAO6deqx2H/qrbKrnLSstKqVsWZYpq8Zp7ePzBFj3yVadud04lhyEtKijdl9/auV2i3+RhLwM47QhdS9APk8AlBXSartHWpMmTXDkyBHzjIZAIBAIBAKBQCAQCATCf5Ibh+5RrzsOq1gRgPIoWwlywMzeVHhlRRAKRLhz/KF8Q+10XkEJAGDUokHUvltH7uvtx4Jjga/2fEZ5Zx1Y+S8ennuCgpwirbZ3TjykXst0CF1KivNVHmh8haeXOsriCAH1feHoYU/tV+Z2i7z+Csc2n9XZ94TlI6nXjy48g1SsOQ6ZTKYh+BlC6X0HALZO8qII/6nQTn0J6QgEAoFAIBAIBAKBQCAQjEU9rLPjsNZm7Tsvo4B6zWDS0WV05cI6H194hpJCebECFy8nav/re28AAF3HdKCS/vN5fNw+/lBPT0BIi7oYv2wEoNBWfhzzC17ejqKOK8Wu9LhMap8yf5wuCtVEuCI1UU0p+ImFYvAK5Pv7Te1OHVZP/v/74j+RFJ2i1XfzXo1hacul+qG6Vjv3joF7VUf9fCtbuYhHqnYSCAQCgUAgEAgEAoFAIBhJVYZ1AsClAzeo17ZONmBz2Qbb60Nd7GvUtT71+uWdaEgkEtDpdLRSq7J5YMUhg/2N/now2g2SVwEtzuchVi3/WuMu2rnMZAaFNFWeMl6+3EMusJEfOFaqe73y1y0AwKhFgykRrCiPRwmLQr4Iayf9quXBBwCdhrfV2mdlawlHDwcAQMSlSJTytD3hyqL0jFP3CFS/HhHSCAQCgUAgEAgEAoFAIBAMUNVhnad/u0hts9isSvUjFIhw98QjAIClLRd+9byoY0W5xXh0/hkA4JNVY6j9757GITMxS2+fdDodC/Z8Bh9FX+pRf3Ua+2m1NxTaWZSnnfC/47A2GoLVmV2XAUVoaWjrIGp/RnwWvII8AACv773FoXUntPqa9MMorX0MJh1t+surmAr5Ijy+8Ezv+JQo87DRmWpFB4pUApy68FcTIUIagUAgEAgEAoFAIBAIhPdKVYZ13j35CFlJOdR2qY78YcagHtbZblBLFJWpinl21yUAgFcdD3jVdZfvlAHrp2w32K+VrSWWH1mgEWIJhcgW1DRAY5+h7FpKLzR12g5qoSFSvXsShzePYwAA09aOp/a/uvsGU1aNocawb/k/iHuuWZ3UwdUeLj5OGvtKi/mURx2MCO+USqWA4h6YLFV1zvxMVeitg5u9rlNrDERIIxAIBAKBQCAQCAQCgfDeqOqwzuO/ntPY5uXzKpXvXVPsa4P8rAKN43dPPqa8z+Zsm0rtf3L5OXLT8wz2XZxXrJX/7M3jGLQZ0EJjn6FxlxSVamwHNvKDjYO1VruTW88DAMLahMA72IPaf+LXCxj2ZX8AgEgoxubPfte6no2Dlca2kC9CaJtgWNrI86fdO/VYZ1ioktx0VWVPdc/A/KxC6rWdi63e82sCREgjEAgEAoFAIBAIBAKB8N64eVhV3dLcYZ3xL5Pw9MoLAACbawEoEvaXFZ3KQyTUDOts2qOhhhcVFJUn/1krD4ls2q0h3ANcAYX4tX7KNoP9lxX7AODW4ftaHmmGKJufrOOwNhpjZFowAUW+OErw26om+F19jn7Te1Ihns9vvsbNw6qQ29SYdMRGJmpdV8QXoUWfxoAixPXFrSitNkpyU3Op1xYcC+q1uijp4EqENAKBQCAQCAQCgUAgEAgEnTy5HEm9bje4pVn7/vP7f6nXXmreV7x8np4zdPPmUSwV1tmqX1NYsFnIz5R7UdFoqrxeZ3ZdRk6a3Pvss82fUOc/PPsU+dmFOvtOik7Btb9vAwCs7Cyp/SKhGLsW/QlXP2ejxigoEWhstx/ckhojAIS0qAMokv0fXHMcANCkawN4BLrJG8iAzZ/twrR1qpDPnV/th5AvBAD8+cNhndctzueh7QDjwjuVtkGZXGjqgh/xSCMQCAQCgUAgEAgEAoFA0IGQL8Sru28AAO7+LvAIcDNb33HPE3DtoDwc097FFnUb+1PHinXkEzPEs2svqdfKappK8cfOxQ79p/cEAIgEIvy7/iQAoFXfplROMZlMhg1TdedK2/fdISqsc8DM3hrHEl4lg8liauwTCkU6+xGUCKnXdi628A311hCoWvVtSolXZ3+/ohL8tkym2jw+/wwhLeugaXf5PabHZ+HIxtNIfpOKS/uuAwAsrbka181OzUPLvk3BYMpznt07/Vjn+FAmtJNrzaFeKwU/SxtupSuqVhdESCMQCAQCgUAgEAgEAoHwXoh68A5CvlwYatg53Kx9713+D/V65MJBsHNWeToVV9Aj7dl1lZDWqHMYZDIZJVLZu9pi2Lz+sODIc36d2n4BBQrvsxkbJlLn3T35CMX5mpU1414k4rqa2Dfsy37UMTpDLtmkvkvXOEdYxvOM2s9XCWmNu4SDRqNpCGnuAW4YMKMXoBD8lJU5W/ZuCldfudebTCbDxk9/w/T1E6jCA3/9eAS7Fv9JiX0jFg6Epa1KTDv+61lY21uhXqu61HjzMlSCmTr5GarxaAppKlvWdEwW0q5evYq+ffuaZzQEAoFAIBAIBAKBQCAQ/jNEXn9FvW7UyXxC2tuIWNw++gAA4OjhgP4zesJaLfF+QZbuMEtdiEVivLodDQBw9nKEZx138Hl8SgC0d7WDo7sD+k7pDgDglwhweMMpAECHIa3h6OEAAJBJZdgw7TeNvvct/4dK6D/iq0GwdbKlcrk5ejiARtOs5AkApcW6hTSxSJXkX2lLdSGtrOB3esdFKjfZzF9UXmn3Tj+Gk5cj+k7trrgen7KlrZMNBs/piwYdQqn2ERfkobnhbetR+14o7FWWArXwVmt7K8q+RbnFlC1rOiYLaZ06dYK7u7t5RkMgEAgEAoFAIBAIBALhP4O6p1fDTmFm63fvsoPU69GLB4PNZcPdX1UNNC02w+i+3jyKAV/hBdaos9LTSyUIKcWf4QsGgMmShzce33IORXlycWi6Ws6xW0fuo6RYnmvt3ZM43DoiL7Tg6G6P/jPk4aFuinEWZBVi0vejtcZTtsiBEpla1U+ld1/ZcTq42VMCmVzwOw0AaDewBZy8VILfxmm/YcKKkRo52wBg5FcDYWnDRY8Jnal9pcV8vL7/BvXbq4S0l7d1FxwozFF55CmFzYLsIi1b1mRIaCeBQCAQCAQCgUAgEAiEakcoEOHVHbnnkru/C9z9Xc3S76u70bh/OgIA4OLjRAlHnnVVTkCpMcYLac+uqbzmGio8vTISsqh9Tu72AABXH2f0mtgFAFBSVIpjm88CALqMbk8JRFKJFJtn7gK0xL4h4FiyNcYpEojQbVwHjFgwUGM8Z3Ze1hqjRCzR2Pat5yUfZ6LaOBWecSMWDARLUcHzxK8qwW/auglU29tH74PFZqH3J12pfUwWA/1nykNDfUM8Na63d9k/CG8bQm3rE9LUQ2ptnWzkY1SzpaPCljUZIqQRCAQCgUAgEAgEAoFAqHai1fKjNagib7Rx3w6DBVseyuhZR11IS9d5ri50ec0lRaVQ+3wUohUUudiUuc2O/nIaJUVy77NPfhpDtbn69y08u/4S907Jk/K7eDuh79Ru1HEvtXGmxWRgyqqxYCnuAQBO/XYBT6481xjj85sqsY/BYlAhocpx2jnbUMKVi7cTeqoLfpsUgt/IdnBQCFlSqQybZu5EUrTqPsUiCR6dfwYAcA/ULArx+u4b2DrZULZ4GxFHefGpw1Mr8mDnYmPQljUVIqQRCAQCgUAgEAgEAoFAqHbUK2GaKz9a5I1XiLgkF5k8At3Qc6IqBNHG0ZrKy1U2gb8+xCIxXt6Se1c5eTrAS+Etlvhat/jjEeiGbuM6AACK8nhUrrTek7pSQpZELMVPYzdR54z9digsOBbUtmddD+p1yrt00Gg0OLiphTzKgKUDV+P1/bfULqUHHgAqBxqvgIec1DytMQLAqEWDqCqbR345TeUum7JqHNXm2t+38eD0E43zfluwD0KBCFwrDpX7DQpBLuVtGuq3q6e4RwmiH77TsqdSWAQABzd7g7asqRAhjUAgEAgEAoFAIBAIBEK1o1kJ03QhTSaTYc+Sv6ntj5cOB5PFpLZpNBoVNpmVlA2hQFRun7ryowFAYrR+8WfM4iGUV9rB1ceQmZQNAJiwYiTVJic1FwDgHuCKXpO6aJzvUUfl7ZWm8JxTFiBQwucJ8E3fHxAbmQAAeH5LFUppZSOvqJkUnaoaY4jmGN39XdFjfCdAEW6ptFvP8Z1g5ywX/KRqOdeU56fHZeLoL2cAgBIVlRzZdAbh7VThnS9uaYd3lhbzqdfKcFd1rzff/6qQ9vbtWyNaEQgEAoFAIBAIBAKBQPgvIpFI8PruGwCAq6+zWfKjXTt4B89vvgYA+IR4ouvY9lptPBUilVQqQ0Z8Zrl9qotBDTuqwk+TFF5UNg5WsHex1TjHO9gTA2f1BgAISoXY+dV+AMCAGb0ojzgl45YM0xD7UEagSlEIaQxFEQN1ivJ4WNRrJZLepCL+eSK130pxjaQoNSFNh0A1ceUocK05AIDTv13CuydxAIBJP2gWOHD1dcKiA7NBp8tFxL9+OIzCnCINwQ8AHpyJ0Cw4cEe7cqdALdzTydNBMU65LTmWbLj4OGmdU9MwSUjj8/l4+PAhdu7ciVmzZqFdu3awtbVFvXr1jDibQCAQCAQCgUAgEAgEwn+RtJgMCEqFAICQlnVN7o9XWILt8/ZS21PXfAwGQ1t80siTZkR4Z9wLlUClHGdJUSmyknMAAD6h3pSXmjrjl4+gPLuuHbxDed817KyWC44GdBzRVutcNz8XKuxSOcayYpubn7yyZ15GARZ0XU7ZEgAsFZU2E9Vyj/mGagtpTh4OGLdkGKDw5vt17h+QyWToOqYDaHTVPXkFeSK4WR30+aQbdf/HNp/VsCUAZMRnwdnHifI0e3UnGlKpVKONgK8ap4u3I0RCEVX4wTvEE3R6zQ+cNHqEWVlZuHjxItauXYuxY8ciPDwcNjY2aN26NaZNm4bt27cjOjoaLVq0wNy5c6t21AQCgUAgEAgEAoFAIBA+WOJeJFGv/cN8TO5v37J/kJsmzwfWZkBztOnfXGc7jzoVq9wZrxgnnU6jwg6T36g8vcpWr1RibW+FyT+Opba3zt2NzKRsRFyMVDWSAXu++UvrXAaTATc/Z0AhOMpkMjAtNEXBoGaBCGjgCwBUHjQlVgohLSkqWTVOPSGTg+f2hXewPCfbi1tRuPr3bfz1wxHI1MI6n998DaFQhNFfD6EEvmObz8DJ01GjL5lMhsv7b1DhnbyCEo38ZwAgFoip13bOtkh9lw6pRC62+dTTbcuahtFCmru7O3r37o1Fixbhn3/+gUwmw9ChQ7Fy5Ur8+eefkMlkOHLkCC5fvoyff/65akdNIBAIBAKBQCAQCAQC4YMl4aWakFbfNCEt5lk8jm2W5+1icy0wc+MkvW29g1RCWryat5kuJBIJEl/LxSjPuu5UQQBjk+P3mtQZQc0CAQCxkQn4buha8HmalSxP7rgIsVisda5XkFzcKikqRVZSNhxc7TWOp7xNw6rz31I539SxUYR2JipCO1lsFlwVwlxZWBYszNigstf2L/fg0LrjGm3EQjF2fbUfbn4uGoUUYp/Fa/V3ce91BDerQ22XtbFYJJG/oAF0Op0aI3TkcaupGC2kKd3r+vXrh8zMTLx69Qp///03vv76a/Tt27cqx0ggEAgEAoFAIBAIBAKhFpHwSiWk+YVXXkiTSqXYNGsXlRh/zDdDDeZbq9PYn8r1FfVAu6qkOulxmRDyRVpjTNIImfTWez6DwcCsXyZT228exQIArB2swLFiAwBEfBF2f/u31rnqYtTr++/gEah5T8lv0mDnYos1F5dSfSmRSqQQi8RUWKhPiKfOMFclLfs0QeuPmgGKUFGJWO4h1rhrfarNKYXgN/KrQVQo67WDt8G00Aw5fRsRqxFGqp6nTTk2uW3oiuPG2bImYbSQ9vTpU3Tu3BmnTp1C06ZN8e+//1btyAgEAoFAIBAIBAKBQCDUSuIVHmlMFkOr+mNFuLDnGl4pktr7hHhi2Lz+BttzrbnwV4RExr9IRGlxqd62CS9VoZHq4aexzxOo1+WFI4a3DUHXMZpFDz5d8zGGq43z+OazWrnEQlsHUa+j7r+FTz1NkUkkECE9LhNufi5aXmm3jz3A+b3XIBFLjBojAEz/eQIVtgkAzt6OWHH8K6oYgUggxh9f/w++9bzQfmgrQCG6OXtphneq52oDgES18FKpVAqZTC54Kq8Vp2ZL39oW2hkeHo7Lly9TYZ0jR45Et27d8PLlSyPOJhAIBAKBQCAQCAQCgUAAxCIxkqPlnkreIZ5aifSNpTCnCDsXHqC2P9syBRZsVrnnhbaUi1RSqYzyEtOFeqEBpUeaTCbDqzvyaqM2jtbwCHTTe74SF2/NSpR1Gvtj3NLhYHPloaKCUiEOrDik0Ua9AMPr+28Q2NBXq9+kqFRIpVKkvtUsmiAWSbBp+m+qvloEaZ1bFnsXW7DYqvfBydMRXCsuhi8YSO07/us5SKVSjF40mNpXmFOk1dft4w8ooUw9DLY4n0e9Zinep5e35SIox4pd+zzSlAwbNgxRUVFYsmQJ7t27hyZNmuCLL77QWaWCQCAQCAQCgUAgEAgEAkGdlLdpVK4s//raApGx/L74T0rI6TyqHZp2a2DUefVaB1OvX99/q7edevipMo9b8ptU6prhbUPKrTKZHp+JY5vPauxbP2UbxCIJBs1Rpcn6Z91JjVxp9i528KwjF+nePo6Fb5h2/rDE18nISMgCv0SgdUyqVixAmfzfEHuWHtTI3xb94B2u/O8Wxn4zBGxLeeiosFSIP775H4KaBqJ5r0YAgJJCbY++J5eeU15ySdGpkEjk73XCK5V3GseKjcykbKr6aWjrYA2PuJpMpeqKcjgcLF++HFFRURgwYAD27NkDALh586a5x0cgEAgEAoFAIBAIBALhA0cmk+HSgRs4uOY4Tmy9QO139XGmhJaK8PJONM7+fgUAYGnDxbR1440+VzNs8o3GsZR3afhn7XGc2HoeLxUho3QGHU6eDorrqtqHtTEsUMlkMmyZ/TsV7mjjaA0AiH2WgP3L/8HElSNhwZF7ZglKBNg6Z3eZccoFPyFfhNR3GaDRNR2Yrv1zB8c2aYp0ANB1dAeN7VuH71Ehlbp48zgGJ349BwAaOc82z9qF7JRcDPlcJfj9+/NJlBSXYvTiIXr7y0nNg5eiqINIIEJmQjYA4N2TOKqNg6s9FZILAGFtgnX0VDOplJCmxMfHB//++y8uX76MsLAwLF26FB07dsTr16/NN0ICgUAgEAgEAoFAIBAIHzTX/7mD1eM3Y9eiAzix9Ry1/5+1xzHIfgLO77lqdF+8whKs+ngTJQ5NWDESzp6O5Z6nxCfEE5a2XABAxKXnmNP2a4z1n4H7px/ju6HrsHPhAWz+bBclAEklUgx1noyZLRYi8poqvVVYW8Piz5mdl3D/dAQAwNHDAd8d+wpMltzr6uCa44i69xZjlwyj2p/eeQn52YXUdr2WKsFv86zftcSwt49jceSX01rXDWyk6eV3aP1JrPtkK8Qi7eqg/BIBVo3bRHmwTVg+At3GyoW44nwe1k3eivHLR1D2kogkWDVuExp0CNX2dFPT+dLjMqnXysqniWoeaS6+TlRYJxTefR8KJglpSrp06YJnz55hw4YNePnyJRo3bmyObgkEAoFAIBAIBAKBQCDUAgyF7fF5Alz+0/gIt1/n/kEJNWFtQzBwVm+jz3117w02z9oFkUAuKpUW8/H63ltkJmbj/J6rBsf59nEsnl1/Sd1PSIu6etsmRadg2xd7qO2526aiQftQTPhuJKDwVls9fjMGzuoNOxdbQCHYfT/iZxTlFePb/j/huJrgGPXgLaDfqUyD87u1RckLe65h2eA1KOXxNfbvmLcXSYp8dUHNAjH0y4/w2eZPqLxuTy4/x4lfz2P2lk+oc+6efITkN6kIblpH8yJq40uNyaBeK/Okqe/zDvLAy7tyIY1Go1Hedx8CZhHSAIBOp2POnDmIjo7GpEmTzNUtgUAgEAgEAoFAIBAIhA+cVv2awsbBSu/xrmM66D2mzvVDd3Fx73VAEdK5aP9so3NrxTyLx+ftvsWpHRchEoi0jjt5OKL7uI56z3fzd0FmotxLrW4Tf3AUucPKIhKK8NO4TVRIZ79Pe6DtgBYAgOELBlCeXOnxWdj+xR4s2D2LOvfZtZcY6jIZ909HUAUZKoqzWnGDEQsGgKUI13xw5gnmd1mOjIQsQCGIndpxEQDAsWRj8YE5YFmwYG1vhflqY9q16E8ENQ1UVQeVAdMaL8DRzWf0jkHEV9lX6ZGWk5pL7fOs646Yp/EAAL9wb1jb6/9s1DTMJqQpcXZ2xvbt283dLYFAIBAIBAKBQCAQCIQPFAuOBbrpEakadAhFr4mdy+0jMykbG6ftoLY/2/IJPALKr5qpRCaTGcwVFtDAF90/7kiFX5al96Su1GtD+dH2LT+Et4/l1UB9Qjwxbb0qfxuDwcDCvbPBteYAAM7tvgqJSAL3AFfVOKVGup7pgM210Cg+MHz+APx07lsqNPPNoxjMaPYVrvx1Ez9P2Ua1m/7zBPiEqAoaNO3WAEPm9gMUec5WfbwZC/aoxDVdQqQ66nZOVAiC+VmqsFUGkwGpRAoACC8n11xNw+xCGoFAIBAIBAKBQCAQCARCWfp80k1rH5PFwNxtU0Gj0XSeo0QqlWLtxC0ozucBADqPbGvQe0wXdRsHYOLKUXqPBzT0g52zLdoNbql1rPPIthDyhdS2vpxekTde4eDqY4BCLFp0YA64VhyNNh6Bbpi5URXJt2L4Oo2cYqZQp0kA3ilEPK8gD9i72KFR53BsuLGSEuuKcovx07hNlLDVdmAL9J3aXauvyT+Ohl+YN6AoFDCv07IKjcWCawEASH2bBpSp8JmdpPJOC/uA8qOBCGkEAoFAIBAIBAKBQCAQqoPAhn4IbOSnsW/4/AHwC/Mp99x/15/E06vy/GQuPk6Ys7V88U0XY74eguHz+us85h8uF43KCn4cKzam/zwRL25HUft0iT/F+TyNIggTV4xEcLM6Wu0AoNekLmgzoDkAQCKWVvg+9OHs6QiRUJ7/Tb0YQGBDP2x9tBqt+zfTaM+0YGLyj2N02pLNZWPR/jmgM+TSkdKDzFgkInk11vysQggFIsqLjcFi4NV9tUIDZYsW1HCIkEYgEAgEAoFAIBAIBAKhWmg7sAX12tKWizHfDC33nLcRsdj97f8ARWL6hXtnw8bBulLXp9FomLrmYy2xzNbJBlxrefhjk24NwFbLfzbmm6HgWnPw6s4bQOFR5qKWh0zJplk7kZWUAwBo0DEUwxcM0DsOsUgMKyPygjH0hJnqQ1CiKibQoEOYxjEbB2tM+n40GEyVFCQWirGo50q8vBMNXUjEEnCsdOeCKw+JWEK9fvPoHfWaa8XG8xuvAQBOng7wrONeqf7fF0RIIxAIBAKBQCAQCAQCgVAtDJvXH5a2XNDoNMz6ZbLehP1K+CUC/DRuE8QK76YRCwagUedwk8ZAo9Ewd/tUNO3RkNpnbW9JvabT6Rg8pw8AwN3fFSMWDMDTKy8oYah5r8ZafV7+8yau/u82AMDKzhKL9s0Gg6FfBFs3eSsu7bte7lg9Alw1hK+ylBXa0uNVIaLNezXSOCYUiLD6482UBxxbEXqZnZKLeZ2X4cjG0xq5zRJeJeHLTks1QjL14eTlSL2m0bW925TehADAtmRThRia92xcKc/C9wnzfQ+AQCAQCISKIJPJwBNKkFMiRE6JCCVCMaQygEGjwYrNgLOlBZysLMCt4OqduZFIZcgtESKnRIj8UhFEEhlAA1h0OhwtWXCytIA9lwWGjokGQROJVIa8UiGyeSKFLaWULR24LDhZseDAtSC2NAKJVIb8UhGyS4TIKxFBJJUCMoDFoMGeK/9cOloSWxqDWCxGYmIiYmNjkZiYiJKSEshkMnA4HPj4+CAwMBD+/v6wsLB430Ot8YjFYiQnJyM2Nhbx8fGULdlstoYt2ezKeUT8l5BIJBq25PF4lC29vb0pW3I4HCN6+28jlUo1bFlcXAypVAoOhwNPT08EBgYiMDCQ2NIIpDIZCvli5PCEyC0VQiCWYl7EBjBogD2XhfQiPpwsLcBiaItFMpkMv87+HUlRKQCAoKYBmLBipFnGxWAw8P3JRZjdajGS3qRh7HcjkVbIRw5PiEKBGMFTemPplN7gsOhIyOcj4u5bgEYDZDK06K0ppCVFp2DTzJ3U9txtn8LV18Xg9ZUeWeWRnZKHBbtnYcO03+Dm54wCvhiOId5wCPEC284SNo42KMouREF8JnJeJyE1Sl4hM7ChH5w9HTX62jFvL2IjEwAA/uE+WHF8IdZO/hXPb7yGRCzBti/34MWdKMzbNQOQyfD9qA0Q8g0XFVAycsEAbP18DwDA2sUGlt6ucAr1gY2vC5hsFgq8HNF07gDkRadAmleInLR8nbb8ECBCGoFAIBA+CEQSKWJzSxCdWYy80vIf6K7WFghxsYafg2W1igK5JUJEZRYjLrcE4nIqLrEYNNR1skKIizXsuKxqG+OHQl6JENFZxYjJMcKWdBoCnawQ4moNB2JLLfJLRQpb8uSirgGYdBoCnSwR4mINR0siApUlNTUVFy5cwPXr18Hj8Qy2ZbPZaNeuHXr27InAwMBqG+OHQnp6Oi5evIirV6+iuLjYYFsWi0XZsm7dutU2xg+FzMxMXLp0CVeuXEFhYaHBtkwmE23atEGvXr0QFBT0wXmCVDXZ2dm4dOkSLl++jIKCAoNtGQwGWrVqhV69eqFevXrElmUoEUrwJrsYb7J4KBVJDLal0QBfey5CXKzhbsOmbHlm5yWc230VUHhPLTowFywL8z3nmSwmvr22EtGZxUgp4CPtTZbetjbDOmBQ2zDEHL+Peh1Cqf2lxaX4bug6lBTJvba6jeuALqPalXvtBXtmYfOsXUhSVLTUC02GtiPawblLI7zN5oEn1Lalq9prqViC5Fuv4EGTVyhV2vLi/us4sfU8AIBlwcTiP+fCI9ANay8twx/f/A//rD0OALj57z3ERSYgoIEv4l8kyYdAoxmsdgoA/g390HJCF3DC/ODdIRx0pvaidliDAOp10/Q8vDt2F6Emehe+D2iy8qxRCyksLISdnR0KCgpga2v7vodDIBAIBAPIZDK8y+bhUXI+hOUIALrgshho7ecAX3tulYxPCU8oxr2EPCQX8I1orU2AoyVa+tqDo2PS8V+jVCTBvYQ8JOaXH0agCz8HLlr5Orx3r8SaAF8kwf3EPMTnVc6WPvZctPZ1gKUFsWVxcTH27NmDGzduVOr8Jk2aYOrUqXB2djb72D40eDwe9u3bh2vXrpX7w0wXDRo0wLRp0+Dq6mpE69pNaWkpDhw4gEuXLlXKlqGhoZg+fTo8PDyqZHwfEnw+H3///TfOnj1bKVsGBwdj+vTp8Pb2rpLxfUiIpVI8TSnEq8wiVEZtcLJkoZ2/I9KfJ2Bep6VU4vxF++eg29gOZhtnVrEAd+Jzkc8XV/hcOg1o4GGLBu42+HH0Rtw4dBdQeHltuvsDlWutPKRSKR6ceYJD608g8vorjWMuvs4QCcX49PjXSKczUc6aok4cuSy09XdE3psUzG33DeVd9uXO6Vo54u4cf4g1E7eAV1Cis6+2g1ri+fWXKMrTXESyd7VFaO+maLFgKHKNWOwuC50GhLvZoJGn3QfjEU+ENCKkEQgEQo2lRCjB7fhcpBZWTpxSJ9DREq18HWBhIMdEZYnJ4eF+Yl65nj7lwWHS0cbfscpFv5pMXG4J7ifkQVDBqlBlYTPpaO3rAH9HSyNa104S8kpwLyEPfBMrgVkwaGjl64BAp/ITItdWIiIisH37duTn55vUD5fLxcSJE9GlSxezje1DIzIyElu3bkVubq5J/bDZbIwfPx7du3f/z3oBvXz5Elu3bkVWln4PGmOwsLDAmDFj0KdPn/+sLaOjo7FlyxZkZGSY1A+LxcLIkSPRv3///6wts3kC3IzLRWElxCl1aACi/7yKB5tOATIZBs3ug1m/TDbLGKVSGZ6kFuBlehFMFUNoRSU4MXULCmLTYWnLxa8PV8M7qHLCdPSjGPzxzV+IuBgJAFhw5CuUBvkgvxLilMYYAcQcuoW7Px+DTCJF3ynd8MVv03W2TY1Jx/KhaxEXmah1zNnLEVsfrcb1Q3fxxzd/obSID2dvRyy8uwaRaYUm29Key0KHAMcPwhueCGlESCMQCIQaSSFfhAtvsnS6r1cWRy4L3YNdzOapJJPJ8Cy1EM/SDIfRVJRWvvao52pj1j4/BJ6nFSIixXAYTUVp7m2HcPf/3rP+VUYRHiaZJvqUpYmnHRp6/vdseenSJezcubNSHir6GDJkCEaOHPmf+6F9/fp1bN261ay2/Oijj/Dxxx//52x5584dbN68GRKJ+Z6RPXv2xOTJk0Gn/7fq0T148AAbN26EWGya8KNOly5dMG3atP+cLZMLSnHtXQ4kZvyOx517jMLLT7DmwhIwWfozU/FLBKAz6LBgGw77lEhluBaTXekIAl0Ii0tx9ctd+Gz5cLQd0MJg26K84nKrjabFZSCLL8bzUlm5qS0qQuKVSGQdv4N1V5YbtNOvc//Asc1ndR4bvXgwJv8wBhKJBC/uvkGOqxOSCgVmGyOTTkPXus7wsK3ZuQf/W99sAoFAIHwQ8IRis4toAJBbKsLFN1kQmuiho+R5WpHZRTQAuJ+YjzdZhvMF1TZepheZXUQDgEfJBXidUWT2fmsyUZnFZhfRAOBJagFeVMHnvSZz7do1/Pbbb2YVfgDgyJEj+Pfff83aZ03n9u3bZhfRAODUqVP466+/zNpnTefBgwf45ZdfzCqiAcCFCxewd+9es79HNZknT55gw4YNZhXRAODq1atmF+BrOmmFfFx9l21WEQ0AAno3Q99fp4NhIPXFnRMPMcrrU4z0mIq0OP1ehVKZ+UU0ALCw5qLn1pkI7tZQb5tSHh/Lh67FEKdJ2DL7d4P90Z3tEWlmEQ0AfLs2RL/tM8G00C9IZiRk4cSv5/Qe/3vVMbx7GgcanY48DxezimgAIJbKcPldNjKKzNuvuSFCGoFAIBBqFFKZDNdjcswuoinJKxXhboJpIUUAkFrAx5NU8ws/Su4l5CGHJ6yy/msSGUUCPEo2v/Cj5EFSPjKLa/aEzFxkFQvwIDGvyvp/nFKANDOEWn8IxMfHY8eOHVXW/6FDh/DkyZMq678mkZKSUiUimpLjx4/j/v37VdJ3TSMjIwObN2+uMluePXsWt2/frpK+axrZ2dnYuHGj2QVJJZcvX8aVK1eqpO+aRqlIgusxOZXK4WUMKSViRGXqXmA8/dtFfDdkLXgFJSjO5+HCnmsaxyUSCTITsxB54xWOnY00u4imhMZk4NzzNLx9nghBqeacIz+rAF91+w63jz6gxlxarJm7lFdYgrjnCbh16jHOP0+BpIqMmS6Q4tKdd8hOzdX5d4TP40Nq4NoymQy/ztmNV+lFSKhk/tXyUHoN8sVV8900B6RqJ4FAIBBqFK8zipBVxQJSfF4p/PNK4OdQufxZQokUd8wgxhlCBuB2fC76hbp9MIlXK4NIIsXt+Kq1JQDcjstF/3A3MGtxmI1EKsPt+FyTc5SUx534XAwIdweLUXttKRaLsXXr1ir7ga1kx44dWL9+Paysam/+OalUiq1bt0IkMi3HT3ns2rULoaGhtTpti1QqxbZt2yAQVO3CwB9//IH69evD3t6+Sq/zPpHJZNixYwdKS6tGCFCyb98+NGrUqFYXGZHJZLhrhtym5RGRUgAvOy5sOUzquvuW/4MDKzW9e8/vuYqspBxkJGQiPT4LWUk5kIglcAjyRJ+9X1SpJ5GEycC+f+7h/o+H4OrrDK8gd9i72ePxhWcoyFJ5dItFEqz6eDPoDDoy4uXjLMqVC4XtVo5DQK+qLaSSDAZ2tF8CYVYBvIM94R3sAa+6HvAK9oB3sCeWH12A13ffICs5B1lJOchKykZmUg6kivc4rEejKl1MBgC+WIoHifnoGOhUpdepLCRHWi1+2BIIBMKHRqlIjGKBBBKZDGKJDDficiCWytA7xBX2HBbuJOSabfWLw6RjaAMPMCshBrzKKISzFRtStXEyaDR0qesMqUwGGmi4l5CHfL7pPxybetmhgUftfVZFJOfjebo89NLFygLNfew17GqpqLoKAEw6HTQAp15XLhl0Iw9bNPayM+v4axLPUgvwNFUz9JLDpGt9LgsEIpO/U+FuNmjuU3t/ZJ88eRL79+8HANjZ2WH+/PmQSCSg0+nYuXMnkpKSsG/fPsTExAAAjh07hmfPnlXqWr1798bkyeZJoF0TOX/+PH7/XRXGpMueycnJmD59Otzc3MDj8bB161bweDyD/eqia9eumD5ddwLt2sDVq1exbds2AEBISAhWrlyJTz75BHQ6Xedn1BTat2+POXPmmGnkNY/bt2/jl19+0dqvbldbW1tMmTIFAMDhcECj0bBo0aIKX6tly5aYP3++WcZdE0nML4WHDRs5JfJF0OdpRUgr4lfJ3M3LloPuwS6QiCVYO+lXXP7zptHn9t79OZzDfTGmiZfGWHNLhGafv53/dDOynsZV+Dz3lsHovmW61hhTC/k695lCRkQMLk7/Ve9xO2cbhLSsiwYdwtCwYygCG/ujKKcIQoEIz0UMZCg8/cuOiycUm23eBgDdg1zgZVfz8qURjzQCgUAg1BjeZZfgWVohJFIZgl2sUM/VGs/TinAtJhvBLoYTs1YUvliKuLwSBDlXrF+RRIrozGJEiDTH+SKtCGejMgEAbjZs1Pewwa040z2tojKLEe5uA3otTKQtlkrxJkv1Y7lYkRuv7Pt/Plpeka6eizVYzMrbITqrGA08bGulh59EKkO0jrx6ArFU5+fS1O/Um+xiNPK0rZVeaVKpFGfPqpIsFxYWYunSpZDJZAgLC8OgQYOwefNmZGZm4rvvvjP5elevXsWoUaNgaVn7KsxKpVKcOXNGY58ue96/fx88Hg/Lly9Hs2bNMHDgwErlPbtx4wbGjBlTKxfKZTKZhi0/+ugjvHv3DjDwGTWFO3fuYNy4cXB0dDR57DWRsp9LJep2TUlJob7jvXr1qvR39OHDh8jMzISra9V6Gb0vXmcUwYbNpJ7VSqpi7pZSyEd+qQgL2yxGbGRCue2t7Czh5u8Cv3ZhcA73BQAUCyUaY6UBZp+/tZjRF1e+3AU+zzjvUQaTDltnW7SY2VfnGPXtMwW3pnUQ3K0h3l17QXmaqVOQXYQHZ57gwRl5CgI21wKhbYLRoF9zyDqocsHpGpe55m0A8DqzqEYKabVv9kMgEAiEDxKJVIZXGUVUTgiZTP4PAEpFVRMuEJVZXOE8MzE5JSgUSLTGqd6LBYOOvBLzhDGViCRIyq/a0JP3RXxuqUYoSKlIqvP9V+LvaIm4nJIKXWNoAw/42HMBhXiakFex8z8UEvNLdX5P9H0uTf1OiSQyxOXWTltGREQgOzub2pbJZNTfCSsrK8THxwMAnJ2dsXz5csyePRvW1hX7sbhlyxa0aCGv7CYQCHD9+nWz3kNN4cWLF0hLS9PYp8ueHh4eiI2NBQDExcUhNDS0UtcTi8W4evWqGUZe84iOjkZCglw4aNasGaKioqgQT32fUVOQSqW4fPmyyf3URGJjY/H27Vut/WXtqk67du0qnTtOJpPh4sWLlTq3ppNfKkJ6kQBWLAZ6h7igQ4Aj2IoFlqqau0VnFiPueaLBNu2HtMLR3D04lrcXO56sQ4cvB1LHyo61KuZvTk3qoN3oDka3l4ilENHpsK3nrXOM+vaZytids3CKdwB/vN6IlScWYdq68ej3aQ807hIOexfNBQlBqRBPr7zAmzLzMEPjqsy8bWC4O7zVhLOUAj6KBOYtBmIOPkgh7caNG+jfvz88PT1Bo9Fw7Nix9z0kAoFAIJhIRpEAfEU1TTaDjhAXa7zNNhza0yvEBR8384YDV1XCm8WgYUJzH1hZ6K/upCS3RFThh3O8mnhQdpx2HCb61HNFK197yuXdHOOMr6WChb770vX+W1kwQKPJVz7L0tbfAROa+8COU76jfW0Vfwx9RvR9LnXRK8QF45p6Y0wTL4xq7IVeIS5wsrSo8DU/ZO7cuaO1z8vLCytXrsSkSZPw6tUrAMBnn32G5cuX48WLFxg9erRG+5CQECxevBh//PEHdu/ejTVr1mDAgAFgMHR/33Vdszag777K2jMxMRGNGjUCADRs2FBDmFy2bBn69u1Lbbu5uWHz5s2YOHFiha75oaO8LxqNhh49euDChQsax3V9RgHAw8MDCxcuxK5du7Bnzx5s2LABAwcO1Orf0DVrG7ruS59doRDN6XQ6MjPlXkuLFy/WGY7N5XKxf/9+hIeHG3XN2oDyOXDkeRrORWchrVCAJuWkUOgV4oIJzX3gYcPW2B/uZoMJzX3Qopy0AfF5JRg0py8sbbnQ56yfm54Pa3t57kmpVIYEtQVJXWM1NH9TPhOV/0KM8LKTAejyRX941nEHi61/btJpeBvUb18PLAsmfLs3Bk2Rx1XXGA3Z2NXaAt2CnDGqsRdGN/ZC/zA3RTSD4XHG55WAyWLCJ8QLrT9qhmFf9sfn2z/F2svL8U/6LvzxeiO+2DEN3cZ1gIuPE0Cjwa9bI40+9I2r7LzN2Lnw8ZfpWgUhauJ844MM7eTxeGjUqBEmTZqEoUOHvu/hEAgEAsEMKPMrMOg0dKrjhPuJeRCIy1/NFIqlaOplh8vvssttq4tsnhC2HJYRLeWryobGWcAX42xUJhy4LLTxc8AZRaiAqePMLql91TtlMpnO+9L3/gc4WuqcSDHpNPg7WIIvliDI2QqPkg0nv82phbZEOfdl6HOpi8fJ+XidWQw6DWjmbY+udZ1wKDJNq11OiRAymQy0WhZ2rMx7pk5KSgqWLFkCPz8/fPrpp/jmm29QXCwPpb19+za6d+9OtW3atCnmzp2LgwcPYsuWLSgqKoKnpycGDRoEBwcHDW83JXFxcZBIJHqFtg8VXbaEHnuGhIRg2bJliI6ORm6u7rAqX19ffPPNN7h06RIOHTqks01iYiKEQiEsLHQLwB8qSlu2b98ejx8/1ireoMumUIg+t2/fxoYNGyASieDl5QVvb2+jrpmamorS0lJwudwquKP3h67PpT67Qoc32pUrVzBt2jTs27cPYrFYo11eXh5evnyp1UdWVhYKCwtrXdix8jmu9C6PyytBsEv5xVMKSkWo62yFtCKVaFXX2Qr5peV7g/HFUkxYPQ4zN0wEv0SA2GfxePM4Fm8ex+Dt41jkZxai14TOVPt8vkijAqausRp6TiqfiRVFyGFj71t5hd3MxGy8eRyLt49j8DYiFjFP4+Ee4Io5W6fC1skGglIBzj5LgXIGo2uM+mzsbcdBx0AnPEkpwK24XAjEUthymGjgbgsuiwGejgVIJSKJDIUCMex0zINpNBp8QrzgE+KFvlPlz7iYmAzcytOcb+gbl655W2XnwjVx7vZBCml9+vRBnz593vcwCAQCgWBGckqEoAHoFOiEqMxioyt3RmcVo56rDdys2Tq9bZh0Gpp528HbjgsGnYbUAj7uJ+VBJJEpriuCsQWBCvliiKUyneOk00CVfRdKpBCXKR1e3jjD3KwR4mINLosBvkiKVxlFiFLkvCoWSCAQS8FmfpCO5DrhCSVaQqmh99/f0RKX3mjnBglwtIRYKsOTlAI08bLD45QCrZBQdUpFUpQIJbA0whPwQ4EvkuidKJf3uTSEVAa8zeIhzM0GbAZdqyKbUCJDkUBCVVCrDZSUlGiFIjKZTOrHMo/Hg0AgAJvNhlAopHJSpaenU+0nTZqE48ePa+RgSk1NxdatW/VeVygUIiUlBb6+vlVyX+8DoVCI5ORkrf267AkAf//9N6AQNPLz87XOCw4OxsKFC3Ho0CGcO3dO73UlEgkSExNRt25dM97N+0UikVBhnb6+vggICECLFi3g5+eHOXPmYPXq1TptamNjA3d3d1y6dAlCofxvanJyssb7wuVyMXr0aDRv3hyWlpZITU3F+vXrkZOTA5lMhri4OISFhb2X+64KlPdUFl12/eGHHwAAbdu2xY8//ki1ffToEaZMmYIWLVrg7t271P7OnTsbDC2OjY1F48aNzX5P7wuZTIYcnhBMOg0SqQwyAO7WbBQa4ekfl1eCUFdrsBg0iCQyOFvJhe/sMs/+oQ08EJVVDD97Luy5LOSUCHEzNhc5PCGsLJjgWLIR1iYEYW1C9F4rR61PXWOt7HOy3Pml4ro0Gg1ufi5w83NBhyGtdPbF5rIhseQAQonOMRqycUtfB7xIL9IQ+wr5Yo2K6BwmHa18HeBuw4ZYKkNsbgmephRAphinLiFNFzR7ayBP1a+hcemat5U3F4biPX+QlK+R1iTHyN8E1UntmfkQCAQC4YOmSCBGgKMl3KzZYDFoCHWzRnI+Hy8zitAp0AlOVhYQSaRwtrLAYzWvI4FYihfphWjqbUcli1Wnnb8jpDIZTrxKh0wGtPVzQCtfByqRbHEFQjuLhPK2usaZWSxAU287yGQAjQY8TNL8IVjeOIsF8mStJSIJ3G3Y6BbkjJxSIbKKhdQ42cza42Ghy+763n97DhMCsZQK/VWnrrMVYnNKEJdbghY+9vCx4yKxnJxyxQJxrRLSDIUnO1la6PxcGvpOKWHQaQhysUKxQKwloikpFoprlZCWlaVDrA0IwNixYyGVSkGj0bBv3z54enpi2rRp4PP5EIvFVCVFDw8PuLm5VSqXUmZmZq0S0nJyciCRaAu8uuxpY2ODL7/8EhKJBCkpKdi3b5/GOfXr18eIESPw+++/4+bN8qv0ZWZm1iohLT8/nxLC/vzzT2r/smXLsGnTJp02BYCioiIkJydjxowZuHz5Mt6+favlETlz5kyw2Wx88803yM/Ph5+fH3UtKGxZm4S04uJilJRoezfrsisAeHt7o6ioCAUFqr+REokEN27cQJcuXSghzcvLC3Xq1MH69ev1XlsZGlpbkMhk4IulcLRkoa2fI8RSKSQy4I5CwDH0nBGKpUgp4CPA0RJvsnio62yFd9k82HO1BZ06Tla48lY+P+pS1xlNvOxQJNDvZVUW9WekLYepNVZ9z8nyKH9+afwYZTIZFQKpa4y69gGALZsJGzYTcbmGU6F0DHRCqUiCw8/TwGbS0T3IBWKJFM/Tiyo0zrLzDX3j0jdvK28urI9ioaTGecDXnpmPAQQCgUbSyMLCQoPtCQQCgVD9SBQrZLE6wveux+YYPPd1RjFCXa3hY89FepEqrwKbSYevAxcHn6ZSK4RPUgsxMNwdt+NyIVNc11ikirb6xlleNSV944QiWbyS9CIBUgv4cLdhU0KapIJFEWo6uu5Hn13z+WJc1OGNZsdhwtWajXsJeRBLZUjML0WQs1W5Qtp/wZZKsnhCnZ9LQ9+ppt52aOxpB4lMhtwSIa4YCMGoyPfnQ0BXWNfbt2+xfPlyrf2LFi3S2qcM29IXmmgIdfGiNqDLljBgT0MVUMPCwlBQUIAnT54Yde3/ii2VNisqKtJpU2WbAQMGYNiwYfDy8kJqaip2796N58+fw87ODq1atcKMGTOQl5cHAFqFCv4rtlRH/bOYnJyM77//XqvNlStXsH79ejg5OSEnJwddu3bFs2fPKDvqorbZUqrQSHJLRDj1OkPreHlzt3c5PDTxtENMdgn87Lk4/jIdzby186NFZRZRIlNsTgkauNsgqUwOLUNI1B5TusbKK6capvKZqORQZCoYdFr580tFERBjxB+pEWPUZWM2i04d14cliwEPWw4OPk2BWCqDWChBZFohGnna4nl6UYXmRGUf+free33zNpQzFy7v2oyao6P9N4S0n376ySzlyQkEAoFQddBNWGWSyGR4mlqIpl52OBelWjixtmCCTqNhaAMPrXO4LAZKRBLQy8vEaqYxGhonFN5Y4W42sGYzQVN4A6kn1jf12jUNc9xPkLM1ckuEyFPkVInJ5qF7sAssFe9tVV67JmHu+4lILjA6H0xtsyWTadrUWLlY6+joiIwM7R8XVXntmoY57+fIkSMIDQ3F0qVLsXLlShQVFVXbtWsCptxPQUEB9u/fj/3798PKygpDhgzBggULMGPGDDg7O0MoFCInR7/gQWypm5SUFLx79w6dOnXCsWPH0KFDB+zatatarl1TMPXPf1qhAG39GGjoaYssnlCn1znKVP8US2VgMejlJtFXpyJtdaHrmWjHYZU/v6TBaA+qytpSoLCNlQVDr5eepQUDYqmmd1iRQAwrltwzvzptiXLmwoaoadON2pNsxQCLFy9GQUEB9S8pKel9D4lAIBAIZeCyTAu1e5fNAw1AHWdLah9PKIZUJsM/kan439MU6t+BiGRKaOFWIO8Yh2X6Y1PXOK0sGGgf4IjHyfk4qBhjSoGmVxXXDNeuSZhqSxoNCHSyhC2biRGNPDGikSc6BDqBTqNp2LYqrl3TMPW7Y9q1a5ct7ewMV5srj7S0NGRmZqJt27YVPtfe3nClug8NcyZVF4vFWLduHbKysrBs2TLY2NgYbF/bbGljY2OWkCYej4dDhw6Bw+HA1dUV2dnZsLCwgJOT/kShtc2WlpaWZhO0rly5gs6dO6NZs2ag0Wh4/Pixwfa1zZZMOg1ME5WVmBweGrjb4F05VdrLUpHnXlU8I42aX1bgunQarVJ5cAsFYhQJxPB31D/vKRFKwKTTwVHr34bNBK8S4+SYyZa65sKGYDPpNW7hrnbNfvTAZrNha2ur8Y9AIBAINQtHS+MSnepDBiAipQAN3FV/4/liKZLyS9HK156aoHCYdPjaqyqQOVkZn3fMgWth8oqYrnEqJ6J8sRQyAF52HHjacqjjbCYdlu9RLKkK7DgsMEyYgPvYcWHBoOPk6wyceJlO/XuWWoAgJ/2l6Vl0GmwNlKL/ELG2YMDiPcQ70GkwOkHxh4KDg4PJP3b/+OMPDBo0CL1794a1tfyz6OHhgenTp8PZ2VnnOTQaDX5+fiZdt6ZhbW0NNzc3s/UnkUjw888/Iy0tDcuWLTM4n/f39zfbdWsCbDbb6Eqb6lhZWWHkyJHw9PQEjUaDhYUFPvroIxQVFSE1NRUFBQV4+PAhpk6dCnt7e9BoNPj7+1OfWyhy2tUmmEym2b5rt2/fhr29PSZMmIAbN27ozAmoTm2zJY1Gg6OlablbX2UU4+KbLCQVGE7JUJaKXNfJxDHqwpj5pYNa/lCxSIydCw9g1cebcGjdCTy9+gK8Ak3xsLLjfJCYhwbutqjnag02Qz4WWzYTbf0cYGUh945LK+SjuY89mHQarCwYaOBug5gc+fXVbfnidhR+HLsR27/cg8t/3kRiVAqkUpUnm7lsqWsubIiqeA9N5YOcSRYXF+Pdu3fUdlxcHJ4+fQpHR8dalaSVQCAQ/kuY4yGZmF+K+u42Gitmt+Jy0djTDv1C3cBm0sEXSRCfW0Ll0arIdRl0Ghw4LOQaUZ69IuMs4IvxPK0QPYNdQKPRkJRfqpH/w8nSokYlWDUHdBoNjlyW0dVZyxLkYoW43BIU8jUT377OLEa4uw3cbdhIL9IOGXCshbZU/pjRdb9ViQPXwiQxtKYSGBiIiIiISp8fERGBH3/8EUOHDsXIkSMBANnZ2bhx44be/Ene3t5gs9mVvmZNJSAgoMIhroaQSCTYuHEj5s6di+XLl+O7777TSAIPAG5ubhpCUG0hICCgwlE1YrEYjo6OWLx4Mezs7CAUChEXF4cff/yRyh+9ZcsWjBs3DqtWrQKHw0FKSgqVMN/BwQEODg5Vcj/vk4CAAMTExJjcj0AgwN27d9GlSxdcuXLFYFsrKyu4urqafM2ahpMlC5l6qi8ag1AiRVoFn10ymQxfNJmPBu3roWHHMDToGAo3Pxe9z3ZTF2r1Ud788tyGkzj/LgUNOoSCzqDjn7XHAQCX/1QVTHH1dYa9qx3qtQpC26+GILUSqdyTC/i49DYLDT1s0USRy61YKEZsTglKFV5nN2Jz0MrXAUMbeEAikyE2pwQv0otApwEOagUetn2xB28eaX43ONYcuPk5w97FDmOWDAPd1k4rV1pl0DVn14dTFb2HpkCTyT68jLvXrl1Dly5dtPZPmDABe/bsKff8wsJC2NnZoaCggHinEQgEQg1BIJbg0LO0ak0Ez2UxMKyhR4XcxSOS8/E83XB+HnPT0sceoW6GQ5k+RJ6lFuBpZWaNJtDUyw4NPGrfs/9leiEe6ai8WZU08rBFYy/TQiFrIhcuXCg315G5GTBgAMaNG1et16wOrl27hq1bt1brNXv37o3JkydX6zWrgzt37mDjxo3Ves2uXbti+vTp1XrN6uDRo0dYs2ZNtV6zffv2mDNnTrVeszpILeDj4lvDhZbMTeLVSNxYqPmb38XHCQ06hMIvzAfewR7wDvaEZ113cCzlCxTnojKRYYLgVxnOfLweudEpRrcftWY8mJ0bV+mYyuJly0H3YBdq+5uPfsSDM/qLurDYTHz5bBNSCo0vEmAO+oS4wtWmZi02fZAeaZ07d8YHqP8RCAQCwQBsJgP+jlzE5GhXbawqgl2sKpxzIdjFGi/Si1BdTyEmnYY6TlbVdLXqJdjFGpFphWZZ2TQGOg0Icq6dtqzrbIUnKYXVJkTTFF6BtZEOHTrgwIED4POr54cCjUZDz549q+Va1U3btm2xd+9e8HgVy39kCrXVli1btqQcAaqL2mrLpk2bwtnZGdnZ+isSm5tevXpV27WqEw9bNmzZTBQKxEa0Ng/CqCSwLJgQCVXXzErKwZW/bmm1dfFxgnewJ/x7NIZV1ybVNkZefAb4aforuOri8cFbaNkkCDS76nu25t6Pwvbtp5GekIWM+CwkRRkW/rjWHIS4WlerkObAZcHFuuaFdv4ncqQRCAQC4cOgnmv1eV3RaUCwc8XDf6zZTHir5cCoagIdLWFRiQS0HwJcFgN+DsYlmjUH/o6WZkuUW9NgMxkIcKo+W/o6cGFl8UGux5YLl8tFp06dqu16TZo0qZUhXwBgYWGBrl27Vtv1wsPDK5VL7EOAyWSie/fu1Xa9oKAgBAYGVtv1qhM6nY4ePXpU2/X8/f0RHBxcbderTmg0GkJcqy+U2pbDxIpd03A0bw/WXV2OCd+NRNPuDSjPs7JkJeXgyeXnOP7tXyjJqj4R+umeyygprNjC8NvHsbj/6+kqG1NZilNzsGvSZhzeeBq3jz7AuydxEJTqT7fhWccN25+shZcdB9YW1TeXCnG1rpEpOWrnzJxAIBAIHyTOVhaoU01iQAN3W1hWciLQzNsOjGp4qLMZ9FoZOqdOUy87k6t+GQOLTkPTWm7Lxp62YFVD0QEmnYamXrWr+lxZhg0bVm5lSHPAYrFqZUinOoMHD66WPFsMBgMTJkyo8uu8T/r376+3YIU5odFomDRpUpVf533St29fsxbDMMTEiRNrpBBgLkJcrGHHqZ6FlZY+DqDRaGBz2WjUKRzjlgzD6gtLcTRvD7ZFrMG3B7/ExJWj0GN8J4S2DoKNo1zkk4oleLzheLWMMet5POLPaVZwZbGZsLLTnt/SGXQ4ezmCwZTPR2NOPkBudHK1jPPR+mOQqYUE0Bl0uPk5g8XWzkfWok8TbH+yFi7ezqDTaGjhWz25Ex0tWQiqoVEZtXMpkUAgEAgfLC18HJBayEepSGpE68rhwGWZlCfLjsNCEy87PErON+u4ytLS175KyrbXJKzZTDTztsf9xIqFQFSU5j72tdaDSomVBRMtfRxwOz63Sq/T1MsOttX0o+l9YWdnh08++aTKc1KNGDGi1npQKbG2tsbUqVOrPCfVkCFDal21zrJYWlpi+vTp+P7776v0OgMGDEDdunWr9BrvGzabjZkzZ2L58uVVmjKoT58+CAsLq7L+awIMOg3t/B1xNiqzStNeBDlbwcuOo/MYk8VE3cYBqNtYuzJqYU4Rkt+mIflNGlJTs0HzrDoxWiqWgPkyTkOgAgCRQAxRmfBXexdbfH9qMUJa1IVYJEZ6fBZS3qQiISUPJVIpaPSq83niv0lG167hcJvcGW7+LnD3d6UEvfWfbMW53Veptj0ndsYXO6aByVI9933tuQh0tERsbtWlY6HTgHb+jqDX0KJGH2SxAVMhxQYIBAKhZpNWyMfFN5mQwfwPTwsGDb3rucKBa1q+BalMhivvspFSUDV5Iuo4WaKdv2OtXMXmFfDw6t5bPDr/FDcO3QXXhoPRhxcjlWdaNVR9+Dtw0THQqVbasqSoFK/vvcHji5G4dvA2LNgsfHzsGySXVI0tfey56FKndtqyLDKZDL/99hsuX75cJf03btwYixYtAr0KfyzVJHbv3o2zZ89WSd/h4eH45ptvwGTWboFXyZ9//onjx6vGuyYkJARLliyBhUXNy0lUFRw6dAiHDh2qkr7r1KmDZcuWgcPRLf7UNl6kFeJxStWETzpwWehdzxUWDNP+XvJFEpyJykRRFeV0a+PngGAXa4zwnIq8dP2LrRxLNrY/XQuvuh46j7/OKMKDpKpZrLXjMNGnnivYTN0LtRGXn2NhjxUAgDFfD8HElaN0PvMFYinORmWggF81tmzpa4/Qakz5UlGIkEaENAKBQKhxFOYWYfmM31H/84FgsMz3w4jFoKF7kAtcrU2r/COTyXDv1COc/v0KrHs2h0dL8+Y+8VMIPxUthFCTeXjuCe4cf4iXd6IR/yJJywPAJ9wbdT/pDa/25l2597HnoFOgMxg1dEWzMkRcisStow/w8k4U4p8nQlpm5bvVgOZgt6sP3y4NzXpdT1sOutatXbYsD6lUihUrVuDVq1dm7Tc8PByLFi0Cm12zqpBVJVKpFD/99BOePXtm1n5DQkLw9ddfg8utvtyV7xuZTIZ169bh4cOHZu23Tp06+Pbbb2FlVTNDqaoCmUyGTZs24fbt22bt18/PD0uWLPlP/daMfhSD3/feRPiEbmbt147DRK8QV7N56BcLxDgfnYliocQs/Slp7m2HcHf5+x39KAaftVoEXS56NBoNqy8tQZMuDfT2FfciEVu3XED9KeYtUmHDZqJXiEu5HvrPb74Gg0lHWJsQg+14QjHOR2eZXZhs4mmHhp41+7tDhLT/0B83AoFA+BCQSqX4tv8qPDz7BO4tgtDppwlg2ZqeN82GzUTBuUc4+M2fcPN3wZe/TUfDTmFGe9bIZDLERibg6v9u4cLea8jLkK+60i2YaLVoGOp81NLkMQJAkCMXv3T6GkXZxej9SVdM/G4kbJ1q7oqcMTw89wRf9/2x3HZ0JgMtFgxB0OA2ZrlukJMlfu22BHlpeej+cSdM/mE07F0+7Dxpz66/xPwuyw22seCwIBJJ0OyLgag3ooNZrlvH0RK/9fkOWQlZ6DKqHaasGgtH9+rJkfK+efjwIS5fvoyIiAiz9Ne+fXtYWVkhOzsbzZs3R5cuXf4zXmlPnz7F+fPnERERYZZwutatW8PR0RHp6elo2rQpunXrBgajdofDK3n+/DnOnTuHx48fQyo1PRVC8+bN4e7ujpSUFDRp0gTdu3f/z3j4vX79GqdPn8bjx48hkZgurjRq1AgBAQGIj49Ho0aN0LNnT7BY2nmnahOFOUWY2XwhMhKyEDKyA5p/PhA0E73HAMDdho1rC3bjybknaNAxFHN+nQKfEC+T++UJxbgWk4Nsnv7k+sbCpNPQ0tceQWUKWP08dTvO/q7t0cy14WDtpWUIaaE7fLo4n4dZLRch9V06goa0Qcv5Q0DT4z1WEVytLXBv+V+4f+Q+wtoEY+62qfAL8zG531KRBNdicpBZLDC5LwaNhha+9ghxqb4CFpXlv/HUJhAIBMIHw/7vDuHh2ScAgNK4dPQOdECAo2lCWqirNfqHueHcxpOQiCVIfZeO+V2XY1bLRbj6921IxPonzoW5RTiw8l9Mqf8FpjdZgINrjlMiGgBIhWJ4FhWjS11ncFmVf6xaWzDQK9gFtJfxyE3Jg0ggwsmt5zHadzo2f7YLqTHple77fWPBMS5ESCqWwDWvAN2DnGFpwsqzlQUD3YNcYJ2cgcz4LIgEYpzddRlj/GZg4/TfkBRtuLx7TaY8W7K5FhDyRZBJpHDMzkOPIGdYmVBdi8tioFtdZ3gUFyHtbRrEQjEu7ruOsf4zsX7KNiS8Sqp03zWdoqIiHD58GGFhYVi0aBGWL19uUnJyOzs7zJ8/HxMnTkRycjL4fD7u3r2LiIgIvHz5EhkZGWYdf02ipKQER44cQWBgIBYuXIiVK1fC09Oz0v3Z2Njg888/x/Tp05GQkACBQIAHDx7g4cOHeP36NdLS0sw6/poEn8/HkSNH4OPjgwULFuCHH36Aj0/lfwxbWVnhs88+w+eff464uDgIhUI8fPgQ9+7dQ3R0NFJSPty/l+UhEAhw9OhRuLq6Yv78+fjpp59MyrPH5XIxffp0LFq0CG/fvoVIJEJERARu376NN2/eICmpdv69lEgk+GHMRmQkZAEA6Anp6BfqAifLyocHM+k0tPJ1QM9gFzw+/RgSsQRPr7zA5NDPsXTQajy/+dokMd7KQh7e2MzbDqY4WbtZszEg3F1LRAOAST+M1llgoLSIjy86LMGJree17kEqlWL1hM1IfaeY88Wno189F7hYVd6WDDoNLXzs0TvEFfcO34NELMHzm68xpf6X+OajH/H06guTbMllMdA7xAUtfOxN8lh3sbJA/3C3D0JEA/FIIx5pBAKBUJN4cPYJvukn91yi02lYdWEJmnSVu76nF/ERnVmMhPxSGPPkYtBpCHS0RD1XazgqJnNLBqzCvVOPtdq6+jpj6OcfYeDs3lreDLPbfI2o+2/1XiewoR+2PloNBpMBoViKt9k8RGcVG+3m7sBlIdjFGnWcLMFi0FGcz8Ngx4la7Wg0GtoNbonxy4YjoIGfUX3XFGQyGdZM3IJL+28YbOcd7IHfIteDZcGCSCLFu2weorKKUWhk/g07DhMhrtao62QFFoMOfokA/W3GaYVW0Gg0tO7fDOOXjUDdJtqJiWs6G2f8htM7LhpsE9Q0ABturgSby4ZIIkVMDg/RmcXIN9KWtmyVLS2YdIhFYvTjjtEKIwWAln2b4OOlw1GvZVCl76kmcuDAAWRkZGDWrFlUjiOBQIAbN27gwoULSEhIMKofNzc39OjRA127doW1tTVkMhlWrVoFoVDlCcFgMCCRSNCvXz80b968yu7pfXHw4EEkJiZi1qxZsLSU/7AUCoW4desWzp8/j7i4OKP6cXFxQY8ePdCtWzfY2NhQIY4lJaqE10pb9uzZE23amMe7tSZx+PBhvHv3DrNmzYK1tfwHp1gsxq1bt3DhwgW8e/fOqH6cnJzQo0cPdO/enfo9tGHDBhQWFlJtlLbs2rUrOnQwj3drTeL48eN49eoVZs6cCTs7ubeyWCzGnTt3cPHiRURHRxvVj4ODA7p3744ePXrA3l5e0Xjz5s3IzVUVflHaskOHDujatWsV3dH7Yc+Sv/HnD4cBAPaudtj2eDWcvZwglcmQkFeK6MxiZBjprcRh0hHsYo1gFysq/FBfvrGQFnUw5puhaDughUnjLxaIcfjoIwhc7MG2My6sOfVeNHp2roem4V4GIxuObjqDrZ/vprb9wn2Q8FIlqHYd0x6fb/8UXGt5aPr/fjqKP775CwBg42iNrY9Ww93fFVKZDIl5pYjOKkZ6kfG2rOtshRAXa1iz5bYc6z8DmYnZWm3rNgnAmK+HoMPQ1kb1rQ+eUIyjxyPAs7MGx9G4aAp3GzZCXKzh68D9oFKaECGNCGkEAoFQI8jLLMCnDechP1Pu7TV19TiMWDBQq12JUIKUwlLk8ETILRGikCdAfnYRJEIx2JChURM/OFlawMuOCzZT00Psyv9u4aexv+gdw6TvR2PM10M09s1s/hXeRuj+kUej0/C/xO1w8nTU2C+TyZBRLEBmsRA5PCHyS0XIzS6CoEQAEY+PevU84eVqAzdrNpytLLQmYZNC5yI5OlXnNbnWHPyd8hssbT6cfEDRD99h2eA1yEk1UJmTBux9uwWegZoePzKZDJnFQmQWC5BTIkReqQh52UXg8wQQlwhQt64bfNzt4GbNhou1ti2nN1mAmGfxOi/JsWTjQPxW2Dl/OHOBd0/jsGzQGp0TYSXqk291ZDIZsnhCZBap2TKnGHyeAKISPgL8XeDv5QAXawu4WbO1bDmn7Td4fe+Nzmuy2Czsi9kC5zLfhQ+Za9euITg4WKfnlEwmw7t37/D69WvExsYiISEBpaWlKC4uBpfLRUhICAIDAxEcHIywsDCt0M3k5GT88ccflBeAtbU1WrRogfDwcDg5OVXbPVYXN2/eREBAgM4KpTKZDLGxsXj16hVly5KSEhQXF4PD4SA4OJiyZf369bVsmZaWht9//50KybOyskLLli0RGhoKFxeXarvH6uLOnTvw8vKCn5/uBZX4+Hi8ePFCy5YWFhZatiy7cJSZmYk//vgDAoH8hzqHw0Hr1q1Rr149k7wxayr37t2Dm5sbAgJ0L6gkJiZStoyPjwePx0NxcTFYLBZly6CgIDRo0EArDDYrKwt79uyhRF4Oh4NWrVqhXr16cHd3r5b7qw4ib7zC/C7yyqd0Bh1rLi1Fo07hWu3yS0VIK+Qjp0SI3BIR8vNLUFJUCjFfCCdbLuqFeMDZygKethwtr6ZNs3bi5LYLesew7spyNOqsfc2KMLvN13j7NB4erUPwydZPUcpgopAvgkQmA51GA5tJh5OlBRLvReOfhftQlJSNXpO6YP7vMw32KxaJMb/rcry8HY1hX/bHJz+Nwc6vDuDIL6epNn5h3lhyaB5Ki0oxt923kEqkoNFo+PHsN2jes5FWnwV8hS0V8+D8ghIUF5RAIhChMDELuVHJaN0+BINHtdWy5fb5e3H451N6x/vD6a/Rsk+TStlQyfyuy/H8dhQ8W9fDxC1TIGKzUSAQQSKV2zLpRSJyo5KRF52CsGA3vL74DIv/nAvPOh/W9+K/EfhOIBAIhBqNTCbD+k+2UiJa64+aYfj8ATrbWlowEORsjSBn4MDKf3F0yxkUZhUBAJr1bIQp577Ve52wNoaLAuhaVVy4fw6+6LAERbnFWsda9m6iJaIp+3G34cDdhoPi/GJ83v4H5KbnU310vb4C9Rvqz/HRoH2oXiGNwWRAZoZ8ONWBTCbD2V2XsWXOHxAJDFeRbNylvpaIBoUt3WzYcLNho6S4FJ+3X4Ls5BzKlj+d+xYNmugPa2rQIVSvkEb7wJLmX9x3Hb/M+A2CUrknE51Bh1Si/Vn4as9nWiIaFLZ0tWbD1ZoNfqkAX3RYgoz4LMqWy48sQIPm+r0dG3QI1Suk1dTy9JUhOTkZd+/exbBhw/R6GtBoNAQFBSEoKAgSiQQnTpxAXl4emjdvDjc3t3JFBw6HAy6XS/3ItrS0RMeOHavkft4naWlpuHHjBoYPH643DxyNRkOdOnVQp04dSKVSnDp1CllZWWjZsiWcnJzKDQFV2rK4uJjaro22zMzMxJUrVzBs2DCDucv8/f3h7+8PmUyGM2fOIDU1Fa1bt4aDg4NOIVMdDocDCwsLSkhjs9no1KmT2e/lfZOTk4OLFy9iyJAhBquT+vr6wtfXFzKZDOfPn0diYiLatGkDOzs7+Pr6GryGpaWlRl40JpOJzp07m/U+3jfF+TysHr+ZWhCYuGKUThENAOy5LNhzWZDJZFg+ZC2e33xNPXsmfDcSTbrW03ud8Lb1DApppj7LC3OKEP3gHWQyGZg5BWgfqruSJgCwojgoSpIvZJ3fcxUTV4yCs5f+BSQmi4k1l5YhJyUXHoo5zowNExHeLgTrP9mGkqJSJLxKxmctF4FrzaGe6WO+GaJTRAMAOw4Ldhz5Z+v7kRsQcTlSa44qfBaDYWPaaZ0b3raeQSGNbmJeu5KiUry4FQWpWAJpajY6NdD+m/NR2wUQlMjnMUqfz89aLcae6E0fVE5gkiONQCAQCO+dk9su4P5peSJve1c7fLlrRrlFAFJj0rF3+UFKRAOA7OQcg+e4+bnA0d1e57GPpvXAsHkfae3PiM8Cv5iv85z+M8uvpvT9yI1IeJWsMcnJKmec+gQ/OxdbfH9qMayMDD14n5QWl2L1+M3YMG0HJaL51/cBS0+lqAEzyrfl6o83Iy4yQcOW5b3noXpsaeNojZUnF30Q3mj8EgHWf7IVayZuoUS0ei3rYs2lpbC01fRM7D+jF1p/1KzcPjdM3Y53EXFm+Vxa2Vniu2Nf1QpvNJlMhsOHD6O4uNjoQiR3795FZGQkkpKSEBMTQwk6higoKEBJSQm8vLzg4+OD8HDTvClqKkeOHEFhYaHRtnz48CGePHmC5ORkREdHg8fjlXtOYWEhiouL4eHhAR8fH4SFmbfyb03h6NGjyMvLM7qYwpMnT/Do0SOkpqbi5cuXRtmyuLgYRUVFcHNzq9W2PH78OLKzs4225fPnz3H//n2kpaUhMjLSKFuWlJSgoKAALi4utdaWmz/bRXlHN+gYihFf6V4AVefMzou4c/xhhZ7j+p49dAYdc7d9ioYdTbNtxKVISgxs3rOxwbZpcZmqDRkwr/NSlPJ0zxGVWLBZlIimpOOwNvj14Sr415cvBPJ5Air/bkiLuvh46fByx33lfzdx/dAdnQu9MU90R1LotSWdhpkbJ+kV74zl6dUXVN7hZnpsaaWjgFhRbjEW9/kBvMISnefURIiQRiAQCIT3SsLrZOyYv5fanv/HTDi4Gq6sKJPJsGnmTq3cV9kpufpOARSeD7qEFRqNht6fdAPLQrOq1vVDd7Fs0GqIhNp5pbjWHDTppr90OQBEPXiLxxefae2vrPgT0MC3XK+6mkDci0TMarkYl/+8Se1r2acJUt6m67Qli81E896GJ68xz+Jx9+Qjrf2VFX986nmhQYdQg+fWBJKiUzC79WKc232V2td7clesv/YdGnUKR4chqnwmPvW88Onaj8vtMzEqBdcO3tHan1PO90efLT3quKFx1/rlXvdDQCaTITQ0FIMHDzb6nMxM1Q+r2NhYnDqlf7Vfibe3N1xcXDBw4EBMnjwZTZs2xZUrVyAWG5fD7kNAJpMhODgYQ4cONVpIUy+4EB8fjxMnTpR7jqenJ9zc3NC/f39MnjwZrVu3xuXLlyESGfaC/dCoW7cuhg8fXilbJiYm4ujRo+We4+bmBnd3d/Tt2xeTJ09Gx44dcfnyZcpDrbYQEBCAESNGGC2kqX/Hk5KScPjw4XKTszs7O8PT0xO9e/fG5MmT0a1bN1y+fBmlpaUmj78mcPnPm7jy1y1AsZiyaN/scu3JKyzBH9/8rbU/K8Xwc9w9wBX2OuaFNg5W6DTC9DyITy4/p14372VYSEqL0SwKkxqTgeVD1kJYjte9LryDPbH53k9o2ElTCBQJRchJNfw8LuXxsWPePq39Su9wIV+EqIfa+RKdPBzg5qcd8s61tUSX0doebBXFGFvaOuv2OnvzKAZLB66GoPTD+HtDhDQCgUAgvDeEAhF+GvsLhHz5BGTgrN5o1bdpuedd/+cOHl+M1NrPK5Dn3DBE/Xaq8AG2JRtQ/OBbPX4z+CWqh/e5P67gx9EbIBZpVvRU/ojp92kPWLD1l7OXiCXYOP03nceykgxPGn1CPDXc21mK6zy98gJnd2mXUq9JnN9zFbNbLUZSlLzSm6UNF4M+64NHF55phXcqfw/2ntwNXCuO3j6lUil+mfEbZDoS3ZdnSzc/F42wCwuuPIzn1Z1oHN9yrmI3V81c+esmZjZfiPgX8sTEHEs2vtr7GebtmgELjgWeXXuJC3uvAQCYLAa+/nMuOIrPtD5kMhl+mfGbzpDQ8kRJBzd7eNZV5TBhK4p4vIuIw6F1Jyt1jzWJt2/f4uzZs+jZsyeVMNwQMpkMjx8/RmJiIrXP0dHRKDGMzWZj5syZVA4vZYLza9eumXgXNYPY2FicPHkSPXr0gKOjcZ6KT548QXy8KgxbacvyBAsWi4Xp06fDw0MejiWRSHDv3j1cunTJxLuoGSQkJODYsWPo1q0bnJ2djTonMjJSo4CDo6MjJBIJpOWkBWAwGJg2bRoVtiiVSvHgwQNcuKA/rO5DIjk5GYcPH0aXLl3g6qod/q6LFy9eaBRwUOYwLO97TqPRMHXqVAQGBgKKvxePHj3CuXM1+7ljDOnxmdg0aye1PXfbp3D1LT8f4Z5v/0ZhTpHW/vKe4zQaDeHtQqhtro18vlCQXYQts3+v4Oi1eXVXnrKAzqAjrG2Iwbaxz7WLzERcjMSqcb8YrACvj+K8YsRGavYZ+ywBM5otxMPzT/Wed2DFv8jVUYCBoeb1f3zzWZ3n1m+vmgdzreW25OXzsHHaDpOqd0LNllCkg9CFrpQoSiKvv8L3IzdALKr5i0pESCMQCATCe2Pvkr8R81T+w8kvzBtT14wr9xxeAQ/bvtij93jK2zSD5/eZ0g0t+zZBu0EtsOPpWgQ3rwMASIpKwe+L/gQAHPnlNNZP2UZVKGSpCWazf52CrY9WY8qqsQavc3zLOeretMb4zvAY6XQ6Zm2ajJAWdTDrl8lY8s+X1LFtX+4p9/z3Ab9EgLWTf8W6yVup8MPARn4YNn8Ajv96jhJuLDgqW07/eQK2PlqNWb9MMtj3mZ2X8fqe7sqp5dmCRpOHK4S0qINP147HimNfUcd2LTqAhFdJBs9/Hwj5QmyctgM/jdsEPk8u7vqFeWPLg5/Q42N5vqKivGKN3DSTvh9tVAXSS/tvIPL6K53HyvvuAMCMnycipEUdfPLjGPx45mtKWN679G+8e2pc5cWaCJ/Px5EjRyrkefP69WucOnUKBQUF1L6kpCSjxQ517O3t0a9fPyph/oeMUCjE4cOHwecbDndS582bN1SeOSVJSUlwcnIy2gNLiY2NDfr371+uaPQhIBaLcfjwYaNCCZXExsbi6NGjyMrKovalpKTAyclJb546fVhaWmLgwIEm/7iuCUilUvz7779GhV4rSUxMxOHDhzW8+1JTU2Fvb28wT50u2Gw2Bg0aVOHPc01DIpFg9fjNKCmUL1p2G9cBXUaV78kU/SgGJ7bqFhFT36WX+339eOlwhLUJxsBZvbH10RpY28tTXFz56xau/n27UvcCxbM0XlFFs26TAIOLegAQ/zxR5/6bh+/jz+8PV+jaUqkUayf9iuI8+fe7cdf6cA+QC7yFOUX4tt+POLNTe0Eg7nkCDm/Q7fksVvP6j7ikveAMAKO/HoLwdiHo92kPbItYAzuFh9jtYw+pxbnKUMrj450ipNQvzBs2DtY627n7GxZd7516jN3fansu1jSIkEYgEAiE98LTqy9waL3ci4XJYmDRgTlgcw170wDAH9/8T+cqnJLE1ykGz7eytcQPp77G8iNfwauuBxbum02JO8e2nMXqCVs0hDpXH2fKk6rd4Jb4aFoPBDUNBIOpP4QhKzkHe5bqnwTEvyxfvOk6uj223F+FQbP7oE3/5ug3tTugyKOxZsKWSq18VhUJr5Mxu9ViXNijmoD1m9odnYa3wb5lB6kfYa6+zpT3YYs+TTB4Tr9ybZmXkY/fF/+p/9ovk8sdX4ehrbHl/ioMn9cfzXo0wuA5fQFF6MPq8ZshEtacELCUd2mY0/YbnFabPPeY0Amb7/8EvzB5LhVlaLPSg6xxl3AMm9e/3L4Lc4o0wqjLkvAqudwfzK0/aoYt91dh1KLBaNgxHCO/klfWFYskWP3xZgj5QqPvtabRqFEj9OnTx+j2KSkp8PX1pbzX2Gw27O3tER8fj4QEba+F8mjSpAm6dOmCq1evVkiEqok0aNAA/fr1M7p9amoqvL29KW8fFosFJycnpKSk4O1b3SK6IRo2bIhevXrh6tWrVEGHD5WwsDAMGFB+7iklqamp8PDwoDyumEwmXF1dkZGRgZcvX1bq+v369cO1a9cqJELVNJRh24MGDTL6nLS0NLi5uVHejgwGA+7u7sjJycGTJ08qPIaQkBAMGDAA165dQ2FhYYXPrwn8veoYXtyKAhQe37M3f1LuORKJRO4JrcOrHAAEpUKDlagBoE4jf/xy+wd8tvkTeAd5YPavU6hjm2buRHY54aH6UF+kKy91RkF2ocH5Z/Qj7VBKQxzZeBoRl+ShkE6eDlhy8EtsfbQarfvL85xKpTJsmLYDB1b+Sz2bpVIpNs7YqXcOKJPKKLE2Nz1fZ84xv1BvbLz5PT7f/im86nrg8x3TqGNb5+5GWlyG1jnG8OZhDLVoGm7As8872HABGQB4U0Fbvg+IkEYgEAiEaqcwt0jDm2byj2NRt3H53jTF+TyDlZsAIPF1+cKKOr71vDB1jSqv1KX916nXzXo2QqaiOpOTpwO+/G26UavJx7ecRameAgVQhDGoh5Eaw7T14+FZR56s9tXdN/h79bEKnV9VXDpwA5+1XESJgxwrNhbtnw07F1uNFcVmPRpRE2V7F1vM/738ghIAcGr7RRTn6/fGKMguRGGudqiIIT75aQx8Q+VVU99GxOHAin8rdH5Vcf3QXcxstpDyZLTgsDDv95n4avdnGqvklw7coHKc2ThYYcGez4zyNDn7+xUUZOu3VWkxHzlpeXqP62L8dyMQ2Ehe6TP+ZRL++OZ/FTq/JvDs2TPcv38fvXv3BpfLNeIMOd27d8ekSZMwfvx4ODk5YdSoUZgxYwYYDAaSkyv2d0iJVCrF/fv3P9jwrxcvXuDmzZvo3bs3rKyML4rSqVMnTJ48mbLliBEjMH36dLBYLKSkGF4c0YdMJsPDhw9x+vTpSp3/vnn9+jWuXLmC3r17w8bG+Ep27dq1w9SpUzF+/Hg4Oztj2LBhmDZtGjgcDlJTdVeDNoZHjx7h5MkPM4T7zZs3uHDhAnr16gU7O8M5WNVp1aoVpk2bho8//hguLi4YPHgwPv30U1haWiI9Pb1SY6HRaHjy5AmOHasZz/CKEPXgLfZ/dwhQ5OJatH+2UcWPIi5G4u3jWINtlOkgjKXr6PborPCEK87nYe3krZXyQn11J5p6bUj8AYDkN/q9tl18nDBjg2HvenVinsXjj6//ora/2jsbtk42sHGwxndHv8KwL1WLY3uXHcTmWbsgkUjw/OZrjTHrwt5VVUTp5Nbz5Y6l/eBW6DWxC6Courl24q+V8o5+qTYuQyGy/g30V7y14LDQZkBzfLZlit42NQUipBEIBAKh2tn2xR6qMECTbg0w9AvjPBeYFkw4ehjOXWSMt1dZ+k3rrlW+fMRXgxB5TbV6v2D3LKPLcutK5FqW5OiK/aDhWnOxcN9sKpHs/u8O4c3jmAr1YU4EpQJs+HS7PLecIvzQv74PNt//CVH33+GvH49QbYfN648Xt15T2/N+nwlHdwejruPqV36YXFJUxWzJ5rKxaP8cyhPu71VHNSaA1Y1QIMKW2b/j+5E/Uzn+fEI8seX+T+g9qYtG2+zUXGz5TJUTZu72aXD1MS6U0M0IW5bn0VkWlgULi/bPoaqxHt5wCk+vvqhQH++T3NxcnDhxolJJ/pVCsI2NDaZMmQJ/f3+wWCw0a9aM8qyqKBwOBwMHDvwgwxILCgpw/PjxSiX5p9FooNFosLKywpQpU1C3bl0wmUy0aNGiUqGyUHi1DRo06IMMSywuLsaxY8cgFFbcw1NpSy6Xi8mTJyMkJAR0Oh0tWrQwOi9YWRgMBoYMGVKpc983paWlFQ7bVodGo4HNZmPixIkIDw8HjUZDq1at4ObmZsTZuvsbMmQI6HT6B/XZFApEGt7woxcPQf32xhXscfJ0BJ1hWHao6LMHAGZv+QROnvK5RMTFSJz4tXzRqCwv76oJaWo5dHXhEehKzQOt7DQrT+ak5IJRzj0qkYglWDNhC1V8adiX/dFUrXgVnU7HtHXj8ena8dS+k9sv4IdRG2DraA0my3BRB49AVS7T6//cNWpMMzZOpEIun998jX/Xl180pyyv7honSpZNQ6Fuy1mbPsGKYwvhF+pd4etXN0RIIxAIBEK18uz6S1zafwMAYG1vhQW7Zxmdt4VjycbvrzZi5YlFcPVV/bhqN6gl9aPWmDxP6ohFYqyZ8KtWxc8HZx5Tk5whc/uhWQ/jS4L3n9EL25+sxciFqhCSgAa+8A5RubNX1HMOAMLahGDUInk1QYlYnqfkfVQ3Sn6Tijltv8EZtcIHvSZ2wcZb3+PQuhM4tkWV4HbWL5OR8jaNypvW79MeaP1RM6Ov1WtiF/wWuR7jlg6j9vmGesMvTDXJqowtg5oG4uNl8vLyUqkMayZsRmlx9VdTS4vNwBcdluD4ryoPpK5j2mPLg1UIaOCn1X7H/H2U2NZjfCd0Gm58xbLOI9th14ufMen70dQ+72BPBKitDlfGlgH1fTH5xzHU9pqJWwx6EdYkGAwGWrZsiU6dOlW6j+vXr+PgwYPUdo8ePeDl5VXp/pThZzdv3vygwhLpdDqaNWuGbt26VbqP27dv48CBA9R2165dqcT3lSE4OBgjRozArVu3PqiwRBqNhsaNG6NHjx6V7uPevXvYu1cVyt2pUycEBJTv+a2PwMBAjB49Gnfu3PngwhIbNWqEXr16Vfr8x48f4/ffVQsY7du3R926dSvdn5+fH8aNG4f79+8jP19/qGBN4t/1J5GkWAAMaVFH45lcHoEN/bA/9lcs/nMutc/e1RYNO6qEuMo8e2wdbbBg9yxqe+fC/UioQD8SsQRR9+WhnS4+TnDxNrwA4ujugN3Rv2BfzBYs3Ddb45hUKsPBNceNuu6xzWepAgOBDf0w6YfROtsNn9cfC/fNphb9bh6+jy1z/sCOp+vw7T9fgKZYWLVxtNaonG3vpvJIi3+pO6dbWaxsLbFgz2fUXHrPkv8h5pnuPL+6kEqllKecnbMNvII89La1d7YFFAEJdAYdSw7No44pc6x9CBAhjUAgEAjVhkgowuZZu6jtKavGljtxKYuVrSVa9m2Cgiz5RN472APLjyyAX7hcWEl5m2Z0/jB+iQDfDV2Ha4pEtcpJCQCqUqKrrzMmfj+qQmOEIp+HnZoH2/B5AzB1taqYQmVWXwFg3NJhCGoaQPVxcLVxEzdzce3gbcxsvhCxz+STQDbXAgt2z8KcrVOw/pOtVJ40Op2GBbtnwc3fBXdPPAIAOHo4GFVQoiwB9X1h76IKxxk8py9mbJhIbVfWlqMWDqJyoqTGZODAyoolCjaVW0fvY0azr/DmkdyzkMVm4fPtn2LR/jmwtNEOMYy4FEl9Vu2cbTB9/YQKX9MvzAeO7iqvzv7Te2KOWq6ZytpyyOf90LhLOKAIXd679GC557xvYmJiEBUVhV69elU4cbg6aWlpGiGhz549w86dO032Nrl79+4HUy0xPj4ez58/R+/evcFi6a9mXB5lbfnixQts377dZFs+ePAAZ8/qrmBX00hKSkJERAT69OkDNrv8vKH6KGvL6Oho/Ppr5UK21Hn06NEHEy6bkpKC+/fvo0+fPhUK2y5LWVvGxMRgy5YtlfIYVOfJkyc4ceKESX1UB2lxGfjze3kKBDqdhi9+mw4mq2J/M119nDXElVZ9m2HF8YXUdmIFQzuVNOvRCIM+k+e2FPJF2DTT+L+9sZEJlEd9ed5oSmwdbeAR4IbQ1kHUPqW33YU9V5GdmmvgbCA7JQd7l8mfjzQaDZ/vmGawAnz3cR2x8sRCcKzkfwsir7/CD6M3ws7Jlqpk3qxnI/xwajEVsZCVlEN5eYlFEkRc1l10oCwNO4Zh+PwB1Hkbp/9mtHd0UnQqihRFE8LahpSbukN5z1KJFHWb+lPto+6/MXheTYIIaQQCgUCoNo5sPIOEV/LVwnot66LPlMp5LqTHZVIeTn7h8gTsvgo3cLFIgtSY8nOX5GXkY36XZbh36jGgEDFWHFuItoNaarSb9cvkcqs46SNerSKkX7g3fOupvFQSoyqXQ4llwdJYoTy45hjS4zMr1VdFEPKF2DRzJ34YvZHK/+Yb6oUtD1ahVb+m+KrHCtw8fB9QFI/49uCX6Di8DbbO/YPqY9q68bCytdR7DUMkqIXs+od7U+83TLAlg8nAV3s/o6qyHtl4CslvKp9DyFhEQhG2fbEH3w1dB16B3OPIs647Nt39Af0+7aFzAioUiLD5M3URepzRocZlUQ9/9itjy6RK2pJOp2PB7lngWMon+ye2nUfc84on3K8uBAIBjhw5Uuk8R+q0bdsWHTt2pLYtLS1RVFRkUsEAOp2OPn36fBBeVCKRCEeOHEFamunVhFu1aoUuXVThzFZWVigtLTXZDn369KlQ5cv3hVgsxpEjR0zKZaakRYsWGt6BlpaWEAqFGlVmK8OHYkupVIqjR49WOl+hOs2aNUPPnj2pbUtLS4jFYo0qs5WhV69eKC2tfk/oirL1891UoaBBs/uiTiP/SvWToPHs8YGVnRUcPeShmZVdxAGAT1aNpXLIRl5/hRuHjAtnVE/pEN7GcH60sti72FHXVCISinH4Z8MhkTvm76PmUH2ndENoqyCD7QGgRe8mWHdlOVVdMzYyAd+P3EAd9w/zgQXHgqr4mRSVgtDWqsIJJ7cavyAzYcVIyuM/6v5bKoKkPNTztoUZYUuu2mJhbmo+tRge8yyhwjmE3xdESCMQCARCtZCZlI0DK1RJamf/OsXokM6yKL3FoJhAQFE0QEl5ObMSXidjTpuvEf1Q7glkacPFj2e+RuuPmlETFSXugZXLKaM+ThqNBt9Qb3gEulG5pCqa10sdvzAfjcqTvy3YV+m+jCHuRSJmt/kaJ7erJmPdP+6ILfd/AtOCiTltv8HL2/JJFMeSjRXHF6LD0Nb4349HkB6fBSjKundRJAauDPFlJuDOXo7gWssFTlNs6VXXAyPUVmC3fbmn3HNMITEqBZ+3X4Ijv6g8OjoOb4Otj1YbLLjx7/qTVKLjsLYh6Dmxc6XHUNaWtk42sHexVYyv8rZ09XXB6K/leZSkEim2fr67xuYAEgqF8PT0RNeuXU3qRyqVIjMzUyOPV3BwMAYNGgQOp3ICvJIGDRpg1KhRiIqKqtE500QiEdzc3NC9e3eT+pHJZMjIyICLiyrHZGBgIAYOHAhra2uT+g4NDcXHH39c420pkUjg7OxsUkgnFLZMT0/XsKWfnx8GDhxIVZmtLEFBQZg8eTKioqJM9m6rSiQSCRwcHEwK6YTClmlpaRq29PT0xKBBgyqdv09JYGAgPv30U0RHR1cqT2N1cOfEQ9w7KV9wdPRwwPjvRlS6r/gXqjBDf4Vwoiz8U5hThILsyoUMcyzZGon+dyzYh1Je+QsZr++pvJ/C21VMSAOAegoRTCqRgsWWz+1O7biAwhzdRX0iLkVShYLsnG00UiKUR0iLuth463sqj5m6rfwoW8r/5/MEaD9EtSgcecP4ar0WbBZmblTZcteiAzorf5bl1V2VLesbYUv1iI2Yp3Go11Jly3cRhgtT1BSIkEYgEAiEamHbF3uoVaaPpvdEcLM6le6rrBAAAD7q3l4GcmQ8vfoCn7f7lhJ4XLydsOHmSjTuUh+xkQk4v/uq1rgrIwZIpVIkKrzv3ANcwbFkg8FkUKENyW9SjQ5B1cW4pcPg4CYPd7x5+D4iLj+vdF/6kEgkOLTuBGaphXJacFj44rfp+GrPZ4h5loC5bb9B6ju5V4+juz3WX/8OLXo3QVJ0Cg6tk4esMFkMzN4yxagqnbqQyWTUe+7o4QAbB2vQaDTqPZd7KFZ+BXPkokFUiPGDM09w//TjSvelD6lUiqObzmBG0wWqUE4LJmZvmYJv//7CoKde2bCaOSaI0FDzCrC2t4KTwhtAacvctDzwCirvbTLsy4/gEShfpX969SVuHr5X6b6qwmCLpAABAABJREFUiry8PMTGxmLs2LEVqoaoi+TkZJw/f17DM4XBYEAmkyErK8vksfJ4PBw8eBAREREm91UVFBQU4M2bNxg7dmyFqiHqIi0tDefOndOwG51OB4PBQEZGhslj5fP5+Oeff/DgwQOT+6oKioqK8PLlS4wdOxaOjo5GnKGf7OxsnD17VsNuNBoNLBbLLJ6DQqEQhw4dwp07d0zuqyooLi7Gs2fPMHbsWA0BrDLk5+fj9OnTGl6CygIE5vAclEgkOHToEG7cMM7zpzrhlwiwde5uanv6+gmV9ioHgPhXqrkZFU2gMXervFdaq35N0aJPE0AR2njQiMrmynkFg8nQyBVqLKGtVF5f9RSv+TwBjm3WDiM3h1e5d7AnNt7+gaqUraREIXT5qOXhdfFxpkJOC3OKkZdpfC6+pt0bov2QVgCAvIwC/Lmy/MrmCWoRGHUal++xqPREBIDEV5oedK/vvTV6rO8TIqQRCAQCocp5cPYJbh2Rh/3Zu9ppJDuvDOoPbP/6ytBO9bBJ3ZOxi/uvY3Hv76lE6HUa+2PTvR8R2NAPUqkUm2bthFQi91awtpeXdH965QU19oqQkZBFCYfKMQKATz35REcskiAttvI/Dq1sLfHJT2Op7W2f74ZYZL4V7bS4DCzo+h1++2o/VXTBP9wHm+/9hL5TuuHGobv4qvsKauVVfuxHBDerA5lMhi2zf1dVpJo3QGOyXFHyMvJRlCsP7VK3pfI9l8lkBsvSlwfXioNP135MbW/9Yg+EgopXHtRHZlI2FvX6XiM8xifEExtvf48BM3uVKzCaK6wGAIrzeVRhDf/6PtS11d+fBBN+zFhwLDD9Z1Xuth3z99WoMA2ZTIbDhw/j8WPziKV8Ph8cDgcODppVaO/evYtHjx6Z3L+dnR2aNm2K6Oj3V1VWHzKZDEePHsX9+xX/+6gLgUAACwsLrYqn9+/fN8s1rKys0LJlS0RFRZncV1Vw4sQJswlTfD4fTCZTy2Pq4cOHuHfPdHGbw+Ggbdu2NfJzCQCnT5/GrVu3zNKXQCAAg8HQqnj6+PFjs7xfTCYTHTp0qJG2/OuHw8hIkAvbTbo1QOeRbU3qT7mIY2nLpRavjF0ELQ8ajYYZP0+gKlr+s/YE0uL0z7GkUilVPd2zrnuFc74BQL1WqoITtk7WVMqNY5vPUEWBlBxad8IsXuVOHg74+dp3YHMtqH2bZv2OV3ejNdI0JEenwjtYlZPu6KYzFbrOtHXjYcFRpL345YzBHHYymYyKDHD1dQbXuvx8hOoV2VNi0hGqZsvXD4iQRiAQCAQCBKUCbJmtqnY1bd14SqSqLOqriMqJgk+IJ5VoNeapZqUhmUyG/SsOYc2ELRCL5F5gLfs2wc/XV8DZU77yf3HfdSo80SvIA1/8No06f/u8vRUWAxJeqq28hqmLP6qJTtlxVpQe4zuhXkv55CP+ZRJObjM9MblMJsPZ3y9jWqP5eH7zNaCYoA6f1x+/PlyFgAa+OLjmOL4ftQEihdjUtHsDbLy1Eq6+8pX/6//cQcQluYecm58Lxn471KQxxavZ0l/Nln5mtGWnEW3RQFFBLPVdOo5sND2Ztkwmw8X91/Fpw3l4ouYxOGh2H2x9vMYor0xzhtUAoHIUouznMsx8tmzTvzma95JXuc1MzMY/RlYyqw6EQiF4PJ7JYYhKgoKCMHfuXK1iBV5eXhCJzCPGfvTRRxgxYoTJ+ZjMjUQiQUFBgUbuKFPw9/fHF198oZVg38vLy2xhb7169cLYsWNrnC1lMhlycnJMDkNU4u3tjS+//BKWlpreQ+b8XHbt2hUTJkxAbq7h5Orvg5ycHPTu3dssfbm5uWHevHla3qteXl4mFxtQ0qlTJ0yZMqVG2VLbq/yTSnuVAwCvsASZidmAYuFN2ZefGZ89PiFeGDK3HwBAJBBhx3z9aS8yE7OpBSrfep562xkisKEfdR85KbnoNq4DAKAoj4fTOy5S7dLiMvDXD/JiRnQGHXO3TjXJq5zFZmks9glKBPim309gKEREAIh5Fo/2Q1pT27ePVswT193fFSMWDAQU1U23faE/VUN+ZgG1QO1j5KKpZ1136nV2Sg58w7wpEVQpcNZ0iJBGIBAIhCrl4OrjlOdVw05h6Da2g0n9ScQSJCk8ZryC3MGykK+YsblsBDSUu7vHv0ikwtNEQhHWTv4V+5b/Q/Xx0bQeWHFsIVUZsTC3CDu/2k8d/2zzJ+gwtDWa9VSJAYfWVqyylmYuEJVgoZ5YVj3RbWWg0+mYtWkytb132UHkZ1U+kXReRj6WDlqNn6dup5Lhuvu7YN3V5fh07XgwmAz8MmMndi06QJ3Ta2IX/HD6a1jZycVRXmEJtn25lzo+c+MkKgF9ZVG3pZ+aLeup2fKVibak0WiY9ctkSoz98/t/y62+ZYiC7EKsGL4eayZsoQoKuHg7YfXFpZj1y2SjbGLusBoY+Fxq2PKu6bacsWFStRfEKA+RSITU1FTMmTMHvr4VD+PRxenTp/HypXb+mX79+qF///5muQaNRkNSUhI2b95slrA8cyAWi5GYmIg5c+YgIEB/br+KcP78eTx79kxrf8+ePTF48GCzXINGoyE9PR2bNm1CUlKSEWdUPWKxGLGxsZg9ezaCgspPPG4Mly9f1hkO3K1bN4wYYZoYr4RGoyE7OxubN29GXFycWfo0FYlEgpiYGMyYMQP16hlXhbE8rl+/rtMjsmPHjhgzxvgcV+VRUFCAzZs34+3b9++NI5PJsPmz36mFx+HzB8AnpPJe5TCwiBPcvA713H1p4rMHAMZ8O5SqTH376AM8vqj9NwVlwkgre28WHAs4e8sXY1PepWPkV4MoYe3fn09SC7AaXuWf9UFgQz8DvZZPUnQqVbFTea/F+Tz8tmAfJUa9uhONQbNVYnLym7QK54ccuXAQXHzknoOPzj+jinOVRdOWxomSNmoL6iK+GAwGgyqWkBaTUWPzq6pDhDQCgUAgVBmZSdn4W5GngsE0LU+WksSoFCpkUF1UAYDwtvIEp1KpDK/uvUVxPg9f9/0RF/dep9p8uuZjzNk6lfqRDwAHVvyLgmx5iGKnEW3QvGcjhRgwkWr39+qjVIiDMcQ8U62sKhPBQuHSr+TFbdNDjOq1DEKvifIqd7yCEuz+5n+V6ufmkfuY2uBLyvsJAHpP7ortT9ehYccwlBSVYsmAVTj9m2qVdeKKUZj3+wyNkIi/Vx1Dbprc26P1R83QZkBzE+5Ojrot/dVsGdKyLpUDxBy2rNPIH/2myb1r+DyBhmBYEe6deoypDb7UCAnuNq4Dfotcj6bdGhjdz7/rT5o1rAZlVvzVP5dBTQOoMI4Xt0y3pW89r2otiGEM58+fx+HDh03+G6REIpHg2bNnOr1SJBIJfvnlF2RmmkdA9PPzg7OzMx4+fGiW/kzl8uXLOHjwoNlsKZVK8fTpUwgE2p6/MpkMmzZtMpuI6OXlBQ8Pjxpjy+vXr+N///uf2X44ymQyPHnyRKctAWDLli1mExHd3d3h4+NTY/LO3b59G3/99ZdZE/fr+1zSaDRs27bNbCKik5MTAgICaoQt7xx/SHlRu/m5YMw3pnmVo8yzR30Rx8rWkloEjYtMNClHp7K/KavGUdtb9aS9SFILVTTWi0oXXgrPqqLcYji42aH9UHlusdz0fBxadwKPLjwzq1c5ytiy37SeCGsjzy+Wn1kIKP4my8NIaVQeNqlEitvHKvbZ4liyMW2dKlXDti/2QMjXft6ph32qR10Y7NtKtZiofH+UXmr8EgFy043P6fa+IEIagUAgEKqMv344QoX/DZ7TV2PyVFkir7+iXpctV16/fSj1+sGZCHze/ls8vfICUCTJX/LPlxg+f4DGj7+s5BycUlSj5FiyMX29atLgF+qNQbP7AAoxYIeRYoBMJqPGybXmIKC+yvvFxsGaskPM03iUFpfq7cdYPvlpDCxt5d51Z3+/grcVqHjEK+BhzcQtWDFsHSUm2rva4btjX2HerhmwsrVEVnIOvui4BA/PPQUUSfIX7Z+Dsd8O1bBlXmYBjinycLAsmJi5cZJZfmgrbclis1C3icr7hWvFQVBT+XbCq2QU5uqulFURJq4YCRtHeYXAywduVshrsKSoFD9P3Y4lA1YhL0PuGWjrZIMl/3yJRfvmVCikuSivGP/+fBJQhIJ8ttm0sBolkTdeUX2GtFDlJGFZsBCiCBNOj8s0yRtPSdmCGE+umL8gRkV4/fo1OnQwzSNWHRqNhnr16iEsLEzrGIPBQGlpqdm8SxgMBiZNmoSuXbvWiKqTVWHLkJAQNGigLTQzGAwIBAK8efNG57kVhU6nY/z48ejRo0eNsWX79u1NCvVSh0ajITg4GA0bNtR5TCQSmS0fF41Gw9ixY9GnT58aY8vWrVuDxWKZrc+6deuicePGWvtpNBqkUqlZbTlq1Ch89NFH79WWUqkUe5b+TW3P2DDRZK9yqD17ACCsbbDGMeUiqEwmXwQ1lW7jOiC0tdy7M/F1Ck78el6rTZKG+FN5Ic0jUBWimBqTgYkrRqm8sVcfw86FqmiHaWs/NtmrHGXmwY06h+GH019TBQjEQpVo+OpONBp2VD2fzuy6XOFrdRzWGo06hwMA0mIzcHiDdtoLDVsaKUqyuarPlETh+eipbktFEauaDBHSCAQCgVAlpMVl4NwfVwAAljZcjF5sntCcZ9dVYVQNO2n+gFUvX35q+wUqlMDO2QZrLy9Dx2FttPr764fDlIfbgFm94eylmej6Y3Ux4N97iI1MKHeMyW9SqdW0+u3raXi/Qd1zTiLF6/vvjLhrwzi42WPckuGAWj44Y3hy5TmmNpyHi/tUHnvtBrfEzufr0XZAC0ARfvpZq8VU1U4bByv8dP5bnSG6B1cfo0IZ+k7tTlVvNIWMhCykx8m9ekJbB8GCY6FxPLytKnzn1R3Tf2jbOtlg4opR1Pa+7/4x2F7J85uvMa3xfJz9XTVRbdWvKXY+X6/zc1ce/64/SYWE9pzQ2aRiDUryMguo70Rws0AqtFmJui2V+QJNoWxBjL3LDr63cA2hUIjZs2ejVatWZuuzuLgYXbt21VmtksFgoFu3bvD2Nm513hi4XC5ev36NXbt2vdcf2kKhENOnT0e7du3M1mdxcTE6duyoVbQBCoGhW7du8PExfSFGCYfDwbt377Bjxw5IJJWvnmwqQqEQU6ZMQadOnczWJ4/HQ7t27bQKDUBhyy5dusDPz7TQMnXYbDYSEhKwdetWs3qCVRShUIgJEyaYLf8hAJSUlKBly5Zwc9P9LOvUqRP8/Stf/KUsFhYWSEtLw+bNm82Wf62i3Dh0F/Ev5B6L9VoFoe3AFib3KZPJEHlNPnfjWnMQ1DRQ43h4O7Vnjxk8oul0Omb9MplafPrfqqNalb3VvaiMDUfUhXqur9R36fCt54UBM+W5DgWlQmruFNjQD51HmedvpnIezGKzENoqCNb2Vlh1folGcQEAiLgYif4zVTksK5MCQ572YhIVfnto3XGtQgoatjQy35yFmjgrVlSwV7dlChHSCAQCgfBf5cDKfyFRPBwHz+1b4TLfulCfjFnZWWqVAHfxdqK8fpS5PbyCPLDp7o8IK+O9BgDp8ZmU2Me15mDEggFabazsrDB68RBq+68fD5c7zmfXVKuFDTuFax0Pb68uWJingtzAz3rD2Uueq+PuiUca4ZBlEZQKsPXz3fiq+wpkJeUAiipaX+35DMv+nQ97FzvIZDKc3H4B87sso0I13QNcsfH2D2ik456yU3Nxcpt81deCw8Lor4dotakMGiuvumypJp6ay5b9Pu1O5eqIuBiJ1/f1r5ALBSLs/Go/5nVeRgl+XGsOvvhtOlaeWARHd21hoDzyswpw5Bf5qi+TxcC4JcMqfS/qqNtS1+eyfhXYssf4TtRq/8vb0RpjqC5ycnKwdu1a5OTkmLXfkydP4sqVK3qPN2vWzOw/hj08PJCWloaYmBiz9mss+fn5WLduHTIyMswW1gkAZ8+excWLF/Ueb9KkCcRisVmFWA8PD2RmZprN062iFBUV4eeff0ZycrJZbXn+/HmcO3dO7/HGjRtDKpWa3ZY5OTl49ar6v99QCF4bN25EfHy8WW156dIlnD6tv/BMw4YNQaPRzGpLd3d3FBYW4sWLF2br01gkEgn2fadaiJvw3Uiz2LO8xcX66nOiO+Z59oS0qIsOw+TJ9vMzC3Bmp6Y3ltKLytHDgcrxWhm81IW0GLn4M27pMFg7aPY5fvkIs3idZibqXlx0cLXD6otLqZxtAHBh/3XUaxlE5U0rKSw1WMlUHwEN/NBtXEdAUUjhxFZNDz+lLa3treDgZm9UnxxL1aIo5ZGmZsu0GCKkEQgEAuE/SPKbVFxSeDlZ21th2JfmSbqd8CqZCj9s0DEUDIZqMsYvEWD1+M1U5SAocmhtuvMDPOu46+zvz5X/UoLbkLn9YOdsq7NdnyndYO8q9zq5ceiewTLgKOM1p3SJV6e++uqriUnylViwWVSFJQD468cjOttFP4rBjGYLNUqhN+4Sjp2R69FjfCfQaDQI+UL8PGUbNs3cSdmnYacwbLr7o17PqP/9eIRKpjtgZm84eVRcQNJFZDm2DK8CWzKYDIxepPKgVFbbKkvMs3jMarEQ/6w7Qf2Qqt++HnY8XYe+U7pV+gfIP2uOg8+Tr573mdIdbn4uleqnLOXZUj1/n7lsSafTMeZrVX6dP/XYsip59OgRuFyuXq+SypKeng53d91/W5TH//rrL7PlSYOiGuPgwYPNfi/G8vjxY7BYLHh4eBjR2njS0tIM2jI7Oxv/+9//zFpswd3dHUOHDjX7vRjLkydPQKPRzOq1CCM+l3l5efj777+RmJiot01FcXZ2xrBhw8x+L8by9OlTSCQSsxURUZKRkWHQlkVFRfj7778RG2t8OoXysLe3x/Dhw81+L8Zw5a9blChSv309NOuhHR5cGcpbXHT1caaS2kfdf6czp1llGKO2oPfP2uNUpcvC3CLkZxUCJlTsVOJRR/W3WCmk2TraoN2gltR+jhXbLPliAeCZgcVFVx9nrL28nModyy/mY8mAVRpVufd/Z1zEQllGLRpMzWkOqxVSKOXxqWqsPvU8jZ73qOdIUy66e+qwZU2GCGkEAoFAMDv7VxyCVFFRaNi8/hXKDWWIZ9fUhAC1CUR6fCY+b/8tLv95U6N95xFt9XrCJb9NwwV1sW+efrGPY8nGcMVxmUyG//2kW6SCzhAG7Yp27gGucFQITa/vvjFbaFHfqd00wlATXquqZAlKBdj97f8wt+031ETZgsPCjA0TsfriUrj6ysWazKRsfNlpKc7tvkqdO2RuP6y+sAQOrtohbFCskJ5V5N7gWLExcuFAne0qwzO1/GjKnCfqOHk4UCGkUQ/eaZSEN4UeEzpRE/t7px7j3RNVQmmhQIT9Kw7hs5aLqBAYlgUTU1ePw7qry00Kac1Nz6NWe1lsFsZ8bZ6QaKh5pNEZdA1PPiXq+fvePYkzS/4+AOg8si210vzk8nOTq4JWlMaNG2PMmDFgMplGtDaeUaNGGQwVdXV1BZPJRHZ2tlmv27BhQ9y/f9+sQkhFrj127FhYWFgY0dp4hg8fbjBU1NnZGRYWFma3Zf369REREWFWIcRYwsPDMXbsWHA4HLP2O2TIEHTs2FHvcQcHB3C5XLPbMjw8HM+fP38vVSdDQ0MxduxYWFqann9KnQEDBqBLly56j9vY2MDa2trstqxXrx6ioqIQFWUe7yxjEIvEGiLLxJWjzObdV97iItS80vglAo1k+qZQp5E/JWBlp+Tiwp5rAEB54qNMjrPKoL5QmxYj9/aSSCR4fU/l6crnCXDt4B2TrqMk8pphW3oHeaDNR81U7ct4gasXQaoIvvW80GmEPE1FflYhzvx2CQCQk6LKp6pv0VoXHCvV3z2JRJ6qwM3flQohTY2puOdcdUOENAKBQCCYlfiXSbj6v9uAIt+UsnKfOdA1GXt88RlmNl9ITbyUlQcB4NU9/SE7B1YcglTx8B72Zfli30fTe1JJ6K/8dUvvalnZEAb1ipZKaDQaJWSUFJUi7rl5fhCzuWwMnycPT1UX/CIuReLTRvPx149HqJW/oGaB2Pp4DYbM7UeFGzy7/hKzmi9E9MMYRX8WWLR/DmZsmKjzPpT8+b0qz9yg2X1h76JbcKsomYlZSIuVT6Z05UdTorSlSCDCuwoUWjAEy4KFkV8NoraVnlSRN15hepMF2Lf8H8pbL7ChH7Y8WIURCwZqeElWhv/9dBSCUnk4YP/pPbVy9lWWvMwCxL+Ui37BzQL1JjxWz98X9cD0/H3Q4eF34Pvq80q7fPkykpOTDXqVVIZ3797h7du3BsU5CwsLzJgxA8HBwXrbVJbMzEycOXPGiJbm4/r164iNjYWnp2keHGWJi4vD69evDSaIZzAYmDZtGkJDQ/W2qSxZWVk4c+ZMtebvu337NqKioszuwZWYmIhnz54ZFDrpdDqmTp2qs7CDqeTk5OD06dPVmsPv/v37iIyMNLsHV2pqKh4/fmxQ6KT9n72zDm/qfN/4HWvq7kJbqhSXUqC4F3cYMHT4sDFkbGxjY2xjYzAGGzDc3d0p0KItUnd390Z/f5zkJGnT9iQ5YfD95XNdu0aSc96cPD3Jec/9Ps/9MBiYPXs22rdvT+t7A0BRURGuXr363nznbh18SF5v2/drrdRKQR2oLC5CCx6dUqbIdRw9+et5CPgClOSVks9JFx/VxdDEgKxYkM4LH54MQVq0YuXCnjVHyCwuTWhqcREAugxXzH5LepNKZqlVV9Qg9Morpfs1hXyG38nfLoJXw1OIpXkDi63KkM9IE0nmpXpcDmxcCG9HXWmnDh06dOj4f8eh72WG4hNXjaxnaK4uYrEY7yQTCCMzol36yU0XsTboJ5QXVQASP7S/nv5Mvmfk4xilN0epUem4d+wxIBX7ljYt9hmaGGDssmGARGQ48csFpds15UMlRb68M4IGc10pw+YPILPw7h17jG9H/4rVA38kOyCxOSx8+u14bAv5Ca6SNuVisRjn/ryKVf1/IMsd7N1ssPXJBqVNBeTJSswhs9cMTQ0w/kt6ynjRRAmDPNqK5eBZfWBpT/h9PD73DN+P+Q0ren9HZvQxWUxMWjMafz37Gc3baG7enZdegKu7CJ8ofUMuJq0Z1eQ+VHkXTO28lPfvozOW/T/tCdtmxAT5xfVwxL3SvsdXYWEhHj9+rJWxX7x4QSkjrKKiAleuXKH9/fv27Qtzc2peNHRQWlqKhw8fakVsevnyJVJTm27iUlNTg4sXL9J+DH369IGlpSWFLemhoqIC9+/f14rYFBYWhpSUprN5eDweLly4QPsx9OzZEzY2Nu9NlKyursadO3e0Fsvk5OQmtxMIBDh37hztTSt69OgBe3v79yJK8mr5OLrhDPl4xg8TaRs7Mz67ycVF1PFJi3gSTdv7+/h7otOgtgCAnJR83Dv2GCV5ZeTrqog/DWHpQPwWlxVWQChQ9JnzlXTDzk8vxJnNlzV6n7z0AkqLi/KxlGYVSheOAeAwxSZKdXFv7YrAUUTziaLsYtzcfx/FasZSobRT7tiksSwvrvxPG8FQQSek6dChQ4cO2kh4nYxHZ4m0cQs7M4xYNJi2sdOiM0iRp2U3H/w85U/sWXOELCENGNoB2yWCRouuRAZIUU6JUj+zQ+tPkxP9CSupi30jPx8MQ1Ni29uHHiAvLb/eNlRKGFDH2+v1ffpMhQ2MDTBm2VAAgFgkRujFl+Rrrbr7Ymf4b5j2/QRyMiv1lvtn+QFyotVhQBvsePErPNspXzmW58iPZ2SZfcuHw9RS86YSUhRbvL//WHINuBj3pawBxZMLz8l/+wZ44Z9XmzB742TocRvOpFGFYz+dIzP7Rn4+mLJpLxWoxrKVlmLJ5rAxabVMGGzId45OWCwWOnbsiHbt2tE+tqGhIdq2bdvkdpWVlXjz5g1KSkpofX8HBweMGTMGUVFR70W0YDAYaN++PTp27Ehha9WgGsuqqipERkbSXkZna2uL8ePHv9dYtm3bFp07d6awtWoYGBhQOt9ramoQHR2N3Fx6y6esra0xceJExMTEvLestNatW6NrV9U7IzcF1VjW1tYiNjYWmZmNe6eqioWFBSZNmoT4+HitCwo39t4jfa78g9orbc6kLvKWHI0t4ri1ciHnV28fRtH6mad8I2vYc/zncyjKKSYf0yGkSSsa+LV83Nh3D5nxhJdj294tsfLA52Q22MlfL6AgU/2mN001X5Li5OUAcxvC85fDrS9cJoQlo0pN64bJchl+J369gMJsWWmnKrE0MJZlesqLfPLVIVVl9NhLaAudkKZDhw4dOmjjyI+yFc1Ja0ZDX669tabIm9XGhyUh+HQo+fjTb8fjh4uryQtwp4Gym7LQSy8VxkmNSif3Nbc1w4hFgygfg7G5EUZ9HgRIuoKe3HRR4XWxWEwep74Rt8ESBgDwbO8GM2tCdHp160291uzqkhaTiefXwxSeMzQ1wPLd87H5wXq4+rmQzyvzlpu4aiQ2XltLqctqVmIO7h4JBgCYWBhhzDL6ynghZ47P0WPDN8Czwe1c/ZzJjqWv70XUa82uLpkJ2Xh2VbEEQt+Ii8XbP8PWxz/SkoUmJS+9gOwga2hioNA4gg6kAi+TyVDqjybF3t2W9DOLeByDssJy2o5h0Mw+pDfgkwsvkPyu6SwkdSkrK0NCQgKGDRumcbltXUQiEfr27UtJ/GnevDk8PDxofX8pxcXFOH36tNY9qSoqKhATE4Phw4c3Wn6pDiKRCD179qQk0Lm6usLT05OWznd1KS8vx5kzZ7TedbKyshLv3r3D8OHDweXSd32E5PrTtWvXRn37pDg7O8Pb25v27wYkgueZM2fw9u1b2seWp7q6GuHh4Rg+fDjtPnNisRj+/v6N+vZJcXBwgK+vL+3fDUhEujNnziA8PJz2saUI+AIF39fp6+nLRkOdxcU2vfwa3I7FYqFDf6K5QWlBOaJD6eum2yrQl1xAyojLxrtHsow3c1vlTaZUQV78OSYXyxk/TEQzXyeMWEjMM2uqarF37TG130dRlGw4lgwGAx0l82BeDR+dgxRLj8ViMY6o2XTAu6MH/CXj5aUVIPzOO/I1CxViKZ9NJy+kGcnFsqK4st5+HxI6IU2HDh06dNBCbmo+Qi++ACTtxIfNG0Dr+E+vyASx4lzCk8HQ1ADrL6yq11a820h/8t8hF58rjHNx+w3y3xNXjYSBkWoT8DHLhpIp6df33kNhtmxlMz4sCUWSx617tGjUV4zFYqHLMMLHoqayFuF3Ncv+4dXwcOj7U5jf7ktEhShOQLuPCcCQz/opxOjR2adY0GEV6S2nb8TFNye/wGe/TKV8c3Xp75tkRuDYL4Zr1EK+LqlR6aTZbIuu3uAaNHzTyWAw0HUE8Tfn8wR4ceO1Ru/N5/Fx9KezmNN6Bd7cj1R4LWBoB4xYOIj2G9Cru26T/nWjFgdREjKpkp2cSzZF8O7k0aA/GiSx7CaJpUgowrOrYQ1uqyp6+nqYSKGzLB3cu3cPT58+1crYDx8+xNGjRylty+VyMXHiRPD59DTBkMfW1hbu7u5ITNRumezDhw/x5MkTrYwdEhKCAwcOUNqWw+Fg4sSJWsnOsbS0hLe3t9Zj+fjxYzx69IjClqrz7Nkz7N27l9K2LBYLEyZM0EoGnqmpKVq2bKn1Bg6hoaFaKzcOCwvDzp07KW3LZDIxfvx4rQi80mxNbZ6XT84/R4HEML7L8I7w6USf8M/n8fFScj02MNaHd8fmjW4vvfZAsthCJ1O+kWVSvQuWF9I0z0gzMpddU/NSicy+Dv1bo1V3wtPx0+/Gw8SCmB/dORyMmOeqL34IhUI8v0ZcjxvzR5PSVS6W1i7W8Ouq6NV588B9JXtRY6pcLOUz11WJpfz3RSEjzUwWy4oSnZCmQ4cOHTr+H3Bl5y1SVBk2b0CD3g3qkJeWj5c33yg816yFE7Y/+1lh4iXF0cMebq2IzKuYZwlkGn9laSVuHyY6deobcRE0u6/Kx2JmbYrh8wcCkjR+abdKAHh4SpYlJ9/6vCEUBT/1J42v70dgXrsvcfiH02RpoJ2rDdl4Ifh0KJmlVVNVi63zduGH8ZvJSYqjpz22hW5Er/HUy2OqK2twU+KNxuFyaBdOg0/LRBAqsZT6dgBA6CX1YxnxOBoLOqzCgXUnwJd0ALV2tiTF05ALL2jN0oLEn+bav0QHLBabheELqWdJUkGTWIZoEEtlDJnbnyw5CT7zVEGIppPCwkJKmTnqEBcXp5LhfmJiInbu3Imqqipaj4PBYGDy5Mno37+/VksSCwoK0KVLF62MHRcXBycnJ8rbp6amYufOnSgrK6OwtWpMmDABQUFBWi1J1OZ5GR8fr9J5mZGRgZ07d6K4mP7v4JgxYzBs2DCtxrKgoAABAQFaEbBUPS9zcnKwc+dO5OfXt3vQlBEjRmD06NFaK++8uEO2uDhm6VBaxw6/G4FySVZRl+EdG11chGShSloGGXLpBa2/a+36tCLFJHmBhpbSTiWLiPKxNLU0wbTvZZl+W+buAp+n2uJKxOMY0muuc1C7RhcXAcB/cDtw9Ih4v7gWhnWnvoCFvcwuoqywAtHP1Mv68+vqg3Z9WwF1yi/VjaX03gF1svt0QpoOHTp06Pifh1fDwzWJoMTmsDB0bn/axo57lYhFnb9SmFD1m9oDfz39GS4+DU90pQKbWCzG08tEed6tgw9RU0mUUA74tJfaGVQjPw8iDVxv7LsHkUgEsViM4DOEkMZkMRE4umnBosOANuAaEIJj6OWXKk+USwvK8NusHVjZbz0y4ghPDhabhUlrRmNP5BYMmNYbkGS83T/+GElvU7HIfzWuSkQbAOg5vit2PP8F7q1U63h2/9hjcpLT55NAmFlrXh4hjzSWANBjbNM38W16+ZH+Ks+uhkHAV63TWXlxBbbO24XlPb9FalQGIPk7jvtiOPZFbcXQOcQ5zecJcOdwsIqfpnGCT4eS/n89xgbA2pFe43P5WPakIJa26OpNil0vb76mrewYkiYKQZ/1AySr0LcOPKBtbCm1tbWYMWMG/P3ri+x0MGDAAPTr14/y9s7OzhCLxUhPT6f9WNhsNs6fP48bN25Q2Fp1amtrMWXKFK14UEHSNGHAAOoivKOjIxgMBqVGD6rCYrFw+fJlrTSHgMTgf8KECejRo/EGLurSq1cvDB5M3ZfUwcEBbDabUqMHVWEymbhx4wYuXFDelEdTeDweRo8ejT59+mhl/B49emDIEOpWBba2ttDT06PU6EFVmEwm7t69izNnzlDYWjWS3qaSZY7NWjihXZ9WtI4vb8HRc1zTvyGmViZo3YPI4spKyEFadAZtx8JgMDBq8ZB6z5laGWs8dt2u7w7N7dBpsKK/3rD5A0g7iKS3qTjyg2p/T1VjaWhigHb9iM68+RmFKMopwXdnviTnrgDw+6y/VToGeUYvqf/9MLNRbR4oPRaxnJCmUNpZQu/iE93ohDQdOnTo0KExD0+Fklk6PcZ1gaW9hcZjikQinPnjMpZ2+1qhvfbUb8dhzaElTTYI6CaXefPk4nOIRCJc+lt2s6lJIwQ7VxuyC1Ruaj5e3X6L+LAk5CTnAQDa9WkJc5umV+b0Dbmkj0VJXiliniVQen+xWIzbhx5iVotlCkKEX1dv/PPqV8zeOBn6hlwMmSO72T+28Rw+D/iKbMnONdDDF//OxzcnltebBFJ5/4vysVxIX1MJSMo6UyIJ0cGvmw9snK2a3Iejx0HA0A6AZBXzbTC1rl9isRj3jj/GrBbLFARG704e2PH8F8z7fRoMjA0QNEcmDl/bc4fWlfJLWoxldnIu4l4SZUGe7d3h6GHf5D5E2THhWUVH2XFdgmbLzsvre+/SmrUiFouxZ88ehISE0DamPNHR0SgpKYGREfXvjLGxMWbPng1396abd6iDnZ0dwsPDac/+EYvFOHDgAIKD6RWOpcTFxSEvLw8mJtTLmA0MDDB79mx4eTVe1qQu9vb2ePv2Le2luGKxGIcPH8a9e/cUbmTpIjExEZmZmTAzo54Roqenh1mzZsHHhz5jeXkcHBwQERGBmpoa2sc+ceIEbt26pZVYpqamIiUlBRYW1OcxbDYbs2bNQsuWDRvAa4K9vT1iYmJQWUlvhs6lHYrXHjrjyefxSWsNA2N9+A+m1vRFm+WdgaM7K9gmmFgZ02LTUHcONXz+wHrjsjlsrDywCCw28fyJXy9QLvEUCoV4fI5o5MXhctBleCdK+wXKVz1ceIGW3XwwYaWsgVJadCain6uXlRYwpAOsHGXfEX0jruq+yJLTTX4+JS2BBYBKXUaaDh06dOj4X+fijuvkv0cuCtJ4vOLcEnwz7Gfs+vIQBHxZlpaVowWmfTeB0hjeHZuTBvThdyPw9PIrMmurbe+WcGvp0sQIjRP0mUxYub7njkJZJ5XVQinyPhZUyjvTYjKxasAP2DRjOyleGpkZYsnfc7Dl0Y9wby0zwPfu6EGugOalFZClis3bumLHy18RNLufWhPnyCcxSHpDZDH4BnjR6qmCOqWIqpSbyk/AQynEMjMhG2uH/ISfp/xJirUGxvpY9OcsbAv9CZ7tZcKHawtn0qQ/NSoDUTQZIce+TET0U2Iy3byNq0LbejpQN5ZdaSo7VoZDczt06E+slGcn5eJ1HR86TcjMzERBQYHWRKt79+6plVlmYmKCixcvgsfj0X5MXbp0wYABA2gvccvNzUVOTo7WYvngwQO1MstMTU1x8eJFrQg0nTp1wqBBg8BmN16CpipFRUXIyMiAm5sbreNKefjwoVrZUObm5rh06RLtZccA0K5dOwQFBUFPjz6bBwAoLS1FcnKy1s7L4OBgJCcnq7yfhYUFLl++jIqKCtqPqXXr1hgyZAitDSrKiyvIRkOGJgYYMK0XbWNDSVlnU6WIUrqOlIlEmtg0KEOPy1H4nHQJhxx9WaMJFoeFQbOUZ0p6tnPH1HVEB1GRUIRNM3ZQyviuW9ZJtdO8vOAmtWn47Jep4Mh1Gv9q0E8oyS9Vun9jsNgsDJrRR+GxqpAZaWJdaacOHTp06Ph/SMzzeMS+IDJePNq51TM0VZWXt95gXrsvlRrG95nUnfLEh8FgoKtkEsGvJczjpYzUIBtNStfhHWFhR6z+h1x8ifsnCTNuqmWdUroM6wAmkyEZ53mD25UVlmPHkn2Y22YFXt+TZQj1mtAVe6O2Yvj8gfVupN88iERumqJny6jFQfgrdCNcWzhTPsa6yHuq0BHLuqha1inFP6g92BxiMvfk4vMGs8YqSiqxc8VBfNZyuYL3XuDoztgbtRWjFgcpXaUe8pliVhodyGejjVxEb0YA1CjrlNKhv2Zlx00xpI4QTRc2NjaYOHGiSv5GVBGLxeBwOGjfvj2FrRURCoWIiopCQgK1rFNV4HK5cHNzw/3792nNlLS0tMSECRO0Jv6w2WxK3TrrIhaLER0djdjYWNqPSU9PDx4eHrh37x6tsTQ1NcX48eO1lknHZrPRqRO1LBV5xGIxYmNjER1NLYNXFTgcDry9vXH3Lr1Zp8bGxhg3bhx8felddJDCZDLVjmVcXBwiIujN4IXk7+vr64t79+7R9lt868AD1FRJrC6m9aIszlBF1VJEKQ7uduQCYMzzBBRkFdF6XFJrAQCoKqui5Xue+FomvHq0cYOpZcNZtpPWjIK3ZPExPSYTB9adbHJ8dWNp5WAB3wDiNyf5XRqyk4gGTkPnya6/laVV2DBxi8p2GAAwWM5nuKayRuXvOYNZX0gz1DUb0KFDhw4d/1+49PdN8t+aCAF8Hh+7Vx7CV4M3kF05LezMyAkHVBQCUKe8M+4VIfbZOFspmPyrC5vDxsDphAeZUCBEfhrRqYlqWacUcxsztAwkbggy4rKRFpOp8Dqfx8e5rVcxw3sxLmy/TnZ2tHO1wYYrX+GbE1/AykGxBEUoEOLAuhNY2W89KuU8JvSNuJj98xSNGkEUZhfj0dlnkmM3Vflv0hTqlHVKMTI1JA1w89MLyY6kUoQCIS7uuIHpXotxdssVMtvRxtkK68+vwvdnVzb6fj3Hd4WRZJL38GQIKks1m+SVFZbj/nFCgDU2N0Kfyd01Gq8u6pR1StE35JLly6qUHVOl60h/mFkTNxtPzj9HaYHm5vHl5eW4fPkyPDw8tFLyVV1djRkzZqBZM9X8BCHJVmnTpg04HA6FrVWnvLwcwcHByMzMpLB101RWVuLSpUto3ry51mI5depUtbKKTExM0L59e9oznaRUVFTg8ePHtPldVVdX49KlS3Bzc9NKLGtqajBx4kS1RDpDQ0N06tSJ1kwneaqqqhASEkJb18na2lpcuHABrq6uWmkyUFtbi7Fjx6JFixYq78vlctG5c2fo66vWCZwqNTU1CA0NpUVAFolEuPSPbO6midWFMtQt65TSdYR8VtrLRrdVFdcWzqSAw68VaJxdLhaLFRZ+fQM8G92ezWFj1YFFZFbY2S1XSJ86Zahb1iklUEl2+cwNnyhs8+ZBJI7/fF6lcSERPVmSxUuhQKSwyEsF6SIy5LRMFkvue629Hjq0oBPSdOjQoUOH2pTkl+LBCUIIMLEwQp9P1BMCUqPSsaz7OpzefJl8zn9wO2x+sJ4UQ2ybWcO3c+MTlLq07S0zoJdekIfOHaBWCroy5Fc2paiyWihFobzzAjH5FIvFCLn0AnNar8A/XxwgSyT0DbmY9v0E7IncgoAhHeqNlRGXhS96fYujP50lV/ksHYhOTTWVtQorm+pwbfcdUswL+qwf9Lj0CgMKpYhqxFLRX0WW4ff8ejjmtl2B7Yv3kiWxevocTPl6LPZGbaEkruobctF3MmEUXlvNw71jj1U+Pnmu771HltsOmtEbBkb03oDJx5Ku85IuiBIbQojm8wS4feihxmM+f/5cKxlfUo4cOaKRX9ioUaNgakpvUw4pbm5ucHNzQ3V1NYWtm+bly5eIi6OnfFkZx48fx71799Tef8SIEbC0tNRKt1IXFxd4eHjQVjoaHh6ulYwvKadPn8atW7fU3n/IkCGwsbHRSizt7e3h7e1NWyzfvn2LyMhIrXWpPX/+PK5fv05hS+UMGjQIjo6OWjk+Gxsb+Pn5obZW8+Yvr269QVZCDgCgfb/WaOZLbwavumWdUhQ7mtN77YEk61CKptnlb4OjkCdZSAUAGxfrJvdx9XPBzB8nAZK53m8zd6C6Qvlvt3xZp/9g6mWdUuRtGp5IYmlobKBgXQEARzecRUK46iXN0s6gUCOWysRwoVCW1cZkfdhS1Yd9dDp06NCh44Pm+p574POIdPDBs/qqbDQqFAhxbOM5LOiwisycYXNYmL95OjZc+QqRT2JJ0abnuK4qr+Zz9DjoOEi2EspiMxUM+DXFydMBbfvIzIUZTIZKZZ1SAkfJJjp3jz5CwutkrBrwA74btQmZ8dnkawOm98L+2D/x6bfj68VaKBTi9ObLmNfuS3KFlcliYvbGyfjm5BfkdvKG+qoi4AtwZfdtYmwmA8PmD1R7rIZQKOscR72sU4r8Sva9Y4+Q9C4VXwVtwNdDN5KNFgCg7+Tu2B/zJ2b8OAkGxtQnpvLnj7RTrToIhUJclssIGL5wkNpjNYRiWafqsewyrCM5kb1/4gnt5Z3yQvS1PXc1vvnU19dH7969tZL1VVFRgezsbI1KRisrK7Fz506tiH1MJhPTp0+HhYUFLTfxXC4XPXv21EqmUk1NDdLT0+Ho6Kj2GLW1tdi5cydiYmJoPTZIbAGmTp0KW1tbWmKpp6eH7t27w9DQkMLWqsHn85GcnKzReSkQCLBz506tlCQyGAx88skncHR0pKW8k8PhIDAwUKUGFVQRiURISEjQ6LwUiUTYtWsXwsPDaT02KePHj4erq6vGv8Vat2dQsxRRileH5rBxIbLDw+68Q2F2Ma3HJ/+9fngyRKMSQvlYom5GVSOMWT6U9F3NTsrFv6uPKt1OPpaq+JxKaebrBGdvBwBAxKMY5KQQTbGmfjteYTuhQIhfp/8FXq1qjVbk5+VPzj9XyW+NISekSX8fRDohTYcOHTp0/H/g7lFZdsbwBaoJAUlvU7G4y1fY/81xUoxz8XHEttCNGLt8GNHy/dgjcnt1Swib+cgmxea2ZrCwM1drnIZo11smpJnbmqpU1inF0cMeft2ICVVKZDoWdFilkCLfukcL7HjxC1bt/xzWTvVLD1OjM7C8xzrsXnkIvBpiEuTQ3A5bHv2ISWtGo1WgL9lcISokliydVJXwexEokkxou470hy2FlVdVSHyTonZZpxRrJyvSyD4rMRfz269U8EFr0cULf4b8hK+OLIVtMxuVx/ds5w4ff6LcOCE8mSwZVpXIJ7HITSX86/wHt4OTp4Na4zRERlyWQlmnOuObWZui8xDCDyw/oxAvlfgWakIzXye07kmUUKXHZCLyifqiSEVFBby9vdGli+qCIRUMDQ0xfvx4jTocGhkZwd7eXmvZSWKxGLt27cLLl5qVQlVVVcHd3R3du9NbaiyFy+Vi/PjxaNWqlUZjODs7a0VIk7J3716EhmqWwVtTUwMnJyf07t2btuOSh8PhYNy4cWjbtq3aY7DZbLi7u2s1locOHcLjx5pl8NbW1sLW1hb9+tG3GCYPk8nE2LFj1fLtkx/Dw8NDq7E8evQoHjx4QGFL5ZTkl5KliDYuVmSHZrqoqaols8HVKeuERJzpP7UnIBFW5LuT04G8WKNJdnllaSWe1ik9pSr+sFgsrNy/iFwUvfzPTYTdeauwDZ/HR/AZIrNcnbJOSGP5KdFgQSwW48Y+IhM4cKQ/DIwVs+BTItJxeP1plcaXj6WAL8TtQ9SztpksmQgn9euTLp5DJ6Tp0KFDh47/VVIi05EalQEAaBnoA4fmdpT2E/AFOPzDaSzyX434MCKNnMlkYMLKkfgnbBO8OjQHJOKQVExy9LBTuaxTSmaCLKOrKLsYeekFjW6vKvKeZmUFFagqV720ilfDq+dzBgD27rb49vQKbH6wHt4d63fGFAqEOPHLeSzosIrs/MhgMDB6yRDsevM7/Lp4k8/JZ/+oW0YXfCqE/He/KT3VGqMxLsv57fVVs0yYV8tXEEvFImLl2baZNdYeW4Y/n/xExkVd5I3ybx9UM5Zyq8zaiOUlGmKJeg0W1M/AozL+LTVjCQBXr17F7du3aToqRYRCIS5dugR7e3uNfJkYDAYmTZqEHj160Hp88uN7eXlpfBN/48YN3Lhxg8KWqiMSiXDp0iXY2Nho7HE1fvx49OpFb6dBeTw9PTWO5a1bt3Dt2jXajkkesViMy5cvw9LSUmlzFFUYM2YM+vbtS2FL9aBDXLp37x4uXbpE2zHJIxaLce3aNZiammrcsXXkyJEYMGAAbcdWF03Pyyfnn5PiR59J3WmzupBy//hjMsOr+5gAlcs6pQTNls1Zru+lr2GFsnFuH1JPqAu59JJcCJaiivjj5OmA2b9MIR//PvtvBe/VR2efkR3FuwzvqHZDiEEz+5DHdXP/fVKs6j4moN62pzZdQNRT6mX98kIaVIyl/LlXU1FTbzydkKZDhw4dOv4nUSd1P+F1MhZ1XoND358ijd5d/Zyx9clPmPPrVIUJl7yoMmKhek0Maqtr8exKGPlYLAZu7ruv8jgNUZxbgscS431IhK2XN6ln7YjFYjw4+QSzWizDo7NPFV6bvn4C9kZtRY+xXZR+9uSINCzp9jX2rj1G+mw5eTngj4frsXDrzHp+W/2m9CCNXZ9caLijZUMI+AI8kRjV6htx0TlI9VXmxigvrsDdo0QGoqGJgUKLeiqIxWI8OvcMc1otJ8eR8slXY7Aveiv6TAqkxey718RulLqDNoRQKCT/3sQqM70ZAdUV1bh5gDjP9fQ5GDSrT5P7NETnoPawciRE3qdXXtFeYtNjbAC5Iq9Jd9DU1FS1jOupEB0djTdv3tBS2mpmZoZnz57h9Wt6s/ukDB06FAMHalZyrc1YxsfH4/Xr1xAIVO8QVxdTU1O8fv1a4wy8hggKCkJQUJBGY6SlpWktlklJSQgLCwOPx9N4LGNjY0RGRuLp06cUtladgQMHYtiwYRqNoc3zMj09HS9evKDFf8zIyAhxcXEaZ+A1RL9+/TBy5Ei191e3kzMVxGIxbWWjDs3tyOzy7KRcvL4fScsxygs10mtPzPMEFGQWqjyWfCylqCr+jFg4SKFJ0o6l+8k5BV2xtHa0RMBQwlO3ILOIzEictXFyvW1FIjF+n7kDtdXUvgtSTzN9IyKWye/SkJWYQ2lf+flYbTXxOyb/96FaJvtf8WEfnQ4dOnTo+GBRmIw14WXF5/Fx4NsT+LzzV0h6kwpIJhuffDUaf7/ahBYBit3GKsuqcOsgsaqlb8jFwBnqlcW8vPkG1RWKJsfX992lzevp2p679VYjpV2RmiLmeTyW9ViHnz7ZSpb4yWNmY6bUyF/AF+DohrNY2FHmK8dkMjB+xXDsev0bWnVX3m3MzNoULbsT3UEz4+t3B22K8HsRKC+qAAB0Gd5J7VXmhrh14AGZ2j9gWi+VVl7jw5LwZd/v8cO435GVmFvvdTNrE1qP18jUEO37ERP8/PRClQ16I5/EKpgHG5nS651058gjVJURmZF9J/eAqaX6fkIsNguDZxKZKiKhCDf30ydEAwDXgIuOct1BpZmVqjJ9+nQEBNRfXacDFouFjh07wsZG9VJgZdTW1uL+/ftaMSQ3MjJCZGQk4uPViyMATJ48GYGBgbQelxQGg4F27drBwYGeUuba2lo8ePCAtmwVeQwMDBAXF6dRKe6ECRPQsyf9GaeQxLJ169ZwcXGhZTwej4eHDx/SInLWRV9fH8nJyXj37p3aY4wbN05rWXNisRh+fn60CXV8Ph+PHj2iReSsi56eHjIyMtQS40vyS0lByt7dFt4dm9N6bJEhsWSDKN/OnvDxV6+SQIp8xvJ1DZsCSJEXasxsZM1fVO0OWllaiVcS2whpN2+oIaQxmUx8uXchOee5feghLv9zC/FhSYgKITq0urVyQZuefiqNWxfF7HIiltaOlnDykv0WS+ORHpuF/V8fpzSuNJ4mFsbkc1TnwXyezI/Nws5MYTzoMtJ06NChQ8f/IqlRimWdyny7pMS+TMTCTqtxdMNZMp3cvXUz/PV0I2b9NFmpWHTncDApgPWb0kPhAq0KD0/LShG9OxETxvz0Qry69baRvaghFAhxdZeslEzqNfHsahgE/IZvRDLisrBxylYs7rKWnCQBQMeBbbHulKwpgLJJY+KbFCzushYHvj1BZvS5+Dphy+MNmPvbtCbFIvmOlqEUJzpS5Ms61TEPbgyRSIRLf8tWXkdQXHnNTsrFphnbsch/Dd4+jCKfb9enJb47+yX5+NqeO7SLFgodLVWNpYZGzI0hFotxiWYj6cGz+5Irx3SW2EjR5LwEgPv37yMjI0PjUkFl8Hg8mJiYaJxNI09gYCDc3NxoG68uOTk5ePLkiVr7BgcHIyUlReNSQWXw+XwYGBholE1Tl65du6J58+a0ZJoqIzc3V+3MopCQEMTHx2tcKqgMgUAANpuNMWPG0PbZO3fuDE9PT63FMi8vT+1YPn/+HJGRkVppJCJdWBs/fjxtn71Tp07w9vbWWizz8/MRHBys8nVNvqxTnQZOTaHOdbwxuo3yh7lE3Hly/jlKC8o0HhNyn9nESk78uaTatUe+rNNLTpBUp1TWztUGS3fOJR//vWw/Dqw7QT4euShI47+V/+B2sHayBCTz1IKsIgDA+C+Hk9vUVtWCI5mTn/vzGt4GRzUwGoFYLCaPy8hcJiZSjaVAbiFa35CYQytkpNFcdkw3OiFNhw4dOnSoTPBpWflHQ0JAdUU1/l11GEu6rkVKBGEgz2KzMHXdOOx48YtSzy9IhQAaJmO11bV4evkVAMDY3AgTVo4iX9O03Tkkk6j8DKIUoMvwjgiQGPZWlFTi3aP6GQxZiTnYNHM7Zvstw/3jsptcF18nbLjyFX6+/jV6jusK705EXOLDkhEflgRITFj3f3Mci/zXkNlPTCYDk1aPws6wTZQ9vxRayqswadR2WefLm2/ITLIO/VujmW/jHehyUvLwx5ydmOGzBLcPPSRvJhw97bH+/CpsuvMduo8OQOseRHZeWnQmIuVESzqQ7w6qSiyFQiEenSPKgbVR1vn2YRTZsKFloE+9FvfqYO9miw4D2gAAcpLzFBph0EHA0A6ysuOLL1S6OeTz+QgNDUVVVRWtxyTl9u3buHjxIq1jWllZYcCAAUhKSqJ1XCmdO3dWq6uhUChESEiI1mJ5//59nDt3jtYxzc3NMXjwYK10QoUklmZmqjeQEYlECAkJQWWl+t0AGyM4OBinTp2idUxTU1MMGTIEiYnqNVBpik6dOqkVS7FYjCdPnqCiokIrxxUSEoLjx6ll31DF2NgYw4YNQ1JSklYyTzt27AgLi/q+qk2hzbLOwuxicm5oZm2iVofJunD0OKTNA58nUNvfVR49LocUi0RCEdkd9PW9CFSWUf/tk4+lZzvZdVbdLKq+n3THuC8IUUsoEOL5daLzq5GZIfpN0bzxC4vNwqCZhM2DfHZ50Ox+YOsRYn9NZS36f0pk0IrFYvw2cweqKxr2/WUwGGQ2Hr9WQHYHjXwcQ0n0FAoI0YzBlImEQl1Gmg4dOnTo+F9GPtOrblmnWCzGw1MhmNViGU79folcXfJo54btz3/G9PUTwdFreFX59f0IpEUTZYete7ZA8zauah2jfFln4KjOCBzlD0t7woT+6eVXKMrRzOvp0o7r5L9HLgpCoLxIdUEmrOSk5GHzZ/9gpu9S3D74ECKJ+b2plQkWbZuF3W9+R8CQDuSq3hC5pgDX/r2Dx+efYbbfMhzbeI7M6HNr5YJtT3/G7J+nQE9fj/IxO3rYw60VUQYU/TSest+Vtss65YXTkYsa9iTKSy/Anwt2Y6bPEiIziiwpMML8zdOxJ+IPdBvpT8ZSvsECHeKpPNaOlmQDjKQ3qchOrl9SqozIJ7Fk51NtlHVepBhLVRmixViaWZuilUT0VLXsmMFgoHnz5hp1LWyMhIQEtGzZksKWqpGSkoKjR4+itLSU9rE9PT0xcOBAVFer1viEwWDA3d0d7du3p/2YIPFH8/PTrDxJGenp6Th27BiKiopoH9vNzQ1DhgxRWVxkMBho1qyZRh0gG0Nb52VWVhaOHz+OvLw82sd2cXHByJEj1RIXXVxc4O/vT2FL1dHWeZmbm4sTJ04gOzubwtaq4ejoiLFjx6oUS22XdV779w45Rwn6rL9Kc5PGULyO36VFmDSWZE9VllSRGdECvhAvJOJVU8iXdVo6WMDUUpbZJl/mqSqf/TKFtI2Q0n9qTxgYq9dkoC5Bs/uR86Mb++5BJBKByWSi00DZ9TPiUTRaSWxAcpLzsHvl4UbHlMWyEt1GdgYkPmtPr7xq8nikczj5zLOKYtk5rUks3wc6IU2HDh06dKhEY2WdqdEZWDXgB2yYtAUFmcRNDYfLwfT1E7H92c8Kq3YNoWiuqr4QoCD2je8KNoeNgTOI1TihQKhRO/XUqHRyQurs7YAO/VvDP6g9aUAfcukFctPySdHnxr57CqLPrJ8m43DSDoz6PAhsjmLZT59PupOmrdf23MX6sb8jL43oNMrmsDDlm7HY8eJX+HRSntHXFIGSiQ4APL1MzRNEm2WdWYk5eH6NmLzaNrNGwLAO9bYpyCrC9sV7McNrMa7suk2WtRqZGWLa9xNwOGkHxi4fVk+g7TmuC4zNjSSfIZTsJEYX8uWdVP1VtFnWmZ9RiCfnnwMALO3N0X1M5yb3oUrXEZ0USmxK8ukVgNQt7ywoKMCIESNgampKYWvVmTZtmlY8rry8vMDlcpGenk772JB03lS1w2FBQQGGDRsGc3NzClurzpQpU7TicdW8eXMYGRkhNTWV9rEB4M6dOypn0hUUFCAoKAhWVg3bHmjCxIkTNW4qoQw3NzeYmppqLZb3799XOZOusLAQAwcOhK2trVaOaezYsRgyZAjt4zo7O8PCwgIpKSm0jw0Ajx49UimTTptlnQK+AFd3E1YXTCYDw+fT17XUxccJrXsSCy3pMZmIfKJZ91dIqhQgqSDoNkp2naSaXS5f1tlzbBeUFpaTr5nbqH8tYrFZWHNkMZhsmURTmF1MW1ajnasNOg6UZZeH3yU8Cxf+OZPcJj02C6OXDiEbMVzZdRuvbr9pcEwjuVjKZ+qHNhFLnpw/mnTuDIlXqhQzDWL5PtAJaTp06NChQyWUlXVWlVdj98pDmNf2S4Wyr85D2uPfd5sxdd24eoKRMvLS8smbaCtHCwSOUm8Fum5ZZ/t+REekoNmym7jLO2816mXWGBd3KHYUZTKZMDI1JDsv5aUVYIZnfdFn+vqJOJy0A598NbpBM30GkwFHT3ugjldEhwFtsPvtZsz4YZJSXzmqdJXLnHtCQbDQdlnn5X9ukZPE4fMHKngzFeUU45/lBzDd83Nc3HGDnLgamhhgyjdjcThpBz79djyMzIyUjs014KLflB6ApCPU9b33aD12+fOTik+atss6r+66TZ4zQ+b0bzTzU1U4ehwMnE40/RDwhbi6i96stG4qnpeQ+EQdOHAAkZH0dHOTRywW4/Dhw1rzXuNyuViyZIlWMmEguYlXpaxMKBTiwIEDePOm4RsmTTh+/DiSkpK04r3G4XCwaNEitGnThvaxIYllSkoKZW9A6bkTFhZGYWvVOX36NGJjY7USSxaLhfnz56NDh/oLGnTg7OyMtLQ0yg0NxGIxjh07hhcvVPdOpML58+cRGRmpFR87JpOJuXPnaq0JirOzM7KyslBTU0Nha+2WdT658AKFWUSmddeR/rBtRk9jFinyRvnn/7re6LZUkIo/VWXVaNXdhxTWnl0NUzDAb4i6sZRfWDK31Uz8iXuRBJFA9lvz+NwzXJLrYq8p8rG8IImlg7sd/LrJLEKO/HAGczZ9Sj7esWRfg/NlaewEfCHc2zQjmwa8vPmGbCCljBJJwyVI5kPk83n0xVLb6IQ0HTp06NChEo/PPyP/3WNsF9w/8QSzWizF6c2XybR+ezcbrL+wChsufwUnT+rd2S7uuEmWPg6dO4CS+KaMsDvvFMo6pYKCo4c9/IOIsqW8tALcOfJI5bHLiytw5zDh06FvxMXA6YR/R1FOMQQ8WTdQgSQW8qLP1HXjGhR9xGIxHp0jyjilnU0h8Yj4+vgy/HLjG7j4NO4dRgXvjs1Jw9nXd9+hqrzx8q+3D6O0VtZZVV6Nm/sJcYvD5WCwROgsyS/F7pWHMM3jc5z78yp4NcTEVt+Ii0mrR+Fw0g7M+GESpSYUwxfIsjbObL4EXg19XdSatXAmRc93j6JRJrcqrYyYZwlaK+usra7F1X8JcYvFZmHoPPoyAqQMnTeA9DI79+fVRr1TVMWhuR3cWzcDAMQ8o1Z2nJubi9raWto67cmTkZGBpKQkGBkp/77SgYGBAf78809ERTVu6KwO/v7+mDRpEuWsk8LCQlRXV2slljk5OYiLi9N6LP/++2+8fat5I5m6tG/fHpMnT6YsqBYXF6O8vBzNm9NbOgdJpltUVJTWY7l7926tCIFt2rTB1KlTKQtXFRUVKC4u1sp5WVJSgrdv38LQUHvlY/r6+ti/fz+eP39O+9h+fn6YOnUquNymr8nlxRVaK+sUi8U4v+0q+XjEQs2bDNSlx9gAmNsSAs2jM09V7jpeF2k5olgsBq+aj4ChhHBcVVat0LhIGdWVNQplnS0DfVCSJ/MDkx6nusjHUso/yw80afxPla4jOsHGmciUfXrlFRJeE767X+5dSG6T/C4Nvl084dfNB5BkqV3+55bS8YzlmgxUl9egyzAiK622moewOw3/HkurVgCAayArA5b3VtM0ltpGJ6Tp0KFDhw7KlBaUIektIfK4tnTBpul/YePkreRKJIfLwdR147Ancgu6jfBXqXSgJL+U9Mri6LExZE7/JvdpiDf3ZVlx8qnmADDl67Hkv4//fI7s2EWVM5svkyJd/6k9wecJSNHntdz7MpgMTFozmpLokxGXha+CfsIP435HfjrRwEAaOpFQhJrKWtrKMBgMBlmSyOcJ8OLG60a3l/9MXYd3anRbVTm/7RrKJX4YvSd1A5PJxN61x/Bp80U4vfkyaqsJ0YtroIfxK4bjUOIOzP55CkytqBupu/q5oMdYIiOgKKeE1qw0BoNBliSKhCI8u9r4jac2Y3n5n1vkSm73MZ1h7WhJ6/iQCNF9JhOmx2WF5biy83aT+6hCNxVLZR0cHLBgwQJYW1vTehyQmIX36tVLKzfw8tjb26vdybAx2Gw2KisrERoaSmFrwNraGvPnz4eDA/WFD6oYGhqiZ8+e8PLyon1seRwcHPDokeqLI03BYrHA4/Eo/50sLCwwf/58uLi40H4s+vr66N69O3x9fWkfWx5txZLJZEIkEuHhQ2qm8cbGxpg3b55WREk9PT10794drVq1on1seezt7REcHEz7uAwGAwwGA/fv329y23ePosls5a7DO9Fa1hl+9x0inxDNfJq1cEL7vvTHk2vAxfgVhBG/WCzG8Z81a1oizaKCRGSUt2l4cqHx7MeokFgyO77rsI5gMpnktZfFZimMrSoRT2IQdocot3Roboexy4cCEjuSHyf8QTa40gQ2h40Jq2Sdk49tJGLp4uNENrsCgC1zdmHhlhnk48PrTyldLDSS+7yET5pyv+C6yC+WSe1MAKBYTpQ0s1a9ac77RCek6dChQ4cOyrwNlnWjTIvKIFc4AaDLsI7YE/EHpq+fqFbW0slfL6KmkkgDHzKnP6wcVO9IJeWNZEWRwWCQ3hpSWnbzQbs+hElzVkIOHp4MUTqGMkoLynB+2zVA4unAYDDqiT7SCapYJMaoxUGNij7VFdXYu/YY5rT+Aq9uyUqqOg5si7XHlpGPj/9ynsz2owP5ic7LG42b676RW51t25s+c+uKkkqc2XwZkGTd6Rty8WnzRTjxy3nyPOBwORizdCgOJW7H3N+mwULN1cnJa2Xi6clNFyiVblBFPpYvbjYey7cPZd+Xtn3oi2V1RTVO/noBkJx/8mIx3Xzy1RjyHD+9+RJqqxsu3VAV+bLjl03EEgAuXbqklQ6TeXl5iIqKQu/evWm94VTGkCFD0KVLFwpbqk5BQQGCg4MplXdevXpVK10RCwsL8ebNG/Tp00crJbLyDBo0CIGBgVoZWxpLKgsvN27c0EoTieLiYrx8+RL9+vXTSlmnPP3790ePHj20MnZRURGCg4PB5zf9O3z79m2tNJEoLS3F06dP0a9fP62UdcrTt29f9O7dWytjFxcX4/Hjx02Wd759ILv2tOtDn9AlFotx4NsT5OOp68Zr7Tdz2PyBMJGY+t879hhZiTlqjyVfGVBZUgX/we3AkXSufHmz8cXFNw/kr+NELKVCmrmtqUaf/6BcLCd/PRZzfv2UbD5QkleK9WN/oyWrPmh2X7IE8/HZZ0iNIrw6v9wny0pLCE8G15CLAZKqi/LiShxef7reWMZysawoqUL7fq1IYezFzdcNXn+K5Uo79Y30yX9LY2liYUSrPYU20AlpOnTo0KGDEnweH+f/lKWcSy+O9u62+OHiavx4aQ0cPezVGrswu5jMRtPT5+CTtWPUPs7y4gokvibMfZu3dYWpZX0ha8o348h/H9t4jrL3zalNF8lsNEh81uqKPiMWDSJfjwqJVTqOgC/A5X9uYrrXYpz45Tzpo2bbzBrfnvkSP1//Gr0nBpKea1kJOXigguDXFK17+JLmrpENHCMkJQyxzxMAAC4+jhqJm3U5u+UKaf7PZDJw+Z9bZJkpR4+NkYsG41DidizYMgOW9pq9r2d7d3QZRviR5acX4vYh+rIDWnTxIk15pavyyuDz+OTrts2sYe9Gn3H2xe03UJJPrOL2mtgN7q3V63RLBdcWzugh6dRbnFuK63voy/Dz6uBOruZHPoltVAAqKyvDmzdvtCKkXb16FbGxDf8t6cTMzAx2dna4evUqbYbSUvz8/GBpadnk71tVVRXCwsLU6qbYFNevX9dK6aoyTExM4OzsjMuXL1P+TadKixYtYG1t3eTfqLa2Fi9evEB5eeNl3upw8+ZNREREUNhSc4yNjeHu7o6LFy9S9jOjio+PD+zs7Jr8GwkEAjx//hxlZWWNbqcOd+7c0UoZsDIMDQ3h5eWFixcvUhIPVcHLywv29vZNnpfyi4utetCXzfj8ejiin8YDkm7ivSbQ670mj6GJAcYsJTK0REIRTvxyQe2x5MsRK0oqYWhiAB9JF+7spNxGrQXkFxfb9PKDWCxGqeT6q0kpYvi9d+TitJOXAwZ82hMsNgvfnFgOezfCcy72RSL+mLNT4983rgEX478kstKIDL/zAAD3Vs3g0c6N3O732X9j1k+TyTnOpX9uIjU6Q2Es+Qy8ipJKcA24aBlInGNF2cXISVHeAVjeC03e5kImSn7YZZ3QCWk6dOjQoaMpRCIR7h1/jFktluHdI1lGGofLxrTvJmBPxB8al6kd33iO9MEavmCQRoLNu0fR5KSybS/lWT9te7ckvR9SozLIToeNEXb3Lc5suUI+lopfdUWfTgNlZvwRjxW7S4nFYgSfCcVnrb7AtkV7UJxbSo4xee0Y7I3aih5jAsgVzakKgt9Z2m4OuQZceEk8UtJjsxrswBgVEktmwrVpIJbqEPEkBsd/OU8+lsaSzWFh2LwBOBD/Fz7/azat5YmT5bK0TtCY4cfmsOEbQEzA89IKkJdeoHS72BeJZNZi294taVu1ryytxKnfLgISQXLad+NpGbcxJssJ3ad+uwheLT03h0wmkzQ8LskvQ2Z8dqPburu7a6XkSygUok+fPrSP29j7vXz5EtHR0RS2po6trS2mTZvWZBYVg8GAu7s7PDzU6wTcGHw+H/369aN93IYQiUQICwvDu3fvaB3XysoK06dPb/I3mMFgwNXVFd7e3o1upw58Ph/9+6tveaAqYrEYr1+/pr0Bhbm5OWbMmEFhS8DFxUUrZaw8Hg8DBtDvI9kYb968watXr2gd09TUFDNnzmz0ekJlcVEdxGKxQgbVtO8naj3rdNTiIBiaEo2abh96gLy0fLXGka8UkM7DWgXKzrOGOoMqW1ysLK0i5zDqij9EZt9J8vGn344Hi80ij/W7cytJH7G7Rx/h76X7NV54GTavPxmH+8cfIzOBuN5+sXseuU3s8wTUVtZi0prRgETA3PXlIYVxTKxktiXSWLaUzK+hZB4spbRQlgFtJBE2eTU8VJURC6o6IU2HDh06dHzUvLr9Bov81+DnKX8iJ1m2qmRiaYy9UVvx6XfjNTafz0vLxzWJSbq+ERcTV4/SaDz5EoY2vZR3xGMwGJj6jUxYOfrTWaWTErFYjJe33mD1oB+xesCPCl00OXpsDJ1bX/SR73wUGSKbQLx5EIklXdfixwl/KAgEPcZ1we53f2Dmhk/IVT/5428ZSExI0qIz8fjcM9BFy26ySWNUSJzSbd5QiCVVxGIxwu+9w9qhG7G8xzoI+bKbezaHhcGz+mJ/7DYs/WcubF3o97xqEeCFDgOIrn7ZSbm4d5w+Xyr5WDaUlaYQy570dWo8t1XmM9dvak9aGlI0hUdbN9J7MD+jELcPPqBtbPlYRjSS4ScWizFx4kTo6+s3uI2qiMVipKamYubMmVr3RpPH0dERnTt31kpJ1MWLF3H9euNd7oRCISZMmEC7gX1aWho+/fRTeHp60jpuY9ja2qJr165auaG/du0aLl++3Og2fD4fEyZMgIkJvd4+6enpmDRpkta90eSxtLREjx49tBLLmzdv4vz5841uw+PxMH78eJibm9P63hkZGRg7dixatqRvcagpzMzM0Lt3b62Ukd65cwdnzpxp8HX5xUU6rz1PLjxHfBhhVO/Z3h3dR3embeyGMDY3wqjPgwDJAtzJTRfVGsehuR35b2mJaMvApq/jCouLklgW58pKFNXtMvny5muygsHVzxm9J3VTeN2znTvWHFlCNvu5uOMGDqw7oXQsqhgYG2Ds8mEAAJFIjBOSrDTvTp5waynzd/x91t8Yt2IYbFyIBgUvrofj+XWZ9YJ8LLNViGW5nN+atGT3Y+rYCZ2QpkOHDh06lBEfloTVg37EmkEbkBCeXO/1wTP7wMHdTum+qnLsp3Okceuoz4PU9sGS0pg/mjydBrUjjVUTX6fg+TWZUTyfx8etgw8wr92X+GrwBoTdViwBGbN0KI6k/I1lO+uLPqaWJnD1cwYAJISnIPpZHNYO3Ygv+36PGMlKJgC07tkC20I34ttTK+Dspdzgm8FgKJShNiT4qYNUoEMjq691SxjUQcAX4O7RR1jYaTVW9f8BL64rel8NXzAQh5P/xoo9C2gtd1SGYqOJ8yo3mmiIlt2bXslW8EejyWuurKgcZ7bIfOamrhvX5D50MaVOhp+AT0/5VysKsQSAI0eOICSEvnJnAEhMTMSBAwdQUKA8q1CbBAUFwdjYmHY/KHNzc6SlpTW6zYkTJ2g3lk9NTcX+/fuRm5tL67hUGDhwICwtLWn/O5qZmSE1NbXRbc6cOUPJ/F0VMjMzsW/fPmRmatapUB369u0Le3t75OUpL89SFyrn5fnz53Hnzh1a3zc3Nxd79+5t8u+oDXr27AkXFxfk5Kjv7aUMCwsLpKamNjg3kF9cpOvaIxKJcPA7WQbV9PUTte4nKWXMsqGkB9f1vfcodXiui4NHfSGtoUVQeRQWxCSxlF9kVieLvl422ncTlHogdh8dgBVynTWPbTxHZqOry8hFg8jSzNuHg5GbSmT4LZfLSot4EoOSvFLM+fVT8rmdKw6S13xHJbFsEeAJJouQmRqKZXmJzEpAmhmXLRdLKy00TKIbnZCmQ4cOHTpIspNysXHKVizstFpBPPJs745uo2RG4HRNxrKTcnFjP3HTYWhigPFfjtBovIqSSrKEwb1Ns0ZLGOqash/ZcBblxRU48esFfNp8EX6buQPJ7+pP9McsG9qkb5c0rV0oEGJJ168VxCO3Vi7YcOUrbL6/Hi0Cmu5i12lgW1LwS3qTiqdX6CkNkV8xjFAiWFRX1iDuBSH8OXs7qDxBrCyrwunNlzHN43P88uk2pYLs0HkDsGTHHK10mFRGm55+pLiaHpOJx2fpyfDz6+JF3kQoiyWfxyez/mxcrGDvTo9geGbzZbIMYtCMPmp7FKqDj78nOg1qCwDIScnHvWP0ZPj5+HvI/PsaENJ4PB7y8vJgY2NDy3tKiYqKgouLC2xttSvoNsSzZ89w+vRpWr3SunXr1mg5oFAoRFZWFu2dTyMjI+Hg4ABHR0dax6XKixcvcPLkSVq90rp06YJBgwY1+LpYLEZGRoZWzksbGxs0a9aM1nGp8urVKxw/fpy2hQcA8Pf3x5AhQxrdJiMjg/bzMjo6GpaWllopCafC69evcezYMVp959q3b4/hw4c3KGS9Daa2uKgKwadDkRJBGNT7BnghYGgHWsalgpm1KYbPHwgA4Nfycfr3SyqPIX+tzE4kxH75RdD4sGRUV9Zv4CCNJeQWF9OiZQJ3sxbOKh9L6OWXiHuZCABo3saV7DKujIHTe2PRn7PIx/+uPoIru9Tvnm1kZoRRi4kMP6FASDYt8uvqA2dv2W/3bzP/Ru+J3eDXlRAb02Myya7ddm62ZKZcliSWBsYGpNdaSkQ6yovrN7KpLJX5m0q7c2oay/eNTkjToUOHDh0ozivFjqX7MKvFUtw//oR83t7NBl8dWYIdL35BThKxUsRkMhSyRjThyIYzZJr8mGVDG+1wSQUq/mjydBneEe6tiZuTmGfxmOQ0F3u/OorCLNkKp0c7NzDZxOXSwFhfwR9KGaUFZUpblNu4WGHl/kXYGf4bAoZ0oLx6S2SlyQS/A+tO0OLvZWFrBidJJlz8q6R6naCiQ+NI3w8qsZSSl16A3SsPYXKz+di98pBCLJq3cSVFEj19Dj79Vvt+XnWRF08PfneSlg6eRmZGcG9DnEfJb1PJpglS4l4moaaKaEpBlz9aSX6pQgdZ+XPkfSEfy8M/nKalm1hd/77SgvpG43p6epg4cSL8/OgrUxKJRBg4cCCmTJny3jIr6uLv74/8/Hxau2caGxujsrKywewsFouFCRMmoE2bNrS9p0gkQr9+/TB9+vT/NJbFxcW0ds80NDREbW1tg1l2DAYD48aNQ/v27Wl7T5FIhF69emHWrFla959qCH9/f1RUVNCaLamvr0+KuA0xZswYdOqkmf+qPGKxGN26dcNnn32m9a6nDdGxY0dUV1fTmuHH5XLBZDKRnp5e77WKkkokhFNbXKSKUCjEIbnuje8zG03KuBXDoadPdHS8svOWyl5phiYGZNfKzARZhqB0EVQkFJFeaFLk/dHkFxfTY2Tij4uvatYKyjL7mvqej1ochBk/TCIfb1v4r0ZWFaOXDoGBMWGRcGPfPdIrbdnOueQ2bx5GoiCzCAu2yLwND31/EmVF5dDjcmDbjBC8M+OzyTm4vOdcVGh9+5DqMtk8Sfq3kI9lMxVj+V+gE9J06NCh4/8xBZmF+HvZfnzqvhAX/rpOCiemViZYsGUG9kb/ib6Te6CiuBJJb4lSCM8OzRVah6tLanQG7hx6CEh8L6ReDZrwRsUShviwZNK4FgDZ8IDBYCBwdGdsfbwBzdu6QiQgshrGLB0KM2vlvg1FOcXYvfIQprovxIsbsvbpLDYLczd9igOx2zBwem+1JvBdh3eCVwfCsynpbSrpKacp0vJOPk9ArohKUVbC0BgJ4cn45dNtmObxOU7LZUpBIlhufrAefl29yXNsxMLBtHYBpUqH/m3Iz50em4WL22/QMq7U20skEiP6qeKkUeG8pKlpw4mfz5MdY4M+6w87V3qzYKjQqnsLdOjfGpCUt5ze3Lh/FFUUPOeUdJWNioqCUCikTVgQi8U4dOgQnj59Ci5XM89HTXB1dcWqVatoF0xevHiBp0+fKn0tNjYWPB6PNmFBLBbj2LFjePTo0X8aSycnJ6xatQp6enq0Zvi9evUKoaGhSl9LSEhAVVUVrT5Yp0+fxt27d2n1AlQVOzs7rFy5EoaGhrTGMjw8HE+ePFH6WnJyMkpLS6Gnp0fb+507dw43b96EgYEBha21g7W1NVauXAkzMzNaY/nmzRs8flxfTFF1cZEKdw4Hk4JHq+6+6DiAPhGeKpb2FmRWWm01D7tXHVZ5DAdJVlpRdjGZfdaYt1dDi4tpCuKPahm4wadDkfSGmFt7d/IgvUebYvLXYzB+xXBA8pv767S/EHr5pUrvLcXU0gSjlxDZoXyeADtXHAQkc2iyBFYMbP7sH/h29kL/T3sCAMqLK3FYIqhKY1lZWoXyImIhqGUTzRtq5DL+pBUe6bHyouR/k82sCjohTYcOHTr+H5KdnIut83djmsfnOL/tGtlNUN+Qiylfj8WhhL8wZulQ6HGJFT95YYAOs1qxWIzti/dCJCImeONWDFdooa0uUaGyiU/rHspLGPg8Ph6eDsWKPt/h885r6k2WfDp7Yl/Mn/j+7EoAwO2DhNhnZGaIsV/UF/vy0vKxffFeTHVfhNObL5PihhSugR7GLB8KPX31bwgYDAYWyqXz7193AmVyRq3qIr9iWLezknwsG/JHE/AFeHz+GVYN+AELOq7C3aOPyGw5DpeDoXP6Y2/UVvx4cQ30jbh1mkqM1Pj41YHBYGDhVlmXs8PrT6MoR3WPlbrIZ2mqE0tVSI5IwwWJAMjhcjB57WiNx1SX+X/MIL1QTvx8vsGupaqg4JOmpOPXw4cPkZiYWO95dUlISEBqairc3NxoG1Nd9PT0sHXr1gaFL3Xw9PREdXW10tcePXqEhIQEpa+pQ2pqKhITEz+YWO7YsaNBsUYdvLy8Gozl48ePERenvHGLOmRmZiImJuaDieWuXbvw4AF9jUUaOy9DQkIQG9twsxFVyc3NRURExAcTy3379tHq/9ZQLKNC6L32VJRUYs+ao+TjGT9M+s+yTqd+O54sCXx4KlRhwYoKTp6y8s6cJCLLVOE6/kSxi3JkA7GUioqWDhYqLTJXlVcrdMBUJbOPwWBgzqZPMXQOUbYvEorw44Q/8Pp+BOX3l2fSmlGwciTErKeXX5HNBJZs/4zcJuz2WxTnlWD2xslkY6xLf99EdnKuQqmsrHmDXOdOJUKa9L4DAKycpNl9RIaqsbkRLOzobTKiDXRCmg4dOnT8PyI9NhObZm7HDO8luLr7NmnyzzXQw+glQ7A/bhtm/Dip3mQgOUJWMiDNjNKE+yee4PU94oJv72ZDSzaaWCxGamQGOWbdMtGM+Gz8u/oIJrvMx4aJf+CtnJG+iaUxGBKPh9SIdOjpcyAUCLFt4b/kNjN+mAQTC1mb76zEHPwxZyemey3GxR03wK8lstk4XA5GLByEzkFEeU9VeTV5XJrQKtAX/ab0AACUF1UomNOqi8KKYZ3MH6n/iYWdWT0Ps+ykXOxdewxTXBdg/djfEX73HfmaqZUJpq4bh6Op/2DZrnlo5usEoZCIpVQ4nbpuPMxt/rvW5t4dPRA0uy8g+fvsW3tc4zFbyTdvaCCWhqYGCh2u1EEsFuOvRXtIwfKTNaNh7WSl0Zia4N6qGUYsJHyjaqpq8e/qIxqP6ddNbgKuJCMNAFq0oMfrB5KumRMnTvwgbrIBoF27drQ2UujXrx/GjVPeiEIsFtMaS1tbW0yYMOG9dupsjLZt29IqpPXq1QuTJk1q8HU6y42trKwwbty499qpszHoPi8DAwMxdepUpa/RfV6am5tj7NixaNWqFW1jakK7du3w9OlT2nznOnfujBkzZtR7PiVSfu6muS/c/m+Ok50Vu48JoM0vVx2MzY0wa+MU8vGOpftUsr2QvxZLyzsdmtuRZYZRoXEKfx/5WHpKYllWWI6SfMJ+QNVstCM/nEZBJlEu7R/UHv6D26m0P4PBwOK/P0PvSYGAxC/u25G/IvpZvErjQOJpNneTrJnAP8v3g8/jo9OgdmS2u1gsxh+f7YS1kxXpZywSinD6t0uKDQcksbR2tCT9YGOfJ9Sz0ZBWgACAjbMlqitryGYHLr6O/5lAqwo6IU2HDh06/h+Q/C4VP32yBbP9luP2wYcQCYlSRQNjfUxaPQqHk//Gwq0zGzR9T42STSBc5dpiq0NlaSV2SVLHAWDRttnk6pYm5KcXkN5U0mPk1fLx4OQTrOy/HjN9luDUbxfJSQ8kfhbLd8/HiYxdGLlwMCAnBlzcfkNWztreHcMXEGUEqVHp+GXaNsz0WYLre++Sqf76hlyM+2I4DiftwOLtn6FDf1m5gzJ/CHX47JcpZLeqq7tuIfFNikbjufg4koKjfNZhcV4pGSdpLPk8PoLPhGL1oB8xzfNznPjlPIpyZG3fHT3tseTvOTia+g+mr5+o0H31+p57iH1BZBC5+jljzLLGTabfBzN/+gRGZoYAgJsH7iPmueqTT3lsm9nAxpkQtGKexZMm51Xl1eTk0K2li8aTwzuHg/HuEbFS7uhh959l9skz7fsJZGbAgxNPFAyZ1UHBv+9lYr2OoPPmzYOXV9ONOqjw4MEDhIaGfjBiBQAMGjQIkyZNoq30SywW448//kBGRn1Bf/bs2bQJFo8fP0ZwcDCtAoim9O/fH1OnTqW1jG7r1q1ISan/2ztt2jS0bt2alvd4+vQp7ty5g5Yt6fFUpINevXph+vTptMWSwWBg+/btSjMiJ0+ejA4d6DGwf/nyJW7cuIFWrVp9MLEMDAzEzJkzaSvjZjAY2LVrF6KjFbOopOKPgbE+6WOlLnGvEnH5n1uAJKtc3i/rv2LQzN6kp2byuzSVjPflM9Kk4g+DwSAXGKvKqskMKQBIlcSSo8cm95Uv63Txoe7plRyRhrNbrxLjcTn4fNsstc5NFouF1Qc/R5dhHQEA1RU1+HrIT0qbOzVFn0+6k1lkGXHZuLDtOgBg0baZ5DbProWhrKhc0Vdt/32YyC1cK3jOScbj1fCR9FaxeZd08RkAjM2NkRmXTT5W1Wvuv0InpOnQoUPH/zCxLxLw3ehNmNv2Szw4GUJOgE0sjDDtuwk4kvI3Zv88RUH0UIY0o4bJZMDFRzPfgoPfnSIFmG4j/ckJgKbIZ81ZOlgQhvcu8/DTJ1vJ7DdIjNl7T+yGTXe+xZ6IPzDks37Q09fDtPUTSFHpwYkn2Pf1MUAysVry9xwkR6ThhwmbMaf1Ctw98ojMrjI0NcDktWNwJOVvzPt9Gun75dlelrmXFq15RhoAWDtZkQbvIpEYO5bu0+imhsFgkJ2VSgvKUZJPrDSnyq28WjtZYs+aI5jcbAF+nPCHQjdXFpuFHuO64Jeb32B/zJ8YPn9gPVG0JL8U+9bKSkEW7/gMHD2O2sdMF+Y2Zpi+fiL5eMeSfRp3+PNoT8SyuqIGBZImC6lRsr+9q59mInR5cQV2r5SVgnz+12yNSobpwsTCGLN+mkw+3rFEtcwAZXhKYsnnCZCdJDN3j46OxrZt2zQaW0phYSGCg4NhbGxMYev3B5vNhpmZGTZv3qxU/FIVJpMJHo+H1NRUhecTEhKwefNmWoSR0tJS3L9/H0ZGmpfo0wmLxYK1tTU2b95c7/OrA4PBgFAorCekpaSk4LfffqOlS2hFRQXu3LnzQcbS3t4ef/zxB22l1SKRqF4sMzIy8Ouvv4LP17wRTHV19X/ui6YMJpMJJycn/PHHH7SVsNaNZXVFNXKSiaYGrn7OGomI0qxy6W/Fp9+Oh60LvR1V1YHFYil0sTz47QmlDWqU4Sw3l016J/tt8Gwnm7tJr998Hh8ZEqHH2ccRLDbhKalgjk+xy6Q0q1y6oP3JV6M16rjN5rDxzcnlaNeHyA4sL67Eit7fqVzmyWAw8Pm22TLbix9OozC7GF2H+8NaUnopFomxZc4umFgYY/gCIhOdX8tXsGBIbiCWaVGK1zLpHEH6fopecx9+x07ohDQdOnTo+N9DJBLh+fVwrBm8AZ8HfIWQiy/I18xtzTD75yk4nPw3Pv1uPKUOTkKhkBSCnLwcNLpxT3idjIvbiVUuroEeFm6d2eQ+VEmSy866vucuTm++jNICmY+Yk5cD5m76FMczduHr48vRvm9rhdVgQgz4hHws9W/oNLgdjvx4Ggs6rMKjM0/JiaSplQlm/DgJR1P+wcwNn9RrQtCshWxFTX6CoCljlg8j0+jfBUfj4SnNSm3kOyNJW48nvZXF8s7hYJzcdJEs54Ck/GH2z1NwPH0nvj21Ah0HtG1wZX3P6qMoL64EAPSb2oM2w2M6GL5gINwkGXcxzxNwW9L8Ql3kJ3+pkljKi5JurTQT0vZ/c4LMFOwxNgD+g+nrDqgpg2b1obUhhnwspeclAKSlpdFmjM/lctGrVy907tyZlvHoxMDAAKamprh//77GYzEYDPTt2xeurq4Kz0tjSUeWDofDQY8ePdC1a1eNx6IbPT09WFpa4u7du7SM17t3b7i7K1ocpKWlgcFg0BJLNpuN7t27o3v37hqPRTcsFgs2Nja0xbJXr15o3lyx5DA9PR1isZiWpg0sFguBgYHo1auXxmPRDYPBgIODA21ead27d1fI1JX/3XTTsJKgflb5UI3Go5OW3XwUDPAPrDtBaT/31s3AIX2AZRnpCnM3ydw3Iy6bFH7kr+OKHTupLTLXyypfpXlWOdeAi/UXVpO2CFXl1Vgb9BMenlbeGKUhPNu7Y4jEd626ogZ7JYug8zdPJ7d5cvE5KkoqMHb5UDJ+D0+HkNUSirGUv47XEdIkQqLUY1WdWP7X6IQ0HTp06PgfobKsChf+uo5ZLZbh66Eb8erWG/I1aydLLNw6E4eTdmDS6lEwMjWkPG5Och7pZaBJWadIJCJW4SSZXFO+GUdLp8HU6Azs/OKAQjt2KRw9Nvp8Eojf732P/TF/YvyXIxr15ho8uy8c5dL9GQwGXlwPx/Nr4eRzFnZmmPvbNBxJ3oEpX49tsEmCua0Z+RpdGWkAoMflYMEWmQC5e+VhsuOUOsin0L95EIl/Vx3G3q+O1duOzWGh14Su+PX2tzgQtw2TVo9q0gw24nE0bh4ghAAjM0MFD44PATaHjQVyYu7er46isrRS7fHkY5kuuYmR91XR5GYm9mUiruyUldXM/+O/L6uRh8Vi0doQw0WJwAsAvr6+6Nu3rwZHShAXF4eXL1+iV69etHfJpAMmk4nx48fD39+flvGUeUN5eXmhf//+Go+dmJiI0NBQ9O7dm9aOlXTBYDAwZswYdOnShZbxWrZsWe+c8fT0xMCBAzUW0lJSUhAcHIzevXuDw/nvM3frwmAwMGrUKHTr1o2W8Vq0aFFPGHd3d8egQYM0jmVaWhru3r2L3r17/6cdZBtjxIgR6NmzJy1j+fr6Knz/5K89mszdivPqZ5WzOR/W93z2z1PIUsOru+9QKm3k6HHIxZ+shBzyeqVw7YmpvyAmn1keL/c+rn5NZ1FpM6vc0MQAv95ah4ChREk0nyfAT5O24OIO1TqTz9wwiZy73j74EFFP49BrQjdY2hPzPbFIjD8X/AtLewsMnkVci2sqa2EuqWwpyCxCviQjX14Qk19QFolEgCQRms0hvv8JKsbyQ+DDmzno0KFDhw6VyIjPxo6l+zDZZT52LN2HzHiZz4C9uy2W7ZyLgwnbMXrJELW8yOSN8jW5uN3cf5/0CnPxdcK4Feo3GKipqsWdI8H4ote3+KzlcpzdehUCnsxHycnLHvN+n4bjGbuw9ugytO1NzWcmMy4bxbky3y/5kifbZtb4/K/ZOJy0A+NXDIeBceOlIgwGg1zZzE8vRHWF8u5k6hAwtAP8Jc0M8jMKceync2qP5dDclvz3oe9P4dTvlxRMYO3dbTHn16k4lr4L35z4Ah36taYkPAgFQmxbtId8PHPDJ2SL8w+JDv1ao8fYAABAcW4pDn1fX5ClirIsRDr8BeuW1Uz7bsIHUVZTl1aBvug3VdYQY9/X6jdxUIyl7DeIx+PVy2BRldraWly4cAGlpaUUtv7vsLCwgI2NDQ4dOtRgd0OqRERE4MiRIwq/abW1tRo3BeDz+bhw4QJKSkoobP3fYW5uDkdHRxw6dAgVFRUajRUdHY1Dhw4plHHW1NRoHEuhUIgLFy6gqKhIo3G0jampKVxdXXHw4EGUlVEro2uIuLg4HDp0CAKB7PpdXV2tsQeiSCTCxYsXUVhYqNE42sbY2BgeHh44ePAgios16x6dlJSEgwcPoqaGWFhLpUlI27PmCJlV3v/Tnh9UVrkUa0dLTPmGaKgiFouxfcleSmXWvp1l55nUpN/Jy75elpSyBTGhQIgYyT42zlaUmv7s//q4LKt8XBfas8r1Dbn4/txKDJrRB5DGYvFe7P/mOOUSfjNrU0z/QWZ7sX3xXggFQszZJGsMEnzmKaoqqjFh5QgyVkXZsvNXGhc7VxtwDQihUD7jTL78lsPlQCwWk02aTK1MNCp1fZ/ohDQdOnTo+AgRi8V4eesNvhn+M2b5LsWFv66TRvsA0L5fa6y/sAoH4rZh6NwB0OOqv7KdHCEzCFU3o6assFyhZfri7bNV9sni8/h4euUVfvl0GybYf4Zfp/1FpsfLY+Voif0x2zDui+H1yi2VIRaLEX7vHb4d9Stmt1yO6nLF7C5TKxOsO/UFDiVsx8hFg8E1oC5GKpRNypnWagqDwcCCP6aTK3mnfruoklm+gC/A8+vh2DRjOzZM2NLgdqZWJjgY/xcmrBzZpI9eXS78dR3J74hzx6uDO4bNH6DS/u+Tub9Ng54+cT6e33ZN6XlFBcW/NyH+SP0FTSyMyBVdVbn2713EvSTKatxaumD00v++WUNDfPbLVFlDjN238er2myb3UYazt4PMO0WSkVZTU4Njx44hOVl1I2V5hEIhPDw80K9fP43GeR/o6+sjMzMTjx490mgcKysr1NbWgscjStYFAgGOHTum1OhdFUQiEdzc3DBgwIf7/ZbC5XKRk5ODhw81K+G2tLSEQCAgxU2RSIRjx45p7HUlEong4uKCQYMGaTTO+0BPTw/5+fkalx5bWVlBJBKR4qZYLMaJEyfqmearilgshqOjI4KCgjQa533A4XBQVFSEe/fuaTSOpSXhYyWNJR3Z0BGPo3HrwAPgA80ql2f00iFkk5rIJ7E4/+e1Jvdp0UUmpEnFH44eh7TPyIjNIrznlIiSye/SUFNZCwDw6+bd5HvFvkwkmyHoG3GxQEtZ5WwOGyv2LsCkNaPJ545tPIc/5uyk7F06fP5AsoQ1/lUSTm66iP5Te8HMhphTi4QibJmzE/Zutug7mShBl1+AlcaSyWSSXnSZCTlk587ENzIfNUNTA6THZqG8iDhv/bp5fzBNQZpCJ6Tp0KFDx0dEdUU1Lv19E7NbLsdXgzfg2dUwcpWJa6CHoXP6Y/fbzdh0+1t0G+GvtpdQemwmNs/+G7/P+hv3jj8mn6+t5qE4T/Usjp1fHiTT5vt8Eoj2fal1NhMKhQi/9w5/zNmJiQ5zsG7EL7h79BGqK2Ril6GpAbw7eZCPbVysEB+W1ORqZE1VLa7uvo25bVZgVf8fEHrppcLrbD2idKGssBw1lbWkuawqNOYPoSkuPk745KsxgGRS8+u0v1BTVdvg9iKRCG8eRmLr/N2Y6DgXXw/diNuHHiqUhTIYDPj4141lskILeCpkJ+fi4HcnyTEX75hDm6+VNrB3s8W074kVWLFYjE3T/0JlWZXK4xiby8SymGfx+GPuTrK9vaWDBWJfJKhswp+fUYh9a2Wlth9iWY081o6WmL1xCvn491l/o7xY9QwgrgEX9u5EtmR6TCbEYjEqK4msCBsb9UvC8/Pz8e7dO4wdO/aDazKgDCMjI4wZMwZ2dnYajePh4YE5c+aQJW6VlZUQi8WwtlY/s7GwsBBhYWEYO3YsTE2bXrT4rzEwMMCYMWPg4OCg0Tiurq6YM2cO2QyguroaQqFQo/OyuLgYz58/x9ixY2Fh8eFl7taFy+VizJgxcHTUzMvIyckJc+bMgZkZsVDD4/HA4/E0Oi9LS0sREhKCMWPGwMqq6Syh/xoOh4MxY8bAyUmzToV2dnbo3ro3/l1+FFvn7SIzfLiGeshNyVPZAoJXw8OfC/4lH8/c8EmTdg7/JXpcDpbtnEs+3rv2mIIApgzfAMWMNAFfgIqSSnLuVlvNwy9Tt+HtQ6ITNZvDQlF2MarKqxHxRGaw37Jb412f+Tw+ts7bpZBVLu3yrQ0YDAZmb5yMhVtnkqLUjX338P3Y3xqdJ0phsVlYvmsemExi30Pfn0J8WBJm/yy7tj88FYq8tHxMWj2q3v7Rz+IhFAhRUVJJlsqKhCKyO2rSa5kPr4W9OaJCZIsQTcXyQ0InpOnQoUPHR0BCeDK2L96LT1zm46/P9yikSNs2s5aU3u3Esl3z4N6qmcbvt/+b47ix/z5uHriv0Gnn91l/Y7LLPLx5EEl5rOAzobh9kMgAMDQxwLzfpze6vVgsRtTTOLJcdVX/H3B9712ytAASwaK7pByvqqyazNaBRMBY5L8Gqwf8oDSVPeltKv5ZfgCTXeZh6/zdSidaQ+f2x9pjy8jHO5bsQ05KHuXPLEW+PC2dxoYDUiZ/PYYUvjLisvHvqsMKr4vFYsS+SMDOLw5gcrP5+LLP97i6+7aCd5WhqQFMLI3ltpfFMvF1Cj7vvAZf9PyWclmAUCDEr9P+IsXOIZ/1Q4sAzcp03gfjVgxD6x4tAAA5KfnYufyAWuM4SFay+bUCXN8jM+ROjcrA4i5r8XnAV5SFSZFIhN9m7kBFiayspk1PP7WO630yYtEgdBjQBpD4pfz1+Z4m91GG9PtTXVGDgswiWFpaYtGiRWoLFgKBACdPntQ42+V94+PjA1dXV5w5c4Ys21IVBoOB6OhosqufmZkZFi1apLYQIhQKcerUKUREqNYZ7r/G09MTXl5eOHPmDKqqVBfLIYllXFwc2bnSyMgIixYtQrNm6l17xWIxTp8+jbdv31LY+sOhefPm8PPzw+nTp1Ferr4fYlJSEuLjiQwWLpeLRYsWqV2+LRaLcfbsWYSHh380WS2QiLNt27bF6dOnNSo5P7PrAt6EvcXVf++gqozImKyt4mF5z28xrfkiyh0tAWDPmqPk/OhDzyqX0q5PK4yVNELg1/Lxy6fbyCwoZdi52sDMhmi69fp+BMbazMJoyxng1fDIbe6feEJmSwn4Qqzo/R2mui1A+L135DZSk/+GOPTdKdID7H1mlY9eMgRrjy0lqxeeXn6F1QN/RFlR099Xv64+ZFabdF7X95NA2LgQAqBYLMb6cZvh6ueCwNGKDXsiQ2IxznY2RlvOQIXcQpo0u1zeL83O1YYUfSFpHvGxoBPSdOjQoeMDpbSgDOf+vIp57b/Ego6rcHHHDVSWyib+bXr54dszX+JQwnZMWDmSUgdOqjTmvyTgC8mSvabIzyjE1nm7yMef/zUbVg71V9vFYjGS3qZi71dHMc1jEZZ2+xoX/rqOohyZ746+ERd9J3fHDxdX41TOv1i+ax44eg1n5sSHJZPiT1lROS5sv46FnVZhXrsvce7PqwrCnLWzJflvZ28HzNs8HT3GBGDAdKLTV1V5NX6buYOS54Y8ykxr6YTNYWP1ocWkB8Wlv2/ixY1wpESmY/83xzHDezE+D/gKZ7deRWGWzL+Ca6CHXhO64vtzK3E6Zw/8g9o1+j6Jr1MoZ1Kd+OUCIp8QkyJ7d1vM+e3DLQWRh8ViYdXBz2FoQnjf3dh/H08uPFd5HHkjYmUkv0tT8PNrjLNbriL8LjFZt3ayxIItH1aDgYZgMplYuW8hTCyIjJ37x58oZLZSxcXHCVxzDowdDZAalY5Hjx7h1atXah8Xj8eDsbExhg1T35/xv4LNZiMhIQG3b99We4yYmBg8fUp0Hg4JCcHz588pC+R1EQgEMDAwwIgRI9Q+nv8KFouFpKQk3Lx5U+0xYmNjERpKdMR7/vw5QkJCNIqlnp4eRo7UvHvf+4bNZiM1NRXXr19Xe4y4uDiEhBDdp1+9eqVRGbNYLAaLxcLo0aMpbP1hwWazkZGRgStXrqg9hoWnCezaKs8aK8kvQ15aAaVxXtx8jfPbiNJIDpeDlQc+/6CzyuWZtXEy6eeb+DpFqe+pWCzG9b13sazHOpTmE6KSkC8kxUf5ju/KKC+uRHQoIf7qG3Lh0da1wW3fPIzEyU0XAUlG26qDn7/XrPLeEwPx07WvyblNVEgsvuj5LfLSmz4Xpn47jmzIkBqVgX1rj+NruUXmuJeJeHErHJUlik2aREIRuQBYnCsThqXz4Jwk2cK0s7cjKaSxOSx4d9LMA/V98uHWBujQoUPH/0OEAiFe3HiNmwfu4+nllxDwFcULPX0O+n7SHSMXB8GznbvWjmPQzD44u/Wq0tfMbUzRd0r3JscQiUTYNGM7KVj1mtCVbFEuJSM+Gw9OPMH9E48VOvNJ4eix0XlIe/SeGIiAYR1hYKQve82Sg8DRnfHgZIjS9x+1JAivbr3Bjf33EXrxBfh1xAsOl4PeE7uhZaAP/pxPlC+w2Cx8dXQp+T6Lts7Em/uRyEsrwNuHUTi75SrGrxje5GeXYudmAw6XA34tX+nnowMXHyfM/W0amfWzbsQvEArqC35sDgudBrdDn4mB6Dqik0KzhOat3XAPDQsdIz8PojTxi34Wj0PrTwEAmEwGVh9arFKH2P8aezdbLNg6E5tn/w0A2DJ3J/y6eqtUztJURujw+QMp+ewlvE4mO6UxGAysOvg5rWK5trF2ssLiHXOwcfJWAMBfi/agdY8WKpWzNGvhBNvW5nDta4fgFw9QLiAm5NXV1cjOzsb48eMpl4BlZGSgqKgIM2Z8HGJkXYyNjTFu3Djk5+erPYaJiQliY2Nx/PhxMgOopqYGubm5GD16NOztqRk8Z2VlITc396ONpaGhIcaPH4/MTPV/k01NTREXF4fjx48jLo5oosPn85Gfn4/hw4dTLtPLzc1FRkbGRxtLLpeLCRMmaORbaGpqisjISIVYCgQCFBUVYfDgwXB1bVikkCc/Px8pKSmYPr3xrPcPFQ6Hg/Hjx5PfTXXw9PDEiwfKFxva9m4Jz/ZNzxtL8kvx+8wd5OM5v06lpdLhfaGnr4c1h5dgcZevIOALcWrTBQQMaY9W3VuQ27x7FI0/5uxscIxmvk6If5XU4OteHdwRH0ac8z6dPRucH5UXV+DXaX+RIvv0HybBq8P7F4o69GuNzQ/WY+2Qn1CcW0pkyAd8hW9OfkFm4iuDo8fB6kOLsaDjavBr+Tj351UEDOuIlt18SPFrbdBGsgOnMpr5OiFRUsoprcwoyJI1VHFwsyGf9+zQXCUf4v8aXUaaDh06dHwApMVk4t/VRzC52XysG/ELHp97piCi+QZ4YdnOuTiV/S9W7F2oVRENANxbuyp4R8gzb/N0Sjf0Z/+4gtf3iLIfG2crLP2H8K5Ii8nEqd8uYqH/asz0WYKD351UEJmYLCY6DmyLL/ctxKmcPfj+3Cr0nhioIKJJCZqt3CzcxMIIN/bew9ohGxF8OlRBRPPu5IHF2z/DyazdWLh1Jo79dI6c5Mz4YSK8O8o8wozMjLDq4Odkicj+r48h6W0Kruy6jbVDNzZpSs9iseAiMVrNSsiBgE8tE4kqGXFZOPPHZdw6KDN8riuiWTtZYtmuuTiZ/S9+vLgGfSf3qNdxVL4EtS52rjaY+u24Jo+luqIav3y6DSIh8f6frB2DVoEfj9eFlEEzeiNwlD8gWZX+Y85OFGQWYtPM7dgyd2eTf8PGYmnlaIEZGyY1eQy11bX4ecqf5G/AuC+GUfYV/JDoMykQfT4JBABUlFTi91k7UJRTTPovypfPKKNZC2cURJVCLBKTIhoAvHnzBmVlZaRHVVNUVVXh+PHjZCnex4qnpyfat2+Pc+fOqdUtcdiwYWAwGAo36u/evUNJSQlMTKiJtDU1NThx4oRGN/sfAu7u7ujcuTPOnTunVsfRoUOHgslkksIPJJ1RCwsLKceSx+Ph+PHjGjcp+K9p1qwZAgMDce7cObW6ZA4ZMgQsFkshllFRUcjPz6fsvScQCHDixAlERUWp/P4fEs7OzujVqxfOnz+PvDzV7SQmzh6LzOD6fwM2h4Ulf89pstxVLBZjy9xdZDWA/+B2GLX4w2/YUBfP9u6Yvp7wPRWJxPh1+nYU55Viz5oj+H7sb+DosRqtaGjds2Fxicliovck2WKyX1fljQbEYjG2LdqD/HTi79Gmlx/Gf0l9IZZuPNu7488nP5GNFIpySvBl3+9x+vdLjWbTuvq54LNf5HxPZ+7ArJ8/kW3QRCJuqx4tSK81qVewvL2ISG7/lg3E8kNFl5GmQ4cOHf8R5cUVCD4dipsH7iP6af2bEkt7c/Sf2hMDZ/RuslxMGwTN6kt23pHSrm8r9JvSo8l9E8KTse9rwiCdwWBg1OIgHPr+FJ5dDUN2Uq7SfVp190WfSd3RY1wXyh0i2/VtBXs3G+SkKGZplBdXAnKlm+Y2pug3tScGzegN99ay1e2NU7aSpQ6te7bA+JX1y5Ta9mqJcV8Mw+nNl8HnCbCi9/dkynphVhF2hf/e6DE6eTsg6W0qhAIh8tML4dBcfdNwPo+Pd49i8PzqKzy9GobM+OwGt5VmwhVkFsHY3LhR8dPZu2Hz7cXbZysVMevy97IDpJGsb4AXpq5rWnz7EGEwGFi2ax4iQ+JQkleKp1de4d2jaLKsulX3FhgwrVeD+zcWy4VbZ1LK0Pt31RFSXPZo54YZGz5pcp8PlcXbP8O74GgUZBYh7M47zPZbTn5/fAO8MGxew747zt4OqC7k4dWOOHRc6AOGpLLIy8sLgYGBMDAwaHBfeaqqqmBjY/NRdJZsChaLhZSUFFy5cgWTJ09Wad/y8nKwWCwwGAzw+YRvkIeHB7p160ZZlKyuroaFhQUGDx6s1vF/SLBYLKSnp+PSpUuYNm2aSvtWVFSAwWCAy+WitpYw73Z3d0fXrl0piz81NTUwMzPDkCEfbhdeqjCZTGRlZeHChQuYPXu2SvtWVFRAJBLB0NCQ9K1zdXVF165dKTdeqK2t/WjLtuvCYDCQk5OD8+fPY968eSrtWyusRcdlXnjxZyxqS2XeYBNXj1LoKt0Q1/69g5CLLwAAZtYm+HLfwo/Ka06e8StH4OnVV4h8Eouc5DzMabWcLNm0tLfAV8eWYcOEzRCJ6itBvp29YGlvrmAvImXssqEozJRlVDXk6XX36CM8OPEEkPj6rj60+D8vj3VoboetT37Cxslb8fpeBERCEXavOozIkBh8uW8RjM2VXwdGLQ7C0yuvEH73HfIzCrGi1/eU39OzvTtsXW2Qk5yHbElJZ3V5Nfl6ZoJsHtuU19yHhk5I0/HBIxQKkRqVjoTwFGTEZSMnKRcFWcUozS9DZWklaiprwa+VXCwYDDCk/2fUf8wAAwym9HkGwCAuWAwGwGAyYWCkD3M7M9i4WMHZ2wFeHZqjVXdfmNtQu6nXoaMpygrLEXLxBYLPhCLszrt6vlNsDgtdhnfCoBl94D+4nVqdIumi96RAbF+8l8zmYrGZWLLjsyYnVTVVtdgwaQuZTcNiM/Hv6iNKt/Xq2Bx9Jgai18RujfqyKaO8uAKhl16S3TXrwmQxETC0AwbN6IOAoR3qpd7fPfoI948TkxwjM0OsaWSSM2PDJ3h69RXSY7JIEQAAkt+mobK0EkZmDd+E2sqVshVkFqkspBXnleL5tTA8uxaGVzffoEpuAiKPRzs3uPq54N4xwl+G/F0EEPEoGr3Gd23wPawbKLfrPiYAAUM7NnmMj849w4199wCJl92aw4s/6M6STWFuY4YVexZg3YhfAEDBm/Ddo+hGhTRLBwswmYx6k3P/we3RY2yXJt/72bUwXNxxA5CUcn91dCn0uBwNPs1/i4mFMVbuX4TVA38EJJlpUiIeRzcqpJlamUBPnwOxiFjdZ4ABFouF3r17UzbJT0xMhEgk+mhL5+oiLf+Sz2J69uwZKisr0bdv30b3ZTAYEAgEYLOJ7yaTyUSPHj0ol84lJyejtrYWM2fO1PBTfBiwWCyMHz9eoWHCq1evUFhYiIEDBza5v1AoJK+HTCYTgYGB8PDwaHI/AEhLS0NFRcX/TCyZTCbGjRuH8PBw8rnXr18jOzsbQUGNZzQxGAyIxWLweDzycZcuXeDjQ+2mOiMjA8XFxf8zsWQwGBg3bhzpYchgMBAZGYmkpCQMH954RhODuNmBvqUeKaTZNrPGJ1817RmXHpuJnV8cJB9/sWcBLO0//A6yDcFisbD64GJ81voL8Kp5Cr5nEY+jsWTHZ1j+7wLSykEKk8WEi68TbFys6glpFvbm+PS78VjR+zvyuRZd6mdRZSfn4q9FsiY7S/+Zo/IcV1tY2Jrhl5vf4NB3p3Bs4zkAwJMLL5D8bjXWnV6htOKFyWRi5f5FmO23jGwkRRW3li6wcbFCTnIeKkoqUVVeRd4fcLhsRMp1P9UJaTp0UCQlIg13jz1CzLMEFOeVoLKkCjWVNeDV8CHgCwlTb/V8W9WmBKXITs5F9FPlrzNZTLD12NA31IORmRHMbQnRrZmvIzzauetENx1KKS0ow5PzzxF89ile34tQatrevI0rBs3og75Tun8w55ChiQE82rkj5jmRldZ3Sg+4+Chf0RSJRIgPS8bzq2G4+PcNlObLyo7kS1RZbBZa92yBgCEd0GV4Jzh7NZy9o4yyonKEXHiB4LNPEX7nbT0POQBw8XFE0Gf90X9qjwa9rXJS8rBtkayt+9J/5sK2WcOdABPCkpSaz4rFYkQ/S0CngW0b3NfKSSZS5Wc0XfYiFouR+DoFT6+8wrNrYYh9nqA07Z7JYqJVd190GdoRXYZ3hL27Lf5eul/pmFFP45Q+L8XASB8mFkYKDRgYTAYWbm36xqQgsxBb5sq8Rhb9OQtOnqr9XT80hAIhwu4o76AX3UQs2Rw2LOzNFZo7MBgMLN4xu0kRujivFL/Pkk3q5/42Da4tnFU+/g8JoVBINkyoS1Ro47FkMBiwdrJETlq+pH6EAZFIBH39pjMkAaCwsBAnTpxAly5d4OX14XeOpYqLiwucnJxw6tQpCIVCZGVlQSQSoU+fPo2eY05OTujZsyeePiUmOdIsICqUlJTgxIkT6NChA3x9P76S7YZwdHSEg4MDzpw5Az6fj+zsbNTW1mLAgAGNxtLe3h69e/fG06dPIRAIVIpleXk5jh8/jpYtW8LP78PvwksVe3t7BAUF4fz586itrUVOTg4qKysxaNAgMJkNuwlZWVmhb9++eP78OSoqKiAWiylnSFZWVuL48ePw8vJC69YfX/l7Q9jY2GDo0KG4dOkSKisrkZ+fj9LSUgQFBZFCuDLMzc3Rv39/vN6+m3zu8+2zm/Sd4vP4+HnqNtRUEdmVQ+cOQLcR/jR+ov+G1/cjlDb3SYlIR2VZFQbP7IOq0ir884WsS7eplQn0uBxYO1spdDEHgHm/T0NNFY/0R/No5wZTK8Vsf2mHS+miZ/9Pe6L3xEAtfUL1YLFYmLnhE/h19cav0/5CeXElshJzsbTb11i8/TMMnlV/UebNg0jwahvugKoMQ1NDGJoYKHijvnssE870jfXJihwXH0dYO1oqHedDRSek6dA6UU9j8fBkCCJDYpGdnIfKkirK3d8+NERCEXjVPPCqeSgrrEB2knLRjcVhwcTCGM4+jmjftxUGzewDu0Zu0nX871GcV4on55/j0dlQvL4fSfpGyWPbzBo9xgSg39Se8Gzv/kGmzy/95zOsHrgBZtYmWPr3HIXXqiuqEXbnHZ5eeYXn18KUpsBDUlbpP6Q9AoZ0RKeBbRrN3lJGaUEZnlx4gUdnQxF+V7kQyTXgQCAQYfj8gVi4dWajsRQKJZOcMtkkp8+khic5RTnFWDNoQ4OrcNGhcY0KaTZyHUHlywHkqa6sQfjdd3h+lcg8K2hgOxNLY3Qe0h5dhnZEx4FtYWJhTL62d+0xXNmlvKNf4usU1FbXNjqZtnKyRHlxJRgMBvSNuJiwalSTxvAikQi/zdxBtobvMTYAg2b2aXSfj4HjP58nO5bVJTUqo8ksRGsnS1JI0zfWx+glQ+Dg3ngmolgsxh+f/YOSPMILrPOQ9hixcJBGn+ND4NyWqzjx6wWlr2Un5aI4r7TRUm5rZytkJeYi/lIm2k/1Qf/+/WFpSW2yXV5eDldXV/Ts2ZPC1h8XPB4PMTExpMhOpVEAi8WCs7MzBgwYgAcPHqBnz56wsaE2NykvL4eTkxN69+6t8bF/aAgEAkRHR5NdmanEhMlkwsnJCQMHDsS9e/fQpUsXODhQW0CoqKiAnZ0d+vVT7vH5MSMUChEZGQmhkLhOW1k13VxEGst+/frh7t276NSpE1xcqNlZVFZWwtra+n+ibLsuIpEI7969g0BACEEWFhZNzhMZDAacnJww5buxOPT1abTv2xpdh3Vq8r0OfX+aNNd38XHEvM2qlTp/iLy89abBhgJisRixzxPQoX8bjFk2FNkpubiwjeg8a25DlGbLizr6hly07tkC/Sb3wJ0jweTz/oPqdzyv27n8879UK3V+nwQM7Yi/X23CjxP+QNzLRPBq+Nj82T+IeByDxTtkAmzY3bf4ddpflMb0aO+GxHCiuQCLTQjo8rGMkPMW5urroVxIzB87KYnlh45OSPtAqOELkVNei8IqHoqq+KgRCCEWA0wGA6b6bFgZcmBtxIWNsR6YH+DNtlAoxOt7EQg+E4rYF4nITc1HVVm1UvFAVRgMBpkJxjXQg4GJPkwsjWFpZw5rZ0s4eTrA0dMeelw2BAIhhHwRBAIBhHwhBAIRhAIBxEJAKBBAKBBCKBDV+b8QIqEI/Fo+8lILkJdegJL8MlSVVqO2upbIjlPxcwj5QpTklaIkrxQRj6JxeD3RepnD5cDc1hTurV0RMLQDBnzas57p94dErUCEnPIaFFbxUVTJQzV5XgImXDasDPVgZaQHO2MuaST5vhGLxSiq5iO/ohaFVXyUVvMhkJRU6bGYsDTkwMpQD3YmXBhztfuTV5BVhNCLRLbU2weRCqVdHCN92HX0QLMuPnDt5gsTB0voGXLBYgCZXDZqcsrJWLL+w1gWV/ORX8FDYRUPJdV8CPQMMf3BRuixmAjPrYSgIAtZz+MQdukF3j6IrNcJUx7/we0w9dvx8PH3UNkXoiinGKGXXpJZfPLfQbYhF3YdPOAS4A33wBYwcbKCnoEeWEwGjPTYeJdTDitDPdibKI/lgXUnESFZEbN3s2lyklNbxUOtZJVWGRFPlDccKJacl5WuDhi4+3NwjPRRbmWC6zF5sDBgQ1hYhuwX8Qi79AKv70UolGLK4966GQKGdkSXYR3hG+DZYCzLCho2HxcKhIh7mVSvOxNfKEKu5NrTduU4tADA5LDh5ucEM0Mu3mSVwtqI+P6wlWQUHN94HmF3iGwjK0cLLNs574MUhFWltJFYNpSFKBCKkFNRi8JKHvyWjERzkRhMNguuLZxgZqyPN1ml5HnJZtWP5Zk/ruDpFaLbmrmNKb7c+/F608jTWCwhEaK7jVTMfBCKxMS1p5IPr7lBcJo1CEwOGy7eDigy1sdruVhylMQSkoYE1tbWmDp1Kq2f50MgPT0daWlpZEkcJJkofD4fenp6CtsKRWLyO15YxUNiRhUMjCzgM2QqyjksvM4shaUREUu9BmIZEREBU1NTlX3EPgYyMjKQnp6u8Jy5uTl4PB64XMWFB6FIjLyKWhRUErFMyqiCvoEJvIOmoJrDQnhmKawMObA30YceW3kso6Ojoa+v/z9TaixPVlYWMjIyFJ4zMTFBbW1tPT9DkTSWVTwUVvKQlFEJPa4RvAdPAZ/DQlhGCawk5yW3AYuL2NhYsNns/5mSTnmys7PrxdLY2Bi1tbX1Mh9FYvnzko+k9ApwOvpiTuhv0Gez8CqjhPi9NOVCX0ksn18Px0nJYgeLzcKaI0so+aJ+6DQ2JwKAyNBYdOjfBgCwcMtMVJZUISIkFp/9uxCROeUwG9QRgzv6gMXlwK6ZNaxtTPEqowQRyfngWhijtriinvjz+n7ER9e53N7NFlse/Yidyw/g8s5bAICbB+4jPjwJ355eATaHjY2T/6Q83tA5/bFt4R6AwYB1K1dEZJfCqHdbDPZzB4vLgcCYi35/2aEoLhO8nGJU3HuLmsLyj1JIY4gba9PwP0pZWRnMzMxQWlpK2RBUW+RV1CI2rwIpxVVQ4nVYDyM9FnxsjOFlbQR9zn/jnSQUChF8JhSXdtxE8ts0VFdUKzVqbAomiwlDE31YOVnC2skKNk6WcPS0h2tLZ3i0c/8gM7hy0/IRFRqLhPAUZMZnoyCjECV5ZagsqwKvmgcBT6ByLBgMgGvIhbWzFbw7NkevCV0RMLTjf2pIWVjJQ0x+BZKLqiCk8HkMOEx4WxvD28YYhnrv57j5QhGSi6oQk1eB4mpqqcZOpvrwsTWGs5k+LTeoAr4AkSGxeHE9HC9uvEbS29R625h7OqDdrP5w6t0GDAp+Z/psJrxsjOFjYwSjRjoK0YlARMQyNq8ChVXUYpn9LBZxZ0OQERwBsUgMPX0OOFwO6SXVZXhH/HBhNeU4CwVCRIXG4cUNIpYJ4cn1tjFrbod2M/rDuV9bMCj4b3HZTHhZG8HHxpgUUR+ff4b1Y4nmAEwWE5sfrKfUWfLFjXDsX3dCaTt0NoeFq9XHwGQyIRSJkVJUhZj8ChRUNt6RUErOywTEnX2C9AfvIBaKoKfPQbu+rdBlaEcEDO3QaMmpPFXl1Tiw7gSu772Lmsr6wt/opUOwcAtxw1Faw0dMXgUSCyvBFzb9HddjMeFpbQRfW2OYSGL5/Ho4vhn2M+nh8sutdejQ73+jtKamqhaHvjuJq7vvKPWkC/qsH77YPR8AUFbDR2x+BRIKKsGjEEsOiwFPKyP42BrDTJ/wPnt9PwKrB/xAXj82XF5DyZvuY4BXw8Ph9adxeectBa85KX0nd8dXR5YCAMprBYjNq0BCYSVqBU0vYHGYDHhIvuPmBjIfudjYWJw4cQKjRo1C27YNZ4t+rOzcuRO5uYpNW5hMJgICAkhvr4paAeLyKxBfUIkaCrFkMxlobmUIXxtjWBjKxLjExEQcOXIEQ4cORadOTWe2fGzs3bsXGRkZCqIkk8lEhw4dMHToUABAJU+AuPxKxBdUoJrfdCxZTAaaWxrC19YYlnKxTE1NxcGDBzFw4EB06dK0X+LHxqFDh5CcnKwQSwaDgTZt2mDUqFEAgCqeEHEFFYjLr0S1EmuGurAYDLhZGsDX1gTWRrJYZmRkYP/+/ejduzd69Gi6AdLHxvHjxxEXF6cQSwDw8/PD+PHjAQDVfCHi8ysRV1CBSl7TsWQyADdL4jtuY0yIxNlJuVjkv5q0dZj98xRMWj1Ka5/rfSIWi3Fx+w2c+v0i2TlTHreWLvj33R+AJKElvqAScfkVqKAQSyFfgMzgSMye2weOFkR2el56ARZ1Wo0SibXJ1HXjyM6hHwt3jz7C1nm7yBJfAxN9OHrYI/G1JMOMw4Kwie/t9vDfcPnqa+i3cIUJBV84kUCIjOBITJ/ZEy7Wxh/VAqJOSPuPhLQavhDP0oqRUqzcNLopOEwGOrmYw8vaSOsnnFAoxMOTIbj0z00kvklFjYomgyw2E4amhrBzs0GLLt7oPaEbWgb6/OedS7SFUCjEqzvv8PDkE8Q8S0B+RiFqKmsgVlFg43A5cPF1wqAZvTDy86D3Ei+eQIQX6SVIKKyksHV9WEwGOjiZoYWtdn8IM0trEJpaRGnioAwbIz0EuluSN7GqkJdegJc3XuP5jXCE33nXoPG7S0sX9Fg3Eczm1Ayx68JkAO0dzeBnb6LVLNTsshqEpBRRmjgoQ5BfCi+mEE+PP8LtQw8BAI4edtj+/BeFskNlFGQW4sWN13hx8zXCbr9VepMNAI4+juj17SSwvNTzimIygDYOpjArLcfSLmvJv9n8zdMxdjn1Dl9isRhvg6NwZvNlMnNIyv6YP8FxsEJIShHKahvO0msMQWEZPMQCdOnpC33Dxv1MGqO8uAJXd9/B+W3XUJQt8+ly9XPGzrebEZ5Zhqjc+n5vVGAwgNb2prCtqcbizmvIyffMDZ9g8toxah/zh0plaSWu7bmH839eVfC3c2huh/1xf+FNVikicsrVsvNkAGhpbwJHER9L/NeQk+8pX4/FjB8n0fgpPgyqyqtxYx8RS/kuuzbOVjic8g/e5ZThbXYZ1J2VtrA1RgcnM7BZTISFhSEvLw+DBg36qCblVOHxeIiIiICBgQFevnyJpCRC4Le3t8ecuXMRmVOO11mllBZoleFjY4yOzmbgsJh48+YNMjIyMGTIkP/JWPL5fEREREBfXx/h4eGIjyf8eqysrLBw0SJE55YjPLMMQjVPTC9rI3RyMYcei4nIyEgkJiZi2LBhjXqGfawIBAJERESAw+EgIiICsbGxEIvFMDMzw9KlSxGTV4GwzFKyakBVPKwM4e9iAS6bidjYWERFRWHEiBH/k/cT0hJZJpOJmJgYREVFkd5xK1asQFxBJV6ml6gdSzdLQ7SzNsSqXuuQ9IZYBO420h/fnf3yf+7cFPAFCD4ditObLyss0rL12LhWfQwJhZV4kV5CaVFRGc3MDdDB3hjf9F+PmOcJAIBOg9piw5WvPspzMyUyHT+M+x3psVlKX+83pQcy4rLq+cd1HNgWbaf0Alo1B0/NijRnM310dbV8b0kZmqIT0v4DIS29pBpPUooorbY2haOpPnq4W1LKTkt6lwJXP5cmv9TqCmcsDgvG5kZw9LCHXzdv9PkkED4dPSl/lv91qqtr8fBkCEIvvUDi6xQU55aCV00tYwUAuAZ6cGvlgmELBmHApz1p/3HOKavBo+QiVFFYIWwKW2M99GxuRXtGlVAkxvO0YsQVqCf0ycNiMNDRxQwtbE0a3Y5Xy0fkkxgy6ywlMr3Bbb07ecB/cDu0GR2AJBZXbaFPHmsjPfRqbkV7WapIJMbT1CLEFyoXr1QcDK/+uoLoow/ANdDDttCNaN6mfhc4AV+AyCexZNaZsgw+KV4d3NFpUDu0G90FyXr6agt98pSn5OLuF3tRkVGA3pMCsfboUrVvDFOjM7DziwN4destzO3M8MWTnxFbUEUoTRrAYADtHMzQ2sFE45tWPo+P24eDsXvlIVSWVmHaHzNh3Le92kKfPJUZBbj7xR6UpeT9z06+5RHwBbh/4gn+WX4A5cUVmLRhCqyHB6CkRvNYVmcX4e4Xe1GSmP1RT76pIhQQWe07lu5HaX4ZxnwzDk4Te1HOLG4MYz0W2Dkx6NvVHyYmjf+2/6+Qm5uLS5cuISsrC70HBqHcrBnlzOLGMNJjgZMTi94BHWBm9mE0wNE2+fn5uHTpEjIyMtC9Tz/U2nghn2JmcWMYcpjQy09Ajw6tKfv7fewUFhbi8uXLSE1NRZfuPSF2aoncioYtEqhiwGZCvzAZXdv4UPb3+9gpKSnBpUuXkJycjE4BXcFxb4fscs1jKayqwcOvDiErNAbO3g7Y/uxnlT1sPybEYjFe34/AtoX/IiMuGx2HdkT/zbORWaZagogyRDU8BH9zGBnBkbB3s8GOl7/C1PLjvQZVlVfjl0+3IfTSy3qvGRjrY1/Mn8hKyMFfi/YgJTIdrfq0wvBdi5Beol6CkDx6LAa6ulrCzfLDLomFTkh7/0JaYmElniQX0dqM0kyfjYHetg2qt0KhEJ84z0NxbinYemxcqTyiMEkXCoW4f/wxLv9zC0nv0igJZyw2E7YuNug6oiOGLRgEF2/1sm50EF5Qtw4+wKtbb5EWk4GywgqlHWbqom+sD892bhizdCh6jNWsRCCtuBoPkwrUXr1WhpEeCwO9bWGq37gAlJ9RiKLsYnh38mhUOBCIRLifUIgsGi548rSyN0EHJzPyvQV8AeLDkhHxKBpvH0Xh9b0IpWVykHT26TSoLfwHt0fHgW1hYWuGzNJq3E8oVHv1WhkGHBYGedvAzKDxDLrC7GLkpuajRYCX0liWF1cg/lUSIp7GobSZA0z9mtF2jAAQffwhBnR0Rb/JRJmFUCBEQngy3j2KxrtH0Xh9L6LBDD4TS2N0HNgW/oPaodOgtrC0t0B2WQ3uJRSoveKqjOrCMkRvvYBfzqxo1AOkOLcE2Um58A3wUioQVZRUIj4sCREhcShxtoVpKzfajhEAvG2M0KVZ08bCVMktr8HdhAK1V1yVUVNSgYjfz+KXk8sbnXyXFpQhPTYLfl29/yfEtvyKWtyJL1B7xVUZtWVVeLPpDH4+tqTRyXdZUTnSojLQoqv3/4TYVlhJxJJK6SFVRAI+ertbwN3OotHtKkoqkfQ2FS27+YBFoez+Q6e4iofb8fmUSg+pIhIKEOhiAm/HxstzKsuqkPg6BS26eIGjp3qm94dGaTUPt+MLaFkMkyIWCtHZ0RB+LraNblddUY24V0lo0cUbetyPP5blNXzcisunZTFMilgkRAdbLtq4Nd7coaaqFrEvEtAiwAt6+nqNbvsxUFHLx+24AloWw6SIBEK8+Pk0Vv88Ca5+DTd4qK2uRcyzBPgGeDbZAfRjoIonwO24fFoWw6SIhCK83HQWy78ZDc/27g1ux6vhIfppPLz9PT5oL7ofxm/Go7NKOurVsWSo5gtwJ64ARTQshskT0MwCvraNV7b81+iEtPcopKUWV+FhYiGtIpoUc302BvvagVvH3FQoFGKiwxyUFsjKeKavn4CWgT44sO4kkt6mNigSyMNis2DbzBrdRvnjk7VjYPYRq+wfAzweD+e2XMWdw8HITMihJKwZmhrAp5Mnxq0cgc4qGDZml9XgTnw+rSKaFGM9FoJ87RoUeR+cfIJN07eDzxNg7bFlDXZOFInFuJ9QgIxSekU0KXY11ci/+wZvH0Uh5mk86Q2gDN/Onugc1AH+Qe3g1bG5ws1sbnktbsfl0yqiSTHksDCkhW2DWX4hF1/gp0+2gFfDx4q9CxE4yh/xr5IQ9yoJ8WFJiH+VhOykXIDBQI+N0+DaTzu+QXa8WhTcfY13j6MRFRLb6O+LV0d3BAzpCP/B7eDTWdFEv6CyFjdj82kV0aToMYBhrRxIr6+6PL8ejh8nbEZNZS0Wb/8MfSd3J2MYH5aEuJeJyEok/IkC10+Be5B2vKz87Izh79K4GECFoioebsTm0SqiSWEDGNbKvsEy6fB77/D96N9QVV6Nub9Nw/gVwymNy+fxkZ9eiJyUfFSVVYHFZkn+Y4LJYio8rvtvJosJDpcDSwdz2sWmkmo+rsfk0SqiSWFBjKEt7WFhoPyGL+JxNNaN+BUVJZWYvn4ipq4bR2lcAV8giWUeKktlsSTi2HAspXFm67Fh5WBBu9hUVkPEkk4RTQqbycBgH1tYGSmPZfSzeKwb/jNKC8oxac1ozN44mdK4QoEQ+RmFyE3JR3lxhVwclZ+LdePM1mPD0t4cbAoej6pQUSvAtZhcWkU0KSwmAwO9bWBrrPzmOSE8GWuH/ITi3FKMWToUC7ZQM9EXCoQoyCxCTkoeyosqKH2v5R+zOSxYOljQHstKngDXY/JoFdGkMBnAAG8b2Jsov3lOjkjD2qCfUJBZhKFzB2DZzrmUxhUKhCjMKkJOSj7KCssbjaWy19gcFizszWkXQav5QlyLyUVFrXZi2dfTBk5mymOZHpuJtUE/ISclHwOm9cKqA59TGlcoFKIwqxi5KfkoLShrMJYN/X6yOSyY25nTLoLWCIS4EZOHUhqFHxKxGH29bOBirrz5WXZSLtYM3oCshBz0HN8V605+QWlYoVCIouwS5KbkoSRfeSyb+v20sKc/ljyBCDdi82jJgq6HWIxeHtYNZlPlpeXjq6CfkBadiS7DOuLHS2soDSsSiVCUXYyclHyU5JXWi2VTv58sNgvmtqaURdDkiDTMbbOi0W2+P7cSnYd3ws3YPFqyoJXR3d0SHlYfbpakTkh7T0JaJU+Ai5E5WrmRkdLc0hA9msvaTAuFQkx0nIvS/Ma7lihDJ5x9WFRXVOPErxfw8FQIclLymzR6BABjCyN0GtgWC7bMgKW98pvxGoEQFyNytHIjI8XJVB/9vKzrZdac23oV/3xxgHzsP7gdNl77GpCs1uSm5iMnJR95qfnI5XDBat3w6o6miEUi3Jq/A/mv6xvcM9lMiOTis+XRj2gV6AuxWIyS/DLkpuQhNyUf2emFqO7oA6YWu7Ayi8vRvKoSzt4OcGhuR04uzvxxGbtXHSZ9+Dj6HPBrlF/UfCZ0h/+X2vWyurPoH+S8iK/3PIvNhFAulr/eWocO/dtALBajtKAMuSnE3zwnrQBVHbzBNNFeWjejtALNy8vh4u0ABw97MpaX/r6BHUv2kabvHC4b/AZWfz1HBqDL19o1kjVNyoSHvSmcvR1gYWeucoaaUCTG5agc7Uy+JVgacjDU165e5977J55g0/S/IJD8Xrm3bobdbzYDdYQy6XcoJ5X4f25KPgoyi6Dp9ISjx4Z9czs4ezvA2csBzt6OcPJ2gJOXA6wcVM/2E4rEuBqdq53JtwRzfTaG+dnX6zb76Nwz/DzlT7Kzq6OnPQ7GEa3o5YUy4juUh9zUfPLfhZlFajUEkofNYcGhuR2cvB3g7OUIJy8HIq7eDrBytFQ5liKxGNei81BYpXnZXEOYctkY7mdXr0Pqs6uvsGHiFnLBxNrJEsfSdoLBYBCxlAhl5LmZmk/GtiCjUONYstgsODS3Jc5HT3s4eTtKYukIK0cLlbM2xWIxbsTmI4+GsrmGMNJjYWRL+3odUl/dfoP1Y39HtaSSwcTSGKdz94DFYimIjjl1vuN5qfnISy/UuLM7k8WEvbut5DtOxNHJ2xHOXvawdrZSK5a34/ORXaa9WBpwmBjZ0qHewvebh5H4btQm0ivUwFgf5wr3g81hK4iOuSn55Pc7NzUPOSn5yE8vhFCgmVjFZDJg724riZ+D3HfcETYu6sXynhYXQCFpzjSypX09e5uop3FYN/wXlBUSSQQcLgfni/aDa8BVEMrIeKbkIUcS07y0AlpiaedmCycve+L3UhJHZ28H2LhYqbXA8zCxQG1fbSrosRgY2dKh3sJ33KtEfD30Z5TklQKS79y5wv0wMjVUEMpyUvLrXH/ykJdWQF7/1YXBYMDO1Zo8L6XXcWcvB9i6WqsVy8fJhUikw9akAdhMBka2tK9nyZL8LhVfBf2EwizCu5bBYOBUzr8wtzFTEMoUzk3pdzytAHwKSRWNwWAwYNvMmoyfk5fsvLRztVFYLMtLL8AM7yUNdpMHAB9/T0w9tRKx+Zrb7TQEi8nACD87mKrhaf0+0Alp70FIE4vFuBtfQEsNdlP08bRGM3MDiYg2B6X51AyldcLZx0VpUTmO/3QWj88/R35GoYLQoww9Az206u6LBZunw62VrJwvOKkQyUXau5hICXSzhKc1saIgEomwZ/URnN58WWEbJosJr47uyE8rRFFOCfm8qZsthh5eAZaWSxzK0vJxdcrvENbyweawYGZjivLiyno+do6e9mBzWMhNyUet3Gtdvp4Az5Ha78L17NcziD8bAgaDAT0DDvg8QZN/fynGTlYYduxLsLWcll+RXYSrk38Dv7IWLA4LZtamqCytQm2dTD/75rbg6ushNyVfIQuw05ej4TtB+124Xm29iOhjDwEG4UEo4AkpT6AN7cwx7Pgq6BlrNy2/Kr8UVyZtAq+8GoYmBnDysleYUErFjIZKKytqBajgCSAQihGcXEgu5tga6yHI1w4nXmfS4tfZ3tEMbRxl19Mzf1zGri8P1dvOp7MnirKKaRHKNMHAWJ+8UXSSm1C6+DjC2Fx5LF9nluJNtuoLU6rS2sEUHZxknlSX/r6J7Yv31ouXTycPFOWW0CKUaYK+EVcWS0/ZjY6Lj2ODDUfeZZchLLNU68dWN6vzxr572DJvVz0Bx6tjc5Tml9EilGmCviEXjp725I2Os5zIZmqlfF4WnVuO5+klSl+jE28bI3R1lfl73T36CL/N3FHvN9OzgzvKCyuIuYkWMjepoqfPkfuOO5LfdRcfR5hZK5/7x+VXIDS1WOlrdOJhZYju7rKF7+Azofhl6rZ6N8oe7dxQWVJJi+ioCXr6HDh62pPiL3le+jjC3Ea5f15iYSUeJxdp/djcLAzQy0NWevz0yitsmPiHwvwMAJq3dUVVWTUtoqMmcPTYkljKzktpPC3szJXuk1pchQeJ9btO0o2zmT76esoWvl/eeoMfxsmEcinubVxRW1lDi1CmCRw9Nhw87Ij4Sa7jUtHS0l75wmNGSTXuJhRo/dgcTLgY4G1DHsObB5H4dtSvqCpTFEPdWrmAV8NHXmr+fxpLNocFBw97Uvx19naAsYURSvJKUVVeg4KMQuRnFCIrIQeZ8TkQi0WYd3AJyrzotYhRhq2xHgb72H6QzW50Qtp7ENLSiqtxP1HxS0v3TYwUIz0WxrR2wFCDyU2WA1o7W6LXhG464ex/gPzMQhz54TSeXw9HUVZxozcCbA4Lnu3dMem36UgwULxhZDCAwT62MNfnICS1CKnF1bAx0kMnF3OIxOJ6N+NU0WMxMa6NA8QCIb4btQkvb76mvG/fP+fCsatvo8coRdPv1Zud1/Fu322V97Ns4YwhB2Wp7g0do7WRHto7mYEh6TwaqUbnRF5FDc4P/wH8StWF+Z6bZqJZ79YKzzV0rAHNzGFpqAcGgFeZpchV0dg2Yv8dvP7nmsrH6D+2C5bt/7ze+eZlbQRPayOIxGI8SVa/y6g8ghoezo/4EbUlqq+mTdy3GCPGBSgcp7k+R+PvijKijz/Eqy0XG93GvXUztO7RAm16+qFVjxawcrBAeQ0fl6JyIRCJ4W1jBC6biXfZxDnX24NoBnInPp+WaxCTAYxp7QADNhO/zdyBO4eD1R7L3NYM9m42sHOzgZ2rLUwsjSESiiAUCCX/iSASCCEkn5M8lnuuprIWWYk5yErIAa+B7MyGcPVzJmLZqyVa9/CFtZMVKmoFOBeRTXaUbOh3UdPvDSTdPEe3doCxHgtb5+/GtX/vqDyGFHMbUyKObrawd7WBiZWJQiyJfyuJrVwsa6tqkZ2Uh8z47Ho3p03h4uuENj1aoHVPP7Tu2QK2Ltao5gtx5m2Wgp2APpuJPp7WEInFYICBp6nF4LAYtHyfRrW0h6k+G38vP4AL21T/TZJiamUCOzcb4tx0tYWZjSlEQlG9c7PRWFbzkJ2Ui6z4nEYtBJTh7O2A1j2IOLbp6Qc7VxvUCoQ48zYbbCajXvxKavi0XHPkGe5nBwsDDvZ8dRSnNjX+m9QYJpbGku+4LexcbWBuawaxSCwXO2qxzEkmzksqFiXyOHraK5yX9m62EIjEOP02C3yhuN5cQhvXnyBfW9gac3Hw+5M48uMZqOv7YmJhRMTRzQb20liKQTmWIqEItdU85KbkISMuu55o0hQOze3QumcLtO7hhzY9W8ChuR2EYjHOvM2ud21RNkej435ooLcNHEz1ceLX89i39rjaizTG5kYK33ELO4qxFIogFAohEojAq+EhJyUfmXHZDXrCNoSdqw3a9PJDa8m56eRpD5EYOPsuG9USkaVuvOi45sjTz9MazuYGOLv1CnavPKy2gGtoagB7d1vYS77jlvbmjcZS4VokjWUtITClx2bVE6CawsbFCm16ymLp4uMIMYDz77JRwRNicnsnMiP6XXY5+EIR7fO3Xs2t4GZpiMs7b2LHkn0KFRmqYGhCxJKYE9nAysFCaSyVXovkYpmfVoD02Cwy65Uq1k6WCt/xZi2cAQAXI2XVDnXjmVVWQ+v150Mt8dQJae9BSLsVm1evuwrdNzHytDZgYHXr5Y1uY25rhtM5e2h9Xx0fDlmJ2djz1TG8uvmmwQt5958+hduA9vWeN+Aw4W1jjJJqPlKLq2HAYYInFEOo5GZcFbq6WuDPIT8i7lVSo9tZOljIbqJbuoI9sFOTxyhF0++VqLIGYWsPICY0jvI+xuZG6P7DFFh38VV4vu4x/l979x3fRnn/AfyjvSUveW/HdhI7O5AdSICEsGehUApltJRVoIVSOoDCDygUSherLbNQ9oYQAoQMsqcT7723LcuWh9b9/pAsL9mWbXnm8369/LIsnR49/t6d7u57zxCLgHVJIfiuqBGOMbZ4OPDnD5D7zi6fl5dIxYhZlIhVf78ZIi/dM/rXVaeQYkVcIL7Kq4daJsHaxCB8mVs/ojoKnVYc+/2rOLE92+f3aAxqbHj8x9Cfktpne8uts+DM5BBszqlDkFqO9HAdthf55+7s4b9/iqzXt/m8vFgiRlR6LDb+5xewubv7ddezoMHil32lP8FqQ/6f3kV5ZjlqS+p8ajETlRyB5fdeAtWCJABAcoirPidqWhFtUEKvlCImQIXvChv9dgxaEKnHB7e8gD2fHBhyuf6JMs8FdbwRobEhfh181+l0oqGiERV51e6fKlQWuB7XFNf5dJEQmRSGZb+8GJqlKZ7nvH0vljR1jHm/6ZYersOWe1/FtreG3s/7J8o8F9TxRoTGGf0fy8omVORVozK/GpV5VajId8WyuqjWp1iGJ4Ri+V0XQrt8Tp/nRejJI4TpFEgO0eBQhckv+9OcUC12PvwWvvzPt0MuZwjR9UlIhMX32jbjQqDyY7d9p9OJxqpmVOb32i7zXb+ri+p8ajETGhuC5b84H/o187zGb3dJk9+OOd2SQzQ48sxH+Ohvm4dcrn+iLLzfdqnR+6/bviAIaKxuRqU7jhV51Z59vLqwxqdWHsboYCy77RwErHedE/U+lxAEjMvxJzFIjfz/bMH/HvtwyOX6J8p69nHXdunPWRYFQUBTjcm9Pdb02serUFXgWyyDIwOx7OZNCDp74Lmbt3M0f1wPxQaoUP3ODrz8u/8NuVz/RJknju4ExWCtkUdDEAQ015pQmV/Ts13mu+NaUDNkl7luQeEBOPWmsxBy/grPc73jJZeI/XbM6RalV8K8eT+eu+uVIZfrnyjzxNEdU3/H0lRvdm2P7uNP93ZZme9bLANCDTj1J+sReqmrt8MFaeH4JLPG87q/rnV6C9cp4Pz+BJ6+8bkhl1NplYhIDPNsh+HxfbdNbYDGb62xuodS8cTRvV12/+3LjUdDiA5LrzkdET9c53mufzz9ec0Dd0OEc+eEjbkcf/PvCJ00QEunbUASLdqgRF1bF2ICxmf2sjrJ8F3gWpvGfnFHU1dkUgT+8I5rkMiOtg68eO9/sePdPZ7xIlTBOsSum+/1vf0HK+79tyAAo02959a1obq4bshlkhbE4/kjTwLuwXN3ZFejrGvgB3obUNkf+5VYo8SZv7wQOZc96fN7rIKAwEVJw9bRqFHA7hRwelIwxBDhYIVp1GMtLblxA8q/POTzHTqH3QnD0mSvSTRvde20OWB3ChABkEvFoxpDT6SU46xfX4oT2x/x+T1dNgfks2M9B93u7c2okaOmtQsCgMZ267AzwY7EwuvOQPkXB9Ha6Nt3otPhhGHJLHT2OjHorqe/9pX+RHIZrv33rUgxamHtsqGmuM51Aum+cMw/UozCI8V9Emw1ZQ0Qu2c0U0jESDVqsTXfdYKdGqrFtoKGAQMLb0x1DYLd/+ZPWpgOS2MCkFXbigNDdCHLq7egLKdyyP/FYNTj7aoXJ2z2TrFYjNBYI0JjjVh8Zt/vPJu1O5Y9J5QFR4qQf7i4T1KoprQB4oS+s8N5W9dj2W8uTAvHoQqTZzyh/AYLirMrhnyPxqDGW5UvTtiMk2KxGKExIQiNCcHiM/q2bLXb7J7WQd2JoYKjJcg/VNQnKVRbWg9RfPiAsnvvKnKJGM3tNr/tTwWNFhRnDR1LuUqON8tfmLBZEsViMYzRwTBGB2PhuvQ+rznsDtS4Wwd17+OFx0qQd7CwTyKjrrwRiHPF0lv8/HnM6VbU1I6izKFjKZVJ8EbJs35NPA5FJBIhJDIIIZFBWHB6Wp/XHHYHakvre+3j7lgeKOzTjbK+ohFCrCuW/c8lxuv4U9LcjoKsob8vxWIRXsn/+5Az+fqTSCRCcEQggiMCseC0frF0OFBX2oCK/J7tsuh4KXL2FfRJZDRWNcPpZWZSb+dooz1v6/99WW7qGPb7EgD+nfkXBEeMfQIfX4hEIgSFByIoPBDz1vS9ceBwOFBf3tgniV58vAzZe/P6JDKaakxwRBo9f/ePlz/O1fqrNHeiOqdq2OWeP/wkIhInJrEhEokQGGpAYKgB6av7xtLpdLpjWeVJWhafKEP2nrw+LahNdS2wRfR0AdbIJDg71QiL1YH9ZaZxOX+rae2CKXvofRwA/rbnUcSnDT5jqj+JRCIEGA0IMBqQvqpvA4A+N8vcScviE67tsner35aGVtjCg/u8t388A1SyMR1/+u/jDRYrGi3WQScQmizTNpH27LPP4sknn0R1dTXS0tLwzDPPYM2a8R9TZ6QqTAMvdIe6iClr7kB2XVuf569dGoNPMmt83gBr26z4wvY2sr/Pwb4vDiN3fwGqi2phbmhFV6cVgiBg5UWnjvE/o+lCpVXhF8/ehF88exMcDgfeeOR9ZBQ1QDzCi6/+F+PdQrVyzIvQw6hRQASgzWpHUVM7smtb+3Tdaeqw4Tcf3IOXf/kqTHUtaKpuHtDMuTy3En+8/M8oz3GdWJzzv3uhiwmBL4bar0K1CnyW1TNIuEwiwlWLovFeRtWAmbmCFibhnJvOxLHvMtHSYEZb88Buf2dfvx76IC2O7ciCNVDv0/htarkEASoZPs+uhUYuwYq4IHyZ25NYjNApsCDSgCC1DIIA1Fm6cKSyBU1eZsIRB2jxwObf4aU7X0JTjQlN1aYBLRjEEjES5seiuqgW7S0diF6TPqCcwdicAixWOy5Oj4BELOrTNX1jqhFGjQLOXmcZhypakFvfNqAc9awoXHjr2Ti09RhaGlrR2jRwmTOvWYvgiEBk7MiCRaWEzN2Cpvf2FqlXDjpL4kjXb39inRp/+PJ3+M9t/0ZTVTOaapoH3HUXiUS49e/XI/P7HBzfkd0nlt72C2/PjbWe5aYOpBi1kCtkiJ0dhdjZUX1et5jbkbUnD8d3ZOH4zmyYnCIoDGpIxCKclhSMfWXN6LI7kRikRrmpY9BZels6bJgVoumTSJsVooHJh+NPh82Bu965Gy/9/EU0VDahqcY0YIiBlnozbF02n2eOGk8yuQwxqVGISe0by462Dncss5GxMwsN7XaoBhmfqve6Hmq/0SukWBoTAKNGDrFYhA6rAwWNFpyocSVwP+51JxcAuuxO3P7GnXj55udRX96IpprmAZNeWFraYTG3T9hF9lCkMql7nJ9ILDu35/kOSyey9+Z7tsuaJgs0g0x+Y1BKsTI+CBq5pM94QN72p+Hi2ZvNIeBnL9+Gl3/6POpK69FUYxrQgsHaYYW5wYyQqOAB759oEqkEUbNc483hnJ7nO9u7kLMv37NdVlSZoI/tucjuHz+dQjrkMQcAVsYHIjlEi49OVPs0IYnDKeC6527Gqz99FjXFdWiuNQ1owWC3OdBUY0LUrIlJpA1FIpUgMikckUnhwKaeFvhdHV3I2V+A4zuycXxnFkqK6hE4y5Us738uIZeKh5yl19dzoP6cAnDl09fB3taB6sJaNNWaBozJ6nQKaKxsmhL7uETimnAkIjEMp/SaGd7aaUXugUJkuPfxwuxKhKQNHDfJ2zmat+euWtTzfSwRiyAI8Jxv1LZ14Zv8hgHflwKAix65Gp31ZlTkV6O5xuS1G3pdWcOEJdKGIpFIEB7vas21dEPPDOrWLhvyDxXh+I4sZOzMRt7REoQtmeV5vX+8hjrmYAzb5qbfXIK28gaUZVegua7Fa9fpurKGCUukDUUsFiMsztWSa8lZPbG0WW3IP1zs2cezDxQi4tSeVuUfHK9Gl8OJWcEaLIoyYG+Za2zEwc7ffD3v7W/t7eeiMb8KJSfK0Vzbgk4vw7LUlTVMWCJtKIPdLLPb7Cg4Uuw59mTuzkPUyr4Jzf7xrG3rGvT448v5cP99HO7zYCbS/ODtt9/GnXfeiWeffRarVq3CCy+8gE2bNiErKwuxseM/6N1INPS7CB7uIsZfGtutmL92LuavnTu+H0TTikQiwY8f+AH2ljb7dADwvK/fxXi3aIMSaxODcaSyBbuKm9Bld0KvlGJeuB4qmWRAcqCotBHzVs9BbWkdqopqUVNU12c8DmunDTvf3wcAkOtUPifRhtuvrHYnFkcZfBpgtKnditv+fj3ami0wN7WhLLsSWbtzUXisxN21wY78w0VorjGhubYFi24/z6c6dtmdqGvrgt0poKXTDrmkp5l2jEGJNYnB2F9uQkl+O8QiIMWoxdmpoYNOK11QXI/0VbNRU1qPmqI6VBfVoL21J5ZOhxOFR0oAABKlHIYE3094IvUKKKQSfHCiGiqZGGfMMuKz7FrP64cqTAMS/t40tlvxs6d+jLZmC1qbLSjPqUTm7lwUHi1BVaGrOX7J8TIc/vo4mmtMmP/Tja769tverHYnAlWDJytHsn690cSF4u97HgXcJ18lJ8qRf6gIeYeKUFVYg5UXnoILbzkbF95yNuwOJ948UglhkP1isH1lrPUcbnZDjV6NUzYu9FzgHClrwvE6C05LDEZOXRvqLa73B6hkCNbIERugQqBKhrUJwX1OGIub2zEnVAuZRASbQ0CI+6SlwdL389UyCVYlBCFEI0drpx2lze1IMWpR0dKBv37/f4D75Ksk0xXL/ENFKM+rwrJzFk+JJNpQVFoVlpy1wHNSnlHRjCM1A7f3/ut6qP3mjOQQlDS1Y3uRazB7g1IKwxDbNACIg3T4y46HAXcsy7IrkXeoCHkHC1GeW4nFZ8wfdDD/qUKlUWLxGfM8J+VZVS04UOV9woaWTjs259QhUCXDirhAfJFTN+j+NNJ4OrVqPP3dQ4C7lVJZdgXy3NtlWU4l5q2eg+DIoEHfPxUo1QosXJfuacGWW2vG3vKeCRv6x+9olXnQYw7cM8vFB6rRaXcgOUSDgxVDT/7Q3X3UqpTjz98+CLhb1pTnVLm/LwtRmlWB2afOciWupjCFSoEFp6V5Wl0V1rdiV6nJ67nEUMefkZ4D9dcpkeKJrX8A3LGsyKv2fF+WZJZh1sIExE2BC+yhyJVy1zhU7lZXpY0WfNdvkgFvcR3svO3NIz0teAZrYOBNuyDCY1/+DnC3rKnMr/Ycx4tPlCF+bgxSliaO8b8dX3KFDGkrU5G2MhVX3ncxKprb8Y37poK3eA11zBnNttm9j5sdwCOf/QZwx7KqsNa9XRaiMKMUUbMikLYqdaLCMioyuQxzl6dg7vIUXHHvhagxd2BLXs+5V5c7OV7c3I4Uo6sb6lDnb76e9/bXYnPijx/9GnB3q6wuqkXewULkHypCYUYpwuOMWLje9xvdk0Eqk2L2qcmYfWoyLv/VBWho68TnOX0bVfSPZ5mpY8jjz2jOh8dzlu/RmpaJtKeffho33HADbrzxRgDAM888gy1btuC5557DY489NtnV66Op38XHcBcxw5GKRVgSbUC0QQWJWISqlk7sK28eMCBio8WGcN34ziZH09dIvoxE7gEze1+Mdzs1NhAnalr7HFzMnXZ8X+J9pqYDu/Nw7IUvh/1MmVyKORsHjt82mOH2q9z6NswO1SFMq0Bt29ADsTZbrDg/4Do4OgePUffU1QAQNDvapzo2WLowP8J1V1kpFaP3LntKbCCO15hR0NDT+u1ETSt07lYXW7yMeXFofyEO/+3zYT9XKpNg9lkLIJaMpOuEyHMSYXMIkIpHNzZDm9WBi4w3wDrEgLt9Ypka7XV7q7dYMT9SDxGAQLUM5n4tJ4Zbv8N9bzZabEh252xlchmSFycieXEizrlpYH1buuwQBtkvhtpXfKnn3DAtUo1aqGQSdNqcyKptRY474d1hc6Ld6hgwNf1gWmxOJASpEaZVQCYRYU6YFhWmzj4zJW5MNWJHcd+xfqx2JypbOpEQpEZevQWzQjQoaLAgoN+F5NrEILR02vFtfgM0cgnOTDZ6YumJu0yKWQsTMGthAjbdcIZP9Z6KWqwDW6N4X9fe9xuFVAy9Uobceoun27Kp0w5Tr+340nkR2F9uQnmvVuy9E+hSmRSJ8+OQOD8OZ/+kZ1yS6cY0SGJBLILnAtHqcHq6K3nbn3yJZ3+9j3kSqQQJ8+KQMC8OG6+bvrFs6eqJpbf4DXXMAYCEIDXsTgFHKluwKMqAQ5UtfbozXTovArn1ba7jqlqGz7PrYOqw9Y2lRIL4tBjEp8XgrB+fNt7/8rgxuWPp7Vxie1HjoMcfX86Bhvpe7x/LuDnRiJsTjTN/tHaC/nP/M3UN3A+9xbWx3Trq6yHv35c9sRSLxZ7Wxuuvmnq9lXzVO5beYphZ2zrouZov2+ag+7ilbyyjk12zCK+7ctUE/Nfjo7nXfisVi+BwChAAhGsVMHfZhz1/G8zw55c9ZYlEIk8L2dOvmMax7Oi7j3uL53DHn+HOh4fbx6eKaZdIs1qtOHToEO67774+z2/YsAG7d+/2+p6uri50dfWsJLN5/Kev79ber4vQcBcxw1kVHwSnIOCTrBoIArAyLhDLYgMHTDHdMYlT6NLUN9T2cVpiMII1ctgcToRo5Ghutw24GM+sbYVeIYVOIUVxk+8zHqp6TZMuEomgNqihNaihDdTAEKKHIUQHtUENhUoOkZcxNgar46GKoferLrsTJ2rMWBxtwOacocdpE0nEUAVp0VY1+LTtIpEIQREBMMaEIHiQll7e6ljQ0I6zU0MhFgEH3WNNeeLYOHAWneKmdpyVYoREJIKj34ANvWMJkatFkjZADW2AFoYQHfRGPdR6FZRqBRAxdHel/nU9XNGCxGA1zk4NhUQswrHq0X9nqoz6IRNpIpEIgeEBCI0JhjE5wmvyJ7O2FYWNFpw9OxROQcDukuY+ZQy3fof73uz/PT2UDnciwFs9O2wOr3X3tZ5tXQ5sya1Hu82BcJ0CZySHoLHDivo2q6eevibS2q0O1FusKGoafHYmbwlauMeUWhRpQGFDO+ICVPg4swZLogM8r6tlEoTplNhWWAmHIMDcZXefFGlHFMvpwtv/5G39Z9W2et1vuuxOmDpsWJUQhLz6NjRYrMO2VIF7Hc40g20fwWo5Fke7ZsgTiYAD5aZBvwtGE8+ZHktv8bM6BK/HnG6zQjQoamxHcVM7TokJQIxBhbJ+w5HMCtHg2/wGtHbZ0T3WdccMjqW3c3Srw+n1+OPrOdBQ3+sz8vvSy/bhLa69W/yM5npowOfO8Fh63TbtTq/HnJGcn3vdx2d4LPVKKVbGBcHudMIhALtLmgY93gzHn+eX00X//8lbPIc7/ozkuqxbh80JpyBA7KeJF/xh2iXSGhoa4HA4EBbW9+I1LCwMNTUD+9MCwGOPPYaHHnpogmrYV/+L3968XcQsjjZgYaTB6/IKqRixgSq8fbTKk+k+UmXGhWnh+L64qc9gs86TbzJWGoGhZlDxNhuVt4txhczVwsmXC8JuvcdlEwQBFpMFFpMFtaUD94VZFy7D8jXzBjw/WB27DZYcyK5tw5xQLWICVKhpHXp699TlyZDZ7NAFaaEP1CIkOhjGmBAYo4MQEh2MoPAASGWur8/3M6rQ5iUG3upY0GhBQWPfE5vuOHo72HbYHBCLRFBIxQNe7zPGneAeL6mlHbWlA5tJx29cjNXrFg54fqi69k/O99b/e+rdjCrYB9mmkpcmQZoWDV2gFrruWEYHeeIZFBHoieVHJ6pdg1l72d7y6i3Iqx/8pHCw9evL96Yvs2B26/5OH6yeQyWuhqongD4XsTWtXahq6US4TuFJpI3ke32oY89wqs1dWBknwfxIPeot1gEDGKvlEtidzj4XQhb3WGgz8djj7X8abP0Ptt9sya1DergeCyMN0CulMHfasb+8GdXmwVvIzshYDrKv1VusA767m9ptg+5PI43neA+nMRl6bx/e4odBjjlwj6cWqlVgb2kz7E4BZaYOJIdoBiTScuvaYHa3iun+uBkZSy//VO94ejv++HoONNT3utM/EyZPKcMde7xtp4Odt43EjNwuB4ll73h5O+aM5Pzc2z7ev/XQTNA7lk3ttj7DlWCIY3o3b+e9ErFo+PNLwXW9469ZN6eC/tuHt3hiiONPt5Fcl3UTuruETBHTLpHWrf8GOdRG+pvf/AZ3332352+z2YyYmIkZc0AiEsE+gpPhwxUtXicbAACtXAqxSIRL50UMeJ9KJulzoT2VsrU09UhG2VWvty73DDcauQStXb4l05y24Qcz7uaw+r6sT+UJAo5WmbE4yoAvc4bu3vnbN+6ETuHb16N4jLHsjqNaJhmQkFPJJHAKgtcp4UcSy5Es6wtv31OD+fXLtw3oFjgYyRi+twZbv758b45kfxhLHYeqJ9ytnNLCdNAqpBC599Pe28RIPnus9SxstGB+hL7PoO/d2q0OSMViKKRiz7apkbv2l5l47PHH/9Rpd+JghQkHK1yzKs6P0GNdUgjey6gedCDzsa7Dqcgfxx6MIp7cLvtKDtGiqd3qGei5sMGCM1OMUPc7l/R2IT7WY95UNJrt0tdzoKG+1/21P0wlk/U/cR/vMZLzc2/7+Iw89ozxf/J23mtQyoY9vxSLBuYspjuJn/6dkVyXdZtqX5nTLpEWEhICiUQyoPVZXV3dgFZq3RQKBRSKyRncWCOX+DQTki8sVjucgoB3MqqGbFEEABrFyGZkpJOLRj78ILjDMXfZ0dplR3yQGserh2/+DACrNy3CZWfMhSAI7h/X7QVBEFx3hAUBUrkUMoUMHXIZssZUw4EKGixIC9MhKUQ96DIikSup5SutXDpgzK6RMHfZ0dZlR0LwwDgmBKlR19bl9Q7v8jPScfHqB32KZZdchhOjruHY+NoVEQA0CimaRjA9dn/e1q8v35uaEdVx7N+t3uqpkUuwOiEIX+fVo6a1CwKAdUn9phcfYSxHMs5Hf1m1baht7UKNl7Er2m0O1LZ2YXGUAfvLTFDLJZ7BerUjqON0oZVLAfh2kucLq8OJo1UtSAvXQauQoKndeyJtJh7HuxOu/uRLPLWMpYdIBCQGqyETi/CDBZGe58UiEZJC+h6HvH1jjuR7aLoYTSx9OQca7nt9JsZSOw77uG+fOwNj6eMN3f5Gcn5+0uzjo4zlUHw5v5ys/WE8+fN/8uW6rJtGLplySclpt3blcjmWLFmCrVu34uKLL/Y8v3XrVlx44YWTWjdvgjVyvyXSOu1OlJs6sCw2AIcqWtBld0IpFSNUqxjQHD9YPbWmh6WpJVgtR13b2Adt3F/WjLWJwbA5BBQ3tqPL4YReIUV6uA7Hqs0DknXx0YFIjR16vK5uNocTWb1mb/IHwT3OxIq4wac/VwlOwOkExBLYbXY8fdPzyD1QgLi0GKQsTkTyEtdP93T0QWoZqsy+NUkezIFyE1YnBKHD5kRJUztEIiDVqEVCkBpf5Xnv8hATEYC0eNcI+Rk7svDPO16CUqvsU8fY2VGQSCVwOAVkHqnARPcUUwpOSNwf6nA48Neb/4XM3TmInRPtGtB/SSJSliTCEKIHAASrZX0GFh0pb+vXl+9Nha0neZe9Lx9//fmLkCvdkw4sSULKkkTEzY2GRCqBQSmDxD2wqj/r2T1IcKfdCQFAlEGJSL0See4JKDRyCZTuBK/T6cQ/bn8JR7edQOzsSE8dk5ckIsA9dl6wWoZB5vzwidXhRHXr4MmjncWNWBkfhB8sjERrpx1Fje1ICFb3ieV0IAgCnr/7VRzYchQxqZF9tsvAMNe4cMEaGQrGMHyPXCJCWpgOhU3taO20Qyx2/d1pdwyZhFdYp1csAeA/v3kD3398AFHJ4UhZnOT5LgqOcG3rwRoZMMZeXKOJ53SM5WsPvoPv3tmNyKSwPttlcGQQRCIRgtW+tfTtL8agglwixidZNbD2au08O1SL5GDtsBfeCqtt2nVV+t9jH2Lr69sRnhDqOUamLE1CSNTYYjncOdBw3+sK2/SL5XtPf4ov/v0NwuJCPMfI1KWJMMaEuMaPHWUsx2o6xvLjf36JT579EsYYVyy7j+NhccYxx3Kk5+e9Ke3TL5Zf/PsbvP+XTxESFdTn3C08IdS9j/v/utiX80ul3T7tYrn19e14+08fITA8oM81RWRSuGu71Pgvlr5cl3ULmoK5DZEgTL9BON5++21cc801eP7557FixQq8+OKL+Ne//oXMzEzExcUN+36z2QyDwYCWlhbo9fpxrWt2bSv29xtgbzCDTfN87dIYfJJZg+YOG6RiERZGGhAbqIJCKkanzYGSpnYc6TWdvOBwQvhiL1ZdsBTJixOn1c5LY+dwOPDY1X/Fgc1HERwVhKhZrhliIpLCEJEQisjkcFiDA4YcA2skQrVyzI/Qw6hxtfpss7ouqrPrWgeMWfHepgegUcqw/NzFmH9aGuavnYOQqMETax+dqB5zItrbfnXO7FAYtQq8l1E14GQi/6O9OP73T5G2KhUxs6PwwTPeZ8ZU61UwRgfj5v/djUw/NFaJ1CsxP0KPILUMAoD6ti4cqTQPOkvNhxc+DDkErDhnCUqyypG1J2/AMlKZBNpALdZethzxt5yHpvaxX0yOZDr64i8P4fAT72PuylQkzIvFe0996nU5uUqOoPAA3PHePchyjOxOqC/rd7jvzU9+8Dj0cgnmrZmLivwqHN+RPeBzJDIJtAEarLhgKebcfcmIW3v5Us+FkXqkGrUQiUQoN3VAIhahw+bAgXITYgNUWDfLlThtrjXhBxFephQFIFNIERgWgF+88ytkiyfupGNeuA7heiXuWnYflA4H5q+Zg3lr52Le2jkIjw+dsschi7kdFwVc6/U1hUqOoMhA/Pzl25Cn1Iz6M6RiEZbFBiJMp3DNXuUU0NRuw+HKFs/+7W2Gqi03/g3Stg7MWzsH89bMxfy1cxCRGDZlY2mz2nCO8iqvryk1CgSGBeBnL96MAr33cWB95Us8+/v6tuch1DZj/mlzMc+9bUbNCp+ysRQEAWfLr4TTSzdVpUYBg1GPm/5xE0pCQ0Zc9hnJIei0OQfMrq2QinHZ/Ah8k9+AmtYur9skAHz3y/+gq6QG89f2xDImNXLKxhIALtBfg462gTe8lBoFDCE63PCXn6AsemD3LF8Mdw401Pf6zvtfgyW7rM8+HjsnekrH8vLwG2GqaxnwvEKtgD5Yi+v+9CNUzxr+WswXg51veNs2dz/0P5gOF2C+O5bz1s5B3NxoiMUjmbF8Yv0o4RavYwQrVHLog3W46qEfoGlestdWY74YbtscbB/f96f30LAr03UMXzMH89fORXx6zJSO5fVz70R5zsCb73KVHPogLa74zcVoXZY2qrH0hjrvHe788tAzH6N66xGkr5njiWXC/FhIJFO31d/Pl9yLgiPFA56XK2XQBWlx6d3nw3r6okHHRh6OL+fD3rbNRZEGzI8c37zNSE3LRBoAPPvss3jiiSdQXV2N9PR0/OUvf8Hatb5NFz2RibS2Ljs+OF496i/B0SjffgLb73kJABAaG4KVF56C1RcvQ/rq2ZBIp+6OS/5hbmrFpSHXD7nMaVevRfydF49pQPKRqjtahK9++o8Bz4cnhCJpQRyikiMRnRKB6BTX74BQA45UmXF8DDNGjsY3d7yI6r05Pi8/b106ljx5w6gPKKPRmF2Ozdf+ZUTveTj778htndhWGdvvfRnl3x33eXlNkBZXbH1k0DGjxoOpqAafXfnEiN7z4LG/oKBrYg+daxKCkBjsSuZ0WDpxge6aIZcXSyW4fv9TAyYK8JcgtQx2pwBzpx1BahnOmGXEvqwqPLrkl+jf9NEYHYykhfGISu7Zv6NTIjwtayZTV6cV56mvHnIZkViEnx5+Zszd4UfCUmvCRxc9AqHfvhAcGYhZixIQnRyBKHcso5IjEBIVNOkXOdYuKy40XAv7EONbylVy3Lj3z57BrSdCZ3MbPjjvITj7TdgSFB6AWYsTEJ0c6d42XT8h0cGTHkub1YYb0+5GVaH3SbQAIDDMgB99/YhnnLOJYG3twPvnPgRHZ9+EZYBRj+Qlif328UgYYyY/lnabHT9ffC9KMssHXUYXpMUNOx9Hwxi6w4+4Xh1deP/ch2Drl+AzhOiQvCTRtV269+/olAiExoZM+sW3w+7AHSt/i7yDhYMuo9KpcOv+P6NmiBbNfq+X1Y4PznsIXaa+A5vrgrTuWPbdLkPjpkYsf7X+QZzYNfj5pkIlx51HnkHlGHs9jITT7sCHFz6Cjvq+yVJtgAYpSxMHnKuHxRkn/drS4XDg/k2P4vDXGYMuI5VLce+Jvw/owTWeBKcTH1/yKNqq+t60UOtVSFmahJiUSESnRCIqORxRKZEIjzd6Jt+aLA6HAw9e8iT2fnpo0GXEEjF+l/vssJNr+duFaeE+j7k8UaZd185ut9xyC2655ZbJrsawtAopogOUKDdN3Jdg/vu7PY/ryhrw0d8346O/b4Y+WIcV5y/FygtPwYLT50JjGP0ddpq6dIFaRCSGobpo4Awq3bJ3ZmHdH68ecjYVf8t773uvz9cU16GmeODUx2qdCgnLkrHwkWshmqDRJa2NZtir6iGRSeDwccrq4qPFiNmdjaDls8e9ft0Gi+VQ3vz581j82E8gkkzMRY2txQJrSQ2kMgnsPsbS0tSG6u8yELwmfdzr1615Xw60ARq0mXzfF978+fNY+uQNEE/QCY/QacVbd/0HtYW1qCmpR1N187DvcdodSDFqkTFOiWilVILlcYFQScXotDuR39CG0mPFmLd6NnL25cPWK5lSX9GI+oqBfSOVagUik8NdJ+TuC52olAhEJ0dAH6zzSz2tXTbUlTWgtqQOtSX1qCmpQ21pPWpK6lFbUoem6uFbjAtOASkhmj4tv8ebutmMeatnI3tvPmxdPYmSxqpmNFY1Y1+/5RUqOaKSIzzx653Q0Afr/JKwtFm7Y9kTP1csXbFtrGrGcPdmrR1WJIeocahy4mKpbGzB/NWzkbUnD9bOnlg21Ziw/4sj2I8jfZaXK2WuWCZH9ElYRqdEwBCi91ssGyqaPLHr3i67HzdWNg07m3D66jlIDdVib+nw3wf+Im8wYf6qVGTtzkVXR0/SyVRvxoEvj+LAl0f7LC9TyBA1K9yzXbouGiM8N8v8EUu7zY76isZBt8uGisZhYzlnWTJmG7XYZfFPS31fyBpaMG9FCrJ256LT0pN0amloxcEtx3Bwy7G+y8uliJwV7kqez+q7XQaGBfgllg67o1cs3dtmqet3bUk96isavbaS7C1lSSJSjdoJTaTJGkyYvzwZJ3bl9Gl52NrUhsNbM3B4a98Ei0wuRURSmGcf9xx7UiIRFO6/WDZU9uzjfWNZh7ry4WOZOD8OqaHaCU2kSRvNmHdKIk7sykG7uSfp1Gay4PDXx3H46743R6UyCSISw9z7eM/NHX/eLHM4HGisbHLv3z3bZm1pHWpK6lFf3giHfejzzLg50Zgdqp3QRJqkuRXpixNw3NIJS0tP0qnd3IGj357A0W/7jl4skUoQkRjq2h5nhffaxyMRHBnol5sSDocDjVXNfeNYUoca9/Gnrqxh2FhGJUcgNVQ7oYm0cJ1iyiXRMJ1bpI3FRLZIA4Bqc+eg4xz5m14pxdpgBfZ+egjff7QfR7457vUiViwWIXlJIhacno6F69ORvno2VBrlhNSR/E8QBJRmVeDothPY8+lBHPn6+KAXNFK5FI9u/i1iT03xOl3xeFBKRSj6y4fY+e4e2DpHdvd8zWPXIu6MBeNWt94OPv0Rct7aMeL3GRLCcO6b90A8AUmqzuY2fHjBw3B0jbwVwsoHr0LiOUvHpV79Hfnn58h89ZsRv08bFYwL3r0P4gm4w2lt7cCHF/wRNsvIT/iX3Xc5ki9ZMS716i/j318h48UvR/SeoIgAvFT8HD44Xj2qrgwjJRW7Zq5SyiTo6uhCzv4CHN+RjeM7s5C1J6/PhaIvdEFaRCaFQaFWQCKVQCIVu3/3fSyWiCGRuP4WSyWQSMQwN7X2SZSN9TRHqpDiA/N/8f7x6jGNjecriUiES+ZFQC2XwNplQ96BAmTsyEbGjixk7c712kVtKLpADSKSwqHUeI+lWNLr736xbG1uG1GibDgpS5Pw9O5H8X5GFWwTEEuxCLg4PQJahRTWLhvyDxXh+I4sZOzMRub3fS8UfaExqBE5KxwqrbJPLHtiOEgspWK0mSwjSpQN5bJfno+fPnEN7E4B72dUo2sCWvGKAFyYHg6DUgab1Yb8w8WeffzErpw+F4q+UOtViJoVDpVO1SuG3vfz/rG0tLSPKFE2lAtu3Yjb/nYDnALwXkbVuLXi7e/8uWEIUstht9lRcMQVy4ydWcjclYPW5pHd5FTrVK7tUqf0Hr+hYmluH1GibChn37Aed73wMwAifHCiesJa8XZ3C3PYHSg4WoLjO7JwfGc2TuzKgbnRt8mwuqm0SkTOCodarxpZLCVitLd1jChRNpT1V63Bva/eCpFYjI9O1KB1glrxbkw1IlynhMPhQHFGGTK6Y7kzG6b6kd0AUWoUiJwVDo1B7VMsex+LOto6R5QoG8qaS5fh/jfvhEQqwSeZNTD5aezy4ZyZHIIogwoOhwMlJ8o9+/jxHdleu0cPRal2xzJg6Fi6zon6vtZp6RxRomwoy85djAfe/xWkMik+z65Fox+GjPHFuqRgxAYOPyHBRGMibQISaQCwo6gRxROQue3+AuxmabFg3+eHseuj/Tiw+cigFzMSqQSzl83CQndibe6KFMiVU29QP3JxOp0ozarAse8yXQe57Vk+HeB0QVo8+c0DSFoQDwDYW9qM3Prhx7oaq3VJIYgNVAEA6isa8MzPXsShrzN8avWlDgvAef+7F3Lt+CZ6m3IqsPknz0BwOF0Dk0YGIizeCLVejQOb+7ZYkCmkSF89B+3mdlTkVcPS0o5Ft5+HtGvWj2sdAWDnb19D6dajnnpIZVJ0Wrp8usBVBetw3lu/hsIwvgcjU1ENvrjmqQFdqQYjEosQkxqFpupmtJksmH/TRsy/aeO41hEAdv/xfyj67ADgbtETFm9EWHwoqgpqUJlf3WfZsHgjYlIiUVVUi5riOsi0Kpz31r1Q+anl1GBayxvw2VVPjihxmjAvFi8eewoAcLzajMOVIzthG41lsQGYHeo9Fk6nE41VzajIq0JFXjUq86pQkV+NyvxqVBfVjemkbrxpA9R4p/bfkMlkyKptxQEfxzwdi6XRBqSFez83EQQBjVVNqMirdv9UobKgGpV51agqrJ20WMrk0j6tEL05ZdMiPPzxryGRSpBX34Y9E9CSamGkHgsivY/JJggCGqubUZnn2hYr3NtlRV41qgtrfG5J628BRj3C4o0IiQ7Gno8P9EkSicUi/OL5n+GcG8/wPFfYaPHbmKdDmReuw+LoAK+vCYKA5lqTZ7vsvY9XFdQMu22MF0OIDmHxoTDGBGPvZ4f6nHOIRCLc8tef4KLbNnmeK2lqx/aiMcws4qM5oVqcGut9cG1BEGCqa+nZv/OrXbHMq0ZlQU2fFqoTSR+scx0jY0Ow74sjA+rx0yd/jMt/eb7n7wpTB74paBj3eqUYNVgRF+T1NUEQYKo3u/fvnu3SFdfJi6UuSIvweCNC44w4tOUYOtv7Xptd9/CVuOr+SzytuSaqQUZSsBqrE7yPWywIAsyNrZ7tsiKvGpX5rjhW5lf3aaE6kXSBGoTGGREWF4Kj2zIH3By56v5LcN3DV3piWdfahc25A3vB+FtcoAqnJw0+hqUrlt1xrO7ZLvMmL5ZqvQrhCaEIjw/F8Z3ZaG3qe3142d3n46YnfuRpGddoseLz7NpxH74q2qDE+lkhkz4UiDdMpE1QIq3T7sDHJ2rG9U7X7FAtlg1yYAaAro4ud7PcDBzddgIlJwYfL0KmkCFtZQoWrpuHBevSkHpKEmTyqdek8mTRJ3G2PRMZ27PQ0jD4XbbQ2BC0t3agrdddTV2gBk988wBmLUzwPGdzOPFJZg3axvGuYWKQGmsSvR+YC44V49lfvIys3blwDLFvzLpwGZb/9opxq6PgdCIorwzR4QaExRthjAmBXOHa3p1OJ34QfqMn3kERgXj0i/s9ycjuE7Xy/GpkCDI4xjEBLa5rRozFgoh4I8LijX26Gb3ywFt44+H3hy0jfuNirH74R+NWR6fDiS03/A2NWWUDXguKCEBzbQuEXheGcqUMj2/5PeatmeM5USvLq0aGQwK7SjFu9RQ3tCDGbEa4O3kWYOyJ5dbXtuOJ63rG89t43Trc+cJPPWNX2Kw21JbUI7u0CVWBYxs4fSiC04mvbv4n6o8OHPR1MNEpEfhP1jOeEx2nIOCL7LpBB2H3h3CdAhtSjKM6ybHb7KgpqXdd4HgSQzWoyKtCffnYLmiDwgMQFm+ENkCD6qJa1JbWwzaCu/oqnRLv1v4bCqVrOxQEAV/m1qOubfy6LBk1cpw9OxTiUcTSYXegpqSu58TcfaFTkVeNurKxXdAGhhkQFh+K8HgjDEY92potKMutRNHRkiG/u7stOmMeHvn0Ps8NOkEQsDWvfsiZYccqSC3DubPDIB7F0AAOuwN1ZQ2eC53uJFtVfjVqSxvG1DIvINSAsLgQVzzjXN8/YfFGz4V1794B95zxII5uywTcyf7fvnUXVpzft1WxIAj4tqABFS3j1/0rQCnFeXPDIRlNLB3dsazuSVq6t8vakvoxxbI7URYWb/TEsvs7PSwuBCqtyrPsb897FPu/cN0UkylkuO/127H2soGtircXNqCkefy6f+kUUlwwNwzSUbRgdzgcqC9v9OzfnkRbXjVqS+rG1DKvO1EWHm9EWFz3Nun6HRZnhFrXE8s/Xv5n7Hzf1cFcKpPgVy/dijOuXjOgzF3FjShsHL9GBBq5BBemhUM2ilg6nU40VDT2uSnRnfytKa4bU2uy7kSZazvsiWP3Pq7R99zM/NO1f8fXr7t6QoglYtz1ws9w9vUDb8ruKW1CXv34DceikolxYVoEFNJRxrKyyZOs7EkMVaO6qHZssQzUDNjHPdtmXEifYYqe+dkL+PxfXwPuRPltf78BF9wy8KbsgfJmZNWOXyMChVSMi9LCPTOtj0T3jceB+3jVmG88agM0A/bxsDijJ57agJ5YPnvny/jwb194/v7Zn3+My+4+f0CZhytbxnUsa7lEhAvTXC30pyIm0iYokQYANa2d2JpXPy7dbEK1cpyVbBzRgbm5rgUZ32XiyLcncOy7E6jIqx50WaVGgfTVs7Fw3TwsXJ+OWYviJ32gzplspIkzjUGNeWvnYMFpaVi4Ph1JC+Lx6gNv441HXIkVXaAGT3z9AGYtShjw3kaLFVty68alm02gSoazU0MhH+bALAgCcg8U4JXfv4WMHVleL3ZX/P5KJJ1/qt/rCAAr4gKRYtQO+vrLv/sf3nz0A8TOicL/fX4/wuNDvS7X3G7FZ8er4RyHLp4GpRRnzw6FcpAuj6b6FtyUfjdaGlpx7s/ORG1pA45tO9FnTKBup9x7KVIvW+X3OgLAgT9/gNx3dgHuLhLpq2dj/mlpWLQ+HclLEvH7C/6E/V8cBtwDjz+2+beYv3bugHJaOm3YnFOHrnG4+aBTSLFpdihUg5zktDa34cb0u9FcY8IPf3Nxn7uZ/Y3nCdnhf3yGrNe+HfB8cGQg1l+9Bjve2Y3a0p4ESVicEa8V/mPAOBqtXXZszqlFh83/sdTIJdg0OxQauf/Hi3PYHa4fhxNOuwMOu7PnuV6PnQ6n52+7zQGNQY3KvCq8/9fPkbU7d8jkmVgiRvLiBJib2lBd2NPVXa6U4Z3af0Gj6zuWqMVqx+acunHpsqSWuWKpVYxDLB09MRsslq44OvrEUq1XISzOiLbmNuz6cD++/3AfMrZneb1gD4kKwrorV8FUb8bW17Z7np+zPBl/+ur3fZIaANBudWBzTu243MhRSsXYNDsUeqX/bwAOF8ueOPaLpU45IFE2nO3v7MYjV/4FAUY9Hvr415i7PMXrcp02Bzbn1I3LJA4KiRhnzw4dl/Fphopl7/26fyxVWuWARNlwdn9yAA9c9AR0QVo8+ME9Xo87ANBld+LL3DqYxmESB5lEhLNTQxGk9v8Nt0FjOcz3p0KtGJAoG86hrcdw38ZHoNar8Id3f4klZ3kffsPqcGJLbp1fZgzvTyoWYUOKEUat/2+4OZ1O2G2OvrF0DL/Py5WyAYmy4RzfmY1fnv4AlBoFfvu/O7Hs3CVel7M5nNiaVz/iGcN9IRGLcFayEWG6CYhlr/16qH1eppANSJQNJ/dAAe5Y+VvIFTLc+9rtWHPJMq/LOZyuGzm143BTTCwCzkw2IkLv/1403bH0dowZap+XyqUIizP2SZQNpyijFLee8muIxGL86qVbsP6Hq70u53AK+KagHtVm/8dSJALWzwpBtMH376aJxkTaBCbSAKCypQPbChv9Os6KUSPHmcnGYZMVw2mobMTRbZmuARC3nfA6JXM3tV6FpIXxSEiPRXx6LBLmxSI+LWZEOyn16GjrQFl2JbL35Y84cbbg9DQkLogbkNhsqmnGr9Y9CIfdgd+9fTeSFycOWl5daxe+LqiHzeG/7TJQJcMSnQyRMSMfbLQkqxz/fehd7PvisKc7skgixso//BAJm7yfZIzWqTEBmBM2dPc8QRBQVViD8PjQIWcnKs2uwB+u/SdWPXadX7tPGpRSnJViHDZZ0d7agXZzO0KieloAludW4r8Pv4c9nx5ER6u7xYJIhOX3X45ZFy73Wx0B4PgLmyGvrMd893aZvDhhwAxEbaY23Ln697C0tOO+/96BBaelDVpeU7sVW/Pq/dqSV6eQYkOKcdhkRYelE61NbQiNGbxpPtzbxr4yk9+7SB978Usc//dXgLvra8K8WGy49nScf/MGT6ueqqJqXDvrDgBAcGQQ/lvyT0il3v8vU4cNX+XV+TWZppFLsCElFHrl5M9b1Nneia9f34nPXvgKxcfLhrwDLpFJMOfUZFzzwGVYuH4exGIxTPUmXB52E+AeR/LNihcQGOL9/KCl04atefV+TaapZRJsSDHCMIUG060uqsXO9/di14f7kL033+syIVFBWH3xMqy+ZBnS18yGRCKBw+HADXPuRGVBDRLmxeKp7x6CLtD7jYrWLju+yqtDW5f/YqmUirEhxYjAcUhWTIa6snroQ/RQqoe+yLVY7fgqt96vyTSFVIyzko0I1syQWJY3QBekHTaZ2W51YGtenV/HUpJLRDgj2YjQcUj8TIaGykao9ephE3CdNge25tWjyY+JSZlYhPXJIX2GspnOGquboVTLh00addmd+Dq/3q+zy0rFIqxLCkGkYWbEsrnWBKlcOugxp5vV4cQ3+Q1+bWEuEYlwelIwogOmbuJnJEz1LRCLxcNO/mRzOLGtoMGvLczFImBtYjDipuC4aL0xkTbBiTQAqG/rws7iJr8MHJkUrMay2MBRNWseTnVxLY5ty8TRba7EWmPV8OOZGGOCXYm17uRaegxi50R7usmd7Fqb21CWXYnSrAqUZZWjLMf1eLhuN74kzgbjdDp9mumlqd2KncVNfrkLGxeowpd3/guHPj8MlU6Jm/70I2y49nQoRtFVr7q4Fm//6SNsf3cP2kztmHfDWZh3/VljHoxeLhFhRVwQ4oP88yVtMbfj9mW/QXluFfTxodj0j5shC/U+nsxIRBuUWBUfNKom4v3VldXjnSc/xrf/+x6tTW1I+/F6zP/Z2ZCMdfZJmx1JEidWLI73eRp0X7dLc6cNO4qa/NI1MUqvxKqEoEFboo2WIAjIqm3D4UrTmFscW9s6cfDpD1G+9QjmLEvBeT/fgNMuXzForCoLq5G7twCn/3DVsPFs7bJjZ1GjX+5oh+sUWJ0QNC4t0XzhdDqx74sj+OrVbTj2XSZaG4dOZMqVMiw+cz6u+t2lmH3KLK/J/aw9efj2f7tww2M/hEoz9ImwxWrHruImv8xMF6pVYE1C0Li0RBuJ7klrdn2wDzs/2IuiY6Vel4tMCsPqS5ZjzaXLkLI0yet211jdjBM7s3HquYt9SlrsKmn0yx1to0aO1QnBUyK5Oxk6bA7sLmnySzfPYLUMaxKDYRiHVn3TQZfdge9LmlHuh1n+AlUyrEkMQqBqZiQkR8pqd2JPaZNfuswalFKsTQwel1Z904HN4cTesmYU+aHLrF4hxZrEIIRoZkZyd6TsDif2l5uQ3zD2LrNahQRrEoJnTKJ8pBxOAQfK/XNTWSOXYHVC0LRIlDORNgmJNLh33sOVLciuG90Gp5ZJsCIucMKy3oIgoCKvytVibdsJZH6f41NiDe6uM1HJEUiYF+tuwRaDhHmxCE8InZHdQ7vHzCrLqkBZdgVKsypQml2BsqwKNNX4NlC1xqDG/NPmehJnCfNjJyRWDqeAY9VmnKgxYzTfDAqpGMtjAxEfpMbFQdehzdRzcAow6nHBLWfj/Fs2IMA4unGlGiob8fGzW7Dnuyyk3XoeglKiRlVO2bYMHHjiAwQFaTytKV2J31hEzQr3ORnUTRAEPHTZn/H9h/sB95TlT+96GAVmKzKqzaNKrsglYpwaG4DEILXfBtg0N7a6krjZFcg9UIgj3x5Hp0SCFb+7AsFzY0dVZsWuTOx//D0E6JSeGCakxyJ+XiyikyNGHEtvnIKAzJpWHK1qGVUsZRIRTokJwKxgjf9i2dSKsuxKlGW59vGynAo0tHQg9caNMM4f2IXaF7WHCtC5OxMX3bAO89cO3lJvLJyCgOzaNhypahlVy2ipWISl0QFIMfovlr4qOFqMz57/Coe/zkBNSX2fsfa8UetVWHXRqfjBPRcibm603+srCAJy69twqKIF9lHGcnGUAbNDtZM2iK4gCMg7VIRdH+zDrg/2DjrEQ8K8WE/Ls4R5seMSy/wGCw5WmEbVMloiEmFhlB5zw3SjGl9uJhEEAYWN7ThQ3gzrKGIpFgELIgxID9eNany5mUQQBBQ3tWN/uWlUwwyIRMD8cD3mRehHNb7cTFPS1I59Zc2jamUuApAWrsPCSANjCaDM1IG9pU2jamUuAjAnTItFUQZIfbihOdNVtnRgd0kz2kc5wczsUC0WRxnGpVHLdFNt7sTukqZRD9mQEqLBkpgAyKdJLJlIm6REWrfWLjvy6tuQ32Dx6SAdopFjtlGL+CD1pB9IzE2tKDlRjuLjZSg5UYbiE2UoOVHu8xToCpUcoXFGBIUHIDDMgIBQAwLDAnr+dj8OCNVPmYkO7DY7Wpva0NLQipYGM8yNbTA3mNHS0Iq60npPC7ORTLetMagROycKcXOikTAvDvNPmzthibPBWKx25NVbkFff5tMJT6BKhtmhWiQEqT0Hkt+d/xj2fX54wLJypQxnX78eP33ymlG1UOvWXGfCt19noqzDjsB58RANczJg77SiZMth5L2/G005FYMuJ1PIEB5vRECYa3sMDDUgMDzA9TjM0Gf77G5p+e5Tn+LFe14D3IN5/vPA44hMCgfcrS3yG9qQW29Bhw8H6QClFKmhOiQFq30+KDvsDpib2mBubIW5e9tsaEVLQyvqyxs82+Wg022LRIhYloKUS1chavVciIf5XEeXDSVbjyDvvd1eJxXoJpNLERZvRGBYAALCDAgK64ljgCeWrr99mSW4w+ZAfoNru/SlW51BKUWqUYukYI3PXd8dDodnH29tbHXv660wN5hRX9GIsuwKlGVXDpkUDz8lGSmXrkL02rRhW046bXbYSmqxckE00uZETVhCpdPmQEGDBbn1bT6d8OgVUqQYtZgVohnVYMSj0VDVhM9f2Io9nx5EWXaFTxMFGEJ0OOva03D+zRs9++B467I7UNDQjtz6Np9ammsVEqS6YznYmIfjydppxYnvc7Hvs0PY9eG+QVtEp56ShNWXLMfqi09FdErkxNTN7kRBowW5dW0+dVHUyHti6e+WptOd1eFEUaMFOXVtaPGhi6JaJkGKUYMUo5ax7MfmcKKoqR25dW1o9qHVvkomRkqIFslGzaS12p2qbA4nit2x9KW7p1IqRrJRi5QQzaS32p1q7E4nSpo6kFPX5lOrfYVUjOQQDVKNWsayH4dTQEmza7v0pdW+QiLGrBANUoyacRmLczpzOAWUmVzbpS9dZ2USEWYFa5Aaqp12LaCZSJvkRFo3h1NAY7sVjRYrGtut6LI74RRcA0DqFVIEa+QIVsunfHcFQRBQX9HYk2DLLEPx8TKUZVeOaZppXaDGk1jrn3RT61UQicUQi0UQiUUQi8Xu3yJAJHI/P/Trti47zI09F8wtDa1oaXQlI3qeb+3TwmqkDCE6xM6NRtycaMTOiUbc3GjEzo1GcETglJzSFwCc3dtluw1N7VbU1bYge38BHFYbwkMNWHfOQoS4t8v+/8OWV7bhz9c/O2jZP3nkh7jq/kv8Us/6hlbs3ZWLvPwatEMEiUIGOAVYLZ1ozqtEU04FGrPKYLP4dzBMjUENbYAGdWX1nhZ8Z16zFvPWzIU2QN1nuxOJxeiSSdEll6NTJoVDLIYgEkEMQA4nNIIADZxQARC7t0+71Q5zYxta3Nuk2Z287d42u59rbR79dqkL1PTZLoMSwtDQ1oXyGhMsTkCilANOATZLJ5rzq9CYU4HGzDLYLP6dIU6tV3kSa/2TbpoADcSSvrG0yqTolMvQKZP1i6UAjeCERnBCJeoVS5ujV6Kx337eKyHe1mwZ0yxyvSkCNAhJi0XQ7BgEJIVDqlJAKpdAo1YgNioQi5YmwKhVTlhiyhunIKC5w+Y59rRbHe5jD6CWSRGskSFYLUegSjbu31PFJ8qw7c1dOLLtOMqyKtHe6ls3oLi0aJx741lYc9myPuMDTjShO5btVjRabLBY7XAKrhY+GrkEwWo5gjUTE8v+9SrLrsChrzJw8KujyNieha6OgRcKIpEI6WtmY80ly7HqolMQGmucsDr2JwgCTB02NLa74mmx2uFwumKp7o6lWo5Ateykb4E2HEEQ0NJpR6PFioZ+sVTJJJ7zyyDGclieWLrP19usDjicgieWQWo5gtWu78yTvTXfcARBgLnL7jn2tHb1xFIpk3jiGKSWT3rDgenA3GlDg8V1vt7aZe+JpVSCIPdxPJix9Elrl90VS4sV5l6xVEjFnjgGaxhLX7R1x7LdCnOnK5YidyyDPLGUTduWkUykTZFE2kznsDtQWVDjarl2vAwlmeUoOVGGhsomz2DyM0VwZKArSTbblSiLmxuN2DlRo+7OOJXUlNThmsRbAQBrLluOP7zzy0GXLc+txPVz7hz09Yc+vBcrLzzF73XsaOvAgS+P4sDmI9jz6cEhJ23oTyQWQSKVQBAEOEbZxHuqCgwzIG5uNGJmu7bJ7p+AUMOgF/Wd7V04uOUo9n9xBHs/O4jm2kFatHnhiaVTGNN03VORzH0n12a1A8McQVVaJWYtSsBpl6/AWdedDvUIZpmbyTrbO7HjvX3Y++lB5B0sRENlIxw+dvcRi0VYeEY6Tv/BKqy88BQYBpkU4GRmbmzF4a8zcOirYzi0NQP1FY1el5NIJVh0RjrWXLIcKy5YisCwsY/rSERERDTTMZHGRNqk67B0wlTbgqYaE5prTWiubXH/3YzmuhY017ag2f3aZCXddIEa6EP0MITooA/WQR+igyFY1+e5wPAAxM6OmtEzl9qsNpyjvAoAMGd5Mv62+9FBlxUEAZcar0drU99xAMVSMe59+TaccfWaca+vIAgoySzHwS3HcODLI8jYnjWipI5IJIIuSIOwuFBEzgpHcEQAbFYHTHUmNNWYUHyiHO0+dmUeD9oADfTB2p7tMEQHQ7Ae+mCd5+/AsADEpEYOO+vOcARBQFlOJQ5tOYYDW47g6LcnYB9BslEkArSBWoTFGxGZGIaQ6GDYrXbPPu/6MaHdPPbBiEdDY1C7Y6aHPlgLQ4geDrsDtWUNqC9rgKmuBdbO4VvVSuVSxM6OwrLzFuO8n541qa16ppKCo8X49s1dyNieifLcqhGv58BwA5adswRLNyzA0o0Lhp3d7GRjt9mRvTcfB7ccxaGtx5B3sGjQlpXBkYFYsmEBlpy1AKecvXDY2c2IiIiIqC8m0phIm1Y62jr6XHQ317iSa4IgwOkUIDgFOJ1OCL0fC92PBQju1zyPBdfsbxKpBIbeyYgQPfTdSbMgrV8GTJ8pLg+/Eaa6Fhijg/Fm2fNDLvvb8x7F/i+ODHj+z98+iAWnj89g6kPpbO/C8R1ZOPDlURz86ijKc6pGXIZYIobBqIc+UIvSbNdYa3KlDA99/GuodSpPUrijtWPAdmm32vHxP7/sk1xcdt4SxM+N7tkuhZ7lJRLxwASu+29dkBbSsc62OQZdHV04vjMHB7e4YlmaOfi4c4MRS1zTakfNCkfqKUlYsnEB5qxIhaXZ0ieB3m4eGMvufdz1vNP7Pt4vlrpgXZ/9vDvhqNAqkb0nD4e3ZiDvQCEqCqrQXNMCp2P4FlIagxoxsyOxaN08nH7lSiTOjx9lRGcGu92O4zuycWhrBnL3F6AivxpN1c0+xbI3mUKKhevnYemGBViyYQFiZ0/c+HHTRVVhDQ5uOYZDW4/h6LcnBu0KK1fKMP+0uVhy1gIs3bhwXCZeICIiIjqZMJHGRBrRiNyy9F7kHy6GWCLG5+1vDJnMeffPn+DFe18HAITFGVFbWg8ACI0NwYvH/jzprUrqyupxcMsxHPzqKA5/fdzniTK8UWqUCI0JRsJ814QRK85fCmN03/Ga3njkfbzyh7f6PDdv7Rw8/d0fR/25U0V9RSMOfXUMB7YcxZGvM8Y0bptSo0BIVDAS5sdiwdq5WHHBUr+17Co+UYb9XxxG5u5clGVVoKGqGV3tvrV0lUglMMYEI/WUWVhxwVKsuugUKNVTf3ru8VKaXeGK5fe5KM0qH3NX/aSF8Vhylitxlr56tmcyD3Ix1bfgxK4cT3fN6qLaQZdNmBfrSUKmr549poldiIiIiKgvJtKYSCMakYeveBo73t0DAHgp+xnEpEYNumxnexde+d3/YDAacPGd5+C35zyKjO1ZAICzfnwa7n3ltgmr93Acdgey97m7Rn11DLkHCsc86LxEKoYuSIvgyCAEhgXg8DcZcHoZB+rlnL9O2Kx4E8HhcCD3QCEOuZOUOfvy4XSOLZZiSXcsAxGZGI6EeTGYvTwZaStnQ6NX91nWbrej6GgJcvYXIGd/AYoySlFbWg+LqX1E61QboEHs3CgsXDcP669ajbg50WP6H6Yjp9OJooxSZO3JQ97BQhQeLUFtaT3aTBYIY1yngWEGTxfDxWfOQ1B4oN/qPd05nU6U51Qic3ceMnfnIGt3LiryqgddPsCox+Kz5rtiedZ8hEQGTWh9iYiIiE4mTKQxkUY0Iq8+8Db++/B7AIAHP7gHqy461ef31pbW46fzf+npgvSHd3+JNZcuH7e6jkX3YN0HtxxDxo6sIVt/jFVEYijWXLYCqUuTMG/tHASGzqwBv1ub23D46+M4uOUoMnZkoaqgxr8fIIJrtjmRyNPdcyQkMlfX7qhZ4UhekoTFZ87DovXpkCvl/q3nFFVXVo/MPXnIP1SE8pxK1JTUobm2BZaWdtitdr99jkwuRfqaOe4uhguQMC8W4mk6U5O/dVg6kXegEJm7c5G5OwfZe/KGbNUplUmQtmq2p9VZ0sJ4xpKIiIhogjCRxkQa0Yhse+t7PHrVMwCA6//vKvzwNxeP6P1bX9uOJ677BwBAH6zDixlPIThi6rdEaaxuxvZ3duPFe17zeXbB0RKJRVCo5FBpldAGaGAw6hEcGYTQ2BBEJoUjJjUScekxCJimsxU215pw4vtcZH6fg8zvc5B/uHjCZvYUS8RQaVUIiQ5C8uIErLhwKeatnnnJSwBob+tARU4lKvNrUFVci/qyBjRWNaO51oTGqma0Nrehq8M67MyjoyVTyJCyNBFpK1KxYF065q2dA5Xm5O0K21t9RSOydufixPc5yNqTh8KjJUPuAzK5FMlLEjF3RSoWnJ6GBafPhYozwBIRERFNiskbqZqIpqXYOT1dOctyRj7A/JnXrMWeTw9g5/v7YG5sxVM3Pof/++w3U37w68AwA7a/s9uTRDvnpjNx+hUrcWJXDjJ35yJ7T96gg32PlOAU0GnpQqelC821LSjPHXxSBIlMAoVKDo1BDV2gFiqtEiq9Chq9GhqDGtpADfRBWuiCtDAYDQgM1cMQqkdwRKDfx/dyOp1oN7ejpb4V5qZWtDa3wdLcjtbmNrS1tKPd3IH2lnbXzLx1LTA3tqKtxQKZUgqhQxjxgPSjqqPDCUuLBZYWC0ozy/H16zs8r3XHUq1XQxeogVqngkqvglqngjZAA22gBroAjWvSB6MBASE6BIQbxjeWja0wN/SKpcmCNpPFE0tTvRnNNSaYm1rRZmpHZ1snujqtcIxgRtWhiCViSKRiOB3CsMnOgFAD0lalIm3lbKStTMGsxYkc58zdbbwooxSZ3+cic08usnbnoq6sYcj3BBj1mLsyFWkrUzF3ZSpSliSeNC0kiYiIiKY6JtKIaESiUyIgEokgCALKcypH/H6RSIRfPPdTnNiVg+baFhzYfASfv/g1zvvZWeNSX3/Z8vI2ZO3JAwDEpEbilmeug0KlwKL18wD3uGDFx8s8ibXMXTmor2gculCRa5ICXYAaMoUcnZZOdLR2orOjy+fxpxw2B9ptHWg3d6C+fJjP81YFkQgiscj92F2p/r9EvV93PysCIAhw2J2j6k7pbyKRCIYQHTQBGlcist0dy/bRxbJhuHU3SB3GEkunwwmnY2JjKZaIodQoodYpoVArIBaL0NVhRWkbI+wAADBJSURBVFNNM+xWh7tOAxOcIpEI8ekxnkRP2spURCSGTfmE+HhrM1lQlFGKomOlKMooRfHxUhQfL3O1/BtCfFpPLOeuTEXUrPCTPpZEREREUxW7drJrJ9GIXZN0K2qK66DWqfCR6dVRXfDt++IwfnfeYwAAjUGNV/L+hgCjYRxqO3YtDWb8ZPYv0NrUBgB48psHsHBd+rDvqyurx4ldOZ5ujEUZpT59XkhUEBLmxSIkOhhKrRIiQYDF3IHGqiY017pacrWbO9DVYfXrGFaTTSKTQKGUQ6lVQhughj5Ih8DwAIREBULtnlCgpd6M7H35KM4o9WkCg+DIQFcso9yxBNDeenLEUq6UuboHGzTQB+tgMOqh0MghgggOhxOtza0oy6wcPuELQKVVYs7yZMxd4U72LE+e9Fl3J5PD4UBVQY0nYdb9M1xLMwBQqhWYvWwW0lbOxtyVqZizPBm6QO2E1JuIiIiIxo6JNCbSiEbst+c9iv1fHAEAvFn2PIzRwaMq58nr/4mvXvkOALDphjNw979u9ms9/eXpm57H5v98AwBYf9Vq/Oa/vxhVOUe+PY57z/wjACByVjiUagVKsyp8Gh9MpVUicUEcEufHY9bCeCQtjEd8egwUKgXMTa0ozapARV41WupaXN3/mt1dAFs70GHuQIelE12WLnR12mDrtMLWZYfdZofD7oTT6W5x1OtoIPT9Y1AisQhiscjdBVACiUwCqUwKmVwKmUIGuVIGuUoOhUoOpUYBpVqJgFA9QmKCEZkQhqjkcESlRA6YeXM4FnM7Co4Uo/BoCQqPlaDwaAlKM8th96FLo1KjQOL8OCQtiEfiAlcsE+bFQqnuG0tzgxnmpja0NVtgaWmHxdyODnMHOttd3W67Oqywddlg67LBbvVDLEUiiCW9YimVQCrvF0ulHAq1K5YKlQIBoXoYY0MQHh+KqOQIxKS6YmluakVxRhkKj5WgOKMUhRmlKM0sh7XTNmx8RCIRopLDkbwk0dVNc1UqEtJjIZFKhn3vTNTa3OZqXdYdz+OlKDlRPmwrM7hjGZEUhpResUycH3fSxpKIiIhoJmAijYk0ohF74Vev4b2nPwUAPL7ld1hy1oJRldNca8J1qXeg3dwBkUiEv+97DKlLk/xc27HJ2puHX6z8LQBArVfhpey/jnpyhC2vbMOfr38WAPCzP/8Yl919PqxdNpRlV7gSQr2SQpaW9mHLE4lEMMYEI3JWOKKSwhE5y/UTNSscEUmuRN3JxGa1oSy7EoVHS1B0rCeWQ81+2JsxOtgTv8hZEb1iGTYlB8l32B2oK29AdWEtqotqUVVYi5LMMhQdK0VDZZNPZWgMaiTOj+v5WRCH+PTYk27bcTgcqC9vRHVRLaoLa1FVWIPSrAoUHivxucu0Wq9C4vw4JMyLQ9KCOCTMj0NCegwnBSAiIiKaYThGGhGNWO8JB8pzqkadSAsMC8A1f7gcL/zqNQiCgGd/8RL+svNhiMViP9Z29Bx2B/52y788f1/3xyvHNMNoyYlyz+O4tBgAgFwhw6yFCZi1MMHzmiAIqC2t9yTXijJcv2tK6vuUJwgC6soaUFfWgKPfnhjweSFRQa7kWlJ3cigcUckRiEwKm5EX9zK5DEkL4pG0IN7znCAIqC9vQEG/RGVNcd2A99dXNKK+ohHHvssc8FpwZGCvhGVEr4RbONS68YtlR1sHqtyJsu4ET3VxHaoLa1Bb2uDzbKfdrcwSF8QjcV6cu3VjHEJjQ06asbg6LJ2ocSccPTEtqkFVYS3qSut9as2IXq3MktwtRLsTkGFxxpMmlkREREQnMybSiGjEYudEex6XZY985s7eLrztbHzx729QnlOJrD15+OaNnTjrmtP8UMux++TZLSg8WgIASFoYjwtu2Tim8kqzehJpCekxgy4nEokQHh+K8PhQrLroVM/z3V3MCo+WoOBoMcqzK1FZUOMZu62/hsomNFQ2IWN71oDXgsIDPC3YIpNcP0ERAQgKD0BQRCDUOtWMSAqIRCKExhoRGmvEygtO8TxvabGgKKPMnawsRklWBaoKamBubPVaTmNVMxqrmnF8R/aA1wLDDD2tAZMiEJEYiuDIIE881Xr1oLEUBAFNNSZUF9b0Su64E2ZFdTDVtYz4fz5ZW5kJgoDmWpMrjt2t9IpccawurEFz7chjyVZmRERERNQfu3ayayfRiLWZLLg46DoAwOxTZ+Hvex8bU3kHvzqG35z9COBO8Lyc+7dxbeXji8bqZlw/5xdoN3cAAP76/SOYuyJ1TGVeFXcz6ssboTGo8WHTK35LVJmbWlFdWIvK/GpUFtSgqrAGVQU1qMyvRkuD98TQcJRqBQLDAxAYHoDgiAAEhrkSbN2Jtu7fAUb9jBrvqbW5zdViyR2/qsIaV0wLakaV1AIAqVwKlVYJuVLmiZXdZkdXuxUdrZ0946qNgEqrRERSGCISwxCZGIaIpHBEJIYhJjVyRrUyczgcMDe0orm2Baa6FjTXtqC51uT6XWeCqc4Mk/tvU12Lz63KelNqFIhMCkdEYigiEl1xjEgKQ3RKBMLjQ2dMLImIiIjIP9gijYhGTBugQeycKJRlVyL/cDE627vG1Npl6YYFWHnhKdj98QE01ZjwxiPv46Y//civdR6pF+95zZNE23TDGWNOolnM7Z6xluLSYvx6ca4P0kEfpEPqKbMGvNZmsvQk1gpqUFlQjSp3YmioFjqd7V2e1lFDEYtFMBj17oRboCv5FmqASqeCSquEWqeCSqeCWqeESqt0P1ZBqVVCrVNCrpRPqUSFLlCL1KVaJC2IQ6elC52WTtfv9i6Y6lpQmV+DmuJa1BTXobasAU3VJrQ2tQ45iL/dah+01eBQFCo5dEFaGIx6BIUHIiQ6CGFxRkQmhSEkKhgqXd/4TrVYdnPYHei0dKLD0tU3pu7HbaZ2mGpNrkRZr2SZqc4Mc4PZp9lZhxMUEYiIxFBXwizBlSiLdCciA0INUzJuRERERDQ1MZFGRKOStnI2yrIr4bA7kHugAAtOSxtTeTc/dS0OfHkUti4bPnjmM2y6YT2iUyL9Vt+RyNmfj2/f3AUA0AfrcOPjV4+5zPxDRZ7HCWmDd+v0N22ABilLkpCyZOAkDu2tHa4WV/k1qCutR1ONCU01za7f1c1orjENO1C/0ym4Ex8tKDpWOuL6iSXiXgm3vsk2lVYJhcqdHBKJ4PrV7zG6n3P9FrlfQ6/H3cs5HE53UqwTXe3WAQmd3o9H07LJ37o6rOhyd88tRMmwy/eOZXeisndC05+xdDoFV8zavcev+3FXexdsVvu4xkksESPAqEdAmAHBkUGuFnruVmUR7sczvVsrEREREU0cJtKIaFTSVqVi83++AQCc2JUz5kRaRGIYLv/l+Xjz0Q9gtznwwj2v4eGP7/NTbUfmlT+87Xl83R+vgD5YN+Yyew9gn7Z69pjL8we1TjVgooP+rJ1WNNe2eJJrvZNsjTWu303VJjTVmHwe+L43p8MJS0u7T7OUTnUyhQyBYQb3TwACQg0ICO35WxeogVgqhsPuRFdHF5prWlzxcycwm2tMaHTHdjSJvJkYS0/8Qg0ICAtw/+4dYz30wbopM0EJEREREc18TKQR0aik90oGZe7O9UuZV/7mYnz16ndoqGzC3k8PIf9wEZIXJ/qlbF+d2JWNQ18dAwCExxtx9g3r/VJuxo6eAf8XnDbXL2VOBLlSjrA4I8LijEMu53Q60dZsQWN1M8wNrWhv7UBHawc62jrR3tqJjtYOtLd2oLOtE+1tHeho7XS/1uF+rROdba7nJnroTqlMAoVaAaVGAaVG6f7d77Ha/di9nFqv9iTNAsICEBhm8NsEDYIgoLWpDU01JrTUm10xauvsEydP3Nq6X+vsiW9rT3wnOpYSqcR7/DRKKNVy9+++r3fHsifpaBhyggYiIiIiosnERBoRjUpkUjgCQg0w1bUga3cunE7nmFuFqDRK/PA3l+Dvt/0bAPDG/72PB9+/x0819k3v1mg/+sPlkMllYy7T2mlF9t58wN3yLjR26KTUdCQWi6EP1o259Z7T6URXe5cnAWftsEIQBFdCSIDnsSc/1Otv1zIDH8OdnBKLRV4TZVLZ1DoUikQiv8RSEAR0tnd5EnBjjaV7Ea+x7E5E+mN/ISIiIiKayqbW1QMRTRsikQjpq2dj1wf7YGlpR2lmORLmxY253LOvX4c3/u99NFU34/sP96P4RBkS0mP9UufhHPn2uKcLZnRKBM780Vq/lJu9Nx+2Ltdg9NOpNdpkEIvFUGlVUGlVCAqf7NpMbyKRCCqNEiqNkrEkIiIiIvITDipCRKOWtrJnJssT3/une6dcKccPfnWB5+83H/3AL+UORxAEvPL7tzx/X/OHyyGRSvxSdu/x0eafPrax5IiIiIiIiGjyMJFGRKOWtqrXOGnf5/it3HN+eiYMIa5ubdvf3o3y3Eq/lT2YA18eRdaePABA3NxonHbFSr+VPV3HRyMiIiIiIqK+mEgjolGbtSgeCpUc8HMiTaVR4rK7zwfcLcX+9/iHfivbG0EQ8MofelqjXfvQFZBI/NMazdpp9STowhNCZ+T4aERERERERCcLJtKIaNRkchlmL0sGANSU1KOyoNpvZZ9/y0boAjUAgG/+uxPVxbV+K7u/3R8fQP6hIgBA0sJ4rLr4VL+Vnb2v9/ho7NZJREREREQ0nTGRRkRjcsrZizyPd3980G/lavRqXHzHuQAAp8OJtx//yG9l9yYIAt74v/c9f1/70BVjnn20t2PbesZHW8Dx0YiIiIiIiKY1JtKIaExWXXSK5/Huj/f7teyL7tgEtU4FANjyyjY0VDb6tXy4W4x1t0abtSgBy89b4tfyv+8VkwXrmEgjIiIiIiKazphII6IxiU6JRMzsKABA1u5cNNe1+K1sXaAWF9yyEQBgtznw5Uvb/FZ2t0+e/dLz+KLbN0EkEvmt7Ir8ahQdKwUAzD51FkJjQvxWNhEREREREU08JtKIaMxWXehqleZ0Ctj32SG/ln3ezRs8ya0vX/oWTqfTb2U315qw4509AAB9sA6n+3GmTgDY8e4ez+O1l63wa9lEREREREQ08ZhII6IxW3Fhr+6dnxzwa9lhcUYs3bgAAFBbWo9DWzP8VvYX//4GNqsdAHD29euhUCn8VjYAbH93t+fx2suZSCMiIiIiIprumEgjojGbfeosBIUHAAAOb81AZ3uXX8vfdOOZnseb//21X8p02B34/IWtAACRSITzf77BL+V269+tMyzO6NfyiYiIiIiIaOIxkUZEYyYWi7Hi/KUAgK4OKw59dcyv5a84fwkCwwyAe2bQ5lrTmMvc/clB1Fe4Ji9Yfv4ShMeHjrnM3titk4iIiIiIaOZhIo2I/GI8u3dKZVJsuPZ0wN2S7KtXt4+5zE/+udnz+IJbzh5zef2xWycREREREdHMw0QaEfnFovXpUGmVAIC9nx6C3Wb3a/mbbjzD83jzf76BIAijLqs0qxxHt2UCAKJTIrD4zHl+qWM3duskIiIiIiKamZhIIyK/kCvlOPWcRQAAc2Mr9n9xxK/lR82KwML16QCAyvxqZGzPGnVZnzy7xfP4glvOhljs369CduskIiIiIiKamZhIIyK/2XDtOs/jL/w0KUBv5/SadGC05TvsDk+iS6GSY8O1p/mtfgAgCAK+fr2n6ym7dRIREREREc0cTKQRkd8s2TAfobEhAIADm494BvP3l1UXnwp9sA4AsOuDfeiwdI64jGPbs2CqNwMATj13MTQGjV/reOSb4yjPrQIAzD9tLrt1EhERERERzSBMpBGR30gkEpz9k/UAAKdTwJcvfevX8uUKGdZcuhwAYO20jWp20N7dLk8bh26XH//zS8/jC2/1/yQGRERERERENHmYSCMiv9p4/TqIxSIAwJcvfQuHw+HX8leOYXZQh92B7z/cB7i7dZ567mK/1q2mpA57Pz0IAAiJCupTVyIiIiIiIpr+mEgjIr8KjQnBKZtckw7UlTXg8NYMv5a/sNfsoPs+OwyH3fdEXf9unSqN0q91++z5r+B0umYTPe9nGyCVSf1aPhEREREREU0uJtKIyO/6TgrwjV/LlitknkSdubEVJ77P8fm949mt09ppxeb/uLqySmUSnHPTGX4tn4iIiIiIiCYfE2lE5HfLzl2MoIhAAMCeTw6iudbk1/JXXtDTZXLPx7517xzvbp3fvb0b5sZWwD1TZ2BYgF/LJyIiIiIiosnHRBoR+Z1EKsHG604H3AmsLa9859fyTz1nESRSCQDg+48PQBCEYd8znt06BUHAR//Y7PmbkwwQERERERHNTEykEdG42HRDT9fGT/75JWxWm9/K1gVqMf+0uQCAmuI6lJwoG/Y949mtM2d/AfIPFQEAkhcnYM7yFL+WT0RERERERFMDE2lENC4iEsOw/PwlAID6ikZsfXW7X8vvPSPm9x8N3b1TEATscc+mOR7dOj945jPP4wtu3QSRSOTX8omIiIiIiGhqYCKNiMbN1b+91PP4f49/OKIZNoez8oKlnse7P94/5LIVeVVoqm4GAMw/Pc2v3TqLT5Rh+zuu1m6GEB3WXbnSb2UTERERERHR1MJEGhGNm9mnJmPJhgWAuwvmt2/u8lvZobFGJC2MBwDkHy6Gual10GWPfZflebzgtDS/1QEAXnvwHc8YbVf8+mIoVAq/lk9ERERERERTBxNpRDSufvS7Xq3SHvsADof/WqX1Topl7c4bdLlj2zN73nP6XL99fsGRYuz6wDUTaFB4AM7/+Qa/lU1ERERERERTDxNpRDSu0lfP8UwMUJ5bhZ3v7fVj2bM9j0/syva6jCAIyPjOlUhTaZVIXpzot89/9YG3PY9/eP8lUKrZGo2IiIiIiGgmYyKNiMbd1b+7zPP4jf97H06n0y/lpq1K9TzO3J3rdZmKvCo01ZgAAOlr5kAilfjls7P25mHvZ4cAAMaYYJxz05l+KZeIiIiIiIimLibSiGjcLVqfjjnLkwEAJSfKseeTg34pNyg8EJFJYQCA3AOFsHbZBiyTsX18xkfr3Rrt6t9eCrlC5reyiYiIiIiIaGpiIo2Ixp1IJOrbKu2R9zwD9I9V2ipX905blw35h4oGvD4e46Md35mNw1szAADhCaHY+JN1fimXiIiIiIiIpjYm0ohoQpy6aRGSFycA7lk2v3t7t1/KTVvZq3vn9zl9XhMEwTNjp7/GRxMEAa/84S3P3z/6/WWQyqRjLpeIiIiIiIimPibSiGhCiEQiXPvHKz1/v3jPa+iwdI653N4TDvQfJ60yvxpN1c2e5fwxPtrBLUc93UWjUyJw5o/WjrlMIiIiIiIimh6YSCOiCbPsnMVYdu5iAEBDZRPeeuzDMZcZMzsKukAN4G6R1rvLaPa+fM/jeWvG3q3T2mnFP+54yfP3NQ/8wG+TFxAREREREdHUx0QaEU2om5++DlKZK/n07p8/QVVhzZjKE4vFnnHSWhpaUZFX5XmtNLPc8zhpYfyYPgcA3n7iY1QVuOo7b80crLty1ZjLJCIiIiIioumDiTQimlDRyRG49K7zAAA2qx0v/Oq1MZfZe5y0nP0FnselWRWex/Fp0WP6jKrCGvzP3YJOLBHj9n/eCJFINKYyiYiIiIiIaHphIo2IJtxVv70UQRGBAIDdHx/Awa+Ojam8hHmxnsdl2ZWexyUnygAAap0KxpiQUZcvCAL+cft/YOuyAQAuvfNcJKTHDvs+IiIiIiIimlmYSCOiCafWqXDTn37k+fvZO1+G3WYfdXmxc3pam5XnuhJpHW0dqCmpBwDEpUWPqfXYrg/348CXRwEAIVFBuOaBy0ddFhEREREREU1fTKQR0aQ44+o1mLsiBQBQnlOJj//x5ajLCo0LgVwpA3q1SOvdMi1ubsyoy+5o68Bzd73s+fuWZ34ClVY16vKIiIiIiIho+mIijYgmhUgkwq1/u97TUuy1h95BQ2XjqMqSSCSITokEAFQV1MBus6Ok10QD8WmjT6T99+H3UV/uqtfSjQuw+pJloy6LiIiIiIiIpjcm0oho0qQsScKmG9YDANrNHXjy+mfhdDpHVVbsnCgAgMPuQGVBDUpO9CTS4kaZSCvJLMf7f/kMACBTyHDb32/gBANEREREREQnMSbSiGhS3fD41QiJCgIAHN6agU+e3TKqcmJn94yT9ocLHsfW17d7/s7Zl4cTu7IhCILP5TnsDjx903Nw2B0AgCt/fRGiZkWMqm5EREREREQ0MzCRRkSTSh+kw69eusXz97/ufR1lOZVDvsebmNmRnsdVhbVoqTd7/n71gXdw19o/YM8nB30u783/+wDZe/MBAJFJYbji1xeOuE5EREREREQ0szCRRkSTbslZC3DRbZsAANZOG/7047+PeBbP3jN3DsbaafWprKw9ufjvI+8BAMQSMX79+h1QqBQjqg8RERERERHNPEykEdGUcMPjVyNmtmucs7yDhXjjkfdH9P7olKG7XSbOj/NpooD21g48fs3f4XS4xmr70e8uw9zlKSOqCxEREREREc1MTKQR0ZSgVCvw69duh0QqAQC8+egHOPzNcTxx3T9wVezN2PPp0N0y5Uo5IhLDvL4mEonwi+d/CqlMOmw9/vmLl1BdVAsAmLsiBVf99pJR/T9EREREREQ08zCRRkRTRurSJFzzh8sBAE6HE78991FsfW076isa8fof3x32/VHJ4V6fP/enZ/rUqmzHe3vw1SvfAQDUOhXue/0OT2KPiIiIiIiIiIk0IppSrrzvIsTOcXXxtFt7xkkrOlaKzvauId8bEhU84DmNQY3rH71q2M+tr2jEMz97wfP3rX+7ftAWbkRERERERHRyYiKNiKaUT5/7ChV51QOed9gdyDtYOOR7jdEDE2lX3X8JdIHaId/ndDrxxHX/QGuzBQBw2g9W4KwfnzbiuhMREREREdHMxkQaEU0ZBUeK8c9fvOQZ6L+/rD15Q74/pFciLTQ2BGdcvQaX/+qCYT/3/ac/w9FvTwDuZNwvnvspRCLRiOtPREREREREM9vwI28TEU0QpVYJuVIGa6fN6+sZ2zNx5a8v6vOczeFEaXMH6i1daE1LwJXbH4NUpYAgCFBIxfgqrx5BajnCdQpEGZQQ90uQHd+Zjf/c/ybgnpTg3ldvG7YFGxEREREREZ2cRIIgCJNdiYlmNpthMBjQ0tICvV4/2dUhol6KMkrx9hMf4bu3dw9omSZTSPF5+5sQiUQwd9qQVduGokYLbE7fvsY0cgmSQzSYHaqDQipGQ1UTbllyL5prWwAAV/76Itzw2NXj8n8RERERERHR9MdEGhNpRFNSXVk9PvjrF/j8X1+js63T8/xHLa+i2GLHkcoW+Jg/G0AlE+OUKD2eufBxT3fRRWfMw2Obf8tZOomIiIiIiGhQHCONiKak0Fgjbn7qWrxV/jwuun0TNAY1ll2yHNsrWnGoYvRJNADosDmxo8QE3bqFEEnECI0Nwf1v/oJJNCIiIiIiIhoSW6SxRRrRtNBudWBLXh3MnXa/lluxMxOXrEnGnKVJfi2XiIiIiIiIZh5ONkBEU57N4cTX+fV+T6IBQPSaNDQEqyEIAmfqJCIiIiIioiGxaycRTXmHKlrQ3OF9Jk9/KGpsR3FT+7iVT0RERERERDMDE2lENKVVmzuRW9827p+zv8yEDptj3D+HiIiIiIiIpi927SSiKUsQBBysMPV5TiQCzk4NRYBSht2lTSht7oBSKsa6WSFwCgJEEGFvaTNMnSNrwdblcCKj2oxlsYF+/i+IiIiIiIhopmCLNCKashosVjS1902ICQLwXWEDsupaPc912Z3YnFOHLbn1OFLVgvQI3ag+r7DRApvDOeZ6ExERERER0czERBoRTVmDdenssPVNdvWeelguEaO5fXTjqdkcAsdKIyIiIiIiokFNu0Ta//3f/2HlypVQq9UICAiY7OoQ0TiqMnf6vKxBKcWm2aFYFhuA2rYuz/MbU424Zkk0AlUyz3MyiQjXLo2BRi4Z02cSERERERHRyWXaJdKsVisuv/xy/PznP5/sqhDROGq3Oga0PBtKS6cdm3Pq8E1+A06N6Ztkt9qdWBxl8KmcxnbriOtKREREREREJ4dpN9nAQw89BAB45ZVXJrsqRDSOmkaQ0BKLAKe7f6fV4YTdKfR5Pbe+DbNDdQjTKvq0VvOmrcsBq90JuXTa3WcgIiIiIiKicTbtEmmj0dXVha6unotns9k8qfUhouF12gdvjXZaYjCCNXLYHE6EaOQoa+7A4mgDBME1q+eB8r4zfXbZnThRY8biaAM259T59NlMpBEREREREVF/J0Ui7bHHHvO0ZCOi6UEQhEFf217UOOC5Lbn1Q5aXXduGOaFaxASoUNM69DhoQ302ERERERERnbymRJOLBx98ECKRaMifgwcPjrr83/zmN2hpafH8lJeX+7X+ROR/ErHIr+U5BAFHq8xYHGWAGEOX7e/PJiIiIiIioplhSrRIu+2223DllVcOuUx8fPyoy1coFFAoFKN+PxFNPL3S/19PBQ0WpIXpkBSiHnQZiVgEtZfZPImIiIiIiIimRCItJCQEISEhk10NIppCAlVyiESAP3tZCgAOV7ZgRVzgoMsEqWQQi9gijYiIiIiIiAaaEom0kSgrK0NTUxPKysrgcDhw9OhRAMCsWbOg1Wonu3pE5CcSsQhBKhka221+LbfM1IH0cB2UMu+tzkI0cr9+HhEREREREc0cImGajap93XXX4dVXXx3w/LZt23D66af7VIbZbIbBYEBLSwv0ev041JKI/CGrtnXADJzj7dw5YUymERERERERkVfTLpHmD0ykEU0PXXYn3s2ogsM5MV9TwWo5zpsbNiGfRURERERERNPPlJi1k4jIG4VUjOQQzYR9Xlq4bsI+i4iIiIiIiKYfJtKIaEpbFGWAZgJm0Yw2KBEfqBr3zyEiIiIiIqLpi4k0IprS5BIxVsQFjfNniLAiLggiztZJREREREREQ2AijYimvCiDEkuiDeNStlgEnJ4UAvUEtHojIiIiIiKi6U062RUgIvJFergeggAcrmzxW5lSsQinJ4UgQq/0W5lEREREREQ0czGRRkTTxrwIPQxKKfaUNqPT7hxTWYEqGVYnBCFILfdb/YiIiIiIiGhmYyKNiKaV2EA1QrUKHCg3oaipfcTvl4pFSAvXYV64HhIxx0QjIiIiIiIi34kEQRAmuxITzWw2w2AwoKWlBXq9frKrQ0Sj1NZlR159GwoaLeiwDd1CzaCUItWoRVKwBnIph4ckIiIiIiKikWMijYk0omlPEARYrA40tlth6rDB7nR9rcklYgSpZQhWy6GUcTIBIiIiIiIiGht27SSiaU8kEkGrkEKrkCIucLJrQ0RERERERDMV+zcRERERERERERH5gIk0IiIiIiIiIiIiHzCRRkRERERERERE5AMm0oiIiIiIiIiIiHzARBoREREREREREZEPmEgjIiIiIiIiIiLyARNpREREREREREREPmAijYiIiIiIiIiIyAdMpBEREREREREREfmAiTQiIiIiIiIiIiIfMJFGRERERERERETkAybSiIiIiIiIiIiIfMBEGhERERERERERkQ+YSCMiIiIiIiIiIvIBE2lEREREREREREQ+YCKNiIiIiIiIiIjIB0ykERERERERERER+YCJNCIiIiIiIiIiIh8wkUZEREREREREROQDJtKIiIiIiIiIiIh8wEQaERERERERERGRD5hIIyIiIiIiIiIi8gETaURERERERERERD5gIo2IiIiIiIiIiMgHTKQRERERERERERH5gIk0IiIiIiIiIiIiHzCRRkRERERERERE5AMm0oiIiIiIiIiIiHzARBoREREREREREZEPmEgjIiIiIiIiIiLyARNpREREREREREREPmAijYiIiIiIiIiIyAdMpBEREREREREREfmAiTQiIiIiIiIiIiIfMJFGRERERERERETkAybSiIiIiIiIiIiIfCCd7ApMBkEQAABms3myq0JERERERERERFOATqeDSCQacpmTMpHW2toKAIiJiZnsqhARERERERER0RTQ0tICvV4/5DIiobt51knE6XSiqqrKp0wjDc1sNiMmJgbl5eXDbmw0/XF9n3y4zk8uXN8nH67zkw/X+cmF6/vkw3V+cuH69j+2SBuEWCxGdHT0ZFdjRtHr9dxxTyJc3ycfrvOTC9f3yYfr/OTDdX5y4fo++XCdn1y4vicWJxsgIiIiIiIiIiLyARNpREREREREREREPmAijcZEoVDggQcegEKhmOyq0ATg+j75cJ2fXLi+Tz5c5ycfrvOTC9f3yYfr/OTC9T05TsrJBoiIiIiIiIiIiEaKLdKIiIiIiIiIiIh8wEQaERERERERERGRD5hIIyIiIiIiIiIi8gETaURERERERERERD5gIo1G7LnnnsP8+fOh1+uh1+uxYsUKbN68ebKrReOssrISP/rRjxAcHAy1Wo2FCxfi0KFDk10tGietra248847ERcXB5VKhZUrV+LAgQOTXS3ykx07duD8889HZGQkRCIRPvroI89rNpsNv/71rzFv3jxoNBpERkbixz/+Maqqqia1zjQ2Q61zALjuuusgEon6/CxfvnzS6ktjM9z6bmtrw2233Ybo6GioVCrMmTMHzz333KTVl8bmsccewymnnAKdTofQ0FBcdNFFyM3N7bPMBx98gI0bNyIkJAQikQhHjx6dtPrS2Pmyznv72c9+BpFIhGeeeWZC60n+4cv67n8M7/558sknJ63eMxkTaTRi0dHRePzxx3Hw4EEcPHgQ69evx4UXXojMzMzJrhqNk+bmZqxatQoymQybN29GVlYWnnrqKQQEBEx21Wic3Hjjjdi6dStef/11HD9+HBs2bMCZZ56JysrKya4a+YHFYsGCBQvwj3/8Y8Br7e3tOHz4MH7/+9/j8OHD+OCDD5CXl4cLLrhgUupK/jHUOu929tlno7q62vPzxRdfTGgdyX+GW9933XUXvvzyS/z3v/9FdnY27rrrLtx+++34+OOPJ7yuNHbbt2/Hrbfeir1792Lr1q2w2+3YsGEDLBaLZxmLxYJVq1bh8ccfn9S6kn/4ss67ffTRR9i3bx8iIyMnpa40dr6s797H7+rqarz00ksQiUS49NJLJ7XuM5VIEARhsitB019QUBCefPJJ3HDDDZNdFRoH9913H77//nvs3LlzsqtCE6CjowM6nQ4ff/wxzj33XM/zCxcuxHnnnYdHHnlkUutH/iUSifDhhx/ioosuGnSZAwcO4NRTT0VpaSliY2MntH7kf97W+XXXXQeTyTSg5RJNf97Wd3p6Oq644gr8/ve/9zy3ZMkSnHPOOXj44YcnqabkL/X19QgNDcX27duxdu3aPq+VlJQgISEBR44cwcKFCyetjuRfg63zyspKLFu2DFu2bMG5556LO++8E3feeeek1pXGbqh9vNtFF12E1tZWfPPNNxNev5MBW6TRmDgcDrz11luwWCxYsWLFZFeHxsknn3yCpUuX4vLLL0doaCgWLVqEf/3rX5NdLRondrsdDocDSqWyz/MqlQq7du2atHrR5GlpaYFIJGIr1Bnuu+++Q2hoKFJSUnDTTTehrq5usqtE42T16tX45JNPUFlZCUEQsG3bNuTl5WHjxo2TXTXyg5aWFsB9o5tODt7WudPpxDXXXIN77rkHaWlpk1g78rfh9vHa2lp8/vnnbOQyjphIo1E5fvw4tFotFAoFbr75Znz44YeYO3fuZFeLxklRURGee+45JCcnY8uWLbj55ptxxx134LXXXpvsqtE40Ol0WLFiBR5++GFUVVXB4XDgv//9L/bt24fq6urJrh5NsM7OTtx333246qqroNfrJ7s6NE42bdqEN954A99++y2eeuopHDhwAOvXr0dXV9dkV43Gwd/+9jfMnTsX0dHRkMvlOPvss/Hss89i9erVk101GiNBEHD33Xdj9erVSE9Pn+zq0AQYbJ3/6U9/glQqxR133DGp9SP/8mUff/XVV6HT6XDJJZdMeP1OFtLJrgBNT6mpqTh69ChMJhPef/99XHvttdi+fTuTaTOU0+nE0qVL8eijjwIAFi1ahMzMTDz33HP48Y9/PNnVo3Hw+uuv4/rrr0dUVBQkEgkWL16Mq666CocPH57sqtEEstlsuPLKK+F0OvHss89OdnVoHF1xxRWex+np6Vi6dCni4uLw+eef80R8Bvrb3/6GvXv34pNPPkFcXBx27NiBW265BRERETjzzDMnu3o0BrfddhsyMjLYgvwk4m2dHzp0CH/9619x+PBhiESiSa0f+Zcv+/hLL72Eq6++ekDvEvIftkijUZHL5Zg1axaWLl2Kxx57DAsWLMBf//rXya4WjZOIiIgBSdI5c+agrKxs0upE4yspKQnbt29HW1sbysvLsX//fthsNiQkJEx21WiC2Gw2/OAHP0BxcTG2bt3K1mgnmYiICMTFxSE/P3+yq0J+1tHRgfvvvx9PP/00zj//fMyfPx+33XYbrrjiCvz5z3+e7OrRGNx+++345JNPsG3bNkRHR092dWgCDLbOd+7cibq6OsTGxkIqlUIqlaK0tBS//OUvER8fP6l1ptHzZR/fuXMncnNzceONN054/U4mbJFGfiEIArt/zGCrVq0aMMVyXl4e4uLiJq1ONDE0Gg00Gg2am5uxZcsWPPHEE5NdJZoA3Um0/Px8bNu2DcHBwZNdJZpgjY2NKC8vR0RExGRXhfzMZrPBZrNBLO57P10ikcDpdE5avWj0BEHA7bffjg8//BDfffcdb3qdBIZb59dcc82A1qUbN27ENddcg5/85CcTXFsaq5Hs4//5z3+wZMkSLFiwYELreLJhIo1G7P7778emTZsQExOD1tZWvPXWW/juu+/w5ZdfTnbVaJzcddddWLlyJR599FH84Ac/wP79+/Hiiy/ixRdfnOyq0TjZsmULBEFAamoqCgoKcM899yA1NZUnXzNEW1sbCgoKPH8XFxfj6NGjCAoKQmRkJC677DIcPnwYn332GRwOB2pqagD3oLZyuXwSa06jNdQ6DwoKwoMPPohLL70UERERKCkpwf3334+QkBBcfPHFk1pvGp2h1ndsbCxOO+003HPPPVCpVIiLi8P27dvx2muv4emnn57UetPo3HrrrXjzzTfx8ccfQ6fTeb6zDQYDVCoVAKCpqQllZWWoqqoCAM8N0vDwcISHh09i7Wk0hlvnwcHBA26CyWQyhIeHIzU1dZJqTaPlyz4OAGazGe+++y6eeuqpSaztSUIgGqHrr79eiIuLE+RyuWA0GoUzzjhD+Oqrrya7WjTOPv30UyE9PV1QKBTC7NmzhRdffHGyq0Tj6O233xYSExMFuVwuhIeHC7feeqtgMpkmu1rkJ9u2bRMADPi59tprheLiYq+vARC2bds22VWnURpqnbe3twsbNmwQjEajIJPJhNjYWOHaa68VysrKJrvaNEpDrW9BEITq6mrhuuuuEyIjIwWlUimkpqYKTz31lOB0Oie76jQKg31nv/zyy55lXn75Za/LPPDAA5NadxodX9Z5f3FxccJf/vKXCa0n+Yev6/uFF14QVCoVz9kngEhwrRgiIiIiIiIiIiIaAicbICIiIiIiIiIi8gETaURERERERERERD5gIo2IiIiIiIiIiMgHTKQRERERERERERH5gIk0IiIiIiIiIiIiHzCRRkRERERERERE5AMm0oiIiIiIiIiIiHzARBoREREREREREZEPmEgjIiIiOokYjUaIRKIhf37yk59MdjWJiIiIpiTpZFeAiIiIiCaGw+HAp59+6vW10tJSXH/99XA6nUykEREREQ1CJAiCMNmVICIiIqLJU15ejtNOOw1VVVX4+OOPsXHjxsmuEhEREdGUxK6dRERERCexyspKrFu3DlVVVfjwww+ZRCMiIiIaArt2EhEREZ2kqqqqsG7dOpSXl+P999/Hpk2bJrtKRERERFMaE2lEREREJ6GamhqsX78eJSUleO+993DeeedNdpWIiIiIpjx27SQiIiI6ydTW1mL9+vUoKirCO++8gwsuuGCyq0REREQ0LbBFGhEREdFJpL6+HmeccQby8/Px9ttv46KLLprsKhERERFNG2yRRkRERHSSaGhowPr165Gbm4s333wTl1xyyWRXiYiIiGhaYYs0IiIiopNAY2MjzjzzTGRnZ+ONN97A5ZdfPtlVIiIiIpp2RIIgCJNdCSIiIiIaPxaLBWvWrMGRI0dwxx134Ic//KHX5bRaLdLT0ye8fkRERETTBRNpRERERDPc119/jbPOOmvY5a688kr873//m5A6EREREU1HTKQRERERERERERH5gJMNEBERERERERER+YCJNCIiIiIiIiIiIh8wkUZEREREREREROQDJtKIiIiIiIiIiIh8wEQaERERERERERGRD5hIIyIiIiIiIiIi8gETaURERERERERERD5gIo2IiIiIiIiIiMgHTKQRERERERERERH5gIk0IiIiIiIiIiIiHzCRRkRERERERERE5AMm0oiIiIiIiIiIiHzw/4ZZPOHofRyxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -411,7 +428,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 16, "id": "1bb5fe10-6a76-4ec5-ba8a-5472c80669fd", "metadata": {}, "outputs": [ @@ -419,37 +436,85 @@ "name": "stdout", "output_type": "stream", "text": [ + "using approximate rate Fe52 + n + n ⟶ Fe54 + 𝛾\n", + "using approximate rate Fe54 ⟶ Fe52 + n + n\n", + "using approximate rate Fe54 + n + n ⟶ Fe56 + 𝛾\n", + "using approximate rate Fe56 ⟶ Fe54 + n + n\n", "using approximate rate Co55 + n + n ⟶ Co57 + 𝛾\n", "using approximate rate Co57 ⟶ Co55 + n + n\n", + "using approximate rate Ni56 + n + n ⟶ Ni58 + 𝛾\n", + "using approximate rate Ni58 ⟶ Ni56 + n + n\n", + "removing rate Fe52 + n ⟶ Fe53 + 𝛾\n", + "removing rate Fe53 + n ⟶ Fe54 + 𝛾\n", + "removing rate Fe54 ⟶ n + Fe53\n", + "removing rate Fe53 ⟶ n + Fe52\n", + "removing rate Fe54 + n ⟶ Fe55 + 𝛾\n", + "removing rate Fe55 + n ⟶ Fe56 + 𝛾\n", + "removing rate Fe56 ⟶ n + Fe55\n", + "removing rate Fe55 ⟶ n + Fe54\n", "removing rate Co55 + n ⟶ Co56 + 𝛾\n", "removing rate Co56 + n ⟶ Co57 + 𝛾\n", "removing rate Co57 ⟶ n + Co56\n", "removing rate Co56 ⟶ n + Co55\n", + "removing rate Ni56 + n ⟶ Ni57 + 𝛾\n", + "removing rate Ni57 + n ⟶ Ni58 + 𝛾\n", + "removing rate Ni58 ⟶ n + Ni57\n", + "removing rate Ni57 ⟶ n + Ni56\n", + "looking to remove Fe53 + He4 ⟶ Ni57 + 𝛾\n", + "looking to remove Fe53 + He4 ⟶ p + Co56\n", + "looking to remove Ni56 + n ⟶ He4 + Fe53\n", + "looking to remove Ni57 ⟶ He4 + Fe53\n", + "looking to remove Fe53 + He4 ⟶ n + Ni56\n", + "looking to remove Co56 + p ⟶ He4 + Fe53\n", + "looking to remove Fe55 + p ⟶ Co56 + 𝛾\n", + "looking to remove Co55 + n ⟶ p + Fe55\n", + "looking to remove Ni58 + n ⟶ He4 + Fe55\n", + "looking to remove Co56 ⟶ p + Fe55\n", + "looking to remove Fe55 + p ⟶ n + Co55\n", + "looking to remove Fe55 + He4 ⟶ n + Ni58\n", + "looking to remove Co55 + e⁻ ⟶ Fe55 + 𝜈\n", + "looking to remove Fe55 ⟶ Co55 + e⁻ + 𝜈\n", + "looking to remove Fe55 + p ⟶ Co56 + 𝛾\n", + "looking to remove Co56 + p ⟶ Ni57 + 𝛾\n", + "looking to remove Fe53 + He4 ⟶ p + Co56\n", "looking to remove Co56 + n ⟶ p + Fe56\n", "looking to remove Ni56 + n ⟶ p + Co56\n", + "looking to remove Co56 ⟶ p + Fe55\n", + "looking to remove Ni57 ⟶ p + Co56\n", "looking to remove Fe56 + p ⟶ n + Co56\n", "looking to remove Co56 + p ⟶ n + Ni56\n", + "looking to remove Co56 + p ⟶ He4 + Fe53\n", "looking to remove Co56 + e⁻ ⟶ Fe56 + 𝜈\n", "looking to remove Co56 ⟶ Ni56 + e⁻ + 𝜈\n", "looking to remove Fe56 ⟶ Co56 + e⁻ + 𝜈\n", - "looking to remove Ni56 + e⁻ ⟶ Co56 + 𝜈\n" + "looking to remove Ni56 + e⁻ ⟶ Co56 + 𝜈\n", + "looking to remove Fe53 + He4 ⟶ Ni57 + 𝛾\n", + "looking to remove Co56 + p ⟶ Ni57 + 𝛾\n", + "looking to remove Ni57 + n ⟶ p + Co57\n", + "looking to remove Ni57 + n ⟶ He4 + Fe54\n", + "looking to remove Ni57 ⟶ p + Co56\n", + "looking to remove Ni57 ⟶ He4 + Fe53\n", + "looking to remove Fe54 + He4 ⟶ n + Ni57\n", + "looking to remove Co57 + p ⟶ n + Ni57\n", + "looking to remove Co57 ⟶ Ni57 + e⁻ + 𝜈\n", + "looking to remove Ni57 + e⁻ ⟶ Co57 + 𝜈\n" ] } ], "source": [ - "net.make_nn_g_approx(intermediate_nuclei=[\"fe53\", \"fe55\", \"co56\", \"ni57\"])\n", - "net.remove_nuclei([\"fe53\", \"fe55\", \"co56\", \"ni57\"])" + "net.make_nn_g_approx(intermediate_nuclei=[\"fe53\", \"fe55\", \"ni57\"])\n", + "net.remove_nuclei([\"fe53\", \"fe55\", \"ni57\"])" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 17, "id": "51a9d176-d848-4ba8-9ba4-619a23e4edb3", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNQAAAKrCAYAAAA57NCnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yW1f3/8dc9svciIZsZIGxQZKqAA7ei1rqttnXUUdt+1U77+9aqXd9q3aNu6wLrwIWA7L3DhiSEkL13cq/fH3dy5Q7ZA4Hwfj4effS67utc55xc8tf7cc75mFwulwsRERERERERERHpEvOJnoCIiIiIiIiIiMipRIGaiIiIiIiIiIhINyhQExERERERERER6QYFaiIiIiIiIiIiIt2gQE1ERERERERERKQbFKiJiIiIiIiIiIh0gwI1ERERERERERGRblCgJiIiIiIiIiIi0g2ndaDmcrmoqKjA5XKd6KmIiIiIiIiIiMgp4rQO1CorKwkJCaGysvJET0VERERERERERE4Rp3WgJiIiIiIiIiIi0l0K1ERERERERERERLpBgZqIiIiIiIiIiEg3KFATERERERERERHpBgVqIiIiIiIiIiIi3aBATUREREREREREpBsUqImIiIiIiIiIiHSDAjUREREREREREZFuUKAmIiIiIiIiIiLSDQrUREREREREREREukGBmoiIiIiIiIiISDcoUBMREREREREREekGBWoiIiIiIiIiIiLdoEBNRERERERERESkGxSoiYiIiIiIiIiIdIMCNRERERERERERkW5QoCYiIiIiIiIiItINCtRERERERERERES6QYGaiIiIiIiIiIhINyhQExERERERERER6QYFaiIiIiIiIiIiIt2gQE1ERERERERERKQbFKiJiIiIiIiIiIh0gwI1ERERERERERGRblCgJiIiIiIiIiIi0g0K1ERERERERERERLpBgZqIiIiIiIiIiEg3KFATERERERERERHpBgVqIiIiIiIiIiIi3aBATUREREREREREpBsUqImIiIiIiIiIiHSDAjUREREREREREZFuUKAmIiIiIiIiIiLSDQrUREREREREREREukGBmoiIiIiIiIiISDcoUBMREREREREREekG64megIiIiIiIiIjIycTlcmFzuHC4XJgAL4sZi9l0oqclJxEFaiIiIiIiIiJy2iuvs5FeXENRdQPFNQ3U253GM7MJQv28iPD3JjbYl8RQP8wK2E5rCtRERERERERE5LSVXV7L7rxKcivr223jdEFJjY2SGhsHiqrx8zIzPDKQUdFBeFt1mtbpSIGaiIiIiIiIiJx26mwO1h8pI7Okptvv1tqcbM+t4EBRNVOTw4gP8Tsuc5STl2JUERERERERETmtFFbV88muvB6FaZ5qbA6WHChiQ1YpLperz+YnJz8FaiIiIiIiIiJy2sivrOeb/YXUeZyR1lt7CqpYnVmiUO00okBNRERERERERE4LZbU2lhwsxO7s++DrUHENm7LL+7xfOTkpUBMRERERERGRfs/pcrEqowSb4/itItudX0luRd1x619OHipKICIiIiIiIiL93q68SoprGrh+QhzFNQ0A7MytJKeijsgAbybEhmAywdHyOnblV/Z4nDWZJVyWGoOXRWuY+jMFaiIiIiIiIiLSrzU4nOzIrQCgqsHB1/sKjWdmE4wbGMzSQ0U4+mAraFWDg/2FVaTGBPe6Lzl5KS4VERERERERkX4tvbjaODctwMvChSlRzBwUjo/FTFSAD3ani3OGRHDesCjC/Lx6Pd6+wmoVKOjntEJNRERERERERPq1/YXVxvXCtFzq7U6GRgQwIS6E/Kp6Qv28WLQnnwBvC1OTwvlqXwEAF6REERXgg9MjHNucXc6+wqoOx6ust5NbWU9ssO9x/KvkROo3K9SeeOIJTCYTDzzwwImeioiIiIiIiIicJOpsDkprbcZ9vd0JQEZpDeH+XtTbnRRU1WN3uiivs+NtMbV4f3N2Ge9uPWr8r7MwrUmeihP0a/1ihdrGjRt58cUXGTt27ImeioiIiIiIiIicRJoKEABYzSYcThcuICbQh4p6O0XV9YwdGASAr9VMV4uAWs0mJsWHEB/ih8VsIqe8jvVHSo0qosU1tk77kFPXKb9CraqqihtuuIGXX36ZsLCwEz0dERERERERETmJlHgEW8G+Vi4eFc0FKVGMig5i69FyGhwuDhbVcGHKAGYPjWTTkbIu9Ts9ORxvi5lPd+excGcuZhNMSWzOJUo8gjzpf075FWr33HMPF198MXPnzuVPf/pTh23r6+upr6837isqKr6HGYqIiIiIiIjIidLgcBrXJTU2Pt+d36rNweJqDhZXt/odYGJ8CONjQ4z7D3fkYDGbSAzz4/1tR40VaVtzKrg8NYbVGSW4gHqPcaX/OaUDtffee48tW7awcePGLrV//PHH+eMf/3jc5yUiIiIiIiIiJwdnL4ttbskuZ09By3PTQny9MJtMzB8T26q9n5eFGpsDlwtcLhcmk6lVGzn1nbKB2pEjR7j//vtZvHgxvr5dq5rxyCOP8OCDDxr3FRUVJCQkHMdZioiIiIiIiMiJ5GXu+0CrusGO0+Xigx05ONpJ7Kxmk8K0fuyUDdQ2b95MQUEBEydONH5zOBysWLGCZ555hvr6eiwWS4t3fHx88PHxOQGzFREREREREZETIdi376OPOruTI2W1TEkMZXN2OfV2J75WMwMCfcgqqwUg5DiMKyePU/a/7pw5c9i5c2eL32677TZGjBjBQw891CpMExEREREREZHTT0SA93Hpd1VGCeNjQ7h4ZDQ+VjN1NgeZJTVGoHa8xpWTwykbqAUFBTF69OgWvwUEBBAREdHqdxERERERERE5PQX7WPGxmHtUJODrfYXtPrM7XWzKLmNTdttVQSMVqPVr5hM9ARERERERERGR48VkMjE4wv97HdNqNpEU9v2OKd+vU3aFWlu+++67Ez0FERERERERETnJpAwIbFWp83gaHOGPt0VrmPoz/dcVERERERERkX4txNeLhFC/72UsswlGDQj6XsaSE0eBmoiIiIiIiIj0e2clhuFtMR33ccYNDCHEz+u4jyMnlgI1EREREREREen3/L0tnJkQdlzHiPD3YnSMVqedDhSoiYiIiIiIiMhpYUhkwHELvAK9LZw7NBKz+fivgpMTT4GaiIiIiIiIiJw2JsaFMKaPQ7UgHyvO1TtZ/Z+VuFyuPu1bTk4m12n8X7qiooKQkBDKy8sJDg4+0dMRERERERERke9JZkkN67JKqbc7e9XP4Ah/0t9Zxtu/fx+AAYmR3PT7a5h9w0y8fXSWWn+lFWoiIiIiIiIictpJDvfn8tQYBof743J0P1QL9rFy7tBIZg6KoLq40vi9IKuIv9/xPDcNupt3HltAhccz6T8UqImIiIiIiIjIacnPy8L4MB8+ufIxCrZupK6krMP2VrMJ34ZKgrIymB0XSGKoHwDn33JOq7YleWW8/rv3uCHpLr58dclx+xvkxFCgJiIiIiIiIiKnrbWfbqIqr5SVv16A86uNXDc+lvOGRzElMYyD7yxj498+Zv2f3uPy1Gjmj4pkz1cfsGPHUu694FfkZRYAMGhMIr6Bvm32X1dTz7uPLfie/yo53hSoiYiIiIiIiMhpa+WCdUSMCCZ6Yjizrp6Oj9VCbLAvIwYEUrczg30frOTApxvwarBx9OhRTBZ3Fc/BF8XwwNm/JTc9H4vFwogzh7Y7xqV3XfA9/kXyfVCgJiIiIiIiIiKnpeqKGjZ/s52BZ4YTEhfAyLOGtXgeGRduXBdml2CxWLDXOTCZ3KGaJcLFw5f9kez9OYw6a3ibY9zxxA1c+6vLj/NfIt83BWoiIiIiIiIiclpa//lmbA12aovqiQtLwGxuGZNExkUY10VHS/A1++FyugAwmU0MuzSOwddE85tr/tQifPO05pONOOyO4/yXyPdNgZqIiIiIiIiInJZWLFgHJji6tpg5l5/b6nlUfHOglp9ZwIcLP8TL3wqAy+WiOr8OW40dSxi88fv3CQwNAGD45CFEJ0UCsHvtft7/yyff298k3w/riZ6AiIiIiIiIiMj3rbaqlo1fbiVmUjhJ50STOj2lVZv44QON66y92ZSGlFBTWIdvuA91pQ3s/zibmsJ6o83tj19PQkocZ8ybwMEt6fx85u9wOl28+egHnHHheIZNHPy9/X1yfGmFmoiIiIiIiIicdjZ8sZWGOhtBcX74eflhsVhatUkcGWdcH9mbQ4Q5hh2vZbDmT7so3FFGQ6XdeD75gnFcdMdcpl9xJt4+XoyamsJ1D18JgMPu4Imbnqa+tr7VGHJqUqAmIiIiIiIiIqedFQvWAXB0TREzzprVZpuI2HD8g/wAyNpzlAivKOy1DkwWEwlnDyAyNRiAJxf/jse//C3BEUEt3r/x91czbOIg4/1XH3n3OP9V8n1RoCYiIiIiIiIip5W6mno2LNqCxdtM4rRopp5/RpvtTCaTsUot/3Ah5996Dj/4n8u56bfX4Ic/Vj/3SVp71h5o830vby8eevNevH29APj46S/YsmTncfu75PujQE1ERERERERETis7V+ymrqaesGGBRI4Pxma3tds2wWPbZ0luGXc8cSM3/eEabvnRzWSvKgRgxYK17b6fNCqBO5640bj/223PUlNZ22d/i5wYCtRERERERERE5LSy5Vv3KjGzxUywXygBAQHttk0cEW9cZ+3JNq7Nfiam/k8qFl8z6dsPc/Rgbrt9XP6zC5k4dwwAhdnFvPvYgj76S+REUaAmIiIiIiIiIqeVrUvdgVphWjk/+tFtHbZNHNG8Qi1r71Hj2svLC4ufieB4fwBWf7yh3T7MZjMPvPBTvHzcWz8X/N/nZB9oP4CTk58CNRERERERERE5bZQVlnNoWyYmM5z1q5EUlRd22N6z0qdnoBYWFsbYUeOoKXJX7uzsbLSBg6O59peXAWC3OXjhwdd7+ZfIiaRATUREREREREROG9uX7QLAJ9Qbi68Zs7njaGTg4Gi8vN3FB47saQ7UTCYTs88/l8jEcADSVu7B1tD+WWwAP3j4CqLiIwBYv2gL6xdt7vXfIyeGAjUREREREREROW1s+XYHAPXlNobEDiMhIaHD9harhbhhAwHI3p+D3WZv7mvLFgZfEu3ur7aBPevarvbZxC/Al5/89Sbj/vkH36ChvuMQTk5OCtRERERERERE5LTRtDXTP8yHqeechdVq7fSdQWMToXGr5qHth43fQ0NDMXubjPttS9M67evsa6cxZtZIAI4eyOXjp77o0d8hJ5YCNRERERERERE5LeSm55OXUQDA6KuGsHzld116L3XaCON61+q9xvXYsWO56rKrjfttyzoP1EwmE/c89SPMZncQ986fPqIop6Rbf4eceArUREREREREROS0sNWjcEBIbDARERFdei91eopxneYRqJnNZg4c3kfSBHfhgj3r9lNbXddpf0PGJXPxT88HoLaqjlcfeadbf4eceArUREREREREROS0sGXJDuN6ztlzOP/887v03qAxifgH+QGwa/U+XC6X8SwtLY1hZydB45bQtFV72+3H063/7wcEhQcC8O1bKziwJb1bf4ucWArURERERERERKTfczqdxhlnAeH+HMjdi91u7/Q9AIvFwsipwwEoyS0lL9O9bdRkMpGSkkLyyESjbVfOUQMIjgji5kevNe7feWxBt/4eObEUqImIiIiIiIhIv5e+4zDlRZUAjLtgBHv37aW6urrL76dO89j26bEKbf78+cy55BzjfuvSna3ebc9Fd8whIjYMgNUfbyAjLavL78qJpUBNRERERERERPq9rd82B10jzxhOfHw8kZGRXX5/9AzPwgT7jOsNGzaw8LMFDB7r3vZ5cEsGlaVVXerT29eba395uXH/7p8Xdnk+cmIpUBMRERERERGRfs9z5diU887g5ptvxmq1dvn9EVOGYba4YxTPSp9Wq5W8vDzGnZsKgMvlYsfy3V3u96KfzCU0KhiA5e+v4ci+o11+V04cBWoiIiIiIiIi0q/ZGmzsXLEHgIjYMI4UZ/LOO92rrOkX4MuQ8ckAZO46YqxCGzFiBHPnzmXinLFGW89qop3x9fdh/oOXQmMY958nPu7WvOTEUKAmIiIiIiIiIv3annUHqKupB2Di3LGUlJTgdDq73c/o6c3bPnevcW/79Pf3JygoiNEzRxgr2LYt61phgiaX3X0BQWEBACx5eyW56fndnpt8vxSoiYiIiIiIiEi/tuXbHcb1hNljmDhxIrNmzep2P2NmjTKu13+xFYDi4mIWLlxIeVUZwycPAeDw7mxK8kq73K9/kB9X3n8xAE6Hk/ef/G+35ybfLwVqIiIiIiIiItKveW7BnDBnNE6nk4iIiG73M+m8sXh5u89dW/vpRlwuF35+fphMJhwOBxNmjzbablvavVVqV953Ef7BfgB8/foyCo4UdXt+8v1RoCYiIiIiIiIi/VZ1RQ17NxwEIGFEHJFxEXz66ads3bq12335B/kxfs4YAIqOlrB/czoBAQHcddddJCQkMH72GKPt1m4GaoGhAVzxs3kA2G0OFv5zUbfnJ98fBWoiIiIiIiIi0m/tWL4bp8N9XtrExjDM4XAQHBzco/6mX36Gcb32k40AbNq0iezsbFKnDcfLxwt6cI4awFUPXGy8v/jN5TTU23o0Rzn+FKiJiIiIiIiISL/leX7axLnuSpy33XYbEyZM6FF/Z1062bhe86k7UNu9ezfp6en4+PmQOm04AHkZBeRmdK+4QEhkMLOuPguAiuJKVn+8oUdzlONPgZqIiIiIiIiI9FtNZ5mZzSbGnj0Km83GV199RW1tbY/6ixgYxsizhgGQsTOL3PR8Bg8eTGhoKADjz23e9tndc9QA5t0xx7j+4pVvezRHOf4UqImIiIiIiIhIv1RVVk3mriMADJs0mMDQAMrLy9m3bx/FxcU97nfaZc3bPtd8spHLLruMMWPcQdp4z8IEPdj2OXbWKOKHD3S/vzSNowdzezxPOX4UqImIiIiIiIhIv5SxM8u4Hj5pCACBgYFER0cTFhbW436nXXGmcb36kw18/PHHfPPNNwCknDEEv0BfaAzEXC5Xt/o2mUzMu715ldqXryzp8Tzl+FGgJiIiIiIiIiL9kmegNmhsEgC+vr786Ec/6nFRAoDEEXHGKrJdq/ZSVlpOTU0NAFYvK6NnjgSgJK+MvIyCbvd/3i3nYPWyAPDNG99ht9l7PFc5PhSoiYiIiIiIiEi/lL7jsHE9aEwiABUVFTz55JOUlJT0qu9pl7tXqTmdLvzrg5g4caLxbOj4ZOO6actpd4QNCGFqYzXR0vxy1n62uVdzlb6nQE1ERERERERE+qWMnR6B2ugEAGpra3E6ncaKsp5qqsYJsOnzHS1WvCWPTjSuM9O6H6gBXHTHXOP6SxUnOOkoUBMRERERERGRfsfpdBpbPmOSowgICQAgMjKSs88+m5iYmF71P3zyEGPVGwMb+Orzr41nyakJxvXh3T0L1CbOHUNMchQAm77eTkFWYa/mK31LgZqIiIiIiIiI9Dv5hwupraoDj/PTAMxmM5GRkVgsll71bzKZjFVkToeLI3tyjGfxKbGYLe7IJSMtq90+OmI2m7ngttkAuFwuVny0rlfzlb6lQE1ERERERERE+p2MHR4FCTy2YObn57NgwQIKCrpfLOBYc26cibevFwc+PcqmN3fRUNcAgLePF3HD3EULjuzNwWF39Kj/WddMNa7XfLqx1/OVvqNATURERERERET6Hc+CBIM9VqhZrdYW/98bQWGBzLz6LCJHBmMOhpUL1hvPkhvPbLPV28g5lNej/hNHxJGQEguN1UTLiyp6PWfpGwrURERERERERKTfSfcsSOARqEVGRnLnnXcSERHRJ+NcdMdcosaEED4siC88igckj2o+R62nhQkApl7mrvbpdLpY97mqfZ4sFKiJiIiIiIiISL+T2ViQwNvXi7ihzQUInE4nq1evpqKib1Z7jZk5ElODhZrCenYs3032fvdZak0r1AAyd/U8UJt+xRnG9ZpPtO3zZKFATURERERERET6lbqaeo4eyAUgKTUBi7W5AEFDQwM7d+7kyJGeh1yeTCYTZ6ROIWd9MQBfvrLEGLdJbwK1EVOGERYdAsDmb7ZTV1Pf6zlL7ylQExEREREREZF+5fDubJxOFwCDxiS2eObj40NsbCyBgYF9MpbL5SLLdIDIEcEAfPPGdzTU24gbGoOXt/uctsO9CNTMZjNnXTIZgPraBrYs3tEn85beUaAmIiIiIiIiIv1KhmdBgjFJLZ6ZTCZuv/12EhIS2niz++rq6qiurmbU9OEAlBVWsPiN77B6WUkYEQdA9v5cbA22Ho+hbZ8nHwVqIiIiIiIiItKveFb49CxI0OStt95i7dq1fTKWr68vM2bM4PJbLzF+e++Jj7Hb7CSlxgPgsDvI3p/b4zEmzBmDb4APAOs+34TD4eiDmUtvKFATERERERERkX4lIy3LuB48NrHV84aGBoqLi/tkLJfLRUJCAmOnpzL5gnEA5GUWsvTdVSSnNo/dm0qf3r7enHHheADKiyrZs3Z/H8xcekOBmoiIiIiIiIj0Gy6Xi/Tt7hVq4TGhhEaFtGozY8YMxo4d2yfjHTx4kP/85z/U1dVxw2/mG7//5/GFJDZu+aSX56gBTLl4knG9/bvdvepLek+BmoiIiIiIiIj0GyV5ZVQUVwKQPKb16jSAgQMH4u3t3SfjNTQ0YLFY8Pb2ZvSMkYw7JxUaz00rOFJktMvcldVBL50bM3Okcb1rzd5e9SW9p0BNRERERERERPqN9A4KEjRZv349n376aZ+Ml5KSwo9//GPMZnfEcr3HKrUvX12Ct68XAJm7sns1zsDB0YRFu1fb7VqzT+eonWAK1ERERERERESk38jc6Xl+WtuBWlhYGNXV1X0y3oEDB8jKah5zwuzRjJrqrviZmXaEiLhwAHIO5lFfW9/jcUwmE6nTRwBQU1HL4V4GdNI7CtREREREREREpN9I3+lZ4bPtLZ+TJk3i5ptv7pPxtm7dysGDB417k8nUYpVaVak7uHO5XGTtOdqrsUY3BmoAu1Zr2+eJpEBNRERERERERPqNpi2fZouZxJHxbbYxmUwsX76c8vLyXo8XEBDAkCFDWvx25rwJDJs4CIDKkirj98xeFiZInZ5iXKcpUDuhFKiJiIiIiIiISL/gcrnI3pcDQNywgXj7eLXZzul0snv3bg4dOtTrMS+55BLOPPPMFr8du0qtSWZa7wK1oRMG4ePnLqawa/W+XvUlvaNATURERERERET6hZqKGhrqbABExYe3285qtTJ8+HD8/Px6NV5paSlPPPEEZWVlrZ5Nv+JM4yy1Jr2t9Gn1sjJiyjAA8g8XUphd3Kv+pOcUqImIiIiIiIhIv1CS1xxshcWEdtj22muvZejQob0aLy8vD4fDgZdX65VwJpOJe57+ESaTyfgtN72gV+MBpE5r3vapc9ROHAVqIiIiIiIiItIvtAjUBnQcqK1evZq33nqrV+PFxcVx/vnn4+/v3+bz4ZOGMO/22cZ9/uHCXo0HMHqGZ2ECbfs8URSoiYiIiIiIiEi/UJbfXGQgvJMVal5eXuTl5eFyuXo8XlVVFUOGDGmxCu1Ytz32Q8xm9/OG2gb2rD/Q4/EARp7VvI304LaMXvUlPadATURERERERET6he5s+Rw9ejRz587tMAzrzBdffMH69es7bBMaFULssIHG/b/ueQWn09njMQNDA4iIDQMga8/RHvcjvaNATURERERERET6hRaBWnRIh20DAwMJCAigsrKyx+PV1NQQGRnZabuhE5KN6wNb0ln85vIejwmQODIegIriSsoKyzttL31PgZqIiIiIiIiI9Atl+c2BWmdbPgGWLl3K2rVrezzeLbfcwplnntlpu2PPc3v1kXeoLq/u8biJI+KMa61SOzEUqImIiIiIiIhIv1CS3/UtnwCJiYlUVFT0aKzMzEy+/fZbLBZLp21DooJb3Jfml/PqI+/2aFw8VqgBHNmrQO1EsJ7oCYiIiIiIiIiI9IXSxi2fZouZ4IigTttfdNFFPS5KsHPnTgoKCrrUNtQjULN6WbHb7Hz2wjdMvWwyZ1w4odtjJ47UCrUTTSvURERERERERKRfaDpDLXRACGZz1yKP1157jZKSkm6PFRERwaRJk7rU1nOF2uQLxxvXf7v9eSqKu3+GW4Lnls+92d1+X3pPgZqIiIiIiIiInPKcTidlBe7tm105Pw3AZDJRWFjIgQMHuj3e8OHDu3R+GsesUBs4aACTLxgHQEluKf+866Vur5ILjwklIMQftELthFGgJiIiIiIiIiKnvMqSKhx2B3Tx/DQAq9XKtGnTjEqd2dnZVFd3XiwgIyODZ599ltra2i6N47lCraKkkl+8ejdB4YEArPxoHUveWdmlfpqYTCZj22dBVhG1VV2bh/QdBWoiIiIiIiIicspr2u4JEBYd0uX3goKC+Oabb1i4cCFvvPEGu3bt6vSdnJwc/P398fX17dIYnoFaeWEFkbHh3P/8T4zf/vWzVyjIKgQge38O9bX1nfaZOKK5MEH2/twuzUP6jooSiIiIiIiIiMgpr9QjUAuP7niFWk1NDW+99RZJSUls3bqVhoYGo8BA02q1jowZM4akpCRMJlOX5hYYGoDZYsbpcFJe6N6WevY1U1n72UyWvL2SmopaHr/xacJiQln50ToSR8bx4ra/YfVqP7bxLExwZO9Rhk0c3KW5SN/QCjUREREREREROeWV5pcb151t+fT29qayspINGzbQ0NBg/D5jxgwGDRrU4bsul4sNGzYQHBzcYTtPZrOZkEh31dGyxkAN4GdP305UQgQAaav2svKjddB4LtqBLRkd9hkzaIBxXXCkuMtzkb6hQE1ERERERERETnmeWz47K0pgtVq58847OffccwkKCjJ+r6mp6XTVWU5ODqtXr6asrKzDdsdq2vZZXlhhFCEIDA1g/gOXtNl+z9r9HfYXGRduXBdlK1D7vilQExEREREREZFTXmleqXEd1smWT4DAwEBmzpxJcnKyEaIVFhZ2+l59fT1RUVHExcV12tZTSKQ7UGuos1FXXQfAkndW8vJDb7fZfve6fR32FxkfYVwX5ZR0ay7SezpDTUREREREREROeaUFXd/y6WnmzJns27ePhoYG4uPdB/2XlJSQl5dHQ0MDFouF4OBg4uLisFqtxMfHc9ddd3X5/LQmnoUJygor8Av04+WH3jIqkx5rdycr1EIGhBA+PA7vEH8agvzJq6wjxNcLPy9Lt+YlPaNATUREREREREROed3Z8ukpKiqKO++8k2effZb169ezYMECSktLW7Xz8vIiISGBmpoabr31ViZOnNit+TWtUKNx2+fAQdGcfc00Fj61qM32hUeKKTpaTGRc80q0yno7+wuryK2oo7TWxkVv/8J49vU+9+o6fy8LkQHeDI7wJyHUD3M3gz/pGgVqIiIiIiIiInLKa6ry6eVtJSDEv0vv2O12Pv/8c7744otOz0Sz2Wykp6cD8OSTTzJp0iSuv/56Y1VbZ0KjWgZqAHf9362cc910PvrHZ6xasA6n09XinWXvreaaX1xGSU0DW46Wc7S8rtNxamwOsspqySqrxd/LwsjoQEZFBylY62MK1ERERERERETklNcUqIXFhHZpO2ZmZibPPvsshw8f7vZYLpeLTZs2sX37dq655houvfRSLJaOt1oeu+Wzycgpw/jd+w+Sm5HPwn8u4vMXF2NvsANQXlTJ9pxyduRWcEzW1iU1Ngebs8vJLKlh+qBwwvy8u9+JtElFCURERERERETklFdZWg1AcERQp21XrFjBI4880qMwzZPNZuPdd9/lz3/+M7W1tR229VyhVlFU2er5wEHR3PPUj3g/5yXOv+Vszr3lHGJvnsO2nJ6FaZ6Ka2x8vjufzJKa3nUkBgVqIiIiIiIiInLKczqcAFisHUcd3333Hc888wwOR9vFAHpi586dPPbYY9TVtb8ls70VascKDg/i/pfvZuyv5lNYbeuzOTpdsDy9mPTi6j7r83SmQE1ERERERERETnkul3sZV0fbPdPS0nj++eePy/j79+/n6aefNuZxLC8fL+PaYbO324/L5WJ5ejHFNX0XpnlalVlCQVX9cen7dKJATUREREREREROaZ4hlsncdqBWW1vL888/327g1Rc2bdrEihUrujDH9uOY/YXV5FR0Xnygp1wuWJ1Rgr1xRZ/0jIoSiIiIiIiIiMgprUVY1c4KtXfeeYfCwkLefPNNDh06BMB///tftm/f3uZvPfX6668zduxYwsLCWs7R6TnHtt+tqrezKbuM6yfEUVzTAMDO3EqqG+ycleTuz2o2YwI+35Pf4zlW1NvZmlPBGQmhPe7jdKdATUREREREREROaS3CqjZWqJWWlrJkyRIACgoK+OMf/9jieVu/9VR1dTVffvkl119/fcs5dmGF2u78SuxOF1UNDr7eV9jiWdN9SlQg3tbOq5h2Zm9BJWMGBuFr7bg6qbRNWz5FRERERERE5JTmGVaZ2wirlixZYhQhiIyM5NFHH+Xee+8lMDCw3d96Y9myZdhsLc9A62yFms3h5GBjwYAALwsXpkQxc1A4PpaWf8+gcH8yintfrdPpgoNFKlDQU1qhJiIiIiIiIiKnNKdHWMUxYZXL5WLp0qXG/b333ktlZSXnnnsuP/zhD3n55Zfb/A3gD3/4A8OHD29REfTtt9/mm2++6XA+5eXlbN68mbPOOqvFPIwpthH6ZZXVYnO42yxMy6Xe7mRoRAAT4kJYl1UKQIC3BZMJqhqa5zMg0JsxA4OJCvDBBFQ12EkvqWFPfiXOTo6LO1BYzeiY4I4bSZtO2UDt+eef5/nnnyczMxOA1NRUfv/73zNv3rwTPTURERERERER+T51sEKtuLiYoqIi476yshKA1atXM3fu3HZ/a/LOO+/wxRdfdHtKe/fubRGoOTtZoVZQ2Vx5s97uLhiQUVrD8KgA4/dB4f5kljSvTosP8WXW4Ai2Hi1nVUYJ9XYnwb5WxsQE4+dlodojeGtLRb2dOpsDXy9t++yuUzZQi4+P54knnmDYsGG4XC7eeOMNLr/8crZu3UpqauqJnp6IiIiIiIiIfE86CqvS09ONax8fHxoaGnC5XIwaNYq8vLw2f+sKHx8fbrjhBiZPnoyXlxfbtm3j3//+N7W1tQBkZGS0fKGTbalNRQisZhMOpwsXEBPoQ0W93WiTHO7Pt/ubz1Y7MzGMtLxK9hRUGb9V1NlZnVli3PtazUxJDCMmyAe700V6SQ3bjpbj8hg3LsSvS3+zNDtlA7VLL720xf1jjz3G888/z7p16xSoiYiIiIiIiJxGOtpOmZWVZVzHxsZy5513Ultbi81m44UXXmjzt664++67cTgc/PKXv8ThcHDnnXdy++2388wzzwBw+PDhFu0725ZaWus+cy3Y18q05HBsDidOJ6w57A7HQn2t1Nud1DWuXgv2sRLkYyWjpONz0GYNjqDW5mDBzlx8rGbmDovC7nCyM8+9Kq+01qZArQdO2UDNk8Ph4MMPP6S6upqpU6e2266+vp76+uYllBUVFd/TDEVERERERETkeOnowP+mFWM0rhp76KGHWjwvLi5u9Zun66+/nmuuuca4v/POO/H29mbKlCncfvvt1NS4t2C+//77/OMf/+DZZ5/F5XJRW1uLy+XC1DihjgonOF0Y552V1Nj4fHd+q3mU1dlZ7LE6zcfL3UdH2zr9vSwMDPbl/W1HsTtd2Bsc7MitYFxssBGo2R2dHLQmbTqlA7WdO3cydepU6urqCAwM5OOPP2bUqFHttn/88cf7rAyuiIiIiIiIiJwcOlqhZmrrwLJuePfdd1udoRYfH4/ZbDZWozVxOp2EhoZSWlqKyWRqMXbL0K/lnHoyw3qbe6VagLeFyvq2QzV/bwt2Z/OqNoDKejsBOjOt107pQC0lJYVt27ZRXl7ORx99xC233MLy5cvbDdUeeeQRHnzwQeO+oqKChISE73HGIiIiIiIiItLXOlqh5uvr2+fjFRUV4XQ6+elPf0pDQ0Obbfz8Wm6jbBn6HROomcBsotOqnJ4q6u1U1ttJDvdnZ25lm21qGhxYzWZ8rWYjVAv0tlBtaw7gvCy9CxxPV61PwTuFeHt7M3ToUCZNmsTjjz/OuHHjeOqpp9pt7+PjQ3BwcIv/iYiIiIiIiMipraMVaomJiX0+Xnl5ORs3buT2228nKCgIgJCQEM4444x2x+1whZrJRJifV7fnsSGrlDExwYwYEIiPxf13B/tYmZYURoC3hRqbg9yKOiYnhGI1mwjwtjB2YDCHipvPXQv18+72uHKKr1A7ltPpbHFGmoiIiIiIiIj0fx2tUBs8ePBxGfPZZ5/l2muv5fHHHycwMJDy8nLWrFnDxo0bARg0aFDLOXawQg0gwt+b4hpbt+aQXV7HtwcKGTswmAmxIQBUNdhJL66htnEV2or0YqYkhjF/zEAcLhfpxTWk5TWvaIsI6H6QJ6dwoPbII48wb948EhMTqays5N133+W7777j66+/PtFTExEREREREZHvUUcH/kdERBAVFUVhYWEbb3aso3PY6+rqePPNN3nzzTfbfD5ixIiWc+xghRrAgCAf9hd1XLGzLQVVDXx7oKj9edqdLE8vbvNZsK8VX6vOU+uJU3bLZ0FBATfffDMpKSnMmTOHjRs38vXXX3Peeeed6KmJiIiIiIiIyPfI6Xn42DFZlclk4txzz/1e5xMSEsLkyZNb/NbZCrWkUD+8v+fzzIZHBnyv4/Unp+wKtVdfffVET0FERERERERETgYdrFADmDNnDgsWLMDhaLsaZl+bPXs2VmvLyMXZyQo1q8XM0MgAdudXfS9ztJhMDFGg1mOn7Ao1ERERERERERFahVWtn4eFhTF37tzvZS4BAQHMmzev1e8up9O4NrexQg1gVHQQ1nae9bURAwK13bMXFKiJiIiIiIiIyCmtoyqfTW644QaioqKO+1xuu+02QkNDW/3uMcW2Uz8gwNvK5ITW7/a1YB8r4+OCj/s4/ZkCNRERERERERE5pXVU5bOJr68vd999d5tbQvvKmWeeycyZM9t81pUVajSeaxYX7Htc5gdgNsH0QeFYj+N3OB3o64mIiIiIiIjIKc3q3Xxema3e3m671NRU7r777jbPMOutlJQU7r333nb79lyh1tH4JpOJKQMDqcrI6/M5moCZgyIYEOjT532fbhSoiYiIiIiIiMgpLTg80LguK6zosO2sWbO49957sVj67vywsWPH8pvf/AYfn/aDKoe9uSBCW1U+m7hcLp6/91UW/ehp8rcc6rM5mk0QkV/Ev656ku8+WNNim6x0nwI1ERERERERETmlWawWghpDtfJOAjWAGTNm8MQTTzBo0KBejevl5cVNN93Er3/9a3x9O96mWVFcaVwHRwS12+6z579h8ZvLsVXXsepX/ybZ6g7DeiMywJtLR8XwzPy/sGPFbh677v+4c+KvWPbe6hZBn3SdAjUREREREREROeWFRrkP2e9KoAaQlJTEY489xo033kh4eHi3xjKbzZx55pn89a9/5dJLL+3SuWyleWXGdVh0SJttdq/dx/M/f824/8XLd3L2+AQuGRVNsM2Gy+Fs8732BHhbOCMhlHkjBhDq54WXx9bY9O2H+fP1/+TmoT9jwf99Tk1lbbf6Pt0pUBMRERERERGRU15IY6BWU1lLQ72tS+9YrVYuu+wynn32WcaOHcvQoUOJiIhos623tzfDhg1jxIgR/OQnP+EXv/gFsbGxXZ5fSb5HoBbTupJnVVk1j/3wn9ht7hVjVz94KWdfO83d3s+bI28vZekD/0fx7i1419ZhabdSqIUoHyjfupLS979leIQ/5sa2Z8yb0Kp9QVYRL/ziDW4Zdi/ZB3K7/Pec7qxdaCMiIiIiIiIiclILiWzeRllRVEFkXNvBWFvMZjMPP/wwFosFk8lEeXk5ubm5NDQ0YLVaCQoKIjY2lrq6Ov7xj3+wcuVKHA4H5513XpfHKM0vN67D2wjU/vWzVyjIKgJgzMyR3PHEDcYzh8PB6o/XU5JXRsmuD/jg6Cv4BviyYdVevlu4nl1r92Ovs3Hx9TO4+qHLeevf71Cac5BCp4Ofz/0N/7f4T1i9rEyYPYYVH65tc35lBeXsWr2X+GEDu/w3nc4UqImIiIiIiIjIKS8kMti4LivsXqC2fv16MjMzue6669x9hYQQEtJ6W+aRI0dwOt3bLteuXcusWbM6LETgqWnLp+d5b02WvLOSpe+uAiAgxJ+H37oXi7W5aMLuNfspKypn0r3D8C0Jwj/Ij+wDOfz+3D+0KC5QlDEMgJyco+6xvM3Yg2v532v/wW/e+zmjpg5vd36jpqUYK+Kkc9ryKSIiIiIiIiKnvKYtn3TjHLUmaWlpeHl5ddouPDycgIAAaKzGuWTJEvbv39+lMUoaA7XQAcEtzlzLyyzg6XteNu7ve+7HDEiMavHuio/WEpzoj1+4DxPPHQ/AP+98qVWlzqKjxQB4Od0hn8lsInRwIEdKMvnjD/7CwCHR+Af5tZpbRGwYTy7+Hb7+XQsHRYGaiIiIiIiIiPQDoVHNK8q6G6iNHj2aqVOndtrOYrFQX19v3G/cuJH//Oc/7N27t8P3nE4nZQXuLZ+e2z0dDgd/ueUZaircBQHm3DiT2T+c0erdVQvXU1vcQPaqImZfNZM1n2xk+7JdrcYpOlqCy+WivrLB+M03zJvEcwbgGlzLo1c+yfDJQ1q9V5xTypcvL+n075dmCtRERERERERE5JTnuUKtrBuBWn19PREREV0qMPCf//wHu91u3KekpDB48GCqq6s7fK+iuBJnY4VOz4IE7z/5CTtX7gEgOimKe/91e6t39244SNHREnxCvIgOGojFauGZ+15tc5zc9Hz27dtHQ2ANNK6is9c6yNlQTF15A9tX7Kau1h0IhkQG8eMnbzTefeXhtzm8J7vTbyBuOkNNRERERERERE55Pd3yuX79ejZs2MAvf/nLDtu5XC7KysoYPHgwlZWVREdHc+GFFxpbQDvSdH4aQNgAd6C2b+NB3nz0AwDMZhMPv3UvASGt+1r50Towwajrkxgak8ibj35I4ZHiNsepqajlSGY2TpuTwl3l+A/wJXd9EQU7mgsilOaW8ebBZwiLCcXX34fC7GL++68vaaiz8eRNT/PUmsfw8u58++vpTivUREREREREROSUF9rDQK20tJS4uLhO25lMJm644Qauv/567rrrLpxOJzabrUtjlHgGajGh1FbV8viNT+OwOwD44SNXMXrGyFbvuVwuVi5Yh3eAFauPhWGjhrLwqUUdjhXgCCbtzUwOfHKUrO8K8A1rPhctdXoKD791LwMHRxvnpd3xxA0kjHD//Qe2ZPDO/y7o0t90ulOgJiIiIiIiIiKnvBZbPou6Hqidd955XH755V1qO2jQICwWC06nk/3797Nnz54uvVea37xCLDwmlBd/8SZHD+QCMOLModz4+6vbfG//5nTyDxfSUGWnfpsZX1OAsXW0PYWZxUZRAv8oH+KmRbhXuE0dzj9X/qlVcOfj59Oiquh/Hl/I7rX7uvR3nc4UqImIiIiIiIjIKa8nWz4rKyv56KOPsFgs3RrLYrEwfvx4fH19u9Tec8tndXk1i17+FgDfAB8eeus+rF5tn8i18qO1AMRNi2TY2cmMPzeVO/9+CzOuPBOzpTHSMbV8J2vPUf665A888MJP+Plf78ZW4cRkMrF3/QHKCsvbGAWGTxrCTX+4BgCn08WTN/+L2qraLv1tpysFaiIiIiIiIiJyyvP28cI/yA+6EagdPHiQjIyMHo130UUXMWzYsC619dzy+c0by43rHz12PfHDBrb73qZvtgMQMymc8KRgzGYz839+Cfc8/SNjpdoZF4zn7YxnjXey9h4lISWOi39yHuOmjmFQwDBMZndQtuaTTe2Odd1DVzDyLPffk3Mon1cfebdLf9vpSoGaiIiIiIiIiPQLwZFB0I0qn4GBgUycOBEfH58utG4pJyeHf/7zn1RWVnbatrSgOVDLTc8HYOiEQVx29wXtvlNWWM6hbZkAmOrMTDpjkvEsI+2IcZ00KoHopAGENP7tWXuOtujHlGRj0AUxAKxcsLbd8SxWCw+9ea9xttpnz39Nxs7Dnf5tpysFaiIiIiIiIiLSLzQVJqgqrTYO/O9IZGQkF110UY/GCg4OxuFwkJOT02lbzy2fTe599g7j3LK2bF+2CwCz1URi2GDi4+ONZ4d3NQdqyaMTAEgc6X5ekltKdXm18TwuKZbwwe7vsnVJGjWV7W/ljBs6kB/++ipo3Pr57P2v4XK5Ov37TkcK1ERERERERESkX2g6R83lclFRUtVhW5vNxnPPPceBAwd6NFZQUBDz588nISGh07YlxwRqF90xh1FnDe/wnS3f7gAg9qxIasNbvt8iUEttDNRGNFcqzdrbHPJNnz6dcHM0AA67g50rOy6kcPWDlzBwsLv99u92seKjdZ3+facjBWoiIiIiIiIi0i90pzBBeXk5drudgICAHo8XERHRpTPYCo8UG9fBEUHc/vgNnb6zZclOAAKjfQmLCm3xLHN3tnGdONIdpCV4Bmp7mp+HhIQwcEQUVj/3arhtS9M6HNfb15s7/3GLcf/iL9+grqa+0/mebhSoiYiIiIiIiEi/EBrZ9UAtPDycq666qsVWyu7as2cP33zzTYdtaqpqqS6vMe7veOIGgiOCOnwnNz2fvIwCAPzrg1tsS3W5XMYKtZjkKPwC3YUYmoI1jlnB5nQ6OZS/n8hRIQBsXbqz079r6qWTmXzBOGgMA99/8r+dvnO6UaAmIiIiIiIiIv2C5wq1zgoT5ObmAmAymXo83sCBA7Hb7R2eM/buYwuM66CwAC647dxO+926pDn0SjgjpsUquoKsImqr6gBISm3ebjp0wiDjeve6/ca12WwmJiaGAckRABzalklFcceFFEwmE3f9323GGW/v/+UTcjPyO5336USBmoiIiIiIiIj0Cy0CtYLyDttu2LCBTZs29Wq8ESNGcP/997cbyhUcKWLhP78w7sedOxqzufMoZssS9/lpPiFeFDvzycvLM55lpmUZ18kegVpYdCixQ93VPPdvPERDXYPx7LbbbmNYUopxv/27XZ3OIXFEHFfe514ZZ6u38dKv3ur0ndOJAjURERERERER6RcGJEYa10cP5HbY1m63ExcX12Gbrnj99dc5evRom8/e+d+PsNXbjHvPAKw9TqfTOOfMP8QPq9VKdHS08Txt1V7j2nNVGkDqdHdoZmuws39zuvH73r17MSU1B2yeK+A6cuPvryYs2r1VdNXC9UahBFGgJiIiIiIiIiL9RPLoROP68O4jHba9+uqrmTt3bq/HLC4uJjMzs9XvOYfy+Oq1ZS1+C48JbdXuWOk7DlNe5N6SOXJCCg8//DBBQc1nrm1f3ry6bOzZo1q8O3raCON61+p9xnVNTQ2F5flYvBoLEyzruDBBk4Bg/xYFFF55+O0Ot7eeThSoiYiIiIiIiEi/EDYghJBId/iUmdZ+oFZbW8u//vUvSktLezWeyWTirLPOYuDAga2evf2/H+F0OFv85lmJsz1blzSHXXHTIlm0aFHzvKtq2b8p3egrPCasxbupMzwCtTXNK9mGDRtGamoqKWcMBeDIvhyKjhbTFefdfLaxEu7Algw2fLm1S+/1dwrURERERERERKTfaFqlVpJX1u7h+/n5+ZSWlvbJaqupU6cSGtpy5VnW3qMseXsFgHGwP8CgMYmt3j/W1iUe2yoDHdTV1Rm3u9bsx2F3ADDumNVpAAkpsQSFB7rbrt5n/H3h4eFMmzaN8bNTm8dZ2rVVamazmet/M9+4f+dPH2mVmgI1EREREREREelPkkbFG9eZu9pepRYWFsakSZMIDw/v9XhbtmzhrbdaHtj/1v/7EKfTHTpZvd2BWvjAMEIig9vso4mtwcbOFXsAiIgNY+yEMYwfP9547llMYNw5qa3eN5vNxjlqFcWVHNmXYzx7/fXXCR/ZvHW0q9s+AaZfcYZx/tuedQe6HMb1ZwrURERERERERKTf8DxHrb1tn97e3kydOrVLFTc7ExAQQHl5OU6ne3tnxs7DfPfeagCCI4Kor3EXAxg8tvPVaXvWHaCuph6AiXPHkpSUxODBg43nOzo4P61Jqsc5ap4FDAICAvCP8MHb1wuAbUvTurzSzGw288NfX2Xcv/vYgi69158pUBMRERERERGRfmPQ6OZKmu2tUFu1ahULFy7sk/FSU1O5/vrrjXDujUc/MJ7NuPJM43rwmKRO+/Ksojn2nFG88sorHDx4EIDa6jr2bTwEjVs7jz0/rcnoxhVqHHOO2lVXXcWUs6YwuvGctYKsInIO5XX57zz72qnEDXOfFbf9u12krdrT5Xf7IwVqIiIiIiIiItJvJKV6BmpZbbapqanBx8enz8bMzMzEZrOxf/MhVn+8ARq3eA5IijLaJHfp/LSdxvXI6UNxOp3GPHev2Wecnzb27NbbPZsMnzwEL28rAGkrm0OvmpoacnJyGH/uGOO3bd3YummxWPjhI1ca9++c5qvUFKiJiIiIiIiISL8RFBZIRKx79dbhXdltbmucOXMm8+bN65PxSktLWb16Nbm5ubzpsTrth49cyZG9R437wWM7XqFWXVHD3g3u1WiJI+NIGpbI9ddfT3JyMnTh/LQm3r7ejJw6HICcQ/lkNc5hx44drFu3jvGzRxttu3OOGsCcG2YSk+wOCTd9vZ29Gw506/3+RIGaiIiIiIiIiPQrTavUKoorKc0va/U8IyOD+vr6PhkrKCgIb29vio+Wsn7RFgCiEiK46MdzydjpXiFnsVpIGBHXYT87lu/G6XCfwzZh9hiqqqrIympeYbd5scd20HbOT2sy9dLJxvWa/7pXzEVERODt7c3wSYPxD/aDxhVqTWe/dYXVy8oPHmpepfbun/tm2+ypSIGaiIiIiIiIiPQrg1ps+8xu9XzFihXs37+/T8by9fXloYceYs1/Nhu/XXX/xZhMkLXHPXbCiFi8fbw67Mfz/LSJc8dy6NAhVq1ahcPhIC+zgP2b3OenDZ0wiIiBbZ+f1mTa5WcY12s+3QjArFmz+OEPf4jFajECubLCCg63c85ce86/9Rwi49zVUdd+uokj+452+k5/pEBNRERERERERPqVFueopbU+R83b25sBAwb02XhvvP4G61e5V4L5+HlzwW3nkr0vB7vNfeZZZ9s98TjPzGw2MfbsUXh7exMWFobVamXFh2uNdrOuntppX7FDYkhuLM6wZ90BinNLSU9P59///jcAEzzOUdvajXPUALx9vLjq/ouN+y9fWdKt9/sLBWoiIiIiIiIi0q8kj24uANDWCqy7776b1NT2zyHrrtyjeXiFWgCYff1MgsICSd/RHOQNGt1xQYLi3FKjIunwM4YSGBrAyJEjuffeewFY8ZFHoHbNWV2a0/TLmyuMrvtsE5WVlWRnZ2O325kwp/kcta1Ld7bTQ/vOu+VsrF7uv3fxm8uxNdi63cepToGaiIiIiIiIiPQrSaPijevMYwK12tpannrqKcrKWp+t1hMul4vC7eVUZFUDcNk9FwCQvuOw0WZQJyvUPKttTpzjXj22cuVKPv/8c/IyC9i3sXm7Z9zQgV2a19Rjtn0mJyczfvx4LBYLSakJhEYFQ+PZbU3VQ7sqNCqE6Ve6A7uywgrWfLKpW+/3BwrURERERERERKRf8Q/yIzrJXY0yc9eRFpU+q6urKS8vp7Kysk/G2v7dLvYvPkx1Xh2jZ4xg6PhBAGR4bDXtbMvn3vXN1TKbKngWFRVRXFzc7e2eTYZPGmycdbb12514mb2ZMmUKJpMJs9lsVPusqahl/+b0Lvfb5KI75hrXX7zybbffP9UpUBMRERERERGRficp1b1KraailsLsYuP3kJAQxo0bR1RUVJ+M8+lzXzH0kjiS5kRz2d0XGr9nNK5QCwoLMIKt9qTvbF7NNmR8MgApKSmMGTOmR9s9AUwmE1Mvc69SszXY+e6Tlbz44ouUlpYCMP5cj22fS7q/7XP87NHEDHKfQ7dl8Q5yM/K73cepTIGaiIiIiIiIiPQ7yanN55ZlpjVv+/Ty8uLMM8/E19e312MUHCli9X83Yraa8A3wYcZV7m2QFcWVFB0tcc9jTCImk6ndPlwulxG+RcSGERLp3oqZmJhIiG+Ysd1zyPjkLm/3bOJZ7XP78l0AOJ1O8FgJB7B/08Fu9QtgNptbrFL76tWl3e7jVKZATURERERERET6nWSPSp+ehQlKSkp4+eWXKSgo6PUYi15cjNPhJOObPEYPH4OXtxcAGTs9tnuO6Xi7Z3FOCZWl7vPXPLeGLlmyhE8WfmLcn33NtG7Pb9w5o/AP9gNg/YJtXHHZFYSHu1fLxQ6NwcfPG4DMXdnd7hvg/FvPwWxxR0tfv76s22exncoUqImIiIiIiIhIv5M8ujlQy9jVHHA5HO7Qp2mlVk85HA6+em0ZAH4RPpxx6fjm8XZ2/fy0FtVAPcI3h8NBcV6pcd+d7Z5NvLy9mHHVFADqaurYtGKrcZ6c2WwmsbF4Q87BPOpr67vdf8TAMKZeOgmA4pxS1n+xpdt9nKoUqImIiIiIiIhIv5M4Ms7YannYYwVWZGQk1157LTExMb3qf9fqfZTkugOvlHmJZGQ3H+zfnQqfLdqOad6mmhgxiF0fufvsTnXPY827fQ4AQbH+ZJcdblHdtGkVn8vl4sjenJ7177Ht88tXl/Soj1ORAjURERERERER6Xd8/HwYOCQagKzd2caKNIfDQU5OjrFSrac8q29GREcQEBBg3Gd4FBlIbiyO0B7Ptp6r2b59fzk+oe4tmZf89LwezzN1WgqJI+Ow1dhx2p0UZpV4zM1jFZ9HVdLumHzBOKPowuavt1NTWdvjuZ5KFKiJiIiIiIiISL80qHHbZ11NPUf2uVdgFRYWsmrVKgoLC3vcr8PhYOXC9QB4+Xhxy+03M3v2bONZUxGE2CHR+AX6ddhX0wo1i9VCwohYaCxqkFuWzcAzwgkI8Wf2DTN7PFeTycRFd8ylprCedU/uYdlbq41nSe2cM9cdFovFKH5ga7Cz8attPZ7rqUSBmoiIiIiIiIj0S6OmphjX25e5q1z6+flhsVjw9/fvcb+e2z0nXzCOVWtXsmnTJgBy0wuoq3GfR9bZdk9bg83Yapk4Ms4oavDlq0upr7TRUGXnwtvOxS+gdxVJ5940i8ABfoy7fTBL/rOChnqbe34e58xl9jBQ45hqoms/3diruZ4qFKiJiIiIiIiISL80fvZo43rbsp0AhIaG8vDDDxMSEtLjfj23e866eipHjx4lPz8fgAObm89SGzQ6sc33mxzZm2NUxmw6P83hcPD5C19z6IscDn52lEvuuqDH82wSEhnMxEvGEBDjR21NLWv+uwGAqIRI/IPcK+h6ukINYOzZowgIcQeU6xdtwW6z93rOJzsFaiIiIiIiIiLSLw0Zn0xgqPtss23LduF0OrHb7bz00ks93vJ57HbPqZdNJiUlhSFDhrjHWbrTaJs6fUSHfbUsSOBezbbhi63kZRYSMzGMqXeNIX5Yz4oRHGvO/FkU7S6nodrOF6+4iweYTCaSGs94y8sspLaqZ+efeXl7ceZFEwCoKqtmx4o9fTLnk5kCNRERERERERHplywWC+POTQWgsqSK9O2HcTqdFBYWGivKuuvY7Z4Bwf6MGTOGlBT39tItS9yBmpe3ldEzOg7UMna0LkjwybNfAeAT6k1gfMfnr3XHpNnjqdlnx+VwsXXJTnIO5QGQNMrjHLXd2R300LFpl3ls+/yk/2/7VKAmIiIiIiIiIv3W+HObt31uXZqGl5cXEyZMYMCAAT3q79jtnk6nk+eff569e/eSm55PXkYBAKnTU/D19+mwr/QWFT4TObLvKJu/2Q6AudqL8RPH9WiObdm8eTNDrmpe7fbFy9/CMdtSm4op9MQZ8yZg9bIAsPqTDbhcrl7N92SnQE1ERERERERE+q0Jx5yjZjKZmDVrVo/OUHM6na22ezY0NGCz2bBYLGxd0rzdc/zsMZ32l74jC4Cg8EAiYsP59LmvjWdzrzqXCRMmdHuO7amqqiIoNNAIvT574RuqyqpJ7qPCBAHB/saZdYVHijm0LbMPZn3yUqAmIiIiIiIiIv1W4sh4wmNCAdi5Yg92m50PP/yQVatWdbuvzLQjxnbPSeeNJSDYH19fX+bPn8/QoUPZsmSH0Xbi3LEd9lVeVGH0NWhMImUF5Xz16lIAvH29GDl3MC+88AJ1dXXdnmdbJk+ezOVXXM75t5wDQE1FLf/915ckpfZNoAYw7fIzjevVjYUP+isFaiIiIiIiIiLSb5lMJmPlVG1VHfs2HsJisVBTU9PtvrZ/t8u4njDHvQKtvr6esrIyTCYT25amARAQ4s/wSYM77CtjZ5ZxPXhMEu898V/qauoBuOiOuQSFBuJ0OvssUCssLMRkMnHdw1ditrjjoIVPLcI3wIeg8EDoZaVPgKmXTTau132+uZczPrkpUBMRERERERGRfs3zHLVtS9OYN28eU6dO7XY/25c3B2pjzx4FQHp6OkuWLGHv5gOUF1UCMO6cVCxWS4d9eVb4jEqM4LMXvgHAx8+bH/76ShITE5k/f36Ptqa25bvvvmP79u0MHBzNnBtmQmOhhs+e/4bkxlVqRUdLqCqr7vEYkbHhDBmfDMChbZlUl/e8r5OdAjURERERERER6dfGH3OOmsPh6HaVT6fTyY7luwEICgswqnKazWb8/f3ZtXyf0bZp9VpHPCt87ll3AFu9DYDL7r6A8JgwTCYTpaWlfbZCzWw2ExERAcAPH7kSk8kEwIJ/fEb88FijXW+3faZOc1c7dblc7F53oFd9ncwUqImIiIiIiIhIvzZwUDQxg9xVPXet2c+O7TtYtmxZt/rITDtCZUkVAGNmjcJsdkcqw4cP5/7772fbsjSjbWfnpwGkN275NJlMrP10IwC+AT5c+z+XA2C321m6dCn79+/v1jzbc+uttzJlyhQAElLiOPsH0wAoK6ygsrSqxd/ZG6NnjDSud63e26u+TmYK1ERERERERESk32va9mmrt2GvAIfD0a33m1anAYw7O9W4Xr9+PUu+XcLOFXsAiIgNIyElts0+mjgcDuO8Mr8gXxx2JwBX3ncRoVHuLZ5eXl5ERkZ2e55tqa+v57XXXqO0tNT47fpHrmz+21Y0/229PUctdXqKca1ATURERERERETkFDbBY9tnYVop99xzT7feb3F+2jmjjOt9+/aRnXnUKCgwce5YYztle3IP5VNf2wCN1TYB/IP9uPoXl7Zo99Of/pQJEyZ0a55tKSgoIDc3F5vNZvw2aEwS0690V+WsaDz7DSBzV1abfXTVgIRIBiRGArB3/UHsNnuv+jtZKVATERERERERkX6v5Tlqu3jxxRe7fI5ae+enAQwaNAhbnsu4nzC78/PTPAsSNLn655cSHB7U4rft27fz8ccfd2mOHQkODmb06NFERUW1+P36X19lXJvN7hAwc1d2r8drWqVWV1PPoW2Zve7vZKRATURERERERET6vfCYMJJGxQOwf+NBSkpKOHy4dbDVlsO7jlBR7F7F5Xl+GkBKSgr7ljSHRhPmjG6zD085B/Na3AeFB3LVAxe1aldbW8v+/ftxuVytnnWH1Wrl/PPPx2JpWXl0+KQhnHmRewWc0+keo6ygnLLC8l6NN3q65zlq+zpse6pSoCYiIiIiIiIip4Wmc9ScDhfJAwYTExPTpfe2t3N+Wn5+Pi+88AKZB9zbJBNHxhEZF9FpfyX5ZS3ur/3lZQSEBLRqN2LECMaMGdPpFtLOfPnll3z99ddtPvvxkzdhtrSMhw73cpWa5zlqaWv65zlqCtRERERERERE5LQwYU7zdsyKfXUEBgZ26b307c0r2UacNcy4LikpAaC+0n0eWle2ewLs35RuXIfHhHL5vfPabBcZGcmECRNwOp1d6rc9JSUlBAS0DuwAklMTuPyeC1v8VpxT0qvxkkcn4B/sB8CuVXt7vcLuZKRATUREREREREROC2PPHmWs9srIOcR7773XpfcO726ufNm0bRRg8ODBBFdE4ah3B14T547ttK/aqlr2bzpo3P/kLzfhF+DbZlun08m///1vdu3a1ebzrpo3bx4zZsxo9/nNj16LX1DzHHav3d+r8SwWC6OmDgegJK+MvIyCXvV3MlKgJiIiIiIiIiKnhaCwQIZOHARA/qEiSktLO1095XK5yNzlDtQGJEYSEOxvPDt06BCHtrvPTzObTYzzqP7Znrf/30fY6t2VL80WM7NvmNluW7PZTEBAAGVlZe226UxDQwN79uzB39+/3TaBoQHM+9Ec4375h2tx2B09HhNgxJnNK/kydvaucujJSIGaiIiIiIiIiJw2JjSeo1awvYzU2LGdnk9WdLSEmopaAJJSE1o8W7Z0GXa/egCGnzG0zXPQPGXuOsKCfy4y7iNiwzod/7rrrmP8+PGd/FUdjJmZydq1a6muru6w3RyPYK+soJwvXv62x2MCJI5sXsmXtaf3lUNPNgrUREREREREROS0Mb7xHDWn3cXetP3k5eV12L5pdRpAssd2T4DayjoqjtQAMHFOx+enuVwunr7n5RYrv6ISIjudr5eXFxs3buy0XUfjhoaGEhQU1GG7sJjQFvev/e49o7JpTySMiDWus/Ye7XE/JysFaiIiIiIiIiJy2hg9YwRePl4AVDhK2bx5c4ftM9M8zk87ZoWa84APhTvc2zE7Oz/t27dXsHPFnha/hR8TYrWlsLCQlStXUlnZs3Br+PDh3HfffZ2uhAuJCm5xX1lSxeu/f79HYwIkpMQaY2qFmoiIiIiIiIjIKcwvwJdJ57vDr4K0MkryOj6f7LDnCrXRicZ1WloapYHu1W0+ft6MbDyEvy2VpVW89Ku3Wv0eFt15oJaYmEhISAgNDQ2dtj2Wy+XixRdf7FJRA28fL/yD3JU5m4Kwz1/4hp0r93TyZtt8/HyITo4C4MjenH5X6VOBmoiIiIiIiIicVmbNnwrA4aX5VKa1DqqqK2rY+PU20lbt4cCWQ8bviSPjjOttm7Zhq7UBMHrmSLwbV7215bXf/IeygnIAo/olQFh0SKdzDQgI4P777yc0tPPw7VgVFRXk5+fj5dX+3DwFR7q3hXr7utu7XC7+cusz1FTWdntsPL5XTWUtxTklPerjZKVATUREREREREROK2ddOgmrlwWLt5n8wMMsfOkz/nnnS2z6ZjsAv7/8SX497zF+Puv3pO9orFBpgp+M/QV/v/057DY7VVkNZK0oBODMCye0O9amb7bz2QvfAOAb4MPUy88wnnVlyyfAsmXLeP/97m+/9Pf3Z+rUqQwePLhL7UMbt33W1zaQOj0FgLyMAp7/+evdHhsgIaU5gMza07/OUVOgJiIiIiIiIiKnFR8/b5JSE3DYnLicTj59YxGLXlrMkzc9DUBJbmnrl1zucOmr15axY+Vu9qzfT+kB97lmM+ZPaXOc8qIK/nrrM8b9jx67Hnu93bg/thBAe/z8/MjIyOj2tsni4mLGjx/f5RVqnueo3fWPW/AL9AXgq38vZc0n3S+M0LLSpwI1EREREREREZFT0mfPf801MXdwaFsmuODg5zmUHqoCIHiYP8XFxZx9zbR23w8KC6C0upjwM/2w+lkYedYwBrRRrdPlcvGPH79gnNE2+YJxXHHvPErzm89s6+oKtXHjxnHOOecAUFVV1eWqn59++ikbNmzoUluOCdS8/Xy4+6kfGff/95MXWsy9Kzy3yPa3Sp8K1ERERERERETktPHa796jpqL5TLDgpADG/3gI424fTMLcCNLT07ngR+e2+/4dT97E3u0HqC2px17rYGbjeWzH+vKVJcaqrpDIIH7573swmUwtQqmuFCUAKC8vZ9OmTfzpT3/itdde49tvv+30HZfLRUlJCfHx8Z22bRIa2RyolRdWcMGt5zD9CvcW1bLCCv7xkxdwuVwc3n2ElQvXY7fZO+gNEkc0B2pH9vavSp/WEz0BEREREREREZHvy/k3n82nL3/NlF+OoDyziqB4f8xWM0Hx/uCCuLg4BsZGM3HuGLZ8u7PFu6nTU7jwR+fys6lfk7nHXf1zZhvbPbP357Q4d+zBl+8iYmAYQIuqop0VJVi8eDFbt24lMDCQsjL3eyUlJV06E81kMvHTn/60W8UMPFeolRdWYDKZeODFn7JrzX7KCspZ99lmHrv+n6z8aB1Oh5Pb/3w91z18Zbv9BUcEERoVTFlhBdn7c7s8j1OBVqiJiIiIiIiIyGnjJ3+7mfOuP5uyjCqCEwMwW5ujkZCGKGJjYwGYd/ucFu+ZLWbuf/4n5BzKw2uYE6uvheGThxCTPKBFO7vNzuM3Pk1dTT0AF/94LtM8ChGU5rurfQaGBuDt693hXFNSUqitraWoqMj4LSgoiOuuu67Tv3PXrl2sW7cOk8nUadsmnoFaWWEFAKFRITz48p3G78vfX4PT4QRg7WebOu1zQFIUNJ5L57A7ujyXk50CNRERERERERE5bZjNZh544acMDkoh7a1MKnObt3+6gmzG9bQrzsTq3byx7+KfzGXQ6EQWL1hK+LAgzBYTM69qvTrtzUc/YP+mQwDEDx/IT/9xS4vnpY0r1LpSkCAxMZF77rmHiy++2PitoaGBgoKCTt/dvHkzpaVtFFfoQOgxK9SaDJ88hNABwa3aH9icTkO9rdXvnqLiwwFwOl0tVued6hSoiYiIiIiIiMhpxWQy8bOnb+e8q2ZTnVuHy+nC5XJhsjSv5vL28WLKxRMB8PH34cd/uQmA7Ut3U7CzjOr8OmbMP6tFvztW7Oa9J/4LgMVq4ZF37scvwNd4XltVS21VHXRhu2eTyMhIRo4cadzX19djt3d8dhnAgAEDOOOMMzpt56nFls8id6BWklfKPWc8RFlBRav2tgY7B7dmdNhnRGy4cV2YXdyt+ZzMdIaaiIiIiIiIiJx2TCYTP/nrTfzvDQXUlJXgF+7DyNQU6mwOimsaqKi3M/+ZnzLjF1cQlxhJndlCeWYBGTuyqC1uYPC4JOKHDTT6Ky+q4Mmb/4XL5QLglj/+gOGThrQYs2m7J92o8Ang7+/PpZdeymeffYa3tzfR0dFkZWWRkZFBZWUlTqcTb29vBg4cyODBg/H29mby5MlERrauPtqRtgK19Yu2UJzT/kq33Wv2Meqs4W0+q7M7iBg7iOHXzMDq48Whinp8iqoJ9/cixM8Lcze2o55sFKiJiIiIiIiIyGnJZDLx+3d/ycYVu9hfW0FFdALvb89p2cjbl6N5VZBXBQ4HF7xyJ2mvL2fa+BFGE4fDwZ+v/ycFWe6zzsbMGsm1/3NZq/E8A7WuVvhsMn78ePLy8li6dCl33HEHDQ0N7bYNCgoiKiqK//mf/yE8PLzddscKiWy95XPa5Wfw9evL2LV6X5vvbPxyK1c/eKlxX91g50BhNYdKqqmqd8DE4Zw50R24lQCrMksAsJhNxAT6kDIgkLgQ31MuXFOgJiIiIiIiIiKnpVqbg41Hysj0D8blH4zd7ur4BYuFgJgkpjx8M94myCqtJTHMj9d/975RETR0QAi/fud+LBZLq9c9zxDrzgq1NWvW8M4771BYWNil9pWVlVRWVnL33XczY8YMbr75ZoKDW5+Bdiy/QF+8fLyw1duMogQhkcH834r/ZceK3Xz0989Y9/nmFu/sXLUHgDqbg03ZZaQX19DJVwTA4XRxtKKOoxV1BHhbmBwfSnK4f5f+vpOBAjUREREREREROe2kF1ezIauM+saKld1V64Jlh4oIrK5h4fNfQ2Ml0N++/3Mi4yLafKfUI1AL7cIKtfLycl599VXWrVvXozk6nU5WrFjBtm3buOOOOzjrrLM6bG8ymQiNCqYwu7hFUQKTycS4s1MZd3Yqh/dk8+HfP+Wb177D5XJh9bZyuLSGdYdLqbP37FtWNzhYnl5MZmkNUxLD8PNqHUaebFSUQEREREREREROGy6Xi83ZZazMKOlxmOapKsCfef9+gICBYfzkLzcx7uzUdtvWVNQY10FhAR32m5ubyyOPPNLjMM1TRUUF//jHP/jggw+MM97a03SOWnmR+2y2YyWNjOeXr9zNWxnPcd3DV/KLFX/mu0PFPQ7TPB0urWXRnnwq6jquHHoyUKAmIiIiIiIiIqcFd5hWTlpeZZ/2G5QQyaVvPcgFd1/Qbhun08nmxTuMe5O5/TPDCgoKePTRRykqKurTeX700Ud88MEHHbYJjgwCwOlwUlNR22676MRIJt1zMZl9nH1VNzj4al8hlfWdVzI9kRSoiYiIiIiIiMhp4VBxDbvy+zZMa2INDmDZoWKcztYrwGwNNv5yyzNsW5Zm/OZ0tG7ncDg4eiiHP/7+j5SWtl9ZszcWLFjAt98safe5xdq83bKtFWpNMkpq2J5b0e7z3qi1OVh6oBBHG9/yZKEz1ERERERERESk36tusLPhyPEJqZqU1NjYmVfBuNgQ47eaylr+OP+vRtGCJsveW0nGzsPkZxaSf7iAvMxCCo8U4zXCgd+I41vx8oVnX+D5W98iflAcccMHEj8slvjhA4kbNhCHrXllmKmdypu1Ngfrs47vtyyrs7M9p5yJ8d2rhvp9Mbk62zzbj1VUVBASEkJ5eXmXql2IiIiIiIiIyKlp6cFCjpTVcf2EOIprGgDYmVtJTkUdAAMCvZk3Ipr3th2lvhfngZlNcOmoGEL9vCjJK+XX8x7j0PbDXXrXEgJBc+Gtt97i0KFDAPz3v/9l+/btDBkyhOuuuw6LxcLWrVv57LPPejxHgIYjLqrXd9xm/gMXM/G8caROG05ASPOZb8sPFZFZ6t4O2tb3nJIYSri/NyZg89Fy8ivrezRHE3DJqGjC/b179P7xpBVqIiIiIiIiItKvldXaOFLmDs6qGhx8va+wVZtR0UEUVTf0eiynC/bkVxJbU8M9ZzxEfW3X+gwKC8D/TBMNpmoKCgr44x//aDyzWq1cc801/PWvf6WhofdzBPCON1G704Wzpv02C/65iAX/XITZbGLI+GTGzBzFiHNHkxUbbbQ59nsG+VgJ8fXiy70F+HtZmDU4nK/a+N5d4QJ25Vcyc1DbVVNPJAVqIiIiIiIiItKv7S+sMq4DvCxcmBJFdYODDVll1DucxIf4UlBVT0Jo3xw1n15Sw3dPf9JpmPY/b/6MIWOTiU6KxGFycOedd4IdIiMjefTRRykuLua1114jISGBhoYGHnzwQSwWC2+99RZZWVm9m6QJrn/mEmZMOJvs/bkcPZBL9oEc1vx3I9XlLVM2p9PFgS0ZHNiSwXg7jL6lOVA79nvW2RzYnS5MgLfV3O3qn5enxrA5u4zscncAmllSwxnxofh6WTp99/ukQE1ERERERERE+i2Xy8Wh4uaAaGFaLvV2J0MjApgQF8K6rFJSBgSy7GARCaF+Ld69ICWKqAAfnB6nZW3OLmefR0DXFrvTxbQ7L2DVh2to6CBUC40MZvDYJAC++uor7Hb3+WX33nsvlZWVnHvuufzwhz9k9+7dxMfH88gjjxAZGclPf/pTfv/73xv9pKSkcNVVVzFs2DBMJhOFhYWsWrWKRYsW4XA42h1/zdo13HzLzQwZl2z89qsjf2TbUnfxhP9582fsW3+QnSv3kLEzC5fLxeCLJrfoo63vWd1g58rRA7GYTSw71Fyp9IKUKAYE+vD57nxKa93lQb0sJq6fEM9HO3KobnDwya68Fv07XZBZWsOIAUEdfvPv2ykbqD3++OMsXLiQvXv34ufnx7Rp03jyySdJSUk50VMTERERERERkZNERb2dBkfzKqmm89EySmsYHhXA4HB/jpTV0l5Byc3ZZewp6DhAa4v3wHAWVb9DUU4JBzanc2BzOkveXUnOQXdg5B/kR8KIOKP9wYMHjevKSncl0tWrVzN37lw2bNjAvn37qK+v5+jRo/j7+xttJ06cyP3338/777/PM888Q2VlJbGxsVxxxRWEhYVRVFREe0pLSykuLiYyMtL4zeXxIWbNP4vzbjwbgIqSSratPUBGVEiLPo79nrHBPvhYLSxMy8XPy8ycoVF8viffaN9gdzIxLoQlB9uf17H6YituX+ubtYwnwPLly7nnnntYt24dixcvxmazcf7551NdXX2ipyYiIiIiIiIiJ4lijzDGajbRVLcyJtCHino7oX5eJIX5M3dYJGF+Xszq4nldVrOJKYmhzB8zkGvHxTIjORwvS3NVzKZxI2PDmXrpZG5+9FpmXT3VeP6b9x4gJnmAcd9UhMDHx8eorjlq1Cjy8vI4ePAgAwcOxGQyERIS0uIctdtuu41PPvmEL774wgjicnJyeO6554wwLSQkhJ///Oe88sorPPfcc1x33XWYze5IKD09vcXf5Vm70rPKZ3B4EEnTRrT6Bsd+TzAZIZvN4cJqblkpdF9hFQMCfYgO9Gnzu84fM7DVSsGTMVA7ZVeoffXVVy3uX3/9dQYMGMDmzZuZNWvWCZuXiIiIiIiIiJw8yuvsxnWwr5VpyeHYHE6cTlhzuITqhuYtkRekRLEio7hL/U5PDsfpcvHp7jxcLpiWFMaUxDBWZZS0GtfgEVZ5+3p7/OwiJycHgNjYWO68805qa2ux2Wy88MILVFdXs3z5ch599FHjDDWAgQMHEh0dzerVqzuc63333UdZWRn33HMPQUFBPPLII9TX1/Pxxx8b4xpz8VihZjomDKs45m9q63vWNDgYHOHPhSkDsJhNbM+taPFOvd3JzrwKJsaH8OXegg7n7Tmuy+VqEfCdaKdsoHas8vJyAMLDw9ttU19fT319c6nWioqKdtuKiIiIiIiIyKnP7hEQldTY+Hx3frtt26r+OTE+hPGxzdscP9yRg8VsIjHMj/e3HcXmcPe/NaeCy1NjWJ1Rgqtx3GNDIGc7YZXdbjdWhmVkZPDQQw+1mseyZctYtmxZi9+Cg4Pdf1dJSbt/U1hYGGPGjOHHP/6xkYssXLiQa665ho8//rhFTkIHK9Q45lvSwfdsChXbsye/ipEDAkkI9SOvsq7DtjRW+3S6wHLy5Gn9I1BzOp088MADTJ8+ndGjR7fb7vHHH29RdlZERERERERE+jdzL0OYLdnlrc5QC/H1wmwyMX9MbKv2fl4WamwOTKbWgRTthFVN2y+7q2mhUHh4OPn5bQeFERERNDQ0GAuRAAoKCoiIiGhz7PZCP9yFQfuEw+ViW04FE+NC+GpvfRfegJNocRr0l0DtnnvuIS0tjVWrVnXY7pFHHuHBBx807isqKkhISPgeZigiIiIiIiIiJ4K3pe+Pj69usON0ufhgRw6OdqoZ+LQxrmdYZfYIqywWC76+vtTVdb5ay1Nubi4FBQVMmzaNjz/+uM02xcXFeHt7ExISYoRqUVFRFBe7t7YGBAS0fKGDFWo+1r77lgeLqkmNDmJIpH+nba1mE+aTLFE7ZYsSNPnZz37G559/zrJly4iPj++wrY+PD8HBwS3+JyIiIiIiIiL9V7i/V5/3WWd3cqSslimJoUbI5Gs1k+hxmH64v3er9zy3Ux675Co5OblHc/n3v//NFVdcwYUXXkhgYCA0nq125513EhkZSWlpKWlpadx00034+PgQERHBVVddxfLlywEYNGiQ0VdeZgGF2c1nyDk9qqMChPXht3QBW46WMyam82ymrW95op2yK9RcLhf33nsvH3/8Md99912LfwAiIiIiIiIiIgARxymMWZVRwvjYEC4eGY2P1UydzUFmSQ1ZZbUAbHx/FYdKyxkzaxRjZo4kOCKoxYH/5mO2Uw4ePJi9e/d2ex5btmzhz3/+M/Pnz+cHP/gBAEVFRaxYsYLS0lIAnnrqKW6//XaeffZZGhoaWLVqFZ9++ikmk6lFnvK3Hz1H4ZHmQO2K0FsYPC6J+JRYIgaGc+nPLuzBl2pfVlkto2OC8PWydNguMqDvQ9HeMrlaxKOnjrvvvpt3332XTz75hJSUFOP3kJAQ/Pz8Ony3SUVFhbHkUavVRERERERERPqnT3flUVpr+17H/Pae58nbeMC4T05NwGQ2kbEzC4DHv/wNky8YbzzftGkTf/nLX77XOQ4bNozHHnvMuP/l7EfZ/t2udtsHhPjz4zV/oai64XuaodvsoZEkhHYt6/m+nLKBWnulUl977TVuvfXWLvWhQE1ERERERESk/9tbUMX6rNLvbbzavFIWXP6nFueRtSUoLIC44bHEDx9I7NAYlh38iqrayu9tnpfMvpxo31jyMwvJO1zAjuW7yc9sXem0ibevN09lvcTqzI6rePalAG8LV40ZeNKdoXbKBmp9QYGaiIiIiIiISP9nczj5cHsOtnYKCPS1yfGhJHhD2qq97Fyxh50rd3NgS0arM8mO5TsC/EZ/P8GRs95F+SKg4ykZ/AJ9+X+fPMTos0fx0fZc6jv5W/rKhNgQxsaefJmNAjUFaiIiIiIiIiL9XlpuBZuPlh/3cQJ9LFw2KgavY6p81lTW8viNT7Hus80ApJwxlNL8MgqyipobWSHkfDD7H/9QrWari/pDXWubkBLL41/9luikKAD25Fey4UjZ8Z0g4O9l4fLUGLz7sLpoXzllixKIiIiIiIiIiHTVqJggDpfVHvfzv6Ynh7cK0wD8g/yIiosw7u9//scMmziYupp6cg/lkb0/l+z9uezak8b+up3HdY7WWh8mjxtLzGUDiEkeQHRyFDHJUQxIiuKG5LuoLqsx2o6aOpz//fRhgiOCjN9GDAjkcGkt+VX1x3We05LDTsowDQVqIiIiIiIiInI6MJtMzEgOZ9HefGyO47NZLzU6iJgg33afOz22nDadDe/r78OgMUkMGpPU+ORKXn31Vb7++uvjMsfAwED+/PSfiYmJafO5f5CfEahNvWwyv373AXz9fVq0MZlMTB8Uzue782k4Tls/RwwIJC7k5CpE4OnkjPlERERERERERPpYiJ8XtuU7sFXX9XnfQyL8mRQf0mEbHz9v47qugzncdtttTJs2rU/nB+Dn58evf/3rdsM0Git5Anj5WPnDR79sFaY1CfKx4lqbRkNVbZ/PMzncnzMSQvu8376kQE1ERERERERETgvrPt/M2w++xrf3vEBtUUWf9Zvsb+GVeX/kzgm/Ytfafe22C4lqPr+9rLD98c1mM/fddx/nn39+n80xPDycRx99lKFDh3bYzt5gB8DLxwuL1dJuu82Lt/PGfa+y+M7nqM7vuwqqKVEBzBwUftJV9TyWAjURERERERER6feOHszliZueBqB4dxahuzMYHO7fqz4DvC3MHRbF+r8s5Oj+XNJ3HOaB6b/ll7MfZf2izTidLbdDhnoEauUdBGo0hmp33HEHDz30EGFhYb2a57nnnsvf//53Bg0a1GnbsoKKVnM9Vv7hQv58/VM4nS5K9x8lcNtBhkYE9GqOfl5m5gyN5Kykkz9MQ2eoiYiIiIiIiEh/V1dTzx/n/43qcvfZYDPnT+EHP78Yk8nE4Ah/Ply4ibAxyV3uz8/LTEpUICOjg/C2mBk+eQiL31xuPN/+3S62f7eLhBFxXP3gpcy9aRbePl4tVqiVF1V2aaxJkybx97//nUWLFvHNN99QWdm190wmE+PHj+fSSy9l9OjRXXqnod5GVVk1AGExbW+5bKi38cer/0ZFsXseUy6eyI2PXIHZbGZwhD/vL9hI6Ogk44y4zvhZzQyLCmRUdBA+J2kBgracOjMVEREREREREemBl371Fhk7swBIGBHHL/99jxH42I8Wsej2p9n5ymvkr9xEfIgvvscEO06bnQh/L4ZHBVC5cw1bnn2RQwtW4d1YzXPGVVPaHPfI3qP8309eMFbGhUQ2V8rsbIWap8DAQH7wgx/w29/+lvHjxzN79mwGDRqExdJyS2ZYWBiTJk1izpw5jBw5kptuuqnLYRpAWX6ZcR3eTqD22m/+w4HN6QDEDonmoTfvxWxu/F7F5Sy6/Wl2vPBvcr9bT3yIL35eLb+l2QTh/l4Miwyges96tr7wMvvf++6UCtPQCjURERERERER6c/Wfb6Zz553V8z08fPmDwt+iX9Qc/XIlQvWYzKb2PXmbqb9eRJzhkVReKSQv//0JY6mF1CcU4LL5uDzqreoqKjgm6y9+MVZ+G7tUnx8vbn4x+cRGRvOgMRICrKK2pxD9r4cOOYMtfIenOE2YMAAHnnkkeYw0G6nvr4eh8OBt7c3vr7uCqMffvgheXl5vPbaa9x8880kJSV10rNbSV5zoBY6oHWgtuXbHXz0j88A8PK28vuPfklQWKDxfNWC9WCCPe/t5YzfjmPOsCjKCsp44kfPM/zModz46/lYzSbMZhOVlZUsTt+F70ATa7evxOspC1fdf0m3v8mJokBNRERERERERPql0vwy/n77c8b9T/9+C0kj41u0WblgHUmzBxAU78+Mq87E5XLxq7n/j6MH8lq0KyuoIL8017gPSQrg6ftewWQyc9Edcxg1dXibgVp4TCi/ePVu9ztdLErQltraWp566imuvfZao7CA1WrFam0d7RQUFADgcrnYsWNHjwK1Y1eoVRRX8pdbnzHub3/8BoaMa7lNdsWCdSTOGkDY8CBmznev2vvV3P8lMy2LzV9sYfK5qYydOQqA3NzmbxkU788rv3kbs8XCFT+b16W5nmin1no6EREREREREZEucLlc/O3254zg6qxLJ3HJT89r0SZ7fw7pOw4TOjgQH7MvAxKjWP3fDa3CNICi7GJiomOoK28AwOprYdQPEvnwjY/47zNfMvKs4W3O44bfXk3K5CEABIYGYG7cJtqdLZ8A2dnZ2Gw2oqKiOm07bNgw4xvs3LmT9957zwjZOlKWX25cewZqLpeLf975IsU57mqeE+eO4cr7L2rxbkFWIXvXHyB0SCAWu5X44bFs/GormWlZRpuvXl1qXMfExFBX2vgtfSykXJPApws+44O/fdrpPE8GCtREREREREREpN/57Plv2PDFVgBCB4Tw4Mt3tToof+WC9QAcXprPmOFjqams5dn7/t1mf4XZxRzYdQjvgOYVYaGDAkmeG8PCt/5LXmbbgdVrv/0PRUeLobFyZ9M5at0N1OLj47nmmmsICQnpsJ3NZqO0tLTF/f79+3n++eex2Wwdvuu5Qs2zKMHXr39nfKug8EB+9frPms9Na7Rq4QYAsr7LZ0TSKOpq6nn6nldatFn76Sbqa+sByNiXiTWg+Qy40ORAks6J5ouPv+DdPy/scJ4nAwVqIiIiIiIiItKvHN59hBd/+YZx/6vX7iFsQOsgauWCtfiEeOEf5cO518zkzT+8T9HRkjb7zD2Uz3erl2K2mnG5XLhcLnI3FpOxOI+60gY+fuoLRp41HP9gP+78+y2c/YNpAFSVVfPXHz2H0+kEj22fZYUVuFyuLv9Nu3fvJiIiotN2e/fuZe/evca9j48PV111FVOnTu303RaBWrT7ex09mMuz971q/P7gy3cSGRve6t0VC9biHWQlYKAfs6+ZxbuPLSAvo2XIWFVWbQRv3y5bjNXbYnzLvK0lpH+dS21xA6/99j9s/Hpbp/M9kXSGmoiIiIiIiIj0Gw31Nh6/8Wka6tyrsS6/50LOnDehVbvc9HwObMkgafYAYs+IpLqsho+f/qLdfg/vOUJDUgPZa4uw+pqpzqsjb3MpLkdzKHbdw1cw5eKJWCwWKkoq2bVqL0VHS9iyeAefPvs1V9w7j9DGQM1Wb6O2qq5FgYT22O12vvzySy644AKio6M7bFtdXU1QUBDTp0+nqKiI8ePHExcX16Vqn6XHVPm02+w8cdO/qKt2ryq78EezmXFl64qmRUeL2bV6Hwkzo4ifEYXL6eTDdrZufvnqEubcMJO6+jpyNhRh9jJTnV9P/uYSnPbmb1ldVt3pfE8krVATERERERERkX7jjd+9x6FtmQAkjYrnx3+5sc12KxesA8DiYyHcP4LXf/8eTmf7K8bSt2cR05BM5jd5HPo8h4FnROAf5QPAmJkjeeTt+5h66WQsFvc2xuDwIH7577uN919+6C2y9h5tWemzi9s+6+vrMZvNJCcnd9p28uTJ3HnnnUyZMoWYmBjWrl3bpTE4JlALjQ7lnT8tYO/6AwDEDo3h7n/e2uZ7qz52rzqz+JoJ9grlzT9+iN3maLPt9u92kX0glwTzUNK/zOPgpznETAwjIMZdoXTU1OH86rV7OPvaaV2e94mgQE1ERERERERE+oWdK/fw4d8/A8DL28rDb9+Hj59Pm22bArX0L3O56tr52Oo7Pl/syL6jDB/nLi7gcoJ3oJXw4e7z0H74yJXMvn5mqzPaJp03jivudVetbKiz8cRNTxMcHmQ872qlT39/fx5++OEuFSSwWq34+/sD4HA42LNnD3a7vUvjlDZu+QwKCyB9eybvPrYAALPFzCNv34dfYNur6Zq+ZebifK686opOv+XuNftIGT/UuPcOsBI+3B00XvPLyzj/lnNafcuTjQI1ERERERERETnl2W12nr77ZeNcstseu56h4we12bYwu5i9Gw7iG+7N1IdHEZkQxq/ffYB7nvoRo6ePMNoNSIzE6u0+Lauuup6xs0bx0o6/88aBfzFyUCqVR2vBo7hBW+544gYSRsQBcGBzOpm7jxjPurpCbdGiRSxevLhLbT2NHDmScePGGavmOtN0hlrIgBCevvtlY8XezX+4lhFnDmvznbLCcnau2INPiBdTHxpFVHIEv3rtHn72r9sZe3aq0S4qIYKw6BBSzhjC5AvGMeXiSbyS9g9e2/c041MnUJldA8Cqhe1/y5NJlwO1u+66i2+++eb4zkZEREREREREpAc+fuoLMne5w6qUM4Zw1QMXtdt28+IdAIQODsTibcbb25uQyGCuuHcekQnNB///+Ytfc8lPzzPus/YcZdDoRGKHxHDZdZdgtbjDttX/3YDD3vYWRx8/Hx5+614sVneolbZyj/GsvKhrgdr+/fuxWrt/DH5QUBBnnXUWlZWVnbatrao1zkpzOZ0c2JIBwOCxSVz38BXtvrd1SRoul4uQQQFYfMz4+PgQHB7E5fdcyMBBA4x2jy78FR/kvsIz658gPCYMgKRRCcQPG8gl116Et7c3AGs/20RDJyvcTgZdDtRefPFFLr74Yl566aXjOyMRERERERERkW4oOFLEm3/8AACTycR9z/24w1VZ25buBKAyu4ZxKeNbhFWZaVkAWL0sxA0bSGLj6jKArL1HjevS8hJG/DAe33BvKoor2bFid7vjDZ80hBt+Ox8Az8KeXV2hNmnSJCZMaF1YoSu+/fbbLi2QKs0vN67zMguN63ufvcMIA9uydYn7W1bl1DIyORUfn+Yttpm73N/SZDKRODK+3T7KyssYOn8g/gN8qKmoZeu3O7rwl51Y3dry6e3tzV133cWf/vSnDtstXryY2267rbdzExERERERERHp1AsPvm6srrrkzvMZPmlIu21dLpcRAgVG+jP3kjnGM7vNTva+HADih8di9bK2CIKy9mQb11FRUZgw4R/pDpDWfba5wzn+4KEriB3SskJnVwK1qqoqkpKSCA8P77RtW6KjoyksLOy0XdN2TwBHY0GBC249t8UW2LZsXeIOv/zCfDn/srnG706nk8O73d8rZtAAfP3bPssOICIiArPJbBR5WNvJtzwZdCtQ+9vf/sasWbP4wx/+wP33399uu4KCAt58882+mJ+IiIiIiIiISLs2frXVOMMsdEAIt/3pug7bH96dTUleGRYfM8Pmx5J1JMt4dvRgnlGdMnl0AgCJI9teoebr68uN199EeUY1ANuWpXU4rrePF3f+o2WVzOK80k7/vnXr1rFo0aJO27Vn5syZzJ8/v9N2pR6BGo2FCe548oYO38lNzycvsxCTxcSIHySQld38LQuyioyQMym1/dVpAF5eXtxy861UZLjPUevsW54MuhWohYSE8PXXX3PFFVfwr3/9i+uvv77LlSJERERERERERPpSQ10Dz9z7qnH/k7/eRFBYYIfvbGncTujl797mGRHRfGba4V3NBQOSRrkDtdABIQSFBQBwZM/RFn05sDPmKne1yvQdhykrLKcjZ10yifHnNh/Uv3f9gU7/xurq6hZz7C4vLy/WrFlDSUlJh+0Ks4tb3N/++A2ERoV0+E7zt7RgMrX/LZMbv2VH7E4bY68eDsDRA7kUHCnq9J0TqdtVPr29vfnwww+54447eO+997jkkkuoqak5PrMTEREREREREWnH+09+Qs6hfADGzBrJ3BtndfpO03bPutIGLpt7OdHRzdswD+9q3tKZlOoOgUwmEwmN2z4Ls4upLK0y2uTk5BCc4mfcb1+2q8OxTSYTP/vX7c3vH8wnNyO/w3fmzp3LpZde2unf1ZG0tDQOHOg4vFv72SbjOn54LPPumNNhe4Atjd+yodLOhTMuIi6ueTVfZhvfsiO5ubn4DWo+y27b0pN7lVq3AzUAs9nMSy+9xCOPPMI333zD7NmzKS4u7sKbIiIiIiIiIiK9l3Moj/888TEAFquFe5+5A5PJ1OE7dpudHcvdxQMSpsRQbmu5zTFjV/OWxWSPbYrDJw02rvesaw6mBg0aRHBQsHG/tQshUNKoBLx9vaDxPLeXfvVWu22dTidfffUVdXV1nfbbHpPJxIgRI/Dz82u3TUFWITs9iirc+PurMZs7joycTqcReg0cF0GFs+W3zPT8lqM7D9SSk5MJCWpeEXeyb/vsUaDW5LHHHuOf//wnGzduZObMmWRnZ3fhLRERERERERGR3nn+wdex1dsAmP/AxQwandjpO/s2HqKmshaA5OkxZGVltXieseMwAF4+XsQOiTF+Hz1jpHGdtmqPcZ2YmMitP7oVq5e7CmZXQ6ABiZHG9aqF642tk8cqKSkhLS2NioquVQNtz/z58xk5cmS7z1/6n7dw2J3G/YTZozvtM337YSqKKwEYPCu+1bdMb/yWZrOpRaXU9sTFxXHHT27Hx88bGleouTxLop5kehWoAdx33328/fbbHDp0iOnTp7N3796+mZmIiIiIiIiISBt2r9tvVNWMjAvnxt9f3aX3PIOrmNgYhg8fbtyX5peRvT8XgKETkrFYLcaz1OkpxvWuNfuMa5fLxXMvPMuYi7p39lfs0JgW98/e/2/sttZn1Ht5eTFw4EBiYmJaPeuO9evX89prr7X57OC2DJZ/sLbFbyGRwW229dTiW8bFkJLS/I2qyqrJ2OEO2JJHJ+Lt691pfy6Xi+eef46xl7urihZmF3P0QG6n750oXQ7UIiMj2332wx/+kE8//ZSSkhJmzJjBunXr+mp+IiIiIiIiIiItvPGH943rG393NX6B7W9n9LR16U7j+sJLzmfKlCnGfdNWUIBx57RcoRUZG05MchQ0FhKwNbhXxplMJqxWK/HjmgOvrpz9lZzacjVd1p6jLH13Vat2AQEB3HbbbR1u1+wKq9VKXl4eTqez1bM3H/2gxX1YdEiLMLE9nt9yzoWzmT59unG/c+UeY3XZuHNS23z/WE3fMjY1ymOMk3fbZ5cDtYKCAn7wgx+0+/yCCy7g22+/xWQy8dxzz/XV/EREREREREREDDtX7mHLYvfqqIGDo7ngtnO79F5tVS171u4HIGFMLG9+8AYFBQXG8+3fNRcUaCsESp3hXjnVUGfj4NZM4/d58+Yx4cwJxn1Xtn0mt3FI/38eX4jD4Wjx25IlS/joo4+68Nd1bNSoUcydO7fVuWj7Nh5k7aebWvzWlQICDfU2dq5wb30dMDiCDz77D0ePNldA7exbtueCCy5g0lkTjfuT+Ry1bm35tFg6TiinTJnCihUrWlR1EBERERERERHpCy6Xi9d+9x/j/sbfXY3Vy9rhO012rtyL3eYOrEadMxSHw4G3d/NWxO3L3SGQxWohddrwVu+nThthXO9a3XzcVXx8PNFDIoyzv7Yu2dnp2V+eh/SHxYQCkL0/lxUfttzxl5eX12KOPeXv709ISEir4gaeK/2aDB6T1Gl/e9bup762AYDRc1Ow2+34+PgYz3c0fkuTycSYWe2f3XasuLg4IhJCCQwNgMbVfm2tqjsZ9PoMtWONHDmSnTt38tVXX/V11yIiIiIiIiJyGtu6ZKexMip++EDm3DCzW+82mTBtHBdddBGhoe4wqzS/jKw97hVWwycPbnML6WiPc9TSPAK1tLQ0Pvn0E0bPdAdHRUdLOj37K2FEnFGRNCDY3/j93T8vaBEgTZ06tcVWyt749NNP2bZtW4u/YeNX7vug8EDj90FjOi/u0OJbTh3LhRdeaBwVVlVWbazgGzQmkeDwoC7Pce/evSxYsIBx57i/ZUVxJRk7szp970To80ANICQkhPPOO+94dC0iIiIiIiIipyGXy8Xrv3/PuL/pD9d26ayvJluWuLeJmkwmhk5OJiwszAi1WpyfdnbbWxSTUhMICHGHX7tW7zNWoUVGRtLQ0NBia2NnZ3/5+vswcEg0NB6+P/KsYQBkph1hzScbjXZ1dXWEhIR0+W/sSEREBPX19cb9Gx7fMnFk807DQWM7X6HW9C0Bhk8Z3OJbep6fNvbsUd2eo8PhYKzHGXZdOZPuROhWoLZ7925uvvlmzjjjDObNm8cbb7zR5jLGd955p9PtoSIiIiIiIiIiXbXhy63sWXcAGs8gO+cH07r8bllhOenbD0NjBc9d+9JYsmSJ8dzzzK+x7Zz5ZTabGTXNvUqtrKCcowfzAEhJSeGee+5h4tyxRlvPA/vb03SOWn1NPRfdMdf4/d3HFuByuairq+Pjjz8mIyOjy39nR66//nqmTp0KjWeTbVvm/ptjh8YY2zfNZhNJo+I77Ke6vJp9Gw9BYxB36MhBFi9ebDzv6flpAEOGDHF/yznd+5YnQpcDtQMHDjBlyhQ+/PBDXC4XaWlp3HbbbcyaNYu8vLzjO0sREREREREROW25XK4W533d/Oi1rQ7Y74jnKqcJc8bicrlarPxqOj/NbDG32Np5rNRpzc+aVrXV19ezaNEi4kZEGyvYti/b1enZX56FCYIjgxg2aTAAB7ZksOHLrUaBgr5aobZv3z42b97caqXfDb+ZT9bubADihg3E19+ng15g+/LdOB3uv23inLE4nU6Cg4ON503npwGMndW9FWo2m40vvviCiMRQwqJDGvvbjd1m71Y/34cu/+v77W9/S2BgIDt37mTTpk0cOXKEN998k507dzJ16lT27dt3fGcqIiIiIiIiIqeltZ9t4sDmdACGThjE9CvP7Nb7W75tXuU0ce4Y5s6dy+WXXw5AaUG5cX5ayhlD2jw/rcmEOWM85uTemlldXc3BgwcpLi42VmR15ewvz2qah3dlc8Nv5hv37/zpI/z9/XnggQf6rPBjVlYWe/fuZcu3O9i12p3hJI6MY/jkITTU2QBI7sr5aR7fcsLcMZx77rlcffXV0Hh+2qFt7vPTBo9NIjii6+enAdTW1nLw4EHy8/MZP9u97bO2qo79jf/tTyZdDtTWrVvHvffey9ChQ43fbrzxRtatW4fZbGbGjBls2LDheM1TRERERERERE5THz+1yLju7uo0PLYNenlbSZ0+gu+++47MTHfws/HLrUa7zlZUjThzKOGNVTm3LN5BbXUdwcHBxMXFERgYyITZzYGb58H9bRnkUenz8O4jTL1sslH9c8+6A6z8fC2LFi3qsyqXSUlJxMTEsNDzW/7hWg7vOmLcd6XCZ9O3NJtNjDt7FCtXruTQIfcW0M3fbMfpbDw/rZur0wACAwNJSEggODiY8ed2/VueCF3+F1hcXExMTEyr30eMGMGaNWuIj49nzpw5fP311309RxERERERERE5TR3efcQ47yt++ECmXDyxW+/npueTl1EAQOr0FHz9fUhLSyM/Px+AFR+tNdpOveyMDvsym81MvXQyAA11NrYs3oGXlxc33XQTYWFhxqoqGs8p60jc8FjMFncsk5GWhdlsbrFK7duFyzhw4ECbZ9f3xIQJExiZnMrGL92VPQckRjJj/hTSdxw22gzupCBBUU4Jhxu3h6acOZSAkAB27dplHAW2vMW3nNztOVosFm688UYiIyOZ0I1veSJ0OVBLTk5mx44dbT6Ljo5m+fLlTJgwgcsuu4wPP/ywL+coIiIiIiIiIqepT55tXrhz2d0Xdnt12pZvm7OMCY2H3SckJJCYmEhVWTWbv9kOQGRcuFFtsyPTrmjebrr6E/dOvZdeeont27eTNCq+y2d/eft4ET98IABH9ubgsDuYefVZRCVEALBn+QEGJQ3us6KPu3fv5q333jQCukvvugCLxUJGWvPW1EFjO97y6blSrKlwQHx8PElJSdRW17Fh0RYAQiKDul2QoMmrr77Kpk2bGDg4mpjkKGisqtpQ19Cj/o6XLv8rPOecc/jwww+x29v+xxAcHMzixYu58P+zd9bhUVxdGH9nNdm4u0ISkuDu7g7FChQrFCtUoC3t15aWKhQKRauUQgVK0eLuDiEQJBDi7rpZn++P3Z3sJmvZ3YSQ3t/z8LAzc+feOye7O7PnnvOewYNx8OBBa86RQCAQCAQCgUAgEAgEwn+QipIKnNx+DgBgY8fHwOm9at2HZpVItQba8OHDERoaiisHbkImVYr/9xzXxSRnXeu+zWFrbwMAuH7oDuQyOeRyOYqKikBRlLb2161nBvtS66hJxVJkPssGm83G4Jl9AQAlaUIglVfr69WHqFIMBUsOik2By+diyKvKcZJUEWoCB1t4BXkY7EOXLQcPHoymTZvixuE7TLXQ7mM6gc0xzxGoUChQVFQEAGjdR2lLqViKB1calna/yQ61GTNmoGvXrrh165beNnw+H/v27cPixYvRs2dPa82RQCAQCAQCgUAgEAgEwn+Qk9svQFQhBgD0n9oTdk52tTqfpmmmwqedkwDh7UJRXl6ONWvWICcnRyvds+f4Lib1yeNz0WFIG0BVfCDu8mMMHDgQ0dHKiCwt7a8zhlMVQ6KrIsKSHyhTKQfP6gOKohDczwv3U2KtpqGWcScPicezQMtp9J7UFU7ujqgoqUB2ch4AILh5gFGH4t3Tyuvh2/IQ2SUclZWV+Pbbb5GZmamV7mmqLXXRr18/tGypjH5rraFJd9eILesbkx1q7du3x+7du9G5c2fDHbJYWLduHc6ePWuN+REIBAKBQCAQCAQCgUD4D0LTNA5uPsZsj1w4uNZ95KbmoyS/DFDpp7E5bIhEImUUVH5xrdM91XTV0Fq7euAmnJycQFEUANRK+yso2p95naxKvfQM9ED7wa3BFXAgV8hw+6Ru+a3aQNM0Dm85CZlQGY03auEQAEBSXFVBghAjBQmKcoqRl14AAIjsHAYenwuJRAK5XI7S4lKrpHsC0LJlbTTp6pvaJR4TCAQCgUAgEAgEAoFAINQDMafvIy0+EwDQqnc0Qpob1vfShbbgfjAAwM3NDQMGDEDyzYxap3uq6Ti0DZPSeOXgLZw6dQqXL18GgFppfwVrXFPKwyrn1tDZ/ZB5owCpF3Jx9OdTtbhi3Ty4Eo+8/FyEj/FHdN9wRLRvAgBIul+ln2asIIF2W6UtHR0dMXDgQGTdz7dKuicAnDt3DhcuXAAAuPm4IDDSDwDw+EYChGWVZvdrbYhDjUAgEAgEAoFAIBAIBEKD48Cmqui0UWZEp6GGQ63KYWRra4tLe64x27VNUXRwsUfLXlGAqoqoVCQDl8tljjfvEQmotL/UVTF14dfUG1weBwCQrBEt1nl4O9g72UEhUeDKgVsoyimu1fyqc2DTMShkymIEA6ZU6dAladnHsMNS05Yh1Wx5ce91ZrvnhK4WzZXD4YDHq9KOa9FdaUuFXKE1h+cNcagRCAQCgUAgEAgEAoFAaFDkpOTh2r9KDXd3P1d0HdXB6Dm6SLpf02GUn5+PgwcP4vH9J0z/tUn3VKOZ9qlI4aJfv37MtmY0XfKDtBrnqmFz2AhopozASn+SBalECgDgcDlo8VJTBPbxglwmx4nfztd6fmoKsopw8Z9rqMgR4cmfmRgwuQ9zLFHDPsFGIgATddiyuLgYBw4cwKPYx4A63VPlaDSXYcOGYeDAgVXzaqERxWfAlvUNcagRCAQCgUAgEAgEAoFAaFCc2nEBCoUyomrYawPMTiFUpylyeRz4h/sCqggoAJAIZYAZ6Z5qek3owswr5k4M4uOrqlBqOqc0I890odZRk8vkSH+SxewPDPeHXKJMST36y2nQNF3rOQLAmT8vQS6Tgytgo+XEMFCqS6VpGkn31Lpt7rB3NlzwIVllSxaLQlCUcs5qW4rKlIUjLE33BID79+9r2TKkFrasT6ziUHvy5AnKysqs0RWBQCAQCAQCgUAgEAiE/zjnd19hXg+c3stgW31IRBKkqzTYgqIDGEePs7Mz8s9UojJf6QTqPambWf27eDmjy8j2AACBHxc3LtxijgVrFBvQ1EbTRXC07gis0eNGwabYCQCQ8TQLcZcemzXPCypbCjxtIGJXMP6bnJQ8RpPMmH6aXCZnqpD6hfuCb8sHADg4OKDsqhwV2SIAQJ+Xu5s1R03i4+Px7NkzZlurcIMRW9YnFjvUxGIxIiMjsW/fPuvMiEAgEAgEAoFAIBAIBMJ/lrT4DCayLLJzGDwDPczqJ+VhOhPlFqKRNnjv8kOw/KVg81kIaxuCZh2bmj3XobOVaZ5lmZVIu1sVXeYR4A6Bgy1gQlRVcHQA81qz7YMHD9BiRFUq6iUNnTJTyUnJw+MbCQAATx8PeHp6ws5OGYmmWWRA0z66SH+aBalYWqNt/J0ESF0rwBGwERjpx+jKWYKvry+8vb2ZbWcPJzh7Kh2LjS5CzdywQwKBQCAQCAQCgUAgEAgETS7s1igWMK52xQI00RLRb1EVgXXktxNwDXeEjQsPIxcMBkVRZo/RdkBLeAa6I/lkDm7suI/ctHwAAEVRTGSVZiSYLrQcVLcSmNcJCQmAnUyjmujNWvtfLvxTZctuQztj9uzZ4POV0WX67KMLreIFGm0P/XIcrhGOsHXjW2xLNX369EHXrtqFDYKbK52OxbklKM4rsXgMa0A01AgEAoFAIBAIBAKBQCA0GDTTPXuO62x2P7oqWBblluDqntsoz64El8VDn5fNS/dUw2azMXhWX0ROCIB/Tw8c33qWOaaVymmg0qd3iCfcfF0AAHEXHzOFCXx9fREYHIhWvZVRX9lJuVpRZaZwQcOWzfuHY9WqVaisVDr3dBVs0Id2hU9l27KiclzceR3lWZVgSVkYMM281Nzq7N27FydPntTaFxxVFcWX8kC/LesT4lAjEAgEAoFAIBAIBAKB0CCwVronACTFVTmf1BphR38+jcpiMe5tTcLAyb0ZLTBLGDyrL3gOXHDtODi69TTkcmUhAc1UTkPVKSmKQuu+zQEAIqEY8aoUzW7duqFbt27oolFN9MqBmybPSzPdM7RVEOzdBZDJZJBIJKBpmhmHy+cyBRv0ocuWJ7adQ0VRJe79moTeL3VnUlwtpby8HEKhUGufOkINRqqm1ifEoUYgEAgEAoFAIBAIBAKhQWCtdE8ASFRVsHT2cISLlzPkMjkO/XACLC6FTu80Q4dxrSyeLwB4+LvBptIeuTFFyEsrwK3jsUB1J1Cc4ciyNn1bMK9jTscBAC5evIi//voLXVWFD6BK+zQVzXTPnuO6wM/PD71794ajoyOyEnOQnZwHAIjuFmG0Mqe6GqjAwRZeQR5QKBQ4uOU4KBaFjksi0H5cC4Pn14bOnTujbdu2WvuCok23ZX1BHGoEAoFAIBAIBAKBQCAQGgTWSvcsyilGca5SaytEFVF19d9byEsrAGiAzWWBZWOFCavoMKAthKqqoUd/PgVUdwIZSPkEgNZ9mjOvY87eBwDIZDIUFRXBM9ADYW1DAABPbycyOm3G0Ez37DW+C2QyGQIDA0FRFGJO32eOaTrzdFFRUoGcFKXzLbiF8vzbJ2KRmZANWkGDzWOD58AxaU6mwOPx4OGhHZmoFe1nxJb1BXGoEQgEAoFAIBAIBAKBQHjuWDPdM1FLRF+p+XVg0zEAgEJGIyq4BUJCQiyeMwDI5XLcTbqFgI7KypRX/72N3NQ8uHo7w8HVHjAhqsoryAO+TbwAAI+uPoFIKEarVq3Qq5dSl0wz7fPqwVtG51Q93dM/3Be3b9/GgQMHAAB3NBxqbfsbdqhp6rZVtyUARPpHIzQ01OicTIGmafz11194/Pix1n57Zzu4+7kCKls2hOKYxKFGIBAIBAKBQCAQCAQC4blzcc915rWl6Z6aTqCQlkFIfpCGu2eUqZR+YT5o37MNo3VmKTKZDADQtldLAIBCrsDf3xwERVFMZFVBZhHKisoN9qOOFJNJ5Yi79BiOjo7g8XgAgG6jOzLtrhy4YXROl/bWtKVUKoW9vT0UCgVjCzsnAcLaGXaGaTnUWgYh81k2bhyJAQB4BrqjU7/2UCgURudkCnK5HDRNw87OrsYxdQptWVEFCrKKrDKeJRCHGoFAIBAIBAKBQCAQCITnTszpe8zrbmM6GmxrjEStCpZB+OPzf5jtkfMH4fjx47h27Zqes2sHn8/H3Llz8fKicbCxUxY5OPLzaRRkFZlcmAAAU5gAAO6euY/k5GTs3r0bQqEQIS0C4R2sjNiLPfcQ5cUVBvu6o2HL7ipbduvWDePHj0dibApKC8qUY/aJBpttWD9Nu8JnEP74Yg8TITZ87kCcPnMaV65cMdCD6XA4HMydOxfh4eE1jgVFmW7L+oA41AgEAoFAIBAIBAKBQCA8VyQiCR5efQIA8A72gE+Il0X9qUX0WSwKCrkC53YpHT7OHo4YMrsvE6llDUpLS3Hp0iU4uNpjxLyBAACpWIp/1vyrpaOWFGfYCdRKQ0ft7tk42Nsr00XlcjkoimLSPuUyOW6fiNXbj1wmR9xFZcqki5cTAiP9lX3evYv09HTcOVXlbGvTr6XR60vUiFDj2XBxavt5QJWGOWL+QNjb21st2q+iogLnz5/X2V9w80DmdbIRW9YHFjvUeDwezp49i0GDBllnRgQCgUAgEAgEAoFAIBD+Uzy+kQCJSAoAaNk72qK+5DI5I1zvF+6Lv77exxyb+N5o2NrbYvTo0ejTp4+Fs1aSlpaGuLg4SKVSjFsyAjwbLgDg0Pcn4BHgyrQzFlXl4umEEJVG2dPbiXAUOGHBggVwcHAAALQf1JppG3fpsd5+EmKSICyrBAC06h0NiqIAlUMtJSUFMWdM10+jaRrJKoeaV5AH9qw9BIVCGZ02bskI2DvbYfjw4RgwYIDBfkwlPT0dDx8+RGVlZY1jIZpVUxtDhBpFUejVqxe8vCzzHhMIBAKBQCAQCAQCgUD4b3Lv/EPmdateljnU0p9mQSpWOuc8AtxweZ9Sc8zVxwUj5isjyNLS0nDrlnFxf1Owt7eHv78/+Hw+XL1dMHR2fwCASChG7Lmq6zLFCaSu9qlQ0Ig99wDnz59HUZFSLyyqSzjjHHtwRb9DTdOWLXtGMa/d3d3h7eWD+xceKbf9XOEf7mtwPjkpeYxzzjvEE2f/ugwAcHRzwJjFQwEAGRkZuHHDuK6bKdjb28PHx0enhlpgpB/zulE41AgEAoFAIBAIBAKBQCAQLCH2/APmdcteUQbbGiNJQ/MrNyWPef3y+2PAt1VqnKWnp+POnTsWjaPG398fM2fOZJxd498ZCQ5XqUt27JczcPJwBEzU/dLUUYs5ex8PHjxAUlISoEqxVAvzP7ubzDi6qqNlS41ovzFjxoBdxoO4UgIAaNO/BTNnfWjqpxVmFzPaaRPfHQWBgy0AIDMz02rOSR8fH8yePRssVk13la29LbxDPAGVLZ93pU/iUCMQCAQCgUAgEAgEAoHw3JCIpXh4JR5Q6ad5B3ta1J+mEyj9SRagilQbOqc/s79JkyZwdXXVeX5tOX36NP75p6rogWeAOwbNUKaTCssqYWtvAwAozitFUW6Jwb5a9YoCi6V0csWeeYCIiAgIBALmeHTXCEAVwfb4+tMa58tlcty/qIxAc/Z0QmAzZVSXUCjEqlWrcP30TaatuqqoIdRadACQ9jgDUOmyjVw4mNkfGhoKNzc3o32Zwrlz57Bz5069x9VFHirLRchNzbfKmOZCHGoEAoFAIBAIBAKBQCAQnhvxGvppLSyMTgOAJA0RfTVTPxwHHp/LbIeGhmLChAkWjwVVyiOHw9HaN/G90WCxlS6XgswiZr+xKDU7JzuEt28CqNIaB/QaiNDQUOZ4dLdmzOsHl+NrnJ9wNxnCUrV+WhQTgZaXlwepVIqH16qccG36GXeoaVZLVfPy+2NhI+Az24GBgZg8ebLRvkxBly010aya+rzTPolDjUAgEAgEAoFAIBAIBMJzI/ZcVYqipfppqBahBgA+oV4YOKO31j6pVIrVq1cjJaWmw6i2dOjQAZ06daoxZr+pPZRjqfTcYGJ1ytYa1T4P7T2CP/74g9lu3r3KoRanQ0ftnoYtW/assqWnpyd6dOuBR2eVDrWgKH+4+xqP0EuqZksPfzcMe62/1j6FQoE1a9YgISHBaH/GaN++Pbp06aL3uGbV1Odd6bPOHGrPnj2rq64JBAKBQCAQCAQCgUAgNBI0Nb9aWVrhUy5HfnqB1r5XPh4PDlc76onD4YCiKGRlZVk0Hk3TUCgU8PHxqXFs8vtjmSg1NaZEVWlGjmUl5CA7O5vRC/MK8oCbrwsA4NHVJ5DL5FrnatuyKtqvrKwM4nw5U6HTlHRPmqaRo6FBBwCT//cSeDY8rX0sFgscDgfZ2dlG+zQ2nkwmg6+v/kIJwRqVPlMevuAOtaysLJw4cQLffvstZs2ahQ4dOsDe3h7h4eHWmSGBQCAQCAQCgUAgEAiERolcLsejq08AAJ6B7hbrp5XklTJOIwAIiPBF3ynda7SjKAojRoxAWFiYReOlp6dj3759KCwsrHHMP9wXozS0xgAg9VG60T6jukaAy1M6AONPJqN///5M6iZFUUyUWmW5SCu9laZpxF1SRq05ezgiMNKfOXbq1CncvRfDbLfpb9yhJiwVMqm4UOnbDZrZW2fbYcOGISIiwmifhsjJycHevXuRm5urt01gMz9GYy7loXFb1iX6E1OrUVxcjLi4OObf/fvKahPq8q0AYGtri9DQUAwYMABNmjSpqzkTCAQCgUAgEAgEAoFAaARkPcthqk5GdGxqcX+Zz3K0tuesegVsNltnW19fX5SUlFgkqC8UCsHhcODk5KTz+LRPJuDMnxdRkl8GAMhKzNHZThMbAR+RXcJx7/xDpD/MRmWpCGKxGHy+UrcsumsznP/7KgAg7vJjNG0TAgDISy9ARYkQABDeoYlWBU+hUIi8Z0r/DYvNQisTtOqykrQdW69+NQVcHldnWx8fHxQWFsLDw8Nov/oQCoVgs9lwcXHR24Znw4OzpxMKs4tRlF1s9ljWwOQINTc3N/Tq1QsLFizAH3/8AalUilGjRmHlypXYvHkzaJrG9u3bce/ePezbtw+rV6+u25kTCAQCgUAgEAgEAoFAeKFJ0tDBCo4KMNjWFP5Z8y/z2i/cB11GtNfb9t69ezh48KBF4zVt2hQLFy4El6vb0WTvbIdZX05htguzimukaeqCScmkgLOXziAuLo45Ft2tKhLs4dWqwgTJBmw5oNdAPNinlOaK6NAEdk52Ruewe3WVLT2D3NFrQle9bR88eID9+/cb7dMQwcHBeP3112FjY2OwnZOHI6CqmqpOhX0emOxQoygKwcHBOHfuHIqKinDlyhX88ssvWLp0Kfr3729CDwQCgUAgEAgEAoFAIBAIVWhWvdTUxzKHZ7HJuHLgBrPdb3IPg+09PDwgEokscspcvXoViYmJBtsMmtkbNnbK6DKFQoF/txw32m/rvqrCBDRAiVkQiUTMsdCWQeBwlVF3mk40bVsGMq8rKiqwf99+UKpUybb9WhodP/VxBs7tusRs957QTSvirToeHh4Qi8VQKBRG+9bHjRs38OTJE6Pt1A41qViKynKR0fZ1hckOtbi4OLRo0QIDBgzAvHnzLBbuIxAIBAKBQCAQCAQCgfDfRlNYXrOCY21RKBRYv/BnaPrGgqL8DZ2C6OhoLFiwwKCjyBixsbHIyTGcxslms9GkdTCzvW35LpQWlBk8p1nHpowT7vGuDHTs2JE5xuFy4NvUGwCQ/iQLcrky4i1Zy5ZV156amoriyiKwOMrrNKafRtM0Nrz+MxTyKmMac3ZGRETg9ddfB4tlvlR/bGysSYUNnFUONag0854XJl9ps2bNsH//fpw9exYPHz5E06ZN8e677+oU3iMQCAQCgUAgEAgEAoFAMIa66iWHy4afyklkDie2ncPDK/Fa+1y9nQ2eQ1EUTp48iYSEBLPH9fb2NqkoY0B4VeXKimIhfv3wL4PtOVwOWvRU6pyJpEJs/3WHViSduuCAVCxFtkrrTB2hRlGUVkECgUCAshQRpEI5+LY8RHY2PN+zOy/j7pk4rX2m2PLcuXOIj4832M4QXl5eJhU2cHRzYF4XvwgONTVdu3bFhQsX8Ndff+Ho0aMIDQ3FN998Y5FHl0AgEAgEAoFAIBAIBMJ/C5lUhvT4TACAf4QvOFyT6yZqUVpQhp/e+73GfhcjTiAAKCgo0NInqw0KhcLkooxOGlFVAHD4x1NIiEkyeE77Aa0AAGw+G+lZaVoBTYHN/JjXaY8zoVAokPJAWfXSO8QTNgI+c1xUJMG9HUr9tBY9I8Hj69Z7A4CKkgr8sOS3GvuNOdQAoLCwEPfv3zfaThc0TaNPnz4mOdScPaoKQLwQEWrVGTlyJGJjY/Htt9/iyJEjoGkap06dQmnp87sYAoFAIBAIBAKBQCAQCC8GGU+zIJMq0xU1Nb9qyy/v/8GkUDp7VjlbXLyMO4HatWsHT09Ps8a9efMmfv31V5PaOnloVwGlaRrfzNoEiViq95xuY5RpnmVpQoiyZeDxeMwxzQi01EfpyEnJg0goBqqlZ9I0jX8O7oZnS6UtjOmnbft4FwpV1TOdvarm7GyCLdu2bQsvLy+j7XRx584d/PTTTya11XROluS/gA41AGCxWJg1axaePn2Kr776Cjt37kRgYCCWLVtmUt4rgUAgEAgEAoFAIBAIhP8ONE3j1O8XsGvVARzcfILZ7xngzmiB1YYHV+Jx9JczAACBgy3snAQAABsBH7b2hqtFQuVQa9q0qVmFCdLT0+HsbNzRhGq6X64+ynMSY1Ow45O/9Z7jFeSBiA5NIJcocHf7U2Qn5zLHAppVpZCe+/sK9q8/ymx7BnowlUSLioogo6UQFUsAAG366ddPe3L7GQ5uOgYA4NvymDmz2Cw4utkbvcZWrVohIiKizm3p9KJpqBmCz+fjvffeQ2JiIubMmYP169cjNDTUGl0TCAQCgUAgEAgEAoFAaCSc//sKVk7bgJ+X/Y6Dm48x+//+5gBGO0/H8W1nTe6rolSIr19Zzzhwpq+YyESquXg7myRNVVlZiS1btiApyXD6pS46d+6MwYMHm9TW0b1K96vz8PZMlc5dqw4g7tIjved1H9sZAODf3QN//vEnPhr5NT4Y+gVsHWyZNk9vJ2Lvd4eZ7QMbj2KU0zT8+/0JcCkuEg5moCSpAh7+bghtFaRzHJFQjK+nrodCobTl1I/GobyoAlBF/bHZbKPXKJVKsWXLFpMqdVanY8eOGDZsmEltX7iiBKbg7OyMb775BvHx8Zg0aZI1uyYQCAQCgUAgEAgEAoHwgsPm6HfMiCrEOP3HRZP72vTGVkaQP6prBIbM7oeywnLARP00ALCxsYFAIEBWVpbJ4wKAWCzG48eP4eHhYVJ7TScQm83C9E8nAqqIvZXTNqCiVFjjHIlIAht7pRZaZYEYCq4M1w7dxs1jd3Fl/80aumxa86uU4NTvF3Dk7xOoVEWndR/bSW8Vzh+W/IY0lZ5dWLtQjHlzKIpySgAT9dMAgMvlwtHRsda2lEgkePjwocmpt5rXXfyipnzqIyAgAFu3bq2LrgkEAoFAIBAIBAKBQCC8oHQa1hYOLnZ6j/ed3MOkfs7vvoqTv50HVKmey3YsYpxpAODi5WTg7CooisLkyZMRGBgIkUiEkydPIi0tzeh58fHxuHTpEiQSiUnjVHcCjX9nJKK7KQX4s5Pz8P1b27Tap8Vn4JUmr2PTIqVvJTe2GI93p8HWjQeBBx95ikw0aR1scMx+k3vgUfIDuDVTjt1zXGed7a7+ewuHfjgJqFJl3/99MUTlYiZt1FRbAsDEiRPRpEkTVFZW4syZM0hOTjZ6TkJCAi5duoTKykqTxmgoKZ/mldAgEAgEAoFAIBAIBAKBQKglPBse+k3tif0bjtY41qJHJAbN6G20j9y0fKyb+wOz/frGV+ET4oX4W8+Yfa4miOhXVFRAIBDg8OHDyMrKgpOTE0pKSuDq6oqAgACD54rFYgQEBMDGxrhOG3Q4gdhsNt77bRHmtl6KynIRjv16Fl1GdkDTtiE48uMpCMsrUZhVBBaXBdA0HIPs0GxCICgWIBcrUCIrQnBUAO6cvKdzvIgOTdD75W64/sVFFD0tg6uPC6K61qygWZhdhG9nb2G25307HQERfkh+UOVUNCXar6KiAnZ2djh27BjS0tLg6OiIsrIy2NnZITjYsONPLBbD29sb9vbGddoAwNHNHhRFgaZp4lAjEAgEAoFAIBAIBAKB8N9gyKv9ajjUOFw23tgyx6jumUKhwDczNqK8WKnv1XtiV/Sf2hMAUKSqTgkTnEClpaVYu3Yt7O3tUV6ujGwrKSmBra0tQkJCjF5D+/bt0a5dO6Pt1Nja2YBvy4O4UsI4gXxCvbBg3UysUTm0vpmxERSbhbLCcvBsuPCP8AUvlIZvRzfIxHKw2ErbsPkshASGwMHdTedYLBaFN7+fi1vH7uLG2niABkYuGFQj3ZOmaayetRnFqvl0HdUBQ+f0BwCm0idMcE4KhUKsXr0adnZ2qKhQ/l1KS0tNtmXr1q3RqlUro+3UsNlsOLjao7SgjJn786BOUj4JBAKBQCAQCAQCgUAgEHQR2jKohjj++KUjERRlOCoMAP5Z8y/unn0AAPAIcMPizVVOOE0nkIsRJ5CDgwM6deoEoVBbu2zw4MFwdXU1eK5YLMbatWuRmZlpdL6aqKPUNKOqBs3sgy4j2wMAykuETNqqRCTFlP+9BFYhD1KhDJp+RlGhBGPHjYFnoLvOccYsHoqmbUJw8fxFRL2stHPPcV1qtDuw6RhuHrsLqHTS3vpxLmPLolrYUiAQoHv37jVs2a9fP6O6aFKpFN999x1SU1MNtquOLlvWN8ShRiAQCAQCgUAgEAgEAqFe6TqqA/Na4GiLyf97yeg5T+8k4tcP/wJU2mfv/bYIDi5VaYKaTiBjQvoURWHQoEFYsmQJQkNDmf3Xr183Oo+UlBSUlZVBIBAYbauJ2glUWlAGhUIBAJBJZbBz1q0pl/ooHSsPLUfhOTHifk+GXKo8h+/MQ0ZWBtz9ajr+bOz4mPbpRFRWiFCuKIFcLIezhyOa92im1S75QRp+fGcHs7106wI4e1RppRXWItoPKufZ0qVLER4ezuwzxZbp6ekoKSmpvS1VVVMry0WQiEzTsbM2xKFGIBAIBAKBQCAQCAQCoV4Zt2QEBI62oFgUFn43CzYCvsH2IqEYX01dD5lUKZQ/4Z2RaNU7WqtNUU7tnEAURUEgEMDb25vZZ2env2CCGg8PD/Tr189oJFt11JU+FQqaiURbPWszTm0/r7P9o2tP4OjmgFXHl8PDXVlNlKZpsNgUbGxs4OFflfLJ5rJBURTmrHoFAgdb3Dp2F9l3i5B+KR/dxnQCm11VXVUiluKrKd9BKpYCAEYvGoIOg9tojV2cY7pzUo1AIICPj4/WtjFcXV3Rp08fk6ulqtEq8vCcotSIhhqBQCAQXkhomkaFRI4CoQQFQimEEhkUNMCmKNjx2XAX8OBmx4MtV39p9vpArqBRKJSgQChBcaUUUjkNUACXxYKrgAs3AQ/OtlywWYb1QghKWxZVSpBfIVXZUsHY0sWWCzc7LlxsecSWJiBX0CiulCJfKEGRUAqpQgHQAJdNwdlW+b50FRBbmoJMJkNqaioSExORmpoKoVAImqZhY2ODgIAAhIaGIjg4GDwe73lPtcEjk8mQnp6OxMREJCcnM7bk8/latuTzDf/oJgByuVzLlhUVFYwt/f39GVuaKqb+X0ahUGjZsry8HAqFAjY2NvD19UVoaChCQ0OJLU1AQdMoFclQUCFBYaUEYpkCS+6sBZsCnG25yC4TwU3AA5ddM+6HpmlsWvQL0h5nAADC2oZg+oqJNdoVmuEEAoC+ffsiPz8fT548gb+/P+7fv4/ExERkZWVBIpGAzWbD0dERISEhCAkJQWFhYa3009RoFSbIL4OTuyPuX3ikt/2j6wmQy+Swd7bDmjMrsHjAMvj1cwGXy4XA2R15lVJ0eHs0OPY2cHB1QNcR7eBky0VWqQgXjt6AuFiCihxRjeqePyz5DYn3UgAAwdEBmP31lBpjF9bSOammZ8+eyMvLw8OHDxEYGIi4uDgkJiYiMzOTsaWDgwOCg4MRGhqK4uJitGvXzqh2XnWc3atsWZpfBs8A3emvdQlxqBEIBALhhUIqVyCxUIj43HIUVUqNtve05yHCwx5BLoJ6dQ4UCiV4nFuOpEIhZAraYFsum0JTNztEeNjDyZZbb3N8USgSShCfV45nBSbYkkUh1M0OEZ72cCG2rEFxpVRlywqlc9cAHBaFUDcBIjzs4SogzqDqZGZm4sSJEzh//jwjwKwPPp+Pbt26YeDAgVppRQQl2dnZOHnyJM6ePcsIg+uDy+UytmzatGm9zfFFITc3F6dOncKZM2dQWmo4YoPD4aBLly4YNGgQwsLCav1jtrGTn5+PU6dO4fTp0ygpKTHYls1mo1OnThg0aBCaNWtGbFkNoUSOJ/nleJJXgUpVdJk+KAoIdLZFhIc9vB34jC2P/HQKx349CwDg2/Kw7Pc3wOXVvM9r63451Tiuf1wKERERuH//PjZt2gSaNvK8weWiX79+GDduHBwdHQ221cTJXbvSJ5r54Z1tC7Fh4c9Ii6+pxyYWipFwNwkR7ZvC3skOmy6vQ0xSDlLKpDj4KBcAEDGpJ9M+oaBKw8zvtVFwGNQSD3+6hBY9I5n9J3ecx8HNx5XXwePg/T/eAN+25kJFoZm2BICIiAjExsbixx9/ZFJb9cHlctGrVy9MmDABzs6mO+4aQoQaRRt7pzRiSktLmbK4tfkQEAgEAqH+oWkaCfkVuJVeDIkRR4AubLlsdA5yQaCzbZ3MT02FRIZrKUVILxGZdX6IqwAdA51hw3m+kXUNgUqpHNdSipBaXGnW+UEutugU6PLcoxQbAiKpHNdTi5BcZJ4tA5xt0TnQBQIesWV5eTm2bduGCxcumHV+mzZtMGfOHLi71/9KekOjoqIC27dvx7lz54z+eNVFixYtMHfuXKOC1/8FKisr8fvvv+PUqVNm2TIyMhLz5s3TStX6ryISibBz504cPXrULFuGh4dj3rx58Pf3r5P5vUjIFArczSjFw9wymON1cBNw0S3YFdn3U7Ck18eQSmQAgGU7FqPflB46z5kRsRgZT7Ng5yTA/qLfTBonISEBW7ZsQVpaWq3nyOVyMXr0aIwZMwYcjvF4pZ1f78MvH/wJAPj4n6XoMbYToIqEvHEkBrvXHMS98w+1zhnzxlDMXTMDsZkleJBTBiNrizpxteWia7Arip5k4I1u/4NEpFyUfvuneRjyaj+d58xtvRSJ91LA5XFwuPJPkxzFiYmJ+P7775GcnFzrObLZbIwcORLjxo0Dl2t8UXTvd4ex5a1tgJH3RF1CItQIBAKB0OARSuS4nFyIzFLznFRQOWfOJuQj1FWAToEu4HGsLyP6rKAC11OLjEb+GCKpUIisUhG6BLvWufOvIZNUKMT1lCKI5YZXNQ2RUlSJ7DIxOge6INi1dkK3jYmUIiGupRRBJDPflmnFlcgpE6FToAtC3YxryzRW7ty5g++//x7FxcUmtNZNTEwMlixZghkzZqBPnz5Wnd+LxL1797B582YUFhaa3cf9+/exZMkSTJs2Df379//PRgU9ePAAmzdvRl5entl9PHr0CO+88w4mT56MIUOG/GdtGR8fj40bNyInJ8fsPp48eYL33nsPEydOxIgRI/6ztsyvEONiUiFKRTKz+ygQSvHvwxzE77wKqSqybfSiIQYdJ+oINVPSPWUyGf7++28cOHDALOcpVBUqd+/ejZs3b+L1119HYGCgwfZaKZ8aUVUsFgudh7dD5+HtEH/rGbb+70/cOXkPANC0V3McepSDYhMyM/RRWCnF4Uc5eLb7GmPLobP76XWmQSNCzcXb2ej7WC6XY8+ePdi7d6/RiDRDfezbtw+3bt3CokWLEBwcbLC9sx5b1ifEoUYgEAiEBk2pSIoTT/JQITGcImAqiYVCFFdK0T/cw2qRSzRNIzazFLFZ1rmZi2QKnE3IR6dAZzTzdLBKny8S97NKcSfDcHqNqYhlCpxPLECFRIZo7/9eNPrDnDLcTDPf+aOJRE7jYlIhysVytPT979ny1KlT+Omnn8z+0aVJZWUltmzZgpycHEycOPE/94P7/Pnz2Lx5s1VsKRaL8dNPPyErKwuvvPLKf86WV65cwYYNGyCXW36PlEgk2LZtGzIzMzFr1iywWP+t+nU3btzAunXrIJOZ7wBSI5VK8fvvvyMjIwNz5879z9kyvaQS5xIKILfCZ5wGED6lD7hujig9HYO5q6cZbF9ZrozEtrE3rGknkUjw7bff4s6dOxbPEQCSk5Px0UcfYdmyZYiMjNTbTp9DTZOI9k2w8vhHyErKQZ5IhvuVNGQWONPU0ABCx3cHx80ReQeuYOGGVw22F1UoF7JtjdhSJpPhu+++M6mipymkpaXho48+wrvvvosWLVrobaed8mmd58ba8t/6ZBMIBALhhaJCIrOqM01NYaUUJ5/kQWJBxI4m97PKrOZM0+R6ajGe5BnWE2psPMgus5ozTZNb6SV4lFNm9X4bMo9zy63mTNMkJrMEcXXwfm/InDt3Dj/++KNVHECa7N27F//8849V+2zoXL582WrONE0OHTqEP//806p9NnRu3LiB7777zirONE1OnDiB3377zep/o4ZMTEwM1q5daxVnmiZnz561miP+RSGrVISzCflWcaZpEjK4HYZumge2AUmMKwdvMqmlMqn+v6VcLsfatWut5kxTU1lZia+++goJCQl62zi62jOvy4oMP+Ox3J1xr5I2qh9bWwL7tsSw7xeAwzMSX6UaljKgQaxQKLB+/XqrOdPUiMVirFy5Eo8fP9bbxkHDluVFhrVM6wriUCMQCARCg0RB0zj/rMDqzjQ1RZVSXE0xP9VITWaJCDGZdbcqdi2lCAUVkjrrvyGRUybGrXTrO4DU3EgrRm65uM76b0jklYtxI7Wozvq/nVGCLAtSsF8kkpOT8cMPP9RZ/7t370ZMTEyd9d+QyMjIqBNnmpoDBw5Y/UddQyUnJwcbNmyoM1sePXoUly9frpO+Gxr5+flYt26d1R2Tak6fPo0zZ87USd8NjUqpHOefFZil8WUKGUIZHufqdkId/vEkPh37DbNdWqDdTi6XIzc1D/cuPMQ3y7/F7du362SOIpEIX372JR7eioe4suYzB2VitKJIJse5Z/mQ15Exs8UKPMw2vNCoTt00FGH577//4tq1a1afH1RRhGvWrEFZme55NoTIT5LySSAQCIQGyaOcMuTVsSMpuagSwUVCBLmYp68lkStwxQpOOUPQAC4nF2JYpFe9Vimtb6RyBS4n160tAeByUiFGRHuB0wAewuoKuYLG5eRC1HU8xJXkQoyM9gaX3XhtKZPJsHnz5jr7oa3mhx9+wJo1a2Bn13j16RQKBTZv3gyp1PK0JUP8/PPPiIyMbNQFxxQKBbZs2QKxuG4XCLZu3YrmzZvXqureiwZN0/jhhx9QWWlewRZT2b59O1q1atWoi5HQNI2rFmqfmsKdjBL4OdnC0YbDjLv9k7/x+2fa0b4leaVYPWszclJykZ2ch7y0AshlcrCdAId+hqOuLKW8shzvz/8QlXcoeAa6wy/MG35hvvAP94FcI3LOUIr6jdRii7RPTSEmswT+zrZw1lMVnTYSoZaeno6///67LqeIkpIS/Prrr1i8eHGNY1pabc8p3Z841AgEAoHQ4KiUyuBpz8egCA/I5DQuJBVApqAxOMITzjZcXEkpRIqZ1Qqrcy2lCH6ONuCY4RRIyC9Hz1A3KGiamSebotCnqTsUNA0KFK6lFKFYZNkPyKJKKR7mlKGFT+P9gXg/qxRlYuVDpocdD+0DnLXsKlBVaQUADosFCsChR7UXjS4VyxCXVYbWfrUr//4iEZddipJqItA2HFaN92WJWGrRZ6pcIkdsZinaBzTeH9tHjx5lKpU5OTlh6dKlkMvlYLFY+Omnn5CWlobt27fj2bNnAID9+/cjNja21uMUFhZi165dmDVrltWvoaFw8uRJPH36lNnWZc/09HTMmzcPXl5eEAqF2LRpEyoqapfGU1JSgj///BPz5s2rg6toGJw/fx4PHyqrAEZEROCzzz7Dq6++ChaLpfM9ai7l5eXYvn27zh+yjYUrV67o/Mxq2tXR0RGzZ88GANjY2ICiKCxbtqxW41RWVmLbtm1YunSp1ebe0EgrEaFHiCsKhMrF0PtZZcgqE1n92U2moHEjtQj9wz0gl8nxzcxNOP3HxZrtJDIc33a2xn5BO6WDqPp3d3JyslU/P/wQCpIUGjkpechJycOdU/drtDm5/RzElRK07BmJFj2j4OajfM7JLBEhqVCIyW38tOyZWSrSuc9cFLTyOXhwM92VkmmVw0qf4++nn35iFkmq2zM/P9/iz42aS5cuoVevXmjVqpX2/DRWDlnPadGZONQIBAKB0OBIyBciNqsUcgWNcA87NPO0x/2sMpx7lo9wD3sTejAdkUyBpCIhwtxr169UrkB8bjnuSLXnGZdVhqOPcwEAXg58NPdxwKUkyyOvHueWI9rbAaxGKLgtUyjwJK/qR3O5Sjuv+t//eLyygl2Ehz14HPPtEJ9XjhY+jo0y4k+uoBGvQ3dPLFPofF9a+pl6kl+OVr6OjTJKTaFQ4OjRo8x2aWkpPv74Y9A0jaioKIwePRobNmxAbm4uPv30U4vHO3v2LCZNmgSBoPFVpFUoFDhy5IjWPl32vH79OioqKvDJJ5+gXbt2GDVqlFm6aBcuXMDkyZMbZZQaTdNathw+fDij16TvPWoJV65cwdSpU+Hq6mrx3Bsi1d+XajTtmpGRwXzGBw0aZPZn9ObNm8jNzYWnp27nxYvOo5wyOPA5zL1aTV08u2WUilBcKcV7Xd5H4r0Uo+3tnATwCvaAY4gAKRylJlf1726Koqz++XHvaI/yKzTKi3UvDJTkl+HfLcfx75bjAADfpt5o2SMSflP7Ag52KJfIa9hT1z5LyCkXo0AogZuAV+OYoQi1xMREPHr0iNnWdS+0xudGzZEjR2o61DQi1J5XQZrG9/RDIBAIhBcauYLGw5wyRjNCoai6oVdK6yb0/XFuea11aJ4VCFEqlteYp2YvPDYLRULrpDcJpXKkFddtSsrzIrmwUitFpFKq0Pn3VxPiKkBSgbBWY7zUwgcBzraAyomaUlS7818UUosrdX5O9L0vLf1MSeU0kgobpy3v3LmD/Px8ZpumaeZ7ws7Ojolcc3d3xyeffIJFixbB3r52Pxo3btyIDh06ACoB5vPnz1v1GhoKcXFxyMrK0tqny54+Pj5ITEwEACQlJSEqKsqs8WQyGc6erRmZ0hiIj49HSorSgdC2bVs8fvyYSf3U9x61BIVCgdOnT1vcT0MkMTFRK2pSTXW7atKtWzezteVomsbJkyfNOrehU1wpRXaZGHZcNgZHeKBHiCv4qoWWunp2i88tR9L9VINtuo/thH2F27C/6Df8ELMaAb2rUm6rf3fXxedHal+Jn5+uwT+5v2Ddpc+xdOsC9J3cnTle3QeUmZCNS8djIbJTPq/osqeufZYSr0eXzlCE2okTJ7S2Dd0LzfncrFmzBm3btmW27969i5wc7cwEzefDukzhNcQL7VC7cOECRowYAV9fX1AUhf379z/vKREIBALBQnLKxIxmBJ/NQoSnPZ7mG075GRThgVfa+cNFQwOCy6YwvX0A7Hj6q0GpKRRKmXRDU0nWcCJUn6eTDQdDmnmiU6AzcjRE8C2dZ3IjdVzouy5df387HhsUpVyhrU7XYBdMbx8AJxvjAfiN1Qlk6D2i732pi0ERHpja1h+T2/hhUmtfDIrwgKtAt8ZKY31fXrlypcY+Pz8/fPbZZ5g5cyaTcrdo0SJ88skniIuLw8svv6zVPiIiAu+//z62bt2KX3/9FatWrcLIkSPBZuv+vOsaszGg77qq2zM1NZWJQGjZsqWWptzy5csxdOhQZtvLywsbNmzA9OnTazXmi476uiiKwsCBA2v8qNX1HgUAHx8fvPfee/j555+xbds2rF27FqNGjarVmI0NXdelz64A4OHhARaLhdxcZbTvsmXLdKZp29raYseOHYiOjjZpzMaA+j6wNy4Lx+LzkFUqRhsj0gqDIjwwvX0AfBz4WvujvRwwvX0AOhiRE0guEmL04qEQONrqlc8qzC6GvbPye0Qmk+HGjRvMMV3f3fo+P8uXL8cff/yB7du3M/8GDhxozCxQKBS4fv06nNwdEd01AoNm9MHgWX2Z42PfHI4vj/4PL78/Bs27NwOXx0Fg/9ZM4QJd9jRkY097HvqFuWNSaz+83NoPI6K8VNkNhueZXCTUubCs3lU9nVKhUNQoRKDvXlj9c7N8+XLs3LkTgYGBTBuBQIC///4bHh4ezL4lS5ZoVWGlaRpXr17Vnh+JULOMiooKtGrVCps2bXreUyEQCASClVDrQrBZFHo1ccON1CKITRBllcgUaGuBLlZ+LQog0DRtcJ4lIhmOPs7F6af56FjtgdCSeeYLG1+1T5qmdV6Xvr9/iKtApwOHw6IQ7CKASCZHmLtxYfeCRmhLGLkuQ+9LXdxOL8afMRn4OzYThUIp+jbVLaZdIJTUWaXB54laC0aTjIwMfPTRR1i5ciXzQ1pdfezy5csIDg5m2rZt2xYffPABYmNj8cYbb2DmzJlYt24d/P394eLionPMpKSkOi+A8DzQZUvosGdMTAwKCgqwfPlyeHt7o7BQd7p8YGAgVqxYgfPnz+O3337T2SY1NRUSSeP7nKtt2b17d9y+fbtGkQdd71EAeP/995GcnIwFCxZg5syZWLNmTY1oD31kZmbWuWj/80DX+1KfXQGga9euWlE2Z8+eRffu3cHhaC/idOvWDUVFRXjw4EGNPvLy8lBaWmq1a2goqO/j6vt1UpFQ7yKMJiWVUjStds9u6m6H4krj0f0imQLTV07FgeLtOFj2O767/DnmrpnGHOdw2Rg0vTeznZ6ervWdoOu7W9/nBwD++OMPTJs2jfmny+mqC3XUrRrN2yXflocOg1pj1heTsfbCZ9hXtA195g1ijuuypz4b+zvZoH+YBzJLRNgXl4W/7mbgfGIBnG24sOUaXrSVymmU6lhYZu7t1ZxV2dnZEAq1n8X03Qurf26g0mecPHmywTnpwpAtSYSaGQwZMgSff/45xowZ87ynQiAQCAQrUSCUgALQK9QNj3PLTa70GZ9XDk97Przs+TqPc1gUOgU646UWPpjQyhfdg13BZVfdfAtqkZpZKpJBpqB1zlPzfi6RKyCrVu7c2DyjvOwxprk3Jrfxw9jmPmimoTtSLpab5Fx8kaiQ1LwmQ3//YFeBzuiyEFcBZAoad9JLEOpmZ7TYU6VUAaGOKLcXGZFUjgo912TsfWkIBQ08zauAHY+jM71EIqdRJm5cthQKhTVSFDV/NFdUVEAsFoPP5zOr4lFRUcjOzmbazJw5EwcOHMCRI0eYHxqZmZnYvHmzViqpJhKJBBkZGXV0Vc8HiUSC9PT0Gvt12RMAdu7ciU8//RTp6em4efNmjfMiIiKwfPly7Nu3D//880+N42rkcjlSUw2ng71oyOVyJt0zMDAQnTp1wgcffICgoCAsXrxYr00dHBzg7e2NU6dOQSJROsDT09O1IkxsbW0xa9YsbNq0Cdu2bcOXX34JNzc3QPWjOikpqd6vty7Rd0267Kqma9euWhFmt27dglwuZ9K21fTu3dtgynF1p8CLDk3TKKiQgMOioL7VeNvzdTpoqpNUJISfkw3zPOZup9Txqr7I+VILH0R7O2BoM09MbuOHQREeEHDZKFC1sxHwEdUlAsPnVkWNNe8RiaFz+jPbmnbX9d2t7/NjDD6fj1mzZmHz5s346aefsHDhQtja2uocF0aiqvi2fMgFNoDqubW6PQ3ZuGOgC+Kyy/Aot5x5rioVyXA5uZB5NrDhsNAr1A0TW/nipRY+aOPnxPRXUM3mmgtl1SPUql+ToXth9c8NVOmiERERiIyM1GlTVJNE0DduQ4hQI0UJCAQCgdCgKBPLEOIqgJc9H1w2hUgve6QXi/Agpwy9Qt3gZseDVK6Aux0Pt9NLmPPEMgXuZ5eirb8TI76uSbdgVyhoGgcfZoOmga5BLugU6MIUDCivRcpnmUTZVtc8c8vFaOvvBJpWLujdTCvWOtfYPMvFSrFZoVQObwc++oW5o6BSgrxyCTNPPqemcOyLii676/v7O9twIJYpdJaRb+puh8QCIZIKhegQ4IwAJ1ukGtGcKxfLIDAh1fZFwVDaspuAp/N9aegzpYbNohDmYYdysUxL606TcokMjiak2r4o5OXVFHwOCQnBlClToFAoQFHKCnG+vr6YN28eKisrIZVK8f333wOq9DovLy+ztJZyc3O1UmFedAoKCnRG3emyp4ODA95++23I5XJkZGRg+/btWuc0b94cEyZMwC+//IKLF2tW9atObm4umjZtatXreZ4UFxczETZ//PEHs3/58uVYv369TptCFTmSkZGB+fPn4/Tp03j69GkNp+6CBQvA5/Px4Ycfori4GEFBQVrRPLm5uWZr2jVEysvLa0TYQI9dAcDf3x9lZWUoKan6jpTL5bhw4QL69OnDpKL5+fmhSZMmWLNmjd6x1alvjQU5TUMkU8BVwEXXYFdI5QooFMCVFOXzlaH7jESmQEaJCCGuAjzJq0BTdzsk5FfA2bZmdFuoqwBnE/IhlMrRp6k72vg51VjMMeRg0YzI1PXdre/zY4wFCxZALpczFULnzZuHV199FRs3bqwxLoxEVdE0zUhaONpwathT1z4AcORz4MDnIKnQsERKz1A3VErl2HM/C3wOC/3DPCCTK3A/uwzl1Wyp0LBl9VXK6tek716o63MD1efvwIEDmDx5Mj766CODc9YkNzcXCoUCLFVKLKnyWc+IxWItT3NjDLclEAiEFx25gkZioRCJOqKQzicWGDz3UU45Ij3tEeBsi+yyqjLifA4LgS622HU3A1K58u4bk1mKUdHeuJxUCFo1rqkoVG31zdNY9SV984RKVF5NdpkYmSUieDvwGYeavJGl1um6Hn12LRbJcPJJTds62XDgac/HtZQiyBQ0UosrEeZuZ9Sh9l+wpZq8ConO96Whz1Rbfye09nWCnKZRKJTgTILuqCrU8vPzIqAr3evp06f45JNPaux/7733auxTV5fUl7JoiMaWpqjLljBgT0MVU6OiolBSUoKYmBiTxv6v2FJts7KyMp02BYBPPvkEI0eOxLhx4+Dn54fMzEz8+uuvuH//PpycnNCpUyfMnz8fRUVFAFBDkP2/YktNNN+L6enp+Pzzz2u0OXPmDNasWQM3NzcUFBSgb9++iI2NZeyoi8ZmS7XfpVAoxaGHNdOIjT27JRRUoI2vE57lCxHkbIsDD7LRzr+mLEF8XjnjbEosEKKFtwPSSrSfoQw5qzT/5klJSTW+uwsKCvR+fgBg8uTJGD9+PLM9b9488Hg8dOrUCa+++irjoN21axe+/fZbbNq0CTRNQyqVgqZpxsFnyOmneSvVZc8KiVynjflcFnNcHwIuGz6ONth1NwMyBQ2ZRI57WaVo5euI+9llNZ8hDDirqn9+dNkTBj43AHD48GEMHjwYHTp00JkerQ+ZTAYeT7mwbMjpV1/8pxxqX331lVXKmhMIBAKh7mBZcEOU0zTuZpairZ8Tjj2uWkCx53HAoii81MK3xjm2XDaEUnmtVrYsmaOheUIVnRXt5QB7PhsUKLBZlJYAv6VjNzSscT1h7vYoFEpQpNJceZZfgf7hynQQoVT/wyWxpWHupJfgkZ7KX3U99vOmuiZSbVEv2rq6upqsU2WtsRsa1ryeffv2oVmzZvj444/x2WefMam09TF2Q8CS6ykpKcGOHTuwY8cO2NnZYezYsXjnnXcwf/58uLu7QyKRoKBAv+OD2FI3GRkZSEhIQK9evbB//3706NEDP//8c72M3VCw9Os/q1SMrkFstPR1RF6FRGcUOqpVC5UpaHDZrBpi+4acVZba/c8//8SRI0e09vn7+4PFYjHRaGoUCgWcnZ1RVFQEDoejNRdDTj9zbSlW2caOx9YrwSDgsSFTaEf5l4llsFPpq1W3paIObQmVU2737t14+eWX8fHHH5t8ntbYJEKtfnn//ffx9ttvM9ulpaUICAh4rnMiEAgEgja2XDbjGDGHhPwKRHs5oIm7gNlXIZFBQdP4+16m3kgaW47psqI2XMslSHXN047HRvcQV5x6kofsMjFoAH2auGnP0wpjNyQstSVFAaFuAnBZFCa0qnKYsigKTdwFuJ+l/we3Nf6ODQljosN1O3bjsqWTk/kFTgAgKysLubm56Nq1K/bt21erc52djReMeJFQR+tZA6lUitWrV+Ptt9/G8uXL8emnnxp0qjU2Wzo4OICiKIuLgFRUVGD37t0YMWIEPD09kZ+fDx6Px0RZ6aKx2VIgEIDD4UAmq12Fb12cOXMGo0ePRlpaGiiKwu3btw22b2y25LAocFhUrbQ5q/OsoAItfRxx7pnhaLbqVL/vGUoBtPR7XRf5+flQKBSYO3eu3sjD6uMacvqxKAp8DqvWermlYhnKxDIEu+p/7hFK5OCwWLDhsBinmj2PjQrVwqMhW1Z3/FnLlmfOnMHw4cPRq1cvk9o7ODgw6Z5oIBFqjevpxwh8Ph+Ojo5a/wgEAoHQsDClKpQhaAB3MkrQwrvqO14kUyCtuBKdAp3BVznObDgsBDpXica62ZmuS+Ziy7P4vq1rnhzVA4tIpgANwM/JBr6ONsxxPocFwXN0mtQFTjZcsC1YVQxwsgWPzcK/j3Jw8EE28y82swRhbvZ6z+OyKDjyG9e6oj2PDR67/h8oWZTy79iYcHFxsfhH79atWzF69GgMHjwY9vbK96KPjw/mzZsHd3fdFVMpikJQUJBF4zY07O3t4eXlZbX+5HI5vv32W2RnZ2P58uUGn+c1K801Bvh8Pvz9/Wt9np2dHSZOnAhfX19QFAUej4fhw4ejrKwMmZmZKCkpwc2bNzFnzhw4OzuDoigEBwcz71uoNO8aExwOx2qftStXrsDZ2RnTp0/HhQsXjFbqbWy2pCgKrgLLtF0f5pTj5JM8pJXUrpps9XENOVhCQ0MtmqMu1J+dV199FQ4ODoDK2aQppq85rkwqw7FfqwpW5KTkoqJEW/fMzUxb3kgtQgtvRzTztGcKCDnyOega5AI7njJiP6tUhPYBzuCwKNjx2Gjp44hnBcrxq9vSkOPPWrakaRo7d+40uchk9XGJhpqFlJeXIyEhgdlOSkrC3bt34erq2qjEXAkEAuG/hLkPEpqkFleiubcDbDScT5eSCtHa1wnDIr3A57AgksqRXChkdLZqMy6bRcHFhotCCyLpdM2zRCTD/axSDAz3AEVRSCuu1NIHcRPwnlsVo7qCRVFwteWaXM21OmEedkgqFKJUpB1l8Ci3HNHeDvB24CO7rGalLtdGaEv1jxpd11uXuNjyLHKKNlRCQ0Nx584ds8+/c+cOvvzyS7z00kuYOHEioIpmuHDhgl59JX9/f/D5uisAv8iEhITUOvXVEHK5HGvXrsUbb7yBTz75BJ9++mkN0WsvLy8th1BjISQkBGlpabU6RyaTwdXVFe+//z6cnJwgkUiQlJSEL7/8ktGX3rhxI6ZOnYqvv/4aNjY2yMjIYIT1XVxc4OLiUifX8zwJCQnBs2fPLO5HJBLh6tWr6NOnD86cOWOwrZ2dHTw9PS0es6HhJuAit9z8e49ErkBWLe9dNE3jrTZL0aJ7M7TsGYUWPSNha1+1CFndwRISEmKVCM/qbNq0CRMmTMBXX30Fe3t7lJSU4MqVK0yVYk0n0I0jMbi09zqzfWzrWRzbehaege5w9nRCs05h6PruWGSaIfWeXiLCqad5aOnjiDa+ygiycokMiQVCVKqi0C4kFqBToAteauEDOU0jsUCIuOwysCjApVohCEMRaoGBgWCz2Uadx6Zw/fp1jBgxwqRgpxoOtQZQ5ZOirf2OqkfOnTuHPn361Ng/ffp0bNu2zej5paWlcHJyQklJCYlWIxAIhAaCWCbH7tisehWMt+WyMa6lT610oO6kF+N+tmH9HmvTMcAZkV4O9TpmfRCbWYK75jw9WkBbPye08Gl89/4H2aW4paNSZ13SyscRrf2sn0rzvDlx4oRRLSRrM3LkSEydOrVex6wPzp07h82bN9frmIMHD8asWbPqdcz64MqVK1i3bl29jtm3b1/MmzevXsesD27duoVVq1bV65jdu3fH4sWL63XM+iCzRISTTw0XZLI2qWfv4cJ72r/53XxdUJCpXLAIaxuKpVsXwLepN2wEyoWKTz75BA8fPqzXeX799deMI+jBlXi82f1Dg+0nrZoGTu/W9TQ7JX6ONugf7qG1r7K8EiMdpwEA2vRrgVUntXXOvvzyS9y9e7de57lixQo0a9aM2b55/C4+GPIFAGDqR+Mw/dOJ9TofvOgRar1797a6h5lAIBAIzxc+h41gV1s8K6hZ5bGuCPewq7WoeriHPeKyy1BfdyEOi0ITN7t6Gq1+Cfewx72sUtRXoUgWBYS5N05bNnW3Q0xGab05pClVlGBjpEePHvj9998hEolMaG05FEVh4MCB9TJWfdO1a1f89ttvqKioMKG1dWistuzYsSMTEFBfNFZbtm3bFu7u7sjP11/B2NoMGjSo3saqT3wc+XDkc1AqtlyTzlQkj9PA5XEglVSNqXamAcDTO4mY23opAMAjwA3+4b7gB9SvbIaHsxcu77iNPSlHkZuSh6ykXKPneDnZQmHLtUhPuLZEeNaM5jUUoQbV90J9OtSCgoIQERGhvVNjks8rQu0/paFGIBAIhBeDZp71F4XFooBw99qnBdnzOfDX0GCra0JdBeDVonDCi4Qtl40gF4EJLa1DsKtAKx24McHnsBHiVn+2DHSxhR3vhV6f1Yutra3JQsnWoE2bNo0yFQwAeDwe+vbtW2/jRUdHm6U19iLA4XDQv3//ehsvLCysTrSnGgIsFgsDBgyot/GCg4MRHh5eb+PVJxRF6XTK1BWONhys+Hku9hVtw+qzn2D6pxPRtn8L8G11y3fkpRUg5vR9XPvtHhSV9ReQk3wiG9s//Rsntp3D3bMPkJOsP4qPYlF49avJGD6nP5rVoy3teWz4OdnU2G8snbJt27bw8PCosb+uGDhwYI15KDRWYnU5/eqDxvlkTiAQCIQXGnc7HprUk1OghbcjBDzznCvt/J3ArocVMT6b1ShT6jRp6+fEFGWoS7gsCm0buS1b+zqCWw/FCTgsCm39Gle1uuqMGzeOEZquS7hcbqNM9dRkzJgx9aLDxWazMX369Dof53kyYsQIvYUtrAlFUZg5c2adj/M8GTp0qFWLZhhixowZjU67U5MID3s42dTPAkvHABdQFAW+LR+tekVj6kfjsPLEx9j6qCodOjDSHwOm9UJk5zA4uKocVDQgjK2XKUJWQEOSqr3PwcWuai4a2Njx8cWh9zHpPaU4f1M3O7ja1k+xnw6BLjqzNIwJ/rNYrHr7fggJCdEp9UUi1AgEAoFA0EOHABfYcuv2NuViy7VIR8vJhos29eCc6RjoXKOceWPDns9BO/+6d860D3ButBFVaux4HHQMqHvHRVs/JzjW04+n54WTkxNeffXVOh9nwoQJjTaiSo29vT3mzJlT5+OMHTu20VX3rI5AIKgXTbORI0eiadOmdT7O84TP52PBggV1/mN8yJAhiIqKqtMxnjdsFoVuwa6oa7dGmLudzogqAGCxq54bAyP98O6217H+ypfYm/8r9uRtxXdXvsCbny2El71vnc6Roil0i+qFBetm4tP97+KHu6uxv2gb9hZsw7TlE7TaOns4YvWZT9BhcJuq62BR6BbianFFeWOEugq0Kt5rYqhiqpr27duje/fudTU9QLVIsmDBAnA4NZ83SIQagUAgEAh64HNY6BHiBqqOVMp4bAo9Ql0trk4Y6WWv98HOGjRxEyDEtf5S+OqTipIK3Dx+F1ve3oaXA+ZiVe//wdeu7lZkg11sG612mrCsErdPxuLHd3dgctA8fN51GfwFdWfLAGfbek1JeZ506dIF/fr1q7P+W7dujREjRtRZ/w2J9u3bY8iQIXXWf3R0NMaMGVNn/TckWrZsiVGjRtVZ/xERERg/fnyd9d+QiIyMxLhx4+qs/yZNmuDll1+us/4bEh72/DqNAnex5aJ9gP7FNy3dr2qPd45uDojqHI6B03vji3Ur6jQy8bV5r2HJhtcxZvFQdB3ZAaEtg2DnpHz+cPasWsh1cLXHusufI6JDTce1q4CHDnW40Ohkw0HHQAP9G7ClJrNmzYKfn591J6fB9OnTERQUpPMY3QAi1Br3siKBQCAQXmjsZFLc/WYvmr85Cmyu9W5ZXDaFfmEecNGjtWEqNE3j+qFbOPfLGdgPbA+fjtbVRglysUXXYNdGlSJy81gMrhy4iQdX4pEcl1ajuNBfE1ai6auD4dfduiv5Ac426B7i1qhseefUPVzadwMPrjxG8v1UrZVaADj7wW/gd2uOwD4trTqur6MNeoU2LlsagqIozJkzB1lZWVavDhcdHY0lS5aAxfrvrHFPnz4dmZmZiI21bt5VREQE3n33XZ1RDI2VyZMnIzMzEzdv3rRqv02aNMGyZcvA41l2j3yRGDduHDIzM3H58mWr9hsUFIT3338fNjZ1t/DW0OBm5OHBbxcRPd26CxFONhwMCPcAj63/+1LgUGXnihL9xa0cHR3x0Ucf4dNPP0VennWrk77yyisGF2E079UT3hkFv6Y+etva5BUh7ucTaD7busUsHPhKW/I5+rMfbOxNs6W9vT0+/PBDfPrpp8jOzrbqPCdNmoTBgwfrPU5r2FJXWmp98N+5exMIBALhhUKhUODrVzbg/u7LOPvmT5CWWqfqpwOfA/GpGExznY7p4YsQe+5BrSpG0zSNZ7HJ+HnZ75joOwcfj1qF6wdv4ezbP+PZoRtWmSMAhLnaYkvvDzBcMAXrX/8ZpQVlVuv7eXHzWAw+GPolDv1wEkn3U3XaPe1BOs6/+yue7rtqtXHD3AT4ZeByjLCbjG9f+x7FefVXHa+uiD3/AO8N/Az/bjmOxNiUGs40AIg5EYuLH2zH478vWm3cJq4C7BjxGYYLJmPVjI0ozC4y4awXHxaLhWHDhqFt27ZW67N79+7w9/fHunXrcPr0ae30mkaM2pbt2rWzmlO2c+fOaNKkCb777jucOHECcrncKv02dCiKwuDBg9GhQwerOWXbt2+PyMhIrF+/HseOHYNMVn9VG58n6iq7HTt2BJttHYmFVq1aoU2bNti4cSMOHz4MqbT+qjY+L0oLyvDZ+DWI2XQYN9fsAy23zveatwMf1z/YjjF2U/BO/0+RFp+hs53AUQCOSiKjOK/UYJ+enp747LPPEBYWZpU58vl8zJ8/32jEsURU9T6wc9Rf3Kq8uAKfjP0Gd388jutf7wYts873mqc9D7Ff7MRL9lPxdq+PkfIwTWc7Hp8LgYNyfiVGbOnm5oYVK1YgMjLSKnPkcrmYM2cOxo4da7Cdpi05z0nOgzjUCAQCgdAg2fHpbtw8GgMAqEzKxuBQF4tTHyM97TEiygvH1v0LuUyOzIRsLO37CRZ2XIazOy9DbuBhpbSwDL9/9g9mN38L89q8g12rDqAop8oxo5DI4FtWjj5N3S3SfrPnsTEo3APUg2QUZhRBKpbi383H8XLgPGx4/WdkPrPu6l99wrMxLdpBIZPDs6gE/cPcIbBAO86Ox0b/MA/Yp+cgNzkPUrEMR38+jclB87Fu3o96H8hfBIzZkm/Lg0QkBS1XwDW/CAPC3GFnZvENqCqx9mvqDp/yMmQ9zYJMIsPJ7ecxJXgB1szeoveBvDFQVlaGPXv2ICoqCsuWLcMnn3xiUaqQk5MTli5dihkzZiA9PR0ikQhXr17FnTt38ODBA+Tk5Fh1/g0JoVCIvXv3IjQ0FO+99x4+++wz+Pqar2Xk4OCAN998E/PmzUNKSgrEYjFu3LiBmzdv4tGjR8jKyrLq/BsSIpEIe/fuRUBAAN555x188cUXCAgIMLs/Ozs7vP7663jzzTeRlJQEiUSCmzdv4tq1a4iPj0dGxov7fWkMsViMffv2wdPTE0uXLsVXX31lkQ6fra0t5s2bh2XLluHp06eQSqW4c+cOLl++jCdPniAtrXF+X8rlcnwxeR1yUpQRX6yUbAyL9ICbwPxIRw6LQqdAFwwM98Dtw7chl8lx90wcZkW+iY9Hr8T9i49qpP05uitTKkvzjS9Eurq6YsWKFZg6dSq4XPNlEqKiorB69WrdwvnVKM4pZl47e+pOj1UoFFg5fQMyE1TPfMnZGNbMAx525tuSzaLQIcAZgyM8cW3PNchlcty/+Aizm7+N/w3/EnfPxtVY6HTyUNrSmEMNAJydnbF8+XLMmDHDoujWiIgIfPPNNyZV4C0ywZZ1DUXXZlm+kVFaWgonJyeUlJTA0dF8UWoCgUAgWJcbR2Pwv2FfAqoQ7q9PfIQ2fVsAALLLRIjPLUdKcSVMuYOxWRRCXQVo5mkPV9VD3Ucjv8a1Q7drtPUMdMdLbw7HqEWDa6xQL+ryAR5ff6p3nNCWQdh8ayXYHDYkMgWe5lcgPq8cZWLTVvddbLkI97BHEzcBuGwWyosrMMZ1Ro12FEWh25iOmLZ8PEJa6NaUaKjQNI1VMzbi1I4LBtv5h/vgx3trwOVxIZUrkJBfgcd55SgVmWZLJxsOIjzt0dTNDlw2CyKhGCMcpqK6HB9FUeg8oh2mLZ+Apm1CLLm058K6+T/i8A8nDbYJaxuCtRc/A9+WD6lcgWcFFYjPLUexibZ05FfZksdhQSaVYZjtZJ0RcR2HtsErH49Hs47WWe1vKPz+++/IycnBwoULmbQtsViMCxcu4MSJE0hJSTGpHy8vLwwYMAB9+/aFvb09aJrG119/DYlEwrRhs9mQy+UYNmwY2rdvX2fX9LzYtWsXUlNTsXDhQggEygUSiUSCS5cu4fjx40hKSjKpHw8PDwwYMAD9+vWDg4MDaJrG6tWrIRRWRTKrbTlw4EB06dKlzq7pebFnzx4kJCRg4cKFsLdX6hnKZDJcunQJJ06cQEJCgkn9uLm5YcCAAejfvz/ze2jt2rUoLa36Aa22Zd++fdGjR486uqLnx4EDB/Dw4UMsWLAATk7KH+UymQxXrlzByZMnER8fb1I/Li4u6N+/PwYMGABnZ6U21YYNG1BYWMi0UduyR48e6Nu3bx1d0fNh20c78ccXewCVc2PL7ZVw93ODgqaRUlSJ+Nxy5JSLTerLhsNCuIc9wj3smEJCE3znoCi7uEbbiA5NMPl/L6HryA4AgLmtlyLxXgq4PA4OV/5pciRsbm4uTpw4gaNHj5ocTdiiRQsMGjQI7du3NzlKdPObv2Lf+iMAgLUXP0Pzbs1qtPnrq33Y+r8/AZXO2uZbK+Ed7AkFTSO1qBLxeeXILjPdlk3d7RDhYQ97vtKWU4LnIzc1v0bbpm1CMPmDsejxUmeg2rPvUfFf4Jgov5Kfn48TJ07gyJEjWvc4Q0RHR2PQoEHo2LGjybb85f0/sHPlfgDAyhMfoW1/60pcmMJ/R2SAQCAQCC8ERbkl+GbmJmb71a+mMM40APB2sIG3gw2EEjkySitRUCFFoVCC0goxivPLIJfIwAeNVm2C4Cbgwc/JFnyO9o25z8vddTrUclPzseXtbRAJxZj8gXaYuVyq3wFBsSh8eeQDsFVaFDwOC9HeDojyskdOuRi55RIUVEhQXClFYX4ZxEIxpBUiNGvmCz9PB3jZ8+Fux9N66LN3toN/hC/S4zO1xqJpGpf2XsftE7HYmfEjE47/IvDk1jPEnL5vuBEFfHHkf+DylCvFXDYLkV4OaOZpj9xyCXLLxSgQSlBUKUVRfhlEFWLIhGI0beqFAG8neNnz4WGvbUsbAR9NWgbjWWyy1lA0TePqwVuIOXUfvydvhpP7i7O4lnA3iYng1IeDqz0+/mcp+LZ8QGXLZp4OiPCwR16FBLllGrYsKIeoQgypUISQYA8E+7nAw54HL3u+li05XA4iOobh0bUnNca7cSQGMafjsP3ZRrj7utbBVT8f/P390bdvXy0NJD6fzzghEhIS8OjRIyQmJiIlJQWVlZUoLy+Hra0tIiIiEBoaivDwcERFRWn9SKAoCq+88gq2bt3KRAXY2tqiQ4cOCAl58Ry8puDr64tu3boxzjQA4PF46Nu3L/r06YPExEQ8fPiQsaVQKER5eTlsbGwQHh7O2LJ58+Y1bDl16lT88ssvTLqnjY0NOnbs2GirVPr4+KB9+/aMMw0AOBwOevfujd69eyM5ORlxcXE1bMnj8WrYsvoC0pQpU7B161aIxcof7FwuFz169EB4uHV1QhsKXl5eaNmyJeNMg8qWPXv2RM+ePZGamsrYMjk5GRUVFSgvLweXy2VsGRYWhhYtWtTQ8Js0aRK2bdvGOHu5XC66d++OZs1qOlFeZO5deIg/v9wLqCptfrjrLbj7uSm3KQohrsoCS8WVUmSVilAglKBQKEVxsRDCskrIRBK4OdqiWYQP3O148HW0qVE0qvuYjvh3y4kaY8fffIblo1dh9ZlP0Kp3NBNVJZXIICyrhJ2jadkNnp6emDp1Kjw8PCCXy1FcXIykpCRkZWVBIpGAzWbD0dERISEhCAkJwa1bt+Dl5VXju90YRblV2Q2u3jWLAjy+8RTbPt4JqL7bPvjzTXgHezK2DHYVINhVgBKRypaq5+DiEiHKS4SQi6VwsecjMtIP7nY8+OmwZY9xnbHn20M1xk6IScKK8WvwxeEP0HFIGzh7VD0XlRWWw8XLtCIJ7u7umDx5Mry8vCASiVBWVobExETGliwWC/b29ggJCUFoaChiYmLg6uqK6Ojo2tlSI1PERYct6wPiUCMQCARCg4Gmaax5dTOKVQ8bnYe3w/ilI3W2FfDYCHO3R5g78Ptn/2DfxiMozVOG97cb2Aqzj32od5yoLoZ/FOhazXxvx2K81eMjlBWW1zjWcXAbuOlwIFAUxTgAy4vL8Wb3L1CYXcz00ff8CjRvqb8yUovukTUcamrYHDboF0RziaZpHP35NDYu3gqp2PCqb+s+zeEbWjOdjqIoeDnw4eXAh7C8Em92/wj56QWMLb869iFatNGf7tSiR2QNhxrT93MSsjWXk9vP47v5P0JcqVz1ZbFZUOjQqXl32+vMQ7gmFEXB054PT3s+RJVivNXjI+Qk5zG2/GTvO2jRXn/0Y4sekTodaniOosB1QXp6Oq5evYpx48bpjXCgKAphYWEICwuDXC7HwYMHUVRUhPbt28PLy8toaqiNjQ1sbW2ZH9sCgQA9e/ask+t5nmRlZeHChQsYP3683h9LFEWhSZMmaNKkCRQKBQ4dOoS8vDx07NgRbm5uRlND1bYsLy9nthujLXNzc3HmzBmMGzfOYAGG4OBgBAcHg6ZpHDlyBJmZmejcuTNcXFzg7+9vcAwbGxvweDzGocbn89GrVy+rX8vzpqCgACdPnsTYsWMNpqgFBgYiMDAQNE3j+PHjSE1NRZcuXeDk5ITAwECDYwgEAq1UQrXTszFRXlyBldM2MAsDM1ZMQqte0TrbOtty4WzLBU3T+GTsN7h/8RFz75n+6US06avf0RjdtZlOh5oa9b3cScMJVJJXarJDDaq09JYtW8LHR3+hAADIycnBtWvXkJGRgR07dmDu3LkmO4I0o+xcvLTTFCvLK/HV1PXMPX3y/8ai/cBWOvtxsuHCyUb53vp84lrcOX2PseWkZWPQtr/+4k7RXZvpdKipYakKP2guNBbnlZrsUAOAyspKNGvWzGgF0IKCAly/fh3Z2dnYtm0bFixYYLKOYWGOflvWF0RDjUAgEAgNhn+3nMD1w3cAVbrA2z/PNxqqn/ksG799sotxpgFAfnqBwXO8gjx0rgoCwPC5AzBuyfAa+3OS8yAqF+k8Z8QC49WXPp+4DikP07UccnlG5qnP8efk4YjPD73PlGBvyFSWV2LltA1YO/cHxpkW3DwAXD3isSPnG7flylc2IOleipYtjf3NI/XY0sHVHp/9u+yFiE4TCcVY8+pmrJqxkXGmNevYFKtOfQxBNWHjEfMHofPwdkb7XDvneyTcSbLK+9LOSYBP97/bKKLTaJrGnj17UF5ebnK60NWrV3Hv3j2kpaXh2bNnjGPHECUlJRAKhfDz80NAQACio3X/CH3R2bt3L0pLS0225c2bNxETE4P09HTEx8ejoqLC6DmlpaUoLy+Hj48PAgICEBVl3UrBDYV9+/ahqKjI5B+cMTExuHXrFjIzM/HgwQOTbFleXo6ysjJ4eXk1alseOHAA+fn5Jtvy/v37uH79OrKysnDv3j2TbCkUClFSUgIPD49Ga8sNr//MpA+26BmJCe/qXgjV5MhPJ3HlwM1a3cf13XtYbBbe2PIaWvZU2ta5mhOoNpw8eRJHjx412q6goGqupaWlJr0X1BSqHGo2dnzY2mvfuze/uY3RTWvWKQyvfDzeaH9n/rqI87uvaNsyw0xbsigsWDeTceJVd07WhrNnz+Lw4cNG22nasqKiAmVlphfhUjsnWWwWHN0cajU/a0EcagQCgUBoEKQ8SscPS39jtpduXQAXIwKjNE1j/YKfamhj5WcU6jsFUEVC6HKwUBSFwa/2Y9IN1ZzffRXLR6+EVFIz7dPW3gZt+rWosV+Txzee4vbJ2Br7zXUChbQINBpl1xBIikvFwo7v4/QfVVUmOw5pg4yn2TptyeVz0H5wa4N9PotNxtV/b9XYb64TKKCZH1r0sE5VqrokLT4Dizq/j2O/nmX2DZ7VF2vOfYpWvaLRY2xnZn9AMz+89s0rRvtMfZyBc7uu1NhfYOTzo8+WPk280Lpvc6PjvgjQNI3IyEiMGTPG5HNyc3OZ14mJiTh0SP/qvxp/f394eHhg1KhRmDVrFtq2bYszZ840qsqKNE0jPDwcL730kskONc3CDMnJyTh48KDRc3x9feHl5YURI0Zg1qxZ6Ny5M06fPt3oKis2bdoU48ePN8uWqamp2Ldvn9FzvLy84O3tjaFDh2LWrFno2bMnTp8+zUSsNRZCQkIwYcIEkx1qmp/xtLQ07Nmzx2iVcHd3d/j6+mLw4MGYNWsW+vXrh9OnT6OystLi+TcETv9xEWf+vASoFlWWbV9k1J4VpUJs/d/OGvvzjDiBvEM8dQrPO7jYodeEKp1ES5xA2dnZJhX3aNKkCaM5KBKJsHXrVuzevdukCsPqogTVF3Yv7r2OY1vPACpn27IdixgpEX1UVojww5LtNfYbe75083GBV5BHjf22jgL0ebkbs+1sgS2zsrKMRsNCFU3r4uICqPRJf/vtN+zcudOk7251UQIXLyerVTquLcShRiAQCITnjkQsxVdTvmPKX49aOBidhrY1et75v6/g9sl7NfZXlCg1OQyhKQLLFyg1pmiaxsppGyASVv1oOLb1DL58eS1kUu2HJPWPmWGvDQCPr78ylFwmx7p5P+o8lpdm+IEnIMJXa8WNqxrn7pk4HP35tMFznzfHt53Fok7vI+2xsjKcwMEWo18fglsnYmukfap/Fw6e1Q+2dja6ugNUVa++m/8jaB2C+MZs6RXkAXe/qsgpnq0yvefhlXgc2HisdhdXz5z58yIWtH8PyXHKynA2Aj7e/e11LPl5Png2PMSee4ATv50DAHC4bHzwxxuwUb2n9UHTNL6b/6POVFFjzkkXL2f4NvVmtvmqYh8Jd5Kwe/W/Zl1jQ+Lp06c4evQoBg4cyAiLG4Kmady+fRupqanMPldXV5OcYnw+HwsWLICHh/KHjVoI/dy5cxZeRcMgMTER//77LwYMGABXV9MiF2NiYpCcXJWerbalMccFl8vFvHnzmFQtuVyOa9eu4dSpUxZeRcMgJSUF+/fvR79+/eDu7m7SOffu3dMq9ODq6gq5XA6FEbkANpuNuXPnMumMCoUCN27cwIkT+tPtXiTS09OxZ88e9OnTB56eNdPidREXF6dV6MHNTakPZuxzTlEU5syZg9DQUED1fXHr1i0cO9aw7zumkJ2ci/ULf2K239jyGjwDazppqrPtw50oLagZhWTsPk5RFKK7RTDbtg7K54WS/DJsXPQLs98Sh9pLL71kUnpzbGysVuGO4uJiPHz4EBcuGC66JBFLUVakjGbT1PzKzyjA2te+Z7YXrn8Vfk0Np50CwO8r/mEi3jTJNWJLAGjeveo52NZeacuK4gqsm/sD832racvaRvuNGTMG/fr1M9ouLi4OJSVVWmjFxcWIj4/H2bNnDZ6nUCgYDTV9WSf1AXGoEQgEAuG589tHO/HsrvIHVFCUP+asmmr0nIqSCmx5a5ve4xlPswyeP2R2P3Qc2gbdRnfAD3e/QXj7JgCAtMcZ+GXZHwCAvd8dxprZW5iKhlwNx9miTbOx+dZKzP56isFxDmw8xlxbjTkmGJ4ji8XCwvWzENGhCRZ+Nwsf/f02c2zL29uMnv88EAnF+GbWJqyetZlJSwxtFYRxS0fiwKZjjAOHZ1Nly3nfTsfmWyux8LuZBvs+8tNpPLqmu9KqMVtQlDKNIaJDE7z2zTSs2P8uc+znZb8j5WFara6zPpCIJFg39wd8NXU9RBVKJ29QlD823vgKA15RPvCXFZVradfM/PxlkyqWntpxAffOP9R5zNhnBwDmfzsDER2a4NUvJ+PLIx8wDubfPt6JhLumVWpsiIhEIuzdu7dWkTiPHj3CoUOHtH4QpKWlmez00MTZ2RnDhg0zKcqhoSORSLBnzx6IRLpT5XXx5MkTRodOTVpaGtzc3EyOyFLj4OCAESNGGHUevQjIZDLs2bOnVmlliYmJ2LdvH/Ly8ph9GRkZcHNzq3Ukh0AgwKhRo4w6NV8EFAoF/vnnH5NSstWkpqZiz549WtF+mZmZcHZ2Nqhjpws+n4/Ro0fX+v3c0JDL5Vg5bQOEpcrFy35Te6DPpG5Gz4u/9QwHN+t2JmYmZBv9vL7y8XhEdQnHqIWDsfnWKtg7K6Uvzvx5CWd3XgaqRVXVxgmUmZmJy5cvG9TTU6Ne9FD/Hfv164dZs2YZTdsv1tL8UjqBFAoFvpm5iUnZ7PFSJwyaYVxnL+l+Cvas1R0JnZOcB5mBYloA8PIHYxHdLQLDXhuALXdWwclduYB7ef9NZpHOXOdkTk4Ozp07Bz7f8OIeAJw/fx4KhYKxZa9evfDqq6+iZUvDFTtLC8qYZ0rnWmi7WRtSlIBAIBAIz5W7Z+Owe40yqoXDZWPZ74uZqoSG2Pq/v3SuyqlJfZSBsLaheo/bOQrwxaEPmO33ti/C/LbvQCKSYv/GoygvEeLUjvPMcc8Ad+SmKTVCuo3piOFzBxh9IM5LL2AqNeki+YFxJ07fl7uj78vdme1hc/rj8E+nIKoQY9X0jfj2/AqjKQH1RcqjdHw+4Vut6xo2pz88g9zx64dVdvAMdGf0VjoMaYMxi4cZtWVRTjF+ef8P/WM/SDc6vx4vdWZKwQPAmMVDsW/9EUhEUqyctgHfXfmiRrrv8yIjIQufTfhWyxk7YHovLNo4m4niU6c8qyPKWveJxrglI4z2XVpQppVeXZ2Uh+mgadrg36Tz8HZaGm0T3x2FnSv3QyaVY+UrG7Dp5tfg2Rj/UdIQadWqVa0E2DMyMhAYGIjS0lIUFxeDz+dDIBAgOTkZKSkpCArSX+BBF23atIFEIsHZs2fRpUsXreqiLxotWrRAjx49TG6fmZkJf39/VFZWoqCgAFwuF46OjsjIyMDTp08RFhZWq/FbtmyJqKgonD17Fp06ddKqLvqiERUVhW7djDss1GRmZsLHxwdyuRy5ubngcDhwdXVFTk4OHjx4UGu9vqioKERERODcuXM1qou+SKjTuTt37mxCayVZWVnw8vICi8VCVlYW2Gw2PDw8kJ2djZiYGLRtazyiXpOIiAiEhYXh3LlzaNu2LZM6+CKx8+v9iLv0GFBFgC/a8KrRc+RyuTIyWkeUOQCIKyXITc3XWUxHTZNWwfju8hfM9qJNs/HVlO8AAOsX/IQWPZqZ7QS6d++eVnSsPmiaBpfLxeDBgyESieDq6oomTZqY5CTVqkqpcgLtXXcYd04pK6C7+brgze/nGu1LoVBg3fyfIJfpXnyRy+TISMhGUKT+lMugSH+su/g5s/3mD3Px6UurAQCb3/gVLXtFme2cvH//PpKSkow+S0BVqGPkyJGQyWRwdnZG06ZNa21L1+foUCMRagQCgUB4bpQWlmlF18z6cgqatjYeXVNeXGGw0hMApD4y7mDRJLCZH+asqtKd0nSmtRvYinGmufm64O0f55l0sz+w8Sgq9RQygCq9QTO91BTmrpkG3ybKyoEPrz7BzpX7a3V+XXHq9wt4veMyxpmm1v9w8nDUcqa1G9CKcaY5ezhi6S/GC08AwKHvT6K8WH90Rkl+KUoLTReyBYBXv5qMwEhl9amnd5Lw+4p/anV+XXF+91UsaPce40zj2XCx5JcFePfX17VSYk/9foHRQHNwscM72143KfLk6C9nUJKv31aV5SIUZBXpPa6LaZ9OQGgrpeMo+UEatv7vr1qd3xCIjY3F9evXMXjwYNja2ppwhpL+/ftj5syZmDZtGtzc3DBp0iTMnz8fbDYb6em1+x5So1AocP369Rc2LSwuLg4XL17E4MGDYWdnevGUXr16YdasWYwtJ0yYgHnz5oHL5SIjI8OsudA0jZs3b5okjt0QefToEc6cOYPBgwfDwcF00e1u3bphzpw5mDZtGtzd3TFu3DjMnTsXNjY2yMzUXT3aFG7duoV//30xU7ufPHmCEydOYNCgQXByMr0iYKdOnTB37ly88sor8PDwwJgxY/Daa69BIBAgOzvbrLlQFIWYmBjs398w7uG14fGNp9jx6W5AJWK/bMcik4ok3Tl5D09vJxpso5aJMJW+L3dHb1VkXHlxBb6ZtRkOrlXO3pJ8051ADg4OaNOmjdF2FEXhzTffRMuWLdG2bVvs3LlTK7XaEJoLwa7ezngWm4ytH/zJ7Hv3t0Umievfv/gID6/EG2xTW1t2H9MJg2b0AQAIyyrxzYxNsHep+rvWxpb29vZo06aNSc93r7/+Otq0aYP27dtj9+7dePJEdxXx6mhVSyUpnwQCgUD4L7LlrW1MAYE2/VrgpbeGmXQeh8eBq4/hm6cp0V/VGTa3v5bOFgBMeHc07p17wGy/8+tCkysJ6RJ8rU56fO1+2Nja2+K97YvAUpWH3/Hpbjy5/axWfVgTcaUYa1/7Xqk9p0pLDG4egA3Xv8Lj6wn488u9TNtxS0Yg7tIjZnvJLwvg6u1i0jieQcbT59Ie186WfFs+lu1YzET47fx6Hx4YeUCtSyRiKTYu+gWfT/yW0QAMiPDFxutfYfDMPlpt8zMLsfH1Ks2YN76fC88A01IMvUywZeqj2j2Ic3lcLNuxmKneumftIdw9G1erPp4nhYWFOHjwoFnFANQ/GBwcHDB79mwEBweDy+WiXbt2jM5SbbGxscGoUaNeyHTFkpISHDhwwKxiABRFgaIo2NnZYfbs2WjatCk4HA46dOhgVgotVNpqo0ePfiHTFcvLy7F//35IJJJan6u2pa2tLWbNmoWIiAiwWCx06NDBZN2w6rDZbIwdO9asc583lZWVtU7n1oSiKPD5fMyYMQPR0dGgKAqdOnWCl5eX2f2NHTsWLBbrhXpvSsRSrJq+kYmMevn9sWje3bTCPm6+rmCxDbsfanvvAYBFG1+Fm6/yWeLOyXu4plG4qDZOoBYtWqBnz54mtVV/77PZbNja2iIlJcWk8zSdQM4ejlg1fSNTpGnc2yPQ1kiRKzVuPi7gcA1nJ5hjy/nrZsA7WPnsev/iI5z96zJzrDbRflFRUejTp48JLatsSVEU7O3tTbZldefk84I41AgEAoHwXIg9/wCndijFW+2d7fDOrwtN1nWxEfDxy8N1+OzgMngGVv3I6ja6I3NjNkUHShOZVIZV0zfVqBB648ht5mFn7BvD0G5AK5P7HDF/EL6P+QYT3xvN7AtpEQj/CF9mu7aRdAAQ1SUCk5Ypqw/KZUodE3Fl/VdfS3+SicVd/4cjGgUSBs3og3WXPsfu1Qexf2NV6fmF381CxtMsRldt2GsDtFIGjTFoRh/8eG8Npn48jtkXGOmPoKiqdAZzbBnWNhSvLFeWpVcoaKyavgGV5fVffS0rMQdv9fgIBzZVRST1ndwdG298jZAWNVMGf1i6nXG6DZjWC73Gd6nRRh+9J3bDz3HfYubnLzP7/MN9EdIikNk2x5YhzQMx68vJzPaqGRsNRhU2JNhsNjp27FirVM/qnD9/Hrt27WK2BwwYAD8/P7P7i4yMxOjRo3Hx4kUIhUKz+6lvWCwW2rVrZ5IYtT4uX76M33//ndnu27cvI5BvDuHh4ZgwYQIuXbpUK+2s5w1FUWjdujUGDBhgdh/Xrl3Db79VpXj36tULISHGI8H1ERoaipdffhlXrlzREmV/EWjVqhUGDRpk9vm3b9/GL79ULWR0794dTZs2Nbu/oKAgTJ06FdevX0dxsX4Ji4bEP2v+RZpqITCiQxOte7IxQlsGYUfiJrz/xxvMPmdPR7TsWeWQM+fe4+jqgHd+Xchs71ixm3kWNNUJlJGRgbVr19b6+4GiKIwcORKRkaY5FTWdQI9vJSDxntJ5FNoyCDO/eNnAmdr4h/tiR+ImfPj3W6BUC6wOrvZalbZTH9felnaOAryz7XXGfr9/thtcvnKhzFRb5uTkYO3atVq6oqYybNgwNG9uWrVwrQg1L9MjTq0NcagRCAQCod6RSqTYsPBnZnv211Pg4V+7SA47RwE6Dm3D3OD9w33wyd53EBStdLBkPM3Sqy1RHZFQjE9fWo1zKkFb9cMJAKayomegO2Z8PqlWc4RK78NJI6Jt/JKRmLOyquiCOSuIADD143EIaxvC9LFr5QGz+jGXc7suY0H795AYq3wY5Nvy8M6vC7F482yseXUzTmxTCtqyWBTe+XUhvII9cPWgctXY1cfFpMIT1QlpHghnj6qHpjGLh2L+2hnMtrm2nPTeaER1CQcAZD7Lwe+f7TGrH3O5tO865rd7F09uKSMNuXwu3vz+NSzbsRgCh5qph3dO3WPeq07uDpi3ZnqtxwyKCtBa0R0xbyAWb5rNbJtry7FvDkPrPkptpry0Avz28S6j5zxvnj17hsePH2PQoEG1FhjXJCsrSytVNDY2Fj/99JPF0SdXr159YaorJicn4/79+xg8eDC4XPP1CKvbMi4uDt9//73Ftrxx4waOHj1qQsvnT1paGu7cuYMhQ4aYJOytj+q2jI+Px6ZNmywufHHr1q0XJo02IyMD169fx5AhQ2qVzl2d6rZ89uwZNm7caFYEoSYxMTE4ePCgRX3UB1lJOfjjc6U0AotF4a0f54HDrd13pmeAO/zCqqpXdhraDisOvMdsp9YyTVFNuwGtMPr1IQAAqVgGFkfp5jDVCZSWlgYul2uWzmJAQABSUlJM+n4q0ihKwDxzUhTe/GGuwYrxunD3c0NQZABT+bzdwFb44tD7TAaDuffxlj2jMH7pSACAXKaA+rJM1VBLT08Hm802S2cxICAAqampJkVna9qSpHwSCAQC4T/F3nVHkPJQuXLWrGNTDJltXiRDdlIuE/EUFB0AqKKWAEAmlSPzmXFtk6KcYiztsxzXDt0GVM6MFfvfQ9fRHbXaLfxulpZ+VW1I1qggGRTtj8BmVVEr5qwgQpVi9972RUy64q5V+5GdnGtWX7VBIpJg/YKf8MXL6xh9uMBIP2y88TU6DWuLdweswMU91wFVkYkPd72NnuO7YPMbW5k+5q6eBjtH88TBUzRSeYOj/Zm/NyywJZvDxru/vc5Ucd277hDSn5ivMWQqUokUW97ahk9fWo2KEmUEkm9Tb6y/+gWGvaa76IVELMWG1zWd0VNNTkGujmZadFA1W6aZaUsWi4V3fl0IG4HSAXBwy3Ek3TctfeN5IBaLsXfvXrN1kDTp2rWrVrqQQCBAWVlZrapcVofFYmHIkCEvRFSVVCrF3r17kZVlefXhTp06aaUL2dnZobKy0mI7DBkypFaVMp8XMpkMe/futUjrTE2HDh20ogUFAgEkEolZ0SOavCi2VCgU2Ldvn9l6hpq0a9cOAwcOZLYFAgFkMplWVVpzGDRoECor6z8yurZsfvNXSETKVO7Ri4aiSatgs/pJ0br3BMDOyQ6uPsqUTXOdQADw6tdTGI1ZuVTpMDbVCdSsWTNMnDix1hVwASA/Px/Hjh3TqgKrD00nkFiofH4dOrsfIjvVruCKGq1noqgA8Gx48A5RpnSnPc4wWzZg+oqJTAaATJWlUVpQZlJ/YWFhmDhxolkLVIWFhTh+/LhJmpmFOSTlk0AgEAj/QXLT8vH7iiox20WbZpv1AAON6DGoHiSgKi6gxpimVsqjdCzu8gHibyojgwQOtvjyyAfoPLwdUz5cjXeoeZozmvOkKAqBkf7wCfVitKZqq/ulSVBUAMYsHgoAkIik+PGd7Wb3ZQpJcalY1OUD/Pt9VbRM/1d6YuP1r8DhcbC46//w4LJSg8xGwMeKA++hx0ud8deXe5GdnAcAaN23OfpMMr1SXXWSqz2Iu/u5wtZe6ei0xJZ+TX0wQbUiK5PKseXtbWb3ZQqpjzPwZvePsPe7qgiPnuO7YPOtlQYLc/yz5l+kP1E6LKK6RmDgjN5mz6G6LR3dHJiKXqkW2NIz0AMvf6DUWVLIFdj85q8NViNIIpHA19cXffv2tagfhUKB3NxcLZ2v8PBwjB492uIqnS1atMCkSZPw+PHjBq2pJpVK4eXlhf79+1vUD03TyMnJgYdHlQZlaGgoRo0aZXFlycjISLzyyisN3pZyuRzu7u4WpXpCZcvs7GwtWwYFBWHUqFFwdrbsB2hYWBhmzZqFx48fWxztVpfI5XK4uLhYlOoJlS2zsrK0bOnr64vRo0ebre+nJjQ0FK+99hri4+PN0nGsD64cvIlr/yoXHl19XDDt0wlm95Ucl8q8DlZlFagLBJUWlNVK90wTGwEf89fO1NonqhAblcSgaRoPHjww++/o5eUFGxsblJUZL4xUvTq9k7uDllRCbUnSsGUQY0vl/6IKcQ0ZE1Ph8blYsE7blgq5AuVFxp3oDx8+NNuWHh4eEAgEJi2eaKd8EocagUAgEP4jbHlrG1PZcvi8gQhv18Tsvqo7BAAgQDP6y4AWx92zcXiz24eMo8fD3w1rL36G1n2aI/FeCo7/erbGvM1xCigUCqSqovG8QzxhI+CDzWEzKQ/pTzJNTk3VxdSPxzHaERf3XMed0/fN7ksfcrkcu1cfxEKNFE+eDRdv/TgP7257Hc9iU/BG1/8hM0EZ5ePq7Yw15z9Fh8FtkBafgd2rlaksHC4bizbONqnqky5ommb+5q4+LnBwsQdFUczfXBmxaL6W3MRlo5nU4xtHYnD98G2z+9KHQqHAvvVHML/tO1UpnjwOFm2cjQ93vmUwcq96us1iC5zR0FjZtne2g5sqOkBty8KsIlSUmB99Mu7t4fAJVUYK3D37ABf3XDO7r7qiqKgIiYmJmDJlSq2qJ+oiPT0dx48f14pUYbPZoGkaeXl5Fs+1oqICu3btwp07dyzuqy4oKSnBkydPMGXKlFpVT9RFVlYWjh07pmU3FosFNpttUgSIMUQiEf7++2/cuHHD4r7qgrKyMjx48ABTpkyBq6urCWfoJz8/H0ePHtWyG0VR4HK5VokklEgk2L17N65cuWJxX3VBeXk5YmNjMWXKFC1HmDkUFxfj8OHDWlGD6kIF1ogklMvl2L17Ny5cuGBxX9ZGJBRj8xu/Mtvz1kw3O8ocAJIfVj2bMdkFWs9u5kepdRrWFh2GaFfqNJb2KRQKcerUKbP/jlwuF2+99ZZJenrVHWqWRJkDYLI9ACBY/RyspdNrvi3b9m+J7mM7ae0zFvEnFotx/PhxpKXVvjAYVPfNN954A82aNTPatihHGWXL5XNh52T++9FSiEONQCAQCPXGjaMxuLRXmQ7o7OmkJYpuDikaqZTBzdUpn5rplLofJE7uOI/3B3/OCKY3aR2M9de+RGjLICgUCqxf+BMUcmX0gr2zsmT43TNxzNxrQ05KHuNAVM8RAAKaKR94ZFI5shLN/5Fo5yjAq19NYba3vPkrZFLrrXBnJeXgnb6f4sd3dzDFGYKjA7Dh2lcYOrsfLuy+inf7r0BpQZnGsS8R3q4JaJrGxkW/VFWwWjJS66G5thTlFKOsULlqqWlL9d+cpmkmesscbO1s8No3rzDbm9/aBom49pUK9ZGblo9lgz7XSpsJiPDFusufY+SCQUYdjdZKtwGA8uIKZuU6uHkAM7bm3yfFggdxng0P876t0nb7Yel25nPQEKBpGnv27MHt29ZxmopEItjY2MDFRbtq7dWrV3Hr1i2955mKk5MT2rZti/j451eFVh80TWPfvn24fr3234+6EIvF4PF4NSqkXr9+3Spj2NnZoWPHjnj8+LHFfdUFBw8etJqDSiQSgcPh1IgWuXnzJq5ds9zJbWNjg65duzbI9yUAHD58GJcuXbJKX2KxGGw2u0aF1Nu3b1vl78XhcNCjR48Gacs/v9iDnBSlg7tNvxboPbGrRf2pF3MEjrbMIpapi6HGoCgK87+drqWFm3A32eA5MpkMHA4H3t7eZo8bFxeH/fv3G22Xl1bAvLY0yhwatuTyufBRpbtqSWFYYEuoJDo0K7OqFwL1IZPJwGaz4evra7CdIR4/fox//vnHaDt1hJqrt7PZC7XWgDjUCAQCgVAviCvF2LioqjrW3NXTGGeVuaijldgcNvzDlRFfARG+jCDrs2oPUTRNY8eK3Vg1fSNkKn2NjkPb4NvzK+Duq4wEOLn9PJO26Bfmg7d+nMuc//2S32rtFEh5oLESG6XpBKp64Kk+z9oyYFovNOuoXBlNfpCGf7dYLmBO0zSO/nIac1stxf2LjwDVg+r4JSOw6ebXCGkRiF2rDuDzSWshVTmd2vZvgXWXPoNnoDIS4PzfV3DnlDJizivIA1M+fMmiOSVr2DJYw5ZBVrRlrwld0UJVcSwzIRt711kuuk3TNE7uOI/XWi5BjEYE4ehFQ7D59iqTojStmW6DaqvaWu/LKOvZssuI9mg/SFkVNzc1H3+vqt/CGYaQSCSoqKiwOD1RTVhYGN54440amjF+fn6QSq3jlB0+fDgmTJhgsV6TtZHL5SgpKdHSlrKE4OBgvPXWWzWE+P38/KyWDjdo0CBMmTKlwdmSpmkUFBRYnJ6oxt/fH2+//XYNoXVrvi/79u2L6dOno7DQvNSyuqSgoACDBw+2Sl9eXl5YsmRJjWhWPz8/i4sSqOnVqxdma8QMqQABAABJREFUz57doGxZM8r8VYucFxWlQuSm5gOqBTh1X0FWvPcERPghsmOVJtmuVYYdXU5OTli2bFmNBZHaIBQKER8fbzCTISkuldEjA4A3Ns+xKMpcIpIgQ5UZEBjpBzZbqamrdR+PtcyW3sGeaNkzitn+59uDBq/Rzs4O77//vkVp0EKhEE+ePDE4jkwqQ0m+ciH3eRYkAHGoEQgEAqG+2LXyABOJ1bJXFPpN6WFRf3KZHGmqCBq/MG9weUpBeb4tHyEtgwCVToc6bU0qkeKbWZuw/ZO/mT6Gzx2AFfvfYyoplhaW4ad3dzDHX9/wKnq81BntBlY5BXZ/U7tKXNpaIVWOC00B2gdXLFuRZrFYWLh+FrP92/JdKM4zX3C6KKcYH49eiW/nfM8UHvAO9sDqs5/gtW+mgc1h47v5P+HnZb8z5wya0QdfHP4Adk5KJ2lFqRBb3v6NOb5g3UxGqN5ckrW0Qqps2UzDlg8ttCVFUVj43SzGKfvH5/8gP9P8Hzcl+aVYMX4NVk3fyBQe8PB3w8qTH2Phd7NMsom1021g4H2pZcurltty/tqZ9V44wxhSqRSZmZlYvHgxAgMDrdLn4cOH8eDBgxr7hw0bhhEjRlhlDIqikJaWhg0bNlglXc8ayGQypKamYvHixQgJ0a/9VxuOHz+O2NjYGvsHDhyIMWPGWGUMiqKQnZ2N9evXm52aZG1kMhkSExOxaNEihIWZJ1BendOnT+tME+7Xrx8mTLDMKa+Goijk5+djw4YNSEpKskqfliKXy/Hs2TPMnz/fpNQxUzh//rzOCMmePXti8mTzNbCqU1JSgg0bNuDp06dW69NcaJrGhtd/YRYgxy8diYAI86PMYWAxJ7x9E+a++8DCew8AdB3dgXn98MoT3D5Z8ztFzfXr13HggGULPhEREYiOjjbYZvObVfdx/3AfhKqeVc0lLT6TyabQvI83bR3M6PRa+kwEQCvt89ndFKaIly7u3LmDPXssq5QeHh6O5s2bG2xTnFfKONzUsifPC+JQIxAIBEKdk5uWj50rlSuEbI5lOlpqUh9nMKmEms4VAIjuGgEAUChoPLz2FOXFFfhg6Jc4+dt5ps1rq17B4s1zmB/7APD7in+YFa9eE7qg/cBWKqfADKbdzpX7mNQHU9BcHVQLxkIV6q8m7rLlqUfNOoZh0AxlVbyKEiF+/d9fZvVzce91zGnxNhMNBQCDZ/XF93dXo2XPKAjLKvHRyK9x+MeTzPEZKyZhyS/zweFWRefs/Ho/CrOU0R+dh7dDl5HtLbg6JZq2DNawZUTHpkxKgjVs2aRVMIbNVUbbiCrEWo7D2nDt0G3MafG2Vqpwv6k98OO9NWjbr4XJ/fyz5l+rptugWgSA5vsyrG0IeDZK53TcJcttGdjMr14LZ5jC8ePHsWfPHquliMjlcsTGxuqMUpHL5fjuu++Qm2sdR2JQUBDc3d1x8+ZNq/RnKadPn8auXbusZkuFQoG7d+9CLK4ZCUzTNNavX281Z6Kfnx98fHwajC3Pnz+Pv/76y2oFPGiaRkxMjE5bAsDGjRut5kz09vZGQEBAg9Glu3z5Mv7880+rCvzre19SFIUtW7ZYzZno5uaGkJCQBmHLKwduMlHVXkEemPw/y6LMUe3eo+kEsnMUMIuhSfdSLdLwhKo4jiabDchhJCYmWlxl1cPDA+3bt9f7+b11IhZ3z8Qx2637GHYYmYLWfVzDOcmz4SGsXSgAIP1JFopyLavoq07LVbPlrW2QiHRHZSYmJkIoFFo0nqurKzp16mSwcExxTtU1uT7HggQgDjUCgUAg1Ad/frGXSQscs3io1kOUudw7/5B5Hd0lQutY8+6RzOsbR+7gze4fMg8yPBsuPvr7bYxfOlLrR2BeegEOqapX2gj4mLemSv8pKNIfoxcNAVROgR9MdArQNM3M09beBiHNq6JhHFzsGTs8u5uMynLLHuYA4NWvJkPgqIy2O/rLGTy9k2jyuRUlFVg1YyNWjFvNOBWdPZ3w6f53seTn+bBzFCAvvQBv9fwIN4/dBVRi+st2LMaUD1/SsmVRbgn2rz/CtFmwbqZVfnCrbcnlc9G0TVU0jK2dDcLaKrdTHqajtNB4pS1jzFgxEQ6uyoqCp3+/WKsoQmFZJb6d8z0+Gvk1I5rr6OaAj/5+G8u2L65VqnNZUTn++fZfAACLzcLrGyxLt1Fz78JDps+IDlVCylweFxGq9OHspFyLovPUVC+cEXPG+oUzasOjR4/Qo4dlEbKaUBSFZs2aISoqqsYxNpuNyspKq0WbsNlszJw5E3379m0QVSrrwpYRERFo0aKmw5nNZkMsFuPJkydWGYvFYmHatGkYMGBAg7Fl9+7dLUoB04SiKISHh6Nly5Y6j0mlUqvpdVEUhSlTpmDIkCENxpadO3cGl8u1Wp9NmzZF69ata+ynKAoKhcKqtpw0aRKGDx/+XG2pUCiw7eOdzPb8tTMsjjKHxr0HAKK6hmsdUy+G0rRyMdQS1DIgalIfZeDgpuM624aFhaFt27YWjUfTNH755Redkco0TWPbR9qLnF5BlhXJQLXn4Oq2bN6tKjLT0ig1v2q2zErMwZ61uuUwmjZtivbtLVtApWkav/76q85IZTWaxR1IyieBQCAQGjVZSTk4tvUMAEDgYIuX37dOyk7s+aqHlpa9tH/IRnercrAd+v4Ek2Lg5O6Ab04vR89xXWr09+cXe5iIt5ELB8PdT3tF7hVNp8A/15B4L8XoHNOfZDI3/ebdm2lFw0Ezkk6uwKPrCSZctWFcvJwx9aPxgIZenCnEnLmPOS2X4OT2qgi+bmM64qf7a9B1pDJt4sGVeLze6X2myqeDix2+Ov6hztTdXSv3M1pzQ+f0Z6o9WkJOSh6yk5RRPpGdw8Cz4Wkdj+6q+fBo+Q9uRzcHzFgxidne/unfBturuX/xEea2Xoqjv5xm9nUa1hY/3V+j831njH/W/Mukig6c3tuiog5qinJLmM9EeLtQJuVZjaYt1XqCllC9cMZvy3dZLQqntkgkEixatAidOnUyobVplJeXo2/fvjqrW7LZbPTr1w/+/v46zzUHW1tbPHr0CD///PNz/cEtkUgwb948dOvWzWp9lpeXo2fPnjq1jCiKQr9+/RAQYPmCjBobGxskJCTghx9+gFxufrVlS5FIJJg9ezZ69epltT4rKirQrVs3nVpGFEWhT58+CAqyLOVMEz6fj5SUFGzevNmqkWG1RSKRYPr06VbTR4RK06ljx47w8tJ9L+vVqxeCg80vElMdHo+HrKwsbNiwwWr6bLXlwu6rSI5TRjA26xSGrqM6GD3HGDRN49455bObrb0NwtqGah2P1nACPbAwQjow0q/G4tNfX+/TWQncy8sLERERNfbXBoqiYGdnh+Li4hrHrh26jfib2mL+bn6WVfCFxnMwl8/VkhFBNVtaGm3u19SbSSFVs3v1AQjLai4Eu7u7IzIyssb+2kBRFBwcHHTaUo1mMS93K9jSEohDjUAgEAh1yu+f/QO5TPlDZcwbQy0qD65G86HMzkmA0FbaPwo8/N2YKCC19odfmA/WX/0SUV1qPjRlJ+cyTj9bextMeGdkjTZ2TnZ4+f2xzPafXxrXiIg9V7V62LJXTW2N6O6ajgvrVJwb9fpg5uHi6sFbBgVpxZVibH7zV7zbfwVTeUrgaIt3t72O5f8shbOHE2iaxr/fn8DSPsuZFE7vEE+su/wFWum4pvzMQvy7RbkKzLPh4uUPxtZoYw6aK7G6xtV0olrLlsNe6w/vEGVFtzsn7+HRdf0r5hKxFD+9uwNLei9nHH+29jZ468d5+OzgMrh6117suDivBHu/U64Cc7hsTP1onNnXoommLXW9L5vXgS0HTOvFVGN9cDleaw71RUFBAb755hsUFBSY0Np0/v33X5w5c0bv8Xbt2ln9R7GPjw+ysrLw7Jnhimt1RXFxMVavXo2cnByrVlc7evQoTp48qfd4mzZtIJPJrOqQ9fHxQW5urtUi32pLWVkZvv32W6Snp1vVlsePH8exY8f0Hm/dujUUCoXVbVlQUICHD+v/8w2V42vdunVITk62qi1PnTqFw4f1F6hp2bIlKIqyqi29vb1RWlqKuLg4E1pbF7lcju2fVi3ITf90olXsaWyRsbnmM9EVy+49fFs+U/VSLQlRnFuCIz+d1mpXWFiIrVu3Ijs726LxAGDixIk1ohirR/qp0cxYMIfcVMOLjJoRa5baksPlwD9CWbVT/T4oK6rAwc3aEX+lpaX45ZdfkJ5uWWVRAHjppZfQrl07vceTNBa1gy20paUQhxqBQCAQ6oz0J5k4pYp6sne2w7i3rSPOnfIwnUlLbNEzkqlsBJWA+8ppG1BeXKW/EdGxKdZf+QK+TXSXRP/js38Yx9vYN4bByd1RZ7shs/vB2VMZhXJh9zWkPs4wOE/NKLpWvXU5LjQfHq2TLsLjczHhnVHM9p9f7tXZLv7WM8xv9x72qVIzAaB1n2j8dG8NBkzrBYqiIBFJ8O3sLVi/4CfGPi17RWH91S/1Rkr99eVeSETK9N6RCwbDzcf8qlma3DNiy+g6sCWbw8bLy6oiKv/8QrcT9VlsMhZ2eA9/r66qftW8ezP8cHc1hs7uZ/YPkb9XHYCoQrmaPmR2f6ukiMAEW2rq+1nLliwWC5M/qNLf+UOPLeuSW7duwdbWVm+UiblkZ2fD21v3d4v6+J9//mk1HTWoqjeOGTPG6tdiKrdv3waXy4WPj48JrU0nKyvLoC3z8/Px119/WbUog7e3N1566SWrX4upxMTEgKIoq0YxwoT3ZVFREXbu3InU1FS9bWqLu7s7xo0bZ/VrMZW7d+9CLpdbrdiImpycHIO2LCsrw86dO5GYaLrMgjGcnZ0xfvx4q1+LKZz58xLSVM83zbs3Q7sBNdOGzcHYIqNngDs8ApTZAY+vJ+jVPDOVkObKaFa1cD8A/P3NAUjEVRVu1VFQ1au3mgNN03j06JHWvkt7rzOR/XxbpdOLxWYxC0zmEmtkkdHZwwkBKifY09uJOiPzakOwypaaTuM93/7LZCNAVVADABwddT9D1waKogw65pM0Cys1t17UsjkQhxqBQCAQ6owdK3ZDoVDefMctGVEr7ShDxJ7TcAhoPEhkJ+fize4f4vQfF7Xa957QVW9kXPrTLJzQdPot0e/0sxHwMV51nKZp/PWVbmcVdKY21KyA5x3iCVeVw+nR1SdWSzkaOqefVnpqyqOq1UJxpRi/fvgX3uj6P+aBmWfDxfy1M7Dy5MeMkG9uWj7e7vUxjv16ljl37BvDsPLER3Dx1F1RKTc1D0d/Vq7+2tjxMfG9UTrbmUOshn5aZOeaFfDcfFyY1NLHNxK0HpgtYcD0XswD/rVDt5EQUyU8LRFLsWPFbrzecRmTGsPlcTBn5VSsPvuJRamuhdlFzOovl8/F5A+skyoNjQg1FpulFdmnRlPfLyEmySr6fgDQe2JX+DZV/iiNOX3f4iqitaV169aYPHkyOByOCa1NZ9KkSQZTSD09PcHhcJCfn2/VcVu2bInr169b1SFSm7GnTJkCHo9nQmvTGT9+vMEUUnd3d/B4PKvbsnnz5rhz545VHSKmEh0djSlTpsDGxsaq/Y4dOxY9e/bUe9zFxQW2trZWt2V0dDTu37//XKpURkZGYsqUKRAILKuCXJ2RI0eiT58+eo87ODjA3t7e6rZs1qwZHj9+jMePrRMpbAoyqQw7NKLTZnw2yWrRfsYWGaERpSYSirVE981BU6hfrQ2an1GIE9vOMfsDAwMxc+ZMqzjUkpOTcfr0acbpJJfLtSrLqx2EARG+NSLKasu9c8ZtqZYVkUnlNVJOa4umLSO7KKPfivNKceTHU8x+X19fTJ8+XWfKfm1JTU3F6dOndcoaKBQKJN1X3ve8QzwtrnpuKcShRiAQCIQ6IflBGs7+dRlQ6VGpK/1ZA10PZbdPxmJB+/eYBzB1pUIAeHhNfyrP7yt2M6uX49427vQbPm8gI1Z/5s9LyHymO02gemqDZgVMNRRFMQ4NYVkl84BgKXxbPsYvUaatajr+7py6h9daLcWfX+5l0nDD2oVi8+1VGPvGMEYMO/b8Ayxs/x7zAMa35WHZjsWYv3aGzutQ88fnVTp0oxcNhbOHdUqZ56bmMXoZulIb1KhtKRVLkVCLggyG4PK4mPjuaGZbHVl178JDzGvzDrZ/8jcTvRfaMggbb3yNCe+M0oqaNIe/vtoHcaUyTXDEvIE1NP3MpSi3BMkPlM6/8Haheh9ENfX9Ht+wXN8POiL+fv+8/qLUTp8+jfT0dINRJuaQkJCAp0+fGnTS8Xg8zJ8/H+Hh4XrbmEtubi6OHDliQkvrcf78eSQmJsLX19eq/SYlJeHRo0cGheTZbDbmzp1rsUaPLvLy8nDkyJF61fe7fPkyHj9+bPWIrtTUVMTGxhp0eLJYLMyZM0dnAQhLKSgowOHDh+tV4+/69eu4d++e1SO6MjMzcfv2bYMOT4qi8Oqrr6JNmzZWHRuqlMTDhw/Xmy7did/OM/fbNv1a6Ix+MgdTFhlhZQ1PzVTA8HZNmNe7Vu5jnFsZGRlWSfeEqnIwj8djvkPO77rC6JU2aRUMuUz5eVBXM7UEY4uMqB65b6EtNVNUQzVe7/rmAFPxMysry6q25PP5Or9DcpLzUFkuUs7FCra0FOJQIxAIBEKdsP2TKuHxie+OqiF8bi40TeO+6kHCzklZZn3XqgP4YMgXKCssB1R6aRuufcWM+eDSY50/klIepuHMn5cAtdPvDeNOP4GDLV56czigcjbs/Hq/znbGdKrUNLeicKwmw+cNYKLyzvx5CR+PWYn3Bn6GzATlww6Hy8YrH4/H+itfIChS+WOOpmns/e4w3u2/AsV5pQAA72APrLv8uc7iA5pkPstmotkEjrYYv9Q66b0wIbVBTV3ZcvCsPnBVVZG6tPc6Phn7DZb0Xs5E+LHYLExaNgYbrn9llYe73LR8HP5BqSNlI+Bj0rLRRs8xlfsXTHtfaur7WdOW/V/pCc9ApUj6zaMxeHK77jXACgoKcOnSpTrp++bNmyZFiJWXl+PQoUNWH79v375wdq6/CmclJSU4f/58nTidbt26hZQU48VeRCIRDhw4YPU59OnTB66u9SduXV5ejrNnz9aJ0+nOnTtITjYe3SORSLB//36rz6Fnz57w8PCoN+dkZWUlTp06VWe2TEpKMtpOJpNh7969Vi9u0aNHD3h7e9eLc1IiluKPz/9htmesmGi1vjOeZhldZEQ1HbW4y490tjGV4OgqR3VFSQXaD2oFAMhO/j97Zx3e1Pm+8TtedxfqQqFQpBR3K+4wYOiQjTGmMN93rmyMwQYb7u7u2kKhQKm7a+oe//1xkpOkTdrICSv75XNdu0aSc96cPD3Jec/zPs99c8m5X3x8PJ4+farX+5Dv5+2Nd999F3Q6HSKhsg5dn/FyF1G99dPyyzVaZKQyll4Ksazm1mDAFMKkorK4Cpelc7/ExETExsbq9T4y3N3d8f7776tcrFI0BdM3llRgTKgZMWLEiBHKyXiWjbvHHwIAbJ2tMWnVWMrGzksuIJM9XfoH4ft5v2Pbh/vI1tKI8T2xSZrYkJWlV5ZUq9Q72/PlUXLCP+sDzZN+k98cCzMrYture26hLI/bahtNWhvQYgXx2U3qxIdNLUwx7e3xAACJWILo04/J17oODMaWpz9jwf9mkZNamfbcX+/sIiv2eo7qhs2PfoR/mOqVZEX2fX1MXun3zkRY2enfPiFDyZDgX4glx5SDGe/LjSrun4oh/x0cEYC/Yn/C0u/mgs1RX1mjDQe+PUFW+k1+cyxsnalLmGgay64GiiWTxcScdfIEoTpdOiphMBjo1atXK7FoKjAzM0P37t3b3a6hoQFxcXFtupbpgqurK6ZNm4akpKQXkryg0Wjo0aNHm2LRuqJpLBsbG5GYmEh5e52TkxNmzpz5QmPZvXt39OnTh/KxTU1NNTrfm5ubkZycjNLS0na31QYHBwfMnj0bKSkpL6xKLTQ0FP36ae+k3B6axpLH4yE1NRWFhW1rq2qLra0t5syZg/T0dIM70V7afgNlecT3Kjyyh0oTJ11RlOpoazHHu6snOb96fjtJr8/sEeRGGh/kJORj3qdyY5+D3xPJT1NTU8oql+vr6/Hbb7+htrYWV/feQWE6ofXYfWgXSBR03PRdeGvPpEmGe4ArbBwJPbOEeykQ8HWXwnDxcSI14HISCzD3E7km6qEfT0HAF8DExISyWDY1NeG3335DZWVlq9eUEmrGCjUjRowYMfJfZN/X8hXOOR9OhYkZh7KxFUVt059k4c7RaPLxq5/PxFen15Ftm71Hy2/Oos88VhonNymf3NfGyRqTVo3R+BgsbMwx5c1IQKpNcfin00qvSyQS8jhNzDlqWxsAwL+HN6wdiORT7JU4vYVjZeSlFCLm4hOl58ysTPHO3yux/taXSnoYqrTnZq+djO8ufKyRK2tRZgmu77sDALC0Nce0t6lr74WCiD6LzURwhL/a7bxCPEiH02c3ElRauutCYUYxHp5XXnU1Medg9abXsOHe15S2HJTll5OOs2aWpkoGE1QgS/TS6TSV+mkyXHycSL2zhHspqK2oo+wYxiweRmoH3j/1CNnx7Vcl6UptbS0yMjIwYcIEvdtwWyIWizF8+HCNkkC+vr7w8/NrdztdqKqqwtGjRw2uWVVfX4+UlBRMnDixzbZMXRCLxRg8eLBGiTovLy/4+/uTLepUUldXh2PHjhncpbKhoQHx8fGYOHEiOBzqro+QXn/69evXpq6fDA8PDwQGBlL+3YA08Xns2DE8f/6c8rEVaWpqwtOnTzFx4kTKdegkEgnCw8Pb1PWT4erqiuDgYMq/G5Am644dO0ZZJZUqhAKhki7swi+pq05Di0XGbkNC1G7HYDDQcyRhglBTXofkaN3dd1lsFtwDiOtYfkohOkcEkAtJBWnFuHP0AUaMGIHJk6m5zvL5fNTV1YHL5SotFi36araSiL5vN/2qqpSTk+pjSaPR0Es6D26sbdLLXZvBYJBGCkUZJfAK8UB4JNHiXJZXjuv77mLIkCGYPn16OyNphlAoRF1dncqFEypjSQXGhJoRI0aMGKGU0lwuok8/AgDYudpiwopRlI7/4Jw8MVZVSjgKmVmZ4stTa7Hgf7OUbrL6Tw4n/x11OkZpnNObLpH/nr12MkzNtZuIT3t7PEzMiRuhi9tvoKK4inwt/UkWKqWPQwd1blN3jMFgoO+E3gCA5gYenl7XrxqI38zHnv8dwcqw95EUpTwRHTgtAuNeG6EUo7vHH+D1nmtJ7TkTcw4+PfwuXvthvsY3WWf+vExWCE5/dyLMrakxn4A08VmUKW1t6BcIjqn6m08ajYZ+k4i/uYAvxKNLz/R6bwFfgP3fHsey0PcQdzNR6bWI8T0x6Y0xlN+Int96ldS3m7I6UqOEpqYUZ5eS5gmBvf3aFPKl0WjoL42lWCTGw/NP1G6rLWwTNmZr4ERLBTdu3MCDBw8MMvbt27exf/9+jbblcDiYPXs2BAJqzDIUcXJygo+PDzIzDds+e/v2bdy/f98gY0dFRWHXrl0abctisTB79myDVOvY2dkhMDDQ4LG8d+8e7t69q8GW2vPw4UNs375do20ZDAZmzZplkIo8KysrdOnSxeBGD9HR0QZrQ37y5Am2bNmi0bZ0Oh0zZ840SKJXVr1pyPPy/skYlBcS1UB9J/ZCUG/qFgAEfAEeS6/HphYmCOzl2+b2smsPpIsu+iDTURPwhSjMKMG8T+UJnwPfHsf+/fvx6JF+7yHD2toaPXv2RH5cCdmS2XNkKLoO7ExWVZlbm8HR00Hn9xCJRIi5QFyP29JPk9HPALGUSCTITynCfIVYHvz+BA4fPozo6Og2RtAcc3Nz9O7dW6WTdbY0lmwTFrnw929iTKgZMWLEiBFKObflCplcmbBilN5ORoqU5XHx+HKc0nOdOrtj08PvlSZgMtz8XEg77ZSHGagsIZJcDTUNuLqXcPY0MecgculwrY/F2sEKE1eOBqQi+DJ3SwC4fUQ+oRgwpf12HuXEn+4Tnmc3E7Ai7H3s/eoo2TLo7OVIGjTcORpNVm01N/KwYcVWfDVzPeqrGwAAbv4u2Bj9HYbM1LxtpqmhmdTPYHFYlCdQ7xyVJ0M0iaVM1wMAos/oHsuEe8l4veda7PrsEARSx1AHDzsyiRp16hGlVVuQ6tdc+IdwzGIwGZj4huZVk5qgTyyj9IilKsYtH0m2otw59kApIU0lFRUVGlXq6EJaWppWwvyZmZnYsmULGhsbKT0OGo2GuXPnYuTIkQZtVSwvL0ffvn0NMnZaWhrc3d013j43NxdbtmxBbW0t5ccya9YsREZGGrRV0ZDnZXp6ulbnZUFBAbZs2YKqKuq/g9OmTcOECRMMGsvy8nJEREQYJJGl7XlZUlKCLVu2gMttLQOhL5MmTcLUqVMN1vZ5erN8kXHamvGUjv30egLqqoh5Rt+JvdpcZIR0wYrOIP6eUWce6fW7JnOsBoDcxHyEDeuKEKkcSE5iPvJy89HURE01O4PBQJ8+fXBp2w3yuWlrxqOuqh7c/AoAgE9oJ71cUxPupZBadH0iw9pcZASA8LFhYLGJeD84+5iyWGYn5CGkXxDChncFABRlliInK5ey6xudTkd4eHirqtPmRh4K0wktYK8ungaprtUWY0LNiBEjRoxQBr+ZjwvSxBKTxcD45SMpGzstNhOr+nykNBkYMX8Q/njwPTyD1E94ZYk2iUSCB2eJtr0ru2+juYForRz16hCdK6omvxlJTowu7bgBsVgMiUSCO8eIhBqdQceAqe0nLnqO6kZqU0Sffaz1hLmmvBY/L9mMD0Z8iYI0QrODwWRgzodTsS3xN4xaMBSQVsDdPHgPWc9zsSp8Hc7/I7c7HzyzHzbH/KC1wOvNA/fIhNywVwbA2sFKq/3bQxZLABg0vf2b+W5DQkj9lYfnn5BOXppSV1WPDSu24p3Bn5PuXHQGHTPenYgdSRswfhlxTgv4Qlzbe0fLT9M2d45Gk/qAg6ZHwMGNWoF0xVgO1iBp2rlfIJn0enz5GWXtyJCaLUS+NgKQVsBd2XWLsrFl8Hg8LFq0COHhrZPtVDBq1CiMGDFC4+09PDyIlf38fMqPhclk4uTJk7h06ZIGW2sPj8fDvHnzDKJRBam5wqhRmifj3dzcQKPRNDKE0BYGg4GzZ88axEQC0rawWbNmYdCgto1edGXIkCEYO1Zz3VJXV1cwmUyNDCG0hU6n49KlSzh1SrV5j77w+XxMnToVw4YNM8j4gwYNwrhxmksYODk5gc1ma2QIoS10Oh3Xr1/HsWPHNNhaO7Ke5yL+LiFa36mzO8KGdaV0fEVpjsEz2v8NsbK3ROggwsm3KKMEeckFOr+3YhIoJyEfNBoNU1bL/6bCEiAoiDqtuD2796K4itDRc/V1Ru+xYUoO7j6h+klEaBtLM0tThI0gnHy5BRVI18MB3atFchIApr4lj2VjjoBSB+bDhw8jJka5uyQ3MZ+8D/DVM5ZUYUyoGTFixIgRyrh9JJqs2hk0oy/sXGz1HlMsFuPYr2expv8nqC6rIZ+f//kMfLjnrXaNBPorVOLcPx0DsViMM3/Kbzr1MUxw9nIkXaNKc7mIvfoc6U+yUJJdBgAIG9YFNo7W7Y5jYsYhdS6qy2qQ8jBDo/eXSCS4uuc2lnR+WykhEdIvEH/F/oil382FiRkH45bJb/oPfHcCb0Z8hLxkYsLHMWXj3X9W4tND75Dac5oikUhwWjGWb1BnPgFpu2eOdNIW0j8Ijh727e7DYrMQIXXTqq9uwPM7mjlbSSQS3Dh4D0s6v62UaAzs7YfNMT9gxS8LYGphishl8iTxhW3XKK0IOmPAWBZnlyLtMdEu5N/DB25+7bdJEO3IhKYVFe3ILYlcKj8vL26/TmkVi0QiwbZt2xAVFUXZmIokJyejuroa5uaaf2csLCywdOlS+Pi0b/KhC87Oznj69Cnl1UASiQS7du3CnTvUJpBlpKWloaysDJaWmrc3m5qaYunSpQgIaLvdSVdcXFzw/Plzylt0JRIJ9u7dixs3buhVpaKOzMxMFBYWwtq6/euODDabjSVLllCaVFDE1dUVCQkJaG5upnzsQ4cO4cqVKwaJZW5uLnJycmBrq/k8hslkYsmSJejSRb1QvD64uLggJSUFDQ0NlI57ZrPytYfKeAr4AlJyw9TCBOFjNTOHoartU9alAAA5ScR8YsDUPqScQsKFNJgwqHGhBwBePQ9MU6JqauLK0WAwGEoJNX00V0UiEe6dIAy/WBwW+k7srdF+AxS7IPSIpY9iLKVzs4hxPWHvRnxHEq+kgyWhThOSzWa3+t2gKpZUYkyoGTFixIgRyji9+SL578mrIvUer6q0Gp9O+B5b398DoUBetWXvZosFX8zSaIzAXr6kUP3T6wl4cDaWrOLqPrSL0uqlLkS+Jk+wXNx2TandU5PVQxmKOheatH3mpRRi7aiv8NOiTWQS09zaDG/9uQy/3f1aaRU0sJcfOfEoyysnWxh9u3th8+MfEbl0hE4T6MT7KciKI6oagiMCKNVcQYsWRW3aUBUn4tEaxLIwoxgfj/sW38/7nUzamlqYYNXvS7Ax+lv495AnQLw6e5Bi/rlJBUjSQzBZkdTHmUh+QIjK+3bzUrK7pwJdY9mPonZkVbj6OqPnSGLlvDirFM9a6NTpQ2FhIcrLyw2WvLpx44ZOlWaWlpY4ffo0+Hw+5cfUt29fjBo1ivLWt9LSUpSUlBgslrdu3dKp0szKygqnT582SKKmd+/eGDNmDJjMtlvTtKWyshIFBQXw9vamdFwZt2/f1qk6ysbGBmfOnKG8HRkAwsLCEBkZCTabOvkHAKipqUF2drbBzss7d+4gOztb6/1sbW1x9uxZ1NfXU35MoaGhGDduHKVGFnVV9aQhkZmlKUYtGELZ2FDR7tlei6KMfpPlySJ95Bvc/FzIlsccqZg9m8PCqAVDwLFmIeRVL5zddbGdUTSjqb4JCQezUfy4EmwTFsYsISonsxVcKfUR0W/Z7qmpM71i4k0f+QZHTwfyPWUVagwmA2MWDQPLnIHQRT44vfO8zuO3ZMqUKa1a45UdPv99QwIYE2pGjBgxYoQqUmLSkfqIqIDxC/MmNSp05fGVOKwIe1+lsPywOQM1TgDRaDT0k04mBDxCZF7GZD2q02T0m9gLts5ENUDU6ce4eZgQ7da03VNG3wk9QafTpOPEqN2utqIOm9/ageXd3sOzG/KKoSGz+mF70gZMXDm61Q113K1ElOYpa7pMWR2JP6K/g1dnD42PsSWKmitUxLIl2rZ7ygiP7AEmi1ghvn86Rm0VWX11A7a8txuvdXlHSZtvwNQ+2J60AVNWR6rU5xj3mnKVGhUoVqdNXkVthQB0aPeU0XOkfu3I7TGuRUKaKhwdHTF79myt9I80RSKRgMVioUePHlrvKxKJkJSUhIwMzapQtYHD4cDb2xs3b96ktHLSzs4Os2bNMlgSiMlkauTu2RKJRILk5GSkpqZSfkxsNht+fn64ceMGpbG0srLCzJkzDVZZx2Qy0bu3ZlUrikgkEqSmpiI5WbOKXm1gsVgIDAzE9evUVqFaWFhgxowZCA6mdvFBBp1O1zmWaWlpSEigtqIX0r9vcHAwbty4Qdlv8ZVdt9DcKJXAWDBE4ySNpmjboijD1ceZXAhMiclAeVGlTu/PYDLgKXWnLEwvAV+6oBj52ghAepmNOq2fTpuMa/vugsaRwNzZBMPnDoKVHVEFl6XgZO2tpayGIrrG0t7VFsERxG9OdnweaZigLTQaDV5diDljSQ4XTfWE9tzYpcMB6Zzl4YUnlH3Pq6qqUFxcrPScoiu4T6gxoWbEiBEjRv5DnPnzMvlvfRICAr4Af3+wBx+N/YZ08bR1tkagQvWTNgkBtGj7TIslkn6OHvZKZgC6wmQxMXohoVEmEorAzSMsvjVt95Rh42iNLgOIG4OCtGLkpRQqvS7gC3Biw3ksClyNU5sukk6Qzl6O+ObcR/j00Luwd1VuTREJRdj12SF8MOJLNFTLKw9MzDlY+v08vQwjKoqrcPf4Q+mxW2n9N2kPXdo9ZZhbmZFCudz8CtLBVIZIKMLpzZewMGA1jv92jqx+dPSwx5cn1+J/xz9o8/0Gz+wHc2vCIfP24Sg01OjXflNbUYebB4lErIWNOYbNHajXeC3Rpd1ThokZh2xr1qYdWVP6TQ6HtQNx03H/ZAxqyvUXma+rq8PZs2fh5+dnkFawpqYmLFq0CJ06aT+Zt7W1Rbdu3cBisSg/Lkg/+507d1BYWKjB1u3T0NCAM2fOwNfX12CxnD9/vk5VRpaWlujRowfllU8y6uvrce/ePcr0sJqamnDmzBl4e3sbJJbNzc2YPXu2Tsk6MzMz9O7dm9LKJ0UaGxsRFRVFmUslj8fDqVOn4OXlZRAzAh6Ph+nTp+ukB8XhcNCnT59WYupU0dzcjOjoaEoSyWKxGGf+ks/d9JHAUIWu7Z4y+k1SrFJ73Oa2bSHrRBAJRShMKwKk1eYBXf0Qvycb6fdz9a42l0gkOPPnJbj0toNTNxtykVEsFpNtii4+TjonLHVt95QxgKJqc68QBR01qc6sq48zQvuFIH5PNnIeFiot9upDbGwsnj2TL6pLJBJkPSdiaedio9Uc25AYE2pGjBgxYkRvqrk1uHWISAhY2ppj2Cu6JQRyk/Lx9sDPcHT9WfK58LFhWH/rSzIp4tTJAcF9/LUat/tQuVA9pIuQ45ePAoNJjTuQTFxdEW1WD2UotX2eIiahEokEUWceYVnoe/jr3V1k64SJGQcL/jcL2xJ/Q8S4nq3GKkgrwrtDPsf+b4+TK692rjaAVA9LcaVTFy78fY1M6kW+NgJsDrUJAqUWRR1iqay/Iq/4i7n4FMu7v4dNq7eTrbJsExbmfTId25N+0yjJamLGwfC5hKA4r4mPGwfuaX18ilzcfoNswx2zaChMzam9EVOMJVXnJVUQrTdEQlrAF+Lqntt6jxkTE2OQCjAZ+/bt00tPbMqUKbCyota8Q4a3tze8vb0pc617/Pgx0tKoaWtWxcGDB3Hjxg0NtlTNpEmTYGdnZxB3U09PT/j5+VHWUvr06VODVIDJOHr0KK5cuaLz/uPGjYOjo6NBYuni4oLAwEDKYvn8+XMkJiYazNX25MmTuHhR9zbAMWPGwM3NzSDH5+joiJCQEPB4+pvExF6JQ1EG4ZjYY0QoOgVTW9Gra7unDGUHdN2vPd5d5IsfOYlyg4OxS4fDLtASdBZN72rz53eSkJOQD369EJZWlqRUREl2GWmCpY/ml2K7Z/hYzds9ZSjKN9zXI5aKxlU5CXLZA1ksGWw6ZZX7FhYWStqaFcVV5LzNp4Pop8GYUDNixIgRI1RwcdsNCPiEm+LYJcNhYqbdpEkkFOHAdyfwes+1ZCUNk8XAyvUL8c25j5B4P5VM3gye0U/r1X0Wm4VeY+QrowwmXUmoX1/c/V3RfZhchJhGp2nV7iljwBT5hOf6/rvIeJaNtaO+whdTfkJhurzsfdTCIdiZ+jte/Xxmq1iLRCIcXX8WK8LeJ1dc6Qw6ln43F58efpfcTlF4X1uEAiHO/X2VGJtOw4SVo3UeSx1K7Z4zNG/3lKG4sn3jwF1kxefio8hv8Mn470hDBgAYPncgdqb8jkVfz4GpheYTVMXzR+ZsqwsikQhnFSoEJr4xRuex1KHc7ql9LPtO6AU6g5gy3jx0n/K2T8WE9IVt1/W+CTUxMcHQoUMNUgVWX1+P4uJivVpJGxoasGXLFoMk/eh0OhYuXAhbW1tKbuY5HA4GDx5skMql5uZm5Ofnw83NTecxeDwetmzZgpSUFEqPDdL2pvnz58PJyYmSWLLZbAwcOBBmZmaUHJ8iAoEA2dnZep2XQqEQW7ZsMUirIo1GwyuvvAI3NzdK2sFYLBYGDBiglZGFpojFYmRkZOh1XorFYmzduhVPnz6l9NhkzJw5E15eXnr/FhtctkHHFkUZAT194ehJVIs/uRaPiuIqnY5D1qYIBR01AAgZ6g/3vg4wdzLB7cNRpGO5LshimXaiQMmxWNnhk5p2T210UGV0CnaHR6ArACDhbgpKcsp0Og6lWCbKE2ohg4lYWria4v7JGFRza9SMoDmTJ09GZKRcj1nJkKCDtHvCmFAzYsSIESNUcH2/vFpj4uvaJQSynudidd+PsPPTg2RSzjPIDRujv8P0dyYQVvEH7pLb69pa2ClIPjm2cbKGrbONTuOoI2yoPKFm42SlUym6m58LQvoTgvc5ifl4vedapdL50EGdsfnRD1i78004uLduScxNLsA7gz7D3x/sAb+ZqHhy9XXGb3e/xpwPp6LrgGCy9SEpKlVpMqQNT28koFI6se03ORxOng46jaOOzLgcnds9ZTi425OC90WZpVjZ4wMlnbTOfQPwe9S3+GjfGjh1ctR6fP8wHwSFE23IGU+zyVZibUm8n4rSXELfLnxsGNz9XXUaRx0FaUVK7Z66jG/tYIU+4wi9MG5BBR6r0DXUh07B7ggdTLRW5acUIvG+7smR+vp6BAYGom9f7ROHmmBmZoaZM2fq5Yhobm4OFxcXg1UrSSQSbN26FY8f694iBWmbno+PDwYOpLYFWQaHw8HMmTPRtWtXvcbw8PAwSEJNxvbt2xEdrV9Fb3NzM9zd3TF06FDKjksRFouFGTNmoHv37jqPwWQy4ePjY9BY7tmzB/fu6VfRy+Px4OTkhBEjqFsUU4ROp2P69Ok66fopjuHn52fQWO7fvx+3bt3SYEvVVHNrSI1aR0970tGZKpobeWR1uC7tnpAmYkfOHwwAEIvESm7m2qBUVaUw77GxswEkNPDrhXpVmzfUNOCBtCW18wxvsNzlCfgsJUMC3aqqBHwB7hwjKs11afeELJavEoYTEokEl3boVhnsrSaWllaWoElo4NUKIBSIcHWP/q7Qly5dwu3b8qr1bCVDAmOFmhEjRowY+Y+Qk5hP6ih0GRAEV19njfYTCoTY+9VRrApfh/QnhJMWnU7DrA8m468nPyGgpy8gTRLJkkpufs5at3vKKMyQV3hVFlehLL9cp3HUoah5Vltej8Y67Vuu+M38VjpokOpufH70Pay/9SUCe7V20hQJRTj0w0m83nMt6RRJo9Ew9a1x2Br3C0L6BpLPKVYD6dped+dIFPnvEfMG6zRGW5xV0OMbrmP7MJ8nUEqaSsTEBNepkwM+PvA2fr//LRkXXVEU1L+6W8dYKqw6GyKWZyiIJVoZMehekafJ+Fd0jCUAnD9/HlevXqXoqJQRiUQ4c+YMXFxc9NJtotFomDNnDgYNGkTp8SmOHxAQoPfN/KVLl3Dp0iUNttQesViMM2fOwNHRUW8NrJkzZ2LIEGqdCRXx9/fXO5ZXrlzBhQsXKDsmRSQSCc6ePQs7OzuVJiraMG3aNAwfPpyyY2sJFUmmGzdu4MyZM5QdkyISiQQXLlyAlZWV3g6vkydPVqpUohp9z8v7J2MgFhHVgsPmDKRMAkPGzYP3yIqvgdMitG73lBG5VD5nubhdN2MLZ29HsppfKQlkaYn5UxeAV0MsQF7do1vCLurMY3JB2DnQDlXV8ko6KkT07x5/SDqQ953YS2cdtjGLh5HV5pd33iQ7P7TBzsUGlrbmgILTJ6SLTUvmvobmSsLBWtdYKlJWVobycvlcPasDGhLAmFAzYsSIESP6oktJf8azbKzq8yH2/O8IKQjvFeKBDfe/xbIf5ytNvBSTK5Pe0M3sgNfEw8NzT8jHEglwecdNrcdRR1VpNe5JBfohTXA9vqx5FY9EIsGtw/expPPbuHv8gdJrC7+che1JGzBoel+Vnz07IQ9v9f8E2z8+QOpwuQe44tfbX+KNDYtb6XGNmDeIdBO9f0q9A6Y6hAIh7ksFbU3MOegTqf2qc1vUVdXj+n6iItHM0hSjFmh3oyyRSHD3xEMs6/oOOY6MVz6ahh3JGzBszgBKRMGHzO6vkZuoOkQiEfn3Jladqa0QaKpvwuVdxHnONmFhzJJhOo/VJ7IH7N2IZO+Dc7E6t96oY9D0CPKGRx830dzcXJ0E7jUhOTkZcXFxlLS8Wltb4+HDh0qCy1Qyfvx4jB6tXyu2IWOZnp6OZ8+eQSgU6j2WlZUVnj17pndFnjoiIyOV2o50IS8vz2CxzMrKwpMnT8Dn8/Uey8LCAomJiXjw4IEGW2vP6NGjMWHCBL3GMOR5mZ+fj0ePHlGiT2Zubo60tDS9K/LUMWLECEyePFnn/XV1ftYEiURCWTupq68zWW1enFWKZzcTtR6DTqejUwjRqlicWUq6mtbV1eHMjZPwDyccjFNiMlBeWKH1+Iqx7BLSBYGB8sU6mYg+24QFN3/NDYEUoSqWDm52iBhPaO6WF1aSFYraQKPRyCq18sJK1FXVA9KK5qPnD6PLULmbaFFmic7HCgBdunRRcvHNlsaSzqCjkx4O9VRjTKgZMWLEiBG9UJqUtaN1JeALsOvzQ3izz0fIiiNWmugMOl75aCr+jP0JnSOU3ckaahtxZTexymVixsHoRbq1yzy+HIememUx5Is7rlOmBXVh23VydVKGpi5KKTHpeHvQZ/j2lQ1k658i1o7WKgX/hQIh9n9zHG/0kuvO0ek0zHxvIrY++xldB6p2J7N2sEKXgcQEpTC9tZtoezy9kYC6SmIC1Xdib51XndVxZdctcrI7asEQrVZi059k4f3h/8NXM35BUWZrW3hrB0tKj9fcygw9RhATfW5+BTKeZmu1f+L9VCWRYXMrarWVru27i8ZaolJy+NxBsLLTXW+IwWRg7GKickUsEuPyTuoS0gDAMeWgl4KbqKzSUlsWLlyIiIgISo9NBoPBQK9eveDoqH2LsCp4PB5u3rxpEOFyc3NzJCYmIj1dtzgCwNy5czFgwABKj0sGjUZDWFgYXF2paXHm8Xi4desWJfpcLTE1NUVaWppeLbqzZs3C4MHUV6BCGsvQ0FB4enpqsHX78Pl83L59m5JkZ0tMTEyQnZ2N+Ph4nceYMWOGwaroJBIJQkJCKEvYCQQC3L17l5JkZ0vYbDYKCgp0SspXc2vIxJSLjxMCe/lSemyJUamkkVRwH38EhevWWSBDsYL5oo6C9zLNLYlEgtQYQr+yrq4OtbW16DFW3naurZtoQ00DYqVyEnauthgSOQheXkQ7YnMjjzR98O7aSacK0vQnWUiKSpWO4Ylug0O0HkMR5Wpz3WKpWB0mu1Y3NDSgtrYW3UbJ5U/0cRMFgICAAPK7KBQIkZdMdMN0Cnan3AhLH4wJNSNGjBgxojO5Scrtnqp0vWSkPs7EG73XYf83x8kyc5/QTvjjwXdY8u1clRfHa3vvkImwEfMGwdLWQqfjvH1U3qIY2JuYOHLzKxB75blO4ykiEopwfqu8xczUgqgIe3j+CYQC9TckBWlF+G7eBqzu+zE5WQKAXqO747MjcvMAVZPHzLgcrO77MXZ9fois8PMMdsdv977B8p8XtJs0UnTAjNZywqPY7qmLyHBbiMVinPlTvhI7ScOV2OKsUvy0aBNWhX+I57eTyOfDhnXBF8ffJx9f2HaN8uSFkgOmtrHUU7C5LSQSCc5QLDg9dulwsrJP19abttDnvASAmzdvoqCgQO8WQlXw+XxYWlrqXV2jyIABA+Dt7U3ZeC0pKSnB/fv3ddr3zp07yMnJ0buFUBUCgQCmpqZ6Vde0pF+/fvD19aWk8lQVpaWlOlcaRUVFIT09Xe8WQlUIhUIwmUxMmzaNss/ep08f+Pv7GyyWZWVlOscyJiYGiYmJBjEckS2wzZw5k7LP3rt3bwQGBhosllwuF3fu3NH6uqbY7qmL0VN76HIdb4v+U8Jh40g4I98/GYOa8lqtx+imoHP79AaR0LW3t0e3bt0wcLx8MTjqjHbXHsV2z8HT++L06dOkC3RuYj75t9FVRF/5Oh6p998qfGwYHNztAOk8tbyoUusxuivE8pk0ljY2NujevTsGjZfPZbSNZUvOnj1LukDnpxaR812fbh2n3RPGhJoRI0aMGNGHO0flbSHqEgJN9U34Z+1evNXvY9Jim8FkYP5nM7D50Q8qNcEgSwhQMCnjNfHw4GwsAMDCxhyzPphCvkaFtXfUmcfgFhAtAn0n9kKEVNi3vroB8XdbVzQUZZbgp8WbsDTkbdw8KL/Z9Qx2xzfnPsL3Fz/B4Bn9ENibiEv6k2ykP8kCpKudOz89iFXhH5LVUHQ6DXPWTcGWJz9prAmmZEWvxYTH0O2ejy/HkZVlPUeGolNw2451JTll+HXZFiwKegtX99wmJ65u/i748uRa/HTtCwycGoHQQUS1Xl5yIRIVkpdUoOgmqk0sRSIR7p4g2oQN0e75/HYSqRXTZUAQ/HvoX3Hh4u2EnqO6AQBKssuUDDOoIGJ8T3k78ulHWt0kCgQCREdHo7GxkdJjknH16lWcPn2a0jHt7e0xatQoZGVlUTqujD59+ujkgigSiRAVFWWwWN68eRMnTpygdEwbGxuMHTvWIM6pkMbS2lp7oxmxWIyoqCg0NOjuHtgWd+7cwZEjRygd08rKCuPGjUNmpm5GK+3Ru3dvnWIpkUhw//591NfXG+S4oqKicPDgQUrHtLCwwIQJE5CVlWWQStRevXrB1ra17mp7GLLds6K4ipwbWjtY6uRI2RIWm0XKPwj4Qp30X3sMl1ehPbtJXLs4HA4iIiIQ3DuAdBN9diMBDbWa//a1jKVQKCSTs4rzDd/u2i+e1FbU4cZBIvlsbm2GEfP0N4hhMBkYs5iQf9C12lwpoSaNJYvFQkREBPy6epNuoon3UnRKfsoQCoXkwp3iwrNvN8MtROmCMaFmxIgRI0Z0RrHyq2W7p0Qiwe0jUVjS+W0c+eUMuRrqF+aNTTHfY+GXs8Fiq19lfnYzAXnJRDti6ODOOrsjKbZ7DpjSBwOmhMPOhRCrf3A2FpUl+mlBndl8kfz35FWRGKCYrDolT7CU5JRh/Wt/YXHwGlzdfRtiqUi+lb0lVm1cgr/jfkHEuJ7k6uM4BfOAC/9cw72TD7E05G0c+O4EWeHn3dUTGx98j6XfzwPbhK3xMbv5ucC7K9EelPwgXWM9LEO3eyomUCevUq9ZVJZfjt9f/xuLg94iKqWk55alrTlWrl+IbQm/ov/kcDKWikYMVCRRFXFwsyONMrLiclGc3brVVBWJ91NJp1RDtHue1jCW2jLOgLG0drBCV2nyU9t2ZBqNBl9fX71cDtsiIyMDXbp00WBL7cjJycH+/ftRU1ND+dj+/v4YPXo0mpq0M0ih0Wjw8fFBjx49KD8mSPXTQkL0a1tSRX5+Pg4cOIDKSu0rLtrD29sb48aN0zrJSKPR0KlTJ70cI9vCUOdlUVERDh48iLKyMsrH9vT0xOTJk3VKMnp6eiI8PFyDLbXHUOdlaWkpDh06hOLiYg221g43NzdMnz5dq1gaut3zwj/XyDlK5GsjtZqbtIXydfy61glKB3d7eErd3lMeZqCpvgk8Hg///PMPsrOzyQppoUCERxefajRmy3bPLgOCEBkZSbbKP70ub20OG6b99/TyzpukY/uYRcNgaqGbGUFLIpeOIOdHl3bc0Lra3NrBCn5hRFIr42kOaivrIBQK8c8//yAtLQ39J/cBAIjFEjw4F6vzcY4ePZo073miZywNiTGhZsSIESNGdKKtds/c5AKsHfUVvpnzG8oLiZsbFoeFhV/OxqaH38M/rP1qmdObqUkIKCX9ZvYDk8XE6EXE6pxIKNLZhh3SGMgmph6Brug5MhThkT1IofqoM49Qmsclkz+XdtxQSv4s+XYu9mZtxpQ3I8FkKbcDDXtlIEzMiYTVhW3X8eX0X1CWR7gdMVkMzPt0OjY/+hFBvVVX+LXHAOmEBwAenNVMM8SQ7Z5FmSWIuUBMYp06OSBiQs9W25QXVWLT6u1YFLAa57ZeJcv/za3NsOB/s7A3azOmvzOhVaJ28Iy+sLAxl36GaNJ5jCoU2z411V8xZLsnt6AC90/GAFJHroHT+rS7j6b0m9RbqfWmmkttIkjXts/y8nJMmjQJVlZWlB6PjAULFhhEAysgIAAcDgf5+fkabK09ly5d0toRsby8HBMmTICNjY0GW2vPvHnzDKKB5evrC3Nzc+Tm5mqwtfZcu3ZN68q68vJyREZGwt5evRyCPsyePVtv8wlVeHt7w8rKymCxvHnzptaVdRUVFRg9ejScnJwMckzTp0/HuHHjKB/Xw8MDtra2yMnJoXxsALh7965WlXWGbPcUCoQ4/zchgUGn0zBxJXUup55B7ggdTCy45KcUIvG+9g6nYcOIKjWRUIT4uylgMpmg0WhobGxE/yny66Sm1eYt2z3pdDpyc3NBo9EgFAhJCQobJ2tSyF9TRCIRzvwlN+Wa+MYYrfZvC2cvR/QaLa82V0z8aYoslhKJBHG3ksBgMECn09HU1KTUBRGtR9tnXh5hQiAWi8mKeHNrMwRQnATWF2NCzYgRI0aM6ISqds/Guib8/cEerOj+vlI7WJ9xPfBP/HrM/2xGq8SRKsryuOTNtL2bLQZM0W1FumW7Z48RxAQgcqn8Zu7slittap21xenNyg6kdDod5lZmCJO2FpTllWORf+vkz8IvZ2Nv1ma88tFUtaL7NDqNdISSTX4BoOeobvj7+Xos+mqOXqKs/RQmPPc1SFwYut3z7F9XyBXniStHK2k3VZZU4a93dmGh/5s4vfkSOYE1szTFvE+nY2/WZrz6+UyYW5urHJtjysGIecQqJ6+Jj4vbb1B67IrnpyY6aoZu9zy/9Sp5zoxbNrLNSlBtYbFZGL2QMAcRCkQ4v5XaKrX+Wp6XkLaF7Nq1C4mJ2ru/tYdEIsHevXsNps3G4XDw1ltvGaQyBtKbeW3azUQiEXbt2oW4uDiDHM/BgweRlZVlEG02FouFVatWoVu3bpSPDWksc3JyNK7mkJ07T5480WBr7Tl69ChSU1MNEksGg4GVK1eiZ8/WCxtU4OHhgby8PI2NDyQSCQ4cOIBHj/TTZFLHyZMnkZiYaBCdOzqdjuXLlxvMLMXDwwNFRUVobm7WYGvDtnveP/UIFUVE5XW/yeFw6kSNgYsMRUH9k39cbHNbVYQptn3eiAeDwcCrr76KwMBAdBvcmVx4e3j+CQR8QbvjtYylQCDA1atXkZubi9RHmWisI6qDe4zoqnXi8tHFZyjJJipEe4/pDo8AagxcZCjG8pQOsezRIpY0Gg3z589H586dERzhD1tnoq378eU40mhKG8RiMS5fvozs7GxkxeWitqIOkFanGeI3Tx+MCTUjRowYMaIT904+JP89aHpf3Dx0H0s6r8HR9WfJcn8Xb0d8eWotvjn7Edz9NZ8MnN58mWyJHL98lEZJOFU8uRav1O4pSyy4+bkgPJJoZyrLK8e1fXe1Hruuqh7X9hI6HibmHIxeSOh7VJZUQciXu4cKpbFQTP7M/2yG2uSPRCLB3RNEe6fMCRVSN9RPDr6NHy59Cs+gtrXFNCGwly8pTPvsejw58VPH89tJBmv3bKxrwuWdRJKLxWFhrDThWc2twd8f7MECvzdx4vfzZOuDiTkHc9ZNwd6szVj01RyNzComvi6v4ji2/gz4zdS5rnXq7EEmP+PvJpMTP3WkPMwwWLsnr4mH8/8QSS4Gk4HxK6irEJAxfsUoUuvsxO/n0VSvXUthW7j6OpMOYikPNWtHLi0tBY/Ho8yZT5GCggJkZWXB3Fz195UKTE1N8fvvvyMpKUmDrbUjPDwcc+bM0fhmrqKiAk1NTQaJZUlJCdLS0gweyz///BPPn+tvONOSHj16YO7cuRonVquqqlBXVwdfX+qrKcrLy5GUlGTwWP79998GSQh269YN8+fP1ziBVV9fj6qqKoOcl9XV1Xj+/DnMzKhtu1fExMQEO3fuRExMDOVjh4SEYP78+eBw2r8m11XVG6zdUyKR4OTG8+TjSW/ob0bQkkHTI2DjRCRq7h57oLVLuSrtr+rqanC5XDBZTESMJxLIjbVNSgZHqmhqaG7V7imRSMBisWBvb48n1+S/QT1HaJ/kV4wllbINMvpN6g1HD6Jy9sG5WGQ8086lPHRwCOgM4rdQFsva2lqUlZWBwWCg7wRCX5bXxFeKhabIYung4KC0fw8dYmlojAk1I0aMGDGiNTXltch6TiR7vLp44qeFf+C7uRvIlUkWh4X5n83AtsTf0H9SuFYrc9XcGlJLi8VmYtyyke3uo464m/IqOUXxeACY98l08t8Hvz9BishqyrH1Z8lk3cj5gyHgC8nkzzOF96XRaZjz4VSNkj8FaUX4KPJbfDXjF3DzCaMDWejEIjGaG3iUtWfQaDSyVVHAF+LRpWdtbq/4mfpN7N3mttpycuMF1FURbZhD5/QHnU7H9o8P4FXfVTi6/ix4TUTyi2PKxsz3JmJP5mYs/X4erOw1F1z3CvHEoOlEhUBlSTWlVWo0Go1sVRSLxHh4vu0bUEPG8uxfV1BdRrRhDpzWBw5udpSOD2lCethcQhy5tqIO57ZcbXcfbeivZQutq6srXn/9dTg4OFB6HJCKig8ZMsQgN/KKuLi46Ox82BZMJhMNDQ2Ijo7WYGvAwcEBK1euhKsrtdUQAGBmZobBgwcjICCA8rEVcXV1xd272i+StAeDwQCfz9f472Rra4uVK1fC09OT8mMxMTHBwIEDERwcTPnYihgqlnQ6HWKxGLdvayYub2FhgRUrVhgkOclmszFw4EB07dpVg611x8XFhXR/pBIajQYajYabN9sXl4+/m0xWL/eb2JvSds+n1+OReJ8Qju/U2V2pgokqOKYczHxvIiBNuBz8XrsWbFXaXw8fPiQT8IryDfdPtV0NmRSVSlbL95vQC3Q6HWw2G+vWrYO7uzvpJAqpyZI2JNxPwZNrxP6uvs4Ip7gjAACYLCZmrZU7LR/4TrtYmlmakvqxecmFKC+qRExMDJ4+JaQ7+qvRE9YUBoOBtWvXwsvLS69YvgiMCTUjRowYMaI1z+/I3SvzkgrIFU8A6DuhF7Yl/IqFX87WqYrp8I+n0dxAlIePWzYS9q7aO1jJiJOuMNJoNFJ7Q0aX/kGksGlRRgluH45SOYYqasprcXLjBUCqZ0aj0Volf2QTVYlYgimrI9tM/jTVN2H7xwewLPRdxF6Rt1r1Gt0dHx94m3x88IeTZPUfFShOeB5faluEN05htVZxlVdf6qsbcGz9WUBahWdixsGrvqtw6IeT5HnA4rAwbc147MnchOU/L4Ctk/YOcQAw92N5EvXwT6c0aunQFMVYPrrcdiyf35Z/X7pTKK7bVN+Ewz+eAqTnn2LSmGpe+WgaeY4fXX8GvCbtWzrUodiO/LidWALAmTNnDOJIWVZWhqSkJAwdOpTSG09VjBs3Dn379tVgS+0pLy/HnTt3NGr7PH/+vEFcFCsqKhAXF4dhw4YZpHVWkTFjxpCi4FQji6UmCzCXLl0yiNlEVVUVHj9+jBEjRhi89WnkyJGkKDjVVFZW4s6dOxAI2v8dvnr1qkHMJmpqavDgwQOMGDHCIO2eigwfPhxDhw41yNhVVVW4d+9eu22fz2/Jrz0yDSwqkEgk2PX5IfLx/M9mGuw3c8LK0bC0IxYmbxy4h6LMEq32b6n95eDgABaL6F4IHxsGFps4Dx5fbnuRMe6W4nWcGJPL5WLr1q2orapFcnQaIHUd17b1dbdCLOd+Mt1g3/PIpcPJ1sx7xx8iN0k7LU/FcyjuZiIcHBzAZhMmFD1GdCV1gB9dfqa1iURVVRX++usv1NXWI156z+HgbgePQDetxnkRGBNqRowYMWJEKwR8AU7+Li9Fl10kXXyc8NXpdfj6zIdw83PRaeyK4iqyOo1twsIrH0/T+TjrquqR+YwQAfbt7gUru9YJrXmfziD/feC7Expr4xz56TRZnQapDlvL5M+kVXIBWUW7b0WEAiHO/nUZCwNW49APJ0mdNadODvj82Pv4/uInGDp7AKn7UZRRgltaJP7aI3RQMGmgkKjmGCFtbUiNyQAAeAa56ZXkbMnx386RJgF0Og1n/7pCtp+y2ExMXjUWezI34fXfFsHORb/39e/hg74TCL0ybn4Fru6hrlqgc98AmJgRk0fZKr0qBHwB+bpTJwe4eFMnsH160yVUcwmL+iGz+8MnVDdnXE3w6uyBQVJn36rSGlzcRl3FX0BPH1LLJvF+apsT8draWsTFxRkkoXb+/Hmkpqr/W1KJtbU1nJ2dcf78ea1vPNojJCQEdnZ27f6+NTY24smTJzq5L7bHxYsXDdLSqgpLS0t4eHjg7NmzWrvXtUfnzp3h4ODQ7t+Ix+Ph0aNHqKtru/1bFy5fvoyEhAQNttQfCwsL+Pj44PTp0xrrnWlKUFAQnJ2d2/0bCYVCxMTEoLa2ltL3h9RowhDtwaowMzNDQEAATp8+rVESURsCAgLg4uLS7nmpuMjYdRB11Y0xF58i+UE6IHUfHzKLWm02RcwsTTFtzXhAWhF+6IdTWu3fUvtr2rRpGDlyJDl2kLTqqjirtE3JAcVFxm5DCA3MkpIScLlcJNxPJedzPUdoV1H19EY8uUjtHuCKUa9Sb4Yjg2PKwcz3iSo1ouLvpFb791D4bM9uxGPSpEkYO3YsOXaXAcQ5VllchZIc7RyDS0pKUFFRgeQHaeRCdY+RoQZf3NIFY0LNiBEjRoxohFgsxo2D97Ck89uIvyuvUGNxmFjwxSxsS/hV7/a1g9+dIHWyJr4+Rq/ETfzdZHJy2X2I6iqg7kO7IKR/EAAgN6mAdEZsiyfXn+PYb+fIx7JJU8vkT+/R8hL9hHvKblQSiQR3jkXjta7vYuOqbagqrSHHmPvxNGxP2oBB0yLIicN8pcTfccpuEjmmHNItKT+1SK1jY1JUKlkZ101NLHUh4X4KDv4gn8DJYslkMTBhxSjsSv8Db/6xlNK2xbkKVVuHKKz4Y7KYCI4gJuJleeUoyy9XuV3qo0xycth9aBfKJocNNQ048vNpQJqYXPDFTErGbYu5CgnvIz+fBp9HzU0inU5HSP9AAEA1txaF6cVtbuvj42OQVjCRSIRhw4ZRPm5b7/f48WMkJydrsLXmODk5YcGCBe1WVdFoNPj4+MDPTzfn4LYQCAQYMWIE5eOqQywW48mTJ4iP1969ri3s7e2xcOHCdn+DaTQavLy8EBgYSOn7QxpLWQLgRSCRSPDs2TPKjSpsbGywaNEijbb19PQ0SHsrn8/HqFHU60y2RVxcHGJjYykd08rKCosXL27zeqLJIqMuSCQSpYqqBf+bbfAq1CmrI2FmRRg6Xd1zC2V5XI33VdT+enojAY8ePVJyQu46QH6eqXMSVbfI6OzsjJ49e+L5LXmyredIzTW/iEq/w+TjVz+fCQbTsFWoE1aMJDsobh68h8IM9dfbloT0CwRLao719EYCnj59quSE3EU6v4aKeXB7ODk5ISwsDIl35YtaumjRvQiMCTUjRowYMdIusVfjsCr8Q3w/73fSdQgALO0ssD1pA179YqbeIvVleVxckIqpm5hzMHvdFL3GU2xtkK0etoRGo2H+p/IEy/5vj6tc4ZVIJHh8JQ7rxnyNdaO+VnLdZLGZGL+8dfJHlhAAgMQo+UQi7lYi3ur3Mb6e9atSomDQjL74O/5XLP7mFbLSSfH4uwwgJiZ5yYW4d+IhqKJLf/nkMSkqTeU2cRrEUlMkEgme3ojHx+O/wzuDPoNIIL/JZ7IYGLtkOHambsSav5bDyZN6TazOEQHoOYqYlBVnleLGQep0qxRjqa5KTSmWg6lzdjyxQa5DN2L+YEqMK9rDr7s3qU3ILajA1d23KBtbMZYJbVT8SSQSzJ49GyYmJpS9t0QiQW5uLhYvXmxw7TRF3Nzc0KdPH4OswJ8+fRoXL7bt5CYSiTBr1izKhe7z8vLw6quvwt/fn9Jx28LJyQn9+vUzyI39hQsXcPbs2Ta3EQgEmDVrFiwtqUlayMjPz8ecOXMMrp2miJ2dHQYNGmSQWF6+fBknT7ZdFcPn8zFz5kzY2NhQ+t4FBQWYPn06unShbpGoPaytrTF06FCDtJdeu3YNx44dU/u64iIjldee+6dikP6EELT37+GDgVP7UDa2OixszDHlTUKoXygQ4fBPpzXeV1H7Kz+lEOWlFcjMzCRf7zKg/eu40iKjQixlmptPrxOJfBqNppWsw+PLz8iOBq8QDwyd01/jfXXF1MIU09+ZAAAQiyU4pEWVGtuETc5NS3O5KC0oQ0ZGBvm6JrFUh5mZGYYOHUrGEi1cWjsSxoSaESNGjBhRS/qTLKwb8zU+HPMNMp62dgAau3gYXH2cKXmvA9+eIAVep7wZqbNOloy29NMU6T0mDIG9iYqMzGc5iLkgF5QX8AW4svsWVoS9j4/GfoMnV5VbQ6atGY99OX/i7S2tkz9WdpbwCvEApOK3yQ/T8PH47/D+8P8hJUY+4Qgd3Bkbo7/D50feU2uLTqPRlNpT1SX+dEE2GUIbq7GqWhu0RSgQ4vr+u3ij9zqsHfkVHl1U1saa+Ppo7M3+E+9te53SNkhVKBtSnNTakEIdXQa2v7KtpJ9GkRZdbWUdjv0m16Gb/9mMdvehinktKv6EAmrawrpqEEsA2LdvH6KiqGuDBoDMzEzs2rUL5eWqqwwNSWRkJCwsLCjXi7KxsUFeXl6b2xw6dIhyAfrc3Fzs3LkTpaWllI6rCaNHj4adnR3lf0dra2vk5ua2uc2xY8c0EonXhsLCQuzYsQOFhdo5G1LB8OHD4eLigrIy7dq22kOT8/LkyZO4du0ape9bWlqK7du3t/t3NASDBw+Gp6cnSkq00/5qD1tbW+Tm5qqdGyguMlJ17RGLxdj9hbyiauGXs19YS960t8eTGl0Xt9/QyBFahqL2l7AcSklVdYuhiigtjCnE8urVqzh54hTp0O7f00fjSsBW1WlfzDK4RqKMyavGkDILV/feQWmu5hV/PYbL2z6bioQIDZU/7hzhT1YDqoulOm7cuIETx0+QlYBeIR4GMVmiAmNCzYgRI0aMtKI4qxTfzduAN3qvU0oi+ffwQf8pcsFwqiZlxVmluLSTuPkwszTFzPcn6TVefXUD2drg061TmxOaluLt+745jrqqehz68RRe9V2FnxdvRnZ86wn/tLfHt6vrJSt3FwlFeKvfJ0pJJO+unvjm3EdYf/NLdI5o3/Wu9+juZOIvKy4XD85R0zKiuIKYoCJx0dTQjLRHxITGI9BV6wlNQ20jjq4/iwV+b+KHVzeqTMyOXzEKb21e9sImS90Gh5BJ1vyUQtw7Tk3FX0jfAPJmQlUsBXwBWQXo6GkPFx9qEofH1p9FYy2hOzdm0TCdNQx1ISjcH73HdAcAlORwceMANRV/QeF+cn0/NQk1Pp+PsrIyODpqJ/jcHklJSfD09ISTk2ETu+p4+PAhjh49SqmWWv/+/dtsExSJRCgqKqLcKTUxMRGurq5wc/t3hKQfPXqEw4cPU6ql1rdvX4wZM0bt6xKJBAUFBQY5Lx0dHdGpUydKx9WU2NhYHDx4kLIFCAAIDw/HuHHj2tymoKCA8vMyOTkZdnZ2BmkV14Rnz57hwIEDlOrS9ejRAxMnTlSb0Hp+R7NFRm24czQaOQmEkH1wRAAixvekZFxNsHawwsSVowEAAp4AR3850+4+MhQrnTLu56Br167k763iYmj6k2w0NbQ2epDFEi0WGSsrK9FcLTfoUUw2tUf02cdIe0xUyvl28yJdyV8E5tbmmLKaqPgTCUWkuZEmKMYy9V4munfvTv7emlqYkq6qOQn5qKvS3PCmsrIS/HohxGLi76JNLF80xoSaESNGjBghqSqrweY1O7Ck8xrcPHiffN7F2xEf7XsLmx/9gJIsYoWaTqcpVZHow75vjpHl89PeHt+mI6YmaKKfpkjfib3gE0rcpKQ8TMcc9+XY/tF+VBTJVzz9wrxBZxKXTVMLEyX9KFXUlNeCW1DR6nlHT3t8sHMVtjz9GRHjemq8mktUqckTf7s+O0SJ/petkzXcpZVx6bFZ4DfzlV5Pjk4jtc00iaWMsvxy/P3BHszttBJ/f7BHKRa+3bzIZAnbhIVXPze83ldLFJOou784TInjp7m1OXy6EedR9vNc0lxBRtrjLDQ3EpNtqvTTqrk1So6ziufIi0Ixlnu/OtrqHNKFlvp+NeWtBcnZbDZmz56NkBDq2pfEYjFGjx6NefPm/Wvix+Hh4eByuZS6bVpYWKChoUFttRaDwcCsWbPQrRt1GjVisRgjRozAwoUL/9VYVlVVUeq2aWZmBh6Pp7bqjkajYcaMGejRowdl7ykWizFkyBAsWbLE4PpU6ggPD0d9fT2l1ZMmJiZkMlcd06ZNQ+/e+umzKiKRSNC/f3+89tprL6wCqCW9evVCU1MTpRV/HA4HdDod+fmtnRrrqxuQ8VSzRUZNEYlE2PPlUfLxi6xOkzHjvYlgmxAaXue2XNFYS61L/yBS++vZ7QRs27ZNyYBGthgqFonJCikZivppLRcZR48ejboU+fWv50jNkkCqKv1e9Pd86ppxMLUgpBMu7bihsZZaUG8/mFkSenbPbiZgx44dSgY0ipp0SdGqZUVUMXLkSPCy5ItKPTSM5b+BMaFmxIgRI0ZQXliBP9/eiVd93sCpPy6SCRQre0u8/tsibE/+HcPnDkJ9VQOynstK2X1hbq2/1k5ucgGu7bkNSHUxZFoO+hCnZWtD+pNsUuAWAGmMQKPRMGBqH2y49w18u3tBLCRW3aatGQ9rByuVY1WWVOHvD/Zgvs8beHRJbrvOYDKw/KdXsSt1I0YvHKrTRL7fxN4I6EloOmU9zyU15/RF1vYp4AvJFVIZ6lob1JHxNBs/vLoRC/zexFGFyilIE5frb32JkH6B5Dk26Y2xlLqGakrPkd3Iz52fWoTTmy5RMq5M+0ssliD5gfLkUem8pMjc4dD3J0mH2cjXRsLZi9qqGE3oOrAzeeNQkl2Go+vb1pfSFCVNOhUutElJSRCJRJTdeEgkEuzZswcPHjwAh6OfJqQ+eHl5Ye3atZTfUD169AgPHjxQ+Vpqair4fD5lCQaJRIIDBw7g7t27/2os3d3dsXbtWrDZbEor/mJjYxEdHa3ytYyMDDQ2NlKqk3X06FFcv36dUq1AbXF2dsYHH3wAMzMzSmP59OlT3L9/X+Vr2dnZqKmpAZvNpuz9Tpw4gcuXL8PU1FSDrQ2Dg4MDPvjgA1hbW1May7i4ONy717pKWNtFRk24tvcO8lOI9uOuA4PRa9SLF4y3c7Elq9R4TXz8vXavRvspan+VZHHBYXNQXV1Nvt6W9pe6RUaBQIDExEQ8v0Ekk1gclsaLzneORpNtooG9/Uht0heJlZ0lpr5FVIsK+EJseW+3RvsxmAyySq+qpAYmHJM2YqlZ26dIJEJCQgLibxEGPXQGHd311O81JMaEmhEjRoz8P6Y4uxQbVv6NBX5v4uTGC6T7oIkZB/M+mY49GX9g2prxYEtX8hQTBFSI2kokEmxavZ0s6Z7x3kRSx0EfkqLlE6DQQapbGwR8AW4fjcZ7w77Am30+bDVpCurjjx0pv+N/xz8AAFzdTST9zK3NMP3d1km/sjwuNq3ejvk+q3B0/VkyySGDY8rGtHfGg22i+40BjUbDG78vIR/v/OwQaivqdB5PhuIKYksnJsVYqtNPEwqEuHfyIdaO+gqv91qL6/vvktVzLA4L45eNxPakDfj69IcwMee0MJ+YrPfx6wKNRsMbG+SuaHu/PIrKEs01WNShOIHWJZbakJ2Qh1PSRCCLw8Lcj6fqPaaurPx1EamVcuj7k2pdTrVBSUdNhUPY7du3lcSk9SUjIwO5ubnw9vambExdYbPZ2LBhg9oEmC74+/ujqalJ5Wt3795VEpPWl9zcXGRmZnaYWG7evFlt0kYXAgIC1Mby3r17SEvTvBKjPQoLC5GSktJhYrl161bcukWdAUlb52VUVJRS5ZC+lJaWIiEhocPEcseOHZTqw6mLZVIUtdee+uoGbPtwP/l40Vdz/rUq1Pmfz4S1A1Fxd/tItNLCVVso6qj5WgcraX8pXcfvK7suJ6qJZUFBAaKjo1FVSSSTuvQP1Misq7GuCVvf30M+/jcq/WTM+XAK7N2IBc4HZ2MR00LrVh2KsXRn+SAsTO5yr6jTq0oKQxXFxcWIiooCt5SYRwSF+1GygG8ojAk1I0aMGPl/SH5qIX5avAmLAt/C+b+vkmYAHFM2pr41DjvTNmLR13NaXcCyE+StBLJKKX24eeg+nt1IAKRtpVRUp0kkEuQmFpBjtmwfLUgvxj/r9mGu50p8M/tXPFcQ3Le0swCNTkxkchPywTZhQSQUYeMb/5DbLPpqDixtLcjHRZkl+HXZFiwMWI3Tmy9BwCOq21gcFia9MQZ9Iom2n8a6JvK49KHrgGCMmDcIAFBXWa8kYqsrSiuILSqBZPoots7WrTTOirNKsf3jA5jn9Tq+nP6LkhuTlb0l5n82A/tz/8LbW1egU7A7RCIilrIE6vzPZsLGUT/zCX0I7OWHyKXDAenfZ8fHB/Ues6uiyYOaWJpZmcLVVz8zD4lEgj9WbSMTl698OBUO7vZ6jakPPl07YdIbhK5UcyMP/6zbp/eYIf0VJuIqKtQAoHNnarSAIHXZnD17doe42QaAsLAwSg0XRowYgRkzVBtWSCQSSmPp5OSEWbNmvVBnz7bo3r07pQm1IUOGYM6cOWpfp7IN2d7eHjNmzHihzp5tQfV5OWDAAMyfP1/la1SflzY2Npg+fTq6du0YboFhYWF48OABZbp0ffr0waJFi1o9n5OoOHfTXzdu56cHUV1GtFEPnBZBmZ6uLljYmGPJd/PIx5vX7NBIDqPHCHkCLS02Q6lN0dXXGbbOxNwkKTpN6e+jGEt/hVhKJBKw6GzwqvnS8TWr2Nv31VGUFxJt1OGRPRA+NqzdfQyFqYUplv/0Kvn4r3d2aiSHoaSj9jgDiYnypKaDmx2pF5sak6HReGKxGCwGC00VxMJ0Tw1j+W9hTKgZMWLEyP8jsuNz8e0rv2FpyDu4uvs2xCKZcKgJ5qybgr3Zf+KNDYvVisPnJsknEl5dPPU6loaaBmxVKClftXEpTMz0bw3i5peT2lWyY+TzBLh1+D4+GPklFge9hSM/n0Y1V67J5Bnsjnf+XolDBVsx+Y2xgEJS4PSmS/I21x4+mPg60V6Qm5SPHxZsxOKgt3Bx+3WyBcDEjIMZ707E3qzNWL3pNfQcKZ8IaKMf0Rav/TCPdLc6v/UKMuNy9BrPM8iNTDwqViFWldWQcZLFUsAX4M6xaKwb8zUW+L+JQz+cRGWJvLzfzd8Fb/25DPtz/8LCL2crubVe3HYDqY+IiiKvEA9Me7ttMeoXweJvX4G5tRkA4PKum0iJSddrPKdOjnD0IBJbKQ/TSXHexrom0jnLu4un3ivQ1/beQfxdYuXczc/5X6v0U2TB/2aRlQK3Dt1XEm7WBSV9v8eZrRxEV6xYgYCA9g09NOHWrVuIjo7uMEkLABgzZgzmzJlDWUuYRCLBr7/+ioKC1on9pUuXUpa4uHfvHu7cuUNpIkRfRo4cifnz51PaXrdhwwbk5LT+7V2wYIFStYs+PHjwANeuXUOXLtRoLlLBkCFDsHDhQspiSaPRsGnTJpUVknPnzkXPntQI3T9+/BiXLl1C165dO0wsBwwYgMWLF1PW3k2j0bB161YkJytXVcmSQKYWJnDqpJ/BQ1psJs7+dQWQVpm//lvrBN6LZszioaTmZnZ8Hs5tvdruPoraX8WlRbhz5w75Go1GIxcaG2ubkJ8i1/jLlcaSxWbC3V9uAOTr6wtRIhsSqf+JJvpp2Ql5OL7hPDEeh4U3Ny7518/NYa8MJKvKCtKKcWrjxXb38QntRF77i8uKcPPmTaXfB9l4/GYBsp637eoLAJ06dQIj0xJiodSQoAPrp8GYUDNixIiR/x+kPsrAF1N/wvLu7+PW4SjyQmdpa44FX8zCvpw/sfT7eUrJD1XIKmzodBo8g/Rzbdv9xREyEdN/cjj6Tuil13gyFKvo7FxtCWF8zxX49pUNZDUcpALuQ2f3x0/XPse2hF8x7rURYJuwseDLWWRy6dah+9jxyQFAOsF6689lyE7Iw1ez1mNZ6Hu4vu8uWW1lZmWKuR9Pw76cP7HilwWkLph/D3klX16y/hVqAODgbk8KwYvFEmxes0OvmxsajUY6MdWU16GaS6w85yqsxDq422Hbh/swt9Pr+HrWr0rurwwmA4Nm9MUPlz/FzpTfMXHl6FbJ0WpuDXZ8LG8RWb35NbDYLJ2PmSpsHK2x8MvZ5OPNb+3Q2xHQrwcRy6b6ZpRLzRhyk+R/e68Q/ZLRdVX1+PsDeYvIm38s1auVmCosbS2w5Nu55OPNb2lWKdAW/tJYCvhCFGfJReCTk5OxceNGvcaWUVFRgTt37sDCwkKDrV8cTCYT1tbWWL9+vcokmLbQ6XTw+Xzk5uYqPZ+RkYH169dTkiCpqanBzZs3YW7esdpzGAwGHBwcsH79+lafXxdoNBpEIlGrhFpOTg5+/vlnSlxF6+vrce3atQ4ZSxcXF/z666+UtVyLxeJWsSwoKMCPP/4IgUB/w5impqZ/XTdNFXQ6He7u7vj1118pa21tGcum+iaUZBPmB14hHnolbGRV5rLfilc/nwknT2odWHWBwWBglYIcxu7PD6k0slHah8kg3U7LUioBMZR+A/3D5HM32fVbwBegII0Q6/cIcgODKdecPHPmDIrriO3Mrc3IBJ86ZFXmsoXtVz6a+kIdutVBo9Hw5salcjmMr46iorhtOQw6nY7u0rbPivQa0EFXG8u8pPavZRcvXkRhLZF445iy0blvoM6f50VgTKgZMWLEyH8UsViMmItP8eHYb/BmxEeIOv2IfM3GyRpLv5+Hvdl/4tUvZmrk+CQSiciEkHuAq1438BnPsnF6E7HqxTFl440Ni3UeqyVZCtVaF7ddx9H1Z1FTLtcZcw9wxfKfXsXBgq345OA76DE8VGl1mEgKvEI+lunK9R4bhn1fH8XrPdfi7rEHcot1e0ss+noO9uf8hcXfvNLKrKBTZ3fy33lSAV8qmPbOBLj5EW2D8XeScfuIfi04nYIVjjOZOM6s5/JYXtt7B4d/Ok22eUDaFrH0+3k4mL8Fnx95D71GdVe70r5t3X7UVTUAAEbMH0SZMDIVTHx9NLylFXgpMRm4KjXJ0JVOwR7kv3OlsVRMTnp31S+htvPTQ2Tl4KDpEQgfS52boL6MWTKMUuMMxVjKzksAyMvLo0xAn8PhYMiQIejTpw8l41GJqakprKyscPPmTb3HotFoGD58OLy8vJSel8WSisoIFouFQYMGoV+/fnqPRTVsNht2dna4fv06JeMNHToUPj7K0gd5eXmg0WiUxJLJZGLgwIEYOHCg3mNRDYPBgKOjI2WxHDJkCHx9lRMQ+fn5kEgklJg7MBgMDBgwAEOGDNF7LKqh0WhwdXWlTEtt4MCBSpW7ir+b3np2FrSuMh+v13hU0qV/EEa+OhgAUFfVgF2fHWp3nx7Dicqn6qwG+LCVq5OV5m7SuW9BWjG5SNTyOp6emk4mf8OGdWn3+tSqynztv19lLsO/hw/GLRsJSBcGtysshqpDpqNWm9cITwQo/QZ26qx4HW8/oZaWkgZeM9HuGTq4M6nj3FGhzn7GiBEjRox0CBpqG3F1922c2nQRhenKttcO7naY9cFkRL42Quv2ypLsMtL9Up92T7FYTKzKSSu75n06gxJnwtzkAlz85xpO/3m51WssNhMDp0dg/LJR6DYkpN2bnbFLh+PIL2dQlFECSCe8j1qIs9o6W2Pm+5MxYcVImFqoX/W2cbKGhY056qsbKKtQAwA2h4XXf1uMzyb9AAD4+4O9iJjQC6bmurnAeSok1OJuJeLhuVic2tS61J/JYmDA1D4Yt2wUwoZ10ahVJeFeMi7vIhIC5tZmShodHQEmi4nXNyzGulFfAQC2f7QfA6f20VkEVzGW+cmFCB8TpqS7os9NTerjTJzbIm+3Wfnrv99uowiDwcAbvy/BO4M+A6TGGUNm9W+lZagpni0SvQOmEP8ODg6Gh4eH+h01JC0tDUVFRRg6dKjeYxkCOp2OmTNnorS0VIOt26dr166oqlKuNggICICDg/5VJpmZmcjJycGIESP0HssQ0Gg0TJs2DUVFRRps3T5dunRBebmy+Ya/vz+srKz0Tqjl5OQgLS0No0eP1vMoDQONRsOUKVOQl9d++5YmdO7cudU57uPjAzabrXcs8/LykJiYiMjISD2P0nBMmjQJ2dnZlIwVHByM4mL53E/x2qPP3K2qrHWVOZPVsVIJS7+fh/snY9BU34zzf1/D+OWjlLoEWqKo/fW8MBa+ce6koL7StSel9cJYy0pzU4EluPHEgmN7+mkdtcpckcXfzMHtI1Gor27A1d23MWHFaIS0USmmqEmXXPYcsbGe6N2bcCv1DJZ3tGiysGwqtERZHNHB0tH102CsUDNixIiR/w4F6cXYvGYH5nquxOY1O5SSaS4+Tnh7y3LsztiEqW+N00mrTFFQ3ytE9xvZyztvklpinsHumPGe7kYEzY08XNt3B+8O+RyvdXkHxzech5Av11lyD3DBil8W4GDBVny8/210H6qZDk1hWjGqSuW6YIql606dHPDmH0uxN2szZr43sc1kGqQ3HrKVTm5+BZrqVbuZ6ULE+J4Il5oecAsqcODbEzqP5errRP57z/+O4MgvZ8gEKqTn0LIf5+NA/lZ8euhd9BwRqlEyTSQUYeOqbeTjxd+8AjsXW52P01D0HBGKQdMjAABVpTXY87+jOo+lqiqRCv3Blu02C76Y1SHabVrSdUAwRsyXG2fs+ER3swflWMp/g/h8fquKFm3h8Xg4deoUampqNNj638PW1haOjo7Ys2ePWjdETUlISMC+ffuUftN4PJ7e5gECgQCnTp1CdXW1Blv/e9jY2MDNzQ179uxBfX29XmMlJydjz549Su2dzc3NesdSJBLh1KlTqKys1GscQ2NlZQUvLy/s3r0btbVtt9e1R1paGvbs2QOhUH79bmpq0lsjUSwW4/Tp06ioqNBrHENjYWEBPz8/7N69u1XCW1uysrKwe/duNDc3Ay2TQHok1LZ9uI+sMh/56uAOVWUuw8HNDvM+JYxXJBIJNr21vc32a5/QTqSrZV1lA1KS5W237gEupHN1vvQ6rm5hjMfjoTCuFA2lRMwVk0uq2PnJQXmV+Yy+HarKXIa1gxUWfiWXw9i0enubEg7u/i6k2VJteT2Sk+SOns5ejuCYEgnD/HYSanw+H0XxpagvIq517cWyI2BMqBkxYsTIS4xEIsHjK3H4dOL3WBK8Bqf+uEgK8kN6Ifry1FrsStuI8ctH6VU2nZ0gX4nWtcKmtqJOyWp99aalWutoCfgCPDgXix9e3YhZLq/hxwV/kGXziti72WFnykbMeHdiqzZMVUgkEjy9EY/Pp/yIpV3eQVNds9LrVvaW+OzIu9iTsQmTV43VyA5dhlI7ZQo11RGQJute/3UhmCyiteDIz6e1EtUXCoSIufgUPy3ahG9m/aZ2Oyt7S+xO/wOzPpjcrs5eS079cRHZ8cS5E9DTBxNWjtJq/xfJ8p8XgG1CnI8nN15QeV5pgvLfm0gCyfQHLW3NYedio9O4F/65jrTHRLuNdxdPTF3z75s6qOO1H+bLjTP+vorYq3E6jeMR6EomwWWtS83NzThw4IDeFR0ikQh+fn4dtqJKERMTExQWFuLu3bt6jWNvbw8ejwc+n2hlFwqFOHDggEpBeG0Qi8Xw9vbGqFEd9/stg8PhoKSkBLdv69fabWdnB6FQSCY5xWIxDhw4oLcWllgshqenJ8aMGaPXOC8CNpsNLperd0uyvb09xGIxmeSUSCQ4dOhQK3F9bZFIJHBzc+vQ1WkyWCwWKisrcePGDb3GsbMjTKVksaSiOjrhXjKu7LoFdNAqc0WmrhlHmtkk3k/Fyd8vqN2WTqdj4FRiIS3vVhnodfL5KIvNImU1ClKLCG06NcnJe/fuQ+JOtCg6uNu1qTGc+jiTNE0wMefg9Q5WZa7IxJWjydbW9NgsHP7ptNptaTQaBk3vCwAouMsFvVYeSzqdDg9pTAozStp0+nz48CGErsRvqpW9JXy7e6ndtqNgTKgZMWLEyEtIU30Tzvx5GUu7vIOPxn6Dh+efkBUHHFM2xi8bib+fr8dPVz9H/0nhOmsN5acWYv3SP/HLkj9x4+A98nleEx9VZdpXdWx5fzdqKwg9s2GvDCD1K9pDJBLh6Y14/LpsC2a7LsNnk37A9f130VQvT3qZWZkisLcf+djR0x7pT7LaFYdubuTh/N9Xsbzbe1g78itEn3ms9DqTTbQ01FbUobmBpyRCqyna6kdog2eQO175aBoAQCwS48cFf6C5kad2e7FYjLjbidiw8m/MdluOT8Z/h6t7bqOpQR5LGo2GoPCWscxWso7XhOLsUuz+4jA55urNyyjTvTIELt5OWPA/YkVWIpHgp4V/oKG2UetxLGzkSbOUh+n4dfkWlBcS1SZ2rrZIfZShtVg/t6ACOz4+QD7uiO02iji42WHpd/PIx78s+RN1VdpXBHFMOXDxIaon81MKIZFI0NBAVEk4OureKs7lchEfH4/p06d3ODMCVZibm2PatGlwdnbWaxw/Pz8sW7YMHA6R7GxoaIBEItGr5bOiogJPnjzB9OnTYWXV/uLFv42pqSmmTZsGV1dXvcbx8vLCsmXLSNOApqYmiEQivc7LqqoqxMTEYPr06bC17XiVvC3hcDiYNm0a3Nz0Mylyd3fHsmXLYG1NLNjw+Xzw+Xy9zsuamhpERUVh2rRpsLe31+v4XgQsFgvTpk2Du7u7Blurx9nZGQNDh+Kfd/Zjw4qtSIwiErwcMzZKc8qUrvWawG/m4/fX/yEfL/7mFdg667Yo9CJgc1h4e8ty8vH2jw8oJcJaIksCVWfVIzkmTWmeI5u78Zr4+GH+Rjy/TThXM1kMVBZXkQvYmclZShVV6johBHwBNqzYqlRlLnMF74gwmAy8s3UF6HTi8+z53xGkP8lSu72syr8mtwHJD9OVKk5lLbRikZiUU1FFRlIW6ouIeVfY8K6UOeAako5/hEaMGDFihCTjaTY2rd6OVzxX4o83tymVTjt1cpC25G3B21tXwKdrJ73fb+enB3Fp501c3nVTyZnnlyV/Yq7nCsTdStR4rDvHonF1N1ERYGZpihW/LGxze4lEgqQHaWQb69qRX+Hi9utkywGkiYuB0gt4Y20TWb0DaSJjVfiHWDfqK5XudVnPc/HXO7sw13MFNqz8W+WEa/zykfj4wNvk481v7UBJTpnGn1mGYttae+XuujD3k2lkAqwgrRj/rN2r9LpEIkHqowxseXcX5nZaifeH/Q/n/75KJjchTUha2lkobC+PZeazHLzZ50O8O/hzjZ0ARUIRflzwB5n0HPfaCHSO0K9950Uw470JCB1EOH+V5HCx5Z1dOo3jKl3ZFvCEuLhNLtydm1SA1X0/xpsRH2mcoBSLxfh58WbUV8vbbboNDtHpuF4kk1aNQc9RhP5JeWEl/nhzW7v7qEL2/Wmqb0Z5YSXs7OywatUqnRMXQqEQhw8f1rv65UUTFBQELy8vHDt2jGzn0hYajYbk5GTSBdDa2hqrVq3SOSEiEolw5MgRJCQkaLB1x8Hf3x8BAQE4duwYGhu1T5pDGsu0tDTS6dLc3ByrVq1Cp066XXslEgmOHj2K58+fa7B1x8HX1xchISE4evQo6urqNNhDNVlZWUhPJyqsORwOVq1apXNbt0QiwfHjx/H06VNKDCJeFF5eXujevTuOHj2qVyv6sa2nEPfkOc7/cw2NtUSih9fIxzuDP8cC31XtOmAqsu3D/eT8qKNXmcsIG9YV06WGCQKeAD+8ulFtVVTXQcGwcbQCw4QOePLwydyvMdFiPjau2qZUbX7z0H3UVRKLQkKBCO8N/QLzvV9HRXEVap43I/0cMbfrPzlc7XHt+eIIMp4SldUdvcpcRki/IMz5cCqgMK/jNaletA0K94ejpz3oTBpY/iJ89uq3mGgxH+uX/qnS+EoVdYk8pJ0iXh/QRiw7EsaEmhEjRox0cGrKa3Hi9/NY0eN9vN5rLU5vvoSGGvkNQLchIfj82PvYk7EJsz6YrJFjp6a0pc8kFIjIVr724BZUYMOKreTjN/9YCnvX1qvvEokEWc9zsf2j/Vjgtwpr+n+CU39cRGWJXJfHxJyD4XMH4qvT63Ck5B+8s3UFWGz1lTrpT7LJJFBtZR1ObbqIN3qvxYqw93Hi9/NKCToHDzvy3x6BrlixfiEGTYvAqIWEM1hjXRN+Xry53aq3lqgSt6USJouJdXtWkxoVZ/68jEeXniInMR87Pz2IRYGr8WbERzi+4TwqiuT6LBxTNobM6of/nfgAR0u2ITwyrM33yXyWo3Fl1aEfTiHxPrEy7uLjhGU/d9wWEUUYDAbW7n4TZpaENt6lnTdx/1SM1uO0FCxuSXZ8npLeX1sc/+08nl6PB6TtJK//1nFbRBSh0+n4YMcbsLQlKnhuHryvVOmqKZ5B7uDYsGDhZorcpHzcvXsXsbGxOh8Xn8+HhYUFJkzQXb/x34LJZCIjIwNXr17VeYyUlBQ8eEA4FUdFRSEmJkbjRHlLhEIhTE1NMWnSJJ2P59+CwWAgKysLly+3NrLRlNTUVERHRwMAYmJiEBUVpVcs2Ww2Jk/uOG5/msJkMpGbm4uLF1sb2WhKWloaoqIIt+rY2Fi92pslEgkYDAamTp2q8xj/FkwmEwUFBTh37pzOY9j6W8K5u+oqsmpuLcryylW+1pJHl5/h5EaiZZLFYeGDXW926CpzRZZ8N5fU+818lqNSF1XAF+DeiRhwzDkQNYvRVMFDSUEJmht5uLr7ltLcTRV1VQ1Ij89ECT8fIp4YJuYchI9VPY+Ku51ItkwyWcQ8oyNXmSsy//MZpHt3blIBdnzcWhdVKBDi3skYsDgsiIUSNJQ0obS4FM2NPFzZcxueQe3Pg+vq6pBXnw0RXwwWm4mICb0M+Kmo4+X4KxoxYsTI/zNEQhEeXXqGy7tu4sHZxxAKlJMYbBMWhr8yEJNXR8I/TL2Dkb6MWTwMxzecV/majaMVhs8b2O4YYrEYPy3aRCauhszqR1qbyyhIL8atQ/dx89A9lStXLDYTfcb1wNDZA1o5WbLsWBgwtQ9uHY5S+f5T3opE7JU4XNp5E9GnH0HQIonB4rAwdHZ/dBkQhN9XEm0NDCYDH+1fQ77Pqg2LEXczEWV55Xh+OwnHfzuPme9NbPezy3D2dgSLw4KAJ2hzZU4fPIPcsfznBWQV0GeTfoBI2Drxx2Qx0HtsGIbNHoB+k3ormSr4hnrjBtQnPCa/GanRBDD5YTr2fHkEAECn07Buz2qYW5np+MlePC7eTnh9w2KsX/onAOC35VsQ0i9QqzaX9ipEJ64crZEOX8azbNJZjUajYe3uNylNmhsaB3d7rN68DN/N3QAA+GPVNoQO6qxVm0unzu5wCrWB13Bn3Hl0C3VConKjqakJxcXFmDlzpsatYQUFBaisrMSiRS9HUrIlFhYWmDFjBrhcrs5jWFpaIjU1FQcPHiQrgpqbm1FaWoqpU6fCxcVFo3GKiopQWlr60sbSzMwMM2fORGGh7r/JVlZWSEtLw8GDB5GWRpjtCAQCcLlcTJw4UeP2vdLSUhQUFLy0seRwOJg1a5ZeuoZWVlZITExUiqVQKERlZSXGjh0LLy/NtJS4XC5ycnKwcGHbVfAdFRaLhZkzZ5LfTV3w9/PHo1uqFx26D+3SpvOljGpuDX5ZvJl8vOzH+ZR0Prwo2CZsfLj3Lazu+xGEAhGO/HQKEeN6oOvAzuQ2X0z9WcnBPWFfNizczGBqz0bnaZ3AsGs7Od65bwCKSgth6WUKGp0wilJ1Xa+rqsePC/4gk+0Lv5qDgJ76meq8SFhsFtbtWY3Xe62DgCfAid/PI2JCL/RUMAz49pUNuHfiIfk46VAuLNxMYebIQcB4D4it+ORr6jo17ly+D0svE9AZNPQa1f2lmTcaE2pGjBgx0oHISynE5Z03cW3vbaWqLBnBEQEYu3gYhs7uD3Nrc4Mfj0+oF4IjApDysPXEbsX6hRrd2B//9Rye3SDagRw97LHmL0LbIi+lEA/OPsatI1FIj22tyUBn0NFjRCiGzRmAAVP6wMJG/eeNXDpCZULN0tYcl7bfwP6vj7d6LbC3H8YsGoZhrwwAjUbDirD3ycnOoq9mI7CXXEPM3Noca3e/iQ+GfwmJRIKdnxxAr1GhSIpOR9SZR3jlw6lkm6AqGAwGPIPckPU8F0UZJRAKhJSuTBakFeHBuVjcOnyffK5lMs3B3Q7zP5+BQdP7qv27KbamtsTZyxHzP5/R7rE01Tfhh1c3Qiwi3v+Vj6eh64BgLT5Nx2DMoqF4cPYR7p96hJryOvy6bAvW/LUMOz49CBaL2a6GWVuxtHezxaJv5rR7DLwmHr6f9zuZUJ/x7gSNdQc7EsPmDED02Ue4efA+6qsb8MuSzVi3ZzV2fnIQEgnw1p+vgW3CVrt/p84eKE+qQaehTmQyDQDi4uJgYmJCali1R2NjIw4ePAh/f39069aNks/2b+Dv7w8PDw+cOHECI0eO1Fq3bMKECdi0aZPSDXt8fDzYbDYsLTVL1jY3N+PQoUPw8PBAjx4dz6FOU3x8fODu7o4TJ05g+PDhsLHRThtq/PjxyMjIIBNAkDqpMplMjWPJ5/Nx8OBBODk5oVevl6MiQxWdOnWCm5sbTpw4gSFDhmitWzZu3DikpKQoxTIpKQkMBkPjc1woFOLQoUOwsrJCePjL0S6mCg8PD7i5ueHkyZMYMGAAnJycNNhLzuyl03HqqyutnmeyGHjrz2XttsFKJBL8tnwrOQ8NHxuGKas7vrFDS/x7+GDhl7Ox/eMDEIsl+HHhJmyM/g7Hfz2LgvRiZMVJW999zFFX0IjuS/3BtmBCyBOByWHAykm9viadQcfbW1bg+I5TKM2uglggwaDp/VptJ5FIsHHVNnDzCafZbkNCMPN9zRdkOwpeIZ547Yd5+Esqg/HL4s3Y/OgHnN50CTmJeciMywUAWHubo66wEd0W+4JjzYaQJwKDTYeFnRnodBrEYolaLeH0h1koy6yGsFmEwSpi2VExJtSMGDFi5F+mrqoed45G4/Kum0h+0DpxZedig5HzB2P0oqHttpEZgsglw1sl1MKGd8WIeYPa3TfjaTZ2fEIIqdNoNExZHYk9/zuCh+efoDirVOU+XQcGY9icgRg0o6/GjpJhw7vCxdsRJTnKVRt1VQ2AQkunjaMVRswfjDGLhsInVL7a/d28DWQLROjgzpj5Qev2pe5DumDGuxNwdP1ZCPhCvDf0f6SmVUVRJbY+/aXNY3QPdEXW81yIhCJw8ytIe3FdEPAFiL+bgpjzsXhw/gkK04vVbiurjCsvrISFjUWbSVCPQPUi3as3LVWqDFTHn2/vIgVngyMCMP+z9pNwHREajYa3t65AYlQaqstq8OBcLOLvJpPt1l0HdsaoBUPU7t9WLN/YsFijldd/1u4jKxr9wryx6JtXdPosHYHVm15D/J1klBdW4sm1eCwNeYf8/gRHBGDCCvW6PB6Brmiq4CN2cxp6vREEmrTjKCAgAAMGDICpqanafRVpbGyEo6PjS+FE2R4MBgM5OTk4d+4c5s6dq9W+dXV1YDAYoNFoEAgIXSE/Pz/0799f4+RkU1MTbG1tMXbsWJ2OvyPBYDCQn5+PM2fOYMGCBVrtW19fDxqNBg6HAx6P0BXy8fFBv379NE4CNTc3w9raGuPGdXw9pfag0+koKirCqVOnsHTpUq32ra+vh1gshpmZGalr5+XlhX79+mls0MDj8V7adu6W0Gg0lJSU4OTJk1ixYoVW+/JEPPR6OwCPfk8Fr0auHTZ73RQlLSt1XPjnGqJOPwIAWDtY4v0db7xUWnSKzPxgEh6cj0Xi/VSUZJdhWdd3UFNOaP1FjO+JJl4TQhf4QCySgM4gPiOTwwCNz0DnLp1h52KjcoF7+tvj4dXFA0/OJKI8twocUzb6qJDNuL7/Lm4dIhY7LWzMsW7P6pembbYlU1ZH4sG5WDy9Hg9uQQWWhb5LxrL3mDDUVtcidGHrWIJHR3DnYDh5OaIkuwzFWa21iMViMZ6cTUBxOhdMFgN9J748iwvGhJqRlwaRSITcpHxkPM1BQVoxSrJKUV5UhRpuLRpqGtDcwIOAJ71o0Gigyf5Pa/2YBhpodNnzNIBGXLhoNIBGp8PU3AQ2ztZw9LSHR6ArAnr6ouvAYNg4anZzb8RIe9RW1CHq9CPcORaNJ9fiW+lSEReT3hizaBjCx4bp5CxJFUPnDMCm1dvJVkkGk463Nr/W7uSquZGHb+b8RlbXMJh0/LNun8ptA3r5YtjsARgyu3+bum2qqKuqR/SZx6QbZ0voDDoixvfEmEXDEDG+Z6uqouv77+LmQWKyY25thg/bmOws+uYVPDgfi/yUIjIZAADZz/PQUNPQZtWgk0KLW3lhpdYJtaqyGsRceIKHF54g9nIc6S7VEr8wb3iFeOLGAUJ/hvxdBJBwNxlDZqpf9XNQ04Y3cFoEIsa3P7m5e+IhLu24AUi17j7cu/ql0QhRhY2jNd7b9jo+m/QDAChpF8bfTW4zoWbnakuuxioSPrYH6SrWFg8vPMHpzZcAaYv3R/vXgM1htbtfR8XS1gIf7FyFdaO/BgCl70/CveQ2E2pW9pZgm7AgEROr/TTQwGAwMHToUI3F9DMzMyEWi1/alrqWyNrCUlNTyecePnyIhoYGDB8+vM19aTQahEIhmEziu0mn0zFo0CCNW+qys7PB4/GwePFiPT9Fx4DBYGDmzJlKxgqxsbGoqKjA6NGj291fJBKR10M6nY4BAwbAz8+v3f0AIC8vD/X19f+ZWNLpdMyYMQNPn8rb6J49e4bi4mJERrZd4USj0SCRSMDn88nHffv2RVBQkEbvXVBQgKqqqv9MLGk0GmbMmEFqHNJoNCQmJiIrKwsTJ7Zd4UQjbnZgYscmE2pOnRzwykfta8rlpxZiy7u7ycfvbnsddi4d33FWHQwGA+t2r8Zroe+C38QnE0AAUJZXjs/2v48/PtsCjyEOYJvL5yv2bCdYWFjA0dO+VULN1sUGr34xE7HXnyFwnisE+/kI7dlVSUIDUqfzP1bJzXjW/LVM6zluR4JOp+ODnauwNORtNNU3K8WyKLMEX534EOvf+wOdhjuCrhBLa5otrKys4Ohpj5LsMtRXN6CpoVlpkTY+KhneMxzRfKQJ/gEBsLTt+O7bMl7eWa6R/ww5CXm4fuAuUh5moKqsGg3VjWhuaAa/WQChQESIf+um76oz1ahBcXYpkh+ofp3OoIPJZsLEjA1za3PYOBHJt07BbvAL8zEm34yopKa8FvdPxuDO8Qd4diNBpbi7bzcvjFk0DMPnDeww55CZpSn8wnyQEkNUqQ2fN0hJXFQRsViM9CfZiDn/BKf/vIQartxJSlEHjsFkIHRwZ0SM64m+E3vDI0B9NY8qaivrEHXqEe4cf4Cn15630pgDAM8gN0S+NhIj5w9Sq31VklOGjavkdvBr/loOp07qnQMznmQpTSBkSCQSJD/MQO/R3dXua+8uT1ZxCyra/HyyMTOf5eDBuVg8vPAEqTEZKsWu6Qw6ug4MRt/xvdB3Yi+4+DjhzzU7VY6Z9CBN5fMyTM1NYGlrrmTUQKPT8MaG9m9Qygsr8NvyLeTjVb8vgbu/dn/XjoZIKMKTa6od95LbiSWTxYSti42SCQSNRsPqzUvbTUZXldXglyV/ko+X/7wAXp09tD7+joRIJCKNFVqSFN12LGk0Ghzc7VCSxwUxIaBBLBbDxKT9ikkAqKiowKFDh9C3b18EBHR8p1lN8fT0hLu7O44cOQKRSISioiKIxWIMGzaszXPM3d0dgwcPxoMHxCRHVhWkCdXV1Th06BB69uyJ4OCXr5VbHW5ubnB1dcWxY8cgEAhQXFwMHo+HUaNGtRlLFxcXDB06FA8ePIBQKNQqlnV1dTh48CC6dOmCkJCO79qrKS4uLoiMjMTJkyfB4/FQUlKChoYGjBkzBnS6ej88e3t7DB8+HDExMaivr4dEItG4YrKhoQEHDx5EQEAAQkNfvrZ4dTg6OmL8+PE4c+YMGhoawOVyUVNTg8jISDIhrgobGxuMHDkSzzb9TT735qal7ep2CvgCfD9/I5obiWrL8ctHof+kl7d1VsazmwkqTYByEvLRuW8A3v3xTXw68Xt4jXWEY1divtjIJuZ6Dh72Sq7nALDilwUwtTDF3UtRoFvT0chtbrVQJnPElC1+jnx1MIbOHmDAT/liiLuVCD6vtWNqUUYJvEI8sG7jO/h43LdwH2YH5zAiEdtsQswpFbVTKwor4REoXxC7fe4uGKZ0NHJ5GPxh+4uOHQljQs3ICyPpQSpuH45CYlQqirPL0FDdqLFbXEdDLBKD38QHv4mP2op6FGepTr4xWAxY2lrAI8gNPYZ3xZjFw+Dcxs26kf8eVWU1uH8yBnePR+PZzURSV0oRp04OGDQtAiPmD4Z/D58OWVa/5q/XsG70N7B2sMSaP5cpvdZU34Qn1+Lx4FwsYi48UVkaD2m7Zfi4HogY1wu9R3fTWgOuprwW9089wt3j0Xh6XXVCkmPKglAoxsSVo/HGhsVtxlIkkk52auWTnWFz1E92Kkuq8OGYb9BU36zy9eTotDYTao4KDqIVhZUqt2lqaMbT6/GIOU9UopWr2c7SzgJ9xvVA3/G90Gt0d6WVvO0fH8C5raodADOf5YDXxGtzUm3vboe6qgbQaDSYmHMwa+2UdgXkxWIxfl68mbSUHzQ9AmMWD2tzn5eBg9+fJB3OWpKbVNBuVaKDux2ZUDOxMMHUt8bB1aftykSJRIJfX/sL1WWEVlifcT0w6Y0xen2OjsCJ387j0I+nVL5WnFWKqrKaNlu8HTzsUZRZivQzhegxPwgjR46EnZ2d2u0Vqaurg5eXFwYPHqzB1i8XfD4fKSkpZLJdE0MBBoMBDw8PjBo1Crdu3cLgwYPh6KjZ3KSurg7u7u4YOnSo3sfe0RAKhUhOTiZdnDWJCZ1Oh7u7O0aPHo0bN26gb9++cHXVbCGhvr4ezs7OGDFihN7H3tEQiURITEyESERcpzXRU5PFcsSIEbh+/Tp69+4NT0/NZC4aGhrg4ODwn2jnbolYLEZ8fDyEQiIhZGtr2+48kUajwd3dHfO+mI49nxxFj+Gh6Dehd7vvted/R0lNW88gN6xYr10LdEfk8ZU4/Lpsi8rXJBIJUmMy0HNkN3x/6VP8svZ3OHYlXrMwJa7tDm7y64yJGQehgztjxNxBEIvFiD2ZACGbDwiJTghFWjqdv/mHdi3QHZHnd5Lw44I/1L6e/CAd/Sb2xk9XP8e3b/4CZ2kHrCmHqNxTjCW3oIJMqEkkEsSejEczrQmCehH6T365krjGhFoHo1kgQkkdDxWNfFQ2CtAsFEEiAeg0GqxMmLA3Y8HBnANHCzboHfCmWyQS4dmNBNw5Fo3UR5kozeWisbZJZRJBW2g0GlkZxjFlw9TSBJZ2FrBztoGDhx3c/V3h5u8CNocJoVAEkUAMoVAIkUAEoVAMkVAIiQgQCYUQCUUQCcUt/i+CWCSGgCdAWW45yvLLUc2tRWNNE3hNPKJaTsvPIRKIUF1Wg+qyGiTcTcbeLwnLZhaHBRsnK/iEeiFifE+MenVwqzLhjgRPKEZJXTMqGgWobOCjiTwvAUsOE/ZmbNibs+FswQGd/u+clxKJBJVNAnDreahoFKCmSQChtNWKzaDDzowFezM2nC05sOAY9qevvKgS0aeJ6qnntxKVWr5Y5iZw7uWHTn2D4NU/GJaudmCbccCgAYUcJppL6shYMv7FWFY1CcCt56OikY/qJgGEbDMsvPUd2Aw6npY2QFhehKKYNDw58wjPbyW2cs5UJHxsGOZ/PhNB4X5a60ZUllQh+sxjsqpP8TvINOPAuacfPCMC4TOgMyzd7cE2ZYNBp8GczUR8SR3szdhwsVQdy12fHUbCvRQAgIu3Y7uTHV4jHzzpqq0qEu4nq3y+SnpeNni5YvTfb4JlboI6e0tcTCmDrSkToopaFD9Kx5Mzj/DsRoJSi6YiPqGdEDG+F/pO6IXgCH+1sawtr1X5PKQrpmmPs1oZKAhEYpRKrz3dP5iBzgDoLCa8Q9xhbcZBXFENHMyJ7w9TRYXBwe9O4sk1ovrI3s0Wb29Z0SETw9pS00Ys1VUlCkVilNTzUNHAR8hbk+ErloDOZMCrszusLUwQV1RDnpdMRutYHvv1HB6cI9zZbByt8P72l1e7RpG2YglpQrrlJFoklhDXngYBApZHwn3JGNBZTHgGuqLSwgTPFGLJUhFLSI0LHBwcMH/+fEo/T0cgPz8feXl5ZKscpJUpAoEAbLayyYNILCG/4xWNfGQWNMLU3BZB4+ajjsXAs8Ia2JkTsWSriWVCQgKsrKy01hl7GSgoKEB+fr7SczY2NuDz+eBwlBcgRGIJyup5KG8gYplV0AgTU0sERs5DE4uBp4U1sDdjwcXSBGym6lgmJyfDxMTkP9OCrEhRUREKCpRFxy0tLcHj8VrpHYplsWzko6KBj6yCBrA55ggcOw8CFgNPCqphLz0vOWqkL1JTU8FkMv8zrZ6KFBcXt4qlhYUFeDxeq0pIsUTxvBQgK78erF7BWBb9M0yYDMQWVBO/l1YcmKiIZczFpzgsXfRgMBn4cN9bGummdnTamhMBQGJ0KnqO7IauA4Kx/MMl2L15H9z62SN00AAkltTBekwvjO0VBAaHBedODnBwtEJsQTUa8spg3c0a+bcL0HuMsiPls5sJL7XTuTpqK1p3aCiSFJ2KfhN7IyjcH2u+eQNbf9oGt/526DZ4IJJK62A+tDvGhviAwWEhmWUKbmoZ7MzY4JVWwjTIHBX3qhA2vCus7F8eJ3MAoElU9Y/8P6G2thbW1taoqanR2iGJasrqeUgtq0dOVSPEGvxFzNkMBDlaIMDBHCasf0dbSSQS4c6xaJzZfBnZz/PQVN/USitGE+gMOswsTWDvbgcHd3s4utvBzd8FXl084Bfm0yErukrzuEiKTkXG0xwUphejvKAC1WW1aKhtBL+JDyFfqHUsaDSAY8aBg4c9Anv5YsisfogY3+tfFa6saOAjhVuP7MpGiDT4PKYsOgIdLBDoaAEz9os5boFIjOzKRqSU1aOqSXUioiXuViYIcrKAh7UJJTeqQoEQiVGpeHTxKR5deoas57mttrHxd0XYkpFwH9oNNA300EyYdAQ4WiDI0RzmarTBqEYoJmKZWlaPikbNYln8MBVpx6NQcCcBErEEbBMWWBwWqTXVd2IvfHVqncZxFglFSIpOw6NLRCwznma32sba1xlhi0bCY0R30DTQ5+Iw6QhwMEeQowWZTL138iG+nE6YCNAZdKy/9aVGTpSPLj3Fzs8OqXQlZbIYON90AHQ6HSKxBDmVjUjh1qO8ga9yrJaUPM5A2vH7yL8VD4lIDLYJC2HDu6Lv+F6IGN+zzVZURRrrmrDrs0O4uP06mhtaJwCnrhmHN34jbjxqmgVIKatHZkUDBKL2v+NsBh3+DuYIdrKApTSWMRef4tMJ35MaLz9c+UzJSv1lprmRhz1fHMb5v6+p1KyLfG0E3v17JQCgtlmAVG49MsobwNcgliwGDf725ghysoC1CaGN9uxmAtaN+oq8fnxz9kONtOteBvjNfOz98ijObrmipEUnY/jcgfho3xoAQB1PiNSyemRUNIAnbH8hi0WnwU/6HbcxlevMpaam4tChQ5gyZQq6d1dfPfqysmXLFpSWKpu70Ol0REREkNpf9Twh0rj1SC9vQLMGsWTSafC1N0OwowVszeRJuczMTOzbtw/jx49H797tV7q8bGzfvh0FBQVKyUk6nY6ePXti/PjxAIAGvhBp3Aakl9ejSdB+LBl0GnztzBDsZAE7hVjm5uZi9+7dGD16NPr2fblamzRhz549yM7OVooljUZDt27dMGXKFABAI1+EtPJ6pHEb0KRCsqElDBoN3namCHayhIO5PJYFBQXYuXMnhg4dikGD2jdKetk4ePAg0tLSlGIJACEhIZg5cyYAoEkgQjq3AWnl9Wjgtx9LOg3wtiO+444WRLK4OKsUq8LXkXIPS7+fhznrphjsc71IJBIJTm+6hCO/nCadNhXx7uKJf+J/BaSFLenlDUgqqUGzBk1UErEIhfcT0N3TARNmEN/lsvxyrOq9DtVSyZP5n83Awi9nU/2x/hUkEgnO/30Nh3882coEDADc/F2wO42oYOMJxcgor0dicQ2aNIqlGMUPkxBsb4Upr/R/qRYSjQm1fzmh1iwQ4WFeFXKqVItLtweLTkNvTxsEOJgb/MQTiUS4fTgKZ/66jMy4XDSraXtSB4NJh5mVGZy9HdG5byCGzuqPLgOCXlqnk/YQiUSIvRaP24fvI+VhBrgFFWhuaIZEy0Qbi8OCZ7A7xiwagslvRr6QePGFYjzKr0ZGRYMGW7eGQaehp7s1OjtZGPS8LKxpRnRupUYTCFU4mrMxwMeOvJnVhrL8cjy+9Awxl57i6bV4tQLxnl08Meiz2aD7aiac3RI6DejhZo0QF0uDVqUW1zYjKqcS9TrGUsitQQBdhAcH7+LqntsAADc/Z2yK+aFdYdHywgo8uvQMjy4/w5Orz1XebAOAW5Abhnw+B4wA3bSk6DSgm6sVrGvqsKbvx+TfbOX6hZj+juaOYBKJBM/vJOHY+rNkJZGMnSm/g+Vqj6icStTy1FfttYWwohZ+EiH6Dg6GiVnbeidtUVdVj/N/X8PJjRdQWSzX8fIK8cCW5+vxtLAWSaVtrzaqg0YDQl2s4NTchNV9PiQn4Yu/eQVzP56m8zF3VBpqGnBh2w2c/P28kv6dq68zdqb9gbiiGiSU1Okk90kD0MXFEm5iAd4K/5CchM/7ZDoWfT2Hwk/RMWisa8KlHUQsFSfkjh722JvzF+JLavG8uBa6zk47O1mgp7s1mAw6njx5grKyMowZM+almpxrCp/PR0JCAkxNTfH48WNkZRGJfhcXFyxbvhyJJXV4VlSj0UKtKoIcLdDLwxosBh1xcXEoKCjAuHHj/pOxFAgESEhIgImJCZ4+fYr0dEIz1N7eHm+sWoXk0jo8LayFSMcTM8DBHL09bcBm0JGYmIjMzExMmDChTU2xlxWhUIiEhASwWCwkJCQgNTUVEokE1tbWWLNmDVLK6vGksIbsItAWP3szhHvagsOkIzU1FUlJSZg0adJ/8n5C1jpLp9ORkpKCpKQkUlvuvffeQ1p5Ax7nV+scS287M4Q5mGHtkM+QFUcsBvefHI4vjr//nzs3hQIh7hyNxtH1Z5UWa5lsJi40HUBGRQMe5VdrtLioik42pujpYoFPR36JlJgMAEDvMd3xzbmP/nPnpkgowr0TD3F0/RklfTk6g45L/EPIrmzEw7xq8HXsUPOwNkE/L7sXVpyhL8aE2r+YUMuvbsL9nEqNVl/bw83KBIN87DSqVsuKz4FXiGe7X25dE2gMFgMWNuZw83NBSP9ADHtlAIJ6+Wv8Wf7rNDXxcPtwFKLPPELmsxxUldaA36RZBQsAcEzZ8O7qiQmvj8GoVwdT/iNdUtuMu9mVaNRgxbA9nCzYGOxrT3mFlUgsQUxeFdLKdUv4KcKg0dDL0xqdndouL+bzBEi8n0JWoeUk5qvdNrC3H8LHhqHb1AhkMTg6J/wUcTBnY4ivPeXtqmKxBA9yK5FeoTqJpeVgiP3jHJL33wLHlI2N0d/Bt1tr1zihQIjE+6lkFZqqij4ZAT190HtMGMKm9kU220TnhJ8idTmluP7udtQXlGPonAH4eP8anW8Qc5MLsOXdXYi98hw2ztZ49/73SC1vJDJOekCjAWGu1gh1tdT75lXAF+Dq3jv4+4M9aKhpxIJfF8NieA+dE36KNBSU4/q721CbU/afnYQrIhQIcfPQffz1zi7UVdVjzjfz4DAxAtXN+seyqbgS19/djurM4v/sJFwRkZCoct+8ZidquLWY9ukMuM8eonGlcVtYsBlglqRgeL9wWFq+XK0julJaWoozZ86gqKgIQ0dHos66k8aVxm1hzmaAVZKKoRE9YW3dMYxyDA2Xy8WZM2dQUFCAgcNGgOcYAK6GlcZtYcaig83NwKCeoRrr/73sVFRU4OzZs8jNzUXfgYMhce+C0nr10gmaYsqkw6QiG/26BWms//eyU11djTNnziA7Oxu9I/qB5ROG4jr9YylqbMbtj/agKDoFHoGu2PTwe601bl8mJBIJnt1MwMY3/kFBWjF6je+FkeuXorBWu0IRVYib+bjz6V4U3EmEi7cjNj/+EVZ2/91rkEQiQfzdZPyxahtyEvPRdVhXTNy6CvnVuhUKKcJm0NDPyw7edh2/VdaYUPuXEmqZFQ24n11JqXmltQkTowOd1GZzRSIRXvFYgarSGjDZTJxr2Kc0WReJRLh58B7O/nUFWfF5GiXQGEw6nDwd0W9SL0x4fQw8A3WrwjFCaEVd2X0LsVeeIy+lALUV9SodaVpiYmEC/zBvTFszvpXDjLbkVTXhdla5zqvZqjBnMzA60AlWJm0ngrgFFagsrkJgb782EwhCsRg3MypQRMGFT5GuLpbo6W5NvrdQIET6k2wk3E3G87tJeHYjQWX7HABY2Vui95juCB/bA71Gd4etkzUKa5pwM6NC59VsVZiyGBgT6Ahr07Yr6iqKq1Cay0XniACVsayrqkd6bBYSHqShppMrrEI6UXaMAJB88DZG9fLCiLlE+4VIKELG02zE301G/N1kPLuRoLaiz9LOAr1Gd0f4mDD0HtMddi62KK5txo2Mcp1XYFXRVFGL5A2n8MOx99rUCKkqrUZxVimCIwJUJorqqxuQ/iQLCVFpqPZwglVXb8qOEQACHc3Rt1P7AsSaUlrXjOsZ5TqvwKqiuboeCb8cxw+H32lzEl5TXov81CKE9Av8TyTduPU8XEsv13kFVhW82kbE/XQM3x94q81JeG1lHfKSCtC5X+B/IulW0UDEUpOWRE0RCwUY6mMLH2fbNrerr25A1vNcdOkfBIYG7fgdnapGPq6mczVqSdQUsUiIAZ6WCHRzaHO7htpGZD7LQee+AWCxta/87mjUNPFxNb2ckkUxGRKRCH3czBDi6dTmdk31TUiLzULnvoFgc17+WNY1C3AljUvJopgMiViEnk4cdPNu2wSiuZGH1EcZ6BwRALYJu81tXwbqeQJcTSunZFFMhlgowqPvj2Ld93PgFaLeCILXxEPKwwwER/i36xj6MtDIF+JqGpeSRTEZYpEYj386jnc+nQr/Hj5qt+M385H8IB2B4X7/Ca26JoEQ19LKUUnBopgiEZ1sEezUdqfLv40xofYvJNRyqxpxO7OC0mSaDBsTJsYGO4PTQgRVJBJhtusy1JTL23sWfjkLXQYEYddnh5H1PFdtskARBpMBp04O6D8lHK98PA3W/+Gse0eAz+fjxG/ncW3vHRRmlGiUYDOzMkVQb3/M+GAS+owJ0/i9imubcS2dS2kyTYYFm4HIYGe1yd5bh+/jp4WbIOAL8fGBt9U6LYolEtzMKEdBDbXJNBnOzU3gXo/D87tJSHmQTtqGqyK4jz/6RPZEeGQYAnr5Kt3UltbxcDWNS2kyTYYZi4FxnZ3UVv1FnX6Eb1/5DfxmAd7b/gYGTAlHemwW0mKzkP4kC+mxWSjOKgVoNAz6bgG8RhhGV8iZz0P59WeIv5eMpKjUNn9fAnr5IGJcL4SPDUNQH2Wx/fIGHi6ncilNpslg04AJXV1JLbCWxFx8iq9nrUdzAw+rN72G4XMHkjFMf5KFtMeZKMok9IsGfDkPPpGG0boKcbZAuGfbSQFNqGzk41JqGaXJNBlMABO6uqhtn356Ix7/m/ozGuuasPznBZj53kSNxhXwBeDmV6Akh4vG2kYwmAzpf3TQGXSlxy3/TWfQweKwYOdqQ3nSqbpJgIspZZQm02QwIMH4Li6wNVV945dwLxmfTfoR9dUNWPjlbMz/bIZG4woFQmksy9BQI48lEUf1sZTFmclmwt7VlvKkU20zEUsqk2kymHQaxgY5wd5cdSyTH6bjs4nfo6a8DnM+nIql383VaFyRUARuQQVKc7ioq6pXiKPqc7FlnJlsJuxcbMDUQANSG+p5QlxIKaU0mSaDQadhdKAjnCxU30RnPM3Gx+O+RVVpDaatGY/Xf9NMbF8kFKG8sBIlOWWoq6zX6Hut+JjJYsDO1ZbyWDbwhbiYUkZpMk0GnQaMCnSEi6Xqm+jshDx8HPktygsrMX75KLy9ZblG44qEIlQUVaIkh4vairo2Y6nqNSaLAVsXG8qToU0CES6klKKeZ5hYDvd3hLu16ljmpxbi48hvUZLDxagFQ7B215sajSsSiVBRVIXSHC5qymvVxlLd7yeTxYCNsw3lydBmoQiXUspQQ2ECiEQiwfAAR3jaqDZJK84qxYdjv0FRRgkGz+yHzw6/q9GwIpEIlcXVKM0pQzVXdSzb+/20daE+lnyhGJdSyyipim6FRIIhfg5qq6vK8rj4KPJb5CUXou+EXvj6zIcaDSsWi1FZXIWSHC6qy2paxbK9308GkwEbJyvKk6ECkRiXU8soqYpWxUAfO/jZd9yqSWNC7QUn1Br4QpxOLDHIDY0MXzszDPKV21OLRCLMdluOGm7bLieqMCbQOhZN9U049OMp3D4ShZIcLkQatGVa2Jqj9+jueP23RbBzUX1T3iwU4XRCiUFuaGS4W5lgRIBDq0qbExvO4693d5GPw8eG4bsLnwDS1ZvSXC5Kcrgoy+WilMUBI1T9ao++SMRiXFm5GdxnrYXw6Uw6xArx+e3u1+g6IBgSiQTV3FqU5pShNIeL4vwKNPUKAt2Arq30qjr4NjbAI9AVrr7O5CTj2K9n8ffavaROH8uEBUGz6otb0KyBCH/fsFpX11b9hZJH6a2eZzDpECnE8scrn6HnyG6QSCSoKa9FaQ7xNy/JK0djz0DQLQ1X7k2rqYdvXR08A13h6udCxvLMn5ew+a0dpDg8i8OEQM1qsP/kCPT9xLCCs1ZZhfBzsYJHoCtsnW20rlgTiSU4m1RimEm4FDszFsYHO7dy+r156D5+WvgHhNLfK5/QTvg7bj3QImEm+w6V5BL/L83horywEvpOU1hsJlx8neER6AqPAFd4BLrBPdAV7gGusHfVvvpPJJbgfHKpYSbhUmxMmJgQ4tLKnfbuiYf4ft7vpBOsogCwYsKM+A6VoTSXS/67orBSJ+MgRZgsBlx9neEe6AqPADe4B7gScQ10hb2bndaxFEskuJBchopG/dvp1GHFYWJiiHMrR9WH52PxzezfyIUTB3c7HMjbAhqNRsRSmjAjz81cLhnb8oIKvWPJYDLg6utEnI/+LnAPdJPG0g32brZaV3FKJBJcSuWijIJ2OnWYsxmY3MWllaNq7NU4fDn9FzRJOxss7SxwtHQbGAyGUvKxpMV3vCyXi7L8Cr2d4OkMOlx8nKTfcSKO7oFu8AhwgYOHvU6xvJrORXGt4WJpyqJjchfXVgvgcbcT8cWUn0gtUVMLE5yo2Akmi6mUfCzN4ZLf79LcMpTkcMHNr4BIqF/Sik6nwcXHSRo/V4XvuBscPXWL5Q0DLoRCauI0uYtLK9mbpAdp+GziD6QzIYvDwsnKneCYcpQSZmQ8c8pQIo1pWV45JbF09naCe4AL8XspjaNHoCscPe11Wui5nVmus+62JrAZNEzu4tpqATwtNhOfjP8e1WU1gPQ7d6JiJ8ytzJQSZiU53BbXnzKU5ZWT139dodFocPZyIM9L2XXcI8AVTl4OOsXyXnYFMqmQO1EDk07D5C4uraRasuNz8VHkt6goIrRtaTQajpT8AxtHa6WEmdK5KfuO55VDoEFxRVvQaDQ4dXIg4+ceID8vnb0cdVo0e5BbiVSu/jI86mDQaZgU4gwrHTSvXwTGhNoLTKhJJBJcTy+npEe7PYb5O6CTjak0mbYMNVzNhKeNCbSXi5rKOhz89jjunYwBt6BCKeGjCrYpG10HBuP19Qvh3VXe5ncnqwLZlYa7qMgY4G0HfwdihUEsFmPbun04uv6s0jZ0Bh0BvXzAzatAZUk1+byVtxPG730PDAO3PtTmcXF+3i8Q8QRgshiwdrRCXVVDK507N38XMFkMlOZwwVN4re8ns+A/2fCuXQ9/PIb041Gg0Whgm7Ig4Avb/fvLsHC3x4QD74Np4HL9+uJKnJ/7MwQNPDBYDFg7WKGhphG8FpV/Lr5O4JiwUZrDVaoK7P3+VATPMrxrV+yG00g+cBugERqFQr5I44m0mbMNJhxcC7aFYcv1G7k1ODfnJ/DrmmBmaQr3ABeliaUsqaGu5bKeJ0Q9XwihSII72RXkoo6TBRuRwc449KyQEj3PHm7W6OYmv54e+/Ustr6/p9V2QX38UVlURUnCTB9MLUzIG0Z3hYmlZ5AbLGxUx/JZYQ3iirVfoNKWUFcr9HSXa1ad+fMyNq3e3ipeQb39UFlaTUnCTB9MzDnyWPrLb3g8g9zUGpPEF9fiSWGNwY+tZZXnpR038NuKra0SOQG9fFHDraUkYaYPJmYcuPm7kDc8HgrJNit71fOy5NI6xORXq3yNSgIdzdHPS67/dX3/Xfy8eHOr30z/nj6oq6gn5iYGqOTUFLYJS+E77kZ+1z2D3GDtoHrun8atR3RulcrXqMTP3gwDfeQL4HeOReOH+Rtb3TD7hXmjobqBkuSjPrBNWHDzdyGTwOR5GeQGG0fV+nqZFQ24l11p8GPztjXFED95S/KDc7H4ZvavSvMzAPDt7oXG2iZKko/6wGIzpbGUn5eyeNo626jcJ7eqEbcyW7tUUo2HtQmG+8sXwB9ficNXM+QJcxk+3bzAa2imJGGmDyw2E65+zkT8pNdxWfLSzkX1AmRBdROuZ5Qb/NhcLTkYFehIHkPcrUR8PuVHNNYqJ0W9u3qC3yxAWS73X40lk8WAq58LmQSWnZfugeoXIItrm3ElrbXjJ9U4WbAxNsipQ5riGBNqLzChllfVhJuZyl9eqm9mZJizGZgW6orxpnPbbRN08LDDkFn9jQm0/wDcwgrs++ooYi4+RWVRVZs3BEwWA/49fDDn54XIMFW+caTRgLFBTrAxYSEqtxK5VU1wNGejt6cNxBJJq5tyTWEz6JjRzRUSoQhfTPkJjy8/03jf4b8vh1u/4DaPUYa+36u4LRcRv+Oq1vvZdfbAuN3yEnh1x+hgzkYPN2vQaIRTaaIOTov8+macnPgVBA3aJ+gH/7QYnYaGKj2n7lgjOtnAzowNGoDYwhqUaimAm7DzGp79dUHrYwyf3hdv73yz1fkW4GAOfwdziCUS3M/W3ZVUEWEzHycnfQ1etfara7N3rMakGRFKx2ljwtL7u6KK5IO3Efvb6Ta38QnthNBBndFtcAi6DuoMe1db1DULcCapFEKxBIGO5uAw6YgvJs65oX6Eaci1dC4l1yA6DZgW6gpTJh0/L96Ma3vv6DyWjZM1XLwd4eztCGcvJ1jaWUAsEkMkFEn/E0MsFEFEPid9rPBccwMPRZklKMooAV9NtaY6vEI8iFgO6YLQQcFwcLdHPU+IEwnFpAOlut9Ffb83kLp/Tg11hQWbgQ0r/8aFf65pPYYMG0crIo7eTnDxcoSlvaVSLIl/q4itQix5jTwUZ5WhML241U1qe3gGu6PboM4IHRyC0MGd4eTpgCaBCMeeFynJDJgw6Rjm7wCxRAIaaHiQWwUWg0bJ92lKFxdYmTDx5zu7cGqj9r9JMqzsLeHs7Uicm15OsHa0glgkbnVuthnLJj6Ks0pRlF7SprSAKjwCXRE6iIhjt8EhcPZyBE8owrHnxWDSaa3iV90soOSao8jEEGfYmrKw7aP9OPJT279JbWFpZyH9jjvB2csRNk7WkIglCrHTLJYl2cR5qYl0iSJu/i5K56WLtxOEYgmOPi+CQCRpNZcwxPUnMtgJThYc7P7fYez7+hh01YOxtDUn4ujtCBdZLCXQOJZikRi8Jj5Kc8pQkFbcKnnSHq6+zggd3Bmhg0LQbXBnuPo6QySR4Njz4lbXFlVzNCruh0YHOsLVygSHfjyJHR8f1HmxxsLGXOk7buusYSxFYohEIoiFYvCb+SjJ4aIwrVitZqw6nL0c0W1ICEKl56a7vwvEEuB4fDGapMmWlvGi4pqjyAh/B3jYmOL4hnP4+4O9OidyzaxM4eLjBBfpd9zOxabNWCpdi2Sx5BGJpvzUolaJqPZw9LRHt8HyWHoGuUEC4GR8Mer5Iszt4U5WSMcX10EgElM+fxviaw9vOzOc3XIZm9/aodShoQ1mlkQsiTmRI+xdbVXGUuW1SCGW3Lxy5KcWkVWwmuLgbqf0He/U2QMAcDpR3v3QMp5Ftc2UXn86auunMaH2AhNqV1LLWrmxUH0zo0ioKQ3rQt9pcxsbJ2scLdlG6fsa6TgUZRZj20cHEHs5Tu0FfeC3r8J7VI9Wz5uy6Ah0tEB1kwC5VU0wZdHBF0kgUnFTrg39vGzx+7ivkRab1eZ2dq628pvpLl5gju7d7jHK0Pd7JW5oxpOPdyElOk3jfSxszDHwq3lw6Bus9HzLY6TTgGF+DriVVQGRnhUQj345gdQj9zTensGkw7OHLwb8sRI0FW0bLY/VksNEPy9bXEnjwozFwGBfO1xK1W4VStLMR9xnu5FwO1njfcytzTD6hwWwCg9SOt9SyxowMsABF1PKYGfGRlcXS9zOoma19skfZ5G096bG29MZdLh37YQx29dAIG0DlB1nRnkDJd+Vlkj4AqT/eBT5ifkozSnTqILGPcAVfddOg2l3PwCAv705TFh0JJTUwcPaBFYmTHjamOJWZgVl16DublY48cZWRJ951OZ2LRNm5I21tyOcOjlQKtIrFotRXlCBgrRi6X9FKMwg/l2SXabRzYKb3/+1d9/xjdf1H8Bf2TvpSvfeN3p33B0cN9nHHVuWiCLIUBkqojJERYQfqCgiCCIKAioIstdxHHCT27N31733bpq2aZv1/f2RNF1pm7Rp0/Zez8ejj6bJN598+v7udz4jCit+8jVolmd6nvN2XKxo65n0ftNvYbQOm+99BVv/O/Z+Pjxh5rmxTjYiMskY+FjWtqGmqB61xfWoLapDTbErlvVljT7FMjolEmf++HJoz5w35HkRBvIJUToFMiI0OFRjCsj+NC9Si52P/BefvvjlmMsZInRDEhNRyYO2zaQIqALYnd/pdKK1rh21xYO2y2LX7/qyJp9a0EQmRuDMH10K/docr/HbXdEWsHNOv4wIDY489R7ee3rTmMsNT5hFD9suNfrAdecXBAGt9e2odcexpqjes4/Xlzb41OrDGB+OFXddhJBzXddEg68lBAFTcv5JDVOj+MXNeP3xd8dcbnjCbGAfd22XgZyVURAEtDWY3Ntjw6B9vA51Jb7FMjw2FCu+vxFhG0Zeu3m7RgvE/VBiiAr1b+7AP3/x+pjLDU+YeeLoTlSM1jp5IgRBQHujCbXFDQPbZbE7riUNnu77YwmLDsEZt12AiEtXep4bHC+5RBywc06/OL0S5k378dcfvzzmcsMTZp44umMa6Fiams2u7dF9/unfLmuLfYtlSKQBZ3znXERe5er9cNmCaHxwssHzeqDudQaL1ing/OoEnrz1r2Mup9IqEZMa5dkOo5OHbpvaEE3AWmf1D7HiiaN7u+z/25cvIA0ROiy/4WzEfOMcz3PD4xnIex64GyRcPC9q0uUEWmBH8KRRdfTaRiTT4g1KNHX1ISFkamY7a5KM3zWus23yN3k0c8WmxeBXb/4EcI+/9sK9/8aO/+3xjCehCtch8ZxFXt87fFDjwX87ncBEU/GFTV2oL28ac5m0xcl4/sgTgHuQ3R359ajqG/mB3gZeDsR+JdYocf5PLkfB1U/4/B6rICD0tLRx62jUKGB3Cjg7LRxiiHCwxjThsZiW3boe1Z8e8vkbO4fdCcPyDK/JNG917bU5YHcKEAGQS8UTGmNPpJTjgvuuwontj/r8nj6bA/LsRM/Jt397i9DI0dDZBwFAq8U67syx/lhy03mo/uQgOlt9OyY6HU4YlqWjd9AFQn89A7WvDCeSy3DjP+5EplELa58NDeVNrgtJ9w1k8ZFylB4pH5Joa6hqgdg9A5pCIkZWpBafF7sutLMitdha0jJiAOILs1yDZQ//EmhBlA7LE0KQ19iJA2N0LStq7kZVQe2Y/4vBqMcbdS9M22yfYrEYkYlGRCYasfT8occ8m7U/lgMXliVHylB8uHxIcqihsgXilKGzyXlb15PZby5fEI1DNSbPeEPFLd0oz68Z8z0agxr/rX1h2maoFIvFiEyIQGRCBJaeN7Slq91m97QW6k8QlRytQPGhsiHJocbKZoiSo0eUPXhXkUvEaLfYArY/lbR2ozxv7FjKVXK8Vv23aZtVUSwWwxgfDmN8OJacs3DIaw67Aw3u1kL9+3jpsQoUHSwdktBoqm4Fklyx9Ba/QJ5z+pW1WVB2cuxYSmUS/KfiuYAmIMciEokQERuGiNgwLD57wZDXHHYHGiubB+3j7lgeKB3SvbK5phVCoiuWw68lpur8U9FuQUne2MdLsViEl4ufGXPm30ASiUQIjwlFeEwoFp81LJYOB5oqW1BTPLBdlh2vRMG+kiEJjda6dji9zGTq7Rptotdtw4+X1aaecY+XAPCPk39CeMzkJ/rxhUgkQlh0KMKiQ5GzdugXCA6HA83VrUOS6eXHq5C/t2hIQqOtwQRHrNHz9/B4BeJabbhacy/qC+rGXe75w08gJnV6EhwikQihkQaERhqwcM3QWDqdTncs6zzJy/ITVcjfUzSkRbWpqQO2mIGuwRqZBBuyjOi2OrC/yjQl128NnX0w5Y+9jwPA03seQ/KC0WdYDSSRSIQQowEhRgMWrh7aEGDIl2bu5GX5Cdd2ObgVcEdLJ2zR4UPeOzyeISrZpM4/w/fxlm4rWruto040FCyzPqH27LPP4oknnkBDQwMWL16MZ555BmeccUawqzVCjWnkDe9YNzNV7T3Ib+oa8vyNyxPwwckGnzfExi4rPrG9gfyvCrDvk8Mo3F+C+rJGmFs60ddrhSAIWHXFzIsVTQ2VVoUfPXcbfvTcbXA4HPjPo28jt6wFYj9vwobflPeL1MqRE6OHUaOACECX1Y6yNgvyGzuHdOlp67HhgXd+hn/+5BWYmjrQVt8+ovlzdWEtfnPNH1Bd4LrAuOj1e6FLiIAvxtqvIrUKfJQ3MJi4TCLC9afF463cuhEzeYUtScNFt52PY9tOoqPFjK72kd0BN9x8LvRhWhzbkQdrqN6n8d3UcglCVDJ8nN8IjVyClUlh+LRwIMEYo1NgcawBYWoZBAFo6u7DkdoOtHmZOUccosVDm36Bl+5+CW0NJrTVm0a0aBBLxEhZlIj6skZYOnoQv3bhiHJGY3MK6Lba8bWFMZCIRUO6rF+YZYRRo4Bz0NXGoZoOFDZ3jShHnR6Hy+/cgENbjqGjpROdbSOXOf+GdQiPCUXujjx0q5SQuVvUDN7eYvXKIbMqDv6ezt/1O5xYp8avPv0FXrzrH2ira0dbQ/uIb+FFIhHufOZmnPyqAMd35A+Jpbf9wttzk61ntakHmUYt5AoZErPjkJgdN+T1brMFeXuKcHxHHo7vzIfJKYLCoIZELMJZaeHYX9WOPrsTqWFqVJt6Rp3Vt6PHhvQIzZCEWnqEBiYfzj89Ngd+/OY9eOn2F9BS24a2BtOIoQc6ms2w9dkCPtPURMjkMiRkxSEha2gse7p63LHMR+7OPLRY7FCNMn7V4HU91n6jV0ixPCEERo0cYrEIPVYHSlq7caLBlch9f9A3uwDQZ3fiB/+5G//8/vNorm5FW0P7iMkxujss6DZbpu1meyxSmdQ9DlAsVlw88HxPdy/y9xZ7tsuGtm5oRpkkx6CUYlVyGDRyyZDxgrztT+PFczCbQ8D3/nkX/vnd59FU2Yy2BtOIFg3WHivMLWZExIWPeP90k0gliEt3jUeHiwae77X0oWBfsWe7rKkzQZ84cLM9PH46hXTMcw4ArEoORUaEFu+dqPdp4hKHU8BNf/0+Xvnuc2gob0J7o2lEiwa7zYG2BhPi0qcnoTYWiVSC2LRoxKZFAxsHWuT39fShYH8Jju/Ix/Gdeagoa0ZouitpPvxaQiEVj3r+gR/XQMM5BeC6J2+CvasH9aWNaGs0jRiz1ekU0FrbNiP2cYnENTFJTGoUTh80k7y114rCA6XIde/jpfm1iFiQOOL93q7RvD13/WkDx2OJWARBgOd6o7GrD18Ut4w4XgoArnj0m+htNqOmuB7tDSav3dObqlqmLaE2FolEguhkV+uu5esHZly39tlQfKgMx3fkIXdnPoqOViBqWbrn9eHxGuucg0lsmxsfuBJd1S2oyq9Be1OH1y7VTVUt05ZQG4tYLEZUkqtl17ILBmJps9pQfLjcs4/nHyhFzBkDrczfOeHqkpwersFpcQbsrXKNnTja9Zuv173DrfvBxWgtrkPFiWq0N3ag18twLU1VLdOWUBvLaF+a2W12lBwp95x7Tu4uQtyqoYnN4fFs7Oob9fzjy/Xw8H0c7utgJtQC6I033sA999yD559/HitWrMBTTz2FCy+8EIWFhYiMHPmtSDC1DLsZHu9mJlBaLVYsWjcfi9bNn9oPollFIpHg2w9di72V7T6dCDzvG3ZT3i/eoMS61HAcqe3ArvI29Nmd0CulyInWQyWTjEgSlFW2ImfNPDRWNqGurBENZU1Dxuuw9tqw8+19AAC5TuVzMm28/cpqd2JpnMGngUjbLFbc9czN6GrvhrmtC1X5tcjbXYjSYxXuLg92FB8uQ3uDCe2NHTjtB5f4VMc+uxNNXX2wOwV09NohlwxclicYlFibGo4D1SZ8XmyBWARkGrXYkBU56nTUJeXNWLg6Gw2VzWgoa0J9WQMsnQOxdDqcKD1SAQCQKOUwpPh+4ROrV0AhleCdE/VQycQ4L92Ij/IbPa8fqjGNSPx702qx4nt//Da62rvR2d6N6oJanNxdiNKjFagrdTXTrzhehcOfH0d7gwmLvnuhq77Dtjer3YlQ1UDScvhq9mf9eqNJisQzex4D3BdhFSeqUXyoDEWHylBX2oBVl5+Oy+/YgMvv2AC7w4nXjtRCGGW/GG1fmWw9x5sNUaNX4/QLl3hudI5UteF4UzfOSg1HQVMXmrtd7w9RyRCukSMxRIVQlQzrUsKxZdCFY3m7BfMitZBJRLA5BES4L15auod+vlomweqUMERo5OjstaOy3YJMoxY1HT3481f/B7gvwipOumJZfKgM1UV1WHHR0hmRTBuLSqvCsgsWey7Oc2vacaRh5PY+fF2Ptd+clxGBijYLtpe5Br03KKUwqMZOxIvDdPjTjkcAdyyr8mtRdKgMRQdLUV1Yi6XnLRp10P+ZQqVRYul5OZ6L87y6Dhyo8z6xQ0evHZsKmhCqkmFlUig+KWgadX/yN55OrRpPbnsYcLdaqsqvQZF7u6wqqEXOmnkIjw0b9f0zgVKtwJJzFnpatBU2mrG3emBih+HxO1pnHvWcA/dMdMmhavTaHciI0OBgzdiTRPR3K7Uq5fjDl78G3C1tqgvq3MfLUlTm1SD7jHRXAmsGU6gUWHzWAk8rrNLmTuyqNHm9lhjr/OPvNdBwvRIpfr/lV4A7ljVF9Z7jZcXJKqQvSUHSDLjRHotcKXeNU+VuhVXZ2o1twyYj8BbX0a7bXjsy0KJntIYG3lgEER7/9BeAu6VNbXG95zxefqIKyfMTkLk8dZL/7dSSK2RYsCoLC1Zl4br7v4aadgu+cH+54C1eY51zJrJt9u/jZgfw6EcPAO5Y1pU2urfLUpTmViIuPQYLVmdNV1gmRCaXYf6ZmZh/Zia+fu/laDD3YHPRwLVX//mkvN2CTKOre+pY12++XvcO12Fz4jfv3Qe4u1vWlzWi6GApig+VoTS3EtFJRiw51/cvvINBKpMi+4wMZJ+RgWt+ehlaunrxccHQxhXD41ll6hnz/DOR6+GpnBV8omZ1Qu3JJ5/Ebbfdhu985zsAgOeffx4ff/wxXnrpJdx///3Brt4QbcNuQsa7mRmPVCzCsngD4g0qSMQi1HX0Yl91+4iBE1u7bYjWTe3sczR7+XNQErkH1hx8U97vjMRQnGjoHHKSMffa8VWF95mdDuwuwrG/fTruZ8rkUsy7cOT4bqMZb78qbO7CvEgdorQKNHaNPWBre7cVl4bcBEfv6DHqn/IaAMKy432qY0t3HxbFuL5lVkrFGLzLnu6OY3HLQGu4Ew2dnlYYm72MiXFofykOP/3xuJ8rlUmQfcFiiCX+dKkQeU6ONocAqXhiYzd0WR24wngLrGMMzDskllnxXre35m4rFsXqIQIQqpbBPKwlxXjrd7zjZmu3DRnu3K1MLkPG0lRkLE3FRbeNrG9Hnx3CKPvFWPuKL/WcH6VFllELlUyCXpsTeY2dKHAnvntsTlisjhFT2o+mw+ZESpgaUVoFZBIR5kVpUWPqHTKz4oVZRuwoHzoWkNXuRG1HL1LC1Chq7kZ6hAYlLd0IGZasWJcaho5eO74sboFGLsH5GUZPLD1xl0mRviQF6UtSsPGW83yq90zUYR3Zjcb7uva+3yikYuiVMhQ2d3u6M5t67TAN2o6vyonB/moTqge1ah+cSJfKpEhdlITURUnY8J2BcUtmG9MoCQaxCJ4bRavD6enG5G1/8iWeww0+50mkEqTkJCElJwkX3jR7Y9nRNxBLb/Eb65wDAClhatidAo7UduC0OAMO1XYM6eZ0VU4MCpu7XOdVtQwf5zfB1GMbGkuJBMkLEpC8IAEXfPusqf6Xp4zJHUtv1xLby1pHPf/4cg001nF9eCyT5sUjaV48zv/Wumn6zwPP1DdyP/QW11aLdcL3Q96PlwOxFIvFntbH514/9TOGT5XBsfQWw5ONnaNeq/mybY66j3cPjWV8hmvW4XOuWz0N//XUaB+030rFIjicAgQA0VoFzH32ca/fRjP+9eVAWSKRyNNi9uyvz+JY9gzdx73Fc7zzz3jXw+Pt4zPFrE2oWa1WHDp0CA888IDnObFYjPPPPx979uzx+p6+vj709Q2sLLN56qe972cZ1nVovJuZ8axODoNTEPBBXgMEAViVFIoViaEjpqbuCeLUuzTzjbV9nJUajnCNHDaHExEaOdotthE35ScbXckenUKK8jbfZ0hUDZpeXSQSQW1QQ2tQQxuqgSFCD0OEDmqDGgqVHCIvY3CMVsdDNWPvV312J443mLE03oBNBWOP4yaSiKEK06KrbvTp3kUiEcJiQmBMiED4KC2/vNWxpMWCDVmREIuAg+6xqPrjWNY6Mo5lbRZckGmERCSCY9iADoNjCZGrhZI2RA1tiBaGCB30Rj3UehWUagUQM3Y3puF1PVzTgdRwNTZkRUIiFuFY/cSPmSqjfsyEmkgkQmh0CCITwmHMiPGaBDrZ2InS1m5syI6EUxCwu6J9SBnjrd/xjpvDj9Nj6XEnBLzVs8fm8Fp3X+vZ1efA5sJmWGwOROsUOC8jAq09VjR3WT319DWhZrE60NxtRVnb6LM5eUvUwj3m1GmxBpS2WJAUosL7JxuwLD7E87paJkGUTomtpbVwCALMfXYUNnchO1LrVyxnC2//k7f1n9fY6XW/6bM70dFjw+qUMBQ1d6Gl2zpuyxW41+FcM9r2Ea6WY2m8a0Y9kQg4UG0a9VgwkXjO9Vh6i5/VIXg95/RLj9CgrNWC8jYLTk8IQYJBhaphw5SkR2jwZXELOvvs6B8Tu2cOx9LbNbrV4fR6/vH1Gmis4/qcPF562T68xXVwC6CJ3A+N+Nw5Hkuv26bd6fWc48/1udd9fI7HUu/uHm9zOOF0Arsr20Y934wnkNeXs8Xw/8lbPMc7//hzX9avx+aEUxAgDtAEDYEwaxNqLS0tcDgciIoaehMbFRWFgoICr+95/PHH8fDDD09TDYcafhM8mLebmaXxBiyJNXhdXiEVIzFUhTeO1noy30fqzLh8QTS+Km8b0gzdeepO4ko+GGvGFW+zV3m7KVfIXC2efLkx7Dd43DZBENBt6ka3qRuNlSP3hfTLV+DMtTkjnh+tjv1GSxLkN3ZhXqQWCSEqNHSOPS181pkZkNns0IVpoQ/VIiI+HMaECBjjwxARH46w6BBIZa7D6Nu5dejyEgNvdSxp7UbJsMRZfxy9nXR7bA6IRSIopOIRrw8ZA09wj6fUYUFj5cjm08kXLsWac5aMeH6sug5P0g82/Dj1v9w62EfZpjKWp0G6IB66UC10/bGMD/PEMywm1BPL907Uuwa99rK9FTV3o6h59IvD0davL8dNX2bN7Nd/TB+tnmMlsMaqJ4AhN7MNnX2o6+hFtE7hSaj5c1wf69wznnpzH1YlSbAoVo/mbuuIgY7VcgnsTueQG6Ju91hpc/Hc4+1/Gm39j7bffFrYhIXReiyJNUCvlMLca8f+6nbUm0dvMTsnYznKvtbcbR1x7G6z2Ebdn/yN51QPsxEMg7cPb/HDKOccuMdbi9QqsLeyHXangCpTDzIiNCMSaoVNXTC7W8n0f9ycjKWXf2pwPL2df3y9BhrruO4MzATLM8p45x5v2+lo123+mJPb5SixHBwvb+ccf67Pve3jw1sTzQWDY9lmseGjvMYhr492Tu/n7bpXIhaNf30puO53AjVL50wwfPvwFk+Mcf7p5899WT9B8DKQZRDN2oTaRDzwwAO45557PH+bzWYkJEzPmAQSkQh2Py6KD9d0eJ2UAAC0cinEIhGuyokd8T6VTDLkhnsmZW9p5pFMsAvfYH3uGXE0cgk6+3xLqjlt4w963M9h9X1Zn8oTBBytM2NpnAGfFozd7fPB/9wNncK3w6R4krHsj6NaJhmRmFPJJHAKgtep5P2JpT/L+sLbcWo09/3zrhHdBUcjmcRxa7T168tx05/9YTJ1HKuecLd6WhClg1YhgQgiSMSiIduEP5892XqWtnZjUYx+yODw/SxWB6RiMRRSsWfb1Mhd+8tcPPcE4n/qtTtxsMaEgzWuWRgXxehxTloE3sqtHzLg+WCTXYczUSDOPZhAPLldDpURoUWbxeoZELq0pRvnZxqhHnYt6e2GfLLnvJloItulr9dAYx3XA7U/zCTB+p+4jw/w5/rc2z4+J889k/yfvF33GpSyca8vxSLMqWQaAEgC9O/4c1/Wb6YdMmdtQi0iIgISiQSNjUMzoY2NjYiO9j4IqkKhgEIRnEGQNXKJTzMn+aLbaodTEPBmbt2YLYwAQKPwbwZHOrVo5OMPljsec58dnX12JIepcbx+/GbRALBm42m4+rz5EATB/eP6ukEQBNc3xIIAqVwKmUKGHrkMeZOq4UglLd1YEKVDWoR61GVEIldyy1dauXTEmF7+MPfZ0dVnR0r4yDimhKnR1NXn9RvfM89biK+t+bVPseyTy3BiwjWcHF+7KAKARiFFmx/Tag/nbf36ctzU+FXHyR9bvdVTI5dgTUoYPi9qRkNnHwQA56QNm5bcz1j6Mw7IcHmNXWjs7EODl7EtLDYHGjv7sDTOgP1VJqjlEs+gvlo/6jhbaOVSAL5d7PnC6nDiaF0HFkS7brLbLN4TanPxPN6feA0kX+KpZSw9RCIgNVwNmViEaxcP3AiKRSKkRQw9D3k7YvpzHJotJhJLX66Bxjuuz8VYaqdgH/ftc+dgLH38Ync4f67PT5l9fIKxHIsv15fB2h+mUiD/J1/uy/pp5JIZl5yctWtXLpdj2bJl+OKLL3DFFVcA7hlIvvjiC9x1113Brt4I4Rp5wBJqvXYnqk09WJEYgkM1HeizO6GUihGpVYxoph+unlnTytLMEq6Wo6lr8oM77q9qx7rUcNgcAspbLehzOKFXSLEwWodj9eYRSbvk+FBkJY49nlc/m8OJvEGzPQWC4B6HYmXS6NOmqwQn4HQCYgnsNjuevO15FB4oQdKCBGQuTUXGMtdP/zT2YWoZ6sy+NVUezYFqE9akhKHH5kRFmwUiEZBl1CIlTI3Pirx3hUiICcGCZNdI+rk78vDsD1+CUqscUsfE7DhIpBI4nAJOHqnBdPcgUwpOSNwf6nA48Ofv/x0ndxcgcV68a+D/ZanIXJYKQ4QeABCulg0ZgNRf3tavL8dNhW0giZe/rxh/vv0FyJXuyQmWpSFzWSqS5sdDIpXAoJRB4h6ANZD17B9MuNfuhAAgzqBErF6JIvdEFRq5BEp3otfpdOIvP3gJR7eeQGJ2rKeOGctSEeIeWy9cLcMoc4P4xOpwor5z9CTSzvJWrEoOw7VLYtHZa0dZqwUp4eohsZwNBEHA8/e8ggObjyIhK3bIdhka5Ro3LlwjQ8kkhveRS0RYEKVDaZsFnb12iMWuv3vtjjGT8Qrr7IolALz4wH/w1fsHEJcRjcylaZ5jUXiMa1sP18iASfbumkg8Z2MsX/31m9j25m7EpkUN2S7DY8MgEokQrvat5e9wCQYV5BIxPshrgHVQ6+fsSC0ywrXj3oArrLZZ14Xp9cffxZZ/bUd0SqTnHJm5PA0RcZOL5XjXQOMd1xW22RfLt578EJ/84wtEJUV4zpFZy1NhTIhwjS87wVhO1myM5fvPfooPnvsUxgRXLPvP41FJxknH0t/r88GU9tkXy0/+8QXe/tOHiIgLG3LtFp0S6d7HA39f7Mv1pdJun3Wx3PKv7Xjjd+8hNDpkyD1FbFq0a7vUBC6WvtyX9QubgbkNkSDM3sE53njjDdx4443429/+hjPOOANPPfUU3nzzTRQUFIwYW80bs9kMg8GAjo4O6PX6Ka1rfmMn9g8biG80o00PfePyBHxwsgHtPTZIxSIsiTUgMVQFhVSMXpsDFW0WHBk0Db3gcEL4ZC9WX7YcGUtTZ9VOTJPncDjw+Df/jAObjiI8Lgxx6a4ZZWLSohCTEonYjGhYw0PGHCPLH5FaORbF6GHUuFqBdlldN9f5TZ0jxrR4a+ND0ChlOPPipVh01gIsWjcPEXGjJ9jeO1E/6YS0t/3qouxIGLUKvJVbN+Kiovi9vTj+zIdYsDoLCdlxeOcp7zNpqvUqGOPD8f3X78HJADReidUrsShGjzC1DAKA5q4+HKk1jzqrzbuXPwI5BKy8aBkq8qqRt6doxDJSmQTaUC3WXX0mku+4BG2Wyd9U+jONffmnh3D4929j/qospOQk4q0/fuh1OblKjrDoEPzwrZ8hz+HfN6O+rN/xjpsfXPtb6OUS5Kydj5riOhzfkT/icyQyCbQhGqy8bDnm3XOl362/fKnnklg9soxaiEQiVJt6IBGL0GNz4EC1CYkhKpyT7kqgtjeacG2MlylIAcgUUoRGheBHb/4U+eLpu/hYGK1DjF6JH6+4H0qHA4vWzkPOuvnIWTcP0cmRM/Y81G224IqQG72+plDJERYbitv/eReKlJoJf4ZULMKKxFBE6RSu2a6cAtosNhyp60CLezvyNqPV5lufhrSrBznr5iFn7XwsWjcPMalRMzaWNqsNFymv9/qaUqNAaFQIvvfC91Gi9z5OrK98iedwn9/1PITGdiw6az5y3NtmXHr0jI2lIAjYIL8OTi/dV5UaBQxGPW77y22oiIzwu+zzMiLQa3OOmI1bIRXj6kUx+KK4BQ2dfV63SQDY9pMX0VfRgEXrBmKZkBU7Y2MJAJfpb0BP18gvvpQaBQwROtzyp++gKj5mQmWPdw001nF9589fRXd+1ZB9PHFe/IyO5TXRt8LU1DHieYVaAX24Fjf97luoT08KyGeNdr3hbdvc/fDrMB0uwSJ3LHPWzUPS/HiIxf7McD69vpVyh9cxhBUqOfThOlz/8LVoy8nw2orMF+Ntm6Pt4/t+9xZadp10ncPXzsOidfORvDBhRsfy5vl3o7pg5JfwcpUc+jAtvv7A19C5YsGExtob67p3vOvLQ0+9j/otR7Bw7TxPLFMWJUIimbmtAG9fdi9KjpSPeF6ulEEXpsVV91wK69mnjTp28nh8uR72tm2eFmvAotipzdv4a1Yn1ADgL3/5C5544gk0NDRgyZIlePrpp7FixQqf3judCbWuPjveOV4/4YPhRFRvP4HtP3sJABCZGIFVl5+ONV9bgYVrsiGRztwdmALD3NaJqyJuHnOZs765Dsl3f21SA5f7q+loGT777l9GPB+dEom0xUmIy4hFfGYM4jNdv0MiDThSZ8bxScwwORFf/PAF1O/1PsGJNznnLMSyJ26Z8IllIlrzq7Hpxj/59Z5H8p9BYef0ttLYfu8/Ub3tuM/La8K0+PqWR0cdU2oqmMoa8NF1v/frPb8+9ieU9E3vKXRtShhSw11JnZ7uXlymu2HM5cVSCW7e/8cREwoESphaBrtTgLnXjjC1DOelG7Evrw6PLfsJhjeFNMaHI21JMuIyBvbv+MwYT0ubYOrrteIS9TfHXEYkFuG7h5+adDd5f3Q3mvDeFY9CGLYvhMeGIv20FMRnxCDOHcu4jBhExIUF/WbH2mfF5YYbYR9j/Eu5So5b9/7BMwj2dOht78I7lzwM57CJXcKiQ5C+NAXxGbHubdP1ExEfHvRY2qw23LrgHtSVNoy6TGiUAd/6/FHPOGjTwdrZg7cvfhiO3qGJyxCjHhnLUoft47EwJgQ/lnabHbcvvRcVJ6tHXUYXpsUtO387akJ2SurV04e3L34YtmGJPkOEDhnLUl3bpXv/js+MQWRiRNBvwh12B3646kEUHSwddRmVToU79/8BDWO0cA54vax2vHPJw+gzDR0AXRemdcdy6HYZmTQzYvnTc3+NE7tGv95UqOS4+8hTqJ1kLwh/OO0OvHv5o+hpHpo01YZokLk8dcS1elSSMej3lg6HAz/f+BgOf5476jJSuRT3nnhmRI+uqSQ4nXj/ysfQVTf0ywu1XoXM5WlIyIxFfGYs4jKiEZcZi+hko2eSrmBxOBz49ZVPYO+Hh0ZdRiwR4xeFz407CVegXb4g2ucxmafLrO3y2e+uu+6akV08h9MqpIgPUaLaNH0Hw+K3d3seN1W14L1nNuG9ZzZBH67DykuXY9Xlp2Px2fOhMUz8G3eauXShWsSkRqG+bOSMK/3yd+bhnN98c8zZVwKt6K2vvD7fUN6EhvKRUyardSqkrMjAkkdvhGiaRqG0tpphr2uGRCaBw8eprsuPliNhdz7Czsye8vr1Gy2WY3nt9uex9PHvQCSZnpsbW0c3rBUNkMoksPsYy+62LtRvy0X42oVTXr9+7fsKoA3RoMvk+77w2u3PY/kTt0A8TRc+Qq8V//3xi2gsbURDRTPa6tvHfY/T7kCmUYvcKUpIK6USnJkUCpVUjF67E0UtXag8Vo6cNdko2FcM26CkSnNNK5prRvaZVKoViM2Idl2Yu2944jJjEJ8RA324LiD1tPbZ0FTVgsaKJjRWNKOhogmNlc1oqGhGY0UT2urHb0EuOAVkRmiGtASfaup2M3LWZCN/bzFsfQMJk9a6drTWtWPfsOUVKjniMmI88Ruc2NCH6wKSuLRZ+2M5ED9XLF2xba1rx3jf1Vp7rMiIUONQ7fTFUtnagUVrspG3pwjW3oFYtjWYsP+TI9iPI0OWlytlrlhmxAxJXMZnxsAQoQ9YLFtq2jyx698u+x+31raNO/vwwjXzkBWpxd7K8Y8HgSJvMWHR6izk7S5EX89A8snUbMaBT4/iwKdHhywvU8gQlx7t2S5dN48xni/NAhFLu82O5prWUbfLlprWcWM5b0UGso1a7OoOTMt9X8haOpCzMhN5uwvR2z2QfOpo6cTBzcdwcPOxocvLpYhNj3Yl0dOHbpehUSEBiaXD7hgUS/e2Wen63VjRjOaaVq+tJgfLXJaKLKN2WhNqshYTFp2ZgRO7Coa0ROxs68LhLbk4vGVookUmlyImLcqzj3vOPZmxCIsOXCxbagf28aGxbEJT9fixTF2UhKxI7bQm1KStZuScnooTuwpgMQ8kn7pM3Tj8+XEc/nzol6RSmQQxqVHufXzgS55AfmnmcDjQWtvm3r8Hts3GyiY0VDSjuboVDvvY15lJ8+KRHamd1oSapL0TC5em4Hh3L7o7BpJPFnMPjn55Ake/HDq6sUQqQUxqpGt7TI8etI/HIjw2NCBfTjgcDrTWtQ+NY0UTGtznn6aqlnFjGZcRg6xI7bQm1KJ1ihmXTMNcaKE2GdPZQg0A6s29o46DFGh6pRTrwhXY++EhfPXefhz54rjXm1mxWISMZalYfPZCLDl3IRauyYZKo5yWOlLgCYKAyrwaHN16Ans+PIgjnx8f9cZGKpfisU0PIvGMTHyUP3rSLZCUUhHK/vQudv5vD2y9/n2bvvbxG5F03uIpq9tgB598DwX/3eH3+wwpUbj4tZ9BPA3Jqt72Lrx72SNw9PnfKmHVr69H6kXLp6Rewx159mOcfOULv9+njQvHZf+7H+Jp+MbT2tmDdy/7DWzd/l/4r7j/GmRcuXJK6jVc7j8+Q+4Ln/r1nrCYELxU/le8c7x+Ql0c/CUVi3BVTgyUMgn6evpQsL8Ex3fk4/jOPOTtKRpyw+gLXZgWsWlRUKgVkEglkEjF7t9DH4slYkgkrr/FUgkkEjHMbZ1DEmaTvdyRKqR4x/xvvH28flJj5/lKIhLhypwYqOUSWPtsKDpQgtwd+cjdkYe83YVeu66NRReqQUxaNJQa77EUSwb9PSyWne1dfiXMxpO5PA1P7n4Mb+fWwTYNsRSLgK8tjIFWIYW1z4biQ2U4viMPuTvzcfKroTeMvtAY1IhNj4ZKqxwSy4EYjhJLqRhdpm6/EmZjufonl+K7v78BdqeAt3Pr0TcNrXpFAC5fGA2DUgab1Ybiw+WeffzEroIhN4y+UOtViEuPhkqnGhRD7/v58Fh2d1j8SpiN5bI7L8RdT98CpwC8lVs3Za16h7t0fhTC1HLYbXaUHHHFMndnHk7uKkBnu39fdqp1Ktd2qVN6j99YsTRb/EqYjWXDLefix3/7HgAR3jlRP22tevu7iznsDpQcrcDxHXk4vjMfJ3YVwNzq26RZ/VRaJWLTo6HWq/yLpUQMS1ePXwmzsZx7/Vrc+8qdEInFeO9EAzqnqVXvhVlGROuUcDgcKM+tQm5/LHfmw9Ts3xchSo0CsenR0BjUPsVy8Lmop6vXr4TZWNZetQI/f+1uSKQSfHCyAaYAjW0+nvMzIhBnUMHhcKDiRLVnHz++I99rt+mxKNXuWIaMHUvXNdHQ13q7e/1KmI1lxcVL8dDbP4VUJsXH+Y1oDcBQMr44Jy0ciaHjT1ww3ZhQm8aEGgDsKGtF+TRkcvsPhP26O7qx7+PD2PXefhzYdGTUmxqJVILsFelY4k6wzV+ZCbly5g3+Ry5OpxOVeTU4tu2k62S3Pc+nE50uTIsnvngIaYuTAQB7K9tR2Dz+WFiTdU5aBBJDVQCA5poWPPW9F3Do81yfWoGpo0Jwyev3Qq6d2oRvW0ENNn3nKQgOp2sA09hQRCUbodarcWDT0BYMMoUUC9fMg8VsQU1RPbo7LDjtB5dgwQ3nTmkdAWDng6+icstRTz2kMil6u/t8utFVhetwyX/vg8IwtSclU1kDPrnhjyO6WI1GJBYhISsObfXt6DJ1Y9FtF2LRbRdOaR0BYPdvXkfZRwcAdwufqGQjopIjUVfSgNri+iHLRiUbkZAZi7qyRjSUN0GmVeGS/94LVYBaUo2ms7oFH13/hF8J1JScRLxw7I8AgOP1Zhyu9e/CbSJWJIYgO9J7LJxOJ1rr2lFTVIeaonrUFtWhprgetcX1qC9rmtTF3VTThqjxZuM/IJPJkNfYiQM+jok6GcvjDVgQ7f3aRBAEtNa1oaao3v1Th9qSetQW1aOutDFosZTJpUNaJXpz+sbT8Mj790EilaCouQt7pqFl1ZJYPRbHeh+zTRAEtNa3o7bItS3WuLfLmqJ61Jc2+NyyNtBCjHpEJRsRER+OPe8fGJIsEotF+NHz38NFt57nea60tTtgY6KOJSdah6XxIV5fEwQB7Y0mz3Y5eB+vK2kYd9uYKoYIHaKSI2FMCMfejw4NueYQiUS448/fwRV3bfQ8V9FmwfayScxA4qN5kVqckeh9EG5BEGBq6hjYv4vrXbEsqkdtScOQFqvTSR+uc50jEyOw75MjI+rx3Se+jWt+cqnn7xpTD74oaZnyemUaNViZFOb1NUEQYGo2u/fvge3SFdfgxVIXpkV0shGRSUYc2nwMvZah92Y3PXIdrv/5lZ7WXdPVMCMtXI01Kd7HNRYEAebWTs92WVNUj9piVxxri+uHtFidTrpQDSKTjIhKisDRrSdHfEly/c+vxE2PXOeJZVNnHzYVjuwVE2hJoSqcnTb6GJeuWPbHsX5guywKXizVehWiUyIRnRyJ4zvz0dk29P7w6nsuxW2//5anpVxrtxUf5zdO+bBW8QYlzk2PCPoQId4woTbNCbVeuwPvn2iY0m++siO1WDHKCRoA+nr63M11c3F06wlUnBh9PAmZQoYFqzKx5JwcLD5nAbJOT4NMPvOaWp4qhiTQtp9E7vY8dLSM/q1bZGIELJ096Br0LacuVIPff/EQ0pekeJ6zOZz44GQDuqbwW8TUMDXWpno/QZccK8dzP/on8nYXwjHGvpF++Qqc+eDXp6yOgtOJsKIqxEcbEJVshDEhAnKFa3t3Op24NvpWT7zDYkLx2Cc/9yQl+y/YqovrkSvI4JjCRLS4qR0J3d2ISTYiKtk4pPvRyw/9F/955O1xy0i+cCnWPPKtKauj0+HE5lueRmte1YjXwmJC0N7YAWHQDaJcKcNvN/8SOWvneS7YqorqkeuQwK5STFk9xS0dSDCbEe1OooUYB2K55dXt+P1NA+P9XXjTObj7b9/1jG1hs9rQWNGM/Mo21IVOboD1sQhOJz77/rNoPjpycNjRxGfG4MW8pzwXPE5BwCf5TaNObhEI0ToF1mcaJ3SxY7fZ0VDR7LrR8SSIGlBTVIfm6snd2IZFhyAq2QhtiAb1ZY1orGyGzY9v+VU6Jf7X+A8olK7tUBAEfFrYjKauqevKZNTIsSE7EuIJxNJhd6ChomngAt19w1NTVI+mqsnd2IZGGRCVHInoZCMMRj262rtRVViLsqMVYx67+512Xg4e/fB+zxd1giBgS1HzmDPJTlaYWoaLs6MgnsCQAQ67A01VLZ4bnv5kW11xPRorWybVUi8k0oCopAhXPJNcx5+oZKPnBntwb4GfnfdrHN16EnAn/R/874+x8tKhrYwFQcCXJS2o6Zi6bmEhSikumR8NyURi6eiPZf1A8tK9XTZWNE8qlv0Js6hkoyeW/cf0qKQIqLQqz7IPXvIY9n/i+nJMppDh/n/9AOuuHtnKeHtpCyrap65bmE4hxWXzoyCdQIt2h8OB5upWz/7tSbgV1aOxomlSLfX6E2bRyUZEJfVvk67fUUlGqHUDsfzNNX/AzrddHc+lMgl++tKdOO+ba0eUuau8FaWtU9eYQCOX4PIF0ZBNIJZOpxMtNa1DvpzoTwI3lDdNqnVZf8LMtR0OxLF/H9foB77U/N2Nz+Dzf7l6RoglYvz4b9/DhptHfjm7p7INRc1TN0yLSibG5QtioJBOMJa1bZ6k5UCCqB71ZY2Ti2WoZsQ+7tk2kyKGDF/01Pf+ho///jngTpjf9cwtuOyOkV/OHqhuR17j1DUmUEjFuGJBtGdmdn/0fwE5ch+vm/QXkNoQzYh9PCrJ6ImnNmQgls/d/U+8+/Qnnr+/94dv4+p7Lh1R5uHajikd61ouEeHyBa4W+zMRE2rTnFADgIbOXmwpap6S7jeRWjkuyDD6dYJub+pA7raTOPLlCRzbdgI1RfWjLqvUKLBwTTaWnJODJecuRPppyUEf0HMu8zeBpjGokbNuHhaftQBLzl2ItMXJeOWhN/CfR10JFl2oBr///CGkn5Yy4r2t3VZsLmyaku43oSoZNmRFQj7OCVoQBBQeKMHLv/wvcnfkeb3pXfnL65B26RkBryMArEwKRaZRO+rr//zF63jtsXeQOC8O//fxzxGdHOl1uXaLFR8dr4dzCrp+GpRSbMiOhHKUrpCm5g7ctvAedLR04uLvnY/GyhYc23piyJhB/U6/9ypkXb064HUEgAN/eAeFb+4C3F0nFq7JxqKzFuC0cxciY1kqfnnZ77D/k8OAe4Dyxzc9iEXr5o8op6PXhk0FTeibgi8hdAopNmZHQjXKxU5nexduXXgP2htM+MYDXxvy7eZwU3lhdvgvHyHv1S9HPB8eG4pzv7kWO97cjcbKgURJVJIRr5b+ZcQ4G519dmwqaESPLfCx1Mgl2JgdCY088OPJOewO14/DCafdAYfdOfDcoMdOh9Pzt93mgMagRm1RHd7+88fI2104ZhJNLBEjY2kKzG1dqC8d6AIvV8rwZuPfodENHWu022rHpoKmKenKpJa5YqlVTEEsHQMxGy2Wrjg6hsRSrVchKsmIrvYu7Hp3P756dx9yt+d5vXGPiAvDOdethqnZjC2vbvc8P+/MDPzus18OSW4AgMXqwKaCxin5QkcpFWNjdiT0ysB/ETheLAfiOCyWOuWIhNl4tr+5G49e9yeEGPV4+P37MP/MTK/L9doc2FTQNCWTPSgkYmzIjpyS8WvGiuXg/Xp4LFVa5YiE2Xh2f3AAD13xe+jCtPj1Oz/zet4BgD67E58WNsE0BZM9yCQibMiKRJg68F+8jRrLcY6fCrViRMJsPIe2HMP9Fz4KtV6FX/3vJ1h2gfdhOawOJzYXNgVkhvHhpGIR1mcaYdQG/os3p9MJu80xNJaO8fd5uVI2ImE2nuM78/GTsx+CUqPAg6/fjRUXL/O6nM3hxJaiZr9nGPeFRCzCBRlGROmmIZaD9uux9nmZQjYiYTaewgMl+OGqByFXyHDvqz/A2iu9T1bocLq+0Gmcgi/HxCLg/AwjYvSB71XTH0tv55ix9nmpXIqoJOOQhNl4ynIrcefp90EkFuOnL92Bc7+xxutyDqeAL0qaUW8OfCxFIuDc9AjEG3w/Nk03JtSCkFADgNqOHmwtbQ3oOCxGjRznZxjHTVqMp6W2FUe3nnQNlLj1hNepnPup9SqkLUlGysJEJC9MREpOIpIXJPi1s9KAnq4eVOXXIn9fsd8JtMVnL0Dq4qQRCc62hnb89Jxfw2F34Bdv3IOMpamjltfU2YfPS5phcwRuuwxVybBMJ0Nsgv+DklbkVePfD/8P+z457OmmLJKIsepX30DKRu8XGxN1RkII5kWN3W1PEATUlTYgOjlyzNmMKvNr8Ksbn8Xqx28KaLdKg1KKCzKN4yYtLJ09sJgtiIgbaBFYXViLfz/yFvZ8eBA9ne4WDCIRzvz5NUi//MyA1REAjv9tE+S1zVjk3i4zlqaMmLGoy9SFu9f8Et0dFtz/7x9i8VkLRi2vzWLFlqLmgLbs1SmkWJ9pHDdp0dPdi862LkQmjN5kH+5tY1+VKeBdp4+98CmO/+MzwN0lNiUnEetvPBuXfn+9p5VPXVk9bkz/IQAgPDYM/654FlKp9//L1GPDZ0VNAU2qaeQSrM+MhF4Z/HmOei29+PxfO/HR3z5D+fGqMb8Rl8gkmHdGBm546GosOTcHYrEYpmYTrom6DXCPM/lazd8QGuH9+qCj14YtRc0BTaqpZRKszzTCMIMG3a0va8TOt/di17v7kL+32OsyEXFhWPO1FVhz5QosXJsNiUQCh8OBW+bdjdqSBqTkJOKP2x6GLtT7FxadfXZ8VtSErr7AxVIpFWN9phGhU5C0CIamqmboI/RQqse+2e222vFZYXNAk2oKqRgXZBgRrpkjsaxugS5MO25S02J1YEtRU0DHWpJLRDgvw4jIKUgABUNLbSvUevW4ibhemwNbiprRFsAEpUwswrkZEUOGuJnNWuvboVTLx00e9dmd+Ly4OaCz0UrFIpyTFoFYw9yIZXujCVK5dNRzTj+rw4kvilsC2uJcIhLh7LRwxIfM3ASQP0zNHRCLxeNOEmVzOLG1pCWgLc7FImBdajiSZuC4aYMxoRakhBoANHf1YWd5W0AGmEwLV2NFYuiEmjuPp768Ece2nsTRra4EW2vd+OOdGBPCXQm2/iTbwgQkzov3dJ871XW2d6EqvxaVeTWoyqtGVYHr8XjdcXxJoI3G6XT6NDNMm8WKneVtAflWNilUhU/v/jsOfXwYKp0St/3uW1h/49lQTKALX315I9743XvY/r896DJZkHPLBci5+YJJD1ovl4iwMikMyWGBOVh3my34wYoHUF1YB31yJDb+5fuQRXofb8Yf8QYlVieHTajp+HBNVc1484n38eXrX6GzrQsLvn0uFn1vAySTna3SZkeaxImVS5N9nj7d1+3S3GvDjrK2gHRZjNMrsTolbNSWaRMlCALyGrtwuNY06RbI1q5eHHzyXVRvOYJ5KzJxye3rcdY1K0eNVW1pPQr3luDsb6weN56dfXbsLGsNyDfc0ToF1qSETUnLNF84nU7s++QIPntlK45tO4nO1rETmnKlDEvPX4Trf3EVsk9P95rkz9tThC9f34VbHv8GVJqxL4i7rXbsKm8LyEx2kVoF1qaETUnLNH/0T26z65192PnOXpQdq/S6XGxaFNZceSbWXrUCmcvTvG53rfXtOLEzH2dcvNSn5MWuitaAfMNt1MixJiV8RiR5g6HH5sDuiraAdP8MV8uwNjUchilo5Tcb9Nkd+KqiHdUBmBUwVCXD2tQwhKrmRmLSX1a7E3sq2wLSldaglGJdaviUtPKbDWwOJ/ZWtaMsAF1p9Qop1qaGIUIzN5K8/rI7nNhfbUJxy+S70moVEqxNCZ8zCXN/OZwCDlQH5stljVyCNSlhsyJhzoRaEBNqcO/Eh2s7kN80sQ1PLZNgZVLotGXBBUFATVGdqwXb1hM4+VWBTwk2uLvUxGXEICUn0d2iLQEpOYmITomck91G+8fUqsqrQVV+DSrzalCZX4OqvBq0Nfg2oLXGoMais+Z7EmgpixKnJVYOp4Bj9WacaDBjIkcIhVSMMxNDkRymxtfCbkKXaeAkFWLU47I7NuDSO9YjxDixcadaalvx/nObsWdbHhbceQnCMuMmVE7V1lwc+P07CAvTeFpXuhLAiYhLj/Y5KdRPEAQ8fPUf8NW7+wH3VOdP7noEJWYrcuvNE0qyyCVinJEYgtQwdcAG4jS3drqSufk1KDxQiiNfHkevRIKVv/g6wucnTqjMml0nsf+3byFEp/TEMGVhIpJzEhGfEeN3LL1xCgJONnTiaF3HhGIpk4hwekII0sM1gYtlWyeq8mtRlefax6sKatDS0YOsWy+EcdHIrtW+aDxUgt7dJ3HFLedg0brRW+5NhlMQkN/YhSN1HRNqKS0Vi7A8PgSZxsDF0lclR8vx0fOf4fDnuWioaB4yFp83ar0Kq684A9f+7HIkzY8PeH0FQUBhcxcO1XTAPsFYLo0zIDtSG7TBdgVBQNGhMux6Zx92vbN31KEfUnISPS3RUnISpySWxS3dOFhjmlBLaYlIhCVxesyP0k1o/Lm5RBAElLZacKC6HdYJxFIsAhbHGLAwWjeh8efmEkEQUN5mwf5q04SGHxCJgEXReuTE6Cc0/txcU9Fmwb6q9gm1OhcBWBCtw5JYA2MJoMrUg72VbRNqdS4CMC9Ki9PiDJD68MXmXFfb0YPdFe2wTHAimuxILZbGGaakcctsU2/uxe6KtgkP5ZAZocGyhBDIZ0ksmVALckKtX2efHUXNXShu6fbpZB2hkSPbqEVymDroJxRzWycqTlSj/HgVKk5UofxEFSpOVPs8dbpCJUdkkhFh0SEIjTIgJNKA0KiQgb/dj0Mi9TNmQgS7zY7Oti50tHSio8UMc2sXzC1mdLR0oqmy2dPizJ9pujUGNRLnxSFpXjxScpKw6Kz505ZAG0231Y6i5m4UNXf5dOETqpIhO1KLlDC154Tyi0sfx76PD49YVq6UYcPN5+K7T9wwoRZr/dqbTPjy85Oo6rEjNCcZonEuCuy9VlRsPoyit3ejraBm1OVkChmik40IiXJtj6GRBoRGh7geRxmGbJ/9LS//98cP8cLPXgXcg34+e+C3iE2LBtytL4pbulDY3I0eH07WIUopsiJ1SAtX+3xydtgdMLd1wdzaCXP/ttnSiY6WTjRXt3i2y1Gn6RaJELMiE5lXrUbcmvkQj/O5jj4bKrYcQdFbu71OPtBPJpciKtmI0KgQhEQZEBY1EMcQTyxdf/syq3CPzYHiFtd26Ut3O4NSiiyjFmnhGp+7xDscDs8+3tna6d7XO2FuMaO5phVV+TWoyq8dMzkefXoGMq9ajfh1C8ZtSem02WGraMSqxfFYMC9u2hIrvTYHSlq6Udjc5dOFj14hRaZRi/QIzYQGLZ6Ilro2fPy3Ldjz4UFU5df4NKGAIUKHC248C5d+/0LPPjjV+uwOlLRYUNjc5VPLc61Cgix3LEcbE3EqWXutOPFVIfZ9dAi73t03agvprNPTsObKM7Hma2cgPjN2eupmd6KktRuFTV0+dV3UyAdiGeiWp7Od1eFEWWs3Cpq60OFD10W1TIJMowaZRi1jOYzN4URZmwWFTV1o96EVv0omRmaEFhlGTdBa8c5UNocT5e5Y+tINVCkVI8OoRWaEJuiteGcau9OJirYeFDR1+dSKXyEVIyNCgyyjlrEcxuEUUNHu2i59acWvkIiRHqFBplEzJWN1zmYOp4Aqk2u79KVLrUwiQnq4BlmR2lnXIpoJtRmSUOvncApotVjR2m1Fq8WKPrsTTsE1UKReIUW4Ro5wtXzGd2MQBAHNNa0DibaTVSg/XoWq/NpJTU+tC9V4EmzDk29qvQoisRhisQgisQhisdj9WwSIRO7nx37d1meHuXXgxrmjpRMdra6kxMDznUNaXPnLEKFD4vx4JM2LR+K8eCTNj0fi/HiEx4TOyKmAAcDZv11abGizWNHU2IH8/SVwWG2IjjTgnIuWIMK9XQ7/Hza/vBV/uPm5Ucv+zqPfwPU/vzIg9Wxu6cTeXYUoKm6ABSJIFDLAKcDa3Yv2olq0FdSgNa8Ktu7ADpqpMaihDdGgqarZ06Lv/BvWIWftfGhD1EO2O5FYjD6ZFH1yOXplUjjEYggiEcQA5HBCIwjQwAkVALF7+7Rb7TC3dqHDvU2a3Unc/m2z/7nO9olvl7pQzZDtMiwlCi1dfahuMKHbCUiUcsApwNbdi/biOrQW1KD1ZBVs3YGdUU6tV3kSbMOTb5oQDcSSobG0yqTolcvQK5MNi6UAjeCERnBCJRoUS5tjUMJx2H4+KDHe1d49qVnnBlOEaBCxIBFh2QkISYuGVKWAVC6BRq1AYlwoTlueAqNWOW0JKm+cgoD2Hpvn3GOxOtznHkAtkyJcI0O4Wo5QlWzKj1PlJ6qw9bVdOLL1OKryamHp9K17UNKCeFx86wVYe/WKIeMHTjehP5YWK1q7bei22uEUXC1+NHIJwtVyhGumJ5bD61WVX4NDn+Xi4GdHkbs9D309I28YRCIRFq7Nxtorz8TqK05HZKJx2uo4nCAIMPXY0GpxxbPbaofD6Yqluj+WajlC1bJTvkXaeARBQEevHa3dVrQMi6VKJvFcX4YxluPyxNJ9vd5ldcDhFDyxDFPLEa52HTNP9dZ94xEEAeY+u+fc09k3EEulTOKJY5haHvQGBLOBudeGlm7X9Xpnn30gllIJwtzn8XDG0iedfXZXLLutMA+KpUIq9sQxXMNY+qKrP5YWK8y9rliK3LEM88RSNmtbSjKhNsMSanOdw+5AbUmDqyXb8SpUnKxGxYkqtNS2eQadnyvCY0NdybJsV8IsaX48EufFTbib40zSUNGEG1LvBACsvfpM/OrNn4y6bHVhLW6ed/eorz/87r1YdfnpAa9jT1cPDnx6FAc2HcGeDw+OObnDcCKxCBKpBIIgwDHBpt8zVWiUAUnz45GQ7dom+39CIg2j3tz3WvpwcPNR7P/kCPZ+dBDtjaO0cPPCE0unMKlpvmcimfubXZvVDoxzJlVplUg/LQVnXbMSF9x0NtR+zEo3l/VaerHjrX3Y++FBFB0sRUttKxw+dgMSi0VYct5CnH3taqy6/HQYRpk84FRmbu3E4c9zceizYzi0JRfNNa1el5NIJTjtvIVYe+WZWHnZcoRGTX7cRyIiIqK5jgk1JtRmjJ7uXpgaO9DWYEJ7owntjR3uv9vR3tSB9sYOtLtfC1byTReqgT5CD0OEDvpwHfQROhjCdUOeC40OQWJ23Jye6dRmteEi5fUAgHlnZuDp3Y+NuqwgCLjKeDM624aOEyiWinHvP+/Ced9cO+X1FQQBFSercXDzMRz49Ahyt+f5ldwRiUTQhWkQlRSJ2PRohMeEwGZ1wNRkQluDCeUnqmHxsYvzVNCGaKAP1w5shxE6GML10IfrPH+HRoUgISt23Fl6xiMIAqoKanFo8zEc2HwER788AbsfSUeRCNCGahGVbERsahQi4sNht9o9+7zrxwSLefKDFk+ExqB2x0wPfbgWhgg9HHYHGqta0FzVAlNTB6y947eylcqlSMyOw4pLluKS714Q1FY+M0nJ0XJ8+dou5G4/ierCOr/Xc2i0ASsuWobl6xdj+YWLx50N7VRjt9mRv7cYBzcfxaEtx1B0sGzUlpbhsaFYtn4xll2wGKdvWDLubGhERERENBQTakyozUo9XT1Dbr7bG1xJNkEQ4HQKEJwCnE4nhMGPhf7HAgT3a57Hgmu2OIlUAsPgpESEHvr+5FmYNiADq88V10TfClNTB4zx4Xit6vkxl33wksew/5MjI57/w5e/xuKzp2bQ9bH0WvpwfEceDnx6FAc/O4rqgjq/yxBLxDAY9dCHalGZ7xqLTa6U4eH374Nap/Ikh3s6e0Zsl3arHe8/++mQJOOKS5YheX78wHYpDCwvkYhHJnLdf+vCtJBOdnbOSejr6cPxnQU4uNkVy8qTo49LNxqxxDUdd1x6NLJOT8OyCxdj3sosdLd3D0mkW8wjY9m/j7ued3rfx4fFUheuG7Kf9yceFVol8vcU4fCWXBQdKEVNSR3aGzrgdIzfYkpjUCMhOxannZODs69bhdRFyROM6Nxgt9txfEc+Dm3JReH+EtQU16Otvt2nWA4mU0ix5NwcLF+/GMvWL0Zi9vSNLzdb1JU24ODmYzi05RiOfnli1C6ycqUMi86aj2UXLMbyC5dMyQQNRERERKcSJtSYUCOakDuW34viw+UQS8T42PKfMZM6//vDB3jh3n8BAKKSjGisbAYARCZG4IVjfwh6K5OmqmYc3HwMBz87isOfH/d5Qg1vlBolIhPCkbLINbHEykuXwxg/dDyn/zz6Nl7+1X+HPJezbh6e3PabCX/uTNFc04pDnx3Dgc1HceTz3EmN66bUKBARF46URYlYvG4+Vl62PGAtvcpPVGH/J4dxcnchqvJq0FLXjj6Lby1fJVIJjAnhyDo9HSsvW47VV5wOpXrmT+s9VSrza1yx/KoQlXnVk+7Cn7YkGcsucCXQFq7J9kz6QS6m5g6c2FXg6cZZX9Y46rIpOYmeZOTCNdmTmgCGiIiIiIZiQo0JNaIJeeTrT2LH//YAAF7KfwoJWXGjLttr6cPLv3gdBqMBX7v7Ijx40WPI3Z4HALjg22fh3pfvmrZ6j8dhdyB/n7vL1GfHUHigdNKD00ukYujCtAiPDUNoVAgOf5ELp5dxov5Z8Odpm0VvOjgcDhQeKMUhd7KyYF8xnM7JxVIs6Y9lKGJTo5GSk4DsMzOwYFU2NHr1kGXtdjvKjlagYH8JCvaXoCy3Eo2Vzeg2Wfxap9oQDRLnx2HJOTk49/o1SJoXP6n/YTZyOp0oy61E3p4iFB0sRenRCjRWNqPL1A1hkus0NMrg6Xq49PwchEWHBqzes53T6UR1QS1O7i7Cyd0FyNtdiJqi+lGXDzHqsfSCRa5YXrAIEbFh01pfIiIiolMJE2pMqBFNyCsPvYF/P/IWAODX7/wMq684w+f3NlY247uLfuLpmvSr//0Ea686c8rqOhn9g3of3HwMuTvyxmwNMlkxqZFYe/VKZC1PQ866eQiNnFsDg3e2d+Hw58dxcPNR5O7IQ11JQ2A/QATX7HQikacbqD8kMleX77j0aGQsS8PS83Nw2rkLIVfKA1vPGaqpqhkn9xSh+FAZqgtq0VDRhPbGDnR3WGC32gP2OTK5FAvXznN3PVyMlJxEiGfpzE6B1tPdi6IDpTi5uxAndxcgf0/RmK08pTIJFqzO9rRCS1uSzFgSERERTRMm1JhQI5qQrf/9Co9d/xQA4Ob/ux7feOBrfr1/y6vb8fub/gIA0Ifr8ELuHxEeM/NbprTWt2P7m7vxws9e9Xk2wokSiUVQqORQaZXQhmhgMOoRHhuGyMQIxKZFIyErFkkLExAyS2c3bG804cRXhTj5VQFOflWA4sPl0zYTqFgihkqrQkR8GDKWpmDl5cuRs2buJTEBwNLVg5qCWtQWN6CuvBHNVS1orWtHe6MJrXXt6GzvQl+PddyZSidKppAhc3kqFqzMwuJzFiJn3TyoNKduF9nBmmtakbe7ECe+KkDeniKUHq0Ycx+QyaXIWJaK+SuzsPjsBVh89nyoOGMsERERUVAEbyRrIprVEucNdPGsKvB/IPrzb1iHPR8ewM6398Hc2ok/3vpX/N9HD8z4QbJDowzY/uZuTzLtotvOx9lfX4UTuwpwcnch8vcUjToouL8Ep4De7j70dvehvbED1YWjT54gkUmgUMmhMaihC9VCpVVCpVdBo1dDY1BDG6qBPkwLXZgWBqMBoZF6GCL1CI8JDfj4X06nExazBR3NnTC3daKzvQvd7RZ0tnehq8MCi7kHlg6Laybfpg6YWzvR1dENmVIKoUfwe+D6CdXR4UR3Rze6O7pRebIan/9rh+e1/liq9WroQjVQ61RQ6VVQ61TQhmigDdVAF6JxTQ5hNCAkQoeQaMPUxrK1E+aWQbE0daPL1O2JpanZjPYGE8xtnegyWdDb1Yu+XiscfszAOhaxRAyJVAynQxg36RkSacCC1VlYsCobC1ZlIn1pKsdBc3cnL8utxMmvCnFyTyHydheiqaplzPeEGPWYvyoLC1ZlYf6qLGQuSz1lWkwSERERzXRMqBHRhMRnxkAkEkEQBFQX1Pr9fpFIhB/99bs4sasA7Y0dOLDpCD5+4XNc8r0LpqS+gbL5n1uRt6cIAJCQFYs7nroJCpUCp52bA7jHDSs/XuVJsJ3cVYDmmtaxCxW5JjPQhaghU8jR292Lns5e9Pb0+Tw+lcPmgMXWA4u5B83V43yetyqIRBCJRe7H7koN/yUa/Lr7WREAQYDD7pxQN8tAE4lEMETooAnRuBKSFncsLROLZct4626UOkwmlk6HE07H9MZSLBFDqVFCrVNCoVZALBahr8eKtoZ22K0Od51GJjpFIhGSFyZ4Ej4LVmUhJjVqxifGp1qXqRtluZUoO1aJstxKlB+vRPnxKldLwDEkLxiI5fxVWYhLjz7lY0lEREQ0U7HLJ7t8Ek3YDWl3oqG8CWqdCu+ZXpnQjd++Tw7jF5c8DgDQGNR4uehphBgNU1DbyetoMeM72T9CZ1sXAOCJLx7CknMWjvu+pqpmnNhV4OneWJZb6dPnRcSFISUnERHx4VBqlRAJArrNPWita0N7o6tll8Xcg74ea0DHuAo2iUwChVIOpVYJbYga+jAdQqNDEBEXCrV74oGOZjPy9xWjPLfSp4kOwmNDXbGMc8cSgKXz1IilXClzdRs2aKAP18Fg1EOhkUMEERwOJzrbO1F1snb8xC8AlVaJeWdmYP5Kd9LnzIygz9IbTA6HA3UlDZ7EWf/PeC3PAECpViB7RToWrMrG/FVZmHdmBnSh2mmpNxERERFNHhNqTKgRTdiDlzyG/Z8cAQC8VvU8jPHhEyrniZufxWcvbwMAbLzlPNzz9+8HtJ6B8uRtz2PTi18AAM69fg0e+PePJlTOkS+P497zfwMAiE2PhlKtQGVejU/jh6m0SqQuTkLqomSkL0lG2pJkJC9MgEKlgLmtE5V5NagpqkdHU4erW2C7u2tgZw96zD3o6e5FX3cf+nptsPVaYeuzw26zw2F3wul0t0AadFYQhv4xKpFYBLFY5O4aKIFEJoFUJoVMLoVMIYNcKYNcJYdCJYdSo4BSrURIpB4RCeGITYlCXEY04jJjR8zUOZ5uswUlR8pRerQCpccqUHq0ApUnq2H3oaujUqNA6qIkpC1ORupiVyxTchKhVA+NpbnFDHNbF7rau9HdYUG32YIecw96La7uuH09Vtj6bLD12WC3BiCWIhHEkkGxlEoglQ+LpVIOhdoVS4VKgZBIPYyJEYhOjkRcRgwSslyxNLd1ojy3CqXHKlCeW4nS3EpUnqyGtdc2bnxEIhHiMqKRsSzV1X1zdRZSFiZCIpWM+965qLO9y9XarD+exytRcaJ63FZncMcyJi0KmYNimboo6ZSNJREREdFcwIQaE2pEE/a3n76Kt578EADw282/wLILFk+onPZGE27K+iEs5h6IRCI8s+9xZC1PC3BtJydvbxF+tOpBAIBar8JL+X+e8CQKm1/eij/c/BwA4Ht/+DauvudSWPtsqMqvcSWGBiWHujss45YnEolgTAhHbHo04tKiEZvu+olLj0ZMmithdyqxWW2oyq9F6dEKlB0biOVYsyUOZowP98QvNj1mUCyjZuRg+g67A03VLagvbUR9WSPqShtRcbIKZccq0VLb5lMZGoMaqYuSBn4WJyF5YeIpt+04HA40V7eivqwR9aWNqCttQGVeDUqPVfjclVqtVyF1URJScpKQtjgJKYuSkLIwgZMHEBEREc0xHEONiCZs8MQE1QV1E06ohUaF4IZfXYO//fRVCIKA5370Ev608xGIxeIA1nbiHHYHnr7j756/b/rNdZOakbTiRLXncdKCBACAXCFD+pIUpC9J8bwmCAIaK5s9SbayXNfvhormIeUJgoCmqhY0VbXg6JcnRnxeRFyYK8mW1p8kikZcRgxi06Lm5E2+TC5D2uJkpC1O9jwnCAKaq1tQMixh2VDeNOL9zTWtaK5pxbFtJ0e8Fh4bOihxGTMo8RYNtW7qYtnT1YM6d8KsP9FTX96E+tIGNFa2+Dw7an+rs9TFyUjNSXK3dkxCZGLEKTNWV093LxrciUdPTMsaUFfaiKbKZp9aN2JQq7M0d4vR/kRkVJLxlIklERER0amMCTUimrDEefGex1X5/s/0Odjld23AJ//4AtUFtcjbU4Qv/rMTF9xwVgBqOXkfPLcZpUcrAABpS5Jx2R0XTqq8yryBhFrKwoRRlxOJRIhOjkR0ciRWX3GG5/n+rmelRytQcrQc1fm1qC1p8IztNlxLbRtaatuQuz1vxGth0SGeFm2xaa6fsJgQhEWHICwmFGqdak4kB0QiESITjYhMNGLVZad7nu/u6EZZbpU7aVmOirwa1JU0wNza6bWc1rp2tNa14/iO/BGvhUYZBloHpsUgJjUS4bFhnniq9epRYykIAtoaTKgvbRiU5HEnzsqaYGrq8Pt/PlVbnQmCgPZGkyuO/a32ylxxrC9tQHuj/7FkqzMiIiIiGo5dPtnlk2jCukzd+FrYTQCA7DPS8czexydV3sHPjuGBDY8C7kTPPwufntJWP75orW/HzfN+BIu5BwDw568exfyVWZMq8x1qIWYAACmsSURBVPqk76O5uhUagxrvtr0csISVua0T9aWNqC2uR21JA+pKG1BX0oDa4np0tHhPEI1HqVYgNDoEodEhCI8JQWiUK9HWn3Dr/x1i1M+p8aA627tcLZjc8asrbXDFtKRhQsktAJDKpVBplZArZZ5Y2W129Fms6OnsHRh3zQ8qrRIxaVGISY1CbGoUYtKiEZMahYSs2DnV6szhcMDc0on2xg6YmjrQ3tiB9kaT63eTCaYmM0zuv01NHT63MhtMqVEgNi0aMamRiEl1xTEmLQrxmTGITo6cM7EkIiIiosBgCzUimjBtiAaJ8+JQlV+L4sPl6LX0Tar1y/L1i7Hq8tOx+/0DaGsw4T+Pvo3bfvetgNbZXy/87FVPMm3jLedNOpnWbbZ4xmJKWpAQ0Jt0fZgO+jAdsk5PH/Fal6l7IMFW0oDaknrUuRNEY7XY6bX0eVpLjUUsFsFg1LsTb6GuJFykASqdCiqtEmqdCiqdCmqdEiqt0v1YBaVWCbVOCblSPqMSFrpQLbKWa5G2OAm93X3o7e51/bb0wdTUgdriBjSUN6KhvAmNVS1oqzehs61zzMH+7Vb7qK0Ix6JQyaEL08Jg1CMsOhQR8WGISjIiNi0KEXHhUOmGxnemxbKfw+5Ab3cverr7hsbU/bjLZIGp0eRKmA1KmpmazDC3mH2azXU8YTGhiEmNdCXOUlwJs1h3QjIk0jAj40ZEREREMxMTakQ0KQtWZaMqvxYOuwOFB0qw+KwFkyrv+3+8EQc+PQpbnw3vPPURNt5yLuIzYwNWX38U7C/Gl6/tAgDow3W49bffnHSZxYfKPI9TFoze3TPQtCEaZC5LQ+aykZM9WDp7XC2wihvQVNmMtgYT2hraXb/r29HeYBp3QH+nU3AnQDpQdqzS7/qJJeJBibehSTeVVgmFyp0kEong+jXsMfqfc/0WuV/DoMf9yzkcTndyrBd9FuuIxM7gxxNp6RRofT1W9Lm77ZaiYtzlB8eyP2E5OLEZyFg6nYIrZhbv8et/3Gfpg81qn9I4iSVihBj1CIkyIDw2zNViz93KLMb9eK53dyUiIiKi6cOEGhFNyoLVWdj04hcAgBO7CiadUItJjcI1P7kUrz32Duw2B/72s1fxyPv3B6i2/nn5V294Ht/0m69DH66bdJmDB7pfsCZ70uUFglqnGjEhwnDWXivaGzs8SbbBybbWBtfvtnoT2hpMPg+QP5jT4UR3h8WnWU1nOplChtAog/snBCGRBoREDvytC9VALBXDYXeir6cP7Q0drvi5E5ntDSa0umM7kYTeXIylJ36RBoREhbh/D46xHvpw3YyZyISIiIiI5j4m1IhoUhYOSgqd3F0YkDKve+Br+OyVbWipbcPeDw+h+HAZMpamBqRsX53YlY9Dnx0DAEQnG7HhlnMDUm7ujoGJARafNT8gZU4HuVKOqCQjopKMYy7ndDrR1d6N1vp2mFs6YensQU9nD3q6emHp7EVPZw8snT3o7eqFpasHPZ297td63K/1orfL9dx0D/EplUmgUCug1Cig1Cjdv4c9Vrsfu5dT69We5FlIVAhCowwBm8hBEAR0tnWhrcGEjmazK0ZdvUPi5IlbV/9rvQPx7RyI73THUiKVeI+fRgmlWu7+PfT1/lgOJB8NY07kQEREREQUTEyoEdGkxKZFIyTSAFNTB/J2F8LpdE66lYhKo8Q3HrgSz9z1DwDAf/7vbfz67Z8FqMa+Gdw67Vu/ugYyuWzSZVp7rcjfWwy4W+JFJo6dnJqNxGIx9OG6Sbfmczqd6LP0eRJx1h4rBEFwJYYEeB578kSD/nYtM/Ix3EkqsVjkNWEmlc2sU6JIJApILAVBQK+lz5OIm2ws3Yt4jWV/QjIQ+wsRERER0Uw2s+4eiGjWEYlEWLgmG7ve2YfuDgsqT1YjJSdp0uVuuPkc/Of/3kZbfTu+enc/yk9UIWVhYkDqPJ4jXx73dM2Mz4zB+d9aF5By8/cWw9bnGrR+NrVOCwaxWAyVVgWVVoWw6GDXZnYTiURQaZRQaZSMJRERERFRgHCwESKatAWrBma+PPFVYLp9ypVyXPvTyzx/v/bYOwEpdzyCIODlX/7X8/cNv7oGEqkkIGUPHj9t0dmTG2uOiIiIiIiIgocJNSKatAWrB42j9lVBwMq96LvnwxDh6u62/Y3dqC6sDVjZoznw6VHk7SkCACTNj8dZX18VsLJn6/hpRERERERENBQTakQ0aemnJUOhkgMBTqipNEpcfc+lgLvl2Ou/fTdgZXsjCAJe/tVA67QbH/46JJLAtE6z9lo9ibrolMg5OX4aERERERHRqYIJNSKaNJlchuwVGQCAhopm1JbUB6zsS++4ELpQDQDgi3/vRH15Y8DKHm73+wdQfKgMAJC2JBmrv3ZGwMrO3zd4/DR29yQiIiIiIprNmFAjooA4fcNpnse73z8YsHI1ejW+9sOLAQBOhxNv/Pa9gJU9mCAI+M//ve35+8aHvz7p2UoHO7Z1YPy0xRw/jYiIiIiIaFZjQo2IAmL1Fad7Hu9+f39Ay77ihxuh1qkAAJtf3oqW2taAlg93C7L+1mnpp6XgzEuWBbT8rwbFZPE5TKgRERERERHNZkyoEVFAxGfGIiE7DgCQt7sQ7U0dAStbF6rFZXdcCACw2xz49KWtASu73wfPfep5fMUPNkIkEgWs7JriepQdqwQAZJ+RjsiEiICVTURERERERNOPCTUiCpjVl7taqTmdAvZ9dCigZV/y/fWeJNenL30Jp9MZsLLbG03Y8eYeAIA+XIezAzizJwDs+N8ez+N1V68MaNlEREREREQ0/ZhQI6KAWXn5oG6fHxwIaNlRSUYsv3AxAKCxshmHtuQGrOxP/vEFbFY7AGDDzedCoVIErGwA2P6/3Z7H665hQo2IiIiIiGi2Y0KNiAIm+4x0hEWHAAAOb8lFr6UvoOVvvPV8z+NN//g8IGU67A58/LctAACRSIRLb18fkHL7De/uGZVkDGj5RERERERENP2YUCOigBGLxVh56XIAQF+PFYc+OxbQ8ldeugyhUQbAPZNoe6Np0mXu/uAgmmtckxyceekyRCdHTrrMwdjdk4iIiIiIaO5hQo2IAmoqu31KZVKsv/FswN2y7LNXtk+6zA+e3eR5fNkdGyZd3nDs7klERERERDT3MKFGRAF12rkLodIqAQB7PzwEu80e0PI33nqe5/GmF7+AIAgTLqsyrxpHt54EAMRnxmDp+TkBqWM/dvckIiIiIiKam5hQI6KAkivlOOOi0wAA5tZO7P/kSEDLj0uPwZJzFwIAaovrkbs9b8JlffDcZs/jy+7YALE4sIdEdvckIiIiIiKam5hQI6KAW3/jOZ7HnwRo8oDBLho0OcFEy3fYHZ6El0Ilx/obzwpY/QBAEAR8/q+BLqns7klERERERDR3MKFGRAG3bP0iRCZGAAAObDriGfQ/UFZ/7Qzow3UAgF3v7ENPd6/fZRzbngdTsxkAcMbFS6ExaAJaxyNfHEd1YR0AYNFZ89ndk4iIiIiIaA5hQo2IAk4ikWDDd84FADidAj596cuAli9XyLD2qjMBANZe24RmEx3cHfOsKeiO+f6zn3oeX35n4Cc7ICIiIiIiouBhQo2IpsSFN58DsVgEAPj0pS/hcDgCWv6qScwm6rA78NW7+wB3d88zLl4a0Lo1VDRh74cHAQARcWFD6kpERERERESzHxNqRDQlIhMicPpG1+QETVUtOLwlN6DlLxk0m+i+jw7DYfc9YTe8u6dKowxo3T56/jM4na7ZRy/53npIZdKAlk9ERERERETBxYQaEU2ZoZMHfBHQsuUKmSdhZ27txImvCnx+71R297T2WrHpRVcXV6lMgotuOy+g5RMREREREVHwMaFGRFNmxcVLERYTCgDY88FBtDeaAlr+qssGulLued+3bp9T3d1z2xu7YW7tBNwze4ZGhQS0fCIiIiIiIgo+JtSIaMpIpBJceNPZgDuRtfnlbQEt/4yLToNEKgEAfPX+AQiCMO57prK7pyAIeO8vmzx/czICIiIiIiKiuYkJNSKaUhtvGejy+MGzn8JmtQWsbF2oFovOmg8AaChvQsWJqnHfM5XdPQv2l6D4UBkAIGNpCuadmRnQ8omIiIiIiGhmYEKNiKZUTGoUzrx0GQCguaYVW17ZHtDyB8+g+dV7Y3f7FAQBe9yzb05Fd893nvrI8/iyOzdCJBIFtHwiIiIiIiKaGZhQI6Ip980Hr/I8fv237/o1I+d4Vl223PN49/v7x1y2pqgObfXtAIBFZy8IaHfP8hNV2P6mq/WbIUKHc65bFbCyiYiIiIiIaGZhQo2Iplz2GRlYtn4x4O6a+eVruwJWdmSiEWlLkgEAxYfLYW7rHHXZY9vyPI8Xn7UgYHUAgFd//aZnDLev3/c1KFSKgJZPREREREREMwcTakQ0Lb71i0Gt1B5/Bw5H4FqpDU6O5e0uGnW5Y9tPDrzn7PkB+/ySI+XY9Y5r5tCw6BBcevv6gJVNREREREREMw8TakQ0LRaumeeZQKC6sA4739obwLKzPY9P7Mr3uowgCMjd5kqoqbRKZCxNDdjnv/LQG57H3/j5lVCq2TqNiIiIiIhoLmNCjYimzTd/cbXn8X/+7204nc6AlLtgdZbn8cndhV6XqSmqQ1uDCQCwcO08SKSSgHx23t4i7P3oEADAmBCOi247PyDlEhERERER0czFhBoRTZvTzl2IeWdmAAAqTlRjzwcHA1JuWHQoYtOiAACFB0ph7bONWCZ3+9SMnza4ddo3H7wKcoUsYGUTERERERHRzMSEGhFNG5FINLSV2qNveQbyn6wFq13dPm19NhQfKhvx+lSMn3Z8Zz4Ob8kFAESnROLC75wTkHKJiIiIiIhoZmNCjYim1RkbT0PG0hTAPSvntjd2B6TcBasGdfv8qmDIa4IgeGb4DNT4aYIg4OVf/dfz97d+eTWkMumkyyUiIiIiIqKZjwk1IppWIpEIN/7mOs/fL/zsVfR090663METEwwfR622uB5t9e2e5QIxftrBzUc93UjjM2Nw/rfWTbpMIiIiIiIimh2YUCOiabfioqVYcfFSAEBLbRv++/i7ky4zITsOulAN4G6hNrgraf6+Ys/jnLWT7+5p7bXiLz98yfP3DQ9dG7BJDoiIiIiIiGjmY0KNiILi+0/eBKnMlYT63x8+QF1pw6TKE4vFnnHUOlo6UVNU53mt8mS153HakuRJfQ4AvPH791FX4qpvztp5OOe61ZMuk4iIiIiIiGYPJtSIKCjiM2Jw1Y8vAQDYrHb87aevTrrMweOoFewv8TyuzKvxPE5eED+pz6grbcDr7hZ1YokYP3j2VohEokmVSURERERERLMLE2pEFDTXP3gVwmJCAQC73z+Ag58dm1R5KTmJnsdV+bWexxUnqgAAap0KxoSICZcvCAL+8oMXYeuzAQCuuvtipCxMHPd9RERERERENLcwoUZEQaPWqXDb777l+fu5u/8Ju80+4fIS5w20PqsudCXUerp60FDRDABIWhA/qdZku97djwOfHgUARMSF4YaHrplwWURERERERDR7MaFGREF13jfXYv7KTABAdUEt3v/LpxMuKzIpAnKlDBjUQm1wS7Wk+QkTLrunqwd//fE/PX/f8dR3oNKqJlweERERERERzV5MqBFRUIlEItz59M2elmOvPvwmWmpbJ1SWRCJBfGYsAKCupAF2mx0VgyYkSF4w8YTavx95G83Vrnotv3Ax1ly5YsJlERERERER0ezGhBoRBV3msjRsvOVcAIDF3IMnbn4OTqdzQmUlzosDADjsDtSWNKDixEBCLWmCCbWKk9V4+08fAQBkChnueuYWTkRARERERER0CmNCjYhmhFt++01ExIUBAA5vycUHz22eUDmJ2QPjqP3qst9iy7+2e/4u2FeEE7vyIQiCz+U57A48edtf4bA7AADX3XcF4tJjJlQ3IiIiIiIimhuYUCOiGUEfpsNPX7rD8/ff7/0Xqgpqx3yPNwnZsZ7HdaWN6Gg2e/5+5aE38eN1v8KeDw76XN5r//cO8vcWAwBi06Lw9fsu97tORERERERENLcwoUZEM8ayCxbjirs2AgCsvTb87tvP+D3r5+CZPkdj7bX6VFbenkL8+9G3AABiiRj3/euHUKgUftWHiIiIiIiI5h4m1IhoRrnlt99EQrZrHLSig6X4z6Nv+/X++Myxu2OmLkryaUIBS2cPfnvDM3A6XGO5fesXV2P+mZl+1YWIiIiIiIjmJibUiGhGUaoVuO/VH0AilQAAXnvsHRz+4jh+f9NfcH3i97Hnw7G7a8qVcsSkRnl9TSQS4UfPfxdSmXTcejz7o5dQX9YIAJi/MhPXP3jlhP4fIiIiIiIimnuYUCOiGSdreRpu+NU1AACnw4kHL34MW17djuaaVvzrN/8b9/1xGdFen7/4u+f71Mpsx1t78NnL2wAAap0K9//rh54EHxERERERERETakQ0I113/xVInOfq+mm3DoyjVnasEr2WvjHfGxEXPuI5jUGNmx+7ftzPba5pxVPf+5vn7zufvnnUFm9ERERERER0amJCjYhmpA//+hlqiupHPO+wO1B0sHTM9xrjRybUrv/5ldCFasd8n9PpxO9v+gs627sBAGdduxIXfPssv+tOREREREREcxsTakQ045QcKcezP3rJMyHAcHl7isZ8f8SghFpkYgTO++ZaXPPTy8b93Lef/AhHvzwBuJNyP/rrdyESifyuPxEREREREc1t44/MTUQ0zZRaJeRKGay9Nq+v524/ievuu2LIczaHE5XtPWju7kPnghRct/1xSFUKCIIAhVSMz4qaEaaWI1qnQJxBCfGwRNnxnfl48eevAe7JC+595a5xW7QRERERERHRqUkkCIIQ7EoEi9lshsFgQEdHB/R6fbCrQ0SDlOVW4o3fv4dtb+we0VJNppDiY8trEIlEMPfakNfYhbLWbticvh3ONHIJMiI0yI7UQSEVo6WuDXcsuxftjR0AgOvuuwK3PP7NKfm/iIiIiIiIaPZjQo0JNaIZramqGe/8+RN8/PfP0dvV63n+vY5XUN5tx5HaDviYRxtBJRPj9Dg9nrr8t55upKedl4PHNz3IWT2JiIiIiIhoVBxDjYhmtMhEI77/xxvx3+rnccUPNkJjUGPFlWdie00nDtVMPJkGAD02J3ZUmKA7ZwlEEjEiEyPw89d+xGQaERERERERjYkt1NhCjWhWsVgd2FzUBHOvPaDl1uw8iSvXZmDe8rSAlktERERERERzDyclIKJZw+Zw4vPi5oAn0wAgfu0CtISrIQgCZ/YkIiIiIiKiMbHLJxHNGodqOtDe433mz0Aoa7WgvM0yZeUTERERERHR3MCEGhHNCvXmXhQ2d0355+yvMqHH5pjyzyEiIiIiIqLZi10+iWjGEwQBB2tMQ54TiYANWZEIUcqwu7INle09UErFOCc9Ak5BgAgi7K1sh6nXvxZtfQ4ncuvNWJEYGuD/goiIiIiIiOYKtlAjohmvpduKNsvQxJggANtKW5DX1Ol5rs/uxKaCJmwubMaRug4sjNFN6PNKW7thczgnXW8iIiIiIiKam5hQI6IZb7Sunj22oUmvwVMWyyVitFsmNt6azSFwLDUiIiIiIiIa1axNqP3f//0fVq1aBbVajZCQkGBXh4imUJ251+dlDUopNmZHYkViCBq7+jzPX5hlxA3L4hGqknmek0lEuHF5AjRyyaQ+k4iIiIiIiE4tszahZrVacc011+D2228PdlWIaApZrI4RLdHG0tFrx6aCJnxR3IIzEoYm2612J5bGGXwqp9Vi9buuREREREREdGqYtZMSPPzwwwCAl19+OdhVIaIp1OZHYkssApzufp9WhxN2pzDk9cLmLsyL1CFKqxjSes2brj4HrHYn5NJZ+70DERERERERTZFZm1CbiL6+PvT1DdxEm83moNaHiMbXax+9ddpZqeEI18hhczgRoZGjqr0HS+MNEATXLKAHqofODNpnd+J4gxlL4w3YVNDk02czoUZERERERETDnVIJtccff9zTso2IZgdBEEZ9bXtZ64jnNhc2j1lefmMX5kVqkRCiQkPn2OOkjfXZREREREREdOqaUU0v7r//fohEojF/CgoKJlz+Aw88gI6ODs9PdXV1QOtPRIEnEYsCWp5DEHC0zoylcQaIMXbZgf5sIiIiIiIimhtmVAu1n/zkJ7jpppvGXCY1NXXC5SsUCigUigm/n4imn14Z+MNUSUs3FkTpkBahHnUZiVgEtZfZP4mIiIiIiIhmVELNaDTCaDQGuxpENIOEquQQiYBA9r4UAByu7cDKpNBRlwlTySAWsYUaERERERERjTSjEmr+qKqqQltbG6qqquBwOHD06FEAQHp6OrRabbCrR0QBIhGLEKaSodViC2i5VaYeLIzWQSnz3gotQiMP6OcRERERERHR3CESZumo2zfddBNeeeWVEc9v3boVZ599tk9lmM1mGAwGdHR0QK/XT0EtiSgQ8ho7R8zYOdUunhfFpBoRERERERF5NWsTaoHAhBrR7NBnd+J/uXVwOKfncBWuluOS+VHT8llEREREREQ0+8yoWT6JiLxRSMXIiNBM2+ctiNZN22cRERERERHR7MOEGhHNCqfFGaCZhlk34w1KJIeqpvxziIiIiIiIaPZiQo2IZgW5RIyVSWFT/BkirEwKg4izexIREREREdEYmFAjolkjzqDEsnjDlJQtFgFnp0VAPQ2t4IiIiIiIiGh2kwa7AkRE/lgYrYcgAIdrOwJWplQswtlpEYjRKwNWJhEREREREc1dTKgR0ayTE6OHQSnFnsp29NqdkyorVCXDmpQwhKnlAasfERERERERzW1MqBHRrJQYqkakVoED1SaUtVn8fr9ULMKCaB1yovWQiDlmGhEREREREflOJAiCEOxKBIvZbIbBYEBHRwf0en2wq0NEE9TVZ0dRcxdKWrvRYxu7xZpBKUWWUYu0cA3kUg4jSURERERERP5jQo0JNaI5QxAEdFsdaLVYYeqxwe50Hd7kEjHC1DKEq+VQyjjpABEREREREU0Ou3wS0ZwhEomgVUihVUiRFBrs2hAREREREdFcxf5OREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+YEJNSIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFAjIiIiIiIiIiLyAxNqREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+YEJNSIiIiIiIiIiIj9Ig12BYBIEAQBgNpuDXRUiIiIiIiIiIpoBdDodRCLRmMuc0gm1zs5OAEBCQkKwq0JERERERERERDNAR0cH9Hr9mMuIhP5mWqcgp9OJuro6nzKPNDaz2YyEhARUV1ePu9HR7Mf1ferhOj+1cH2ferjOTz1c56cWru9TD9f5qYXrO/DYQm0cYrEY8fHxwa7GnKLX67kDn0K4vk89XOenFq7vUw/X+amH6/zUwvV96uE6P7VwfU8vTkpARERERERERETkBybUiIiIiIiIiIiI/MCEGgWEQqHAQw89BIVCEeyq0DTg+j71cJ2fWri+Tz1c56cervNTC9f3qYfr/NTC9R0cp/SkBERERERERERERP5iCzUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUKNJ+etf/4pFixZBr9dDr9dj5cqV2LRpU7CrRVOotrYW3/rWtxAeHg6VSoWcnBwcPHgw2NWiKdLZ2Ym7774bSUlJUKlUWLVqFQ4cOBDsalGA7NixA5deeiliY2MhEonw3nvveV6z2Wy47777kJOTA41Gg9jYWHz7299GXV1dUOtMkzPWOgeAm266CSKRaMjPhg0bglZfmpzx1ndXVxfuuusuxMfHQ6VSYf78+Xj++eeDVl+anMcffxynn346dDodIiMjccUVV6CwsHDIMi+88ALOPvts6PV6iEQimEymoNWXJs+Xdd5PEARs3LjR67GAZofx1ndFRcWIc3j/z//+97+g1n2uYkKNJiU+Ph6//e1vcejQIRw8eBDnnnsuLr/8cpw8eTLYVaMp0N7ejtWrV0Mmk2HTpk3Iy8vDH//4R4SGhga7ajRFbr31VmzZsgX/+te/cPz4caxfvx7nn38+amtrg101CoDu7m4sXrwYzz777IjXLBYLDh8+jF/+8pc4fPgw3nnnHRQWFuKyyy4LSl0pMMZa5/02bNiA+vp6z8/rr78+rXWkwBlvfd9zzz349NNP8e9//xv5+fm4++67cdddd+GDDz6Y9rrS5G3fvh133nkn9u7diy1btsBms2H9+vXo7u72LGOxWLBhwwb8/Oc/D2pdKTB8Wef9nnrqKYhEoqDUkwJjvPWdkJAw5PxdX1+Phx9+GFqtFhs3bgx29eckkSAIQrArQXNLWFgYnnjiCdxyyy3BrgoF2P3334+vvvoKO3fuDHZVaBr09PRAp9Ph/fffx8UXX+x5ftmyZdi4cSMeffTRoNaPAkskEuHdd9/FFVdcMeoyBw4cwBlnnIHKykokJiZOa/0o8Lyt85tuugkmk4mtF+Ygb+t74cKF+PrXv45f/vKXnud4jJ87mpubERkZie3bt2PdunVDXtu2bRvOOecctLe3IyQkJGh1pMAabZ0fPXoUl1xyCQ4ePIiYmJhxz/c0O4y1j/c77bTTsHTpUrz44ovTXr9TAVuoUcA4HA7897//RXd3N1auXBns6tAU+OCDD7B8+XJcc801iIyMxGmnnYa///3vwa4WTRG73Q6HwwGlUjnkeZVKhV27dgWtXhQ8HR0dEIlEvPma47Zt24bIyEhkZWXh9ttvR2tra7CrRFNk1apV+OCDD1BbWwtBELB161YUFRVh/fr1wa4aBUBHRwfg/rKbTg3e1rnFYsH111+PZ599FtHR0UGsHQXaePv4oUOHcPToUTZ0mUJMqNGkHT9+HFqtFgqFAt///vfx7rvvYv78+cGuFk2BsrIy/PWvf0VGRgY2b96M22+/HT/84Q/xyiuvBLtqNAV0Oh1WrlyJRx55BHV1dXA4HPj3v/+NPXv2oL6+PtjVo2nW29uL++67D9/4xjeg1+uDXR2aIhs2bMCrr76KL774Ar/73e+wfft2bNy4EQ6HI9hVoynwzDPPYP78+YiPj4dcLseGDRvw7LPPjtrSgWYPp9OJu+++G6tXr8bChQuDXR2aBqOt8x//+MdYtWoVLr/88qDWjwLLl338xRdfxLx587Bq1appr9+pQhrsCtDsl5WVhaNHj6KjowNvvfUWbrzxRmzfvp1JtTnI6XRi+fLleOyxxwB3E+ITJ07g+eefx4033hjs6tEU+Ne//oWbb74ZcXFxkEgkWLp0Kb7xjW/g0KFDwa4aTSObzYZrr70WgiDgr3/9a7CrQ1Pouuuu8zzOycnBokWLkJaWhm3btuG8884Lat0o8J555hns3bsXH3zwAZKSkrBjxw7ceeediI2Nxfnnnx/s6tEk3HnnnThx4gRblJ9CvK3zDz74AF9++SWOHDkS1LpR4I23j/f09OC1114b0qWfAo8t1GjS5HI50tPTsWzZMjz++ONYvHgx/vznPwe7WjQFYmJiRiRK582bh6qqqqDViaZWWloatm/fjq6uLlRXV2P//v2w2WxITU0NdtVomvQn0yorK7Flyxa2TjvFpKamIiIiAiUlJcGuCgVYT08Pfv7zn+PJJ5/EpZdeikWLFuGuu+7C17/+dfzhD38IdvVoEu666y589NFH2Lp1K+Lj44NdHZoGo63zL7/8EqWlpQgJCYFUKoVU6mpPc9VVV+Hss88OYo1pMnzZx9966y1YLBZ8+9vfnvb6nUrYQo0Czul0oq+vL9jVoCmwevXqEVNxFxUVISkpKWh1oumh0Wig0WjQ3t6OzZs34/e//32wq0TToD+ZVlxcjK1btyI8PDzYVaJpVlNTg9bWVsTExAS7KhRgNpsNNpsNYvHQ79clEgmcTmfQ6kUTJwgCfvCDH+Ddd9/Ftm3bkJKSEuwq0RQbb53ff//9uPXWW4c8l5OTgz/96U+49NJLp7m2NFn+7OMvvvgiLrvsMhiNxmmt46mGCTWalAceeAAbN25EYmIiOjs78dprr2Hbtm3YvHlzsKtGU6B/DIbHHnsM1157Lfbv348XXngBL7zwQrCrRlNk8+bNEAQBWVlZKCkpwc9+9jNkZ2fjO9/5TrCrRgHQ1dU1pOVReXk5jh49irCwMMTExODqq6/G4cOH8dFHH8HhcKChoQFwD34rl8uDWHOaqLHWeVhYGB5++GFcddVViI6ORmlpKe69916kp6fjwgsvDGq9aWLGWt+JiYk466yz8LOf/QwqlQpJSUnYvn07Xn31VTz55JNBrTdNzJ133onXXnsN77//PnQ6neeYbTAYoFKpAAANDQ1oaGjwbBfHjx+HTqdDYmIiJy+YhcZb59HR0V4nIkhMTGTCdRbyZR8HgJKSEuzYsQOffPJJEGt7ihCIJuHmm28WkpKSBLlcLhiNRuG8884TPvvss2BXi6bQhx9+KCxcuFBQKBRCdna28MILLwS7SjSF3njjDSE1NVWQy+VCdHS0cOeddwomkynY1aIA2bp1qwBgxM+NN94olJeXe30NgLB169ZgV50maKx1brFYhPXr1wtGo1GQyWRCUlKScNtttwkNDQ3BrjZN0FjrWxAEob6+XrjpppuE2NhYQalUCllZWcIf//hHwel0BrvqNAGjHbP/+c9/epZ56KGHxl2GZg9f1rm397z77rvTWk8KDF/X9wMPPCAkJCQIDocjaHU9VYgE14ohIiIiIiIiIiIiH3BSAiIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1IiIiolOQ0WiESCQa8+d73/tesKtJRERENCNJg10BIiIiIppedrsdf/rTn7y+Zjab8dOf/hR9fX244oorpr1uRERERLOBSBAEIdiVICIiIqLg6+vrw4YNG7Bt2zY899xzuP3224NdJSIiIqIZiV0+iYiIiAgOhwPXX389tm3bhl//+tdMphERERGNgS3UiIiIiAjf/e538fe//x133nkn/vKXvwS7OkREREQzGluoEREREZ3iHnzwQfz973/Htddei6effjrY1SEiIiKa8dhCjYiIiOgU9vTTT+NHP/oRzj//fHz88ceQy+XBrhIRERHRjMeEGhEREdEp6vXXX8c3v/lNLFu2DFu3boVWqw12lYiIiIhmBSbUiIiIiE5BmzdvxqWXXoqUlBTs2rULRqMx2FUiIiIimjWYUCMiIiI6xezbtw/nnXceQkJC8NVXXyEpKSnYVSIiIiKaVZhQIyIiIjqF5OfnY+3atXA6ndi5cycWLFgQ7CoRERERzTpMqBERERGdIkwmExYtWoTq6mrccccdWLlypdflIiMjsX79+mmvHxEREdFswYQaERER0Snis88+w4UXXjjuct/+9rfxyiuvTEudiIiIiGYjJtSIiIiIiIiIiIj8IA52BYiIiIiIiIiIiGYTJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFAjIiIiIiIiIiLyAxNqREREREREREREfvh/Wr45L7DV93QAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAKpCAYAAAB5OgHrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ3Rdxb3+8e8p6r3ZsrplW7ItdxuMK8WmdwwkdAgkEEpICPkHSC4huSFA7k1uIBCT0CEQCNiEYorBvfcqd1uyLKv3Xk75vzjS1pHVjoqxJT+ftbKy99mzZ0bbvHrWzPxMTqfTiYiIiIiIiIiIiHTKfKonICIiIiIiIiIi0h8oSBMREREREREREfGAgjQREREREREREREPKEgTERERERERERHxgII0ERERERERERERDyhIExERERERERER8YCCNBEREREREREREQ8oSBMREREREREREfHAGRmkOZ1OKioqcDqdp3oqIiIiIiIiIiLST5yRQVplZSUhISFUVlae6qmIiIiIiIiIiEg/cUYGaSIiIiIiIiIiIt2lIE1ERERERERERMQDCtJEREREREREREQ8oCBNRERERERERETEAwrSREREREREREREPKAgTURERERERERExAMK0kRERERERERERDygIE1ERERERERERMQDCtJEREREREREREQ8oCBNRERERERERETEAwrSREREREREREREPKAgTURERERERERExAMK0kRERERERERERDygIE1ERERERERERMQDCtJEREREREREREQ8oCBNRERERERERETEAwrSREREREREREREPKAgTURERERERERExAMK0kRERERERERERDygIE1ERERERERERMQDCtJEREREREREREQ8oCBNRERERERERETEAwrSREREREREREREPKAgTURERERERERExAMK0kRERERERERERDygIE1ERERERERERMQDCtJEREREREREREQ8oCBNRERERERERETEAwrSREREREREREREPKAgTURERERERERExAMK0kRERERERERERDygIE1ERERERERERMQDCtJEREREREREREQ8oCBNRERERERERETEAwrSREREREREREREPKAgTURERERERERExAPWUz0BEREREREREZHTgdPppNHuxO50YgK8LGYsZtOpnpacRhSkiYiIiIiIiMgZq7yukSPFNRRVN1Bc00C9zWE8M5sg1M+LCH9vYoJ9SQj1w6xg7YymIE1EREREREREzjjZ5bXsyaskt7K+wzYOJ5TUNFJS08jBomr8vMykRAYyenAQ3ladlnUmUpAmIiIiIiIiImeMukY7G46VkVlS0+13axsd7Mit4GBRNdOSwogL8Tspc5TTl+JTERERERERETkjFFbV80l6Xo9CNHc1jXaWHCxiY1YpTqezz+Ynpz8FaSIiIiIiIiIy4OVX1rP4QCF1bmeg9dbegirWZJYoTDuDKEgTERERERERkQGtrLaRJYcKsTn6PvA6XFzD5uzyPu9XTk8K0kRERERERERkwHI4nazOKKHRfvJWje3JryS3ou6k9S+nDxUbEBEREREREZEBKz2vkuKaBm6eGEtxTQMAu3IryamoIzLAm4mxIZiA4+V1pOdX9nictZklXJUWjZdFa5YGMgVpIiIiIiIiIjIgNdgd7MytAKCqwc7X+wuNZ2YTjB8SzNJDRdj7YMtnVYOdA4VVpEUH97ovOX0pJhURERERERGRAelIcbVxLlqAl4VLUqOYNTQcH4uZqAAfbA4n5w2L4MIRUYT5efV6vP2F1So8MMBpRZqIiIiIiIiIDEgHCquN64W7cqm3OxgeEcDE2BDyq+oJ9fNi0d58ArwtTEsM56v9BQBcnBpFVIAPDrdQbEt2OfsLqzodr7LeRm5lPTHBvifxr5JTqd+vSHvmmWcwmUz89Kc/PdVTEREREREREZHTRF2jndLaRuO+3u4AIKO0hnB/L+ptDgqq6rE5nJTX2fC2mFq9vyW7jPe2HTf+11WI1ixPRQcGtH69Im3Tpk384x//YNy4cad6KiIiIiIiIiJyGmkuLABgNZuwO5w4gehAHyrqbRRV1zNuSBAAvlYznhb1tJpNTI4LIS7ED4vZRE55HRuOlRpVQYtrGrvsQ/qvfrsiraqqiltuuYVXXnmFsLCwUz0dERERERERETmNlLgFWsG+Vi4fNZhLUqMYHR3EtuPlNNidHCqq4ZLUQVwwPJLNx8o86ndGUjjeFjOf7slj4a5czCaYmtCSS5S4BXgy8PTbFWkPPPAAl19+OXPnzuX3v/99p23r6+upr6837isqKr6DGYqIiIiIiIjIqdLQtJWTplDt8735bdocKq7mUHF1m98BJsWFMCEmxLj/cGcOFrOJhDA/PtieY6xA25ZTwdVp0azJKMHptoVUBqZ+GaS9//77bN26lU2bNnnU/plnnuG3v/3tSZ+XiIiIiIiIiJweHL0snrk1u5y9Ba3PRQvx9cJsMjFv7JA27f28LNQ02nE6wel0YjKZ2rSR/q/fBWnHjh3j4YcfZvHixfj6elYF4/HHH+eRRx4x7isqKoiPjz+JsxQRERERERGRU8nL3PdBVnWDDYfTyb935mDvIKmzmk0K0QawfhekbdmyhYKCAiZPnmz8ZrfbWblyJS+++CL19fVYLJZW7/j4+ODj43MKZisiIiIiIiIip0Kwb99HHnU2B8fKapmaEMqW7HLqbQ58rWYGBfqQVVYLQMhJGFdOH/3uX3fOnDns2rWr1W933XUXI0eO5Je//GWbEE1EREREREREzjwRAd4npd/VGSVMiAnh8lGD8bGaqWu0k1lSYwRpJ2tcOT30uyAtKCiIMWPGtPotICCAiIiINr+LiIiIiIiIyJkp2MeKj8Xco8P/v95f2OEzm8PJ5uwyNme3X+UzUkHagGY+1RMQEREREREREelrJpOJ5Aj/73RMq9lEYth3O6Z8t/rdirT2LF++/FRPQUREREREREROM6mDAttU3jyZkiP88bZozdJApn9dERERERERERmQQny9iA/1+07GMptg9KCg72QsOXUUpImIiIiIiIjIgHVOQhjeFtNJH2f8kBBC/LxO+jhyailIExEREREREZEBy9/bwtnxYSd1jAh/L8ZEazXamUBBmoiIiIiIiIgMaMMiA05a0BXobeH84ZGYzSd/1ZucegrSRERERERERGTAmxQbwtg+DtOCfKw41uxizb9W4XQ6+7RvOT2ZnGfgv3RFRQUhISGUl5cTHBx8qqcjIiIiIiIiIt+RzJIa1meVUm9z9Kqf5Ah/jry7jH8++QEAgxIiue3JG7jglll4++istIFKK9JERERERERE5IyRFO7P1WnRJIf747R3P0wL9rFy/vBIZg2NoLq40vi9IKuIP90zn9uG3s+7Ty+gwu2ZDBwK0kRERERERETkjOLnZWFCmA+fXPs0Bds2UVdS1ml7q9mEb0MlQVkZXBAbSEKoHwAX3XFem7YleWW8+V/vc0vij/nytSUn7W+QU0NBmoiIiIiIiIiccdZ9upmqvFJWPbEAx1eb+P6EGC5MiWJqQhiH3l3Gpv/9mA2/f5+r0wYzb3Qke7/6Nzt3LuWhi39BXmYBAEPHJuAb6Ntu/3U19bz39ILv+K+Sk01BmoiIiIiIiIiccVYtWE/EyGAGTwpn9vUz8LFaiAn2ZeSgQOp2ZbD/36s4+OlGvBoaOX78OCaLqypn8mXR/PTcX5N7JB+LxcLIs4d3OMaVP774O/yL5LugIE1EREREREREzijVFTVsWbyDIWeHExIbwKhzRrR6HhkbblwXZpdgsViw1dkxmVxhmiXCyWNX/ZbsAzmMPiel3THuefYWbvzF1Sf5L5HvmoI0ERERERERETmjbPh8C40NNmqL6okNi8dsbh2PRMZGGNdFx0vwNfvhdDgBMJlNjLgyluQbBvOrG37fKnRzt/aTTdht9pP8l8h3TUGaiIiIiIiIiJxRVi5YDyY4vq6YOVef3+Z5VFxLkJafWcCHCz/Ey98KgNPppDq/jsYaG5YweOvJDwgMDQAgZcowBidGArBn3QE++OMn39nfJN8N66megIiIiIiIiIjId6W2qpZNX24jenI4iecNJm1Gaps2cSlDjOusfdmUhpRQU1iHb7gPdaUNHPg4m5rCeqPN3c/cTHxqLGddOpFDW4/ws1n/hcPh5O2n/s1Zl0xgxKTk7+zvk5NLK9JERERERERE5Iyx8YttNNQ1EhTrh5+XHxaLpU2bhFGxxvWxfTlEmKPZ+UYGa3+fTuHOMhoqbcbzKReP57J75jLjmrPx9vFi9LRUvv/YtQDYbXaeve0F6mvr24wh/ZOCNBERERERERE5Y6xcsB6A42uLmHnO7HbbRMSE4x/kB0DW3uNEeEVhq7VjspiIP3cQkWnBADz3zX/xzJe/JjgiqNX7tz55PSMmDTXef+3x907yXyXfFQVpIiIiIiIiInJGqKupZ+OirVi8zSRMH8y0i85qt53JZDJWpeUfLeSiO8/je//vam779Q344Y/Vz3VS1t51B9t938vbi1++/RDevl4AfPzCF2xdsuuk/V3y3VGQJiIiIiIiIiJnhF0r91BXU0/YiEAiJwTTaGvssG282/bOktwy7nn2Vm77zQ3c8YPbyV5dCMDKBes6fD9xdDz3PHurcf+/d71ETWVtn/0tcmooSBMRERERERGRM8LWb12rwswWM8F+oQQEBHTYNmFknHGdtTfbuDb7mZj2/9Kw+Jo5suMoxw/ldtjH1Q9ewqS5YwEozC7mvacX9NFfIqeKgjQREREREREROSNsW+oK0gp3l/ODH9zVaduEkS0r0rL2HTeuvby8sPiZCI7zB2DNxxs77MNsNvPTl+/Fy8e1xXPB/31O9sGOgzc5/SlIExEREREREZEBr6ywnMPbMzGZ4ZxfjKKovLDT9u6VO92DtLCwMMaNHk9NkasSZ1dnnw1JHsyNj14FgK3RzsuPvNnLv0ROJQVpIiIiIiIiIjLg7ViWDoBPqDcWXzNmc+eRyJDkwXh5u4oKHNvbEqSZTCYuuOh8IhPCAdi9ai+NDR2ftQbwvceuISouAoANi7ayYdGWXv89cmooSBMRERERERGRAW/rtzsBqC9vZFjMCOLj4zttb7FaiB0xBIDsAznYGm0tfW3dSvIVg1391Tawd3371Tub+QX48qP/uc24n//IWzTUdx6+yelJQZqIiIiIiIiIDHjNWzD9w3yYdt45WK3WLt8ZOi4BmrZkHt5x1Pg9NDQUs7fJuN++dHeXfZ1743TGzh4FwPGDuXz8/Bc9+jvk1FKQJiIiIiIiIiIDWu6RfPIyCgAYc90wVqxa7tF7adNHGtfpa/YZ1+PGjeO6q6437rcv6zpIM5lMPPD8DzCbXQHcu7//iKKckm79HXLqKUgTERERERERkQFtm1tBgJCYYCIiIjx6L21GqnG92y1IM5vNHDy6n8SJroIEe9cfoLa6rsv+ho1P4vJ7LwKgtqqO1x5/t1t/h5x6CtJEREREREREZEDbumSncT3n3DlcdNFFHr03dGwC/kF+AKSv2Y/T6TSe7d69mxHnJkLT1s/dq/d12I+7O3/3PYLCAwH49p2VHNx6pFt/i5xaCtJEREREREREZMByOBzGGWYB4f4czN2HzWbr8j0Ai8XCqGkpAJTklpKX6doeajKZSE1NJWlUgtHWk3PSAIIjgrj9qRuN+3efXtCtv0dOLQVpIiIiIiIiIjJgHdl5lPKiSgDGXzySffv3UV1d7fH7adPdtne6rTqbN28ec644z7jftnRXm3c7ctk9c4iICQNgzccbydid5fG7cmopSBMRERERERGRAWvbty0B16izUoiLiyMyMtLj98fMdC84sN+43rhxIws/W0DyONf2zkNbM6gsrfKoT29fb2589Grj/r0/LPR4PnJqKUgTERERERERkQHLfaXY1AvP4vbbb8dqtXr8/sipIzBbXPGJe+VOq9VKXl4e489PA8DpdLJzxR6P+73sR3MJjQoGYMUHazm2/7jH78qpoyBNRERERERERAakxoZGdq3cC0BETBjHijN5993uVcr0C/Bl2IQkADLTjxmrzkaOHMncuXOZNGec0da9OmhXfP19mPfIldAUwv3r2Y+7NS85NRSkiYiIiIiIiMiAtHf9Qepq6gGYNHccJSUlOByObvczZkbL9s49a13bO/39/QkKCmLMrJHGirXtyzwrONDsqvsvJigsAIAl/1xF7pH8bs9NvlsK0kRERERERERkQNr67U7jeuIFY5k0aRKzZ8/udj9jZ482rjd8sQ2A4uJiFi5cSHlVGSlThgFwdE82JXmlHvfrH+THtQ9fDoDD7uCD5/7T7bnJd0tBmoiIiIiIiIgMSO5bLSfOGYPD4SAiIqLb/Uy+cBxe3q5z1dZ9ugmn04mfnx8mkwm73c7EC8YYbbcv7d6qtGt/chn+wX4AfP3mMgqOFXV7fvLdUZAmIiIiIiIiIgNOdUUN+zYeAiB+ZCyRsRF8+umnbNu2rdt9+Qf5MWHOWACKjpdwYMsRAgIC+PGPf0x8fDwTLhhrtN3WzSAtMDSAax68FABbo52Ff1nU7fnJd0dBmoiIiIiIiIgMODtX7MFhd52HNqkpBLPb7QQHB/eovxlXn2Vcr/tkEwCbN28mOzubtOkpePl4QQ/OSQO47qeXG+9/8/YKGuobezRHOfkUpImIiIiIiIjIgON+Ptqkua7KmnfddRcTJ07sUX/nXDnFuF77qStI27NnD0eOHMHHz4e06SkA5GUUkJvRvaIBIZHBzL7+HAAqiitZ8/HGHs1RTj4FaSIiIiIiIiIy4DSfVWY2mxh37mgaGxv56quvqK2t7VF/EUPCGHXOCAAydmWReySf5ORkQkNDAZhwfsv2zu6ekwZw6T1zjOsvXv22R3OUk09BmoiIiIiIiIgMKFVl1WSmHwNgxORkAkMDKC8vZ//+/RQXF/e43+lXtWzvXPvJJq666irGjnUFaBPcCw70YHvnuNmjiUsZ4np/6W6OH8rt8Tzl5FGQJiIiIiIiIiIDSsauLOM6ZfIwAAIDAxk8eDBhYWE97nf6NWcb12s+2cjHH3/M4sWLAUg9axh+gb7QFIQ5nc5u9W0ymbj07pZVaV++uqTH85STR0GaiIiIiIiIiAwo7kHa0HGJAPj6+vKDH/ygx8UGABJGxhqrxtJX76OstJyamhoArF5WxswaBUBJXhl5GQXd7v/CO87D6mUBYPFby7E12no8Vzk5FKSJiIiIiIiIyIByZOdR43ro2AQAKioqeO655ygpKelV39Ovdq1Kczic+NcHMWnSJOPZ8AlJxnXz1tLuCBsUwrSm6qCl+eWs+2xLr+YqfU9BmoiIiIiIiIgMKBm73IK0MfEA1NbW4nA4jBVkPdVcXRNg8+c7W61wSxqTYFxn7u5+kAZw2T1zjesvVXTgtKMgTUREREREREQGDIfDYWztjE6KIiAkAIDIyEjOPfdcoqOje9V/ypRhxio3hjTw1edfG8+S0uKN66N7ehakTZo7luikKAA2f72DgqzCXs1X+paCNBEREREREREZMPKPFlJbVQdu56MBmM1mIiMjsVgsverfZDIZq8YcdifH9uYYz+JSYzBbXFFLxu6sDvvojNls5uK7LgDA6XSy8qP1vZqv9C0FaSIiIiIiIiIyYGTsdCs04LbVMj8/nwULFlBQ0P0iACeac+ssvH29OPjpcTa/nU5DXQMA3j5exI5wFSM4ti8Hu83eo/5n3zDNuF776aZez1f6joI0ERERERERERkw3AsNJLutSLNara3+vzeCwgKZdf05RI4KxhwMqxZsMJ4lNZ3J1ljfSM7hvB71nzAylvjUGGiqDlpeVNHrOUvfUJAmIiIiIiIiIgPGEfdCA25BWmRkJPfddx8RERF9Ms5l98wlamwI4SOC+MKtKEDS6JZz0npacABg2lWu6p0Oh5P1n6t65+lCQZqIiIiIiIiIDBiZTYUGvH29iB3eUljA4XCwZs0aKir6ZnXX2FmjMDVYqCmsZ+eKPWQfcJ2V1rwiDSAzvedB2oxrzjKu136i7Z2nCwVpIiIiIiIiIjIg1NXUc/xgLgCJafFYrC2FBRoaGti1axfHjvU83HJnMpk4K20qORuKAfjy1SXGuM16E6SNnDqCsMEhAGxZvIO6mvpez1l6T0GaiIiIiIiIiAwIR/dk43A4ARg6NqHVMx8fH2JiYggMDOyTsZxOJ1mmg0SODAZg8VvLaahvJHZ4NF7ernPYjvYiSDObzZxzxRQA6msb2PrNzj6Zt/SOgjQRERERERERGRAy3AsNjE1s9cxkMnH33XcTHx/fzpvdV1dXR3V1NaNnpABQVljBN28tx+plJX5kLADZB3JpbGjs8Rja3nn6UZAmIiIiIiIiIgOCe8VO90IDzd555x3WrVvXJ2P5+voyc+ZMrr7zCuO395/9GFujjcS0OADsNjvZB3J7PMbEOWPxDfABYP3nm7Hb7X0wc+kNBWkiIiIiIiIiMiBk7M4yrpPHJbR53tDQQHFxcZ+M5XQ6iY+PZ9yMNKZcPB6AvMxClr63mqS0lrF7U7nT29ebsy6ZAEB5USV71x3og5lLbyhIExEREREREZF+z+l0cmSHa0VaeHQooVEhbdrMnDmTcePG9cl4hw4d4l//+hd1dXXc8qt5xu//emYhCU1bO+nlOWkAUy+fbFzvWL6nV31J7ylIExEREREREZF+rySvjIriSgCSxrZdjQYwZMgQvL29+2S8hoYGLBYL3t7ejJk5ivHnpUHTuWgFx4qMdpnpWZ300rWxs0YZ1+lr9/WqL+k9BWkiIiIiIiIi0u8d6aTQQLMNGzbw6aef9sl4qamp/PCHP8RsdkUrN7utSvvytSV4+3oBkJme3atxhiQPJmywa3Vd+tr9OiftFFOQJiIiIiIiIiL9XuYu9/PR2g/SwsLCqK6u7pPxDh48SFZWy5gTLxjD6GmuCp6Zu48RERsOQM6hPOpr63s8jslkIm3GSABqKmo52stgTnpHQZqIiIiIiIiI9HtHdrlX7Gx/a+fkyZO5/fbb+2S8bdu2cejQIePeZDK1WpVWVeoK7JxOJ1l7j/dqrDFNQRpA+hpt7zyVFKSJiIiIiIiISL/XvLXTbDGTMCqu3TYmk4kVK1ZQXl7e6/ECAgIYNmxYq9/OvnQiIyYNBaCypMr4PbOXBQfSZqQa17sVpJ1SCtJEREREREREpF9zOp1k788BIHbEELx9vNpt53A42LNnD4cPH+71mFdccQVnn312q99OXJXWLHN374K04ROH4uPnKpKQvmZ/r/qS3lGQJiIiIiIiIiL9Wk1FDQ11jQBExYV32M5qtZKSkoKfn1+vxistLeXZZ5+lrKyszbMZ15xtnJXWrLeVO61eVkZOHQFA/tFCCrOLe9Wf9JyCNBERERERERHp10ryWgKtsOjQTtveeOONDB8+vFfj5eXlYbfb8fJqu/LNZDLxwAs/wGQyGb/lHino1XgAadNbtnfqnLRTR0GaiIiIiIiIiPRrrYK0QZ0HaWvWrOGdd97p1XixsbFcdNFF+Pv7t/s8ZfIwLr37AuM+/2hhr8YDGDPTveCAtneeKgrSRERERERERKRfK8tvKR4Q3sWKNC8vL/Ly8nA6nT0er6qqimHDhrVadXaiu56+CbPZ9byhtoG9Gw72eDyAUee0bBc9tD2jV31JzylIExEREREREZF+rTtbO8eMGcPcuXM7DcG68sUXX7Bhw4ZO24RGhRAzYohx/9cHXsXhcPR4zMDQACJiwgDI2nu8x/1I7yhIExEREREREZF+rVWQNjik07aBgYEEBARQWVnZ4/FqamqIjIzsst3wiUnG9cGtR/jm7RU9HhMgYVQcABXFlZQVlnfZXvqegjQRERERERER6dfK8luCtK62dgIsXbqUdevW9Xi8O+64g7PPPrvLdiee1/ba4+9SXV7d43ETRsYa11qVdmooSBMRERERERGRfq0k3/OtnQAJCQlUVFT0aKzMzEy+/fZbLBZLl21DooJb3Zfml/Pa4+/1aFzcVqQBHNunIO1UsJ7qCYiIiIiIiIiI9EZp09ZOs8VMcERQl+0vu+yyHhcb2LVrFwUFBR61DXUL0qxeVmyNNj57eTHTrprCWZdM7PbYCaO0Iu1U04o0EREREREREenXms9ICx0UgtnsWdTxxhtvUFJS0u2xIiIimDx5skdt3VekTblkgnH9v3fPp6K4+2e0xbtv7dyX3e33pfcUpImIiIiIiIhIv+VwOCgrcG3T9OR8NACTyURhYSEHDx7s9ngpKSkenY/GCSvShgwdxJSLxwNQklvKX378j26viguPDiUgxB+0Iu2UUZAmIiIiIiIiIv1WZUkVdpsdPDwfDcBqtTJ9+nSj8mZ2djbV1V0XAcjIyOCll16itrbWo3HcV6RVlFTy89fuJyg8EIBVH61nyburPOqnmclkMrZ3FmQVUVvl2Tyk7yhIExEREREREZF+q3lbJ0DY4BCP3wsKCmLx4sUsXLiQt956i/T09C7fycnJwd/fH19fX4/GcA/SygsriIwJ5+H5PzJ+++uDr1KQVQhA9oEc6mvru+wzYWRLwYHsA7kezUP6jooNiIiIiIiIiEi/VeoWpIUP7nxFWk1NDe+88w6JiYls27aNhoYGo3BA8+q0zowdO5bExERMJpNHcwsMDcBsMeOwOygvdG0/PfeGaaz7bBZL/rmKmopanrn1BcKiQ1n10XoSRsXy9+3/i9Wr47jGveDAsX3HGTEp2aO5SN/QijQRERERERER6bdK88uN6662dnp7e1NZWcnGjRtpaGgwfp85cyZDhw7t9F2n08nGjRsJDg7utJ07s9lMSKSrimhZU5AG8OALdxMVHwHA7tX7WPXRemg69+zg1oxO+4weOsi4LjhW7PFcpG8oSBMRERERERGRfst9a2dXxQasViv33Xcf559/PkFBQcbvNTU1Xa4yy8nJYc2aNZSVlXXa7kTN2zvLCyuM4gKBoQHM++kV7bbfu+5Ap/1FxoYb10XZCtK+awrSRERERERERKTfKs0rNa7DutjaCRAYGMisWbNISkoywrPCwsIu36uvrycqKorY2Ngu27oLiXQFaQ11jdRV1wGw5N1VvPLLf7bbfs/6/Z32FxkXYVwX5ZR0ay7SezojTURERERERET6rdICz7d2ups1axb79++noaGBuDjXAf4lJSXk5eXR0NCAxWIhODiY2NhYrFYrcXFx/PjHP/b4fLRm7gUHygor8Av045VfvmNUGj3Rni5WpIUMCiE8JRbvEH8agvzJq6wjxNcLPy9Lt+YlPaMgTURERERERET6re5s7XQXFRXFfffdx0svvcSGDRtYsGABpaWlbdp5eXkRHx9PTU0Nd955J5MmTerW/JpXpNG0vXPI0MGce8N0Fj6/qN32hceKKTpeTGRsy8qzynobBwqryK2oo7S2kcv++XPj2df7Xavp/L0sRAZ4kxzhT3yoH+ZuBn7iGQVpIiIiIiIiItJvNVft9PK2EhDi79E7NpuNzz//nC+++KLLM88aGxs5cuQIAM899xyTJ0/m5ptvNlaxdSU0qnWQBvDj/7uT874/g4/+/BmrF6zH4XC2emfZ+2u44edXUVLTwNbj5Rwvr+tynJpGO1lltWSV1eLvZWHU4EBGDw5SoNbHFKSJiIiIiIiISL/VHKSFRYd6tO0yMzOTl156iaNHj3Z7LKfTyebNm9mxYwc33HADV155JRZL51sqT9za2WzU1BH81wePkJuRz8K/LOLzv3+DrcEGQHlRJTtyytmZW8EJGZtHahrtbMkuJ7OkhhlDwwnz8+5+J9IuFRsQERERERERkX6rsrQagOCIoC7brly5kscff7xHIZq7xsZG3nvvPf7whz9QW1vbaVv3FWkVRZVtng8ZOpgHnv8BH+T8g4vuOJfz7ziPmNvnsD2nZyGau+KaRj7fk09mSU3vOhKDgjQRERERERER6bccdgcAFmvnEcfy5ct58cUXsdvbP+S/J3bt2sXTTz9NXV3HWy87WpF2ouDwIB5+5X7G/WIehdWNfTZHhxNWHCnmSHF1n/V5JlOQJiIiIiIiIiL9ltPpWrbV2bbO3bt3M3/+/JMy/oEDB3jhhReMeZzIy8fLuLY32jrsx+l0suJIMcU1fReiuVudWUJBVf1J6ftMoiBNRERERERERPol9/DKZG4/SKutrWX+/PkdBl19YfPmzaxcudKDOXYcwxworCanouuiAj3ldMKajBJsTSv4pGdUbEBERERERERE+qVWIVUHK9LeffddCgsLefvttzl8+DAA//nPf9ixY0e7v/XUm2++ybhx4wgLC2s9R4f7HNt/t6rexubsMm6eGEtxTQMAu3IrqW6wcU6iqz+r2YwJ+Hxvfo/nWFFvY1tOBWfFh/a4jzOdgjQRERERERER6ZdahVTtrEgrLS1lyZIlABQUFPDb3/621fP2fuup6upqvvzyS26++ebWc/RgRdqe/EpsDidVDXa+3l/Y6lnz/cioQLysXVcl7cq+gkrGDgnC19p5tVFpn7Z2ioiIiIiIiEi/5B5SmdsJqZYsWWIUF4iMjOSpp57ioYceIjAwsMPfemPZsmU0NrY+46yrFWmNdgeHmgoBBHhZuCQ1illDw/GxtP57ksL9ySjuffVNhxMOFanwQE9pRZqIiIiIiIiI9EsOt5CKE0Iqp9PJ0qVLjfsHH3yQqqoqzj//fG666SZeeeWVdn8D+M1vfkNKSkqrCp///Oc/Wbx4cafzKS8vZ8uWLZxzzjmt5mFMsZ2wL6uslka7q83CXbnU2x0MjwhgYmwI67NKAQjwtmAyQVVDy3wGBXozdkgwUQE+mICqBhtHSmrYm1+Jo4vj4A4WVjMmOrjzRtKufhekzZ8/n/nz55OZmQlAWloaTz75JJdeeumpnpqIiIiIiIiIfJc6WZFWXFxMUVGRcV9VVQXAmjVrmDt3boe/NXv33Xf54osvuj2lffv2tQrSHF2sSCuobKmkWd9UCCCjtIaUqADj96Hh/mSWtKxGiwvxZXZyBNuOl7M6o4R6m4NgXytjo4Px87JQ7Ra4taei3kZdox1fL23v7K5+F6TFxcXx7LPPMnz4cADeeustrr76arZt20ZaWtqpnp6IiIiIiIiIfEc6C6mOHDliXPv4+NDQ0IDT6WT06NHk5eW1+5snfHx8uOWWW5gyZQpeXl5s376d119/ndraWgAyMjJav9DF9tPm4gJWswm7w4kTiA70oaLeZrRJCvfn2wMtZ6ednRDG7rxK9hZUGb9V1NlYk1li3PtazUxNCCM6yAebw8mRkhq2Hy/H6TZubIifR3+ztOh3QdqVV17Z6v7pp59m/vz5rF+/XkGaiIiIiIiIyBmks22TWVlZxnVMTAz33nsvdXV12Gw25s+f3+5vnrj//vux2+08+uij2O127rvvPu6++25efPFFAI4ePdqqfVfbT0trXWeqBftamZ4Yjs3hwO6EtU2hWKivlXqbgzqba7VasI+VIB8rGSWdn3M2OzmC2kY7C3bl4mM1M3dEFDa7g115lQCU1jYqSOuBfhekubPb7Xz44YdUV1czbdq0DtvV19dTX9+yVLKiouI7mqGIiIiIiIiInCydHeTfvEKMplVijz32WKvnxcXFbX5zd/PNN3PDDTcY9/fddx/e3t5MnTqVu+++m5oa11bLDz74gD//+c+89NJLOJ1OamtrcTqdmJom1FlBBIcT4zyzkppGPt+b32YeZXU2vnFbjebj5eqjs+2b/l4WhgT78sH249gcTmwNdnbmVjA+JtgI0mz2Lg5Sk3b1yyBt165dTJs2jbq6OgIDA/n4448ZPXp0h+2feeaZPitnKyIiIiIiIiKnh85WpJnaO5CsG9577702Z6TFxcVhNpuN1WfNHA4HoaGhlJaWYjKZWo3dOuxrPaeezLC+0bUyLcDbQmV9+2Gav7cFm6NlFRtAZb2NAJ2J1mv9MkhLTU1l+/btlJWVsWDBAu644w5WrFjRYZj2+OOP88gjjxj3FRUVxMfHf4czFhEREREREZG+1tmKNF9f3z4fr6ioCIfDwb333ktDQ0O7bfz8Wm+XbB32nRCkmcBsossqm+4q6m1U1ttICvdnV25lu21qGuxYzWZ8rWYjTAvysVLd2BK8eVl6FzSeqdqectcPeHt7M3z4cKZMmcIzzzzD+PHjef755zts7+PjQ3BwcKv/iYiIiIiIiEj/1tmKtISEhD4fr7y8nE2bNnH33XcTFBQEQEhICGeddVaH43a6Is1kIszPq9vz2JhVytjoYEYOCsTH4vq7g32sTE8MI8DbQk2jndyKOqbEh2I1mwjwtjA2OojDxS3nqoX6eXd7XOmnK9JO5HQ6W52BJiIiIiIiIiIDX2cr0pKTk0/KmC+99BI33ngjzzzzDIGBgZSXl7N27Vo2bdoEwNChQ1vPsZMVaQAR/t4U1zR2aw7Z5XV8e7CQcUOCmRgTAkBVg40jxTXUNq06W3mkmKkJYcwbOwS708mR4hp257WsYIsI6H6AJ/0wSHviiSe49NJLiY+Pp7Kykvfff5/ly5fz1VdfneqpiYiIiIiIiMh3qLOD/CMiIoiKiqKwsLCdNzvX2TnrdXV1vP3227z99tvtPh85cmTrOXayIg1gUJAPB4o6r8DZnoKqBr49WNTxPG0OVhwpbvdZsK8VX6vOS+uJfre1Mz8/n9tuu43U1FTmzJnDhg0b+Oqrr7jwwgtP9dRERERERERE5DvkcD9c7ISMymQycf7553+n8wkJCWHKlCmtfutqRVpiqB/e3/F5ZSmRAd/peANJv1uR9tprr53qKYiIiIiIiIjI6aCTFWkAc+bMYcGCBdjt7Ve37GsXXHABVmvrqMXRxYo0q8XM8MgA9uRXfSdztJhMDFOQ1mP9bkWaiIiIiIiIiAhtQqq2z8PCwpg7d+53MpeAgAAuvfTSNr87HQ7j2tzOijSA0YODsHbwrK+NHBSobZ29oCBNRERERERERPqlzqp2NrvllluIioo66XO56667CA0NbfO72xTbT/uAAG8rU+LbvtvXgn2sTIgNPunjDGQK0kRERERERESkX+qsamczX19f7r///na3fvaVs88+m1mzZrX7zJMVaTSdWxYb7HtS5gdgNsGMoeFYT+J3OBPo64mIiIiIiIhIv2T1bjmPrLHe1mG7tLQ07r///nbPKOut1NRUHnrooQ77dl+R1tn4JpOJqUMCqcrI6/M5moBZQyMYFOjT532faRSkiYiIiIiIiEi/FBweaFyXFVZ02nb27Nk89NBDWCx9dz7YuHHj+NWvfoWPT8cBld3WUuigvaqdzZxOJ/Mfeo1FP3iB/K2H+2yOZhNE5Bfx1+ueY/m/17baDivdpyBNRERERERERPoli9VCUFOYVt5FkAYwc+ZMnn32WYYOHdqrcb28vLjtttt44okn8PXtfDtmRXGlcR0cEdRhu8/mL+abt1fQWF3H6l+8TpLVFYL1RmSAN1eOjubFeX9k58o9PP39/+O+Sb9g2ftrWgV84jkFaSIiIiIiIiLSb4VGuQ7P9yRIA0hMTOTpp5/m1ltvJTw8vFtjmc1mzj77bP7nf/6HK6+80qNz10rzyozrsMEh7bbZs24/83/2hnH/81fu49wJ8VwxejDBjY047Y523+tIgLeFs+JDuXTkIEL9vPBy2wJ7ZMdR/nDzX7h9+IMs+L/Pqams7VbfZzoFaSIiIiIiIiLSb4U0BWk1lbU01Dd69I7VauWqq67ipZdeYty4cQwfPpyIiIh223p7ezNixAhGjhzJj370I37+858TExPj8fxK8t2CtOi2lTmryqp5+qa/YGt0rRC7/pErOffG6a72ft4c++dSlv70/yjesxXv2josHVb+tBDlA+XbVlH6wbekRPhjbmp71qUT27QvyCri5Z+/xR0jHiL7YK7Hf8+ZzupBGxERERERERGR01JIZMt2yYqiCiJj2w/E2mM2m3nsscewWCyYTCbKy8vJzc2loaEBq9VKUFAQMTEx1NXV8ec//5lVq1Zht9u58MILPR6jNL/cuA5vJ0j764OvUpBVBMDYWaO459lbjGd2u501H2+gJK+MkvR/8+/jr+Ib4MvG1ftYvnAD6esOYKtr5PKbZ3L9L6/mndffpTTnEIUOOz+b+yv+75vfY/WyMvGCsaz8cF278ysrKCd9zT7iRgzx+G86kylIExEREREREZF+KyQy2LguK+xekLZhwwYyMzP5/ve/7+orJISQkLbbL48dO4bD4dpeuW7dOmbPnt1pgQF3zVs73c9za7bk3VUsfW81AAEh/jz2zkNYrC3FEPasPUBZUTmTHxqBb0kQ/kF+ZB/M4cnzf9OqaEBRxggAcnKOu8byNmMLruW/b/wzv3r/Z4yeltLh/EZPTzVWwEnXtLVTRERERERERPqt5q2ddOOctGa7d+/Gy8ury3bh4eEEBARAU3XNJUuWcODAAY/GKGkK0kIHBbc6Uy0vs4AXHnjFuP/J337IoISoVu+u/GgdwQn++IX7MOn8CQD85b5/tKm8WXS8GAAvhyvcM5lNhCYHcqwkk99+748MGTYY/yC/NnOLiAnjuW/+C19/z0JBUZAmIiIiIiIiIv1YaFTLCrLuBmljxoxh2rRpXbazWCzU19cb95s2beJf//oX+/bt6/Q9h8NBWYFra6f7tk673c4f73iRmgrXQf9zbp3FBTfNbPPu6oUbqC1uIHt1ERdcN4u1n2xix7L0NuMUHS/B6XRSX9lg/OYb5k3CeYNwJtfy1LXPkTJlWJv3inNK+fKVJV3+/dJCQZqIiIiIiIiI9FvuK9LKuhGk1dfXExER4VHhgH/961/YbDbjPjU1leTkZKqrqzt9r6K4EkdTxU33QgMfPPcJu1btBWBwYhQP/fXuNu/u23iIouMl+IR4MThoCBarhRd/8lq74+QeyWf//v00BNZA06o5W62dnI3F1JU3sGPlHupqXUFgSGQQP3zuVuPdVx/7J0f3Znf5DcRFZ6SJiIiIiIiISL/V062dGzZsYOPGjTz66KOdtnM6nZSVlZGcnExlZSWDBw/mkksuMbZ6dqb5fDSAsEGuIG3/pkO8/dS/ATCbTTz2zkMEhLTta9VH68EEo29OZHh0Am8/9SGFx4rbHaemopZjmdk4Gh0UppfjP8iX3A1FFOxsKXRQmlvG24deJCw6FF9/Hwqzi/nPX7+koa6R5257gefXPo2Xd9fbXM90WpEmIiIiIiIiIv1WaA+DtNLSUmJjY7tsZzKZuOWWW7j55pv58Y9/jMPhoLGx0aMxStyDtOhQaqtqeebWF7Db7ADc9Ph1jJk5qs17TqeTVQvW4x1gxepjYcTo4Sx8flGnYwXYg9n9diYHPzlO1vICfMNazj1Lm5HKY+88xJDkwcZ5aPc8ewvxI11//8GtGbz73ws8+pvOdArSRERERERERKTfarW1s8jzIO3CCy/k6quv9qjt0KFDsVgsOBwODhw4wN69ez16rzS/ZUVYeHQof//52xw/mAvAyLOHc+uT17f73oEtR8g/WkhDlY367WZ8TQHGFtGOFGYWG8UG/KN8iJ0e4VrRNi2Fv6z6fZvAzsfPp1WV0H89s5A96/Z79HedyRSkiYiIiIiIiEi/1ZOtnZWVlXz00UdYLJZujWWxWJgwYQK+vr4etXff2lldXs2iV74FwDfAh1++8xOsXu2fuLXqo3UAxE6PZMS5SUw4P437/nQHM689G7OlKcoxtX4na+9x/mfJb/jpyz/iZ/9zP40VDkwmE/s2HKSssLydUSBl8jBu+80NADgcTp67/a/UVtV69LedqRSkiYiIiIiIiEi/5e3jhX+QH3QjSDt06BAZGRk9Gu+yyy5jxIgRHrV139q5+K0VxvUPnr6ZuBFDOnxv8+IdAERPDic8MRiz2cy8n13BAy/8wFiZdtbFE/hnxkvGO1n7jhOfGsvlP7qQ8dPGMjRgBCazKyBb+8nmDsf6/i+vYdQ5rr8n53A+rz3+nkd/25lKQZqIiIiIiIiI9GvBkUHQjaqdgYGBTJo0CR8fHw9at5aTk8Nf/vIXKisru2xbWtASpOUeyQdg+MShXHX/xR2+U1ZYzuHtmQCY6sxMPmuy8Sxj9zHjOnF0PIMTBxHS9Ldn7T3eqh9TYiNDL44GYNWCdR2OZ7Fa+OXbDxlnp302/2sydh3t8m87UylIExEREREREZF+rbngQFVptXGQf2ciIyO57LLLejRWcHAwdrudnJycLtu6b+1s9tBL9xjnkrVnx7J0AMxWEwlhycTFxRnPjqa3BGlJY+IBSBjlel6SW0p1ebXxPDYxhvBk13fZtmQ3NZUdb9mMHT6Em564Dpq2eL708Bs4nc4u/74zkYI0EREREREREenXms9JczqdVJRUddq2sbGRv/3tbxw8eLBHYwUFBTFv3jzi4+O7bFtyQpB22T1zGH1OSqfvbP12JwAx50RSG976/VZBWlpTkDaypfJo1r6WcG/GjBmEmwcDYLfZ2bWq8wIJ1z9yBUOSXe13LE9n5Ufru/z7zkQK0kRERERERESkX+tOwYHy8nJsNhsBAQE9Hi8iIsKjM9YKjxUb18ERQdz9zC1dvrN1yS4AAgf7EhYV2upZ5p5s4zphlCtAi3cP0va2PA8JCWHIyCisfq7Vb9uX7u50XG9fb+778x3G/d8ffYu6mvou53umUZAmIiIiIiIiIv1aaKTnQVp4eDjXXXddqy2T3bV3714WL17caZuaqlqqy2uM+3uevYXgiKBO38k9kk9eRgEA/vXBrbafOp1OY0VadFIUfoGuAgvNgRonrFhzOBwczj9A5OgQALYt3dXl3zXtyilMuXg8NIWAHzz3ny7fOdMoSBMRERERERGRfs19RVpXBQdyc3MBMJlMPR5vyJAh2Gy2Ts8Re+/pBcZ1UFgAF991fpf9blvSEnbFnxXdatVcQVYRtVV1ACSmtWwrHT5xqHG9Z/0B49psNhMdHc2gpAgADm/PpKK48wIJJpOJH//fXcYZbh/88RNyM/K7nPeZREGaiIiIiIiIiPRrrYK0gvJO227cuJHNmzf3aryRI0fy8MMPdxjGFRwrYuFfvjDux58/BrO56whm6xLX+Wg+IV4UO/LJy8sznmXuzjKuk9yCtLDBocQMd1XnPLDpMA11Dcazu+66ixGJqcb9juXpXc4hYWQs1/7EtRKusb6Rf/zinS7fOZMoSBMRERERERGRfm1QQqRxffxgbqdtbTYbsbGxnbbxxJtvvsnx48fbffbuf39EY32jce8efHXE4XAY55j5h/hhtVoZPHiw8Xz36n3GtfsqNIC0Ga6wrLHBxoEtR4zf9+3bhymxJVhzX/HWmVufvJ6wwa4toasXbjAKIIiCNBERERERERHp55LGJBjXR/cc67Tt9ddfz9y5c3s9ZnFxMZmZmW1+zzmcx1dvLGv1W3h0aJt2Jzqy8yjlRa6tl6MmpvLYY48RFNRyptqOFS2rycadO7rVu2OmjzSu09fsN65ramooLM/H4tVUcGBZ5wUHmgUE+7cqjPDqY//sdBvrmURBmoiIiIiIiIj0a2GDQgiJdIVOmbs7DtJqa2v561//Smlpaa/GM5lMnHPOOQwZMqTNs3/+90c47I5Wv7lX1uzItiUtIVfs9EgWLVrUMu+qWg5sPmL0FR4d1urdtJluQdralpVrI0aMIC0tjdSzhgNwbH8ORceL8cSFt59rrHw7uDWDjV9u8+i9gU5BmoiIiIiIiIj0e82r0kryyjo8VD8/P5/S0tI+WV01bdo0QkNbrzTL2necJf9cCWAc2A8wdGxCm/dPtG2J2/bJQDt1dXXGbfraA9htdgDGn7AaDSA+NYag8EBX2zX7jb8vPDyc6dOnM+GCtJZxlnq2Ks1sNnPzr+YZ9+/+/iOtSlOQJiIiIiIiIiIDQeLoOOM6M739VWlhYWFMnjyZ8PDwXo+3detW3nmn9UH87/zuQxwOV9hk9XYFaeFDwgiJDG63j2aNDY3sWrkXgIiYMMZNHMuECROM5+5FAsafl9bmfbPZbJyTVlFcybH9OcazN998k/BRLVtEPd3eCTDjmrOM8932rj/ocQg3kClIExEREREREZF+z/2ctI62d3p7ezNt2jSPKmh2JSAggPLychwO1zbOjF1HWf7+GgCCI4Kor3Ed8p88ruvVaHvXH6Suph6ASXPHkZiYSHJysvF8ZyfnozVLczsnzb0wQUBAAP4RPnj7egGwfeluj1eWmc1mbnriOuP+vacXePTeQKYgTURERERERET6vaFjWipjdrQibfXq1SxcuLBPxktLS+Pmm282Qrm3nvq38WzmtWcb18ljE7vsy70q5rjzRvPqq69y6NAhAGqr69i/6TA0beE88Xy0ZmOaVqRxwjlp1113HVPPmcqYpnPUCrKKyDmc5/Hfee6N04gd4ToLbsfydHav3uvxuwORgjQRERERERER6fcS09yDtKx229TU1ODj49NnY2ZmZtLY2MiBLYdZ8/FGaNrKOSgxymiT5NH5aLuM61EzhuNwOIx57lm73zgfbdy5bbd1NkuZMgwvbysAu1e1hF01NTXk5OQw4fyxxm/bu7FF02KxcNPj1xr3757hq9IUpImIiIiIiIhIvxcUFkhEjGu11tH07Ha3L86aNYtLL720T8YrLS1lzZo15Obm8rbbarSbHr+WY/uOG/fJ4zpfkVZdUcO+ja7VZwmjYkkckcDNN99MUlISeHA+WjNvX29GTUsBIOdwPllNc9i5cyfr169nwgVjjLbdOScNYM4ts4hOcoWDm7/ewb6NB7v1/kCiIE1EREREREREBoTmVWkVxZWU5pe1eZ6RkUF9fX2fjBUUFIS3tzfFx0vZsGgrAFHxEVz2w7lk7HKtiLNYLcSPjO20n50r9uCwu85Zm3jBWKqqqsjKallRt+Ubt22fHZyP1mzalVOM67X/ca2Qi4iIwNvbm5TJyfgH+0HTirTms908YfWy8r1ftqxKe+8PfbM9tj9SkCYiIiIiIiIiA8LQVts7s9s8X7lyJQcOHOiTsXx9ffnlL3/J2n9tMX677uHLMZkga69r7PiRMXj7eHXaj/v5aJPmjuPw4cOsXr0au91OXmYBBza7zkcbPnEoEUPaPx+t2fSrzzKu1366CYDZs2dz0003YbFajCCurLCCox2cI9eRi+48j8hYV7XTdZ9u5tj+412+MxApSBMRERERERGRAaHVOWm7256T5u3tzaBBg/psvLfefIsNq10rv3z8vLn4rvPJ3p+DrdF1pllX2zpxO6/MbDYx7tzReHt7ExYWhtVqZeWH64x2s6+f1mVfMcOiSWoqurB3/UGKc0s5cuQIr7/+OgAT3c5J29aNc9IAvH28uO7hy437L19d0q33BwoFaSIiIiIiIiIyICSNaTnYv70VV/fffz9paR2fM9Zducfz8Aq1AHDBzbMICgvkyM6WAG/omM4LDRTnlhoVRlPOGk5gaACjRo3ioYceAmDlR25B2g3neDSnGVe3VAxd/9lmKisryc7OxmazMXFOyzlp25bu6qCHjl14x7lYvVx/7zdvr6CxobHbffR3CtJEREREREREZEBIHB1nXGeeEKTV1tby/PPPU1bW9uy0nnA6nRTuKKciqxqAqx64GIAjO48abYZ2sSLNvXrmpDmu1WKrVq3i888/Jy+zgP2bWrZ1xg4f4tG8pp2wvTMpKYkJEyZgsVhITIsnNCoYms5ma64G6qnQqBBmXOsK6soKK1j7yeZuvT8QKEgTERERERERkQHBP8iPwYmu6pKZ6cdaVe6srq6mvLycysrKPhlrx/J0DnxzlOq8OsbMHMnwCUMByHDbUtrV1s59G1qqXzZX5CwqKqK4uLjb2zqbpUxONs4y2/btLrzM3kydOhWTyYTZbDaqd9ZU1HJgyxGP+2122T1zjesvXv222+/3dwrSRERERERERGTASExzrUqrqailMLvY+D0kJITx48cTFRXVJ+N8+revGH5FLIlzBnPV/ZcYv2c0rUgLCgswAq2OHNnVsnpt2IQkAFJTUxk7dmyPtnUCmEwmpl3lWpXW2GBj+Ser+Pvf/05paSkAE8532965pPvbOydcMIbooa5z5rZ+s5PcjPxu99GfKUgTERERERERkQEjKa3lXLLM3S3bO728vDj77LPx9fXt9RgFx4pY859NmK0mfAN8mHmda7tjRXElRcdLXPMYm4DJZOqwD6fTaYRuETFhhES6tlwmJCQQ4htmbOscNiHJ422dzdyrd+5YkQ6Aw+EAt5VvAAc2H+pWvwBms7nVqrSvXlva7T76MwVpIiIiIiIiIjJgJLlV7nQvOFBSUsIrr7xCQUFBr8dY9PdvcNgdZCzOY0zKWLy8vQDI2OW2rXNs59s6i3NKqCx1na/mvgV0yZIlfLLwE+P+3Bumd3t+488bjX+wHwAbFmznmquuITzctTouZng0Pn7eAGSmZ3e7b4CL7jwPs8UVKX395rJun7XWnylIExEREREREZEBI2lMS5CWkd4SbNntrrCneWVWT9ntdr56YxkAfhE+nHXlhJbxdnl+Plqr6p5uoZvdbqc4r9S47862zmZe3l7MvG4qAHU1dWxeuc04L85sNpPQVJQh51Ae9bX13e4/YkgY066cDEBxTikbvtja7T76KwVpIiIiIiIiIjJgJIyKNbZUHnVbcRUZGcmNN95IdHR0r/pPX7OfklxX0JV6aQIZ2S0H9nenYmertmNbtqMmRAwl/SNXn92p1nmiS++eA0BQjD/ZZUdbVSttXrXndDo5ti+nZ/27be/88rUlPeqjP1KQJiIiIiIiIiIDho+fD0OGDQYga0+2sQLNbreTk5NjrEzrKfdqmhGDIwgICDDuM9yKByQ1FT3oiHtb99Vr336wAp9Q19bLK+69sMfzTJueSsKoWBprbDhsDgqzStzm5rZqz63KaHdMuXi8UUxhy9c7qKms7fFc+xMFaSIiIiIiIiIyoAxt2t5ZV1PPsf2uFVeFhYWsXr2awsLCHvdrt9tZtXADAF4+Xtxx9+1ccMEFxrPm4gYxwwbjF+jXaV/NK9IsVgvxI2OgqVhBblk2Q84KJyDEnwtumdXjuZpMJi67Zy41hfWsf24vy95ZYzxL7OAcue6wWCxGUYPGBhubvtre47n2JwrSRERERERERGRAGT0t1bjescxVtdLPzw+LxYK/v3+P+3Xf1jnl4vGsXreKzZs3A5B7pIC6Gtd5Y11t62xsaDS2VCaMijWKFXz52lLqKxtpqLJxyV3n4xfQuwqjc2+bTeAgP8bfncySf62kob7RNT+3c+QyexikcUJ10HWfburVXPsLBWkiIiIiIiIiMqBMuGCMcb192S4AQkNDeeyxxwgJCelxv+7bOmdfP43jx4+Tn58PwMEtLWelDR2T0O77zY7tyzEqXTafj2a32/n85a85/EUOhz47zhU/vrjH82wWEhnMpCvGEhDtR21NLWv/sxGAqPhI/INcK+Z6uiINYNy5owkIcQWTGxZtxdZo6/WcT3cK0kRERERERERkQBk2IYnAUNfZZduXpeNwOLDZbPzjH//o8dbOE7d1TrtqCqmpqQwbNsw1ztJdRtu0GSM77at1oQHX6rWNX2wjL7OQ6ElhTPvxWOJG9KzIwInmzJtN0Z5yGqptfPGqqyiAyWQisekMt7zMQmqrena+mZe3F2dfNhGAqrJqdq7c2ydzPp0pSBMRERERERGRAcVisTD+/DQAKkuqOLLjKA6Hg8LCQmMFWXeduK0zINifsWPHkprq2ka6dYkrSPPytjJmZudBWsbOtoUGPnnpKwB8Qr0JjOv8fLXumHzBBGr223DanWxbsoucw3kAJI52OydtT3YnPXRu+lVu2zs/GfjbOxWkiYiIiIiIiMiAM+H8lu2d25buxsvLi4kTJzJo0KAe9Xfitk6Hw8H8+fPZt28fuUfyycsoACBtRiq+/j6d9nWkVcXOBI7tP86WxTsAMFd7MWHS+B7NsT1btmxh2HUtq9u+eOVbOGH7aXORhJ4469KJWL0sAKz5ZCNOp7NX8z3dKUgTERERERERkQFn4gnnpJlMJmbPnt2jM9IcDkebbZ0NDQ00NjZisVjYtqRlW+eEC8Z22d+RnVkABIUHEhETzqd/+9p4Nve685k4cWK359iRqqoqgkIDjbDrs5cXU1VWTVIfFRwICPY3zqQrPFbM4e2ZfTDr05eCNBEREREREREZcBJGxREeHQrArpV7sTXa+PDDD1m9enW3+8rcfczY1jn5wnEEBPvj6+vLvHnzGD58OFuX7DTaTpo7rtO+yosqjL6Gjk2grKCcr15bCoC3rxej5ibz8ssvU1dX1+15tmfKlClcfc3VXHTHeQDUVNTyn79+SWJa3wRpANOvPtu4XtNU0GCgUpAmIiIiIiIiIgOOyWQyVkrVVtWxf9NhLBYLNTU13e5rx/J043riHNeKs/r6esrKyjCZTGxfuhuAgBB/UiYnd9pXxq4s4zp5bCLvP/sf6mrqAbjsnrkEhQbicDj6LEgrLCzEZDLx/ceuxWxxxUALn1+Eb4APQeGB0MvKnQDTrppiXK//fEsvZ3x6U5AmIiIiIiIiIgOS+zlp25fu5tJLL2XatGnd7mfHipYgbdy5owE4cuQIS5YsYd+Wg5QXVQIw/rw0LFZLp325V+yMSojgs5cXA+Dj581NT1xLQkIC8+bN69EW1PYsX76cHTt2MCR5MHNumQVNBRg+m7+YpKZVaUXHS6gqq+7xGJEx4QybkATA4e2ZVJf3vK/TnYI0ERERERERERmQJpxwTprdbu921U6Hw8HOFXsACAoLMKpsms1m/P39SV+x32jbvFqtM+4VO/euP0hjfSMAV91/MeHRYZhMJkpLS/tsRZrZbCYiIgKAmx6/FpPJBMCCP39GXEqM0a632zvTpruqlzqdTvasP9irvk5nCtJEREREREREZEAaMnQw0UNdVTrT1x5g546dLFu2rFt9ZO4+RmVJFQBjZ4/GbHZFKSkpKTz88MNsX7bbaNvV+WgAR5q2dppMJtZ9ugkA3wAfbvx/VwNgs9lYunQpBw4c6NY8O3LnnXcydepUAOJTYzn3e9MBKCusoLK0qtXf2RtjZo4yrtPX7OtVX6czBWkiIiIiIiIiMmA1b+9srG/EVgF2u71b7zevRgMYf26acb1hwwaWfLuEXSv3AhARE0Z8aky7fTSz2+3GeWR+Qb7YbQ4Arv3JZYRGubZyenl5ERkZ2e15tqe+vp433niD0tJS47ebH7+25W9b2fK39factLQZqca1gjQRERERERERkX5ootv2zsLdpTzwwAPder/V+WjnjTau9+/fT3bmcaNQwKS544xtkx3JPZxPfW0DNFXPBPAP9uP6n1/Zqt29997LxIkTuzXP9hQUFJCbm0tjY6Px29Cxicy41lVls6LpbDeAzPSsdvvw1KD4SAYlRAKwb8MhbI22XvV3ulKQJiIiIiIiIiIDVutz0tL5+9//7vE5aR2djwYwdOhQGvOcxv3EC7o+H8290ECz6392JcHhQa1+27FjBx9//LFHc+xMcHAwY8aMISoqqtXvNz9xnXFtNrvCv8z07F6P17wqra6mnsPbM3vd3+lIQZqIiIiIiIiIDFjh0WEkjo4D4MCmQ5SUlHD0aNtAqz1H049RUexateV+PhpAamoq+5e0hEUT54xptw93OYfyWt0HhQdy3U8va9OutraWAwcO4HQ62zzrDqvVykUXXYTF0rqSaMrkYZx9mWvFm8PhGqOsoJyywvJejTdmhvs5afs7bdtfKUgTERERERERkQGt+Zw0h91J0qBkoqOjPXpvRwfno+Xn5/Pyyy+TedC1HTJhVCyRsRFd9leSX9bq/sZHryIgJKBNu5EjRzJ27Ngut4p25csvv+Trr79u99kPn7sNs6V1LHS0l6vS3M9J2712YJ6TpiBNRERERERERAa0iXNatl1W7K8jMDDQo/eO7GhZuTbynBHGdUlJCQD1la7zzjzZ1glwYPMR4zo8OpSrH7q03XaRkZFMnDgRh8PhUb8dKSkpISCgbVAHkJQWz9UPXNLqt+Kckl6NlzQmHv9gPwDSV+/r9Yq605GCNBEREREREREZ0MadO9pY3ZWRc5j333/fo/eO7mmpZNm8PRQgOTmZ4Ioo7PWuoGvS3HFd9lVbVcuBzYeM+x/98Tb8AnzbbetwOHj99ddJT09v97mnLr30UmbOnNnh89ufuhG/oJY57Fl3oFfjWSwWRk9LAaAkr4y8jIJe9Xc6UpAmIiIiIiIiIgNaUFggwycNBSD/cBGlpaVdrpZyOp1kpruCtEEJkQQE+xvPDh8+zOEdrvPRzGYT492qeXbkn7/7iMZ6VyVLs8XMBbfM6rCt2WwmICCAsrKyDtt0paGhgb179+Lv799hm8DQAC79wRzjfsWH67Db7D0eE2Dk2S0r9zJ29a4S6OlIQZqIiIiIiIiIDHgTm85JK9hRRlrMuC7PHys6XkJNRS0AiWnxrZ4tW7oMm189AClnDW/3nDN3menHWPCXRcZ9RExYl+N///vfZ8KECV38VZ2MmZnJunXrqK6u7rTdHLdAr6ygnC9e+bbHYwIkjGpZuZe1t/eVQE83CtJEREREREREZMCb0HROmsPmZN/uA+Tl5XXavnk1GkCS27ZOgNrKOiqO1QAwaU7n56M5nU5eeOCVViu9ouIju5yvl5cXmzZt6rJdZ+OGhoYSFBTUabuw6NBW92/81/tGpdKeiB8ZY1xn7Tve435OVwrSRERERERERGTAGzNzJF4+XgBU2EvZsmVLp+0zd7udj3bCijTHQR8Kd7q2XXZ1Ptq3/1zJrpV7W/0WfkJ41Z7CwkJWrVpFZWXPQq2UlBR+8pOfdLnyLSQquNV9ZUkVbz75QY/GBIhPjTHG1Io0EREREREREZF+yC/Al8kXuUKvgt1llOR1fv7YUfcVaWMSjOvdu3dTGuhazebj582opsP121NZWsU/fvFOm9/DBncdpCUkJBASEkJDQ0OXbU/kdDr5+9//7lGxAm8fL/yDXJU2mwOwz19ezK5Ve7t4s30+fj4MTooC4Ni+nAFXuVNBmoiIiIiIiIicEWbPmwbA0aX5VO5uG1BVV9Sw6evt7F69l4NbDxu/J4yKNa63b95OY20jAGNmjcK7aZVbe9741b8oKygHMKpZAoQNDulyrgEBATz88MOEhnYdup2ooqKC/Px8vLw6npu74EjX9k9vX1d7p9PJH+98kZrK2m6Pjdv3qqmspTinpEd9nK4UpImIiIiIiIjIGeGcKydj9bJg8TaTH3iUhf/4jL/c9w82L94BwJNXP8cTlz7Nz2Y/yZGdTRUnTfCjcT/nT3f/DVujjaqsBrJWFgJw9iUTOxxr8+IdfPbyYgB8A3yYdvVZxjNPtnYCLFu2jA8+6P42S39/f6ZNm0ZycrJH7UObtnfW1zaQNiMVgLyMAub/7M1ujw0Qn9oSPGbtHVjnpClIExEREREREZEzgo+fN4lp8dgbHTgdDj59axGL/vENz932AgAluaVtX3K6QqWv3ljGzlV72LvhAKUHXeeWzZw3td1xyosq+J87XzTuf/D0zdjqbcb9iQf8d8TPz4+MjIxub48sLi5mwoQJHq9Icz8n7cd/vgO/QF8Avnp9KWs/6X7Bg9aVOxWkiYiIiIiIiIj0K5/N/5obou/h8PZMcMKhz3MoPVwFQPAIf4qLizn3hukdvh8UFkBpdTHhZ/th9bMw6pwRDGqn+qbT6eTPP3zZOINtysXjueahSynNbzmTzdMVaePHj+e8884DoKqqyuMqnp9++ikbN270qC0nBGnefj7c//wPjPv/+9HLrebuCfetsAOtcqeCNBEREREREREZ8N74r/epqWg58ys4MYAJPxzG+LuTiZ8bwZEjR7j4B+d3+P49z93Gvh0HqS2px1ZrZ1bTeWsn+vLVJcYqrpDIIB59/QFMJlOrMMqTYgMA5eXlbN68md///ve88cYbfPvtt12+43Q6KSkpIS4ursu2zUIjW4K08sIKLr7zPGZc49qKWlZYwZ9/9DJOp5Oje46xauEGbI22TnqDhJEtQdqxfQOrcqf1VE9ARERERERERORku+j2c/n0la+Z+uhIyjOrCIrzx2w1ExTnD06IjY1lSMxgJs0dy9Zvd7V6N21GKpf84HwenPY1mXtd1TxntbOtM/tATqtzxR555cdEDAkDaFUltKtiA9988w3btm0jMDCQsjLXeyUlJR6deWYymbj33nu7VaTAfUVaeWEFJpOJn/79XtLXHqCsoJz1n23h6Zv/wqqP1uOwO7j7Dzfz/ceu7bC/4IggQqOCKSusIPtArsfz6A+0Ik1EREREREREBrwf/e/tXHjzuZRlVBGcEIDZ2hKJhDREERMTA8Cld89p9Z7ZYubh+T8i53AeXiMcWH0tpEwZRnTSoFbtbI02nrn1Bepq6gG4/Idzme5WYKA031W9MzA0AG9f707nmpqaSm1tLUVFRcZvQUFBfP/73+/y70xPT2f9+vWYTKYu2zZzD9LKCisACI0K4ZFX7jN+X/HBWhx2BwDrPtvcZZ+DEqOg6dw5u83u8VxOdwrSRERERERERGTAM5vN/PTle0kOSmX3O5lU5rZs83QGNRrX0685G6t3ywa+y380l6FjEvhmwVLCRwRhtpiYdV3b1WhvP/VvDmw+DEBcyhDu/fMdrZ6XNq1I86TQQEJCAg888ACXX3658VtDQwMFBQVdvrtlyxZKS9spmtCJ0BNWpDVLmTKM0EHBbdof3HKEhvrGNr+7i4oLB8DhcLZajdffKUgTERERERERkTOCyWTiwRfu5sLrLqA6tw6nw4nT6cRkaVm95e3jxdTLJwHg4+/DD/94GwA7lu6hYFcZ1fl1zJx3Tqt+d67cw/vP/gcAi9XC4+8+jF+Ar/G8tqqW2qo68GBbZ7PIyEhGjRpl3NfX12OzdX42GcCgQYM466yzumznrtXWziJXkFaSV8oDZ/2SsoKKNu0bG2wc2pbRaZ8RMeHGdWF2cbfmczrTGWkiIiIiIiIicsYwmUz86H9u479vKaCmrAS/cB9GpaVS12inuKaBinob8168l5k/v4bYhEjqzBbKMwvI2JlFbXEDyeMTiRsxxOivvKiC527/K06nE4A7fvs9UiYPazVm87ZOulGxE8Df358rr7ySzz77DG9vbwYPHkxWVhYZGRlUVlbicDjw9vZmyJAhJCcn4+3tzZQpU4iMbFtNtDPtBWkbFm2lOKfjlW171u5n9Dkp7T6rs9mJGDeUlBtmYvXx4nBFPT5F1YT7exHi54W5G9tOTzcK0kRERERERETkjGIymXjyvUfZtDKdA7UVVAyO54MdOa0beftyPK8K8qrAbufiV+9j95srmD5hpNHEbrfzh5v/QkGW6yyzsbNHceP/u6rNeO5BmqcVO5tNmDCBvLw8li5dyj333ENDQ0OHbYOCgoiKiuL//b//R3h4eIftThQS2XZr5/Srz+LrN5eRvmZ/u+9s+nIb1z9ypXFf3WDjYGE1h0uqqaq3w6QUzp7kCtpKgNWZJQBYzCaiA31IHRRIbIhvvwvVFKSJiIiIiIiIyBmlttHOpmNlZPoH4/QPxmZzdv6CxUJAdCJTH7sdbxNkldaSEObHm//1gVHhM3RQCE+8+zAWi6XN6+5nhHVnRdratWt59913KSws9Kh9ZWUllZWV3H///cycOZPbb7+d4OC2Z5ydyC/QFy8fLxrrG41iAyGRwfzfyv9m58o9fPSnz1j/+ZZW7+xavReAukY7m7PLOFJcQxdfEQC7w8nxijqOV9QR4G1hSlwoSeH+Hv19pwMFaSIiIiIiIiJyxjhSXM3GrDLqmypQdletE5YdLiKwuoaF87+Gpsqev/7gZ0TGRrT7TqlbkBbqwYq08vJyXnvtNdavX9+jOTocDlauXMn27du55557OOecczptbzKZCI0KpjC7uFWxAZPJxPhz0xh/bhpH92bz4Z8+ZfEby3E6nVi9rRwtrWH90VLqbD37ltUNdlYcKSaztIapCWH4ebUNIU83KjYgIiIiIiIiIgOe0+lkS3YZqzJKehyiuasK8OfS139KwJAwfvTH2xh/blqHbWsqaozroLCATvvNzc3l8ccf73GI5q6iooI///nP/Pvf/zbOcOtI8zlp5UWus9dOlDgqjkdfvZ93Mv7G9x+7lp+v/APLDxf3OERzd7S0lkV786mo67wS6OlAQZqIiIiIiIiIDGiuEK2c3XmVfdpvUHwkV77zCBfff3GHbRwOB1u+2Wncm8wdnwlWUFDAU089RVFRUZ/O86OPPuLf//53p22CI4MAcNgd1FTUdthucEIkkx+4nMw+zryqG+x8tb+QyvquK5OeSgrSRERERERERGRAO1xcQ3p+34ZozazBASw7XIzD0XbFV2NDI3+840W2L9tt/Oawt21nt9s5fjiH3z75W0pLO66U2RsLFizg28VLOnxusbZsq2xvRVqzjJIaduRWdPi8N2ob7Sw9WIi9nW95utAZaSIiIiIiIiIyYFU32Nh47OSEU81KahrZlVfB+JgQ47eaylp+O+9/jGIEzZa9v4qMXUfJzywk/2gBeZmFFB4rxmukHb+RJ7eC5csvvcz8O98hbmgssSlDiBsRQ1zKEGJHDMHe2LISzNRBJc3aRjsbsk7utyyrs7Ejp5xJcd2rbvpdMTm72iQ7AFVUVBASEkJ5eblH1StEREREREREpH9aeqiQY2V13DwxluKaBgB25VaSU1EHwKBAby4dOZj3tx+nvhfnfZlNcOXoaEL9vCjJK+WJS5/m8I6jHr1rCYGgufDOO+9w+PBhAP7zn/+wY8cOhg0bxk033YTZbGbbtm189tlnPZ4jQMMxJ9UbOm8z76eXM+nC8aRNTyEgpOVMtxWHi8gsdW37bO97Tk0IJdzfGxOw5Xg5+ZX1PZqjCbhi9GDC/b179P7JpBVpIiIiIiIiIjIgldU2cqzMFZhVNdj5en9hmzajBwdRVN3Q67EcTtibX0lMTQ0PnPVL6ms96zMoLAD/s000mKopKCjgt7/9rfHMarVyww038Mc//pGGht7PEcA7zkTtLieOmo7bLPjLIhb8ZRFms4lhE5IYO2s0I88fQ1bMYKPNid8zyMdKiK8XX+4rwN/LwuzkcL5q53t7wgmk51cya2j7VVBPJQVpIiIiIiIiIjIgHSisMq4DvCxckhpFdYOdjVll1NsdxIX4UlBVT3xo3xwhf6SkhuUvfNJliPb/3n6QYeOSGJwYid1k57777gMbREZG8tRTT1FcXMwbb7xBfHw89fX1PPLII1gsFt555x2ysrJ6N0kT3PziFcyceC7ZB3I5fjCX7IM5rP3PJqrLW6drDoeTg1szOLg1gwk2GHNHS5B24vesa7RjczgxAd5Wc7ereV6dFs2W7DKyy13BZ2ZJDWfFheLrZeny3e+SgjQRERERERERGXCcTieHi1uCoYW7cqm3OxgeEcDE2BDWZ5WSOiiQZYeKiA/1a/XuxalRRAX44HA7DWtLdjn73YK59tgcTqbfdzGrP1xLQydhWmhkMMnjEgH46quvsNlc55M9+OCDVFVVcf7553PTTTexZ88e4uPjefzxx4mMjOTee+/lySefNPpJTU3luuuuY8SIEZhMJgoLC1m9ejWLFi3Cbrd3OP7adWu5/Y7bGTY+yfjtF8d+y/alrqII/+/tB9m/4RC7Vu0lY1cWTqeT5MumtOqjve9Z3WDj2jFDsJhNLDvcUnn04tQoBgX68PmefEprXeU+vSwmbp4Yx0c7c6husPNJel6r/h1OyCytYeSgoE6/+Xet3wVpzzzzDAsXLmTfvn34+fkxffp0nnvuOVJTU0/11ERERERERETkNFFRb6PB3rIqqr7pOqO0hpSoAJLD/TlWVktHBSK3ZJext6Dz4Kw93kPCWVT9LkU5JRzccoSDW46w5L1V5BxyBUX+QX7Ej4w12h86dMi4rqpyjbdmzRrmzp3Lxo0b2b9/P/X19Rw/fhx/f3+j7aRJk3j44Yf54IMPePHFF6msrCQmJoZrrrmGsLAwioqK6EhpaSnFxcVERkYavzndPsTseedw4a3nAlBRUsn2dQfJiApp1ceJ3zMm2Acfq4WFu3Px8zIzZ3gUn+/NN9o32BxMig1hyaGO53Wivthy29f6Zu3id2jFihU88MADrF+/nm+++QabzcZFF11EdXX1qZ6aiIiIiIiIiJwmit1CGKvZRHMdyuhAHyrqbYT6eZEY5s/cEZGE+Xkx28PzuKxmE1MTQpk3dgg3jo9hZlI4XpaWKpfN40bGhDPtyinc/tSNzL5+mvH8V+//lOikQcZ9c3EBHx8fo1rm6NGjycvL49ChQwwZMgSTyURISEirc9LuuusuPvnkE7744gsqKysByMnJ4W9/+5sRooWEhPCzn/2MV199lb/97W98//vfx2x2RUFHjhxp9Xe516J0r9oZHB5E4vSRbb7Bid8TTEaxhka7E6u5deXP/YVVRAX6MDjQp93vOm/skDYrA0/HIK3frUj76quvWt2/8cYbDBo0iC1btjB79uxTNi8REREREREROX2U19mM62BfK9MTw7E5HNidsDazhOqGlq2PF6dGsTKj2KN+ZySF43A6+XRPHk4nTE8MY2pCGKszStqMa3ALqbx9vd1+dpKTkwNATEwM9957L3V1ddhsNubPn091dTUrVqzgqaeeMs5IAxgyZAiDBw9mzZo1nc71Jz/5CWVlZTzwwAMEBQXx+OOPU19fz8cff2yMa8zFbUWa6YQQrOKEv6m971nTYCc5wp9LUgdhMZvYkVvR6p16m4PdeRVMigvhy30Fnc7bfVyn09kq2DvV+l2QdqLy8nIAwsPDO2xTX19PfX1LydWKiooO24qIiIiIiIhI/2dzC4ZKahpbbTM8UXvVPCfFhTAhpmU744c7c7CYTSSE+fHB9hwa7a7+t+VUcHVaNGsySnA2jXti+OPoIKSy2WzGSrCMjAwee+yxNvNYtmwZy5Yta/VbcHCw6+8qKenwbwoLC2Ps2LH88Ic/NHKRhQsXcsMNN/Dxxx+3yknoZEUaJ3xLOvmezWFiR/bmVzFqUCDxoX7kVdZ12pam6p0OJ1hOnxytfwdpTqeTRx55hJkzZzJmzJgO2z3zzDOtyseKiIiIiIiIyMBm7mX4sjW7vM0ZaSG+XphNJuaNHdKmvZ+XhZpGOyZT2yCKDkKq5m2W3dW8QCg8PJz8/PYDwoiICBoaGowFSAAFBQVERES0O3ZHYR+uQp99wu50sj2ngkmxIXy1r96DN+A0WowG/T1Ie/DBB9m5cyerV6/utN3jjz/OI488YtxXVFQQHx//HcxQRERERERERE4Fb0vfHwtf3WDD4XTy75052DuoUuDTzrjuIZXZLaSyWCz4+vpSV9f16ix3ubm5FBQUMH36dD7++ON22xQXF+Pt7U1ISIgRpg0aNIjiYtcW1oCAgNYvdLIizcfad9/yUFE1aYODGBbp32Vbq9mE+TRL0vpdsYFmDz30EJ9++inLli0jLi6u07Y+Pj4EBwe3+p+IiIiIiIiIDFzh/l593medzcGxslqmJoQa4ZKv1UyC2yH54f7ebd5z3zZ54hKrpKSkHs3l9ddf55prruGSSy4hMDAQms5Ou++++4iMjKS0tJTdu3dz22234ePjQ0REBNdeey0rVqwAYOjQoUZfeZkFFGa3nBHncKt2ChDWh9/SCWw9Xs7Y6K6zmfa+5anW71akOZ1OHnroIT7++GOWL1/e6h9eRERERERERAQg4iSFMKszSpgQE8LlowbjYzVT12gns6SGrLJaADZ9sJrDpeWMnT2asbNGERwR1Oogf/MJ2yaTk5PZt29ft+exdetW/vCHPzBv3jy+973vAVBUVMTKlSspLS0F4Pnnn+fuu+/mpZdeoqGhgdWrV/Ppp59iMpla5Sn/+4O/UXisJUi7JvQOkscnEpcaQ8SQcK588JIefKmOZZXVMiY6CF8vS6ftIgP6PgztLZOzVSx6+rv//vt57733+OSTT0hNTTV+DwkJwc/Pr9N3m1VUVBhLG7U6TURERERERGRg+jQ9j9Laxu90zG8fmE/epoPGfVJaPCaziYxdWQA88+WvmHLxBOP55s2b+eMf//idznHEiBE8/fTTxv2jFzzFjuXpHbYPCPHnh2v/SFF1w3c0Q5cLhkcSH+pZ1vNd6XdBWkclT9944w3uvPNOj/pQkCYiIiIiIiIy8O0rqGJDVul3Nl5tXikLrv59q/PG2hMUFkBsSgxxKUOIGR7NskNfUVVb+Z3N84oLrmawbwz5mYXkHS1g54o95Ge2rVzazNvXm+ez/sGazM6rcvalAG8L140dctqdkdbvgrS+oCBNREREREREZOBrtDv4cEcOjR0UBuhrU+JCifeG3av3sWvlXnat2sPBrRltzhw7ke9I8Bvz3QRGjnon5YuAzqdk8Av05Xef/JIx547mox251Hfxt/SViTEhjIs5/TIbBWkK0kREREREREQGrN25FWw5Xn7Sxwn0sXDV6Gi8TqjaWVNZyzO3Ps/6z7YAkHrWcErzyyjIKmppZIWQi8Dsf/LDtJptTuoPe9Y2PjWGZ776NYMTowDYm1/JxmNlJ3eCgL+XhavTovHuw2qhfaXfFRsQEREREREREfHU6OggjpbVnvTzvWYkhbcJ0QD8g/yIio0w7h+e/0NGTEqmrqae3MN5ZB/IJftALul7d3OgbtdJnaO11ocp48cRfdUgopMGMTgpiuikKAYlRnFL0o+pLqsx2o6elsJ/f/oYwRFBxm8jBwVytLSW/Kr6kzrP6Ulhp2WIhoI0ERERERERERnIzCYTM5PCWbQvn0b7ydmUlzY4iOgg3w6fO9y2ljaf/e7r78PQsYkMHZvY9ORaXnvtNb7++uuTMsfAwED+8MIfiI6Obve5f5CfEaRNu2oKT7z3U3z9fVq1MZlMzBgazud78mk4SVs8Rw4KJDbk9Cow4O70jPdERERERERERPpIiJ8XjSt20lhd1+d9D4vwZ3JcSKdtfPy8jeu6TuZw1113MX369D6dH4Cfnx9PPPFEhyEaTZU5Abx8rPzmo0fbhGjNgnysONftpqGqts/nmRTuz1nxoX3eb19SkCYiIiIiIiIiA9r6z7fwz0fe4NsHXqa2qKLP+k3yt/Dqpb/lvom/IH3d/g7bhUS1nM9eVtjx+GazmZ/85CdcdNFFfTbH8PBwnnrqKYYPH95pO1uDDQAvHy8sVkuH7bZ8s4O3fvIa39z3N6rz+64iampUALOGhp92VTpPpCBNRERERERERAas44dyefa2FwAo3pNF6J4MksP9e9VngLeFuSOi2PDHhRw/kMuRnUf56Yxf8+gFT7Fh0RYcjtbbHkPdgrTyToI0msK0e+65h1/+8peEhYX1ap7nn38+f/rTnxg6dGiXbcsKKtrM9UT5Rwv5w83P43A4KT1wnMDthxgeEdCrOfp5mZkzPJJzEk//EA2dkSYiIiIiIiIiA1VdTT2/nfe/VJe7zv6aNW8q3/vZ5ZhMJpIj/Plw4WbCxiZ53J+fl5nUqEBGDQ7C22ImZcowvnl7hfF8x/J0dixPJ35kLNc/ciVzb5uNt49XqxVp5UWVHo01efJk/vSnP7Fo0SIWL15MZaVn75lMJiZMmMCVV17JmDFjPHqnob6RqrJqAMKi299a2VDfyG+v/18qil3zmHr5JG59/BrMZjPJEf58sGAToWMSjTPguuJnNTMiKpDRg4PwOU0LC7Sn/8xURERERERERKQb/vGLd8jYlQVA/MhYHn39ASPosR0vYtHdL7Dr1TfIX7WZuBBffE8IdByNNiL8vUiJCqBy11q2vvR3Di9YjXdTdc6Z101td9xj+47zfz962VgJFxLZUvmyqxVp7gIDA/ne977Hr3/9ayZMmMAFF1zA0KFDsVhab70MCwtj8uTJzJkzh1GjRnHbbbd5HKIBlOWXGdfhHQRpb/zqXxzccgSAmGGD+eXbD2E2N32v4nIW3f0CO19+ndzlG4gL8cXPq/W3NJsg3N+LEZEBVO/dwLaXX+HA+8v7VYiGVqSJiIiIiIiIyEC0/vMtfDbfVQHTx8+b3yx4FP+glmqQqxZswGQ2kf72Hqb/YTJzRkRReKyQP937D44fKaA4pwRno53Pq96hoqKCxVn78Iu1sHzdUnx8vbn8hxcSGRPOoIRICrKK2p1D9v4cOOGMtPIenNE2aNAgHn/88ZYQ0Gajvr4eu92Ot7c3vr6uiqEffvgheXl5vPHGG9x+++0kJiZ20bNLSV5LkBY6qG2QtvXbnXz0588A8PK28uRHjxIUFmg8X71gA5hg7/v7OOvX45kzIoqygjKe/cF8Us4ezq1PzMNqNmE2m6isrOSbI+n4DjGxbscqvJ63cN3DV3T7m5wqCtJEREREREREZEApzS/jT3f/zbi/9093kDgqrlWbVQvWk3jBIILi/Jl53dk4nU5+Mfd3HD+Y16pdWUEF+aW5xn1IYgAv/ORVTCYzl90zh9HTUtoN0sKjQ/n5a/e73vGw2EB7amtref7557nxxhuNggFWqxWrtW2kU1BQAIDT6WTnzp09CtJOXJFWUVzJH+980bi/+5lbGDa+9XbYlQvWkzB7EGEpQcya51ql94u5/03m7iy2fLGVKeenMW7WaAByc1u+ZVCcP6/+6p+YLRauefBSj+Z6qvWv9XMiIiIiIiIiIp1wOp38791/MwKrc66czBX3XtiqTfaBHI7sPEpociA+Zl8GJUSx5j8b24RoAEXZxUQPjqauvAEAq6+F0d9L4MO3PuI/L37JqHNS2p3HLb++ntQpwwAIDA3A3LQdtDtbOwGys7NpbGwkKiqqy7YjRowwvsGuXbt4//33jXCtM2X55ca1e5DmdDr5y31/pzjHVZ1z0tyxXPvwZa3eLcgqZN+Gg4QOC8RisxKXEsOmr7aRuTvLaPPVa0uN6+joaOpKm76lj4XUG+L5dMFn/Pt/P+1ynqcDBWkiIiIiIiIiMmB8Nn8xG7/YBkDooBAeeeXHbQ7AX7VgAwBHl+YzNmUcNZW1vPST19vtrzC7mIPph/EOaFkBFjo0kKS50Sx85z/kZbYfVL3x639RdLwYmipxNp+T1t0gLS4ujhtuuIGQkJBO2zU2NlJaWtrq/sCBA8yfP5/GxsZO33VfkeZebODrN5cb3yooPJBfvPlgy7loTVYv3AhA1vJ8RiaOpq6mnhceeLVVm3Wfbqa+th6AjP2ZWANazngLTQok8bzBfPHxF7z3h4WdzvN0oCBNRERERERERAaEo3uO8fdH3zLuf/HGA4QNahtArVqwDp8QL/yjfDj/hlm8/ZsPKDpe0m6fuYfzWb5mKWarGafTidPpJHdTMRnf5FFX2sDHz3/BqHNS8A/2474/3cG535sOQFVZNf/zg7/hcDjAbXtnWWEFTqfT479pz549REREdNlu37597Nu3z7j38fHhuuuuY9q0aV2+2ypIG+z6XscP5fLST14zfn/klfuIjAlv8+7KBevwDrISMMSPC26YzXtPLyAvo3W4WFVWbQRu3y77Bqu3xfiWedtKOPJ1LrXFDbzx63+x6evtXc73VNIZaSIiIiIiIiLS7zXUN/LMrS/QUOdafXX1A5dw9qUT27TLPZLPwa0ZJF4wiJizIqkuq+HjF77osN+je4/RkNhA9roirL5mqvPqyNtSitPeEoZ9/7FrmHr5JCwWCxUllaSv3kfR8RK2frOTT1/6mmseupTQpiCtsb6R2qq6VoUPOmKz2fjyyy+5+OKLGTx4cKdtq6urCQoKYsaMGRQVFTFhwgRiY2M9qt5ZekLVTlujjWdv+yt11a5VZJf84AJmXtu2QmnR8WLS1+wnflYUcTOjcDocfNjBFs0vX1vCnFtmUVdfR87GIsxeZqrz68nfUoLD1vItq8uqu5zvqaQVaSIiIiIiIiLS7731X+9zeHsmAImj4/jhH29tt92qBesBsPhYCPeP4M0n38fh6HiF2JEdWUQ3JJG5OI/Dn+cw5KwI/KN8ABg7axSP//MnTLtyChaLa7ticHgQj75+v/H+K798h6x9x1tX7vRwe2d9fT1ms5mkpKQu206ZMoX77ruPqVOnEh0dzbp16zwagxOCtNDBobz7+wXs23AQgJjh0dz/lzvbfW/1x65VZhZfM8Feobz92w+xNdrbbbtjeTrZB3OJNw/nyJd5HPo0h+hJYQREuyqOjp6Wwi/eeIBzb5zu8bxPBQVpIiIiIiIiItKv7Vq1lw//9BkAXt5WHvvnT/Dx82m3bXOQduTLXK67cR6N9Z2fH3Zs/3FSxruKBjgd4B1oJTzFdd7ZTY9fywU3z2pzBtvkC8dzzUOuKpQNdY08e9sLBIcHGc89rdzp7+/PY4895lGhAavVir+/PwB2u529e/dis9k8Gqe0aWtnUFgAR3Zk8t7TCwAwW8w8/s+f4BfY/uq55m+Z+U0+1153TZffcs/a/aROGG7cewdYCU9xBYw3PHoVF91xXptvebpRkCYiIiIiIiIi/Zat0cYL979inDt219M3M3zC0HbbFmYXs2/jIXzDvZn22Ggi48N44r2f8sDzP2DMjJFGu0EJkVi9Xadh1VXXM272aP6x80+8dfCvjBqaRuXxWnArWtCee569hfiRsQAc3HKEzD3HjGeerkhbtGgR33zzjUdt3Y0aNYrx48cbq+S60nxGWsigEF64/xVjhd7tv7mRkWePaPedssJydq3ci0+IF9N+OZqopAh+8cYDPPjXuxl3bprRLio+grDBIaSeNYwpF49n6uWTeXX3n3lj/wtMSJtIZXYNAKsXdvwtTycK0kRERERERESk3/r4+S/ITHeFVKlnDeO6n17WYdst3+wEIDQ5EIu3GW9vb0Iig7nmoUuJjG850P8PXzzBFfdeaNxn7T3O0DEJxAyL5qrvX4HV4grZ1vxnI3Zb+1sZffx8eOydh7BYXWHW7lV7jWflRZ4FaQcOHMBq7f7x9kFBQZxzzjlUVlZ22ba2qtY4C83pcHBwawYAyeMS+f5j13T43rYlu3E6nYQMDcDiY8bHx4fg8CCufuAShgwdZLR7auEv+Hfuq7y44VnCo8MASBwdT9yIIVxx42V4e3sDsO6zzTR0saLtdOBxkHb33XezZs2akzsbEREREREREREPFRwr4u3f/hsAk8nET/72w05XYW1fuguAyuwaxqdOaBVSZe7OAsDqZSF2xBASmlaTAWTtO25cl5aXMPKmOHzDvakormTnyj0djpcyeRi3/HoeAO6FOj1dkTZ58mQmTmxbMMET3377LYsXL+6yXWl+uXGdl1loXD/00j1GCNiebUtc37Iqp5ZRSWn4+LRspc1Md31Lk8lEwqi4DvsoKy9j+Lwh+A/yoaailm3f7vTgLzu1PA7S3njjDS6++GK+/fbbkzsjEREREREREREPvPzIm8Zqqivuu4iUycM6bOt0Oo3wJzDSn7lXzDGe2RptZO/PASAuJQarl7VVAJS1N9u4joqKwoQJ/0hXcLT+sy2dzvF7v7yGmGGtK256EqRVVVWRmJhIeHh4l23bM3jwYAoLC7ts17ytE8DeVCjg4jvPb7XVtT3blrhCL78wXy66aq7xu8Ph4Oge1/eKHjoIX//2z6oDiIiIwGwyG8Ub1nXxLU8H3d7aedVVV3WaaKanp3PLLbf0dl4iIiIiIiIiIh3a9NU244yy0EEh3PX773fa/uiebEryyrD4mBkxL4asY1nGs+OH8oxqk0lj4gFIGNX+ijRfX19uvfk2yjOqAdi+bHen43r7eHHfn1tXvSzOK+3y71u/fj2LFi3qsl1HZs2axbx587psV+oWpNFUcOCe5zrPdXKP5JOXWYjJYmLk9+LJym75lgVZRUa4mZjW8Wo0AC8vL+64/U4qMlznpHX1LU8H3QrSXn/9daKjo7nmmmv48ssv221TVVXF+++/31fzExERERERERFppaGugRcfes24/9H/3EZQWGCn72xt2jbo5e/azhkR0XIm2tH0lkIAiaNdQVrooBCCwgIAOLb3eKu+7NgYe52r+uSRnUcpKyynM+dcMZkJ57ccwL9vw8Eu/8bq6upWc+wuLy8v1q5dS0lJSaftCrOLW93f/cwthEaFdPpOy7e0YDJ1/C2Tmr5lZ2yORsZdnwLA8YO5FBwr6vKdU6lbQVpSUhIrV64kJiaG6667rlfJqIiIiIiIiIhIT3zw3CfkHM4HYOzsUcy9dXaX7zRv66wrbeCquVczeHDLdsuj6S1bNxPTXOGPyWQivml7Z2F2MZWlVUabnJwcglP9jPsdy9I7HdtkMvHgX+9uef9QPrkZ+Z2+M3fuXK688sou/67O7N69m4MHOw/t1n222biOS4nh0nvmdNoeYGvTt2yotHHJzMuIjW1ZvZfZzrfsTG5uLn5DW86q27709F6V1u2tnXFxcaxYsYL4+HjmzZvHZ599dnJmJiIiIiIiIiJygpzDefzr2Y8BsFgtPPTiPZhMpk7fsTXa2LnCVRQgfmo05Y2ttzNmpLdsTUxy246YMjnZuN67viWQGjp0KMFBwcb9Ng/Cn8TR8Xj7ekHTeW3/+MU7HbZ1OBx89dVX1NXVddlvR0wmEyNHjsTPz6/DNgVZhexyK5Zw65PXYzZ3HhU5HA4j7BoyPoIKR+tvmen+Lcd0HaQlJSUREtSyAu50397Z7SANIDY2lhUrVpCUlMQNN9zAJ5980vczExERERERERE5wfxH3qSxvhGAeT+9nKFjErp8Z/+mw9RU1gKQNCOarKysVs8zdh4FwMvHi5hh0cbvY2aOMq53r95rXCckJHDnD+7E6uWqaulp+DMoIdK4Xr1wg7FF8kQlJSXs3r2bigrPqnt2ZN68eYwaNarD5//4f+9gtzmM+4kXjOmyzyM7jlJRXAlA8uy4Nt/ySNO3NJtNrSqfdiQ2NpZ7fnQ3Pn7e0LQizele4vQ006MgDWDIkCGsWLGC5ORkbrzxRhYuXNi3MxMRERERERERcbNn/QGjSmZkbDi3Pnm9R++5B1bRMdGkpKQY96X5ZWQfyAVg+MQkLFaL8SxtRqpxnb52v3HtdDr528svMfay7p3tFTM8utX9Sw+/jq3R1qadl5cXQ4YMITo6us2z7tiwYQNvvPFGu88Obc9gxb/XtfotJDK43bbuWn3L2GhSU1u+UVVZNRk7XcFa0pgEvH29u+zP6XTyt/l/Y9zVriqhhdnFHD+Y2+V7p0qPgzSaSqkuX76cESNGcNNNN/HRRx/13cxERERERERERNy89ZsPjOtb/+t6/AI73rbobtvSXcb1JVdcxNSpU4375i2fAOPPa70iKzImnOikKGgqENDY4FoJZzKZsFqtxI1vCbo8OdsrKa316rmsvcdZ+t7qNu0CAgK46667Ot2W6Qmr1UpeXh4Oh6PNs7ef+ner+7DBIa1CxI64f8s5l1zAjBkzjPtdq/Yaq8nGn5fW7vsnav6WMWlRbmOcvts7PQ7SIiMj2/190KBBLF++nJSUFG6++WZV7BQRERERERGRPrdr1V62fuNaDTUkeTAX33W+R+/VVtWyd90BAOLHxvD2v9+ioKDAeL5jeUuhgPbCn7SZrpVSDXWNHNqWafx+6aWXMvHsica9J9s7k9o5fP9fzyzEbre3+m3JkiV9slhp9OjRzJ07t825Z/s3HWLdp5tb/eZJYYCG+kZ2rXRtcR2UHMG/P/sXx4+3VDTt6lt25OKLL2byOZOM+9P5nDSPg7SCggKmTJnS7rPIyEiWL1/O6NGjeeGFF/pyfiIiIiIiIiJyhnM6nbzxX/8y7m/9r+uxelk7fafZrlX7sDW6gqrR5w3Hbrfj7d2y5XDHClf4Y7FaSJue0ub9tOkjjev0NfuM67i4OAYPizDO9tq2ZFeXZ3u5H74fFh0KQPaBXFZ+uL5Vu7y8vFZz7Cl/f39CQkLaFC1wX9nXLHlsYpf97V13gPraBgDGzE3FZrPh4+NjPN/Z9C1NJhNjZ3d8NtuJYmNjiYgPJTA0AJpW97W3iu500K2tnZ1VboiIiGDp0qWMHz++L+YlIiIiIiIiIgJNIVXzSqi4lCHMuWVWt95tNnH6eC677DJCQ10hVml+GVl7XSuqUqYkt7tVdIzbOWm73YK03bt388mnnzBmliswKjpe0uXZXvEjY40KowHB/sbv7/1hQavgaNq0aa22TPbGp59+yvbt21v9DZu+ct0HhQcavw8d23XRhlbfcto4LrnkEmMHY1VZtbFib+jYBILDgzye4759+1iwYAHjz3N9y4riSjJ2ZXX53qnQqzPSThQeHs7q1atZvHhxX3YrIiIiIiIiImcop9PJm0+2HCN1229u9Ogsr2Zbl7i2g5pMJoZPSSIsLMwIs1qdj3Zu+1sRE9PiCQhxhV7pa/Ybq84iIyNpaGhotYWxq7O9fP19GDJsMDQdqj/qnBEAZO4+xtpPNhnt6urqCAkJ8fhv7ExERAT19fXG/Vtu3zJhVEtVzaHjul6R1vwtAVKmJrf6lu7no407d3S352i32xnndkadJ2fOnQp9GqTRtGxwzpw5fd2tiIiIiIiIiJyBNn65jb3rD0LTGWPnfW+6x++WFZZzZMdRaKrImb5/N0uWLDGeu5/pNa6DM73MZjOjp7tWpZUVlHP8UB4AqampPPDAA0yaO85o634Qf0eaz0mrr6nnsnvmGr+/9/QCnE4ndXV1fPzxx2RkZHj8d3bm5ptvZtq0adB09tj2Za6/OWZ4tLFN02w2kTg6rtN+qsur2b/pMDQFcIePHeKbb74xnvf0fDSAYcOGub7lnO59y1OhW0Ha8uXLueiiixg1ahQ33HBDq6WBzTZs2IDF4nkyLCIiIiIiIiLSHqfT2eo8r9ufurHTY6dO5L6qaeKccTidzlYrvZrPRzNbzK22cJ4obXrLs+ZVbPX19SxatIjYkYONFWs7lqV3ebaXe8GB4MggRkxOBuDg1gw2frnNKDzQVyvS9u/fz5YtW9qs7LvlV/PI2pMNQOyIIfj6+3TSC+xYsQeH3fW3TZozDofDQXBwsPG8+Xw0gHGzu7cirbGxkS+++IKIhFDCBoc09bcHW6OtW/18Fzz+r2/r1q1cdNFF7Nq1i5iYGL799lumTp3K/PnzT+4MRUREREREROSMtO6zzRzccgSA4ROHMuPas7v1/tZvW1Y1TZo7lrlz53L11VcDUFpQbpyPlnrWsHbPR2s2cc5Ytzm5tmBWV1dz6NAhiouLjRVYnpzt5V4d82h6Nrf8ap5x/+7vP8Lf35+f/vSnxMbGdtBD92RlZbFv3z62fruT9DX7oWlFWcqUYTTUNQKQ5Mn5aG7fcuLcsZx//vlcf/310HQ+2uHtrvPRksclEhzh+floALW1tRw6dIj8/HwmXODa3llbVceBpn/704nHQdrvfvc7pkyZwqFDh1iyZAlHjx7lhhtu4MEHH+S55547ubMUERERERERkTPOx88vMq67uxoNt+2BXt5W0maMZPny5WRmugKfTV9uM9p1tYJq5NnDCW+qsrn1m53UVtcRHBxMbGwsgYGBTLygJWhzP5C/PUPdKnce3XOMaVdNMap57l1/kFWfr2PRokV9VrUyMTGR6OhoFrp/y9/cyNH0Y8a9JxU7m7+l2Wxi/LmjWbVqFYcPu7Z6blm8A4ej6Xy0bq5GAwgMDCQ+Pp7g4GAmnO/5tzwVPP4vcPPmzTz66KMEBLhKkQYHB/PPf/6TJ554gieeeILf//73J3OeIiIiIiIiInIGObrnmHGeV1zKEKZePqlb7+ceyScvowCAtBmp+Pr7sHv3bvLz8wFY+dE6o+20q87qtC+z2cy0K6cA0FDXyNZvduLl5cVtt91GWFiYsYqKpnPIOhObEoPZ4opjMnZnYTabW61K+3bhMg4ePGgc3N9bEydOZFRSGpu+dB3PNSghkpnzpnJk51GjTXIXhQaKcko42rQNNPXs4QSEBJCenk5enuu8uBWtvuWUbs/RYrFw6623EhkZycRufMtTweMgraysjKioqDa///d//zdPPvkkTz75JE899VRfz09EREREREREzkCfvPS1cX3V/Zd0ezXa1m9bKkxObDrEPj4+noSEBKrKqtmyeAcAkbHhRvXMzky/pmVb6ZpPNgLwj3/8gx07dpA4Os7js728fbyISxkCwLF9OdhtdmZdfw5R8REA7F1xkKGJyX12/vyePXt45/23jWDuyh9fjMViIWN3yxbUoeM639rpvjKsuSBAXFwciYmJ1FbXsXHRVgBCIoO6XWig2WuvvcbmzZsZkjyY6CRX/pS+Zj8NdQ096u9k8fi/wvj4ePbs2dPus9/85jf85je/4Xe/+x2/+93v+nJ+IiIiIiIiInKGqS6v5pu3lwPgG+DDRXec2+0+3Ks+Np9xdsUVV5CcnMzaTzZha3Qd6j/7+v/P3nmHR1F1Yfzdnmx67xWSkITee++9o4B0pGMBFfVDBCsIgoCgooBgAelI771DCBBIIKT33rN9vj92d7KbrdndhBDv73l8zMzcuffOYXdn5txz3tPJKCddy95NYW1rBQC4fewBpBIppFIpCgsLwWAw1LW97r3U25dSJ00sFCPjZRZYLBYGTu8NAChOrQBSuDW+Xl0IKoWQMaVgsBjg8DgYNFM+TqIiIo1vZw2PAM3AKVW02XLgwIFo3Lgx7hx/QFf/7DqqA1hs0xyAMpkMhYWFAICWveS2FAvFiLkRZ1J/tYXRjrTOnTtj3759Oo+vWLECK1euxMmTJy01NwKBQCAQCAQCgUAgEAj/Qc7uugJBuRAA0Hdyd9g42NTofIqi6IqdNg58hLYJRllZGdatW4fs7Gy1tM7u4zoZ1SeXx0G7Qa0ARVGBJ9dj0b9/f0RGyiOw1LS9LuhPSQyKrIoAS4qRp0wOnNELDAYDgX088Dg52mIaaekPcpFwOhOUlELPNzrDwdUe5cXlyErKBQAENvUz6Eh8eF5+PTxrLsI7haKyshLff/89MjIy1NI6jbWlNvr06YPmzeXRbi1VNOceGrBlXWO0I23y5MlwdnZGXl6ezjbLly/Hd999h+7du1tqfgQCgUAgEAgEAoFAIBD+Q1AUhaNbTtHbwxcMrHEfOSl5KM4rBRT6aCw2CwKBQB71lFdU47ROJZ1VtNRuHrkLBwcHMBgMAKiRtldApC/9d5IixdLd3w1tB7YEh8+GVCbB/bOP9PRgHBRF4fjWs5BUyKPvRiwYBABIfFJVaCDIQKGBwuwi5KblAwDCO4aAy+NAJBJBKpWipKjEImmdANRsWRPNubrGaEdar1698M8//8DV1VVvuyVLluDixYuWmBuBQCAQCAQCgUAgEAiE/xhR5x8jNS4DANCiZySCmurX79KGupB+IADAxcUF/fr1Q9Ld9BqndSppP7gVnbp44+g9nDt3DtevXweAGml7BapcU/LTKqfW4Fl9kHEnHylXcnDy13M1uGLtxNyIQ25eDkJH+SKydyjC2jYCACQ+rtJHM1RoQL2t3Jb29vbo378/Mh/nWSStEwAuXbqEK1euAABcvJzgH+4DAIi9E4+K0kqT+7U0NVPqIxAIBAKBQCAQCAQCgUCoRY78WBWNNsKEaDRoONKqHEXW1ta4duAWvV3TVEQ7J1s07xEBKKqCigUScDgc+njTbuGAQttLWeVSGz6NPcHhsgEASSrRYR2HtoGtgw1kIhluHLmHwuyiGs2vOkd+PAWZRF5koN+kKp25RDX76HdUqtoyqJotrx68TW93H9/ZrLmy2WxwuVXacM26ym0pk8rU5vCqIY40AoFAIBAIBAKBQCAQCPWC7ORc3Pr3HqBIu+w8op3Bc7SR+FjTUZSXl4ejR48i9vFzuv+apHUqUU3vlCVz0KdPH3pbNXouKSZV41wlLDYLfk3kEVdpzzMhFokBAGwOG83GNIZ/Lw9IJVKc+f1yjeenJD+zEFf330J5tgDP/8pAv4m96GMJKvYJNBDxl6DFlkVFRThy5AieRccCyrROhYPRVIYMGYL+/ftXzauZStSeHlvWNcSRRiAQCAQCgUAgEAgEAqFecG73Fchk8giqIW/3MzlVUJmOyOGy4RvqDSgingBAVCEBTEjrVNJjfCd6XlEPohAXV1VVUtUppRpppg2lTppUIkXa80x6v3+oL6Qieerpyd/Og6KoGs8RAC78dQ1SiRQcPgvNJ4SAobhUiqKQ+Eipy+YKW0f9hRySFLZkMhkIiJDPWWlLQam8IIS5aZ0A8PjxYzVbBtXAlnUJcaQRCAQCgUAgEAgEAoFAqBdc3neD/rv/1B562+pCJBAhTaGxFhDpRzt4HB0dkXehEpV5cudPzze6mNS/k4cjOg1vCwDg+3Bw58o9+ligShEBVe0zbQRGao+4Gjl2BKyKHAAA6S8y8eRarEnzvKKwJd/dCgJWOUpL5cUXspNzac0xQ/poUomUrirqE+oNnjUPAGBnZ4fSm1KUZwkAAL3e7GrSHFWJi4vDy5cv6W21ggwGbFmXmO1Ie/ToEYqKzMvZJRAIBAKBQCAQCAQCgfDfJjUunY4kC+8YAnd/N5P6SX6aRke1BamkBz66/hRMXzFYPCZCWgehSfvGJs918Cx5OmdpRiVSH1ZFk7n5uYJvZw0YEUUVGOlH/63aNiYmBs2GVaWcXlPRITOW7ORcxN6JBwC4e7nB3d0dNjbyyDPV4gGq9tFG2otMiIVijbZxD+Ihdi4Hm8+Cf7gPrRtnDt7e3vD09KS3Hd0c4Ogudyg2qIi0Vq1a4eDBg5aZDYFAIBAIBAKBQCAQCIT/JFf2qRQBGFuzIgCqqInjN6uKuDrx+xk4h9rDyomL4fMHgsFgmDxG637N4e7viqSz2biz+zFyUvMAAAwGg46kUo380oaaY+pePP13fHw8YCNRqQ56t8bpnVf2V9myy+COmDVrFng8eTSZLvtoQ60ogUrbY7+dhnOYPaxdeGbbUkmvXr3QubN6wYLApnJnY1FOMYpyi80ewxKY7UgzNVeXQCAQCAQCgUAgEAgEAkGJalpn97EdTe5HW0XKwpxi3DxwH2VZleAwuej1pmlpnUpYLBYGzuiN8PF+8O3uhtPbL9LH1FI29VTu9Axyh4u3EwDgydVYuuCAt7c3/AP90aKnPMorKzFHLYrMGK6o2LJp31CsWbMGlZVyp562Qgy6UK/YKW9bWliGq3tuoyyzEkwxE/2mmJaCW52DBw/i7NmzavsCI6qi9pJjdNuyLiEaaQQCgUAgEAgEAoFAIBBeKZZK6wSAxCdVTielBtjJX8+jskiIR9sT0X9iT1rryxwGzugNrh0HHBs2Tm4/D6lUXiBANWVTX7VJBoOBlr2bAgAEFULEKVIxu3Tpgi5duqCTSnXQG0fuGj0v1bTO4BYBsHXlQyKRQCQSgaIoehwOj0MXYtCFNlue2XkJ5YWVeLQjET3HdKVTWc2lrKwMFRUVavuUEWkwUAW1LiGONAKBQCAQCAQCgUAgEAivFEuldQJAgqIipaObPZw8HCGVSHHs5zNgchjo8EETtBvbwuz5AoCbrwusKm2RE1WI3NR83DsdDVR3/jzRH0nWqncz+u+o808AAFevXsXff/+NzoqCBlCkdxqLalpn97Gd4OPjg549e8Le3h6ZCdnISsoFAER2CTNYaVNZ3ZNvZw2PADfIZDIc3XoaDCYD7ZeEoe3YZnrPrwkdO3ZE69at1fYFRBpvy7qCONIIBAKBQCAQCAQCgUAgvFIsldZZmF2Eohy5llaQIoLq5r/3kJuaD1AAi8ME08oCE1bQrl9rVCiqgJ789RxQ3fmjJ7UTAFr2akr/HXXxMQBAIpGgsLAQ7v5uCGkdBAB4cT+B1mEzhGpaZ49xnSCRSODv7w8Gg4Go84/pY6pOPG2UF5cjO1nudAtsJj///ploZMRngZJRYHFZ4NqxjZqTMXC5XLi5qUciqkX3GbBlXUEcaQQCgUAgEAgEAoFAIBBeGZZM60xQE8eXa3od+fEUAEAmoRAR2AxBQUFmzxkApFIpHibeg197eaXJm//eR05KLpw9HWHnbAsYEUXlEeAG70YeAIBnN59DUCFEixYt0KOHXHdMNb3z5tF7BudUPa3TN9Qb9+/fx5EjRwAAD1Qcaa376nekqeqyVbclAIT7RiI4ONjgnIyBoij8/fffiI2NVdtv62gDVx9nQGHL+qDTTxxpBAKBQCAQCAQCgUAgEF4ZVw/cpv82N61T1fkT1DwASTGpeHhBnjLpE+KFtt1b0Vpm5iKRSAAArXs0BwDIpDL8891RMBgMOpIqP6MQpYVlevtRRoZJxFI8uRYLe3t7cLlcAECXke3pdjeO3DE4p2sHNW0pFotha2sLmUxG28LGgY+QNvqdYGqOtOYByHiZhTsnogAA7v6u6NCnLWQymcE5GYNUKgVFUbCxsdE4pkyVLS0sR35moUXGMwfiSCMQCAQCgUAgEAgEAoHwyog6/4j+u8uo9nrbGiJBrSJlAP78cj+9PXzeAJw+fRq3bt3ScXbN4PF4mDNnDt5cNBZWNvLiBSd+PY/8zEKjCw4AoAsOAMDDC4+RlJSEffv2oaKiAkHN/OEZKI/Qi770FGVF5Xr7eqBiy64KW3bp0gXjxo1DQnQySvJL5WP2igSLpV8fTb1iZwD+/OoAHRE2dE5/nL9wHjdu3NDTg/Gw2WzMmTMHoaGhGscCIoy3ZV1AHGkEAoFAIBAIBAKBQCAQXgkigQhPbz4HAHgGusEryMOs/pTi+EwmAzKpDJf2yh09jm72GDSrNx2ZZQlKSkpw7do12DnbYtjc/gAAsVCM/ev+VdNJS3yi3/nTQkUn7eHFJ7C1laeFSqVSMBgMOr1TKpHi/plonf1IJVI8uSpPjXTycIB/uK+8z4cPkZaWhgfnqpxsrfo0N3h9CSoRaVwrDs7tugwo0i2HzesPW1tbi0X3lZeX4/Lly1r7C2zqT/+dZMCWdQFxpBEIBAKBQCAQCAQCgUB4JcTeiYdIIAYANO8ZaVZfUomUFqT3CfXG398eoo9N+GgkrG2tMXLkSPTq1cvMWctJTU3FkydPIBaLMXbJMHCtOACAYz+dgZufM93OUBSVk7sDghQaZC/uJ8Ce74D58+fDzs4OANB2QEu67ZNrsTr7iY9KREVpJQCgRc9IMBgMQOFIS05ORtQF4/XRKIpCksKR5hHghgPrj0Emk0ejjV0yDLaONhg6dCj69euntx9jSUtLw9OnT1FZWalxLEi1CmpDiEi7ePEiBg8ebJnZEAgEAoFAIBAIBAKBQPjP8OjyU/rvFj3Mc6SlvciEWCh3yrn5ueD6IbmmmLOXE4bNk0eMpaam4t49w6L9xmBrawtfX1/weDw4ezph8Ky+AABBhRDRl6quyxjnj7J6p0xGIfpSDC5fvozCQrkeWESnUNopFnNDtyNN1ZbNu0fQf7u6usLTwwuPrzyTb/s4wzfUW+98spNzaaecZ5A7Lv59HQBg72KHUYvlPqD09HTcuWNYt80YbG1t4eXlpVUjzT/ch/67QTjSevToAU9PT8vMhkAgEAgEAoFAIBAIBMJ/hujLMfTfzXtE6G1riEQVTa+c5Fz67zc/HgWetVzDLC0tDQ8ePDBrHCW+vr6YPn067eQa98FwsDly3bFTv12Ag5s9YKSul6pOWtTFx4iJiUFiYiKgSKVUCu6/fJhEO7iqo2ZLlei+UaNGgVXKhbBSBABo1bcZPWddqOqjFWQV0dpoEz4cAb6dNQAgIyPDYk5JLy8vzJo1C0ymppvK2tYankHugMKWr7pyJ0ntJBAIBAKBQCAQCAQCgVDniIRiPL0RByj00TwD3c3qT9X5k/Y8E1BEpg2e3Zfe36hRIzg7O2s9v6acP38e+/dXFTNw93PFgGnytNGK0kpY21oBAIpyS1CYU6y3rxY9IsBkyp1b0RdiEBYWBj6fTx+P7BwGKCLWYm+/0DhfKpHi8VV5xJmjuwP8m8ijuCoqKrBmzRrcPn+XbqusEqoPpdYcAKTGpgMK3bXhCwbS+4ODg+Hi4mKwL2O4dOkS9uzZo/O4snhDZZkAOSl5FhnTVIgjjUAgEAgEAoFAIBAIBEKdE6eij9bMzGg0AEhUEcdXMvl/Y8Hlcejt4OBgjB8/3uyxoEhtZLPZavsmfDQSTJbc1ZKfUUjvNxSVZuNgg9C2jQBF+mK/Hv0RHBxMH4/s0oT+O+Z6nMb58Q+TUFGi1EeLoCPOcnNzIRaL8fRWlfOtVR/DjjTV6qdK3vx4NKz4PHrb398fEydONNiXMWizpSqqVVBfdXoncaQRCAQCgUAgEAgEAoFAqHOiL1WlIpqrj4ZqEWkA4BXsgf7TeqrtE4vFWLt2LZKTNR1FNaVdu3bo0KGDxph9JneTj6XQa4OR1SZbqlTvPHbwBP788096u2nXKkfaEy06aY9UbNm8e5Ut3d3d0a1LNzy7KHekBUT4wtXbcEReYjVbuvm6YMjbfdX2yWQyrFu3DvHx8Qb7M0Tbtm3RqVMnncdVq6C+6sqdxJFGIBAIBAKBQCAQCAQCoc5R1fRqYW7FTqkUeWn5avve+mwc2Bz1KCc2mw0Gg4HMzEyzxqMoCjKZDF5eXhrHJn48mo5KU2JMFJVqpFhmfDaysrJoPTCPADe4eDsBAJ7dfA6pRKp2rrotq6L7SktLIcyT0hU3jUnrpCgK2SoacwAw8dMx4Fpx1fYxmUyw2WxkZWUZ7NPQeBKJBN7eugsgBKpU7kx+2gAdaS9eaObrEggEAoFAIBAIBAKBQCBA4fh6dvM5AMDd39VsfbTi3BLaWQQAfmHe6D2pq0Y7BoOBYcOGISQkxKzx0tLScOjQIRQUFGgc8w31xggVLTEASHmWZrDPiM5h4HDljr+4s0no27cvnaLJYDDoqLTKMoFaGitFUXhyTR6l5uhmD/9wX/rYuXPn8PBRFL3dqq9hR1pFSQWdcguFft2A6T21th0yZAjCwsIM9qmP7OxsHDx4EDk5OTrb+DfxoTXkkp8atmVtYpYjTSAQ4O7du9i2bRsWLFiALl26wN7eHk2aNDHibAKBQCAQCAQCgUAgEAj/RTJfZtNVJMPaNza7v4yX2Wrbs9e8BRaLpbWtt7c3iov1i/8boqKiAmw2Gw4ODlqPT/l8PBxc7ejtzIRsre1UseLzEN4pFACQ9jQLlSUCCIVC+nhkZ5X0zutV6Z25afkoL64AAIS2a6RWkbOiogK5L+VabUwWEy2M0KLLTFR3aM38ZhI4XI7Wtl5eXhaxJYvFgpOTk842XCsuHN3lti7MKjJrPHMx2pGWm5uLs2fP4rvvvsOkSZMQGRkJOzs7dOzYEXPmzMFPP/2EuLg4tGvXDu+8807tzppAIBAIBAKBQCAQCATCa0uiis5VYISf3rbGsH/dv/TfPqFe6DSsrc62jx49wtGjR80ar3HjxliwYAE4HO0OJltHG8z4ehK9XZBZpJGOqQ069ZIBXLx2AU+ePKGPRXapivx6erOq4ECSHlv269EfMYdeAgDC2jWCjYONwTnsW1tlS/cAV/QY31ln25iYGBw+fNhgn/oIDAzEwoULYWVlpbedg5s9oKiCqkx5fRXoLolQDU9PT/pvJpOJkJAQjBkzBs2bN0dQUBAmTZqEgwcPonv37rU1VwKBQCAQCAQCgUAgEAgNANUqlqr6V6bwMjoJN47cobf7TOymt72bmxsEAgEoilKL3qoJN2/eBJ/PR+vWrXW2GTC9J7a+twOCciFkMhn+3XoaIxcN1ttvy95N8fuKvQAFMIRMCAQC+lhw8wCwOSxIxFI155m6Lf3pv8vLy3H40GEwmAwAFFr3aW7wulJi03Fp7zV6u+f4Lnpt5ObmBqFQfn1MpmlJj3fu3AGTyUT79u31tlM60sRCMSrLBODbWZs0nrkY7UhjMpmQyWQYMmQIfv/9d7WQO3PD+AgEAoFAIBAIBAKBQCD8d1AVjFetyFhTZDIZNi74FaoBSgERvvpOQWRkJPz9/U12ogFAdHQ0goOD9bZhsVho1DIQMdfl0WM7V+xF74ndYO9ip/OcJu0bw8qGB0G5ELF70/HxyirnEpvDhndjT6Q8S0fa80xIpVKwWCwkqdmy6tpTUlJQVFkIJpsBqciwPhpFUdi08FfIpFXGNOTkDAsLw8KFC012okFhS21FG6rjqHCkQaGJ96ocaUZf6cOHD9GzZ08cO3YMrVu3xv79+2t3ZgQCgUAgEAgEAoFAIBAaJMoqlmwOCz6NPQ2218WZnZfw9Eac2j5nT0e95zAYDJw9exbx8fEmj+vp6YnQ0FCD7fxCqypRlhdVYMf//tbbns1ho1l3uY6ZQFyBXTt2q6UxKgsJiIViZCm0zJQRaQwGQ63QAJ/PR2myAOIKKXjWXIR31D/fi3uu4+GFJ2r7jLHlpUuXEBcXp7edPjw8PIwqWKDqgCzKLTF5PHMx2pEWGRmJ8+fP459//gFFUZgwYQL69OmDmJgYI84mEAgEAoFAIBAIBAKBQAAkYgnS4jIAAL5h3mBzjE6WU6MkvxTbPvpDY7+TAecPAOTn56vpj9UEmUyGfv36oVGjRgbbOqhEUQHA8V/OIT4qUe85bfu1AACweCykZaaqVQb1b+JD/50amwGZTIbkGHkVS88gd1jxefRxQaEIj3bL9dGadQ8Hl6ddzw0AyovL8fOS3zX2G3KkAUBBQQEeP35ssJ02KIpCr169jHKkObpVFXYofh0caUrGjh2L2NhYLF++HLdu3UKrVq3w3nvvmRUSSSAQCAQCgUAgEAgEAuG/QfqLTEjEcuF9VU2vmvLbx3+iJL8UAOiKjgDg5GHY+dOmTRu4u7ubNO7du3exY8cOo9o6uKlX9aQoCt/N+BEioVjnOV1GydM5S1MrIMiSgMvl0sdUI85SnqUhOzkXggp5ZU/VNEyKorD/6D64N5fbwpA+2s7P9qJAUQ3T0aNqzo5G2LJ169bw8PAw2E4bDx48wLZt24xqq+qULM57jRxpAGBlZYXPP/8csbGxGD58OHbu3AkAuHr1qqXnRyAQCAQCgUAgEAgEAuE1h6IonPvjCvauOYKjW87Q+939XCGVGq5mWZ2YG3E4+dsFAADfzho2DnwAgBWfB2tb/dUfoXCkNW7c2KTqj2lpaXB0NOxgQjVdL2cv+TkJ0cnY/fk/Os/xCHBDWLtGkIpkeLjrBbKScuhjfk2qUkUv/XMDhzeepLfd/d3oyqCFhYWQUGIIikQAgFZ9dOujPb//Ekd/PAUA4Flz6TkzWUzYu9gavMYWLVogLCys1m3pUE0j7VVhuhocAD8/P+zfvx/nz59HREQEPvvsM3Tv3h3Pnj2z3AwJBAKBQCAQCAQCgUAgvNZc/ucGVk/ZhF+X/YGjW07R+//57ghGOk7F6Z0Xje6rvKQC3761kXbcTF01gY5Mc/J0NCpjrrKyElu3bkViov40S2107NgRAwcONKqtvWuVrlfHoW3B5rAAAHvXHMGTa7p9J11HdwQA+HZ1w19//oXlw7/FJ4O/grWKwP6L+wk4+MNxevvI5pMY4TAF//50BhwGB/FH01GcWA43XxcEtwjQOo6gQohvJ2+ETCa35eTlY1FWWA4oovxYLJbBaxSLxdi6dSueP39uhEXUad++PYYMGWJU2+rFBl4VZjnSlPTq1QvR0dFYv349YmJi0LJlS0t0SyAQCAQCgUAgEAgEAqEBwGLrdsgIyoU4/6fxGW4/vrOdFtqP6ByGQbP6oLSgDDBSHw2KTDs+n4/MzEyjxwUAoVCI2NhYuLm5GdVe1fnDYjExdeUEQBGht3rKJpSXVGicIxKIYGUr1zqrzBdCxpHg1rH7uHvqIW4cvquhu6Y2v0oRzv1xBSf+OYNKRTRa19EddFbV/HnJ70hV6NWFtAnGqHcHozC7GDBSHw0AOBwO7O3ta2xLkUiEp0+fGp1iq3rdRa9baqfWjphMLF68GHFxcZg+fbqluiUQCAQCgUAgEAgEAoHwmtNhSGvYOdnoPN57Yjej+rm87ybO/n4ZUKR0Ltu9iHaiAYCTh4Oes6tgMBiYOHEi/P39IRAIcPbsWaSmpho8Ly4uDteuXYNIJDJqnOrOn3EfDEdkF7mwflZSLn56b6da+9S4dLzVaCF+XLQdAJATXYTYfamwduGC78ZDriwDjVoG6h2zz8RueJYUA5cm8rG7j+2otd3Nf+/h2M9nAUVK7Md/LIagTEinhxprSwCYMGECGjVqhMrKSly4cAFJSUkGz4mPj8e1a9dQWVlp1Bj1JbXTtNIYenB1dcVPP/1k6W4JBAKBQCAQCAQCgUAgvKZwrbjoM7k7Dm86qXGsWbdwDJjW02AfOal52DDnZ3p74eaZ8AryQNy9l/Q+ZyPE8cvLy8Hn83H8+HFkZmbCwcEBxcXFcHZ2hp+fn95zhUIh/Pz8YGVlWIcNWpw/LBYLH/2+CHNaLkVlmQCndlxEp+Ht0Lh1EE78cg4VZZUoyCwEk8MEKAr2ATZoMt4fDCYgFcpQLClEYIQfHpx9pHW8sHaN0PPNLrj91VUUviiFs5cTIjprVsQsyCrE97O20ttzv58KvzAfJMVUORONie4rLy+HjY0NTp06hdTUVNjb26O0tBQ2NjYIDNTv8BMKhfD09IStrWEdNgCwd7EFg8EARVENy5FGIBAIBAKBQCAQCAQCgVCdQTP7aDjS2BwW3tk626CumUwmw3fTNqOsSK7f1XNCZ/Sd3B0AUKioNgkjnD8lJSVYv349bG1tUVYmj2QrLi6GtbU1goKCDF5D27Zt0aZNG4PtlFjbWIFnzYWwUkQ7f7yCPTB/w3SsUziyvpu2GQwWE6UFZeBaceAb5g1uMAXv9i6QCKVgsuS2YfGYCPIPgp2ri9axmEwG3v1pDu6deog76+MAChg+f4BGWidFUVg7YwuKFPPpPKIdBs/uCwB05U4Y4ZSsqKjA2rVrYWNjg/Jy+b9LSUmJ0bZs2bIlWrRoYbCdEhaLBTtnW5Tkl9JzfxVYLLWTQCAQCAQCgUAgEAgEAkEXwc0DNETvxy0djoAI/VFgALB/3b94eDEGAODm54LFW6qcb6rOHycDzh87Ozt06NABFRXq2mQDBw6Es7Oz3nOFQiHWr1+PjIwMg/NVRRmVphpFNWB6L3Qa3hYAUFZcQaenigRiTPp0DJgFXIgrJFD1LwoKRBg9dhTc/V21jjNq8WA0bhWEq5evIuJNuZ27j+2k0e7Ij6dw99RDQKGD9t4vc2hbFtbAlnw+H127dtWwZZ8+fQzqnonFYvzwww9ISUnR26462mxZ1xBHGoFAIBAIBAKBQCAQCIQ6ofOIdvTffHtrTPx0jMFzXjxIwI7//Q0otM0++n0R7Jyq0gFVnT+GBPIZDAYGDBiAJUuWIDg4mN5/+/Ztg/NITk5GaWkp+Hy+wbaqKJ0/JfmlkMlkAACJWAIbR+2acSnP0rD62AoUXBLiyR9JkIrl5/AcuUjPTIerj6bDz8qGhykrJ6CyXIAyWTGkQikc3ezRtFsTtXZJMan45YPd9PbS7fPh6FalhVZQg+g+KJxmS5cuRWhoKL3PGFumpaWhuLi45rZUVEGtLBNAJDBOp87SEEcagUAgEAgEAoFAIBAIhDph7JJh4Ntbg8FkYMEPM2DF5+ltL6gQ4pvJGyERywXwx38wHC16Rqq1KcyumfOHwWCAz+fD09OT3mdjo7sQghI3Nzf06dPHYORadZSVO2Uyio48WztjC87tuqy1/bNbz2HvYoc1p1fAzVVeHZSiKDBZDFhZWcHNtyq1k8VhgcFgYPaat8C3s8a9Uw+R9bAQadfy0GVUB7BYVdVSRUIxvpn0A8RCMQBg5KJBaDewldrYRdnGOyWV8Pl8eHl5qW0bwtnZGb169TK6+qkSteINrygqjWikEQgEAuG1gqIolIukyK8QIb9CjAqRBDIKYDEYsOGx4MrnwsWGC2uO7hLrdYFURqGgQoT8ChGKKsUQSymAAXCYTDjzOXDhc+FozQGLqV8PhCC3ZWGlCHnlYoUtZbQtnaw5cLHhwMmaS2xpBFIZhaJKMfIqRCisEEMskwEUwGEx4Ggt/1w684ktjUEikSAlJQUJCQlISUlBRUUFKIqClZUV/Pz8EBwcjMDAQHC53Fc91XqPRCJBWloaEhISkJSURNuSx+Op2ZLH0/+yTQCkUqmaLcvLy2lb+vr60rY0ViT9v4xMJlOzZVlZGWQyGaysrODt7Y3g4GAEBwcTWxqBjKJQIpAgv1yEgkoRhBIZljxYDxYDcLTmIKtUABc+FxyWZpwPRVH4cdFvSI1NBwCEtA7C1FUTNNoVmOD8AYDevXsjLy8Pz58/h6+vLx4/foyEhARkZmZCJBKBxWLB3t4eQUFBCAoKQkFBQY300ZSoFRzIK4WDqz0eX3mms/2z2/GQSqSwdbTBugursLjfMvj0cQKHwwHf0RW5lWK0e38k2LZWsHO2Q+dhbeBgzUFmiQBXTt6BsEiE8myBRrXOn5f8joRHyQCAwEg/zPp2ksbYBTV0Sirp3r07cnNz8fTpU/j7++PJkydISEhARkYGbUs7OzsEBgYiODgYRUVFaNOmjUFtvOo4ulbZsiSvFO5+2tNcaxPiSCMQCATCa4FYKkNCQQXicspQWCk22N7dloswN1sEOPHr1ClQUCFCbE4ZEgsqIJFRettyWAw0drFBmJstHKw5dTbH14XCChHicsvwMt8IWzIZCHaxQZi7LZyILTUoqhQrbFkud+rqgc1kINiFjzA3WzjziROoOhkZGThz5gwuX75MCyvrgsfjoUuXLujfv79a+hBBTlZWFs6ePYuLFy/Sgt+64HA4tC0bN25cZ3N8XcjJycG5c+dw4cIFlJToj9Bgs9no1KkTBgwYgJCQkBq/xDZ08vLycO7cOZw/fx7FxcV627JYLHTo0AEDBgxAkyZNiC2rUSGS4nleGZ7nlqNSEU2mCwYD8He0RpibLTzteLQtT2w7h1M7LgIAeNZcLPvjHXC4mvd5dV0vB43jusdlICwsDI8fP8aPP/4IijLwvMHhoE+fPhg7dizs7e31tlXFwVW9ciea+OCDnQuwacGvSI3T1FsTVggR/zARYW0bw9bBBj9e34CoxGwkl4px9FkOACDsje50+/j8Ko0yn7dHwG5Aczzddg3NuofT+8/uvoyjW07Lr4PLxsd/vgOeteYCRYGJtgSAsLAwREdH45dffqFTWHXB4XDQo0cPjB8/Ho6Oxjvs6kNEGoMy9ElpgJSUlNDlbWvy4ScQCARC3UNRFOLzynEvrQgiAw4AbVhzWOgY4AR/R+tamZ+ScpEEt5ILkVYsMOn8IGc+2vs7wor9aiPp6gOVYiluJRcipajSpPMDnKzRwd/plUcl1gcEYilupxQiqdA0W/o5WqOjvxP4XGLLsrIy7Ny5E1euXDHp/FatWmH27Nlwda37lfP6Rnl5OXbt2oVLly4ZfGnVRrNmzTBnzhyDQtb/BSorK/HHH3/g3LlzJtkyPDwcc+fOVUvJ+q8iEAiwZ88enDx50iRbhoaGYu7cufD19a2V+b1OSGQyPEwvwdOcUpjibXDhc9Al0BlZj5OxpMdnEIskAIBluxejz6RuWs+ZFrYY6S8yYePAx+HC340aJz4+Hlu3bkVqamqN58jhcDBy5EiMGjUKbLbh+KQ93x7Cb5/8BQD4bP9SdBvdAVBEPt45EYV9647i0eWnaueMemcw5qybhuiMYsRkl8LAmqJWnK056BzojMLn6Xiny6cQCeSL0e9vm4tBM/toPWdOy6VIeJQMDpeN45V/GeUgTkhIwE8//YSkpKQaz5HFYmH48OEYO3YsOBzDi6EHfziOre/tBAx8JmoTEpFGIBAIhHpLhUiK60kFyCgxzTkFhVPmYnwegp356ODvBC7b8vKgL/PLcTul0GCkjz4SCyqQWSJAp0DnWnf61WcSCypwO7kQQqn+VUx9JBdWIqtUiI7+Tgh0rpmAbUMiubACt5ILIZCYbsvUokpklwrQwd8JwS6GtWMaKg8ePMBPP/2EoqIiI1prJyoqCkuWLMG0adPQq1cvi87vdeLRo0fYsmULCgoKTO7j8ePHWLJkCaZMmYK+ffv+Z6OAYmJisGXLFuTm5prcx7Nnz/DBBx9g4sSJGDRo0H/WlnFxcdi8eTOys7NN7uP58+f46KOPMGHCBAwbNuw/a8u8ciGuJhagRCAxuY/8CjH+fZqNuD03IVZEso1cNEivw0QZkWZMWqdEIsE///yDI0eOmOQ0haLi5L59+3D37l0sXLgQ/v7+eturpXaqRFExmUx0HNoGHYe2Qdy9l9j+6V94cPYRAKBxj6Y49iwbRUZkYuiioFKM48+y8XLfLdqWg2f10elEg0pEmpOno8HPsVQqxYEDB3Dw4EGDEWj6+jh06BDu3buHRYsWITAwUG97Rx22rEuII41AIBAI9ZISgRhnnueiXKQ/FcBYEgoqUFQpRt9QN4tFKlEUheiMEkRnWuYmLpDIcDE+Dx38HdHE3c4ifb5OPM4swYN0/Wk0xiKUyHA5IR/lIgkiPf970edPs0txN9V0p48qIimFq4kFKBNK0dz7v2fLc+fOYdu2bSa/bKlSWVmJrVu3Ijs7GxMmTPjPvWhfvnwZW7ZssYgthUIhtm3bhszMTLz11lv/OVveuHEDmzZtglRq/j1SJBJh586dyMjIwIwZM8Bk/rfq0d25cwcbNmyARGK640eJWCzGH3/8gfT0dMyZM+c/Z8u04kpcis+H1ALfcQpA6KRe4LjYo+R8FOasnaK3fWWZPPLayla/Zp1IJML333+PBw8emD1HAEhKSsLy5cuxbNkyhIeH62yny5GmSljbRlh9ejkyE7ORK5DgcSUFiRlONCUUgOBxXcF2sUfukRtYsGmm3vaCcvkCtrUBW0okEvzwww9GVeg0htTUVCxfvhwffvghmjVrprOdemqnZZ4ba8p/65tNIBAIhNeCcpHEok40JQWVYpx9nguRGRE6qjzOLLWYE02V2ylFeJ6rXy+ooRGTVWoxJ5oq99KK8Sy71OL91mdic8os5kRTJSqjGE9q4fNen7l06RJ++eUXizh+VDl48CD2799v0T7rO9evX7eYE02VY8eO4a+//rJon/WdO3fu4IcffrCIE02VM2fO4Pfff7f4v1F9JioqCuvXr7eIE02VixcvWswB/7qQWSLAxfg8izjRVAka2AaDf5wLlh7pixtH79IppBKx7n9LqVSK9evXW8yJpqSyshLffPMN4uPjdbaxd7al/y4t1P+Mx3R1xKNKyqA+bE3x790cQ36aDzbXQDyVYliGHo1hmUyGjRs3WsyJpkQoFGL16tWIjY3V2cZOxZZlhfq1SmsL4kgjEAgEQr1CRlG4/DLf4k40JYWVYtxMNj2lSElGsQBRGbW3CnYruRD55aJa678+kV0qxL00yzt+lNxJLUJOmbDW+q9P5JYJcSelsNb6v59ejEwzUq1fJ5KSkvDzzz/XWv/79u1DVFRUrfVfn0hPT68VJ5qSI0eOWPxlrr6SnZ2NTZs21ZotT548ievXr9dK3/WNvLw8bNiwweIOSSXnz5/HhQsXaqXv+kalWIrLL/NN0vAyhvQKCWJztDufjv9yFitHf0dvl+Srt5NKpchJycWjK0/x3Yrvcf/+/VqZo0AgwNdffI2n9+IgrNR85mAYGZ0okEhx6WUepLVkzCyhDE+z9C8wKlM09UVU/vvvv7h165bF5wdF1OC6detQWqp9nvUh0pOkdhIIBAKhXvEsuxS5texASiqsRGBhBQKcTNPPEklluGEBZ5w+KADXkwowJNyjTquO1jViqQzXk2rXlgBwPbEAwyI9wK4HD1+1hVRG4XpSAWo7/uFGUgGGR3qCw2q4tpRIJNiyZUutvWAr+fnnn7Fu3TrY2DRc/TmZTIYtW7ZALDY/PUkfv/76K8LDwxt0ITGZTIatW7dCKKzdhYHt27ejadOmNaqi97pBURR+/vlnVFaaVojFWHbt2oUWLVo06CIjFEXhppnapsbwIL0YPg7WsLdi0+Pu+vwf/PGFenRvcW4J1s7YguzkHGQl5SI3NR9SiRQsB8Cuj/4oK3MpqyzDx/P+h8oHDLj7u8InxBM+Id7wDfWCVCVSTl8q+p2UIrO0TY0hKqMYvo7WcNRR5ZwyEJGWlpaGf/75pzaniOLiYuzYsQOLFy/WOKamxfaK0vqJI41AIBAI9YZKsQTutjwMCHODRErhSmI+JDIKA8Pc4WjFwY3kAiSbWH2wOreSC+FjbwW2Cc6A+LwydA92gYyi6HmyGAz0auwKGUWBAQZuJReiSGDei2NhpRhPs0vRzKvhvhg+zixBqVD+cOlmw0VbP0c1u/IVVVcBgM1kggHg2LOai0GXCCV4klmKlj41K+P+OvEkqwTF1cSdrdhMjc9lsVBs1neqTCRFdEYJ2vo13JfskydP0pXHHBwcsHTpUkilUjCZTGzbtg2pqanYtWsXXr58CQA4fPgwoqOjazxOQUEB9u7dixkzZlj8GuoLZ8+exYsXL+htbfZMS0vD3Llz4eHhgfLycmzZsgXl5TVL1ykuLsZff/2FuXPn1sJV1A8uX76Mp0/lVf3CwsLwxRdfYObMmWAymVo/o6ZSVlaGXbt2aX2BbSjcuHFD63dW1a729vaYNWsWAMDKygoMBgPLli2r0TiVlZXYuXMnli5darG51zdSiwXoFuSM/Ar5IujjzFJklgos/uwmkVG4k1KIvqFukEqk+G76jzj/51XNdiIJTu+8qLGf30buGKr+252UlGTR7w8viAFRMoXs5FxkJ+fiwbnHGm3O7roEYaUIzbuHo1n3CLh4yZ9zMooFSCyowMRWPmr2zCgRaN1nKjJK/hw8sIn2yseUwlGly+G3bds2enGkuj3z8vLM/t4ouXbtGnr06IEWLVqoz09lxZD5ihabiSONQCAQCPWG+LwKRGeWQCqjEOpmgybutnicWYpLL/MQ6mZrRA/GI5DIkFhYgRDXmvUrlsoQl1OGB2L1eT7JLMXJ2BwAgIcdD0297HAt0fxIq9icMkR62oHZAIW0JTIZnudWvSyXKbTxqv/7n46TV6Rr4mYLDtt0O8TllqGZl32DjPCTyijEadHVE0pkWj+X5n6nnueVoYW3fYOMSpPJZDh58iS9XVJSgs8++wwURSEiIgIjR47Epk2bkJOTg5UrV5o93sWLF/HGG2+Az294FWZlMhlOnDihtk+bPW/fvo3y8nJ8/vnnaNOmDUaMGGGS7tmVK1cwceLEBhmVRlGUmi2HDh1K6zHp+oyaw40bNzB58mQ4OzubPff6SPXPpRJVu6anp9Pf8QEDBpj8Hb179y5ycnLg7q7dafG68yy7FHY8Nn2vVlIbz27pJQIUVYrxUaePkfAo2WB7Gwc+PALdYB/ERzJbrrlV/bebwWBY/Pvj2t4WZTcolBVpXxAozivFv1tP49+tpwEA3o090bxbOHwm9wbsbFAmkmrYU9s+c8guEyK/QgQXPlfjmL6ItISEBDx79oze1nYvtMT3RsmJEyc0HWkqEWmvqtBMw3v6IRAIBMJriVRG4Wl2Ka0JQVFVN/JKce2EuMfmlNVYZ+ZlfgVKhFKNear2wmUxUVhhmTSmCrEUqUW1m3ryqkgqqFRLBakUy7T++ysJdOYjMb+iRmOMaeYFP0drQOE8TS6s2fmvCylFlVq/J7o+l+Z+p8RSCokFDdOWDx48QF5eHr1NURT9O2FjY0NHqrm6uuLzzz/HokWLYGtbs5fFzZs3o127doBCWPny5csWvYb6wpMnT5CZmam2T5s9vby8kJCQAABITEzUW/lOHxKJBBcvakaiNATi4uKQnCx3HLRp0waxsbF0iqeuz6g5yGQynD9/3ux+6iMJCQlqUZJKqttVlS5dupisHUdRFM6ePWvSufWdokoxskqFsOGwMDDMDd2CnMFTLLDU1rNbXE4ZEh+n6G3TdXQHHCrYicOFv+PnqLXw61mVWlv9t7s2vj9i20r8+mId9uf8hg3XvsTS7fPRe2JX+nh1309GfBaunY6GwEb+vKLNntr2mUucDt05fRFpZ86cUdvWdy805Xuzbt06tG7dmt5++PAhsrPVMxFUnw9rM1VXH6+lI+3KlSsYNmwYvL29wWAwcPjw4Vc9JQKBQCCYSXapkNaE4LGYCHOzxYs8/ak9A8Lc8FYbXzipaDxwWAxMbesHG67u6k5KCirEdFqhsSSpOA+qz9PBio1BTdzRwd8R2Sri9ubOM6mBOix0XZe2f38bLgsMhnxFtjqdA50wta0fHKwMB9o3VOePvs+Irs+lNgaEuWFya19MbOWDN1r6YECYm9bVakNjvs7cuHFDY5+Pjw+++OILTJ8+nU6tW7hwIT7//HM8efIEb775plr7sLAwfPzxx9i+fTt27NiBNWvWYPjw4WCxtH/ftY3ZENB1XdXtmZKSQkccNG/eXO1lbMWKFRg8eDC97eHhgU2bNmHatGk1GvN1R3ldDAYD/fr103iZ1fYZBQAvLy989NFH+PXXX7Fz506sX78eI0aMqNGYDQ1t16XLrlA4CphMJnJy5NG9H3/8sdZ0bGtra+zevRuRkZFGjdkQUN4HDj7OxKm4XGSWCNHKgITCgDA3TG3rBy87ntr+SA87TG3rh3YGZAOSCiswcvFg8O2tdcpjFWQVwdZRrj0pkUhw584d+pi2325d358VK1bgzz//xK5du+j/+vfvb8gskMlkuH37Nhxc7RHZOQwDpvXCwBm96eOj3x2Kr09+ijc/HoWmXZuAw2XDv29LuiCBNnvqs7G7LRd9QlzxRksfvNnSB8MiPBTZDPrnmVRYoXVBWbmretqkTCbTKDCg615Y/XuzYsUK7NmzB/7+/nQbPp+Pf/75B25ubvS+JUuWqFVVpSgKN2/eVJ8fiUgzjfLycrRo0QKbN29+1VMhEAgEgoVQ6j6wmAz0aOSC2ymFEBohtiqSyNDaDN2rvBoUNqAoSu88iwUSnIzNwfkXeWhf7UHQnHnmVTS86p0URWm9Ll3//kHOfK2OGzaTgUAnPgQSKUJcDQu25zdAW8LAden7XGrjfloR/opKxz/R6SioEKN3YxedY9ZW5cBXiVLrRZX09HQsX74cq1evpl+gy8rkK/nXr19HYGAg3bZ169b45JNPEB0djXfeeQfTp0/Hhg0b4OvrCycnJ61jJiYm1nphg1eBNltCiz2joqKQn5+PFStWwNPTEwUF2tPi/f39sWrVKly5cgU7d+7U2iYlJQUiUcP7nitt2bVrV9y/f1+jeIO2zygUTp+kpCTMnz8f06dPx7p16zSiO3SRkZFR62L8rwJtn0tddoWWqJoLFy6ga9euYLPZGu0KCwsRExOj0Udubi5KSkosdg31BeV9XBldnlhYAWe+dgF7VYorxWhc7Z7d2NUGRZWGo/kFEhmmrp6MI0W7cLT0D/xw/UvMWTeFPs7msDBgak96Oy0tTe03Qdtvt67vDwD8+eefmDJlCv2fNmerNpRRtkpUb5c8ay7aDWiJGV9NxPorX+BQ4U70mjuAPq7Nnrps7Otghb4hbsgoFuDQk0z8/TAdlxPy4WjFgTVH/2KtWEqhRMuCMn1vr+akysrKQkWF+rOYrnuhtmi0srIyTJw4Ue+ctKHPliQirQYMGjQIX375JUaPHv2qp0IgEAgEC5FfIQIDQI9gF8TmlBlduTMutwxutjx42PK0HmczGejg74gxzbwwvoU3ugY6g8Oquunm1yAFs0QggURGaZ2n6n1cJJVBUq1suaF5RnjYYlRTT0xs5YPRTb3QREVXpEwoNcqp+DpRLtK8Jn3//oHOfK3RZEHOfEhkFB6kFSPYxcZg8aZKsQwVWqLaXmcEYinKdVyToc+lPmQU8CK3HHwuW2saiUhKoVTYsGxZUVGhkYqo+rJcXl4OoVAIHo9Hr4JHREQgKyuLbjN9+nQcOXIEJ06cQGlpKaBwSGzZskUtZVQVkUiE9PT0WrqqV4NIJEJaWprGfm32BIA9e/Zg5cqVSEtLw927dzXOCw0NxYoVK3Do0CHs27dP57hSqRQpKfrTvl43pFIpndbp7++PDh064JNPPkFAQAAWL16s06Z2dnbw9PTEuXPnIBLJHd9paWlqESXW1taYMWMGtmzZgp07d+Lrr7+Gi4vceU5RFBITE+v8emsTXdekza5KOnfurBZRdu/ePUilUjo9W0nPnj31phZXdwa87lAUhfxyEdhMBpS3Gk9bnlbHTHUSCyvg42BFP4+52sgjn6svbo5p5oVITzsMbuKOia3kUdJ8Dgv5inZWfB4iOoVh6JyqKLGm3cIxeHZfelvV7tp+u3V9fwzB4/Ho7862bduwYMECWFtbax0XBqKoeNY8SPlWgOK5tbo99dm4vb8TnmSV4llOGf1cVSKQ4HpSAf1sYMVmokewCya08MaYZl5o5eNA95dfzeaqC2TVI9KqX5O+e2H17w0UaaGhoaF60/dVpQ90jVsfItJIsQECgUAg1AtKhRIEOfPhYcsDh8VAuIct0ooEiMkuRY9gF7jYcCGWyuBqw8X9tGL6PKFEhidZJWjt60CLqqvSJdAZMorC0adZoCigc4ATOvg70YUAymqQ2lkqkrfVNs+cMiFa+zqAouQLeHdTi9TONTTPMqFcRLZCLIWnHQ99QlyRXylCbpmIniePrT3F7nVEm911/fs7WrEhlMi0loNv7GqDhPwKJBZUoJ2fI/wcrJFiQFOuTCgB34iU2tcFfenJLnyu1s+lvu+UEhaTgRA3G5QJJWpadqqUiSSwNyKl9nUhN1dTyDkoKAiTJk2CTCYDgyGv+Obt7Y05c+ZAIBBAIpFg69atgCKNzsPDwyQtpZycHLWUl9ed/Px8rVF22uxpZ2eH999/H1KpFOnp6di1a5faOU2bNsX48ePx22+/4epVzSp91cnJyUHjxo0tej2vkqKiIjqi5s8//6T3r1ixAhs3btRqUwAoLS1FWloa5s2bh/Pnz+PFixcaztz58+eDx+Ph008/RVFREQICAtSid3JychAREVFn11rblJWVaUTUQIddAcDX1xelpaUoLq76jZRKpbhy5Qp69epFp5z5+PigUaNGWLdunc6xlSluDQUpRUEgkcGZz0HnAGdIZDJIKeBGkvz5St99RiSRIb1YgCBnPp7nlqOxqw3i88rhaK0ZzdbIxQYXXsifj3o1dkUrHweNRRx9jhXVCExtv926vj+GmD9/PqRSKV3xc+7cuZg5cyadNVcTXS+KomjpCnsrtoY9te0DAHseG3Y8NhIL9EuhdA92QaVYigOPM8FjM9E3xA0SqQyPs0pRVs2WMhVbVl+drH5Nuu6F2r43UHz/jh49iokTJ2L58uV656xKTk4OZDIZmIrUV1K1s44QCoVqnuWGGFZLIBAIrztSGYWEggokaIk6upyQr/fcZ9llCHe3hZ+jNbJKq8qB89hM+DtZY+/DDIil8rtuVEYJRkR64npiASjFuMYiU7TVNU9D1ZR0zRMKsXglWaVCZBQL4GnHox1p0gaWQqftenTZtUggwdnnmrZ1sGLD3ZaHW8mFkMgopBRVIsTVxqAj7b9gSyW55SKtn0t936nWvg5o6e0AKUWhoEKEC/Hao6hQw+/P64C2tK4XL17g888/19i/bNkyjX3KapG6UhP10dDSEbXZEnrsqa8CakREBIqLixEVFWXU2P8VWyptVlpaqtWmyjbDhw/H2LFj4ePjg4yMDOzYsQOPHz+Gg4MDOnTogHnz5qGwsBAANITW/yu2VEX1s5iWloYvv/xSo82FCxewbt06uLi4ID8/H71790Z0dDRtR200NFsq/S0FFWIce6aZLmzo2S0+vxytvB3wMq8CAY7WOBKThTa+mvIDsTmltJMpIb8CzTztkFqs/gylz0ml+m+emJio8dudn5+v8/sDABMnTsS4cePo7blz54LL5aJDhw6YOXMm7Zjdu3cvvv/+e/z444+gKApisRgURdGOPX3OPtVbqTZ7loukWm3M4zDp47rgc1jwsrfC3ofpkMgoSERSPMosQQtvezzOKtV8htDjpKr+/dFmT+j53gDA8ePHMXDgQLRr105rGrQuJBIJuFz5grI+Z19d8Z9wpH3zzTcWKU9OIBAIhNqDacaNUEpReJhRgtY+DjgVW7VwYstlg8lgYEwzL41zrDksVIilNVrJMmeO+uYJRTRWpIcdbHlsMBTRQKrC+uaOXd+wxPWEuNqioEKEQoWmysu8cvQNlad9VIh1P1QSW+rnQVoxnumo5FXbY79qqmse1RTlYq2zs7PROlSWGru+YcnrOXjwIMLDw/HZZ5/hiy++oFNm62Ls+oA511NcXIzdu3dj9+7dsLGxwejRo/HBBx9g3rx5cHV1hUgkQn6+bocHsaV20tPTER8fjx49euDw4cPo1q0bfv311zoZu75g7s9/ZokQnQNYaO5tj9xykdaoc1Sr/imRUeCwmBoi+vqcVOba/a+//sKJEyfU9vn6+oLJZGpotstkMjg6OqKwsBBsNlttLvqcfabaUqiwjQ2XpVNqgc9lQSJTj+ovFUpgo9BPq25LWS3aEgpn3L59+/Dmm2/is88+M/o8tbFJRFrd8PHHH+P999+nt0tKSuDn5/dK50QgEAgEdaw5LNohYgrxeeWI9LBDI1c+va9cJIGMovDPowydkTPWbOPlQq045kuLapunDZeFrkHOOPc8F1mlQlAAejVSF3i3tsDY9QlzbclgAMEufHCYDIxv4U3vZzIYaOTKx+NM3S/alvh3rE8YEhOu3bEbli0dHEwvXAIAmZmZyMnJQefOnXHo0KEanevoaLgQxOuEMjrPEkgkEqxduxbvv/8+VqxYgZUrV+p1pjU0W9rZ2YHBYJhd3KO8vBz79u3DsGHD4O7ujry8PHC5XDqqShsNzZZ8Ph9sNhsSSc0qdmvjwoULGDlyJFJTU8FgMHD//n297RuaLdlMBthMRo20N6vzMr8czb3sceml/ui16lS/7+lL9TP3d10beXl5kMlkmDNnjs5Iw+rj6nP2MRkM8NjMGuvhlgglKBVKEOis+7mnQiQFm8mEFZtJO9PseGyUKxYc9dmyusPPUra8cOEChg4dih49ehjV3s7Ojk7rRD2JSGtYTz864PF4sLe3V/uPQCAQCPULY6o86YMC8CC9GM08q37jBRIZUosq0cHfETyFw8yKzYS/Y5UYrIuN8bpjTtZcs+/X2ubJVjyoCCQyUAB8HKzgbW9FH+exmeC/QmdJbeBgxQHLjFVEPwdrcFlM/PssG0djsuj/ojOKEeJiq/M8DpMBe17DWke05bLAZdX9gySTIf93bEg4OTmZ/bK7fft2jBw5EgMHDoStrfyz6OXlhblz58LV1VXrOQwGAwEBAWaNW9+wtbWFh4eHxfqTSqX4/vvvkZmZiRUrVuh9nletHNcQ4PF48PX1rfF5NjY2mDBhAry9vcFgMMDlcjF06FCUlpYiIyMDxcXFuHv3LmbPng1HR0cwGAwEBgbSn1soNO0aEmw222LftevXr8PR0RFTp07FlStXDFbebWi2ZDAYcOabp936NLsMZ5/nIrW4ZtVhq4+rz7ESHBxs1hy1ofzuzJw5E3Z2doDCyaQqkq86rkQswakdVYUospNzUF6srmvmYqIt76QUopmnPZq429KFgex5bHQOcIINVx6hn1kiQFs/R7CZDNhwWWjmaYeX+fLxq9tSn8PPUrakKAp79uzBqFGjjGpffVyikWYiZWVliI+Pp7cTExPx8OFDODs7NyiRVgKBQPgvYeoDhCopRZVo6mkHKxWn07XEArT0dsCQcA/w2EwIxFIkFVTQOlo1GZfFZMDJioMCMyLntM2zWCDB48wS9A91A4PBQGpRpZr+hwuf+8qqEtUWTAYDztYco6uzVifEzQaJBRUoEahHFTzLKUOkpx087XjIKtWsvOXcAG2pfJnRdr21iZM11yxnaH0lODgYDx48MPn8Bw8e4Ouvv8aYMWMwYcIEQBG9cOXKFZ36Sb6+vuDxtFf0fZ0JCgqqcYqrPqRSKTZs2IB33nkHn3/+OVauXKkhZu3h4aHmCGooBAUFITU1tUbnSCQSODs74+OPP4aDgwNEIhESExPx9ddf0/rRmzdvxuTJk/Htt9/CysoK6enptGC+k5MTnJycauV6XiVBQUF4+fKl2f0IhULcvHkTvXr1woULF/S2tbGxgbu7u9lj1jdc+BzklJl+7xFJZcis4b2Loii812opmnVtgubdI9CsezisbasWH6s7VoKCgiwS0VmdH3/8EePHj8c333wDW1tbFBcX48aNG3TVYVXnz50TUbh28Da9fWr7RZzafhHu/q5wdHdAkw4h6PzhaGSYIOWeVizAuRe5aO5lj1be8oixMpEECfkVqFREnV1JyEcHfyeMaeYFKUUhIb8CT7JKwWQATtUKPOiLSPP39weLxTLoNDaG27dvY9iwYUYFOWk40upB1U4GZelPVB1w6dIl9OrVS2P/1KlTsXPnToPnl5SUwMHBAcXFxSQ6jUAgEOoJQokU+6Iz61QI3prDwtjmXjXSeXqQVoTHWfr1eSxNez9HhHvY1emYdUF0RjEemvLUaAatfRzQzKvh3ftjskpwT0vlzdqkhZc9WvpYPmXmVXPmzBmDWkeWZvjw4Zg8eXKdjlkXXLp0CVu2bKnTMQcOHIgZM2bU6Zh1wY0bN7Bhw4Y6HbN3796YO3dunY5ZF9y7dw9r1qyp0zG7du2KxYsX1+mYdUFGsQBnX+gvtGRpUi4+wpWP1N/5XbydkJ8hX6gIaR2Mpdvnw7uxJ6z48gWKzz//HE+fPq3TeX777be0AyjmRhze7fo/ve3fWDMF7J4t62h2cnzsrdA31E1tX2VZJYbbTwEAtOrTDGvOquuYff3113j48GGdznPVqlVo0qQJvX339EN8MugrAMDk5WMxdeWEOp0PXteItJ49e1rco0wgEAiEVwuPzUKgszVe5mtWbawtQt1saiyWHupmiydZpairuxCbyUAjF5s6Gq1uCXWzxaPMEtRV4UcmAwhxbZi2bOxqg6j0kjpzRDMUUYENkW7duuGPP/6AQCAworX5MBgM9O/fv07Gqms6d+6M33//HeXl5Ua0tgwN1Zbt27enAwHqioZqy9atW8PV1RV5eborEluaAQMG1NlYdYmXPQ/2PDZKhOZrzhmLKDYVHC4bYlHVmEonGgC8eJCAOS2XAgDc/FzgG+oNnl/dymO4OXrg+u77OJB8EjnJuchMzDF4joeDNWTWHLP0gmtKmLtm9K6+iDQofhfq0pEWEBCAsLAw9Z0qk3xVEWn/CY00AoFAILweNHGvu6grJgMIda15+o8tjw1fFY212ibYmQ9uDQoivE5Yc1gIcOIb0dIyBDrz1dJ+GxI8NgtBLnVnS38na9hwX8v1WINYW1sbLYBsCVq1atUgU74AgMvlonfv3nU2XmRkpElaYq8DbDYbffv2rbPxQkJCakVbqj7AZDLRr1+/OhsvMDAQoaGhdTZeXcJgMLQ6Y2oLeys2Vv06B4cKd2Ltxc8xdeUEtO7bDDxr7TIduan5iDr/GLd+fwRZZd0F4iSdycKulf/gzM5LeHgxBtlJuqP2GEwGZn4zEUNn90WTOrSlLZcFHwcrjf2G0iZbt24NNzc3jf21Rf/+/TXmIVNZgdXm7KsLGuaTOYFAIBBeS1xtuGhUR86AZp724HNNc6q08XUAqw5WwHgsZoNMnVOltY8DXWyhNuEwGWjdwG3Z0tsenDooOsBmMtDap2FVn6vO2LFjaQHp2oTD4TTIlE5VRo0aVSc6WywWC1OnTq31cV4lw4YN01mwwpIwGAxMnz691sd5lQwePNiixTD0MW3atAanzalKmJstHKzqZmGlvZ8TGAwGeNY8tOgRicnLx2L1mc+w/VlV2rN/uC/6TemB8I4hsHNWOKYooCK6TqYIST4FUYr6Pjsnm6q5qGBlw8NXxz7GGx/JRfcbu9jA2bpuivi083fSmpVhSMifyWTW2e9DUFCQVkkvEpFGIBAIBEI12vk5wZpTu7cnJ2uOWTpZDlYctKoDp0x7f0eNsuQNDVseG218a98p09bPscFGUCmx4bLR3q/2HRatfRxgX0cvTa8KBwcHzJw5s9bHGT9+fIONoFJia2uL2bNn1/o4o0ePbnDVOqvD5/PrRLNs+PDhaNy4ca2P8yrh8XiYP39+rb+EDxo0CBEREbU6xquGxWSgS6AzatudEeJqozWCCgCYrKrnRv9wH3y4cyE23vgaB/N24EDudvxw4yu8+8UCeNh61+ocGRQDXSJ6YP6G6Vh5+EP8/HAtDhfuxMH8nZiyYrxaW0c3e6y98DnaDWxVdR1MBroEOZtdId4Qwc58tQr2quirgKqkbdu26Nq1a21ND1AsjsyfPx9stubzBolIIxAIBAKhGjw2E92CXMCoJRUyLouBbsHOZlcbDPew1flAZwkaufAR5Fx3qXp1SXlxOe6efoit7+/Em35zsKbnp/C2qb0V2EAn6warjVZRWon7Z6Pxy4e7MTFgLr7svAy+/NqzpZ+jdZ2mnrxKOnXqhD59+tRa/y1btsSwYcNqrf/6RNu2bTFo0KBa6z8yMhKjRo2qtf7rE82bN8eIESNqrf+wsDCMGzeu1vqvT4SHh2Ps2LG11n+jRo3w5ptv1lr/9Qk3W16tRn07WXPQ1k/3opuarle1xzt7FztEdAxF/6k98dWGVbUaifj23LexZNNCjFo8GJ2Ht0Nw8wDYOMifPxzdqxZw7ZxtseH6lwhrp+mwduZz0a4WFxgdrNho76+nfz22VGXGjBnw8fGx7ORUmDp1KgICArQeo+pBRFrDXk4kEAgEwmuJjUSMh98dRNN3R4DFsdytisNioE+IG5x0aGkYC0VRuH3sHi79dgG2/dvCq71ltU8CnKzROdC5QaWC3D0VhRtH7iLmRhySnqRqFA36e/xqNJ45ED5dLbty7+doha5BLg3Klg/OPcK1Q3cQcyMWSY9T1FZmAeDiJ7+D16Up/Hs1t+i43vZW6BHcsGypDwaDgdmzZyMzM9Pi1d4iIyOxZMkSMJn/nTXtqVOnIiMjA9HRls2vCgsLw4cffqg1aqGhMnHiRGRkZODu3bsW7bdRo0ZYtmwZuFzz7pGvE2PHjkVGRgauX79u0X4DAgLw8ccfw8qq9hbc6huc9FzE/H4VkVMtuwDhYMVGv1A3cFm6fy/5dlV2Li/WXbTK3t4ey5cvx8qVK5Gba9lqo2+99ZbexRfVe/X4D0bAp7GXzrZWuYV48usZNJ1l2SIVdjy5LXls3dkOVrbG2dLW1hb/+9//sHLlSmRlZVl0nm+88QYGDhyo8zilYktt6ad1wX/n7k0gEAiE1wKZTIZv39qEx/uu4+K72yAusUwVTzseG8JzUZjiPBVTQxch+lJMjSpAUxSFl9FJ+HXZH5jgPRufjViD20fv4eL7v+LlsTsWmSMAhDhbY2vPTzCUPwkbF/6KkvxSi/X9qrh7KgqfDP4ax34+i8THKVrtnhqThssf7sCLQzctNm6ICx+/9V+BYTYT8f3bP6Eot+6q3dUW0Zdj8FH/L/Dv1tNIiE7WcKIBQNSZaFz9ZBdi/7lqsXEbOfOxe9gXGMqfiDXTNqMgq9CIs15/mEwmhgwZgtatW1usz65du8LX1xcbNmzA+fPn1dNoGjBKW7Zp08ZiztiOHTuiUaNG+OGHH3DmzBlIpVKL9FvfYTAYGDhwINq1a2cxZ2zbtm0RHh6OjRs34tSpU5BI6q4K46tEWTW3ffv2YLEsI6XQokULtGrVCps3b8bx48chFtddFcZXRUl+Kb4Ytw5RPx7H3XWHQEkt87vmacfD7U92YZTNJHzQdyVS49K1tuPb88FWSGEU5Zbo7dPd3R1ffPEFQkJCLDJHHo+HefPmGYwwFgmqPgc29rqLVpUVlePz0d/h4S+ncfvbfaAklvldc7flIvqrPRhjOxnv9/gMyU9Ttbbj8jjg28nnV2zAli4uLli1ahXCw8MtMkcOh4PZs2dj9OjRetup2pL9imQ7iCONQCAQCPWK3Sv34e7JKABAZWIWBgY7mZ3iGO5ui2ERHji14V9IJVJkxGdhae/PsaD9Mlzccx1SPQ8pJQWl+OOL/ZjV9D3MbfUB9q45gsLsKoeMTCSBd2kZejV2NUvbzZbLwoBQNzBiklCQXgixUIx/t5zGm/5zsWnhr8h4adnVvrqEa2VcdINMIoV7YTH6hriCb4Y2nA2Xhb4hbrBNy0ZOUi7EQglO/noeEwPmYcPcX3Q+iL8OGLIlz5oLkUAMSiqDc14h+oW4wsbEohpQVFbt09gVXmWlyHyRCYlIgrO7LmNS4Hysm7VV54N4Q6C0tBQHDhxAREQEli1bhs8//9yslCAHBwcsXboU06ZNQ1paGgQCAW7evIkHDx4gJiYG2dnZFp1/faKiogIHDx5EcHAwPvroI3zxxRfw9jZdq8jOzg7vvvsu5s6di+TkZAiFQty5cwd3797Fs2fPkJmZadH51ycEAgEOHjwIPz8/fPDBB/jqq6/g5+dncn82NjZYuHAh3n33XSQmJkIkEuHu3bu4desW4uLikJ7++v5eGkIoFOLQoUNwd3fH0qVL8c0335ils2dtbY25c+di2bJlePHiBcRiMR48eIDr16/j+fPnSE1tmL+XUqkUX03cgOxkeYQXMzkLQ8Ld4MI3PbKRzWSgg78T+oe64f7x+5BKpHh44QlmhL+Lz0auxuOrzzTS++xd5amTJXmGFyCdnZ2xatUqTJ48GRyO6XIIERERWLt2rXZB/GoUZRfRfzu6a0+DlclkWD11EzLiFc98SVkY0sQNbjam25LFZKCdnyMGhrnj1oFbkEqkeHz1GWY1fR+fDv0aDy8+0VjgdHCT29KQIw0AHB0dsWLFCkybNs2saNawsDB89913RlXULTTClrUNg6rJcnwDoaSkBA4ODiguLoa9veli0wQCgUCwLHdORuHTIV8DilDtb88sR6vezQAAWaUCxOWUIbmoEsbcuVhMBoKd+WjibgtnxcPc8uHf4tax+xpt3f1dMebdoRixaKDGivSiTp8g9vYLneMENw/AlnurwWKzIJLI8CKvHHG5ZSgVGrea72TNQaibLRq58MFhMVFWVI5RztM02jEYDHQZ1R5TVoxDUDPtmhH1FYqisGbaZpzbfUVvO99QL/zyaB04XA7EUhni88oRm1uGEoFxtnSwYiPM3RaNXWzAYTEhqBBimN1kVJfbYzAY6DisDaasGI/GrYLMubRXwoZ5v+D4z2f1tglpHYT1V78Az5oHsVSGl/nliMspQ5GRtrTnVdmSy2ZCIpZgiPVErRFw7Qe3wlufjUOT9pZZ3a8v/PHHH8jOzsaCBQvo9CyhUIgrV67gzJkzSE5ONqofDw8P9OvXD71794atrS0oisK3334LkUhEt2GxWJBKpRgyZAjatm1ba9f0qti7dy9SUlKwYMEC8PnyhRGRSIRr167h9OnTSExMNKofNzc39OvXD3369IGdnR0oisLatWtRUVEVuay0Zf/+/dGpU6dau6ZXxYEDBxAfH48FCxbA1lauVyiRSHDt2jWcOXMG8fHxRvXj4uKCfv36oW/fvvT70Pr161FSUvXirLRl79690a1bt1q6olfHkSNH8PTpU8yfPx8ODvKXcYlEghs3buDs2bOIi4szqh8nJyf07dsX/fr1g6OjXHtq06ZNKCgooNsobdmtWzf07t27lq7o1bBz+R78+dUBQOHU2Hp/NVx9XCCjKCQXViIupwzZZUKj+rJiMxHqZotQNxu6QNB479kozCrSaBvWrhEmfjoGnYe3AwDMabkUCY+SweGycbzyL6MjX3NycnDmzBmcPHnS6OjBZs2aYcCAAWjbtq3RUaFb3t2BQxtPAADWX/0CTbs00Wjz9zeHsP3TvwCFjtqWe6vhGegOGUUhpbAScbllyCo13paNXW0Q5mYLW57clpMC5yEnJU+jbeNWQZj4yWh0G9MRqPbse1L4N9hGyqzk5eXhzJkzOHHihNo9Th+RkZEYMGAA2rdvb7Qtf/v4T+xZfRgAsPrMcrTua1kpC2P474gJEAgEAqFeU5hTjO+m/0hvz/xmEu1EAwBPOyt42lmhQiRFekkl8svFKKgQoaRciKK8UkhFEvBAoUWrALjwufBxsAaPrX5D7vVmV62OtJyUPGx9fycEFUJM/EQ9nFwq1u14YDAZ+PrEJ2AptCa4bCYiPe0Q4WGL7DIhcspEyC8XoahSjIK8UggrhBCXC9CkiTd83O3gYcuDqw1X7WHP1tEGvmHeSIvLUBuLoihcO3gb989EY0/6L3TY/evA83svEXX+sf5GDOCrE5+Cw5WvDHNYTIR72KGJuy1yykTIKRMiv0KEwkoxCvNKISgXQlIhROPGHvDzdICHLQ9utuq2tOLz0Kh5IF5GJ6kNRVEUbh69h6hzj/FH0hY4uL4+i2rxDxPpiE1d2Dnb4rP9S8Gz5gEKWzZxt0OYmy1yy0XIKVWxZX4ZBOVCiCsECAp0Q6CPE9xsufCw5anZks1hI6x9CJ7deq4x3p0TUYg6/wS7Xm6Gq7dzLVz1q8HX1xe9e/dW0zji8Xi08yE+Ph7Pnj1DQkICkpOTUVlZibKyMlhbWyMsLAzBwcEIDQ1FRESE2ssBg8HAW2+9he3bt9NRANbW1mjXrh2Cgl4/x64xeHt7o0uXLrQTDQC4XC569+6NXr16ISEhAU+fPqVtWVFRgbKyMlhZWSE0NJS2ZdOmTTVsOXnyZPz22290WqeVlRXat2/fYKtOenl5oW3btrQTDQDYbDZ69uyJnj17IikpCU+ePNGwJZfL1bBl9YWjSZMmYfv27RAK5S/qHA4H3bp1Q2ioZXVA6wseHh5o3rw57USDwpbdu3dH9+7dkZKSQtsyKSkJ5eXlKCsrA4fDoW0ZEhKCZs2aaWj0vfHGG9i5cyft5OVwOOjatSuaNNF0nrzOPLryFH99fRBQVM7839734OrjIt9mMBDkLC+cVFQpRmaJAPkVIhRUiFFUVIGK0kpIBCK42FujSZgXXG248La30igG1XVUe/y79YzG2HF3X2LFyDVYe+FztOgZSUdRiUUSVJRWwsbeuGwGd3d3TJ48GW5ubpBKpSgqKkJiYiIyMzMhEonAYrFgb2+PoKAgBAUF4d69e/Dw8ND4bTdEYU5VNoOzp6bYf+ydF9j52R5A8dv2yV/vwjPQnbZloDMfgc58FAsUtlQ8BxcVV6CsuAJSoRhOtjyEh/vA1YYLHy227Da2Iw58f0xj7PioRKwatw5fHf8E7Qe1gqNb1XNRaUEZnDyMK37g6uqKiRMnwsPDAwKBAKWlpUhISKBtyWQyYWtri6CgIAQHByMqKgrOzs6IjIysmS1VMkOctNiyLiCONAKBQCC8ciiKwrqZW1CkeMjoOLQNxi0drrUtn8tCiKstQlyBP77Yj0ObT6AkVx7G36Z/C8w69T+d40R00v8yoG318qPdi/Fet+UoLSjTONZ+YCu4aHEcMBgM2vFXVlSGd7t+hYKsIrqP3pdXoWlz3ZWOmnUN13CkKWGxWaBeE00liqJw8tfz2Lx4O8RC/au8LXs1hXewZtocg8GAhx0PHnY8VJRV4t2uy5GXlk/b8ptT/0OzVrrTmpp1C9dwpNF9vyKBWlM5u+syfpj3C4SV8lVeJosJmRYdmg93LqQfvlVhMBhwt+XB3ZYHQaUQ73VbjuykXNqWnx/8AM3a6o52bNYtXKsjDa9Q7Lc2SEtLw82bNzF27FidEQ0MBgMhISEICQmBVCrF0aNHUVhYiLZt28LDw8NgCqiVlRWsra3pl2w+n4/u3bvXyvW8SjIzM3HlyhWMGzdO50sSg8FAo0aN0KhRI8hkMhw7dgy5ublo3749XFxcDKaAKm1ZVlZGbzdEW+bk5ODChQsYO3as3sIKgYGBCAwMBEVROHHiBDIyMtCxY0c4OTnB19dX7xhWVlbgcrm0I43H46FHjx4Wv5ZXTX5+Ps6ePYvRo0frTUXz9/eHv78/KIrC6dOnkZKSgk6dOsHBwQH+/v56x+Dz+Wopg0pnZ0OirKgcq6dsohcEpq16Ay16RGpt62jNgaM1BxRF4fPR3+Hx1Wf0vWfqyglo1Vu3gzGycxOtjjQlynu5g4rzpzi3xGhHGhTp582bN4eXl+4CAACQnZ2NW7duIT09Hbt378acOXOMdgCpRtU5eainI1aWVeKbyRvpe/rET0ejbf8WWvtxsOLAwUr+2fpywno8OP+ItuUby0ahdV/dRZsiOzfR6khTwlQUdFBdYCzKLTHakQYAlZWVaNKkicGKnvn5+bh9+zaysrKwc+dOzJ8/32idwoJs3basK4hGGoFAIBBeOf9uPYPbxx8AirSA93+dZzAkP+NlFn7/fC/tRAOAvLR8ved4BLhpXQUEgKFz+mHskqEa+7OTciEoE2g9Z9h8w9WUvpywAclP09QccbkG5qnL4efgZo8vj31Ml1Kvz1SWVWL1lE1YP+dn2okW2NQPHB2isMPnGbbl6rc2IfFRspotDf2bh+uwpZ2zLb74d9lrEY0mqBBi3cwtWDNtM+1Ea9K+Mdac+wz8aoLFw+YNQMehbQz2uX72T4h/kGiRz6WNAx8rD3/YIKLRKIrCgQMHUFZWZnRa0M2bN/Ho0SOkpqbi5cuXtENHH8XFxaioqICPjw/8/PwQGan95fN15+DBgygpKTHalnfv3kVUVBTS0tIQFxeH8vJyg+eUlJSgrKwMXl5e8PPzQ0SEZSv/1hcOHTqEwsJCo180o6KicO/ePWRkZCAmJsYoW5aVlaG0tBQeHh4N2pZHjhxBXl6e0bZ8/Pgxbt++jczMTDx69MgoW1ZUVKC4uBhubm4N1pabFv5Kpwk26x6O8R9qXwBV5cS2s7hx5G6N7uO67j1MFhPvbH0bzbvLbetYzflTE86ePYuTJ08abJefXzXXkpISoz4LSgoUjjQrGx6sbdXv3Vve3UnrojXpEIK3PhtnsL8Lf1/F5X031G2ZbqItmQzM3zCddt5Vd0rWhIsXL+L48eMG26nasry8HKWlxhfXUjolmSwm7F3sajQ/S0EcaQQCgUB4pSQ/S8PPS3+nt5dunw8nA8KhFEVh4/xtGtpXeekFuk4BFJEP2hwrDAYDA2f2odMKlVzedxMrRq6GWKSZ3mlta4VWfZpp7Fcl9s4L3D8brbHfVOdPUDN/g1F19YHEJylY0P5jnP+zqmpk+0GtkP4iS6stOTw22g5sqbfPl9FJuPnvPY39pjp//Jr4oFk3y1SZqk1S49KxqOPHOLXjIr1v4IzeWHdpJVr0iES30R3p/X5NfPD2d28Z7DMlNh2X9t7Q2J9v4Pujy5ZejTzQsndTg+O+DlAUhfDwcIwaNcroc3Jycui/ExIScOyY7tV+Jb6+vnBzc8OIESMwY8YMtG7dGhcuXGhQlRIpikJoaCjGjBljtCNNteBCUlISjh49avAcb29veHh4YNiwYZgxYwY6duyI8+fPN7hKiY0bN8a4ceNMsmVKSgoOHTpk8BwPDw94enpi8ODBmDFjBrp3747z58/TEWoNhaCgIIwfP95oR5rqdzw1NRUHDhwwWPXb1dUV3t7eGDhwIGbMmIE+ffrg/PnzqKysNHv+9YHzf17Fhb+uAYrFlGW7Fhm0Z3lJBbZ/ukdjf64B549nkLtWQXk7Jxv0GF+lg2iO8ycrK8uooh2NGjWiNQUFAgG2b9+Offv2GVUxWFlsoPqC7tWDt3Fq+wVA4WRbtnsRLRmii8pyAX5esktjv6HnSxcvJ3gEuGnst7bno9ebXehtRzNsmZmZaTD6FYroWScnJ0ChP/r7779jz549Rv12K4sNOHk4WKxycU0hjjQCgUAgvDJEQjG+mfQDXcZ6xIKB6DC4tcHzLv9zA/fPPtLYX14s19zQh6q4K48v15CiKAqrp2yCoKLqZeHU9gv4+s31kIjVH46ULzFD3u4HLk93pSepRIoNc3/Reiw3Vf+Djl+Yt9oKG0cxzsMLT3Dy1/N6z33VnN55EYs6fIzUWHmlN76dNUYuHIR7Z6I10juV74MDZ/SBtY2Vtu4ARRWrH+b9AkqL0L0hW3oEuMHVpypSimstT+N5eiMORzafqtnF1TEX/rqK+W0/QtITeaU3Kz4PH/6+EEt+nQeuFRfRl2Jw5vdLAAA2h4VP/nwHVorPtC4oisIP837RmhJqyCnp5OEI78ae9DZPUcQj/kEi9q3916RrrE+8ePECJ0+eRP/+/WnBcH1QFIX79+8jJSWF3ufs7GyUM4zH42H+/Plwc5O/0CgFzi9dumTmVdQPEhIS8O+//6Jfv35wdjYuUjEqKgpJSVVp2EpbGnJYcDgczJ07l07JkkqluHXrFs6dO2fmVdQPkpOTcfjwYfTp0weurq5GnfPo0SO1Ag7Ozs6QSqWQGZAFYLFYmDNnDp22KJPJcOfOHZw5ozut7nUiLS0NBw4cQK9eveDurpn+ro0nT56oFXBwcZHrfxn6njMYDMyePRvBwcGA4vfi3r17OHWqft93jCErKQcbF2yjt9/Z+jbc/TWdM9XZ+b89KMnXjDoydB9nMBiI7BJGb1vbyZ8XivNKsXnRb/R+cxxpY8aMMSqNOTo6Wq0gR1FREZ4+fYorV/QXUxIJxSgtlEevqWp65aXnY/3bP9HbCzbOhE9j/emlAPDHqv10hJsqOQZsCQBNu1Y9B1vbym1ZXlSODXN+pn9vVW1Z0+i+UaNGoU+fPgbbPXnyBMXFVVpnRUVFiIuLw8WLF/WeJ5PJaI00XVkmdQFxpBEIBALhlfH78j14+VD+4hQQ4YvZayYbPKe8uBxb39up83j6i0y95w+a1QftB7dCl5Ht8PPD7xDathEAIDU2Hb8t+xMAcPCH41g3aytdoZCj4jBb9OMsbLm3GrO+naR3nCObT9HXpjHHeP1zZDKZWLBxBsLaNcKCH2Zg+T/v08e2vr/T4PmvAkGFEN/N+BFrZ2yh0w+DWwRg7NLhOPLjKdpxw7WqsuXc76diy73VWPDDdL19n9h2Hs9uaa+casgWDIY8XSGsXSO8/d0UrDr8IX3s12V/IPlpao2usy4QCUTYMOdnfDN5IwTlcuduQIQvNt/5Bv3ekj/olxaWqWnTTP/yTaMqkJ7bfQWPLj/VeszQdwcA5n0/DWHtGmHm1xPx9YlPaMfy75/tQfxD4yov1kcEAgEOHjxYo8ibZ8+e4dixY2ovAqmpqUY7O1RxdHTEkCFDjIpqqO+IRCIcOHAAAoH2lHhtPH/+nNaZU5KamgoXFxejI7CU2NnZYdiwYQadRq8DEokEBw4cqFH6WEJCAg4dOoTc3Fx6X3p6OlxcXGocucHn8zFixAiDzszXAZlMhv379xuVeq0kJSUFBw4cUIvuy8jIgKOjo16dOm3weDyMHDmyxp/n+oZUKsXqKZtQUSJftOwzuRt6vdHF4Hlx917i6BbtTsSM+CyD39e3PhuHiE6hGLFgILbcWwNbR7nExYW/ruHinutAtSiqmjh/MjIycP36db16eUqUix3Kf8c+ffpgxowZBtPzi9Q0veTOH5lMhu+m/0inZnYb0wEDphnW0Ut8nIwD67VHPmcn5UKip0gWALz5yWhEdgnDkLf7YeuDNXBwlS/cXj98l16cM9UpmZ2djUuXLoHH07+oBwCXL1+GTCajbdmjRw/MnDkTzZvrr8BZkl9KP1M61kC7zdKQYgMEAoFAeCU8vPgE+9bJo1jYHBaW/bGYrjKoj+2f/q11FU5JyrN0hLQO1nncxp6Pr459Qm9/tGsR5rX+ACKBGIc3n0RZcQXO7b5MH3f3c0VOqlwDpMuo9hg6p5/BB+HctHy68pI2kmIMO296v9kVvd/sSm8Pmd0Xx7edg6BciDVTN+P7y6sMhv7XFcnP0vDl+O/VrmvI7L5wD3DFjv9V2cHd35XWU2k3qBVGLR5i0JaF2UX47eM/dY8dk2Zwft3GdKRLugPAqMWDcWjjCYgEYqyesgk/3PhKI633VZEen4kvxn+v5oTtN7UHFm2eRUftKVOblRFkLXtFYuySYQb7LskvVUujrk7y0zRQFKX336Tj0DZqGmwTPhyBPasPQyKWYvVbm/Dj3W/BtTL8MlIfadGiRY2E1dPT0+Hv74+SkhIUFRWBx+OBz+cjKSkJycnJCAjQXbhBG61atYJIJMLFixfRqVMntWqhrxvNmjVDt27djG6fkZEBX19fVFZWIj8/HxwOB/b29khPT8eLFy8QEhJSo/GbN2+OiIgIXLx4ER06dFCrFvq6ERERgS5dDDsqlGRkZMDLywtSqRQ5OTlgs9lwdnZGdnY2YmJiaqzHFxERgbCwMFy6dEmjWujrhDJtu2PHjka0lpOZmQkPDw8wmUxkZmaCxWLBzc0NWVlZiIqKQuvWhiPoVQkLC0NISAguXbqE1q1b0ymCrxN7vj2MJ9diAUXE96JNMw2eI5VK5ZHQWqLKAUBYKUJOSp7WIjlKGrUIxA/Xv6K3F/04C99M+gEAsHH+NjTr1sRk58+jR4/UomF1QVEUOBwOBg4cCIFAAGdnZzRq1Mgo56halUmF8+fghuN4cE5e0dzF2wnv/jTHYF8ymQwb5m2DVKJ90UUqkSI9PgsB4bpTKwPCfbHh6pf09rs/z8HKMWsBAFve2YHmPSJMdko+fvwYiYmJBp8loCjAMXz4cEgkEjg6OqJx48Y1tqXzK3SkkYg0AoFAINQ5JQWlatE0M76ehMYtDUfTlBWV663cBAApzww7VlTxb+KD2WuqdKVUnWht+regnWgu3k54/5e5Rt3kj2w+iUodBQqgSGNQTSM1hjnrpsC7kbwS4NObz7Fn9eEanV9bnPvjCha2X0Y70ZT6Hg5u9mpOtDb9WtBONEc3eyz9zXBBCQA49tNZlBXpjsYozitBSYHxArUAMPObifAPl1eTevEgEX+s2l+j82uLy/tuYn6bj2gnGteKgyW/zceHOxaqpb6e++MKrXFm52SDD3YuNCrS5ORvF1Ccp9tWlWUC5GcW6jyujSkrxyO4hdxhlBSTiu2f/l2j8+sD0dHRuH37NgYOHAhra2sjzpDTt29fTJ8+HVOmTIGLiwveeOMNzJs3DywWC2lpNfsdUiKTyXD79u3XNv3ryZMnuHr1KgYOHAgbG+OLovTo0QMzZsygbTl+/HjMnTsXHA4H6enpJs2FoijcvXvXKNHr+sizZ89w4cIFDBw4EHZ2xotpd+nSBbNnz8aUKVPg6uqKsWPHYs6cObCyskJGhvZq0MZw7949/Pvv65nC/fz5c5w5cwYDBgyAg4PxFf46dOiAOXPm4K233oKbmxtGjRqFt99+G3w+H1lZWSbNhcFgICoqCocP1497eE2IvfMCu1fuAxTi9Mt2LzKq+NGDs4/w4n6C3jZKOQhj6f1mV/RURMKVFZXjuxlbYOdc5eQtzjPe+WNnZ4dWrVoZbMdgMPDuu++iefPmaN26Nfbs2aOWQq0P1QVgZ09HvIxOwvZP/qL3ffj7IqNE8x9ffYanN+L0tqmpLbuO6oAB03oBACpKK/HdtB9h61T171oTW9ra2qJVq1ZGPd8tXLgQrVq1Qtu2bbFv3z48f669Knh11KqfktROAoFAIPyX2PreTrowQKs+zTDmvSFGncfmsuHspf+maUy0V3WGzOmrpqMFAOM/HIlHl2Lo7Q92LDC6MpA2IdfqpMXV7IXG2tYaH+1aBKaizPvulfvw/P7LGvVhSYSVQqx/+ye5tpwi/TCwqR823f4Gsbfj8dfXB+m2Y5cMw5Nrz+jtJb/Nh7Onk1HjuAcYTpNLja2ZLXnWPCzbvZiO6Nvz7SHEGHgwrU1EQjE2L/oNX074ntb48wvzxubb32Dg9F5qbfMyCrB5YZUmzDs/zYG7n3GphB5G2DLlWc0ewDlcDpbtXkxXYz2w/hgeXnxSoz5eJQUFBTh69KhJIv/KFwU7OzvMmjULgYGB4HA4aNOmDa2jVFOsrKwwYsSI1zItsbi4GEeOHDFJ5J/BYIDBYMDGxgazZs1C48aNwWaz0a5dO5NSZaHQThs5cuRrmZZYVlaGw4cPQyQS1fhcpS2tra0xY8YMhIWFgclkol27dkbrglWHxWJh9OjRJp37qqmsrKxx2rYqDAYDPB4P06ZNQ2RkJBgMBjp06AAPDw+T+xs9ejSYTOZr9dkUCcVYM3UzHQn15sej0bSrcQV7XLydwWTpdzvU9N4DAIs2z4SLt/xZ4sHZR7ilUpCoJs6fZs2aoXv37ka1Vf7us1gsWFtbIzk52ajzVJ0/jm72WDN1M118aez7w9DaQPEqJS5eTmBz9GcjmGLLeRumwTNQ/uz6+OozXPz7On2sJtF9ERER6NWrlxEtq2zJYDBga2trtC2rOyVfFcSRRiAQCIQ6JfpyDM7tlouy2jra4IMdC4zWbbHi8/Db0w344ugyuPtXvVx1GdmeviEbo/OkikQswZqpP2pU/Lxz4j79kDP6nSFo06+F0X0OmzcAP0V9hwkfjaT3BTXzh2+YN71d08g5AIjoFIY3lsmrCUolcp0SYWXdV1NLe56BxZ0/xQmVwgcDpvXChmtfYt/aozi8uaqE/IIfZiD9RSatmzbk7X5qqYGGGDCtF355tA6TPxtL7/MP90VARFXagim2DGkdjLdWyMvLy2QU1kzdhMqyuq+mlpmQjfe6LceRH6sikHpP7IrNd75FUDPN1MCfl+6inW39pvRAj3GdNNrooueELvj1yfeY/uWb9D7fUG8ENfOnt02xZVBTf8z4eiK9vWbaZr1RhPUJFouF9u3b1yilszqXL1/G3r176e1+/frBx8fH5P7Cw8MxcuRIXL16FRUVFSb3U9cwmUy0adPGKJFpXVy/fh1//PEHvd27d29a+N4UQkNDMX78eFy7dq1G2livGgaDgZYtW6Jfv34m93Hr1i38/ntVKnePHj0QFGQ48lsXwcHBePPNN3Hjxg01sfXXgRYtWmDAgAEmn3///n389lvVAkbXrl3RuHFjk/sLCAjA5MmTcfv2bRQV6ZaqqE/sX/cvUhULgGHtGqndkw0R3DwAuxN+xMd/vkPvc3S3R/PuVY44U+499s52+GDHAnp796p99LOgsc6f9PR0rF+/vsa/DwwGA8OHD0d4uHHORFXnT+y9eCQ8kjuNgpsHYPpXb+o5Ux3fUG/sTvgR//vnPTAUC6t2zrZqlbNTYmtuSxt7Pj7YuZC23x9f7AOHJ18gM9aW2dnZWL9+vZpuqLEMGTIETZsaV/1bLSLNw/gIU0tDHGkEAoFAqDPEIjE2LfiV3p717SS4+dYscsPGno/2g1vRN3bfUC98fvADBETKHSvpLzJ1akdUR1AhxMoxa3FJIVSrfCgBQFdKdPd3xbQv36jRHKHQ83BQiWAbt2Q4Zq+uKqZgyoohAEz+bCxCWgfRfexdfcSkfkzl0t7rmN/2IyREyx8CedZcfLBjARZvmYV1M7fgzE65UC2TycAHOxbAI9ANN4/KV4mdvZyMKihRnaCm/nB0q3pYGrV4MOatn0Zvm2rLNz4aiYhOoQCAjJfZ+OOLAyb1YyrXDt3GvDYf4vk9eWQhh8fBuz+9jWW7F4Nvp5li+ODcI/qz6uBqh7nrptZ4zIAIP7UV3GFz+2Pxj7PobVNtOfrdIWjZS669lJuaj98/22vwnFfNy5cvERsbiwEDBtRYOFyVzMxMtZTQ6OhobNu2zexok5s3b7421RKTkpLw+PFjDBw4EByO6XqD1W355MkT/PTTT2bb8s6dOzh58qQRLV89qampePDgAQYNGmSUYLcuqtsyLi4OP/74o9kFLe7du/fapMump6fj9u3bGDRoUI3StqtT3ZYvX77E5s2bTYoYVCUqKgpHjx41q4+6IDMxG39+KZdAYDIZeO+XuWBzavab6e7nCp+QqmqUHQa3waojH9HbKTVMR1TSpl8LjFw4CAAgFkrAZMvdG8Y6f1JTU8HhcEzSUfTz80NycrJRv0+FKsUG6GdOBgPv/jxHbwV4bbj6uCAg3I+uZN6mfwt8dexjOmPB1Pt48+4RGLd0OABAKpFBeVnGaqSlpaWBxWKZpKPo5+eHlJQUo6KxVW1JUjsJBAKB8J/g4IYTSH4qXylr0r4xBs0yLXIhKzGHjnAKiPQDFFFKACARS5Hx0rB2SWF2EZb2WoFbx+4DCifGqsMfofPI9mrtFvwwQ02fqiYkqVSEDIj0hX+TqigVU1YMoUil+2jXIjotce+aw8hKyjGpr5ogEoiwcf42fPXmBlr/zT/cB5vvfIsOQ1rjw36rcPXAbUBRPOJ/e99H93GdsOWd7XQfc9ZOgY29aaLfySopu4GRvvS/N8ywJYvNwoe/L6Srsh7ccAxpz03XEDIWsUiMre/txMoxa1FeLI848m7siY03v8KQt7UXsxAJxdi0UNUJPdnoVOPqqKY/B1SzZaqJtmQymfhgxwJY8eUv/ke3nkbiY+PSNF4FQqEQBw8eNFnnSJXOnTurpQXx+XyUlpbWqGpldZhMJgYNGvRaRFGJxWIcPHgQmZnmVxPu0KGDWlqQjY0NKisrzbbDoEGDalT58lUhkUhw8OBBs7TMlLRr104tOpDP50MkEpkULaLK62JLmUyGQ4cOmaxXqEqbNm3Qv39/epvP50MikahVmTWFAQMGoLKy7iOha8qWd3dAJJCnbI9cNBiNWgSa1E+y2r3HDzYONnD2kqdmmur8AYCZ306iNWSlYrmj2FjnT5MmTTBhwoQaV7QFgLy8PJw6dUqtqqsuVJ0/wgr58+vgWX0Q3qFmhVSUqD0TRfiBa8WFZ5A8dTs1Nt1keYCpqybQEf8SRVZGSX6pUf2FhIRgwoQJJi1MFRQU4PTp00ZpYhZkk9ROAoFAIPyHyEnNwx+rqkRqF/04y6QHF6hEi0HxAAFF0QAlhjSzkp+lYXGnTxB3Vx4JxLezxtcnPkHHoW3oMuBKPINN05RRnSeDwYB/uC+8gj1oLama6nqpEhDhh1GLBwMARAIxfvlgl8l9GUPikxQs6vQJ/v2pKjqm71vdsfn2N2Bz2Vjc+VPEXJdrjFnxeVh15CN0G9MRf399EFlJuQCAlr2botcbxleeq05StQdwVx9nWNvKHZzm2NKnsRfGK1ZgJWIptr6/0+S+jCElNh3vdl2Ogz9URXR0H9cJW+6t1ltwY/+6f5H2XO6oiOgchv7Tepo8h+q2tHexoyt0pZhhS3d/N7z5iVxHSSaVYcu7O+qtBpBIJIK3tzd69+5tVj8ymQw5OTlqOl6hoaEYOXKk2VU3mzVrhjfeeAOxsbH1WjNNLBbDw8MDffv2NasfiqKQnZ0NN7cqjcng4GCMGDHC7EqR4eHheOutt+q9LaVSKVxdXc1K6YTClllZWWq2DAgIwIgRI+DoaN6LZ0hICGbMmIHY2Fizo9tqE6lUCicnJ7NSOqGwZWZmppotvb29MXLkSJP1+5QEBwfj7bffRlxcnEk6jXXBjaN3cetf+YKjs5cTpqwcb3JfSU9S6L8DFVkEysI/JfmlNdI1U8WKz8O89dPV9gnKhQalLyiKQkxMjMn/jh4eHrCyskJpqeGCR9WrzTu42qlJItSURBVbBtC2lP9fUC7UkCsxFi6Pg/kb1G0pk8pQVmjYef706VOTbenm5gY+n2/Uool6aidxpBEIBAKhgbP1vZ10pcqhc/sjtE0jk/uq7ggAAD/VaC89WhsPLz7Bu13+Rzt43HxdsP7qF2jZqykSHiXj9I6LGvM2xRkgk8mQooi+8wxyhxWfBxabRac2pD3PMDoFVRuTPxtLa0NcPXAbD84/NrkvXUilUuxbexQLVFI5uVYcvPfLXHy4cyFeRifjnc6fIiNeHtXj7OmIdZdXot3AVkiNS8e+tfKUFTaHhUWbZxlVxUkbFEXR/+bOXk6wc7IFg8Gg/83lEYqma8VNWDaSTjG+cyIKt4/fN7kvXchkMhzaeALzWn9QlcrJZWPR5ln435739EbqVU+rWWyGExoqK9m2jjZwUUQDKG1ZkFmI8mLTo03Gvj8UXsHyyICHF2Nw9cAtk/uqLQoLC5GQkIBJkybVqBqiNtLS0nD69Gm1yBQWiwWKopCbm2v2XMvLy7F37148ePDA7L5qg+LiYjx//hyTJk2qUTVEbWRmZuLUqVNqdmMymWCxWEZFfBhCIBDgn3/+wZ07d8zuqzYoLS1FTEwMJk2aBGdnZyPO0E1eXh5OnjypZjcGgwEOh2ORyEGRSIR9+/bhxo0bZvdVG5SVlSE6OhqTJk1Sc4CZQlFREY4fP64WJagsQGCJyEGpVIp9+/bhypUrZvdlaQQVQmx5Zwe9PXfdVJOjygEg6WnVsxmdTaD27GZ6VFqHIa3RbpB65U1D6Z0VFRU4d+6cyf+OHA4H7733nlF6edUdaeZElQOgszsAIFD5HKymw2u6LVv3bY6uozuo7TMU4ScUCnH69Gmkpta84BcU98133nkHTZo0Mdi2MFseVcvhcWDjYPrn0VyII41AIBAItc6dk1G4dlCe9ufo7qAmdm4KySopk4FNlamdqmmT2h8gzu6+jI8HfkkLoTdqGYiNt75GcPMAyGQybFywDTKpPFrB1lFe+vvhhSf03GtCdnIu7ThUzhEA/JrIH3QkYikyE0x/ObSx52PmN5Po7a3v7oBEbLkV7czEbHzQeyV++XA3XXQhMNIPm259g8Gz+uDKvpv4sO8qlOSXqhz7GqFtGoGiKGxe9FtVRaolw9UelmtKYXYRSgvkq5SqtlT+m1MURUdrmYK1jRXe/u4tenvLezshEta88qAuclLzsGzAl2rpMX5h3thw/UsMnz/AoIPRUmk1AFBWVE6vVAc29aPHVv33STbjAZxrxcXc76u0235euov+HtQHKIrCgQMHcP++ZZylAoEAVlZWcHJSr0J78+ZN3Lt3T+d5xuLg4IDWrVsjLu7VVZXVBUVROHToEG7frvnvozaEQiG4XK5GxdPbt29bZAwbGxu0b98esbGxZvdVGxw9etRijimBQAA2m60RHXL37l3cumW+c9vKygqdO3eul59LADh+/DiuXbtmkb6EQiFYLJZGxdP79+9b5N+LzWajW7du9dKWf311ANnJcsd2qz7N0HNCZ7P6Uy7i8O2t6cUrYxdBDcFgMDDv+6lqWrfxD5P0niORSMBms+Hp6WnyuE+ePMHhw4cNtstNzaf/NjeqHCq25PA48FKktapJXphhSyikOFQrrSoXAHUhkUjAYrHg7e2tt50+YmNjsX//foPtlBFpzp6OJi/QWgLiSCMQCARCrSKsFGLzoqpqV3PWTqGdVKaijE5isVnwDZVHePmFedNCqy+rPTxRFIXdq/ZhzdTNkCj0M9oPboXvL6+Cq7d85f/srst0eqJPiBfe+2UOff5PS36vsTMgOUZl5TVC1flT9aBTfZ41pd+UHmjSXr4SmhSTin+3mi9MTlEUTv52HnNaLMXjq88AxQPquCXD8OPdbxHUzB971xzBl2+sh1jhbGrdtxk2XPsC7v7ylf/L/9zAg3PyCDmPADdM+t8Ys+aUpGLLQBVbBljQlj3Gd0YzRQWxjPgsHNxgvpg2RVE4u/sy3m6+BFEqEYMjFw3ClvtrjIrKtGRaDaqtYqt9LiMsZ8tOw9qi7QB5lduclDz8s6ZuC2LoQyQSoby83Ow0RCUhISF45513NDRhfHx8IBZbxhk7dOhQjB8/3mw9JksjlUpRXFysph1lDoGBgXjvvfc0BPZ9fHwslvY2YMAATJo0qd7ZkqIo5Ofnm52GqMTX1xfvv/++hoC6JT+XvXv3xtSpU1FQYFoKWW2Sn5+PgQMHWqQvDw8PLFmyRCN61cfHx+xiA0p69OiBWbNm1StbakaVzzTLaVFeUoGclDxAsfCm7CvAgvcevzAfhLev0hzbu0a/g8vBwQHLli3TWAipCRUVFYiLi9ObuZD4JIXWGwOAx24lQQABAABJREFUd7bMNiuqXCQQIV2RCeAf7gMWS66Zq3YfjzbPlp6B7mjePYLe3v/9Ub3XaGNjg48//tisdOeKigo8f/5c7zgSsQTFefIF3FdZaADEkUYgEAiE2mbv6iN05FXzHhHoM6mbWf1JJVKkKiJmfEI8weHKheJ51jwENQ8AFDocyvQ0sUiM72b8iF2f/0P3MXROP6w6/BFdGbGkoBTbPtxNH1+4aSa6jemINv2rnAH7vqtZZS11LZAqh4WqsGzMDfNWoJlMJhZsnEFv/75iL4pyTReSLswuwmcjV+P72T/RBQU8A92w9uLnePu7KWCxWfhh3jb8uuwP+pwB03rhq+OfwMZB7hwtL6nA1vd/p4/P3zCdFqA3lSQ1LZAqWzZRseVTM23JYDCw4IcZtDP2zy/3Iy/D9Jea4rwSrBq3DmumbqYLCrj5umD12c+w4IcZRtnE0mk10PO5VLPlTfNtOW/99DoviGEIsViMjIwMLF68GP7+/hbp8/jx44iJidHYP2TIEAwbNswiYzAYDKSmpmLTpk0WScuzBBKJBCkpKVi8eDGCgnRr+9WE06dPIzo6WmN///79MWrUKIuMwWAwkJWVhY0bN5qcgmRpJBIJEhISsGjRIoSEmCY8Xp3z589rTQfu06cPxo83zxmvhMFgIC8vD5s2bUJiYqJF+jQXqVSKly9fYt68eUaliBnD5cuXtUZEdu/eHRMnmq5xVZ3i4mJs2rQJL168sFifpkJRFDYt/I1eeBy3dDj8wkyPKoeeRZzQto3o+26MmfceAOg8sh3999Mbz3H/rOZvipLbt2/jyBHzFnrCwsIQGRmpt82Wd6vu476hXghWPKuaSmpcBp09oXofb9wykNbhNfeZCIBaeufLh8l0cS5tPHjwAAcOmFf5PDQ0FE2bNtXbpii3hHa0KeVNXhXEkUYgEAiEWiMnNQ97VstXBFls83SylKTEptMpg6pOFQCI7BwGAJDJKDy99QJlReX4ZPDXOPv7ZbrN22vewuIts+mXfAD4Y9V+eoWrx/hOaNu/hcIZMI1ut2f1ITrFwRhUVwOVQrBQhPQreXLd/BSjJu1DMGCavMpdeXEFdnz6t0n9XD14G7ObvU9HPwHAwBm98dPDtWjePQIVpZVYPvxbHP/lLH182qo3sOS3eWBzqqJx9nx7GAWZ8miPjkPboNPwtmZcnRxVWwaq2DKsfWM69cAStmzUIhBD5sijawTlQjWHYU24dew+Zjd7Xy0luM/kbvjl0Tq07tPM6H72r/vXomk1qLbir/q5DGkdBK6V3Cn95Jr5tvRv4lOnBTGM4fTp0zhw4IDFUkGkUimio6O1RqVIpVL88MMPyMmxjAMxICAArq6uuHv3rkX6M5fz589j7969FrOlTCbDw4cPIRRqRv5SFIWNGzdazIno4+MDLy+vemPLy5cv4++//7ZYYQ6KohAVFaXVlgCwefNmizkRPT094efnV290565fv46//vrLosL9uj6XDAYDW7dutZgT0cXFBUFBQfXCljeO3KWjqD0C3DDxU/OiylHt3qPq/LGx59OLoImPUszS6ISi6I0qW/TIXiQkJJhdNdXNzQ1t27bV+f29dyYaDy88obdb9tLvKDIGtfu4ilOSa8VFSJtgAEDa80wU5phXoVeZfqtk63s7IRJoj8JMSEhARUWFWeM5OzujQ4cOegvCFGVXXZPzKyw0AOJIIxAIBEJt8tdXB+n0v1GLB6s9PJnKo8tP6b8jO4WpHWvaNZz++86JB3i36//oBxiuFQfL/3kf45YOV3v5y03LxzFFNUorPg9z11XpOwWE+2LkokGAwhnws5HOAIqi6Hla21ohqGlV9Iudky1th5cPk1BZZt5DHADM/GYi+Pby6LqTv13AiwcJRp9bXlyONdM2Y9XYtbQz0dHdASsPf4glv86DjT0fuWn5eK/7ctw99RBQiOQv270Yk/43Rs2WhTnFOLzxBN1m/obpFnnRVtqSw+Ogcauq6BdrGyuEtJZvJz9NQ0mB4cpZhpi2agLsnOUVAs//cbVGUYMVpZX4fvZPWD78W1oM197FDsv/eR/Ldi2uUUpzaWEZ9n//LwCAyWJi4Sbz0mqUPLrylO4zrF2VQDKHy0GYIk04KzHHrGg8JdULYkRdsHxBjJrw7NkzdOtmXkSsKgwGA02aNEFERITGMRaLhcrKSotFl7BYLEyfPh29e/euF1Una8OWYWFhaNZM09HMYrEgFArx/Plzi4zFZDIxZcoU9OvXr97YsmvXrmaleqnCYDAQGhqK5s2baz0mFostpsfFYDAwadIkDBo0qN7YsmPHjuBwOBbrs3HjxmjZsqXGfgaDAZlMZlFbvvHGGxg6dOgrtaVMJsPOz/bQ2/PWTzM7qhwq9x4AiOgcqnZMuQhKUfJFUHNQyn0oSXmWjqM/ntbaNiQkBK1btzZrPIqi8Ntvv2mNTKYoCjuXqy9uegSYV/wC1Z6Dq9uyaZeqSExzo9J8qtkyMyEbB9Zrl71o3Lgx2rY1b+GUoijs2LFDa2SyEtWiDSS1k0AgEAgNkszEbJzafgEAwLezxpsfWyY1J/py1cNK8x7qL7CRXaoca8d+OkOnEji42uG78yvQfWwnjf7++uoAHeE2fMFAuPqor8C9peoM2H8LCY+SDc4x7XkGfbNv2rWJWvQbVCPnpDI8ux1vxFXrx8nDEZOXjwNU9OCMIerCY8xuvgRnd1VF7HUZ1R7bHq9D5+Hy9IiYG3FY2OFjumqnnZMNvjn9P60puntXH6a15AbP7ktXbzSH7ORcZCXKo3rCO4aAa8VVOx7ZWfWh0fwXbXsXO0xb9Qa9vWvlP3rbK3l89RnmtFyKk7+dp/d1GNIa2x6v0/q5M8T+df/SKaH9p/Y0q1iDksKcYvo7EdommE5tVqJqS6VeoDlUL4jx+4q9Fou6qSkikQiLFi1Chw4djGhtHGVlZejdu7fWapUsFgt9+vSBr6+v1nNNwdraGs+ePcOvv/76Sl+0RSIR5s6diy5dulisz7KyMnTv3l2rVhGDwUCfPn3g52f+QowSKysrxMfH4+eff4ZUanr1ZHMRiUSYNWsWevToYbE+y8vL0aVLF61aRQwGA7169UJAgHmpZarweDwkJydjy5YtFo0EqykikQhTp061mP4hFJpN7du3h4eH9ntZjx49EBhoevGX6nC5XGRmZmLTpk0W01+rKVf23UTSE3nEYpMOIeg8op3BcwxBURQeXZI/u1nbWiGkdbDa8UgV50+MmRHR/uE+GotOf397SGtlbw8PD4SFhWnsrwkMBgM2NjYoKirSOHbr2H3E3VUX6XfxMa8iL1Segzk8jppcCKrZ0tzocp/GnnSqqJJ9a4+golRzAdjV1RXh4eEa+2sCg8GAnZ2dVlsqUS3S5WoBW5oDcaQRCAQCoVb444v9kErkLyij3hlsVplvJaoPYzYOfAS3UH8ZcPN1oaN+lNoePiFe2Hjza0R00nxYykrKoZ191rZWGP/BcI02Ng42ePPj0fT2X18b1oCIvlS1Wti8h6Z2RmRXVYeFZSrIjVg4kH6ouHn0nl6hWWGlEFve3YEP+66iK0nx7a3x4c6FWLF/KRzdHEBRFP796QyW9lpBp2p6Brljw/Wv0ELLNeVlFODfrfJVX64VB29+MlqjjSmorrxqG1fVeWopWw55uy88g+QV2h6cfYRnt3WvkIuEYmz7cDeW9FxBO/ysba3w3i9z8cXRZXD2rLmIcVFuMQ7+IF/1ZXNYmLx8rMnXooqqLbV9LpvWgi37TelBV1eNuR6nNoe6Ij8/H9999x3y8/ONaG08//77Ly5cuKDzeJs2bSz+Muzl5YXMzEy8fKm/glptUVRUhLVr1yI7O9ui1dJOnjyJs2fP6jzeqlUrSCQSizpivby8kJOTY7FIt5pSWlqK77//HmlpaRa15enTp3Hq1Cmdx1u2bAmZTGZxW+bn5+Pp07r/fkPh8NqwYQOSkpIsastz587h+HHdhWeaN28OBoNhUVt6enqipKQET548MaK1ZZFKpdi1smohburKCRaxp6HFxaaqz0Q3zLv38Kx5dBVLpfRDUU4xTmw7r9auoKAA27dvR1ZWllnjAcCECRM0oharR/YpUc1QMIWcFP2Li6oRaubaks1hwzdMXoVT+TkoLSzH0S3qEX4lJSX47bffkJZmXqVQABgzZgzatGmj83iiymJ2oJm2NBfiSCMQCASCxUl7noFziignW0cbjH3fMqLbyU/T6PTDZt3D6UpFUAizr56yCWVFVfoaYe0bY+ONr+DdSHtp8z+/2E873Ea/MwQOrvZa2w2a1QeO7vKokyv7biElNl3vPFWj5lr01OawUH1otExaCJfHwfgPRtDbf319UGu7uHsvMa/NRzikSMEEgJa9IrHt0Tr0m9IDDAYDIoEI38/aio3zt9H2ad4jAhtvfq0zMurvrw9CJJCn8Q6fPxAuXqZXwVLlkQFbRtaCLVlsFt5cVhVB+ddX2p2nL6OTsKDdR/hnbVU1q6Zdm+Dnh2sxeFYfk19A/llzBIJy+er5oFl9LZIKAiNsqarfZylbMplMTPykSl/nTx22rE3u3bsHa2trnVElppKVlQVPT+2/Lcrjf/31l8V00qCoxjhq1CiLX4ux3L9/HxwOB15eXka0Np7MzEy9tszLy8Pff/9t0WILnp6eGDNmjMWvxViioqLAYDAsGrUIIz6XhYWF2LNnD1JSUnS2qSmurq4YO3asxa/FWB4+fAipVGqxIiJKsrOz9dqytLQUe/bsQUKC8XIKhnB0dMS4ceMsfi3GcOGva0hVPN807doEbfpppgebgqHFRXc/V7j5ybMBYm/H69Q0M5agpvLoVaUgPwD8890RiIRVFWuVUU/Vq7GaAkVRePbsmdq+awdv05H8PGu5s4vJYtILS6YSbWBx0dHNAX4K59eL+wlaI/FqQqDClqrO4gPf/6tWyb64WCFlYa/9GbomMBgMvQ75RNWCSU0tF6VsCsSRRiAQCASLs3vVPshk8pvu2CXDaqQNpY/oSyqOAJUHiKykHLzb9X84/+dVtfY9x3fWGQmX9iITZ1SdfUt0O/us+DyMUxynKAp/f6PdSQWtKQyaFe08g9zhrHA0Pbv53GKpRYNn91FLQ01+VrU6KKwUYsf//sY7nT+lH5S5VhzMWz8Nq89+Rgv05qTm4f0en+HUjov0uaPfGYLVZ5bDyV17haSclFyc/FW+2mtlw8OEj0ZobWcK0Sr6aOEdNSvauXg50SmksXfi1R6UzaHf1B70g/2tY/cRH1UlKC0SirF71T4sbL+MToHhcNmYvXoy1l783KyU1oKsQnq1l8PjYOInlkmJhkpEGpPFVIvkU6Kq3xcflWgR/T4A6DmhM7wby19Go84/NrsqaE1p2bIlJk6cCDabbURr43njjTf0poq6u7uDzWYjLy/PouM2b94ct2/ftqgjpCZjT5o0CVwu14jWxjNu3Di9qaKurq7gcrkWt2XTpk3x4MEDizpCjCUyMhKTJk2ClZWVRfsdPXo0unfvrvO4k5MTrK2tLW7LyMhIPH78+JVUnQwPD8ekSZPA55tX1bg6w4cPR69evXQet7Ozg62trcVt2aRJE8TGxiI21jKRwcYgEUuwWyUabdoXb1gsus/Q4iJUotIEFUI1MX1TUBXgV2p/5qUX4MzOS/R+f39/TJ8+3SKOtKSkJJw/f552NkmlUrVK8UrHoF+Yt0YEWU15dMmwLZXyIRKxVCO1tKao2jK8kzzarSi3BCd+OUfv9/b2xtSpU7Wm5teUlJQUnD9/Xqt8gUwmQ+Jj+X3PM8jd7Crm5kIcaQQCgUCwKEkxqbj493VAoTelrNxnCbQ9jN0/G435bT+iH7yUlQcB4Okt3Sk7f6zaR69Wjn3fsLNv6Nz+tAj9hb+uIeOl9nSA6ikMqhUtlTAYDNqRUVFaST8YmAvPmodxS+TpqaoOvwfnHuHtFkvx19cH6XTbkDbB2HJ/DUa/M4QWuY6+HIMFbT+iH7x41lws270Y89ZP03odSv78skpnbuSiwXB0s0xJ8pyUXFoPQ1sKgxKlLcVCMeJrUGhBHxwuBxM+HElvKyOpHl15irmtPsCuz/+ho/WCmwdg851vMf6DEWpRkqbw9zeHIKyUpwMOm9tfQ7PPVApzipEUI3f6hbYJ1vkAqqrfF3vHfP0+aInw++PLuotKO3/+PNLS0vRGlZhCfHw8Xrx4odc5x+VyMW/ePISGhupsYyo5OTk4ceKEES0tx+XLl5GQkABvb2+L9puYmIhnz57pFYhnsViYM2eO2Ro82sjNzcWJEyfqVL/v+vXriI2NtXgEV0pKCqKjo/U6OplMJmbPnq21sIO55Ofn4/jx43Wq4Xf79m08evTI4hFcGRkZuH//vl5HJ4PBwMyZM9GqVSuLjg1F6uHx48frTHfuzO+X6fttqz7NtEY7mYIxi4uwsEanaspfaJtG9N97Vx+inVrp6ekWSeuEohIwl8ulf0Mu771B65E2ahEIqUT+fVBWJzUHQ4uLqB6pb6YtVVNRg1X+3vvdEbqCZ2ZmpkVtyePxtP6GZCflorJMIJ+LBWxpLsSRRiAQCASLsuvzKkHxCR+O0BA0NxWKovBY8QBh4yAvl753zRF8MugrlBaUAQo9tE23vqHHjLkWq/XlKPlpKi78dQ1QOvveMezs49tZY8y7QwGFk2HPt4e1tjOkQ6WkqQUFYVUZOrcfHYV34a9r+GzUanzU/wtkxMsfctgcFt76bBw23vgKAeHylziKonDwh+P4sO8qFOWWAAA8A92w4fqXWosKqJLxMouOXuPbW2PcUsuk8cKIFAYltWXLgTN6wVlRFerawdv4fPR3WNJzBR3Rx2Qx8cayUdh0+xuLPNTlpObh+M9ynSgrPg9vLBtp8BxjeXzFuM+lqn6fJW3Z963ucPeXi5/fPRmF5/drX+MrPz8f165dq5W+7969a1REWFlZGY4dO2bx8Xv37g1Hx7qrWFZcXIzLly/XirPp3r17SE42XMRFIBDgyJEjFp9Dr1694Oxcd6LVZWVluHjxYq04mx48eICkJMPRPCKRCIcPH7b4HLp37w43N7c6c0pWVlbi3LlztWbLxMREg+0kEgkOHjxo8aIV3bp1g6enZ504JUVCMf78cj+9PW3VBIv1nf4i0+DiIqrppD25/kxrG2MJjKxyUJcXl6PtgBYAgKykXPrZ7/Hjx4iKijJrHHq8wEC8//77YDKZkErUdebaD6mqCmq2PlpqnlGLi5a0ZYCKLYtyi9FlpLz4REFmIU4rnv1iYmJw//59s8ZR4uPjg6VLl2pdpFIt9mWuLf/P3lmHN3W+b/yO192FulAoFGhpcZfiDgOGDtkYYwrzfefKxhhssOHu7q4tFC3U3S11j//+OMlJ0iZt5ISV/fK5rl0jyTlvTp6e5LzneZ/nvqnAmEgzYsSIESOUkfE0G7eP3gcA2DpbY8KK0ZSNnZdcQCZ5uvQNwvdzfseWD/eQLaSRY3tigzShISs/ryypVqlntuvLw+REf8YHmif7Jr45GmZWxLaXd91AWR631TaatDCgxYrh0+vUiQqbWphiyttjAQASsQSxJx+Sr3XtH4xNT37GvP/NICezMm25v97ZQVbo9RzRDRsf/Aj/MNUrx4rs+fqIvLLvnfGwstO/TUKGktHAvxBLjikH096XG1DcPRFH/js4MgB/PfoJi7+bDTZHfSWNNuz79hhZ2TfxzdGwdaYuUaJpLLsaKJZMFhOz1sgTg+p056iEwWCgV69erUSgqcDMzAzdu3dvd7uGhgbEx8e36UKmC66urpgyZQqSkpJeSNKCRqOhR48ebYpA64qmsWxsbERiYiLlbXROTk6YPn36C41l9+7d0bt3b8rHNjU11eh8b25uRnJyMkpLS9vdVhscHBwwc+ZMpKSkvLCqtNDQUPTpo70zcntoGksej4fU1FQUFratnaottra2mDVrFtLT0w3uLHth6zWU5RHfq4joHirNmXRFUZKjrUUc766e5Pzq2c0kvT6zR5AbaWiQk5CPOZ/KDXv2f08kPU1NTSmrVK6vr8dvv/2G2tpaXN59C4XphJZj98FdIFHQadN3wa098yUZ7gGusHEk9MoS7qRAwNdd8sLFx4nUeMtJLMDsT+Sapwd+PAEBXwATExPKYtnU1ITffvsNlZWVrV5TSqQZK9KMGDFixMh/iT1fy1c0Z304GSZmHMrGVhSrTX+chVuHY8nHr34+HV+dXEO2Z4aPlN+UxZ56qDROblI+ua+NkzUmrBil8TFY2Jhj0pvRgFR74uBPJ5Vel0gk5HGamHPUtjAAgH8Pb1g7EEmnR5fi9RaElZGXUoi484+VnjOzMsU7fy/H2htfKuldqNKWm7l6Ir4797FGLqtFmSW4uucWAMDS1hxT3qaujRcK4vgsNhPBkf5qt/MK8SAdS59eS1Bpza4LhRnFuH9WeZXVxJyDlRtew7o7X1PaWlCWX046yJpZmioZR1CBLMFLp9NU6qPJcPFxIvXMEu6koLaijrJjGLVwCKkNePfEA2Q/b78KSVdqa2uRkZGBcePG6d1u2xKxWIyhQ4dqlPzx9fWFn59fu9vpQlVVFQ4fPmxwTar6+nqkpKRg/PjxbbZf6oJYLMbAgQM1StB5eXnB39+fbEWnkrq6Ohw5csTgrpMNDQ14/vw5xo8fDw6HuusjpNefPn36tKnbJ8PDwwOBgYGUfzcgTXgeOXIEz549o3xsRZqamvDkyROMHz+ecp05iUSCiIiINnX7ZLi6uiI4OJjy7wakSbojR45QVjmlCqFAqKT7Ov9L6qrR0GJxsdugELXbMRgM9BxOmBvUlNchOVZ3N10WmwX3AOI6lp9SiM6RAeQCUkFaMW4dvodhw4Zh4kRqrrN8Ph91dXXgcrlKi0QLvpqpJI7v202/KirlpKT6WNJoNPSSzoMba5v0cstmMBikQUJRRgm8QjwQEU20MpfllePqntsYNGgQpk6d2s5ImiEUClFXV6dywYTKWFKBMZFmxIgRI0YooTSXi9iTDwAAdq62GLdsBKXj3zsjT4hVlRIOQWZWpvjyxGrM+98MpZurvhMjyH/HnIxTGufkhgvkv2eunghTc+0m4FPeHgsTc+IG6PzWa6goriJfS3+chUrp49ABndvUFWMwGIgaFw4AaG7g4clV/ap/+M187PrfISwPex9JMcoT0P5TIjHmtWFKMbp99B5e77ma1JYzMefg04Pv4rUf5mp8c3Xqz4tkReDUd8fD3JoaUwlIE55FmdIWhj6B4Jiqv+mk0WjoM4H4mwv4Qjy48FSv9xbwBdj77VEsCX0P8dcTlV6LHNsTE94YRfkN6NnNl0n9ukkrozVKZGpKcXYpaYoQGO7XpkAvjUZDX2ksxSIx7p99rHZbbWGbsDFTA2dZKrh27Rru3btnkLFv3ryJvXv3arQth8PBzJkzIRBQY4KhiJOTE3x8fJCZadg22Zs3b+Lu3bsGGTsmJgY7duzQaFsWi4WZM2capDrHzs4OgYGBBo/lnTt3cPv2bQ221J779+9j69atGm3LYDAwY8YMg1TgWVlZoUuXLgY3cIiNjTVYu/Hjx4+xadMmjbal0+mYPn26QRK8smpNQ56Xd4/HobyQqP6JGt8LQeHUJf4FfAEeSq/HphYmCOzl2+b2smsPpIst+iDTSRPwhSjMKMGcT+WJnn3fHsXevXvx4IF+7yHD2toaPXv2RH58Cdl62XN4KLr270xWUZlbm8HR00Hn9xCJRIg7R1yP29JHk9HHALGUSCTITynCXIVY7v/+GA4ePIjY2Ng2RtAcc3NzhIeHq3SmzpbGkm3CIhf8/k2MiTQjRowYMUIJZzZdIpMq45aN0NuZSJGyPC4eXoxXeq5TZ3dsuP+90sRLhpufC2mLnXI/A5UlRHKroaYBl3cTTp0m5hxELx6q9bFYO1hh/PKRgFTcXuZWCQA3D8knEv0mtd+2o5zw032i8/R6ApaFvY/dXx0mWwOdvRxJ44Vbh2PJKq3mRh7WLduMr6avRX11AwDAzd8F62O/w6DpmrfHNDU0k/oYLA6L8sTprcPyJIgmsZTpdgBA7CndY5lwJxmv91yNHZ8dgEDqAOrgYUcmT2NOPKC0SgtSfZpz/xAOWAwmA+Pf0LxKUhP0iWWMHrFUxZilw8mWk1tH7ikloqmkoqJCo8ocXUhLS9NKcD8zMxObNm1CY2MjpcdBo9Ewe/ZsDB8+3KAtieXl5YiKijLI2GlpaXB3d9d4+9zcXGzatAm1tbWUH8uMGTMQHR1t0JZEQ56X6enpWp2XBQUF2LRpE6qqqP8OTpkyBePGjTNoLMvLyxEZGWmQBJa252VJSQk2bdoELre13IO+TJgwAZMnTzZYe+fJjfLFxSmrxlI69pOrCairIuYZUeN7tbm4COlCFZ1B/D1jTj3Q63dN5kANALmJ+Qgb0hUhUtmPnMR85OXmo6mJmup1BoOB3r1748KWa+RzU1aNRV1VPbj5FQAAn9BOermgJtxJIbXmekeHtbm4CAARo8PAYhPxvnf6IWWxzE7IQ0ifIIQN7QoAKMosRU5WLmXXNzqdjoiIiFZVps2NPBSmE1q/Xl08DVJNqy3GRJoRI0aMGNEbfjMf56QJJSaLgbFLh1M2dtqjTKzo/ZHSJGDY3AH449738AxSP9GVJdgkEgnunSba8y7tvInmBqKFcsSrg3SuoJr4ZjQ5Ibqw7RrEYjEkEgluHSESaXQGHf0mt5+w6DmiG6k9EXv6odYT5ZryWvy8aCM+GPYlCtIITQ4Gk4FZH07GlsTfMGLeYEBa8XZ9/x1kPcvFiog1OPuP3LZ84PQ+2Bj3g9bCrdf33SETcUNe6QdrByut9m8PWSwBYMDU9m/iuw0KIfVV7p99TDpzaUpdVT3WLduMdwZ+Trpt0Rl0THt3PLYlrcPYJcQ5LeALcWX3LS0/TdvcOhxL6v8NmBoJBzdqhc8VYzlQg2Rp5z6BZLLr4cWnlLUdQ2qiEP3aMEBa8XZpxw3KxpbB4/GwYMECRES0TrJTwYgRIzBs2DCNt/fw8CBW8vPzKT8WJpOJ48eP48KFCxpsrT08Hg9z5swxiAYVpKYJI0ZonoR3c3MDjUbTyOhBWxgMBk6fPm0QcwhI279mzJiBAQPaNnDRlUGDBmH0aM11SV1dXcFkMjUyetAWOp2OCxcu4MQJ1aY8+sLn8zF58mQMGTLEIOMPGDAAY8ZoLlXg5OQENputkdGDttDpdFy9ehVHjhzRYGvtyHqWi+e3CTH6Tp3dETakK6XjK0pwDJzW/m+Ilb0lQgcQzrxFGSXISy7Q+b0Vkz85Cfmg0WiYtFL+NxWWAEFB1GnB7dq5G8VVhE6eq68zwkeHKTmy+4TqJwWhbSzNLE0RNoxw5uUWVCBdD0dzrxZJSQCY/JY8lo05AkodlQ8ePIi4OOVuktzEfPI+wFfPWFKFMZFmxIgRI0b05uahWLJKZ8C0KNi52Oo9plgsxpFfT2NV309QXVZDPj/382n4cNdb7RoE9FWovLl7Mg5isRin/pTfbOpjhODs5Ui6QJXmcvHo8jOkP85CSXYZACBsSBfYOFq3O46JGYfUsaguq0HK/QyN3l8ikeDyrptY1PltpURESJ9A/PXoRyz+bjZMzDgYs0R+s7/vu2N4M/Ij5CUTEz2OKRvv/rMcnx54h9SW0xSJRIKTirF8gzpTCUjbOnOkk7WQvkFw9LBvdx8Wm4VIqTtWfXUDnt3SzKlKIpHg2v47WNT5baUEY2C4HzbG/YBlv8yDqYUpopfIk8PntlyhtALolAFjWZxdirSHRFuQfw8fuPm13w5BtB0TmlVUtB23JHqx/Lw8v/UqpVUrEokEW7ZsQUxMDGVjKpKcnIzq6mqYm2v+nbGwsMDixYvh49O+eYcuODs748mTJ5RX/0gkEuzYsQO3blGbOJaRlpaGsrIyWFpq3sZsamqKxYsXIyCg7bYmXXFxccGzZ88ob8WVSCTYvXs3rl27pldVijoyMzNRWFgIa+v2rzsy2Gw2Fi1aRGkyQRFXV1ckJCSgubmZ8rEPHDiAS5cuGSSWubm5yMnJga2t5vMYJpOJRYsWoUsX9QLw+uDi4oKUlBQ0NDRQOu6pjcrXHirjKeALSGkNUwsTRIzWzPSFqvZOWVcCAOQkEfOJfpN7k7IJCefSYMKgxlUeAHj1PDBNiSqp8ctHgsFgKCXS9NFUFYlEuHOMMPJicViIGh+u0X79FLse9Iilj2IspXOzyDE9Ye9GfEcSL6WDJaFO85HNZrf63aAqllRiTKQZMWLEiBG9ObnxPPnviSui9R6vqrQan477Hpvf3wWhQF6lZe9mi3lfzNBojMBevqQA/ZOrCbh3+hFZtdV9cBel1UpdiH5Nnlg5v+WKUlunJquFMhR1LDRp78xLKcTqEV/hpwUbyOSlubUZ3vpzCX67/bXSqmdgLz9ywlGWV062Kvp298LGhz8ievEwnSbOiXdTkBVPVDEERwZQqqmCFq2I2rSbKk7AYzWIZWFGMT4e8y2+n/M7maw1tTDBit8XYX3st/DvIU98eHX2IEX6c5MKkKSHELIiqQ8zkXyPEIv37ealZFtPBbrGsg9FbceqcPV1Rs/hxEp5cVYpnrbQodOHwsJClJeXGyxpde3aNZ0qyywtLXHy5Enw+XzKjykqKgojRoygvMWttLQUJSUlBovljRs3dKoss7KywsmTJw2SoAkPD8eoUaPAZLbdgqYtlZWVKCgogLe3N6Xjyrh586ZO1VA2NjY4deoU5W3HABAWFobo6Giw2dTJPABATU0NsrOzDXZe3rp1C9nZ2VrvZ2tri9OnT6O+vp7yYwoNDcWYMWMoNaioq6onjYbMLE0xYt4gysaGirbO9loRZfSZKE8S6SPT4ObnQrY25khF6tkcFkbMGwSONQshr3rh9I7z7YyiGU31TUjYn43ih5Vgm7AwahFRKZmt4DKpjzh+y7ZOTZ3mFRNu+sg0OHo6kO8pq0hjMBkYtWAIWOYMhC7wwcntZ3UevyWTJk1q1QKv7Nj57xsNwJhIM2LEiBEj+pISl47UB0TFi1+YN6lBoSsPL8VjWdj7KgXjh8zqr3Hih0ajoY90EiHgEeLxMibqUY0mo8/4XrB1Jlb/Y04+xPWDhBi3pm2dMqLG9QSdTpOOE6d2u9qKOmx8axuWdnsPT6/JK4QGzeiDrUnrMH75yFY30vE3ElGap6zZMmllNP6I/Q5enT00PsaWKGqqUBHLlmjb1ikjIroHmCxiRfjuyTi1VWP11Q3Y9N5OvNblHSXtvX6Te2Nr0jpMWhmtUn9jzGvKVWlUoFiNNnEFtRUB0KGtU0bP4fq1HbfHmBaJaKpwdHTEzJkztdI30hSJRAIWi4UePXpova9IJEJSUhIyMjSrOtUGDocDb29vXL9+ndJKSTs7O8yYMcNgyR8mk6mRW2dLJBIJkpOTkZqaSvkxsdls+Pn54dq1a5TG0srKCtOnTzdYJR2TyUR4uGZVKopIJBKkpqYiOVmzCl5tYLFYCAwMxNWr1FadWlhYYNq0aQgOpnbRQQadTtc5lmlpaUhIoLaCF9K/b3BwMK5du0bZb/GlHTfQ3CiVupg3SOPkjKZo24oow9XHmVwATInLQHlRpU7vz2Ay4Cl1myxMLwFfupAY/dowQHqZjTmpnw6bjCt7boPGkcDc2QRDZw+AlR1R9Zal4EztraV8hiK6xtLe1RbBkcRvTvbzPNIIQVtoNBq8uhBzxpIcLprqCW250YuHAtI5y/1zjyn7nldVVaG4uFjpOUWXb59QYyLNiBEjRoz8Bzj150Xy3/okAgR8Af7+YBc+Gv0N6cpp62yNQIVqJ20SAWjR3pn2iEj2OXrYK4n86wqTxcTI+YQGmUgoAjePsOrWtK1Tho2jNbr0I24ICtKKkZdSqPS6gC/AsXVnsSBwJU5sOE86Ozp7OeKbMx/h0wPvwt5VuQVFJBRhx2cH8MGwL9FQLa80MDHnYPH3c/QygqgorsLto/elx26l9d+kPXRp65RhbmVGCuBy8ytIR1IZIqEIJzdewPyAlTj62xmy2tHRwx5fHl+N/x39oM33Gzi9D8ytCcfLmwdj0FCjX5tNbUUdru8nErAWNuYYMru/XuO1RJe2ThkmZhyyfVmbtmNN6TMxAtYOxM3G3eNxqCnXXzy+rq4Op0+fhp+fn0FavpqamrBgwQJ06qT9JN7W1hbdunUDi8Wi/Lgg/ey3bt1CYWGhBlu3T0NDA06dOgVfX1+DxXLu3Lk6VRVZWlqiR48elFc6yaivr8edO3co07tqamrCqVOn4O3tbZBYNjc3Y+bMmTol6czMzBAeHk5ppZMijY2NiImJocx1ksfj4cSJE/Dy8jKIyQCPx8PUqVN10nvicDjo3bt3K5F0qmhubkZsbCwlCWSxWIxTf8nnbvpIXahC17ZOGX0mKFalPWxz27aQdR6IhCIUphUB0urygK5+eL4rG+l3c/WuLpdIJDj15wW4hNvBqZsNubgoFovJdkQXHyedE5W6tnXK6EdRdblXiIJOmlRH1tXHGaF9QvB8VzZy7hcqLfLqw6NHj/D0qXwxXSKRIOsZEUs7Fxut5tiGxJhIM2LEiBEjOlPNrcGNA0QiwNLWHENe0S0RkJuUj7f7f4bDa0+Tz0WMDsPaG1+SyRCnTg4I7u2v1bjdB8sF6CFddBy7dAQYTGrcfmSi6Ypos1ooQ6m98wQx+ZRIJIg59QBLQt/DX+/uIFskTMw4mPe/GdiS+Bsix/RsNVZBWhHeHfQ59n57lFxptXO1AaR6V4orm7pw7u8rZDIv+rVhYHOoTQwotSLqEEtlfRV5hV/c+SdY2v09bFi5lWyJZZuwMOeTqdia9JtGyVUTMw6GziaEwnlNfFzbd0fr41Pk/NZrZLvtqAWDYWpO7Q2YYiypOi+pgmixIRLRAr4Ql3fd1HvMuLg4g1R8ydizZ49eemGTJk2ClRW1phwyvL294e3tTZkL3cOHD5GWRk37sir279+Pa9euabClaiZMmAA7OzuDuJV6enrCz8+PstbRJ0+eGKTiS8bhw4dx6dIlnfcfM2YMHB0dDRJLFxcXBAYGUhbLZ8+eITEx0WAutcePH8f587q3+40aNQpubm4GOT5HR0eEhISAx9Pf/OXRpXgUZRAOiD2GhaJTMLUVvLq2dcpQdjTX/drj3UW+6JGTKDcuGL14KOwCLUFn0fSuLn92Kwk5Cfng1wthaWVJSkKUZJeR5lb6aHoptnVGjNa8rVOGokzDXT1iqWhIlZMglzeQxZLBplNWqW9hYaGknVlRXEXO23w6iD4ajIk0I0aMGDGiD+e3XIOAT7gjjl40FCZm2k2WREIR9n13DK/3XE1WzjBZDCxfOx/fnPkIiXdTyaTNwGl9tF7NZ7FZ6DVKvhLKYNKVBPj1xd3fFd2HyMWFaXSaVm2dMvpNkk90ru69jYyn2Vg94it8MeknFKbLy9tHzB+E7am/49XPp7eKtUgkwuG1p7Es7H1yhZXOoGPxd7Px6cF3ye0UBfW1RSgQ4szfl4mx6TSMWz5S57HUodTWOU3ztk4ZiivZ1/bdRtbzXHwU/Q0+GfsdabQAAENn98f2lN+x4OtZMLXQfGKqeP7InGp1QSQS4bRCRcD4N0bpPJY6lNs6tY9l1LheoDOIqeL1A3cpb+9UTESf23JV75tPExMTDB482CBVX/X19SguLtarZbShoQGbNm0ySLKPTqdj/vz5sLW1peQmnsPhYODAgQapVGpubkZ+fj7c3Nx0HoPH42HTpk1ISUmh9NggbWOaO3cunJycKIklm81G//79YWZmRsnxKSIQCJCdna3XeSkUCrFp0yaDtCTSaDS88sorcHNzo6Tti8VioV+/floZVGiKWCxGRkaGXuelWCzG5s2b8eTJE0qPTcb06dPh5eWl92+xweUZdGxFlBHQ0xeOnkR1+OMrz1FRXKXTccjaEaGgkwYAIYP94R7lAHMnE9w8GEM6kOuCLJZpxwqUHIiVHTupaevURudURqdgd3gEugIAEm6noCSnTKfjUIplojyRFjKQiKWFqynuHo9DNbdGzQiaM3HiRERHy/WWlYwGOkhbJ4yJNCNGjBgxog9X98qrM8a/rl0iIOtZLlZGfYTtn+4nk3GeQW5YH/sdpr4zjrB833eb3F7XFsJOQfJJsY2TNWydbXQaRx1hg+WJNBsnK51Kzt38XBDSlxCyz0nMx+s9VyuVyIcO6IyND37A6u1vwsG9dethbnIB3hnwGf7+YBf4zUSFk6uvM367/TVmfTgZXfsFky0OSTGpSpMgbXhyLQGV0gltn4kRcPJ00GkcdWTG5+jc1inDwd2eFLIvyizF8h4fKOmgdY4KwO8x3+KjPavg1MlR6/H9w3wQFEG0G2c8ySZbhrUl8W4qSnMJ/bqI0WFw93fVaRx1FKQVKbV16jK+tYMVeo8h9MC4BRV4qEK3UB86BbsjdCDRQpWfUojEu7onRerr6xEYGIioKO0ThppgZmaG6dOn6+VwaG5uDhcXF4NVJ0kkEmzevBkPH+reCgVpO56Pjw/696e21VgGh8PB9OnT0bVrV73G8PDwMEgiTcbWrVsRG6tfBW9zczPc3d0xePBgyo5LERaLhWnTpqF79+46j8FkMuHj42PQWO7atQt37uhXwcvj8eDk5IRhw6hbDFOETqdj6tSpOun2KY7h5+dn0Fju3bsXN27c0GBL1VRza0gNWkdPe9KhmSqaG3lkNbgubZ2QJmCHzx0IABCLxEru5NqgVEWlMO+xsbMBJDTw64V6VZc31DTgnrT1tPM0b7Dc5Yn3LCWjAd2qqAR8AW4dISrLdWnrhCyWrxJGEhKJBBe26VYJ7K0mlpZWlqBJaODVCiAUiHB5l/4uzxcuXMDNm/Iq9WwlowFjRZoRI0aMGHnJyUnMJ3USuvQLgquvs0b7CQVC7P7qMFZErEH6Y8IZi06nYcYHE/HX458Q0NMXkCaHZMkkNz9nrds6ZRRmyCu6KourUJZfrtM46lDUNKstr0djnfatVfxmfiudM0h1NT4//B7W3vgSgb1aO2OKhCIc+OE4Xu+5mnR+pNFomPzWGGyO/wUhUYHkc4rVP7q20d06FEP+e9icgTqN0RanFfT2hurYJsznCZSSpRIxMbF16uSAj/e9jd/vfkvGRVcUhfIv79QxlgqrzIaI5SkKYolWBgu6V+BpMv4lHWMJAGfPnsXly5cpOiplRCIRTp06BRcXF710mWg0GmbNmoUBAwZQenyK4wcEBOh9E3/hwgVcuHBBgy21RywW49SpU3B0dNRb42r69OkYNIhap0FF/P399Y7lpUuXcO7cOcqOSRGJRILTp0/Dzs5OpTmKNkyZMgVDhw6l7NhaQkVy6dq1azh16hRlx6SIRCLBuXPnYGVlpbdj68SJE5Uqk6hG3/Py7vE4iEVEdeCQWf0pk7qQcX3/HbLCq/+USK3bOmVEL5bPWc5v1c2wwtnbkazeV0r+WFpi7uR54NUQC4+Xd+mWqIs59ZBcCHYOtENVtbxyjgpx/NtH75OO4lHje+msszZq4RCyuvzi9utkp4c22LnYwNLWHFBw7oR0kWnR7NfQXEk4UusaS0XKyspQXi6fq2d1QKMBGBNpRowYMWJEV3Qp3c94mo0VvT/Erv8dIoXevUI8sO7ut1jy41ylCZdiUmXCG7qZGPCaeLh/5jH5WCIBLm67rvU46qgqrcYdqfA+pImthxc1r9qRSCS4cfAuFnV+G7eP3lN6bf6XM7A1aR0GTI1S+dmzE/LwVt9PsPXjfaTOlnuAK369+SXeWLewld7WsDkDSHfQuyfUO1qqQygQ4q5UqNbEnIPe0dqvMrdFXVU9ru4lKhDNLE0xYp52N8gSiQS3j93Hkq7vkOPIeOWjKdiWvA5DZvWjROx70My+GrmDqkMkEpF/b2KVmdqKgKb6JlzcQZznbBMWRi0aovNYvaN7wN6NSPLeO/NI5xYbdQyYGkne6OjjDpqbm6uTcL0mJCcnIz4+npLWVmtra9y/f19JSJlKxo4di5Ej9Wu5NmQs09PT8fTpUwiFQr3HsrKywtOnT/WuwFNHdHS0UnuRLuTl5RkslllZWXj8+DH4fL7eY1lYWCAxMRH37t3TYGvtGTlyJMaNG6fXGIY8L/Pz8/HgwQNK9MfMzc2RlpamdwWeOoYNG4aJEyfqvL+uTs6aIJFIKGsbdfV1JqvLi7NK8fR6otZj0Ol0dAohWhKLM0tJl9K6ujqcunYc/hGEI3FKXAbKCyu0Hl8xll1CuiAwUL5IJxPHZ5uw4OavudGPIlTF0sHNDpFjCU3d8sJKsiJRG2g0GlmVVl5YibqqekBawXz47EF0GSx3By3KLNH5WAGgS5cuSq682dJY0hl0dNLDcZ5qjIk0I0aMGDGiE0qTsXa0rAR8AXZ8fgBv9v4IWfHEyhKdQccrH03Gn49+QudIZbexhtpGXNpJrGqZmHEwcoFubTEPL8ajqV5Z5Pj8tquUaT2d23KVXI2UoakrUkpcOt4e8Bm+fWUd2eKniLWjtUohf6FAiL3fHMUbveS6cnQ6DdPfG4/NT39G1/6q3casHazQpT8xMSlMb+0O2h5PriWgrpKYOEWND9d5lVkdl3bcICe5I+YN0mrlNf1xFt4f+j98Ne0XFGW2tne3drCk9HjNrczQYxgxwefmVyDjSbZW+yfeTVUSDza3olY76cqe22isJSojh84eACs73fWEGEwGRi8kKlXEIjEubqcuEQ0AHFMOeim4g8oqK7Vl/vz5iIyMpPTYZDAYDPTq1QuOjtq3AquCx+Ph+vXrBhEkNzc3R2JiItLTdYsjAMyePRv9+vWj9Lhk0Gg0hIWFwdWVmlZmHo+HGzduUKK/1RJTU1OkpaXp1Yo7Y8YMDBxIfcUppLEMDQ2Fp6enBlu3D5/Px82bNylJcrbExMQE2dnZeP78uc5jTJs2zWBVcxKJBCEhIZQl6gQCAW7fvk1JkrMlbDYbBQUFOiXjq7k1ZELKxccJgb18KT22xJhU0iAquLc/giJ06ySQoVixfF5HIXuZppZEIkFqHKFPWVdXh9raWvQYLW8v19YdtKGmAY+kshF2rrYYFD0AXl5E22FzI480c/Du2kmnitH0x1lIikmVjuGJbgNDtB5DEeXqct1iqVgNJrtWNzQ0oLa2Ft1GyGVO9HEHBYCAgADyuygUCJGXTHS/dAp2p9zgSh+MiTQjRowYMaI1uUnKbZ2qdLtkpD7MxBvha7D3m6NkOblPaCf8ce87LPp2tsqL4pXdt8gE2LA5A2Bpa6HTcd48LG9FDAwnJozc/Ao8uvRMp/EUEQlFOLtZ3kpmakFUgN0/+xhCgfobkYK0Inw3Zx1WRn1MTpIAoNfI7vjskNwUQNWkMTM+ByujPsaOzw+QFX2ewe747c43WPrzvHaTRYqOlrFaTnQU2zp1EQ9uC7FYjFN/yldeJ2i48lqcVYqfFmzAiogP8exmEvl82JAu+OLo++Tjc1uuUJ60UHK01DaWegoxt4VEIsEpioWkRy8eSlby6dpi0xb6nJcAcP36dRQUFOjdKqgKPp8PS0tLvatpFOnXrx+8vb0pG68lJSUluHv3rk773rp1Czk5OXq3CqpCIBDA1NRUr2qalvTp0we+vr6UVJqqorS0VOfKopiYGKSnp+vdKqgKoVAIJpOJKVOmUPbZe/fuDX9/f4PFsqysTOdYxsXFITEx0SBGIrKFtenTp1P22cPDwxEYGGiwWHK5XNy6dUvr65piW6cuBk7toct1vC36ToqAjSPhdHz3eBxqymu1HqObgo7tk2tEItfe3h7dunVD/7HyReCYU9pdexTbOgdOjcLJkydJV+fcxHzyb6OrOL7ydTxa779VxOgwOLjbAdJ5anlRpdZjdFeI5VNpLG1sbNC9e3cMGCufy2gby5acPn2adHXOTy0i57s+3TpOWyeMiTQjRowYMaILtw7L2z/UJQKa6pvwz+rdeKvPx6RVNoPJwNzPpmHjgx9Uan5BlgigYDLGa+Lh3ulHAAALG3PM+GAS+RoVFt0xpx6CW0C0AkSN74VIqWBvfXUDnt9uXcFQlFmCnxZuwOKQt3F9v/wm1zPYHd+c+Qjfn/8EA6f1QWA4EZf0x9lIf5wFSFc3t3+6HysiPiSrn+h0GmatmYRNj3/SWPNLyVJei4mOods6H16MJyvJeg4PRafgth3oSnLK8OuSTVgQ9BYu77pJTljd/F3w5fHV+OnKF+g/ORKhA4jqvLzkQiQqJC2pQNEdVJtYikQi3D5GtAMboq3z2c0kUgumS78g+PfQv8LCxdsJPUd0AwCUZJcpGWFQQeTYnvK245MPtLo5FAgEiI2NRWNjI6XHJOPy5cs4efIkpWPa29tjxIgRyMrKonRcGb1799bJ1VAkEiEmJsZgsbx+/TqOHTtG6Zg2NjYYPXq0QZxQIY2ltbX2BjJisRgxMTFoaNDdDbAtbt26hUOHDlE6ppWVFcaMGYPMTN0MVNojPDxcp1hKJBLcvXsX9fX1BjmumJgY7N+/n9IxLSwsMG7cOGRlZRmk8rRXr16wtW2tq9oehmzrrCiuIueG1g6WOjlMtoTFZpEyDwK+UCd91x5D5VVnT68T1y4Oh4PIyEgEhweQ7qBPryWgoVbz376WsRQKhWRSVnG+4dtd+0WT2oo6XNtPJJ3Nrc0wbI7+xi8MJgOjFhIyD7pWlysl0qSxZLFYiIyMhF9Xb9IdNPFOik5JTxlCoZBcsFNccPbtZrgFKF0wJtKMGDFixIjWKFZ6tWzrlEgkuHkoBos6v41Dv5wiVz/9wryxIe57zP9yJlhs9avKT68nIC+ZaDsMHdhZZ7cjxbbOfpN6o9+kCNi5ECL0904/QmWJflpPpzaeJ/89cUU0+ikmqU7IEyslOWVY+9pfWBi8Cpd33oRYKn5vZW+JFesX4e/4XxA5pie52jhGwRTg3D9XcOf4fSwOeRv7vjtGVvR5d/XE+nvfY/H3c8A2YWt8zG5+LvDuSrQBJd9L11jvytBtnYqJ04kr1GsSleWX4/fX/8bCoLeIyijpuWVpa47la+djS8Kv6DsxgoylosECFclTRRzc7EgDjKz4XBRnt24pVUXi3VTS+dQQbZ0nNYyltowxYCytHazQVZr01LbtmEajwdfXVy/XwrbIyMhAly5dNNhSO3JycrB3717U1NRQPra/vz9GjhyJpibtjE9oNBp8fHzQo0cPyo8JUn20kBD92pNUkZ+fj3379qGyUvsKi/bw9vbGmDFjtE4u0mg0dOrUSS8HyLYw1HlZVFSE/fv3o6ysjPKxPT09MXHiRJ2Si56enoiIiNBgS+0x1HlZWlqKAwcOoLi4WIOttcPNzQ1Tp07VKpaGbus8988Vco4S/dpwreYmbaF8Hb+qdWLSwd0enlL39pT7GWiqbwKPx8M///yD7OxssiJaKBDhwfknGo3Zsq2zS78gREdHky3xT67KW5jDhmj/Pb24/TrpwD5qwRCYWuhmMtCS6MXDyPnRhW3XtK4ut3awgl8YkczKeJKD2so6CIVC/PPPP0hLS0Pfib0BAGKxBPfOPNL5OEeOHEma8jzWM5aGxJhIM2LEiBEjWtFWW2ducgFWj/gK38z6DeWFxE0Ni8PC/C9nYsP97+Ef1n51zMmN1CQClJJ90/uAyWJi5AJiNU4kFOlspw5pDGQTUo9AV/QcHoqI6B6kAH3MqQcozeOSSZ8L264pJX0WfTsbu7M2YtKb0WCylNt+hrzSHybmRKLq3Jar+HLqLyjLI9yLmCwG5nw6FRsf/IigcNUVfe3RTzrRAYB7pzXTBDFkW2dRZgnizhGTV6dODogc17PVNuVFldiwcisWBKzEmc2XyTJ/c2szzPvfDOzO2oip74xrlaAdOC0KFjbm0s8QSzqJUYVie6em+iqGbOvkFlTg7vE4QOqw1X9K73b30ZQ+E8KVWmyqudQmgHRt7ywvL8eECRNgZWVF6fHImDdvnkE0rgICAsDhcJCfn6/B1tpz4cIFrR0Oy8vLMW7cONjY2GiwtfbMmTPHIBpXvr6+MDc3R25urgZba8+VK1e0rqQrLy9HdHQ07O3Vyx7ow8yZM/U2lVCFt7c3rKysDBbL69eva11JV1FRgZEjR8LJyckgxzR16lSMGTOG8nE9PDxga2uLnJwcyscGgNu3b2tVSWfItk6hQIizfxNSF3Q6DeOXU+da6hnkjtCBxEJLfkohEu9q71gaNoSoShMJRXh+OwVMJhM0Gg2NjY3oO0l+ndS0urxlWyedTkdubi5oNBqEAiEpNWHjZE0K9GuKSCTCqb/kZlvj3xil1f5t4ezliF4j5dXligk/TZHFUiKRIP5GEhgMBuh0OpqampS6HmL1aO/MyyPMBcRiMVkBb25thgCKk7/6YkykGTFixIgRrVDV1tlY14S/P9iFZd3fV2r76j2mB/55vhZzP5vWKmGkirI8LnkTbe9mi36TdFuBbtnW2WMYceGPXiy/iTu96VKbWmZtcXKjsqMonU6HuZUZwqQtBGV55Vjg3zrpM//LmdidtRGvfDRZrZg+jU4jHZ5kk14A6DmiG/5+thYLvpqll9hqH4WJzl0NEhaGbus8/dclcoV5/PKRStpMlSVV+OudHZjv/yZObrxATlzNLE0x59Op2J21Ea9+Ph3m1uYqx+aYcjBsDrGqyWvi4/zWa5Qeu+L5qYlOmqHbOs9uvkyeM2OWDG+z8lNbWGwWRs4nTD+EAhHObqa2Kq2vluclpO0fO3bsQGKi9m5u7SGRSLB7926Daa9xOBy89dZbBqmEgfQmXpu2MpFIhB07diA+Pt4gx7N//35kZWUZRHuNxWJhxYoV6NatG+VjQxrLnJwcjas3ZOfO48ePNdhaew4fPozU1FSDxJLBYGD58uXo2bP1ggYVeHh4IC8vT2NDA4lEgn379uHBA/00l9Rx/PhxJCYmGkTHjk6nY+nSpQYzQfHw8EBRURGam5s12NqwbZ13TzxARRFRad1nYgScOlFjzCJDUSj/+B/n29xWFWGK7Z3XnoPBYODVV19FYGAgug3sTC643T/7GAK+oN3xWsZSIBDg8uXLyM3NReqDTDTWEdXAPYZ11Tph+eD8U5RkExWh4aO6wyOAGmMWGYqxPKFDLHu0iCWNRsPcuXPRuXNnBEf6w9aZaN9+eDGeNJDSBrFYjIsXLyI7OxtZ8bmoragDpNVohvjN0wdjIs2IESNGjGjFneP3yX8PmBqF6wfuYlHnVTi89jRZ1u/i7YgvT6zGN6c/gru/5pOAkxsvkq2PY5eO0Cj5porHV54rtXXKEgpufi6IiCbalsryynFlz22tx66rqseV3YROh4k5ByPnE/odlSVVEPLlbqBCaSwUkz5zP5umNukjkUhw+xjRxilzNoXU3fST/W/jhwufwjOobe0wTQjs5UsKzj69+pyc8Knj2c0kg7V1NtY14eJ2IrnF4rAwWprorObW4O8PdmGe35s49vtZssXBxJyDWWsmYXfWRiz4apZGJhTjX5dXbRxZewr8Zupc1Dp19iCTns9vJ5MTPnWk3M8wWFsnr4mHs/8QyS0Gk4Gxy6irCJAxdtkIUsvs2O9n0VSvXetgW7j6OpOOYCn3NWs7Li0tBY/Ho8xpT5GCggJkZWXB3Fz195UKTE1N8fvvvyMpKUmDrbUjIiICs2bN0vgmrqKiAk1NTQaJZUlJCdLS0gweyz///BPPnulvJNOSHj16YPbs2RonVKuqqlBXVwdfX+qrJ8rLy5GUlGTwWP79998GSQR269YNc+fO1ThxVV9fj6qqKoOcl9XV1Xj27BnMzKhtr1fExMQE27dvR1xcHOVjh4SEYO7cueBw2r8m11XVG6ytUyKR4Pj6s+TjCW/obzLQkgFTI2HjRCRobh+5p7XruCptr+rqanC5XDBZTESOJRLHjbVNSsZFqmhqaG7V1imRSMBisWBvb4/HV+S/QT2HaZ/cV4wllfIMMvpMCIejB1Epe+/MI2Q81c51PHRgCOgM4rdQFsva2lqUlZWBwWAgahyhH8tr4ivFQlNksXRwcFDav4cOsTQ0xkSaESNGjBjRmJryWmQ9I5I8Xl088dP8P/Dd7HXkSiSLw8Lcz6ZhS+Jv6DshQquVuGpuDamVxWIzMWbJ8Hb3UUf8dXlVnKIoPADM+WQq+e/93x8jxWE15cja02SSbvjcgRDwhWTS56nC+9LoNMz6cLJGSZ+CtCJ8FP0tvpr2C7j5hIGBLHRikRjNDTzK2jBoNBrZkijgC/HgwtM2t1f8TH3Gh7e5rbYcX38OdVVEu+XgWX1Bp9Ox9eN9eNV3BQ6vPQ1eE5H04piyMf298diVuRGLv58DK3vNhdS9QjwxYCpREVBZUk1pVRqNRiNbEsUiMe6fbfvG05CxPP3XJVSXEe2W/af0hoObHaXjQ5qIHjKbED2urajDmU2X291HG/pq2Srr6uqK119/HQ4ODpQeB6Ri4YMGDTLIDbwiLi4uOjsZtgWTyURDQwNiY2M12BpwcHDA8uXL4epKbfUDAJiZmWHgwIEICAigfGxFXF1dcfu29osj7cFgMMDn8zX+O9na2mL58uXw9PSk/FhMTEzQv39/BAcHUz62IoaKJZ1Oh1gsxs2bmonGW1hYYNmyZQZJSrLZbPTv3x9du3bVYGvdcXFxId0cqYRGo4FGo+H69fZF45/fTiarlfuMD6e0rfPJ1edIvEsIwnfq7K5UsUQVHFMOpr83HpAmWvZ/r12rtSptr/v375OJd0WZhrsn2q5+TIpJJavj+4zrBTqdDjabjTVr1sDd3Z10BoXUPEkbEu6m4PEVYn9XX2dEUNwBAABMFhMzVsudk/d9p10szSxNSX3YvORClBdVIi4uDk+eEBIdfdXoBWsKg8HA6tWr4eXlpVcsXwTGRJoRI0aMGNGYZ7fkbpR5SQXkCicARI3rhS0Jv2L+lzN1qlo6+ONJNDcQZeBjlgyHvav2jlQy4qUrijQajdTWkNGlbxApWFqUUYKbB2NUjqGKmvJaHF9/DpDqldFotFZJH9kEVSKWYNLK6DaTPk31Tdj68T4sCX0Xjy7JW6p6jeyOj/e9TT7e/8NxstqPChQnOg8vtC2uG6+wOqu4qqsv9dUNOLL2NCCtujMx4+BV3xU48MNx8jxgcViYsmosdmVuwNKf58HWSXvHNwCY/bE8eXrwpxMatW5oimIsH1xsO5bPbsq/L90pFM1tqm/CwR9PANLzTzFZTDWvfDSFPMcPrz0FXpP2rRvqUGw7fthOLAHg1KlTBnGYLCsrQ1JSEgYPHkzpDacqxowZg6ioKA221J7y8nLcunVLo/bOs2fPGsQVsaKiAvHx8RgyZIhBWmQVGTVqFCn2TTWyWGqy8HLhwgWDmEhUVVXh4cOHGDZsmMFbnIYPH06KfVNNZWUlbt26BYGg/d/hy5cvG8REoqamBvfu3cOwYcMM0tapyNChQzF48GCDjF1VVYU7d+6029757Ib82iPTuKICiUSCHZ8fIB/P/Wy6wX4zxy0fCUs7YkHy2r47KMos0Wr/ltpeDg4OYLGIboWI0WFgsYnz4OHFthcX428oXseJMblcLjZv3ozaqlokx6YBUhdxbVtcdyrEcvYnUw32PY9ePJRswbxz9D5yk7TT6lQ8h+KvJ8LBwQFsNmEu0WNYV1Ln98HFp1qbQ1RVVeGvv/5CXW09nkvvORzc7eAR6KbVOC8CYyLNiBEjRoxohIAvwPHf5SXnsouji48Tvjq5Bl+f+hBufi46jV1RXEVWo7FNWHjl4yk6H2ddVT0ynxLivr7dvWBl1zqRNefTaeS/9313TGPtm0M/nSSr0SDVWWuZ9JmwQi4Mq2jbrYhQIMTpvy5ifsBKHPjhOKmj5tTJAZ8feR/fn/8Eg2f2I3U9ijJKcEOLhF97hA4IJo0REtUcI6QtDKlxGQAAzyA3vZKbLTn62xlS/J9Op+H0X5fINlMWm4mJK0ZjV+YGvP7bAti56Pe+/j18EDWO0CPj5lfg8i7qqgM6RwXAxIyYNMpW5VUh4AvI1506OcDFmzrh7JMbLqCaS1jND5rZFz6hujndaoJXZw8MkDr1VpXW4PwW6ir8Anr6kFo1iXdT25yA19bWIj4+3iCJtLNnzyI1Vf3fkkqsra3h7OyMs2fPan3D0R4hISGws7Nr9/etsbERjx8/1slNsT3Onz9vkNZVVVhaWsLDwwOnT5/W2o2uPTp37gwHB4d2/0Y8Hg8PHjxAXV3bbd66cPHiRSQkJGiwpf5YWFjAx8cHJ0+e1FjPTFOCgoLg7Ozc7t9IKBQiLi4OtbW1lL4/pAYShmgDVoWZmRkCAgJw8uRJjZKH2hAQEAAXF5d2z0vFxcWuA6irZow7/wTJ99IBqZv4oBnUaq8pYmZpiimrxgLSCvADP5zQav+W2l5TpkzB8OHDybGDpFVWxVmlbUoLKC4udhtEaFyWlJSAy+Ui4W4qOZ/rOUy7Cqon156Ti9PuAa4Y8Sr1JjcyOKYcTH+fqEojKvyOa7V/D4XP9vTac0yYMAGjR48mx+7SjzjHKourUJKjnQNwSUkJKioqkHwvjVyg7jE81OCLWrpgTKQZMWLEiJE2EYvFuLb/DhZ1fhvPb8sr0lgcJuZ9MQNbEn7Vu01t/3fHSB2s8a+P0ith8/x2Mjmp7D5IddVP98FdENI3CACQm1RAOh22xeOrz3DktzPkY9lkqWXSJ3ykvBQ/4Y6yu5REIsGtI7F4reu7WL9iC6pKa8gxZn88BVuT1mHAlEhywjBXKeF3lLKbQ44ph3Q/yk8tUuvAmBSTSlbCdVMTS11IuJuC/T/IJ26yWDJZDIxbNgI70v/Am38sprQ9cbZCldYBCiv8mCwmgiOJCXhZXjnK8stVbpf6IJOcFHYf3IWySWFDTQMO/XwSkCYk530xnZJx22K2QqL70M8nwedRc3NIp9MR0jcQAFDNrUVhenGb2/r4+Bik5UskEmHIkCGUj9vW+z18+BDJyckabK05Tk5OmDdvXrtVVDQaDT4+PvDz080JuC0EAgGGDRtG+bjqEIvFePz4MZ4/196Nri3s7e0xf/78dn+DaTQavLy8EBgYSOn7QxpL2Y3/i0AikeDp06eUG1DY2NhgwYIFGm3r6elpkDZWPp+PESOo15Fsi/j4eDx69IjSMa2srLBw4cI2ryeaLC7qgkQiUaqgmve/mQavOp20MhpmVoRR0+VdN1CWx9V4X0VtryfXEvDgwQMlZ+Ou/eTnmTpnUHWLi87OzujZsyee3ZAn2XoO11zTi6jsO0g+fvXz6WAwDVt1Om7ZcLJj4vr+OyjMUH+9bUlIn0CwpKZXT64l4MmTJ0rOxl2k82uomAe3h5OTE8LCwpB4W76YpYvW3IvAmEgzYsSIESNqeXQ5HisiPsT3c34nXYQAwNLOAluT1uHVL6brLT5flsfFOalIuok5BzPXTNJrPMUWBtlqYUtoNBrmfipPrOz99qjKFV2JRIKHl+KxZtTXWDPiayUXTRabibFLWyd9ZIkAAEiMkU8g4m8k4q0+H+PrGb8qJQgGTIvC389/xcJvXiErmxSPv0s/YkKSl1yIO8fugyq69JVPGpNi0lRuE69BLDVFIpHgybXn+Hjsd3hnwGcQCeQ390wWA6MXDcX21PVY9ddSOHlSr3nVOTIAPUcQk7HirFJc20+dLpViLNVVpSnFciB1To3H1sl15obNHUiJIUV7+HX3JrUHuQUVuLzzBmVjK8YyoY0KP4lEgpkzZ8LExISy95ZIJMjNzcXChQsNro2miJubG3r37m2QFfeTJ0/i/Pm2ndlEIhFmzJhBuYB9Xl4eXn31Vfj7+1M6bls4OTmhT58+BrmhP3fuHE6fPt3mNgKBADNmzIClJTXJChn5+fmYNWuWwbXRFLGzs8OAAQMMEsuLFy/i+PG2q2D4fD6mT58OGxsbSt+7oKAAU6dORZcu1C0OtYe1tTUGDx5skDbSK1eu4MiRI2pfV1xcpPLac/dEHNIfE0L1/j180H9yb8rGVoeFjTkmvUkI8AsFIhz86aTG+ypqe+WnFKK8tAKZmZnk6136tX8dV1pcVIilTFPzyVUigU+j0bSSb3h48SnZweAV4oHBs/pqvK+umFqYYuo74wAAYrEEB7SoSmObsMm5aWkuF6UFZcjIyCBf1ySW6jAzM8PgwYPJWKKF62pHwphIM2LEiBEjrUh/nIU1o77Gh6O+QcaT1o4+oxcOgauPMyXvte/bY6Rw66Q3o3XWwZLRlj6aIuGjwhAYTlRgZD7NQdw5uVC8gC/ApZ03sCzsfXw0+hs8vqzcAjJl1VjsyfkTb29qnfSxsrOEV4gHIBW1Tb6fho/Hfof3h/4PKXHyiUbowM5YH/sdPj/0nlp7cxqNptSGqi7hpwuySRDaWH1V1cKgLUKBEFf33sYb4WuwevhXeHBeWftq/OsjsTv7T7y35XVK2x1VoWw0cVxrowl1dOnf/kq2kj4aRVpztZV1OPKbXGdu7mfT2t2HKua0qPATCqhp/+qqQSwBYM+ePYiJoa7dGQAyMzOxY8cOlJerrio0JNHR0bCwsKBcD8rGxgZ5eXltbnPgwAHKheVzc3Oxfft2lJaWUjquJowcORJ2dnaU/x2tra2Rm5vb5jZHjhzRSPxdGwoLC7Ft2zYUFmrnVEgFQ4cOhYuLC8rKtGvPag9Nzsvjx4/jypUrlL5vaWkptm7d2u7f0RAMHDgQnp6eKCnRTturPWxtbZGbm6t2bqC4uEjVtUcsFmPnF/IKqvlfznxhrXdT3h5LanCd33pNI4dnGYraXsJyKCVT1S2CKqK0IKYQy8uXL+P4sROk47p/Tx+NK/9aVaN9McPgGogyJq4YRcopXN59C6W5mlf49Rgqb+9sKhIiNFT+uHOkP1n9py6W6rh27RqOHT1GVv55hXgYxDyJCoyJNCNGjBgxQlKcVYrv5qzDG+FrlJJH/j180HeSXAicqslYcVYpLmwnbjrMLE0x/f0Jeo1XX91AtjD4dOvU5kSmpSj7nm+Ooq6qHgd+PIFXfVfg54Ubkf289UR/yttj29XtkpW1i4QivNXnE6XkkXdXT3xz5iOsvf4lOke272IXPrI7mfDLis/FvTPUtIYorhgmqEhYNDU0I+0BMZHxCHTVeiLTUNuIw2tPY57fm/jh1fUqE7Jjl43AWxuXvLBJUreBIWRyNT+lEHeOUlPhFxIVQN5EqIqlgC8gq/4cPe3h4kNNwvDI2tNorCV05UYtGKKzRqEuBEX4I3xUdwBASQ4X1/ZRU+EXFOEn1+9Tk0jj8/koKyuDo6N2Qs7tkZSUBE9PTzg5GTahq4779+/j8OHDlGql9e3bt812QJFIhKKiIsqdTxMTE+Hq6go3t39HIPrBgwc4ePAgpVppUVFRGDVqlNrXJRIJCgoKDHJeOjo6olOnTpSOqymPHj3C/v37KVt4AICIiAiMGTOmzW0KCgooPy+Tk5NhZ2dnkJZwTXj69Cn27dtHqe5cjx49MH78eLWJrGe3NFtc1IZbh2ORk0AI1AdHBiBybE9KxtUEawcrjF8+EgAg4Alw+JdT7e4jQ7GyKeNuDrp27Ur+3iougqY/zkZTQ2sDB1ks0WJxsbKyEs3VcuMdxSRTe8Sefoi0h0RlnG83L9Jl/EVgbm2OSSuJCj+RUESaFmmCYixT72Sie/fu5O+tqYUp6ZKak5CPuirNjWwqKyvBrxdCLCb+LtrE8kVjTKQZMWLEiBFUldVg46ptWNR5Fa7vv0s+7+LtiI/2vIWND35ASRaxIk2n05SqRvRhzzdHyDL5KW+PbdPhUhM00UdTJGp8L/iEEjcnKffTMct9KbZ+tBcVRfIVTr8wb9CZxOXS1MJESR9KFTXlteAWVLR63tHTHh9sX4FNT35G5JieGq/eElVp8oTfjs8OUKLvZetkDXdpJVz6oyzwm/lKryfHppHaZZrEUkZZfjn+/mAXZndajr8/2KUUC99uXmSShG3CwqufG17PqyWKydOdXxykxMHT3NocPt2I8yj7WS5pmiAj7WEWmhuJSTZV+mjV3BolB1nFc+RFoRjL3V8dbnUO6UJL/b6a8tZC42w2GzNnzkRICHVtSmKxGCNHjsScOXP+NVHjiIgIcLlcSt0zLSws0NDQoLY6i8FgYMaMGejWjToNGrFYjGHDhmH+/Pn/aiyrqqoodc80MzMDj8dTW2VHo9Ewbdo09OjRg7L3FIvFGDRoEBYtWmRw/Sl1REREoL6+ntJqSRMTEzKJq44pU6YgPFw//VVFJBIJ+vbti9dee+2FVfy0pFevXmhqaqK0wo/D4YBOpyM/v7XzYn11AzKeaLa4qCkikQi7vjxMPn6R1Wgypr03HmwTQqPrzKZLGmuldekbRGp7Pb2ZgC1btigZy8gWQcUiMVkRJUNRH63l4uLIkSNRlyK//vUcrlnyR1Vl34v+nk9eNQamFoREwoVt1zTWSgsK94OZJaFX9/R6ArZt26ZkLKOoOZcUq1o+RBXDhw8HL0u+mNRDw1j+GxgTaUaMGDHy/5jywgr8+fZ2vOrzBk78cZ5MnFjZW+L13xZga/LvGDp7AOqrGpD1TFay7gtza/21dHKTC3Bl101Aqnsh02rQh3gtWxjSH2eTwrUASMMDGo2GfpN7Y92db+Db3QtiIbHKNmXVWFg7WKkcq7KkCn9/sAtzfd7Agwty+3QGk4GlP72KHanrMXL+YJ0m8H3GhyOgJ6HZlPUsl9SU0xdZe6eALyRXRGWoa2FQR8aTbPzw6nrM83sThxUqpSBNWK698SVC+gSS59iEN0ZT6gKqKT2HdyM/d35qEU5uuEDJuDJtL7FYguR7ypNGpfOSItOGA98fJx1jo18bDmcvaqtgNKFr/87kDUNJdhkOr21bP0pTlDTnVLjKJiUlQSQSUXbDIZFIsGvXLty7dw8cjn6aj/rg5eWF1atXU34j9eDBA9y7d0/la6mpqeDz+ZQlFiQSCfbt24fbt2//q7F0d3fH6tWrwWazKa3we/ToEWJjY1W+lpGRgcbGRkp1sA4fPoyrV69SqgWoLc7Ozvjggw9gZmZGaSyfPHmCu3fvqnwtOzsbNTU1YLPZlL3fsWPHcPHiRZiammqwtWFwcHDABx98AGtra0pjGR8fjzt3WlcFa7u4qAlXdt9CfgrRZty1fzB6jXjxQvB2LrZkVRqviY+/V+/WaD9Fba+SLC44bA6qq6vJ19vS9lK3uCgQCJCYmIhn14gkEovD0nix+dbhWLIdNDDcj9QefZFY2Vli8ltEdaiAL8Sm93ZqtB+DySCr8qpKamDCMWkjlpq1d4pEIiQkJOD5DcJ4h86go7ue+ryGxJhIM2LEiJH/hxRnl2Ld8r8xz+9NHF9/jnQTNDHjYM4nU7Er4w9MWTUWbOnKnWJigAqxWolEgg0rt5Kl29PeG0/qNOhDUqx84hM6QHULg4AvwM3DsXhvyBd4s/eHrSZLQb39sS3ld/zv6AcAgMs7iWSfubUZpr7bOtlXlsfFhpVbMddnBQ6vPU0mN2RwTNmY8s5YsE10vyGg0Wh44/dF5OPtnx1AbUWdzuPJUFwxbOmspBhLdfpoQoEQd47fx+oRX+H1Xqtxde9tslqOxWFh7JLh2Jq0Dl+f/BAm5pwWphIT9T5+XaDRaHhjndzlbPeXh1FZornGijoUJ866xFIbshPycEKaAGRxWJj98WS9x9SV5b8uILVQDnx/XK1rqTYo6aSpcPy6efOmkki0vmRkZCA3Nxfe3t6UjakrbDYb69atU5v40gV/f380NTWpfO327dtKItH6kpubi8zMzA4Ty40bN6pN1uhCQECA2ljeuXMHaWmaV160R2FhIVJSUjpMLDdv3owbN6gzFmnrvIyJiVGqFNKX0tJSJCQkdJhYbtu2jVL9N3WxTIqh9tpTX92ALR/uJR8v+GrWv1Z1Ovfz6bB2ICrsbh6KVVqwagtFnTRf62AlbS+l6/hdZRflRDWxLCgoQGxsLKoqiSRSl76BGplwNdY1YfP7u8jH/0Zln4xZH06CvRuxsHnv9CPEtdCyVYdiLN1ZPggLk7vWK+rwqpK8UEVxcTFiYmLALSXmEUERfpQs3BsKYyLNiBEjRv4fkZ9aiJ8WbsCCwLdw9u/LpMg/x5SNyW+Nwfa09Vjw9axWF67sBHnLgKwySh+uH7iLp9cSAGn7KBXVaBKJBLmJBeSYLdtEC9KL8c+aPZjtuRzfzPwVzxSE9C3tLECjExOY3IR8sE1YEAlFWP/GP+Q2C76aBUtbC/JxUWYJfl2yCfMDVuLkxgsQ8IhqNhaHhQlvjELvaKK9p7GuiTwufejaLxjD5gwAANRV1iuJ0+qK0ophi8ofmf6JrbN1Kw2z4qxSbP14H+Z4vY4vp/6i5K5kZW+JuZ9Nw97cv/D25mXoFOwOkYiIpSxxOvez6bBx1M9UQh8Ce/khevFQQPr32fbxfr3H7Kpo3qAmlmZWpnD11c+kQyKR4I8VW8iE5SsfToaDu71eY+qDT9dOmPAGoRvV3MjDP2v26D1mSF+FCbiKijQA6NyZGq0fSF0zZ86c2SFusgEgLCyMUiOFYcOGYdo01UYUEomE0lg6OTlhxowZL9Spsy26d+9OaSJt0KBBmDVrltrXqWw3tre3x7Rp016oU2dbUH1e9uvXD3PnzlX5GtXnpY2NDaZOnYquXTuG+19YWBju3btHme5c7969sWDBglbP5yQqzt3014Xb/ul+VJcR7dL9p0RSpperCxY25lj03Rzy8cZV2zSSvegxTJ44S3uUodSO6OrrDFtnYm6SFJum9PdRjKW/QiwlEglYdDZ41Xzp+JpV6O356jDKC4l26YjoHogYHdbuPobC1MIUS396lXz81zvbNZK9UNJJe5iBxER5MtPBzY7Ug02Ny9BoPLFYDBaDhaYKYkG6p4ax/LcwJtKMGDFi5P8B2c9z8e0rv2FxyDu4vPMmxCKZIKgJZq2ZhN3Zf+KNdQvVir7nJsknEF5dPPU6loaaBmxWKB1fsX4xTMz0bwHi5peT2lSyY+TzBLhx8C4+GP4lFga9hUM/n0Q1V6655Bnsjnf+Xo4DBZsx8Y3RgEIy4OSGC/J21h4+GP860UaQm5SPH+atx8Kgt3B+61Wy1N/EjINp747H7qyNWLnhNfQcLp8AaKMP0Rav/TCHdKs6u/kSMuNz9BrPM8iNTDgqVh1WldWQcZLFUsAX4NaRWKwZ9TXm+b+JAz8cR2WJvIzfzd8Fb/25BHtz/8L8L2cqua+e33INqQ+ICiKvEA9MebttkekXwcJvX4G5tRkA4OKO60iJS9drPKdOjnD0IBJaKffTSdHdxrom0gnLu4un3ivOV3bfwvPbxEq5m5/zv1bZp8i8/80gKwNuHLirJMisC0r6fQ8zWzmCLlu2DAEB7Rt1aMKNGzcQGxvbYZIVADBq1CjMmjWLstYviUSCX3/9FQUFrRP6ixcvpixhcefOHdy6dYvSBIi+DB8+HHPnzqW0jW7dunXIyWn92ztv3jyl6hZ9uHfvHq5cuYIuXajRVKSCQYMGYf78+ZTFkkajYcOGDSorImfPno2ePakRsH/48CEuXLiArl27dphY9uvXDwsXLqSsjZtGo2Hz5s1ITlauopIlf0wtTODUST/jhrRHmTj91yVAWlX++m+tE3cvmlELB5OamtnP83Bm8+V291HU9iouLcKtW7fI12g0GrnA2FjbhPwUuYZfrjSWLDYT7v5yYx9fX1+IEtmQSH1NNNFHy07Iw9F1Z4nxOCy8uX7Rv35uDnmlP1lFVpBWjBPrz7e7j09oJ/LaX1xWhOvXryv9PsjG4zcLkPWsbZdeAOjUqRMYmZYQC6VGAx1YHw3GRJoRI0aM/LdJfZCBLyb/hKXd38eNgzHkBc7S1hzzvpiBPTl/YvH3c5SSHqqQVdTQ6TR4Bunnwrbzi0NkAqbvxAhEjeul13gyFKvm7FxtCcF7z2X49pV1ZPUbpMLsg2f2xU9XPseWhF8x5rVhYJuwMe/LGWRS6caBu9j2yT5AOrF6688lyE7Iw1cz1mJJ6Hu4uuc2WV1lZmWK2R9PwZ6cP7Hsl3mk7pd/D3nlXl6y/hVpAODgbk8KvIvFEmxctU2vmxoajUY6K9WU16GaS6w05yqsvDq422HLh3swu9Pr+HrGr0purgwmAwOmReGHi59ie8rvGL98ZKukaDW3Bts+lreCrNz4Glhsls7HTBU2jtaY/+VM8vHGt7bp7fDn14OIZVN9M8qlJgu5SfK/vVeIfknouqp6/P2BvBXkzT8W69UyTBWWthZY9O1s8vHGtzSrDGgLf2ksBXwhirPk4u7JyclYv369XmPLqKiowK1bt2BhYaHB1i8OJpMJa2trrF27VmXyS1vodDr4fD5yc3OVns/IyMDatWspSYzU1NTg+vXrMDfvWG04DAYDDg4OWLt2bavPrws0Gg0ikahVIi0nJwc///wzJS6h9fX1uHLlSoeMpYuLC3799VfKWqvFYnGrWBYUFODHH3+EQKC/EUxTU9O/roumCjqdDnd3d/z666+UtbC2jGVTfRNKsglTA68QD70SNbKqctlvxaufT4eTJ7WOqrrAYDCwQkH2YufnB1Qa1Cjtw2SQ7qVlKZWAGEq/gf5h8rmb7Pot4AtQkEaI8HsEuYHBlGtKnjp1CsV1xHbm1mZkYk8dsqpy2YL2Kx9NfqGO2+qg0Wh4c/1iuezFV4dRUdy27AWdTkd3aXtnRXoN6KCrjWVeUvvXsvPnz6Owlki4cUzZ6BwVqPPneREYE2lGjBgx8h9DLBYj7vwTfDj6G7wZ+RFiTj4gX7Nxssbi7+dgd/afePWL6Ro5OIlEIjIR5B7gqteNe8bTbJzcQKxycUzZeGPdQp3HakmWQnXW+S1XcXjtadSUy3XE3ANcsfSnV7G/YDM+2f8OegwNVVoNJpIBr5CPZbpx4aPDsOfrw3i952rcPnJPbpVub4kFX8/C3py/sPCbV1qZEHTq7E7+O08qzEsFU94ZBzc/oj3w+a1k3DykX6tNp2CF40wmjjPrmTyWV3bfwsGfTpLtHJC2Pyz+fg7252/C54feQ68R3dWurG9Zsxd1VQ0AgGFzB1AmeEwF418fCW9pxV1KXAYuS80vdKVTsAf571xpLBWTkt5d9Uukbf/0AFkpOGBqJCJGU+cOqC+jFg2h1BBDMZay8xIA8vLyKBPG53A4GDRoEHr37k3JeFRiamoKKysrXL9+Xe+xaDQahg4dCi8vL6XnZbGkohKCxWJhwIAB6NOnj95jUQ2bzYadnR2uXr1KyXiDBw+Gj4+yxEFeXh5oNBolsWQymejfvz/69++v91hUw2Aw4OjoSFksBw0aBF9f5cRDfn4+JBIJJaYNDAYD/fr1w6BBg/Qei2poNBpcXV0p00rr37+/UqWu4u+mt56dBK2rysfqNR6VdOkbhOGvDgQA1FU1YMdnB9rdp8dQotKpOqsBPmzlamSluZt07luQVkwuDrW8jqenppNJ37AhXdq9PrWqKl/971eVy/Dv4YMxS4YD0gXBrQqLoOqQ6aTV5jXCEwFKv4GdOitex9tPpKWlpIHXTLR1hg7sTOo0d1Sos5UxYsSIESP/Kg21jbi88yZObDiPwnRl+2oHdzvM+GAiol8bpnUbZUl2GelmqU9bp1gsJlbhpJVccz6dRonTYG5yAc7/cwUn/7zY6jUWm4n+UyMxdskIdBsU0u5NzujFQ3Hol1MoyigBpBPdBy1EV22drTH9/YkYt2w4TC3Ur3LbOFnDwsYc9dUNlFWkAQCbw8Lrvy3EZxN+AAD8/cFuRI7rBVNz3VzdPBUSafE3EnH/zCOc2NC6pJ/JYqDf5N4Ys2QEwoZ00aglJeFOMi7uIBIB5tZmShocHQEmi4nX1y3EmhFfAQC2frQX/Sf31lncVjGW+cmFiBgVpqSros/NTOrDTJzZJG+rWf7rv99WowiDwcAbvy/COwM+A6SGGINm9G2lVagpni0SvP0mEf8ODg6Gh4eH+h01JC0tDUVFRRg8eLDeYxkCOp2O6dOno7S0VIOt26dr166oqlKuLggICICDg/5VJZmZmcjJycGwYcP0HssQ0Gg0TJkyBUVFRRps3T5dunRBebmyqYa/vz+srKz0TqTl5OQgLS0NI0eO1PMoDQONRsOkSZOQl9d+m5YmdO7cudU57uPjAzabrXcs8/LykJiYiOjoaD2P0nBMmDAB2dnZlIwVHByM4mL53E/x2qPP3K2qrHVVOZPVsVIIi7+fg7vH49BU34yzf1/B2KUjlLoCWqKo7fWs8BF8491JoXyla09K6wWxlpXlpgJLcJ8TC43t6aN11KpyRRZ+Mws3D8WgvroBl3fexLhlIxHSRmWYouZcctkzPHrkifBwwn3UM1jewaLJgrKp0BJl8UTHSkfXR4OxIs2IESNGXn4K0ouxcdU2zPZcjo2rtikl0Vx8nPD2pqXYmbEBk98ao5MWmaJQvleI7jewF7dfJ7XCPIPdMe093Q0Gmht5uLLnFt4d9Dle6/IOjq47CyFfrqPkHuCCZb/Mw/6Czfh479voPlgznZnCtGJUlcp1vxRL1J06OeDNPxZjd9ZGTH9vfJtJNEhvOGQrm9z8CjTVq3Yn04XIsT0RITUz4BZUYN+3x3Qey9XXifz3rv8dwqFfTpGJU0jPoSU/zsW+/M349MC76DksVKMkmkgowvoVW8jHC795BXYutjofp6HoOSwUA6ZGAgCqSmuw63+HdR5LVRUiFfqCLdtq5n0xo0O01bSka79gDJsrN8TY9onuJg7KsZT/BvH5/FYVLNrC4/Fw4sQJ1NTUaLD1v4etrS0cHR2xa9cute6GmpKQkIA9e/Yo/abxeDy9TQEEAgFOnDiB6upqDbb+97CxsYGbmxt27dqF+vp6vcZKTk7Grl27lNo4m5ub9Y6lSCTCiRMnUFlZqdc4hsbKygpeXl7YuXMnamvbbqNrj7S0NOzatQtCofz63dTUpLcGolgsxsmTJ1FRUaHXOIbGwsICfn5+2LlzZ6tEt7ZkZWVh586daG5uBlomf/RIpG35cA9ZVT781YEdqqpchoObHeZ8ShiqSCQSbHhra5tt1j6hnUiXyrrKBqQky9tr3QNcSCfqfOl1XN2CGI/HQ2F8KRpKiZgrJpVUsf2T/fKq8mlRHaqqXIa1gxXmfyWXvdiwcmubUg3u/i6kiVJteT2Sk+QOnc5ejuCYEonC/HYSaXw+H0XPS1FfRFzr2otlR8CYSDNixIiRlxCJRIKHl+Lx6fjvsSh4FU78cZ4U2of0AvTlidXYkbYeY5eO0Ks8OjtBvvKsa0VNbUWdkmX6yg2LtdbJEvAFuHfmEX54dT1muLyGH+f9QZbHK2LvZoftKesx7d3xrdotVSGRSPDk2nN8PulHLO7yDprqmpVet7K3xGeH3sWujA2YuGK0RrbmMpTaJlOoqYaANEn3+q/zwWQRLQSHfj6plVi+UCBE3Pkn+GnBBnwz4ze121nZW2Jn+h+Y8cHEdnX0WnLij/PIfk6cOwE9fTBu+Qit9n+RLP15HtgmxPl4fP05leeVJij/vYnkj0xf0NLWHHYuNjqNe+6fq0h7SLTVeHfxxORV/75Zgzpe+2Gu3BDj78t4dDlep3E8Al3J5LesRam5uRn79u3Tu4JDJBLBz8+vw1ZQKWJiYoLCwkLcvn1br3Hs7e3B4/HA5xMt60KhEPv27VMp9K4NYrEY3t7eGDGi436/ZXA4HJSUlODmTf1auO3s7CAUCsnkplgsxr59+/TWuhKLxfD09MSoUaP0GudFwGazweVy9W49tre3h1gsJpObEokEBw4caCWary0SiQRubm4duhpNBovFQmVlJa5du6bXOHZ2hFmULJZUVEMn3EnGpR03gA5aVa7I5FVjSJOaxLupOP77ObXb0ul09J9MLKDl3SgDvU4+H2WxWaR8RkFqEaE9pyYpeefOXUjciVZEB3e7NjWEUx9mkmYIJuYcvN7BqsoVGb98JNnCmv4oCwd/Oql2WxqNhgFTowAABbe5oNfKY0mn0+EhjUlhRkmbzp3379+H0JX4TbWyt4Rvdy+123YUjIk0I0aMGHmJaKpvwqk/L2Jxl3fw0ehvcP/sY7LCgGPKxtglw/H3s7X46fLn6DshQmctofzUQqxd/Cd+WfQnru2/Qz7Pa+Kjqkz7Ko5N7+9EbQWhVzbklX6kPkV7iEQiPLn2HL8u2YSZrkvw2YQfcHXvbTTVy5NdZlamCAz3Ix87etoj/XFWu6LPzY08nP37MpZ2ew+rh3+F2FMPlV5nsonWhdqKOjQ38JTEZTVFW30IbfAMcscrH00BAIhFYvw47w80N/LUbi8WixF/MxHrlv+NmW5L8cnY73B51000NchjSaPREBTRMpbZShbwmlCcXYqdXxwkx1y5cQllulaGwMXbCfP+R6zASiQS/DT/DzTUNmo9joWNPFmWcj8dvy7dRNrb27naIvVBhtYi/NyCCmz7eB/5uCO21Sji4GaHxd/NIR//suhP1FVpXwHEMeXAxYeolsxPKYREIkFDA1EV4eioe0s4l8vF8+fPMXXq1A5nMqAKc3NzTJkyBc7OznqN4+fnhyVLloDDIZKcDQ0NkEgkerV2VlRU4PHjx5g6dSqsrNpftPi3MTU1xZQpU+Dq6qrXOF5eXliyZAlpBtDU1ASRSKTXeVlVVYW4uDhMnToVtrYdr3K3JRwOB1OmTIGbm37mQ+7u7liyZAmsrYmFGj6fDz6fr9d5WVNTg5iYGEyZMgX29vZ6Hd+LgMViYcqUKXB3d9dga/U4Ozujf+hg/PPOXqxbthmJMURil2PGRmlOmdK1XhP4zXz8/vo/5OOF37wCW2fdFoNeBGwOC29vWko+3vrxPqUEWEtkyZ/qrHokx6UpzXNkczdeEx8/zF2PZzcJJ2omi4HK4ipy4TozOUupgkpd54OAL8C6ZZuVqsplLt8dEQaTgXc2LwOdTnyeXf87hPTHWWq3l1X11+Q2IPl+ulKFqaxVViwSk7IpqshIykJ9ETHvChvalTJHW0PS8Y/QiBEjRowg40k2Nqzcilc8l+OPN7colUg7dXKQtt5twtubl8Gnaye932/7p/txYft1XNxxXclp55dFf2K25zLE30jUeKxbR2JxeSdRAWBmaYplv8xvc3uJRIKke2lku+rq4V/h/NarZGsBpAmL/tILd2NtE1mtA2kCY0XEh1gz4iuVbnRZz3Lx1zs7MNtzGdYt/1vlRGvs0uH4eN/b5OONb21DSU6Zxp9ZhmJ7Wntl7bow+5MpZOKrIK0Y/6zerfS6RCJB6oMMbHp3B2Z3Wo73h/wPZ/++TCY1IU1EWtpZKGwvj2Xm0xy82ftDvDvwc42d/URCEX6c9weZ7Bzz2jB0jtSvTedFMO29cQgdQDh5leRwsemdHTqN4ypdyRbwhDi/RS7InZtUgJVRH+PNyI80TkyKxWL8vHAj6qvlbTXdBobodFwvkgkrRqHnCELfpLywEn+8uaXdfVQh+/401TejvLASdnZ2WLFihc4JC6FQiIMHD+pd7fKiCQoKgpeXF44cOUK2bWkLjUZDcnIy6epnbW2NFStW6JwIEYlEOHToEBISEjTYuuPg7++PgIAAHDlyBI2N2ifLIY1lWloa6Vxpbm6OFStWoFMn3a69EokEhw8fxrNnzzTYuuPg6+uLkJAQHD58GHV1dRrsoZqsrCykpxMV1RwOBytWrNC5fVsikeDo0aN48uQJJcYPLwovLy90794dhw8f1qvl/MjmE4h//Axn/7mCxloiwcNr5OOdgZ9jnu+Kdh0tFdny4V5yftTRq8plhA3piqlSIwQBT4AfXl2vtgqq64Bg2DhagWFCBzx5+GT21xhvMRfrV2xRqi6/fuAu6iqJxSChQIT3Bn+Bud6vo6K4CjXPmpF+hpjb9Z0Yofa4dn1xCBlPiErqjl5VLiOkTxBmfTgZUJjX8ZpUL9YGRfjD0dMedCYNLH8RPnv1W4y3mIu1i/9UaWilirpEHtJOEK/3ayOWHQljIs2IESNGOig15bU49vtZLOvxPl7vtRonN15AQ4184t9tUAg+P/I+dmVswIwPJmrkwKkpbekvCQUismWvPbgFFVi3bDP5+M0/FsPetfVqu0QiQdazXGz9aC/m+a3Aqr6f4MQf51FZItfdMTHnYOjs/vjq5BocKvkH72xeBhZbfWVO+uNsMvlTW1mHExvO443w1VgW9j6O/X5WKTHn4GFH/tsj0BXL1s7HgCmRGDGfcPpqrGvCzws3tlvl1hJVorVUwmQxsWbXSlKD4tSfF/HgwhPkJOZj+6f7sSBwJd6M/AhH151FRZFcf4VjysagGX3wv2Mf4HDJFkREh7X5PplPczSupDrwwwkk3iVWwl18nLDk547bCqIIg8HA6p1vwsyS0L67sP067p6I03qclkLELcl+nqek59cWR387iydXnwPStpHXf+u4rSCK0Ol0fLDtDVjaEhU71/ffVaps1RTPIHdwbFiwcDNFblI+bt++jUePHul8XHw+HxYWFhg3Tnd9xn8LJpOJjIwMXL58WecxUlJScO8e4TwcExODuLg4jRPkLREKhTA1NcWECRN0Pp5/CwaDgaysLFy82NqgRlNSU1MRGxsLAIiLi0NMTIxesWSz2Zg4seO492kKk8lEbm4uzp9vbVCjKWlpaYiJIdynHz16pFcbs0QiAYPBwOTJk3Ue49+CyWSioKAAZ86c0XkMW39LOHdXXTVWza1FWV65ytda8uDiUxxfT7RGsjgsfLDjzQ5dVa7Iou9mk3q+mU9zVOqeCvgC3DkWB445B6JmMZoqeCgpKEFzIw+Xd95Qmrupoq6qAenPM1HCz4eIJ4aJOQcRo1XPo+JvJpKtkUwWMc/oyFXlisz9fBrpxp2bVIBtH7fWPRUKhLhzPA4sDgtioQQNJU0oLS5FcyMPl3bdhGdQ+/Pguro65NVnQ8QXg8VmInJcLwN+Kup4Of6KRowYMfL/BJFQhAcXnuLijuu4d/ohhALl5AXbhIWhr/THxJXR8A9T70ikL6MWDsHRdWdVvmbjaIWhc/q3O4ZYLMZPCzaQCatBM/qQFuUyCtKLcePAXVw/cEflShWLzUTvMT0weGa/Vs6ULDsW+k3ujRsHY1S+/6S3ovHoUjwubL+O2JMPIGiRvGBxWBg8sy+69AvC78uJ9gUGk4GP9q4i32fFuoWIv56IsrxyPLuZhKO/ncX098a3+9llOHs7gsVhQcATtLkSpw+eQe5Y+vM8surnswk/QCRsnfBjshgIHx2GITP7oc+EcCWzBN9Qb1yD+kTHxDejNZr4Jd9Px64vDwEA6HQa1uxaCXMrMx0/2YvHxdsJr69biLWL/wQA/LZ0E0L6BGrVztJeRej45SM10tnLeJpNOqXRaDSs3vkmpclyQ+Pgbo+VG5fgu9nrAAB/rNiC0AGdtWpn6dTZHU6hNvAa6oxbD26gTkhUajQ1NaG4uBjTp0/XuAWsoKAAlZWVWLDg5UhGtsTCwgLTpk0Dl8vVeQxLS0ukpqZi//79ZAVQc3MzSktLMXnyZLi4uGg0TlFREUpLS1/aWJqZmWH69OkoLNT9N9nKygppaWnYv38/0tIIEx2BQAAul4vx48dr3KZXWlqKgoKClzaWHA4HM2bM0Eu30MrKComJiUqxFAqFqKysxOjRo+HlpZlWEpfLRU5ODubPb7vqvaPCYrEwffp08rupC/5+/nhwQ/ViQ/fBXdp0spRRza3BLws3ko+X/DiXkk6HFwXbhI0Pd7+FlVEfQSgQ4dBPJxA5pge69u9MbvPF5J+VHNkT9mTDws0MpvZsdJ7SCQy7tpPinaMCUFRaCEsvU9DohAGUqut6XVU9fpz3B5lkn//VLAT01M8s50XCYrOwZtdKvN5rDQQ8AY79fhaR43qhp4IRwLevrMOdY/fJx0kHcmHhZgozRw4CxnpAbMUnX1PXmXHr4l1YepmAzqCh14juL8280ZhIM2LEiJEOQF5KIS5uv44ru28qVWHJCI4MwOiFQzB4Zl+YW5sb/Hh8Qr0QHBmAlPutJ3TL1s7X6Ib+6K9n8PQa0fbj6GGPVX8R2hV5KYW4d/ohbhyKQfqj1poLdAYdPYaFYsisfug3qTcsbNR/3ujFw1Qm0ixtzXFh6zXs/fpoq9cCw/0wasEQDHmlH2g0GpaFvU9OchZ8NROBveQaYebW5li98018MPRLSCQSbP9kH3qNCEVSbDpiTj3AKx9OJtsBVcFgMOAZ5IasZ7koyiiBUCCkdCWyIK0I9848wo2Dd8nnWibRHNztMPfzaRgwNUrt302xBbUlzl6OmPv5tHaPpam+CT+8uh5iEfH+r3w8BV37BWvxaToGoxYMxr3TD3D3xAPUlNfh1yWbsOqvJdj26X6wWMx2NcraiqW9my0WfDOr3WPgNfHw/ZzfyUT6tHfHaawr2JEYMqsfYk8/wPX9d1Ff3YBfFm3Eml0rsf2T/ZBIgLf+fA1sE7ba/Tt19kB5Ug06DXYik2gAEB8fDxMTE1Kjqj0aGxuxf/9++Pv7o1u3bpR8tn8Df39/eHh44NixYxg+fLjWumTjxo3Dhg0blG7Unz9/DjabDUtLzZK0zc3NOHDgADw8PNCjR8dznNMUHx8fuLu749ixYxg6dChsbLTTfho7diwyMjLIxA+kzqhMJlPjWPL5fOzfvx9OTk7o1evlqMBQRadOneDm5oZjx45h0KBBWuuSjRkzBikpKUqxTEpKAoPB0PgcFwqFOHDgAKysrBAR8XK0hanCw8MDbm5uOH78OPr16wcnJycN9pIzc/FUnPjqUqvnmSwG3vpzSbvtrhKJBL8t3UzOQyNGh2HSyo5v2NAS/x4+mP/lTGz9eB/EYgl+nL8B62O/w9FfT6MgvRhZ8dIWdx9z1BU0ovtif7AtmBDyRGByGLByUq+fSWfQ8famZTi67QRKs6sgFkgwYGqfVttJJBKsX7EF3HzCObbboBBMf1/zhdiOgleIJ177YQ7+kspd/LJwIzY++AEnN1xATmIeMuNzAQDW3uaoK2xEt4W+4FizIeSJwGDTYWFnBjqdBrFYolYrOP1+FsoyqyFsFmGgilh2VIyJNCNGjBj5l6irqsetw7G4uOM6ku+1TljZudhg+NyBGLlgcLvtYoYgetHQVom0sKFdMWzOgHb3zXiSjW2fEALpNBoNk1ZGY9f/DuH+2ccozipVuU/X/sEYMqs/BkyL0tghMmxoV7h4O6IkR7lKo66qAVBo3bRxtMKwuQMxasFg+ITKV7e/m7OObHUIHdgZ0z9o3abUfVAXTHt3HA6vPQ0BX4j3Bv+P1KyqKKrE5ie/tHmM7oGuyHqWC5FQBG5+BWkTrgsCvgDPb6cg7uwj3Dv7GIXpxWq3lVXClRdWwsLGos3kp0egevHtlRsWK1UCquPPt3eQQrLBkQGY+1n7ybeOCI1Gw9ublyExJg3VZTW4d+YRnt9OJtuqu/bvjBHzBqndv61YvrFuoUYrrf+s3kNWMPqFeWPBN6/o9Fk6Ais3vIbnt5JRXliJx1eeY3HIO+T3JzgyAOOWqdfd8Qh0RVMFH482pqHXG0GgSTuLAgIC0K9fP5iamqrdV5HGxkY4Ojq+FM6S7cFgMJCTk4MzZ85g9uzZWu1bV1cHBoMBGo0GgYDQDfLz80Pfvn01Tko2NTXB1tYWo0eP1un4OxIMBgP5+fk4deoU5s2bp9W+9fX1oNFo4HA44PEI3SAfHx/06dNH4+RPc3MzrK2tMWZMx9dLag86nY6ioiKcOHECixcv1mrf+vp6iMVimJmZkbp1Xl5e6NOnj8bGCzwe76Vt224JjUZDSUkJjh8/jmXLlmm1L0/EQ6+3A/Dg91TwauTaYDPXTFLSqlLHuX+uIObkAwCAtYMl3t/2xkulNafI9A8m4N7ZR0i8m4qS7DIs6foOasoJLb/IsT3RxGtC6DwfiEUS0BnEZ2RyGKDxGejcpTPsXGxULmxPfXssvLp44PGpRJTnVoFjykZvFfIYV/fexo0DxCKnhY051uxa+dK0x7Zk0spo3DvzCE+uPge3oAJLQt8lYxk+Kgy11bUInd86luDREdw5GE5ejijJLkNxVmutYbFYjMenE1CczgWTxUDU+JdnUcGYSDPS4RGJRMhNykfGkxwUpBWjJKsU5UVVqOHWoqGmAc0NPAh40osFjQaa7P+01o9poIFGlz1PA2jEBYtGA2h0OkzNTWDjbA1HT3t4BLoioKcvuvYPho2jZjf1Roy0R21FHWJOPsCtI7F4fOV5K90p4iISjlELhiBidJhOTpFUMXhWP2xYuZVsiWQw6Xhr42vtTqqaG3n4ZtZvZDUNg0nHP2v2qNw2oJcvhszsh0Ez+7apy6aKuqp6xJ56SLprtoTOoCNybE+MWjAEkWN7tqoiurr3Nq7vJyY55tZm+LCNSc6Cb17BvbOPkJ9SRCYBACD7WR4aahrarBJ0UmhlKy+s1DqRVlVWg7hzj3H/3GM8uhhPukW1xC/MG14hnri2j9CXIX8XASTcTsag6epX+RzUtNv1nxKJyLHtT2puH7uPC9uuAVItuw93r3xpNEBUYeNojfe2vI7PJvwAAErahM9vJ7eZSLNztSVXXxWJGN2DdAlri/vnHuPkxguAtJX7o72rwOaw2t2vo2Jpa4EPtq/AmpFfA4DS9yfhTnKbiTQre0uwTViQiInVfRpoYDAYGDx4sMYi+ZmZmRCLxS9t61xLZO1fqamp5HP3799HQ0MDhg4d2ua+NBoNQqEQTCbx3aTT6RgwYIDGrXPZ2dng8XhYuHChnp+iY8BgMDB9+nQlw4RHjx6hoqICI0eObHd/kUhEXg/pdDr69esHPz+/dvcDgLy8PNTX1/9nYkmn0zFt2jQ8eSJvl3v69CmKi4sRHd12RRONRoNEIgGfzycfR0VFISgoSKP3LigoQFVV1X8mljQaDdOmTSM1DGk0GhITE5GVlYXx49uuaKIRNzswsWOTiTSnTg545aP2NePyUwux6d2d5ON3t7wOO5eO7yCrDgaDgTU7V+K10HfBb+KTiR8AKMsrx2d738cfn22CxyAHsM3l8xV7thMsLCzg6GnfKpFm62KDV7+YjkdXnyJwjisEe/kI7dlVSSoDUufyP1bITXZW/bVE6zluR4JOp+OD7SuwOORtNNU3K8WyKLMEXx37EGvf+wOdhjqCrhBLa5otrKys4Ohpj5LsMtRXN6CpoVlpcfZ5TDK8pzmi+VAT/AMCYGnb8d20Zby8s1wjLz05CXm4uu82Uu5noKqsGg3VjWhuaAa/WQChQESIeuum26oz1ahBcXYpku+pfp3OoIPJZsLEjA1za3PYOBFJt07BbvAL8zEm3YyopKa8FnePx+HW0Xt4ei1BpWi7bzcvjFowBEPn9O8w55CZpSn8wnyQEkdUpQ2dM0BJNFQRsViM9MfZiDv7GCf/vIAartwZSlHnjcFkIHRgZ0SO6Ymo8eHwCFBfvaOK2so6xJx4gFtH7+HJlWetNOQAwDPIDdGvDcfwuQPUaluV5JRh/Qq5rfuqv5bCqZN6J8CMx1lKEwcZEokEyfczED6yu9p97d3lSSpuQUWbn082ZubTHNw78wj3zz1GalyGShFrOoOOrv2DETW2F6LG94KLjxP+XLVd5ZhJ99JUPi/D1NwElrbmSgYMNDoNb6xr/8akvLACvy3dRD5e8fsiuPtr93ftaIiEIjy+otpBL7mdWDJZTNi62CiZO9BoNKzcuLjdJHRVWQ1+WfQn+Xjpz/Pg1dlD6+PvSIhEItIwoSVJsW3HkkajwcHdDiV5XBATAhrEYjFMTNqvkASAiooKHDhwAFFRUQgI6PjOsZri6ekJd3d3HDp0CCKRCEVFRRCLxRgyZEib55i7uzsGDhyIe/eISY6sCkgTqqurceDAAfTs2RPBwS9fy7Y63Nzc4OrqiiNHjkAgEKC4uBg8Hg8jRoxoM5YuLi4YPHgw7t27B6FQqFUs6+rqsH//fnTp0gUhIR3fhVdTXFxcEB0djePHj4PH46GkpAQNDQ0YNWoU6HT1/nb29vYYOnQo4uLiUF9fD4lEonGFZENDA/bv34+AgACEhr587e/qcHR0xNixY3Hq1Ck0NDSAy+WipqYG0dHRZCJcFTY2Nhg+fDiebvibfO7NDYvb1eUU8AX4fu56NDcS1ZVjl45A3wkvb4usjKfXE1Sa++Qk5KNzVADe/fFNfDr+e3iNdoRjV2K+2Mgm5noOHvZKLuYAsOyXeTC1MMXtCzGgW9PRyG1utUAmc7iULXoOf3UgBs/sZ8BP+WKIv5EIPq+1A2pRRgm8QjywZv07+HjMt3AfYgfnMCIB22xCzCkVtVErCivhEShfCLt55jYYpnQ0cnkY+GH7i40dCWMizYjBSbqXipsHY5AYk4ri7DI0VDdq7P7W0RCLxOA38cFv4qO2oh7FWaqTbgwWA5a2FvAIckOPoV0xauEQOLdxk27kv0dVWQ3uHo/D7aOxeHo9kdSNUsSpkwMGTInEsLkD4d/Dp0OWz6/66zWsGfkNrB0sserPJUqvNdU34fGV57h35hHizj1WWQIPaVtlxJgeiBzTC+Eju2mt8VZTXou7Jx7g9tFYPLmqOhHJMWVBKBRj/PKReGPdwjZjKRJJJzm18knOkFnqJzmVJVX4cNQ3aKpvVvl6cmxam4k0RwVH0IrCSpXbNDU048nV54g7S1SelavZztLOAr3H9EDU2F7oNbK70srd1o/34cxm1Y5+mU9zwGvitTmZtne3Q11VA2g0GkzMOZixelK7wvBisRg/L9xIWsMPmBqJUQuHtLnPy8D+74+TjmUtyU0qaLcK0cHdjkykmViYYPJbY+Dq03YlokQiwa+v/YXqMkILrPeYHpjwxii9PkdH4NhvZ3HgxxMqXyvOKkVVWU2brdwOHvYoyixF+qlC9JgbhOHDh8POzk7t9orU1dXBy8sLAwcO1GDrlws+n4+UlBQyya6JUQCDwYCHhwdGjBiBGzduYODAgXB01GxuUldXB3d3dwwePFjvY+9oCIVCJCcnk67MmsSETqfD3d0dI0eOxLVr1xAVFQVXV80WEOrr6+Hs7Ixhw4bpfewdDZFIhMTERIhExHVaE700WSyHDRuGq1evIjw8HJ6emslZNDQ0wMHB4T/Rtt0SsViM58+fQygkEkG2trbtzhNpNBrc3d0x54up2PXJYfQYGoo+48Lbfa9d/ztMatZ6Brlh2VrtWp07Ig8vxePXJZtUviaRSJAal4Gew7vh+wuf4pfVv8OxK/GahSlxbXdwk19nTMw4CB3YGcNmD4BYLMaj4wkQsvmAkOh8UKSlc/mbf2jX6twReXYrCT/O+0Pt68n30tFnfDh+uvw5vn3zFzhLO11NOUSlnmIsuQUVZCJNIpHg0fHnaKY1QVAvQt+JL1fy1phI6yA0C0QoqeOhopGPykYBmoUiSCQAnUaDlQkT9mYsOJhz4GjBBr0D3myLRCI8vZaAW0dikfogE6W5XDTWNqlMHmgLjUYjK8E4pmyYWprA0s4Cds42cPCwg7u/K9z8XcDmMCEUiiASiCEUCiESiCAUiiESCiERASKhECKhCCKhuMX/RRCLxBDwBCjLLUdZfjmqubVorGkCr4lHVMdp+TlEAhGqy2pQXVaDhNvJ2P0lYb3M4rBg42QFn1AvRI7tiRGvDmxVDtyR4AnFKKlrRkWjAJUNfDSR5yVgyWHC3owNe3M2nC04oNP/nfNSIpGgskkAbj0PFY0C1DQJIJS2VLEZdNiZsWBvxoazJQcWHMP+5JUXVSL2JFEt9exGolJrF8vcBM69/NApKghefYNh6WoHthkHDBpQyGGiuaSOjCXjX4xlVZMA3Ho+Khr5qG4SQMg2w/wb34HNoONJaQOE5UUoikvD41MP8OxGYisnTEUiRodh7ufTERThp7UuRGVJFWJPPSSr+BS/g0wzDpx7+sEzMhA+/TrD0t0ebFM2GHQazNlMPC+pg70ZGy6WqmO547ODSLiTAgBw8XZsd5LDa+SDJ12lVUXC3WSVz1dJz8sGL1eM/PtNsMxNUGdvifMpZbA1ZUJUUYviB+l4fOoBnl5LUGrFVMQntBMix/ZC1LheCI70VxvL2vJalc9DukKa9jCrlTGCQCRGqfTa0/2DaegMgM5iwjvEHdZmHMQX1cDBnPj+MFVUFOz/7jgeXyGqjezdbPH2pmUdMiGsLTVtxFJdFaJQJEZJPQ8VDXyEvDURvmIJ6EwGvDq7w9rCBPFFNeR5yWS0juWRX8/g3hnCbc3G0Qrvb315tWkUaSuWkCaiW06eRWIJce1pECBgaTTcF40CncWEZ6ArKi1M8FQhliwVsYTUkMDBwQFz586l9PN0BPLz85GXl0e2xEFaiSIQCMBmK5s3iMQS8jte0chHZkEjTM1tETRmLupYDDwtrIGdORFLtppYJiQkwMrKSmsdsZeBgoIC5OfnKz1nY2MDPp8PDkd54UEklqCsnofyBiKWWQWNMDG1RGD0HDSxGHhSWAN7MxZcLE3AZqqOZXJyMkxMTP4zrcaKFBUVoaBAWUzc0tISPB6vlZ6hWBbLRj4qGvjIKmgAm2OOwNFzIGAx8LigGvbS85KjRuIiNTUVTCbzP9PSqUhxcXGrWFpYWIDH47WqfBRLFM9LAbLy68HqFYwlsT/DhMnAo4Jq4vfSigMTFbGMO/8EB6WLHQwmAx/ueUsjXdSOTltzIgBIjE1Fz+Hd0LVfMJZ+uAg7N+6BWx97hA7oh8SSOliP6oXRvYLA4LDg3MkBDo5WeFRQjYa8Mlh3s0b+zQKEj1J2mHx6PeGldi5XR21F644MRZJiU9FnfDiCIvyx6ps3sPmnLXDra4duA/sjqbQO5oO7Y3SIDxgcFpJZpuCmlsHOjA1eaSVMg8xRcacKYUO7wsr+5XEmBwCaRFW/yH+c2tpaWFtbo6amRmvHI6opq+chtaweOVWNEGvwlzBnMxDkaIEAB3OYsP4d7SSRSIRbR2JxauNFZD/LQ1N9UystGE2gM+gwszSBvbsdHNzt4ehuBzd/F3h18YBfmE+HrOAqzeMiKTYVGU9yUJhejPKCClSX1aKhthH8Jj6EfKHWsaDRAI4ZBw4e9gjs5YtBM/ogcmyvf1WQsqKBjxRuPbIrGyHS4POYsugIdLBAoKMFzNgv5rgFIjGyKxuRUlaPqibVCYiWuFuZIMjJAh7WJpTcoAoFQiTGpOLB+Sd4cOEpsp7lttrGxt8VYYuGw31wN9A00DszYdIR4GiBIEdzmKvR/qIaoZiIZWpZPSoaNYtl8f1UpB2NQcGtBEjEErBNWGBxWKSWVNT4XvjqxBqN4ywSipAUm4YHF4hYZjzJbrWNta8zwhYMh8ew7qBpoL/FYdIR4GCOIEcLMol65/h9fDmVMAegM+hYe+NLjZwlH1x4gu2fHVDpMspkMXC2aR/odDpEYglyKhuRwq1HeQNf5VgtKXmYgbSjd5F/4zkkIjHYJiyEDe2KqLG9EDm2Z5stp4o01jVhx2cHcH7rVTQ3tE78TV41Bm/8Rtxw1DQLkFJWj8yKBghE7X/H2Qw6/B3MEexkAUtpLOPOP8Gn474nNVx+uPSZkiX6y0xzIw+7vjiIs39fUalJF/3aMLz793IAQG2zAKncemSUN4CvQSxZDBr87c0R5GQBaxNC++zp9QSsGfEVef345vSHGmnTvQzwm/nY/eVhnN50SUlrTsbQ2f3x0Z5VAIA6nhCpZfXIqGgAT9j+AhaLToOf9DtuYyrXkUtNTcWBAwcwadIkdO+uvlr0ZWXTpk0oLVU2baHT6YiMjCS1vep5QqRx65Fe3oBmDWLJpNPga2+GYEcL2JrJk3GZmZnYs2cPxo4di/Dw9itbXja2bt2KgoICpaQknU5Hz549MXbsWABAA1+ING4D0svr0SRoP5YMOg2+dmYIdrKAnUIsc3NzsXPnTowcORJRUS9XC5Mm7Nq1C9nZ2UqxpNFo6NatGyZNmgQAaOSLkFZejzRuA5pUSDO0hEGjwdvOFMFOlnAwl8eyoKAA27dvx+DBgzFgQPsGSC8b+/fvR1pamlIsASAkJATTp08HADQJREjnNiCtvB4N/PZjSacB3nbEd9zRgkgSF2eVYkXEGlLWYfH3czBrzSSDfa4XiUQiwckNF3Dol5Okc6Yi3l088c/zXwFpQUt6eQOSSmrQrEHTlEQsQuHdBHT3dMC4acR3uSy/HCvC16BaKm0y97NpmP/lTKo/1r+CRCLB2b+v4OCPx1uZewGAm78LdqYRFWs8oRgZ5fVILK5Bk0axFKP4fhKC7a0w6ZW+L9UCojGR9i8l0poFItzPq0JOlWrR6PZg0WkI97RBgIO5wU84kUiEmwdjcOqvi8iMz0WzmvYmdTCYdJhZmcHZ2xGdowIxeEZfdOkX9NI6l7SHSCTCoyvPcfPgXaTczwC3oALNDc2QaJlgY3FY8Ax2x6gFgzDxzegXEi++UIwH+dXIqGjQYOvWMOg09HS3RmcnC4Oel4U1zYjNrdRo4qAKR3M2+vnYkTex2lCWX46HF54i7sITPLnyXK3wu2cXTwz4bCbovpoJYreETgN6uFkjxMXSoFWoxbXNiMmpRL2OsRRyaxBAF+He/tu4vOsmAMDNzxkb4n5oVzC0vLACDy48xYOLT/H48jOVN9kA4BbkhkGfzwIjQDetKDoN6OZqBeuaOqyK+pj8my1fOx9T39Hc4UsikeDZrSQcWXuarBySsT3ld7Bc7RGTU4lanvoqvbYQVtTCTyJE1MBgmJi1rWfSFnVV9Tj79xUcX38OlcVynS6vEA9serYWTwprkVTa9uqiOmg0INTFCk7NTVjZ+0Ny8r3wm1cw++MpOh9zR6WhpgHntlzD8d/PKunbufo6Y3vaH4gvqkFCSZ1Ocp40AF1cLOEmFuCtiA/JyfecT6ZiwdezKPwUHYPGuiZc2EbEUnEi7uhhj905f+F5SS2eFddC11lpZycL9HS3BpNBx+PHj1FWVoZRo0a9VJNyTeHz+UhISICpqSkePnyIrCwiwe/i4oIlS5cisaQOT4tqNFqgVUWQowV6eViDxaAjPj4eBQUFGDNmzH8ylgKBAAkJCTAxMcGTJ0+Qnk5ogtrb2+ONFSuQXFqHJ4W1EOl4YgY4mCPc0wZsBh2JiYnIzMzEuHHj2tQMe1kRCoVISEgAi8VCQkICUlNTIZFIYG1tjVWrViGlrB6PC2vIrgFt8bM3Q4SnLThMOlJTU5GUlIQJEyb8J+8nZC2ydDodKSkpSEpKIrXj3nvvPaSVN+BhfrXOsfS2M0OYgxlWD/oMWfHEInDfiRH44uj7/7lzUygQ4tbhWBxee1ppkZbJZuJc0z5kVDTgQX61RouKquhkY4qeLhb4dPiXSInLAACEj+qOb8589J87N0VCEe4cu4/Da08p6cfRGXRc4B9AdmUj7udVg69jR5qHtQn6eNm9sKIMfTEm0v6FRFp+dRPu5lRqtNraHm5WJhjgY6dRdVrW8xx4hXi2+6XWNXHGYDFgYWMONz8XhPQNxJBX+iGol7/Gn+W/TlMTDzcPxiD21ANkPs1BVWkN+E2aVawAAMeUDe+unhj3+iiMeHUg5T/OJbXNuJ1diUYNVgjbw8mCjYG+9pRXVInEEsTlVSGtXLdEnyIMGg29PK3R2antMmI+T4DEuylk1VlOYr7abQPD/RAxOgzdJkcii8HROdGniIM5G4N87SlvSxWLJbiXW4n0CtXJKy0Hw6M/ziB57w1wTNlYH/sdfLu1doETCoRIvJtKVp2pquCTEdDTB+GjwhA2OQrZbBOdE32K1OWU4uq7W1FfUI7Bs/rh472rdL4xzE0uwKZ3d+DRpWewcbbGu3e/R2p5I5Fp0gMaDQhztUaoq6XeN60CvgCXd9/C3x/sQkNNI+b9uhAWQ3vonOhTpKGgHFff3YLanLL/7ORbEaFAiOsH7uKvd3agrqoes76ZA4fxkahu1j+WTcWVuPruVlRnFv9nJ9+KiIREVfvGVdtRw63FlE+nwX3mII0ri9vCgs0AsyQFQ/tEwNLy5WoR0ZXS0lKcOnUKRUVFGDwyGnXWnTSuLG4LczYDrJJUDI7sCWvrjmGAY2i4XC5OnTqFgoIC9B8yDDzHAHA1rCxuCzMWHWxuBgb0DNVY3+9lp6KiAqdPn0Zubi6i+g+ExL0LSuvVSyRoiimTDpOKbPTpFqSxvt/LTnV1NU6dOoXs7GyER/YByycMxXX6x1LU2IybH+1CUWwKPAJdseH+91pr2L5MSCQSPL2egPVv/IOCtGL0GtsLw9cuRmGtdgUiqhA383Hr090ouJUIF29HbHz4I6zs/rvXIIlEgue3k/HHii3IScxH1yFdMX7zCuRX61YgpAibQUMfLzt423X8llhjIu0FJ9IyKxpwN7uSUjNKaxMmRgY6qc3eikQivOKxDFWlNWCymTjTsEdpki4SiXB9/x2c/usSsp7naZQ4YzDpcPJ0RJ8JvTDu9VHwDNSt6sYIoQV1aecNPLr0DHkpBaitqFfpMNMSEwsT+Id5Y8qqsa0cY7Qlr6oJN7PKdV69VoU5m4GRgU6wMmk7AcQtqEBlcRUCw/3aTBwIxWJcz6hAEQUXPEW6uliip7s1+d5CgRDpj7ORcDsZz24n4em1BJVtcgBgZW+J8FHdETG6B3qN7A5bJ2sU1jThekaFzqvXqjBlMTAq0BHWpm1X0FUUV6E0l4vOkQEqY1lXVY/0R1lIuJeGmk6usArpRNkxAkDy/psY0csLw2YTbRYioQgZT7Lx/HYynt9OxtNrCWor+CztLNBrZHdEjApD+KjusHOxRXFtM65llOu84qqKpopaJK87gR+OvNemBkhVaTWKs0oRHBmgMkFUX92A9MdZSIhJQ7WHE6y6elN2jAAQ6GiOqE7tCwtrSmldM65mlOu84qqK5up6JPxyFD8cfKfNyXdNeS3yU4sQ0ifwP5Fs49bzcCW9XOcVV1XwahsR/9MRfL/vrTYn37WVdchLKkDnPoH/iWRbRQMRS01aDzVFLBRgsI8tfJxt29yuvroBWc9y0aVvEBgatN13dKoa+bicztWo9VBTxCIh+nlaItDNoc3tGmobkfk0B52jAsBia1/p3dGoaeLjcno5JYthMiQiEXq7mSHE06nN7Zrqm5D2KAudowLB5rz8saxrFuBSGpeSxTAZErEIPZ046ObdtrlDcyMPqQ8y0DkyAGwTdpvbvgzU8wS4nFZOyWKYDLFQhAffH8aa72fBK0S9wQOviYeU+xkIjvRv1wH0ZaCRL8TlNC4li2EyxCIxHv50FO98Ohn+PXzUbsdv5iP5XjoCI/z+E1p0TQIhrqSVo5KCxTBFIjvZItip7c6WfxtjIu0FJtJyqxpxM7OC0iSaDBsTJkYHO4PTQtxUJBJhpusS1JTL23jmfzkDXfoFYcdnB5H1LFdtkkARBpMBp04O6DspAq98PAXW/+Ese0eAz+fj2G9ncWX3LRRmlGiUWDOzMkVQuD+mfTABvUeFafxexbXNuJLOpTSJJsOCzUB0sLPaJO+Ng3fx0/wNEPCF+Hjf22qdE8USCa5nlKOghtokmgzn5iZwr8bj2e0kpNxLJ+2/VRHc2x+9o3siIjoMAb18lW5mS+t4uJzGpTSJJsOMxcCYzk5qq/xiTj7At6/8Bn6zAO9tfQP9JkUg/VEW0h5lIf1xFtIfZaE4qxSg0TDgu3nwGmYY3SBnPg/lV5/i+Z1kJMWktvn7EtDLB5FjeiFidBiCeiuL6Jc38HAxlUtpEk0GmwaM6+pKan21JO78E3w9Yy2aG3hYueE1DJ3dn4xh+uMspD3MRFEmoU/U78s58Ik2jJZViLMFIjzbTgZoQmUjHxdSyyhNoslgAhjX1UVtm/STa8/xv8k/o7GuCUt/nofp743XaFwBXwBufgVKcrhorG0Eg8mQ/kcHnUFXetzy33QGHSwOC3auNpQnm6qbBDifUkZpEk0GAxKM7eICW1PVN3wJd5Lx2YQfUV/dgPlfzsTcz6ZpNK5QIJTGsgwNNfJYEnFUH0tZnJlsJuxdbSlPNtU2E7GkMokmg0mnYXSQE+zNVccy+X46Phv/PWrK6zDrw8lY/N1sjcYVCUXgFlSgNIeLuqp6hTiqPhdbxpnJZsLOxQZMDTQetaGeJ8S5lFJKk2gyGHQaRgY6wslC9c1zxpNsfDzmW1SV1mDKqrF4/TfNRPRFQhHKCytRklOGusp6jb7Xio+ZLAbsXG0pj2UDX4jzKWWUJtFk0GnAiEBHuFiqvnnOTsjDx9HforywEmOXjsDbm5ZqNK5IKEJFUSVKcriorahrM5aqXmOyGLB1saE8CdokEOFcSinqeYaJ5VB/R7hbq45lfmohPo7+FiU5XIyYNwird7yp0bgikQgVRVUozeGiprxWbSzV/X4yWQzYONtQngRtFopwIaUMNRQmfkgkEgwNcISnjWrzs+KsUnw4+hsUZZRg4PQ++OzguxoNKxKJUFlcjdKcMlRzVceyvd9PWxfqY8kXinEhtYySKuhWSCQY5OegtpqqLI+Lj6K/RV5yIaLG9cLXpz7UaFixWIzK4iqU5HBRXVbTKpbt/X4ymAzYOFlRngQViMS4mFpGSRW0Kvr72MHPvuNWSRoTaS8okdbAF+JkYolBbmRk+NqZYYCv3GZaJBJhpttS1HDbdi1RhTFx1rFoqm/CgR9P4OahGJTkcCHSoP3SwtYc4SO74/XfFsDORfXNeLNQhJMJJQa5kZHhbmWCYQEOrSprjq07i7/e3UE+jhgdhu/OfQJIV2tKc7koyeGiLJeLUhYHjFD1qzv6IhGLcWn5RnCftha4pzPpECvE57fbX6Nrv2BIJBJUc2tRmlOG0hwuivMr0NQrCHQDurDSq+rg29gAj0BXuPo6k5OLI7+ext+rd5M6fCwTFgTNqi9qQTP6I+J9w2pZXVnxF0oepLd6nsGkQ6QQyx8vfYaew7tBIpGgprwWpTnE37wkrxyNPQNBtzRcWTetph6+dXXwDHSFq58LGctTf17Axre2kaLvLA4TAjWrv/4TIxH1iWGFZK2yCuHnYgWPQFfYOttoXaEmEktwOqnEMJNvKXZmLIwNdm7l3Hv9wF38NP8PCKW/Vz6hnfB3/FqgRaJM9h0qySX+X5rDRXlhJfSdnrDYTLj4OsMj0BUeAa7wCHSDe6Ar3ANcYe+qfbWfSCzB2eRSw0y+pdiYMDEuxKWV2+ztY/fx/ZzfSWdXRWFfxUQZ8R0qQ2kul/x3RWGlToZAijBZDLj6OsM90BUeAW5wD3Al4hroCns3O61jKZZIcC65DBWN+rfNqcOKw8T4EOdWDqn3zz7CNzN/IxdMHNztsC9vE2g0GhFLaaKMPDdzuWRsywsq9I4lg8mAq68TcT76u8A90E0aSzfYu9lqXbUpkUhwIZWLMgra5tRhzmZgYheXVg6pjy7H48upv6BJ2slgaWeBw6VbwGAwlJKOJS2+42W5XJTlV+jt7E5n0OHi4yT9jhNxdA90g0eACxw87HWK5eV0LoprDRdLUxYdE7u4tlr4jr+ZiC8m/URqhZpamOBYxXYwWUylpGNpDpf8fpfmlqEkhwtufgVEQv2SVXQ6DS4+TtL4uSp8x93g6KlbLK8ZcAEUUnOmiV1cWsnbJN1Lw2fjfyCdBlkcFo5XbgfHlKOUKCPjmVOGEmlMy/LKKYmls7cT3ANciN9LaRw9Al3h6Gmv0wLPzcxynXW1NYHNoGFiF9dWC99pjzLxydjvUV1WA0i/c8cqtsPcykwpUVaSw21x/SlDWV45ef3XFRqNBmcvB/K8lF3HPQJc4eTloFMs72RXIJMKWRM1MOk0TOzi0kqSJft5Lj6K/hYVRYR2LY1Gw6GSf2DjaK2UKFM6N2Xf8bxyCDQoqmgLGo0Gp04OZPzcA+TnpbOXo06LZfdyK5HK1V9uRx0MOg0TQpxhpYOm9YvAmEh7AYk0iUSCq+nllPRgt8cQfwd0sjGVJtGWoIarmaC0MXH2clFTWYf93x7FneNx4BZUKCV6VME2ZaNr/2C8vnY+vLvK2/luZVUgu9JwFxMZ/bzt4O9ArCiIxWJsWbMHh9eeVtqGzqAjoJcPuHkVqCypJp+38nbC2N3vgWHgFofaPC7OzvkFIp4ATBYD1o5WqKtqaKVj5+bvAiaLgdIcLngKr0V9MgP+Ew3vwnX/xyNIPxoDGo0GtikLAr6w3b+/DAt3e4zb9z6YBi7Lry+uxNnZP0PQwAODxYC1gxUaahrBa1Hp5+LrBI4JG6U5XKUqwPD3JyN4huFduB6tO4nkfTcBGqFBKOSLNJ5AmznbYNz+1WBbGLYsv5FbgzOzfgK/rglmlqZwD3BRmlDKkhnqWivreULU84UQiiS4lV1BLuY4WbARHeyMA08LKdHr7OFmjW5u8uvpkV9PY/P7u1ptF9TbH5VFVZQkyvTB1MKEvFF0V5hQega5wcJGdSyfFtYgvlj7hSltCXW1Qk93uSbVqT8vYsPKra3iFRTuh8rSakoSZfpgYs6Rx9JffqPjGeSm1nDkeXEtHhfWGPzYWlZ1Xth2Db8t29wqgRPQyxc13FpKEmX6YGLGgZu/C3mj46GQZLOyVz0vSy6tQ1x+tcrXqCTQ0Rx9vOT6Xlf33sbPCze2+s307+mDuop6Ym5igMpNTWGbsBS+427kd90zyA3WDqrn/mncesTmVql8jUr87M3Q30e+8H3rSCx+mLu+1Y2yX5g3GqobKEk66gPbhAU3fxcy+Uuel0FusHFUrZ+XWdGAO9mVBj82b1tTDPKTtx7fO/MI38z8VWl+BgC+3b3QWNtESdJRH1hspjSW8vNSFk9bZxuV++RWNeJGZmvXSarxsDbBUH/5wvfDS/H4apo8US7Dp5sXeA3NlCTK9IHFZsLVz5mIn/Q6Lkta2rmoXngsqG7C1Yxygx+bqyUHIwIdyWOIv5GIzyf9iMZa5WSod1dP8JsFKMvl/quxZLIYcPVzIZO/svPSPVD9wmNxbTMupbV28KQaJws2Rgc5dUizG2Mi7QUk0vKqmnA9U/lLS/VNjAxzNgNTQl0x1nR2u+2ADh52GDSjrzFx9h+AW1iBPV8dRtz5J6gsqmrzRoDJYsC/hw9m/TwfGabKN4w0GjA6yAk2JizE5FYit6oJjuZshHvaQCyRtLoZ1xQ2g45p3VwhEYrwxaSf8PDiU433Hfr7Urj1CW7zGGXo+72K33Qez7dd1no/u84eGLNTXuqu7hgdzNno4W4NmtR5NFEH50R+fTOOj/8KggbtE/MDf1qIToNDlZ5Td6yRnWxgZ8YGDcCjwhqUailsm7D9Cp7+dU7rY4yYGoW3t7/Z6nwLcDCHv4M5xBIJ7mbr7jKqiLCZj+MTvgavWvvVtJnbVmLCtEil47QxYen9XVFF8v6bePTbyTa38QnthNABndFtYAi6DugMe1db1DULcCqpFEKxBIGO5uAw6XheTJxzg/0IM5Ar6VxKrkF0GjAl1BWmTDp+XrgRV3bf0nksGydruHg7wtnbEc5eTrC0s4BYJIZIKJL+J4ZYKIKIfE76WOG55gYeijJLUJRRAr6a6kx1eIV4ELEc1AWhA4Lh4G6Pep4QxxKKSUdJdb+L+n5vIHXznBzqCgs2A+uW/41z/1zRegwZNo5WRBy9neDi5QhLe0ulWBL/VhFbhVjyGnkozipDYXpxq5vT9vAMdke3AZ0ROjAEoQM7w8nTAU0CEY48K1KSEzBh0jHE3wFiiQQ00HAvtwosBo2S79OkLi6wMmHiz3d24MR67X+TZFjZW8LZ25E4N72cYO1oBbFI3OrcbDOWTXwUZ5WiKL2kTQkBVXgEuiJ0ABHHbgND4OzlCJ5QhCPPisGk01rFr7pZQMk1R5HxIc6wNWVhy0d7ceintn+T2sLSzkL6HXeCs5cjbJysIRFLFGKnWSxLsonzUhOJEkXc/F2UzksXbycIxRIcflYEgUjSai5hiOtPdLATnCw42Pm/g9jz9RHoqvtiaWtOxNHbES6yWEqgcSzFIjF4TXyU5pShIK24VdKkPVx9nRE6sDNCB4Sg28DOcPV1hkgiwZFnxa2uLarmaFTcD40MdISrlQkO/Hgc2z7er/MijYWNudJ33NZZw1iKxBCJRBALxeA381GSw0VhWrFaTVh1OHs5otugEIRKz013fxeIJcDR58VokiZZWsaLimuOIsP8HeBhY4qj687g7w9265zANbMyhYuPE1yk33E7F5s2Y6l0LZLFkkckmPJTi1oloNrD0dMe3QbKY+kZ5AYJgOPPi1HPF2F2D3eyIvp5cR0EIjHl87dBvvbwtjPD6U0XsfGtbUodGdpgZknEkpgTOcLe1VZlLFVeixRiyc0rR35qEVn1qikO7nZK3/FOnT0AACcT5d0OLeNZVNtM6fWno7Z4GhNpLyCRdim1rJW7CtU3MYqEmtKwJvSdNrexcbLG4ZItlL6vkY5DUWYxtny0D48uxqu9kPf/9lV4j+jR6nlTFh2BjhaobhIgt6oJpiw6+CIJRCpuxrWhj5ctfh/zNdIeZbW5nZ2rrfwmuosXmCPD2z1GGfp+r8QNzXj88Q6kxKZpvI+FjTn6fzUHDlHBSs+3PEY6DRji54AbWRUQ6Vnx8OCXY0g9dEfj7RlMOjx7+KLfH8tBU9Ge0fJYLTlM9PGyxaU0LsxYDAz0tcOFVO1WnSTNfMR/thMJN5M13sfc2gwjf5gHq4ggpfMttawBwwMccD6lDHZmbHR1scTNLGpWZx//cRpJu69rvD2dQYd7104YtXUVBNJ2P9lxZpQ3UPJdaYmEL0D6j4eRn5iP0pwyjSpm3ANcEbV6Cky7+wEAAhyI40koqYOHtQmsTJjwtDHFjcwKyq5B3d2scOyNzYg99aDN7Vomysgbam9HOHVyoFR8VywWo7ygAgVpxdL/ilCYQfy7JLtMo5sENz9nRL43GebhgeRzqn4Xcyqb9P7eyOjqYomLq3fi+oG2v+ctE2XkDbW3I5y8HKmPZWElCtKKUZhejMK0IhSkE7EszirVKJYuPk6IemciLKI6Kz1PgzyP4GzJwf+1d9/xbZT3H8A/p73lJe/t2E5iZ5AEQiYkjBD2LBRKoYyWskoHtKWDUvgBhULpgkJbVgtlbwghQMggezqJ997bsmx5aN3vD8nykm3Zlmc+79fLL8vS6dHj793p7r73jNQwLQ5WmgOyP80L12HHQ6/js39/NexyxjB9v4RERGKfbTMhDOoAdtt3uVxoqm5BVUGf7bLA/bumuN6vFjPh8WE4/UcXwbBmgc/47SptDtgxp0dqmBaHn34f7/9l07DLDUyURQ7YLrWGwHXbF0URTTUtqPLEsTK/xruP1xTV+tXKwxQbiuV3no+g9e5zor7nEqKICTn+JIdoUPDvzfjfo+8Nu9zARFnvPu7eLgM5y6IoimiuNXu2x9o++3g1qgv9i2VodDCW37YRIecNPnfzdY4WiOuh+CA1at7cjhd//b9hlxuYKPPG0ZOgGKo18liIooiWOjOqCmp7t8sCT1wLa73d9IcTEhmE0249B2EXrfA+1zdeCqkkYMecHjEGFSyb9uHZH7807HIDE2XeOHpiGuhYmhss7u3Rc/zp2S6rCvyLZVC4Ead9bz3Cr3D3drg4IxIfnqj1vh6oa52+IvVKuL45jqdueXbY5dQ6FaKSI7zbYWRi/21TF6QNWGusnqFUvHH0bJc9f/tz49EYpsey689E1LfXeZ8bGM9AXvPA0xDhgnkR4y4n0AI7QicN0tplH5REizWqUN/ejbigiZm9rF46che4tubxX9zR9BWdEoXfvvlTwDO+2vP3/Rfb39rtHS9CHapH/LqFPt87cLDivn+LIjDW1HtefTtqSuqHXSZlUSL+cfgJwDN47vacGpR3D/5AXwMqB2K/kmhVOPunlyD3yif8fo9NFBF8SsqIdTRplXC4RJyZEgoJBByoNI95rKWlt5yLis8O+n2Hzulwwbgs1WcSzVddu+xOOFwiBAAKmWRMY+gJKgXO+fkVOL7tYb/f0213QjE33nvQ7dneTFoFatu6IQJo6rCNOBPsaCy+8SxUfHoAbU3+fSe6nC4Yl85BV58Tg556BmpfGUhQyHHDv+5AmkkHW7cdtSX17hNIz4VjweESFB0u6Zdgqy1vhMQzo5lSKkG6SYctBe4T7PRwHbYWNg4aWHhDunsQ7IE3fzIi9FgWF4TsujbsH6YLWX6DFeW5VcP+L0aTAW9UPz9ps3dKJBKEx5sQHm/CkrP7f+fZbT2x7D2hLDxcjIJDJf2SQrVljZAk9Z8dzte6Hs9+c0lGJA5Wmr3jCRU0WlGSUznse7RGDV6ven7SZpyUSCQIjwtDeFwYlpzVv2Wrw+7wtg7qSQwVHilFwcHifkmhurIGCImRg8ruu6sopBK0dNgDtj8VNllRkj18LBVqBV6reG7SZkmUSCQwxYbCFBuKxesy+73mdDhR62kd1LOPFx0tRf6Bon6JjPqKJiDBHUtf8QvkMadHcXMHik8MH0uZXIpXS58JaOJxOIIgICw6BGHRIVh0Zka/15wOJ+rKGvrs455Y7i/q142yobIJYrw7lgPPJSbq+FPa0oHC7OG/LyUSAS8V/HXYmXwDSRAEhEYFIzQqGIvOGBBLpxP1ZY2oLOjdLouPlSF3b2G/REZTdQtcPmYm9XWONtbztoHflxXmzhG/LwHgXyf+hNCo8U/g4w9BEBASGYyQyGAsWNP/xoHT6URDRVO/JHrJsXLk7Mnvl8horjXDGW3y/j0wXoE4VxuoytKFmtzqEZf7x6EnEJU8OYkNQRAQHG5EcLgRmav7x9LlcnliWe1NWpYcL0fO7vx+LajN9a2wR/V2AdbKpTgv3QSrzYl95eYJOX+rbeuGOWf4fRwA/rL7ESRmDD1jaiAJgoAgkxFBJiMyV/VvANDvZpknaVly3L1d9m3129rYBntkaL/3DoxnkFo+ruPPwH280WpDk9U25ARCU2XGJtKeeeYZPPHEE6ipqUFGRgaefvpprFkz8WPqjFalefCF7nAXMeUtncipb+/3/A3L4vDhiVq/N8C6dhs+tb+BnG9ysffTQ8jbV4ia4jpYGtvQ3WWDKIpYeelp4/zPaKZQ69T40TO34kfP3Aqn04lXH34HWcWNkIzy4mvgxXiPcJ0CC6IMMGmVEAC02xwobu5ATl1bv647zZ12/PLde/HiT1+Gub4VzTUtg5o5V+RV4fdX/REVue4Ti/P/dx/0cWHwx3D7VbhOiY+zewcJl0sFXHtKLN7Oqh40M1fI4hScf+vZOPr1CbQ2WtDeMrjb33k3rYchRIej27NhCzb4NX6bRiFFkFqOT3LqoFVIsSIhBJ/l9SYWo/RKLIo2IkQjhygC9dZuHK5qRbOPmXAkQTo8sOnXeOGeF9Bca0ZzjXlQCwaJVIKkhfGoKa5DR2snYtdkDipnKHaXCKvNgcsyoyCVCP26pm9IN8GkVcLV5yzjYGUr8hraB5WjmRODS+44Dwe3HEVrYxvamgcvc/b1axEaFYys7dmwqlWQe1rQ9N3eog2qIWdJHO36HUii1+C3n/0a/77zX2iubkFzbcugu+6CIOCOv96EE9/k4tj2nH6x9LVf+HpuvPWsMHcizaSDQilH/NwYxM+N6fe61dKB7N35OLY9G8d25MDsEqA0aiCVCDgjJRR7y1vQ7XAhOUSDCnPnkLP0tnbaMSdM2y+RNidMC7Mfx59OuxM/fvMneOGHz6OxqhnNteZBQwy0Nlhg77YHfOaosZAr5IhLj0Fcev9YdrZ3emKZg6wd2WjscEA9xPhUfdf1cPuNQSnDsrggmLQKSCQCOm1OFDZZcbzWncD9oM+dXADodrhw16v34MXb/oGGiiY017YMmvTC2toBq6Vj0i6yhyOTyzzj/ERj+QW9z3dau5Czp8C7XdY2W6EdYvIbo0qGlYkh0Cqk/cYD8rU/jRTPvuxOET948U68+P1/oL6sAc215kEtGGydNlgaLQiLCR30/skmlUkRM8c93hzO732+q6MbuXsLvNtlZbUZhvjei+yB8dMrZcMecwBgZWIwUsN0eP94jV8TkjhdIm589ja8/P1nUFtSj5Y686AWDA67E821ZsTMmZxE2nCkMimiUyIRnRIJbOxtgd/d2Y3cfYU4tj0Hx3Zko7S4AcFz3MnygecSCplk2Fl6/T0HGsglAtc8dSMc7Z2oKapDc5150JisLpeIpqrmabGPS6XuCUeikiNwap+Z4W1dNuTtL0KWZx8vyqlCWEb8oPf7Okfz9dy1p/R+H0slAkQR3vONuvZufFnQOOj7UgRw6cPXoavBgsqCGrTUmn12Q68vb5y0RNpwpFIpIhPdrbmWnds7g7qt246Cg8U4tj0bWTtykH+kFBFL53hfHxiv4Y45GMe2ufGXl6O9ohHlOZVoqW/12XW6vrxx0hJpw5FIJIhIcLfkWnpObyztNjsKDpV49/Gc/UWIOq23Vfm7x2rQ7XRhTqgWp8QYsafcPTbiUOdv/p73DrT2rgvQVFCN0uMVaKlrRZePYVnqyxsnLZE2nKFuljnsDhQeLvEee07sykfMyv4JzYHxrGvvHvL448/58MB9HJ7zYCbSAuCNN97APffcg2eeeQarVq3Cc889h40bNyI7Oxvx8YO/vKdS44CL4JEuYgKlqcOGhWvnY+Ha+RP7QTSjSKVSfPeBb2FPWYtfBwDv+wZcjPeINaqwNjkUh6tasbOkGd0OFwwqGRZEGqCWSwclB4rLmrBg9TzUldWjurgOtcX1/cbjsHXZseOdvQAAhV7tdxJtpP3K5nBhSYzRrwFGmztsuPOvN6G9xQpLczvKc6qQvSsPRUdLPV0bHCg4VIyWWjNa6lpxyl0X+lXHbocL9e3dcLhEtHY5oJD2NtOOM6qwJjkU+yrMKC3ogEQA0kw6nJcePuS00oUlDchcNRe1ZQ2oLa5HTXEtOtp6Y+lyulB0uBQAIFUpYEzy/4Qn2qCEUibFu8droJZLcNYcEz7OqfO+frDSPCjh70tThw0/ePK7aG+xoq3FiorcKpzYlYeiI6WoLnI3xy89Vo5DXxxDS60ZC7+/wV3fAdubzeFCsHroZOVo1q8v2oRw/HX3I4Dn5Kv0eAUKDhYj/2AxqotqsfKSU3HJ7efhktvPg8PpwmuHqyAOsV8Mta+Mt54jzW6oNWhw6obF3gucw+XNOFZvxRnJocitb0eD1f3+ILUcoVoF4oPUCFbLsTYptN8JY0lLB+aF6yCXCrA7RYR5Tloarf0/XyOXYlVSCMK0CrR1OVDW0oE0kw6VrZ348zf/B3hOvkpPuGNZcLAYFfnVWH7+kmmRRBuOWqfG0nMWeU/KsypbcLh28PY+cF0Pt9+clRqG0uYObCt2D2ZvVMlgHGabBgBJiB5/2v4Q4IlleU4V8g8WI/9AESryqrDkrIVDDuY/Xai1Kiw5a4H3pDy7uhX7q31P2NDa5cCm3HoEq+VYkRCMT3Prh9yfRhtPl06Dp75+EPC0UirPqUS+Z7ssz63CgtXzEBodMuT7pwOVRonF6zK9Ldjy6izYU9E7YcPA+B2ptgx5zIFnZrnEYA26HE6khmlxoHL4yR96uo/aVAr88avfAZ6WNRW51Z7vyyKUZVdi7mlz3ImraUypVmLRGRneVldFDW3YWWb2eS4x3PFntOdAA3VJZXh8y28BTywr82u835elJ8oxZ3ESEqbBBfZwFCqFexwqT6ursiYrvh4wyYCvuA513vba4d4WPEM1MPClQxTw6Ge/Bjwta6oKarzH8ZLj5UicH4e0Zcnj/G8nlkIpR8bKdGSsTMc1v7gMlS0d+NJzU8FXvIY75oxl2+zZxy1O4OGPfwl4YlldVOfZLotQlFWGmDlRyFiVPllhGRO5Qo75p6dh/ulpuPq+S1Br6cTm/N5zr25PcrykpQNpJnc31OHO3/w97x2o1e7C79//OeDpVllTXIf8A0UoOFiMoqwyRCaYsHi9/ze6p4JMLsPc01Ix97RUXPWzi9HY3oVPcvs3qhgYz3Jz57DHn7GcD0/kLN9jNSMTaU899RRuvvlm3HLLLQCAp59+Gps3b8azzz6LRx99dKqr10/zgIuPkS5iRiKTCFgaa0SsUQ2pREB1axf2VrQMGhCxyWpHpH5iZ5OjmWs0X0aCZ8DMvhfjPU6LD8bx2rZ+BxdLlwPflPqeqWn/rnwcfe6zET9TrpBh3obB47cNZaT9Kq+hHXPD9YjQKVHXPvxArC1WGy4KuhHOrqFj1DN1NQCEzI31q46N1m4sjHLfVVbJJOi7y54aH4xjtRYUNva2fjte2wa9p9XFZh9jXhzcV4RDf/lkxM+VyaWYe84iSKSj6ToheE8i7E4RMsnYxmZotzlxqelm2IYZcLdfLNNjfW5vDVYbFkYbIAAI1shhGdByYqT1O9L3ZpPVjlRPzlaukCN1STJSlyTj/FsH17e12wFxiP1iuH3Fn3rOj9Ah3aSDWi5Fl92F7Lo25HoS3p12FzpszkFT0w+l1e5CUogGETol5FIB8yJ0qDR39ZspcUO6CdtL+o/1Y3O4UNXahaQQDfIbrJgTpkVhoxVBAy4k1yaHoLXLga8KGqFVSHF2qskbS2/c5TLMWZyEOYuTsPHms/yq93TUahvcGsX3uva93yhlEhhUcuQ1WL3dls1dDpj7bMdXLIjCvgozKvq0Yu+bQJfJZUhemIDkhQk473u945LMNOYhEgsSAd4LRJvT5e2u5Gt/8ieeA/U95kllUiQtSEDSggRsuHHmxrK1uzeWvuI33DEHAJJCNHC4RByuasUpMUYcrGrt153pigVRyGtodx9XNXJ8klMPc6e9fyylUiRmxCExIw7nfPeMif6XJ4zZE0tf5xLbipuGPP74cw403Pf6wFgmzItFwrxYnP2dtZP0nweeuXvwfugrrk0dtjFfD/n+vuyNpUQi8bY2Xn/t9Out5K++sfQVwxN1bUOeq/mzbQ65j1v7xzI21T2L8LprVk3Cfz0xWvrstzKJAKdLhAggUqeEpdsx4vnbUEY+v+wtSxAEbwvZM6+ewbHs7L+P+4rnSMefkc6HR9rHp4sZl0iz2Ww4ePAgfvGLX/R7/txzz8WuXbt8vqe7uxvd3b0ryWKZ+Onre3QM6CI00kXMSFYlhsAlivgwuxaiCKxMCMby+OBBU0x3TuEUujT9Dbd9nJEcilCtAnanC2FaBVo67IMuxk/UtcGglEGvlKGk2f8ZD9V9pkkXBAEaowY6owa6YC2MYQYYw/TQGDVQqhUQfIyxMVQdD1YOv191O1w4XmvBklgjNuUOP06bIJVAHaJDe/XQ07YLgoCQqCCY4sIQOkRLL191LGzswHnp4ZAIwAHPWFPeODYNnkWnpLkD56SZIBUEOAcM2NA3lhDcLZJ0QRrognQwhulhMBmgMaih0iiBqOG7Kw2s66HKViSHanBeejikEgFHa8b+nak2GYZNpAmCgODIIITHhcKUGuUz+XOirg1FTVacNzccLlHErtKWfmWMtH5H+t4c+D09nE5PIsBXPTvtTp9197ee7d1ObM5rQIfdiUi9EmelhqGp04aGdpu3nv4m0jpsTjRYbShuHnp2Jl8JWnjGlDol2oiixg4kBKnxwYlaLI0N8r6ukUsRoVdha1EVnKIIS7fDc1KkG1UsZwpf/5Ov9Z9d1+Zzv+l2uGDutGNVUgjyG9rRaLWN2FIFnnU42wy1fYRqFFgS654hTxCA/RXmIb8LxhLP2R5LX/GzOUWfx5wec8K0KG7qQElzB06NC0KcUY3yAcORzAnT4quCRrR1O9Az1nXnLI6lr3N0m9Pl8/jj7znQcN/rs/L70sf24SuufVv8jOV6aNDnzvJY+tw2HS6fx5zRnJ/73MdneSwNKhlWJoTA4XLBKQK7SpuHPN6MJJDnlzPFwP/JVzxHOv6M5rqsR6fdBZcoQhKgiRcCYcYl0hobG+F0OhER0f/iNSIiArW1g/vTAsCjjz6KBx98cJJq2N/Ai9++fF3ELIk1YnG00efySpkE8cFqvHGk2pvpPlxtwSUZkfimpLnfYLOuk28yVhqF4WZQ8TUbla+LcaXc3cLJnwvCHn3HZRNFEVazFVazFXVlg/eFOZcsx+lrFgx6fqg69hgqOZBT14554TrEBalR2zb89O7pp6dCbndAH6KDIViHsNhQmOLCYIoNQVhsKEIigyCTu78+38mqRruPGPiqY2GTFYVN/U9seuLo62DbaXdCIghQyiSDXu83xp3oGS+ptQN1ZYObSSduWILV6xYPen64ug5Mzvc18HvqraxqOIbYplKXpUCWEQt9sA76nljGhnjjGRIV7I3l+8dr3INZ+9je8husyG8Y+qRwqPXrz/emP7Ng9uj5Th+qnsMlroarJ4B+F7G1bd2obu1CpF7pTaSN5nt9uGPPSGos3ViZIMXCaAMarLZBAxhrFFI4XK5+F0JWz1hos/HY4+t/Gmr9D7XfbM6rR2akAYujjTCoZLB0ObCvogU1lqFbyM7KWA6xrzVYbYO+u5s77EPuT6ON50QPpzEV+m4fvuKHIY458IynFq5TYk9ZCxwuEeXmTqSGaQcl0vLq22HxtIrp+bhZGUsf/1TfePo6/vh7DjTc97orMBMmTysjHXt8badDnbeNxqzcLoeIZd94+TrmjOb83Nc+PrD10GzQN5bNHfZ+w5VgmGN6D1/nvVKJMPL5pei+3gnUrJvTwcDtw1c8Mczxp8dorst6iD1dQqaJGZdI6zFwgxxuI/3lL3+Jn/zkJ96/LRYL4uImZ8wBqSDAMYqT4UOVrT4nGwAAnUIGiSDgigVRg96nlkv7XWhPp2wtTT/SMXbV66vbM8ONViFFW7d/yTSXfeTBjHs4bf4v61d5oogj1RYsiTHis9zhu3f+6tV7oFf69/UoGWcse+KokUsHJeTUcilcouhzSvjRxHI0y/rD1/fUUH7+4p2DugUORTqO762h1q8/35uj2R/GU8fh6glPK6eMCD10ShkEz37ad5sYzWePt55FTVYsjDL0G/S9R4fNCZlEAqVM4t02tQr3/jIbjz2B+J+6HC4cqDTjQKV7VsWFUQasSwnD21k1Qw5kPt51OB0F4tiDMcST22V/qWE6NHfYvAM9FzVacXaaCZoB55K+LsTHe8ybjsayXfp7DjTc93qg9ofpZKr+J+7jvUZzfu5rH5+Vx55x/k++znuNKvmI55cSYXDOYqaTBujfGc11WY/p9pU54xJpYWFhkEqlg1qf1dfXD2ql1kOpVEKpnJrBjbUKqV8zIfnDanPAJYp4M6t62BZFAKBVjm5GRjq5aBUjD4I7Eku3A23dDiSGaHCsZuTmzwCweuMpuPKs+RBF0fPjvr0giqL7jrAoQqaQQa6Uo1MhR/a4ajhYYaMVGRF6pIRphlxGENxJLX/pFLJBY3aNhqXbgfZuB5JCB8cxKUSD+vZun3d4Tz8rE5et/p1fsexWyHF8zDUcH3+7IgKAVilD8yimxx7I1/r153tTO6o6jv+71Vc9tQopVieF4Iv8BtS2dUMEsC5lwPTio4zlaMb5GCi7rh11bd2o9TF2RYfdibq2biyJMWJfuRkahdQ7WK9uFHWcKXQKGQD/TvL8YXO6cKS6FRmReuiUUjR3+E6kzcbjeE/CNZD8iaeOsfQSBCA5VAO5RMC3FkV7n5cIAlLC+h+HfH1jjuZ7aKYYSyz9OQca6Xt9NsZSNwH7uH+fOwtj6ecN3YFGc35+0uzjY4zlcPw5v5yq/WEiBfJ/8ue6rIdWIZ12SckZt3YVCgWWLl2KLVu24LLLLvM+v2XLFlxyySVTWjdfQrWKgCXSuhwuVJg7sTw+CAcrW9HtcEElkyBcpxzUHD9UM72mh6XpJVSjQH37+Adt3FfegrXJobA7RZQ0daDb6YJBKUNmpB5HayyDknWJscFIjx9+vK4edqcL2X1mbwoE0TPOxIqEoac/V4suwOUCJFI47A48des/kLe/EAkZcUhbkozUpe6fnunoQzRyVFv8a5I8lP0VZqxOCkGn3YXS5g4IApBu0iEpRIPP8313eYiLCkJGonuE/Kzt2fj73S9ApVP1q2P83BhIZVI4XSJOHK7EZPcUU4kuSD0f6nQ68efb/okTu3IRPy/WPaD/0mSkLU2GMcwAAAjVyPsNLDpavtavP9+bSntv8i5nbwH+/MPnoVB5Jh1YmoK0pclImB8LqUwKo0oOqWdg1UDWs2eQ4C6HCyKAGKMK0QYV8j0TUGgVUqg8CV6Xy4W/3fUCjmw9jvi50d46pi5NRpBn7LxQjRxDzPnhF5vThZq2oZNHO0qasDIxBN9aHI22LgeKmzqQFKrpF8uZQBRF/OMnL2P/5iOIS4/ut10GR7jHhQvVylE4juF7FFIBGRF6FDV3oK3LAYnE/XeXwzlsEl5pm1mxBIB///JVfPPBfsSkRiJtSYr3uyg0yr2th2rlwDh7cY0lnjMxlq/87k18/eYuRKdE9NsuQ6NDIAgCQjX+tfQdKM6ohkIqwYfZtbD1ae08N1yH1FDdiBfeSpt9xnVV+t+j72HLf7YhMince4xMW5aCsJjxxXKkc6CRvteV9pkXy7ef+gif/utLRCSEeY+R6cuSYYoLc48fO8ZYjtdMjOUHf/8MHz7zGUxx7lj2HMcjEkzjjuVoz8/7UjlmXiw//deXeOdPHyEsJqTfuVtkUrhnHw/8dbE/55cqh2PGxXLLf7bhjT+8j+DIoH7XFNEpke7tUhu4WPpzXdYjZBrmNgRRnHmDcLzxxhu4/vrr8Y9//AMrVqzA888/j3/+8584ceIEEhISRny/xWKB0WhEa2srDAbDhNY1p64N+wYMsDeUoaZ5vmFZHD48UYuWTjtkEgGLo42ID1ZDKZOgy+5EaXMHDveZTl50uiB+ugerLl6G1CXJM2rnpfFzOp149Lo/Y/+mIwiNCUHMHPcMMVEpEYhKCkd0aiRsoUHDjoE1GuE6BRZGGWDSult9ttvcF9U59W2Dxqx4e+MD0KrkOP2CJVh4RgYWrp2HsJihE2vvH68ZdyLa1351/txwmHRKvJ1VPehkouD9PTj214+QsSodcXNj8O7TvmfG1BjUMMWG4rb//QQnAtBYJdqgwsIoA0I0cogAGtq7cbjKMuQsNe9d8hAUELHi/KUoza5A9u78QcvI5FLognVYe+XpSLz9QjR3jP9icjTT0Zd8dhCHHn8H81emI2lBPN5+8iOfyynUCoREBuHut+9FtnN0d0L9Wb8jfW9++K3HYFBIsWDNfFQWVOPY9pxBnyOVS6EL0mLFxcsw7yeXj7q1lz/1XBxtQLpJB0EQUGHuhFQioNPuxP4KM+KD1Fg3x504bakz41tRPqYUBSBXyhAcEYQfvfkz5Egm76RjQaQekQYVfrz8F1A5nVi4Zh4WrJ2PBWvnITIxfNoeh6yWDlwadIPP15RqBUKig/HDF+9Evko75s+QSQQsjw9GhF7pnr3KJaK5w45DVa3e/dvXDFWbb/kLZO2dWLB2HhasmY+Fa+chKjli2sbSbrPjfNW1Pl9TaZUIjgjCD56/DYUG3+PA+sufeA70xZ3/gFjXgoVnzMcCz7YZMydy2sZSFEWcp7gGLh/dVFVaJYwmA279260oDQ8bddlnpYahy+4aNLu2UibBlQuj8GVBI2rbun1ukwDw9U//je7SWixc2xvLuPToaRtLALjYcD062wff8FJplTCG6XHzn76H8tjB3bP8MdI50HDf6zvufwXWnPJ++3j8vNhpHcurIm+Bub510PNKjRKGUB1u/MN3UDNn5Gsxfwx1vuFr29z14P9gPlSIhZ5YLlg7DwnzYyGRjGbG8sn1naTbfY4RrFQrYAjV49oHv4XmBak+W435Y6Rtc6h9fO8f3kbjzhPuY/iaeVi4dj4SM+OmdSxvmn8PKnIH33xXqBUwhOhw9S8vQ9vyjDGNpTfcee9I55cHn/4ANVsOI3PNPG8skxbGQyqdvq3+frj0PhQeLhn0vEIlhz5Ehyt+chFsZ54y5NjII/HnfNjXtnlKtBELoyc2bzNaMzKRBgDPPPMMHn/8cdTU1CAzMxN/+tOfsHatf9NFT2Yirb3bgXeP1Yz5S3AsKrYdx7Z7XwAAhMeHYeUlp2L1ZcuRuXoupLLpu+NSYFia23BF2E3DLnPGdWuReM9l4xqQfLTqjxTj8+//bdDzkUnhSFmUgJjUaMSmRSE2zf07KNyIw9UWHBvHjJFj8eXdz6NmT67fyy9Yl4mlT9w85gPKWDTlVGDTDX8a1Xseyvkr8tomt1XGtvteRMXXx/xeXhuiw9VbHh5yzKiJYC6uxcfXPD6q9/zu6J9Q2D25h841SSFIDnUnczqtXbhYf/2wy0tkUty078lBEwUESohGDodLhKXLgRCNHGfNMWFvdjUeWfpTDGz6aIoNRcriRMSk9u7fsWlR3pY1U6m7y4YLNdcNu4wgEfD9Q0+Puzv8aFjrzHj/0ochDtgXQqODMeeUJMSmRiHGE8uY1CiExYRM+UWOrduGS4w3wDHM+JYKtQK37Pmjd3DrydDV0o53L3wQrgETtoREBmHOkiTEpkZ7tk33T1hs6JTH0m6z45aMn6C6yPckWgAQHGHEd7542DvO2WSwtXXinQsehLOrf8IyyGRA6tLkAft4NExxUx9Lh92BHy65D6UnKoZcRh+iw807HkPjOLrDj7pend1454IHYR+Q4DOG6ZG6NNm9XXr279i0KITHh035xbfT4cTdK3+F/ANFQy6j1qtxx74/onaYFs0Br5fNgXcvfBDd5v4Dm+tDdJ5Y9t8uwxOmRyx/tv53OL5z6PNNpVqBew4/japx9noYDZfDifcueRidDf2TpbogLdKWJQ86V49IME35taXT6cT9Gx/BoS+yhlxGppDhvuN/HdSDayKJLhc+uPwRtFf3v2mhMaiRtiwFcWnRiE2LRkxqJGLSohGZaPJOvjVVnE4nfnf5E9jz0cEhl5FIJfh13jMjTq4VaJdkRPo95vJkmXFdO3vcfvvtuP3226e6GiPSKWWIDVKhwjx5X4IF7+zyPq4vb8T7f92E9/+6CYZQPVZctAwrLzkVi86cD61x7HfYafrSB+sQlRyBmuLBM6j0yNmRjXW/v27Y2VQCLf/tb3w+X1tSj9qSwVMfa/RqJC1PxeKHb4AwSaNL2poscFQ3QCqXwunnlNUlR0oQtysHIafPnfD69RgqlsN57Yf/wJJHvwdBOjkXNfZWK2yltZDJpXD4GUtrcztqvs5C6JrMCa9fj5a9udAFadFu9n9feO2H/8CyJ26GZJJOeMQuG17/8b9RV1SH2tIGNNe0jPgel8OJNJMOWROUiFbJpDg9IRhqmQRdDhcKGttRdrQEC1bPRe7eAtj7JFMaKpvQUDm4b6RKo0R0aqT7hNxzoROTFoXY1CgYQvUBqaet24768kbUldajrrQBtaX1qCtrQG1pA+pK69FcM3KLcdElIi1M26/l90TTtFiwYPVc5OwpgL27N1HSVN2CpuoW7B2wvFKtQExqlDd+fRMahlB9QBKWdltPLHvj546lO7ZN1S0Y6d6srdOG1DANDlZNXixVTa1YuHousnfnw9bVG8vmWjP2fXoY+3C43/IKldwdy9SofgnL2LQoGMMMAYtlY2WzN3Y922XP46aq5hFnE85cPQ/p4TrsKRv5+yBQFI1mLFyVjuxdeeju7E06mRss2P/ZEez/7Ei/5eVKOWLmRHq3S/dFY5T3ZlkgYumwO9BQ2TTkdtlY2TRiLOctT8Vckw47rYFpqe8PeWMrFqxIQ/auPHRZe5NOrY1tOLD5KA5sPtp/eYUM0XMi3cnzOf23y+CIoIDE0ulw9omlZ9ssc/+uK21AQ2WTz1aSfaUtTUa6STepiTR5oxkLT0/F8Z25/VoetjW349CWLBza0j/BIlfIEJUS4d3HvceetGiERAYulo1Vvft4/1jWo75i5FgmL0xAerhuUhNpsiYLFpyajOM7c9Fh6U06tZutOPTFMRz6ov/NUZlciqjkCM8+3ntzJ5A3y5xOJ5qqmj37d++2WVdWj9rSBjRUNMHpGP48M2FeLOaG6yY1kSZtaUPmkiQcs3bB2tqbdOqwdOLIV8dx5Kv+oxdLZVJEJYe7t8c5kX328WiERgcH5KaE0+lEU3VL/ziW1qPWc/ypL28cMZYxqVFID9dNaiItUq+cdkk0zOQWaeMxmS3SAKDG0jXkOEeBZlDJsDZUiT0fHcQ37+/D4S+P+byIlUgEpC5NxqIzM7F4fSYyV8+FWqualDpS4ImiiLLsShzZehy7PzqAw18cG/KCRqaQ4ZFNv0L8aWk+pyueCCqZgOI/vYcdb+2GvWt0d8/XPHoDEs5aNGF16+vAU+8j9/Xto36fMSkCF7x2LySTkKTqamnHexc/BGf36FshrPzdtUg+f9mE1Gugw3//BCde/nLU79PFhOLit34BySTc4bS1deK9i38Pu3X0J/zLf3EVUi9fMSH1GijrX58j6/nPRvWekKggvFDyLN49VjOmrgyjJZO4Z65SyaXo7uxG7r5CHNueg2M7spG9O7/fhaI/9CE6RKdEQKlRQiqTQiqTeH73fyyRSiCVuv+WyKSQSiWwNLf1S5SN9zRHppThXct/8c6xmnGNjecvqSDg8gVR0CiksHXbkb+/EFnbc5C1PRvZu/J8dlEbjj5Yi6iUSKi0vmMpkfb5e0As21raR5UoG0nashQ8tesRvJNVDfskxFIiAJdlRkGnlMHWbUfBwWIc256NrB05OPFN/wtFf2iNGkTPiYRap+oXy94YDhFLmQTtZuuoEmXDufKnF+H7j18Ph0vEO1k16J6EVrwCgEsyI2FUyWG32VFwqMS7jx/fmdvvQtEfGoMaMXMiodar+8TQ934+MJbW1o5RJcqGc/EdG3DnX26GSwTezqqesFa8A100PwIhGgUcdgcKD7tjmbUjGyd25qKtZXQ3OTV6tXu71Kt8x2+4WFo6RpUoG855N6/Hj5/7AQAB7x6vmbRWvD3dwpwOJwqPlOLY9mwc25GD4ztzYWnybzKsHmqdCtFzIqExqEcXS6kEHe2do0qUDWf9tWtw38t3QJBI8P7xWrRNUiveDekmROpVcDqdKMkqR1ZPLHfkwNwwuhsgKq0S0XMioTVq/Ipl32NRZ3vXqBJlw1lzxXLc/9o9kMqk+PBELcwBGrt8JGenhiHGqIbT6UTp8QrvPn5se47P7tHDUWk8sQwaPpbuc6L+r3VZu0aVKBvO8guW4IF3fgaZXIZPcurQFIAhY/yxLiUU8cEjT0gw2ZhIm4REGgBsL25CySRkbnu+AHtYW63Y+8kh7Hx/H/ZvOjzkxYxUJsXc5XOw2JNYm78iDQrV9BvUj9xcLhfKsitx9OsT7oPctmy/DnD6EB2e+PIBpCxKBADsKWtBXsPIY12N17qUMMQHqwEADZWNePoHz+PgF1l+tfrSRAThwv/dB4VuYhO9zbmV2PS9pyE6Xe6BSaODEZFogsagwf5N/VssyJUyZK6ehw5LByrza2Bt7cApd12IjOvXT2gdAWDHr15B2ZYj3nrI5DJ0Wbv9usBVh+px4es/h9I4sQcjc3EtPr3+yUFdqYYiSATEpceguaYF7WYrFt66AQtv3TChdQSAXb//H4o/3g94WvREJJoQkRiO6sJaVBXU9Fs2ItGEuLRoVBfXobakHnKdGhe+fh/UAWo5NZS2ikZ8fO0To0qcJi2Ix/NHnwQAHKux4FDV6E7YxmJ5fBDmhvuOhcvlQlN1Cyrzq1GZX4Oq/GpUFtSgqqAGNcX14zqpm2i6IA3erPsX5HI5suvasN/PMU/HY1msERmRvs9NRFFEU3UzKvNrPD/VqCqsQVV+DaqL6qYslnKFrF8rRF9O3XgKHvrg55DKpMhvaMfuSWhJtTjagEXRvsdkE0URTTUtqMp3b4uVnu2yMr8GNUW1frekDbQgkwERiSaExYZi9wf7+yWJJBIBP/rHD3D+LWd5nytqsgZszNPhLIjUY0lskM/XRFFES53Zu1323cerC2tH3DYmijFMj4jEcJjiQrHn44P9zjkEQcDtf/4eLr1zo/e50uYObCsex8wifpoXrsNp8b4H1xZFEeb61t79u6DGHcv8GlQV1vZroTqZDKF69zEyPgx7Pz08qB7ff+K7uOqnF3n/rjR34svCxgmvV5pJixUJIT5fE0UR5gaLZ//u3S7dcZ26WOpDdIhMNCE8wYSDm4+iq6P/tdmND12Da++/3Nuaa7IaZKSEarA6yfe4xaIowtLU5t0uK/NrUFXgjmNVQU2/FqqTSR+sRXiCCREJYTiy9cSgmyPX3n85bnzoGm8s69u6sSlvcC+YQEsIVuPMlKHHsHTHsieONb3bZf7UxVJjUCMyKRyRieE4tiMHbc39rw+v/MlFuPXx73hbxjVZbfgkp27Ch6+KNaqwfk7YlA8F4gsTaZOUSOtyOPHB8doJvdM1N1yH5UMcmAGgu7Pb0yw3C0e2Hkfp8aHHi5Ar5chYmYbF6xZg0boMpJ+aArli+jWpPFn0S5xtO4GsbdlobRz6Llt4fBg62jrR3ueupj5Yi8e/fABzFid5n7M7XfjwRC3aJ/CuYXKIBmuSfR+YC4+W4JkfvYjsXXlwDrNvzLlkOU7/1dUTVkfR5UJIfjliI42ISDTBFBcGhdK9vbtcLnwr8hZvvEOigvHIp/d7k5E9J2oVBTXIEuVwTmACWlLfgjirFVGJJkQkmvp1M3rpgdfx6kPvjFhG4oYlWP3Qdyasji6nC5tv/guasssHvRYSFYSWulaIfS4MFSo5Htv8GyxYM897olaeX4MspxQOtXLC6ilpbEWcxYJIT/IsyNQbyy2vbMPjN/aO57fhxnW457nve8eusNvsqCttQE5ZM6qDxzdw+nBElwuf3/Z3NBwZPOjrUGLTovDv7Ke9JzouUcSnOfVDDsIeCJF6Jc5NM43pJMdhd6C2tMF9geNNDNWiMr8aDRXju6ANiQxCRKIJuiAtaorrUFfWAPso7uqr9Sq8VfcvKFXu7VAURXyW14D69onrsmTSKnDe3HBIxhBLp8OJ2tL63hNzz4VOZX4N6svHd0EbHGFERGI4IhNNMJoMaG+xojyvCsVHSof97u5xylkL8PBHv/DeoBNFEVvyG4adGXa8QjRyXDA3ApIxDA3gdDhRX97ovdDpSbJVF9SgrqxxXC3zgsKNiEgIc8czwf39E5Fo8l5Y9+0dcO9Zv8ORrScAT7L/V6//GCsu6t+qWBRFfFXYiMrWiev+FaSS4cL5kZCOJZbOnljW9CYtPdtlXWnDuGLZkyiLSDR5Y9nznR6REAa1Tu1d9lcXPoJ9n7pvismVcvziP3dh7ZWDWxVvK2pEacvEdf/SK2W4eH4EZGNowe50OtFQ0eTdv72Jtvwa1JXWj6tlXk+iLDLRhIiEnm3S/TsiwQSNvjeWv7/qj9jxjruDuUwuxc9euANnXbdmUJk7S5pQ1DRxjQi0CikuyYiEfAyxdLlcaKxs6ndToif5W1tSP67WZD2JMvd22BvHnn1ca+i9mfmHG/6KL/7j7gkhkUrw4+d+gPNuGnxTdndZM/IbJm44FrVcgksyoqCUjTGWVc3eZGVvYqgGNcV144tlsHbQPu7dNhPC+g1T9PQPnsMn//wC8CTK7/zrzbj49sE3ZfdXtCC7buIaEShlElyaEemdaX00em48Dt7Hq8d941EXpB20j0ckmLzx1AX1xvKZe17Ee3/51Pv3D/74XVz5k4sGlXmoqnVCx7JWSAVckuFuoT8dMZE2SYk0AKht68KW/IYJ6WYTrlPgnFTTqA7MLfWtyPr6BA5/dRxHvz6OyvyaIZdVaZXIXD0Xi9ctwOL1mZhzSuKUD9Q5m402caY1arBg7TwsOiMDi9dnImVRIl5+4A28+rA7saIP1uLxLx7AnFOSBr23yWrD5rz6CelmE6yW47z0cChGODCLooi8/YV46TevI2t7ts+L3RW/uQYpF50W8DoCwIqEYKSZdEO+/uKv/4fXHnkX8fNi8H+f3I/IxHCfy7V02PDxsRq4JqCLp1Elw3lzw6EaosujuaEVt2b+BK2NbbjgB2ejrqwRR7ce7zcmUI9T77sC6VeuCngdAWD/H99F3ps7AU8XiczVc7HwjAycsj4TqUuT8ZuL/4B9nx4CPAOPP7rpV1i4dv6gclq77NiUW4/uCbj5oFfKsHFuONRDnOS0tbTjlsyfoKXWjG//8rJ+dzMHmsgTskN/+xjZr3w16PnQ6GCsv24Ntr+5C3VlvQmSiAQTXin626BxNNq6HdiUW4dOe+BjqVVIsXFuOLSKwI8X53Q43T9OF1wOJ5wOV+9zfR67nC7v3w67E1qjBlX51Xjnz58ge1fesMkziVSC1CVJsDS3o6aot6u7QiXHm3X/hFbffyxRq82BTbn1E9JlSSN3x1KnnIBYOntjNlQs3XF09oulxqBGRIIJ7S3t2PnePnzz3l5kbcv2ecEeFhOCddesgrnBgi2vbPM+P+/0VPzh89/0S2oAQIfNiU25dRNyI0clk2Dj3HAYVIG/AThSLHvjOCCWetWgRNlItr25Cw9f8ycEmQx48IOfY/7paT6X67I7sSm3fkImcVBKJThvbviEjE8zXCz77tcDY6nWqQYlykay68P9eODSx6EP0eF3797r87gDAN0OFz7Lq4d5AiZxkEsFnJcejhBN4G+4DRnLEb4/lRrloETZSA5uOYpfbHgYGoMav33rp1h6ju/hN2xOFzbn1QdkxvCBZBIB56aZYNIF/oaby+WCw+7sH0vnyPu8QiUflCgbybEdOfjpmQ9ApVXiV/+7B8svWOpzObvThS35DaOeMdwfUomAc1JNiNBPQiz77NfD7fNypXxQomwkefsLcffKX0GhlOO+V+7CmsuX+1zO6XLfyKmbgJtiEgE4O9WEKEPge9H0xNLXMWa4fV6mkCEiwdQvUTaS4qwy3HHqzyFIJPjZC7dj/bdX+1zO6RLxZWEDaiyBj6UgAOvnhCHW6P9302RjIm0SE2kAUNXaia1FTQEdZ8WkVeDsVNOIyYqRNFY14cjWE+4BELce9zklcw+NQY2UxYlIyoxHYmY8khbEIzEjblQ7KfXqbO9EeU4VcvYWjDpxtujMDCQvShiU2GyubcHP1v0OTocTv37jJ0hdkjxkefVt3fiisAF2Z+C2y2C1HEv1ckTHjX6w0dLsCvz3wbew99ND3u7IglSClb/9NpI2+j7JGKvT4oIwL2L47nmiKKK6qBaRieHDzk5UllOJ397wd6x69MaAdp80qmQ4J800YrKio60THZYOhMX0tgCsyKvCfx96G7s/OoDONk+LBUHA6fdfhTmXnB6wOgLAsec2QVHVgIWe7TJ1SdKgGYjaze24Z/VvYG3twC/+ezcWnZExZHnNHTZsyW8IaEtevVKGc9NMIyYrOq1daGtuR3jc0E3z4dk29pabA95F+ujzn+HYvz4HPF1fkxbE49wbzsRFt53rbdVTXVyDG+bcDQAIjQ7Bf0v/DpnM9/9l7rTj8/z6gCbTtAopzk0Lh0E19fMWdXV04Yv/7MDHz32OkmPlw94Bl8qlmHdaKq5/4EosXr8AEokE5gYzroq4FfCMI/la5XMIDvN9ftDaZceW/IaAJtM0cinOTTPBOI0G060prsOOd/Zg53t7kbOnwOcyYTEhWH3Zcqy+fDky18yFVCqF0+nEzfPuQVVhLZIWxOPJrx+EPtj3jYq2bgc+z69He3fgYqmSSXBumgnBE5CsmAr15Q0whBmg0gx/kWu1OfB5XkNAk2lKmQTnpJoQqp0lsaxohD5EN2Iys8PmxJb8+oCOpaSQCjgr1YTwCUj8TIXGqiZoDJoRE3Bddie25DegOYCJSblEwPrUsH5D2cxkTTUtUGkUIyaNuh0ufFHQENDZZWUSAetSwhBtnB2xbKkzQ6aQDXnM6WFzuvBlQWNAW5hLBQFnpoQiNmj6Jn5Gw9zQColEMuLkT3anC1sLGwPawlwiAGuTQ5EwDcdF64uJtElOpAFAQ3s3dpQ0B2TgyJRQDZbHB4+pWfNIakrqcHTrCRzZ6k6sNVWPPJ6JKS7UnVjrSa5lxiF+Xqy3m9zJrq2lHeU5VSjLrkR5dgXKc92PR+p240/ibCgul8uvmV6aO2zYUdIckLuwCcFqfHbPP3Hwk0NQ61W49Q/fwbk3nAnlGLrq1ZTU4Y0/vI9tb+1Gu7kDC24+BwtuOmfcg9ErpAJWJIQgMSQwX9JWSwfuWv5LVORVw5AYjo1/uw3ycN/jyYxGrFGFVYkhY2oiPlB9eQPefOIDfPW/b9DW3I6M767Hwh+cB+l4Z5+0O5AidWHFkkS/p0H3d7u0dNmxvbg5IF0TYwwqrEoKGbIl2liJoojsunYcqjKPu8Wxrb0LB556DxVbDmPe8jRc+MNzccZVK4aMVVVRDfL2FOLMb68aMZ5t3Q7sKG4KyB3tSL0Sq5NCJqQlmj9cLhf2fnoYn7+8FUe/PoG2puETmQqVHEvOXohrf30F5p46x2dyP3t3Pr76307c/Oi3odYOfyJstTmws6Q5IDPTheuUWJMUMiEt0UajZ9Kane/uxY5396D4aJnP5aJTIrD68tOx5orlSFuW4nO7a6ppwfEdOTjtgiV+JS12ljYF5I62SavA6qTQaZHcnQqddid2lTYHpJtnqEaONcmhME5Aq76ZoNvhxDelLagIwCx/wWo51iSHIFg9OxKSo2VzuLC7rDkgXWaNKhnWJodOSKu+mcDudGFPeQuKA9Bl1qCUYU1yCMK0syO5O1oOpwv7KswoaBx/l1mdUoo1SaGzJlE+Wk6XiP0VgbmprFVIsTopZEYkyplIm4JEGjw776GqVuTUj22D08ilWJEQPGlZb1EUUZlf7W6xtvU4TnyT61diDZ6uMzGpUUhaEO9pwRaHpAXxiEwKn5XdQ3vGzCrPrkR5TiXKsitRllOJ8uxKNNf6N1C11qjBwjPmexNnSQvjJyVWTpeIozUWHK+1YCzfDEqZBKfHByMxRIPLQm5Eu7n34BRkMuDi28/DRbefiyDT2MaVaqxqwgfPbMbur7ORcceFCEmLGVM55VuzsP/xdxESovW2pnQnfuMRMyfS72RQD1EU8eCVf8Q37+0DPFOWP7XzIRRabMiqsYwpuaKQSnBafBCSQzQBG2DT0tTmTuLmVCJvfxEOf3UMXVIpVvz6aoTOjx9TmZU7T2DfY28jSK/yxjApMx6JC+IRmxo16lj64hJFnKhtw5Hq1jHFUi4VcGpcEOaEagMXy+Y2lOdUoTzbvY+X51aisbUT6bdsgGnh4C7U/qg7WIiuXSdw6c3rsHDt0C31xsMlisipa8fh6tYxtYyWSQQsiw1CmilwsfRX4ZESfPyPz3HoiyzUljb0G2vPF41BjVWXnoZv3XsJEubHBry+oigir6EdBytb4RhjLJfEGDE3XDdlg+iKooj8g8XY+e5e7Hx3z5BDPCQtiPe2PEtaED8hsSxotOJApXlMLaOlgoDFMQbMj9CPaXy52UQURRQ1dWB/RQtsY4ilRAAWRRmRGakf0/hys4koiihp7sC+CvOYhhkQBGBhpAELogxjGl9utilt7sDe8pYxtTIXAGRE6rE42shYAig3d2JPWfOYWpkLAOZF6HBKjBEyP25oznZVrZ3YVdqCjjFOMDM3XIclMcYJadQy09RYurCrtHnMQzakhWmxNC4IihkSSybSpiiR1qOt24H8hnYUNFr9OkiHaRWYa9IhMUQz5QcSS3MbSo9XoORYOUqPl6PkeDlKj1f4PQW6Uq1AeIIJIZFBCI4wIijciOCIoN6/PY+Dwg3TZqIDh92BtuZ2tDa2obXRAktTOyyNFrQ2tqG+rMHbwmw0021rjRrEz4tBwrxYJC1IwMIz5k9a4mwoVpsD+Q1W5De0+3XCE6yWY264DkkhGu+B5NcXPYq9nxwatKxCJcd5N63H95+4fkwt1Hq01Jvx1RcnUN7pQPCCRAgjnAw4umwo3XwI+e/sQnNu5ZDLyZVyRCaaEBTh3h6Dw40IjgxyP44w9ts+e1pavvXkR3j+3lcAz2Cef9//GKJTIgFPa4uCxnbkNVjR6cdBOkglQ3q4HimhGr8Pyk6HE5bmdlia2mDp2TYb29Da2IaGikbvdjnkdNuCgKjlaUi7YhViVs+HZITPdXbbUbrlMPLf3uVzUoEecoUMEYkmBEcEISjCiJCI3jgGeWPp/tufWYI77U4UNLq3S3+61RlVMqSbdEgJ1frd9d3pdHr38bamNs++3gZLowUNlU0oz6lEeU7VsEnxyFNTkXbFKsSuzRix5aTL7oC9tA4rF8UiY17MpCVUuuxOFDZakdfQ7tcJj0EpQ5pJhzlh2jENRjwWjdXN+OS5Ldj90QGU51T6NVGAMUyPc244AxfdtsG7D060bocThY0dyGto96uluU4pRbonlkONeTiRbF02HP8mD3s/Poid7+0dskV0+qkpWH356Vh92WmITYuenLo5XChssiKvvt2vLopaRW8sA93SdKazOV0obrIit74drX50UdTIpUgzaZFm0jGWA9idLhQ3dyCvvh0tfrTaV8slSAvTIdWknbJWu9OV3elCiSeW/nT3VMkkSDXpkBamnfJWu9ONw+VCaXMncuvb/Wq1r5RJkBqmRbpJx1gO4HSJKG1xb5f+tNpXSiWYE6ZFmkk7IWNxzmROl4hys3u79KfrrFwqYE6oFunhuhnXApqJtClOpPVwukQ0ddjQZLWhqcOGbocLLtE9AKRBKUOoVoFQjWLad1cQRRENlU29CbYT5Sg5Vo7ynKpxTTOtD9Z6E2sDk24agxqCRAKJRIAgESCRSDy/BUAQPM8P/7q92wFLU+8Fc2tjG1qb3MmI3ufb+rWwGi1jmB7x82ORMC8W8fNikTA/FvHzYxEaFTwtp/QFAFfPdtlhR3OHDfV1rcjZVwinzY7IcCPWnb8YYZ7tcuD/sPmlrfjjTc8MWfb3Hv42rr3/8oDUs6GxDXt25iG/oBYdECBVygGXCJu1Cy35VWjOrURTdjns1sAOhqk1aqAL0qK+vMHbgu/s69diwZr50AVp+m13gkSCbrkM3QoFuuQyOCUSiIIACQAFXNCKIrRwQQ1A4tk+HTYHLE3taPVskxZP8rZn2+x5rq1l7NulPljbb7sMSYpAY3s3KmrNsLoAqUoBuETYrV1oKahGU24lmk6Uw24N7AxxGoPam1gbmHTTBmkhkfaPpU0uQ5dCji65fEAsRWhFF7SiC2qhTyztzj6JxgH7eZ+EeHuLdVyzyPWlDNIiLCMeIXPjEJQSCZlaCZlCCq1GifiYYJyyLAkmnWrSElO+uEQRLZ1277Gnw+b0HHsAjVyGUK0coRoFgtXyCf+eKjlejq2v7cThrcdQnl2Fjjb/ugElZMTiglvOwZorl/cbH3CyiT2x7LChyWqH1eaAS3S38NEqpAjVKBCqnZxYDqxXeU4lDn6ehQOfH0HWtmx0dw6+UBAEAZlr5mLN5adj1aWnIjzeNGl1HEgURZg77WjqcMfTanPA6XLHUtMTS40CwRr5Sd8CbSSiKKK1y4Emqw2NA2Kplku955chjOWIvLH0nK+325xwukRvLEM0CoRq3N+ZJ3trvpGIoghLt8N77Gnr7o2lSi71xjFEo5jyhgMzgaXLjkar+3y9rdvRG0uZFCGe43goY+mXtm6HO5ZWGyx9YqmUSbxxDNUylv5o74llhw2WLncsBU8sQ7yxlM/YlpFMpE2TRNps53Q4UVVY6265dqwcpScqUHq8HI1Vzd7B5GeL0Ohgd5JsrjtRljA/FvHzYsbcnXE6qS2tx/XJdwAA1lx5On775k+HXLYirwo3zbtnyNcffO8+rLzk1IDXsbO9E/s/O4L9mw5j90cHhp20YSBBIkAqk0IURTjH2MR7ugqOMCJhfizi5rq3yZ6foHDjkBf1XR3dOLD5CPZ9ehh7Pj6AlrohWrT54I2lSxzXdN3TkdxzJ9ducwAjHEHVOhXmnJKEM65agXNuPBOaUcwyN5t1dXRh+9t7seejA8g/UITGqiY4/ezuI5EIWHxWJs781iqsvORUGIeYFOBkZmlqw6EvsnDw86M4uCULDZVNPpeTyqQ45axMrLn8dKy4eBmCI8Y/riMRERHRbMdEGhNpU67T2gVzXSuaa81oqTOjpa7V83cLWupb0VLXihbPa1OVdNMHa2EIM8AYpochVA9DmB7GUH2/54IjgxA/N2ZWz1xqt9lxvupaAMC801Pxl12PDLmsKIq4wnQT2pr7jwMokUlw34t34qzr1kx4fUVRROmJChzYfBT7PzuMrG3Zo0rqCIIAfYgWEQnhiJ4TidCoINhtTpjrzWiuNaPkeAU6/OzKPBF0QVoYQnW922GYHsZQAwyheu/fwRFBiEuPHnHWnZGIoojy3Coc3HwU+zcfxpGvjsMximSjIAC6YB0iEk2ITo5AWGwoHDaHd593/5jRYRn/YMRjoTVqPDEzwBCqgzHMAKfDibryRjSUN8Jc3wpb18itamUKGeLnxmD5hUtw4ffPmdJWPdNJ4ZESfPXaTmRtO4GKvOpRr+fgSCOWn78Uy85dhGUbFo04u9nJxmF3IGdPAQ5sPoKDW44i/0DxkC0rQ6ODsfTcRVh6ziKcet7iEWc3IyIiIqL+mEhjIm1G6Wzv7HfR3VLrTq6JogiXS4ToEuFyuSD2fSz2PBYhel7zPhbds79JZVIY+yYjwgww9CTNQnQBGTB9trgq8haY61thig3Fa+X/GHbZX134CPZ9enjQ83/86ndYdObEDKY+nK6Obhzbno39nx3Bgc+PoCK3etRlSKQSGE0GGIJ1KMtxj7WmUMnx4Ac/h0av9iaFO9s6B22XDpsDH/z9s37JxeUXLkXi/Nje7VLsXV4qlQxO4Hr+1ofoIBvvbJvj0N3ZjWM7cnFgszuWZSeGHnduKBKpe1rtmDmRSD81BUs3LMK8Femwtlj7JdA7LINj2bOPu593+d7HB8RSH6rvt5/3JByVOhVydufj0JYs5O8vQmVhNVpqW+FyjtxCSmvUIG5uNE5ZtwBnXrMSyQsTxxjR2cHhcODY9hwc3JKFvH2FqCyoQXNNi1+x7EuulGHx+gVYdu4iLD13EeLnTt74cTNFdVEtDmw+ioNbjuLIV8eH7AqrUMmx8Iz5WHrOIizbsHhCJl4gIiIiOpkwkcZEGtGo3L7sPhQcKoFEKsEnHa8Om8x5648f4vn7/gMAiEgwoa6sAQAQHh+G54/+ccpbldSXN+DA5qM48PkRHPrimN8TZfii0qoQHheKpIXuCSNWXLQMptj+4zW9+vA7eOm3r/d7bsHaeXjq69+P+XOni4bKJhz8/Cj2bz6Cw19kjWvcNpVWibCYUCQtjMeitfOx4uJlAWvZVXK8HPs+PYQTu/JQnl2JxuoWdHf419JVKpPCFBeK9FPnYMXFy7Dq0lOh0kz/6bknSllOpTuW3+ShLLti3F31UxYnYuk57sRZ5uq53sk8yM3c0IrjO3O93TVriuuGXDZpQbw3CZm5eu64JnYhIiIiov6YSGMijWhUHrr6KWx/azcA4IWcpxGXHjPksl0d3Xjp1/+D0WTEZfecj1+d/wiytmUDAM757hm476U7J63eI3E6nMjZ6+ka9flR5O0vGveg81KZBPoQHUKjQxAcEYRDX2bB5WMcqBdz/zxps+JNBqfTibz9RTjoSVLm7i2AyzW+WEqkPbEMRnRyJJIWxGHu6anIWDkXWoOm37IOhwPFR0qRu68QufsKUZxVhrqyBljNHaNap7ogLeLnx2DxugVYf+1qJMyLHdf/MBO5XC4UZ5Uhe3c+8g8UoehIKerKGtButkIc5zoNjjB6uxguOXsBQiKDA1bvmc7lcqEitwonduXjxK5cZO/KQ2V+zZDLB5kMWHLOQncsz1mIsOiQSa0vERER0cmEiTQm0ohG5eUH3sB/H3obAPC7d+/FqktP8/u9dWUN+P7Cn3q7IP32rZ9izRWnT1hdx6NnsO4Dm48ia3v2sK0/xisqORxrrlyB9GUpWLB2HoLDZ9eA320t7Tj0xTEc2HwEWduzUV1YG9gPEOCebU4QvN09R0Mqd3ftjpkTidSlKVhy9gKcsj4TCpUisPWcpurLG3Bidz4KDhajIrcKtaX1aKlrhbW1Aw6bI2CfI1fIkLlmnqeL4SIkLYiHZIbO1BRondYu5O8vwoldeTixKxc5u/OHbdUpk0uRsWqut9VZyuJExpKIiIhokjCRxkQa0ahsff0bPHLt0wCAm/7vWnz7l5eN6v1bXtmGx2/8GwDAEKrH81lPIjRq+rdEaappwbY3d+H5e1/xe3bBsRIkApRqBdQ6FXRBWhhNBoRGhyA8PgzRKZGIS49GQmYcgmbobIUtdWYc/yYPJ77JxYlvclFwqGTSZvaUSCVQ69QIiw1B6pIkrLhkGRasnn3JSwDoaO9EZW4VqgpqUV1Sh4byRjRVt6Clzoym6ha0tbSju9M24syjYyVXypG2LBkZK9KxaF0mFqydB7X25O0K21dDZROyd+Xh+De5yN6dj6IjpcPuA3KFDKlLkzF/RToWnZmBRWfOh5ozwBIRERFNiakbqZqIZqT4eb1dOctzRz/A/NnXr8Xuj/Zjxzt7YWlqw5O3PIv/+/iX037w6+AII7a9ucubRDv/1rNx5tUrcXxnLk7sykPO7vwhB/seLdElosvajS5rN1rqWlGRN/SkCFK5FEq1AlqjBvpgHdQ6FdQGNbQGDbRGDXTBWhhCdNCH6GA0GREcboAx3IDQqOCAj+/lcrnQYelAa0MbLM1taGtph7WlA20t7Whv7UCHpRMdrR3umXnrW2FpakN7qxVylQxipzjqAenHVEenC9ZWK6ytVpSdqMAX/9nufa0nlhqDBvpgLTR6NdQGNTR6NXRBWuiCtdAHad2TPpiMCArTIyjSOLGxbGqDpbFPLM1WtJut3liaGyxoqTXD0tyGdnMHutq70N1lg3MUM6oORyKVQCqTwOUUR0x2BoUbkbEqHRkr5yJjZRrmLEnmOGeebuPFWWU48U0eTuzOQ/auPNSXNw77niCTAfNXpiNjZTrmr0xH2tLkk6aFJBEREdF0x0QaEY1KbFoUBEGAKIqoyK0a9fsFQcCPnv0+ju/MRUtdK/ZvOoxPnv8CF/7gnAmpb6BsfnErsnfnAwDi0qNx+9M3QqlW4pT1CwDPuGAlx8q9ibUTO3PRUNk0fKGCe5ICfZAGcqUCXdYudLZ1oauz2+/xp5x2JzrsneiwdKKhYoTP81UFQYAgETyPPZUa+Evo+7rnWQGAKMLpcI2pO2WgCYIAY5ge2iCtOxHZ4Yllx9hi2TjSuhuiDuOJpcvpgss5ubGUSCVQaVXQ6FVQapSQSAR0d9rQXNsCh83pqdPgBKcgCEjMjPMmejJWpiMqOWLaJ8QnWrvZiuKsMhQfLUNxVhlKjpWh5Fi5u+XfMBIzemM5f2U6YuZEnvSxJCIiIpqu2LWTXTuJRu36lDtQW1IPjV6N980vj+mCb++nh/DrCx8FAGiNGryU/xcEmYwTUNvxa2204Htzf4S25nYAwBNfPoDF6zJHfF99eQOO78z1dmMszirz6/PCYkKQtCAeYbGhUOlUEEQRVksnmqqb0VLnbsnVYelEd6ctoGNYTTWpXAqlSgGVTgVdkAaGED2CI4MQFhMMjWdCgdYGC3L2FqAkq8yvCQxCo4PdsYzxxBJAR9vJEUuFSu7uHmzUwhCqh9FkgFKrgAABTqcLbS1tKD9RNXLCF4Bap8K801Mxf4Un2XN66pTPujuVnE4nqgtrvQmznp+RWpoBgEqjxNzlc5Cxci7mr0zHvNNToQ/WTUq9iYiIiGj8mEhjIo1o1H514SPY9+lhAMBr5f+AKTZ0TOU8cdPf8flLXwMANt58Fn7yz9sCWs9AeerWf2DTv78EAKy/djV++d8fjamcw18dw31n/x4AED0nEiqNEmXZlX6ND6bWqZC8KAHJCxMxZ3EiUhYnIjEzDkq1EpbmNpRlV6Iyvwat9a3u7n8tni6AbZ3otHSi09qFbms3urvssHfZYO92wGF3wOlwweXytDjqczQQ+/8xJEEiQCIRPF0ApZDKpZDJZZArZJAr5VCo5FCoFVCqFVBplVBpVAgKNyAsLhTRSRGISY1ETFr0oJk3R2K1dKDwcAmKjpSi6Ggpio6UouxEBRx+dGlUaZVIXpiAlEWJSF7kjmXSgnioNP1jaWm0wNLcjvYWK6ytHbBaOtBp6URXh7vbbXenDfZuO+zddjhsAYilIEAi7RNLmRQyxYBYqhRQatyxVKqVCAo3wBQfhsjEcMSkRiEu3R1LS3MbSrLKUXS0FCVZZSjKKkPZiQrYuuwjxkcQBMSkRiJ1abK7m+aqdCRlxkMqk4743tmoraXd3bqsJ57HylB6vGLEVmbwxDIqJQJpfWKZvDDhpI0lERER0WzARBoTaUSj9tzPXsHbT30EAHhs86+x9JxFYyqnpc6MG9PvRoelE4Ig4K97H0X6spQA13Z8svfk40crfwUA0BjUeCHnz2OeHGHzS1vxx5ueAQD84I/fxZU/uQi2bjvKcyrdCaE+SSFra8eI5QmCAFNcKKLnRCImJRLRc9w/MXMiEZXiTtSdTOw2O8pzqlB0pBTFR3tjOdzsh32ZYkO98YueE9UnlhHTcpB8p8OJ+opG1BTVoaa4DtVFdSg9UY7io2VorGr2qwytUYPkhQm9P4sSkJgZf9JtO06nEw0VTagprkNNUR2qi2pRll2JoqOlfneZ1hjUSF6YgKQFCUhZlICkhQlIyozjpABEREREswzHSCOiUes74UBFbvWYE2nBEUG4/rdX4bmfvQJRFPHMj17An3Y8BIlEEsDajp3T4cRfbv+n9+8bf3/NuGYYLT1e4X2ckBEHAFAo5ZizOAlzFid5XxNFEXVlDd7kWnGW+3dtaUO/8kRRRH15I+rLG3Hkq+ODPi8sJsSdXEvpSQ5FIiY1CtEpEbPy4l6ukCNlUSJSFiV6nxNFEQ0VjSgckKisLakf9P6GyiY0VDbh6NcnBr0WGh3cJ2EZ1SfhFgmNfuJi2dneiWpPoqwnwVNTUo+aolrUlTX6PdtpTyuz5EWJSF6Q4GndmIDw+LCTZiyuTmsXaj0JR29Mi2tRXVSH+rIGv1ozok8rsxRPC9GeBGREgumkiSURERHRyYyJNCIatfh5sd7H5Tmjn7mzr0vuPA+f/utLVORWIXt3Pr58dQfOuf6MANRy/D58ZjOKjpQCAFIWJ+Li2zeMq7yy7N5EWlJm3JDLCYKAyMRwRCaGY9Wlp3mf7+liVnSkFIVHSlCRU4Wqwlrv2G0DNVY1o7GqGVnbsge9FhIZ5G3BFp3i/gmJCkJIZBBCooKh0atnRVJAEASEx5sQHm/CyotP9T5vbbWiOKvck6wsQWl2JaoLa2FpavNZTlN1C5qqW3Bse86g14IjjL2tAVOiEJUcjtDoEG88NQbNkLEURRHNtWbUFNX2Se54EmbF9TDXt476fz5ZW5mJooiWOrM7jj2t9IrdcawpqkVL3ehjyVZmRERERDQQu3ayayfRqLWbrbgs5EYAwNzT5uCvex4dV3kHPj+KX573MOBJ8LyY95cJbeXjj6aaFtw070fosHQCAP78zcOYvyJ9XGVem3AbGiqaoDVq8F7zSwFLVFma21BTVIeqghpUFdaiuqgW1YW1qCqoQWuj78TQSFQaJYIjgxAcGYTQqCAER7gTbD2Jtp7fQSbDrBrvqa2l3d1iyRO/6qJad0wLa9O1U/MAAClOSURBVMeU1AIAmUIGtU4FhUrujZXD7kB3hw2dbV2946qNglqnQlRKBKKSIxCdHIGolEhEJUcgLj16VrUyczqdsDS2oaWuFeb6VrTUtaKlzuz+XW+Gud4Cs+dvc32r363K+lJplYhOiURUcjiikt1xjEqJQGxaFCITw2dNLImIiIgoMNgijYhGTRekRfy8GJTnVKHgUAm6OrrH1dpl2bmLsPKSU7Hrg/1orjXj1Yffwa1/+E5A6zxaz9/7ijeJtvHms8adRLNaOrxjLSVkxAX04twQoochRI/0U+cMeq3dbO1NrBXWoqqwBtWexNBwLXS6Orq9raOGI5EIMJoMnoRbsDv5Fm6EWq+GWqeCRq+GWq+GRq+CWqfyPFZDpVNBo1dBoVJMq0SFPliH9GU6pCxKQJe1G13WLvfvjm6Y61tRVVCL2pI61JbUo668Ec01ZrQ1tw07iL/D5hiy1eBwlGoF9CE6GE0GhEQGIyw2BBEJJkSnRCAsJhRqff/4TrdY9nA6nOiydqHT2t0/pp7H7eYOmOvM7kRZn2SZud4CS6PFr9lZRxISFYyo5HB3wizJnSiL9iQig8KN0zJuRERERDQ9MZFGRGOSsXIuynOq4HQ4kbe/EIvOyBhXebc9eQP2f3YE9m473n36Y2y8eT1i06IDVt/RyN1XgK9e2wkAMITqcctj1427zIKDxd7HSRlDd+sMNF2QFmlLU5C2dPAkDh1tne4WVwW1qC9rQHOtGc21Le7fNS1oqTWPOFC/yyV6Eh+tKD5aNur6SaSSPgm3/sk2tU4FpdqTHBIEuH8NeIye59y/Bc9r6PO4Zzmn0+VJinWhu8M2KKHT9/FYWjYFWnenDd2e7rlFKB1x+b6x7ElU9k1oBjKWLpfojlmH7/j1PO7u6Ibd5pjQOEmkEgSZDAiKMCI0OsTdQs/TqizK83i2d2slIiIiosnDRBoRjUnGqnRs+veXAIDjO3PHnUiLSo7AVT+9CK898i4cdieeu/cVPPTBLwJU29F56bdveB/f+PurYQjVj7vMvgPYZ6yeO+7yAkGjVw+a6GAgW5cNLXWt3uRa3yRbU637d3ONGc21Zr8Hvu/L5XTB2trh1yyl051cKUdwhNHzE4SgcCOCwnv/1gdrIZFJ4HS40N3ZjZbaVnf8PAnMllozmjyxHUsibzbG0hu/cCOCIoI8v/vG2ABDqH7aTFBCRERERLMfE2lENCaZfZJBJ3blBaTMa355GT5/+Ws0VjVjz0cHUXCoGKlLkgNStr+O78zBwc+PAgAiE0047+b1ASk3a3vvgP+LzpgfkDIng0KlQESCCREJpmGXc7lcaG+xoqmmBZbGNnS0daKzrROd7V3oaOtCZ1snOto60dXehY72TnS2dXle6/S81oWudvdzkz10p0wuhVKjhEqrhEqr8vwe8FjjeexZTmPQeJNmQRFBCI4wBmyCBlEU0dbcjuZaM1obLO4YtXf1i5M3bu09r3X1xretN76THUupTOo7floVVBqF53f/13ti2Zt0NA47QQMRERER0VRiIo2IxiQ6JRJB4UaY61uRvSsPLpdr3K1C1FoVvv3Ly/HXO/8FAHj1/97B7965N0A19k/f1mjf+e1VkCvk4y7T1mVDzp4CwNPyLjx++KTUTCSRSGAI1Y+79Z7L5UJ3R7c3AWfrtEEURXdCSIT3sTc/1Odv9zKDH8OTnJJIBJ+JMpl8eh0KBUEISCxFUURXR7c3ATfeWHoW8RnLnkRkIPYXIiIiIqLpbHpdPRDRjCEIAjJXz8XOd/fC2tqBshMVSFqQMO5yz7tpHV79v3fQXNOCb97bh5Lj5UjKjA9InUdy+Ktj3i6YsWlROPs7awNSbs6eAti73YPRz6TWaFNBIpFArVNDrVMjJHKqazOzCYIAtVYFtVbFWBIRERERBQgHFSGiMctY2TuT5fFvAtO9U6FS4Fs/u9j792uPvBuQckciiiJe+s3r3r+v/+1VkMqkASm77/hoC88c31hyRERERERENHWYSCOiMctY1WectG9yA1bu+d8/G8Ywd7e2bW/sQkVeVcDKHsr+z44ge3c+ACBhfizOuHplwMqeqeOjERERERERUX9MpBHRmM05JRFKtQIIcCJNrVXhyp9cBHhaiv3vsfcCVrYvoijipd/2tka74cGrIZUGpjWarcvmTdBFJoXPyvHRiIiIiIiIThZMpBHRmMkVcsxdngoAqC1tQFVhTcDKvuj2DdAHawEAX/53B2pK6gJW9kC7PtiPgoPFAICUxYlYddlpASs7Z2/f8dHYrZOIiIiIiGgmYyKNiMbl1PNO8T7e9cGBgJWrNWhw2d0XAABcThfeeOz9gJXdlyiKePX/3vH+fcODV4979tG+jm7tHR9tEcdHIyIiIiIimtGYSCOicVl16anex7s+2BfQsi+9eyM0ejUAYPNLW9FY1RTQ8uFpMdbTGm3OKUk4/cKlAS3/mz4xWbSOiTQiIiIiIqKZjIk0IhqX2LRoxM2NAQBk78pDS31rwMrWB+tw8e0bAAAOuxOfvbA1YGX3+PCZz7yPL71rIwRBCFjZlQU1KD5aBgCYe9ochMeFBaxsIiIiIiIimnxMpBHRuK26xN0qzeUSsffjgwEt+8LbzvUmtz574Su4XK6Ald1SZ8b2N3cDAAyhepwZwJk6AWD7W7u9j9deuSKgZRMREREREdHkYyKNiMZtxSV9und+uD+gZUckmLBswyIAQF1ZAw5uyQpY2Z/+60vYbQ4AwHk3rYdSrQxY2QCw7a1d3sdrr2IijYiIiIiIaKZjIo2Ixm3uaXMQEhkEADi0JQtdHd0BLX/jLWd7H2/61xcBKdPpcOKT57YAAARBwEU/PDcg5fYY2K0zIsEU0PKJiIiIiIho8jGRRkTjJpFIsOKiZQCA7k4bDn5+NKDlr7hoKYIjjIBnZtCWOvO4y9z14QE0VLonLzj9oqWITAwfd5l9sVsnERERERHR7MNEGhEFxER275TJZTj3hjMBT0uyz1/eNu4yP/z7Ju/ji28/b9zlDcRunURERERERLMPE2lEFBCnrM+EWqcCAOz56CAcdkdAy994y1nex5v+/SVEURxzWWXZFTiy9QQAIDYtCkvOXhCQOvZgt04iIiIiIqLZiYk0IgoIhUqB084/BQBgaWrDvk8PB7T8mDlRWLw+EwBQVVCDrG3ZYy7rw2c2ex9ffPt5kEgC+1XIbp1ERERERESzExNpRBQw596wzvv40wBNCtDX+X0mHRhr+U6H05voUqoVOPeGMwJWPwAQRRFf/Ke36ym7dRIREREREc0eTKQRUcAsPXchwuPDAAD7Nx32DuYfKKsuOw2GUD0AYOe7e9Fp7Rp1GUe3ZcPcYAEAnHbBEmiN2oDW8fCXx1CRVw0AWHjGfHbrJCIiIiIimkWYSCOigJFKpTjve+sBAC6XiM9e+Cqg5SuUcqy54nQAgK3LPqbZQft2uzxjArpdfvD3z7yPL7kj8JMYEBERERER0dRhIo2IAmrDTesgkQgAgM9e+ApOpzOg5a8cx+ygTocT37y3F/B06zztgiUBrVttaT32fHQAABAWE9KvrkRERERERDTzMZFGRAEVHheGUze6Jx2oL2/EoS1ZAS1/cZ/ZQfd+fAhOh/+JuoHdOtVaVUDr9vE/PofL5Z5N9MIfnAuZXBbQ8omIiIiIiGhqMZFGRAHXf1KALwNatkIp9ybqLE1tOP5Nrt/vnchunbYuGzb9292VVSaX4vxbzwpo+URERERERDT1mEgjooBbfsEShEQFAwB2f3gALXXmgJa/8uLeLpO7P/Cve+dEd+v8+o1dsDS1AZ6ZOoMjggJaPhEREREREU09JtKIKOCkMik23Hgm4ElgbX7p64CWf9r5p0AqkwIAvvlgP0RRHPE9E9mtUxRFvP+3Td6/OckAERERERHR7MREGhFNiI0393Zt/PDvn8FuswesbH2wDgvPmA8AqC2pR+nx8hHfM5HdOnP3FaLgYDEAIHVJEuadnhbQ8omIiIiIiGh6YCKNiCZEVHIETr9oKQCgobIJW17eFtDy+86I+c37w3fvFEURuz2zaU5Et853n/7Y+/jiOzZCEISAlk9ERERERETTAxNpRDRhrvvVFd7H/3vsvVHNsDmSlRcv8z7e9cG+YZetzK9Gc00LAGDhmRkB7dZZcrwc2950t3Yzhumx7pqVASubiIiIiIiIphcm0ohowsw9LRVLz10EeLpgfvXazoCVHR5vQsriRABAwaESWJrbhlz26NfZ3seLzsgIWB0A4JXfvekdo+3qn18GpVoZ0PKJiIiIiIho+mAijYgm1Hd+3adV2qPvwukMXKu0vkmx7F35Qy53dNuJ3vecOT9gn194uAQ733XPBBoSGYSLfnhuwMomIiIiIiKi6YeJNCKaUJmr53knBqjIq8aOt/cEsOy53sfHd+b4XEYURWR97U6kqXUqpC5JDtjnv/zAG97H377/cqg0bI1GREREREQ0mzGRRkQT7rpfX+l9/Or/vQOXyxWQcjNWpXsfn9iV53OZyvxqNNeaAQCZa+ZBKpMG5LOz9+Rjz8cHAQCmuFCcf+vZASmXiIiIiIiIpi8m0ohowp2yPhPzTk8FAJQer8DuDw8EpNyQyGBEp0QAAPL2F8HWbR+0TNa2iRkfrW9rtOt+dQUUSnnAyiYiIiIiIqLpiYk0IppwgiD0b5X28NveAfrHK2OVu3unvduOgoPFg16fiPHRju3IwaEtWQCAyKRwbPjeuoCUS0RERERERNMbE2lENClO23gKUpckAZ5ZNr9+Y1dAys1Y2ad75ze5/V4TRdE7Y2egxkcTRREv/fZ179/f+c2VkMll4y6XiIiIiIiIpj8m0ohoUgiCgBt+f4337+fvfQWd1q5xl9t3woGB46RVFdSguabFu1wgxkc7sPmIt7tobFoUzv7O2nGXSURERERERDMDE2lENGmWn78Eyy9YAgBorGrG64++N+4y4+bGQB+sBTwt0vp2Gc3ZW+B9vGDN+Lt12rps+NvdL3j/vv6BbwVs8gIiIiIiIiKa/phII6JJddtTN0Imdyef3vrjh6guqh1XeRKJxDtOWmtjGyrzq72vlZ2o8D5OWZw4rs8BgDce/wDVhe76LlgzD+uuWTXuMomIiIiIiGjmYCKNiCZVbGoUrvjxhQAAu82B5372yrjL7DtOWu6+Qu/jsuxK7+PEjNhxfUZ1US3+52lBJ5FKcNffb4EgCOMqk4iIiIiIiGYWJtKIaNJd+6srEBIVDADY9cF+HPj86LjKS1oQ731cnlPlfVx6vBwAoNGrYYoLG3P5oijib3f9G/ZuOwDginsuQFJm/IjvIyIiIiIiotmFiTQimnQavRq3/uE73r+fuedFOOyOMZcXP6+3tVlFnjuR1tneidrSBgBAQkbsuFqP7XxvH/Z/dgQAEBYTgusfuGrMZREREREREdHMxUQaEU2Js65bg/kr0gAAFblV+OBvn425rPCEMChUcqBPi7S+LdMS5seNuezO9k48++MXvX/f/vT3oNapx1weERERERERzVxMpBHRlBAEAXf85SZvS7FXHnwTjVVNYypLKpUiNi0aAFBdWAuH3YHSPhMNJGaMPZH234feQUOFu17LNizC6suXj7ksIiIiIiIimtmYSCOiKZO2NAUbb14PAOiwdOKJm56By+UaU1nx82IAAE6HE1WFtSg93ptISxhjIq30RAXe+dPHAAC5Uo47/3ozJxggIiIiIiI6iTGRRkRT6ubHrkNYTAgA4NCWLHz4zOYxlRM/t3ectN9e/Bi2/Geb9+/cvfk4vjMHoij6XZ7T4cRTtz4Lp8MJALjm55ciZk7UmOpGREREREREswMTaUQ0pQwhevzshdu9f//zvv+gPLdq2Pf4Ejc32vu4uqgOrQ0W798vP/Amfrz2t9j94QG/y3vt/95Fzp4CAEB0SgSu/vklo64TERERERERzS5MpBHRlFt6ziJceudGAICty44/fPevo57Fs+/MnUOxddn8Kit7dx7++/DbAACJVIKf/+duKNXKUdWHiIiIiIiIZh8m0ohoWrj5sesQN9c9zln+gSK8+vA7o3p/bNrw3S6TFyb4NVFAR1snHrv+r3A53WO1fefXV2L+6WmjqgsRERERERHNTkykEdG0oNIo8fNX7oJUJgUAvPbIuzj05TE8fuPfcG38bdj90fDdMhUqBaKSI3y+JggCfvSP70Mml41Yj7//6AXUFNcBAOavSMO1v7p8TP8PERERERERzT5MpBHRtJG+LAXX//YqAIDL6cKvLngEW17ZhobKJvzn92+N+P6Y1Eifz1/w/bP9alW2/e3d+PylrwEAGr0av/jP3d7EHhERERERERETaUQ0rVzzi0sRP8/dxdNh6x0nrfhoGbo6uod9b1hM6KDntEYNbnrk2hE/t6GyCU//4Dnv33f85aYhW7gRERERERHRyYmJNCKaVj569nNU5tcMet7pcCL/QNGw7zXFDk6kXXv/5dAH64Z9n8vlwuM3/g1tLVYAwBnfWoFzvnvGqOtOREREREREsxsTaUQ0bRQeLsHff/SCd6D/gbJ35w/7/rA+ibTw+DCcdd0aXPWzi0f83Hee+hhHvjoOeJJxP3r2+xAEYdT1JyIiIiIiotlt5JG3iYgmiUqngkIlh63L7vP1rG0ncM3PL+33nN3pQllLJxqs3WjLSMI12x6FTK2EKIpQyiT4PL8BIRoFIvVKxBhVkAxIkB3bkYN/3/8a4JmU4L6X7xyxBRsRERERERGdnARRFMWprsRks1gsMBqNaG1thcFgmOrqEFEfxVlleOPx9/H1G7sGtUyTK2X4pOM1CIIAS5cd2XXtKG6ywu7y72tMq5AiNUyLueF6KGUSNFY34/al96GlrhUAcM3PL8XNj143If8XERERERERzXxMpDGRRjQt1Zc34N0/f4pP/vkFutq7vM+/3/oySqwOHK5qhZ/5s0HUcglOjTHg6Use83YXPeWsBXh00684SycRERERERENiWOkEdG0FB5vwm1P3oDXK/6BS+/aCK1Rg+WXn45tlW04WDn2JBoAdNpd2F5qhn7dYghSCcLjw3D/az9iEo2IiIiIiIiGxRZpbJFGNCN02JzYnF8PS5cjoOVW7jiBy9ekYt6ylICWS0RERERERLMPJxsgomnP7nThi4KGgCfRACB2TQYaQzUQRZEzdRIREREREdGw2LWTiKa9g5WtaOn0PZNnIBQ3daCkuWPCyiciIiIiIqLZgYk0IprWaixdyGton/DP2VduRqfdOeGfQ0RERERERDMXu3YS0bQliiIOVJr7PScIwHnp4QhSybGrrBllLZ1QySRYNycMLlGEAAF7ylpg7hpdC7ZupwtZNRYsjw8O8H9BREREREREswVbpBHRtNVotaG5o39CTBSBr4sakV3f5n2u2+HCptx6bM5rwOHqVmRG6cf0eUVNVtidrnHXm4iIiIiIiGYnJtKIaNoaqktnp71/sqvv1MMKqQQtHWMbT83uFDlWGhEREREREQ1pxiXS/u///g8rV66ERqNBUFDQVFeHiCZQtaXL72WNKhk2zg3H8vgg1LV3e5/fkG7C9UtjEayWe5+TSwXcsCwOWoV0XJ9JREREREREJ5cZl0iz2Wy46qqr8MMf/nCqq0JEE6jD5hzU8mw4rV0ObMqtx5cFjTgtrn+S3eZwYUmM0a9ymjpso64rERERERERnRxm3GQDDz74IADgpZdemuqqENEEah5FQksiAC5P/06b0wWHS+z3el5DO+aG6xGhU/ZrreZLe7cTNocLCtmMu89AREREREREE2zGJdLGoru7G93dvRfPFotlSutDRCPrcgzdGu2M5FCEahWwO10I0ypQ3tKJJbFGiKJ7Vs/9Ff1n+ux2uHC81oIlsUZsyq3367OZSCMiIiIiIqKBTopE2qOPPuptyUZEM4MoikO+tq24adBzm/Mahi0vp64d88J1iAtSo7Zt+HHQhvtsIiIiIiIiOnlNiyYXv/vd7yAIwrA/Bw4cGHP5v/zlL9Ha2ur9qaioCGj9iSjwpBIhoOU5RRFHqi1YEmOEBMOXHejPJiIiIiIiotlhWrRIu/POO3HNNdcMu0xiYuKYy1cqlVAqlWN+PxFNPoMq8F9PhY1WZETokRKmGXIZqUSAxsdsnkRERERERETTIpEWFhaGsLCwqa4GEU0jwWoFBAEIZC9LEcChqlasSAgecpkQtRwSgS3SiIiIiIiIaLBpkUgbjfLycjQ3N6O8vBxOpxNHjhwBAMyZMwc6nW6qq0dEASKVCAhRy9HUYQ9oueXmTmRG6qGS+251FqZVBPTziIiIiIiIaPYQxBk2qvaNN96Il19+edDzW7duxZlnnulXGRaLBUajEa2trTAYDBNQSyIKhOy6tkEzcE60C+ZFMJlGREREREREPs24RFogMJFGNDN0O1x4K6saTtfkfE2FahS4cH7EpHwWERERERERzTzTYtZOIiJflDIJUsO0k/Z5GZH6SfssIiIiIiIimnmYSCOiae2UGCO0kzCLZqxRhcRg9YR/DhEREREREc1cTKQR0bSmkEqwIiFkgj9DwIqEEAicrZOIiIiIiIiGwUQaEU17MUYVlsYaJ6RsiQCcmRIGzSS0eiMiIiIiIqKZTTbVFSAi8kdmpAGiCByqag1YmTKJgDNTwhBlUAWsTCIiIiIiIpq9mEgjohljQZQBRpUMu8ta0OVwjausYLUcq5NCEKJRBKx+RERERERENLsxkUZEM0p8sAbhOiX2V5hR3Nwx6vfLJAIyIvVYEGmAVMIx0YiIiIiIiMh/giiK4lRXYrJZLBYYjUa0trbCYDBMdXWIaIzaux3Ib2hHYZMVnfbhW6gZVTKkm3RICdVCIePwkERERERERDR6TKQxkUY044miCKvNiaYOG8yddjhc7q81hVSCEI0coRoFVHJOJkBERERERETjw66dRDTjCYIAnVIGnVKGhOCprg0RERERERHNVuzfRERERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEgjIiIiIiIiIiLyAxNpREREREREREREfmAijYiIiIiIiIiIyA9MpBEREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvIDE2lERERERERERER+YCKNiIiIiIiIiIjID0ykERERERERERER+YGJNCIiIiIiIiIiIj8wkUZEREREREREROQHJtKIiIiIiIiIiIj8wEQaERERERERERGRH5hIIyIiIiIiIiIi8gMTaURERERERERERH5gIo2IiIiIiIiIiMgPTKQRERERERERERH5gYk0IiIiIiIiIiIiPzCRRkRERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEgjIiIiIiIiIiLyAxNpREREREREREREfmAijYiIiIiIiIiIyA9MpBEREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvKDbKorMBVEUQQAWCyWqa4KERERERERERFNA3q9HoIgDLvMSZlIa2trAwDExcVNdVWIiIiIiIiIiGgaaG1thcFgGHYZQexpnnUScblcqK6u9ivTSMOzWCyIi4tDRUXFiBsbzXxc3ycfrvOTC9f3yYfr/OTDdX5y4fo++XCdn1y4vgOPLdKGIJFIEBsbO9XVmFUMBgN33JMI1/fJh+v85ML1ffLhOj/5cJ2fXLi+Tz5c5ycXru/JxckGiIiIiIiIiIiI/MBEGhERERERERERkR+YSKNxUSqVeOCBB6BUKqe6KjQJuL5PPlznJxeu75MP1/nJh+v85ML1ffLhOj+5cH1PjZNysgEiIiIiIiIiIqLRYos0IiIiIiIiIiIiPzCRRkRERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEijUXv22WexcOFCGAwGGAwGrFixAps2bZrqatEEq6qqwne+8x2EhoZCo9Fg8eLFOHjw4FRXiyZIW1sb7rnnHiQkJECtVmPlypXYv3//VFeLAmT79u246KKLEB0dDUEQ8P7773tfs9vt+PnPf44FCxZAq9UiOjoa3/3ud1FdXT2ldabxGW6dA8CNN94IQRD6/Zx++ulTVl8an5HWd3t7O+68807ExsZCrVZj3rx5ePbZZ6esvjQ+jz76KE499VTo9XqEh4fj0ksvRV5eXr9l3n33XWzYsAFhYWEQBAFHjhyZsvrS+Pmzzvv6wQ9+AEEQ8PTTT09qPSkw/FnfA4/hPT9PPPHElNV7NmMijUYtNjYWjz32GA4cOIADBw5g/fr1uOSSS3DixImprhpNkJaWFqxatQpyuRybNm1CdnY2nnzySQQFBU111WiC3HLLLdiyZQv+85//4NixYzj33HNx9tlno6qqaqqrRgFgtVqxaNEi/O1vfxv0WkdHBw4dOoTf/OY3OHToEN59913k5+fj4osvnpK6UmAMt857nHfeeaipqfH+fPrpp5NaRwqckdb3j3/8Y3z22Wf473//i5ycHPz4xz/GXXfdhQ8++GDS60rjt23bNtxxxx3Ys2cPtmzZAofDgXPPPRdWq9W7jNVqxapVq/DYY49NaV0pMPxZ5z3ef/997N27F9HR0VNSVxo/f9Z33+N3TU0NXnjhBQiCgCuuuGJK6z5bCaIoilNdCZr5QkJC8MQTT+Dmm2+e6qrQBPjFL36Bb775Bjt27JjqqtAk6OzshF6vxwcffIALLrjA+/zixYtx4YUX4uGHH57S+lFgCYKA9957D5deeumQy+zfvx+nnXYaysrKEB8fP6n1o8Dztc5vvPFGmM3mQS2XaObztb4zMzNx9dVX4ze/+Y33uaVLl+L888/HQw89NEU1pUBpaGhAeHg4tm3bhrVr1/Z7rbS0FElJSTh8+DAWL148ZXWkwBpqnVdVVWH58uXYvHkzLrjgAtxzzz245557prSuNH7D7eM9Lr30UrS1teHLL7+c9PqdDNgijcbF6XTi9ddfh9VqxYoVK6a6OjRBPvzwQyxbtgxXXXUVwsPDccopp+Cf//znVFeLJojD4YDT6YRKper3vFqtxs6dO6esXjR1WltbIQgCW6HOcl9//TXCw8ORlpaGW2+9FfX19VNdJZogq1evxocffoiqqiqIooitW7ciPz8fGzZsmOqqUQC0trYCnhvddHLwtc5dLheuv/563HvvvcjIyJjC2lGgjbSP19XV4ZNPPmEjlwnERBqNybFjx6DT6aBUKnHbbbfhvffew/z586e6WjRBiouL8eyzzyI1NRWbN2/GbbfdhrvvvhuvvPLKVFeNJoBer8eKFSvw0EMPobq6Gk6nE//973+xd+9e1NTUTHX1aJJ1dXXhF7/4Ba699loYDIaprg5NkI0bN+LVV1/FV199hSeffBL79+/H+vXr0d3dPdVVownwl7/8BfPnz0dsbCwUCgXOO+88PPPMM1i9evVUV43GSRRF/OQnP8Hq1auRmZk51dWhSTDUOv/DH/4AmUyGu+++e0rrR4Hlzz7+8ssvQ6/X4/LLL5/0+p0sZFNdAZqZ0tPTceTIEZjNZrzzzju44YYbsG3bNibTZimXy4Vly5bhkUceAQCccsopOHHiBJ599ll897vfnerq0QT4z3/+g5tuugkxMTGQSqVYsmQJrr32Whw6dGiqq0aTyG6345prroHL5cIzzzwz1dWhCXT11Vd7H2dmZmLZsmVISEjAJ598whPxWegvf/kL9uzZgw8//BAJCQnYvn07br/9dkRFReHss8+e6urRONx5553IyspiC/KTiK91fvDgQfz5z3/GoUOHIAjClNaPAsufffyFF17AddddN6h3CQUOW6TRmCgUCsyZMwfLli3Do48+ikWLFuHPf/7zVFeLJkhUVNSgJOm8efNQXl4+ZXWiiZWSkoJt27ahvb0dFRUV2LdvH+x2O5KSkqa6ajRJ7HY7vvWtb6GkpARbtmxha7STTFRUFBISElBQUDDVVaEA6+zsxP3334+nnnoKF110ERYuXIg777wTV199Nf74xz9OdfVoHO666y58+OGH2Lp1K2JjY6e6OjQJhlrnO3bsQH19PeLj4yGTySCTyVBWVoaf/vSnSExMnNI609j5s4/v2LEDeXl5uOWWWya9ficTtkijgBBFkd0/ZrFVq1YNmmI5Pz8fCQkJU1YnmhxarRZarRYtLS3YvHkzHn/88amuEk2CniRaQUEBtm7ditDQ0KmuEk2ypqYmVFRUICoqaqqrQgFmt9tht9shkfS/ny6VSuFyuaasXjR2oijirrvuwnvvvYevv/6aN71OAiOt8+uvv35Q69INGzbg+uuvx/e+971Jri2N12j28X//+99YunQpFi1aNKl1PNkwkUajdv/992Pjxo2Ii4tDW1sbXn/9dXz99df47LPPprpqNEF+/OMfY+XKlXjkkUfwrW99C/v27cPzzz+P559/fqqrRhNk8+bNEEUR6enpKCwsxL333ov09HSefM0S7e3tKCws9P5dUlKCI0eOICQkBNHR0bjyyitx6NAhfPzxx3A6naitrQU8g9oqFIoprDmN1XDrPCQkBL/73e9wxRVXICoqCqWlpbj//vsRFhaGyy67bErrTWMz3PqOj4/HGWecgXvvvRdqtRoJCQnYtm0bXnnlFTz11FNTWm8amzvuuAOvvfYaPvjgA+j1eu93ttFohFqtBgA0NzejvLwc1dXVAOC9QRoZGYnIyMgprD2NxUjrPDQ0dNBNMLlcjsjISKSnp09RrWms/NnHAcBiseCtt97Ck08+OYW1PUmIRKN00003iQkJCaJCoRBNJpN41llniZ9//vlUV4sm2EcffSRmZmaKSqVSnDt3rvj8889PdZVoAr3xxhticnKyqFAoxMjISPGOO+4QzWbzVFeLAmTr1q0igEE/N9xwg1hSUuLzNQDi1q1bp7rqNEbDrfOOjg7x3HPPFU0mkyiXy8X4+HjxhhtuEMvLy6e62jRGw61vURTFmpoa8cYbbxSjo6NFlUolpqeni08++aTocrmmuuo0BkN9Z7/44oveZV588UWfyzzwwANTWncaG3/W+UAJCQnin/70p0mtJwWGv+v7ueeeE9VqNc/ZJ4EgulcMERERERERERERDYOTDRAREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvIDE2lERERERERERER+YCKNiIiIiIiIiIjID0ykEREREZ1ETCYTBEEY9ud73/veVFeTiIiIaFqSTXUFiIiIiGhyOJ1OfPTRRz5fKysrw0033QSXy8VEGhEREdEQBFEUxamuBBERERFNnYqKCpxxxhmorq7GBx98gA0bNkx1lYiIiIimJXbtJCIiIjqJVVVVYd26daiursZ7773HJBoRERHRMNi1k4iIiOgkVV1djXXr1qGiogLvvPMONm7cONVVIiIiIprWmEgjIiIiOgnV1tZi/fr1KC0txdtvv40LL7xwqqtERERENO2xaycRERHRSaaurg7r169HcXEx3nzzTVx88cVTXSUiIiKiGYEt0oiIiIhOIg0NDTjrrLNQUFCAN954A5deeulUV4mIiIhoxmCLNCIiIqKTRGNjI9avX4+8vDy89tpruPzyy6e6SkREREQzClukEREREZ0EmpqacPbZZyMnJwevvvoqrrrqqqmuEhEREdGMI4iiKE51JYiIiIho4litVqxZswaHDx/G3XffjW9/+9s+l9PpdMjMzJz0+hERERHNFEykEREREc1yX3zxBc4555wRl7vmmmvwv//9b1LqRERERDQTMZFGRERERERERETkB042QERERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEgjIiIiIiIiIiLyAxNpREREREREREREfmAijYiIiIiIiIiIyA9MpBEREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvLD/wOD4Nh1dAXZTAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -480,6 +545,28 @@ "fig.savefig(\"newnet.png\")" ] }, + { + "cell_type": "code", + "execution_count": 19, + "id": "42587393-219a-429e-8774-c84872304c1d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[n ⟶ p + e⁻ + 𝜈, p + e⁻ ⟶ n + 𝜈]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tr = [r for r in net.get_rates() if isinstance(r, pyna.rates.TabularRate)]\n", + "tr" + ] + }, { "cell_type": "code", "execution_count": 34, @@ -535,37 +622,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "code", - "execution_count": 28, - "id": "42587393-219a-429e-8774-c84872304c1d", - "metadata": {}, - "outputs": [], - "source": [ - "tr = [r for r in net.get_rates() if isinstance(r, pyna.rates.TabularRate)]" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "35305678-c257-4ccb-9f8f-b37bcc2b8312", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[n ⟶ p + e⁻ + 𝜈, p + e⁻ ⟶ n + 𝜈]" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tr" - ] - }, { "cell_type": "code", "execution_count": 30, diff --git a/networks/He-C-Fe-group-simple/newnet.png b/networks/He-C-Fe-group-simple/newnet.png new file mode 100644 index 0000000000000000000000000000000000000000..ea52d9f8f1d40b43ca48b832980091a05b0b471f GIT binary patch literal 146964 zcmeEuhgXwX&_2jo5m^@j=@yEBfFixRHV9R^^i`VlPUxU3vP+fFq>0j7h?LMnP?SiQ zl0;eph8`0-q4T?}EAIFG2fuSZ4jw_1_rCAkxzEfz^GyD}ucO9vit`j59UT)y{f<5z z-O*7xI))1;j)8xXN4{1%_{-<+10Mr-dmrdSFFQKzhdv%I?mjM#k1qJxd3ig!yWJ3% z6PLPr;jxd8hqr=+gzMo8#NE9dB=`g_`+|#{^iVhTrlVtic<_h5NVU+Bj-HMVa_4tL z|IBY=4*nL{`t_xt^m{01d!-nAJ=dSHTp!O5nEw`tIQcAvTmMAfudrYH8Qw&EK0)1&`zZ{&L~OiP0agI&tI(^v7$ShPUwi`*ZmJz5M?y^M6i2_kT|C zzn#Eya4`^7Qd*jbCo7L?{tF}5=+4%WiuA0l5p{KPSUjGOn*T45oDcs$toi>AR>>1q z|8Aeh75OpVWSpX5-(X2efw45QVQNXkKJlDut%$Is79`=JMs!8zBN-m*)R7Yxf1!SV zmz>C;lwz_q;WdRd)+?}SEUwta%L(dR#VFaoJ<|^Vmi}w~2kH@7BI@>s+1Z_V!1qYUO88$J@9(|(t{l&-1I@*l8iF(C>k z=_@Pr=ly@U=CyG{nVR_(IIGv%=hBccWS!EMt!BXITfuY;jE9S!OC8DGR22D>x2D$F zGhlTsP9vb{xI-x2n`qvDpZolMV>aA;({;xZ7w6r|@;a-#zG512rv~!Mt3Ai5~xT{_rOL09Hd5m;HWOKWEJ|wBB>f1tw_!VLsZG)$4fi za)|H4tmi^^g-7jAb_CPi;uEv`Zj5VxxQIKy;J-U`RpExjU7<7DNn?+UHIgjF<4vlb z3(QrY71sFcEze@(s1>5dSnAkAEZwnFBL9Z}YZv6kcqv7zN5|dEMN?WSeT#Wlv^$~< z9RIw%bXF$hZLy)=LpE)`%%b?^PJW2PWd0R_4nnceb`%QPA>lr|lC?R-#F@c+xvJgg zSM=$dMX%rUT%3D%oG+=}wx2m{qqP-v?w_0Vcy^^2`e_I!-ZrtW4)ZgX6~5jt7}=Ry zc`VX`7vW@XajMGa%qNp?@V-%_h&I(H&nU3LFZ0H}RVx>QnZobiiBP=NQ)$<^iU`}) zWD(So`++-ZFFNiK1&fWVAa3y{R*<f6aAAuny`}e%)l@M$JFf+5iTUWa$8#`zB_KS%85$LlR6RUu`q9)~oz-&i2_s9Qap5NPEP@N@zKW}Qs z;)PmNu8%#auQkr-P@uWSGuF1dNY1@q;;?K}`*QVO3lS&IOLt=QEa$0Hr&j;u+qsz? zy!`k3)>ekV=~qG2K1=ABT_zrjb^QGL_v4<)|CnmrLo!2~KIW8#O{pd?!UO>qgEgjJ zBiBZFJE-_ z|G8fH6H$e$b;x{x2B)0TrKN?e{7NP6G1jIhv+(sfS{S|{GG6dma%Xt<%s^M!h>U}i zeJERG1inZw*M~L+?R-?hU4#6`s^OP!Kg!b%a!UVGVdiO;k%Hh2otYS#u1=mEH; zk#-g#@f-)+AoR!y%U`G`PF}x$om1A$qR?4SPftTbW8Uj~R?M9R%Uze)*povyVS>Q% z>ZIWwZxYgZG2rm6lTmcXc+EQgxpBHbZmP$hlr=+hi&RV)e~e_QV_19xj)pU#DIhZF z&PJ-#hh<6V(GVGZf_KHz=(ePwe~H&hb@VC;`<$(zu)HYLFD4s@pYr#7$*E*wk0F< zKKI7Yd^arp$44@AlMf-MRMoLFeSXn8=hM{}{OBxytz-D-1%I^s%~(5Eogn->^H?s0 zOl)>5#IQ1t8R=WJM`K`vSjDc6VET{!ntu}9y_{*ed!nG2J@f^_5e?~l{c=em{? zygL)I$>}}ycjdi1GX!Z18S%vE7mI?=QuK=iKI{j z6sDHbww9+NV0kBn;``vTJ^gC?D_NN7J0fAEW9|IH;VNh4bE}xw3+d#ZRyc}$H~F!q z9lH_3=34#B5}$A{Z#*xptQ)SAwY7-L`FcqJ!Wv-&%Ugz>3Q)F6(-OQZIAT|m9+*Y6 zg}H5Gm=wruL&rBY>A2euW6gNT?$&RntzwdqX+B+(f0wK?jz(&8=S*HDJ}+bq5}jHL zO#TCs)c%ceD7XKT)Kp{ur)Q{f{7Mi?-^(~htAOxl038F@p)Xdi`$?AD*EVl@H|sQR zoWmMPpQowm^cZ>h!T5`jAB#I+B5)$AW`Nti)YLKYw{zJeEB2+#V>@{z8YMwZ%zunu z{Lh==I`Cqk-)Gb)mo?*DZpyt#{&rhQ;fvB%Y4wh68?mJ_ofEDJRqX;0 zFU3)_^+kKQzfZK2pNvoX_SSLnfi8DG2}lXN2v2O@)(t?>O9dUjcHyTTs}WY#mmnIv zEQQ~?w2(ClQ=UQmkcSg8j@jKhqU(m8mSXT=`_fAW@2C9grks{PVF%~A#%rIH1gsMKVs_wkMWtkGC-(NDX(=N1@)kLJKiaEbT#3AdO?;?~o z3PM*`X|Xf=o4GSab?}W}Lj}Sw|0fHwB-4sKoGZ#E*aYtIJ8#TB9Io*y^i)-m))^M^ zkoY7qSi7KPp4Qqg<@8lOt?R%mrd&Md)3?R-EFNW+Z)`@iZ9sXqALJIsOO*_pbMkBr zAmckIUVQ!TM?E&q9%6ynYL6GB|8=5%lGI0&?q=uPPdruaUbt5c=5^h<+jd7Cw(cS_ z_)S!2aK)St>u%MkW}5P*M8YYBKi6z;-r6efOWt`13`6PTD-XRRyFcY*cSbjr-_@e& zE@Eeia(fF-cSiLG2XXp=sH(LnBuc%~`SbYiu)G|KK-+FvP57v-q~qrzEr|YHxtDx8 zPuojRp-JJDjXRKjyt}w`IdKYq&wf*_6x%=fc}!yTV$~2oBybMuUgYmE_xs*0I%^rN|c-ePiKZ_jHGclN`8anZ7u<(C3CU1>VrgLZ>ri?2X zy>Ww;mscF(A z*?mhRRQb--T@5W-cjF@5z545b^l=IoJ-6xM`Mm(&>cZ;?hCZmaIC~~Qi5H@;X`t5l z@t;DzO!|`O@BneDuccKm93P0I??A?xr#IP zJd&?ZFY&1er4IPMX#TAw;n@!kh@rnk0;dVH&~{_uld%BN8aDaZNxF^SL4XrH#IDHb z?hz=&3~7`0ylWYmY`Xg~@N#f!UdFx`+_P!1JKw3yxxd&XtEg|_-p2H>VG)#Xd*edz z#qi5ahp>@39HroDjx>NJolnf`MAVJe&G^X0lJa8WPSIjUrG~!AK>BNv6&1Q2s)mxT zGf>-2iX}NP4 z?;O@rfoZ?pU_tsXJtB<`4fhcQt}1oO)jSa6^xg4*==ZJb8zmcZ(R7rS?lARylI}4H zA@mvF(=TL`T(PpuODSNR(&i|?QLcIyHfV@1b6CjY`XKR(2mhtRGe1B;Tf!`G#zPc8 z(kRJG6IOAu1YL1sIflfUs?ezk9(t{u=!nQ?*N4X4Y07Fgm^f)_fKu}wnXNRx)7!=& zPBIQJ@x_IkosG?DX+A>Z{3Ih5A6)HG!bueWql-fNxVhs+TDo>yEXx82>e z9PXn#FL&s@ugkWYa>qKyS^C!|BKbIHk|T`TD!K{M9`V{SedE`MV0o^ke#P|_cVXxF z_z;QXvH0N%UE@utqv1f4z6dCo`-MslPh{&4d@# zsY76;*!;qCVYrSR>nyvue3wF*&HbrR6L1&MS8=%!2A>v4wc* zRW{8+vV`(t8+|Z9chWrcBOYg#ShW;?e4IiE`4NOWgq)0 za9%hUV3~2)5Hh}z-*R(h;S&K@S%9oJ>Lt?B`RA&gb@V%4^F#V!G?T|8C0WN;|Hl*k znhDo|XDp1wNL|1DJ4mRcLE**3qcC{hzy$jTx0;X-U!7+Ek^_%3w?wEz+8~avxuD?Q z+-?1275=-h>W6)7AktXAlFjJe>S6Ac=^+Nsh5)1;dhgP(T1b>E@7+~4qPE<;bqF#K z2Vig~$K?njriTO3)^<;M_492JVd3j-QiD>Qn2Pr6%01F+qa<6&G=2!<$PwCgo3`0e z@7`okEMIqZwaYwHD06kVpTdpbotBJ<7~zMA#hyX!Y|9Ej9LD6#|K>Oe%R>+!l#FGp z^Dfph$VndB_2z@MdTYhBA(D}`wM0B-z){P_Rc)L%`?nF2#mQpNw&~)d8H`A%W&)_+ zKxzWMrQ6Z)F7~n7FfzuZgvJZnqUFr+Mz3Bl-6!b{c{ zrg7q(sBM*bEEK&&qk-qK2#eC&-5ZLwE=J}fv#lA&)eo`y1^xj(uUoTL19mL7Ltn!W zmY$ITLa1Byb3JqCR6mNVWuWBl)3}z93B}HHtgLoj$w>*X-`P|OKsGyTN-N5XN94&rfAjsdy-ZT;&hrU6^#WNRo&j!K)OY#yX!f zajk+n8Ok|>e&?uf{|Mo2AOGpvtu^iF+E3U?9CPR*L++!!mo*~L_>o)y3iFoH<#qyQ^ZkW{8=Fb+%{eNulAaUg-AMkc)d?_uQ0Fc#F6xlX%ro0O zy^I&0H1c;pF7=`XqRdvQULiY67;pd+`FU7w@<3AR>(w)^NZ*JM0vpt{MTa%LJ$ZO4C6MZ{4l5&%h z&K1L%gVsNthV+*+1x@)i24y<*e_M)*iwChH(+x%2z`*hb%H<)(8Fyi;?JFyjF23t> z$HOo4{Q$#T=~dWb<&0ATkU#I)b+Fkd^0TtBiKwcg2fnOZ%`YF5sU32`#W2RvP?!nB zN<{+>4vx0ni=<;5w5ZzDbp<>~POrrg{bv~<`oS8R_Ms!PVcG#%Z0JU%w-NMmmku8; zkJUvSHZoNz?(Qyh83HhsQzh8Hu;Si0f!V=Aw$tBl^VP@U3Y$nz_r;gLw=I=39Yytc zQ$PkPLXL(emAL5Ef0!k*TnZ^`@l$wo^Q3- z+Fhg_X(@4kgnX*wCi&yH2n@6@AI>vzjGXb+o5?7D(oeNzm}OU^Dg@^#ck<4=r# zy7>cgUf@8|v29p~FhgqSs_yy}R@i&1apO4uK>H-N=T*670x&y+n;uOX6xB^qzNFQ2FLfH#q#kEatTMeU8KbScUE-0NXCR&>9CYU; ze|z8L=N&v71ZE#f_P6QEfi|D?xBO4oIpIhVvwQSgPEu0ZV+%e-zp@@VQjCs`SW28+ zS^dSu7G(t$4IwK@qg?Th1hJvKe@eH?;j)gN&Ln=;N%nS*o7kP|6+teHci4UbzvBnb zdW{aP7yR%Ym#lQIbOtM~@XN;!y~x=0Zk9-Ni2&rb(CL)+!MNu!j>pvp$wY+V{S*b9orO73c z%{m=vMNTA@tUX*+e;+1gtA)8&)QDS{vpbeu{jRu8uy|Qxe-G;n%bR1@y54p*5Ne9X z9sBR@Pw~|;XML9Ui2wU41OSGC&vCXs| zZ+^3&LWQlu6?-J(RKw;(A^jgrZCE*2E<((<_DWdVS|FB($Y>?! zWoB}Zd181@F*D1S`<@!zHl1jOE?8k3o$TUkATX7{bw+8NwBzEJz2j73^NNe zc;jiF;SRbt&ky~#o#N+=543K{x_(vrtlmTxRgwFQ>sW))-Me?&q)T1*%{y#uZD;38 z5x6N@u-bG@jimd|t}?PlF8PLnIn1yceg`fFr|*V>?EG4stT-VDWSj-Bl-nPWa-b>g z32K6meL|E#7LEq!<+y-Ty2RqYl%6 zrj~k`L(sSr8ocppFrQ6j z;`Q=C*+L~Q3l5`EsE6xtxj`n}L;@+jdi2C>iRu2Eav&FuqhL2txqxl$ZO z7)z0WENIKR)=`Ik_%QT;E#O212gK_j3p2mUmYkBpIfJ`~Zc%QrB2$!jbqk#~MX4x& zQLAp4V}*@dXX_%>o{PG7TqEtI1zG76k|x@w%gMza$8ViFJm392zJSV^Nbs|pEbvvd z$Ca6;OF60)t;n#q~S%#ZE4CVi64@D7h5?L@-Q?E)Uyri zvZ)-HQnUqPQN8gVx1u4;@NNBlP~+^TGq+6KJ_O!@(a&W$l;)1LizIJb87QB3eqmwh zn>X*|YB!DQ6u0#zs9yDh!^0&>Nl7|*1fW_%9h!011Qa_5M?Z5fjwb466uqtCJ7UJk zGmLz5)5c*7RM2qcB; z#zMC#9o^j&pODqTvkL3gCjlbm+BA=G(T*wA@-t;f4a$X*`S!`@>JZj9|L64$&-uCN zr_1o?V?5j2+hKVrDQt6eM`)Ifeva>+9+gbfvZPuD?dMx!+-I%FRc1O^Vo7#<@cz2A zfVR!&cYmSYEc&4+x%sJB94;NlGC&IAPR-0LsO;?MPsUN2T(=$!7(Ksxlk za$AT^lhH4<^!6%r24y_MD|1*+(?h=?HO^#qLlF^i{j}Br0f>2u>jLcXF$cSpIsucrE{o zhD?vD|NMr&^5Di&Xi z)yBl}lqTw`)MK_G948Md0O=l3WnV$yxfXX|Qd3E)CT zBY;;)=MiV&+?uyaAX|ok8|$p2@(t74ro86(_BSGHT*=C-&8t**4vcRy)7Elw1bsJ= zI-)9vks~w*);`xc?~=JNG>Cq+_+K+{@25yE6<46*vLx-I+G4qcAe^CEYJXXp>+yYV zbaHY64kyw$Mj+P}y*x2=Sz)+CX>DM?2!v6Qt#`Rqth`gDEl`C_rxIsLDu|s&m6*d@ zf5!U45;0JIMZrZeEatykiWg!Y`O3m^9+owEG#U(>q8FCpyd-1->rTv zPV`i%6piM7bT!T|z~DItCR<5W7n0Vz35d{J42P#O3Qv|68D;7Jy2Z`M!g4wKW6t~c zw?M}yO{`hHYv}9g*$_o2)lfqts%yGAx4JH=2fOaRLs6y-ac>+eaUgg^c{a_j_;N~h z;Exp6g;YBbf=KMy0F1t5A$32kd|QRw=ni;YdLm$x@Vpst0N+W0FOxx26= zv`gc(%A)E?#}%k&q+P)!bqh`2b;Av>f1l#L$? zeUz%a$6l#qqgHwprR}?3h7(9c{b^Wsrh7FaVD5=*wc{KveEOx|o-N70x9w@1jmYSe z%e;pM*YGX29)I=fGx>|3yu5tWUw_@#)QpBzvDnpY4cC0@mY83wXB9P`jg=*w@ORw< z=~v<-AFPBpj6YzMcXugWZE*BU{|q;=e#M1U=L3!Kw0NOAeujJQ(6{y13-h(Kv|_}Y z7H`3=P-aU3dg<#`*H1+wi~UVZ5xuU2CR5&cp>gDGi1qx=7|jqeX>91l=-QP#zT(5m`m=@9HizZ@U$e zgQip4DT_rlIpr9KF}K>^SXiW8zPt^`v!Qh(8u{(wy9Q}{!LgpZvh4dt?y6gFI%vl8 zM09ZeNI(y2Q;JlV-}jI^l~O$Grxbqq=aJCRHidhRnrNnhXPA$<(R1I=ug0_6RU7 z@>j_(o`4&STM^FIgdK10dDd>6fSm2WONo!;H^vj zCNhv+9%QH!Svuk%Bi6I9zV$b|ABD$SCqmKVP8Bcp==XjX-4k$y67jX8)DYK~4T!2< z6?4Hv2qU|=p|gKgP5~t4m$?S6@>C2d1?yzwqr8YX6xGnx$xGDHu;#1RfL(NTr$FL#`Ecp8zpe?~ z9Zq7iG4Zo_cGcbhjX!x|k%#MR|E2{L3pV^}(sGiIbmx8BWCV*5QqCous8J7sagNLspKXwlKA8o0`_0 zL&Np`A)U)SUNs7Kj8(-I*nI7LreWj0E0H6)da0RT>_Q7iN`Y9SgOhvM5ck@n)bz4J zj3mzIZ(d!bfl)dFXh;s+lL@FR^V?Cugq znqEyQ?1P`?=7tFcvIhbkHoP#p?03w}2j|C+^0Wj+2v1s{{7}N2;E)dGN@&}5y+53I zH=1ouO?9g;G=j31a@91ak=men(5&|^+ixr0BPZv5SpCIvzp-=8>s?|4U`9nj$!DX( z2@lqM$+l2Vg?^#-POQ(8vy8T!)bcHOdqaB}{@6dnP}{nZ;dXWX2mTKbHt3D7jLJKU ztzL56zXw1=LQuTHi@(DkROH}2m)d!r1W{C;1U3Fu+#kCm^0AKwqNxr)2XJzim$jnX#w zF1PztvMH36I_7$M9`qSk2Xx6x7(VSX>TsOmH(SgH zvdV*YWUo@D)#xE+6}84zh{4bEILzi$){LtnU-EBa8OYRTd3uk4CNoRJ(nPPsGmm-c zp1jFF{oPKt?pd=^`NDQ8_=V-=P0@R62ww~j^ooK)1IGDyH5lr%#7);p}p!1RkhKuoP)X1Bd`pAd9FU<9V|hEzw-0tFoEbyB54T zmD;e{uL&3^T*W=~DH=8O+$RZlsW_sA$yIP(Cm?$1NvwqeL4aofYM?Z&=2IJf#eEMs zv(J_$U1`*Uahh2U>tXY>^VgPF`^yQWr{H@o*+ho%mS5{G^D8ZVU%NSTR=X}I3IaCv!I0XNGY3dOG%)Ro&*8AXn;_bimT^?ypbLfZNa%v3U8*LR8e_E3y<6{Koay@WmVN$r0UM^t&t$8 zEAQ{DG>kuGtaieR#PTSvdq^<lbATveaO9A5za4~Ph`N`W6 zO2cx8sC2-x?U0MiK^D=gvRwwKUPV-`!8k!PqOp^tr(IWuMU``=p{wFT5+%ZlYsYQ$G`PAxg986_IC<2pov zo6{&`MxzWTc!4tN8Az%S1Dg!YO0R`p`QOq^xq9(?4{!X+*SY-nAu~N$u)MA=tpny1 zFkT6rQ~fNuN_`aM&Cx(I+^cbHYbieLYV8Qz+^znuEWtmQH)OR>e8ClO9uef5Xh5m8 zX@#d>m(vrES93#D7l|pwGuL)ZEEj#8Vx-zoj6Z&X51V3(2$@M4dG>|o?q#AWV@|lt zv%+5W%4R0|5&-A}Bh4!&K0Il8_hJA2uU?~WwR_vd{gR3by@5jA1<%a?h{pQ<6^;E) zO0{2TyyyrZZ;&l~|C@s<*#}WsS=lKaW@6zPA>O?4h_sVp?xy$P!OH@jtdfHWpsn4! zE{ zHoFhc$yjWJS3r{&vH@9Br^9l?23elhOc`_gdUN~&DeU114gl~2t8)VY)pBNMAEVZA z=A1X|wc<&90FlSS_ID$FV*l}y@$qGZ2VUi2&3-}Qt~8W7Dy}?QRaIptlc8u-wT&Cs z3l44qV&ldTcXw7Q?^<^2T#$%JS5BZBjd-5JKB03!k5vM)b|y8)B_$3@tE>hb5-x9cALb0fd{pbYCG zBO;Ej8L_gmF8eDr0MG|+J4})TCDq*M0B}iP)xaV=5Ew%1r1-DvlcUIuJOhLCDOeZd zI;_hx>UF0U)Wh)O2$zXA`$LKS)zv|6Aw|p_H-}P&dlGA8`yR4In07h&(h&7sgkiRj8l(k_@(?vbucWME!)iCa^Kgd@8}{>2I#gb%3Qn0YWNpB7!}TyJ{gQsMJF?O$(@O4fHHE z(Rfqb=aSwU6NeVj(n3;41U#C=Zh*6z+ zmtd?$tja9eSyoW2V8oa1gvud9a#~jc@XF`7xJsQ7sPz|RQy^nW>9!|(jSZ-QLIwDN zk;TS4ca?_7%sON$a&hV0+EC$2+Kk|&svHu(sL^vUWTLMZyt)?ya+jno1KRTZoRjh z%BkeU%UXGK1oU80dw&)pCuxXw@=3z662U|%3vtShPqNbQ znd~=-XF_wYd^hF=^{@JmVoAfx4OW;o42BFkdw5XVxdR_t2q!p8ruk6oXXg7gB`DG^ zsd;Vbpp||}p$X%O*jwTe3l2)-Z#N+34TUx7h#h|!j~Rw@I`a_`98%i z-Fppm=N3Z7=+1EeP;H*z$T~ucA}~N9Q86)t@LEDi5Vc;dxVU(Gtq0KPy8vymSQG0p zhcDs~Y`%1x=PfgfTAP%x%6t2JQ=R(eFT+TdGxH-Xl~R)OPUx)$VD*>PkF#V2wM*tV z8V8fG^9!=7#iEg;CG26_fj7f$&~5)L%PtcnJP>oa@5hLMqg{;;+qn%T1Qh1v=Gw{7 zc%##_?Lq(BkVXhX?19R_dGb>NJ-W2v1CTchU_LpKhyTc_tTPL%n|}!8CAb?VL}*2v zsx$0;nY}h2tY{G4h@7_OE3T++=!M=j>jqg)X|#~7Q^)IHOvUVD6+)kt$!HdOO4}g= z_nJ+7r^Xk^ABoL`VhU6E_^LTZiB1za4D zqM@awSZZfJHXDwgKB_obp0ZqUTF=(@Su;rQ5ANU7bIhbmJB57$B zD2WS(Pg(D87SC{(iiUYUEWBR2U#m~H+A<@*+PlNtvmdLEVKR2qPD}}Hy4NUs4m5P{ zui-8kxe`iOWBiqoq47Em{?9{~I`$zjaEE}lHUm5`acVbi+E_V^SgJtUGDw1D4I7gx-zS{8R#ob{cff&A$OkiLX%Com(wCQ8HdKE(X8J6S)XU^Eh>#4EP%kK`AY z6ugDe;(Ft2?cU$3yX{(QG^aRX_Mt1xH38UW;G?R7HB8EW>ysPsI?fxHb^qqD#2*`P z>C^vLu6r>b6(8h!Hw0~#3u>1Gh_$n`8zb-~rP{f84HKvzfi26+bwFFhOCc+yIk%x2 zC#N$iIjfv%Mm#&BYu!P!yW&GcN}eg}ZBQLPxfG!geQBw-(cS z^J`jAiYz*uxvIfCjHXvp+!h$*t{on6Vak)nfeAzJ+nO!Cpho_P!8i{V=_$u?`0kv5 z=x+|k#p*gcJFkHr>0JHHEAkDWf10pM#XPQ$&CJc#wnh0;1}1{`6jkNa5_Pk`Ol^Yx zyJTE^)(t&ArOh*FA?RCs;+id*`nQ= zH|+)Z`B&wp%eWjmAIUoJ_}*5u)YZ}g-c!h)8pm-7QX*2`cez$| z03lEROWa{;EWGFXz^Q|rl#s#p*&Eatd#V>;zFn1it1IWu|crx~RM01O>q|B`Y zRjM>r`uM8ro`p{Bo)?KF@bNo$YJw=_mWjq4VMk(w11fNlmN5fCyB-r=XrHaCo!`aQZ|Ucc?vsQkKl2AiKH zI_fMszdA$al`bD!jTDvk0gLvgP{mD*Jb~vr-+4ZbuDLSqK4PMOuSxQG!Q8bZ|h(nZ}+EGciMY z#1aC@Vp#0a^;h#Dfpz=4LHklA1flHfdc+1&8E>{L!Y!3Q+HU_*BM<@1?Z0X=4clDa z6Q|i*Di~BD7LAaygHrPnvP$Cdm@4Z9`p?RTu`p@3*aJ~k1_oI4eSCbfZO|bzL!i-b z7i3rQ04UeFJ_nWTh>X@=C6-6HORT`<tUI=28Ps(Dr3n5qVKPST&%u1Hp-B*b=9E@^1k`cT;_iyY4vK zGYJ49(QHR?IRXNTkiL_8pf_VysKc#jJ~T8$uRLNk;U<}}`W|6@qnx<80ZmToTd{}3 zsw-Su4XcLo!F(kl?3tWj&o8-AXrL0ugf3<_S-IaN9{&$xB3#kF>n`lQ^pV}U zCsQ8C4o1y&WaFY~NluhuB&fzvDx@X4I3L{;Wn%nTz2~#a?Uk*PWA&CLW%Hftm! z^J$ySK&&52>Kjnw#59hGjJCda?f9f^1jHwRY*$b=Z_2%syK{u5ty#0W*$g_3ZhM{5 zZJVkKfmWd59HR0+48RtB_xj(>-MY?4iady*4+t7Pfn#rdtU>=}a?DDV`>EhR zaUEZsq_MJ^u5g=S$}*U)h#{XC#dLiluLcLPHiaQJLP{w?-rc*Y=R+pY!2xe@At>Q- zhyTpzyhuz+_=7u@DgsJ=(81Eyjs?Rr>tto1dC-APx~)BKf0_@<)UmjrE$Y5{sHMe@ zdCO}4AKpN3l-U%w_iYdLWn{ZSvwzX%`4y!Ox6E4i!F1`S%N`O0UjK1kpot@gLF+yD zX0v)fQT%9Ir^Bg-InCs0-hn>MDEhZxYe2alR7{}RSZlo?zh84h0FqGb7cr#{I?HP_%k$td2D%AY^YFDflGblwK2#hm6(09o|9z%EB? ze~dFg+0?u$w{-YJ%;^Mv%7ZHN?42Mh^sD3JKU?fKz960k}1?hKJHO{2sxhs zgrhXl$N{uY_2OQ5hlnxZ7>vAOJ0o|JAtLUiMZ$5+vBUd(&$v`DwWDw$w zM*Dtkw~^la(5G)+nsL49HPRw+!8?KT>6*o-k(W@<7;7Z%l%pOudB{iIq<+;9{24b~{*cXZ`DSabIX z4NQS(!XB~M#5gla$I>HOiJpbppNmM5nlQiekz9cV_!mS#c<$N57NmX`5 z=xcH+2d>hiohK(JIF)W#+8{VD0m-Ql2$7x(!`l+ra^L1t+kee^-qwX9r-nU^j*^}muu%M6-aVm!U)8v;V%TV zvLXa%!YkYp8ny0v%Y!W(jo&??2Hb6J`605!A4X7X9wT*VFTA_&E^lB`JiB?|G z7j>K5zA>&-4TcZ#gM+iG`9(lj2bO0$D8v4f1{fl$v%(_jhA;o;+ z6=xw(+v#a0B98V{cnhw60W%j}DLphG<+RXS;>jqcx@&SEjq0uEOs4jh`3S=c;CW9T zS{OH8(Oe@Li_|W;Qa0~{KtY4<+_`g~z{ozX0ygO*Cje0d{<7!tvLxgP4U8a& zg+l8GanZY94nlHxH*)UjS9!$d?B`_~*)5 z)Q=xO9))KCZ3nh7J}i&q#`mV~9ZyI<%}v;MFu#I>0$nrlc79`LESXEjG9o3OH_#MNHtp`9NkmHvTw9{d?}@L7fWGH-f~1Axp`}-V6*skMQsdPae31-{w*3($W&( zSSIOv_p#(?0f=BCKe}cXzc&p7vU;AL&|Z}Lcqopka9z&N8uu0`=D-+fPqU*=;r6@J zqsZRrVldZrez5+@lc$H9Af_lWa3U32Hs<=zWRO+p<`hGEV@{CafwCo`;*!wEbG*iY(68#Y@2_I1VsIBI6Fbt$~R{dDjQjfZ9?mIb>U~?48%Q z%#%?NFc}rHf;QS-V_>-U`7qbYix_gfx4&vhW;8T0m4E=v1Nc5JMSCin!s(sq-)Bf6 zpv=X@nlFr~j;7}6zRJcgY?f*&1a^gy*Q>xNNg&SxqQ3d^eZYey0?B@RsH>fZUkd2{ zp(-ATr3X?yVR;2x_VBdYi$yC84D^SYAGt zFtBb380WC|Ubk!8G>9Rs$J)~S{8Za1g83wpKgf^;AZH?PXUMt}7DS-?ev&}aFAN?1 z1I*2VGYx^^x)#hPb_aE>Py6pNXK&^V3@eH2B1p8U$J7&}iIOY=2Lex0`oKj0)7qz8 zQMxKNIWB(0f^v|Oh{qR(IUhTwa2RBomW1L`KF*Ka@mWi4ZV6c+ptisV1Wfr*tr4DJ zWg$x`?S~H^Hf&QHlarJ4!8Bs-du3-^HR7r-qfBv5QAuw-(EJdBzLIqCK=U2MP0Yfj z#4Tv_EFYyxPx)rG1#hf6?50;qob5ZS;Me01(YMn>)|7uaJGlAe{?EdNorC2~(?Qq= z)kp~#CIy^65Kt=&Eo;2(F>YbC%(lM&>s)Xh0wAI90! zClYn$9*b6Obuww_>f&|7whSU7BG!V+Lq^(9b113<<`po1DF8-0dU1YD(4Jq$mS$ty zHlyP4MGa*I_)TKKw_I^NCs2G-{Tc*{2kw`1- zH;aB`u`S`_L`=vUJ9)}O4h%st7dJIE;b$7EzO@=<4Yvcv6fEo5kt7V_{f(^;Bk#*N zq3^HogiTj~5!;ku8Mj?9Wc$sN>RJkQnksB=Q4zd8Tt^_LNb=Sq!WxE#&n{sP#^BaZ z5Sf|yRB8Dlr$o1jXSibcr z3p7>d=jYc&J!r&VeLK<;`61w=9@2qM3ixobzgqD^78u-&)o>5lI7UkQK9L(z>y2I{ z<6}r9os2)YX@&VQ`}X<98Cbb>=1~X0D>*qUuMB4snf$3YH)@kjSI-zxZyxqoPM-i} zF{h$;5`VFaZbV76lP?(Y5xsmlx7T4e0A&Tws?~#?<8{P;YOe=FUd>w?2SN_xkmjEA zigSZYZA)E@1y_Vc-^oT|N+aF&Oj7GtQeAHhzXh|nPQw9-u|WX04UGExD%_;5mno^&3}LpnE)z6KpiQ7{f+ z?R{?HiqWQ(HDk*48!NVqD@NV2va+4_RgPHpvEx*j&x&=qbR2s#(lFLHs}#4tTWS(R z5~c3OeKmL#yRtR^JRJW(?|~h6WCV1z2(eC{Pyw97fff#OKy@SbrTtN(-uLV{oQZF* zp$$GNdr19snhD@E*i`ZwIHS&eId^x{ZMvJ{{Qe(VXB`#Q_W%7s6bukiLPAh!B$SpE zB?P1yIus;_u7QC86bxEP1qlg(p}PkZ0cq*(ju}K?h+*K_-0*&X>sjkw?;qC%`<%1) zr{AwF04mBLVDOp?7ANfVhhN-!Um1$^o6o^c6f_A)sxO{$4#u3?GRp~ct1q$Zj ztXvMxpzP&Rado`KF6Bx+KN#_Daq)_o6mxXqx^{z^&FF(FEn(kxbOX&yHiewC7=(IG zFMVlv!XDky`6GG^(E|k9*MW!r?-UcUIQ_mW-?9&YEB?i%y}iAlPm9^U?|%%U?rwS* zqti6n#7ATk>L6e5(qmrk?tT14#@Ldv$H(KnVS*v6QV$+lX|~%D`utKUmy~E%m2Oo& z>x{52zC0%Q?dA9}!`U*kNLa44diRrokD{G%tiZPJEIndAdlZ2VgTba*lo)6nFOStd z;Qa4(Jp*a=>~k|H0!$OKlgTJ>B)Mxf_TcxNDiwpcoI(m;PJ*@w2qb#j<#WS}Ta(2< zkKb2oSb7fH75m9*a?kX75t&OM)cRt%Q~9Hn(vw9U8qUPdGmTBOuBv zPZ~80jPsXB%&JoE=dt`~0HvktGGukTKTZaIMw)Kb(@6;Sh?#;B(Z~PB8rN-(@KsKx zC91i)`BB5`A2ba{x)sHP-(*l*e5eW zZm0yb#hP3_e$4Nt4a(`VO;S1ajruX56J=F8mnbn-L)P9Q5YbPPb)Cpx+oW{LZ=oq* zsyBYNb%`EhC&JT7(f;XwEzw-V`__BHD#*uF6e zWb6bGSGLo|4q_Oi+`HlG+U_s;&%aPOaM4DytZf6vF4zFfX9h!%$CO zb-WL-=XAra3UJeLOBsAzCy=GBmdiAxgUZj1?7Ow9=@HC)z-ig5;x-8Y{KybUMnD?0aNpXY2YnDk4eH6y$5e)dfK4Y*IK059W#MMotU90b^v% z<0{04)<_Sa?u=f+4@o8B=!Z!#+ZGRoevu`4^fUgY|4pu5&J399k1rMkBj7(Hf8>V50xYAcOcrtWs9Q zy60v8*yh3C2yyQ9M7zX=Ew7re?Luepdv#7sH!s+3MSHXq+4=74f{;&Z z{-{?X1>-42xQ94=JpUnFo9N#dfb79Ba$+5|2G!8`xh&{YN!5XIRdH~zJu-OSdr0An z93cfNQ&(NBlx?Yl`Q=66T9^5xlf~lXf3Mi7gkRAndujQ1ZB6crr`;@GOdi({48OX`+l!!zQWTGU+ zrQ7w_0SRHzbMJh-s(s!GDWseJ-&2VH91#Z^?jymel9^DLH}98IolWcR60 zdT@Kvr9yo7hl4u9^0fa7Vw43Fl`-^JBNS$mOegG7H88|&)$`>W-yVp}Y=tADOQR8! zcRkEb%aa@?k|t3)+NN126DQNs)5D334SVNGJfGhD&vpsfR`6e^h@|N6+YK%A*~6N) z;z_ZAAPN5dT`m?mn%WXY^RbIv^^SI$ojq07zinajIEs5;BtGRVOXe)0p_ z7nD4byUt?8YW@oj#E&@=HeD!#vC{|F{dE>{)#Zb4YVw(=uwVXg0rx5E>b5qXEuT8pm66FS5(F+0U?nBdF7`Y9*8f6L~MCeGsz-c|CszD zwWDqwr6}G$)ZP?QeOz~Q02E2u7Tt3)+deaQ9#waf)jpxknq-Y^9iFc*K$)r^O*fQV zHhTh#mH&vE0q7}OlcbAV;mCV?FkXc9M^>(TQl>x&->0_czhNf$y6x}sfdpU1rtHfelvEbnpV?~nGw*qDv zpG3+y8J|sKQ2yYUStbkvm4<=c`s|cmq3{3hOX2PDR+T7wOeGXGP!9DlJSg-X#Mo;2+I<2UAZmOs2Fo|xR4Hxw z$^T??*ds@%5-3t;Uvz|TtDAi&47qKVm{`+}Xl9jT*z{I7ULH2sp2AB zX{l)|bM5)m;3qBRl3 z2fW1U+-d@7G&meMM_yct=Mv#k0LsdKOXK6;7{u℘8ox53qi-5z?Z(4tWkyqZ7MH zlXT(*uo+WR4O>8?kjp8qP_lz@^iNivH6QtYs|H(%_7nxA7XKO?Wj%ghv4)kvZt~tO zwD<4}2cTJm&A;r@shVH;&$4p>XGn3hX*$ZX@fY3dW1GN7RfU^U&sJE$jBO@`(qP8@ zc?l^7kdAJi5X5XcM1t zy8#H=t#M9G14siN8sy36_2(7t;bfwGZJW4{o)>IgTHIn^)$2786Vv?(O!72aBYzeq z<8zd0hT1ik*PB6eePAX}wB<>|(-0nAvyss*`22=%u5O;3JhasA2_y=CA{KJXL zUOO-X^_!hyeVb6vHD;PNZM>uBJ(0|}H-`Vd_uahsI*fl>WhNq>_RkW_W}{!PIc;P0 zwzSNy*b5{I`3CWSa`f;XSa|Pu(8lkv#%sN@slxQG*}OLduw6Q8eaaW}>l6IGf?*H) z7GG+4=;1j0#P-wl;m_T6ruV&FiM8~S;zmw7(z)08H~ff)z{phAFV5NlU127xN}y{- zeVx_v(9XqCLGRoaR*Rydanwe7q_eJ$^s`@=q2DN^#rmrPEo)7^o~cGo$hUUK&2p6+ zabHHh=4jbxaN8v=Zm?I8l88rx*gx+X)s;DrYoCs>j*S^Mx3n-}7yla13wXrif8g1L zoP)A;b`IX-=+T5mYwupxi+6FE)uk>RFIbyXO@QxZ9d;SPVPn;;N>PC4LfDTnW1yZE zY(UmweF&}ia)Z^D=7Yn*%Hxc&-{SLQALv*-rv3dh_DqelXO~qqlR8m$cCoOOcKBVEK821ybTq?%0#^p=NES+3c4{Tb`db{$?9Cf{H2}Ec=hHS_Hq!;5ODRa_ zLdm8QsLt@!eMZN~J{E_BsKmU5>>`3`D64}(u}R?xMyku-!6kl3Ai76Pfx>U!4ZwLF zIP-_&ev=4G5T6(+jPbOq1P^`Ku`%cpnmPqwMWmDbvyBw9=4xnoC!m=vx_f>-l+4ef zJqVYj+z+PNltgM(DR}qu6`0^pk^SS~XXcL>r62unAtX1k+S((+BHF^Dn|+_gE`ahh zm{Vq60rEQYoiJtrKE(!;{Qw#a3X5wXJFjD31?3=9(orrW1Pq;L3_d^MGVo9CF|#ta zizu(jR)dAEpSeCM8rhM*=#Nw}n$pi;mLedNyqh*sJB>D-SNnMvNvX{7DsPKyyWdjD zzrLZb4*yI2e>xjsq>KG&sXkqB=EnXfJG{$G)rMEN>h#HpI7IB~DS!G85VC1~*Y047 z-hs#A{NaSEipVOyGG%JLR>t?x&B3T%<#e#|>X^uVjG9TPHb4XK<_fFaOvBJ5#m3Xb z`~<)unjt%rcYamBM8Qn+HGwwUyUzL)d;gG%1D=lSk2!06^Hd7?Bw{F$n;;}~ucSk& zvLpYEqn{SD)L!O*F7-(hhZEK_84Mw(IC4=Sz^EtrPxyxyy zy1$2iyfC}sD_bqyPfwyQ!i>s3mmLQTt?YX3Y^g?On-d)86GrW|#@^`wC8Y+)Vae%Z zGm8bcg+MjE({Jz>@P6R)0EI_o3y>>$7;FxF@?ukX-NtGw|14j5{RY0gJ50Y;jp6<6 z=+#CMpL3T*{Y3u$OpO7W8vS|gfLL8t17OPD@py|qbDiE1`V4q^c3SV}nj36~y?OWn zjmhi3O0PNH&+VY^Vz)I{$U~3l-m2sf6E0ydHMoX`e?eDmE6pdg&O^5%v`$B31oA}+ z6k8SlqVRwYHobq}b$RlhyI?z*3^7<#a`R1m0fcF;KC51(>fpod#0Kx1A?u9X4$hoX z?7j^R)M8ivRro(`{K3Dy>kwID03gC4^hT41R_fv4;FrvQgAUF7Ox-75x1Bmbh953h z9uL4ql0hV*T_~w!`$#KBniWbJ7*#%Ii!Eu{Kc5H~%2wnmQ3mY1(?;oQR?9?%_uLGV z{f^d5xFy1Lo;3~xzE2(mG(AE7_uM-q_z5QRs)ipef62fnaa=9&CpFc*gJGj&= z{`RtrqOuas%}hCIZainvUvBOcjvG2WUJpDfApznU$v<)Cc_6w788=L*t1i<&dU; zohHO}M@Iqe%4mTOnADhwe4N_&c=Z5NhknbnuSW7>O@YYUm5|U=o<iV?)X(8dUf<4e}k)a>qVK=$QWmH(mt7VaEv}w<| zDs+NPuqqduyjW>)Hi-LFJw(dvtKoz`_#)yomG}1T`O`^A|D$>4*!Xz(zZ!ywE60SU z8;)k>yWMN-;ZK6K9L+NTz}ScE%PHadO9`472Y$2ZvbT4`8w$1+L z6q!J6trmwA831TDmf+O?v%0bd3^1A_US93LCIoirDZb!6sPThlZ#gbkbxharPHE=0 z|AnGWgrEhc#E2K+hAh5qZVnkFw3dr-ttAMtBj|ULe!{%GULqbBtCp!K{2rCBQ$ffeFqJh-5E~+mb zgL12)Vt%HrrSrjcjwR;Gvwo#V(L1X{XneR)7yFI)8(AAw=fNkT9;~pjl`a2-jaWd} zjAnkMWh?~$IvK+pZH91zwPkQva7$OGpa`*phqunAvqx=9h{78HiGLjRE#K;({$cAf zs|`{KnZXte zkz;?`S z<@qWV*Ok{6aR}(}9DerJ6#%?$$f?~GDX)o5q{lUFT>xdfTkK?W>^AtUi>z`hgM;!4@_1C5xXE1+lS^>joO(z-q5iA>d_}v0 zL+%D+-navLh_AjpJh;pthLWK`PmdP7srJFOp|Lq})y}ZNnhNDzf`N5y^3eK8(<8V@ ztcZ=fT^UKUVs-{Pvu95n4?tajBNy>*eiz{}Yyw{elZrp9T;>ssd;jv!Ghl!3&d;`s zQ)57CHvi2*An{3!v#&xt0N#ftd~zW2VrGbA;(XIj`%v+ffzIZNw0k63>5s*&?B+pA z{b32?kl)h*J2wkUB^(R&aznwp()}boHc_76iLQI|Ed0S;$|{zH2|#5rto6*N;nDxO zUUjPffKPhFyO`?fWyuDT+;~a-my-%;dN$28M~W&QWQ!cm9Uh`-o9uVYjmnE_oUWCD z<+)XX4Q~6`JY$G@7%uT8XOK5{G|xGA^!%g+sMLr{oH-1v?@qSQwHX*GyH2hWvEi1N z&kQ>oA-4o+fhdNZig8Y-%h5-_RV=No_r!<(kK*j<%*8Sp?^Hu$Ch7qpn4MbPhOSu{ zjic}#>l9U~`6goj&EtZtM5#gg6sBCwoZb>6Us!Otk+6mH%d~I4gSh`+WmbU``cfgi zfdP%u)4C3reT3uDPmg)){|cvk5!0hjicU_hhz(?e(*mv#sR0=HogpJ9TL49;7k6Ko zHNE;*S|Ij~RpGVL8q%Wo*s!Qnx%GL=>Ze{?u#@dvYRYp_NQ1o@WE|+np2^wCvGCLUcv`vv@<&7s`}&YU`B=MHhDfDP@f4boyy0*EU~Tt#=Wag z{g~!x#;yZle4fR=BmpUl%x%gsVkgLf2-i~JBjB|>Vu|P&d~1O`A(QdU29)zdLgiXl za)MR3N~C60{$7K6(ex!oJNCl(?#E)kCxJ2)$h``tyq9k*E-umy&(F6{+iBCTB`=dDt$;P6H4M0Lry*|C%BU%m)f@e7F@7f*Dh= zoWfni6kyRMM^EWKUd>z$1PyQx=x)v3gV(05W?PNa0x2Q~SMm#*Ud;&G%Q#q-O0Bxq+zCKU(SLd#KIs09R)}D|Kq4Te(;!LVoiaiGm=gWUhcT&AT1QW1 zmv4)rN;m`H;0(@m`A|p4x^u>5k2y3S&Y&88^mnur9@{_DCEy4tT+jNPk@cl(sfC4; zdC!#SKmFWmK{dV)O9}g1>UH<&0=t5pgG&;<5q_8j>CY-Z=H9s?q)IRIczM#b28;rO zc*7Q>$58H~iN07tmE){Zj8e7}ms#1hYif`gE=w_U{W;93lzXzP+4#(7>6g3I{%j8z z*f9Y&OTa?bbe5fO>c?-+U3yDEtrcduBz$csNbHB8GVY{z0{`I=w&U zN+WwpxQ8nDgkfI2Q3$kZaIa@7U!LB#>7%lg=ZLJyGPXw-)@3#gVqYpynb91Z(E*cu zn&yZ)KmWxhSG>bi0w{C%;isgOABPJT#12aAJo6isHAz?MyAOUmRrBkd^GHy`w)-cV zbl%Y~sZ~B$3@3FswkVwwlAdq;{pye=Yid&C_OPt-vVBxHeR6itezxQ0$@6Z4A)qxY z^?^C|UVgJ$70ONsGKv0-IxCP|WQ%LFPX^j;|t?8ZV7sQIlF? zXWKOC+y&pj~&bIo6v~b|VDvL*(I^R#Hsp{JC zB9o|yj)>^2Uo%Iv#E-7AcsyZ$_5Od5z%!lxmM=_echtwW7spb&B{(PY3jKG}(1)Am z=h9u|5KpR>!XC$UG1mQ@bQE6Sd7p!Xrq*0$jiy&(Lr*eH zmoG4T!kS|hkxgC3A~fx($Q(~}&=KxAS7w(xGK z5(pz!UR=YTqQF^gLBp=*_cHC;_e)uA=H-k(6V^d!QI@NmNghF*065OZAVlTl&Rd4m z%i!$!1~9EBPrAr?quMeU%xYAy??+v4G*0(f-LqBptOGX^P*zwpg3BQO-nPUFNRL2l z!>=B6kx3ujaCe{lw7A-Gq>{EmjH+p5mf7~lC#TUP-}S`L;06eR18CZ&p;;;^pa0|G zh^j{bR)++3c5|-=XwJn!D532(XE_~7CO+oao4TYxu-$Q}xqGOLJZOJOFjc7q%`3v8 zgg@>TCJG2)9>trALzg2}^*qB&OyM#oaZ#^8zaBxee0-?gq<@<|m0f9TR<|1G7;E`eS+y%n^ZAFu zmxQuhb*uo|9bSD5K=!A?Kp5erD!$$i{0z;Udm;KjiRAY?563r>I%N9Lw{|dZL#+1q z!a!x~m-Sbh(tL%jcPcy5r_HvCu+oG|J6pTa&0R@Et04D?F=sh+dwO?(7tqQ=ijAnz zw((Q-3q*tVCcJtc`G}D2@sl`gnu7qZe!+Zy`b%9T1!M4jgX7=tp6q-I`mUK70S+h= z?6;Kn>W?iz<+OzW7`tg}4vUBTOSHRqxZme{(Iq=(AinJaw>c zS!!gd9s)foBAdidGq;)F>#(|a=hn9`*>^(=7=I%H3C#|mKrT5JkR~|(L3b|$t2iN4~UNP)7_*n$6T|(`)@w$0T-;o*2P%_{y z$R6(F7qQt1laz0j;}qyj`+h$0B5q@7`_8fo)9O&Pbbq?pkrL?iI4xZa68JZ@3#tRu zeZ)?Lb=Wquw0CJAXtXbPk#`*~`QH(qJL0*YD@hNZ<5V&w*vv)h==Ex1m^6oPg3yE< zCaUZJT~>-_*)0|H%bNDzcRTgZptJlbzkm<+Rw--pFf$M9P;LMEtqXtgXuM`Osc5F~3aBU@U5(G6 zWEbP&hff#fhIzeqnObwU+p6sl-q;|!zb=^oJ<8{lQ>C-u<0Vt zz|BV1Otr{C^`#>P|D%O?FqSu!B17pcm;Q%6k}$qF#9Zk8eMQ)>#UpDaBlHWLe!J^U z?jo)xR{WkRH~_Jr(CVY^+s6eeI3eG-m7<1cFO92OMQ^x>K!xJhr?&m?fG!~Titr*pz_ScC5lK>)zD*T_w}D z=OSD@Enmdd%l$mDPC7=K!^?;OjsFA{B6}}H%U!l;l(d$LgeDJv?V7as5?ai?jZLBU z*@MAZJv#E5vB~vt$9NZLvoM(Pw9Ch2KdqEE6h8Vy*4$mRYHfX@09MeqcwaA91>nn9 ziTpbb3q=`PxeSzAT%KqR+x@x$gYUtxd6aa>2ya5+Cag=+OdbIk-IGA5R%`EgILHvX zxa$Qi&QTMzQq@!S&QGqvH>+8k4kpi6m3Q0Pi@?Y$ZAM1vloO~wrz9gAP%5y)UGm2F ze;T5KlD-Pw$oTbo7+iLKME?H)U8h|uvN<>mWHizV`g zP@HPM)hA@#@hNx@jr!bQ)nj&O7-99s(9p09T{Q1Bx8()>XvPuQpB~b8aT0mxwCGt) ze0cdL)z7AXT*9rK9JGOd)gdLIu_^UI8|of|e({EY<3TI9-eTqFNbYM+HYtN#X|t?@ zLSC%P)RBh~TeMDnzNsc1C2CBo5W`H>wvO9{+j4Rbn4yo#ulCOibMmVMDp;)+GfUo4 z0+WD|>t?W%8Z$zh6jP)~IdrWxt0m`4UizZ);m-lSc_1kxo*neA#7!BYLGzZh&{v-? zi~k6{z_ARQYcmmjYXX7?;Q=ALoy_~nZOVOL*o<~px3_DDC$p=q0w3sT-U7y5(qM=N3e#}rpR%OTFg1|Ri)xve;UZkGwsh|Wr zrCqM841i#28By$mdlhPi4}40jwLkYtAUDF^b5BC8CKzJkM{R*v7E_-2M88V4cT3a3 zB9oL4nLP|YS#RafKGo3(&5e8p9MDO2o#&y*sl~5 z!`%gu`-v03%Lu#{SJOQvo%pm5-xbKPLq7kxg5cKjx@g==w0}=DE7+qe)__hII@o7v z3~~)HF&WQ_IZQR?=(#_7eiba!;xkV;=!VOsnT!f*Qzc*jvJ%8uU$%U~}sDtr9ubS0Hm?nxRN2J@0!*eQZaDCTvJj8M?uNd(w-E5`) zHLXX_ghco{Y{}{8lI3^}aub}9)AIdor4q%URcrp^2NidX;$1+)@6z|p|CTdEDVU^mHpRo;9MJkbA|F!jQW(W<5 zto2HWqXwM(7ZfZPJg1|cFJ{4jz94Vp)8p{_ZXX0lvR1oW8*;Ze!gal3>c_2dOSG#6 z{*!qyY^~h1{|t%uji_cT-A5kj6+Gj;7{N9JG`YgKlOE|A zxB*=gJ=rx}3~OKWM1uFC17@1j1X+Y|8_$$G)Ot?{>oj2OM3=I6)}$qiLKO;j30%@M z`g9npX7?)t+Z!eJT%|7Z%MSVD{3DB(1Oq0lI*u69-km34*z{19@e-n7rK0TK!UfDNRAe9xd(a zM|Qb+n{8b2T?1V4Ju$4{$gOQo%?^Z=MpLEs0@qcu;FUa zl%e^Quw$_w1!GAOazozAT6fKhk!*?(up2XTVxz<~(9U)vGIwXRsYt(xo{e0qPCb^m>HVBNdA)$eG?Ghq9!dbP#$Mj~I z`vBbEKEJiIk3Q9yf^FgKJF1uqkmZX+$Wu3Rv6ALQ#%J%wl+I)`(NW@{dlpbB-_ZEN zGsT9aZ%2^y1wM_S}O-NlYH0^3>1BXwSH=LOcGbJV@EC%NOknSfpu6glgjO%fgFwD zi?+3}di-$bt6#f&NEn$&t8EY7)+T4~eejH^_^`LgOM0iAp^%bTQ*#4y+vnA1 z&a4kf6-6a?Ymi=%8aS7YOtE~+(8_MhYpeIUysLay#IL{pdU#+oD*Y>Z`Z{UKUH%pA z7^ATLL?sABHkkS~8S^(jm0(rt6ZIn&BzbaH{g2BPrg1YDsyW+vdl6GXW#?j?IoRnW zJb5lNOXtB4CTrpMfTEXOisRp>3_7YjswJGon(44bBgcI#=AwE@h8tX-K;JuTT9dyy zKJ(+bfTuy9NqCS?460<3zpe)EZD&t{7ZVV;YFdGQN`=b!9iCoE&a}6cg-GpB<%B%2 zdMM&Ym`m+l#;quLT$QP_zW!V2u)#>5zQCC@07riT?h!V?XuQ$u;Uy$d|Lj=g)BYBZ zV^ZBEon1r!rF;%@?8(v=03;ak->D+6l$Do1SIc7{828?fWUs%#L}Fk3>;ugl)Kr5b zYg|y72zWjPK!qe{Vq&^3<0pB1u*{sa9uph;42Td^{T%=LlBa(hIB|C0`MM_uHRnRY->`W}GVS|H*YX@Va^pv2v_PwmwxIUgWMALa-bjyt%yd-WQA@A{ zNo2>Y^WDu3gPGqtIhD+MCywrr!I+V?`2)qn+cKr^l4#a!y0oHoU*Q+43_IfOKX%|; zd!GDgL4?a%n;ooqpU)>_euUim*3xv9@iHk5xN&b!iN2WZ?M`pC6y7-Kq5JCK1>J5G z#)&?d?N&ZH+eEM?5fPCX@=yrO^#2;rR-Y|wIJU!T-~RWBe)x9|RpL_1Qpq59e|?l* zk<1SKx=Z)^Yj`?})y2Dp%AzH#cTGLnU0qNq&n|Fo99@&CT+-qSsUpm`X9+LSXBBafgtFWgZCl zC+gtDm}Cv;x9NuKZ!Yf66a|$Loo-AZE&7_Hoi($*9tt2)Gd(gV_W$Pzzt@LSZ1oIT zKp-%QJ9S3~Wa;Cq(<+Z-btxgK$cCq0crO^QdQH0W)p4-6uc~Ju&hGGl^xCzpz&l%p zf$23hHQz>iC?OgKx0(r|Ek2RzX7}iB(@H=ZgPD77Ep;N3*14!IW=QFY^43A zncdqoIo932QVeO#N?LpQBBL$}iA{)eOw1K_c*fN@QC@17ucr+*c*#|8?L3B=;$>lq zCv~lOT%5?ms)Oq5lPRI0ml&l$h4t`C_2562#^KY$&y6+SiKD9@bH6l>_V=!MuF-Hpo(@I?0#r{)Kij!X&TPBUt5+5~ zbkS~NjB+?z3dj}OcvyK7-97WOHLu~;S%XqtTN$L6vtN0w&7|-%8=fA22yyF0_W0_o@dx$f;4%W`M$2QqEbL?B`?8>2P1BHll=># z<{{6s=q;l6=o#1WEQU9iZ-g-QN{!lTn=3tr$pWiMqpq(0N!;V2tgP$@NpAta6T;q- zG}|AmQuZv%PdxI}P6f=U5!olwSQIelGKEFYp21?V8$0#egM+JIdx;Fk<#CR!(r7o4 zI3%FOyw7|>{3c7eJ8{g%cYm9ha*XXtw%zXUy(NqCA*Je+ZfTrDA&QB=jo)H3{ljd_UY<(Q}5^Q4GF~y7sU*V>-_IUIGAY*#vSVD=-kYd zq%=lz$F(5luJt8od`tS!H92{MLp@o}#)dQ5dx`D{NFutB%Kx6R^R|IhuID`Sk6tDD zt(LCNY#42wXA8Y43456#qW~5`4*^FK|vXr#cd2e5#qif@9aJU(F7!x1Q!X`}j z8L4yOP;vO0rj~|XUqw)vJ2+e<)m1ClS^x}w9nGPBn}>%CfFF5q*vavQWrcq{T+q7; z%nC);d#3mcI&5wd6d?k(wWNAXpX*Rj5(ph1MoBLXSmVHW)@E^}1g>B0>KpgVK|kBi zWCQB{?Cgtx07wv=f_R|5RXC2}>R^@>$&*!L2(YrvX46c)h6Nv;^(ZE|`M9l@M{7Um z&oUXCcqePJ%=#V1U$QUUO$F$LqoDCNFLy!BP3dcn9O+`}v1E}eSf)`d<(Wwr@ihDvUa3Yhb;_pnThL3w#=3#C>1Vc?wwpuW3xt+}8B zBL50EN}}D~$0vj1b@A2dzD~n?JRKI!+S@NXQGLpM^80}3F`JgBxcr^j0+ciVaCS00 zkA7hA`W{5oxf*rd^1F5EHuXh}#5vQWo%=za0M`m!o|bIYmX$)%%qHo~sN8 zJRE<)^KN%R6Bw>=s%jetLbN2-%bNq2lO*6)S(~52Uuos6-7hG-ErE(uF#6~==wJz& zWTG(_F1a(cUOzc+wv+Ue7^3kG8suNWWF4PFD(3OqJt(|h7?PTnSAz*lf3qcPPSp62 zGaxYqWh9F*W*;{q>?fDnQzPG?XII3_SmGR$Ivi=?QbcWg{q9)pJ8?+7`qs|VPVbRe-#Uvq03vF=i}p3 zw3Yq1ruJel7m%^*PK3l5FTWHgDe57H40TTF!_4}W>CDxpt$RMJ6soNZ7c$pQ#OSZF zP+ip2H-3wQ!mnjas4MzeeKx?~%wS6klCZrpG&FP_K=j;FNdDV<0S%(e@{TA}tV&O> zN$+v7Ms#Jp+miHxz&S|j_DsY`sWnA+icAk*gNJgde=Qbu@YeL1J@ww?_TYs*G!mZ% zbWSUh8iOiR6I1iIlFppESI7fLJL!lG@$kNv0u^&pU%Qe`^bBuVFxMW6t&Su*Vvh?p z<|oR08Am-r9Qgaaok`_jtS#~O$xYH|U<5JoW>TBCSfRlue2>KEfI`0cqoDQ3VnWa4 zz%j-SdARd6fQa~~?Nbl4VR(N+Q+UV;YuB<`T-C*z>ESIG`JZPTn3~+kOw# zS$sIPLE=1`<+y>Bz``3HMUJRV(Z(l@lBb~`2 z3-zMI1Ih9GJ5IFkqoYV6E7B!`w-M#J<;Q7GW>(D8_ZdPr78pGZ@pJN23Srk@6qrD% z55ZCBf^iT-0Ic)-F#%6GB}jGVGbH;F&js6H@Xg2&z!&%C8;MFHcFu#_H6FRT3IO0_ z(82cdJW#3GV*CH+Nz>ll`Gt@7CxTwsUcJMfSdP?myf^2>P6Po@-8eOR8HiYm%F50{ zjAaay9$>{9oujITM;tfiFOe2NAab`U!P&{f+Duq1#jq zVL|7>8dvjH?ly3h=Y!73;WSOo|4?q1w=%C7#ox|g`y3>3Zv`M{^=sU@?Co`!hj2LD zKDgZS7jE2X9#c8p0tSbEPGmj)HW5+|mYqF9O6l(!T zN4|{GzSqG$W*XeFV%vCm2*j-MQPv9u?g_kNR^ zTJFr2mmzY(i7}lU-dCgfE$KRlVb1F54I6Ij(lG%7-de51i87n%Mg*%l8%0xTU<`k2C!tr&w-M(lC|w@yGnEJt~dd^`LOQ-hzG2a zffLYcWJOjug?xQax-`2NO|#B3Gcy7EMoJry+#BFU_D+7yb2}T*-mZKEFzQ!An^*Ga zI<5`0CY3p!Mk)t~hjUX>lj#opW@yHac>Y%WWsvjonaxK0&w*KQfS3WS z;zx3YMTlLdP4PUIi6i5(rJOqxZv7WWylLW=*d`octP_(2lhI40uREuIN#gg%X2+{M z1XxZNAaU`Mx@h8gJWS8lLaTNyiCxmT4NDJWNf+i>q(#X|zpHg0<+BW859O%Cwl_>s0IqT94SV8!$ePg%Xr zVC?pPqVy36#BBkA64|k~Y=?=e_YRhMqYvL6Rz(kmUB&+ElFr}C7zI(y#_)9>kBvJl zYh@`xAD-h}o|4Ky0xBy-!S!dxS)KxR^(~$j%qcR?=d^ODVq;OE#F&~lMbs+^)VL+* zEmw19X2PrxB$cx=D9PHvDc?=P1XP#I5+h6cu|$qmNtfa~25a6zK&a~F^%QtX@;)^M z)!Xljipe%+NF_K10q(}dCE=pIjG(h1 zS9zUVxTZ!hs&stTFFHMxlN6Q^S}8c@K|umxop_=!%|xK2p&@~Qtm^z*Ew+r(C|6BQ z-Df!O@%vD{ZL@=Al8Yr5Z^gHdc)vu62!5&Z;iFN4YmM6aaBL^vfpi|*poYp+pk{jj z|NL}*n1LZ9DQpZ(q5VW7eNwqcnFo5Av)ATLKk1o2hdnf8|G#TaH+U~q5HW}WnKf_? zY=eQ~hk;GA5GeIPl{P5koNqVz(|%>n~sbwr;Ass(s>@< z5pUOz-xiRzEmt8`lH1z;Q=gL!`x|^~z%Df~2yR#Al4w9>;3f#s4iqU_Ds37ObFUZe*=1GmfJRf-dWRn6NK+2aA zcstZs(pO{hx15BM@tdI9hdIIoP#G!ud3|5UluOiB21Kphn+<8gg?tzG7U+Yq4Y^VK zx4zzbERm2k=0sc;{p>mk9*42O&k_eTEH#IUe+MxU$fPpV9H-IYX=%5w4YB^&ZM~S^ zX2Y5WpHT_e?dKG~_9fHDSJFT}SII^c06c$M+7syPl)tOf>A}5U6Z{iq48Kd3`i|?p zbLpWMktT5V5?lyeYRba`lds8?Dd8oz?@93X+wfcbC~vCNFio56`@(kt-lc!$fuF*y zDD0QH-_ygIx>}bZD^kbBh{|Xp$fZk{&cAx-DPELZ%$mWL8YGbu-JK*c51fJ%w*Th8 z3w?aYb1i;*W8N=%Z7Pj*%M(MS4Ju%(>DH8z?U%A!pXS-6n_fSo@O5VF@J-cGzp5u% z7mAbG9#0*}1Et8aH*^~o9|y`Vf|Z~K*=CbdDOJjOJNz1h{nc2WyF+=F$whq{gk8iK zJ5yws0S41z*|tR>=kmWRy7v0n6aCOXA5^aLukVQ_(kYJ)#xiRzBiX*&=zhw*iY<<3 zz9n&s!ZrBJXOqAyQ!Hhs%j1@hNxjb2++MiAKT&-Z1bN1gfYL0M4Mr$&irr;>J8lmO z_~pu)`06D;Dy?~`iOg65V=-rH$Wu$}=I&+T2VmOESjzWO&Ys}Sc+MGGY`7Y6dgqjr zDp}LaX2Xesqa&Y0Pj@d(w`s%!C>iI8oFU8qIRNa#8kpxX%539)-vxi%7=m6{CYYTB zZmhqms^=vFF6k%zr&2zEFn-;=L6PN&EAqTH_p@UD0W`CsMnHnU{z2}IFs>k76pTn1`41(KC^9LH2wKwuuXWeB|S3ShlBtLGb-|Z|@L6WN$zR zF|S7D#R%Ky^lL9rO7}7oCl}z4g~?OyU18%gk6C`~Y%}gsaZ-b8%vpj~kLyBPi64M~ z3I-_GVR}`tmXiL)$GGCgmrg^~3)VDgpmdrYVtLY5KWZ7L_Ap3&rztfjGO=782`a)z z1i~y9TOcf>AsFXTWfAah2_)u!jNX;L4EnO9Fx?Z+!GIipr~4!ybuO!LTzdO5kAa7H z3A;?P{!me8LFIkCX~3N~I`tFfhgFG*&hTutD#cw}GnjXmEELvf&tU;fq+Ste?UMyN zup}GYH;T2HNCRf+CN(2*!v|D0#IKENmwio~tBs!|OIGWCn`~gBH&2c=qxCH7@+>CF^6MM5CoKVJ2!@p;iBTG(flva{oUUc9aG8cNH~ADJbt z_7pnpHSn2xTvsQ_xzep7Q19)VAy*4$V7`IYSFpLR*p(8j0tRACJ}!r3O&VJ)ua{2;q8?O$S_xCZbF3yRekQYzu=@<~n~l51#0*Ft)#9mH*vTnw(Tsp8GTqklz%T0vmnvo&q$Mx2z;U z@tp+DuP)L={b(6aP!Jub(-Wqw>Sclc+($r{5D)%N-{vO(Bh``<1T1Q+?*Lc-=~51MUbmB)z+} zz1@_pnf}z$GE;bZtotHJ-5)@C=w92to2Ts4`M;m{2}qMG&M9ZfYVO)`Xy1yvIj>0r zxp}jlHvR-1@kVd{1?nOO9R5@tZcSrj`{(Lka`N(m($iTK>V?k!RqM`4>1M$^BRPXY zO@z9JXvV+}w}h@?E#()_Z&H)^C>nVtf4;aEgSQ1OBO-|V1~bv6&kyd*VppsX6!4Ea zufhL;K&Ek~RX!p#_p&yLA$j(^UpXOsDWMiJDI(q}uTS4Ln6vX~ec)|-4g_%Y3tmA& z)c@DqxUDZp;auELejqS+4jetsxj%?u_T)PWHW9H{>@O-Q`S#(S#g!{pGz#alP3pWT zLDm`=8_veg#{^1M+;m6#TheFcboZFl(TP^Sr5(zyV$DH%=uSWMK8Yi~eb+IUt|J0k ztiv($%<7fTSRh#i^2t;13+gK4O+?%VsqQM1P@Ft&YPuGDB|e5>B-)nG3?0Uz7_nmf zg|35D5R|l49$bKHad4=8Y6PDp0Wb9Dc=feUNPEO18KqMFFwccZ51wBqxlpMi^`oig zTslaEL6^$N2;9Uzv@T``x`j9#3bl1_`*l;dW-O1)A;DG*Ay%}`Hl@^C8<}7)jHm*- zHzKh2bJ16B3C1`NQ>u8pl6cefqP{e#ZTT~u3R)uoPdgugk|1s2zkWefhW2sC!i=GF zF|3)NeN&IQOMi&!%4&zSn!vw@&7-fu-`~s2>q8OyAFKH`1auQH{V0?@sh-dNEBy7z zmUqB91o}>iySzb4ZWFRbb=ednnVJ_n;@3SG%fW@&<{Kl$5D0@0OtSjd1xSF_XSt17 z#SKIoTy=9EyEfk`-L2Gi4&uJT+}*9s?Y`%1eVwFIJ;&VE!RghE8j9P`+7QHJ!~xHFXn~Io2K1jhXk(Zz1*Hu*}z}mhOaeank$*_owHtO zE8ThYe=IBORY$f`!nnlcw*#XMH0!I z1PMjDQ9(LXN=h)0?rsoKx;v#CBt=RAk?!tBDd}#c8xbVGxqROE-us{1A8`)XIeX8Z zS!>N2T#7{ePkr=b{J(K9B07CUKR@+&b6YMRMUl%OTPPy3&)ezzdnW=R%j$CNL!HDP zixb0l_K}(nFzit9^dr4^IEz9om*3O~xv>G0~W;Pg243sXJH3 z`khK8Y76b~?mIC$b;mMtfaJ7|;Wf2udRD@H2OXATvepuUw{?%t{uOm(xl~xbVCVk#) z>)vVQsB+jQ!@|O{W2-D9YI%et>1^0>BrQZ0E)^XDP&Fqp?rE451Hk-Rg5D~WVrF_=w zUHwmw5A3{JxE2(R>9)FGq5c#S61stfHCP*76X9y)M*s)Cy$}(tblCr?dj^1_YfDl& zx^5YGxxH?!UcS=ncD1f?_~XZqTg1cxA3l6=p^Ru<&^uWEZsp)Gnz%d9)N+R%4;{hr zVDoSUIUW@>A(aR*=0FSQv&9^v7CNBYPLxLAL^lWSe)w16I zlLoRXEp8J8hIFGKC{M+PYdu{>RH8=h#`FgQT?FbzU4RKhR_%U%FY3b`k2aLerYfXY zON{3{upGjL$$Rb>fv>77-I3C^ZaQgCr`Cu?^m`MT%SLoR*H?Z|iCE+^ zApLw>vR7x;RRxSP=XT-l)3#DPzVp1&Mw(c?7 z+2}df>zCIji1SiUwn)~gR??bn_?`{XX zJ`3L#Y8BcMs6zd6y2hSE;LEfi+(j95^@g_Ez(@bAWZwElqjwKOtSCV%c@X zT;$s04{i3=zve!@8v3@9Qesxue8kGi8WnHs(q7G`uC9LL=FOqnq|ViacG)cbzbCRN z26Ol*qYrzRwdq?py1?qD;&#aUdxllPe+hNpZ$w zb66YTlQ&tZ9)?NHN86NJdaL?42)Qo8Dwh*_D)NE$d2TKkYC=lEK?v)!y&ASaK1O*A z?e*+JIUyLR*Y*8-GhkmuFt)z#;?EQbmx+>XD%JmflAz_<92CKA3iJ8p1-aD=VAIUh zij+-LEE5*c4&iY4nI)V0gt`Wg@8#Bvq3F)UG z0ABnasq({wZbOk;sq&|IPH-l0lT_Y0-eQW6&nhb)<$Km@(RZGzR=n+f#GPP%b$OxB zdb@ZCqmj>Guy{B_f$`7oTtr63eV}s)$@2Z z?Y+&yM($(A|7GD~Zxe?^X^sR;2@h84pnkplz3$MH3GFM%#ah(ly~V< ze#h8G)SWuvK3N@4bH3%c^~?Mi$w?TibF$uTfyPFl2-J8kP`h%>HR@1597v>Xu%RI6 z%TJ5T%l$rmBA>pN%PzE~d0aWLJseIg91b#pgtCHX$}F)G*E7+L=&5}oSDph5`A||) zGEc4e8q9tn0fm;s);J1+*LEdz!2JLFBrP1+3e*|*=(s8I3h9atA&pDi+-m5qIzPrq zW8%y!AmgDE?*V0!<*a}mWN|W`;lOQ4(Ld7foy2rRj2Brk1EY;&K|J1!M--Q{aRB+{ zJhcue8o}b}mLqFQGH#&KktTZ|vxvzEO$p!=diwA5_tfIAs=XgIYAYlch6sWLLT|DC zCc(G6Uz$Tu!JBPLppdrJu4vQ(e=C_L^4m$pQFJP z6T#n`V|d5ApTLyt@q$u zpZcWHTQ+Ajr7g`jU|XN*p~b> zzW&`Z)DZ6SiKu&cScxF$VRQBmmaoD;9#{X8R8u2)V!!cvu;y-uasYGP9~Y0450@9+&)N%B6{-+sZ@ zj_^t`tT8!a<0)tQ)VW0a-~ooSvon2up^Ch`x5Z3NGZ;r_9C78A1oV^L;1O14{{zB@ zh01cz_34+Nspaz3ho22z#~#swJ-Oo^)K>kEsE@1;L+fBgT7 zq|2M9p}V*chLXEMw&D|haW{15-d_*02JM>YWStswDvFus3_XLd@IQ@ThxYsQj0`m3 zj$uvn7kOTJ5D*fQ&agpRVqsxHPl?JknMUv{js~bOdKNMqM5Oqylap$DIGp5kG`uw* z?0(5e!#?g4=5W5^I--~%B;5ybYCnx*Ju%H7wUNP6?$r4Di@9F!koY@T8@D9=M7;+G z7546B1}0K@6+Li|BuF)|s|CGFRc$S~wygA{IOLg&4hk}_|9LUKWr9R;L?jRMssH4k zX__{Kb&=UNCg|I_zRSd>mc9r!FMSB5*cxZfO~l&=L1ASv&L?}cNT%A!)pcp1H2{)v zV90LWK)V$b`XE6pj0_z{gr#q0zf(2Jot*DE)x#>FY6!~U&xWHaw4B|%rFY3O63{LE zM;Lk=SM&y}2dR*DCT51+x~EGL8iG-Xg1Gxzsj}P1#_fFCMJWd4s=!P6Hpm`A=0zq5HSh= ze>OxuG)eH=Xx*x?+h_(i2mjnm$UjXiNPg>1)*m~3tV!iZ@REw-*H%?MWg)u9#wG(w zCJ;Ql?_46Cu1HHm826|6ff@C{p|b7If$QxpgV!u~G!P9>?d#I#Qs10?OZ|Iv_iG&& zl`I>D(E;c1*Fq<y2T?@$vD5lPwdix~_ECXis3H{qM_r9NdI^X?19?p9M0+ zy|(UWp%#uyPS_smhYt{5?DP5)csFUwatcDZvsz}pf5$AWJHP@lKr{U~jA(?iFEphy zU$b&=-rIRwr!1$0>qDD2<@v4IQU`RG7a!3Wj|VwdLr6)uZN0vCS|8bWMBfx!JT0Eu zs{7WkP(E7gdWrJK?SvfR)xBgeaePzXNYfofq?Wp2LG1}I?|iJPPIFh(J=$A0#{b5J z17`MTa_kofrUS#mxUwyUTm?2@lhOX467yyH$LBgHM>k*Q{*c6y*k2FDF+)Fs5+Wp0 z##>|a+f12(i$EL&7Qs~&3J3eM< z>7A}fwo>~+^)Wqdo!Gb0CmSKeT5K49$W{v?fUm5v-~2lArgKmv7Ebo>eo9P3)yXiC zw#H%GEMp(!C~n*D%RKq~y6 zEL!w?+BZ@EK?yzrY*e-YR7oLXnNgx!2ic>|6cThkcZ0C$@ReEk5G?2dyy`dgzVloJ zkfFp#9c?NU*GZPRIiL%A}^sfSiiVpZFL=I#Lv$ee) zwxfDSw<#ds2j@p{n^}wCx(pK=MOBXDCs$%>z2Du>nwJjucKRjv+)i@4WPbRi2cTk= z2J3BZV+ZKr-N<9TJt{~dDE2(vFrH>w$elQrPyz9@Qa`!OpqT@Ew6O$TUA!9M)g`pO z*P|&r`lRAX++9`I(hmzDc5dF8sf8bkX{YeQ*rV{W6rK%UL%9tUFrWf2pFTzSiqgV7 ztKM)rB;FPxi1qMhc1v;@*?$o0S0U{j*fu{hoDwwsdlWF4Ue{O(|FY$?DlUFnREl#g zIj?z%dplx5q8fkyufctynDjI)EV^`8K}}k`**_|8SKpwDF^A9#c8-cNsorgP8rpVl zvrHbGiH@gpSF+5u+%KA|U4i(cXprx@&3%HvDE2s!<~7`}VetJwIciU)Sxo*loC=0#a2~g^VDUS+xbYpS-0&t!;Ug`)_hf+*V(+m{HT{_KCnBa?)1C!g&p~TxM}i*E_F-sj4=W+ z>Y(CeJ9cf)gn*R;yLFaT&w|Cr$A=R{*XJ+}T5mFF;no+4$kb|E3gaCLCIy#nyFU@NtTk+Tx`$xvTZ(Tc8qRqfzVr2Awbzc-FR!*oYL2mxIe)tR4 z^egt4`hGi_3P-mOs&6=!zK98MPk%6*X+u|#MZ6^6K!WA|QD1P{+;44V6G1FtbxryE z0{MD-VE3J87H?Rz%~^i-j-gmoh~62sID3snXJHgGuWv#6`c21Rd&f0x_vd>>rDkP^ zrqWQTB83^}pow8%XXi1UN=u`WN`68}`NZxm^82qJl0rNVfNB}Tpm;pb{NmyQ2_x8T z41f16pAxFp3P;7jormI0^xeB`^{G?P+I%!l5vjD8A=^IJxC7aS4+h@ie6tUIInlr} zY+xw;$>6>HyLk+@&v??q>F-Pfnlzsyk|QHzbpG71E9nSZa@-r;Q#Lz`K0a;?(lIn? z)HxhH+z;KQKs?>Go+-AOBd4cie)Q;0t;2T9(dL*v{lwA2zSG)BF7a1s!0@&26$)Jn zPxBXUTwGSZ#sdiwEDB_r8_$Jd_vgtKo#{;wQ8-0v`X}@##B>wTr`|)T9agVxEqUn~ zn@$T7hh+Mwh|;QVFL?^HzPu8zH!)XKkPF6S0}*EpZb(OGz@_nEv5k#Qk?9y4vck(# z1F+@y+5jrdC8yBR(vlj#=47~bR%I<^FR~c%CAlcudfz)T&Y$TY{W$nV=|^nU2aUiJ zx5E#biBoeu3?erA=%;ABTpH~b8rJA+_X!g(p1oqN&BOPc>wg&&K>4NqxwK9!G~&g) zvJ%Qh7`&S?_{bc$C})OycY6Eh_bDp39nVU8S(R+G)el&5D(aPLD?ynj$0BSkGiC!5 znrJAyjpW?{c+`u4HN1TD=1p>i?5kHzIm)>lc58A{pSZ)eNzZlR1Kcy4uDT85O6@0w zKq8c@TG#<~2&en09V8f!PxvZ`#Kpx=K*b)Fl%$olt*EHDzn+zfRFfufnG%_qo0FeY zXof(MgS-s1U%+Jq1u1pi_R(GbYy}bPI4uZk4=b}oEod2_*tFN|UUGgdQwV<)gzgln z<4e6_{w8``@rp;pxP+1mL&}~Pi9-KeGci@YZfrnm@Iy7nB+xbbgpG_oVv za+Q~y;qAXh_$K;xZa$S#VZ3yY^pU7`9?>&zpUK0ga8A%%eO*h2I&a~?h}*vMRH6SW zew2wji{MJAE8n(6d*~wR;rX3UKEYRSSt6j;cbs#t?ECH@Ef!AE3;=A{`T6;EzRJ;+ z-|It8$1{$bNoHeqi*1;7N28j6l)a0zH8p3`sS5^2`A06}a zKWHTmhtM&ar|zQ-JqnBy1>!73hOPcM<8{uDVkBDUW}dT6iZ3Rfx4IWO9cpdKOa|WW z$7^|?8aHp2l7akN_+qhstDoIXYHV^n_Z@A@QN7bnVLB%QYt6~aI0HPzMY z%J0FS?s+@Tep+q77%tG`t+YQUQ8V|QrFrD>p~V6ZeWRAYC-uq~h08e!g1LUS_RJU% zsXW%!_rngLIzRrfgXFN_#yvHHvk5?OBcT+KtKwAjkIuv6Ms9*IdWD`S(1Zcgb&s9B zu=&pfnHDS;)3E|SEjG&{_m!0ugZ5y;uD(8tBKL~xs)ai3tErwkyKT8&-@m_xydWq; zkr$+?S9`w{anNIdZX6g}D(LUYLv35x_lVbN)rZ-7%P_^ews_fw5Bac}RSO=E^NB85 z`hCu*{r1wYR;WOTE#b7CB?j$p!VFg5ElDv=>=|CXLkG6JkxK15>H8E_*A24e81{a} z>n@)EJ;ZScM_56@U^ZUVysQ>S5(oq~`hPvjtz`*1SgoVA23o15;^4dLHvRtLX16tKy?*qz$qT}VNugJ}Z4dLSuEi^ob59hgz+Pxe7ht%$ zS6pYiiVOaF(+p=IpzL^%>Nc2$ITW|m?1M30Wo?*Vhj(~*xIZ99&GojWj7}255hTuJ zbaC*I)#_dB>zS1`Lteo?=QBXPVZ&0J)wu2rK=CULcwvBiid`Z(P&1Fab`65ilsAG9uqN zKB`A+|Ii^R%86~omff`FEzK1xNrwRzfl|aOcXLz2{ zJaN;QY?}f_Z+AA8L(qk7mb9L1j%CtYxbZLXSVTL`11{OkM{>G%Kk1VsNium!4LB9Y zbj4Q1e7UN9KWbc_qO$>D;|UxwWJ|x*04W)oS`j~#eY7epuygyJ;M<={NFwEN?iVb^ zbISbrB|XgQ_s#2VZe6k1FUxFwd@>QM(KjQt)UHg54T2~t9|jM!cb@3U)lBy@w$IBE zGm!cV%2EaRc+=)MQ&?GXR^NK@;q)T1@q-4Mr7N?V=33)XWqECq23n97rYiYOyF>e* z!P(_r0V$W^2!v4lOY=+zil7Sn#32u!=OA|iEqWZAHkO|#3RH+NdHo(27a=4c26s?A&-XC^R#VPe zItPt75;SsicPBp~EknwjOI0kbv^k|EC0mpDZ0C1&aEsMK;f;y1aPPif0&)F7sj(~? zIyzTN>Dzy47Mz?2==s_%G8tj&Nf9L1VpCn+EGs~^o&MgLA%`hfI8J|9yI~7OMMlb* zHoVc=-rnACxyg<|u&}ZM6;Nb0@vt=9_V=1R^5jR;vdn4h2?jRTz4iMmHaBdTxaW-SYZA6D_45FBI@f~lSlQV#*PXK3O)^v zyjp2JTzK(UeXT}sRR<4GMz{(dcnI9QDS5MOlL{OD=is50LgFK;6{%aW;Y}T_9vq5~ znXcQX(RAs zNJdWON9+^b=p%PwIBIkpNL@KI@&Vau9!M9P=tPR;N&H0smF|e3j)1iE9$>E!u=9?K zp#Vq1VLhLC3Q_v%e%%gfKRMRj_Dv{A(5bP*1OYj-O5W440&Px)j<@bJ}r{QTfSxXseQJ!J*?Iam}RuBG-o_x^Wo_tj@cNo1Y?8Dq~j6lw}; z>oXy0AvfN1gSD60yAyeRzoIK*s&GeyWjfdEok2EiowP|=@^-zbdb$=9-pj!Rtt+x0mR-qw{S+cQl4T5203WLinaP(GSMc zpdeQIQzPI-&%^U~TKQ;PHflLmKsoEO$qGUVoT*C7PKZOnz-x}y(CJ9iM=!u;3_A%; z?1v6Y`@TZbAxKC-69583hplh1W$F!Xd@sYu+GT2MYYi_>j}rK7-{fB~5nv?=x!1_2 zNZKlPegN&r+RxABA9QMTvJms@>p?toZg(^*%$kv4zr(ghC^=8x+CGW@z}eN<0)q>@7?(B7c$`+;h!sKU2a0(x?BEHUS8hb#qr!d(DIL#B&IT(x2FqmdPID0`;1ZD z#ghHlMQnD@p&((PmpH{iH2-hZjsyIAETi^k-raNB;loPt-hmku=vfhy6Z2dq{6!0F z*U!U={N4Iex4$-9v-RZ2wln9Vo8!Q*dFud} ztk$BBsPm-DeSJ5na&s0(31y#gI+T_-!2vC`z8q!@FGI?g|E}Pcp2R|B!7gs7w*xDr zxlRBej|#YZ;+ZyB#<7}))}C-i_DVq9%rzvvqjJyA0}WF0K*~P+1Z)bnknlYQ`%+NfxW}gEo8rDtGrv=;wDbarE-& zS~oTflyWDGm?0&2f-8{7XaQ_Mhojo&A-A@^WmgX}65) zH&^0D3PMe{B_t(HmA`z=f-McaF{HXJ^b^B`>#Kdq&j1^&wLr4`$PTj6d`+jL5mipp zQ5LtqzvB1y_r258FNp-8*UqeLby({@J|+wnwr9&F9fCuVMp&2{`jr9#0x&>*Rk?Hk zx=v*85^_rdSM+4;T}W}v_t$0-%Mjox;P}Yp8qX>iW6b%`3T1i%k0ljy-E*0a((q4} z6?4Ggd9ss_kA*W8vJaitLzwN9)~SR&C?MtJJ#q8MKY}ri*2g9e&wVzt>O=I|>2ic@{VCe{J-4#a zfuzxMsh>y4rG<(BgMkjHmL@!F*t*t$Y@SLCOwO{dG>DMb-aD;OE!rHoz9l~4Tj|h< zHJ7rD^3+)1sC``Qbr9|6f-Z(Qy}4wmbEij?S@;JFdW>GNO->6z1&vGo*YA%U{mt3k z{amo|r=;Yez}Z&m%l_Q2iJh51eoV^YISw*~Qt;t}2Gi`HoPV(CpxbC3u|~Zd3V74< zMpdtJJVv$A+ub)9j+&qQuylmteF}u`o&@GKE!jlMvovQ8i*^xUlOX(lJ*=9@BL{mcYGfb7TNixkh#WA>EEq{N0M2UlI*L#c!n#Ov|P@ ze|u8TzYa^sGd*U*u`BV{`ab{Ch4YDPh!tynl?rp>WT&}LF~O#c0*R|M*_YQ!<|csU z&@5X|P@icazon!qlC%HUt)f0ujpe105gkCxP;yTl@-Q=pXnR66I1W9~mzQUj4myC~ zb6ZTm9krf%5Ab<~vJW_*qkF*~yQUl@t8K2|($ccG^2u^BUe}`;1ew37Dp@-oLJEuJ zxA7%0HI*8~K}fmN$=R9VLW|!CC@AeZhWq+(!S;j~q>vd3BWGN!tT+G+Z8hXWAnJM4 zp9YOLMHLk<;nv8)6j~jje(};z;O1h`fBDkCFOIWj@f12IuOVEHcfv+;RZBN@>Rkxg z>-MhIIPM}<3q^+**d%F{9|UP>QGim=vY5)YWr=3Wx&BLqkivBwOJ0GIr$*aApARrB z+IedlMGmWCdF9+OGs}l?&>Prx&+qD?V=$u}bZ7EL%Xzifkn(D=!4h1cUI?KbI$hXm zkW}MauthXw&>0RGyV>_!+Sf8^r_P)TMTFjl{`)8POi*!NhyHkAkPQHCFq?XCWL;~& z*&$=SIxa;!*uR3fYhN4K4zdYfTmiUMa2`PVniNuJP+OLP`0$aW$ z6dUi)u^4T-GZ;QRmJ&XR%XmZgsUTstm(9+x^!&9q@il2WIAOH4HShD83VP7tyo~Z@kp84ar#GqFQP%5?!XDfbI zVnS9f0Hr!PJ1+oE;s5-uw-#F`9F(X^X+dhKV(RaFxFW(pu$b&PDr-`PP5FmZ7^61hz6b{fBYxrUC8 zZe?x#Zr*swzkFEQk`)PfG*mSJRRM`$rPVYe>RmbJPS5UHRoJA6Oe!MXF0v~ z!Av;@f`muLxNrJX^6iN|ddCtKmcH<0b@&k<%_(Z{4-*@@(o#DBM0OLqQg@4ZITY*T zwZ`_>qFt*7uf8!aW6>FuNHiK9QO+CyVv)wEohi5H7oK)1?&|RbomLMk@$NnF(HY3Ow&qSF2n4v>|ddv8?G&cnGrAw35F#A z5m8%GQX)+^eblZ%SqjpMWKQM6M-E$RQc1kGVKsDhbu|Hla{JC5)Tmd!z?|vrOjk3o zu%PAaNPTnOssNonv7~fjVS8EGW4FC#jPg-Fk8@rKsi?-r#>=a#hCkCps_Zw3$UAGO zYPq5qNeN=Qt@b>&iC%OxR0{qePA`qWvG4qA&#|cGvQ~XtTvk@v2H9VkzjEv~pm;T2p5DCoGW02A7xoppgPAMVq^QU?H>ABq zsnF@#Js;ggB=N|KiB{7Y{`(`JnL)@EPal=6yV{5?4~#e^dm zOE$NDl>8uvsqWs)wjT4ckD{`E4=(;By{FXhuDD;#_?I-T;Fg@6q7wm5f8XksnvJV+ z>+s2kT+6mKDJpsPrY?$9wdIP$c0g%=oW7^2sA)1a@Dp5y9DM@!rodqV`Co9DT3#nFwuyGUYVSr3sUfq-pugD}~z+nWsBZ5j$6y%`$ zkd&nXGcsOc6w+)ysll>&$kxr0{oK-%>In?uRAm`)CMHKHb>*yf$6})iC}W#8wBsln zjjbN)!OV6I))qPC`rcnQreTa(N=ys$^J&LlLZFqV=38EH7*M;Ju{DjyYMOgAswQ)E zY8s3IVQ)N->4P)D^SfBv~`( zwY@#3v^(KKJug(=(UBlfeR45!%>tJy9upm%2(Mas(HNWFsG^Vx|6{Of%SQp%x<{|* z`LKYs1FCRg`{q@fNiBn+j*hZsNBi$RJ0RS+jX$93$kdd@a zHASlDB_9#HPAGuvhQEHqxnS~! z5VgfQS!|LNlVd{Qe`$K6mp z8rpn_b=|ysdZbu%8?<(hoq^)ucHI9`P+V4A+&m;JjKj{(ZpDiX9(uqWGO)5D4Tz9> zq+dS>>rNI!tgNgM;AsK{(AlKDy}h}u_@cj?b_%~EF8l|okLxn2LcO?Vxgp>&@an!v zkzpm;(FM5`do8vY)ym!SaVzGkL^J_hGuE=sS`OsfNqw<#+zS=CzHyd`^*#KcpOCWV zAA#%Hc;~}x>}k>ljfg{Ik(j$_L(wNZ-5vd;$JIk3UYDg?<{fL78_y&N^n)=blr zUwjI5Vj0Q|%*?InViDu(Fy?l;&iM`)5A7WunvU9n^@)OG-zf5^-Yk!Z`GWP_dAwO+ zNoArm2z_mtuI0|c&aH#$$S#6cOblWY^5{-lxX<65cUfDcp&9lbvcz@Wj#huKuU`Ob z^%ZN*Qxg~qDq;MoB33|D(2#V)#Ha1OP0Xt@UG`(!AGg-^G4S|lOC*@>EvASJ*Iy3_ z1X-?LuR@FrqM@NdWBA*n0Ip7`ri)#UOpu)w(4X*FP8r7;&CJbZ23A;J<&DcGi#roDv-Ls? zIyMFGEx_P-sx0K>yl`CG}+O6D_b;3O3*VGhtVxEJo&8ei(%sp-(xK3)XQwf zI__|y^aRm1GQC3{7~_+ZU#hA|R{K*sA#b*$ay-UpT!3E9t=}aJxj!4k7(}0-w@gf7 zUeF)CPmZ+wb39*WfEnKL>q~l;;1kzuwzU}XU$45@#a@hDb+7xn{ob=}gA+!M1Bp6X zXXSX-rkAIU^0Fin?r=%&lRu1u0v_2!D8=NT=d6|KU5kF>T@bI7cB4A}pf6I!4$0AI zqOf5HHi)EKGu(l!dU_xKb5&JB&I~4PhF@SWBk+q~=mo!KCEseDto~Rh1f0x~!<%GJ zt{h6F^IUXabB@j5B0k|QOZH|Q`7_rmDz7Yj_VppnIO%1$dG0Bp za{i5_rKL~56AoAV#r_#$BuMK6VFd++M>N%8X1q>IB<-`r-|*F=jgczn!#B}Xwktg! zk?j)ERHck=Kqyo}77RZ-VVv52vX8u$^a7GQwa0dvO|Y=MB(CJSy7|vMVVevsDuj~l z!k!Yr;kb=0aJ2E(;R2d-S=5Ts#QWuGZs{Ga^lnk!CD)w_ci+4mtrd#sZ!h8BjMVzl z_(Iw+(5~_skM4G}N&mSA=C15H1!8aU!4SvaBkQdaU_pD5`78T~GdDpwxd4pz$d4&A zjgmW!`GPkPCkI;?fm<^L-}?e0YmoY3CTN;S6BnLGrV3#+56HD7nfm%_T`SqhI3$r0e`Bsn5Yq%6+n(|=7zOQ?3zS-iZkr0Bz zmc>1T&diKLEcB(qap4-mADeVA1Je*1_z{0}4YCMr&_T-iF2D5MzRcE~)s0zw zoju%rFWCg*^Lo^%q?Ga3s}poJ%!_Of?lLoCOo&&%3KZwAY7i~(#fagkQ)#_vn=km) z`*SUNQc}{-OiAMOCBnxUkVFnMeRw>Km-^3l>K{$QP2|P~LbBWO4=g?`sbiM8R)1pZ zX(y_DB>7Wm%%fGyd}`W!&4iYXyDCaP^lMEA{)&m_=IDCG-SLU*V?&>I-Yb6#VRf3W zAng`%Kb;4ZNzB=K=zi37Y?7ZVF5$UHTN8JnNPR9YKBSegHC4%;mp8fMmxk1ngJcwn z9BG?6_{F07>8ZrEwYQ)pzQ@mBD;_?UE{4a;%bQU2W^>7c*%!*j7azV>YxeekC;L?B z=F4xqv-D^EERfF@kMVe@d{m!=2Kp*V_b23doNhazRMdaku^f$(Wt*2xmxJ(Ef4J%697NnqAbu7bij_gmDc>)9s0Ii_`HG?+|2y;lCasMgET@OaE?tf9 z72O$Sj+$xLMAM}0_vPBmlJ&ZSR#$OBm>(T~<8F6H<3LGe<2{xWbN)C=f$fF29W+h$ zBSZc2rh1DNZ{e`NfrQVDXL8kZUpJ+?H~o*n5#@pLcz!5~`fA zb<~dqR4CQ_cP$D2DhN1W{Qw37o3-> z0VLH)pZf?cXMTLPD{E4x|DM->ubHvg5u%hoVPmD!?>k?lBC=e{-`(D;auR4F4O0)D zo9!h^F*i$7k_MX>-r{2x73p&dBD@deTydY-xXo?Sl*+-FMCQr`g<47nb=n0@=U$vE zI-mNzrtEE;7>zp-ovmQDsrPQeX}7tP$~CX|PuFN0EEC5aEznxc&O8CjMT=K!NDz{m?k&BVnq*VZ4O~?xDoYjpY5R1bPN|T408|<+y^8|eZS7s5qjPVL8Eycov8B}Vk3-~0zJFk|P=BbM%V{@0 z)9LTwI*G97eV6c^;3fuPu$?X1GygV zdAEA$o96cR7po8H{tL7J7n2+yAP-cy5eQ20=$juxNq~)M@10+CNjTyl_tbftHpb?K zPtvEa2r*{6V{^?5okw>{tlyqty6rF0_k_FQ+|f$u+%Rrz0rOSE?F_D`_u2;m8BXyq z&wbAe!7{)xr7fP_GlZC*r9-i=w8-RunD^|AE-&>D;YlU62(9^vM~%*(xHZc8;rTQ3 zY&SQzy$*6quYSuDeh$#17K6PxH^0y`X}~zuD$GdH-upMA-UB1k5F*yo{{ORS{-@gmJJacFfV->sC6-o*A=2f+@#YNP8 zb~Rsr@0^!Y^;z=2;X9Jb3M%9JO+jd01e*stACMYKr3z63Hal87-IrZMI5j2A_FmW3 zGI>*dulhy~gV+n5Ry-z4=4Ji2-kHtJ&XBZko*gKYGh)m5RJPSj|a zPUe4}v&~0}RDnafOLu3~hlK)WMHd>7WF|L+Rk}9%HC9sjDZIOMZznV&^kzt#;{!wjEuk)y!aK35F-pP14pi83fUC{-1R=RLfM`+~V6SL8=6VpTa z`!mubHRWU!daFs&yv1)HWf&3SIA~dF-aLP_YFfwTMmV_ikld`1Ra;4k07l0lJ{K+Q z)WDOz39zg`EM~3=L;|Y_@KSK{#b2*CrFrs%44zvDlrB-JbKFAg(zhunLP4y<^Y#nU zFdP`TRLLw1He*kb&?lulBE0}Tr6S8eJxL&xnB~{~ntirDpxmWx?xq; zvSy`vUi6y(!%l|5cF5e~-@UQD~uob%7CIJ^WmWbJ)=` zl50>yB#-C6W)XkQ_H|=B#o${y|3Q7*l@mAqvLXDP_aU;I?NwE>R-rpjQbrM7$&Qj>gW(Ts zlEJ{27ix_jf-WF&f!~7K6Y^T8jqEHds5(K4iw@K(G$=j;HL`drPrfo3>A}3qBE9Bo zpm;+8AJXixOSEe!Anfx8Yw*P%vCLI2M@$uF6W6kpCRYp@qh8&*bH@kH0zD8j`ZJqI zH!baR82unXs&SA-0J5Mm>Lz-1{{uIrB>0ycKgbu6m*JF9u!*YpOYJ*cipLj#`rLK0 zbwU53%!L&eUO}6o_0@5a-A^p7(=(U+FPKr1_MbBE-V-+fvq$8**ljqosPA;&gPt}p zodTt@*{USU@-5 z`+3(;zR?lPZwP&gS^6GPbwk~X4~i16+FIB8z9Hz}&sE8PxQ>g~dx*ad{_m{fOA#tB zAS=3M(6mq8Z!lNWh=RCwQ)u?g8MEct^ev{S1&5cIAF#UhX~xt-a>LNSKn?(!C~%J; z-lHuvDF;jEpmGSk+q*mMRjM!bdZzVnRlhwh%VWrGI;XN+&+Agz1QW!sY%bT}2(WfG znC@nKQQY?1f$AC+MspuGoJx4iD0nH&Bd8;cgc9I}hb88aEDA0L$b-BFcYAz8f%2YJq#oavkknG1d(KiRyCtA4glk*1#6wx4^s}mKRFapgj z*a`DCtg<}832td?H~i`TJWIuq`2hZD<<_qrLl|Vw7LPQ1qCE9qYLAVEj*&N6 z^a3xOS*Il&r0^31m*T1D`*mUqSYW5W*L@%swe&sOrpgPLIQKhWeo0&W5EHO*Srz+E=Mh(Wq@oB*&5^U@%i0m zpz(qZ4s3XzJTZXPUsO3ZmsQ23z!ZD(cQsXBO)U_Y@<|i0cZCh7OjMrd)?f%v4Z=M7 z-H^_u&(N8cz-xWCuD(7hMd!j%hAGwnG%As=?t|eYRJbpp!8l%@1nE@X1=t)!X81!n zq5T)BCxbt#6I!aIXNe(sfd))}u+?ws@0ZQZ(PoQZ$}Mbo56n$+G9_fkD8|OCFI`l6 z4Pholm8blXki(&EbIEq$(`ADQ8e{Ud*KstZWrNG^)`*iQYP6HxRM6G*is2_!-SO!6 z+A8}4B$3CVKkybiWs(?r53PQF`@!~|C+WV*=FiWlLRaUu$PWdW^$YQ!cT=Bp%7^wA zS~*RI8KO0f2$9yhC)cR9DC|A^EZt3cERvP#|0D@e?*BQy3BCYe< zt~x3hu}Ae8fr!dPxcejxXs>vQ{WW+Ut8}+f3oA&gmMI|p^}N9Y-;gkLQ7yCi*D#|g zxpe{A`ibmZDVK&w1HML>o_SZ~rsn<@j}}`{HTrz&+?@}K_g^fRX6IT~G`EAf1u70IE_Zgm zokm?YrV@Fx%emJB*Ci4e%>`V|{pDN(^>6p$fKgA%N8c-{d=C9lEGHwyTl~eu4IcKc z`G)OD)e#AgjydgIJnM=LJ)Q}TyrClsp^fh@pTvbiAGu7CIRe0Q$VR5N_I6r2I`oGh z|FmOcU|@jO66kN-HJFf~f-lIyaSPG{rxQ8*EGalAkP6DBeVTY4x7~{s`lwe(r$vaQ z9{?S++8Z~FSSaqKdL}A*O(yw?AFMoDM#gLvmKS$#zkmP!79pV@$T>~v2Hf4p#{)430u_Af zDJ_=%3u{sg?n@Ywa;bAUrBLD2JT!}+@+XcVt_#_(1xhrmADNM3CrkI{ZRQOOQ5^Yc zVS(xy$|omcg&z1oL-69FO}_bu-OPm$VxEP5>44(PMU(vd#l={T(kdz{2@j2sO{Lx- zHX(tM@s+Hsn2Ji=s0$nqz>xuX`V3frud=D(K$U$W%x%fJUz}d+)7KKjd^OwlpGiCi zyB8&BGE_M?wRapuvCC~=h=-~DFlj3($)NDV8{#yxBlfMCGzn8*CSAjYj`3idGS}8D z!Jal%+s0P!uz;e4ga60Wdk0b-e}BNYk`WQILy^5@l%0(1?7d0$CcEqsvR5c8d#~&* zWMyyJ*<{b>-0%1MJio`^*ER0@bKd8?&TDiQJC?%G1ch5dyZcRPd3hU*pzKgIkb5^k zt3?36=6q5yHNb&&%ap+YgY3lls12U?5U8i|o)6x%{hpl&yDWSGHu^P#1bQ3~F}Li7V#;azo2yqfVJF%QpJg)QPe-GOxfQOh>yuF> zMx?9r2v%dL4xa~t^IlaluS7jNF?juDIVOGABfkwn8U=3f&!ISq-OaXGR{X5&Uy$eB zdC3(1>WeZ~Lu9jp6xm@)x{p6j{#F54Ue;c_{L;J>l+{iHTLp*-XyDPB5jx9!RI$wt zNP}G!eoK9ByR4!iNhR|&2~Hth+QW1N7%zGEpUB&`H%fj@>Z6RaaMjXeX1j1BpcJl> z-+_qjY8~v^OE->lYTeM*KTW-AKP!b8nQ#|tkG-2)$v*s)>-8(oxOvXmICS1RGBJb; zHgiAaM`sj9U)j!#(o$33T3%j$yBwo_P>7F*=L??GUl|izkXq%*$pzrw5d%LJu=@j> zp4ERy@(Ir$Yy?~`o#4`fq$xE5#E2Bae=>db>K;5|2n4KQktrvz+_AsD@|J_brjd!9WFby!Z+qd(tFJt-mPkQ4%xQfUC=C5VOJY+OfV)RQ( z1UuM$vKjEN#_KD7SR(w#&f~k? zjStLmILlX5gK3IO2WPaCdY03?!e8kKJJgPH@=KEaI(LX2G_FJeyIP*cE5WPrT^#=Y zCqM6k`Bw$w)eVD-7Db8U)0HNIin9rD%WIy6=t+5K#33F51}W(R)6pZf_(tzabA_yg zE>j094-XveQ&hxNgb@0t{m!n`KJxs@l}THM`Qq$0eyUs#l)gYX)ag+0twd+y7dyijy9q`tt)M*wMlEMeFQ_At0&Dmv zL7ENQ=#lej?Zl5C?;!Q0z>g8Db*aFYtU*TM5V2-QJ_ipZiKI zm5#FYClM;yj13q|?3t;G*J*i6+z{pa+xU`X_KB=nOLEV$!S-Z=)gM2@> zn#-=AYp~hYZBj73$aLHt*P$lTY&mRm=u1pk;~FTZ?Cxct+`6ave z)k_zx8MUm(jaYXAS~6C_rgRgy*#(3$XD6qpC4O@&OH1>hItG)1CpF36QWkw|g+79} zbZ&}Y2ss39nQ_H}*YAn(rLcS4oZzv@>V=(P$tG_J9W6^iLy|bT%!g{c7=o^rixfOZ9vDEghUd%>9pln3B>biu701v0>Z8jmhQM|EqFQjBEu>okOD~ z7+dDoN!h$P-_2pfj=Qmm&h;ptNzc=rA?q@sO2a>_>hk67*Sd_QD5r;g+hPu4Es@ zr`lBt5yrupT9@Jo4K+0tqf4eFXV#tqV`f*@xsXU-CBG@2s-ElVrfF8&`B}FS9J7XZ zL2mkeEw#dI?_&xGSg+jf{2YHB}n*LQ}*8k(93TpBvSOh#hZU^B6M>WSQr15s2Q`s`Z* zQ7dtgk$|&&1bC&XPyU#kJ`waXYHEZYgWw;op{<>CzXzICq#ZWg>7GKA92^|Lp26Jz zcegP`I|K+)$mBifhPAv}?sj!`8REOFv~hBA-3Kx$SRUSnoW1S2#&Fm!R3=~&1L>Te zp1ujLaoNJB{k6$g<~e0whFb|&GQbHbYB%VpM?aCElij@Bdb+3VKj*#B{$rN(2e}e zNZHKH9GN2nVGa@{a^6t8f1kL)pdi6+EZvI?~TJn3GRkC^>%@@`=)|uNmVp^6$ z-x=ji#f_FSh8w6^G8_>oEt7tADVLXc+bKozzb&yvE&IrC5fT!Dy;^Z|tt8lD@5L}% zRrDjdXX6cC9tFoba_cUf+3P_HFD=1m_CI}TPH2&h)5j*t-FTe@c6j2rZk?!GPg1_}Jrc0rBZixrke1oKWxm1Z;!SEFCNuk^ zSls%Sdl1T|LqQa!PZ`9jYVEiGyksq|0YZuIVXO2tgz9Qwa1rLOs?zZ;5*S)|kwjy=2&R&-ZieC-?s(L1c7&xjMXg zHS^7a2#kG9m7G}-R-VpekBw%ks$SErK3CGikg@zWyCo?gjP8}^LNQSkWUXj$Jq?)x;a=Xps$ z=53ytlTYO6%&=u*lVlTz1_FEM=?8d=Z#&9@pHd{1yQI3>(UeCQuG-g8wC6quBBKPS zX0IZWSJzmLn4$s&#&Fntgl5(nl#Pb=hUk3O^dU~v^9Ch=HlOw*?~L<}KV%c6WOLT> z{VmFYL>NJs)A`lxJn=-9Odmpg)P&DzjO5kn0^CEl0yC#pnrEd{pJ#6;YiniK6c4%@ zDPSdWG_5tj!fdZKSO0)j;RE*r8H(_r3Ny9mIy%^pymNo${$eI}h+?$1FI;;_dwt?( zQwM6yEKcS18l!Duhel9z}{SJXx3ov8>gde0?QeIr#B*RvZ z0uCTRA$#jiYNI|9NpSyu6YvF)^fJiW|0atMLr0unYlK!$L>W)friEU|-4;4!!yOYe zi1SOLGrH$0hzrRzr*@KI9&Nrwj@3B~izi7#MB?bv=Qt}B?G&rkJXvK1v5IteR%xWBRTw_y0@F5!8|f*4Ea$H&gxc(DAZv zVzoB)cH>v3sDT~plhZQ2v35*RExz3UIOD&JLiR~*}W0m-F-^ zM7#x7>)K|5UQ}{A%X#KiX8-qACb5|5kD&NvnxGiu|0Gv=?(ep+%=YP;_~yF;+pW=w zV_g=Gjel}!i*wz z28}Sadq9csQ^A`vvJ}NmQ~Vwe?pc&n9moz)Mf#VCI3#1aF8-v1@)gEnwYt&d%+iX#Ax1)FKg>hDg~TfH)#RRsz6$ z4frd-Q&iNk@(v*vN)1QDp+It&3My@nT7z%^gx>{4wFv#N&!4g^7>JBO6}mQ@gAch4 z$hFaPKh)>o`Nr0NaZH!mF9}wxU~*ukfp;MXUW1hV-7%E z8ayAe37ofq2K`QqDo5Fp7#`Q9B@?UJIua0Ty|$ghdrV7HWxEsoz)$q@c=G3129lBKQ4+;X=mPN6K*jCX_ zSZTqM6GLB7Lm3VABQl2{+m*rV8v7>#btR5M%+@NMR~|haIw$`aA8;9&%LmjllsFx^ zh-tpQZDZw*Vp@X$FkMVX=S!E@F{TA1#~?E}|FhY4f_2Wn)x12%bA|1INBtz*e+sfR zA7zA>d|XY;w_@H~={v2!i%nm}YQ4nFeasnNbjD#~YMf)nwvudS^l7i{wOs3KED@Ml zZy}YB~hmPx~w|c4^T8gyIbWcW; zxHWVgW#r{MfTXGNJtM!Y>I`N*jiI;^94X_BR6$ znKesMU>yar)?1)TU4PJn%xVn`EWL$NMVJ|2dSbPL>T=eukoAbYyFbG^r1Wk$<-@#a zlC4F(C?9_|y_4#*u-5+6IrMMNhqsj-@wS1Q`24$k@~6Vi#l89MLPl)RvLib(x8jYP zp~M=KS_?xYWaEuhPi9kn2UwreZhaqk$=v*I>w7;v$(L!5zBQrx7Xlo|AqkrYL~J%U z=hDu$?>ZWt!bAKOM8BwGd+1JR#9sxz<7s}F_}pdk^5skRQ_-?QB#HCy|EN(Ct_z)I z)!r(q$s6m7pVS*U3iyZ+?%_LO;GEgKt9fg}%@b4Tgw(6~@bLSnB!r*xycnJaFJxAB9URC%@vm6b(>ub8_T-e>5zYCrIT4o7e50Pn$! zs;Xohz`~H>$z7vsjI7zepEK?LGdrJf^XhQzJnNxc+}R0RsH#AlIA!xXdaz*gxRl_! zzwYvW+8HrrysY&^;qCbSmA5F)`GxVnKV?>DKgbNo!U@ab@wv3BKFdb!t+i*CFe@6$ zf+W^p(^fS@pvRUJRdq@@cVv;JK1x&PFK~v)--g6l|4lq_)$! zg6*_bLwF}pGI`bP~&7S^G5J6)e&Tsk>?2W_W20!+;R#3zws*D)Ip82iXt1im^eKI zc*TJdCCQU6d_^41g5iZ0=6_8vGZa6Bw2zmY(D7fc^Rkt0F(8{B_Vs{fBwdi-cDKx{ zog{CEv#c|@VoQw+ItzdqE##>&UQp-x zh0i)3*d;u7|X=sHUbPL|#Y-?I&hVIB(4Ez=aGDlGS86 z1_{ZEk33fpNDlq|{SDTKa}L8YR}50YJH7*U`s<#0zypGC!4r^lMj z4daEp_)acraLQa(`^XD4QiOfV@ z42g_f&sYS7i#^m-z8%P$_*z_iZ_ewOoI=P`WA&0N26D6i%vVXi%U#-rjYvlno)r`dPVL!5 zDz}uS+hWEqR*vD#e?U)NSzm@`8?M!Rb>aa01ETM9o#0-u+c-%1XGsA-!^am>9(v;a z95cmR$?HPfm<`@HJfF|tz3fsgS=w{k#rS9S88Szw-xvIjQtjT|`kgFMWsVMtQ{ntG zf}X$vqd6RiKttMZ$htY!_4%7hJ!hz_JH5qUZ_tWKd)PNZ^HTVw7NG_mPJRb}d0#(2 zZBJ(K%pI*S4Y(9YZSdsuaE<>Fxntqu`Y$}Y0kfEuU^}};*`Yab(zxaRa)MfnZYsYN z(nF5Y`=r^QJ1?pY@%=2Uu_}er{DMk1lFNt$AW{g*zNd0n6&FlHdsjLn*L$tV>)fH> zw4Ju&H}p5KQe&^tv-`e&L$$p<7v&Q4;;@dxjtWy&Ijrw$mQz{XS@q}Q{@+0w6sU;^ zzNMeX*uq>85MS#OJ7|3%HG1~#&n=2nw4GN92$9KFEc&HDkC$d`W`9P6c96E_N1j4Y zPY65u$eOXge$2hWFy)MsGxQ9gQmVy>^-+&TJLFY#Vot-eA@q4}GyHog!2oz1bqa-d zL`Fr1j0NSlg;Q=BuOcnB=X5*=)Ljra5C|!;=PK9t`%=O*hL3e!?kW72mQ8*uW!taU z);qkEO10?f+t7JBXj$qz*~K2I7srgvextajflkUC`$S#N(Boao`6Ad~+f2_+xcxnS z>#-Cx{^NoUa!61lfDd)Da%Q$Rz^k+40-TD7dhv$248651d&`Dr#DRu$!W1_Oi%Tn@ z2bcG-#nbUp{Sc4jakQkWZ`2ia5K>a&z@6;0Jw4%Haj47~gG^}nlAMSC3T)ZYF> z14+S*9mXVfaOdDV{%FI9fq?;WS)zbX$!chWQN)KEw@}|yEdCuY0VL{E%{&mMVVVlW zp$zMm{-@=}T>(@Bbd;L{N8`qali?to17|X9wxadXyCB7WGgg?~y!Gji-BYC0J_UlU z2`P~V`0QB9MQWVcXTP8crStU4!%u`4YY{zJ_XV#MptwR>fmKM@^4uKxNR5o#zc6}7 zbJ`D=)SmNW4K=zdUfUl@Pkt?~anVa#rZ8B)0*P)_Rn=(weaEN#{M5X>>N`yt7MwYs z$TuX^a!9ME`G@hN^m%u-rR1czSz#CHR_aO)5$j_$QPy+nJ_&VmovEAeDHPsR-F}iO zh||gra&yTb?2f5v%_*(-%FdEHrUC0aNnq;?=G)+gjAfIj!Z;DjIV>MoPWwN+KOJ@$ zCl<4>d77WXZg75kM{D)c96Ori75AGs+v@e8B%LhwanhyP05py94Qqf|59OWr?V1vm znFdW?N+N?68AwMOf0&(4s+aCp`{%priCD#r^mc*^0V>^@YxoFwo zm<;_$VzV(xk41%H@*#BKJ zXj~po**W3=o!M@Vkv!SpS7kznoZXfD1jSXypHf{f#1q!hSjc*I1Et(Gv@rMfS4UPW zLF@98hJ{U&nJ@&GgyaLL)0dXwjwoE*|8x*- zc*c>ovTwTHh8VT+aqZU8=D_-S-PDkJxTgL!d}*h(hjn0j)0zudyR=nWPpx|@KB1zz z34j2{x$7dZ z8j_%8Or3z&rN6=z z(r`88ZmB_ip~cV|cw5`j`d@DvxwAB>g}Ory<6@n!;5a2mR%OGW*%GGT_>=>_4b9?C zZ|8bNW8z1LkP?T5RV4YFo=x$P*BQ*<6Qh`r?F8UN&dlV+U+U#1;c?tx&6f}>asfYQ zjq7eg7yW*p6RZa_8&|C_H^KsQHEPakvQc&OB+2eq026?!&W!%m;S1;Mz?$Qgk<5&* z_bG+S2=h`e@iGH)Kl;!qNP0Rf3Cdp1q4)_F!KKxZsGj^ZsbS$S-&`LKIYA)ep+kw; zdF3c?ETnde!QKKP@>-O~`*Pvypmky-Xr;lD#~!xv?uVUfJ-xjJF#}92EbV}*kY<>@ z)zBb@b-B$f7n|Yl`#^1|w4Dos75-SBaHSR`L=tfeM*p%${4kNt(NOZ+*()B;n)dYDf|lr`O~iw>w7s zO3$mg>S@vN(kM+0io~hmG!yms-~6@*=~KX-Y3}aM?JL5E&K7`OuxB9FDH1VmQbDW< z|JZiT`IbwQRzsd#sG$}uRerX-nz52_C^$+t48%uOABBDy-V{4FMn+#qy>y#bCOcmb z`3MQgP!|*-RtJ=yepBYy@$2)2jjxc_#{WZX?AqOE#`i~U;2{}f6ERRcrfgo$B!EhB zE7!(WjqX0zl+oka!K*#^kIL}J9w%(;$f2N zvNo>o9Ac0Bz_cyTwyG_-r)IzAURS@~ATu8+Xm>`=K0Y)5HV=-jFM}g*4xv_Zu3Wrl zdRx+pSJ^0-tJPxFP>-tUHMtmm_u8O6Dpgdeu;#AN`reU->(z_5xAP|VAV&u$Y5eX6 z;U`75yMvC8hu+Nb6?{aRxZ941$HKo+B|1TPEdhB?0$AJM5bIKKp}8Tc>!tI|=@y%d zM$1tZ+PfRdX9kYHNS#QDP3^Q1CmU1g!L?b^Jg8!)3ta)!8_q)99&5QdbHcY10uJ5D zA@H|ue}vfuF+!<+J-c-4oD`4fzd>_V!ipPkCBjXKQQ!tV34n6w>Df~<*gF6wFMHi9 z3SfB1#s^AD%5X6LUn!s`kR#=C#jWIC>0Be(Md!3PtWZgG>2hm)yl{q~_88lF??!lMsTzq4i) z#bdE5#EeEtn^e2~-mS(1C-El7enGQQL^1bFjdRc1(;FP$^VojvvYZ^&$lP^j{c`JF zss!^B3ez%{*(O9#B{}Z~aeu>;_bm4m!9exxfL%!S&z~;=Bp6!Kn5HXgww&1WyqYoo&^ zJK&&h=ui0W%x2r1vscNU*8vhmb=aX zs@d6dXNK8v4$9cd*pt_T*q-%vWK$GxnxchHmUe5c6i#7pxv911bJWLI_o3W!(KUa2 zTXg1KtdjKL!gdI=O$h(Sb`NXm(-82Ndr?xUl0EQS$@REgszI1G;jwk1MApyq-kq8w zt;k;j318$n|9x2%I(`)9*KA<0x1wpmTVcT(yM059`S#5lcque_hZGd#x`RIM^oXxD zb*Qy8-D|4fvT_MGR;@dE{jNmpu_NYx^NzOj2E{E*waOS8{4VW%E~Urd;=`oa*Qj~u z;EfwfR`9{@Fz)2aKW9v1aH1dg#p)p%Vpy%QwxfXsc&_v7>mP4p625dR%)0~7xRn+2 z!NEaBidl&Ubbz^&-V;=@79iy-Le=#cktY-}#~rKNx#e2bH_b7qPe zJ28?n3W(*fHx2?RDF>WA?7_4B=k3T74jL`rf`WpZ9_6xDR{65pi7=L@Sx;3)*98F& zV7AW94|r9%)&-&jRFr>_5NdPt`$!J`dUu*9v9LH-u0``lfAZuBtRjteX6p-#aK1Bh z<_#~6r!a^vzCNa!4mcJ=-21*#Avvdk0dy zxc28F@$d4xlKm#6-nOTL1(^k-J#~wO)5(RWl93C2Wcb|#}8!>1;LKw#Q25a0gdbYe;vQu7SD+5;`AbSsBq3&D4 z!5wt~`^V`~tYZgvSjW zcrkG(1imsqw=pzC$|&l*3-lbq8Ci9z-$l_Ww6wMPNA4kYNl;Yo-@ni0CMPM0cDyt9 z{lDJ;uuxlPESklf z)*o`}3y3Ptvc4(XYGzEmKkzK3oHClH7sT50-?-o%_4 zZb@xD{5BD)35WqlonWmUG(--^f`&AVF4FCsxYR@;WYZ09r)qzXBXolMy`zH4$dan2 zJa*@A%r>ZA2#%8)?TIAsUhxAf23Ad&up;5#?;@`4wjk=k6?5Q_1Gsh zT>YS=sZ3@pduq;nnrQNS_vlYhuvfN*(j(#Ydv4}prL8PqL!-~6I7_73mwx{my`Sp+ zgcQ-VidpQ|Ws`}gJgvogrTv4F>4lHzw)R4N#bJ4|XQ$4E!?sMk21)wkqWh`GXBgpq zc;5B0g!ny`{q3LTgk#REy4aMZHtxT8;w5|SCHiD1_bEi({k+GsZ#C2>CH;pb`LUXC zYzJXr{Mpdc{k;_$k7#M|{og1#pK8?@-SRM@!^a?HA(sPu64OWLN{vBP+g+5zio;!2(j_=JJlj6OWGp+RVKb2G6{O-ad@P9f!Mb}*?W z6&N~UQ3^c(=0o(S@7S>S2Bv=oS1dO-_rTDQUwyq-)ELCh?ru&zSz4{yv@Q4#j}LY^ zG^*I^O1iqC;C7)*A)~9S3&I~Bw*t@-vFX)`xVZ4p?3h|xhr*_?wWCAgeSvoP`bW|S zr~kM_3}Z+Ub?z^9)Sr@CJw5FvlF9aqDLXiJ-#M0irT2J>7M=^4l{qyMWR!)?3}1ru zX-y*EgNwtAVaL}N2L`y0YUT_%Nle%%5yf`wbk-(#DUX}`W)kn4*jaAiUaR~Nmtdm% zt3h$GjPlVjiIp7_<>ng;ixwaic3Ji|58j{a85z4*!UQZVu>Mt49;y@n`m>h8X-Fk8 z9Ev%?4{Pj_M`LxChF|+qT#m-Q0|NQNdJ&2seO|T;q6*SmW=E)g%}q(! zRT|T$WWP(rCH2V~_0LfKULV?U&R(U4MO|MVfKe3hsAXwrY1=drn?t$neHkV*OotW% z%A>?c|Lx-2mt7sk7z$ClCtr-@ZYUcMmC&D%!H0omUbRTD8CVc;ZLn5%CGF8hak7l^ ztgo6)B3ri)2T_89|C56(H7;wkquA!fmlq%Uqej-*9;VqF&w1bp9qo`B8ykaFEViEB zx;jR%os&~rB#n#-kG`{$lYdSQ!}`WZczQ7G;lSK(zdrB7T`Vki@R9~Dq#{pNK>-U4 zG^ls)hSC;IOii^;Pk;G+I|uzw-V3OW)0upXSZ0wO9 z*?G#$+W;%(IY&=)8dZx^l7OGyQD}%=EEm75%C{v|B^shL9W#+U^l2R7*N%lt{L*+&!u1JO1OjGBo$np(FJ#SWaEjp5#wkp?L5 z;?eekt8wM5R;`}9zm?&%Q)A=2L3Yl5V-T;mDDg!(J%Z!|I0s|w+;c^Um_L6uk*!M3 zRnEo!um8i+qF-ZjWYW)7?p?c+@F9)izm^UQ9fJmoWsP);sZ+u&lL;^DW`!;gGNKJM zF`%){(m0-1M>(<_Gx^oF+GUdYE};M;@YmnGqgBy#jY{kLGDd0g7rl8*7B6e>I~zC# zKMj6*;eiRzwVlzS8#DSvq|UryiDvxO6iR;WHPhyFVs5H76=Xci%9ACK8MLL{VDyUZ z5bJry_Gs_&&**60j6On??ccM!b{?gm>!+7`btw=5W(R>Hz%0)ld7yv?UYSVqdsg|Q zo%fZMJcP^|h!-y`WM-j^AOjPQ)mT15ge&aknp#`^ersGobPE{w#-7$>Wzhl^Su(*Z zG#G@7It`u)zr}G)fA;jW0`3gEB*%UZdJhDR4Os5 zf0h#ey?Z4ncp9WYPoggEKk%ZXf=;aEj(G1KCaGG|z+#;KQC#=-=8kgk(h;&5gcEwXrO3etf)TAto5gx>G%o zk#hkiqDVjIOq9n~7y@fPdhM@jLnIp@IK=y%Jq2Aa+nP zShWeA#jjQ5v>Ddj%P6pRwapn@|8ZDdxsx*NIGa3E@@Nz1sXKQC!z(AnckMTg077Q-8M#T#*5M$UpKPlms&)o7sYbKDjsWgJ=2(7MB6;w zMkihWkfEF85;lHeL?ER342zi%vksM_l4UMLn9f=xxp;U?aNsssi??J_Wob_l4byF* z%h%D-MYVil7{*;DoEgj}VlO))?@+oT&`Ix$xX00oXDm#_yiAx{&RF^LZ&uj&oCxhz zzcs=?>QYYOy6yYir<)-KS|nGas zkws**n=T9{m_>ie!vgF%Qai2i4os-@tgNvUvWjg$$|(V7Bk8#+7+D!gpv7{TNu zG&h$~x)bzk;^1j0D_$84`#B@97>sVP1utZ9%-fwca)S;K7GJL_?QR&B^6>L(Z@ZCz zJa22NN_mot=ka3{U`*^-KUxF2B^a1xa!u%IYllGE%a2u4CnqkDg^QXq^E4 zJLsioxndB|v>n$TFKrhef6e+(G~D8bvqM`XqrH{mx>fS8_(qiY7qm3S+Qe?HFPc7@ z7PYWLOgLx4OzMS@I1zlA1jnSp$lg_PxQuO!bJ4roIFIaay31`!Ty;b*#ip^>YWz7a zwK2YNmqm0u&G_X-7F@LU4!yT?w!}(QR;px`*r{`~jX4u`kB@C#aLZG)!#|<4v~!Z07ja79!Z-6I;k@PC!-R1@X&w;Vl(*6_|*OBG5~ zSF|4SiLSfhyZ+V1>6N_rsVm2}fO^91)+YZVNu!}5;XlmGt*l*at#Oy$?KwW}y^7}w znC&&^ja(bguh#9UQuJvyQJBelISgL2Ned}!8a~Tua=rUTi!W5|O*QJDjJ+XS8X`@3 zX&M!nbKvp%@N7#h5>p1Qh}3-IkG=iZkrrH8%u=`vZ{H@qQc2VxQ#NWx`R3!HgfeJ1 z)YVBLu_6~UrgBX5j-3_1F-C|jM^>J}7j((MNO<`-9u*Z8Nm10{hxOMj7y*@X&$xMb zkO4KmVCi}sIbB{+(GJ=H206Tqzkk2MnRD1eKR7&$h>MfVSs!a^Lck3u4gmn9q@?s@ z>WVPaa+v(QCvBWlP!NiAMCvX0D_VpOZw?6Dx4OD7rN<*fL#@^Ji=V%IxzJ-o1=0*M zc1yahLmb9EBu8cUz^Z0|NmO5-5}au0S=9tSOyKeH@gZ}YA%Mf=%(segxt-wY;f}b7 zMke>EhsE&L8!Ayd+x;3#5i&b}jPdcHbzKiGu4lyrYOy0K!=Jm3%gBnp=E~M-tZi?H z4Gd(dhUVHqWt{#&ZSz!LRZnhmJXqxjF~9jeMPI<*CG<13sNIp{!vb7=L1~nbcHjE% z)oe}Mw%AM;dQd2^MVqBnHMu9&4lYJ5l^RZ1Sy|UcWPY3rg^9J)H>h1C*+ZiFbd9sj ziVz9L#5^~8099|W@S8V6Dr^4ycmMMhIw?^5;JyEMsduk>hm5Vvx;w%M8K=3+pJw=Y zAO}M1~076%kHGSC$#3nC7Gvdxnk> z;H!Dp3$YHm+;NWuI|G_JM(%(v!G-ymi?kDItji^K65*DpHFv~CnSDvyf$k6L%zU@=w8;Zavb8 zWH5qRF5D;5|L2tdn4^{ss#@Tczq8}j3prDkhdL%Ft4HA{o2d*IOy^KFX*~s%a!Ydf z>fEEzg~DIS^0?|%O8DGBtUdiII5B_H+f(({oxwNKUR(6xy?HPcLlO&@L($8C53sSp z#M`{Oyd2P1fcoJ>k=IY;ok5`(2tqJfHcyZn zQ>={@rRr3aFv12CN#E^HWg5+U&jhR+D;;CEywTM1VNbnA-ps!q{orj zvOg--vH)Uu>;sViS*KEDG!i;dVb&WMsFV4>)2MZihh@S450pklwT0w!9!fWJ|F~+` zU^Ez%bjDrCncS~l@?>&WJ!#);q>DJ`G7H(;lzyDE?{ZN2BHaEFOM}mj)XdABUb8sr zJw6>5PJO*r72L$hM3bAG)Es0mn{rku6A~r`VCaWFrlf>U-^JVc-oIOoVi!@5_fH== zo*8K`2`lNPsvl1`m)gvwKlFQZVQOURKjP|bQ}SoEhri@4gRI0v; zJ-XnSAU`htq3zO<|>A~2%yrM_KEAeOx0q?GcMECTEEfVx{ zyYY^fxD!6{RPnZdo$!Lu%D=ARCY4rtBf=zSnoJd|9GU2cv_Jv$gJ4|C9;Bs6eY<** z$rR5ATCRAAaT zz@H9YX-;bcf08>mK?e-N!ssdDSE_xf!gEIdln6s^dw6(s3qJu0HHd}g%$Xe>9PEHg z4jdUpp(F76(X!I(HsORDT;$a3HD>}y*S*b3nBhK|xa+@sN766!!(6D1J*Bv!nEyLk zq3v}H+%I+QA--Ggr;%5S-$!*tDNkEWaHCVo({t+Il$O^*v??aqetsOlT$j7 zmBXSJT)6s?U>o8q+hF21-Hu|6u(M5n&20W=mfNW%Iq*MU5-b!cZh=cLTPj;d=16oU zQ5AVAOHDwkCqMX^$v*_X{WF$sx4GkJf>Br>bXRTe z6ho%cTjI=j3?L7~X8HVtAGZ%hDdl$V;aFi@Yg_!L4e1a%iSl_MBju=r%W_&3vK#Sf z*~^029r3kuysy}iPI}0gqHS?t=ljopy&dg%d4)dVF}15b3^UtQF>}UKG8tR3t3lt^-z}i}7X2@M!eT+X3pn(30&R* zaq2@U_t#;zd!?h3Kj20J`xTJ(C^iHWlahXfTBkhgBTCq*mQ0g3huXV+3lnWUahb)H3qf4vt1Up@CAfgG>=70P6A40Tk%+!Vm379%`1r$bEvVP6|RNSx* zpCE(LyMb+S^82`tzA7>sZ+H52nWPOhA@+aV5>8b)5lp5r(u`D>_{f;sV`*nIq$)xz zqdSvj;o)ZYIQIq(!8XX+gM&Zo-j2hg&awLrC>k(6Cxv5-`GPoptu<4SLrVVROY!HgBZi+E66rl;5V(DBGQvsG zNYS9_)2nz5vRep>WVgU!V)F{q=dW=~qa1HM%N(Mb3^6L`zJiA{f^jd_EuSBaiH5b(QyQ0Z@Z z@DW~#r^DWD)6Q3lIv6h;&GQgY0Tmia0=5P%?+tusG2J2f_mBdY*BF9yt(gaX__$|F z5wCO={l;1xXQ6HDAe6hD5--OjNTpQii0m@qQTkCe?WsYYo0kXoSP;N%%4hs2h{VK1 zFsKa>?Rv_~TcxHL@Prsk!0YTjNa1ar*^UzvNnz)201k}Nosqq-jbSVWF@UwbHZLzP z*s{I?%T0D-BpDEv@>(-J^_7)`)|2JU<>o{5;WSZQNLXdbJuC#iM_f~rWI6O12^K04 zu8V=ipmt1Il$QrUogi$@q|D1y(1kmJb^sUm)IufnMA`ZI85bTu4cI{$79^L%Q?Y(i z0$6cwIA6cDN91m%-3$;%*AP*wDMFQ?6nujEW%-C~^`l7yjd zK3_im{1_xGpqiv-%WWbt%tR!$wm^SE&7D{s&QZqw{{07UOzN)hG}kV;dd=GzraeP4 ze}Kpxe>f(#f4KBhMMa&l^7GKsSo{VGhC0my$evkBk0myVw1I{#EJ= z_xq<$f$4uQHpAQ5fMcZ~i8eEz(9Pwh$hh0zjBgn`OT(!#Wp#rCznjKmT7Py1T?6h=>>&9`oRpD^3=`G86s{KXWQJC`VhBa~z% zXTu`)8&=;Gml&-IFwb&o8{)Whb>u>0=>I#=neFk_EKB?Eq9me&P)NTn>xlq)!dN*h zIp-&5`Q!iA=S!KN$DI=yo!R1>@U%jku+d)fRX2uL%!gU^&U zXm@f*UwV;przUJ0#RI2BMsVeM-7ppD$O9oy;wsy@EP)&h1QDywn?ZRAe+W$h#{4uR zA>a1)HVmo~($XJqYUlL-au0(rDmwlE(h}qH%sKB9 z+X5tCR68t7=e6xaWqiB05Flz?`{TzS$Z)fbSwtQ`XJ_t(#hkp)5&uc$-dku_JH>L{ znQe!K#eLE#&>|sobu-6=apC+v*VRpKY2?kd``ef_e5BeS}0gAjz+Vw!&X zfapQNT-fi^HnEMn@x=Xomr-OTQ=i3I713*g2#OWft3C&DbS=I_^fejun;#uzB6gWc zDs4vDtLRAQ@NXt8-l;DN@FOWdEJqkJTkGWCJ2O`op_i^MJ|u;okl|DjlaWt=9CklGtBecF@K|l|NlFNt33KN*Oy%%zYXV3?bM4ZRyyIcFwr?) zoUid7qyPqT^oY6*SA4e!6h| zPS`Oz@LQzw#?}qP1jlLP5qv>geNzLsaLV1C>8+(Dd1Xm~1UDy%2Y!KPsGDai>e*@!;54C!A#MWk=CB46b{^X%X~MT}|1UehlQ-R~R2W(wbT3Y@K88$z(eg zm^zLZb1SVfU4t)ihj?TBOwMypajd-lu_(&?+K<))*Ze|`M+J7v*A>#M+1 z8XFhVd=chMf4UY8?4+?&&+U~fk302jQC-}7?fba_|Hcal z=sxTp{9IjR@wqsxvmMSqw>uG%Rlk8=a7eDRnF}Bmoy5)9nd@anvu5A?j^y4a3 zhN0wKe(Qa5$;MY>k(2T{{wreD<&mEt(JtKU<&f>qWbM^8bA>2 zlN&$KD%GM!E69rf|4{XoVNrK&zwjUif+!7=0@5HMp&%jM(%mJEpn$Xp(jlGF-Q6uA zAcAx$-Hk{{z2`j7-uJyQ3_7#^YpwH_VR}yMoW5Ak@l2zIWJE~J%=*6YY2jpi z_H(s(aDuExp`jV3N{Tj@x_0_&Bqj1k;J^F?qrLr%qkYF4c|qxIHn<7`W9eUi#iW?X zn$r2>^iui4^T3KIo_p_8uL0YT3lY1fZ5~+iW8(6di#rBTPf!rku3GDS)&6}w+y>(G z8-^~XCoEt@d?9e2Y%M?SA^ZAMlV@wvQ}S@D>waycKL0KC^|zC1$I9+G zFv=0S5p?wR-e?x28NCK6z+{a(1#-~*A1nu7V5?N>^v|ZV1AnurqOxkRmD}D8;lT;- zr}*mKOdV0d*d~E)6N>HVG=EUfYf&Z46aJiDyv=S3%-n76m_24Hzg}C)BXkYadagYm z-aj{=BqC$DVeZ|c9AMV;clP$Ig2KZbwAlt%ohcU#tShRl% zGc-P~_MQUtbs&zeS7oL{JYr>i0Jkl4>wHqEsz4?(0#~lZ5(}fAO2JeLtY2Q|T>uyw z#2BQYhVNkgCv{&>acOA}q`tKqmBTAR+T;VP@rE`ovKI8eCZ>z~w@~TH z_|D~?L{cfCAZ*E|+ZsYmgU?|dx3he}QhF?wC9R6Z7#tO@aqG)*P#GU7XK-DM0~2vu zs1d`j^~&dUI#1qT+%|uRJx8O+Oq1kZV^P?^*vM8GfT#M*bw-M&E$QoI2i9-O&WyLN z?gSkAuYF*OFHNdz-!CbBz;tva-?C`z#T2qKKjndf_&fGOMPPy9?+mI?Uu?KKYfBHH zmx#E28zqlNsw`>Z$T9f;8C@*us&#Y-Xzxvt62OpEd>juu+^N;!?F)Vz+|7cn(20u% zH$#w<;3t~+b1H4<%{dcRkNGlI3@(!oaSbV+oq|{eo4(42;Tyg1>0k3%zJqvoUF^Tu z2$*#;ZJdn`qb_N~lfQk-gbWxjxv3AV=a)g-JT4zZ-SG(tQ9ST}P%=C^V zzXFx6bvT2vGuE>GVsE>6#u2K{k1ch=!QzMV)GcCep|H_TdAg3Bkr7=}Q*&rEYuuQk z`*=gBe%p{jz1UN+fY4AFqs0q5D_UB}{qK{3 zljx(;Ip8hrb94F|t=<`6p4ZM7EzAJ($N~@?#W=`B0N_rTcK#Hnr+a_+@Ifuu)ZCoj z6x~P)2NyRYF>#s^;}*oMAY(M&RXM0>fp!_Wp&pV+Fm)ZujcRuaJZ|v{`|V^t5jD+7 zAjOxkYmC=;{6SdzVQ*Gd9)!d!kQtiiJWzh+p`wYes8+0|s}WpOCakhD(a{h}V?ju7 z8Q-^BCK*hk`u@!(gUevLEVGD7r$hH1E)yKY;L7O-Z!XMXbx1A(zL4SIkJegIW z$d& zAf)MqQX-*8AA*B}htFwgX_1qIC67cb1c5yOfgEfYq8oL{FrHtHwZna4V)V?+q9P(b z(&e&XC#9)c9oV!N2XCuYi%Y{ z2P4~*AaxIXL-b_oKuUn~5vi-oUb-O!Ihh3o1@o&p7k}B|nhDw#Q2=>XdRDf#L!Rh1 zJmTSrt6(4GX*gEUWl1YSek|0Fw--jsIB_-m5N$KhsHBS0dtbKZ^QT+np@iK}s<5mM zp0Q1%Pba;RfYH${fkYR>>VIS-D0`F=%9lc=EWbpN{=|h^R;tD zRq@lEO_D96v#@#%k2Shyu2Wo7YoiUpNO=h$)KN;ne;$l^cUk728&lAJ)=Pv1^JXv2 zy+f8<$%%uSkHPdS_KPaihv#K~SQDF`V4>|V8$A=SYP_KxyZch?ZUhlhBDgqExxe>y zZrRm`TdlrOW-*v2tLqgoz55%&Hc!Risr`&i7L&N|OiU^?O~x;9{gFegHQ*&)4~{T} zE|3cI29_kJL1neIJ;T{Ds!CCyHO+*vLG?un$~>%|XHMHhre3+g+K-Nnr2~u>9Wp@# zlOeNi171!}j`ZHv>gsKHo8jSMwdXa!P%J?`!T;*x;MTVOQ^b+vsY`r90y09stP0ff znd~JcB?cS`(OluyvQU<7g%Cz34yxo!QiGMp+wE_8!isW~ z2|$@su~1L1iLv0=^tk@U#>pXMwif0Wwf{wRUf>yf80$&9F8HM^6&}hPsS?R2Kk%k{ zpS_=AG@+yJ_%T3yU$3*Cl;W6}#--EFER|t#j;hz~bd{}|oAws7QhD+eiD|y7WaF1` z*wY#Q@=pxMlto*ZXgklhp}>Qk%;S<*NLiq3ft)$;|2uQw-5reF|JOx=_)ysTwCSU& zm6Arhs&DC?3qM_b3M#uM2uvz-Uwff~9+g4%uhyp|-Jw8LDyAgB5aV{iyO2=Bx0CBU zq47t-w5ke99ybxOVXNjNVUmX}o(H#YB`o&3I+!r39sj#47!D*~4;#_Fd-3E!x(8eA zZ_M^+W7)duX-;j|QzvVTD2ROvDE)@)uKvP;DGn=0o}>EpKGrg8+oao%zPdCphW!N} zHsfGzDaYp+W?RpA;wZn;f7d~K{+D9YJUL3S6?ZHHhkCkW3SZOC9WYO-3<^4 zIMfBnxvx;#3}oss{|)^+RO8Qsctj`0-bih_{(>1xeAUfDwZ=Nbaos<)nKRsOCO>DsZ!x zaR6z+Y=hXq4P9d-$htF=>wszmO=v|LT zw&d;~5)X;dZhioU>7Fdw-#V43SNdZ~?$Xn}^loJSogQV9Zx9G&Phy$hc6cUu5g(&h z4cLgX`kEhAqN$p8I(85LByIV^ub86uX}0!OKwbX(>cpCq)8wUtMA}W7J^#EQ8q9%n z-~XP9V#bb*6?aA8xh!+Q>rbabH~~oE z(8Ed?ASDhm4i)=-__(<60U^#Et<>{{bPdqMi6_L!Tm4T9^3>FnWfzjD0_%+pelR(( zQ;?4sQqdJL9%8DcMa=Q^>Db}Z!QS3>KCdt02+6z>rHzuTO~}E? z00rA+?Oj-qaErT}_7OgI5VlX&1;`}KIGx-MF0K=kl9{a2h*)Vr%#ZczLQ&%2!Qvzt zoTHyj@Ej{1WNSMHIO+U|?jyj`9;=`1=f77EvS*`?K(iDB$MriB zT-oV9of)@Wsj1oqSduzZ*?Ja&kZTVFHH@E&?roeHN&H@3E@pFPv~-&caWG}_jnkRE~$Nw}>QX5^7IQqxry>(epQ zT~gQ$4Gn1M=t?r_wgv`p)GEOppP{VU5^R$%SuoP#&kwR}^o8bX-t4RV7LXuMkb2Gt zx7z)k&AZAZi?zp7E0TC-g~u*5JL;lxJSc71&A4ZK$eBekWBTO9feVM`<;v8=T{YXq zxvFTQgY)OLs&X;9pYt2ws}2u)vOM=_(d?dsQef-lGDXklnHSACKNp3|qUk)BG|+w3 zJl9en8@Ak%OD@ojT+ipU8T=-TOG|+3QU1A{&Lff`PCUT`;U&!7@JBJ8j!^IO-LEN2 z4MNJ=?9~~t(zADX*k+uc>*)kjrS9=%->H!(eR-}R9C!}5ouCRC1i~A2n#l&f`5dJp zPNqHvMT?MCn4g^fBA7czP-ZMl6Zv;X}^X2o+flYfAO~6tM3Cuz$LW` z%4GPi@4&q*%F+z6{`|>JKBMt8V=t<+bpZcg3ku`oT|W-AcFksvB%ry>`Kw}a&qe2A z@Alaq`BF6N7r!#fTyqC)MWw(*>5PYIVJ+NdR|gDEU6;Y+sq|}=tbvuO)Nop2{#D8t z{*0Hdb*RD-dzq`eC&B!%KSf&WPXOE*#P>hnM|^NNRW+fc%0WrFUg`sl|sfKjDo6GAoMtX zL?z5c;vWmXY}n;qrV4oAO*Xhd3F=U**R@(@%+HY#5izk((`%!kvOEA?dEZV3A`Qkz z$i_rUMzoe-$}pI3^Ja8uWBM2tb|09w1Aum`yPw0Y4>0;s#&T&Zx>B@mhs7 z3T_tXm=2T;YZ_z!EZ7oc@5NKLIO+a!BtZVHH&inmb$!*E&N{8$>)&p^OBWpt7gGDy-Y9(rnrQpbQD#@ths{I({k;zGSAso8v z3?eS%pHC5t56KHP60CM-+})@4)Gzp)`SM%1s@c2k2wOS`-3TLp$C;a`KYeE_n6Omc zIivoN{u`ECkN8}uh^MQ!v~e%hl?9H2a@SH9zbB^c7YEZbd&58t(nA&w{owvD?Fhet zy>JgH5_YpQg@n!Jix6RVzU5a%DdnGzaCj=%Iv>!fFV0Z+8<;$)Nv3q4>%uMZ&rM}G zSB!{?^v`-jRliLze@|Q8lHY4iv{~%C&wIp&%v!Q(rxP{T5Tu}~spo-G_AG+!y%WW@ zM>EP&EAd@Sma$?&(R-gIKMTINRN1&3v-p^U_ApQrtyP}c43zew{+>H3J2*a3Hbn9{CH6?9~J+Ak0B7G6UGd`}fZvB|J3i%FWFzlD%xf z3pK2qLbf3pgM+`Qk^tIe+>%W8+#`N74>Fw6Va_Qd7DRKGb5-5g(wuIw&5+i)R znvFky^6I)P^2r?KLVgv?N6=i2cqJi3p8C+9L$8C*Zx@Wp%h)K-HN=pc5zn@3_5ELu zX%#@t#&CS#?tWD-+(X~X&y|?Q@X>_XpJ7U<3a*-kIkuf0X{A`_3R*M+fTQlz97|U+vJ@Afw z=6)6agI}E?-v$mW*t`moeJ$@s*m2@}(fx1Y9&)yfCe=2E3IHhVDs;e6d-du8^fP%E z79Kju1bzPBfT=WMzr2_||~-97I4YD_gQO5ZbeUeC$`l%{3qbdH#NGC!>2Z zlo&8UfJiv6%AD~05ef`@!a_aXSJ6B&%^s(e3~*Wqh*~b_YZfIlV-3}^ARh5>>2Lm4 zRQ$d(0PKx>ch)}M;Xfd8Ngn6YMObdEyV*<6^gVtdBksvdxo%Fe$u!2sqdE-PZq=W1 z{Bu*%RLlp59aZS!rxFV|@0+L;^5b)7d^zaJUFP06(4_CRYf-F}?a35Eugd5&u1D(O~v3 z$^5uN`>JAYc`;a^)nKXPOI|S*?abmKIO z=RYR-yt!_bIk>!wzN42CVMqJV;SoAj!t)w zT5&3-=Mwps+D~K0@VV+*_MRZ%CV_gHTlo4C#DbFeys4~h)%?y3&*icIb-S9+_~e;E zSw&o;4ik9Ug#beU_q3MSSvR=HK@xGam8%saXAHC!=z$fLgo~SF(4NEv!_7V4nh6&l z|CYYKzBJBaD6pVV;KvC&plI)VkRn6*gyorLzYjz<0&v2poh~XN@pWc~#F|^%yEw*Y zaLxF1e}M?h{Wr9k#G&c9@Jk#VMRBb9-QaUknHGcuD##G9Keb4T)l4lprk(WeU$aA77y@g zn)HYWY@m0sIEttrHNE<5&0UHX`7x{{lg|*S2_TPeAhN^@_ntq|TzT%^j)>|0EXon9 z?pw}T$?jd8RHtP>SSzs-Mu{__60Jf>6O{KDudAZ6Y%mf&v3TDu!?$=QL9Gl#rB3h&KP*yl-JHaPz;qN@02W&I@+c}5zI5#;l-+MJk7d9(@n^;3^aCKSxg=l(w$>F zVyE?LJ4845hX}rv?WAd)#tONU-a)5?G2cTHLd#2w(w%yr24Z2cX*6Xlp{UJ!9UaAMV=jrhE4#v`>E=YhhI>6|(Gs$96XDonaOr^T^KT!p_JpqjsngJ3Bjr zmqMomEFmgzGr&SygN#tnk)UT|P$NzLpfXocJL(4yc-zPb?yXyW+6^$PEWnGP&MWJp z4lxf}l)5(yH?qsOL3&Ipmna$tEzRIAIBv4G;Y&~t$30kG(H5HI>82hM+hON>fbm#$ zEPPNv#KQZKoByh#MF=4o(*%SVvaRPcHqHb&4deCW9TN>}f*W_LL;xSQpg!Wgz^pH3 zL_f(2zyo6d?a9g3YW5LPXheZpBk9YaC*911tkY6KDkeYm#F?9$n%LZqt$pti_Hf90 zYY>>iwJmXak&*0wQ!DJ5_45c}gm`f4KM>joRnTN_r+{?ZMVP+PRz-7OF)eMfn*6GU z7w|D_~-McJOT@yJ7JV5cOH#Cvn>4&T`;kc&7r}YNL?mqxD|a~gTUs=w~;5Nvey$(qKd`( z*8^ADf|UoqNMTx#l$QQj%~gGg4(>RB=zT|WUx7O+0Ak?Mfnbo{Q&&>D;o;#?5uGXx z&^~C_CK$_`KoJZvIN}?1RN~>}q28!5>YK5#vBK)=gioGq(vguUgHHyEp8KHg3~bPy zkfP5(L5M&mL&55%Z`QZ4V5q99(&}2xgK>jZzr{L+HW$1(Ux6=W(BHoG0R|G|4^*kU6Q1=Y#LG@!V=|E%%DkZV0;WO}4lNn=s3K++zdxa)J1VnuWg5&CE{uxB z;*(7G6MrQgDVIJejVSnN9%8~w{iz(b%udiV{LE>lmbD2W$5`OWP*i4^JIs5gt|OP3 z%~XP8S~&%?_s2}?bhGd#xz5PUc0Y-p@p9hG|95~$Bye$HZ_?yTfI}0>aK<{Gr!e!} z3b>tyw7I9%rp}h%y74lTLu(AzFOu=XHj^)XBn{!ff#pO=3TY8>KLiC%NIwZX%I^=| z2PVioYuF=fdXty*dX1E}R`bKJxuB@8V2DP|@i%hraQ&{ypWXYhqfOJ}n^$RK6G||j z7gJ0d#j{Etr_Q36LqcBJ;WMCE0gDX^LebesQ8h=SvVFWt$iPL_n!M^liN?nXy^NQ={ZDo`>`UpmVf(*_a-*|8kBy`pzrKP2dlDm@ z3(^Oq5Al_M1Mro(*A+4F-M!&G9Jh{vBi_YCG8lK>*8RinNyJO}cyX_5Y!m$P8cpx* z3pLV^4%4Bum-~lG`nr=u5)u-RA3sj3sfj%-pR(qzvHcYU_nccb1WQ09fdsrJ$i^Qo zZpe8GUnDtvowIIdZy7+<}lk^$Z z&P;y^j`AJ&Em_&w=~Y#x56nzqct8^Si;IiV(}R6|=m0(YmXufq@3D|6w|ZV;5#?#b z#B)Gf`6E6)5;3vS3vw@DBnB!&VNT(d*4dcK_~MF9S5X}?2Ja)4fi1v%Sf1c^)pwrc z+B~pJklR~P)Kl@EkwBAqsVhQulsGAuf4RbLAZ{KdUL{K#Rpo>7!G`IWtFaZxL)oIh z^Y!?1d-FUyAvrnBDPBdd}eTO^$}~ zIebAvG7`$!gK{E&D24um{b?irTx(`(SJL)@#AB3*xz!J|QhqMbF)tFOUgbs;?izgBeWZ=&bnRLEa^gnZ z&+FeER`(<}3K|1bHpHdEa?obL_AO9Vgg?AU<+FsUH%`o4Iddw zg3BDw^pw8zfZUch9mA=!#54B>K&8iE+t*w2RjI38AXfhw|HjCTd$aP!%E_dWfc{%uddGRqT`g$oj(m>Tms-* zy!!e#fD0ky{KScgqjXrXi%weCDD~C>3Ny$it_%U0s9JO-4RG^t5r7(3KGV?GH1?2b4k0`S=6SA53NE0%pm*0h1ToJGxyPN_U*%U1 z!;de;7EGC9SK76mH!uRscd`A5M745TK%`M}vn( zt`mpl=cIg2f54-xoE#%awa+UliM8A%9%?LB>OnW8(lL2H>7_+q<(RKsRr!WZVjf|X z{)Dv{F<6Q<*OfgZfa)VP+e%=Dzohuo9#G{Z!2OzyXh2Kpm1l;`RxWB*fk5I4p6S7{>TSK> zlrJ`RW{ahm9s+Bi#IF~r%@{+v3-mn_7u4U@Mbn;GwLvVVG<6d;d(kqX0jSd3-BdkN z#&uy=wX<7%bikbxyzDE9qMdL)&>4wd5&3ps=e>aDv-tFp&j^GNh!_cLbbB~!#U`8H z^90cpU^jRTKZN}rDPuA%SfByP3B{Ml!5I$z%Us-*b)c2xO9WnRoKi}6;~)S`MM+bQ^nut$&}lx0qn)0D zq~kGIt;s+GH^O+e1aq@u-$!at%Do^jg;zqv@_T5%EOeJg0Mm-xIsv88?t0n?cTxyA zRDXXC87N>DgOVIYPi9Dce1Ets1+PXk-dJAteY^G}JxBa(%UA|dy*oxK^D%YbKBl9~ z%*nY8GJ|Le8HkmFC_XLFe7@gtwzqEw5vqb}wgy)M#}N>|3!6!k{>889ln0A@x~^>z z!iMcb^?fs%)t&Q$oyO#6e?o@OWn9Bso5(PrP93b}AKMMmL|UCpMt-ci?n_3V>P*Xb z!~GtFTdk=SIsdF}6nImr*|^u`6%uQ|R1q z3tx@;3MMg)r*AQ0ecgkz0#x!RI2}3JAxxm``6#`}WrIsZ!5)~)6b55bZw8yw#;Uwo z4u5KL!*zYu6KnrgUBwnbjvI5k-x=Sx96iL4sR`DVTRrg{g?33ahx^eXC4>R|*`LiR z%%e~L;neZ;8$PX?s1ggP_ALvRXM8xF^_1Fww*L4yNR4yL$LvJ0Aw(BjoaLb?H&5f~ z9A*shBp2Ag!*HA=N)us7DNMnz($F5*)$gejWFT7DuR7`Ih{{XH*xC{Pfl-7R|hv5Zav{Ygce3_vA?D?}6bdsZh2Vp26?))rw zq16Fe&Hs7#E`F$}gURCizyJe<)Mc(;rrB;iDn<$ZS(7?s(ylM5^A6dryI0D)Sj0c{8sw&=|yOA z1e%uvc7{eneLa$t`G5#$kkYxMnKa`vM>3+<6$G1g#-__x{Cayn07ga8vo7C@MrI}F)BN(Vnm+U)Hk)Zq*y$e~5-1L&S>>Ug+_xFMSO$Xz;eXdI;m^?LzI|&+cXp$~ zf89tfzdG1M0y`n!W7MT~ucc;>cBAmWs>riVs7+8FXmUJKNlThZkZu-O*os)rTI}3> zn^&l)!w^rL6z0|w5LlUBj}p%u`+b=WQFo_d{@l2KVg1*IFH}b_T*O*|HtMGOC(I&5 z+teV`V&lj$GRYLYG2C+e6kbjPBOveH{@%iVE37|hXJ#3HXI+PHbj|+2tHG1M;)rs1 zvxG1d%zB-LK_)`>eP1i6y0Vs%wfMvA6Zp80oU-7Tf220kjCSlMhIZoIx`icq?Ng!Z zTC)<0z^-p-_7xY$ZC&>*9bmmpjdv$b-1s^b-awlQ5^fV}0~TGmd-{@cUmLoKw22Le ztULOfOZb@MyI_Qoc&k3s=k(R}`pu40^tG7`O^g2T|K#k=t*n^~c%*4g|z>@vumGM#c?5 z(UCsy6=Ru<{QN-h{#I)-f9>dabLrZDa!2u`^TamtuCn98xP!fhurJ#c(+Y7tBYN;a zB(b*AX&PE+a}VXClII!H5l_B$;Ty6{eHD}GRLW}j0elcLxG1&trQH>$=;)q>mE2Y0D-(3V-4V$pPr_oHT9ENG(EbM6pzx*^V0^E|( z^!OK0S%XXiM43~+1)8c_aGlwSJhkuO=iwm)=t443o?3N($MxTbuAJY~p?<5n|7DjG z#U5cvp7Ak1IUcKfc)Bbwh-Q<-UNO*f(N5RrCjfVG_kY^@1CR51ulIoUYN9)^} zl;6=>X{3-{l>g1FjA*jXfX+dwGo^>@&OhU&D8c=$`qFuVw3G^q3w7#t6YSasuqji~ zb*el%6cNLK9uIj5)raiu)-zwV^8??@kpA1jbNLaj^FlKF7OU99^E0+LoB>^BZ<9(h znl#vNRa3o-4#<9CO6m*ohJfwN7C`qLQVtBqG(+|hw*-jQk$tXEdfV3nk&9}QQpt&l zL6C9FROF|Q2a5|d#8k}8vfjmGxo|!s+ltN1XjhDxi2EU~0_mAN%*ljx<^O=98!0y? zt9=eBCdfcO_}~BYmg4sI{rrz04$}Vbrs}5}RitPOTCx`*`U1u#0TdJzfX2Il>Vv&E z;!j06TKo5I--?sgrX>OfZZz^?6c9W{hyIEeh-&=W(S8rHzwPiik_yib{nw=13ob@f zSmks!wU0}e*dHXd9*@4=!aj*NPqVgtElryO#bsF7*gwCu>ORMa-a6lnI1##PzBKvW zsw4((>Z}ioD__(DJVeo0)wUBKpxOO#P&&kN;S*oIqS8)qwMB*4DMKhj+24P(O^te9 zOFwd{!dD|3e+F;5R(_JtNtq)X3g6!@17FE`tKsd?)D|6Y1fFe^n-0F zjc^Fy^X@Wh|Ji^4SNBa+EbCvS;=x zijTugfx|}*Ul;ZpBz?4dNS7p#H;c{E1#dk2t3gDJmx^T{{&BKrAg*3Q>Py^c7YB&L zOLl0YYk6-^6IB|~n;Q3bKx)GZ;UryKIa7*2xsMsgp(XFam$1TSS{XHTDf`vSmB*emxqW1*1onZq&~ z$jY;qj<=_9!E$S7-xw5xPDDi1_WgUv@CgLQ3IlV^`!20!D*FY@+HaP>VGk=OFg7^t zAg#Bxb-Dl%f}7mXf}yd!t^gVM%*S^QMsc{j!r~QobgTx%R2~AN4Na-;NMYZ=_b?D0 zRhwA&mYUn!qwGa4F*R8+|9>3P#-^&fumeJrV?=<0bPf@4L^_u0KTZ9Y% z4R$_=q`C=ybPX*nX_v4&M~Y3obhRZZDv79VRr*>yvCOgWx<2Gd!)m{|;}*13Wq5Tz z;ao=ZXf_NANeJrAtqlqu++pnyW`BNYQ>o@wjWbB19azc_E>z2|NWWE)PybO}Nk*i6 z{*)?y?L(v6BH})2b?9O&BVvtqj@s}1T~%9-gfKP$u5>5}U|)!y71nAkNyW1r}SOFXH+l*PA>Gfv_f>2qpxp~bv? z#5MH}A2G{Y)!uO4Iv?DOVQ56NW6xa8wjXYUff{76U?8rw1L&)5O?iw7^UPlrL8)X2 zI?#^W>8jYBL%p#v0oUX9X}4B`vFg1T%c?^9NHyWyalJ=$1Di(H7NU$@k$O!iwQ5co z;hP#k&rY|bDwGVqSERGCS?~|qV=uLkzKnHFoqD4wou6~R!LK1}OkR3ayFLcl${o*T zML@I16c`$c8T&*R9gN<6J+@(OZ9=2t!$t1dJpaE$+`rN%JZ* zEbsml4y0$0!iV>VMxl-*p2Ow}(DaqRKQO8$_+y%$o9hp}cBWjC^V;2CpzG|+5J&Wsm=F`E?#D(u~ zi5u@70GmTaD_)dwydgc?I5zgiG>GPrgfB8(<7i_nuIW{cefeXzNcxU3-P&I9A~;!U z`}h@%|H*EOlP~=#WQ{oecq&jb%O5^V`^WLV9=|1HpE(8N)iClxO*v7(|8$us>0 z54KWo2{m=joEmBO2WFNmEhjtBS$_Kg@kfpHU+MXw?A!dme{uQx| zwJ|A%9WmrdLANmXgz<~oC(ttNpZhu@gx;Lrwb7SVJ3#d;<&!5RQxgE;m7Dex^x=-eZm0q0HeYx)P;Y7_I(L;vR=v(u zvq557s@H6J>{xgBq}|E=WdmA-NP zJBX=b%X0J0>4S2u)@r6(qGivmL(Y|S*dHm?Yx8Qg)fPS@*jl}qFww_lGOlpB+*<1` ztEsx}Pu=1iSCHZU*o|G%L>&!bR%4Wu34v_$(^Fen^i*lDwEGBszyx&X|LW^kub-=$ zs!m?+7|OoY_61>MWS=Ikm9fV2VEj}Sx#^7EW?|o<+@IhT`6suPKmL9g{Mg|?p{||G zS1+nQ|E%uqGB&99$-j8`W&djV8u{7oV1872|7nieTK`YUn~+{PRYVZNke!$tk|-FEsZfUN=AyN1ucJggS_v& z_RpF7i+Z9k{B%Jh!y)xLw{3P8fx!6v0s0HqT_z>Wv1v(ebiS5aG@R3?D(p=olGk~76bHY3 z6H-)+7`>T_4uw9a^7x&R0ALqs*WQQq79EN-?`6vnLLo6%qa57oV83JtUxB;XZ!2cF zECzt6o~f*Q5e#GBRJYcamw{Z=XAG3M1u7lC=H^Q`DPG7Fx1Om9b)dMKpEsDCp5{Jx zg+mxpJ?YhJ1wAi_AY4BBIuy?vqV=E~Ci;Be8EW2~oGJ+IW3Vad0sU21P?J1z2c^T! zA1!;kjRNbH0$FP(&Boyo5qa;&K4hKLeJP>-cZ`365s4?$*(X^CuJZ5Ja^IGLIN~23 z8Oa_!M)ANqA#JVOxgAt-m*VOPHE#zHhzlNL+1E!36?;QVZwI9gy88J4^x6zBavb~< zQ;un%k9BWB(3W+!d877DWR)xpOcIRCs8}bWg?mG?7r)b>C&Zgu0^|w*|GM1g6`N&w@dJ1Y@fd@vQ346P=mLl zNjD{!Hlp}9`0P2(TL({!{U($yI5#QsMN?Y>HB`-4ti8)qAH?y|mU`b&PS?tj*A__1It(~sQp-p5Mh2scb|lZm7s02>JYux7E0**l^cQ6%3k0a_SUMtu4#$Z z?CeR;$=564BmVLRwL!^bEbdCKh@k667?`nj#oygT;F-qF{ zE#>-Lt6;VrR;^06wu6-ZCuN74Ag-TT!8iU_lkW=vfxX8jW zmKPExP{6t|&^-)UW?y(6KUPI93>d7VRn-*2woS^_i$R?iyO%5xJ8+{dYp;j1k-n|C z5DA7Fz^cpY38cfgM~nJ(^`z%&SuXx?L}PuONxx6vfX{yEEB_oB<=F7%P);#5GB_c< zqxoQ2i6eH$wT84Gg0Uc+_c1N+Ku^Q-Yf9>uMZA?KW$hK$t8JN?8ufoScrw${v(t~) z6k=b|Fy21Cen$%4Z_98CkjJ7bcknKaEr~LmQ|4jGh)tf1*dNZpB@V@=+1V-ru`s8Q zwtIyGRt)yfSIAOvFxVj zWgLLj7D5HMt%3}GbsndN zmBE#v2XT@(t%0&)Fo#G>2W%05KfQKnxQMg$o@VcGGsfdCR2Uclwj`7wd@M+fvs-c{ zzkDeqlRWbdKl{uS@qyf!FH=ri;?r?vw&ewGEQp19Z1Wp!M%d_}34-@6N)xq20!wyeV^2?zR?a6sN&>uu=r_rltPRbK zhfVZ}|DTA0Ki9rs_)pe&ivl#7(MX0as7`sdw)o3Qoal;rnjA;KoM zL|e${DP3#r_@TaKU}O`rPx2Fikdb(MFMdj9XD|(YmrQ2}re~pb!IrhgOv`YFjX-@x zoxqSz>q9PYAt6t%d$NBQ=*vH3GGap_&2Mx_&LH9qpMG4N0a&Z?(6#{L1H^7_|NHlO z+L(jrUInSHnwNJ&1Ml`+D+Pp{S+>RnydF%Uq@?sd6p!o6C@#hXmFo6vJ?_}pC}+ml z#DsrMP0jc2I2bu5TfJIm{et@r7rQV(3bEPjwhJAC?XX=UHQJ`8G&IJW>+3=Q0|Ejj zr?>Ry?Ae?74?5w_rY>iPG*F*0=f({5g`ttrM>xeYi;85u`L)DFL{P!N%P}Ye$O~YB z)V#cjktZL^a@#=o!$9&%6)fjS3=k&mqLoNKk6-u;w1zSicF1pP(%#FG!aN)h;c2VF2q@!@FyA?o! zQJPY(YAFcxSsl9mE7v1}tDPHJ1wY)i^Dc1FcJ@UvCs7`~ctM&gA4t-EhkoJH|1W~{ zswbbZup@o$m0{$c8`jtEf{+l?JMr=MnX%RB-05bUkp`a(&o|jXY`W$b4Cb+}|K?;Q zaSPh`c^f_tFpp6_WheQo(=n$L+v*By5}AB}yaQUduGCd6(QZ&OBn*|=R}1%`T;=5# z#c1KhpRI}J2flO^!-NwfxcA4Oa(EQ*%mV2K0cnyPleY}9HqEbaKRz)rx5N$Fhk=HQ z=6h#N_^}N#`Rg=BSgR3)rW-NGWLdBT*H0=y+#>pby&!; zW_HSpCIpA!_CN7cctY9mQS3z~X zSzqvFbY*z1#MIyY_A=Ir52i=fK4Mg!EjT+6B%mr6mLO9 zJUHU!L2DBo0{l3e%b`gX?5n+20O^2N0ANoD8$gPG9QaS?@F9~U4;boSjiVZgC~cjA zxY$HQlgnqDo0iBNWmi2|`IMZT(GJ1Hs^QrM1?Yfxr(1tV%7>J5<&_3OY@CHo$UI;z zw;Y6pXWBo^zg+FP-sEY?rK}#;p8A&(e?ba6zph52{H?Od$#C0>k8bg&X)XI}?0iq= z&=UTPE`9JGF<=YBeoS1@+3P9BqJV4&0BtAY1EdbM|J=I#l60AK{D=t)qz7%EiYHJI z{mwsVYNgO$z0_)|QqskfL3xERdoIBkE8y_rz^brorktzuWDNPQm8tSc-!U=2iu>>V zF%wh)#*l!|{?kI>*wZVzDh%ZV=y42@tMYP@2W(Zb_17~RRP}|$xwkOxJgp9+5zPFo zVh%ZD5I~iLW4fUo=%*U?+X&y@QkIyTW%|=WP3pp)MN-zq6xdM@AfjlJ_<(1F)zf27 zw^LBA!#nlWXQ`vKmsjf?RA>kVaFIYVT-)PZm&w0>DWeGjSfqsgoI7)Jy%zUK1lx2c zPZ_BxWf*@K7;Tt`+3VwEBkAB8=3gU4*Tor<+%-XN%wfUrn7g9ds_O1p>(&r1?X1q1 z_L5+|)h|jJ86NA*qwy(+`)Uh+#XWMeuB%ju>lZ#chBRQQp#Y25oPZ>mY;h?2hFeFD z1Y`vNiToAaeW)5Q%B&wqD4yIjma34d^VVBs$j#YF;(8<9GCcpjpV{qr#&pivruWXc zGGwL^ysTfd#wI`z7BA=}AS;(|aYaZ#a9dkj8?Kh#kq4tQ zee8L#cU^aPRv~BuBz-+}$>%dCdQj5ti`+G>)2^f403@Qdk&_teWfX4U9Yq z3<>d#jU{Msw$n;K7MOqY?0T*!>+F4whHig=Fl2}FxS+lQI>N69r=&lP zJ39N&Mm$|=J(og}!Rf7@yl3xEc>M7yW};*l{aRh0jCGDve~ZCWlhkvAJjvef9C?9Z z%n+zS4dWqvi$IWK){Oowd`@NCHNX2);zQY?&1x#H_G~VfAxDBnnIY}j`?>HQ1ucc! z6URT4xOu>17cu>cBbF7HDw|+g=kkkGM8NVT4U7nZJ8O@NZ;1#CfA(xvcrSaekNFhh zbpIo?9k?a}Bk$zZnWwBnO1MaCs<7%qL*+ITj{nj62WSRU$QN02|GaOgOcx;+lv(>_ zdSz!Oc8`YS6=uTBgI%(`gm==k+{L=g_Kt&O%=gc3r&enR!j>4BN`^>w-(kO=+jy4T zf}eW%^wyJ|WHwc!!#by9wd8*%R7j0P`^Ude;U5tOe&vqGxo4Btf9xHo!2bY+C1^+* zS}^tOqb#S}&4zC;xE+ar3en)j>H8Uw#J;?&uKJjNOqnKfJJK@=lEUij=gFaJguK!{ zZV4pAdGrL@oZ!DU+D*)d-;eocT+SyZ>eHy3Ny`sfnIT9LA+SyS`Uki()7|pJ^ZvX!Rx=KeM@k?RN_n!h?c@9ULmAmr#W)Eg4Jnnx~iffAjqK@q>+vs|)07qk3o`hqNyM zq5dxv1X!=?-fiH3-w$u{->-%Bbu_py>(sq@NqHU?3n7>i(A)UAZg0JrYp5P0q|LA^($rR3#lcXaIxy_Jd$1AzQI-Qd?V> zPBohwjBo42Ev=q}RMUU=Uk=)LW~gWy-a3{!;5<-WjCA$qQtQC@f@W_^(3?N6jv|6b%PY#ybn6NC2w2i?(xo zjJ|UmyMt9YyOjEva!c<1*(6waCrORGGdL?rRaF;nJ>d4oBwU!KI*8hy5H<=sIuJ{y*Npbl;+7Qfr+$+^A&2c}U{O;zxtr!?uLx zay~=;7Tz+A0!s6@Sv|o?`ivFLFH&>^JAIU2p&-Pe_vLEl6dB&d87Q7@WoFZ!n4pby zExP@uD8JYn!f=tC_#}DtZEC^?kqrqHytNe1f4Y(+z5FKwL3t0>xOKZs*3OQ?@Z=W?(KmGNlaJnOW)E4@n%QobX_ld zOH5heRNWiGtCR+*f~Lewu;PI`e)o!X@?qos%s5Q%mU6wQ1F%JMKbe)%x(v}2IBJfS zlj-<5Z}6M9oY%GoqVttCshuf6)n(Dvm!M(&P4XL6lv~Co7UIpJ>Z@vI%^!m93qo}@ zx$-sz_rY9;F+TW+V(*_8dvQfN})Co9=Fr6cGfZq+1$kB@W#oozf*B z-3`(uB_$x;E#2MS(*3XV-FttAV;FfHc)T$Q&IVL3gFr zooQ)l$z&eJ3q@Q)Vht#cETW7I4dK9fv0`q$;5Zh2XJ6Mt=r;qWj45~3f~CwV)t(@Q zBh!m^zj4*qSi0f~XqhY`YIrf)-V1U};HfxcU?Z9@5RcWtMUTfW`zRlq;^T=%?v(?3 zzm;AWO%MY&68Y;>7>1>3aPwk~bImH@Ar_3QGaq64JhE)W&g$D=H~rE$dX}NIq@|X7 zc$FnZMeT#h(z_6xD0nCc?wRfXd<#QT;lSo_6G87Oe8>XI-QUi&e#KC1k;!9$nvXBA z?Nx$^qS*#bMgeA3v?UOcW2O08P1@^f#5hGp)1(OSBocJ$P9KW@P-|M}^Pnz)vpbP> zYGAI$LZ!pCrz>*fpbCUrffUZSAQEY~v^8MjfF&kGArk4Ozwkj=b2;~Fm>{~r3H5@g z2*($A-wVl>r2SE6V;tV1K`$*|fSN7l%-H1_3}c8+(hUZHEvmyN2(KPZ_D6?{+Rg`` z!VU9jpBsmjS2tfTV@uRpeO_Vw$5k}fCRXpFNVA45v0r2@(5sQHU6Rf8kT_ZhZrkDF} zecm)Sr6A!44aC!PMkOj4FDxt=fkQZ@c(;TR85!AVvxiGfnv9q^H?*O%dmvjv9}y7& z;yuO=y+dOY6OjO?5a=lH{KNA>hX>?c=f}nrLsxWO$8CmmcD&{8%L)&O@^ zF2kC))fDe$9!`Fa_fqqyS**KvF$h9{2;1`aEDX2L&n@(IBccp`L;kxP7@_#oR@>*p zYUS-So~uIvECu?N-F4#5Q`*7X)~WNP|5xGy5>Cr;NG;nZ)N2F_l{_4UQ=p(ow;FKY z9GUnOM`;qHLN)YHBXsJ0ZPqW%L->;H?hh+Pf>7p61#tFAGE*SH$0ZJCf*hI(;7r>) z1Vd6xOI>zr!|L7kuk?@eNk6n5VL{*W-SGrjY^7Y(2(V#MF|w5Yc&GC8042&*8DrnN z4)4GHkNd@=h2G!OV#ZxGGh1iRB!NM~3Ip{?k(+^VEi7_A@s#wBmbj#(Xh5$6j^-ba zDitz?B3^RaNDI!?+3KYXsU&2VmSRA=i-v|da9XXx4K62GphFB|fqx241F53j?LU*E z9WeUVPEN|F{{a3nkJBy=5Lpt=-aUeCCLA!h0*vG*zp^dIy>VLT+Pq(Hv(%6cnlly= zS|Er^EC@^a6ZLqi6R4tt0FmI}U?q=Ipw-y;`{FF8a`U7-H#CtQh%rC{!5vk}(E3O@V0G=1+qRck z`2sD=BLDB0`xYQ=gsn^bqfXvpN2NWlJW=TTQId%i29zO1cALEqM&WOq&H~EPAU~@$ zMYotkY2${(W#p-W#a6844PzpVk|veHpRi+-St~9)EaU87r4-=PKiw~V>fi&8L4^Nv z4BiGq36wsJ*BhVj>t|Vgf+mMb>zm)2KJnrPE#pyafov*=-dHJ%_X89reIJM0$5hQ= zvtvDDLeYwve#4R7-;-@4c}Cv)>8-E(aOZha!?sn&y^J)q?F~&o2aMf<(fiFpV*MR; zWVUW+SXaz(p;jc*yX30_S2E8=MCe{GrOa@MG~!)E-)kQv-~~r{#_A--fPtBuva7Ti z_W9@`NNh~B2KEIgji=u{6^sR6cL0(>q^Wf;6j4amC05ir2aTJN?*VWokv_XiJo>W0 zvJy^c85-v24wwGXp*4et;DX0Tbx!b3ascaHX(Dp3kFqc(=?&A)$yV6tnT`rY31_7p zYwu0DBwR;N3)oB~RQW3-dA!Kq1*|oo%#Kho5>W+as({K$HegeXkgEYI>#8-Wu+L!<~d?lr5&5b5>2S-PHz@-N{feaPS=NyqHy1Eo< z<+>4}XqTx*ptU0c^0k1C8qMm_yMJV)7mU{Elp@{BMBpG+VFCu`3inG3aJ27RDyIc> zt~S$Z;pBqqe_)T<6^Kqec`OeUn0>85;PE0n2Gf6@d~lWLuByc=XaJQun5HJymmJcj z>W+>P!I9gJ@ugC#HmdZZkW5Kch-+x+8t^sf8{0^?c$=>nBqQP`qyjuu|M!wASI;Nj z3~j2?WT7qwPTYW{WsZMmwOby_vFf3;T4r%063ZdfffRsU#ahWFDfSLq;%o~?TKixA zJCm+fLc|w_*e*2a@Gxy>pbxXD7>wuH==MSE^CJT((BPu}pN{d|4`d;p{!?J`CcWe? zsDIbdUqhVN6bqEFYeD#ocB@0C;m-~M0};vp-lN$YJqrr(-DC9QzJ-Ayhqne++MiB; z!PEANa5pyz>w7hxcMibI@HFnBB|1G~#r@bZ0;BG1JKxoCU`#(ZBGa`A^rsl|o(NG8 zg57YU^m=}^8z%+wTwU`{&Tv}m7MT4EQ#I3-lv5cNwut%wv*tRMGz z1pGhK>f(cbaDnSM+pad(}B6UG@#l<2(S@AE|!N^ z559n=8syA2e=7t#LsL^zVBcZ;U85=+*&+*QbF1s?IbWFo-sB5(yoL>mO4P+gsBZPEq%=vix*^%WF@h&;Q4Q}}qa zcS@wa?C<&UFA2N6as{5RK!v=Bp{Cxlz&jd@bv~?9sTt+2%bd~*I7>5Iv3n&wNFA=) zS2SNeAq{w_9)6eo8^kU`I3u!2ecj_Dy3~7fbKDtA8D%A#;y=n&(!808k}7DvSGI+> zl>cAc!kGn+2K#9Ahh1{jY$Y=l|M zJBgtoUjjV02%Z_gbKGt^U{BG$!owK1_IF<;+!H=E#Y(&Rz4o3kDkZcG zN(aWTxm3s1!T;*6rSZmn)t1EU`~?@&Y)CS4)jJ@og#DB=0l@9vf`R?a=y@uq@05X8 zOf`->mhJH(ZERg;9yzo&gR5n>E?Um`Qr@6)*b4h zkl5qp=KHZOAdEEx`2iKx)t?6y`X=Lll31Ek;aNvUMv@45{uv0vy1cxct+S;Bm8x6t z-N1$aaC2rpQ4pc|RkS8wo9t!U6rjPZ#kF0Bl7n%)T~mI zkGes!270fUfi@Y^V#ItQA1slGOqU6TX${$|SYs&5819?+HnP|nE)00xm>iNC({8nO z#8l`p_0f0e#c@U7i?4+BnxDVmxnW%E)Fu7wzldU(oi~xS%~$|Rg|cczx7SxrQW%5jPJ)Mpmf)aVbBJ>X679aeE0UG(|nP%m!ulmP%U4 z@f`+Sam?BN8&y*D90_}!S`aEuVRGi&=ce%bz<;v~x_jN)`15KEcr!*vAA~`(o@QMQ z;|YAaMrCG3k4;C$8jLW>^CU(9yKl$i#i(|ifvxUiHn7}SSrZ%#g@f__L)o(rO^7M% zHd}8^xbN$gtsVYen{gQ81a`tUly1S4lBFGx5)H_EOU73=J<;gsIP(s2_s#-WEz7=u z!Wz#T>B}N=l_v0G#Ua5n61)MB7Yg-V_Gpas00x0f(WXSp1kCE#7^35hTsQGO(FfTe zC2L)P^vTdwTQ;iUeg0Uy%hN^)MNS4xvzHWDiHmu`LlGh;H%1Q}ca)xnoG+i{R>FyA za`K3X4h5}&)~0fnunvoKz6xIgZ0>+Qg{SeX>hFw6<#~yi@mmkzn7G+IH?Z&-cKOgq zAw*KGZT0SaW;0^-;{~D;f|rrtF6n?;87P;7y~p~6d-v4&y*JPIJd_Tt>E#KcOz(Sx z#B=T*{#kPT7V6a5Gg4OwrwPrzh4FI%M-Zsh05fOXxc(~;x&U4rw4Ew`t9YGlUmnbW zn0U&-A#tNmpFi8*oEmIy{+u?-0vaSB8=;H4+VA-X>aRZmPzXqsR46vQVlpx!K|#DtQ_G>HkYI*f@p0WqAF!hv>+ zhy3ommEq{{lIF+$1u}rEe&DqioTIXseR$gC_#+l)t*h-7!rx1=)_+UgtMQ%?1h*r@l&04Z0>@d~=-;gF5oXZ=bPip?@`df>$LrVP%b}9n2V}2> zeEh+l{1rE6<^@(#7a$3Ow6v_98)myNJK_p=WX(r01R3Lp9!?Ym$8zX6toYddOj&TJA*D7a1B+0{M;z^L{Jd}16~XWfPegmw}mOn&W6Pb@&}IL ztgI|3PU;(IRDdgkfaN0#G?mfR4S+ zDIC4h59&=10;ZV2@s0qaV$4ak=Sj3*LfU5ho~oiWu*9F{m5n&}Jw>}1oZZF%=BzWP zl(HydL&PzYVo1HYNuL`*CUbKYKehjjH*KPWPNf@dg3#=Xfia`&ce$v>(@*7dPvaRFZN!6}lF;vT6yf}{K8PxgE`EC8PdY{L@;;(vK53Fj?Bxmq z>FE}-FJPdK>yC-nZ_{EXlbwqC!&^cqB$>#9FQdFW{o;o}>dxywwJwRNuKf3$Cq*aI z*_hvl4`$XY4hPD%GXWV6^?CF%uioGvhj$#Aa!)}w0!nd+Z1x4b&HE1H>2GxZObHmv*uzZaHE|RrAa?ugY4YwnSfvKj<2&T?K7x2GIu$(k?q+BMA zDXsVdugUuORhn@XIfjT>6lSB1>F)1w^rv&}_V>m9`IhJC7$6}bxz2{~pCh{RRpM^; zq_xw8hceJ4`4m`-O0Z>bAM+LC19YTyI`(2Hm~|1km;>B}nGZPu)0N6uAvpF(AI6HD z=&&I*cLGfj;jatg-+hB+$;JD(f~tZ1MM4b`SdzOp%%?}& zMbX99tACgOcw8vQ?NrA)L?^ti)ddqN%I*TuV_{&<2d>>+tFjTvC~Wf)AFx%&uxDCT?=d$zk9VPSj}=3%S_ z-)$Cbi)ksMBd^%_`N^C|q>~F++kYK2VV#qMIO8bJM}&v7S|zWmNr2uOP@74JwDq2# zr-2d=KAi$ISIiDPI~IEX)AM)*c;}wOv$G`r$aPI9uU~;aA25dO&MH@ajKEG=T+}8L z_9g=^nIQ1>=|0pjC5g`F$qdMXfHs4%)FujSs({Va?zFdj_b;gT^v4C1*ML~hPxq-Q zDgEIlfaus}%9xk~;&;HO^Gtt~L;4wjg21x@)Ss}RW2tVTH^Urh_tG$^tNO*Kk&y?- zSK;p>G#8&|iye&v6Z3OhrTxE9*i~B7n}ykWt=#9|N+9@=98fGyws@%JOl99J{tr5I zlIWU|iaE0w^Mi1A^L)Mps1F#^p5esoD4F{hg~@#W1Z^5mH27M58}Kk;y2oI67O zs=hfiVJZ6A5|5a!05hK4_Bn_n@|Dsblxc>_j}8UKAXB4ql#DK5%+Mvi>M14pR+!X* zdrp;MMT!hVNUJLCni}9MWSzEDR}aDZF{gFBBGNVFe{Fv~Ya|lSF{K)0j%l(+5jvJXF`qZB|Y$SaIFN7EVg4b@d=@A3>pyX!?B`R#sfzVJz3ntgC_zq zGR^DP;#&oYlz3n-2TZo2?(Tdkc0QoB2<+4FfZknypBNvX1=K`xZ}0);!rk3HncwAC zhy7c6dJ$kS=lgnyf*G+*d@4i)PW90Azu&((*w+BK6cx~!lT-SiD8iuqc%T^qogQ$Q z2VHY0MG6Q)-d-$&>~Ls^2Eh7Uk1;I&Baf66^fu9!k(srrMvxI>rO1!Wgc2s5k9#n>-$x=S{u=DfQ z^>d~2k?yi_A%KOeqdYC?FQh=c&;XQo`+EV>gUW^7c&P_YvmsSJwI2_#6tyLCQ_@j^ zpA_o)0ZC!z2em(lSFARC0OXdg32|Rlg{3>z)9tJ7JC}g`)N1zEZFsvnC z8;0%ij(g71X2!`t3Xo$bykD-YSDL;yH2~bP%?-lF?ar=&Ki!W)#sD{=J@>dhh~0k>p{3NDtI1B2rSw;5;vCU_gz8 z5v`{RjF#U(H&jIhM^zBGnb7nsL4~-&aYq3fw|X>Rle<~nWDD*f89^EdB(cytXla3_ z*`jY!67hE|at4v@0O>Zc3}m%YPznLy1ITU# z$*u{Z`C(z`l9BOCtJ+YWx^AntJXd8|$>*ka2Pi}5{zUj^@m$bp^^yLlxPC`dt2MiNeSa?t{lt%;d!b|=@ z?81XDH0s#KcXV{*$)A4w$v9-;0QlYdYYa+s>v?{zd(!gAsHBAzkzQ?l-3{`rq7m3k zI+4IEf`;#Wn~#nLrnt*3cq~XM3u&+RO$a!`=Ky$PS7_U3hhI)?g5h&ZY4sQy#Z(g*`j7Vx9>FDACbBwG;yJe~fAVMwi@ z*Ql+9B9HsqmFTeT4Iss%TGL=Z&P3@1q84K=VH5Tj=EVD9EpZ-M2fGSrw1z9R^X~H~ zq`Of-t!A*M|DD<~?ap;4pD=ph;3t2jvHxTb&pmI}#46S<2M-LGl0Lru3YI9{pu*_N zzcODm38`{M;wd1%?F+OAv2ETF`zYWkewSn+56ALKQ>4lV57C#T6D9Rd>wlUOGKB1U zJJN1HxqJSqmGZqCU`W(($ACdhkpSW4aEdH}AfhJx?=?J(lr6s#=^`vp!?rb6^Fyp& zB|@_TYMNb)kMXZJovVA1*K&MO#x|Yi%ki@;sq_pWfC-Zc%9p)-#tM4%sFP8F!05Ws zF>T4NXZbd9I~HUhQmvw&?$zaPX%@nC)ocS@W4}d2%V&2GR2;QJ0a8_v?HrB}Q_8y; zNd|Ln*iVsX{faO#NI9g}x=dYNdB71qp%(p?L|R6s9kj%xYZ~Z7n6Zh8iIbC)S6AEp z0k^ov7Z#qN_AnSo1i?Zv{*{^%9-P;qOvKv-bzR-%bs=b_7Z994w>bb1{ek*G-N4xy zRGWeGW~}z8H#5Le?(5fD6)5UKbFp`L7%S8BA8I6pU?`|mfMG9d;Oyb##Bp(X`Am11 zLmHQvS?9Z-6l1f1d`WM_Gmuj10aK_B362~#+3L+jxD$vR)3-1Rf4C53O~E+5g>yPwp#b)L z`oGLQ3p;cAUs%_6t!Iog>Y#Z$|;VU~{x!mHIbwQ@`D33_(d@X&^_ zTNDZcoXX6(l8S0nEGaYT4IByrOi;IP3>UI#1L^2mg%HYAiNL>cbi4aecu6E@(dL9>ptiRIH$Kb zD8WaFaO<}qhjUV8`kR&(wk|w2+>1oae>f;Gx`NnS5`-WlSEQrbnC$tU492&t{d;zb z5ShTysJ*_&MH&TKCs8a5B^u|Y0D-E#@~6+(%u$LNN#8ZelJ_k{6gM6-lLT5|@@p>X zi`R2v2jMeWVB%oS9U-h^W4<9+$Yg2<*GM}c|I#&8ytw>jNi1i?rT+F2%n9t1oy87< zmJ6`Ld})^s^LHnDsR`Ha5k;#xOmrtcq@guS1|RB^HI47f`r5w}m3m zOy)P4d|}$_aOu*KrQrn))t&pd2<6#Jdot@*^m#Eh>w|D4^!K(Nu9&AmpFPaL4`1YS z9K7sjK@PiFoW78)+O7LjE;XJP76-vEd^{PhAwUXe#dV9B{ZU=5Bb@~&tF(Y3QO9$1 zScH-Z6Uz{-Sjkig_OlKa#wY9{b{Q^}lUx9#sV!V+*o=NC~7SR5E+_1kbIHn#GLCVpA)nAIOn zO?($5ghT=GAfAwORZM40fl2c(9cB(Jb{M}6tiA+i7>Vhd6bDtMx|5i5QVs(7v&f=R z&WnPCYD6NdEigIO6ph*Qqknn|Xy3_=4IuJo88-tj)+5PBlsl z;k2KJPfQdPuu_zslHa)*w{M&&si`4>#Z)Nsr$}s4(-yc=dq~1m`2~fbSETQgQC5Bt zESQtyC+!S=c7I_@1l$&+u158QQUMn~&4 zin-;N4rz7#?kR1OFN0AgApF7oV%JZ%+5K^(=hG);rgGApj9w{wXF&&9M*9rKX-_=6yKWn+Ljhg|{eIP@qWrSZ)xK?7h_NcAdf`UwZ5eie>& z?ISxaUF)Oe`qSyCwM6JP6d8TxrT#lN#}!3C5#u^LvQnD$txW=Q7?>%3xP^Wvr9jh5 zFc`mX&hNo&JcTpk)`bm7um&)ye+u_3HAL77!m8%{uzJ1&<`g{b0u|1X)6;*VA56#> zdz}1a>;c+`izC8$tsvWP{YGxm{^h7rub6@Mi=JO(SIavh92{k+Vy8k6q@bPw55-1s zaEJrn76t~!@M*hq|dL{q`X_VjENU(J|N7I4OWy4$~^%Xx}sI z`#A7H!ao0xY&|<`uyHJi&x;Y@p7aAeBH%RD-!q0qR(uJ{Y@mdE|khO z{weB~{?J;&6@;q(S?5pM!3V|jrKK#;_1si&@R~Q`K>5YT^NwZip_ola5^1gQb7ou=ddVN@zH$*w8B9{m8|yxwly5VI6f}=t z32rXeA*qm;xd23pfV~IvyxcN6ZK+$yvfkt8G239p!Vt=6($exg^oCtSZ)Afe|0ih( zVgh|pOe=kHJ6`X&k`~#2Bem}A0LH**5!1j2lqu!IdT-h6u4ieibemr0BUUB+0zn&X z{Xsmo`);0jMCu#PA8131w|Zkc4YMLp&&atGgSUY8@N6Tv71m&DaQ?ovgKpDDEa7qY z@O^1!UAooJh2#ju=KwP)br=!&%&59J7ZY z8@^MH8ULbRPE0_sY6r-9f0NnZ0lcv6qG%Z#lt-abp1%-K^-Q=J+&)8;W-O94{6P4R zacd#HA_aqo)UvZv8yhTppHTBazX4kF`CK69SAG7R7+VcWoh52zu`dQ?;@-sUU;&A% z``a_}k+Nt?St5T}WFu==&E57UWu~~;r>N%pNZVYYXP776BLj`9@7Eb;f0xr>WFQ73 zRoN!aB6RQa+py7oAF^v|(kq$IdAvrD7DbvHtlVfWG@eVevXs5P7pnphYfOVxM!h5V zmjjHko_G5XHwrG-o~_rOjAtv)PsHjv&V+yhM0d)a=J~ae+~?^$^RegO0Au-u4L@_D zgi+m#Eln3D_;hPK5-JU9Nd+ea!&d>zkm&@D^+MU>%f!LPoynvv_I}s&;i~8$rjCcPZ9G8EHr|fzeUFOtpM`X0vM*d&+B0F5+ZHd7`qX6E zgq7Le=6+?PZ-2Tx;2(ud3mDD?$FO3+XG45{LJ&Wp$5xnc2$a@4ynVHai(fk&H?-%J zW9-6P+uDds+c=nAHq&9uai6}(iu1iwgdvH__6ydphU=WHH*@I3g<;*5MDQOMJmB9{ zJQ~2{mAr;T=lS-Hn0MQaU(cP2dF}k{f9LbslbMK?F&d9>@n}E{xLQ>x%Q~ORBUjtD zX?W`E#Vd zN|{={4t0rN@2fiwaI*M-mvO%~lAG9Ppg}a%yKiTAu6(%SiIDHX@O^3!0p^!)kn^>k z->$QxA5P2pr<^Xx53;~*e9W8Mf5NV} z8*#_nqt>+>L3h8D@!6k}F9ppXJt^5aa3Su?p2mM=FdGzV6#2b~th~ICgtwciH#QM5W!267d`od6 zd^uNve#PkHL2Yw)K1DxqwQe2;%e6CWl!EiNBQ~DiiF?1IGTzm@Cou@S*4Nh;1FT8jbjeWb>t{^?) zD3u(XXby@}TdmKJwm{ErFi{|1xV75}iomO**CpB){2?68+md9#7x5+A)&&*zR$?Sv;7y z-colWbY$peH^|m>y;;a}w}hIRDMN@i`}$xtpM z{YR-I{Vz!&-`euDQTuU&!i8q9w?3sD!>XZMF`j+QnlLLMK6~DEfbp~8!I6NRsc*)E zA^wS4KB3d>&e8}=2idC`gn zM){E8>?@fAa~~yUQPQj%gq`t( zktxvnf|)pMmjlzg?tqQVnk~E@-ub6^J&Nq-_>GpZ{yitd5jy0vll!M2$&n`f*2mMC zimkkW$$EB@%+A#tS-tg9MlHXIi&tK(0HoQRN!ihQ;_=d%ZjmAK7O(z=v)6Rgt z0G5B1k8SrdaSMXNMA${UHZw7J$DuP%H(bS$lW;IL9(%pPkoO*wW506O>`4fEq^Y=^ zUvYA7{bpoii&YeUB#??EgN4z)%{>^~jnA1gf1#eH{r!VMIDz43WB^5O--ysg+jIK2 zm87>0YCkZ(vcLYIY3dS?Hue(BV!;!1iHnREin+VbhlgxUmuXd+jZna}-4g4-<#G^R z>TKKB^s|b1|0akPB4>X;ZYIZ6XT9(pz;GyFD$bhF^+P^NS{HuNwq}Rnb4gk)(Q8FY z>I@0zEpq*O-D#BC<=yahK`-Q4;6mui$BhK0Vmmbf@;J)*b2^G85oXk}0xt7$UC(Zg zOuApT%Tf4&cU4<-LT77@wCVQre)hcb{@!6PFs$;dC{1Z>jQhCOOhQWE`x{x445^BA zpK*2oe+rv|Nk_BfN{~)XxkR1|&Z(7mBae8Zj)lUVetMWu#ST(-bfJwcf`7N}(Hyl7(vID=nE2L4^!f6uje0>pmT|>G2*rZ(H|8+% zBeqoNwO!+CVOk?PycT;E6K@mw(y_d-R(+?DKBLf7N*R7B>3p}tgzOS;#4*^g(}}wE z>qk*RZZ5nR77_CAt7u8=sIEobsI(atM4xztCvd%cGldry9oAQ#(f7k2B>hurBL1xX z4a7l(qoe_^3_y)Jy@tI8&5U_toitzOw7z%xcoUBtdAoMq8r&gzvP6zGS zkm$&y8&+1aAo9|dYWQTNpUJ*w4l7~=0@gB@VIscR}8L(7y!EdQ0 z3zh%I4x)cIus$$;sajwB2AQPz*%6XXr`&Y@df-Yu;^uMON2=|=A>K*WWri`SIei5= zbIxbh7ra$6`RE48IPgIbf+2gVB~e_wf$L(&%~-zm304`{SW4dG|L%May&=&=3^G&viNbA4!N^&8w- zPf33c`kCBzPJ*#j!QT{T;ow&2{cT$z4pVEO#^C7BZc-oeF#SieGZ%sSa=fU=T@4;` zW`XL1=PZg1m&a9z!=E3Yy(?F&YmFT1xk|~2AFC!mG0BIJvL&iYS)BE$Dt3;Wb%UP` zheghppG8Enx!sZF1Hb>f@vnG&iByL!$koi%(cWP<{(__;2j-R&&sqh4fgF=Z8J4GN zLEzhfD!N>m5IiH*28*uYte$_S0-oIyyH-aXdM)*oUjpA6S+oi#k}>y^k9;N@6iS0n z8~jb3uumeNqa9H5Vjq`I)w;;0vlHydulUHH9;PUxtEr6Sj=<2HEyJ>N`%IH)+K3OX zF_5plj+?joV=i+S99L}d(#iE^pm0oO`CE|C<5IG$jzSGYlT5+t?L>~p50{HOnkr5E z{&A;M$s2NhO}?|8l8g^SXYLPs{(1(-FO2w!Gc78A^J>q2%9b!gp%s$KO+>T%T5CE! zu!F}w_CHTVjNJ+Q!l~Pr`+(Q$tMx*f&buFb9 z34V$wxAnlyMN|i~c$zbdC_U-y2qaNL-GiHS--%}!rCnh)WNi_J`QLk^Hga}Rn?cKk z)5$WQ>uJIfjd;|!_JD#=H4MSuBQ4f6XtsQo9n+N?;)1n{cia`ZlLnDW(r2v&tzxfV z%yNO7)=m5N@R3LQVb35evwfyt%c5sQ5@@j%y>EO5AFiz{1(sqJt>p*4QZF@*#2Sn+ zllBNR!{MVHxmmtY4dP*isBfZ#clHDOc5895)6x6b$d)FlczeZbtkh9*q-$iXZ1Y`1YNDn!Hu+8^>rhvOd`f zIz1&+Y`6HD1b;V1$uD^V{;{*ms_s(> zy4``^uS<;{n`*I{pOnEy=~&j6pfAWjs#X}-Qa`byK>pppv$oZsa?_!0&7L|I1vd$I zqfy7SS1cPxSzx>!PBz)PGj^8!4s|{%RA_pv}}mZ*e^5@l5>)x&~Nl3=Q5tx<)7S>m19bC0h#67zTBxuH}b*_3p z6LLEsubP8H)C^&RebN%zYi>Tcu-G6)Nj=9VidNwr++D53t>;9&KRDQ)H!m|yekjmg z45eqB$S!4h>4epScN_uUu^Upa!*1mwU81N96TZMo5~{}W(dTs5|Gjlx0{(m7LcK)I zP?MqogYub7tBw@rTt$Uy?<1;OL6o%}EcItX+Qt5GwmDQ6 z;=%R7xFc%$QywB^L!sfJ2-u{~wmqlyfq+a`MK1pjs8@SyUB~QAk2g~Eb2^dBzs4-L zWQ+}&W?7M4ggj{CE8*!Tm)uR6*v*nHBb3zYBA3j4Pw;8M zdTTbEGV086;BmSYmEp_&5v~3Wo+m8jJ5K9SP9zuN*jF@IFIWD&)PA~=%0hN{$kbB0 zZ$I`!zy1)?aPxOonXZ6S^N@8e-Hu1YQ?Ddw={-9?pQvv{wc+X2*tUHXE0F{5tO^eL zSr)3du$#eq-J7`*A=KqOjWaOi8fFH#KTA9q$4JOD6Q_n~z!RUMYE;7V)4{F=-6^Q- z_UL7D;0PtP7d$|u5#bl6)XP1?%xpa7=x*_oaQ$o4nXr?UGR<+(inzy8So4gGe$Ut3 zzihDkw7{Qz(7VCPBg`_*AHx9Sc|Wc2aM?rbiAOXhWAVdz$s)7MM9Og|ujdoq+p8WH zwi4mBy~unH_ER#7ptJ_%#p(CpdIR6{bHi*L?D*50r$@@u*{F>3`j<=$YJQG38aoQb z9(a;s{B&zKIPt0saf>jty({Gw{Jk)j@LM7e z965yW)hHHpzumKVF760G=!sUV^mJf!a=p6(?!@tB0)kJ3zk2Y6+|>t0HvPgM{6YLEB3iOKSI~0J$ z4w;MB&pf`e6?B&%dN{Pj|Lk{zRhnvN6=m(pXO zUwOskyCg%~x7Uc;O#Dm++(d3{xR7K5#KO)HI$JkXt(95a$$Jtk|MTT1%*`VBy8C;r z5$}z;ax$WqLd_S-$vvYoQ!KZC=OC9m2U0pxH7dUKs1B?!shC9ZzoP_YK0Q6zklhR- ze_-N8=v-ao_6hk}dXvp^uQSu#k48@m#|neR`Epd~d*qA4A-@r3AB^UA?al}owfl5t z8+1O+HnUtw`H8PSzY7dAscfu$&s6tQ-KUmP_+e#%y7~IM;z_55rRi;Hp=cNO;1hfD z;9A#?`ZHkiFeBh&W z6p~glQ^L2|^nMqw=SFKrhj$Rx(`zS$X@s#;pDqrKFB^4lJ6x~m=bdz)9lrOc9gu(| z<--nE-HeExtO;Yc5P#zLm+0=pjmz4w_}#sZuzAd-KmX$Z>h9&0}R}-Z*O=8t`sk zghk@$iz#rBd~cT;@$ySL_V!v#$8)H`7<)@9P1Ai$!mDG47`);NaJh*zv@B!zgW8+# zhOWN;e!=wBQ*#`NnEyfh)nYGYLYJV(cLNg7r+;b!F1^B1?E+9X zGjN(|=NvXlm3!egtAd&5(4TC$=g^>kT!Wxm;8+3f-d~UEZQ9BXx zxLicYOs*w)XTbjyd`qUSf+Ll0()U{m)rH+i&a`8xyXvOmkMr!i-8F@;7x-s9vtBb{ zJoSaIRvnU_x8WA=W@})Rs3#_dv9H!U&00me+xLCx)OQ}QXOxWZrYnigdHbftvlgtR zypmoR3L$gR9dLuk8q}x;&3ZTJ5M97I)?{+)#dkjjAvBF0W|5wEFTX!}?z&&SJn>e& zJXSdLTF=c&0w-AUViU;y!%=j>-82kELnIjzBrUt=iuCc%ek?!u*j<V}T>HgX3V_x-wu-kVGR-MLSN{l|S2 zf16_D+1&O(jTg^**$8k3Q~HQNADmzyMIt%HbA;vT)c)L_gYBJ06pSdX_t_V$sy4GN z%2Q*+iH{~fzYhhSK0db7qTPxLfiazJXTog!k~ll*M4`p3Xz9Q)rwlp70r!=J!0WeN zv$|#2gKWXDcJ>Bj$9m5=p{>F%COzUS(Yo?1aNMr( z@PUb<`P825?hc|fDAnD!WG^>G)q_6>QMAg9o5GRlAs)PPPv=ieIEHYkHf$7I@1ij5 z4Qx2ZRMX=JGM;A%m{EtnTH$|B(#D_S87>#hR6`Jy+R#}goSsSSZ{~BsbmiG3{Bw(N z%t7&xBUpx_N~geFvbp3nPT>TqwOG)|*S$y+^!Wq-FxsSEiK}l;1i$|JZ#PM>26uaJ z)D`}E&(!;)eK>_M!sqFR*2=@fMQLzws><&MbB@{Q(`4?lDqir!UcfKqsDh`*#+<3f zsJfXi{-mhGYYx$Z!sLOBj<}A?hEB3eF8CNiN%|UceP?D~kw~^nkG59cmyKD8CyGBC zug{*W#~*#A9YiB@ev+Apc%o?pqFxeBykW$VUE5n6taT|;~WsPq6rOMWzG`rfWhBS=Z3gfz;byAIMI z(v5To(%m7_ozmS%NJ)1JDBa!N-Mow6e>`8_F*sxR!L#G+z1Op;3N4WdgWM? zU>4Mc?8++T-LAsXdz7vXJE5h~jYU#{-i${>dGm12!U(+p{U|6OA~?Bdk3|Xx@jhE2 zF9?+3>lq_XnR!~4YW};5y&ILI#AFMtRD;-D?ImLsYAkYmpa< z(p3|~vQ=Cqd8}XYs=#lg2K2CNP4Pd(=Zlih$<+%8=f?&&(0VtY~Ldu6lFRfZQM!OMvEcIuT2OT1>e!rWSrNu$CxSYKb6g>6&=M*l1q3Ml@A zk$}?!$8`j3aUaq|Wz#EfsDn0x6D=_#J{k;cB+jU)2M+<0$kAdf_obz+{6M1?{n~;8)xO)w0kEH8B3VA0-RNR@sF3`HU~^1c^OqO zt=Bhh+h)Jv3DVQM6qQ_GhWYZM?W^)d9MOr%sPHj1>G3STyNSsOZkzmgu`2+R!-}JhJqaB%$i1=zw3cUas2M3 z&%tPHq4`hKi+5kQ%J~#38;Mo&{?%RI=Mid-n;n;dF?`s#GSJfd{nUlQ(pDfGBb$jO z?4jG^7g5^c-XHR0=-_o=TAFB}zg=$AY&`=3Tb)dHl7pM6vUIB%D7*Ag=OvL%o&OxX z8$+Yz@u+w#9;90r!Q=a5&#huF#}hW8PdDCI_kN9bO|~#HU|@rSljC(o(TKXurA0=@ zOo>zVWOZZgu`h3Ma{uSy8O~#pO}hs9npRYmZuGkAd1|a{o`l50HMyi3=kbWpeMF+` ziDKt4zAWf#jKH>bZT>;t33kghkJ$?gFaBf$r>8J&vCdQ){c?q0A0U zr_K@hyRLJ?M}Ju@j|!b-^YLib7P-7R5B+XULEun!?0Ar@qTwR%5(*26Q*WkvjmxF& zmD9`!zl}sD*w(2H!_SC`wd^W_OmEA;9(v*}Gm#(W?iDvbtl=4B6Gx&yuI}?TZz7)!ykILe$)tixZ=Tcuopkem)&+j{wBvjB%%l|>3>+#C_ zVNZ8tb~Xe6{QPHs*?^?EQKVC zB}OQ(ZP(yX_9&)hBIy2+a8JY6s(=Zm7niNWGw2S>X(7&?XzoAl{t2oGla36akqVD>r(c1KYO48jK14D>ayX<^?3lbcSy9U9WD({`h}e|P#iNQ8fYI+FIF62sUA}T} z%*n%{bxQBD9fImOXTLg;wtK6HMi#t#MEq~bTy2QtnwT*VcA&$(Wn|I3yY>f3XA4^j z8ot*3-pk{`PO=E~n&+P6Wt!lOi${6^)QKNv$-Z~6hVclh1H=ySG-EZs#lim9hR`Uo zhPPeki>?l9ZmY`3k$qb;(xYg2PAf7S6Acq^%Y!pITS`fQ-;n) zVn|kQ|296^&Xwbk7mNjqEa6h}3I&fVdBDlhWN-_IWwg4`dp)j}8t%3|4qxGNgbR07RM z7BhX{GoqgCuwaP=4J%FrBxYA?l6q2xsQ7>z2Tt=LZ7|)F(-i9b@v4I zMIm^)=hp(=z;cZPZo6_M<8%~;hl4ki2TW_)LlMw7tje7df-GojBz?^*`D`#SvppCV z#gm<=dX5dK#zZv-xg2t(8UXceQqj}?}Kj9HD83S#HMp^NwO&NlT zenZ`-?9}6mux=2Hap$C{(%`oGrw2q)evE2#l0t6qLx@bIKba5DO@wxDMU+-qvp(t}y_k;brq$29l@w!O;n!aa6gd5jRa&H(CrIoZdn6s-phr8=Z0X?VY zM~#8aRmbo(i6u*f%U_>@@y}*)2>5|G8fNb>B3Rq0;oJHu>rSJ|Rt8P1ge9a4uI?&N zZGfmbky-WIyuVj5wy=Xpt+Wk%U|<~f(5Ahz5d&TgQp1sW_qdU=6Ar+o95&ZE52yt6JG7LQ*DIe!35e)DC_F_bL2RQlMF;<#yYs%*%pv$+bdL9#x$tLV6}0 zG??v!!_F&-*TdfVh8GT*6Hed)+h(XC@;bk~Or6R=O!(E7SDS{O)6(nCsO&mTG5}nLfw9<4GpZ?VDM!TG0d>MCJk)A7v;g; zFtFi4(?rAHH{U-^n(tnwr0MF&@ zW(Yhd$c83NXuLT?rVC(5^SHlPTimK53qNc8w{vSj7ZQm8|Mp`?pzR;Yzax(=IiA)| z$reH3xUR9K#f*-+$CZ$m1)V7ACZc5@{si*VlbUW{Hm3VrCg@GFG10*BB)7Y<*LD=~pRBA*;m~!7+S@|4u$#);TZ4Z_rgzHI9uhNQ+s>q>=e&8X(w@lq*Q*_qsQGDl1 zB?aHS<$O-i8FQKbYG~s745!3=@12FDVo=ubp9-4?;*3+ZF_!pOsP8Bgv$OWteR}nm z9V+x-yTo7USM!PsIKPo%o>~VJU(rVt3Kdoew|kA;P4Nz)G@vRf#|f*^8+1+x#zrCp zbJ8&H7J6kkjSN=%53yKB@~0MMzd%y{1%O=373bEww4ptd3{Ot*f=B!Q$$<<~K?3g_ zYCiEQeialTm5q&ZmP5)R)Tp7cIpxKZTzy}wxdW)@QDDD8Qw+PJmy5?#z)x1rr!6my zxXn5fNWK4Y)*b8Jx)9BJ)}<?gt~OWPKE8px`=w#|E-g7nONth?+1F0iv4zZMi}o zW$9K{e%sxTiIol@g=|vypQt2F%7wxc3qwCTB_Lni1x-XRhsy`fF7c{5CO%68#7NxR zMg9ljd0yAnpXa`I0H(->2x*X9jG8i*y%YP8m=XEsHC7FG*YP!X{RPYiA-h zzJ65Rb{iQndGq_PLTeU@^h3Tm1h$P^*yPtoinbkAtj8G!{QVItv@LLP`^Fg1UpgNz4LqDo&f>9eSm!&1FIqRt~;^k$7| zhJ{HXg6G7m5-(jryHCNO$-cUK&fP1wJ4oiHVp@A{hwZB>_ZI}(f`Sio8xhGX1pJTK zPQopX>9*y;IbQrL$Dd)fWeGrGGR*0)jDQqVMgQbMqBwZ&EfLUqvCpN5ePZO!WS2u3 zm5Y^AYH}@F@=%xVh%4nEB_{TvEZC2xPhdpeAqLfK=!KMHHny-MRZHQiVD=KYS$FQ_ z^RAj{x47!uxclTDN+tX!?p2U7K(rKvVl%(fNTEAskK#zwS*6U{t3po+lA&1cSh2gI`gF_B5!73mKIStpbi_8gh|C$|Hzt_~`Nh;FkLDdj~Oy*$|Gid=s>v!uEn1bd- zD}(s$1uQ0UKs&X+ZRaBGroAV&U6u!D5>ZEmrTW34C=gY|A~~*e8_oUtp6(gn=*3jZ zb8FyBd=5)Yc-y;K8I7YoBK6+m>kZTO_mMq>2;=b+$y>vBEA}IN>#LG~w>r8jJ9niF z!YYh9iKV@ll%8cUq25vc4g`<(*E>gV{$6dWn?r zokBR^H9)k*3-F{>iUBtd+vj8uF81u03#k?=>%B5m=~^c4@)UBByDs8h^FTKGS4huk3uj z^49{LN@S4wfqGwdNIl{~pgkQK@m5EWcT|-V7?a$WA3S( z+WnAh<^mau!!~s<^^(A4gcf7HJX@0prCSacTq*iQ`H#6jOnXWcHDpZ3_fKQ6zI*dLA%jx2;NKvNLx}WeMD(r9yY?x( zN9*4$t2I?kIU&-QafZE(?pP_W!%J><{-ma$+WJj5T38mKEFsf%vMI#*8tjzw9WUZ! zWYsoeCfScgHNPb}A*xtZx8p%uH-I)gd@3Y_{O`ge|1z0*{Ah8vWCftWboG3p*E}}l znQ5B7lvWrD@g z6HpQd2*s(xG{3v>FWZ|`mveRE!jY7y{Fv)~K`_W}bVv+& zp?FHuvTo**n|twMSFJTw7!e|Utk4_piE{I@1TyfOATf!(86!k)_`gT6hd%}{L%PeWt??^2X96KQ}$h)LL13e^M$Fot_; z%dh;CnK*@Z&iQH1|MWpcvQJL<^4=kLo%R+@5h$s{mjO=1m>a~N$6K;oORZ1vpw^@0 z;evhMj%E~^&oEcK&*0ad_u#GCJ9XNJK+cY^WD){GxY3ZDgr-7>HKZGk-6`^jdyy$| zuhI+D$$n_!K%%ysw;vLyyPP$z&})Z-XgASlv z%3LtdiCt>Sn>EsCL+9+Wv2}YJ6Le40A`2l!S>b7D!Y4AP6p~+$kKWs+la!ncNGM4a zK|^6;9^zW-jfLO7zFGg8jqQxS@CERBZ&&Z+?!8a{AWt9IWtysx0=los>1hrsm>?z< zotl79uNhzr!kf*+R_bsL!B;GPP3F)sVu!}y0`F73=di@@YKIS}4w8$5-g*&0qIe*0StLg;x5taLf8T*=ir)ODEue(-8#-d3=Ew zC~?SB7uwu-CWM(kh-=FEcKfWVQVtGIe$yue&FB$R!n#Z%kF1I_-{$M7qs8;DazKUu zstPxb@)4pXh@5Os5YDqgS{QLSJopQmg7X>K5ecuSf7rZYtuK^JV&wFBpJI!n78wy4 zMW#;)6317%Er(|SeiGHxXI)R0{40#f|CWJqtgIQrja)@jM# zi$?$fEAeXWq7Xgn06bAz5IC=2g62`9B+*|o&tksyNYsqZyhqo{WpRt6 zB`R|Ko=UX)eH05Vp7as#Rb0v3*_2@5{yz7S(>pbZ^q7kms_xAgkveB3L*^c^nD1_+ zNmfm6ldxAWQ)qj&!n2VlPd z=u^0w9hI68#OCFwKP||WXnv}8=tA@rMd2AF0*XyghysGeneran`AU{_#&J?>z`z;> z57Vn%1nQW|HQP&TCe-O3^>8QcNjd5~(9u~Wj2A#RX(ulz{ZD(k8PFXD+7pP|;D0zD zQ~zzIB7em3Iy`D%gP9O5C@ggvr}96lE-6(?^DgcBii`VpG(mDurtS14f&PtHXtaQ! z0OYr6-+1lXg1|F+{_q&K!W^V5zI<4UnQaz>{8q*58vat?GJU9FooPU*{ZvD8P+HW$ zi64M-%>=28@!iP1pC5n|SV2AEC7JH|i(Adc?_NU!DMx{-JoU809J-`!>Bx@+=ciyT zsdYI4zfB_2{9to^J}RMa@xqI>+Fa)rCGmy_r$JU^!rL8}@5qyKdt>7@k=OYFC3$!N zaU>uKn{o!z8_zPX_w#G_+encU|Ab6S64V&i|>6rA|Vo4*QV92el z5iM{)2#k_|^6?-4ZuCr1v+!ZqIj+a?ka}M4Z@KIoPQf!)onBr@*4sYhmg2xvlNPqs zI%80w@I12%qY8B$Bm;gBX9(WN={uYO$|bxtE)yuOP12c{HwrERV@9)Ya_tcS-6C47|^+_Qkx z9-<+ck+vIb%&&Z+u-KR&`rb?CuyI@l6}@3dwEc^e>%PV15ss7O>Ek-GAR1tZfYa zCGpcp5}@P4PQk7_OAvkM8|(z-lcw&Er#9O-s00hiaUgv^e5b@60JpA0QTI$ z^h1wR_0-o9onIm|kNpZuRS(v>%aeOUspS~-uOdUK-zi|Zn~|wGov+R%c=Ew&$r1o7 zPL_rDkD)!q`Y!jZ9a-W=zB%m5RgeBFzu12UB48Apf@LN>6*jbYa8_p(jmw?6KOzVF*X!voHK*@n(LDR4V(DG~=bjH$(Pb z1CeZD+?rF8_U-GH^>P%w`Kj1{U`7$W7rMJ{dlZOH+m#Kpmxmxf0}Fi@QWluq)BBPU zF_~p!xR)2NgS~WlmX9CqIOA(GE1J5uIDCR4um7rFwH(~EKB<=te*%ncGGDVTv4>7q z7%ShqH3xE;cS1i}nD+NLVjOPh_j>JX;9xdHw{+pzV33)c(^KgK0d zez)dHx1h9gWgr8tBtYN)YJC1SV}1r6d{$$(NvUmst$}++|4QQSc%@3Wji&?gRp3B- z6)+{MRb%5d^zmr0a_t`Xsd)QSw)K?@8vH;b@N^R7j*a{Kcu4RhIuNz~iFtFW8KquL zW^lW1u#(2ZbwNo8vLj8Gu(~>QgsjHR!(r%rf62ja#RuKI`d9xzj63hL=~pr)A293W z;nclm=tZXczNRmLS0l1$_n+pz zwQXD(5T9VU{pNFk{_xD~hD^-`ZRj~e`w}esI551~ESL*+wge16ks6Y(+uCR-@Q3mG znl$qNM+dk!k?XO#)A`ekHfs0enzj+#22&@%4@Oyz(Z*XYK>KPgc}dP0v<)>Qy`Ifc zOD!i#$~$-E1&rsdz3RvHXaFab_|<|;>-59*>SQ;^(eRdJ-HZsEKh2`z-3V6Dwb#`~ zv_ap>d9U5unMs`j5ea(}$qFso6NCGc1$X%+%cSahSr=kw$iIc=MRn38SL_K1Gk7O7 zG-@Sr7d|FKrG<*~S|;QWW3|S1+N{O@%s2L*_C~Bnc+QT8XA2Bs zzAEtV3(&|x7M2oz1e&kdAql=JgM8dQEcqL8)}^>C_{GPdhy!D;moNF8yxVRu$=~Jr z%sq>P??lG<*cmkf8Gbn?o4f870t_673yk!b6Ky*$S~_`z$uFFYfWJkA4j+l+*;T}t z;A@p;I}I%}AC26xp8W+tP13vD$nDDd@_H@4&8xuO?C;z*rK)lJMaMmrs~=R_WaG1t zoPYM_b$_5kp@{d56w|^$BM}fWDDtmisa7A(qord!?(Q2#8o=xdzTJ*J3iL2FbRohr7WBXr=C-9r`n|DlAIO_7WJnRU1 z=ok_r2?xW(Lzkj8(E?#3hkO@yNj2!gLfUSQ?vW_EyTaz*SnQE7Wk2YtU`b=B*^DJ6 z+RyRm>lS2HOPC*D$mtMru0jamk_fk&AKpmPWPK@Y#lX)}hbeZwrjzgq!b~yNqxyO{ zQOxp0@JPFhQ4kS>1j-PejJZY$KuraDCkP;?0H>JrESzivKBGCSvSjdUC~xy;6MzuE zW>>4pF3Ls(AtGRTCg$!bA=y{aM-zdyvUWJNV&DUoue}1gBFw6}@1nC_L$hZKkA!a8 z&7QwipN%K;gW;K#bx*U>?6SK|_TYcKAcMs~&iGLy(@%E=^x!{}XiqwaJG;+Q5xYuV zt@PF9Ovoj#CD=*u+vs5Z-4l|Mc4o9gk3$-ZhB58R&JBYTz`i>~*dK=KK|U(J<@$0R zw7Yl+T~b%AH=F?s=({YoS5(mkiD8|{E%(>IrdBF-8}^JE)$xIIa`-~#p6&|p2e>`x zt&iJm$xRg&mma#DD%IJ)^F8}}PXnGBvDKa)4UW=?KKDD44|%fSSFKU7(CS~`d@t(V zHzBhYG7oq9)VCJQt_b;c(@9%9b6#R5owuK0rdpC^lIRW@Zgx9hcNCVnj5k3h3w z^+i@wuruii<&eA=`ROZj|HW@ynphpn`aODvlm3pi>HY9O;}*&ju`tc+|8rQu&^=p0 z@`Fi6IJkr&C50uDbP~T`|NDhX@Uhl#y=AJ@1*_Euot(*vGazEOFm5;Cf>8 zOcGb>Ws_Lpyl*zWKsv-(i|WJ(mj!E=%|K|hepUv~^=R{k%VWW>%w0*6=?}GTXZ74$ z;qIA#f>O#I9W*V5pN{xU<5>R>omRf`%XxOMFQQ|*C#Z-HoE&dmQMh~Yo-?GSht{iB zYZ7BYm=en!5nwufP;EZ$HSH0^{uHt>W7jmBJ4tcG?AYHzaAgh{Xb({H#!#^u^()Qk zH0az?6ZBckUly-L5%u7&*?@K#cQwQY;W3yVRQa@4ns!XSf(euO>0_u8BolsllL8*& z>j$35<>h!EMK%+yX1G?j3yiu{M!@E}GcDhtjW^Vu!`#05!GTx z+U+J3BWJB%w#uc9Lc*IiXV;J~!&h$X*|8JbY>76;9g)ogXZ{}Zcbh}yr!myf1BYab z>w6=2x`z}YVCew7sI1D@VmiK$HwmUQ5PPmN}2tzlv7StWSx z8}g4M`V)$c7pJ>1o+0x2r89zJt8*G;9xaSRuNzK_x)JBWDAHp1jQDC9)13}F7P76) zo^N~~QNr5)huEjfqA$r(ScG5BcFAZd24 ztRdzon3jXSJ=?y8t($7Y8orahU`}<~a(H^-Ki!C~6^8G9Rvmb=N{^0vto6vOQSM+6 zHR2qmp@$2cO5<1qU3C%Klp0emLz*4i6R%F5MYQ+A$+!eg%>0z)sbogoZjpb!{@8gj6j>t<7d)|Ypb@)y zMjCH?0!9Z%9OY9F;8Iv*Gqk{aKfT=Uc)Ktw448z*`2bgo1KLxS%llV>+4yt zPCC^ti-v{+^ZPl0M&>uR;y1AKeQf0vN_IQ_V1H$&z+y*du+CkRgWwM3|8^;^-A2_Y z%IMR#+_(gs!%e^35h;SLXEHngA>r1_eo7)OqK#j*=@~T@mR5NKN;%(EZhkMyZl3o& zX?jysMWA5xf6yiFDT}D%#Lxx%dSecLQC82A*7g&L%#;PptTt$)y2S=g^eI!MF%z7#hrFA z3h6lcdcEO0oB*bHfchpE&t_Va^2GaGy4Lf8B@L&;-04=WiJ)KS60QgZ&YB$ARx5Kjk zu#W{u)kF6yQV7%}eQATnP98aeL~{YjGKW;Qk*)B-?by&+(dBIx zV{|y_K;SPARFG~33le!+pN@tqRn_29cGyzWqf$xp=o7*Mx;BkPaeAV<9ig6Q z#9i5<&CZds^{=CEotuPX74!PeAT`Xz0AQuQNlP0ubGkiSPt&Lv3BJ0IdrqmI53gGX zINtod1{1X~?+_1~&6jv2+vr%OmguP9=jOFxYKR{n%yb%~htdqJWukS3vNR$${bzWg zpx9vUG}&?D;@*)X+2!p^9J)uSjR6;w4POjcL!f+kU;X=loiIR4z}1#t+do+^qnVei zYHA&{j}}eV+Z(+f5T5Q2QliA9POc~KqB)orp0*m)Es766RFOBO38B8i1eT=UxFACf z{5(PB<#6Ohv6Df?Y2+W)K^jrPzvULu(z%k(uzbw zjwccHTxKvf-+>*hMa>%?FMOY{0;%G+|p$Hp7rwUmtZ>LN3Q0{XM_agGX%TQ&+fz zgf#8q%|P$;u{A4F8Heh?y6WHv`ag4x!|Lew>PPy~SG2Xc1 zSJul7{X;bDGamH}9Q1nA-Elg{X_Du3o<`_=pg;!kF`s6-KH+m`7mt9cCz(E82*5+u zOShzv+IL(qA9_-i`A-($y=X~{HSm#B8afw=s8(%loFaNY>sa%SaqLvwtv!H27dZ6A zk+qyCczqGHFhJM+1745ld{MUbK?iW%8I1JQd-454=9@Hlad%JP!RT96$v*7I^2+(A z!&mg_lS5KK3ULCZ37+xu=$Ec`<{|KkLS|q96)&;4rCklXB?aayuFaBv5+8Mz8!-o} z1@tqXz7H^SQ!0hK+?+=m%c(KdJXmv~stpQj>VIrArss3(ggzk#!UC&KbZ%lIEJJM3 zkZFgr^?~SN%)Y+w?|`2pSNdv}ChD<=Xz(SnSGqr=qIN=nTHM2}g5nHg!>v87F-KH$ zYYQxKs(Hm7y!N%7habALUOU5i&7s8YGoDFJ-r(R-N`U6S;@JYq_4s!xAS5Aj?3(7= zPLr4xSxEqb`?YMt6G-35Dr)MsKG^okp`H!|IY)GJy8d1Jb>E~6Tw)Fd#{;b$oJu|g z9eLfL_B$u6?7x{@zD54^!pxyx4>FJqZf$GmJuHTYBSJise%!xE{oxuND=^D9a6tb# z8Z2pdM8XZBb6CHNj7wZ4MReL2EiIk?Dpfxy(4E3EwYSW(2cUL7C#O{1;i zn{>Za!0!+x?S3O6$O0;TdFfC1X8pn+ht+&G*Y!j4kAt#c+EDix$!fl}e z62Js?j=B8|V7;!u%i^)ZQcJ-015?nsM<&@0L4li>82S6ZE#mz9QlY=+?X)~s>y)*s zhgXu{_B%o4L}A)xFKODL*NraV@2h18-jmRctE?ft4&Bx}9A#U|1k~pV{BsyLY5sb? za91ahM)JE6Tm7nO8`C}8{d*gxOD{Jp0qssc{5pQd=V&!N0)`&Y^1NM$6m&b32F{+f z&tZ97LNw6iQ;GuKhvifh#G`w+1<##vdJO)@B00z>cHoZ!zD#T3=0_u(*K(XWMcLGa*Wn!Pq!?fx zxtCwUvlD=V`KSqjXSI$|3*R&J%CX{;-)Lyv^bb&3JZ2Oyr!KlC+EFIo8U zbV)_kq50OMME?no4lkPA1NuH+gqPZP%=8;#<3KZcmpO4GD^2V!z6UmC&K&Ua3CW=7 z#;c1CBdUKNk0;GA0`YSY-FJCK((hwCVeD5o{zRf%Lr9#E!PGx2KkL_UicgsHBPcQU zm7RNc3yUgRG`TGrkdyh+yUCyf>Zi{3X6T`8kYL=#A!lSzP|40~X=9FR}61pz%mmB#nE# zy&Uf>^FN08ON9{W4$YWW7&>cD)g30vs(mb{(|{#sYJ$hgPXRV@@LxwJaoiwEAbT^0 z7;kdaZA>BKpAXq?Lk~y0b&PNr=r!mwluGnP3;^g0&a#P+h{BJ*PKz;>vSs#jaU)qmZ#S5!Rzj9^f~vo- zM@=crWp=7%kP7p4`hF3@=N8iWvl}s$ec!xLxa4LuEm{h?qEb93k_?jHX%zemr|Cdv z)3atsQU#%Ie&ueV*!!C4@oHP*+m=-%0VWi~@jEJK;LD8$owz+WUs+%eM`L~d2_)XK z`Y9xXF&PLN3QM3z_sWvvU=brDAoibWnFWa|tu7lMdR3WLaPEZvGJ@;Lgl#q{9@)P5 z!DgpkV0AAr1%sXv(9i(MEN~J_31DF35_iE!<$?PiJ1VCF+W6VUOo^B?ZZuY9?Dd{M z!mm&IDNg(6wZIXqP!=R zZu_zX?;SkprY^E+{}{1Eb^=O8NGA*}gn5#TRAypC)8izvl>7W2$fGoamn}zwK??-7 zE>y<52}JdpuPc5_#v3;E@;kxC<$VT>YZ1m)pG4L7FeClJ2|uSff_r;qIo`1Rb095l z_bUnr)EcU)RZSSmIf(MJ=FEj#8}gp-R=(^&$T_NFo!O?BRnti`P5=cY)jp4g#^4Nb zj);*YgJa%u@f!3*kY4t7HyCP^9ia1`3^IQJ*v<+r<_tSJ3Xfp&Rr|`afd=~0oP0>)>#y8@dpP#7%9|~@{!N2JZD10H-~;pHDcK0kFKjl3g)9oIrUPJ z0(a)a!(U(oHDSM&VDrBslTCq-A0*u#NFLUh4BAY~+x}@mG-YDTjRqJ7AmU?f?7X#8 zCz*a+B>m?2bf50M5FoboHxOiQSS3KAmIf}O2i#vAJ&{zmI6?c}mL^qhUD@*%tm2T64m|`J2M_twhs{`n3x_^WdAeuSu~O;=tJ7eR2L6% zk(WXk2I2y?INl`juTH=Xg^PTS$a*x2T@pQ(_aMi#pTaX3OMAnz74}`}R2w|5v+gCP zI~CbgLr4$9>Zr)p39C|MD%<6JHg?w37@nSJ$gR+j5MPdC=UFBtalIMDmldn4-HFa$ z$Pu#pdbf{Z4SjcOm@IO4L6pUx{RMvks(odO)gth~$dRd(n z&4_|j8N21`E=C+LBFtFB;e2M;qWZ%T&!alAtTlwvPpdEwu8`_bJ^iN;%b0)5PymfD zky|XuEp)D2{U;S%A^)8VH?1I)#4*{zbeD9x_n(t9ga-|4<)*~}9J!Jvk`*s-+;&yw zSW7|>`RTyMs6D78r1C|H>WcpA)#PN&?JqLkSumrArg!WC^P zpXAbiY|EB!QByDqAkBaExZ4aI@_G(fL5Dd`nL6swm?|T+odNNxq>C=g+O2{>BzS^& z*^Q%Q_w-NC_&&=OX=I0;E7lR6(EfRNU)wt3az-_Evn8a^73SrWI(QOM5#BI}XMAQq zCSoYlI_1~+#zD6yrzAj@`2C&MH%@nJygTkRL9W;nxq6|VLVZ2gwoqa8KyyyhG3@DK z3ISXLD8=_{h6hy8x@`zSaNpHc4_#}%7EW+e-VFCy!-Tr+O7=VNt3e|Y_fO4V_HXr= zyspo&p2H-8HM8vP(Pc z2s(#>gqsZl#*Pr_c)(*F#xdMD@uuR);NcD&XQ>BZcC&iW#jl7|kdy2Yz`zK6l@b+F zMk5QMPU_3woZ%p6o8Gbcuxi5{BpnF~LbQ0x*M;?#RkP1gUBI;C@cRw_QzMykjdRZ2 zSzYl0^PyNmDhg{z0RGaAcMC`%ubJrUsN_%rn^F0(9aFa!U zTvfExvn^M;N>@F!3~tySk8N3_xPzCeQv6^oY1L<#Tq?&0xZ3mb9n2ZiSKZ{}_*@7c zN5hSHE^wqk$Wyje2ntbY+pufT+&i%xV&t@t(gV@xlE42pTmCeTDh7WPSs&%y z_&k8=TqwadSYFb0@^|s`r#Z(E(~2j=QOB9*}%LN3>_MMeIBP9D(9v2moJ=hNJ_>Haa%dTHyK9m=hj$;Xu-+vq|(M zOydO9qOodjzmQvfO-7OpElM>G?m4SaHzCv?G!o@0zIn(O$UZskcaw*`6Q?!Cfu5QBu-$jmI>I6s=A zKSE!9aH6|7`CzjnNp>v9TF~K6R$1<==OAJbms-fH_|j8)DpA^|FOC&lLJa)W|JU7n z$79{bf5Tr?C|gKYvKn?aAw&{N!zNqV^UORIWsg$SWmQ(PW$$cR$8wpVJ0vhb^n+{vF(qpa1tpzMz4@}KA2F!doNMO53T%DHV(@ch(|mXd$}~j zzQEA3MD(u0LY-~2#{?an>q>0b(6>PyA$+shn1(T_rc7trZr9V8V}}^#NMWcHDV=ZR z^LH22#7`+S>w2`i?#FJ#lHTi3pwls}2#*E<%-}pt0Lp^tjiPS1Sp#g2*HjK^H1p|(@G80K|wK#|y(fe0s{ zB?~_g>XNs9FnqPNJIBIBx-YV1Up|I%%O>XP-#rWGPm|24>E|LSh8p5 zo*;J@S_)jV?<#F4JT1-1Kgi0+zkC(p<77gqKX?Cf$m>wWSXI!ChN>YrFf&sH$~{xR(DgiTd8M-BGqs4jr^o%)+~`0#kG5=3i0iGE~2`l8esg zISl}JWbg3KC*i>h_J#_}oXS44r}14P2~~x8jfywsg_Y)0p%Q6%kL*K;{(K=esy^zAAJoEMO`1_S*exD49VQnGZl;vf#`iI0{fTWC zEM%Y41p^m)t*py9XC%>o0YlY#@Y5I3tCq1q0h&Dt!nn=#3<#{jQVmB#ye_9CWg4X`>De>>xO zxqc#hbK~+2*}W`U5CH=|MjlF336L`Yd=IUj7l2LN{zd?E22mE;lXKIaP5Ln*EfhYR zb?UEuw@eBfstlWyV^+6l63&MiVG7fd*a~#A5@~a4XK&B!`(Y{6T+9EFEfh+NwFw8I zIg^J5IF&8(?A%`l{F+N6J!P2m3i1#dmCva*+=f567O#jk*kIik`tb!$CHD}1KFLil zpAdy}cR~N%mkj;%j8%Ouir^l!gYn8f{UlWV`o@o5bH`Q3^^clnl6LoLpmfYMx$Q%I z7GY}6yb2d&O`ug&F-4e@pqy&)+-p3>z}M$gSfuZz00`sf8+H7=7e0>NHa-6#!2cPa z3a`_QAhvfUmVq2`Va^H28OP=%VCvfJ`A{E{Q)y(~h@A;p)tospG|Wdhx3OCU2p+c2 zsZlUI-x>Q7QpSh7)nJF|5!j)&4VOFzMP(qu?-V9tv#r1WV6VLODM}F#1ee1nFtbjU z!&{`r`|kO%U=9(FvF+B7)F;ds!|cTz|3T9K)=yl+6+xPAOmU5D9(Ic4?r9t$`>Pg;z|$p%chh#L^e0E>C5v& zw-%Y#w!;_DQCL?N-&T6)Aw^AC5j{i^9Vfgyu;6uKKfZS*emMLCEjfnGnlBmywkZCS z`7+#7LUTbwtd>T<$Q#yw-(^rJ>L4m=A}Z>jgOmk+V%zcXHvSKpqsx6!Lg#%EU}ShW zZ4DePB^0htnZ?^mJy5{Upp<+b-C)8fqCU6VZ*mDjd=Of}FwNYO^F8{cYt>I5t2O14 z4pwp#{5aW<0wh8^)B_0Ew`{7B9grt)KZF{ANI$)@!(|OLzhFj`6sRySP6cYj3u<~W zUH6yE_8HvQD>(GD8Wta?J+AHzMiV?C3*FdRag0#`SY>KxsAo`Ujv#(=bK)NT=dZwW zLYdpl&_fZM_@yiF4yE;zR~1Apc%yjFPvfiGfchUg<@7L$z0r;GjHvVXwhmmoU}^z> zj_f-_?0xc@iKiURNa`o=`eHp1<2-gA%S(mv*m?0YFP?&tacA&KN`m-|zFuCpUah3} z^Lw1vq#n?oKTWoH9Xo@QlG2LZMQ@s?(m2=qL4>PFH5n4#^87Zl#|0_8B(0P3ac6$q z;K_HTrxn1>4x}?pee79p`mEmcY$hH23QXC4rnK;}hn>UhHw+W^=6&xzH&UO}6e;mt zn;x0pr)khErlVjYmGcP!g4${@X0%c#0yI5E-y*g{DaZKhI*U>lJp8C?!|LN% zX3!^QOKCi`D#TDgt#dfhKE>4ai+Z|)OAyM&pcjLUM1WXtr3?P* ztVQ!B2mqMd*#^zU7~H|iAk+pDjW0oWEudn2sQ^$Y7 zYCe)5dFNgWhIBRfDeSDLQjBTLDK~r`d7H##H%y(>d=&AJoAv~>Bx}JxC>a!|g4)4X zH}DN_Ui|ox;&!#%wa^q<@E6E<^+SX%TSqyAsJqwt4D1!Kp!}x|9H2avq1`YAJ`3Wu z?ro@FKu;3pM|Opw(5w;sQMqe%sal2g z#Vrb~=d$yGMy>$f#cMzsn({0+lbpYH`Zm}s{Lx<4%Bs4zW2nRFM>rm-WQgI`JNaJ8 z-7AD*5p8*<$3cSc$JOW_`_F)dgC*;xe0w1nsu;i+QFeMu8%N39)cuFDLk}jwfH`95 znx0)g=&Il#(*0#Q=_nQ2Rp- zEAUsa$jgsS#@^S=WK=b&3bSQFBwA;(59tFkX-3)}87sRQW%R`En4Vfj^cctz!*6&p z7ve%LGM!VElS+6k#Z3DAbj)o)iGWz$)yx#>HJ*+ALRPoi3y@gHK&W~Vpa{sbhQ%`5 z^BeY#4F$$`dRSTrHr9MM=wXn9dZm}J-e;q0)jy1LVpAXZhkX`M)-NIAuci5})k#uhM=Aj%$^2$VwhLR7gM_8D+}*`Ys0}NQIz6w(%Jk?#MZh18#LQhN za?Xo{>@{>P4S2a!){lpf&ttzt0P_xKesEO?8Dapnz|5k^#0?(abKN(!{GfJbc|nk(zT@TFyfhLpKb&<}luU)6@a<%ZK)s&< zpuZN^s|~$vX~BH5{;{%&Y@}e&d{CgN53_-PeA_SkE|m@WW5mqeyQ#Y8Km#Ui`9fR8 zHQ76te)zqDVrlGx->VCTj(~X1Ki#U*A0(iBz9i>?{{v<3>sBah7Kh(U$HkZ-VpDRV zdOKJ)mHg1=d4{p|@EEVjH!H4+rwQvUgwoO{!w?tDC>ZO9D|aT(u05Gp3bv_~R(29H37dnIjw9< z3bH7gIxGez#&sGp905(mB1Z#w#m4joHg&YG?3>J!7e+pkP$YW*S~f)eTg*-_v;dP? z3q^(uTYtuv!8UACkn1eAUoeCC@t4$Iy4ueI+4piVl+px{qrYdmtqat$JEj1ZAL2=V z-n&|47hga`=F^$u=TEEnFv$#^+8VN^&WOghOEta>VWaO*gN&&JCC~rX!3!mL5W+eO zs7TSatQVnSf*~jSyZuOpDB!ca*94j1A_%ijCLasJe@KRR?iK@&u8U~jzyvW!!s+LN zOf>jZmivqxU)c^nY8N>)fS8%>S+3zRGG7org-ccjhPutv)d}xD%1ZA1-6RIr>ewA@M3@;G|IAGQONYZ)l4?FJ7~& zHYVTR(D9N)&IjBvC`)DZBe}**s#NfMXBSj8KvjLtzW|u3Yg^O}S(BaAB~fQFg|C;a zuHU_W3M^1}Q2_*ei%LU2NJBcf&eYhXYufvrwVBFp1I&BfdV z$Lc{SAxzC;a~haaOhDxkGq)Dy%vU)pn=Isur|+kEx#_#2XtYP}cWV(;+P?-#zIw71Q7 z(|G|t)try9N#vODllk0P9^bx}DQhVJ0d!VTdGadiBOYlL={$3>8tc0JH-DxoPj}Yk zom&K@Aq!hkePvXY+~x0U2}btx_SXeBo%UUZoXqn?0D>PJzULi=&*RhgV~&qw)VhC* znJ0s$qJY|O_6+q|#$83JYG^j(Lwy8{CYZk`R>pKCMcTl+kD1hS24iNNdc z)z;Cn@6|-igGded`ND8A*R?Ir>tB3zvLAmn;7nC~0r~VU3aN?<5Xa{{q&P1xa_y%e z?eR|n(kA3^F&2vU+zCvS%jMW6Kf3tzVDZ*fpyck|R(HVs+|0k(;q?uO5K4B|#LGr{ zBF>TE*YwXXMX{9x15kHhQORu{0-WcvM9*b|isOad!+AFTY3=C@gpi~%St$)TUi16C z{qkFw5TzNRb-}ZUhd;*jOJYmcCQq(d@vr&BNy$`S06*y5OMk}G_+QDbzjD(;hzzPw z)tviTj0zoO?ekE$bPA9W05h=tinRVkQYlgO0 zXMpDY$y6Cz$k`gZJ8Fk+rm7710a9p_SEHzRc^qo9B;4os`+2g$BuvyjxQ4bAH`gU7Z+ejs zI|p)&D*qhxYZ!BGKmsWmvNF`oD@FKz$86Mg>Cs#b+no#K50mn>R=cHqpZ(7UK4XG! zULo(t*uNbMuXP9>7|^B+6A-2)O55A5elq&m1VOB>E`N<CheOF+4{4$h#%j zaB>O6nfJUJ3z85INcwU+u6xDzzX|8OrV>;%`fZ6W{sR5IZP)Vv8VjS`$|u)n7z%mK zEf{)vLabv-UXacID~6=%Zb=>}Mgx@$*RTznsc659?D{cVn~oAHmzc7(I$XU+C_df2 z6&g^Ghz9^UNe{f5&B&ff8=No2fr!Wa+%2#;4xg=VD)3<88fNtEiruQT#XuQd7^wpN zBsd5r;bgRZxw11?0*vo{msO^Pl^KTO^X3++bg7<6wFC%^OOta*`S(n{La3h|u4TAb zl~n8a`bDZXeT;XqJL=`emQ1kiKD3NNr1dzW1`Rf#If*rUYjHcQViebU|E}P9xPlB6 zkwHlmBDuA9Y4WQ4j5Q`L0?@Mv;vymH^*J_2&&-7z>>CvQ{+Y#F;!gcI;odpBU)Os5 zKe@xb9&V1;04z)JO5bu6J!C{YjMSn0@?rN+3cRiS9l?m=mVMD{v3+?ZCAj?}Ovu9y zBZZI$A+))<&?^~aVaL`791i^{B)PeNo{oe!=g`fC1+8ChEJZ65d*#dp3dTSp9vjKn zj@|t(;OLd(2DQRdr*xfSbZs}b^eoW(;of>Y>R1Q>-%0*=t6qm&Wrx~*Xd*|-Ut0N< zkbAxGyv<(aBq2aYQ{?Fc(dMwa`*a)WP2B4hv)LY!|DZTiYVel9a z&X_FgI?aSfEs8A+Rh-8*Yh)xaP~5z|nXFn00h*Hqsmi*vZ`mCnw_8(UDSbzn`p=Pi z9gyUWx;Wd5VLBNI^1Z{de4vH+dCqSB>X}B-FC@r!u#X{TBK24fic(rF<~LZ4YxU*} zD>BkdVp?U!43BmKz7woE@}XXQ zovd@su0U&Z^m%%5OG}x7n_4dr+To_^RuAp;k&0i|83!nvFiB`7`9q)-gRf*A=C-gg zw`IMv9ctiQmV3=R%k2%~vHI~e^BA+2!)}nPW&l)_A>|OTgup71+4i4>@!p9as2RgP z%>95yL%Mes7NCx=^5@>c{p~N-KjkSwSqs0rAI?cQ@F_Lpbf4uwGe zBeMHy_RV652jJ~P#tKgSInBhgT2$Bd!QFcI40f7T7q+a(TbfanKuUNB3|`7KZ>zX7 zctkoOZBz%^-K)Arv(t$Iy_RlO@iUiC<(aU_X(ZaqeXX_d{XmzFMCO>G`2Kd6bwOYK z{))S;fMVFqKX=w>eMmf%{w?ot@4KExhP+#dt_}XA=v)uC&=_?qhGN)jB_`(^>M>J- z*S^8vBPi9jv(y%xcKNdgiLEn)f`KbDhL-cYtz%u5?}fKL=i1BUPnqK?dH56~mpqe4 z_I9_)Rh5jlMO_}YZy?A6-BN-(JboFu%74}gnesjmKo!O#95dy=3W+%w_U9BO9F+)ub91pH1@b;InK-5- zpCx6EnDg>VWg;#Pr;B|r{=&%D*pW(1VcQ+2d`biZ+*08GrQ*MGg6)tulR;yUf}@En z?%j>~+Gm2V+1nt%u_`{W-|^C;fqqbD*iCFBpdusH6ToI>(9X5nJO4;%K^C#1^FKm| z>)*v-bX!WPJ~dJfE$Ljkd#r$`Gs+@GJrVtOZIqb8S|o~z)5TowA_69bUgvOQMr!3e z^cqapf&Tp(h5RMOoB)7;%bv->Bfns~!@ zz9Fh$(CD{Z9!~je$ClpqEZxGMN8u}3L~{NWJNr)|L34|L-DEJwejicFwhsE-amZ-u#pzT{efL^3# zALMc@KlcO9;LgN$Ms|cS8^!sgBAHwDc=#KjV!;M~K4w?uX2u3{I};JsU)j_f?8av<<9y-d0|Mq^@31$*nPx*y zt<%Le=rE{ILl1699GE!zeHMp-ZIE!It1<_Imi!XG1U}5hLy(MrES_u$?t{HsppaGm zD_^1T_3RSeFCEn%LvE2*CEWUA*1nZkef_k6g+P71@N$@8aFODX0*H)06lxXP8|7nA zpMZE^ZWbhdO-D2clkAVD5lM)W1SS-4EiAE00nqrx_iH64;LvC9M z^$;LX#5w84!NT=OYYx5sqYLn+aS;dz4s-Y)$xRYovIAaxcN&7xFl{b$V{2xkj8NK} zXLS9QG0PJM!ASe?mq}dIH}VrHnZ5gROLIu5?5xBbmS%kdLOgWyuKSgKN6)ed!zQ3#mmN8%^+SIp6juo+)O9@ ztC?zf=?j%5RwXx9FZB2-5A2+WSQAnXa=>4awjd9MB7enxQ$T-08nUnkVMZ~b z%iKJA=NLAl#Lza>w$qo4tE)B5XYo%AmeTvTL`jT09NAxZQ!vO1ZYHrEGCV`|nmW%K z_{A~@IxHnMqXdSw`GM3SR|6J@x3JkM+1);vl1>B=XV}s8s_30AGieR<(Y1!S->bxU zOc(F#{ye=n!G``MsihIn0^v=-hJPR1@*++lOgh_{M;>VH2O)Z$o86(Y1`eIA)FYn%x{`WbJ%1RM!nEwca5xP^?^&|$jeu+og ztldOBnx>=zF?GH=fVhl!a7$45MjI7j*`rpS1}~4>g`@^ahRL2xDtD_hgNeSeU1BpF z_w7b1RT=Fpe=_eR{E-rP!u>q6rqwq1!ir}CW$VUl&k&rDk(G^}?qKvHXa$1&LX|hv zMkQGJy>-OxstQNt_FVe=gf_2T!u||lZ3D{)J&%vwHw-U&<(pKyL9&V%QFH$#)wjQw zUjFO$bN-{_3Sclg1MGDR|4yr|7D)3a$$Kn2tIsvh1(9GO%U!33iary~ex4(^2&gFR zr)bUihtY$oQiBFq2!wZjb*1-TuRrp&yu1i8wOl9Qo1wFwI%O(HRQI6KN?0&HZgQ(v zf0+v*afu_Y%JQp<&c6x{k8lQ#mzPC7DlLPp7fbTY#jo#L22ZFzzD1(&mt>CxAE@I5 zTIlD>E4@4m1Ft!Wa790_S?5b#zVla3|IxX^4%)^5a?iGUCEx*W5FZWe>XpAj@wpAh{44X?Pc>loCX3$wJhxP8?2x~B{~aZu1ql7nm%J9q9@lcY zZ9T{(>PUJ>9jb!6id%U2)?eIikhy<1fc_WGwr<(HjpWvdhjuC)7`{0Ca{&xcJ(9gx z#}xdqC(9`02J`I;rxTqW@EFPCx~4tc34HAee7pm{e9RP5f4Z)dys@?>d{#?Tg7l7l z=>|W{?p!Kui&+fVC!wd^zOdcO((EKI^13gY_KDS-&WaBW9w%d*||yCs*rLh$1R zdup4Jp`g7jtmE@5xxeKpQ~I%ggI&qorRta#+Z_ckg_Be1tlZByu9_k|>?eJ2lF~-U*kc#xPW|Ps`Ee*HjGtMjWKZ=q2LxbR&PTWgJ z;1+q+3U8hi4}S;$SL)w4 zZL)k7y%aXJ*dybr{yJ60(DMLd<((}|t%PwHanF3;)xB=uR(q57%tOxm+TTA$Y;+bL z?UuX>7O{zmSw*z{1dR7-y2ohzOz!)UTrwR0mudk^yY@w-scGD^jBGXvYa7Sh6Zp0^ zYCn%O2Of0*>a(f`NF98DkFI>7-U^eJJeitgh13P&9JBaU*l*nPXo)X1K6-*%1cy($ zECl{p_l>wqET7ufK75R&GA=S}-&hhN0BG7#)AR3NdzrizJ34{78)w1@Z9bi2Yzt^L z_0r<>{`yeT&~OwJ$gLB~*MjQ&)bATT?*)6lo7q)N>3`Kjcw$b0`isBk0nh{3XImjA ze#qA$@=^z8!Yxs#(#XF-I(+_mqVxSfza^0>Htl9O`m>m~$xa*?l1CdLk*e@GklKGg zbK}fGB;)TJc=$L6yZp~WdWSOcuW(@|IPf<9zTxGCbzpVuprHv})5y&mYsclZA4M<6 zIj>Hs3CpOT_?IHio7a4k91om2J@Mk)W8)f@_l#%BM#!ifE{Qaqr*7a|NxMs0%qyT^ zq;M~rEbwf3UHqdZUbZ}Ed5gi_O!*qg*~xUboQV~ACG3eviRjV#UYwS#D0&3G$hh-y zFh3=+Pe5n`zHXEc5gok1KhuYWd2tTQQ}o~s=7-j}m=_+$2<8vo2=Vwzcktr>Q;R$m zcf$3Eh6(~18T0-^{)G#eEw~cBe)Hz~hud|cCrW(2Mt#f#0pa6wM#SE9;11^Zo3!0o zMhdUP!zbuGb>c$YY-g#Q3xa}zOdma3YBs_KtmD8B(%!On?}k#vpMSqF9J@07@qd0_ zot23j_Y%Es5aYJ)`}yQo|G(VM&fxF0 z87fsRo9nAHU0e$nRuMNUhA1kk|M|UgB8E%xIOgLX$0GmVT;2P-l!&SbS&TG?A(JSAjiK{o4Mn=kU zhyy_DBtJ;~#=)iC^{#opw*|eoa^dvJrHH|u1Ub7`vL?Ux2D_G&EkVy|TNXS;U&+Ub zQn`PhqD#w8QEY!_Woc)nMNV5=JJRvzqa{#;qjZ6m%L6V8)swBUu~q&K-7gnXKYwcQDKO9`9x5?R}pXi(a%zjim zw^Ylp&>9f8rXJPu?h0G9>vDbmO0(!lPM40qu-$l7NnVR}cwI$ZV zbQ|)9Fb@AIer8{^ELrP>Gqb6oHW~eg&gX)mde|5p_NM+>?uU|EsD1~Vy{(A}y62YG zJx1ZxgZq0MYMJ`i2kuN_F}N;X!`#krwf{(5sM1fHeIHV$;n7g#Al=<*)q-)RRJa{~ zN)A6?ayIvAy9a4n)PuY8D1*uuggoZm8T3tZ8bvcMKoyxzE92Tq*V;s9(^h`|{P~ve zkqYLxMCV1PKgAAvOYG=rIgPy$W?^{)Gs4(T5Yy8V5)v-$E}+qgwVmm@3>a+w;>}@y z9{nnxKHgWIi4FsOeYA26ZuWrW%%>zW75Db4i(_N-Rne{#`~K*(CFNU@LOi(^y_A?) zhAv_Z8CTf)p6+Y9xVZFz1q8zl&&J9IeiJ3?H>`if!ecvHCj^5I4Hk#K+EkIsRV|?R zw}F2Y#rHNxOs%Yfch`HZ61RcUN377>nwAB1Enys*A8%jSyr;mG>$q^96 zz$va`?g97hxnic)z?uMRa)mH<-|_Kr80k1YGh+b83y=HGW^wGxa`^oDJ-c%+hBJzq zMMXsPmq+V)Q1g94vl*4Px8xqjI0Tlhb!skk8w3jz;Kq=jK)r9%fddm7^1%71Tjp-l zdY!8J<8}XG;FKm&%Kp(n!2uuOt17|Lr9ibp`$t;#t=DgY(NPU2{~EKGDg)*3DV83i{`te=zvJ<^#pT^sb9v-|`yW}J9knF3JM;_*={(!<5!FueZqB|>)C$z)y<2be?6xfPKdDdtEs60&ii+pc>~U7 zJFAHj{bOyPCB;F!i=@WIF_-SGrPtQIWEz=HP7nH3>0PTR*#8>EUMPS4dNrq20(bKF=7XhI;c$ivCZhdwb903@hdkkui65Dn`G08^x!jqmNd*$a zuCT=C-o1M=u#*(+B7ubq_MXJzo9D)xBB%uWtfeDuzg@K1{N;@i&-y>&x+ds? zIo}G~8MCWrF$2ZMg4A9RTJ=z#ajo{FSOPAn&Csj-s2n5Sny4JpouMbKWn0g(^d{Yv zrK@qa1a9*3gA|{RWYyZ^R9fFhwmkanD(Je+)WfzWowx*?S0~jHMO4lybC~Q@C<+0E2`$ zt8z5$L=;MgI59qXFUD+#7`-V?>(G9O$8~d&z6sAdS9#g*|Ue|&P*s_!494SI7e zY!*s3YL>?uM(WvO8b#0c8#YG@+stOx*4$UsrZ9Q6d!rYF_3S1k|q#oY!ki z9K@}M%C!gB7kcxoFuwqw()MQ4z;q)&J!z)HOy_1>%-(6xq%Axg8U6(C$$jqq`G(Tp z9qGoHkA*NwXMq|ti4e4E7NzuU@9Huk&1|sv_WEK^p~H;hwwjFL+S;0voC()#(!$0d zT7pKaT@=1sx97%qV3;G?Lkf5QHyPsZ!)f?TZ=XK-{OUln=t6O^0X9-j zr4v((`9uAQB_&tsokm~wi|6W9zIZEOp@9V4k24ZQ**>+a9iiViU7s9S+DG#)jL6FU5<4}Q?qwu3pORli`f*{YIxZWi~FJ{ zgX{Q8v-tKbW=f4SGdY5+Iv)93|4%kP#%f3Y|LTGLALvjna*fzAV_AmcA2_t~*Og?_ Iq#i!|Uui*9w*UYD literal 0 HcmV?d00001 diff --git a/networks/He-C-Fe-group-simple/p-n_electroncapture.dat b/networks/He-C-Fe-group-simple/p-n_electroncapture.dat new file mode 100644 index 000000000..21f333657 --- /dev/null +++ b/networks/He-C-Fe-group-simple/p-n_electroncapture.dat @@ -0,0 +1,148 @@ +!p -> n, e- capture +!Q=1.2933 MeV +! +!Log(rhoY) Log(temp) mu dQ Vs Log(e-cap-rate) Log(nu-energy-loss) Log(gamma-energy) +!Log(g/cm^3) Log(K) erg erg erg Log(1/s) Log(erg/s) Log(erg/s) +1.000000 7.000000 -4.806530e-09 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +1.000000 8.000000 -9.292624e-08 0.00 0.00 -49.750000 -5.712729e+01 -100.00 +1.000000 8.301030 -2.146917e-07 0.00 0.00 -29.580000 -3.665029e+01 -100.00 +1.000000 8.602060 -4.902661e-07 0.00 0.00 -19.262000 -2.602029e+01 -100.00 +1.000000 8.845098 -8.058948e-07 0.00 0.00 -14.019000 -2.051929e+01 -100.00 +1.000000 9.000000 -8.187123e-07 0.00 0.00 -10.766000 -1.709829e+01 -100.00 +1.000000 9.176091 -8.187123e-07 0.00 0.00 -7.990000 -1.412829e+01 -100.00 +1.000000 9.301030 -8.187123e-07 0.00 0.00 -6.458000 -1.245629e+01 -100.00 +1.000000 9.477121 -8.187123e-07 0.00 0.00 -4.715000 -1.051429e+01 -100.00 +1.000000 9.698970 -8.187123e-07 0.00 0.00 -2.968000 -8.516290e+00 -100.00 +1.000000 10.000000 -8.187123e-07 0.00 0.00 -1.035000 -6.245290e+00 -100.00 +1.000000 10.477121 -8.187123e-07 0.00 0.00 1.600000 -3.099290e+00 -100.00 +1.000000 11.000000 -8.187123e-07 0.00 0.00 4.293000 1.317104e-01 -100.00 +2.000000 7.000000 -1.602177e-09 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +2.000000 8.000000 -6.088271e-08 0.00 0.00 -48.749000 -5.612529e+01 -100.00 +2.000000 8.301030 -1.522068e-07 0.00 0.00 -28.580000 -3.564929e+01 -100.00 +2.000000 8.602060 -3.636941e-07 0.00 0.00 -18.262000 -2.502029e+01 -100.00 +2.000000 8.845098 -7.145708e-07 0.00 0.00 -13.606000 -2.010629e+01 -100.00 +2.000000 9.000000 -8.107014e-07 0.00 0.00 -10.744000 -1.707729e+01 -100.00 +2.000000 9.176091 -8.187123e-07 0.00 0.00 -7.989000 -1.412729e+01 -100.00 +2.000000 9.301030 -8.187123e-07 0.00 0.00 -6.458000 -1.245629e+01 -100.00 +2.000000 9.477121 -8.187123e-07 0.00 0.00 -4.715000 -1.051429e+01 -100.00 +2.000000 9.698970 -8.187123e-07 0.00 0.00 -2.968000 -8.516290e+00 -100.00 +2.000000 10.000000 -8.187123e-07 0.00 0.00 -1.035000 -6.245290e+00 -100.00 +2.000000 10.477121 -8.187123e-07 0.00 0.00 1.600000 -3.099290e+00 -100.00 +2.000000 11.000000 -8.187123e-07 0.00 0.00 4.293000 1.317104e-01 -100.00 +3.000000 7.000000 3.204353e-09 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +3.000000 8.000000 -2.883918e-08 0.00 0.00 -47.732000 -5.510929e+01 -100.00 +3.000000 8.301030 -8.811971e-08 0.00 0.00 -27.574000 -3.464429e+01 -100.00 +3.000000 8.602060 -2.355200e-07 0.00 0.00 -17.260000 -2.401829e+01 -100.00 +3.000000 8.845098 -5.030835e-07 0.00 0.00 -12.658000 -1.915829e+01 -100.00 +3.000000 9.000000 -7.450121e-07 0.00 0.00 -10.538000 -1.687029e+01 -100.00 +3.000000 9.176091 -8.107014e-07 0.00 0.00 -7.974000 -1.411229e+01 -100.00 +3.000000 9.301030 -8.171101e-07 0.00 0.00 -6.454000 -1.245329e+01 -100.00 +3.000000 9.477121 -8.187123e-07 0.00 0.00 -4.714000 -1.051429e+01 -100.00 +3.000000 9.698970 -8.187123e-07 0.00 0.00 -2.968000 -8.515290e+00 -100.00 +3.000000 10.000000 -8.187123e-07 0.00 0.00 -1.035000 -6.245290e+00 -100.00 +3.000000 10.477121 -8.187123e-07 0.00 0.00 1.600000 -3.099290e+00 -100.00 +3.000000 11.000000 -8.187123e-07 0.00 0.00 4.293000 1.317104e-01 -100.00 +4.000000 7.000000 1.922612e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +4.000000 8.000000 8.010883e-09 0.00 0.00 -46.572000 -5.394829e+01 -100.00 +4.000000 8.301030 -2.082830e-08 0.00 0.00 -26.519000 -3.358929e+01 -100.00 +4.000000 8.602060 -1.073458e-07 0.00 0.00 -16.243000 -2.300029e+01 -100.00 +4.000000 8.845098 -2.787787e-07 0.00 0.00 -11.652000 -1.815229e+01 -100.00 +4.000000 9.000000 -4.838573e-07 0.00 0.00 -9.716000 -1.604929e+01 -100.00 +4.000000 9.176091 -7.434100e-07 0.00 0.00 -7.833000 -1.397129e+01 -100.00 +4.000000 9.301030 -7.962818e-07 0.00 0.00 -6.423000 -1.242129e+01 -100.00 +4.000000 9.477121 -8.123036e-07 0.00 0.00 -4.709000 -1.050829e+01 -100.00 +4.000000 9.698970 -8.171101e-07 0.00 0.00 -2.967000 -8.515290e+00 -100.00 +4.000000 10.000000 -8.187123e-07 0.00 0.00 -1.035000 -6.245290e+00 -100.00 +4.000000 10.477121 -8.187123e-07 0.00 0.00 1.600000 -3.099290e+00 -100.00 +4.000000 11.000000 -8.187123e-07 0.00 0.00 4.293000 1.317104e-01 -100.00 +5.000000 7.000000 8.491536e-08 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +5.000000 8.000000 8.331318e-08 0.00 0.00 -44.223000 -5.160029e+01 -100.00 +5.000000 8.301030 7.530230e-08 0.00 0.00 -25.017000 -3.208629e+01 -100.00 +5.000000 8.602060 4.165659e-08 0.00 0.00 -15.072000 -2.182929e+01 -100.00 +5.000000 8.845098 -4.165659e-08 0.00 0.00 -10.585000 -1.708529e+01 -100.00 +5.000000 9.000000 -1.570133e-07 0.00 0.00 -8.685000 -1.501729e+01 -100.00 +5.000000 9.176091 -3.941355e-07 0.00 0.00 -7.099000 -1.323729e+01 -100.00 +5.000000 9.301030 -6.136337e-07 0.00 0.00 -6.134000 -1.213329e+01 -100.00 +5.000000 9.477121 -7.626361e-07 0.00 0.00 -4.656000 -1.045529e+01 -100.00 +5.000000 9.698970 -8.042927e-07 0.00 0.00 -2.959000 -8.506290e+00 -100.00 +5.000000 10.000000 -8.155079e-07 0.00 0.00 -1.034000 -6.244290e+00 -100.00 +5.000000 10.477121 -8.187123e-07 0.00 0.00 1.600000 -3.099290e+00 -100.00 +5.000000 11.000000 -8.187123e-07 0.00 0.00 4.293000 1.317104e-01 -100.00 +6.000000 7.000000 3.444680e-07 0.00 0.00 -99.697970 -1.057943e+02 -100.00 +6.000000 8.000000 3.428658e-07 0.00 0.00 -36.029000 -4.340629e+01 -100.00 +6.000000 8.301030 3.412636e-07 0.00 0.00 -20.834000 -2.790429e+01 -100.00 +6.000000 8.602060 3.316506e-07 0.00 0.00 -12.798000 -1.955529e+01 -100.00 +6.000000 8.845098 3.028114e-07 0.00 0.00 -9.036000 -1.553629e+01 -100.00 +6.000000 9.000000 2.579504e-07 0.00 0.00 -7.382000 -1.371429e+01 -100.00 +6.000000 9.176091 1.490024e-07 0.00 0.00 -5.962000 -1.210029e+01 -100.00 +6.000000 9.301030 1.602177e-09 0.00 0.00 -5.168000 -1.116629e+01 -100.00 +6.000000 9.477121 -3.396614e-07 0.00 0.00 -4.214000 -1.001329e+01 -100.00 +6.000000 9.698970 -6.729142e-07 0.00 0.00 -2.876000 -8.424290e+00 -100.00 +6.000000 10.000000 -7.866687e-07 0.00 0.00 -1.025000 -6.235290e+00 -100.00 +6.000000 10.477121 -8.155079e-07 0.00 0.00 1.601000 -3.098290e+00 -100.00 +6.000000 11.000000 -8.187123e-07 0.00 0.00 4.293000 1.317104e-01 -100.00 +7.000000 7.000000 1.140750e-06 0.00 0.00 -46.082000 -5.446429e+01 -100.00 +7.000000 8.000000 1.139148e-06 0.00 0.00 -10.983000 -1.835929e+01 -100.00 +7.000000 8.301030 1.139148e-06 0.00 0.00 -8.290000 -1.535929e+01 -100.00 +7.000000 8.602060 1.134341e-06 0.00 0.00 -6.487000 -1.324229e+01 -100.00 +7.000000 8.845098 1.123126e-06 0.00 0.00 -5.363000 -1.185729e+01 -100.00 +7.000000 9.000000 1.103900e-06 0.00 0.00 -4.733000 -1.105829e+01 -100.00 +7.000000 9.176091 1.060641e-06 0.00 0.00 -4.066000 -1.019629e+01 -100.00 +7.000000 9.301030 9.965539e-07 0.00 0.00 -3.616000 -9.607290e+00 -100.00 +7.000000 9.477121 8.171101e-07 0.00 0.00 -3.010000 -8.803290e+00 -100.00 +7.000000 9.698970 2.996070e-07 0.00 0.00 -2.270000 -7.815290e+00 -100.00 +7.000000 10.000000 -5.046856e-07 0.00 0.00 -0.937000 -6.147290e+00 -100.00 +7.000000 10.477121 -7.850666e-07 0.00 0.00 1.604000 -3.095290e+00 -100.00 +7.000000 11.000000 -8.155079e-07 0.00 0.00 4.293000 1.317104e-01 -100.00 +8.000000 7.000000 3.101814e-06 0.00 0.00 -1.350000 -7.185290e+00 -100.00 +8.000000 8.000000 3.101814e-06 0.00 0.00 -1.349000 -7.185290e+00 -100.00 +8.000000 8.301030 3.100212e-06 0.00 0.00 -1.348000 -7.183290e+00 -100.00 +8.000000 8.602060 3.098610e-06 0.00 0.00 -1.345000 -7.176290e+00 -100.00 +8.000000 8.845098 3.093803e-06 0.00 0.00 -1.335000 -7.158290e+00 -100.00 +8.000000 9.000000 3.085792e-06 0.00 0.00 -1.320000 -7.129290e+00 -100.00 +8.000000 9.176091 3.064964e-06 0.00 0.00 -1.285000 -7.065290e+00 -100.00 +8.000000 9.301030 3.036125e-06 0.00 0.00 -1.240000 -6.983290e+00 -100.00 +8.000000 9.477121 2.954414e-06 0.00 0.00 -1.128000 -6.787290e+00 -100.00 +8.000000 9.698970 2.693259e-06 0.00 0.00 -0.875000 -6.369290e+00 -100.00 +8.000000 10.000000 1.573337e-06 0.00 0.00 -0.301000 -5.502290e+00 -100.00 +8.000000 10.477121 -4.838573e-07 0.00 0.00 1.635000 -3.064290e+00 -100.00 +8.000000 11.000000 -7.882709e-07 0.00 0.00 4.294000 1.327104e-01 -100.00 +9.000000 7.000000 7.480563e-06 0.00 0.00 0.831000 -4.464290e+00 -100.00 +9.000000 8.000000 7.480563e-06 0.00 0.00 0.831000 -4.464290e+00 -100.00 +9.000000 8.301030 7.480563e-06 0.00 0.00 0.832000 -4.464290e+00 -100.00 +9.000000 8.602060 7.480563e-06 0.00 0.00 0.832000 -4.463290e+00 -100.00 +9.000000 8.845098 7.477358e-06 0.00 0.00 0.833000 -4.461290e+00 -100.00 +9.000000 9.000000 7.474154e-06 0.00 0.00 0.835000 -4.458290e+00 -100.00 +9.000000 9.176091 7.464541e-06 0.00 0.00 0.838000 -4.451290e+00 -100.00 +9.000000 9.301030 7.450121e-06 0.00 0.00 0.844000 -4.442290e+00 -100.00 +9.000000 9.477121 7.413271e-06 0.00 0.00 0.859000 -4.414290e+00 -100.00 +9.000000 9.698970 7.291506e-06 0.00 0.00 0.904000 -4.333290e+00 -100.00 +9.000000 10.000000 6.724335e-06 0.00 0.00 1.074000 -4.035290e+00 -100.00 +9.000000 10.477121 2.340780e-06 0.00 0.00 1.922000 -2.772290e+00 -100.00 +9.000000 11.000000 -5.191052e-07 0.00 0.00 4.302000 1.407104e-01 -100.00 +10.000000 7.000000 1.699429e-05 0.00 0.00 2.676000 -2.211290e+00 -100.00 +10.000000 8.000000 1.699429e-05 0.00 0.00 2.676000 -2.211290e+00 -100.00 +10.000000 8.301030 1.699429e-05 0.00 0.00 2.676000 -2.211290e+00 -100.00 +10.000000 8.602060 1.699429e-05 0.00 0.00 2.676000 -2.211290e+00 -100.00 +10.000000 8.845098 1.699269e-05 0.00 0.00 2.676000 -2.211290e+00 -100.00 +10.000000 9.000000 1.699108e-05 0.00 0.00 2.676000 -2.210290e+00 -100.00 +10.000000 9.176091 1.698628e-05 0.00 0.00 2.677000 -2.209290e+00 -100.00 +10.000000 9.301030 1.697987e-05 0.00 0.00 2.678000 -2.208290e+00 -100.00 +10.000000 9.477121 1.696224e-05 0.00 0.00 2.680000 -2.203290e+00 -100.00 +10.000000 9.698970 1.690617e-05 0.00 0.00 2.688000 -2.188290e+00 -100.00 +10.000000 10.000000 1.664181e-05 0.00 0.00 2.725000 -2.122290e+00 -100.00 +10.000000 10.477121 1.386203e-05 0.00 0.00 3.006000 -1.638290e+00 -100.00 +10.000000 11.000000 2.164541e-06 0.00 0.00 4.385000 2.237104e-01 -100.00 +11.000000 7.000000 3.752778e-05 0.00 0.00 4.416000 -1.062896e-01 -100.00 +11.000000 8.000000 3.752778e-05 0.00 0.00 4.416000 -1.062896e-01 -100.00 +11.000000 8.301030 3.752778e-05 0.00 0.00 4.416000 -1.062896e-01 -100.00 +11.000000 8.602060 3.752778e-05 0.00 0.00 4.416000 -1.062896e-01 -100.00 +11.000000 8.845098 3.752618e-05 0.00 0.00 4.416000 -1.062896e-01 -100.00 +11.000000 9.000000 3.752618e-05 0.00 0.00 4.416000 -1.052896e-01 -100.00 +11.000000 9.176091 3.752298e-05 0.00 0.00 4.416000 -1.052896e-01 -100.00 +11.000000 9.301030 3.752137e-05 0.00 0.00 4.416000 -1.052896e-01 -100.00 +11.000000 9.477121 3.751176e-05 0.00 0.00 4.417000 -1.042896e-01 -100.00 +11.000000 9.698970 3.748613e-05 0.00 0.00 4.419000 -1.012896e-01 -100.00 +11.000000 10.000000 3.736436e-05 0.00 0.00 4.426000 -8.828961e-02 -100.00 +11.000000 10.477121 3.605538e-05 0.00 0.00 4.499000 4.271039e-02 -100.00 +11.000000 11.000000 2.244810e-05 0.00 0.00 4.989000 8.437104e-01 -100.00 diff --git a/networks/He-C-Fe-group-simple/partition_functions.H b/networks/He-C-Fe-group-simple/partition_functions.H new file mode 100644 index 000000000..b0e1b55ba --- /dev/null +++ b/networks/He-C-Fe-group-simple/partition_functions.H @@ -0,0 +1,960 @@ +#ifndef PARTITION_FUNCTIONS_H +#define PARTITION_FUNCTIONS_H + +#include +#include + +#include +#include +#include + +using namespace amrex; +using namespace Species; + +namespace part_fun { + + constexpr int npts_1 = 72; + + // this is T9 + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real temp_array_1[npts_1] = { + 0.01, 0.15, 0.2, 0.3, 0.4, + 0.5, 0.6, 0.7, 0.8, 0.9, + 1.0, 1.5, 2.0, 2.5, 3.0, + 3.5, 4.0, 4.5, 5.0, 6.0, + 7.0, 8.0, 9.0, 10.0, 12.0, + 14.0, 16.0, 18.0, 20.0, 22.0, + 24.0, 26.0, 28.0, 30.0, 35.0, + 40.0, 45.0, 50.0, 55.0, 60.0, + 65.0, 70.0, 75.0, 80.0, 85.0, + 90.0, 95.0, 100.0, 105.0, 110.0, + 115.0, 120.0, 125.0, 130.0, 135.0, + 140.0, 145.0, 150.0, 155.0, 160.0, + 165.0, 170.0, 175.0, 180.0, 190.0, + 200.0, 210.0, 220.0, 230.0, 240.0, + 250.0, 275.0, + }; + + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real O16_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.012837224705172217, + 0.03742649794062367, 0.07188200730612536, 0.1205739312058499, 0.1846914308175988, 0.26245108973042947, + 0.3463529744506387, 0.437750562820388, 0.534026106056135, 0.6344772701607315, 0.8981764834976765, + 1.1760912590556813, 1.4668676203541096, 1.7641761323903307, 2.0644579892269186, 2.367355921026019, + 2.667452952889954, 2.9656719712201065, 3.2624510897304293, 3.555094448578319, 3.845098040014257, + 4.133538908370218, 4.419955748489758, 4.704150516839799, 4.986771734266245, 5.267171728403014, + 5.547774705387822, 5.8267225201689925, 6.103803720955957, 6.380211241711606, 6.6551384348113825, + 6.929929560084588, 7.204119982655925, 7.477121254719663, 7.748962861256161, 8.021189299069938, + 8.292256071356476, 8.562292864456476, 8.832508912706237, 9.100370545117563, 9.640481436970422, + 10.178976947293169, 10.714329759745233, 11.250420002308894, 11.785329835010767, 12.320146286111054, + 12.856124444242301, 14.195899652409233, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real F18_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.008600171761917567, 0.02530586526477026, 0.04921802267018165, + 0.08635983067474821, 0.12385164096708583, 0.16731733474817606, 0.20682587603184974, 0.28330122870354957, + 0.35024801833416286, 0.4065401804339551, 0.45331834004703764, 0.4941545940184428, 0.6646419755561255, + 0.756636108245848, 0.8419848045901139, 0.9232440186302765, 1.0043213737826426, 1.08278537031645, + 1.1643528557844371, 1.250420002308894, 1.3384564936046048, 1.429752280002408, 1.6748611407378116, + 1.9405164849325671, 2.220108088040055, 2.505149978319906, 2.79309160017658, 3.0827853703164503, + 3.369215857410143, 3.6570558528571038, 3.9434945159061026, 4.230448921378274, 4.514547752660286, + 4.800029359244134, 5.086359830674748, 5.371067862271737, 5.657055852857104, 5.94299959336604, + 6.230448921378274, 6.515873843711679, 6.803457115648414, 7.089905111439398, 7.378397900948138, + 7.6674529528899535, 7.956168430475364, 8.24551266781415, 8.534026106056135, 8.823474229170301, + 9.113943352306837, 9.403120521175818, 9.69460519893357, 9.984977126415494, 10.568201724066995, + 11.152288344383056, 11.73798732633343, 12.324282455297693, 12.913813852383717, 13.503790683057181, + 14.096910013008056, 15.584331224367531, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ne20_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 6.948656121358244e-06, 0.00016586881316040883, 0.0011034421778731533, 0.003892457497077877, + 0.00954097493969645, 0.01859524021829981, 0.03107544483336982, 0.04661767038571622, 0.0846241727916796, + 0.12822183093465686, 0.174311933665943, 0.22124805254602342, 0.2683385291343481, 0.36172783601759284, + 0.456366033129043, 0.5514499979728752, 0.6483600109809317, 0.7466341989375788, 0.8481891169913987, + 0.9532763366673044, 1.0644579892269186, 1.1789769472931695, 1.3031960574204888, 1.6434526764861874, + 2.0170333392987803, 2.4099331233312946, 2.8068580295188172, 3.2013971243204513, 3.5899496013257077, + 3.9731278535996988, 4.352182518111363, 4.725911632295048, 5.096910013008056, 5.465382851448418, + 5.830588668685144, 6.193124598354461, 6.556302500767288, 6.916980047320382, 7.276461804173244, + 7.6344772701607315, 7.991669007379948, 8.34830486304816, 8.703291378118662, 9.056904851336473, + 9.411619705963231, 9.763427993562937, 10.117271295655764, 10.46686762035411, 10.818225893613956, + 11.170261715394957, 11.519827993775719, 11.869231719730976, 12.217483944213907, 12.916453948549925, + 13.613841821876068, 14.3096301674259, 15.004321373782643, 15.702430536445526, 16.399673721481037, + 17.096910013008056, 18.838849090737256, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ne21_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 8.685880952436747e-07, 2.4754079983896385e-05, + 0.0001901793368385613, 0.0007372402163824667, 0.0019404293040471109, 0.0040039218205739505, 0.007021925578680666, + 0.010986057727319889, 0.04118891376750491, 0.0777722105539352, 0.11230632139519969, 0.14260436993417835, + 0.16888829052162926, 0.19197861038694294, 0.2126999294489824, 0.23172922294680384, 0.2666728249346414, + 0.2996105757244402, 0.3321030146619489, 0.3650139334448046, 0.3988146649899236, 0.46982201597816303, + 0.546542663478131, 0.6283889300503115, 0.7176705030022621, 0.8142475957319202, 0.9180303367848801, + 1.0293837776852097, 1.14921911265538, 1.276461804173244, 1.4082399653118496, 1.760422483423212, + 2.1271047983648077, 2.499687082618404, 2.870403905279027, 3.2380461031287955, 3.603144372620182, + 3.9656719712201065, 4.326335860928752, 4.683947130751513, 5.041392685158225, 5.396199347095736, + 5.752048447819439, 6.107209969647869, 6.4623979978989565, 6.817565369559781, 7.173186268412274, + 7.5276299008713385, 7.8819549713396, 8.23552844690755, 8.5910646070265, 8.944975908412047, + 9.298853076409706, 9.653212513775344, 10.008600171761918, 10.361727836017593, 10.716837723299525, + 11.071882007306126, 11.424881636631067, 11.780317312140152, 12.133538908370218, 12.84447717574568, + 13.55509444857832, 14.267171728403014, 14.979548374704095, 15.693726948923647, 16.40823996531185, + 17.123851640967086, 18.923244018630278, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Na22_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 4.342942647204277e-07, 2.605759074128604e-06, 1.3028639028478182e-05, 4.559852671908958e-05, 0.00011984873864003521, + 0.0002626687122755098, 0.0029928105843703536, 0.010836979076306525, 0.02428653620880802, 0.04242704733870039, + 0.06402310268617777, 0.08796765614200239, 0.11338308526345184, 0.13961150376071624, 0.19275584832811385, + 0.2451455832343637, 0.2958922043442712, 0.3448263511644293, 0.39212883410565064, 0.48287358360875376, + 0.5717088318086876, 0.6627578316815741, 0.756636108245848, 0.8561244442423004, 0.9633155113861113, + 1.0791812460476249, 1.2013971243204515, 1.3283796034387378, 1.4638929889859074, 1.8215135284047732, + 2.1931245983544616, 2.5705429398818973, 2.9474337218870508, 3.322219294733919, 3.6954816764901977, + 4.068185861746161, 4.4361626470407565, 4.804820678721162, 5.173186268412274, 5.540329474790874, + 5.907411360774586, 6.27415784926368, 6.642464520242122, 7.008600171761918, 7.378397900948138, + 7.746634198937579, 8.113943352306837, 8.482873583608754, 8.851258348719075, 9.220108088040055, + 9.588831725594208, 9.957607287060096, 10.32633586092875, 10.695481676490198, 11.064457989226918, + 11.4345689040342, 11.80413943233535, 12.173186268412273, 12.544068044350276, 13.285557309007773, + 14.02938377768521, 14.773054693364262, 15.518513939877888, 16.264817823009537, 17.012837224705173, + 17.76492298464989, 19.64933485871214, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Na23_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 1.7371744532199383e-06, + 2.3885539658322847e-05, 0.00013113713282427166, 0.0004423207528904243, 0.0010999766245234136, 0.002232173197636284, + 0.003929471989446119, 0.021128907257497758, 0.0479649055541949, 0.07726249885377771, 0.10525805048344757, + 0.13079227003361296, 0.15390201926318714, 0.17503899265296466, 0.19472325248715508, 0.23147162936712465, + 0.26668504599022796, 0.3016913566252569, 0.33713446730536967, 0.37335950050705796, 0.4487063199050799, + 0.5314789170422551, 0.6211762817750351, 0.7218106152125465, 0.8344207036815325, 0.9590413923210935, + 1.0934216851622351, 1.2405492482825997, 1.3926969532596658, 1.5514499979728753, 1.9628426812012425, + 2.383815365980431, 2.803457115648414, 3.220108088040055, 3.6344772701607315, 4.045322978786658, + 4.453318340047038, 4.857935264719429, 5.26245108973043, 5.664641975556125, 6.064457989226918, + 6.466867620354109, 6.867467487859051, 7.267171728403014, 7.666517980554881, 8.064457989226918, + 8.463892988985908, 8.861534410859038, 9.260071387985075, 9.656098202012831, 10.05307844348342, + 10.450249108319362, 10.846337112129806, 11.243038048686294, 11.638489256954637, 12.03342375548695, + 12.429752280002408, 12.826074802700827, 13.222716471147583, 13.6170003411209, 14.40823996531185, + 15.20139712432045, 15.993876914941211, 16.787460474518415, 17.582063362911708, 18.378397900948137, + 19.17609125905568, 21.173186268412273, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Mg24_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 4.342942647204277e-07, 5.471765757979972e-05, 0.0007714899373308071, 0.0037633124724497633, 0.010764115210255056, + 0.022625058328435317, 0.039160607597355665, 0.05951911533271758, 0.08262238957783377, 0.13324118689139802, + 0.185518640557017, 0.2370005304649223, 0.2870228837145503, 0.3357157930198095, 0.43136376415898736, + 0.5263392773898441, 0.6253124509616739, 0.7307822756663892, 0.8463371121298052, 0.9749719942980689, + 1.1172712956557642, 1.2741578492636798, 1.4424797690644486, 1.6232492903979006, 2.103803720955957, + 2.598790506763115, 3.089905111439398, 3.577491799837225, 4.05307844348342, 4.52244423350632, + 4.984527313343793, 5.440909082065217, 5.894869656745253, 6.344392273685111, 6.791690649020118, + 7.235528446907549, 7.6785183790401135, 8.12057393120585, 8.558708570533165, 8.99563519459755, + 9.431363764158988, 9.866287339084195, 10.301029995663981, 10.732393759822969, 11.164352855784436, + 11.594392550375426, 12.02530586526477, 12.453318340047037, 12.881384656770573, 13.3096301674259, + 13.736396502276643, 14.161368002234974, 14.588831725594208, 15.012837224705173, 15.86569605991607, + 16.715167357848458, 17.56466606425209, 18.413299764081252, 19.26245108973043, 20.113943352306837, + 20.96284268120124, 23.089905111439396, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Al27_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 8.685880952436747e-07, 3.4743419578801875e-06, + 1.0422942490878872e-05, 0.00032429686817590634, 0.0018833542475028369, 0.005477808032249925, 0.011239204769804155, + 0.01890428637893266, 0.028126564553716336, 0.03862016194970278, 0.05018673657450416, 0.07608019569340022, + 0.10530099179798431, 0.13774106877747655, 0.1734986149135784, 0.21278880583973628, 0.30319605742048883, + 0.4099331233312945, 0.5352941200427705, 0.6794278966121189, 0.8394780473741984, 1.0128372247051722, + 1.1958996524092338, 1.3873898263387294, 1.5843312243675307, 1.783903579272735, 2.287801729930226, + 2.7944880466591697, 3.296665190261531, 3.7944880466591697, 4.2878017299302265, 4.779596491257824, + 5.269512944217916, 5.7558748556724915, 6.2405492482825995, 6.725094521081469, 7.209515014542631, + 7.691081492122969, 8.173186268412275, 8.653212513775344, 9.133538908370218, 9.611723308007342, + 10.089905111439398, 10.568201724066995, 11.045322978786658, 11.521138083704036, 11.997386384397313, + 12.472756449317213, 12.947923619831727, 13.423245873936807, 13.89707700320942, 14.371067862271737, + 14.845098040014257, 15.320146286111054, 15.79309160017658, 16.267171728403014, 17.214843848047696, + 18.161368002234976, 19.110589710299248, 20.060697840353612, 21.012837224705173, 21.96284268120124, + 22.915927211697117, 25.305351369446623, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Si28_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 2.1714669808675565e-06, 7.12184552784347e-05, 0.0005624812393818785, 0.002223099674110693, + 0.0059171580771474625, 0.012282407118825528, 0.02157709561709228, 0.03370716078346824, 0.06502557053071237, + 0.1027522772573885, 0.14387160800291654, 0.1866035043986153, 0.2302807913268337, 0.3222192947339193, + 0.42324587393680785, 0.541579243946581, 0.6839471307515121, 0.8518696007297664, 1.041392685158225, + 1.250420002308894, 1.4727564493172123, 1.7024305364455252, 1.9375178920173466, 2.531478917042255, + 3.12057393120585, 3.7024305364455254, 4.271841606536499, 4.834420703681532, 5.389166084364533, + 5.937517892017347, 6.481442628502305, 7.021189299069938, 7.557507201905658, 8.089905111439398, + 8.622214022966295, 9.14921911265538, 9.675778341674086, 10.198657086954423, 10.721810615212547, + 11.2405492482826, 11.75966784468963, 12.276461804173245, 12.791690649020119, 13.305351369446624, + 13.818225893613956, 14.330413773349191, 14.840733234611807, 15.350248018334163, 15.85913829729453, + 16.367355921026018, 16.8750612633917, 17.38201704257487, 17.88874096068289, 18.90036712865647, + 19.911157608739977, 20.921166050637737, 21.9304395947667, 22.93951925261862, 23.948901760970212, + 24.958563883221967, 27.48572142648158, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real P31_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 4.342942647204277e-07, 4.820401221806151e-05, 0.0005624812393818785, 0.002468018295084159, 0.006670091319158333, + 0.013688955408210905, 0.023674199668938998, 0.03655105068012579, 0.05215275629691826, 0.09085986215557586, + 0.13887811232360858, 0.19608052467040618, 0.26289299085539924, 0.33982852740425823, 0.5237464668115644, + 0.7419390777291989, 0.9827233876685453, 1.235528446907549, 1.4899584794248346, 1.7442929831226763, + 1.9960736544852753, 2.24551266781415, 2.4913616938342726, 2.733999286538387, 3.330413773349191, + 3.9132839017604186, 4.48572142648158, 5.049218022670182, 5.608526033577194, 6.164352855784437, + 6.714329759745233, 7.264817823009537, 7.812913356642856, 8.359835482339887, 8.90687353472207, + 9.453318340047037, 9.997823080745725, 10.54282542695918, 11.086359830674748, 11.629409599102718, + 12.170261715394957, 12.712649701627212, 13.255272505103306, 13.79448804665917, 14.334453751150932, + 14.874481817699467, 15.414973347970818, 15.953276336667304, 16.492760389026838, 17.029383777685208, + 17.570542939881896, 18.10720996964787, 18.64738297011462, 19.187520720836464, 20.264817823009537, + 21.342422680822207, 22.42160392686983, 23.503790683057183, 24.5854607295085, 25.66931688056611, + 26.75511226639507, 29.477121254719663, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real S32_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 5.211502513843472e-06, 6.948155872801059e-05, 0.0003893875360542875, + 0.001336870159627728, 0.003378232401258555, 0.006963377556787149, 0.012456734172197398, 0.03011415790845077, + 0.057484285853877215, 0.0950053699501746, 0.14295136988131382, 0.20165707691270435, 0.3521825181113625, + 0.5502283530550941, 0.787460474518415, 1.0569048513364727, 1.3404441148401183, 1.631443769013172, + 1.92272545799326, 2.2121876044039577, 2.4955443375464483, 2.7737864449811935, 3.44870631990508, + 4.096910013008056, 4.726727209026572, 5.3404441148401185, 5.944975908412048, 6.541579243946581, + 7.133538908370218, 7.720985744153739, 8.305351369446624, 8.888740960682892, 9.469822015978163, + 10.049218022670182, 10.628388930050312, 11.20682587603185, 11.78175537465247, 12.356025857193123, + 12.9304395947667, 13.502427119984432, 14.075546961392531, 14.645422269349092, 15.214843848047698, + 15.783903579272735, 16.352182518111363, 16.920123326290724, 17.487138375477187, 18.053078443483418, + 18.621176281775035, 19.187520720836464, 19.753583058892907, 20.318063334962762, 21.450249108319362, + 22.580924975675618, 23.71264970162721, 24.84385542262316, 25.976808337338067, 27.110589710299248, + 28.24551266781415, 31.08635983067475, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Cl35_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 1.8239985202970884e-05, 0.00020710907627919203, 0.0009431313908907785, 0.002698987769012708, + 0.005906875936599731, 0.010907713111778477, 0.017957319425972694, 0.027253766962590423, 0.0532486689285615, + 0.09021853774459236, 0.13964204799692437, 0.20296975189964023, 0.28111453407611076, 0.48000694295715063, + 0.7234556720351858, 0.9934362304976116, 1.2741578492636798, 1.5587085705331658, 1.841984804590114, + 2.123851640967086, 2.401400540781544, 2.678518379040114, 2.951823035315912, 3.6263403673750423, + 4.2878017299302265, 4.942008053022313, 5.588831725594207, 6.230448921378274, 6.870988813760575, + 7.509202522331103, 8.146128035678238, 8.781036938621131, 9.414973347970818, 10.049218022670182, + 10.681241237375588, 11.313867220369154, 11.943988875073773, 12.574031267727719, 13.204119982655925, + 13.831229693867064, 14.457881896733992, 15.086359830674748, 15.710963118995275, 16.33645973384853, + 16.96189547366785, 17.586587304671756, 18.212187604403958, 18.835056101720117, 19.45939248775923, + 20.08278537031645, 20.705863712283918, 21.33041377334919, 21.95375969173323, 23.20139712432045, + 24.450249108319362, 25.699837725867244, 26.950364854376122, 28.20139712432045, 29.456366033129044, + 30.71264970162721, 33.862131379313034, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ar36_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 4.342942647204277e-07, 2.3451268844214655e-05, 0.00023141729162330258, 0.0010622869460975197, + 0.0031540913067783544, 0.007135153007315866, 0.013474284663478431, 0.02245187936733961, 0.048771089883939175, + 0.08643600351808534, 0.13560900039779808, 0.1965840257248699, 0.2696980636423851, 0.45331834004703764, + 0.6848453616444125, 0.9585638832219674, 1.2624510897304295, 1.5809249756756194, 1.9057958803678685, + 2.230448921378274, 2.550228353055094, 2.8662873390841948, 3.1760912590556813, 3.929418925714293, + 4.657055852857104, 5.365487984890899, 6.060697840353612, 6.746634198937579, 7.426511261364575, + 8.100370545117563, 8.773054693364262, 9.442479769064448, 10.11058971029925, 10.77451696572855, + 11.437750562820387, 12.100370545117563, 12.758911892397974, 13.41664050733828, 14.071882007306126, + 14.727541257028557, 15.38201704257487, 16.03342375548695, 16.684845361644413, 17.33445375115093, + 17.983626287124533, 18.63144376901317, 19.27875360095283, 19.92582757462474, 20.57170883180869, + 21.217483944213907, 21.863322860120455, 22.50785587169583, 23.152288344383056, 24.440909082065218, + 25.72916478969277, 27.01703333929878, 28.305351369446623, 29.595496221825574, 30.885926339801433, + 32.17897694729317, 35.41329976408125, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real K39_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 3.908632748276029e-06, 3.4307908925770636e-05, + 0.00016282990201490303, 0.0005394928156396339, 0.0014074368520356395, 0.0031075244141559894, 0.010846721573671135, + 0.028297088943748088, 0.06095682921468604, 0.11414775667614005, 0.1912997955319451, 0.4132997640812518, + 0.7015679850559274, 1.0170333392987803, 1.3384564936046048, 1.6599162000698502, 1.9772662124272926, + 2.292256071356476, 2.6020599913279625, 2.910090545594068, 3.214843848047698, 3.9684829485539352, + 4.710963118995275, 5.444044795918076, 6.173186268412274, 6.897627091290442, 7.619093330626742, + 8.338456493604605, 9.056904851336473, 9.771587480881255, 10.48572142648158, 11.198657086954423, + 11.907948521612273, 12.6170003411209, 13.324282455297693, 14.02938377768521, 14.733999286538387, + 15.437750562820389, 16.139879086401237, 16.839478047374197, 17.539076098792776, 18.238046103128795, + 18.936513742478894, 19.633468455579585, 20.33041377334919, 21.02530586526477, 21.723455672035186, + 22.418301291319747, 23.113943352306837, 23.809559714635267, 24.505149978319906, 25.89542254603941, + 27.285557309007775, 28.678518379040113, 30.071882007306126, 31.465382851448418, 32.860936620700095, + 34.25767857486918, 37.761927838420526, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ca40_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 3.4743419578801875e-06, + 2.6056887215373325e-05, 0.00012419046343446514, 0.0004254001802063995, 0.0011532564515138494, 0.005324252203746658, + 0.016451245325404363, 0.03938040551055626, 0.07909980819723089, 0.13972800117379408, 0.33041377334919086, + 0.6063813651106049, 0.9385197251764918, 1.2988530764097066, 1.6693168805661123, 2.037426497940624, + 2.403120521175818, 2.761927838420529, 3.113943352306837, 3.459392487759231, 4.301029995663981, + 5.117271295655764, 5.9148718175400505, 6.701567985055927, 7.478566495593843, 8.250420002308894, + 9.01703333929878, 9.781036938621131, 10.540329474790873, 11.296665190261532, 12.049218022670182, + 12.801403710017356, 13.549003262025789, 14.294466226161592, 15.037426497940624, 15.779596491257825, + 16.518513939877888, 17.255272505103306, 17.99211148778695, 18.72591163229505, 19.45939248775923, + 20.19033169817029, 20.920645001406786, 21.650307523131936, 22.378397900948137, 23.10720996964787, + 23.832508912706235, 24.558708570533167, 25.285557309007775, 26.008600171761916, 27.45939248775923, + 28.907948521612273, 30.356025857193124, 31.804820678721164, 33.25285303097989, 34.704150516839796, + 36.15533603746506, 39.78816837114117, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Sc43_pf_array[npts_1] = { + 0.0, 1.7371744532199383e-06, 3.2136602621167924e-05, 0.0006088881229004689, 0.0026394223512168323, + 0.006348788305828209, 0.011375876688411647, 0.017242084547645732, 0.02355944464942603, 0.03006796257543875, + 0.03661053325876141, 0.06810122175372875, 0.09804672309111766, 0.12848424511267922, 0.16058766813472455, + 0.1946644458530261, 0.23055748142930874, 0.26792627543589265, 0.3064134462100847, 0.3856843680943845, + 0.4672642331672854, 0.5514418243762168, 0.6393550853495756, 0.732465412501299, 0.9380190974762103, + 1.1760912590556813, 1.4456042032735976, 1.7371926427047373, 2.0453229787866576, 2.359835482339888, + 2.678518379040114, 3.0, 3.322219294733919, 3.6424645202421213, 4.439332693830263, + 5.230448921378274, 6.017033339298781, 6.8020892578817325, 7.585460729508501, 8.36735592102602, + 9.14921911265538, 9.929418925714293, 10.710117365111817, 11.489958479424836, 12.267171728403014, + 13.045322978786658, 13.822168079368018, 14.597695185925513, 15.371067862271737, 16.146128035678238, + 16.916453948549925, 17.687528961214635, 18.45788189673399, 19.227886704613674, 19.99694924849538, + 20.76492298464989, 21.532754378992497, 22.30102999566398, 23.068185861746162, 23.835690571492425, + 24.602059991327963, 25.369215857410143, 26.136720567156406, 26.903632516084237, 28.439332693830263, + 29.97497199429807, 31.511883360978874, 33.05307844348342, 34.59217675739587, 36.13672056715641, + 37.68214507637383, 41.55870857053316, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ti44_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 4.342942647204277e-07, 1.7371744532199383e-06, + 7.382943437485089e-06, 0.0004987179011085028, 0.004043078170724821, 0.01413521502778782, 0.032426549056877405, + 0.05856115101668825, 0.09131586357749837, 0.1294359425571275, 0.17190802974603506, 0.2667731684215763, + 0.37035022176288673, 0.47788465213962983, 0.5860935485551829, 0.693748838923791, 0.9116901587538612, + 1.1522883443830565, 1.4409090820652177, 1.7788744720027396, 2.1522883443830563, 2.5415792439465807, + 2.9334872878487053, 3.322219294733919, 3.7041505168397992, 4.079181246047625, 4.996073654485276, + 5.885361220031512, 6.757396028793024, 7.619093330626742, 8.472756449317213, 9.32221929473392, + 10.167317334748176, 11.008600171761918, 11.85003325768977, 12.687528961214634, 13.52244423350632, + 14.354108439147401, 15.1846914308176, 16.012837224705173, 16.836956737059552, 17.65991620006985, + 18.481442628502304, 19.298853076409706, 20.117271295655765, 20.9329808219232, 21.746634198937578, + 22.559906625036113, 23.371067862271737, 24.181843587944773, 24.991226075692495, 25.799340549453582, + 26.60745502321467, 27.414973347970818, 28.220108088040057, 29.02530586526477, 30.63748972951251, + 32.247973266361804, 33.8561244442423, 35.46538285144842, 37.07554696139253, 38.68484536164441, + 40.29666519026153, 44.33041377334919, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real V47_pf_array[npts_1] = { + 2.518834949526704e-05, 0.0007584840322833457, 0.004226764680268442, 0.024475815916759104, 0.05998274311239668, + 0.10280266491559079, 0.14672973694476377, 0.1885209834473098, 0.22688178294786615, 0.2615226538586488, + 0.29260868165003595, 0.4071409645052156, 0.48021742410342627, 0.5329079468954852, 0.5750746363992424, + 0.6115960803783954, 0.6450760714077263, 0.6770396273057074, 0.708482088001612, 0.7725618227871047, + 0.8417322779915452, 0.9194240819892174, 1.0083997539725875, 1.110602503281611, 1.3560258571931227, + 1.651278013998144, 1.9813655090785445, 2.330413773349191, 2.6884198220027105, 3.0492180226701815, + 3.41161970596323, 3.7708520116421442, 4.127104798364807, 4.484299839346786, 5.365487984890899, + 6.238046103128795, 7.103803720955957, 7.967547976218862, 8.830588668685145, 9.69460519893357, + 10.557507201905658, 11.421603926869832, 12.285557309007773, 13.146128035678238, 14.008600171761918, + 14.869231719730976, 15.728353782021228, 16.586587304671756, 17.442479769064448, 18.298853076409706, + 19.152288344383056, 20.00432137378264, 20.85793526471943, 21.70926996097583, 22.559906625036113, + 23.409933123331296, 24.260071387985075, 25.10720996964787, 25.956648579205204, 26.804820678721164, + 27.652246341003323, 28.50105926221775, 29.34830486304816, 30.195899652409235, 31.891537457672566, + 33.588831725594204, 35.28555730900777, 36.985875357308394, 38.68752896121463, 40.39093510710338, + 42.096910013008056, 46.372912002970104, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Cr48_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 8.685880952436747e-07, 8.251516766996927e-06, 3.951899976600419e-05, 0.00013330794422173613, + 0.00035120219371925, 0.006401856055765157, 0.02685304570895992, 0.06215311825135839, 0.10696594975266842, + 0.15598699109465686, 0.205815844445829, 0.25471214514215257, 0.30198352738731143, 0.39152612205819926, + 0.47640596203905256, 0.5602400543128645, 0.6474755901642433, 0.7433846322638775, 0.983175072037813, + 1.3096301674258988, 1.7067177823367587, 2.1398790864012365, 2.577491799837225, 3.012837224705172, + 3.437750562820388, 3.8549130223078554, 4.264817823009537, 4.666517980554881, 5.648360010980932, + 6.606381365110605, 7.550228353055094, 8.484299839346786, 9.414973347970818, 10.340444114840118, + 11.264817823009537, 12.1846914308176, 13.103803720955957, 14.021189299069938, 14.935003151453655, + 15.846337112129806, 16.75511226639507, 17.66181268553726, 18.565847818673518, 19.468347330412158, + 20.369215857410143, 21.267171728403014, 22.161368002234976, 23.056904851336473, 23.94939000664491, + 24.840733234611807, 25.73078227566639, 26.619093330626743, 27.50785587169583, 28.394451680826215, + 29.281033367247726, 30.164352855784436, 31.049218022670182, 31.934498451243567, 33.70156798505593, + 35.46834733041216, 37.23299611039215, 38.99913054128737, 40.764922984649886, 42.5327543789925, + 44.30102999566398, 48.727541257028555, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Mn51_pf_array[npts_1] = { + 0.0, 0.0, 4.342942647204277e-07, 6.0362737871404116e-05, 0.0005954436481690331, + 0.002352703452491265, 0.0058636025937444025, 0.011219737158250306, 0.018191443590229183, 0.026405776501228783, + 0.035473365577059296, 0.08393991903492294, 0.12694077261184436, 0.16267998396542166, 0.19356340377635362, + 0.22185561141496238, 0.2491212785730439, 0.27638918590325057, 0.30436276263857276, 0.36442247019537943, + 0.4326074417788097, 0.5117005179251304, 0.6041057952026397, 0.7115562776994953, 0.9717395908877782, + 1.287801729930226, 1.640481436970422, 2.0170333392987803, 2.403120521175818, 2.7944880466591697, + 3.1903316981702914, 3.5854607295085006, 3.9827233876685453, 4.380211241711606, 5.372912002970106, + 6.363611979892144, 7.354108439147401, 8.342422680822207, 9.328379603438737, 10.311753861055754, + 11.292256071356476, 12.269512944217917, 13.24551266781415, 14.214843848047698, 15.1846914308176, + 16.14921911265538, 17.110589710299248, 18.071882007306126, 19.029383777685208, 19.985426474083003, + 20.93851972517649, 21.88986172125819, 22.839478047374197, 23.787460474518415, 24.73399928653839, + 25.67942789661212, 26.6232492903979, 27.56702636615906, 28.5092025223311, 29.45178643552429, + 30.392696953259666, 31.33445375115093, 32.27415784926368, 33.2148438480477, 35.093421685162234, + 36.97451169273733, 38.8555191556678, 40.737192642704734, 42.620136054973756, 44.505149978319906, + 46.392696953259666, 51.12057393120585, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe52_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 1.7371744532199383e-06, 9.554373504133797e-06, 3.778197643341552e-05, + 0.00011333607006293108, 0.0030242952161453874, 0.015422212189991184, 0.040215337130588114, 0.07478865660777631, + 0.11488541698288196, 0.15714990338033966, 0.19960737134331175, 0.24132628928072955, 0.3217032118192907, + 0.3993396534463543, 0.4778337814344742, 0.5623989859221217, 0.6594581913549248, 0.9153998352122699, + 1.2695129442179163, 1.6910814921229684, 2.143014800254095, 2.6009728956867484, 3.0569048513364727, + 3.503790683057181, 3.946452265013073, 4.383815365980431, 4.818225893613955, 5.888740960682893, + 6.944482672150168, 7.989894563718773, 9.02938377768521, 10.060697840353612, 11.086359830674748, + 12.11058971029925, 13.127104798364808, 14.139879086401237, 15.14921911265538, 16.152288344383056, + 17.152288344383056, 18.14921911265538, 19.143014800254097, 20.133538908370216, 21.12057393120585, + 22.103803720955955, 23.08635983067475, 24.06445798922692, 25.041392685158225, 26.01703333929878, + 26.989449817666692, 27.960946195733833, 28.930949031167522, 29.899273187317604, 30.8668778143375, + 31.833784374656478, 32.79934054945358, 33.76417613239033, 34.72835378202123, 36.655138434811384, + 38.58092497567562, 40.505149978319906, 42.42975228000241, 44.3541084391474, 46.28103336724773, + 48.20682587603185, 53.02938377768521, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe53_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 1.3028814913777444e-06, 6.080080186165502e-06, 2.0411360986187104e-05, + 5.384917717601842e-05, 0.00099773035779373, 0.004491618246634796, 0.011583129716232713, 0.02260939259680282, + 0.037536053829818145, 0.056184239286028684, 0.07836255359576534, 0.10393433162264984, 0.16508072986206487, + 0.2398955676994077, 0.3292351155694239, 0.43390673907557786, 0.5541592859186848, 0.8375884382355113, + 1.1702617153949575, 1.5314789170422551, 1.9148718175400503, 2.3096301674258988, 2.710963118995276, + 3.1172712956557644, 3.5276299008713385, 3.940516484932567, 4.3560258571931225, 5.396199347095736, + 6.440909082065217, 7.48572142648158, 8.52762990087134, 9.564666064252089, 10.597695185925513, + 11.626340367375043, 12.650307523131936, 13.669316880566113, 14.683947130751513, 15.69460519893357, + 16.700703717145018, 17.7041505168398, 18.70329137811866, 19.699837725867244, 20.693726948923647, + 21.684845361644413, 22.67394199863409, 23.65991620006985, 24.64542226934909, 25.62838893005031, + 26.60959440922522, 27.589949601325706, 28.569373909615045, 29.547774705387823, 30.525044807036846, + 31.50105926221775, 32.47712125471966, 33.45331834004704, 34.428134794028786, 36.37839790094814, + 38.32837960343874, 40.27875360095283, 42.230448921378276, 44.1846914308176, 46.13987908640124, + 48.096910013008056, 52.99956548822598, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe54_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 4.038750882690593e-05, 0.0006153933644858295, 0.0031795285189803882, 0.009608097244673557, + 0.021489478918632662, 0.039963481298721557, 0.06578505049986659, 0.09933285917375559, 0.18904568529064877, + 0.30450216050560097, 0.4386136969546961, 0.5858349639065905, 0.7435112541834851, 1.089905111439398, + 1.4727564493172123, 1.8864907251724818, 2.320146286111054, 2.760422483423212, 3.204119982655925, + 3.6503075231319366, 4.093421685162235, 4.539076098792776, 4.982271233039568, 6.089905111439398, + 7.190331698170292, 8.287801729930226, 9.378397900948137, 10.462397997898956, 11.539076098792776, + 12.61066016308988, 13.675778341674086, 14.734799829588846, 15.789580712164426, 16.838219221907625, + 17.88252453795488, 18.922206277439017, 19.957607287060096, 20.989449817666692, 22.01703333929878, + 23.041392685158225, 24.06445798922692, 25.08278537031645, 26.100370545117563, 27.113943352306837, + 28.127104798364808, 29.136720567156406, 30.146128035678238, 31.155336037465062, 32.16136800223497, + 33.164352855784436, 34.17026171539496, 35.17318626841227, 36.17609125905568, 38.17897694729317, + 40.18184358794477, 42.18184358794477, 44.18184358794477, 46.1846914308176, 48.1846914308176, + 50.18752072083646, 55.204119982655925, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe55_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 1.3028814913777444e-06, + 1.5634319932414176e-05, 7.599488497457784e-05, 0.0002370600756061832, 0.0005564089438241259, 0.0010813488014597976, + 0.0018431377713960377, 0.009434322601068017, 0.022947317188587973, 0.04207202183227031, 0.06669370834774807, + 0.09644559083435453, 0.13073538555922604, 0.1689268514992448, 0.210470482925873, 0.30216484315823844, + 0.40437472924396634, 0.5173772341350337, 0.6421575367181118, 0.7795497407641858, 1.089905111439398, + 1.4471580313422192, 1.8312296938670634, 2.2355284469075487, 2.649334858712142, 3.0718820073061255, + 3.496929648073215, 3.926856708949692, 4.359835482339888, 4.79309160017658, 5.8819549713396, + 6.973589623427257, 8.064457989226918, 9.14921911265538, 10.232996110392154, 11.307496037913213, + 12.378397900948137, 13.444044795918076, 14.503790683057181, 15.558708570533165, 16.608526033577196, + 17.65417654187796, 18.69635638873333, 19.73399928653839, 20.768638101247614, 21.800029359244135, + 22.82865989653532, 23.854913022307855, 24.878521795501207, 25.899820502427097, 26.91960102378411, + 27.937517892017347, 28.954242509439325, 29.96941591235398, 30.983626287124533, 31.99694924849538, + 33.00860017176192, 34.02118929906994, 35.03342375548695, 36.04532297878666, 38.064457989226916, + 40.086359830674745, 42.10720996964787, 44.127104798364805, 46.15228834438306, 48.17609125905568, + 50.20139712432045, 55.28103336724773, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe56_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 1.7371744532199383e-06, 9.988658214691801e-06, 3.951899976600419e-05, + 0.00011724368292883856, 0.0030902761496993327, 0.0156878675130911, 0.04089651650139037, 0.07635858866725904, + 0.11828391003740016, 0.16392102383975418, 0.21196213905930564, 0.2621108778253895, 0.36964919324674056, + 0.4887648498436591, 0.6206486780522652, 0.76578080127876, 0.924731337394998, 1.2855573090077739, + 1.6972293427597176, 2.143014800254095, 2.606381365110605, 3.0718820073061255, 3.5403294747908736, + 4.004321373782642, 4.468347330412158, 4.928395852256714, 5.38738982633873, 6.5276299008713385, + 7.660865478003869, 8.788168371141168, 9.909556029241175, 11.02530586526477, 12.136720567156408, + 13.2405492482826, 14.340444114840118, 15.432969290874405, 16.52244423350632, 17.606381365110604, + 18.686636269262294, 19.76192783842053, 20.833147111912787, 21.90036712865647, 22.96473092105363, + 24.02530586526477, 25.08278537031645, 26.139879086401237, 27.193124598354462, 28.243038048686294, + 29.292256071356476, 30.338456493604603, 31.383815365980432, 32.428134794028786, 33.46982201597816, + 34.51188336097887, 35.552668216112195, 36.59217675739587, 37.631443769013174, 39.70842090013471, + 41.78390357927273, 43.85913829729453, 45.93449845124357, 48.00860017176192, 50.086359830674745, + 52.164352855784436, 57.37106786227174, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Co55_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 8.685880952436747e-07, 1.4331481434642371e-05, 9.336327741651445e-05, + 0.00038114325769492564, 0.001151090732337307, 0.0028275866787247843, 0.0059861278100218065, 0.019727612600003865, + 0.049238961363648255, 0.10167663281566902, 0.18228879723157643, 0.29243817096179087, 0.5865873046717549, + 0.9449759084120479, 1.3324384599156054, 1.7363965022766423, 2.1492191126553797, 2.56702636615906, + 2.991226075692495, 3.419955748489758, 3.851869600729766, 4.2878017299302265, 5.382017042574868, + 6.482873583608754, 7.5820633629117085, 8.677606952720494, 9.767155866082181, 10.85003325768977, + 11.927370363039023, 12.998695158311655, 14.064457989226918, 15.127104798364808, 16.181843587944773, + 17.232996110392154, 18.281033367247726, 19.32428245529769, 20.3654879848909, 21.401400540781545, + 22.436162647040756, 23.468347330412158, 24.4983105537896, 25.525044807036846, 26.550228353055093, + 27.57403126772772, 28.59659709562646, 29.6170003411209, 30.636487896353366, 31.65609820201283, + 32.673941998634085, 33.69108149212297, 34.70757017609794, 35.72427586960079, 37.75587485567249, + 39.786751422145564, 41.818225893613956, 43.850033257689766, 45.88309335857569, 47.91750550955255, + 49.954242509439325, 55.05690485133647, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Co56_pf_array[npts_1] = { + 0.0, 1.7371744532199383e-06, 3.4307908925770636e-05, 0.0007363730997827178, 0.003397192878964486, + 0.008467734331585224, 0.01550645173957485, 0.0238164702394971, 0.03279759856010612, 0.04203693696495622, + 0.05128645751287552, 0.09519865223967466, 0.13622861655702886, 0.176714169466867, 0.21729965897649603, + 0.2578772011708393, 0.2983265845453606, 0.3387098245578885, 0.3792523836931725, 0.46216521358362883, + 0.5500314690476197, 0.6456769741905006, 0.7513340033440492, 0.8684365267163909, 1.1367205671564067, + 1.4517864355242902, 1.7986506454452689, 2.1702617153949575, 2.5599066250361124, 2.9614210940664485, + 3.3729120029701067, 3.7902851640332416, 4.214843848047698, 4.6414741105041, 5.723455672035186, + 6.814913181275074, 7.9084850188786495, 9.0, 10.089905111439398, 11.173186268412275, + 12.250420002308894, 13.32633586092875, 14.394451680826217, 15.459392487759231, 16.521138083704038, + 17.577491799837226, 18.630427875025024, 19.680335513414562, 20.727541257028555, 21.77232170672292, + 22.81358098856819, 23.853089529851864, 24.890979596989688, 25.926856708949693, 26.960946195733833, + 27.99387691494121, 29.02530586526477, 30.056904851336473, 31.08635983067475, 32.11727129565576, + 33.14612803567824, 34.17318626841227, 35.20139712432045, 36.230448921378276, 38.28555730900777, + 40.3424226808222, 42.39967372148104, 44.45939248775923, 46.52113808370404, 48.5854607295085, + 50.651278013998144, 55.831229693867066, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Co57_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 4.342942647204277e-07, 4.994099386680048e-05, 0.0005963110461953748, 0.0027783956198411766, 0.008035647971175024, + 0.017613403025029208, 0.03234391616743567, 0.05264970241280307, 0.07864673504318612, 0.14731854080928636, + 0.23700682147881122, 0.34629017327562855, 0.47392017252998775, 0.6185154181425263, 0.9503648543761231, + 1.3263358609287514, 1.7299742856995557, 2.1492191126553797, 2.57978359661681, 3.0170333392987803, + 3.456366033129043, 3.900913067737669, 4.348304863048161, 4.795880017344075, 5.922206277439017, + 7.05307844348342, 8.178976947293169, 9.30319605742049, 10.423245873936807, 11.537819095073274, + 12.64640372622307, 13.751279103983343, 14.850646235183067, 15.94546858513182, 17.037426497940622, + 18.12057393120585, 19.204119982655925, 20.28330122870355, 21.357934847000454, 22.431363764158988, + 23.50105926221775, 24.568201724066995, 25.632457292184725, 26.69635638873333, 27.757396028793025, + 28.81690383937566, 29.87563993700417, 30.93247376467715, 31.989004615698537, 33.04532297878666, + 34.10037054511756, 35.15228834438306, 36.20682587603185, 37.26007138798507, 39.3654879848909, + 41.47275644931721, 43.578639209968074, 45.686636269262294, 47.79657433321043, 49.90794852161227, + 52.02118929906994, 57.31806333496276, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ni56_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 4.342942647204277e-07, 7.817230319428646e-06, 6.42708273977769e-05, + 0.0002904458650804842, 0.0009123622824012837, 0.0022498876258026487, 0.0046944487518873, 0.014735532704563181, + 0.03529042138996706, 0.07190703372466718, 0.13162956968664008, 0.22190042758492473, 0.5092025223311029, + 0.9132839017604184, 1.374748346010104, 1.8555191556678001, 2.3404441148401185, 2.8221680793680175, + 3.3031960574204886, 3.783903579272735, 4.26245108973043, 4.7419390777291985, 5.9344984512435675, + 7.117271295655764, 8.292256071356476, 9.456366033129044, 10.608526033577194, 11.750508394851346, + 12.88309335857569, 14.008600171761918, 15.123851640967086, 16.232996110392154, 17.33645973384853, + 18.432969290874407, 19.525044807036846, 20.612783856719737, 21.695481676490196, 22.773786444981194, + 23.8481891169914, 24.919078092376076, 25.987219229908003, 27.053078443483418, 28.113943352306837, + 29.17609125905568, 30.232996110392154, 31.287801729930226, 32.3424226808222, 33.39619934709574, + 34.44715803134222, 35.49692964807321, 36.54530711646582, 37.594392550375424, 39.68752896121463, + 41.77959649125783, 43.86981820797933, 45.959518376973, 48.04921802267018, 50.13987908640124, + 52.230448921378276, 57.462397997898954, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ni57_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 4.342942647204277e-07, 1.7371744532199383e-06, 9.554373504133797e-06, 3.257086475060328e-05, + 8.771862606148251e-05, 0.0017410663385697559, 0.007809206274475302, 0.01921477477459369, 0.03493231633712192, + 0.05345799700199783, 0.07364137994668778, 0.0948950837519807, 0.11713833477999397, 0.16608656859343765, + 0.22565890312281184, 0.3025878355093501, 0.4025382106894563, 0.5279492540555757, 0.8463371121298052, + 1.2253092817258628, 1.631443769013172, 2.05307844348342, 2.484299839346786, 2.9237619608287004, + 3.369215857410143, 3.8188854145940097, 4.27415784926368, 4.731588765186738, 5.884795363948981, + 7.041392685158225, 8.195899652409233, 9.344392273685111, 10.482873583608754, 11.613841821876068, + 12.736396502276643, 13.851258348719075, 14.959041392321094, 16.060697840353612, 17.15836249209525, + 18.247973266361807, 19.332438459915604, 20.414973347970818, 21.492760389026838, 22.565847818673518, + 23.636487896353366, 24.7041505168398, 25.768638101247614, 26.831229693867062, 27.89209460269048, + 28.950851458888547, 30.008600171761916, 31.06445798922692, 32.11727129565576, 33.17026171539496, + 34.222716471147585, 35.27415784926368, 36.32633586092875, 37.376576957056514, 39.478566495593846, + 41.578639209968074, 43.67851837904011, 45.77959649125783, 47.88252453795488, 49.98721922990801, + 52.093421685162234, 57.372912002970104, + }; + + // this is log10(partition function) + + MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ni58_pf_array[npts_1] = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 2.822822391636452e-05, 0.0004722555358597003, 0.0025858928325085315, 0.008151594991554035, + 0.018820703394680185, 0.03585661791649524, 0.060127596252288286, 0.09212527438468374, 0.17939292292561174, + 0.29475734836761314, 0.43276876399762537, 0.5886922364625494, 0.7597527315231631, 1.1398790864012365, + 1.5670263661590604, 2.0211892990699383, 2.4913616938342726, 2.968015713993642, 3.4471580313422194, + 3.9253120914996495, 4.4048337166199385, 4.884795363948981, 5.363611979892144, 6.561101383649056, + 7.754348335711019, 8.94101424370557, 10.12057393120585, 11.290034611362518, 12.45178643552429, + 13.60530504614111, 14.752048447819439, 15.89209460269048, 17.02530586526477, 18.155336037465062, + 19.276461804173245, 20.394451680826215, 21.50650503240487, 22.6159500516564, 23.72098574415374, + 24.822168079368016, 25.920123326290724, 27.01703333929878, 28.10720996964787, 29.198657086954423, + 30.285557309007775, 31.371067862271737, 32.456366033129044, 33.539076098792776, 34.620136054973756, + 35.70070371714502, 36.78031731214015, 37.85853719756964, 38.936513742478894, 41.0899051114394, + 43.243038048686294, 45.39619934709574, 47.549003262025785, 49.70156798505593, 51.8561244442423, + 54.01283722470517, 59.41161970596323, + }; + + + + // interpolation routine + + template + AMREX_GPU_HOST_DEVICE AMREX_INLINE + void interpolate_pf(const amrex::Real t9, const amrex::Real (&temp_array)[npts], const amrex::Real (&pf_array)[npts], + amrex::Real& pf, amrex::Real& dpf_dT) { + + if (t9 >= temp_array[0] && t9 < temp_array[npts-1]) { + + // find the largest temperature element <= t9 using a binary search + + int left = 0; + int right = npts; + + while (left < right) { + int mid = (left + right) / 2; + if (temp_array[mid] > t9) { + right = mid; + } else { + left = mid + 1; + } + } + + const int idx = right - 1; + + // now we have temp_array[idx] <= t9 < temp_array[idx+1] + + // construct the slope -- this is (log10(pf_{i+1}) - log10(pf_i)) / (T_{i+1} - T_i) + + amrex::Real slope = (pf_array[idx+1] - pf_array[idx]) / (temp_array[idx+1] - temp_array[idx]); + + // find the PF + + amrex::Real log10_pf = pf_array[idx] + slope * (t9 - temp_array[idx]); + pf = std::pow(10.0_rt, log10_pf); + + // find the derivative (with respect to T, not T9) + + amrex::Real dpf_dT9 = pf * M_LN10 * slope; + dpf_dT = dpf_dT9 / 1.e9_rt; + + } else { + + // T < the smallest T or >= the largest T in the partition function table + pf = 1.0; + dpf_dT = 0.0; + + } + + } + + struct pf_cache_t { + // Store the coefficient and derivative adjacent in memory, as they're + // always accessed at the same time. + // The entries will be default-initialized to zero, which is fine since + // log10(x) is never zero. + amrex::Array2D data{}; + }; + +} + +// main interface + +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void get_partition_function(const int inuc, [[maybe_unused]] const tf_t& tfactors, + amrex::Real& pf, amrex::Real& dpf_dT) { + + // inuc is the 1-based index for the species + + switch (inuc) { + + case O16: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::O16_pf_array, pf, dpf_dT); + break; + + case F18: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::F18_pf_array, pf, dpf_dT); + break; + + case Ne20: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ne20_pf_array, pf, dpf_dT); + break; + + case Ne21: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ne21_pf_array, pf, dpf_dT); + break; + + case Na22: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Na22_pf_array, pf, dpf_dT); + break; + + case Na23: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Na23_pf_array, pf, dpf_dT); + break; + + case Mg24: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Mg24_pf_array, pf, dpf_dT); + break; + + case Al27: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Al27_pf_array, pf, dpf_dT); + break; + + case Si28: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Si28_pf_array, pf, dpf_dT); + break; + + case P31: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::P31_pf_array, pf, dpf_dT); + break; + + case S32: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::S32_pf_array, pf, dpf_dT); + break; + + case Cl35: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Cl35_pf_array, pf, dpf_dT); + break; + + case Ar36: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ar36_pf_array, pf, dpf_dT); + break; + + case K39: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::K39_pf_array, pf, dpf_dT); + break; + + case Ca40: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ca40_pf_array, pf, dpf_dT); + break; + + case Sc43: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Sc43_pf_array, pf, dpf_dT); + break; + + case Ti44: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ti44_pf_array, pf, dpf_dT); + break; + + case V47: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::V47_pf_array, pf, dpf_dT); + break; + + case Cr48: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Cr48_pf_array, pf, dpf_dT); + break; + + case Mn51: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Mn51_pf_array, pf, dpf_dT); + break; + + case Fe52: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe52_pf_array, pf, dpf_dT); + break; + + case Fe53: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe53_pf_array, pf, dpf_dT); + break; + + case Fe54: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe54_pf_array, pf, dpf_dT); + break; + + case Fe55: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe55_pf_array, pf, dpf_dT); + break; + + case Fe56: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe56_pf_array, pf, dpf_dT); + break; + + case Co55: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Co55_pf_array, pf, dpf_dT); + break; + + case Co56: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Co56_pf_array, pf, dpf_dT); + break; + + case Co57: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Co57_pf_array, pf, dpf_dT); + break; + + case Ni56: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ni56_pf_array, pf, dpf_dT); + break; + + case Ni57: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ni57_pf_array, pf, dpf_dT); + break; + + case Ni58: + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ni58_pf_array, pf, dpf_dT); + break; + + + default: + + pf = 1.0_rt; + dpf_dT = 0.0_rt; + + } + +} + +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void get_partition_function_cached(const int inuc, const tf_t& tfactors, + part_fun::pf_cache_t& pf_cache, + amrex::Real& pf, amrex::Real& dpf_dT) { + if (pf_cache.data(inuc, 1) != 0.0_rt) { + // present in cache + amrex::ignore_unused(tfactors); + pf = pf_cache.data(inuc, 1); + dpf_dT = pf_cache.data(inuc, 2); + } else { + get_partition_function(inuc, tfactors, pf, dpf_dT); + pf_cache.data(inuc, 1) = pf; + pf_cache.data(inuc, 2) = dpf_dT; + } +} + +// spins + +AMREX_GPU_HOST_DEVICE AMREX_INLINE +constexpr amrex::Real get_spin_state(const int inuc) { + + amrex::Real spin = -1.0; + + switch (inuc) { // NOLINT(bugprone-switch-missing-default-case) + + case He4: + case C12: + case O16: + case Ne20: + case Mg24: + case Si28: + case S32: + case Ar36: + case Ca40: + case Ti44: + case Cr48: + case Fe52: + case Fe54: + case Fe56: + case Ni56: + case Ni58: + spin = 1; + break; + + case N: + case H1: + case N13: + case P31: + spin = 2; + break; + + case N14: + case F18: + spin = 3; + break; + + case Ne21: + case Na23: + case Cl35: + case K39: + case V47: + case Fe55: + case Ni57: + spin = 4; + break; + + case Al27: + case Mn51: + spin = 6; + break; + + case Na22: + spin = 7; + break; + + case Co55: + case Co57: + case Sc43: + case Fe53: + spin = 8; + break; + + case Co56: + spin = 9; + break; + + + } + + return spin; + +} + + +#endif diff --git a/networks/He-C-Fe-group-simple/pynucastro.net b/networks/He-C-Fe-group-simple/pynucastro.net new file mode 100644 index 000000000..7773fdfd6 --- /dev/null +++ b/networks/He-C-Fe-group-simple/pynucastro.net @@ -0,0 +1,37 @@ +neutron n 1.0 0.0 +hydrogen-1 H1 1.0 1.0 +helium-4 He4 4.0 2.0 +carbon-12 C12 12.0 6.0 +nitrogen-13 N13 13.0 7.0 +nitrogen-14 N14 14.0 7.0 +oxygen-16 O16 16.0 8.0 +fluorine-18 F18 18.0 9.0 +neon-20 Ne20 20.0 10.0 +neon-21 Ne21 21.0 10.0 +sodium-22 Na22 22.0 11.0 +sodium-23 Na23 23.0 11.0 +magnesium-24 Mg24 24.0 12.0 +aluminum-27 Al27 27.0 13.0 +silicon-28 Si28 28.0 14.0 +phosphorus-31 P31 31.0 15.0 +sulfur-32 S32 32.0 16.0 +argon-36 Ar36 36.0 18.0 +calcium-40 Ca40 40.0 20.0 +titanium-44 Ti44 44.0 22.0 +chromium-48 Cr48 48.0 24.0 +manganese-51 Mn51 51.0 25.0 +iron-52 Fe52 52.0 26.0 +iron-54 Fe54 54.0 26.0 +iron-56 Fe56 56.0 26.0 +cobalt-55 Co55 55.0 27.0 +cobalt-56 Co56 56.0 27.0 +cobalt-57 Co57 57.0 27.0 +nickel-56 Ni56 56.0 28.0 +nickel-58 Ni58 58.0 28.0 +__extra_chlorine-35 Cl35 35.0 17.0 +__extra_potassium-39 K39 39.0 19.0 +__extra_scandium-43 Sc43 43.0 21.0 +__extra_vanadium-47 V47 47.0 23.0 +__extra_iron-53 Fe53 53.0 26.0 +__extra_iron-55 Fe55 55.0 26.0 +__extra_nickel-57 Ni57 57.0 28.0 diff --git a/networks/He-C-Fe-group-simple/reaclib_rates.H b/networks/He-C-Fe-group-simple/reaclib_rates.H new file mode 100644 index 000000000..780c60edd --- /dev/null +++ b/networks/He-C-Fe-group-simple/reaclib_rates.H @@ -0,0 +1,7547 @@ +#ifndef REACLIB_RATES_H +#define REACLIB_RATES_H + +#include +#include + +#include +#include +#include + +using namespace Rates; +using namespace Species; + +struct rate_t { + amrex::Array1D screened_rates; + amrex::Real enuc_weak; +}; + +struct rate_derivs_t { + amrex::Array1D screened_rates; + amrex::Array1D dscreened_rates_dT; + amrex::Real enuc_weak; +}; + + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_C12_to_N13(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // C12 + p --> N13 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ls09n + ln_set_rate = 17.1482 + -13.692 * tfactors.T913i + -0.230881 * tfactors.T913 + + 4.44362 * tfactors.T9 + -3.15898 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -13.692 * tfactors.T943i + (1.0/3.0) * -0.230881 * tfactors.T923i + + 4.44362 + (5.0/3.0) * -3.15898 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // ls09r + ln_set_rate = 17.5428 + -3.77849 * tfactors.T9i + -5.10735 * tfactors.T913i + -2.24111 * tfactors.T913 + + 0.148883 * tfactors.T9 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 3.77849 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -5.10735 * tfactors.T943i + (1.0/3.0) * -2.24111 * tfactors.T923i + + 0.148883 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_C12_to_O16(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // C12 + He4 --> O16 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // nac2 + ln_set_rate = 254.634 + -1.84097 * tfactors.T9i + 103.411 * tfactors.T913i + -420.567 * tfactors.T913 + + 64.0874 * tfactors.T9 + -12.4624 * tfactors.T953 + 137.303 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 1.84097 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 103.411 * tfactors.T943i + (1.0/3.0) * -420.567 * tfactors.T923i + + 64.0874 + (5.0/3.0) * -12.4624 * tfactors.T923 + 137.303 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // nac2 + ln_set_rate = 69.6526 + -1.39254 * tfactors.T9i + 58.9128 * tfactors.T913i + -148.273 * tfactors.T913 + + 9.08324 * tfactors.T9 + -0.541041 * tfactors.T953 + 70.3554 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 1.39254 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 58.9128 * tfactors.T943i + (1.0/3.0) * -148.273 * tfactors.T923i + + 9.08324 + (5.0/3.0) * -0.541041 * tfactors.T923 + 70.3554 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_N14_to_F18(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // N14 + He4 --> F18 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10n + ln_set_rate = 21.5339 + -36.2504 * tfactors.T913i + + -5.0 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -36.2504 * tfactors.T943i + + (5.0/3.0) * -5.0 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = 13.8995 + -10.9656 * tfactors.T9i + -5.6227 * tfactors.T913i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 10.9656 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -5.6227 * tfactors.T943i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = 0.196838 + -5.16034 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 5.16034 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_O16_to_Ne20(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // O16 + He4 --> Ne20 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // co10r + ln_set_rate = 9.50848 + -12.7643 * tfactors.T9i + -3.65925 * tfactors.T913 + + 0.714224 * tfactors.T9 + -0.00107508 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 12.7643 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * -3.65925 * tfactors.T923i + + 0.714224 + (5.0/3.0) * -0.00107508 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // co10r + ln_set_rate = 3.88571 + -10.3585 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 10.3585 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // co10n + ln_set_rate = 23.903 + -39.7262 * tfactors.T913i + -0.210799 * tfactors.T913 + + 0.442879 * tfactors.T9 + -0.0797753 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -39.7262 * tfactors.T943i + (1.0/3.0) * -0.210799 * tfactors.T923i + + 0.442879 + (5.0/3.0) * -0.0797753 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_F18_to_Na22(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // F18 + He4 --> Na22 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // rpsmr + ln_set_rate = 35.3786 + -1.82957 * tfactors.T9i + 18.8956 * tfactors.T913i + -65.6134 * tfactors.T913 + + 1.71114 * tfactors.T9 + -0.0260999 * tfactors.T953 + 37.8396 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 1.82957 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 18.8956 * tfactors.T943i + (1.0/3.0) * -65.6134 * tfactors.T923i + + 1.71114 + (5.0/3.0) * -0.0260999 * tfactors.T923 + 37.8396 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Ne20_to_Mg24(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Ne20 + He4 --> Mg24 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10r + ln_set_rate = -38.7055 + -2.50605 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 2.50605 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10n + ln_set_rate = 24.5058 + -46.2525 * tfactors.T913i + 5.58901 * tfactors.T913 + + 7.61843 * tfactors.T9 + -3.683 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -46.2525 * tfactors.T943i + (1.0/3.0) * 5.58901 * tfactors.T923i + + 7.61843 + (5.0/3.0) * -3.683 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = -8.79827 + -12.7809 * tfactors.T9i + 16.9229 * tfactors.T913 + + -2.57325 * tfactors.T9 + 0.208997 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 12.7809 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 16.9229 * tfactors.T923i + + -2.57325 + (5.0/3.0) * 0.208997 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = 1.98307 + -9.22026 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 9.22026 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Ne21_to_Na22(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Ne21 + p --> Na22 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10r + ln_set_rate = -47.6554 + -0.19618 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 0.19618 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10n + ln_set_rate = 19.0696 + -19.2096 * tfactors.T913i + + -1.0 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -19.2096 * tfactors.T943i + + (5.0/3.0) * -1.0 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = -39.4862 + -4.21385 * tfactors.T9i + 21.1176 * tfactors.T913i + 34.0411 * tfactors.T913 + + -4.45593 * tfactors.T9 + 0.328613 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 4.21385 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 21.1176 * tfactors.T943i + (1.0/3.0) * 34.0411 * tfactors.T923i + + -4.45593 + (5.0/3.0) * 0.328613 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = 1.75704 + -1.39957 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 1.39957 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Na23_to_Mg24(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Na23 + p --> Mg24 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10n + ln_set_rate = 18.9075 + -20.6428 * tfactors.T913i + 1.52954 * tfactors.T913 + + 2.7487 * tfactors.T9 + -1.0 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -20.6428 * tfactors.T943i + (1.0/3.0) * 1.52954 * tfactors.T923i + + 2.7487 + (5.0/3.0) * -1.0 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = 9.0594 + -3.28029 * tfactors.T9i + -0.360588 * tfactors.T913 + + 1.4187 * tfactors.T9 + -0.184061 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 3.28029 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * -0.360588 * tfactors.T923i + + 1.4187 + (5.0/3.0) * -0.184061 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = -5.02585 + -1.61219 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 1.61219 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Mg24_to_Si28(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Mg24 + He4 --> Si28 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // st08r + ln_set_rate = -50.5494 + -12.8332 * tfactors.T9i + 21.3721 * tfactors.T913i + 37.7649 * tfactors.T913 + + -4.10635 * tfactors.T9 + 0.249618 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 12.8332 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 21.3721 * tfactors.T943i + (1.0/3.0) * 37.7649 * tfactors.T923i + + -4.10635 + (5.0/3.0) * 0.249618 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // st08r + ln_set_rate = 8.03977 + -15.629 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 15.629 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Al27_to_Si28(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Al27 + p --> Si28 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10r + ln_set_rate = -13.6664 + -1.90396 * tfactors.T9i + 23.8634 * tfactors.T913 + + -3.70135 * tfactors.T9 + 0.28964 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 1.90396 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 23.8634 * tfactors.T923i + + -3.70135 + (5.0/3.0) * 0.28964 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = 86.0234 + -0.387313 * tfactors.T9i + -26.8327 * tfactors.T913i + -116.137 * tfactors.T913 + + 0.00950567 * tfactors.T9 + 0.00999755 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 0.387313 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -26.8327 * tfactors.T943i + (1.0/3.0) * -116.137 * tfactors.T923i + + 0.00950567 + (5.0/3.0) * 0.00999755 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10n + ln_set_rate = 21.1065 + -23.2205 * tfactors.T913i + + -2.0 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -23.2205 * tfactors.T943i + + (5.0/3.0) * -2.0 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Si28_to_S32(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Si28 + He4 --> S32 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 47.9212 + -59.4896 * tfactors.T913i + 4.47205 * tfactors.T913 + + -4.78989 * tfactors.T9 + 0.557201 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -59.4896 * tfactors.T943i + (1.0/3.0) * 4.47205 * tfactors.T923i + + -4.78989 + (5.0/3.0) * 0.557201 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_P31_to_S32(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // P31 + p --> S32 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10r + ln_set_rate = 0.821556 + -3.77704 * tfactors.T9i + 8.09341 * tfactors.T913 + + -0.615971 * tfactors.T9 + 0.031159 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 3.77704 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 8.09341 * tfactors.T923i + + -0.615971 + (5.0/3.0) * 0.031159 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = -2.66839 + -2.25958 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 2.25958 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10n + ln_set_rate = 19.2596 + -25.3278 * tfactors.T913i + 6.4931 * tfactors.T913 + + -9.27513 * tfactors.T9 + -0.610439 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -25.3278 * tfactors.T943i + (1.0/3.0) * 6.4931 * tfactors.T923i + + -9.27513 + (5.0/3.0) * -0.610439 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Cr48_to_Fe52(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Cr48 + He4 --> Fe52 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 65.1754 + -86.7459 * tfactors.T913i + -9.79373 * tfactors.T913 + + -0.772169 * tfactors.T9 + 0.155883 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -86.7459 * tfactors.T943i + (1.0/3.0) * -9.79373 * tfactors.T923i + + -0.772169 + (5.0/3.0) * 0.155883 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Mn51_to_Fe52(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Mn51 + p --> Fe52 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 36.2596 + -36.1825 * tfactors.T913i + 0.873042 * tfactors.T913 + + -2.89731 * tfactors.T9 + 0.364394 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -36.1825 * tfactors.T943i + (1.0/3.0) * 0.873042 * tfactors.T923i + + -2.89731 + (5.0/3.0) * 0.364394 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Mn51_to_Co55(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Mn51 + He4 --> Co55 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 65.9219 + -89.274 * tfactors.T913i + -10.4373 * tfactors.T913 + + 1.00492 * tfactors.T9 + -0.125548 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -89.274 * tfactors.T943i + (1.0/3.0) * -10.4373 * tfactors.T923i + + 1.00492 + (5.0/3.0) * -0.125548 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Fe52_to_Ni56(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Fe52 + He4 --> Ni56 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 66.6417 + -91.6819 * tfactors.T913i + -9.51885 * tfactors.T913 + + -0.533014 * tfactors.T9 + 0.0892607 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -91.6819 * tfactors.T943i + (1.0/3.0) * -9.51885 * tfactors.T923i + + -0.533014 + (5.0/3.0) * 0.0892607 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Co55_to_Ni56(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Co55 + p --> Ni56 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 37.3736 + -38.1053 * tfactors.T913i + -0.210947 * tfactors.T913 + + -2.68377 * tfactors.T9 + 0.355814 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -38.1053 * tfactors.T943i + (1.0/3.0) * -0.210947 * tfactors.T923i + + -2.68377 + (5.0/3.0) * 0.355814 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_C12_C12_to_p_Na23(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // C12 + C12 --> p + Na23 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // cf88r + ln_set_rate = 60.9649 + -84.165 * tfactors.T913i + -1.4191 * tfactors.T913 + + -0.114619 * tfactors.T9 + -0.070307 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -84.165 * tfactors.T943i + (1.0/3.0) * -1.4191 * tfactors.T923i + + -0.114619 + (5.0/3.0) * -0.070307 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_C12_C12_to_He4_Ne20(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // C12 + C12 --> He4 + Ne20 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // cf88r + ln_set_rate = 61.2863 + -84.165 * tfactors.T913i + -1.56627 * tfactors.T913 + + -0.0736084 * tfactors.T9 + -0.072797 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -84.165 * tfactors.T943i + (1.0/3.0) * -1.56627 * tfactors.T923i + + -0.0736084 + (5.0/3.0) * -0.072797 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_N13_to_p_O16(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // N13 + He4 --> p + O16 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // cf88n + ln_set_rate = 40.4644 + -35.829 * tfactors.T913i + -0.530275 * tfactors.T913 + + -0.982462 * tfactors.T9 + 0.0808059 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -35.829 * tfactors.T943i + (1.0/3.0) * -0.530275 * tfactors.T923i + + -0.982462 + (5.0/3.0) * 0.0808059 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_C12_O16_to_p_Al27(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // O16 + C12 --> p + Al27 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // cf88r + ln_set_rate = 68.5253 + 0.205134 * tfactors.T9i + -119.242 * tfactors.T913i + 13.3667 * tfactors.T913 + + 0.295425 * tfactors.T9 + -0.267288 * tfactors.T953 + -9.91729 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = -0.205134 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -119.242 * tfactors.T943i + (1.0/3.0) * 13.3667 * tfactors.T923i + + 0.295425 + (5.0/3.0) * -0.267288 * tfactors.T923 + -9.91729 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_C12_O16_to_He4_Mg24(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // O16 + C12 --> He4 + Mg24 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // cf88r + ln_set_rate = 48.5341 + 0.37204 * tfactors.T9i + -133.413 * tfactors.T913i + 50.1572 * tfactors.T913 + + -3.15987 * tfactors.T9 + 0.0178251 * tfactors.T953 + -23.7027 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = -0.37204 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -133.413 * tfactors.T943i + (1.0/3.0) * 50.1572 * tfactors.T923i + + -3.15987 + (5.0/3.0) * 0.0178251 * tfactors.T923 + -23.7027 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_O16_O16_to_p_P31(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // O16 + O16 --> p + P31 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // cf88r + ln_set_rate = 85.2628 + 0.223453 * tfactors.T9i + -145.844 * tfactors.T913i + 8.72612 * tfactors.T913 + + -0.554035 * tfactors.T9 + -0.137562 * tfactors.T953 + -6.88807 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = -0.223453 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -145.844 * tfactors.T943i + (1.0/3.0) * 8.72612 * tfactors.T923i + + -0.554035 + (5.0/3.0) * -0.137562 * tfactors.T923 + -6.88807 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_O16_O16_to_He4_Si28(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // O16 + O16 --> He4 + Si28 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // cf88r + ln_set_rate = 97.2435 + -0.268514 * tfactors.T9i + -119.324 * tfactors.T913i + -32.2497 * tfactors.T913 + + 1.46214 * tfactors.T9 + -0.200893 * tfactors.T953 + 13.2148 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 0.268514 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -119.324 * tfactors.T943i + (1.0/3.0) * -32.2497 * tfactors.T923i + + 1.46214 + (5.0/3.0) * -0.200893 * tfactors.T923 + 13.2148 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_F18_to_p_Ne21(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // F18 + He4 --> p + Ne21 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // rpsmr + ln_set_rate = 49.7863 + -1.84559 * tfactors.T9i + 21.4461 * tfactors.T913i + -73.252 * tfactors.T913 + + 2.42329 * tfactors.T9 + -0.077278 * tfactors.T953 + 40.7604 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 1.84559 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 21.4461 * tfactors.T943i + (1.0/3.0) * -73.252 * tfactors.T923i + + 2.42329 + (5.0/3.0) * -0.077278 * tfactors.T923 + 40.7604 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Na23_to_He4_Ne20(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Na23 + p --> He4 + Ne20 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10r + ln_set_rate = -6.58736 + -2.31577 * tfactors.T9i + 19.7297 * tfactors.T913 + + -2.20987 * tfactors.T9 + 0.153374 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 2.31577 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 19.7297 * tfactors.T923i + + -2.20987 + (5.0/3.0) * 0.153374 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = 0.0178295 + -1.86103 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 1.86103 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10n + ln_set_rate = 18.9756 + -20.0024 * tfactors.T913i + 11.5988 * tfactors.T913 + + -1.37398 * tfactors.T9 + -1.0 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -20.0024 * tfactors.T943i + (1.0/3.0) * 11.5988 * tfactors.T923i + + -1.37398 + (5.0/3.0) * -1.0 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Al27_to_He4_Mg24(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Al27 + p --> He4 + Mg24 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10r + ln_set_rate = -7.02789 + -4.2425 * tfactors.T9i + 18.0416 * tfactors.T913 + + -1.54137 * tfactors.T9 + 0.0847506 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 4.2425 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 18.0416 * tfactors.T923i + + -1.54137 + (5.0/3.0) * 0.0847506 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = -26.8683 + -0.963012 * tfactors.T9i + 5.18642 * tfactors.T913i + -34.7936 * tfactors.T913 + + 168.225 * tfactors.T9 + -115.825 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 0.963012 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 5.18642 * tfactors.T943i + (1.0/3.0) * -34.7936 * tfactors.T923i + + 168.225 + (5.0/3.0) * -115.825 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10n + ln_set_rate = 29.4576 + -26.4162 * tfactors.T913i + + -2.0 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -26.4162 * tfactors.T943i + + (5.0/3.0) * -2.0 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_P31_to_He4_Si28(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // P31 + p --> He4 + Si28 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10r + ln_set_rate = -10.893 + -3.42575 * tfactors.T9i + 21.521 * tfactors.T913 + + -1.90355 * tfactors.T9 + 0.092724 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 3.42575 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 21.521 * tfactors.T923i + + -1.90355 + (5.0/3.0) * 0.092724 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = -12.919 + -1.87716 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 1.87716 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10n + ln_set_rate = 60.8829 + -31.932 * tfactors.T913i + -77.0334 * tfactors.T913 + + -43.6847 * tfactors.T9 + -4.28955 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -31.932 * tfactors.T943i + (1.0/3.0) * -77.0334 * tfactors.T923i + + -43.6847 + (5.0/3.0) * -4.28955 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Cr48_to_p_Mn51(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Cr48 + He4 --> p + Mn51 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 59.2276 + -86.7459 * tfactors.T913i + 1.05653 * tfactors.T913 + + -1.15757 * tfactors.T9 + 0.0877546 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -86.7459 * tfactors.T943i + (1.0/3.0) * 1.05653 * tfactors.T923i + + -1.15757 + (5.0/3.0) * 0.0877546 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Fe52_to_p_Co55(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Fe52 + He4 --> p + Co55 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 62.2207 + -91.6819 * tfactors.T913i + -0.329235 * tfactors.T913 + + -0.780924 * tfactors.T9 + 0.0425179 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -91.6819 * tfactors.T943i + (1.0/3.0) * -0.329235 * tfactors.T923i + + -0.780924 + (5.0/3.0) * 0.0425179 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_He4_He4_to_C12(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // He4 + He4 + He4 --> C12 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // fy05r + ln_set_rate = -24.3505 + -4.12656 * tfactors.T9i + -13.49 * tfactors.T913i + 21.4259 * tfactors.T913 + + -1.34769 * tfactors.T9 + 0.0879816 * tfactors.T953 + -13.1653 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 4.12656 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -13.49 * tfactors.T943i + (1.0/3.0) * 21.4259 * tfactors.T923i + + -1.34769 + (5.0/3.0) * 0.0879816 * tfactors.T923 + -13.1653 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // fy05r + ln_set_rate = -11.7884 + -1.02446 * tfactors.T9i + -23.57 * tfactors.T913i + 20.4886 * tfactors.T913 + + -12.9882 * tfactors.T9 + -20.0 * tfactors.T953 + -2.16667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 1.02446 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -23.57 * tfactors.T943i + (1.0/3.0) * 20.4886 * tfactors.T923i + + -12.9882 + (5.0/3.0) * -20.0 * tfactors.T923 + -2.16667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // fy05n + ln_set_rate = -0.971052 + -37.06 * tfactors.T913i + 29.3493 * tfactors.T913 + + -115.507 * tfactors.T9 + -10.0 * tfactors.T953 + -1.33333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -37.06 * tfactors.T943i + (1.0/3.0) * 29.3493 * tfactors.T923i + + -115.507 + (5.0/3.0) * -10.0 * tfactors.T923 + -1.33333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_C12_C12_to_Mg24_modified(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // C12 + C12 --> Mg24 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // cf88r + ln_set_rate = -12.8056 + -30.1498 * tfactors.T9i + 11.4826 * tfactors.T913 + + 1.82849 * tfactors.T9 + -0.34844 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 30.1498 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 11.4826 * tfactors.T923i + + 1.82849 + (5.0/3.0) * -0.34844 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_O16_O16_to_S32_modified(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // O16 + O16 --> S32 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // cf88r + ln_set_rate = 77.5491 + -0.373641 * tfactors.T9i + -120.83 * tfactors.T913i + -7.72334 * tfactors.T913 + + -2.27939 * tfactors.T9 + 0.167655 * tfactors.T953 + 7.62001 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 0.373641 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -120.83 * tfactors.T943i + (1.0/3.0) * -7.72334 * tfactors.T923i + + -2.27939 + (5.0/3.0) * 0.167655 * tfactors.T923 + 7.62001 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_C12_O16_to_Si28_modified(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // O16 + C12 --> Si28 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // cf88r + ln_set_rate = -132.213 + -1.46479 * tfactors.T9i + -293.089 * tfactors.T913i + 414.404 * tfactors.T913 + + -28.0562 * tfactors.T9 + 1.61807 * tfactors.T953 + -178.28 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 1.46479 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -293.089 * tfactors.T943i + (1.0/3.0) * 414.404 * tfactors.T923i + + -28.0562 + (5.0/3.0) * 1.61807 * tfactors.T923 + -178.28 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Fe54_to_Co55(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Fe54 + p --> Co55 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 36.2304 + -37.1544 * tfactors.T913i + 0.950364 * tfactors.T913 + + -1.77529 * tfactors.T9 + 0.198562 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -37.1544 * tfactors.T943i + (1.0/3.0) * 0.950364 * tfactors.T923i + + -1.77529 + (5.0/3.0) * 0.198562 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Fe54_to_Ni58(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Fe54 + He4 --> Ni58 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 60.2478 + -91.7628 * tfactors.T913i + 4.23027 * tfactors.T913 + + -3.31305 * tfactors.T9 + 0.271293 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -91.7628 * tfactors.T943i + (1.0/3.0) * 4.23027 * tfactors.T923i + + -3.31305 + (5.0/3.0) * 0.271293 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Fe56_to_Co57(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Fe56 + p --> Co57 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 36.0665 + -37.1625 * tfactors.T913i + 1.06776 * tfactors.T913 + + -1.31689 * tfactors.T9 + 0.122089 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -37.1625 * tfactors.T943i + (1.0/3.0) * 1.06776 * tfactors.T923i + + -1.31689 + (5.0/3.0) * 0.122089 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_n_Co55_to_Co56(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Co55 + n --> Co56 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 17.065 + -1.86357 * tfactors.T913 + + 0.616591 * tfactors.T9 + -0.0839313 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + (1.0/3.0) * -1.86357 * tfactors.T923i + + 0.616591 + (5.0/3.0) * -0.0839313 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_n_Co56_to_Co57(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Co56 + n --> Co57 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 17.3552 + -1.37855 * tfactors.T913 + + 0.299896 * tfactors.T9 + -0.04382 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + (1.0/3.0) * -1.37855 * tfactors.T923i + + 0.299896 + (5.0/3.0) * -0.04382 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Co57_to_Ni58(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Co57 + p --> Ni58 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 36.0159 + -38.1133 * tfactors.T913i + 1.77414 * tfactors.T913 + + -1.48268 * tfactors.T9 + 0.121073 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -38.1133 * tfactors.T943i + (1.0/3.0) * 1.77414 * tfactors.T923i + + -1.48268 + (5.0/3.0) * 0.121073 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Mn51_to_p_Fe54(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Mn51 + He4 --> p + Fe54 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 62.2777 + -89.274 * tfactors.T913i + -0.862452 * tfactors.T913 + + -0.635672 * tfactors.T9 + 0.0196464 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -89.274 * tfactors.T943i + (1.0/3.0) * -0.862452 * tfactors.T923i + + -0.635672 + (5.0/3.0) * 0.0196464 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Co55_to_p_Ni58(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Co55 + He4 --> p + Ni58 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 60.2281 + -94.1404 * tfactors.T913i + 3.39179 * tfactors.T913 + + -1.71062 * tfactors.T9 + 0.133003 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -94.1404 * tfactors.T943i + (1.0/3.0) * 3.39179 * tfactors.T923i + + -1.71062 + (5.0/3.0) * 0.133003 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_n_Co56_to_p_Fe56(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Co56 + n --> p + Fe56 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 20.4539 + -1.13331 * tfactors.T913 + + 0.347185 * tfactors.T9 + -0.0328879 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + (1.0/3.0) * -1.13331 * tfactors.T923i + + 0.347185 + (5.0/3.0) * -0.0328879 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Co57_to_He4_Fe54(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Co57 + p --> He4 + Fe54 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = -2.1962 + -38.1133 * tfactors.T913i + 29.3541 * tfactors.T913 + + -4.75966 * tfactors.T9 + 0.40418 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -38.1133 * tfactors.T943i + (1.0/3.0) * 29.3541 * tfactors.T923i + + -4.75966 + (5.0/3.0) * 0.40418 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_n_Ni56_to_p_Co56(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Ni56 + n --> p + Co56 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 15.5693 + 1.76846 * tfactors.T913 + + 0.197992 * tfactors.T9 + -0.017494 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + (1.0/3.0) * 1.76846 * tfactors.T923i + + 0.197992 + (5.0/3.0) * -0.017494 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_S32_to_Ar36_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // S32 + He4 --> Ar36 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 48.901 + -65.3709 * tfactors.T913i + 5.68294 * tfactors.T913 + + -5.00388 * tfactors.T9 + 0.571407 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -65.3709 * tfactors.T943i + (1.0/3.0) * 5.68294 * tfactors.T923i + + -5.00388 + (5.0/3.0) * 0.571407 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Cl35_to_Ar36_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Cl35 + p --> Ar36 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10r + ln_set_rate = -9.03294 + -2.00996 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 2.00996 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = -42.5249 + -0.564651 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 0.564651 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10n + ln_set_rate = 35.6868 + -27.8971 * tfactors.T913i + -16.2304 * tfactors.T913 + + 35.255 * tfactors.T9 + -25.8411 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -27.8971 * tfactors.T943i + (1.0/3.0) * -16.2304 * tfactors.T923i + + 35.255 + (5.0/3.0) * -25.8411 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = -7.84699 + -3.65092 * tfactors.T9i + 18.0179 * tfactors.T913 + + -2.86304 * tfactors.T9 + 0.250854 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 3.65092 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 18.0179 * tfactors.T923i + + -2.86304 + (5.0/3.0) * 0.250854 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Cl35_to_He4_S32_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Cl35 + p --> He4 + S32 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10r + ln_set_rate = 2.29121 + -6.00976 * tfactors.T9i + 5.33756 * tfactors.T913 + + 1.64418 * tfactors.T9 + -0.246167 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 6.00976 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 5.33756 * tfactors.T923i + + 1.64418 + (5.0/3.0) * -0.246167 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = -1.01202 + -3.93495 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 3.93495 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10r + ln_set_rate = -57.5294 + -0.532931 * tfactors.T9i + 25.5338 * tfactors.T913 + + 6.45824 * tfactors.T9 + -0.950294 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 0.532931 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 25.5338 * tfactors.T923i + + 6.45824 + (5.0/3.0) * -0.950294 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10n + ln_set_rate = 32.12 + -30.9147 * tfactors.T913i + -1.2345 * tfactors.T913 + + 22.5118 * tfactors.T9 + -33.0589 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -30.9147 * tfactors.T943i + (1.0/3.0) * -1.2345 * tfactors.T923i + + 22.5118 + (5.0/3.0) * -33.0589 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Ar36_to_Ca40_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Ar36 + He4 --> Ca40 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 52.3486 + -71.0046 * tfactors.T913i + 4.0656 * tfactors.T913 + + -5.26509 * tfactors.T9 + 0.683546 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -71.0046 * tfactors.T943i + (1.0/3.0) * 4.0656 * tfactors.T923i + + -5.26509 + (5.0/3.0) * 0.683546 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_K39_to_Ca40_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // K39 + p --> Ca40 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // lo18r + ln_set_rate = 2761.38 + -5.22234 * tfactors.T9i + 802.18 * tfactors.T913i + -4010.27 * tfactors.T913 + + 1136.19 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 5.22234 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 802.18 * tfactors.T943i + (1.0/3.0) * -4010.27 * tfactors.T923i + + 1136.19 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // lo18r + ln_set_rate = 588.099 + -12.5647 * tfactors.T9i + 641.844 * tfactors.T913i + -1248.49 * tfactors.T913 + + 564.926 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 12.5647 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 641.844 * tfactors.T943i + (1.0/3.0) * -1248.49 * tfactors.T923i + + 564.926 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // lo18r + ln_set_rate = 102.252 + -1.66508 * tfactors.T9i + 41.1723 * tfactors.T913i + -149.299 * tfactors.T913 + + 10.5229 * tfactors.T9 + -0.68208 * tfactors.T953 + 59.2367 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 1.66508 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 41.1723 * tfactors.T943i + (1.0/3.0) * -149.299 * tfactors.T923i + + 10.5229 + (5.0/3.0) * -0.68208 * tfactors.T923 + 59.2367 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_K39_to_He4_Ar36_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // K39 + p --> He4 + Ar36 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 20.5166 + -30.0732 * tfactors.T913i + 7.03263 * tfactors.T913 + + -1.10085 * tfactors.T9 + 0.133768 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -30.0732 * tfactors.T943i + (1.0/3.0) * 7.03263 * tfactors.T923i + + -1.10085 + (5.0/3.0) * 0.133768 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Ca40_to_Ti44_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Ca40 + He4 --> Ti44 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // chw0 + ln_set_rate = 53.75 + -76.4273 * tfactors.T913i + 3.87451 * tfactors.T913 + + -3.61477 * tfactors.T9 + 0.367451 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -76.4273 * tfactors.T943i + (1.0/3.0) * 3.87451 * tfactors.T923i + + -3.61477 + (5.0/3.0) * 0.367451 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Sc43_to_Ti44_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Sc43 + p --> Ti44 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 36.8432 + -32.1734 * tfactors.T913i + -1.77078 * tfactors.T913 + + -2.21706 * tfactors.T9 + 0.298499 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -32.1734 * tfactors.T943i + (1.0/3.0) * -1.77078 * tfactors.T923i + + -2.21706 + (5.0/3.0) * 0.298499 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Sc43_to_He4_Ca40_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Sc43 + p --> He4 + Ca40 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 34.8559 + -32.1734 * tfactors.T913i + 0.0296879 * tfactors.T913 + + -0.95232 * tfactors.T9 + 0.129022 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -32.1734 * tfactors.T943i + (1.0/3.0) * 0.0296879 * tfactors.T923i + + -0.95232 + (5.0/3.0) * 0.129022 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Ti44_to_Cr48_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Ti44 + He4 --> Cr48 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 64.7958 + -81.667 * tfactors.T913i + -10.6333 * tfactors.T913 + + -0.672613 * tfactors.T9 + 0.161209 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + -(1.0/3.0) * -81.667 * tfactors.T943i + (1.0/3.0) * -10.6333 * tfactors.T923i + + -0.672613 + (5.0/3.0) * 0.161209 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Ti44_to_p_V47_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Ti44 + He4 --> p + V47 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // chw0r + ln_set_rate = -76.5154 + -10.7931 * tfactors.T9i + 70.2835 * tfactors.T913 + + -7.99061 * tfactors.T9 + 0.486213 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 10.7931 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 70.2835 * tfactors.T923i + + -7.99061 + (5.0/3.0) * 0.486213 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_V47_to_Cr48_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // V47 + p --> Cr48 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // nfisn + ln_set_rate = 42.6798 + -6.0593 * tfactors.T9i + -34.0548 * tfactors.T913i + -3.41973 * tfactors.T913 + + 1.16501 * tfactors.T9 + -0.105543 * tfactors.T953 + -7.70886 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 6.0593 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -34.0548 * tfactors.T943i + (1.0/3.0) * -3.41973 * tfactors.T923i + + 1.16501 + (5.0/3.0) * -0.105543 * tfactors.T923 + -7.70886 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // nfisn + ln_set_rate = 511.463 + -5.29491 * tfactors.T9i + 317.171 * tfactors.T913i + -911.679 * tfactors.T913 + + 94.4245 * tfactors.T9 + -10.1973 * tfactors.T953 + 330.727 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 5.29491 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 317.171 * tfactors.T943i + (1.0/3.0) * -911.679 * tfactors.T923i + + 94.4245 + (5.0/3.0) * -10.1973 * tfactors.T923 + 330.727 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // nfisn + ln_set_rate = 23.8315 + 0.246665 * tfactors.T9i + -45.9868 * tfactors.T913i + 13.6822 * tfactors.T913 + + -0.376902 * tfactors.T9 + -0.0194875 * tfactors.T953 + -8.42325 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = -0.246665 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -45.9868 * tfactors.T943i + (1.0/3.0) * 13.6822 * tfactors.T923i + + -0.376902 + (5.0/3.0) * -0.0194875 * tfactors.T923 + -8.42325 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // nfisn + ln_set_rate = 40.5626 + -0.514414 * tfactors.T9i + -110.655 * tfactors.T913i + 83.0232 * tfactors.T913 + + -19.7762 * tfactors.T9 + 3.03961 * tfactors.T953 + -49.4742 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 0.514414 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -110.655 * tfactors.T943i + (1.0/3.0) * 83.0232 * tfactors.T923i + + -19.7762 + (5.0/3.0) * 3.03961 * tfactors.T923 + -49.4742 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_n_Fe52_to_Fe53_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Fe52 + n --> Fe53 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 15.8885 + -0.344319 * tfactors.T913 + + 0.178277 * tfactors.T9 + -0.0334326 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + (1.0/3.0) * -0.344319 * tfactors.T923i + + 0.178277 + (5.0/3.0) * -0.0334326 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_n_Fe53_to_Fe54_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Fe53 + n --> Fe54 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 16.4534 + -1.10421 * tfactors.T913 + + 0.379905 * tfactors.T9 + -0.0581878 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + (1.0/3.0) * -1.10421 * tfactors.T923i + + 0.379905 + (5.0/3.0) * -0.0581878 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_n_Fe54_to_Fe55_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Fe54 + n --> Fe55 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ks03 + ln_set_rate = -0.80864 + 0.0591716 * tfactors.T9i + -8.66617 * tfactors.T913i + 26.4472 * tfactors.T913 + + -1.9222 * tfactors.T9 + 0.0986404 * tfactors.T953 + -9.78317 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = -0.0591716 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -8.66617 * tfactors.T943i + (1.0/3.0) * 26.4472 * tfactors.T923i + + -1.9222 + (5.0/3.0) * 0.0986404 * tfactors.T923 + -9.78317 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_n_Fe55_to_Fe56_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Fe55 + n --> Fe56 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ks03 + ln_set_rate = 21.7202 + -0.0955677 * tfactors.T9i + 8.06062 * tfactors.T913i + -14.4809 * tfactors.T913 + + 0.94252 * tfactors.T9 + -0.0776007 * tfactors.T953 + 6.47093 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 0.0955677 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 8.06062 * tfactors.T943i + (1.0/3.0) * -14.4809 * tfactors.T923i + + 0.94252 + (5.0/3.0) * -0.0776007 * tfactors.T923 + 6.47093 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_n_Ni56_to_Ni57_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Ni56 + n --> Ni57 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 16.0765 + -1.19665 * tfactors.T913 + + 0.507179 * tfactors.T9 + -0.074604 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + (1.0/3.0) * -1.19665 * tfactors.T923i + + 0.507179 + (5.0/3.0) * -0.074604 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_n_Ni57_to_Ni58_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT) { + + // Ni57 + n --> Ni58 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 17.2731 + -1.90814 * tfactors.T913 + + 0.493188 * tfactors.T9 + -0.0684633 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = + (1.0/3.0) * -1.90814 * tfactors.T923i + + 0.493188 + (5.0/3.0) * -0.0684633 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_N13_to_p_C12_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // N13 --> p + C12 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ls09c + ln_set_rate = 40.04074558314484 + -22.547578710551672 * tfactors.T9i + -13.692 * tfactors.T913i + -0.230881 * tfactors.T913 + + 4.44362 * tfactors.T9 + -3.15898 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 22.547578710551672 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -13.692 * tfactors.T943i + (1.0/3.0) * -0.230881 * tfactors.T923i + + 4.44362 + (5.0/3.0) * -3.15898 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // ls09c + ln_set_rate = 40.43534558314484 + -26.326068710551674 * tfactors.T9i + -5.10735 * tfactors.T913i + -2.24111 * tfactors.T913 + + 0.148883 * tfactors.T9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 26.326068710551674 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -5.10735 * tfactors.T943i + (1.0/3.0) * -2.24111 * tfactors.T923i + + 0.148883; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real C12_pf, dC12_pf_dT; + // setting C12 partition function to 1.0 by default, independent of T + C12_pf = 1.0_rt; + dC12_pf_dT = 0.0_rt; + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real N13_pf, dN13_pf_dT; + // setting N13 partition function to 1.0 by default, independent of T + N13_pf = 1.0_rt; + dN13_pf_dT = 0.0_rt; + + amrex::Real z_r = p_pf * C12_pf; + amrex::Real z_p = N13_pf; + + amrex::Real dz_r_dT = C12_pf * dp_pf_dT + p_pf * dC12_pf_dT; + amrex::Real dz_p_dT = dN13_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_O16_to_He4_C12_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // O16 --> He4 + C12 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // nac2 + ln_set_rate = 279.2945280776573 + -84.95160042649215 * tfactors.T9i + 103.411 * tfactors.T913i + -420.567 * tfactors.T913 + + 64.0874 * tfactors.T9 + -12.4624 * tfactors.T953 + 138.803 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 84.95160042649215 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 103.411 * tfactors.T943i + (1.0/3.0) * -420.567 * tfactors.T923i + + 64.0874 + (5.0/3.0) * -12.4624 * tfactors.T923 + 138.803 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // nac2 + ln_set_rate = 94.31312807765731 + -84.50317042649215 * tfactors.T9i + 58.9128 * tfactors.T913i + -148.273 * tfactors.T913 + + 9.08324 * tfactors.T9 + -0.541041 * tfactors.T953 + 71.8554 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 84.50317042649215 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 58.9128 * tfactors.T943i + (1.0/3.0) * -148.273 * tfactors.T923i + + 9.08324 + (5.0/3.0) * -0.541041 * tfactors.T923 + 71.8554 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real C12_pf, dC12_pf_dT; + // setting C12 partition function to 1.0 by default, independent of T + C12_pf = 1.0_rt; + dC12_pf_dT = 0.0_rt; + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real O16_pf, dO16_pf_dT; + // interpolating O16 partition function + get_partition_function_cached(O16, tfactors, pf_cache, O16_pf, dO16_pf_dT); + + amrex::Real z_r = He4_pf * C12_pf; + amrex::Real z_p = O16_pf; + + amrex::Real dz_r_dT = C12_pf * dHe4_pf_dT + He4_pf * dC12_pf_dT; + amrex::Real dz_p_dT = dO16_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_F18_to_He4_N14_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // F18 --> He4 + N14 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10c + ln_set_rate = 46.248979543913606 + -51.22930570025806 * tfactors.T9i + -36.2504 * tfactors.T913i + + -5.0 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 51.22930570025806 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -36.2504 * tfactors.T943i + + (5.0/3.0) * -5.0 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 38.61457954391361 + -62.19490570025806 * tfactors.T9i + -5.6227 * tfactors.T913i; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 62.19490570025806 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -5.6227 * tfactors.T943i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 24.91191754391361 + -56.38964570025806 * tfactors.T9i; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 56.38964570025806 * tfactors.T9i * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real F18_pf, dF18_pf_dT; + // interpolating F18 partition function + get_partition_function_cached(F18, tfactors, pf_cache, F18_pf, dF18_pf_dT); + + amrex::Real N14_pf, dN14_pf_dT; + // setting N14 partition function to 1.0 by default, independent of T + N14_pf = 1.0_rt; + dN14_pf_dT = 0.0_rt; + + amrex::Real z_r = He4_pf * N14_pf; + amrex::Real z_p = F18_pf; + + amrex::Real dz_r_dT = N14_pf * dHe4_pf_dT + He4_pf * dN14_pf_dT; + amrex::Real dz_p_dT = dF18_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ne20_to_He4_O16_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ne20 --> He4 + O16 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // co10c + ln_set_rate = 34.26581585936365 + -67.65193003813836 * tfactors.T9i + -3.65925 * tfactors.T913 + + 0.714224 * tfactors.T9 + -0.00107508 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 67.65193003813836 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * -3.65925 * tfactors.T923i + + 0.714224 + (5.0/3.0) * -0.00107508 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // co10c + ln_set_rate = 28.64304585936365 + -65.24613003813835 * tfactors.T9i; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 65.24613003813835 * tfactors.T9i * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // co10c + ln_set_rate = 48.66033585936365 + -54.887630038138354 * tfactors.T9i + -39.7262 * tfactors.T913i + -0.210799 * tfactors.T913 + + 0.442879 * tfactors.T9 + -0.0797753 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 54.887630038138354 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -39.7262 * tfactors.T943i + (1.0/3.0) * -0.210799 * tfactors.T923i + + 0.442879 + (5.0/3.0) * -0.0797753 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real O16_pf, dO16_pf_dT; + // interpolating O16 partition function + get_partition_function_cached(O16, tfactors, pf_cache, O16_pf, dO16_pf_dT); + + amrex::Real Ne20_pf, dNe20_pf_dT; + // interpolating Ne20 partition function + get_partition_function_cached(Ne20, tfactors, pf_cache, Ne20_pf, dNe20_pf_dT); + + amrex::Real z_r = He4_pf * O16_pf; + amrex::Real z_p = Ne20_pf; + + amrex::Real dz_r_dT = O16_pf * dHe4_pf_dT + He4_pf * dO16_pf_dT; + amrex::Real dz_p_dT = dNe20_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Na22_to_p_Ne21_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Na22 --> p + Ne21 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10c + ln_set_rate = -24.579038986172677 + -78.40599033331655 * tfactors.T9i; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 78.40599033331655 * tfactors.T9i * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 42.145961013827325 + -78.20981033331655 * tfactors.T9i + -19.2096 * tfactors.T913i + + -1.0 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 78.20981033331655 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -19.2096 * tfactors.T943i + + (5.0/3.0) * -1.0 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = -16.409838986172673 + -82.42366033331655 * tfactors.T9i + 21.1176 * tfactors.T913i + 34.0411 * tfactors.T913 + + -4.45593 * tfactors.T9 + 0.328613 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 82.42366033331655 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 21.1176 * tfactors.T943i + (1.0/3.0) * 34.0411 * tfactors.T923i + + -4.45593 + (5.0/3.0) * 0.328613 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 24.833401013827324 + -79.60938033331655 * tfactors.T9i; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 79.60938033331655 * tfactors.T9i * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real Ne21_pf, dNe21_pf_dT; + // interpolating Ne21 partition function + get_partition_function_cached(Ne21, tfactors, pf_cache, Ne21_pf, dNe21_pf_dT); + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Na22_pf, dNa22_pf_dT; + // interpolating Na22 partition function + get_partition_function_cached(Na22, tfactors, pf_cache, Na22_pf, dNa22_pf_dT); + + amrex::Real z_r = p_pf * Ne21_pf; + amrex::Real z_p = Na22_pf; + + amrex::Real dz_r_dT = Ne21_pf * dp_pf_dT + p_pf * dNe21_pf_dT; + amrex::Real dz_p_dT = dNa22_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Na22_to_He4_F18_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Na22 --> He4 + F18 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // rpsmr + ln_set_rate = 59.32234728275454 + -100.23588367240258 * tfactors.T9i + 18.8956 * tfactors.T913i + -65.6134 * tfactors.T913 + + 1.71114 * tfactors.T9 + -0.0260999 * tfactors.T953 + 39.3396 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 100.23588367240258 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 18.8956 * tfactors.T943i + (1.0/3.0) * -65.6134 * tfactors.T923i + + 1.71114 + (5.0/3.0) * -0.0260999 * tfactors.T923 + 39.3396 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real F18_pf, dF18_pf_dT; + // interpolating F18 partition function + get_partition_function_cached(F18, tfactors, pf_cache, F18_pf, dF18_pf_dT); + + amrex::Real Na22_pf, dNa22_pf_dT; + // interpolating Na22 partition function + get_partition_function_cached(Na22, tfactors, pf_cache, Na22_pf, dNa22_pf_dT); + + amrex::Real z_r = He4_pf * F18_pf; + amrex::Real z_p = Na22_pf; + + amrex::Real dz_r_dT = F18_pf * dHe4_pf_dT + He4_pf * dF18_pf_dT; + amrex::Real dz_p_dT = dNa22_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Mg24_to_p_Na23_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Mg24 --> p + Na23 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10c + ln_set_rate = 43.93571176470678 + -135.6881490421346 * tfactors.T9i + -20.6428 * tfactors.T913i + 1.52954 * tfactors.T913 + + 2.7487 * tfactors.T9 + -1.0 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 135.6881490421346 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -20.6428 * tfactors.T943i + (1.0/3.0) * 1.52954 * tfactors.T923i + + 2.7487 + (5.0/3.0) * -1.0 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 34.08761176470678 + -138.9684390421346 * tfactors.T9i + -0.360588 * tfactors.T913 + + 1.4187 * tfactors.T9 + -0.184061 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 138.9684390421346 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * -0.360588 * tfactors.T923i + + 1.4187 + (5.0/3.0) * -0.184061 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 20.002361764706784 + -137.3003390421346 * tfactors.T9i; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 137.3003390421346 * tfactors.T9i * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real Na23_pf, dNa23_pf_dT; + // interpolating Na23 partition function + get_partition_function_cached(Na23, tfactors, pf_cache, Na23_pf, dNa23_pf_dT); + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Mg24_pf, dMg24_pf_dT; + // interpolating Mg24 partition function + get_partition_function_cached(Mg24, tfactors, pf_cache, Mg24_pf, dMg24_pf_dT); + + amrex::Real z_r = p_pf * Na23_pf; + amrex::Real z_p = Mg24_pf; + + amrex::Real dz_r_dT = Na23_pf * dp_pf_dT + p_pf * dNa23_pf_dT; + amrex::Real dz_p_dT = dMg24_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Mg24_to_He4_Ne20_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Mg24 --> He4 + Ne20 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10c + ln_set_rate = -13.886931148855957 + -110.62012330714883 * tfactors.T9i; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 110.62012330714883 * tfactors.T9i * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 49.324368851144044 + -108.11407330714883 * tfactors.T9i + -46.2525 * tfactors.T913i + 5.58901 * tfactors.T913 + + 7.61843 * tfactors.T9 + -3.683 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 108.11407330714883 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -46.2525 * tfactors.T943i + (1.0/3.0) * 5.58901 * tfactors.T923i + + 7.61843 + (5.0/3.0) * -3.683 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 16.02029885114404 + -120.89497330714883 * tfactors.T9i + 16.9229 * tfactors.T913 + + -2.57325 * tfactors.T9 + 0.208997 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 120.89497330714883 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 16.9229 * tfactors.T923i + + -2.57325 + (5.0/3.0) * 0.208997 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 26.801638851144045 + -117.33433330714882 * tfactors.T9i; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 117.33433330714882 * tfactors.T9i * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Mg24_pf, dMg24_pf_dT; + // interpolating Mg24 partition function + get_partition_function_cached(Mg24, tfactors, pf_cache, Mg24_pf, dMg24_pf_dT); + + amrex::Real Ne20_pf, dNe20_pf_dT; + // interpolating Ne20 partition function + get_partition_function_cached(Ne20, tfactors, pf_cache, Ne20_pf, dNe20_pf_dT); + + amrex::Real z_r = He4_pf * Ne20_pf; + amrex::Real z_p = Mg24_pf; + + amrex::Real dz_r_dT = Ne20_pf * dHe4_pf_dT + He4_pf * dNe20_pf_dT; + amrex::Real dz_p_dT = dMg24_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Si28_to_p_Al27_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Si28 --> p + Al27 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10c + ln_set_rate = 11.776564828186824 + -136.3434628922348 * tfactors.T9i + 23.8634 * tfactors.T913 + + -3.70135 * tfactors.T9 + 0.28964 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 136.3434628922348 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 23.8634 * tfactors.T923i + + -3.70135 + (5.0/3.0) * 0.28964 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 111.46636482818681 + -134.8268158922348 * tfactors.T9i + -26.8327 * tfactors.T913i + -116.137 * tfactors.T913 + + 0.00950567 * tfactors.T9 + 0.00999755 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 134.8268158922348 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -26.8327 * tfactors.T943i + (1.0/3.0) * -116.137 * tfactors.T923i + + 0.00950567 + (5.0/3.0) * 0.00999755 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 46.54946482818683 + -134.4395028922348 * tfactors.T9i + -23.2205 * tfactors.T913i + + -2.0 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 134.4395028922348 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -23.2205 * tfactors.T943i + + (5.0/3.0) * -2.0 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Al27_pf, dAl27_pf_dT; + // interpolating Al27 partition function + get_partition_function_cached(Al27, tfactors, pf_cache, Al27_pf, dAl27_pf_dT); + + amrex::Real Si28_pf, dSi28_pf_dT; + // interpolating Si28 partition function + get_partition_function_cached(Si28, tfactors, pf_cache, Si28_pf, dSi28_pf_dT); + + amrex::Real z_r = p_pf * Al27_pf; + amrex::Real z_p = Si28_pf; + + amrex::Real dz_r_dT = Al27_pf * dp_pf_dT + p_pf * dAl27_pf_dT; + amrex::Real dz_p_dT = dSi28_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Si28_to_He4_Mg24_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Si28 --> He4 + Mg24 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // st08r + ln_set_rate = -25.688574833405916 + -128.69270892750794 * tfactors.T9i + 21.3721 * tfactors.T913i + 37.7649 * tfactors.T913 + + -4.10635 * tfactors.T9 + 0.249618 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 128.69270892750794 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 21.3721 * tfactors.T943i + (1.0/3.0) * 37.7649 * tfactors.T923i + + -4.10635 + (5.0/3.0) * 0.249618 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // st08r + ln_set_rate = 32.90059516659409 + -131.48850892750792 * tfactors.T9i; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 131.48850892750792 * tfactors.T9i * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Mg24_pf, dMg24_pf_dT; + // interpolating Mg24 partition function + get_partition_function_cached(Mg24, tfactors, pf_cache, Mg24_pf, dMg24_pf_dT); + + amrex::Real Si28_pf, dSi28_pf_dT; + // interpolating Si28 partition function + get_partition_function_cached(Si28, tfactors, pf_cache, Si28_pf, dSi28_pf_dT); + + amrex::Real z_r = He4_pf * Mg24_pf; + amrex::Real z_p = Si28_pf; + + amrex::Real dz_r_dT = Mg24_pf * dHe4_pf_dT + He4_pf * dMg24_pf_dT; + amrex::Real dz_p_dT = dSi28_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_S32_to_p_P31_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // S32 --> p + P31 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10c + ln_set_rate = 25.172836958303158 + -106.63693563716609 * tfactors.T9i + 8.09341 * tfactors.T913 + + -0.615971 * tfactors.T9 + 0.031159 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 106.63693563716609 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 8.09341 * tfactors.T923i + + -0.615971 + (5.0/3.0) * 0.031159 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 21.682890958303158 + -105.11947563716609 * tfactors.T9i; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 105.11947563716609 * tfactors.T9i * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 43.610880958303156 + -102.85989563716609 * tfactors.T9i + -25.3278 * tfactors.T913i + 6.4931 * tfactors.T913 + + -9.27513 * tfactors.T9 + -0.610439 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 102.85989563716609 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -25.3278 * tfactors.T943i + (1.0/3.0) * 6.4931 * tfactors.T923i + + -9.27513 + (5.0/3.0) * -0.610439 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real S32_pf, dS32_pf_dT; + // interpolating S32 partition function + get_partition_function_cached(S32, tfactors, pf_cache, S32_pf, dS32_pf_dT); + + amrex::Real P31_pf, dP31_pf_dT; + // interpolating P31 partition function + get_partition_function_cached(P31, tfactors, pf_cache, P31_pf, dP31_pf_dT); + + amrex::Real z_r = p_pf * P31_pf; + amrex::Real z_p = S32_pf; + + amrex::Real dz_r_dT = P31_pf * dp_pf_dT + p_pf * dP31_pf_dT; + amrex::Real dz_p_dT = dS32_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_S32_to_He4_Si28_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // S32 --> He4 + Si28 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 72.81295409739818 + -80.62610309662641 * tfactors.T9i + -59.4896 * tfactors.T913i + 4.47205 * tfactors.T913 + + -4.78989 * tfactors.T9 + 0.557201 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 80.62610309662641 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -59.4896 * tfactors.T943i + (1.0/3.0) * 4.47205 * tfactors.T923i + + -4.78989 + (5.0/3.0) * 0.557201 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real S32_pf, dS32_pf_dT; + // interpolating S32 partition function + get_partition_function_cached(S32, tfactors, pf_cache, S32_pf, dS32_pf_dT); + + amrex::Real Si28_pf, dSi28_pf_dT; + // interpolating Si28 partition function + get_partition_function_cached(Si28, tfactors, pf_cache, Si28_pf, dSi28_pf_dT); + + amrex::Real z_r = He4_pf * Si28_pf; + amrex::Real z_p = S32_pf; + + amrex::Real dz_r_dT = Si28_pf * dHe4_pf_dT + He4_pf * dSi28_pf_dT; + amrex::Real dz_p_dT = dS32_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Fe52_to_p_Mn51_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Fe52 --> p + Mn51 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 61.72798916565748 + -85.6326403498911 * tfactors.T9i + -36.1825 * tfactors.T913i + 0.873042 * tfactors.T913 + + -2.89731 * tfactors.T9 + 0.364394 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 85.6326403498911 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -36.1825 * tfactors.T943i + (1.0/3.0) * 0.873042 * tfactors.T923i + + -2.89731 + (5.0/3.0) * 0.364394 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real Mn51_pf, dMn51_pf_dT; + // interpolating Mn51 partition function + get_partition_function_cached(Mn51, tfactors, pf_cache, Mn51_pf, dMn51_pf_dT); + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Fe52_pf, dFe52_pf_dT; + // interpolating Fe52 partition function + get_partition_function_cached(Fe52, tfactors, pf_cache, Fe52_pf, dFe52_pf_dT); + + amrex::Real z_r = p_pf * Mn51_pf; + amrex::Real z_p = Fe52_pf; + + amrex::Real dz_r_dT = Mn51_pf * dp_pf_dT + p_pf * dMn51_pf_dT; + amrex::Real dz_p_dT = dFe52_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Fe52_to_He4_Cr48_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Fe52 --> He4 + Cr48 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 90.14738712482466 + -92.10912191363732 * tfactors.T9i + -86.7459 * tfactors.T913i + -9.79373 * tfactors.T913 + + -0.772169 * tfactors.T9 + 0.155883 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 92.10912191363732 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -86.7459 * tfactors.T943i + (1.0/3.0) * -9.79373 * tfactors.T923i + + -0.772169 + (5.0/3.0) * 0.155883 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real Cr48_pf, dCr48_pf_dT; + // interpolating Cr48 partition function + get_partition_function_cached(Cr48, tfactors, pf_cache, Cr48_pf, dCr48_pf_dT); + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Fe52_pf, dFe52_pf_dT; + // interpolating Fe52 partition function + get_partition_function_cached(Fe52, tfactors, pf_cache, Fe52_pf, dFe52_pf_dT); + + amrex::Real z_r = He4_pf * Cr48_pf; + amrex::Real z_p = Fe52_pf; + + amrex::Real dz_r_dT = Cr48_pf * dHe4_pf_dT + He4_pf * dCr48_pf_dT; + amrex::Real dz_p_dT = dFe52_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Co55_to_He4_Mn51_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Co55 --> He4 + Mn51 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 90.61300778512097 + -95.28620688500884 * tfactors.T9i + -89.274 * tfactors.T913i + -10.4373 * tfactors.T913 + + 1.00492 * tfactors.T9 + -0.125548 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 95.28620688500884 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -89.274 * tfactors.T943i + (1.0/3.0) * -10.4373 * tfactors.T923i + + 1.00492 + (5.0/3.0) * -0.125548 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real Mn51_pf, dMn51_pf_dT; + // interpolating Mn51 partition function + get_partition_function_cached(Mn51, tfactors, pf_cache, Mn51_pf, dMn51_pf_dT); + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Co55_pf, dCo55_pf_dT; + // interpolating Co55 partition function + get_partition_function_cached(Co55, tfactors, pf_cache, Co55_pf, dCo55_pf_dT); + + amrex::Real z_r = He4_pf * Mn51_pf; + amrex::Real z_p = Co55_pf; + + amrex::Real dz_r_dT = Mn51_pf * dHe4_pf_dT + He4_pf * dMn51_pf_dT; + amrex::Real dz_p_dT = dCo55_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ni56_to_p_Co55_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ni56 --> p + Co55 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 63.131770608640906 + -83.14741674893808 * tfactors.T9i + -38.1053 * tfactors.T913i + -0.210947 * tfactors.T913 + + -2.68377 * tfactors.T9 + 0.355814 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 83.14741674893808 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -38.1053 * tfactors.T943i + (1.0/3.0) * -0.210947 * tfactors.T923i + + -2.68377 + (5.0/3.0) * 0.355814 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real Ni56_pf, dNi56_pf_dT; + // interpolating Ni56 partition function + get_partition_function_cached(Ni56, tfactors, pf_cache, Ni56_pf, dNi56_pf_dT); + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Co55_pf, dCo55_pf_dT; + // interpolating Co55 partition function + get_partition_function_cached(Co55, tfactors, pf_cache, Co55_pf, dCo55_pf_dT); + + amrex::Real z_r = p_pf * Co55_pf; + amrex::Real z_p = Ni56_pf; + + amrex::Real dz_r_dT = Co55_pf * dp_pf_dT + p_pf * dCo55_pf_dT; + amrex::Real dz_p_dT = dNi56_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ni56_to_He4_Fe52_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ni56 --> He4 + Fe52 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 91.62258922810439 + -92.801099329237 * tfactors.T9i + -91.6819 * tfactors.T913i + -9.51885 * tfactors.T913 + + -0.533014 * tfactors.T9 + 0.0892607 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 92.801099329237 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -91.6819 * tfactors.T943i + (1.0/3.0) * -9.51885 * tfactors.T923i + + -0.533014 + (5.0/3.0) * 0.0892607 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real Ni56_pf, dNi56_pf_dT; + // interpolating Ni56 partition function + get_partition_function_cached(Ni56, tfactors, pf_cache, Ni56_pf, dNi56_pf_dT); + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Fe52_pf, dFe52_pf_dT; + // interpolating Fe52 partition function + get_partition_function_cached(Fe52, tfactors, pf_cache, Fe52_pf, dFe52_pf_dT); + + amrex::Real z_r = He4_pf * Fe52_pf; + amrex::Real z_p = Ni56_pf; + + amrex::Real dz_r_dT = Fe52_pf * dHe4_pf_dT + He4_pf * dFe52_pf_dT; + amrex::Real dz_p_dT = dNi56_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_C12_to_He4_He4_He4_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // C12 --> He4 + He4 + He4 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // fy05c + ln_set_rate = 22.39392447043974 + -88.54942933569913 * tfactors.T9i + -13.49 * tfactors.T913i + 21.4259 * tfactors.T913 + + -1.34769 * tfactors.T9 + 0.0879816 * tfactors.T953 + -10.1653 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 88.54942933569913 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -13.49 * tfactors.T943i + (1.0/3.0) * 21.4259 * tfactors.T923i + + -1.34769 + (5.0/3.0) * 0.0879816 * tfactors.T923 + -10.1653 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // fy05c + ln_set_rate = 34.95602447043974 + -85.44732933569914 * tfactors.T9i + -23.57 * tfactors.T913i + 20.4886 * tfactors.T913 + + -12.9882 * tfactors.T9 + -20.0 * tfactors.T953 + 0.8333300000000001 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 85.44732933569914 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -23.57 * tfactors.T943i + (1.0/3.0) * 20.4886 * tfactors.T923i + + -12.9882 + (5.0/3.0) * -20.0 * tfactors.T923 + 0.8333300000000001 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // fy05c + ln_set_rate = 45.77337247043974 + -84.42286933569913 * tfactors.T9i + -37.06 * tfactors.T913i + 29.3493 * tfactors.T913 + + -115.507 * tfactors.T9 + -10.0 * tfactors.T953 + 1.66667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 84.42286933569913 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -37.06 * tfactors.T943i + (1.0/3.0) * 29.3493 * tfactors.T923i + + -115.507 + (5.0/3.0) * -10.0 * tfactors.T923 + 1.66667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real C12_pf, dC12_pf_dT; + // setting C12 partition function to 1.0 by default, independent of T + C12_pf = 1.0_rt; + dC12_pf_dT = 0.0_rt; + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real z_r = He4_pf * He4_pf * He4_pf; + amrex::Real z_p = C12_pf; + + amrex::Real dz_r_dT = dHe4_pf_dT + dHe4_pf_dT + dHe4_pf_dT; + amrex::Real dz_p_dT = dC12_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_O16_to_He4_N13_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // O16 + p --> He4 + N13 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // cf88n + ln_set_rate = 42.232382494512464 + -60.55237555926846 * tfactors.T9i + -35.829 * tfactors.T913i + -0.530275 * tfactors.T913 + + -0.982462 * tfactors.T9 + 0.0808059 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 60.55237555926846 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -35.829 * tfactors.T943i + (1.0/3.0) * -0.530275 * tfactors.T923i + + -0.982462 + (5.0/3.0) * 0.0808059 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real O16_pf, dO16_pf_dT; + // interpolating O16 partition function + get_partition_function_cached(O16, tfactors, pf_cache, O16_pf, dO16_pf_dT); + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real N13_pf, dN13_pf_dT; + // setting N13 partition function to 1.0 by default, independent of T + N13_pf = 1.0_rt; + dN13_pf_dT = 0.0_rt; + + amrex::Real z_r = He4_pf * N13_pf; + amrex::Real z_p = p_pf * O16_pf; + + amrex::Real dz_r_dT = N13_pf * dHe4_pf_dT + He4_pf * dN13_pf_dT; + amrex::Real dz_p_dT = O16_pf * dp_pf_dT + p_pf * dO16_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Ne20_to_p_Na23_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ne20 + He4 --> p + Na23 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10c + ln_set_rate = -6.377717086437262 + -29.88961364462334 * tfactors.T9i + 19.7297 * tfactors.T913 + + -2.20987 * tfactors.T9 + 0.153374 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 29.88961364462334 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 19.7297 * tfactors.T923i + + -2.20987 + (5.0/3.0) * 0.153374 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 0.227472413562738 + -29.434873644623337 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 29.434873644623337 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 19.18524291356274 + -27.573843644623338 * tfactors.T9i + -20.0024 * tfactors.T913i + 11.5988 * tfactors.T913 + + -1.37398 * tfactors.T9 + -1.0 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 27.573843644623338 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -20.0024 * tfactors.T943i + (1.0/3.0) * 11.5988 * tfactors.T923i + + -1.37398 + (5.0/3.0) * -1.0 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real Na23_pf, dNa23_pf_dT; + // interpolating Na23 partition function + get_partition_function_cached(Na23, tfactors, pf_cache, Na23_pf, dNa23_pf_dT); + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Ne20_pf, dNe20_pf_dT; + // interpolating Ne20 partition function + get_partition_function_cached(Ne20, tfactors, pf_cache, Ne20_pf, dNe20_pf_dT); + + amrex::Real z_r = p_pf * Na23_pf; + amrex::Real z_p = He4_pf * Ne20_pf; + + amrex::Real dz_r_dT = Na23_pf * dp_pf_dT + p_pf * dNa23_pf_dT; + amrex::Real dz_p_dT = Ne20_pf * dHe4_pf_dT + He4_pf * dNe20_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Ne21_to_He4_F18_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ne21 + p --> He4 + F18 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // rpsmr + ln_set_rate = 50.65368626892722 + -22.049056049959066 * tfactors.T9i + 21.4461 * tfactors.T913i + -73.252 * tfactors.T913 + + 2.42329 * tfactors.T9 + -0.077278 * tfactors.T953 + 40.7604 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 22.049056049959066 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 21.4461 * tfactors.T943i + (1.0/3.0) * -73.252 * tfactors.T923i + + 2.42329 + (5.0/3.0) * -0.077278 * tfactors.T923 + 40.7604 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Ne21_pf, dNe21_pf_dT; + // interpolating Ne21 partition function + get_partition_function_cached(Ne21, tfactors, pf_cache, Ne21_pf, dNe21_pf_dT); + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real F18_pf, dF18_pf_dT; + // interpolating F18 partition function + get_partition_function_cached(F18, tfactors, pf_cache, F18_pf, dF18_pf_dT); + + amrex::Real z_r = He4_pf * F18_pf; + amrex::Real z_p = p_pf * Ne21_pf; + + amrex::Real dz_r_dT = F18_pf * dHe4_pf_dT + He4_pf * dF18_pf_dT; + amrex::Real dz_p_dT = Ne21_pf * dp_pf_dT + p_pf * dNe21_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Mg24_to_p_Al27_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Mg24 + He4 --> p + Al27 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10c + ln_set_rate = -6.445750338407262 + -22.82086933218981 * tfactors.T9i + 18.0416 * tfactors.T913 + + -1.54137 * tfactors.T9 + 0.0847506 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 22.82086933218981 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 18.0416 * tfactors.T923i + + -1.54137 + (5.0/3.0) * 0.0847506 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = -26.286160338407264 + -19.54138133218981 * tfactors.T9i + 5.18642 * tfactors.T913i + -34.7936 * tfactors.T913 + + 168.225 * tfactors.T9 + -115.825 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 19.54138133218981 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 5.18642 * tfactors.T943i + (1.0/3.0) * -34.7936 * tfactors.T923i + + 168.225 + (5.0/3.0) * -115.825 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 30.039739661592737 + -18.578369332189812 * tfactors.T9i + -26.4162 * tfactors.T913i + + -2.0 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 18.578369332189812 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -26.4162 * tfactors.T943i + + (5.0/3.0) * -2.0 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Al27_pf, dAl27_pf_dT; + // interpolating Al27 partition function + get_partition_function_cached(Al27, tfactors, pf_cache, Al27_pf, dAl27_pf_dT); + + amrex::Real Mg24_pf, dMg24_pf_dT; + // interpolating Mg24 partition function + get_partition_function_cached(Mg24, tfactors, pf_cache, Mg24_pf, dMg24_pf_dT); + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real z_r = p_pf * Al27_pf; + amrex::Real z_p = He4_pf * Mg24_pf; + + amrex::Real dz_r_dT = Al27_pf * dp_pf_dT + p_pf * dAl27_pf_dT; + amrex::Real dz_p_dT = Mg24_pf * dHe4_pf_dT + He4_pf * dMg24_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Si28_to_p_P31_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Si28 + He4 --> p + P31 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10c + ln_set_rate = -11.433473139095032 + -25.65965858572089 * tfactors.T9i + 21.521 * tfactors.T913 + + -1.90355 * tfactors.T9 + 0.092724 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 25.65965858572089 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 21.521 * tfactors.T923i + + -1.90355 + (5.0/3.0) * 0.092724 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = -13.459473139095032 + -24.11106858572089 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 24.11106858572089 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 60.342426860904965 + -22.23390858572089 * tfactors.T9i + -31.932 * tfactors.T913i + -77.0334 * tfactors.T913 + + -43.6847 * tfactors.T9 + -4.28955 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 22.23390858572089 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -31.932 * tfactors.T943i + (1.0/3.0) * -77.0334 * tfactors.T923i + + -43.6847 + (5.0/3.0) * -4.28955 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real P31_pf, dP31_pf_dT; + // interpolating P31 partition function + get_partition_function_cached(P31, tfactors, pf_cache, P31_pf, dP31_pf_dT); + + amrex::Real Si28_pf, dSi28_pf_dT; + // interpolating Si28 partition function + get_partition_function_cached(Si28, tfactors, pf_cache, Si28_pf, dSi28_pf_dT); + + amrex::Real z_r = p_pf * P31_pf; + amrex::Real z_p = He4_pf * Si28_pf; + + amrex::Real dz_r_dT = P31_pf * dp_pf_dT + p_pf * dP31_pf_dT; + amrex::Real dz_p_dT = Si28_pf * dHe4_pf_dT + He4_pf * dSi28_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Mn51_to_He4_Cr48_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Mn51 + p --> He4 + Cr48 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 58.73119795916719 + -6.476551190854941 * tfactors.T9i + -86.7459 * tfactors.T913i + 1.05653 * tfactors.T913 + + -1.15757 * tfactors.T9 + 0.0877546 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 6.476551190854941 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -86.7459 * tfactors.T943i + (1.0/3.0) * 1.05653 * tfactors.T923i + + -1.15757 + (5.0/3.0) * 0.0877546 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Cr48_pf, dCr48_pf_dT; + // interpolating Cr48 partition function + get_partition_function_cached(Cr48, tfactors, pf_cache, Cr48_pf, dCr48_pf_dT); + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Mn51_pf, dMn51_pf_dT; + // interpolating Mn51 partition function + get_partition_function_cached(Mn51, tfactors, pf_cache, Mn51_pf, dMn51_pf_dT); + + amrex::Real z_r = He4_pf * Cr48_pf; + amrex::Real z_p = p_pf * Mn51_pf; + + amrex::Real dz_r_dT = Cr48_pf * dHe4_pf_dT + He4_pf * dCr48_pf_dT; + amrex::Real dz_p_dT = Mn51_pf * dp_pf_dT + p_pf * dMn51_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Co55_to_He4_Fe52_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Co55 + p --> He4 + Fe52 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 61.443418619463486 + -9.65364776674457 * tfactors.T9i + -91.6819 * tfactors.T913i + -0.329235 * tfactors.T913 + + -0.780924 * tfactors.T9 + 0.0425179 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 9.65364776674457 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -91.6819 * tfactors.T943i + (1.0/3.0) * -0.329235 * tfactors.T923i + + -0.780924 + (5.0/3.0) * 0.0425179 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Co55_pf, dCo55_pf_dT; + // interpolating Co55 partition function + get_partition_function_cached(Co55, tfactors, pf_cache, Co55_pf, dCo55_pf_dT); + + amrex::Real Fe52_pf, dFe52_pf_dT; + // interpolating Fe52 partition function + get_partition_function_cached(Fe52, tfactors, pf_cache, Fe52_pf, dFe52_pf_dT); + + amrex::Real z_r = He4_pf * Fe52_pf; + amrex::Real z_p = p_pf * Co55_pf; + + amrex::Real dz_r_dT = Fe52_pf * dHe4_pf_dT + He4_pf * dFe52_pf_dT; + amrex::Real dz_p_dT = Co55_pf * dp_pf_dT + p_pf * dCo55_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Co55_to_p_Fe54_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Co55 --> p + Fe54 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 57.82919157553295 + -58.76609208478817 * tfactors.T9i + -37.1544 * tfactors.T913i + 0.950364 * tfactors.T913 + + -1.77529 * tfactors.T9 + 0.198562 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 58.76609208478817 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -37.1544 * tfactors.T943i + (1.0/3.0) * 0.950364 * tfactors.T923i + + -1.77529 + (5.0/3.0) * 0.198562 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Co55_pf, dCo55_pf_dT; + // interpolating Co55 partition function + get_partition_function_cached(Co55, tfactors, pf_cache, Co55_pf, dCo55_pf_dT); + + amrex::Real Fe54_pf, dFe54_pf_dT; + // interpolating Fe54 partition function + get_partition_function_cached(Fe54, tfactors, pf_cache, Fe54_pf, dFe54_pf_dT); + + amrex::Real z_r = p_pf * Fe54_pf; + amrex::Real z_p = Co55_pf; + + amrex::Real dz_r_dT = Fe54_pf * dp_pf_dT + p_pf * dFe54_pf_dT; + amrex::Real dz_p_dT = dCo55_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Co56_to_n_Co55_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Co56 --> n + Co55 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 40.62594603130468 + -117.00951667337291 * tfactors.T9i + -1.86357 * tfactors.T913 + + 0.616591 * tfactors.T9 + -0.0839313 * tfactors.T953 + 1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 117.00951667337291 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * -1.86357 * tfactors.T923i + + 0.616591 + (5.0/3.0) * -0.0839313 * tfactors.T923 + 1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real n_pf, dn_pf_dT; + // setting n partition function to 1.0 by default, independent of T + n_pf = 1.0_rt; + dn_pf_dT = 0.0_rt; + + amrex::Real Co55_pf, dCo55_pf_dT; + // interpolating Co55 partition function + get_partition_function_cached(Co55, tfactors, pf_cache, Co55_pf, dCo55_pf_dT); + + amrex::Real Co56_pf, dCo56_pf_dT; + // interpolating Co56 partition function + get_partition_function_cached(Co56, tfactors, pf_cache, Co56_pf, dCo56_pf_dT); + + amrex::Real z_r = n_pf * Co55_pf; + amrex::Real z_p = Co56_pf; + + amrex::Real dz_r_dT = Co55_pf * dn_pf_dT + n_pf * dCo55_pf_dT; + amrex::Real dz_p_dT = dCo56_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Co57_to_n_Co56_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Co57 --> n + Co56 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 41.15219049522237 + -132.01531905660212 * tfactors.T9i + -1.37855 * tfactors.T913 + + 0.299896 * tfactors.T9 + -0.04382 * tfactors.T953 + 1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 132.01531905660212 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * -1.37855 * tfactors.T923i + + 0.299896 + (5.0/3.0) * -0.04382 * tfactors.T923 + 1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real n_pf, dn_pf_dT; + // setting n partition function to 1.0 by default, independent of T + n_pf = 1.0_rt; + dn_pf_dT = 0.0_rt; + + amrex::Real Co56_pf, dCo56_pf_dT; + // interpolating Co56 partition function + get_partition_function_cached(Co56, tfactors, pf_cache, Co56_pf, dCo56_pf_dT); + + amrex::Real Co57_pf, dCo57_pf_dT; + // interpolating Co57 partition function + get_partition_function_cached(Co57, tfactors, pf_cache, Co57_pf, dCo57_pf_dT); + + amrex::Real z_r = n_pf * Co56_pf; + amrex::Real z_p = Co57_pf; + + amrex::Real dz_r_dT = Co56_pf * dn_pf_dT + n_pf * dCo56_pf_dT; + amrex::Real dz_p_dT = dCo57_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Co57_to_p_Fe56_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Co57 --> p + Fe56 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 57.66626591788614 + -69.94994642462048 * tfactors.T9i + -37.1625 * tfactors.T913i + 1.06776 * tfactors.T913 + + -1.31689 * tfactors.T9 + 0.122089 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 69.94994642462048 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -37.1625 * tfactors.T943i + (1.0/3.0) * 1.06776 * tfactors.T923i + + -1.31689 + (5.0/3.0) * 0.122089 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Fe56_pf, dFe56_pf_dT; + // interpolating Fe56 partition function + get_partition_function_cached(Fe56, tfactors, pf_cache, Fe56_pf, dFe56_pf_dT); + + amrex::Real Co57_pf, dCo57_pf_dT; + // interpolating Co57 partition function + get_partition_function_cached(Co57, tfactors, pf_cache, Co57_pf, dCo57_pf_dT); + + amrex::Real z_r = p_pf * Fe56_pf; + amrex::Real z_p = Co57_pf; + + amrex::Real dz_r_dT = Fe56_pf * dp_pf_dT + p_pf * dFe56_pf_dT; + amrex::Real dz_p_dT = dCo57_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ni58_to_p_Co57_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ni58 --> p + Co57 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 61.775010752827114 + -94.83746016924091 * tfactors.T9i + -38.1133 * tfactors.T913i + 1.77414 * tfactors.T913 + + -1.48268 * tfactors.T9 + 0.121073 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 94.83746016924091 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -38.1133 * tfactors.T943i + (1.0/3.0) * 1.77414 * tfactors.T923i + + -1.48268 + (5.0/3.0) * 0.121073 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Ni58_pf, dNi58_pf_dT; + // interpolating Ni58 partition function + get_partition_function_cached(Ni58, tfactors, pf_cache, Ni58_pf, dNi58_pf_dT); + + amrex::Real Co57_pf, dCo57_pf_dT; + // interpolating Co57 partition function + get_partition_function_cached(Co57, tfactors, pf_cache, Co57_pf, dCo57_pf_dT); + + amrex::Real z_r = p_pf * Co57_pf; + amrex::Real z_p = Ni58_pf; + + amrex::Real dz_r_dT = Co57_pf * dp_pf_dT + p_pf * dCo57_pf_dT; + amrex::Real dz_p_dT = dNi58_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ni58_to_He4_Fe54_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ni58 --> He4 + Fe54 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 85.23266274036175 + -74.27065665689001 * tfactors.T9i + -91.7628 * tfactors.T913i + 4.23027 * tfactors.T913 + + -3.31305 * tfactors.T9 + 0.271293 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 74.27065665689001 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -91.7628 * tfactors.T943i + (1.0/3.0) * 4.23027 * tfactors.T923i + + -3.31305 + (5.0/3.0) * 0.271293 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Ni58_pf, dNi58_pf_dT; + // interpolating Ni58 partition function + get_partition_function_cached(Ni58, tfactors, pf_cache, Ni58_pf, dNi58_pf_dT); + + amrex::Real Fe54_pf, dFe54_pf_dT; + // interpolating Fe54 partition function + get_partition_function_cached(Fe54, tfactors, pf_cache, Fe54_pf, dFe54_pf_dT); + + amrex::Real z_r = He4_pf * Fe54_pf; + amrex::Real z_p = Ni58_pf; + + amrex::Real dz_r_dT = Fe54_pf * dHe4_pf_dT + He4_pf * dFe54_pf_dT; + amrex::Real dz_p_dT = dNi58_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Fe54_to_He4_Mn51_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Fe54 + p --> He4 + Mn51 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 65.37001620958803 + -36.52011480022066 * tfactors.T9i + -89.274 * tfactors.T913i + -0.862452 * tfactors.T913 + + -0.635672 * tfactors.T9 + 0.0196464 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 36.52011480022066 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -89.274 * tfactors.T943i + (1.0/3.0) * -0.862452 * tfactors.T923i + + -0.635672 + (5.0/3.0) * 0.0196464 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Mn51_pf, dMn51_pf_dT; + // interpolating Mn51 partition function + get_partition_function_cached(Mn51, tfactors, pf_cache, Mn51_pf, dMn51_pf_dT); + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Fe54_pf, dFe54_pf_dT; + // interpolating Fe54 partition function + get_partition_function_cached(Fe54, tfactors, pf_cache, Fe54_pf, dFe54_pf_dT); + + amrex::Real z_r = He4_pf * Mn51_pf; + amrex::Real z_p = p_pf * Fe54_pf; + + amrex::Real dz_r_dT = Mn51_pf * dHe4_pf_dT + He4_pf * dMn51_pf_dT; + amrex::Real dz_p_dT = Fe54_pf * dp_pf_dT + p_pf * dFe54_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Fe54_to_p_Co57_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Fe54 + He4 --> p + Co57 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = -1.4219519875346407 + -20.56680351235092 * tfactors.T9i + -38.1133 * tfactors.T913i + 29.3541 * tfactors.T913 + + -4.75966 * tfactors.T9 + 0.40418 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 20.56680351235092 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -38.1133 * tfactors.T943i + (1.0/3.0) * 29.3541 * tfactors.T923i + + -4.75966 + (5.0/3.0) * 0.40418 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Co57_pf, dCo57_pf_dT; + // interpolating Co57 partition function + get_partition_function_cached(Co57, tfactors, pf_cache, Co57_pf, dCo57_pf_dT); + + amrex::Real Fe54_pf, dFe54_pf_dT; + // interpolating Fe54 partition function + get_partition_function_cached(Fe54, tfactors, pf_cache, Fe54_pf, dFe54_pf_dT); + + amrex::Real z_r = p_pf * Co57_pf; + amrex::Real z_p = He4_pf * Fe54_pf; + + amrex::Real dz_r_dT = Co57_pf * dp_pf_dT + p_pf * dCo57_pf_dT; + amrex::Real dz_p_dT = Fe54_pf * dHe4_pf_dT + He4_pf * dFe54_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Fe56_to_n_Co56_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Fe56 + p --> n + Co56 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 22.65112457733622 + -62.065024496438 * tfactors.T9i + -1.13331 * tfactors.T913 + + 0.347185 * tfactors.T9 + -0.0328879 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 62.065024496438 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * -1.13331 * tfactors.T923i + + 0.347185 + (5.0/3.0) * -0.0328879 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real n_pf, dn_pf_dT; + // setting n partition function to 1.0 by default, independent of T + n_pf = 1.0_rt; + dn_pf_dT = 0.0_rt; + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Fe56_pf, dFe56_pf_dT; + // interpolating Fe56 partition function + get_partition_function_cached(Fe56, tfactors, pf_cache, Fe56_pf, dFe56_pf_dT); + + amrex::Real Co56_pf, dCo56_pf_dT; + // interpolating Co56 partition function + get_partition_function_cached(Co56, tfactors, pf_cache, Co56_pf, dCo56_pf_dT); + + amrex::Real z_r = n_pf * Co56_pf; + amrex::Real z_p = p_pf * Fe56_pf; + + amrex::Real dz_r_dT = Co56_pf * dn_pf_dT + n_pf * dCo56_pf_dT; + amrex::Real dz_p_dT = Fe56_pf * dp_pf_dT + p_pf * dFe56_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Co56_to_n_Ni56_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Co56 + p --> n + Ni56 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 13.37207542266378 + -33.86221596961605 * tfactors.T9i + 1.76846 * tfactors.T913 + + 0.197992 * tfactors.T9 + -0.017494 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 33.86221596961605 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 1.76846 * tfactors.T923i + + 0.197992 + (5.0/3.0) * -0.017494 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real n_pf, dn_pf_dT; + // setting n partition function to 1.0 by default, independent of T + n_pf = 1.0_rt; + dn_pf_dT = 0.0_rt; + + amrex::Real Ni56_pf, dNi56_pf_dT; + // interpolating Ni56 partition function + get_partition_function_cached(Ni56, tfactors, pf_cache, Ni56_pf, dNi56_pf_dT); + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Co56_pf, dCo56_pf_dT; + // interpolating Co56 partition function + get_partition_function_cached(Co56, tfactors, pf_cache, Co56_pf, dCo56_pf_dT); + + amrex::Real z_r = n_pf * Ni56_pf; + amrex::Real z_p = p_pf * Co56_pf; + + amrex::Real dz_r_dT = Ni56_pf * dn_pf_dT + n_pf * dNi56_pf_dT; + amrex::Real dz_p_dT = Co56_pf * dp_pf_dT + p_pf * dCo56_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_Ni58_to_He4_Co55_derived(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ni58 + p --> He4 + Co55 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 63.614171164828804 + -15.504564572101842 * tfactors.T9i + -94.1404 * tfactors.T913i + 3.39179 * tfactors.T913 + + -1.71062 * tfactors.T9 + 0.133003 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 15.504564572101842 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -94.1404 * tfactors.T943i + (1.0/3.0) * 3.39179 * tfactors.T923i + + -1.71062 + (5.0/3.0) * 0.133003 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Co55_pf, dCo55_pf_dT; + // interpolating Co55 partition function + get_partition_function_cached(Co55, tfactors, pf_cache, Co55_pf, dCo55_pf_dT); + + amrex::Real Ni58_pf, dNi58_pf_dT; + // interpolating Ni58 partition function + get_partition_function_cached(Ni58, tfactors, pf_cache, Ni58_pf, dNi58_pf_dT); + + amrex::Real z_r = He4_pf * Co55_pf; + amrex::Real z_p = p_pf * Ni58_pf; + + amrex::Real dz_r_dT = Co55_pf * dHe4_pf_dT + He4_pf * dCo55_pf_dT; + amrex::Real dz_p_dT = Ni58_pf * dp_pf_dT + p_pf * dNi58_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_S32_to_p_Cl35_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // S32 + He4 --> p + Cl35 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10c + ln_set_rate = 2.425628238034531 + -27.66622776398283 * tfactors.T9i + 5.33756 * tfactors.T913 + + 1.64418 * tfactors.T9 + -0.246167 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 27.66622776398283 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 5.33756 * tfactors.T923i + + 1.64418 + (5.0/3.0) * -0.246167 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = -0.877601761965469 + -25.59141776398283 * tfactors.T9i + + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 25.59141776398283 * tfactors.T9i * tfactors.T9i + + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = -57.39498176196547 + -22.18939876398283 * tfactors.T9i + 25.5338 * tfactors.T913 + + 6.45824 * tfactors.T9 + -0.950294 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 22.18939876398283 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 25.5338 * tfactors.T923i + + 6.45824 + (5.0/3.0) * -0.950294 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 32.25441823803453 + -21.65646776398283 * tfactors.T9i + -30.9147 * tfactors.T913i + -1.2345 * tfactors.T913 + + 22.5118 * tfactors.T9 + -33.0589 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 21.65646776398283 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -30.9147 * tfactors.T943i + (1.0/3.0) * -1.2345 * tfactors.T923i + + 22.5118 + (5.0/3.0) * -33.0589 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Cl35_pf, dCl35_pf_dT; + // interpolating Cl35 partition function + get_partition_function_cached(Cl35, tfactors, pf_cache, Cl35_pf, dCl35_pf_dT); + + amrex::Real S32_pf, dS32_pf_dT; + // interpolating S32 partition function + get_partition_function_cached(S32, tfactors, pf_cache, S32_pf, dS32_pf_dT); + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real z_r = p_pf * Cl35_pf; + amrex::Real z_p = He4_pf * S32_pf; + + amrex::Real dz_r_dT = Cl35_pf * dp_pf_dT + p_pf * dCl35_pf_dT; + amrex::Real dz_p_dT = S32_pf * dHe4_pf_dT + He4_pf * dS32_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ar36_to_He4_S32_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ar36 --> He4 + S32 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 73.81637663285039 + -77.06281976216322 * tfactors.T9i + -65.3709 * tfactors.T913i + 5.68294 * tfactors.T913 + + -5.00388 * tfactors.T9 + 0.571407 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 77.06281976216322 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -65.3709 * tfactors.T943i + (1.0/3.0) * 5.68294 * tfactors.T923i + + -5.00388 + (5.0/3.0) * 0.571407 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real S32_pf, dS32_pf_dT; + // interpolating S32 partition function + get_partition_function_cached(S32, tfactors, pf_cache, S32_pf, dS32_pf_dT); + + amrex::Real Ar36_pf, dAr36_pf_dT; + // interpolating Ar36 partition function + get_partition_function_cached(Ar36, tfactors, pf_cache, Ar36_pf, dAr36_pf_dT); + + amrex::Real z_r = He4_pf * S32_pf; + amrex::Real z_p = Ar36_pf; + + amrex::Real dz_r_dT = S32_pf * dHe4_pf_dT + He4_pf * dS32_pf_dT; + amrex::Real dz_p_dT = dAr36_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ar36_to_p_Cl35_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ar36 --> p + Cl35 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // il10c + ln_set_rate = 16.01685487088493 + -100.72924752614605 * tfactors.T9i; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 100.72924752614605 * tfactors.T9i * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = -17.47510512911507 + -99.28393852614604 * tfactors.T9i; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 99.28393852614604 * tfactors.T9i * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 60.73659487088493 + -98.71928752614605 * tfactors.T9i + -27.8971 * tfactors.T913i + -16.2304 * tfactors.T913 + + 35.255 * tfactors.T9 + -25.8411 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 98.71928752614605 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -27.8971 * tfactors.T943i + (1.0/3.0) * -16.2304 * tfactors.T923i + + 35.255 + (5.0/3.0) * -25.8411 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // il10c + ln_set_rate = 17.202804870884933 + -102.37020752614605 * tfactors.T9i + 18.0179 * tfactors.T913 + + -2.86304 * tfactors.T9 + 0.250854 * tfactors.T953; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 102.37020752614605 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 18.0179 * tfactors.T923i + + -2.86304 + (5.0/3.0) * 0.250854 * tfactors.T923; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Cl35_pf, dCl35_pf_dT; + // interpolating Cl35 partition function + get_partition_function_cached(Cl35, tfactors, pf_cache, Cl35_pf, dCl35_pf_dT); + + amrex::Real Ar36_pf, dAr36_pf_dT; + // interpolating Ar36 partition function + get_partition_function_cached(Ar36, tfactors, pf_cache, Ar36_pf, dAr36_pf_dT); + + amrex::Real z_r = p_pf * Cl35_pf; + amrex::Real z_p = Ar36_pf; + + amrex::Real dz_r_dT = Cl35_pf * dp_pf_dT + p_pf * dCl35_pf_dT; + amrex::Real dz_p_dT = dAr36_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Ar36_to_p_K39_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ar36 + He4 --> p + K39 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 20.636664061510302 + -14.953349961318928 * tfactors.T9i + -30.0732 * tfactors.T913i + 7.03263 * tfactors.T913 + + -1.10085 * tfactors.T9 + 0.133768 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 14.953349961318928 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -30.0732 * tfactors.T943i + (1.0/3.0) * 7.03263 * tfactors.T923i + + -1.10085 + (5.0/3.0) * 0.133768 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real K39_pf, dK39_pf_dT; + // interpolating K39 partition function + get_partition_function_cached(K39, tfactors, pf_cache, K39_pf, dK39_pf_dT); + + amrex::Real Ar36_pf, dAr36_pf_dT; + // interpolating Ar36 partition function + get_partition_function_cached(Ar36, tfactors, pf_cache, Ar36_pf, dAr36_pf_dT); + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real z_r = p_pf * K39_pf; + amrex::Real z_p = He4_pf * Ar36_pf; + + amrex::Real dz_r_dT = K39_pf * dp_pf_dT + p_pf * dK39_pf_dT; + amrex::Real dz_p_dT = Ar36_pf * dHe4_pf_dT + He4_pf * dAr36_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ca40_to_He4_Ar36_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ca40 --> He4 + Ar36 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 77.28261041284823 + -81.69174599574632 * tfactors.T9i + -71.0046 * tfactors.T913i + 4.0656 * tfactors.T913 + + -5.26509 * tfactors.T9 + 0.683546 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 81.69174599574632 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -71.0046 * tfactors.T943i + (1.0/3.0) * 4.0656 * tfactors.T923i + + -5.26509 + (5.0/3.0) * 0.683546 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Ca40_pf, dCa40_pf_dT; + // interpolating Ca40 partition function + get_partition_function_cached(Ca40, tfactors, pf_cache, Ca40_pf, dCa40_pf_dT); + + amrex::Real Ar36_pf, dAr36_pf_dT; + // interpolating Ar36 partition function + get_partition_function_cached(Ar36, tfactors, pf_cache, Ar36_pf, dAr36_pf_dT); + + amrex::Real z_r = He4_pf * Ar36_pf; + amrex::Real z_p = Ca40_pf; + + amrex::Real dz_r_dT = Ar36_pf * dHe4_pf_dT + He4_pf * dAr36_pf_dT; + amrex::Real dz_p_dT = dCa40_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ca40_to_p_K39_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ca40 --> p + K39 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // lo18r + ln_set_rate = 2786.4340744743586 + -101.86662364079672 * tfactors.T9i + 802.18 * tfactors.T913i + -4010.27 * tfactors.T913 + + 1137.69 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 101.86662364079672 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 802.18 * tfactors.T943i + (1.0/3.0) * -4010.27 * tfactors.T923i + + 1137.69 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // lo18r + ln_set_rate = 613.1530744743586 + -109.20898364079672 * tfactors.T9i + 641.844 * tfactors.T913i + -1248.49 * tfactors.T913 + + 566.426 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 109.20898364079672 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 641.844 * tfactors.T943i + (1.0/3.0) * -1248.49 * tfactors.T923i + + 566.426 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // lo18r + ln_set_rate = 127.30607447435852 + -98.30936364079672 * tfactors.T9i + 41.1723 * tfactors.T913i + -149.299 * tfactors.T913 + + 10.5229 * tfactors.T9 + -0.68208 * tfactors.T953 + 60.7367 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 98.30936364079672 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 41.1723 * tfactors.T943i + (1.0/3.0) * -149.299 * tfactors.T923i + + 10.5229 + (5.0/3.0) * -0.68208 * tfactors.T923 + 60.7367 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Ca40_pf, dCa40_pf_dT; + // interpolating Ca40 partition function + get_partition_function_cached(Ca40, tfactors, pf_cache, Ca40_pf, dCa40_pf_dT); + + amrex::Real K39_pf, dK39_pf_dT; + // interpolating K39 partition function + get_partition_function_cached(K39, tfactors, pf_cache, K39_pf, dK39_pf_dT); + + amrex::Real z_r = p_pf * K39_pf; + amrex::Real z_p = Ca40_pf; + + amrex::Real dz_r_dT = K39_pf * dp_pf_dT + p_pf * dK39_pf_dT; + amrex::Real dz_p_dT = dCa40_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_He4_Ca40_to_p_Sc43_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ca40 + He4 --> p + Sc43 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 35.65752817292938 + -40.87575463203665 * tfactors.T9i + -32.1734 * tfactors.T913i + 0.0296879 * tfactors.T913 + + -0.95232 * tfactors.T9 + 0.129022 * tfactors.T953 + -0.666667 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 40.87575463203665 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -32.1734 * tfactors.T943i + (1.0/3.0) * 0.0296879 * tfactors.T923i + + -0.95232 + (5.0/3.0) * 0.129022 * tfactors.T923 + -0.666667 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Ca40_pf, dCa40_pf_dT; + // interpolating Ca40 partition function + get_partition_function_cached(Ca40, tfactors, pf_cache, Ca40_pf, dCa40_pf_dT); + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Sc43_pf, dSc43_pf_dT; + // interpolating Sc43 partition function + get_partition_function_cached(Sc43, tfactors, pf_cache, Sc43_pf, dSc43_pf_dT); + + amrex::Real z_r = p_pf * Sc43_pf; + amrex::Real z_p = He4_pf * Ca40_pf; + + amrex::Real dz_r_dT = Sc43_pf * dp_pf_dT + p_pf * dSc43_pf_dT; + amrex::Real dz_p_dT = Ca40_pf * dHe4_pf_dT + He4_pf * dCa40_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ti44_to_He4_Ca40_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ti44 --> He4 + Ca40 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // chw0 + ln_set_rate = 78.69908591662849 + -59.4975248620018 * tfactors.T9i + -76.4273 * tfactors.T913i + 3.87451 * tfactors.T913 + + -3.61477 * tfactors.T9 + 0.367451 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 59.4975248620018 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -76.4273 * tfactors.T943i + (1.0/3.0) * 3.87451 * tfactors.T923i + + -3.61477 + (5.0/3.0) * 0.367451 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Ca40_pf, dCa40_pf_dT; + // interpolating Ca40 partition function + get_partition_function_cached(Ca40, tfactors, pf_cache, Ca40_pf, dCa40_pf_dT); + + amrex::Real Ti44_pf, dTi44_pf_dT; + // interpolating Ti44 partition function + get_partition_function_cached(Ti44, tfactors, pf_cache, Ti44_pf, dTi44_pf_dT); + + amrex::Real z_r = He4_pf * Ca40_pf; + amrex::Real z_p = Ti44_pf; + + amrex::Real dz_r_dT = Ca40_pf * dHe4_pf_dT + He4_pf * dCa40_pf_dT; + amrex::Real dz_p_dT = dTi44_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ti44_to_p_Sc43_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ti44 --> p + Sc43 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 62.59391408955788 + -100.37327949403844 * tfactors.T9i + -32.1734 * tfactors.T913i + -1.77078 * tfactors.T913 + + -2.21706 * tfactors.T9 + 0.298499 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 100.37327949403844 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -32.1734 * tfactors.T943i + (1.0/3.0) * -1.77078 * tfactors.T923i + + -2.21706 + (5.0/3.0) * 0.298499 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real Ti44_pf, dTi44_pf_dT; + // interpolating Ti44 partition function + get_partition_function_cached(Ti44, tfactors, pf_cache, Ti44_pf, dTi44_pf_dT); + + amrex::Real Sc43_pf, dSc43_pf_dT; + // interpolating Sc43 partition function + get_partition_function_cached(Sc43, tfactors, pf_cache, Sc43_pf, dSc43_pf_dT); + + amrex::Real z_r = p_pf * Sc43_pf; + amrex::Real z_p = Ti44_pf; + + amrex::Real dz_r_dT = Sc43_pf * dp_pf_dT + p_pf * dSc43_pf_dT; + amrex::Real dz_p_dT = dTi44_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Cr48_to_He4_Ti44_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Cr48 --> He4 + Ti44 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 89.75733412085052 + -89.3041938384302 * tfactors.T9i + -81.667 * tfactors.T913i + -10.6333 * tfactors.T913 + + -0.672613 * tfactors.T9 + 0.161209 * tfactors.T953 + 0.833333 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 89.3041938384302 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -81.667 * tfactors.T943i + (1.0/3.0) * -10.6333 * tfactors.T923i + + -0.672613 + (5.0/3.0) * 0.161209 * tfactors.T923 + 0.833333 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real Cr48_pf, dCr48_pf_dT; + // interpolating Cr48 partition function + get_partition_function_cached(Cr48, tfactors, pf_cache, Cr48_pf, dCr48_pf_dT); + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real Ti44_pf, dTi44_pf_dT; + // interpolating Ti44 partition function + get_partition_function_cached(Ti44, tfactors, pf_cache, Ti44_pf, dTi44_pf_dT); + + amrex::Real z_r = He4_pf * Ti44_pf; + amrex::Real z_p = Cr48_pf; + + amrex::Real dz_r_dT = Ti44_pf * dHe4_pf_dT + He4_pf * dTi44_pf_dT; + amrex::Real dz_p_dT = dCr48_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Cr48_to_p_V47_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Cr48 --> p + V47 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // nfisn + ln_set_rate = 67.74027107253823 + -100.12633621113824 * tfactors.T9i + -34.0548 * tfactors.T913i + -3.41973 * tfactors.T913 + + 1.16501 * tfactors.T9 + -0.105543 * tfactors.T953 + -6.20886 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 100.12633621113824 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -34.0548 * tfactors.T943i + (1.0/3.0) * -3.41973 * tfactors.T923i + + 1.16501 + (5.0/3.0) * -0.105543 * tfactors.T923 + -6.20886 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // nfisn + ln_set_rate = 536.5234710725382 + -99.36194621113825 * tfactors.T9i + 317.171 * tfactors.T913i + -911.679 * tfactors.T913 + + 94.4245 * tfactors.T9 + -10.1973 * tfactors.T953 + 332.227 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 99.36194621113825 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 317.171 * tfactors.T943i + (1.0/3.0) * -911.679 * tfactors.T923i + + 94.4245 + (5.0/3.0) * -10.1973 * tfactors.T923 + 332.227 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // nfisn + ln_set_rate = 48.891971072538226 + -93.82037121113825 * tfactors.T9i + -45.9868 * tfactors.T913i + 13.6822 * tfactors.T913 + + -0.376902 * tfactors.T9 + -0.0194875 * tfactors.T953 + -6.9232499999999995 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 93.82037121113825 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -45.9868 * tfactors.T943i + (1.0/3.0) * 13.6822 * tfactors.T923i + + -0.376902 + (5.0/3.0) * -0.0194875 * tfactors.T923 + -6.9232499999999995 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + // nfisn + ln_set_rate = 65.62307107253824 + -94.58145021113825 * tfactors.T9i + -110.655 * tfactors.T913i + 83.0232 * tfactors.T913 + + -19.7762 * tfactors.T9 + 3.03961 * tfactors.T953 + -47.9742 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 94.58145021113825 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -110.655 * tfactors.T943i + (1.0/3.0) * 83.0232 * tfactors.T923i + + -19.7762 + (5.0/3.0) * 3.03961 * tfactors.T923 + -47.9742 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real Cr48_pf, dCr48_pf_dT; + // interpolating Cr48 partition function + get_partition_function_cached(Cr48, tfactors, pf_cache, Cr48_pf, dCr48_pf_dT); + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real V47_pf, dV47_pf_dT; + // interpolating V47 partition function + get_partition_function_cached(V47, tfactors, pf_cache, V47_pf, dV47_pf_dT); + + amrex::Real z_r = p_pf * V47_pf; + amrex::Real z_p = Cr48_pf; + + amrex::Real dz_r_dT = V47_pf * dp_pf_dT + p_pf * dV47_pf_dT; + amrex::Real dz_p_dT = dCr48_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_p_V47_to_He4_Ti44_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // V47 + p --> He4 + Ti44 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // chw0r + ln_set_rate = -76.61433695168769 + -6.029445311023438 * tfactors.T9i + 70.2835 * tfactors.T913 + + -7.99061 * tfactors.T9 + 0.486213 * tfactors.T953 + -1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 6.029445311023438 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * 70.2835 * tfactors.T923i + + -7.99061 + (5.0/3.0) * 0.486213 * tfactors.T923 + -1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real p_pf, dp_pf_dT; + // setting p partition function to 1.0 by default, independent of T + p_pf = 1.0_rt; + dp_pf_dT = 0.0_rt; + + amrex::Real He4_pf, dHe4_pf_dT; + // setting He4 partition function to 1.0 by default, independent of T + He4_pf = 1.0_rt; + dHe4_pf_dT = 0.0_rt; + + amrex::Real V47_pf, dV47_pf_dT; + // interpolating V47 partition function + get_partition_function_cached(V47, tfactors, pf_cache, V47_pf, dV47_pf_dT); + + amrex::Real Ti44_pf, dTi44_pf_dT; + // interpolating Ti44 partition function + get_partition_function_cached(Ti44, tfactors, pf_cache, Ti44_pf, dTi44_pf_dT); + + amrex::Real z_r = He4_pf * Ti44_pf; + amrex::Real z_p = p_pf * V47_pf; + + amrex::Real dz_r_dT = Ti44_pf * dHe4_pf_dT + He4_pf * dTi44_pf_dT; + amrex::Real dz_p_dT = V47_pf * dp_pf_dT + p_pf * dV47_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Fe54_to_n_Fe53_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Fe54 --> n + Fe53 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 42.210560167376684 + -155.25104569177333 * tfactors.T9i + -1.10421 * tfactors.T913 + + 0.379905 * tfactors.T9 + -0.0581878 * tfactors.T953 + 1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 155.25104569177333 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * -1.10421 * tfactors.T923i + + 0.379905 + (5.0/3.0) * -0.0581878 * tfactors.T923 + 1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real n_pf, dn_pf_dT; + // setting n partition function to 1.0 by default, independent of T + n_pf = 1.0_rt; + dn_pf_dT = 0.0_rt; + + amrex::Real Fe53_pf, dFe53_pf_dT; + // interpolating Fe53 partition function + get_partition_function_cached(Fe53, tfactors, pf_cache, Fe53_pf, dFe53_pf_dT); + + amrex::Real Fe54_pf, dFe54_pf_dT; + // interpolating Fe54 partition function + get_partition_function_cached(Fe54, tfactors, pf_cache, Fe54_pf, dFe54_pf_dT); + + amrex::Real z_r = n_pf * Fe53_pf; + amrex::Real z_p = Fe54_pf; + + amrex::Real dz_r_dT = Fe53_pf * dn_pf_dT + n_pf * dFe53_pf_dT; + amrex::Real dz_p_dT = dFe54_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Fe53_to_n_Fe52_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Fe53 --> n + Fe52 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 37.48624299107921 + -123.99427613085159 * tfactors.T9i + -0.344319 * tfactors.T913 + + 0.178277 * tfactors.T9 + -0.0334326 * tfactors.T953 + 1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 123.99427613085159 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * -0.344319 * tfactors.T923i + + 0.178277 + (5.0/3.0) * -0.0334326 * tfactors.T923 + 1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real n_pf, dn_pf_dT; + // setting n partition function to 1.0 by default, independent of T + n_pf = 1.0_rt; + dn_pf_dT = 0.0_rt; + + amrex::Real Fe52_pf, dFe52_pf_dT; + // interpolating Fe52 partition function + get_partition_function_cached(Fe52, tfactors, pf_cache, Fe52_pf, dFe52_pf_dT); + + amrex::Real Fe53_pf, dFe53_pf_dT; + // interpolating Fe53 partition function + get_partition_function_cached(Fe53, tfactors, pf_cache, Fe53_pf, dFe53_pf_dT); + + amrex::Real z_r = n_pf * Fe52_pf; + amrex::Real z_p = Fe53_pf; + + amrex::Real dz_r_dT = Fe52_pf * dn_pf_dT + n_pf * dFe52_pf_dT; + amrex::Real dz_p_dT = dFe53_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Fe56_to_n_Fe55_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Fe56 --> n + Fe55 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ks03 + ln_set_rate = 46.785223428080954 + -130.0232339465001 * tfactors.T9i + 8.06062 * tfactors.T913i + -14.4809 * tfactors.T913 + + 0.94252 * tfactors.T9 + -0.0776007 * tfactors.T953 + 7.97093 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 130.0232339465001 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * 8.06062 * tfactors.T943i + (1.0/3.0) * -14.4809 * tfactors.T923i + + 0.94252 + (5.0/3.0) * -0.0776007 * tfactors.T923 + 7.97093 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real n_pf, dn_pf_dT; + // setting n partition function to 1.0 by default, independent of T + n_pf = 1.0_rt; + dn_pf_dT = 0.0_rt; + + amrex::Real Fe56_pf, dFe56_pf_dT; + // interpolating Fe56 partition function + get_partition_function_cached(Fe56, tfactors, pf_cache, Fe56_pf, dFe56_pf_dT); + + amrex::Real Fe55_pf, dFe55_pf_dT; + // interpolating Fe55 partition function + get_partition_function_cached(Fe55, tfactors, pf_cache, Fe55_pf, dFe55_pf_dT); + + amrex::Real z_r = n_pf * Fe55_pf; + amrex::Real z_p = Fe56_pf; + + amrex::Real dz_r_dT = Fe55_pf * dn_pf_dT + n_pf * dFe55_pf_dT; + amrex::Real dz_p_dT = dFe56_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Fe55_to_n_Fe54_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Fe55 --> n + Fe54 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ks03 + ln_set_rate = 21.483298756092896 + -107.84311925142697 * tfactors.T9i + -8.66617 * tfactors.T913i + 26.4472 * tfactors.T913 + + -1.9222 * tfactors.T9 + 0.0986404 * tfactors.T953 + -8.28317 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 107.84311925142697 * tfactors.T9i * tfactors.T9i + -(1.0/3.0) * -8.66617 * tfactors.T943i + (1.0/3.0) * 26.4472 * tfactors.T923i + + -1.9222 + (5.0/3.0) * 0.0986404 * tfactors.T923 + -8.28317 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real n_pf, dn_pf_dT; + // setting n partition function to 1.0 by default, independent of T + n_pf = 1.0_rt; + dn_pf_dT = 0.0_rt; + + amrex::Real Fe55_pf, dFe55_pf_dT; + // interpolating Fe55 partition function + get_partition_function_cached(Fe55, tfactors, pf_cache, Fe55_pf, dFe55_pf_dT); + + amrex::Real Fe54_pf, dFe54_pf_dT; + // interpolating Fe54 partition function + get_partition_function_cached(Fe54, tfactors, pf_cache, Fe54_pf, dFe54_pf_dT); + + amrex::Real z_r = n_pf * Fe54_pf; + amrex::Real z_p = Fe55_pf; + + amrex::Real dz_r_dT = Fe54_pf * dn_pf_dT + n_pf * dFe54_pf_dT; + amrex::Real dz_p_dT = dFe55_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ni58_to_n_Ni57_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ni58 --> n + Ni57 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 42.339063572267165 + -141.77239789336582 * tfactors.T9i + -1.90814 * tfactors.T913 + + 0.493188 * tfactors.T9 + -0.0684633 * tfactors.T953 + 1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 141.77239789336582 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * -1.90814 * tfactors.T923i + + 0.493188 + (5.0/3.0) * -0.0684633 * tfactors.T923 + 1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real n_pf, dn_pf_dT; + // setting n partition function to 1.0 by default, independent of T + n_pf = 1.0_rt; + dn_pf_dT = 0.0_rt; + + amrex::Real Ni57_pf, dNi57_pf_dT; + // interpolating Ni57 partition function + get_partition_function_cached(Ni57, tfactors, pf_cache, Ni57_pf, dNi57_pf_dT); + + amrex::Real Ni58_pf, dNi58_pf_dT; + // interpolating Ni58 partition function + get_partition_function_cached(Ni58, tfactors, pf_cache, Ni58_pf, dNi58_pf_dT); + + amrex::Real z_r = n_pf * Ni57_pf; + amrex::Real z_p = Ni58_pf; + + amrex::Real dz_r_dT = Ni57_pf * dn_pf_dT + n_pf * dNi57_pf_dT; + amrex::Real dz_p_dT = dNi58_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ni57_to_n_Ni56_derived_removed(const tf_t& tfactors, amrex::Real& rate, amrex::Real& drate_dT, [[maybe_unused]] part_fun::pf_cache_t& pf_cache) { + + // Ni57 --> n + Ni56 + + rate = 0.0; + drate_dT = 0.0; + + amrex::Real ln_set_rate{0.0}; + amrex::Real dln_set_rate_dT9{0.0}; + amrex::Real set_rate{0.0}; + + // ths8r + ln_set_rate = 38.36941309844609 + -118.94166894064354 * tfactors.T9i + -1.19665 * tfactors.T913 + + 0.507179 * tfactors.T9 + -0.074604 * tfactors.T953 + 1.5 * tfactors.lnT9; + + if constexpr (do_T_derivatives) { + dln_set_rate_dT9 = 118.94166894064354 * tfactors.T9i * tfactors.T9i + (1.0/3.0) * -1.19665 * tfactors.T923i + + 0.507179 + (5.0/3.0) * -0.074604 * tfactors.T923 + 1.5 * tfactors.T9i; + } + + // avoid underflows by zeroing rates in [0.0, 1.e-100] + ln_set_rate = std::max(ln_set_rate, -230.0); + set_rate = std::exp(ln_set_rate); + rate += set_rate; + if constexpr (do_T_derivatives) { + drate_dT += set_rate * dln_set_rate_dT9 / 1.0e9; + } + + + amrex::Real n_pf, dn_pf_dT; + // setting n partition function to 1.0 by default, independent of T + n_pf = 1.0_rt; + dn_pf_dT = 0.0_rt; + + amrex::Real Ni56_pf, dNi56_pf_dT; + // interpolating Ni56 partition function + get_partition_function_cached(Ni56, tfactors, pf_cache, Ni56_pf, dNi56_pf_dT); + + amrex::Real Ni57_pf, dNi57_pf_dT; + // interpolating Ni57 partition function + get_partition_function_cached(Ni57, tfactors, pf_cache, Ni57_pf, dNi57_pf_dT); + + amrex::Real z_r = n_pf * Ni56_pf; + amrex::Real z_p = Ni57_pf; + + amrex::Real dz_r_dT = Ni56_pf * dn_pf_dT + n_pf * dNi56_pf_dT; + amrex::Real dz_p_dT = dNi57_pf_dT; + + amrex::Real dzterm_dT = (z_p * dz_r_dT - z_r * dz_p_dT) / (z_p * z_p); + + drate_dT = dzterm_dT * rate + drate_dT * (z_r / z_p); + rate *= z_r/z_p; + +} + + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_S32_He4_to_Ar36_approx(const T& rate_eval, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real r_ag = rate_eval.screened_rates(k_He4_S32_to_Ar36_removed); + amrex::Real r_ap = rate_eval.screened_rates(k_He4_S32_to_p_Cl35_derived_removed); + amrex::Real r_pg = rate_eval.screened_rates(k_p_Cl35_to_Ar36_removed); + amrex::Real r_pa = rate_eval.screened_rates(k_p_Cl35_to_He4_S32_removed); + amrex::Real dd = 1.0_rt / (r_pg + r_pa); + rate = r_ag + r_ap * r_pg * dd; + if constexpr (std::is_same_v) { + amrex::Real drdT_ag = rate_eval.dscreened_rates_dT(k_He4_S32_to_Ar36_removed); + amrex::Real drdT_ap = rate_eval.dscreened_rates_dT(k_He4_S32_to_p_Cl35_derived_removed); + amrex::Real drdT_pg = rate_eval.dscreened_rates_dT(k_p_Cl35_to_Ar36_removed); + amrex::Real drdT_pa = rate_eval.dscreened_rates_dT(k_p_Cl35_to_He4_S32_removed); + drate_dT = drdT_ag + drdT_ap * r_pg * dd + r_ap * drdT_pg * dd - r_ap * r_pg * dd * dd * (drdT_pg + drdT_pa); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ar36_to_S32_He4_approx(const T& rate_eval, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real r_ga = rate_eval.screened_rates(k_Ar36_to_He4_S32_derived_removed); + amrex::Real r_pa = rate_eval.screened_rates(k_p_Cl35_to_He4_S32_removed); + amrex::Real r_gp = rate_eval.screened_rates(k_Ar36_to_p_Cl35_derived_removed); + amrex::Real r_pg = rate_eval.screened_rates(k_p_Cl35_to_Ar36_removed); + amrex::Real dd = 1.0_rt / (r_pg + r_pa); + rate = r_ga + r_gp * r_pa * dd; + if constexpr (std::is_same_v) { + amrex::Real drdT_ga = rate_eval.dscreened_rates_dT(k_Ar36_to_He4_S32_derived_removed); + amrex::Real drdT_pa = rate_eval.dscreened_rates_dT(k_p_Cl35_to_He4_S32_removed); + amrex::Real drdT_gp = rate_eval.dscreened_rates_dT(k_Ar36_to_p_Cl35_derived_removed); + amrex::Real drdT_pg = rate_eval.dscreened_rates_dT(k_p_Cl35_to_Ar36_removed); + drate_dT = drdT_ga + drdT_gp * r_pa * dd + r_gp * drdT_pa * dd - r_gp * r_pa * dd * dd * (drdT_pg + drdT_pa); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ar36_He4_to_Ca40_approx(const T& rate_eval, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real r_ag = rate_eval.screened_rates(k_He4_Ar36_to_Ca40_removed); + amrex::Real r_ap = rate_eval.screened_rates(k_He4_Ar36_to_p_K39_derived_removed); + amrex::Real r_pg = rate_eval.screened_rates(k_p_K39_to_Ca40_removed); + amrex::Real r_pa = rate_eval.screened_rates(k_p_K39_to_He4_Ar36_removed); + amrex::Real dd = 1.0_rt / (r_pg + r_pa); + rate = r_ag + r_ap * r_pg * dd; + if constexpr (std::is_same_v) { + amrex::Real drdT_ag = rate_eval.dscreened_rates_dT(k_He4_Ar36_to_Ca40_removed); + amrex::Real drdT_ap = rate_eval.dscreened_rates_dT(k_He4_Ar36_to_p_K39_derived_removed); + amrex::Real drdT_pg = rate_eval.dscreened_rates_dT(k_p_K39_to_Ca40_removed); + amrex::Real drdT_pa = rate_eval.dscreened_rates_dT(k_p_K39_to_He4_Ar36_removed); + drate_dT = drdT_ag + drdT_ap * r_pg * dd + r_ap * drdT_pg * dd - r_ap * r_pg * dd * dd * (drdT_pg + drdT_pa); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ca40_to_Ar36_He4_approx(const T& rate_eval, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real r_ga = rate_eval.screened_rates(k_Ca40_to_He4_Ar36_derived_removed); + amrex::Real r_pa = rate_eval.screened_rates(k_p_K39_to_He4_Ar36_removed); + amrex::Real r_gp = rate_eval.screened_rates(k_Ca40_to_p_K39_derived_removed); + amrex::Real r_pg = rate_eval.screened_rates(k_p_K39_to_Ca40_removed); + amrex::Real dd = 1.0_rt / (r_pg + r_pa); + rate = r_ga + r_gp * r_pa * dd; + if constexpr (std::is_same_v) { + amrex::Real drdT_ga = rate_eval.dscreened_rates_dT(k_Ca40_to_He4_Ar36_derived_removed); + amrex::Real drdT_pa = rate_eval.dscreened_rates_dT(k_p_K39_to_He4_Ar36_removed); + amrex::Real drdT_gp = rate_eval.dscreened_rates_dT(k_Ca40_to_p_K39_derived_removed); + amrex::Real drdT_pg = rate_eval.dscreened_rates_dT(k_p_K39_to_Ca40_removed); + drate_dT = drdT_ga + drdT_gp * r_pa * dd + r_gp * drdT_pa * dd - r_gp * r_pa * dd * dd * (drdT_pg + drdT_pa); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ca40_He4_to_Ti44_approx(const T& rate_eval, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real r_ag = rate_eval.screened_rates(k_He4_Ca40_to_Ti44_removed); + amrex::Real r_ap = rate_eval.screened_rates(k_He4_Ca40_to_p_Sc43_derived_removed); + amrex::Real r_pg = rate_eval.screened_rates(k_p_Sc43_to_Ti44_removed); + amrex::Real r_pa = rate_eval.screened_rates(k_p_Sc43_to_He4_Ca40_removed); + amrex::Real dd = 1.0_rt / (r_pg + r_pa); + rate = r_ag + r_ap * r_pg * dd; + if constexpr (std::is_same_v) { + amrex::Real drdT_ag = rate_eval.dscreened_rates_dT(k_He4_Ca40_to_Ti44_removed); + amrex::Real drdT_ap = rate_eval.dscreened_rates_dT(k_He4_Ca40_to_p_Sc43_derived_removed); + amrex::Real drdT_pg = rate_eval.dscreened_rates_dT(k_p_Sc43_to_Ti44_removed); + amrex::Real drdT_pa = rate_eval.dscreened_rates_dT(k_p_Sc43_to_He4_Ca40_removed); + drate_dT = drdT_ag + drdT_ap * r_pg * dd + r_ap * drdT_pg * dd - r_ap * r_pg * dd * dd * (drdT_pg + drdT_pa); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ti44_to_Ca40_He4_approx(const T& rate_eval, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real r_ga = rate_eval.screened_rates(k_Ti44_to_He4_Ca40_derived_removed); + amrex::Real r_pa = rate_eval.screened_rates(k_p_Sc43_to_He4_Ca40_removed); + amrex::Real r_gp = rate_eval.screened_rates(k_Ti44_to_p_Sc43_derived_removed); + amrex::Real r_pg = rate_eval.screened_rates(k_p_Sc43_to_Ti44_removed); + amrex::Real dd = 1.0_rt / (r_pg + r_pa); + rate = r_ga + r_gp * r_pa * dd; + if constexpr (std::is_same_v) { + amrex::Real drdT_ga = rate_eval.dscreened_rates_dT(k_Ti44_to_He4_Ca40_derived_removed); + amrex::Real drdT_pa = rate_eval.dscreened_rates_dT(k_p_Sc43_to_He4_Ca40_removed); + amrex::Real drdT_gp = rate_eval.dscreened_rates_dT(k_Ti44_to_p_Sc43_derived_removed); + amrex::Real drdT_pg = rate_eval.dscreened_rates_dT(k_p_Sc43_to_Ti44_removed); + drate_dT = drdT_ga + drdT_gp * r_pa * dd + r_gp * drdT_pa * dd - r_gp * r_pa * dd * dd * (drdT_pg + drdT_pa); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ti44_He4_to_Cr48_approx(const T& rate_eval, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real r_ag = rate_eval.screened_rates(k_He4_Ti44_to_Cr48_removed); + amrex::Real r_ap = rate_eval.screened_rates(k_He4_Ti44_to_p_V47_removed); + amrex::Real r_pg = rate_eval.screened_rates(k_p_V47_to_Cr48_removed); + amrex::Real r_pa = rate_eval.screened_rates(k_p_V47_to_He4_Ti44_derived_removed); + amrex::Real dd = 1.0_rt / (r_pg + r_pa); + rate = r_ag + r_ap * r_pg * dd; + if constexpr (std::is_same_v) { + amrex::Real drdT_ag = rate_eval.dscreened_rates_dT(k_He4_Ti44_to_Cr48_removed); + amrex::Real drdT_ap = rate_eval.dscreened_rates_dT(k_He4_Ti44_to_p_V47_removed); + amrex::Real drdT_pg = rate_eval.dscreened_rates_dT(k_p_V47_to_Cr48_removed); + amrex::Real drdT_pa = rate_eval.dscreened_rates_dT(k_p_V47_to_He4_Ti44_derived_removed); + drate_dT = drdT_ag + drdT_ap * r_pg * dd + r_ap * drdT_pg * dd - r_ap * r_pg * dd * dd * (drdT_pg + drdT_pa); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Cr48_to_Ti44_He4_approx(const T& rate_eval, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real r_ga = rate_eval.screened_rates(k_Cr48_to_He4_Ti44_derived_removed); + amrex::Real r_pa = rate_eval.screened_rates(k_p_V47_to_He4_Ti44_derived_removed); + amrex::Real r_gp = rate_eval.screened_rates(k_Cr48_to_p_V47_derived_removed); + amrex::Real r_pg = rate_eval.screened_rates(k_p_V47_to_Cr48_removed); + amrex::Real dd = 1.0_rt / (r_pg + r_pa); + rate = r_ga + r_gp * r_pa * dd; + if constexpr (std::is_same_v) { + amrex::Real drdT_ga = rate_eval.dscreened_rates_dT(k_Cr48_to_He4_Ti44_derived_removed); + amrex::Real drdT_pa = rate_eval.dscreened_rates_dT(k_p_V47_to_He4_Ti44_derived_removed); + amrex::Real drdT_gp = rate_eval.dscreened_rates_dT(k_Cr48_to_p_V47_derived_removed); + amrex::Real drdT_pg = rate_eval.dscreened_rates_dT(k_p_V47_to_Cr48_removed); + drate_dT = drdT_ga + drdT_gp * r_pa * dd + r_gp * drdT_pa * dd - r_gp * r_pa * dd * dd * (drdT_pg + drdT_pa); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Fe52_n_n_to_Fe54_approx(const T& rate_eval, const amrex::Real rho, const amrex::Array1D& Y, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real Yn = Y(N); + amrex::Real r1_ng = rate_eval.screened_rates(k_n_Fe52_to_Fe53_removed); + amrex::Real r2_ng = rate_eval.screened_rates(k_n_Fe53_to_Fe54_removed); + amrex::Real r1_gn = rate_eval.screened_rates(k_Fe53_to_n_Fe52_derived_removed); + amrex::Real dd = 1.0_rt / (rho * Yn * r2_ng + r1_gn); + rate = r1_ng * r2_ng * dd; + if constexpr (std::is_same_v) { + amrex::Real dr1dT_ng = rate_eval.dscreened_rates_dT(k_n_Fe52_to_Fe53_removed); + amrex::Real dr2dT_ng = rate_eval.dscreened_rates_dT(k_n_Fe53_to_Fe54_removed); + amrex::Real dr1dT_gn = rate_eval.dscreened_rates_dT(k_Fe53_to_n_Fe52_derived_removed); + drate_dT = dr1dT_ng * r2_ng * dd + r1_ng * dr2dT_ng * dd - r1_ng * r2_ng * dd * dd * (rho * Yn * dr2dT_ng + dr1dT_gn); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Fe54_to_Fe52_n_n_approx(const T& rate_eval, const amrex::Real rho, const amrex::Array1D& Y, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real Yn = Y(N); + amrex::Real r1_gn = rate_eval.screened_rates(k_Fe53_to_n_Fe52_derived_removed); + amrex::Real r2_gn = rate_eval.screened_rates(k_Fe54_to_n_Fe53_derived_removed); + amrex::Real r2_ng = rate_eval.screened_rates(k_n_Fe53_to_Fe54_removed); + amrex::Real dd = 1.0_rt / (rho * Yn * r2_ng + r1_gn); + rate = r1_gn * r2_gn * dd; + if constexpr (std::is_same_v) { + amrex::Real dr1dT_gn = rate_eval.dscreened_rates_dT(k_Fe53_to_n_Fe52_derived_removed); + amrex::Real dr2dT_gn = rate_eval.dscreened_rates_dT(k_Fe54_to_n_Fe53_derived_removed); + amrex::Real dr2dT_ng = rate_eval.dscreened_rates_dT(k_n_Fe53_to_Fe54_removed); + drate_dT = dr1dT_gn * r2_gn * dd + r1_gn * dr2dT_gn * dd - r1_gn * r2_gn * dd * dd * (rho * Yn * dr2dT_ng + dr1dT_gn); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Fe54_n_n_to_Fe56_approx(const T& rate_eval, const amrex::Real rho, const amrex::Array1D& Y, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real Yn = Y(N); + amrex::Real r1_ng = rate_eval.screened_rates(k_n_Fe54_to_Fe55_removed); + amrex::Real r2_ng = rate_eval.screened_rates(k_n_Fe55_to_Fe56_removed); + amrex::Real r1_gn = rate_eval.screened_rates(k_Fe55_to_n_Fe54_derived_removed); + amrex::Real dd = 1.0_rt / (rho * Yn * r2_ng + r1_gn); + rate = r1_ng * r2_ng * dd; + if constexpr (std::is_same_v) { + amrex::Real dr1dT_ng = rate_eval.dscreened_rates_dT(k_n_Fe54_to_Fe55_removed); + amrex::Real dr2dT_ng = rate_eval.dscreened_rates_dT(k_n_Fe55_to_Fe56_removed); + amrex::Real dr1dT_gn = rate_eval.dscreened_rates_dT(k_Fe55_to_n_Fe54_derived_removed); + drate_dT = dr1dT_ng * r2_ng * dd + r1_ng * dr2dT_ng * dd - r1_ng * r2_ng * dd * dd * (rho * Yn * dr2dT_ng + dr1dT_gn); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Fe56_to_Fe54_n_n_approx(const T& rate_eval, const amrex::Real rho, const amrex::Array1D& Y, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real Yn = Y(N); + amrex::Real r1_gn = rate_eval.screened_rates(k_Fe55_to_n_Fe54_derived_removed); + amrex::Real r2_gn = rate_eval.screened_rates(k_Fe56_to_n_Fe55_derived_removed); + amrex::Real r2_ng = rate_eval.screened_rates(k_n_Fe55_to_Fe56_removed); + amrex::Real dd = 1.0_rt / (rho * Yn * r2_ng + r1_gn); + rate = r1_gn * r2_gn * dd; + if constexpr (std::is_same_v) { + amrex::Real dr1dT_gn = rate_eval.dscreened_rates_dT(k_Fe55_to_n_Fe54_derived_removed); + amrex::Real dr2dT_gn = rate_eval.dscreened_rates_dT(k_Fe56_to_n_Fe55_derived_removed); + amrex::Real dr2dT_ng = rate_eval.dscreened_rates_dT(k_n_Fe55_to_Fe56_removed); + drate_dT = dr1dT_gn * r2_gn * dd + r1_gn * dr2dT_gn * dd - r1_gn * r2_gn * dd * dd * (rho * Yn * dr2dT_ng + dr1dT_gn); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ni56_n_n_to_Ni58_approx(const T& rate_eval, const amrex::Real rho, const amrex::Array1D& Y, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real Yn = Y(N); + amrex::Real r1_ng = rate_eval.screened_rates(k_n_Ni56_to_Ni57_removed); + amrex::Real r2_ng = rate_eval.screened_rates(k_n_Ni57_to_Ni58_removed); + amrex::Real r1_gn = rate_eval.screened_rates(k_Ni57_to_n_Ni56_derived_removed); + amrex::Real dd = 1.0_rt / (rho * Yn * r2_ng + r1_gn); + rate = r1_ng * r2_ng * dd; + if constexpr (std::is_same_v) { + amrex::Real dr1dT_ng = rate_eval.dscreened_rates_dT(k_n_Ni56_to_Ni57_removed); + amrex::Real dr2dT_ng = rate_eval.dscreened_rates_dT(k_n_Ni57_to_Ni58_removed); + amrex::Real dr1dT_gn = rate_eval.dscreened_rates_dT(k_Ni57_to_n_Ni56_derived_removed); + drate_dT = dr1dT_ng * r2_ng * dd + r1_ng * dr2dT_ng * dd - r1_ng * r2_ng * dd * dd * (rho * Yn * dr2dT_ng + dr1dT_gn); + } +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void rate_Ni58_to_Ni56_n_n_approx(const T& rate_eval, const amrex::Real rho, const amrex::Array1D& Y, amrex::Real& rate, amrex::Real& drate_dT) { + + amrex::Real Yn = Y(N); + amrex::Real r1_gn = rate_eval.screened_rates(k_Ni57_to_n_Ni56_derived_removed); + amrex::Real r2_gn = rate_eval.screened_rates(k_Ni58_to_n_Ni57_derived_removed); + amrex::Real r2_ng = rate_eval.screened_rates(k_n_Ni57_to_Ni58_removed); + amrex::Real dd = 1.0_rt / (rho * Yn * r2_ng + r1_gn); + rate = r1_gn * r2_gn * dd; + if constexpr (std::is_same_v) { + amrex::Real dr1dT_gn = rate_eval.dscreened_rates_dT(k_Ni57_to_n_Ni56_derived_removed); + amrex::Real dr2dT_gn = rate_eval.dscreened_rates_dT(k_Ni58_to_n_Ni57_derived_removed); + amrex::Real dr2dT_ng = rate_eval.dscreened_rates_dT(k_n_Ni57_to_Ni58_removed); + drate_dT = dr1dT_gn * r2_gn * dd + r1_gn * dr2dT_gn * dd - r1_gn * r2_gn * dd * dd * (rho * Yn * dr2dT_ng + dr1dT_gn); + } +} + + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void +fill_reaclib_rates(const tf_t& tfactors, T& rate_eval) +{ + + amrex::Real rate; + amrex::Real drate_dT; + + part_fun::pf_cache_t pf_cache{}; + + rate_p_C12_to_N13(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_C12_to_N13) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_C12_to_N13) = drate_dT; + + } + rate_He4_C12_to_O16(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_C12_to_O16) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_C12_to_O16) = drate_dT; + + } + rate_He4_N14_to_F18(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_N14_to_F18) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_N14_to_F18) = drate_dT; + + } + rate_He4_O16_to_Ne20(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_O16_to_Ne20) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_O16_to_Ne20) = drate_dT; + + } + rate_He4_F18_to_Na22(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_F18_to_Na22) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_F18_to_Na22) = drate_dT; + + } + rate_He4_Ne20_to_Mg24(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Ne20_to_Mg24) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Ne20_to_Mg24) = drate_dT; + + } + rate_p_Ne21_to_Na22(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Ne21_to_Na22) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Ne21_to_Na22) = drate_dT; + + } + rate_p_Na23_to_Mg24(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Na23_to_Mg24) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Na23_to_Mg24) = drate_dT; + + } + rate_He4_Mg24_to_Si28(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Mg24_to_Si28) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Mg24_to_Si28) = drate_dT; + + } + rate_p_Al27_to_Si28(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Al27_to_Si28) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Al27_to_Si28) = drate_dT; + + } + rate_He4_Si28_to_S32(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Si28_to_S32) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Si28_to_S32) = drate_dT; + + } + rate_p_P31_to_S32(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_P31_to_S32) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_P31_to_S32) = drate_dT; + + } + rate_He4_Cr48_to_Fe52(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Cr48_to_Fe52) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Cr48_to_Fe52) = drate_dT; + + } + rate_p_Mn51_to_Fe52(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Mn51_to_Fe52) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Mn51_to_Fe52) = drate_dT; + + } + rate_He4_Mn51_to_Co55(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Mn51_to_Co55) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Mn51_to_Co55) = drate_dT; + + } + rate_He4_Fe52_to_Ni56(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Fe52_to_Ni56) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Fe52_to_Ni56) = drate_dT; + + } + rate_p_Co55_to_Ni56(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Co55_to_Ni56) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Co55_to_Ni56) = drate_dT; + + } + rate_C12_C12_to_p_Na23(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_C12_C12_to_p_Na23) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_C12_C12_to_p_Na23) = drate_dT; + + } + rate_C12_C12_to_He4_Ne20(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_C12_C12_to_He4_Ne20) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_C12_C12_to_He4_Ne20) = drate_dT; + + } + rate_He4_N13_to_p_O16(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_N13_to_p_O16) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_N13_to_p_O16) = drate_dT; + + } + rate_C12_O16_to_p_Al27(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_C12_O16_to_p_Al27) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_C12_O16_to_p_Al27) = drate_dT; + + } + rate_C12_O16_to_He4_Mg24(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_C12_O16_to_He4_Mg24) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_C12_O16_to_He4_Mg24) = drate_dT; + + } + rate_O16_O16_to_p_P31(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_O16_O16_to_p_P31) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_O16_O16_to_p_P31) = drate_dT; + + } + rate_O16_O16_to_He4_Si28(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_O16_O16_to_He4_Si28) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_O16_O16_to_He4_Si28) = drate_dT; + + } + rate_He4_F18_to_p_Ne21(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_F18_to_p_Ne21) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_F18_to_p_Ne21) = drate_dT; + + } + rate_p_Na23_to_He4_Ne20(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Na23_to_He4_Ne20) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Na23_to_He4_Ne20) = drate_dT; + + } + rate_p_Al27_to_He4_Mg24(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Al27_to_He4_Mg24) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Al27_to_He4_Mg24) = drate_dT; + + } + rate_p_P31_to_He4_Si28(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_P31_to_He4_Si28) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_P31_to_He4_Si28) = drate_dT; + + } + rate_He4_Cr48_to_p_Mn51(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Cr48_to_p_Mn51) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Cr48_to_p_Mn51) = drate_dT; + + } + rate_He4_Fe52_to_p_Co55(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Fe52_to_p_Co55) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Fe52_to_p_Co55) = drate_dT; + + } + rate_He4_He4_He4_to_C12(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_He4_He4_to_C12) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_He4_He4_to_C12) = drate_dT; + + } + rate_C12_C12_to_Mg24_modified(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_C12_C12_to_Mg24_modified) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_C12_C12_to_Mg24_modified) = drate_dT; + + } + rate_O16_O16_to_S32_modified(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_O16_O16_to_S32_modified) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_O16_O16_to_S32_modified) = drate_dT; + + } + rate_C12_O16_to_Si28_modified(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_C12_O16_to_Si28_modified) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_C12_O16_to_Si28_modified) = drate_dT; + + } + rate_p_Fe54_to_Co55(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Fe54_to_Co55) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Fe54_to_Co55) = drate_dT; + + } + rate_He4_Fe54_to_Ni58(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Fe54_to_Ni58) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Fe54_to_Ni58) = drate_dT; + + } + rate_p_Fe56_to_Co57(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Fe56_to_Co57) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Fe56_to_Co57) = drate_dT; + + } + rate_n_Co55_to_Co56(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_n_Co55_to_Co56) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_n_Co55_to_Co56) = drate_dT; + + } + rate_n_Co56_to_Co57(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_n_Co56_to_Co57) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_n_Co56_to_Co57) = drate_dT; + + } + rate_p_Co57_to_Ni58(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Co57_to_Ni58) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Co57_to_Ni58) = drate_dT; + + } + rate_He4_Mn51_to_p_Fe54(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Mn51_to_p_Fe54) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Mn51_to_p_Fe54) = drate_dT; + + } + rate_He4_Co55_to_p_Ni58(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Co55_to_p_Ni58) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Co55_to_p_Ni58) = drate_dT; + + } + rate_n_Co56_to_p_Fe56(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_n_Co56_to_p_Fe56) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_n_Co56_to_p_Fe56) = drate_dT; + + } + rate_p_Co57_to_He4_Fe54(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Co57_to_He4_Fe54) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Co57_to_He4_Fe54) = drate_dT; + + } + rate_n_Ni56_to_p_Co56(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_n_Ni56_to_p_Co56) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_n_Ni56_to_p_Co56) = drate_dT; + + } + rate_He4_S32_to_Ar36_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_S32_to_Ar36_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_S32_to_Ar36_removed) = drate_dT; + + } + rate_p_Cl35_to_Ar36_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Cl35_to_Ar36_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Cl35_to_Ar36_removed) = drate_dT; + + } + rate_p_Cl35_to_He4_S32_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Cl35_to_He4_S32_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Cl35_to_He4_S32_removed) = drate_dT; + + } + rate_He4_Ar36_to_Ca40_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Ar36_to_Ca40_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Ar36_to_Ca40_removed) = drate_dT; + + } + rate_p_K39_to_Ca40_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_K39_to_Ca40_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_K39_to_Ca40_removed) = drate_dT; + + } + rate_p_K39_to_He4_Ar36_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_K39_to_He4_Ar36_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_K39_to_He4_Ar36_removed) = drate_dT; + + } + rate_He4_Ca40_to_Ti44_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Ca40_to_Ti44_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Ca40_to_Ti44_removed) = drate_dT; + + } + rate_p_Sc43_to_Ti44_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Sc43_to_Ti44_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Sc43_to_Ti44_removed) = drate_dT; + + } + rate_p_Sc43_to_He4_Ca40_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_Sc43_to_He4_Ca40_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Sc43_to_He4_Ca40_removed) = drate_dT; + + } + rate_He4_Ti44_to_Cr48_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Ti44_to_Cr48_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Ti44_to_Cr48_removed) = drate_dT; + + } + rate_He4_Ti44_to_p_V47_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_He4_Ti44_to_p_V47_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Ti44_to_p_V47_removed) = drate_dT; + + } + rate_p_V47_to_Cr48_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_p_V47_to_Cr48_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_V47_to_Cr48_removed) = drate_dT; + + } + rate_n_Fe52_to_Fe53_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_n_Fe52_to_Fe53_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_n_Fe52_to_Fe53_removed) = drate_dT; + + } + rate_n_Fe53_to_Fe54_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_n_Fe53_to_Fe54_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_n_Fe53_to_Fe54_removed) = drate_dT; + + } + rate_n_Fe54_to_Fe55_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_n_Fe54_to_Fe55_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_n_Fe54_to_Fe55_removed) = drate_dT; + + } + rate_n_Fe55_to_Fe56_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_n_Fe55_to_Fe56_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_n_Fe55_to_Fe56_removed) = drate_dT; + + } + rate_n_Ni56_to_Ni57_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_n_Ni56_to_Ni57_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_n_Ni56_to_Ni57_removed) = drate_dT; + + } + rate_n_Ni57_to_Ni58_removed(tfactors, rate, drate_dT); + rate_eval.screened_rates(k_n_Ni57_to_Ni58_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_n_Ni57_to_Ni58_removed) = drate_dT; + + } + rate_N13_to_p_C12_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_N13_to_p_C12_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_N13_to_p_C12_derived) = drate_dT; + + } + rate_O16_to_He4_C12_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_O16_to_He4_C12_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_O16_to_He4_C12_derived) = drate_dT; + + } + rate_F18_to_He4_N14_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_F18_to_He4_N14_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_F18_to_He4_N14_derived) = drate_dT; + + } + rate_Ne20_to_He4_O16_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ne20_to_He4_O16_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ne20_to_He4_O16_derived) = drate_dT; + + } + rate_Na22_to_p_Ne21_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Na22_to_p_Ne21_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Na22_to_p_Ne21_derived) = drate_dT; + + } + rate_Na22_to_He4_F18_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Na22_to_He4_F18_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Na22_to_He4_F18_derived) = drate_dT; + + } + rate_Mg24_to_p_Na23_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Mg24_to_p_Na23_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Mg24_to_p_Na23_derived) = drate_dT; + + } + rate_Mg24_to_He4_Ne20_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Mg24_to_He4_Ne20_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Mg24_to_He4_Ne20_derived) = drate_dT; + + } + rate_Si28_to_p_Al27_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Si28_to_p_Al27_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Si28_to_p_Al27_derived) = drate_dT; + + } + rate_Si28_to_He4_Mg24_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Si28_to_He4_Mg24_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Si28_to_He4_Mg24_derived) = drate_dT; + + } + rate_S32_to_p_P31_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_S32_to_p_P31_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_S32_to_p_P31_derived) = drate_dT; + + } + rate_S32_to_He4_Si28_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_S32_to_He4_Si28_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_S32_to_He4_Si28_derived) = drate_dT; + + } + rate_Fe52_to_p_Mn51_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Fe52_to_p_Mn51_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Fe52_to_p_Mn51_derived) = drate_dT; + + } + rate_Fe52_to_He4_Cr48_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Fe52_to_He4_Cr48_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Fe52_to_He4_Cr48_derived) = drate_dT; + + } + rate_Co55_to_He4_Mn51_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Co55_to_He4_Mn51_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Co55_to_He4_Mn51_derived) = drate_dT; + + } + rate_Ni56_to_p_Co55_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ni56_to_p_Co55_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ni56_to_p_Co55_derived) = drate_dT; + + } + rate_Ni56_to_He4_Fe52_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ni56_to_He4_Fe52_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ni56_to_He4_Fe52_derived) = drate_dT; + + } + rate_C12_to_He4_He4_He4_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_C12_to_He4_He4_He4_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_C12_to_He4_He4_He4_derived) = drate_dT; + + } + rate_p_O16_to_He4_N13_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_p_O16_to_He4_N13_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_O16_to_He4_N13_derived) = drate_dT; + + } + rate_He4_Ne20_to_p_Na23_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_He4_Ne20_to_p_Na23_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Ne20_to_p_Na23_derived) = drate_dT; + + } + rate_p_Ne21_to_He4_F18_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_p_Ne21_to_He4_F18_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Ne21_to_He4_F18_derived) = drate_dT; + + } + rate_He4_Mg24_to_p_Al27_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_He4_Mg24_to_p_Al27_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Mg24_to_p_Al27_derived) = drate_dT; + + } + rate_He4_Si28_to_p_P31_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_He4_Si28_to_p_P31_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Si28_to_p_P31_derived) = drate_dT; + + } + rate_p_Mn51_to_He4_Cr48_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_p_Mn51_to_He4_Cr48_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Mn51_to_He4_Cr48_derived) = drate_dT; + + } + rate_p_Co55_to_He4_Fe52_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_p_Co55_to_He4_Fe52_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Co55_to_He4_Fe52_derived) = drate_dT; + + } + rate_Co55_to_p_Fe54_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Co55_to_p_Fe54_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Co55_to_p_Fe54_derived) = drate_dT; + + } + rate_Co56_to_n_Co55_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Co56_to_n_Co55_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Co56_to_n_Co55_derived) = drate_dT; + + } + rate_Co57_to_n_Co56_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Co57_to_n_Co56_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Co57_to_n_Co56_derived) = drate_dT; + + } + rate_Co57_to_p_Fe56_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Co57_to_p_Fe56_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Co57_to_p_Fe56_derived) = drate_dT; + + } + rate_Ni58_to_p_Co57_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ni58_to_p_Co57_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ni58_to_p_Co57_derived) = drate_dT; + + } + rate_Ni58_to_He4_Fe54_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ni58_to_He4_Fe54_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ni58_to_He4_Fe54_derived) = drate_dT; + + } + rate_p_Fe54_to_He4_Mn51_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_p_Fe54_to_He4_Mn51_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Fe54_to_He4_Mn51_derived) = drate_dT; + + } + rate_He4_Fe54_to_p_Co57_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_He4_Fe54_to_p_Co57_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Fe54_to_p_Co57_derived) = drate_dT; + + } + rate_p_Fe56_to_n_Co56_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_p_Fe56_to_n_Co56_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Fe56_to_n_Co56_derived) = drate_dT; + + } + rate_p_Co56_to_n_Ni56_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_p_Co56_to_n_Ni56_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Co56_to_n_Ni56_derived) = drate_dT; + + } + rate_p_Ni58_to_He4_Co55_derived(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_p_Ni58_to_He4_Co55_derived) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_Ni58_to_He4_Co55_derived) = drate_dT; + + } + rate_He4_S32_to_p_Cl35_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_He4_S32_to_p_Cl35_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_S32_to_p_Cl35_derived_removed) = drate_dT; + + } + rate_Ar36_to_He4_S32_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ar36_to_He4_S32_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ar36_to_He4_S32_derived_removed) = drate_dT; + + } + rate_Ar36_to_p_Cl35_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ar36_to_p_Cl35_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ar36_to_p_Cl35_derived_removed) = drate_dT; + + } + rate_He4_Ar36_to_p_K39_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_He4_Ar36_to_p_K39_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Ar36_to_p_K39_derived_removed) = drate_dT; + + } + rate_Ca40_to_He4_Ar36_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ca40_to_He4_Ar36_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ca40_to_He4_Ar36_derived_removed) = drate_dT; + + } + rate_Ca40_to_p_K39_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ca40_to_p_K39_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ca40_to_p_K39_derived_removed) = drate_dT; + + } + rate_He4_Ca40_to_p_Sc43_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_He4_Ca40_to_p_Sc43_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_He4_Ca40_to_p_Sc43_derived_removed) = drate_dT; + + } + rate_Ti44_to_He4_Ca40_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ti44_to_He4_Ca40_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ti44_to_He4_Ca40_derived_removed) = drate_dT; + + } + rate_Ti44_to_p_Sc43_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ti44_to_p_Sc43_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ti44_to_p_Sc43_derived_removed) = drate_dT; + + } + rate_Cr48_to_He4_Ti44_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Cr48_to_He4_Ti44_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Cr48_to_He4_Ti44_derived_removed) = drate_dT; + + } + rate_Cr48_to_p_V47_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Cr48_to_p_V47_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Cr48_to_p_V47_derived_removed) = drate_dT; + + } + rate_p_V47_to_He4_Ti44_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_p_V47_to_He4_Ti44_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_p_V47_to_He4_Ti44_derived_removed) = drate_dT; + + } + rate_Fe54_to_n_Fe53_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Fe54_to_n_Fe53_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Fe54_to_n_Fe53_derived_removed) = drate_dT; + + } + rate_Fe53_to_n_Fe52_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Fe53_to_n_Fe52_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Fe53_to_n_Fe52_derived_removed) = drate_dT; + + } + rate_Fe56_to_n_Fe55_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Fe56_to_n_Fe55_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Fe56_to_n_Fe55_derived_removed) = drate_dT; + + } + rate_Fe55_to_n_Fe54_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Fe55_to_n_Fe54_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Fe55_to_n_Fe54_derived_removed) = drate_dT; + + } + rate_Ni58_to_n_Ni57_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ni58_to_n_Ni57_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ni58_to_n_Ni57_derived_removed) = drate_dT; + + } + rate_Ni57_to_n_Ni56_derived_removed(tfactors, rate, drate_dT, pf_cache); + rate_eval.screened_rates(k_Ni57_to_n_Ni56_derived_removed) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ni57_to_n_Ni56_derived_removed) = drate_dT; + + } + +} + +template +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void +fill_approx_rates([[maybe_unused]] const tf_t& tfactors, + [[maybe_unused]] const amrex::Real rho, + [[maybe_unused]] const amrex::Array1D& Y, + [[maybe_unused]] T& rate_eval) +{ + + [[maybe_unused]] amrex::Real rate{}; + [[maybe_unused]] amrex::Real drate_dT{}; + + rate_S32_He4_to_Ar36_approx(rate_eval, rate, drate_dT); + rate_eval.screened_rates(k_S32_He4_to_Ar36_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_S32_He4_to_Ar36_approx) = drate_dT; + + } + rate_Ar36_to_S32_He4_approx(rate_eval, rate, drate_dT); + rate_eval.screened_rates(k_Ar36_to_S32_He4_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ar36_to_S32_He4_approx) = drate_dT; + + } + rate_Ar36_He4_to_Ca40_approx(rate_eval, rate, drate_dT); + rate_eval.screened_rates(k_Ar36_He4_to_Ca40_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ar36_He4_to_Ca40_approx) = drate_dT; + + } + rate_Ca40_to_Ar36_He4_approx(rate_eval, rate, drate_dT); + rate_eval.screened_rates(k_Ca40_to_Ar36_He4_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ca40_to_Ar36_He4_approx) = drate_dT; + + } + rate_Ca40_He4_to_Ti44_approx(rate_eval, rate, drate_dT); + rate_eval.screened_rates(k_Ca40_He4_to_Ti44_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ca40_He4_to_Ti44_approx) = drate_dT; + + } + rate_Ti44_to_Ca40_He4_approx(rate_eval, rate, drate_dT); + rate_eval.screened_rates(k_Ti44_to_Ca40_He4_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ti44_to_Ca40_He4_approx) = drate_dT; + + } + rate_Ti44_He4_to_Cr48_approx(rate_eval, rate, drate_dT); + rate_eval.screened_rates(k_Ti44_He4_to_Cr48_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ti44_He4_to_Cr48_approx) = drate_dT; + + } + rate_Cr48_to_Ti44_He4_approx(rate_eval, rate, drate_dT); + rate_eval.screened_rates(k_Cr48_to_Ti44_He4_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Cr48_to_Ti44_He4_approx) = drate_dT; + + } + rate_Fe52_n_n_to_Fe54_approx(rate_eval, rho, Y, rate, drate_dT); + rate_eval.screened_rates(k_Fe52_n_n_to_Fe54_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Fe52_n_n_to_Fe54_approx) = drate_dT; + + } + rate_Fe54_to_Fe52_n_n_approx(rate_eval, rho, Y, rate, drate_dT); + rate_eval.screened_rates(k_Fe54_to_Fe52_n_n_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Fe54_to_Fe52_n_n_approx) = drate_dT; + + } + rate_Fe54_n_n_to_Fe56_approx(rate_eval, rho, Y, rate, drate_dT); + rate_eval.screened_rates(k_Fe54_n_n_to_Fe56_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Fe54_n_n_to_Fe56_approx) = drate_dT; + + } + rate_Fe56_to_Fe54_n_n_approx(rate_eval, rho, Y, rate, drate_dT); + rate_eval.screened_rates(k_Fe56_to_Fe54_n_n_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Fe56_to_Fe54_n_n_approx) = drate_dT; + + } + rate_Ni56_n_n_to_Ni58_approx(rate_eval, rho, Y, rate, drate_dT); + rate_eval.screened_rates(k_Ni56_n_n_to_Ni58_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ni56_n_n_to_Ni58_approx) = drate_dT; + + } + rate_Ni58_to_Ni56_n_n_approx(rate_eval, rho, Y, rate, drate_dT); + rate_eval.screened_rates(k_Ni58_to_Ni56_n_n_approx) = rate; + if constexpr (std::is_same_v) { + rate_eval.dscreened_rates_dT(k_Ni58_to_Ni56_n_n_approx) = drate_dT; + + } + +} + +#endif diff --git a/networks/He-C-Fe-group-simple/table_rates.H b/networks/He-C-Fe-group-simple/table_rates.H new file mode 100644 index 000000000..1ea1aa537 --- /dev/null +++ b/networks/He-C-Fe-group-simple/table_rates.H @@ -0,0 +1,429 @@ +#ifndef TABLE_RATES_H +#define TABLE_RATES_H + +#include +#include +#include +#include + +#include + +using namespace amrex; + +void init_tabular(); + +// Table is expected to be in terms of dens*ye and temp (logarithmic, cgs units) +// Table energy units are expected in terms of ergs + +// all tables are expected to have columns: +// Log(rhoY) Log(T) mu dQ Vs Log(e-cap-rate) Log(nu-energy-loss) Log(gamma-energy) +// Log(g/cm^3) Log(K) erg erg erg Log(1/s) Log(erg/s) Log(erg/s) +// + +const int num_tables = 6; + +enum TableVars +{ + jtab_mu = 1, + jtab_dq = 2, + jtab_vs = 3, + jtab_rate = 4, + jtab_nuloss = 5, + jtab_gamma = 6, + num_vars = jtab_gamma +}; + + +struct table_t +{ + int ntemp; + int nrhoy; + int nvars; + int nheader; +}; + +// we add a 7th index, k_index_dlogr_dlogt used for computing the derivative +// of Log(rate) with respect of Log(temperature) by using the table +// values. It isn't an index into the table but into the 'entries' +// array. Is important to mention that although we compute dlogr/dlogT is +// the computed quantity in 'entries', we pursue ultimately +// dr/dt as the final desired quantity to be computed for this index. + +const int k_index_dlogr_dlogt = 7; +const int add_vars = 1; // 1 Additional Var in entries + + +namespace rate_tables +{ + extern AMREX_GPU_MANAGED table_t j_Co56_Fe56_meta; + extern AMREX_GPU_MANAGED amrex::Array3D j_Co56_Fe56_data; + extern AMREX_GPU_MANAGED amrex::Array1D j_Co56_Fe56_rhoy; + extern AMREX_GPU_MANAGED amrex::Array1D j_Co56_Fe56_temp; + + extern AMREX_GPU_MANAGED table_t j_Co56_Ni56_meta; + extern AMREX_GPU_MANAGED amrex::Array3D j_Co56_Ni56_data; + extern AMREX_GPU_MANAGED amrex::Array1D j_Co56_Ni56_rhoy; + extern AMREX_GPU_MANAGED amrex::Array1D j_Co56_Ni56_temp; + + extern AMREX_GPU_MANAGED table_t j_Fe56_Co56_meta; + extern AMREX_GPU_MANAGED amrex::Array3D j_Fe56_Co56_data; + extern AMREX_GPU_MANAGED amrex::Array1D j_Fe56_Co56_rhoy; + extern AMREX_GPU_MANAGED amrex::Array1D j_Fe56_Co56_temp; + + extern AMREX_GPU_MANAGED table_t j_n_p_meta; + extern AMREX_GPU_MANAGED amrex::Array3D j_n_p_data; + extern AMREX_GPU_MANAGED amrex::Array1D j_n_p_rhoy; + extern AMREX_GPU_MANAGED amrex::Array1D j_n_p_temp; + + extern AMREX_GPU_MANAGED table_t j_Ni56_Co56_meta; + extern AMREX_GPU_MANAGED amrex::Array3D j_Ni56_Co56_data; + extern AMREX_GPU_MANAGED amrex::Array1D j_Ni56_Co56_rhoy; + extern AMREX_GPU_MANAGED amrex::Array1D j_Ni56_Co56_temp; + + extern AMREX_GPU_MANAGED table_t j_p_n_meta; + extern AMREX_GPU_MANAGED amrex::Array3D j_p_n_data; + extern AMREX_GPU_MANAGED amrex::Array1D j_p_n_rhoy; + extern AMREX_GPU_MANAGED amrex::Array1D j_p_n_temp; + +} + +template +void init_tab_info(const table_t& tf, const std::string& file, R& log_rhoy_table, T& log_temp_table, D& data) +{ + // This function initializes the selected tabular-rate tables. From the tables we are interested + // on the rate, neutrino-energy-loss and the gamma-energy entries. + + std::ifstream table; + table.open(file); + + if (!table.is_open()) { + // the table was not present or we could not open it; abort + amrex::Error("table could not be opened"); + } + + std::string line; + + // read and skip over the header + + for (int i = 0; i < tf.nheader; ++i) { + std::getline(table, line); + } + + // now the data -- there are 2 extra columns, for log_temp and log_rhoy + + for (int j = 1; j <= tf.nrhoy; ++j) { + for (int i = 1; i <= tf.ntemp; ++i) { + std::getline(table, line); + if (line.empty()) { + amrex::Error("Error reading table data"); + } + + std::istringstream sdata(line); + + sdata >> log_rhoy_table(j) >> log_temp_table(i); + + for (int n = 1; n <= tf.nvars; ++n) { + sdata >> data(i, j, n); + } + } + } + table.close(); +} + + +template +AMREX_INLINE AMREX_GPU_HOST_DEVICE +int vector_index_lu(const int vlen, const V& vector, const amrex::Real fvar) +{ + + // Returns the greatest index of vector for which vector(index) < fvar. + // Return 1 if fvar < vector(1) + // Return size(vector)-1 if fvar > vector(size(vector)) + // The interval [index, index+1] brackets fvar for fvar within the range of vector. + + int index; + + if (fvar < vector(1)) { + index = 1; + } else if (fvar > vector(vlen)) { + index = vlen - 1; + } else { + int nup = vlen; + int ndn = 1; + for (int i = 1; i <= vlen; ++i) { + int j = ndn + (nup - ndn)/2; + if (fvar < vector(j)) { + nup = j; + } else { + ndn = j; + } + if ((nup - ndn) == 1) { + break; + } + } + index = ndn; + } + return index; +} + + +AMREX_INLINE AMREX_GPU_HOST_DEVICE +amrex::Real +evaluate_linear_1d(const amrex::Real fhi, const amrex::Real flo, const amrex::Real xhi, const amrex::Real xlo, const amrex::Real x) +{ + // This function is a 1-D linear interpolator, that keeps x constant to xlo or xhi, based + // on the side, if x is outside [xlo, xhi] respectively. + + amrex::Real xx = Clamp(x, xlo, xhi); + amrex::Real f = flo + (fhi - flo) * (xx - xlo) / (xhi - xlo); + + return f; +} + +AMREX_INLINE AMREX_GPU_HOST_DEVICE +amrex::Real +evaluate_linear_2d(const amrex::Real fip1jp1, const amrex::Real fip1j, const amrex::Real fijp1, const amrex::Real fij, + const amrex::Real xhi, const amrex::Real xlo, const amrex::Real yhi, const amrex::Real ylo, + const amrex::Real x, const amrex::Real y) +{ + // This is the 2-D linear interpolator, as an extension of evaluate_linear_1d. + + amrex::Real f; + amrex::Real dx = xhi - xlo; + amrex::Real dy = yhi - ylo; + + amrex::Real E = fij; + amrex::Real C = (fijp1 - fij) / dy; + amrex::Real B = (fip1j - fij) / dx; + amrex::Real A = (fip1jp1 - B * dx - C * dy - E) / (dx * dy); + + amrex::Real xx = Clamp(x, xlo, xhi); + amrex::Real yy = Clamp(y, ylo, yhi); + + f = A * (xx - xlo) * (yy - ylo) + + B * (xx - xlo) + + C * (yy - ylo) + + E; + + return f; +} + + +template +AMREX_INLINE AMREX_GPU_HOST_DEVICE +amrex::Real +evaluate_vars(const table_t& table_meta, const R& log_rhoy_table, const T& log_temp_table, const D& data, + const amrex::Real log_rhoy, const amrex::Real log_temp, const int component) +{ + // This function evaluates the 2-D interpolator, for several pairs of rho_ye and temperature. + + int jtemp_lo = vector_index_lu(table_meta.ntemp, log_temp_table, log_temp); + int jtemp_hi = jtemp_lo + 1; + + int irhoy_lo = vector_index_lu(table_meta.nrhoy, log_rhoy_table, log_rhoy); + int irhoy_hi = irhoy_lo + 1; + + amrex::Real rhoy_lo = log_rhoy_table(irhoy_lo); + amrex::Real rhoy_hi = log_rhoy_table(irhoy_hi); + + amrex::Real t_lo = log_temp_table(jtemp_lo); + amrex::Real t_hi = log_temp_table(jtemp_hi); + + amrex::Real fij = data(jtemp_lo, irhoy_lo, component); + amrex::Real fip1j = data(jtemp_lo, irhoy_hi, component); + amrex::Real fijp1 = data(jtemp_hi, irhoy_lo, component); + amrex::Real fip1jp1 = data(jtemp_hi, irhoy_hi, component); + + amrex::Real r = evaluate_linear_2d(fip1jp1, fip1j, fijp1, fij, + rhoy_hi, rhoy_lo, t_hi, t_lo, log_rhoy, log_temp); + + return r; +} + + +template +AMREX_INLINE AMREX_GPU_HOST_DEVICE +amrex::Real +evaluate_dr_dtemp(const table_t& table_meta, const R& log_rhoy_table, const T& log_temp_table, const D& data, + const amrex::Real log_rhoy, const amrex::Real log_temp) +{ + // The main objective of this function is compute dlogr_dlogt. + + int irhoy_lo = vector_index_lu(table_meta.nrhoy, log_rhoy_table, log_rhoy); + int irhoy_hi = irhoy_lo + 1; + + int jtemp_lo = vector_index_lu(table_meta.ntemp, log_temp_table, log_temp); + int jtemp_hi = jtemp_lo + 1; + + amrex::Real dlogr_dlogt; + + //Now we compute the forward finite difference on the boundary + + if ((jtemp_lo - 1 < 1) || (jtemp_hi + 1 > table_meta.ntemp)) { + + // In this case we are in the boundaries of the table. + // At the boundary, we compute the forward-j finite difference + // to compute dlogr_dlogt_i and dlogr_dlogt_ip1, using the + // following stencil: + // + // + // fijp1-----------fip1jp1 + // | | + // | | + // | | + // | | + // | | + // | | + // | | + // fij-------------fip1j + // + // with the following result: + // + // dlogr_dlogt_i --------dlogr_dlogt_ip1 + // + // Finally, we perform a 1d-linear interpolation between dlogr_dlogt_ip1 + // and dlogr_dlogt_i to compute dlogr_dlogt + + amrex::Real log_rhoy_lo = log_rhoy_table(irhoy_lo); + amrex::Real log_rhoy_hi = log_rhoy_table(irhoy_hi); + + amrex::Real log_temp_lo = log_temp_table(jtemp_lo); + amrex::Real log_temp_hi = log_temp_table(jtemp_hi); + + amrex::Real fij = data(jtemp_lo, irhoy_lo, jtab_rate); + amrex::Real fip1j = data(jtemp_lo, irhoy_hi, jtab_rate); + amrex::Real fijp1 = data(jtemp_hi, irhoy_lo, jtab_rate); + amrex::Real fip1jp1 = data(jtemp_hi, irhoy_hi, jtab_rate); + + amrex::Real dlogr_dlogt_i = (fijp1 - fij) / (log_temp_hi - log_temp_lo); + amrex::Real dlogr_dlogt_ip1 = (fip1jp1 - fip1j) / (log_temp_hi - log_temp_lo); + + if ((log_temp < log_temp_lo) || (log_temp > log_temp_hi)) { + dlogr_dlogt = 0.0_rt; + } else { + dlogr_dlogt = evaluate_linear_1d(dlogr_dlogt_ip1, dlogr_dlogt_i, log_rhoy_hi, log_rhoy_lo, log_rhoy); + } + + } else { + + // In this case, we use a bigger stencil to reconstruct the + // temperature derivatives in the j and j+1 temperature positions, + // using the cetral-j finite differences: + // + // fijp2 ------------fip1jp2 + // | | + // | | + // | | + // | | + // | | + // | | + // | | + // fijp1------------fip1jp1 + // | | + // | | + // | | + // | | + // | | + // | | + // | | + // fij------------- fip1j + // | | + // | | + // | | + // | | + // | | + // | | + // | | + // fijm1------------fip1jm1 + // + // with the following result: + // + // + // dr_dt_ijp1 --------dr_dt_ip1jp1 + // | | + // | | + // | | + // | | + // | | + // | | + // | | + // dr_dt_ij-----------dr_dt_ip1j + // + // Finally, we perform a 2d-linear interpolation to + // compute dlogr_dlogt. + + amrex::Real log_temp_jm1 = log_temp_table(jtemp_lo-1); + amrex::Real log_temp_j = log_temp_table(jtemp_lo); + amrex::Real log_temp_jp1 = log_temp_table(jtemp_hi); + amrex::Real log_temp_jp2 = log_temp_table(jtemp_hi+1); + + amrex::Real log_rhoy_lo = log_rhoy_table(irhoy_lo); + amrex::Real log_rhoy_hi = log_rhoy_table(irhoy_hi); + + amrex::Real fijm1 = data(jtemp_lo-1, irhoy_lo, jtab_rate); + amrex::Real fij = data(jtemp_lo, irhoy_lo, jtab_rate); + amrex::Real fijp1 = data(jtemp_hi, irhoy_lo, jtab_rate); + amrex::Real fijp2 = data(jtemp_hi+1, irhoy_lo, jtab_rate); + + amrex::Real fip1jm1 = data(jtemp_lo-1, irhoy_hi, jtab_rate); + amrex::Real fip1j = data(jtemp_lo, irhoy_hi, jtab_rate); + amrex::Real fip1jp1 = data(jtemp_hi, irhoy_hi, jtab_rate); + amrex::Real fip1jp2 = data(jtemp_hi+1, irhoy_hi, jtab_rate); + + amrex::Real dlogr_dlogt_ij = (fijp1 - fijm1)/(log_temp_jp1 - log_temp_jm1); + amrex::Real dlogr_dlogt_ijp1 = (fijp2 - fij)/(log_temp_jp2 - log_temp_j); + amrex::Real dlogr_dlogt_ip1j = (fip1jp1 - fip1jm1)/(log_temp_jp1 - log_temp_jm1); + amrex::Real dlogr_dlogt_ip1jp1 = (fip1jp2 - fip1j)/(log_temp_jp2 - log_temp_j); + + dlogr_dlogt = evaluate_linear_2d(dlogr_dlogt_ip1jp1, dlogr_dlogt_ip1j, dlogr_dlogt_ijp1, dlogr_dlogt_ij, + log_rhoy_hi, log_rhoy_lo, log_temp_jp1, log_temp_j, + log_rhoy, log_temp); + + } + return dlogr_dlogt; +} + + +template +AMREX_INLINE AMREX_GPU_HOST_DEVICE +void +get_entries(const table_t& table_meta, const R& log_rhoy_table, const T& log_temp_table, const D& data, + const amrex::Real log_rhoy, const amrex::Real log_temp, amrex::Array1D& entries) +{ + for (int ivar = 1; ivar <= num_vars; ivar++) { + entries(ivar) = evaluate_vars(table_meta, log_rhoy_table, log_temp_table, data, + log_rhoy, log_temp, ivar); + } + + entries(k_index_dlogr_dlogt) = evaluate_dr_dtemp(table_meta, log_rhoy_table, log_temp_table, data, + log_rhoy, log_temp); +} + +template +AMREX_INLINE AMREX_GPU_HOST_DEVICE +void +tabular_evaluate(const table_t& table_meta, + const R& log_rhoy_table, const T& log_temp_table, const D& data, + const amrex::Real rhoy, const amrex::Real temp, + amrex::Real& rate, amrex::Real& drate_dt, amrex::Real& edot_nu, amrex::Real& edot_gamma) +{ + amrex::Array1D entries; + + // Get the table entries at this rhoy, temp + + amrex::Real log_rhoy = std::log10(rhoy); + amrex::Real log_temp = std::log10(temp); + + get_entries(table_meta, log_rhoy_table, log_temp_table, data, + log_rhoy, log_temp, entries); + + // Fill outputs: rate, d(rate)/d(temperature), and + // (negative) neutrino loss contribution to energy generation + + rate = std::pow(10.0_rt, entries(jtab_rate)); + drate_dt = rate * entries(k_index_dlogr_dlogt) / temp; + edot_nu = -std::pow(10.0_rt, entries(jtab_nuloss)); + edot_gamma = std::pow(10.0_rt, entries(jtab_gamma)); +} + +#endif diff --git a/networks/He-C-Fe-group-simple/table_rates_data.cpp b/networks/He-C-Fe-group-simple/table_rates_data.cpp new file mode 100644 index 000000000..3fb138c94 --- /dev/null +++ b/networks/He-C-Fe-group-simple/table_rates_data.cpp @@ -0,0 +1,101 @@ +#include +#include +#include +#include + +using namespace amrex; + +namespace rate_tables +{ + + AMREX_GPU_MANAGED table_t j_Co56_Fe56_meta; + AMREX_GPU_MANAGED amrex::Array3D j_Co56_Fe56_data; + AMREX_GPU_MANAGED amrex::Array1D j_Co56_Fe56_rhoy; + AMREX_GPU_MANAGED amrex::Array1D j_Co56_Fe56_temp; + + AMREX_GPU_MANAGED table_t j_Co56_Ni56_meta; + AMREX_GPU_MANAGED amrex::Array3D j_Co56_Ni56_data; + AMREX_GPU_MANAGED amrex::Array1D j_Co56_Ni56_rhoy; + AMREX_GPU_MANAGED amrex::Array1D j_Co56_Ni56_temp; + + AMREX_GPU_MANAGED table_t j_Fe56_Co56_meta; + AMREX_GPU_MANAGED amrex::Array3D j_Fe56_Co56_data; + AMREX_GPU_MANAGED amrex::Array1D j_Fe56_Co56_rhoy; + AMREX_GPU_MANAGED amrex::Array1D j_Fe56_Co56_temp; + + AMREX_GPU_MANAGED table_t j_n_p_meta; + AMREX_GPU_MANAGED amrex::Array3D j_n_p_data; + AMREX_GPU_MANAGED amrex::Array1D j_n_p_rhoy; + AMREX_GPU_MANAGED amrex::Array1D j_n_p_temp; + + AMREX_GPU_MANAGED table_t j_Ni56_Co56_meta; + AMREX_GPU_MANAGED amrex::Array3D j_Ni56_Co56_data; + AMREX_GPU_MANAGED amrex::Array1D j_Ni56_Co56_rhoy; + AMREX_GPU_MANAGED amrex::Array1D j_Ni56_Co56_temp; + + AMREX_GPU_MANAGED table_t j_p_n_meta; + AMREX_GPU_MANAGED amrex::Array3D j_p_n_data; + AMREX_GPU_MANAGED amrex::Array1D j_p_n_rhoy; + AMREX_GPU_MANAGED amrex::Array1D j_p_n_temp; + + +} + + +void init_tabular() +{ + + amrex::Print() << "reading in network electron-capture / beta-decay tables..." << std::endl; + + using namespace rate_tables; + + j_Co56_Fe56_meta.ntemp = 13; + j_Co56_Fe56_meta.nrhoy = 11; + j_Co56_Fe56_meta.nvars = 6; + j_Co56_Fe56_meta.nheader = 5; + + init_tab_info(j_Co56_Fe56_meta, "56co-56fe_electroncapture.dat", j_Co56_Fe56_rhoy, j_Co56_Fe56_temp, j_Co56_Fe56_data); + + + j_Co56_Ni56_meta.ntemp = 13; + j_Co56_Ni56_meta.nrhoy = 11; + j_Co56_Ni56_meta.nvars = 6; + j_Co56_Ni56_meta.nheader = 5; + + init_tab_info(j_Co56_Ni56_meta, "56co-56ni_betadecay.dat", j_Co56_Ni56_rhoy, j_Co56_Ni56_temp, j_Co56_Ni56_data); + + + j_Fe56_Co56_meta.ntemp = 13; + j_Fe56_Co56_meta.nrhoy = 11; + j_Fe56_Co56_meta.nvars = 6; + j_Fe56_Co56_meta.nheader = 5; + + init_tab_info(j_Fe56_Co56_meta, "56fe-56co_betadecay.dat", j_Fe56_Co56_rhoy, j_Fe56_Co56_temp, j_Fe56_Co56_data); + + + j_n_p_meta.ntemp = 13; + j_n_p_meta.nrhoy = 11; + j_n_p_meta.nvars = 6; + j_n_p_meta.nheader = 5; + + init_tab_info(j_n_p_meta, "n-p_betadecay.dat", j_n_p_rhoy, j_n_p_temp, j_n_p_data); + + + j_Ni56_Co56_meta.ntemp = 13; + j_Ni56_Co56_meta.nrhoy = 11; + j_Ni56_Co56_meta.nvars = 6; + j_Ni56_Co56_meta.nheader = 5; + + init_tab_info(j_Ni56_Co56_meta, "56ni-56co_electroncapture.dat", j_Ni56_Co56_rhoy, j_Ni56_Co56_temp, j_Ni56_Co56_data); + + + j_p_n_meta.ntemp = 13; + j_p_n_meta.nrhoy = 11; + j_p_n_meta.nvars = 6; + j_p_n_meta.nheader = 5; + + init_tab_info(j_p_n_meta, "p-n_electroncapture.dat", j_p_n_rhoy, j_p_n_temp, j_p_n_data); + + + +} diff --git a/networks/He-C-Fe-group-simple/tfactors.H b/networks/He-C-Fe-group-simple/tfactors.H new file mode 100644 index 000000000..3ec02d562 --- /dev/null +++ b/networks/He-C-Fe-group-simple/tfactors.H @@ -0,0 +1,34 @@ +#ifndef TFACTORS_H +#define TFACTORS_H + +struct tf_t { + amrex::Real T9; + amrex::Real T9i; + amrex::Real T943i; + amrex::Real T923i; + amrex::Real T913i; + amrex::Real T913; + amrex::Real T923; + amrex::Real T953; + amrex::Real lnT9; +}; + +AMREX_GPU_HOST_DEVICE AMREX_INLINE +tf_t evaluate_tfactors(const amrex::Real T) +{ + + tf_t tf; + tf.T9 = T / 1.e9_rt; + tf.T9i = 1.0_rt / tf.T9; + tf.T913 = std::cbrt(tf.T9); + tf.T913i = 1.0_rt / tf.T913; + tf.T923i = tf.T913i * tf.T913i; + tf.T943i = tf.T9i * tf.T913i; + tf.T923 = tf.T913 * tf.T913; + tf.T953 = tf.T9 * tf.T923; + tf.lnT9 = std::log(tf.T9); + + return tf; +} + +#endif From 2c124968b17ead41c440a082e52181ecf45e5e90 Mon Sep 17 00:00:00 2001 From: Michael Zingale Date: Tue, 12 Nov 2024 14:53:53 -0500 Subject: [PATCH 3/8] update --- .../neutron_approximation.ipynb | 142 ++++++------------ 1 file changed, 43 insertions(+), 99 deletions(-) diff --git a/networks/He-C-Fe-group-simple/neutron_approximation.ipynb b/networks/He-C-Fe-group-simple/neutron_approximation.ipynb index d3eed8640..2275b1a4c 100644 --- a/networks/He-C-Fe-group-simple/neutron_approximation.ipynb +++ b/networks/He-C-Fe-group-simple/neutron_approximation.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 4, "id": "32a423ae-1c45-48f9-8890-886e7947eff2", "metadata": {}, "outputs": [], @@ -49,7 +49,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 5, "id": "d338da52-327c-4ab1-ab6b-40da8430ac6d", "metadata": {}, "outputs": [], @@ -60,29 +60,10 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 6, "id": "097e87ee-561b-4737-8a71-36989ba312b4", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "rate c12(c12,n)mg23 not found\n" - ] - }, - { - "ename": "AttributeError", - "evalue": "'NoneType' object has no attribute 'modify_products'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[22], line 10\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m r, mp \u001b[38;5;129;01min\u001b[39;00m other_rates:\n\u001b[1;32m 9\u001b[0m _r \u001b[38;5;241m=\u001b[39m reaclib_lib\u001b[38;5;241m.\u001b[39mget_rate_by_name(r)\n\u001b[0;32m---> 10\u001b[0m \u001b[43m_r\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodify_products\u001b[49m(mp)\n\u001b[1;32m 11\u001b[0m core_lib\u001b[38;5;241m.\u001b[39madd_rate(_r)\n", - "\u001b[0;31mAttributeError\u001b[0m: 'NoneType' object has no attribute 'modify_products'" - ] - } - ], + "outputs": [], "source": [ "# in this list, we have the reactants, the actual reactants,\n", "# and modified products that we will use instead\n", @@ -99,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 7, "id": "f062fc6c-1e9f-486f-a4f1-535ada0f2a57", "metadata": {}, "outputs": [ @@ -440,8 +421,6 @@ "using approximate rate Fe54 ⟶ Fe52 + n + n\n", "using approximate rate Fe54 + n + n ⟶ Fe56 + 𝛾\n", "using approximate rate Fe56 ⟶ Fe54 + n + n\n", - "using approximate rate Co55 + n + n ⟶ Co57 + 𝛾\n", - "using approximate rate Co57 ⟶ Co55 + n + n\n", "using approximate rate Ni56 + n + n ⟶ Ni58 + 𝛾\n", "using approximate rate Ni58 ⟶ Ni56 + n + n\n", "removing rate Fe52 + n ⟶ Fe53 + 𝛾\n", @@ -452,10 +431,6 @@ "removing rate Fe55 + n ⟶ Fe56 + 𝛾\n", "removing rate Fe56 ⟶ n + Fe55\n", "removing rate Fe55 ⟶ n + Fe54\n", - "removing rate Co55 + n ⟶ Co56 + 𝛾\n", - "removing rate Co56 + n ⟶ Co57 + 𝛾\n", - "removing rate Co57 ⟶ n + Co56\n", - "removing rate Co56 ⟶ n + Co55\n", "removing rate Ni56 + n ⟶ Ni57 + 𝛾\n", "removing rate Ni57 + n ⟶ Ni58 + 𝛾\n", "removing rate Ni58 ⟶ n + Ni57\n", @@ -474,20 +449,6 @@ "looking to remove Fe55 + He4 ⟶ n + Ni58\n", "looking to remove Co55 + e⁻ ⟶ Fe55 + 𝜈\n", "looking to remove Fe55 ⟶ Co55 + e⁻ + 𝜈\n", - "looking to remove Fe55 + p ⟶ Co56 + 𝛾\n", - "looking to remove Co56 + p ⟶ Ni57 + 𝛾\n", - "looking to remove Fe53 + He4 ⟶ p + Co56\n", - "looking to remove Co56 + n ⟶ p + Fe56\n", - "looking to remove Ni56 + n ⟶ p + Co56\n", - "looking to remove Co56 ⟶ p + Fe55\n", - "looking to remove Ni57 ⟶ p + Co56\n", - "looking to remove Fe56 + p ⟶ n + Co56\n", - "looking to remove Co56 + p ⟶ n + Ni56\n", - "looking to remove Co56 + p ⟶ He4 + Fe53\n", - "looking to remove Co56 + e⁻ ⟶ Fe56 + 𝜈\n", - "looking to remove Co56 ⟶ Ni56 + e⁻ + 𝜈\n", - "looking to remove Fe56 ⟶ Co56 + e⁻ + 𝜈\n", - "looking to remove Ni56 + e⁻ ⟶ Co56 + 𝜈\n", "looking to remove Fe53 + He4 ⟶ Ni57 + 𝛾\n", "looking to remove Co56 + p ⟶ Ni57 + 𝛾\n", "looking to remove Ni57 + n ⟶ p + Co57\n", @@ -514,7 +475,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAKpCAYAAAB5OgHrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ3Rdxb3+8e8p6r3ZsrplW7ItdxuMK8WmdwwkdAgkEEpICPkHSC4huSFA7k1uIBCT0CEQCNiEYorBvfcqd1uyLKv3Xk75vzjS1pHVjoqxJT+ftbKy99mzZ0bbvHrWzPxMTqfTiYiIiIiIiIiIiHTKfKonICIiIiIiIiIi0h8oSBMREREREREREfGAgjQREREREREREREPKEgTERERERERERHxgII0ERERERERERERDyhIExERERERERER8YCCNBEREREREREREQ8oSBMREREREREREfHAGRmkOZ1OKioqcDqdp3oqIiIiIiIiIiLST5yRQVplZSUhISFUVlae6qmIiIiIiIiIiEg/cUYGaSIiIiIiIiIiIt2lIE1ERERERERERMQDCtJEREREREREREQ8oCBNRERERERERETEAwrSREREREREREREPKAgTURERERERERExAMK0kRERERERERERDygIE1ERERERERERMQDCtJEREREREREREQ8oCBNRERERERERETEAwrSREREREREREREPKAgTURERERERERExAMK0kRERERERERERDygIE1ERERERERERMQDCtJEREREREREREQ8oCBNRERERERERETEAwrSREREREREREREPKAgTURERERERERExAMK0kRERERERERERDygIE1ERERERERERMQDCtJEREREREREREQ8oCBNRERERERERETEAwrSREREREREREREPKAgTURERERERERExAMK0kRERERERERERDygIE1ERERERERERMQDCtJEREREREREREQ8oCBNRERERERERETEAwrSREREREREREREPKAgTURERERERERExAMK0kRERERERERERDygIE1ERERERERERMQDCtJEREREREREREQ8oCBNRERERERERETEAwrSREREREREREREPKAgTURERERERERExAPWUz0BEREREREREZHTgdPppNHuxO50YgK8LGYsZtOpnpacRhSkiYiIiIiIiMgZq7yukSPFNRRVN1Bc00C9zWE8M5sg1M+LCH9vYoJ9SQj1w6xg7YymIE1EREREREREzjjZ5bXsyaskt7K+wzYOJ5TUNFJS08jBomr8vMykRAYyenAQ3ladlnUmUpAmIiIiIiIiImeMukY7G46VkVlS0+13axsd7Mit4GBRNdOSwogL8Tspc5TTl+JTERERERERETkjFFbV80l6Xo9CNHc1jXaWHCxiY1YpTqezz+Ynpz8FaSIiIiIiIiIy4OVX1rP4QCF1bmeg9dbegirWZJYoTDuDKEgTERERERERkQGtrLaRJYcKsTn6PvA6XFzD5uzyPu9XTk8K0kRERERERERkwHI4nazOKKHRfvJWje3JryS3ou6k9S+nDxUbEBEREREREZEBKz2vkuKaBm6eGEtxTQMAu3IryamoIzLAm4mxIZiA4+V1pOdX9nictZklXJUWjZdFa5YGMgVpIiIiIiIiIjIgNdgd7MytAKCqwc7X+wuNZ2YTjB8SzNJDRdj7YMtnVYOdA4VVpEUH97ovOX0pJhURERERERGRAelIcbVxLlqAl4VLUqOYNTQcH4uZqAAfbA4n5w2L4MIRUYT5efV6vP2F1So8MMBpRZqIiIiIiIiIDEgHCquN64W7cqm3OxgeEcDE2BDyq+oJ9fNi0d58ArwtTEsM56v9BQBcnBpFVIAPDrdQbEt2OfsLqzodr7LeRm5lPTHBvifxr5JTqd+vSHvmmWcwmUz89Kc/PdVTEREREREREZHTRF2jndLaRuO+3u4AIKO0hnB/L+ptDgqq6rE5nJTX2fC2mFq9vyW7jPe2HTf+11WI1ixPRQcGtH69Im3Tpk384x//YNy4cad6KiIiIiIiIiJyGmkuLABgNZuwO5w4gehAHyrqbRRV1zNuSBAAvlYznhb1tJpNTI4LIS7ED4vZRE55HRuOlRpVQYtrGrvsQ/qvfrsiraqqiltuuYVXXnmFsLCwUz0dERERERERETmNlLgFWsG+Vi4fNZhLUqMYHR3EtuPlNNidHCqq4ZLUQVwwPJLNx8o86ndGUjjeFjOf7slj4a5czCaYmtCSS5S4BXgy8PTbFWkPPPAAl19+OXPnzuX3v/99p23r6+upr6837isqKr6DGYqIiIiIiIjIqdLQtJWTplDt8735bdocKq7mUHF1m98BJsWFMCEmxLj/cGcOFrOJhDA/PtieY6xA25ZTwdVp0azJKMHptoVUBqZ+GaS9//77bN26lU2bNnnU/plnnuG3v/3tSZ+XiIiIiIiIiJweHL0snrk1u5y9Ba3PRQvx9cJsMjFv7JA27f28LNQ02nE6wel0YjKZ2rSR/q/fBWnHjh3j4YcfZvHixfj6elYF4/HHH+eRRx4x7isqKoiPjz+JsxQRERERERGRU8nL3PdBVnWDDYfTyb935mDvIKmzmk0K0QawfhekbdmyhYKCAiZPnmz8ZrfbWblyJS+++CL19fVYLJZW7/j4+ODj43MKZisiIiIiIiIip0Kwb99HHnU2B8fKapmaEMqW7HLqbQ58rWYGBfqQVVYLQMhJGFdOH/3uX3fOnDns2rWr1W933XUXI0eO5Je//GWbEE1EREREREREzjwRAd4npd/VGSVMiAnh8lGD8bGaqWu0k1lSYwRpJ2tcOT30uyAtKCiIMWPGtPotICCAiIiINr+LiIiIiIiIyJkp2MeKj8Xco8P/v95f2OEzm8PJ5uwyNme3X+UzUkHagGY+1RMQEREREREREelrJpOJ5Aj/73RMq9lEYth3O6Z8t/rdirT2LF++/FRPQUREREREREROM6mDAttU3jyZkiP88bZozdJApn9dERERERERERmQQny9iA/1+07GMptg9KCg72QsOXUUpImIiIiIiIjIgHVOQhjeFtNJH2f8kBBC/LxO+jhyailIExEREREREZEBy9/bwtnxYSd1jAh/L8ZEazXamUBBmoiIiIiIiIgMaMMiA05a0BXobeH84ZGYzSd/1ZucegrSRERERERERGTAmxQbwtg+DtOCfKw41uxizb9W4XQ6+7RvOT2ZnGfgv3RFRQUhISGUl5cTHBx8qqcjIiIiIiIiIt+RzJIa1meVUm9z9Kqf5Ah/jry7jH8++QEAgxIiue3JG7jglll4++istIFKK9JERERERERE5IyRFO7P1WnRJIf747R3P0wL9rFy/vBIZg2NoLq40vi9IKuIP90zn9uG3s+7Ty+gwu2ZDBwK0kRERERERETkjOLnZWFCmA+fXPs0Bds2UVdS1ml7q9mEb0MlQVkZXBAbSEKoHwAX3XFem7YleWW8+V/vc0vij/nytSUn7W+QU0NBmoiIiIiIiIiccdZ9upmqvFJWPbEAx1eb+P6EGC5MiWJqQhiH3l3Gpv/9mA2/f5+r0wYzb3Qke7/6Nzt3LuWhi39BXmYBAEPHJuAb6Ntu/3U19bz39ILv+K+Sk01BmoiIiIiIiIiccVYtWE/EyGAGTwpn9vUz8LFaiAn2ZeSgQOp2ZbD/36s4+OlGvBoaOX78OCaLqypn8mXR/PTcX5N7JB+LxcLIs4d3OMaVP774O/yL5LugIE1EREREREREzijVFTVsWbyDIWeHExIbwKhzRrR6HhkbblwXZpdgsViw1dkxmVxhmiXCyWNX/ZbsAzmMPiel3THuefYWbvzF1Sf5L5HvmoI0ERERERERETmjbPh8C40NNmqL6okNi8dsbh2PRMZGGNdFx0vwNfvhdDgBMJlNjLgyluQbBvOrG37fKnRzt/aTTdht9pP8l8h3TUGaiIiIiIiIiJxRVi5YDyY4vq6YOVef3+Z5VFxLkJafWcCHCz/Ey98KgNPppDq/jsYaG5YweOvJDwgMDQAgZcowBidGArBn3QE++OMn39nfJN8N66megIiIiIiIiIjId6W2qpZNX24jenI4iecNJm1Gaps2cSlDjOusfdmUhpRQU1iHb7gPdaUNHPg4m5rCeqPN3c/cTHxqLGddOpFDW4/ws1n/hcPh5O2n/s1Zl0xgxKTk7+zvk5NLK9JERERERERE5Iyx8YttNNQ1EhTrh5+XHxaLpU2bhFGxxvWxfTlEmKPZ+UYGa3+fTuHOMhoqbcbzKReP57J75jLjmrPx9vFi9LRUvv/YtQDYbXaeve0F6mvr24wh/ZOCNBERERERERE5Y6xcsB6A42uLmHnO7HbbRMSE4x/kB0DW3uNEeEVhq7VjspiIP3cQkWnBADz3zX/xzJe/JjgiqNX7tz55PSMmDTXef+3x907yXyXfFQVpIiIiIiIiInJGqKupZ+OirVi8zSRMH8y0i85qt53JZDJWpeUfLeSiO8/je//vam779Q344Y/Vz3VS1t51B9t938vbi1++/RDevl4AfPzCF2xdsuuk/V3y3VGQJiIiIiIiIiJnhF0r91BXU0/YiEAiJwTTaGvssG282/bOktwy7nn2Vm77zQ3c8YPbyV5dCMDKBes6fD9xdDz3PHurcf+/d71ETWVtn/0tcmooSBMRERERERGRM8LWb12rwswWM8F+oQQEBHTYNmFknHGdtTfbuDb7mZj2/9Kw+Jo5suMoxw/ldtjH1Q9ewqS5YwEozC7mvacX9NFfIqeKgjQREREREREROSNsW+oK0gp3l/ODH9zVaduEkS0r0rL2HTeuvby8sPiZCI7zB2DNxxs77MNsNvPTl+/Fy8e1xXPB/31O9sGOgzc5/SlIExEREREREZEBr6ywnMPbMzGZ4ZxfjKKovLDT9u6VO92DtLCwMMaNHk9NkasSZ1dnnw1JHsyNj14FgK3RzsuPvNnLv0ROJQVpIiIiIiIiIjLg7ViWDoBPqDcWXzNmc+eRyJDkwXh5u4oKHNvbEqSZTCYuuOh8IhPCAdi9ai+NDR2ftQbwvceuISouAoANi7ayYdGWXv89cmooSBMRERERERGRAW/rtzsBqC9vZFjMCOLj4zttb7FaiB0xBIDsAznYGm0tfW3dSvIVg1391Tawd3371Tub+QX48qP/uc24n//IWzTUdx6+yelJQZqIiIiIiIiIDHjNWzD9w3yYdt45WK3WLt8ZOi4BmrZkHt5x1Pg9NDQUs7fJuN++dHeXfZ1743TGzh4FwPGDuXz8/Bc9+jvk1FKQJiIiIiIiIiIDWu6RfPIyCgAYc90wVqxa7tF7adNHGtfpa/YZ1+PGjeO6q6437rcv6zpIM5lMPPD8DzCbXQHcu7//iKKckm79HXLqKUgTERERERERkQFtm1tBgJCYYCIiIjx6L21GqnG92y1IM5vNHDy6n8SJroIEe9cfoLa6rsv+ho1P4vJ7LwKgtqqO1x5/t1t/h5x6CtJEREREREREZEDbumSncT3n3DlcdNFFHr03dGwC/kF+AKSv2Y/T6TSe7d69mxHnJkLT1s/dq/d12I+7O3/3PYLCAwH49p2VHNx6pFt/i5xaCtJEREREREREZMByOBzGGWYB4f4czN2HzWbr8j0Ai8XCqGkpAJTklpKX6doeajKZSE1NJWlUgtHWk3PSAIIjgrj9qRuN+3efXtCtv0dOLQVpIiIiIiIiIjJgHdl5lPKiSgDGXzySffv3UV1d7fH7adPdtne6rTqbN28ec644z7jftnRXm3c7ctk9c4iICQNgzccbydid5fG7cmopSBMRERERERGRAWvbty0B16izUoiLiyMyMtLj98fMdC84sN+43rhxIws/W0DyONf2zkNbM6gsrfKoT29fb2589Grj/r0/LPR4PnJqKUgTERERERERkQHLfaXY1AvP4vbbb8dqtXr8/sipIzBbXPGJe+VOq9VKXl4e489PA8DpdLJzxR6P+73sR3MJjQoGYMUHazm2/7jH78qpoyBNRERERERERAakxoZGdq3cC0BETBjHijN5993uVcr0C/Bl2IQkADLTjxmrzkaOHMncuXOZNGec0da9OmhXfP19mPfIldAUwv3r2Y+7NS85NRSkiYiIiIiIiMiAtHf9Qepq6gGYNHccJSUlOByObvczZkbL9s49a13bO/39/QkKCmLMrJHGirXtyzwrONDsqvsvJigsAIAl/1xF7pH8bs9NvlsK0kRERERERERkQNr67U7jeuIFY5k0aRKzZ8/udj9jZ482rjd8sQ2A4uJiFi5cSHlVGSlThgFwdE82JXmlHvfrH+THtQ9fDoDD7uCD5/7T7bnJd0tBmoiIiIiIiIgMSO5bLSfOGYPD4SAiIqLb/Uy+cBxe3q5z1dZ9ugmn04mfnx8mkwm73c7EC8YYbbcv7d6qtGt/chn+wX4AfP3mMgqOFXV7fvLdUZAmIiIiIiIiIgNOdUUN+zYeAiB+ZCyRsRF8+umnbNu2rdt9+Qf5MWHOWACKjpdwYMsRAgIC+PGPf0x8fDwTLhhrtN3WzSAtMDSAax68FABbo52Ff1nU7fnJd0dBmoiIiIiIiIgMODtX7MFhd52HNqkpBLPb7QQHB/eovxlXn2Vcr/tkEwCbN28mOzubtOkpePl4QQ/OSQO47qeXG+9/8/YKGuobezRHOfkUpImIiIiIiIjIgON+Ptqkua7KmnfddRcTJ07sUX/nXDnFuF77qStI27NnD0eOHMHHz4e06SkA5GUUkJvRvaIBIZHBzL7+HAAqiitZ8/HGHs1RTj4FaSIiIiIiIiIy4DSfVWY2mxh37mgaGxv56quvqK2t7VF/EUPCGHXOCAAydmWReySf5ORkQkNDAZhwfsv2zu6ekwZw6T1zjOsvXv22R3OUk09BmoiIiIiIiIgMKFVl1WSmHwNgxORkAkMDKC8vZ//+/RQXF/e43+lXtWzvXPvJJq666irGjnUFaBPcCw70YHvnuNmjiUsZ4np/6W6OH8rt8Tzl5FGQJiIiIiIiIiIDSsauLOM6ZfIwAAIDAxk8eDBhYWE97nf6NWcb12s+2cjHH3/M4sWLAUg9axh+gb7QFIQ5nc5u9W0ymbj07pZVaV++uqTH85STR0GaiIiIiIiIiAwo7kHa0HGJAPj6+vKDH/ygx8UGABJGxhqrxtJX76OstJyamhoArF5WxswaBUBJXhl5GQXd7v/CO87D6mUBYPFby7E12no8Vzk5FKSJiIiIiIiIyIByZOdR43ro2AQAKioqeO655ygpKelV39Ovdq1Kczic+NcHMWnSJOPZ8AlJxnXz1tLuCBsUwrSm6qCl+eWs+2xLr+YqfU9BmoiIiIiIiIgMKBm73IK0MfEA1NbW4nA4jBVkPdVcXRNg8+c7W61wSxqTYFxn7u5+kAZw2T1zjesvVXTgtKMgTUREREREREQGDIfDYWztjE6KIiAkAIDIyEjOPfdcoqOje9V/ypRhxio3hjTw1edfG8+S0uKN66N7ehakTZo7luikKAA2f72DgqzCXs1X+paCNBEREREREREZMPKPFlJbVQdu56MBmM1mIiMjsVgsverfZDIZq8YcdifH9uYYz+JSYzBbXFFLxu6sDvvojNls5uK7LgDA6XSy8qP1vZqv9C0FaSIiIiIiIiIyYGTsdCs04LbVMj8/nwULFlBQ0P0iACeac+ssvH29OPjpcTa/nU5DXQMA3j5exI5wFSM4ti8Hu83eo/5n3zDNuF776aZez1f6joI0ERERERERERkw3AsNJLutSLNara3+vzeCwgKZdf05RI4KxhwMqxZsMJ4lNZ3J1ljfSM7hvB71nzAylvjUGGiqDlpeVNHrOUvfUJAmIiIiIiIiIgPGEfdCA25BWmRkJPfddx8RERF9Ms5l98wlamwI4SOC+MKtKEDS6JZz0npacABg2lWu6p0Oh5P1n6t65+lCQZqIiIiIiIiIDBiZTYUGvH29iB3eUljA4XCwZs0aKir6ZnXX2FmjMDVYqCmsZ+eKPWQfcJ2V1rwiDSAzvedB2oxrzjKu136i7Z2nCwVpIiIiIiIiIjIg1NXUc/xgLgCJafFYrC2FBRoaGti1axfHjvU83HJnMpk4K20qORuKAfjy1SXGuM16E6SNnDqCsMEhAGxZvIO6mvpez1l6T0GaiIiIiIiIiAwIR/dk43A4ARg6NqHVMx8fH2JiYggMDOyTsZxOJ1mmg0SODAZg8VvLaahvJHZ4NF7ernPYjvYiSDObzZxzxRQA6msb2PrNzj6Zt/SOgjQRERERERERGRAy3AsNjE1s9cxkMnH33XcTHx/fzpvdV1dXR3V1NaNnpABQVljBN28tx+plJX5kLADZB3JpbGjs8Rja3nn6UZAmIiIiIiIiIgOCe8VO90IDzd555x3WrVvXJ2P5+voyc+ZMrr7zCuO395/9GFujjcS0OADsNjvZB3J7PMbEOWPxDfABYP3nm7Hb7X0wc+kNBWkiIiIiIiIiMiBk7M4yrpPHJbR53tDQQHFxcZ+M5XQ6iY+PZ9yMNKZcPB6AvMxClr63mqS0lrF7U7nT29ebsy6ZAEB5USV71x3og5lLbyhIExEREREREZF+z+l0cmSHa0VaeHQooVEhbdrMnDmTcePG9cl4hw4d4l//+hd1dXXc8qt5xu//emYhCU1bO+nlOWkAUy+fbFzvWL6nV31J7ylIExEREREREZF+rySvjIriSgCSxrZdjQYwZMgQvL29+2S8hoYGLBYL3t7ejJk5ivHnpUHTuWgFx4qMdpnpWZ300rWxs0YZ1+lr9/WqL+k9BWkiIiIiIiIi0u8d6aTQQLMNGzbw6aef9sl4qamp/PCHP8RsdkUrN7utSvvytSV4+3oBkJme3atxhiQPJmywa3Vd+tr9OiftFFOQJiIiIiIiIiL9XuYu9/PR2g/SwsLCqK6u7pPxDh48SFZWy5gTLxjD6GmuCp6Zu48RERsOQM6hPOpr63s8jslkIm3GSABqKmo52stgTnpHQZqIiIiIiIiI9HtHdrlX7Gx/a+fkyZO5/fbb+2S8bdu2cejQIePeZDK1WpVWVeoK7JxOJ1l7j/dqrDFNQRpA+hpt7zyVFKSJiIiIiIiISL/XvLXTbDGTMCqu3TYmk4kVK1ZQXl7e6/ECAgIYNmxYq9/OvnQiIyYNBaCypMr4PbOXBQfSZqQa17sVpJ1SCtJEREREREREpF9zOp1k788BIHbEELx9vNpt53A42LNnD4cPH+71mFdccQVnn312q99OXJXWLHN374K04ROH4uPnKpKQvmZ/r/qS3lGQJiIiIiIiIiL9Wk1FDQ11jQBExYV32M5qtZKSkoKfn1+vxistLeXZZ5+lrKyszbMZ15xtnJXWrLeVO61eVkZOHQFA/tFCCrOLe9Wf9JyCNBERERERERHp10ryWgKtsOjQTtveeOONDB8+vFfj5eXlYbfb8fJqu/LNZDLxwAs/wGQyGb/lHino1XgAadNbtnfqnLRTR0GaiIiIiIiIiPRrrYK0QZ0HaWvWrOGdd97p1XixsbFcdNFF+Pv7t/s8ZfIwLr37AuM+/2hhr8YDGDPTveCAtneeKgrSRERERERERKRfK8tvKR4Q3sWKNC8vL/Ly8nA6nT0er6qqimHDhrVadXaiu56+CbPZ9byhtoG9Gw72eDyAUee0bBc9tD2jV31JzylIExEREREREZF+rTtbO8eMGcPcuXM7DcG68sUXX7Bhw4ZO24RGhRAzYohx/9cHXsXhcPR4zMDQACJiwgDI2nu8x/1I7yhIExEREREREZF+rVWQNjik07aBgYEEBARQWVnZ4/FqamqIjIzsst3wiUnG9cGtR/jm7RU9HhMgYVQcABXFlZQVlnfZXvqegjQRERERERER6dfK8luCtK62dgIsXbqUdevW9Xi8O+64g7PPPrvLdiee1/ba4+9SXV7d43ETRsYa11qVdmooSBMRERERERGRfq0k3/OtnQAJCQlUVFT0aKzMzEy+/fZbLBZLl21DooJb3Zfml/Pa4+/1aFzcVqQBHNunIO1UsJ7qCYiIiIiIiIiI9EZp09ZOs8VMcERQl+0vu+yyHhcb2LVrFwUFBR61DXUL0qxeVmyNNj57eTHTrprCWZdM7PbYCaO0Iu1U04o0EREREREREenXms9ICx0UgtnsWdTxxhtvUFJS0u2xIiIimDx5skdt3VekTblkgnH9v3fPp6K4+2e0xbtv7dyX3e33pfcUpImIiIiIiIhIv+VwOCgrcG3T9OR8NACTyURhYSEHDx7s9ngpKSkenY/GCSvShgwdxJSLxwNQklvKX378j26viguPDiUgxB+0Iu2UUZAmIiIiIiIiIv1WZUkVdpsdPDwfDcBqtTJ9+nSj8mZ2djbV1V0XAcjIyOCll16itrbWo3HcV6RVlFTy89fuJyg8EIBVH61nyburPOqnmclkMrZ3FmQVUVvl2Tyk7yhIExEREREREZF+q3lbJ0DY4BCP3wsKCmLx4sUsXLiQt956i/T09C7fycnJwd/fH19fX4/GcA/SygsriIwJ5+H5PzJ+++uDr1KQVQhA9oEc6mvru+wzYWRLwYHsA7kezUP6jooNiIiIiIiIiEi/VeoWpIUP7nxFWk1NDe+88w6JiYls27aNhoYGo3BA8+q0zowdO5bExERMJpNHcwsMDcBsMeOwOygvdG0/PfeGaaz7bBZL/rmKmopanrn1BcKiQ1n10XoSRsXy9+3/i9Wr47jGveDAsX3HGTEp2aO5SN/QijQRERERERER6bdK88uN6662dnp7e1NZWcnGjRtpaGgwfp85cyZDhw7t9F2n08nGjRsJDg7utJ07s9lMSKSrimhZU5AG8OALdxMVHwHA7tX7WPXRemg69+zg1oxO+4weOsi4LjhW7PFcpG8oSBMRERERERGRfst9a2dXxQasViv33Xcf559/PkFBQcbvNTU1Xa4yy8nJYc2aNZSVlXXa7kTN2zvLCyuM4gKBoQHM++kV7bbfu+5Ap/1FxoYb10XZCtK+awrSRERERERERKTfKs0rNa7DutjaCRAYGMisWbNISkoywrPCwsIu36uvrycqKorY2Ngu27oLiXQFaQ11jdRV1wGw5N1VvPLLf7bbfs/6/Z32FxkXYVwX5ZR0ay7SezojTURERERERET6rdICz7d2ups1axb79++noaGBuDjXAf4lJSXk5eXR0NCAxWIhODiY2NhYrFYrcXFx/PjHP/b4fLRm7gUHygor8Av045VfvmNUGj3Rni5WpIUMCiE8JRbvEH8agvzJq6wjxNcLPy9Lt+YlPaMgTURERERERET6re5s7XQXFRXFfffdx0svvcSGDRtYsGABpaWlbdp5eXkRHx9PTU0Nd955J5MmTerW/JpXpNG0vXPI0MGce8N0Fj6/qN32hceKKTpeTGRsy8qzynobBwqryK2oo7S2kcv++XPj2df7Xavp/L0sRAZ4kxzhT3yoH+ZuBn7iGQVpIiIiIiIiItJvNVft9PK2EhDi79E7NpuNzz//nC+++KLLM88aGxs5cuQIAM899xyTJ0/m5ptvNlaxdSU0qnWQBvDj/7uT874/g4/+/BmrF6zH4XC2emfZ+2u44edXUVLTwNbj5Rwvr+tynJpGO1lltWSV1eLvZWHU4EBGDw5SoNbHFKSJiIiIiIiISL/VHKSFRYd6tO0yMzOTl156iaNHj3Z7LKfTyebNm9mxYwc33HADV155JRZL51sqT9za2WzU1BH81wePkJuRz8K/LOLzv3+DrcEGQHlRJTtyytmZW8EJGZtHahrtbMkuJ7OkhhlDwwnz8+5+J9IuFRsQERERERERkX6rsrQagOCIoC7brly5kscff7xHIZq7xsZG3nvvPf7whz9QW1vbaVv3FWkVRZVtng8ZOpgHnv8BH+T8g4vuOJfz7ziPmNvnsD2nZyGau+KaRj7fk09mSU3vOhKDgjQRERERERER6bccdgcAFmvnEcfy5ct58cUXsdvbP+S/J3bt2sXTTz9NXV3HWy87WpF2ouDwIB5+5X7G/WIehdWNfTZHhxNWHCnmSHF1n/V5JlOQJiIiIiIiIiL9ltPpWrbV2bbO3bt3M3/+/JMy/oEDB3jhhReMeZzIy8fLuLY32jrsx+l0suJIMcU1fReiuVudWUJBVf1J6ftMoiBNRERERERERPol9/DKZG4/SKutrWX+/PkdBl19YfPmzaxcudKDOXYcwxworCanouuiAj3ldMKajBJsTSv4pGdUbEBERERERERE+qVWIVUHK9LeffddCgsLefvttzl8+DAA//nPf9ixY0e7v/XUm2++ybhx4wgLC2s9R4f7HNt/t6rexubsMm6eGEtxTQMAu3IrqW6wcU6iqz+r2YwJ+Hxvfo/nWFFvY1tOBWfFh/a4jzOdgjQRERERERER6ZdahVTtrEgrLS1lyZIlABQUFPDb3/621fP2fuup6upqvvzyS26++ebWc/RgRdqe/EpsDidVDXa+3l/Y6lnz/cioQLysXVcl7cq+gkrGDgnC19p5tVFpn7Z2ioiIiIiIiEi/5B5SmdsJqZYsWWIUF4iMjOSpp57ioYceIjAwsMPfemPZsmU0NrY+46yrFWmNdgeHmgoBBHhZuCQ1illDw/GxtP57ksL9ySjuffVNhxMOFanwQE9pRZqIiIiIiIiI9EsOt5CKE0Iqp9PJ0qVLjfsHH3yQqqoqzj//fG666SZeeeWVdn8D+M1vfkNKSkqrCp///Oc/Wbx4cafzKS8vZ8uWLZxzzjmt5mFMsZ2wL6uslka7q83CXbnU2x0MjwhgYmwI67NKAQjwtmAyQVVDy3wGBXozdkgwUQE+mICqBhtHSmrYm1+Jo4vj4A4WVjMmOrjzRtKufhekzZ8/n/nz55OZmQlAWloaTz75JJdeeumpnpqIiIiIiIiIfJc6WZFWXFxMUVGRcV9VVQXAmjVrmDt3boe/NXv33Xf54osvuj2lffv2tQrSHF2sSCuobKmkWd9UCCCjtIaUqADj96Hh/mSWtKxGiwvxZXZyBNuOl7M6o4R6m4NgXytjo4Px87JQ7Ra4taei3kZdox1fL23v7K5+F6TFxcXx7LPPMnz4cADeeustrr76arZt20ZaWtqpnp6IiIiIiIiIfEc6C6mOHDliXPv4+NDQ0IDT6WT06NHk5eW1+5snfHx8uOWWW5gyZQpeXl5s376d119/ndraWgAyMjJav9DF9tPm4gJWswm7w4kTiA70oaLeZrRJCvfn2wMtZ6ednRDG7rxK9hZUGb9V1NlYk1li3PtazUxNCCM6yAebw8mRkhq2Hy/H6TZubIifR3+ztOh3QdqVV17Z6v7pp59m/vz5rF+/XkGaiIiIiIiIyBmks22TWVlZxnVMTAz33nsvdXV12Gw25s+f3+5vnrj//vux2+08+uij2O127rvvPu6++25efPFFAI4ePdqqfVfbT0trXWeqBftamZ4Yjs3hwO6EtU2hWKivlXqbgzqba7VasI+VIB8rGSWdn3M2OzmC2kY7C3bl4mM1M3dEFDa7g115lQCU1jYqSOuBfhekubPb7Xz44YdUV1czbdq0DtvV19dTX9+yVLKiouI7mqGIiIiIiIiInCydHeTfvEKMplVijz32WKvnxcXFbX5zd/PNN3PDDTcY9/fddx/e3t5MnTqVu+++m5oa11bLDz74gD//+c+89NJLOJ1OamtrcTqdmJom1FlBBIcT4zyzkppGPt+b32YeZXU2vnFbjebj5eqjs+2b/l4WhgT78sH249gcTmwNdnbmVjA+JtgI0mz2Lg5Sk3b1yyBt165dTJs2jbq6OgIDA/n4448ZPXp0h+2feeaZPitnKyIiIiIiIiKnh85WpJnaO5CsG9577702Z6TFxcVhNpuN1WfNHA4HoaGhlJaWYjKZWo3dOuxrPaeezLC+0bUyLcDbQmV9+2Gav7cFm6NlFRtAZb2NAJ2J1mv9MkhLTU1l+/btlJWVsWDBAu644w5WrFjRYZj2+OOP88gjjxj3FRUVxMfHf4czFhEREREREZG+1tmKNF9f3z4fr6ioCIfDwb333ktDQ0O7bfz8Wm+XbB32nRCkmcBsossqm+4q6m1U1ttICvdnV25lu21qGuxYzWZ8rWYjTAvysVLd2BK8eVl6FzSeqdqectcPeHt7M3z4cKZMmcIzzzzD+PHjef755zts7+PjQ3BwcKv/iYiIiIiIiEj/1tmKtISEhD4fr7y8nE2bNnH33XcTFBQEQEhICGeddVaH43a6Is1kIszPq9vz2JhVytjoYEYOCsTH4vq7g32sTE8MI8DbQk2jndyKOqbEh2I1mwjwtjA2OojDxS3nqoX6eXd7XOmnK9JO5HQ6W52BJiIiIiIiIiIDX2cr0pKTk0/KmC+99BI33ngjzzzzDIGBgZSXl7N27Vo2bdoEwNChQ1vPsZMVaQAR/t4U1zR2aw7Z5XV8e7CQcUOCmRgTAkBVg40jxTXUNq06W3mkmKkJYcwbOwS708mR4hp257WsYIsI6H6AJ/0wSHviiSe49NJLiY+Pp7Kykvfff5/ly5fz1VdfneqpiYiIiIiIiMh3qLOD/CMiIoiKiqKwsLCdNzvX2TnrdXV1vP3227z99tvtPh85cmTrOXayIg1gUJAPB4o6r8DZnoKqBr49WNTxPG0OVhwpbvdZsK8VX6vOS+uJfre1Mz8/n9tuu43U1FTmzJnDhg0b+Oqrr7jwwgtP9dRERERERERE5DvkcD9c7ISMymQycf7553+n8wkJCWHKlCmtfutqRVpiqB/e3/F5ZSmRAd/peANJv1uR9tprr53qKYiIiIiIiIjI6aCTFWkAc+bMYcGCBdjt7Ve37GsXXHABVmvrqMXRxYo0q8XM8MgA9uRXfSdztJhMDFOQ1mP9bkWaiIiIiIiIiAhtQqq2z8PCwpg7d+53MpeAgAAuvfTSNr87HQ7j2tzOijSA0YODsHbwrK+NHBSobZ29oCBNRERERERERPqlzqp2NrvllluIioo66XO56667CA0NbfO72xTbT/uAAG8rU+LbvtvXgn2sTIgNPunjDGQK0kRERERERESkX+qsamczX19f7r///na3fvaVs88+m1mzZrX7zJMVaTSdWxYb7HtS5gdgNsGMoeFYT+J3OBPo64mIiIiIiIhIv2T1bjmPrLHe1mG7tLQ07r///nbPKOut1NRUHnrooQ77dl+R1tn4JpOJqUMCqcrI6/M5moBZQyMYFOjT532faRSkiYiIiIiIiEi/FBweaFyXFVZ02nb27Nk89NBDWCx9dz7YuHHj+NWvfoWPT8cBld3WUuigvaqdzZxOJ/Mfeo1FP3iB/K2H+2yOZhNE5Bfx1+ueY/m/17baDivdpyBNRERERERERPoli9VCUFOYVt5FkAYwc+ZMnn32WYYOHdqrcb28vLjtttt44okn8PXtfDtmRXGlcR0cEdRhu8/mL+abt1fQWF3H6l+8TpLVFYL1RmSAN1eOjubFeX9k58o9PP39/+O+Sb9g2ftrWgV84jkFaSIiIiIiIiLSb4VGuQ7P9yRIA0hMTOTpp5/m1ltvJTw8vFtjmc1mzj77bP7nf/6HK6+80qNz10rzyozrsMEh7bbZs24/83/2hnH/81fu49wJ8VwxejDBjY047Y523+tIgLeFs+JDuXTkIEL9vPBy2wJ7ZMdR/nDzX7h9+IMs+L/Pqams7VbfZzoFaSIiIiIiIiLSb4U0BWk1lbU01Dd69I7VauWqq67ipZdeYty4cQwfPpyIiIh223p7ezNixAhGjhzJj370I37+858TExPj8fxK8t2CtOi2lTmryqp5+qa/YGt0rRC7/pErOffG6a72ft4c++dSlv70/yjesxXv2josHVb+tBDlA+XbVlH6wbekRPhjbmp71qUT27QvyCri5Z+/xR0jHiL7YK7Hf8+ZzupBGxERERERERGR01JIZMt2yYqiCiJj2w/E2mM2m3nsscewWCyYTCbKy8vJzc2loaEBq9VKUFAQMTEx1NXV8ec//5lVq1Zht9u58MILPR6jNL/cuA5vJ0j764OvUpBVBMDYWaO459lbjGd2u501H2+gJK+MkvR/8+/jr+Ib4MvG1ftYvnAD6esOYKtr5PKbZ3L9L6/mndffpTTnEIUOOz+b+yv+75vfY/WyMvGCsaz8cF278ysrKCd9zT7iRgzx+G86kylIExEREREREZF+KyQy2LguK+xekLZhwwYyMzP5/ve/7+orJISQkLbbL48dO4bD4dpeuW7dOmbPnt1pgQF3zVs73c9za7bk3VUsfW81AAEh/jz2zkNYrC3FEPasPUBZUTmTHxqBb0kQ/kF+ZB/M4cnzf9OqaEBRxggAcnKOu8byNmMLruW/b/wzv3r/Z4yeltLh/EZPTzVWwEnXtLVTRERERERERPqt5q2ddOOctGa7d+/Gy8ury3bh4eEEBARAU3XNJUuWcODAAY/GKGkK0kIHBbc6Uy0vs4AXHnjFuP/J337IoISoVu+u/GgdwQn++IX7MOn8CQD85b5/tKm8WXS8GAAvhyvcM5lNhCYHcqwkk99+748MGTYY/yC/NnOLiAnjuW/+C19/z0JBUZAmIiIiIiIiIv1YaFTLCrLuBmljxoxh2rRpXbazWCzU19cb95s2beJf//oX+/bt6/Q9h8NBWYFra6f7tk673c4f73iRmgrXQf9zbp3FBTfNbPPu6oUbqC1uIHt1ERdcN4u1n2xix7L0NuMUHS/B6XRSX9lg/OYb5k3CeYNwJtfy1LXPkTJlWJv3inNK+fKVJV3+/dJCQZqIiIiIiIiI9FvuK9LKuhGk1dfXExER4VHhgH/961/YbDbjPjU1leTkZKqrqzt9r6K4EkdTxU33QgMfPPcJu1btBWBwYhQP/fXuNu/u23iIouMl+IR4MThoCBarhRd/8lq74+QeyWf//v00BNZA06o5W62dnI3F1JU3sGPlHupqXUFgSGQQP3zuVuPdVx/7J0f3Znf5DcRFZ6SJiIiIiIiISL/V062dGzZsYOPGjTz66KOdtnM6nZSVlZGcnExlZSWDBw/mkksuMbZ6dqb5fDSAsEGuIG3/pkO8/dS/ATCbTTz2zkMEhLTta9VH68EEo29OZHh0Am8/9SGFx4rbHaemopZjmdk4Gh0UppfjP8iX3A1FFOxsKXRQmlvG24deJCw6FF9/Hwqzi/nPX7+koa6R5257gefXPo2Xd9fbXM90WpEmIiIiIiIiIv1WaA+DtNLSUmJjY7tsZzKZuOWWW7j55pv58Y9/jMPhoLGx0aMxStyDtOhQaqtqeebWF7Db7ADc9Ph1jJk5qs17TqeTVQvW4x1gxepjYcTo4Sx8flGnYwXYg9n9diYHPzlO1vICfMNazj1Lm5HKY+88xJDkwcZ5aPc8ewvxI11//8GtGbz73ws8+pvOdArSRERERERERKTfarW1s8jzIO3CCy/k6quv9qjt0KFDsVgsOBwODhw4wN69ez16rzS/ZUVYeHQof//52xw/mAvAyLOHc+uT17f73oEtR8g/WkhDlY367WZ8TQHGFtGOFGYWG8UG/KN8iJ0e4VrRNi2Fv6z6fZvAzsfPp1WV0H89s5A96/Z79HedyRSkiYiIiIiIiEi/1ZOtnZWVlXz00UdYLJZujWWxWJgwYQK+vr4etXff2lldXs2iV74FwDfAh1++8xOsXu2fuLXqo3UAxE6PZMS5SUw4P437/nQHM689G7OlKcoxtX4na+9x/mfJb/jpyz/iZ/9zP40VDkwmE/s2HKSssLydUSBl8jBu+80NADgcTp67/a/UVtV69LedqRSkiYiIiIiIiEi/5e3jhX+QH3QjSDt06BAZGRk9Gu+yyy5jxIgRHrV139q5+K0VxvUPnr6ZuBFDOnxv8+IdAERPDic8MRiz2cy8n13BAy/8wFiZdtbFE/hnxkvGO1n7jhOfGsvlP7qQ8dPGMjRgBCazKyBb+8nmDsf6/i+vYdQ5rr8n53A+rz3+nkd/25lKQZqIiIiIiIiI9GvBkUHQjaqdgYGBTJo0CR8fHw9at5aTk8Nf/vIXKisru2xbWtASpOUeyQdg+MShXHX/xR2+U1ZYzuHtmQCY6sxMPmuy8Sxj9zHjOnF0PIMTBxHS9Ldn7T3eqh9TYiNDL44GYNWCdR2OZ7Fa+OXbDxlnp302/2sydh3t8m87UylIExEREREREZF+rbngQFVptXGQf2ciIyO57LLLejRWcHAwdrudnJycLtu6b+1s9tBL9xjnkrVnx7J0AMxWEwlhycTFxRnPjqa3BGlJY+IBSBjlel6SW0p1ebXxPDYxhvBk13fZtmQ3NZUdb9mMHT6Em564Dpq2eL708Bs4nc4u/74zkYI0EREREREREenXms9JczqdVJRUddq2sbGRv/3tbxw8eLBHYwUFBTFv3jzi4+O7bFtyQpB22T1zGH1OSqfvbP12JwAx50RSG976/VZBWlpTkDaypfJo1r6WcG/GjBmEmwcDYLfZ2bWq8wIJ1z9yBUOSXe13LE9n5Ufru/z7zkQK0kRERERERESkX+tOwYHy8nJsNhsBAQE9Hi8iIsKjM9YKjxUb18ERQdz9zC1dvrN1yS4AAgf7EhYV2upZ5p5s4zphlCtAi3cP0va2PA8JCWHIyCisfq7Vb9uX7u50XG9fb+778x3G/d8ffYu6mvou53umUZAmIiIiIiIiIv1aaKTnQVp4eDjXXXddqy2T3bV3714WL17caZuaqlqqy2uM+3uevYXgiKBO38k9kk9eRgEA/vXBrbafOp1OY0VadFIUfoGuAgvNgRonrFhzOBwczj9A5OgQALYt3dXl3zXtyilMuXg8NIWAHzz3ny7fOdMoSBMRERERERGRfs19RVpXBQdyc3MBMJlMPR5vyJAh2Gy2Ts8Re+/pBcZ1UFgAF991fpf9blvSEnbFnxXdatVcQVYRtVV1ACSmtWwrHT5xqHG9Z/0B49psNhMdHc2gpAgADm/PpKK48wIJJpOJH//fXcYZbh/88RNyM/K7nPeZREGaiIiIiIiIiPRrrYK0gvJO227cuJHNmzf3aryRI0fy8MMPdxjGFRwrYuFfvjDux58/BrO56whm6xLX+Wg+IV4UO/LJy8sznmXuzjKuk9yCtLDBocQMd1XnPLDpMA11Dcazu+66ixGJqcb9juXpXc4hYWQs1/7EtRKusb6Rf/zinS7fOZMoSBMRERERERGRfm1QQqRxffxgbqdtbTYbsbGxnbbxxJtvvsnx48fbffbuf39EY32jce8efHXE4XAY55j5h/hhtVoZPHiw8Xz36n3GtfsqNIC0Ga6wrLHBxoEtR4zf9+3bhymxJVhzX/HWmVufvJ6wwa4toasXbjAKIIiCNBERERERERHp55LGJBjXR/cc67Tt9ddfz9y5c3s9ZnFxMZmZmW1+zzmcx1dvLGv1W3h0aJt2Jzqy8yjlRa6tl6MmpvLYY48RFNRyptqOFS2rycadO7rVu2OmjzSu09fsN65ramooLM/H4tVUcGBZ5wUHmgUE+7cqjPDqY//sdBvrmURBmoiIiIiIiIj0a2GDQgiJdIVOmbs7DtJqa2v561//Smlpaa/GM5lMnHPOOQwZMqTNs3/+90c47I5Wv7lX1uzItiUtIVfs9EgWLVrUMu+qWg5sPmL0FR4d1urdtJluQdralpVrI0aMIC0tjdSzhgNwbH8ORceL8cSFt59rrHw7uDWDjV9u8+i9gU5BmoiIiIiIiIj0e82r0kryyjo8VD8/P5/S0tI+WV01bdo0QkNbrzTL2necJf9cCWAc2A8wdGxCm/dPtG2J2/bJQDt1dXXGbfraA9htdgDGn7AaDSA+NYag8EBX2zX7jb8vPDyc6dOnM+GCtJZxlnq2Ks1sNnPzr+YZ9+/+/iOtSlOQJiIiIiIiIiIDQeLoOOM6M739VWlhYWFMnjyZ8PDwXo+3detW3nmn9UH87/zuQxwOV9hk9XYFaeFDwgiJDG63j2aNDY3sWrkXgIiYMMZNHMuECROM5+5FAsafl9bmfbPZbJyTVlFcybH9OcazN998k/BRLVtEPd3eCTDjmrOM8932rj/ocQg3kClIExEREREREZF+z/2ctI62d3p7ezNt2jSPKmh2JSAggPLychwO1zbOjF1HWf7+GgCCI4Kor3Ed8p88ruvVaHvXH6Suph6ASXPHkZiYSHJysvF8ZyfnozVLczsnzb0wQUBAAP4RPnj7egGwfeluj1eWmc1mbnriOuP+vacXePTeQKYgTURERERERET6vaFjWipjdrQibfXq1SxcuLBPxktLS+Pmm282Qrm3nvq38WzmtWcb18ljE7vsy70q5rjzRvPqq69y6NAhAGqr69i/6TA0beE88Xy0ZmOaVqRxwjlp1113HVPPmcqYpnPUCrKKyDmc5/Hfee6N04gd4ToLbsfydHav3uvxuwORgjQRERERERER6fcS09yDtKx229TU1ODj49NnY2ZmZtLY2MiBLYdZ8/FGaNrKOSgxymiT5NH5aLuM61EzhuNwOIx57lm73zgfbdy5bbd1NkuZMgwvbysAu1e1hF01NTXk5OQw4fyxxm/bu7FF02KxcNPj1xr3757hq9IUpImIiIiIiIhIvxcUFkhEjGu11tH07Ha3L86aNYtLL720T8YrLS1lzZo15Obm8rbbarSbHr+WY/uOG/fJ4zpfkVZdUcO+ja7VZwmjYkkckcDNN99MUlISeHA+WjNvX29GTUsBIOdwPllNc9i5cyfr169nwgVjjLbdOScNYM4ts4hOcoWDm7/ewb6NB7v1/kCiIE1EREREREREBoTmVWkVxZWU5pe1eZ6RkUF9fX2fjBUUFIS3tzfFx0vZsGgrAFHxEVz2w7lk7HKtiLNYLcSPjO20n50r9uCwu85Zm3jBWKqqqsjKallRt+Ubt22fHZyP1mzalVOM67X/ca2Qi4iIwNvbm5TJyfgH+0HTirTms908YfWy8r1ftqxKe+8PfbM9tj9SkCYiIiIiIiIiA8LQVts7s9s8X7lyJQcOHOiTsXx9ffnlL3/J2n9tMX677uHLMZkga69r7PiRMXj7eHXaj/v5aJPmjuPw4cOsXr0au91OXmYBBza7zkcbPnEoEUPaPx+t2fSrzzKu1366CYDZs2dz0003YbFajCCurLCCox2cI9eRi+48j8hYV7XTdZ9u5tj+412+MxApSBMRERERERGRAaHVOWm7256T5u3tzaBBg/psvLfefIsNq10rv3z8vLn4rvPJ3p+DrdF1pllX2zpxO6/MbDYx7tzReHt7ExYWhtVqZeWH64x2s6+f1mVfMcOiSWoqurB3/UGKc0s5cuQIr7/+OgAT3c5J29aNc9IAvH28uO7hy437L19d0q33BwoFaSIiIiIiIiIyICSNaTnYv70VV/fffz9paR2fM9Zducfz8Aq1AHDBzbMICgvkyM6WAG/omM4LDRTnlhoVRlPOGk5gaACjRo3ioYceAmDlR25B2g3neDSnGVe3VAxd/9lmKisryc7OxmazMXFOyzlp25bu6qCHjl14x7lYvVx/7zdvr6CxobHbffR3CtJEREREREREZEBIHB1nXGeeEKTV1tby/PPPU1bW9uy0nnA6nRTuKKciqxqAqx64GIAjO48abYZ2sSLNvXrmpDmu1WKrVq3i888/Jy+zgP2bWrZ1xg4f4tG8pp2wvTMpKYkJEyZgsVhITIsnNCoYms5ma64G6qnQqBBmXOsK6soKK1j7yeZuvT8QKEgTERERERERkQHBP8iPwYmu6pKZ6cdaVe6srq6mvLycysrKPhlrx/J0DnxzlOq8OsbMHMnwCUMByHDbUtrV1s59G1qqXzZX5CwqKqK4uLjb2zqbpUxONs4y2/btLrzM3kydOhWTyYTZbDaqd9ZU1HJgyxGP+2122T1zjesvXv222+/3dwrSRERERERERGTASExzrUqrqailMLvY+D0kJITx48cTFRXVJ+N8+revGH5FLIlzBnPV/ZcYv2c0rUgLCgswAq2OHNnVsnpt2IQkAFJTUxk7dmyPtnUCmEwmpl3lWpXW2GBj+Ser+Pvf/05paSkAE8532965pPvbOydcMIbooa5z5rZ+s5PcjPxu99GfKUgTERERERERkQEjKa3lXLLM3S3bO728vDj77LPx9fXt9RgFx4pY859NmK0mfAN8mHmda7tjRXElRcdLXPMYm4DJZOqwD6fTaYRuETFhhES6tlwmJCQQ4htmbOscNiHJ422dzdyrd+5YkQ6Aw+EAt5VvAAc2H+pWvwBms7nVqrSvXlva7T76MwVpIiIiIiIiIjJgJLlV7nQvOFBSUsIrr7xCQUFBr8dY9PdvcNgdZCzOY0zKWLy8vQDI2OW2rXNs59s6i3NKqCx1na/mvgV0yZIlfLLwE+P+3Bumd3t+488bjX+wHwAbFmznmquuITzctTouZng0Pn7eAGSmZ3e7b4CL7jwPs8UVKX395rJun7XWnylIExEREREREZEBI2lMS5CWkd4SbNntrrCneWVWT9ntdr56YxkAfhE+nHXlhJbxdnl+Plqr6p5uoZvdbqc4r9S47862zmZe3l7MvG4qAHU1dWxeuc04L85sNpPQVJQh51Ae9bX13e4/YkgY066cDEBxTikbvtja7T76KwVpIiIiIiIiIjJgJIyKNbZUHnVbcRUZGcmNN95IdHR0r/pPX7OfklxX0JV6aQIZ2S0H9nenYmertmNbtqMmRAwl/SNXn92p1nmiS++eA0BQjD/ZZUdbVSttXrXndDo5ti+nZ/27be/88rUlPeqjP1KQJiIiIiIiIiIDho+fD0OGDQYga0+2sQLNbreTk5NjrEzrKfdqmhGDIwgICDDuM9yKByQ1FT3oiHtb99Vr336wAp9Q19bLK+69sMfzTJueSsKoWBprbDhsDgqzStzm5rZqz63KaHdMuXi8UUxhy9c7qKms7fFc+xMFaSIiIiIiIiIyoAxt2t5ZV1PPsf2uFVeFhYWsXr2awsLCHvdrt9tZtXADAF4+Xtxx9+1ccMEFxrPm4gYxwwbjF+jXaV/NK9IsVgvxI2OgqVhBblk2Q84KJyDEnwtumdXjuZpMJi67Zy41hfWsf24vy95ZYzxL7OAcue6wWCxGUYPGBhubvtre47n2JwrSRERERERERGRAGT0t1bjescxVtdLPzw+LxYK/v3+P+3Xf1jnl4vGsXreKzZs3A5B7pIC6Gtd5Y11t62xsaDS2VCaMijWKFXz52lLqKxtpqLJxyV3n4xfQuwqjc2+bTeAgP8bfncySf62kob7RNT+3c+QyexikcUJ10HWfburVXPsLBWkiIiIiIiIiMqBMuGCMcb192S4AQkNDeeyxxwgJCelxv+7bOmdfP43jx4+Tn58PwMEtLWelDR2T0O77zY7tyzEqXTafj2a32/n85a85/EUOhz47zhU/vrjH82wWEhnMpCvGEhDtR21NLWv/sxGAqPhI/INcK+Z6uiINYNy5owkIcQWTGxZtxdZo6/WcT3cK0kRERERERERkQBk2IYnAUNfZZduXpeNwOLDZbPzjH//o8dbOE7d1TrtqCqmpqQwbNsw1ztJdRtu0GSM77at1oQHX6rWNX2wjL7OQ6ElhTPvxWOJG9KzIwInmzJtN0Z5yGqptfPGqqyiAyWQisekMt7zMQmqrena+mZe3F2dfNhGAqrJqdq7c2ydzPp0pSBMRERERERGRAcVisTD+/DQAKkuqOLLjKA6Hg8LCQmMFWXeduK0zINifsWPHkprq2ka6dYkrSPPytjJmZudBWsbOtoUGPnnpKwB8Qr0JjOv8fLXumHzBBGr223DanWxbsoucw3kAJI52OydtT3YnPXRu+lVu2zs/GfjbOxWkiYiIiIiIiMiAM+H8lu2d25buxsvLi4kTJzJo0KAe9Xfitk6Hw8H8+fPZt28fuUfyycsoACBtRiq+/j6d9nWkVcXOBI7tP86WxTsAMFd7MWHS+B7NsT1btmxh2HUtq9u+eOVbOGH7aXORhJ4469KJWL0sAKz5ZCNOp7NX8z3dKUgTERERERERkQFn4gnnpJlMJmbPnt2jM9IcDkebbZ0NDQ00NjZisVjYtqRlW+eEC8Z22d+RnVkABIUHEhETzqd/+9p4Nve685k4cWK359iRqqoqgkIDjbDrs5cXU1VWTVIfFRwICPY3zqQrPFbM4e2ZfTDr05eCNBEREREREREZcBJGxREeHQrArpV7sTXa+PDDD1m9enW3+8rcfczY1jn5wnEEBPvj6+vLvHnzGD58OFuX7DTaTpo7rtO+yosqjL6Gjk2grKCcr15bCoC3rxej5ibz8ssvU1dX1+15tmfKlClcfc3VXHTHeQDUVNTyn79+SWJa3wRpANOvPtu4XtNU0GCgUpAmIiIiIiIiIgOOyWQyVkrVVtWxf9NhLBYLNTU13e5rx/J043riHNeKs/r6esrKyjCZTGxfuhuAgBB/UiYnd9pXxq4s4zp5bCLvP/sf6mrqAbjsnrkEhQbicDj6LEgrLCzEZDLx/ceuxWxxxUALn1+Eb4APQeGB0MvKnQDTrppiXK//fEsvZ3x6U5AmIiIiIiIiIgOS+zlp25fu5tJLL2XatGnd7mfHipYgbdy5owE4cuQIS5YsYd+Wg5QXVQIw/rw0LFZLp325V+yMSojgs5cXA+Dj581NT1xLQkIC8+bN69EW1PYsX76cHTt2MCR5MHNumQVNBRg+m7+YpKZVaUXHS6gqq+7xGJEx4QybkATA4e2ZVJf3vK/TnYI0ERERERERERmQJpxwTprdbu921U6Hw8HOFXsACAoLMKpsms1m/P39SV+x32jbvFqtM+4VO/euP0hjfSMAV91/MeHRYZhMJkpLS/tsRZrZbCYiIgKAmx6/FpPJBMCCP39GXEqM0a632zvTpruqlzqdTvasP9irvk5nCtJEREREREREZEAaMnQw0UNdVTrT1x5g546dLFu2rFt9ZO4+RmVJFQBjZ4/GbHZFKSkpKTz88MNsX7bbaNvV+WgAR5q2dppMJtZ9ugkA3wAfbvx/VwNgs9lYunQpBw4c6NY8O3LnnXcydepUAOJTYzn3e9MBKCusoLK0qtXf2RtjZo4yrtPX7OtVX6czBWkiIiIiIiIiMmA1b+9srG/EVgF2u71b7zevRgMYf26acb1hwwaWfLuEXSv3AhARE0Z8aky7fTSz2+3GeWR+Qb7YbQ4Arv3JZYRGubZyenl5ERkZ2e15tqe+vp433niD0tJS47ebH7+25W9b2fK39factLQZqca1gjQRERERERERkX5ootv2zsLdpTzwwAPder/V+WjnjTau9+/fT3bmcaNQwKS544xtkx3JPZxPfW0DNFXPBPAP9uP6n1/Zqt29997LxIkTuzXP9hQUFJCbm0tjY6Px29Cxicy41lVls6LpbDeAzPSsdvvw1KD4SAYlRAKwb8MhbI22XvV3ulKQJiIiIiIiIiIDVutz0tL5+9//7vE5aR2djwYwdOhQGvOcxv3EC7o+H8290ECz6392JcHhQa1+27FjBx9//LFHc+xMcHAwY8aMISoqqtXvNz9xnXFtNrvCv8z07F6P17wqra6mnsPbM3vd3+lIQZqIiIiIiIiIDFjh0WEkjo4D4MCmQ5SUlHD0aNtAqz1H049RUexateV+PhpAamoq+5e0hEUT54xptw93OYfyWt0HhQdy3U8va9OutraWAwcO4HQ62zzrDqvVykUXXYTF0rqSaMrkYZx9mWvFm8PhGqOsoJyywvJejTdmhvs5afs7bdtfKUgTERERERERkQGt+Zw0h91J0qBkoqOjPXpvRwfno+Xn5/Pyyy+TedC1HTJhVCyRsRFd9leSX9bq/sZHryIgJKBNu5EjRzJ27Ngut4p25csvv+Trr79u99kPn7sNs6V1LHS0l6vS3M9J2712YJ6TpiBNRERERERERAa0iXNatl1W7K8jMDDQo/eO7GhZuTbynBHGdUlJCQD1la7zzjzZ1glwYPMR4zo8OpSrH7q03XaRkZFMnDgRh8PhUb8dKSkpISCgbVAHkJQWz9UPXNLqt+Kckl6NlzQmHv9gPwDSV+/r9Yq605GCNBEREREREREZ0MadO9pY3ZWRc5j333/fo/eO7mmpZNm8PRQgOTmZ4Ioo7PWuoGvS3HFd9lVbVcuBzYeM+x/98Tb8AnzbbetwOHj99ddJT09v97mnLr30UmbOnNnh89ufuhG/oJY57Fl3oFfjWSwWRk9LAaAkr4y8jIJe9Xc6UpAmIiIiIiIiIgNaUFggwycNBSD/cBGlpaVdrpZyOp1kpruCtEEJkQQE+xvPDh8+zOEdrvPRzGYT492qeXbkn7/7iMZ6VyVLs8XMBbfM6rCt2WwmICCAsrKyDtt0paGhgb179+Lv799hm8DQAC79wRzjfsWH67Db7D0eE2Dk2S0r9zJ29a4S6OlIQZqIiIiIiIiIDHgTm85JK9hRRlrMuC7PHys6XkJNRS0AiWnxrZ4tW7oMm189AClnDW/3nDN3menHWPCXRcZ9RExYl+N///vfZ8KECV38VZ2MmZnJunXrqK6u7rTdHLdAr6ygnC9e+bbHYwIkjGpZuZe1t/eVQE83CtJEREREREREZMCb0HROmsPmZN/uA+Tl5XXavnk1GkCS27ZOgNrKOiqO1QAwaU7n56M5nU5eeOCVViu9ouIju5yvl5cXmzZt6rJdZ+OGhoYSFBTUabuw6NBW92/81/tGpdKeiB8ZY1xn7Tve435OVwrSRERERERERGTAGzNzJF4+XgBU2EvZsmVLp+0zd7udj3bCijTHQR8Kd7q2XXZ1Ptq3/1zJrpV7W/0WfkJ41Z7CwkJWrVpFZWXPQq2UlBR+8pOfdLnyLSQquNV9ZUkVbz75QY/GBIhPjTHG1Io0EREREREREZF+yC/Al8kXuUKvgt1llOR1fv7YUfcVaWMSjOvdu3dTGuhazebj582opsP121NZWsU/fvFOm9/DBncdpCUkJBASEkJDQ0OXbU/kdDr5+9//7lGxAm8fL/yDXJU2mwOwz19ezK5Ve7t4s30+fj4MTooC4Ni+nAFXuVNBmoiIiIiIiIicEWbPmwbA0aX5VO5uG1BVV9Sw6evt7F69l4NbDxu/J4yKNa63b95OY20jAGNmjcK7aZVbe9741b8oKygHMKpZAoQNDulyrgEBATz88MOEhnYdup2ooqKC/Px8vLw6npu74EjX9k9vX1d7p9PJH+98kZrK2m6Pjdv3qqmspTinpEd9nK4UpImIiIiIiIjIGeGcKydj9bJg8TaTH3iUhf/4jL/c9w82L94BwJNXP8cTlz7Nz2Y/yZGdTRUnTfCjcT/nT3f/DVujjaqsBrJWFgJw9iUTOxxr8+IdfPbyYgB8A3yYdvVZxjNPtnYCLFu2jA8+6P42S39/f6ZNm0ZycrJH7UObtnfW1zaQNiMVgLyMAub/7M1ujw0Qn9oSPGbtHVjnpClIExEREREREZEzgo+fN4lp8dgbHTgdDj59axGL/vENz932AgAluaVtX3K6QqWv3ljGzlV72LvhAKUHXeeWzZw3td1xyosq+J87XzTuf/D0zdjqbcb9iQf8d8TPz4+MjIxub48sLi5mwoQJHq9Icz8n7cd/vgO/QF8Avnp9KWs/6X7Bg9aVOxWkiYiIiIiIiIj0K5/N/5obou/h8PZMcMKhz3MoPVwFQPAIf4qLizn3hukdvh8UFkBpdTHhZ/th9bMw6pwRDGqn+qbT6eTPP3zZOINtysXjueahSynNbzmTzdMVaePHj+e8884DoKqqyuMqnp9++ikbN270qC0nBGnefj7c//wPjPv/+9HLrebuCfetsAOtcqeCNBEREREREREZ8N74r/epqWg58ys4MYAJPxzG+LuTiZ8bwZEjR7j4B+d3+P49z93Gvh0HqS2px1ZrZ1bTeWsn+vLVJcYqrpDIIB59/QFMJlOrMMqTYgMA5eXlbN68md///ve88cYbfPvtt12+43Q6KSkpIS4ursu2zUIjW4K08sIKLr7zPGZc49qKWlZYwZ9/9DJOp5Oje46xauEGbI22TnqDhJEtQdqxfQOrcqf1VE9ARERERERERORku+j2c/n0la+Z+uhIyjOrCIrzx2w1ExTnD06IjY1lSMxgJs0dy9Zvd7V6N21GKpf84HwenPY1mXtd1TxntbOtM/tATqtzxR555cdEDAkDaFUltKtiA9988w3btm0jMDCQsjLXeyUlJR6deWYymbj33nu7VaTAfUVaeWEFJpOJn/79XtLXHqCsoJz1n23h6Zv/wqqP1uOwO7j7Dzfz/ceu7bC/4IggQqOCKSusIPtArsfz6A+0Ik1EREREREREBrwf/e/tXHjzuZRlVBGcEIDZ2hKJhDREERMTA8Cld89p9Z7ZYubh+T8i53AeXiMcWH0tpEwZRnTSoFbtbI02nrn1Bepq6gG4/Idzme5WYKA031W9MzA0AG9f707nmpqaSm1tLUVFRcZvQUFBfP/73+/y70xPT2f9+vWYTKYu2zZzD9LKCisACI0K4ZFX7jN+X/HBWhx2BwDrPtvcZZ+DEqOg6dw5u83u8VxOdwrSRERERERERGTAM5vN/PTle0kOSmX3O5lU5rZs83QGNRrX0685G6t3ywa+y380l6FjEvhmwVLCRwRhtpiYdV3b1WhvP/VvDmw+DEBcyhDu/fMdrZ6XNq1I86TQQEJCAg888ACXX3658VtDQwMFBQVdvrtlyxZKS9spmtCJ0BNWpDVLmTKM0EHBbdof3HKEhvrGNr+7i4oLB8DhcLZajdffKUgTERERERERkTOCyWTiwRfu5sLrLqA6tw6nw4nT6cRkaVm95e3jxdTLJwHg4+/DD/94GwA7lu6hYFcZ1fl1zJx3Tqt+d67cw/vP/gcAi9XC4+8+jF+Ar/G8tqqW2qo68GBbZ7PIyEhGjRpl3NfX12OzdX42GcCgQYM466yzumznrtXWziJXkFaSV8oDZ/2SsoKKNu0bG2wc2pbRaZ8RMeHGdWF2cbfmczrTGWkiIiIiIiIicsYwmUz86H9u479vKaCmrAS/cB9GpaVS12inuKaBinob8168l5k/v4bYhEjqzBbKMwvI2JlFbXEDyeMTiRsxxOivvKiC527/K06nE4A7fvs9UiYPazVm87ZOulGxE8Df358rr7ySzz77DG9vbwYPHkxWVhYZGRlUVlbicDjw9vZmyJAhJCcn4+3tzZQpU4iMbFtNtDPtBWkbFm2lOKfjlW171u5n9Dkp7T6rs9mJGDeUlBtmYvXx4nBFPT5F1YT7exHi54W5G9tOTzcK0kRERERERETkjGIymXjyvUfZtDKdA7UVVAyO54MdOa0beftyPK8K8qrAbufiV+9j95srmD5hpNHEbrfzh5v/QkGW6yyzsbNHceP/u6rNeO5BmqcVO5tNmDCBvLw8li5dyj333ENDQ0OHbYOCgoiKiuL//b//R3h4eIftThQS2XZr5/Srz+LrN5eRvmZ/u+9s+nIb1z9ypXFf3WDjYGE1h0uqqaq3w6QUzp7kCtpKgNWZJQBYzCaiA31IHRRIbIhvvwvVFKSJiIiIiIiIyBmlttHOpmNlZPoH4/QPxmZzdv6CxUJAdCJTH7sdbxNkldaSEObHm//1gVHhM3RQCE+8+zAWi6XN6+5nhHVnRdratWt59913KSws9Kh9ZWUllZWV3H///cycOZPbb7+d4OC2Z5ydyC/QFy8fLxrrG41iAyGRwfzfyv9m58o9fPSnz1j/+ZZW7+xavReAukY7m7PLOFJcQxdfEQC7w8nxijqOV9QR4G1hSlwoSeH+Hv19pwMFaSIiIiIiIiJyxjhSXM3GrDLqmypQdletE5YdLiKwuoaF87+Gpsqev/7gZ0TGRrT7TqlbkBbqwYq08vJyXnvtNdavX9+jOTocDlauXMn27du55557OOecczptbzKZCI0KpjC7uFWxAZPJxPhz0xh/bhpH92bz4Z8+ZfEby3E6nVi9rRwtrWH90VLqbD37ltUNdlYcKSaztIapCWH4ebUNIU83KjYgIiIiIiIiIgOe0+lkS3YZqzJKehyiuasK8OfS139KwJAwfvTH2xh/blqHbWsqaozroLCATvvNzc3l8ccf73GI5q6iooI///nP/Pvf/zbOcOtI8zlp5UWus9dOlDgqjkdfvZ93Mv7G9x+7lp+v/APLDxf3OERzd7S0lkV786mo67wS6OlAQZqIiIiIiIiIDGiuEK2c3XmVfdpvUHwkV77zCBfff3GHbRwOB1u+2Wncm8wdnwlWUFDAU089RVFRUZ/O86OPPuLf//53p22CI4MAcNgd1FTUdthucEIkkx+4nMw+zryqG+x8tb+QyvquK5OeSgrSRERERERERGRAO1xcQ3p+34ZozazBASw7XIzD0XbFV2NDI3+840W2L9tt/Oawt21nt9s5fjiH3z75W0pLO66U2RsLFizg28VLOnxusbZsq2xvRVqzjJIaduRWdPi8N2ob7Sw9WIi9nW95utAZaSIiIiIiIiIyYFU32Nh47OSEU81KahrZlVfB+JgQ47eaylp+O+9/jGIEzZa9v4qMXUfJzywk/2gBeZmFFB4rxmukHb+RJ7eC5csvvcz8O98hbmgssSlDiBsRQ1zKEGJHDMHe2LISzNRBJc3aRjsbsk7utyyrs7Ejp5xJcd2rbvpdMTm72iQ7AFVUVBASEkJ5eblH1StEREREREREpH9aeqiQY2V13DwxluKaBgB25VaSU1EHwKBAby4dOZj3tx+nvhfnfZlNcOXoaEL9vCjJK+WJS5/m8I6jHr1rCYGgufDOO+9w+PBhAP7zn/+wY8cOhg0bxk033YTZbGbbtm189tlnPZ4jQMMxJ9UbOm8z76eXM+nC8aRNTyEgpOVMtxWHi8gsdW37bO97Tk0IJdzfGxOw5Xg5+ZX1PZqjCbhi9GDC/b179P7JpBVpIiIiIiIiIjIgldU2cqzMFZhVNdj5en9hmzajBwdRVN3Q67EcTtibX0lMTQ0PnPVL6ms96zMoLAD/s000mKopKCjgt7/9rfHMarVyww038Mc//pGGht7PEcA7zkTtLieOmo7bLPjLIhb8ZRFms4lhE5IYO2s0I88fQ1bMYKPNid8zyMdKiK8XX+4rwN/LwuzkcL5q53t7wgmk51cya2j7VVBPJQVpIiIiIiIiIjIgHSisMq4DvCxckhpFdYOdjVll1NsdxIX4UlBVT3xo3xwhf6SkhuUvfNJliPb/3n6QYeOSGJwYid1k57777gMbREZG8tRTT1FcXMwbb7xBfHw89fX1PPLII1gsFt555x2ysrJ6N0kT3PziFcyceC7ZB3I5fjCX7IM5rP3PJqrLW6drDoeTg1szOLg1gwk2GHNHS5B24vesa7RjczgxAd5Wc7ereV6dFs2W7DKyy13BZ2ZJDWfFheLrZeny3e+SgjQRERERERERGXCcTieHi1uCoYW7cqm3OxgeEcDE2BDWZ5WSOiiQZYeKiA/1a/XuxalRRAX44HA7DWtLdjn73YK59tgcTqbfdzGrP1xLQydhWmhkMMnjEgH46quvsNlc55M9+OCDVFVVcf7553PTTTexZ88e4uPjefzxx4mMjOTee+/lySefNPpJTU3luuuuY8SIEZhMJgoLC1m9ejWLFi3Cbrd3OP7adWu5/Y7bGTY+yfjtF8d+y/alrqII/+/tB9m/4RC7Vu0lY1cWTqeT5MumtOqjve9Z3WDj2jFDsJhNLDvcUnn04tQoBgX68PmefEprXeU+vSwmbp4Yx0c7c6husPNJel6r/h1OyCytYeSgoE6/+Xet3wVpzzzzDAsXLmTfvn34+fkxffp0nnvuOVJTU0/11ERERERERETkNFFRb6PB3rIqqr7pOqO0hpSoAJLD/TlWVktHBSK3ZJext6Dz4Kw93kPCWVT9LkU5JRzccoSDW46w5L1V5BxyBUX+QX7Ej4w12h86dMi4rqpyjbdmzRrmzp3Lxo0b2b9/P/X19Rw/fhx/f3+j7aRJk3j44Yf54IMPePHFF6msrCQmJoZrrrmGsLAwioqK6EhpaSnFxcVERkYavzndPsTseedw4a3nAlBRUsn2dQfJiApp1ceJ3zMm2Acfq4WFu3Px8zIzZ3gUn+/NN9o32BxMig1hyaGO53Wivthy29f6Zu3id2jFihU88MADrF+/nm+++QabzcZFF11EdXX1qZ6aiIiIiIiIiJwmit1CGKvZRHMdyuhAHyrqbYT6eZEY5s/cEZGE+Xkx28PzuKxmE1MTQpk3dgg3jo9hZlI4XpaWKpfN40bGhDPtyinc/tSNzL5+mvH8V+//lOikQcZ9c3EBHx8fo1rm6NGjycvL49ChQwwZMgSTyURISEirc9LuuusuPvnkE7744gsqKysByMnJ4W9/+5sRooWEhPCzn/2MV199lb/97W98//vfx2x2RUFHjhxp9Xe516J0r9oZHB5E4vSRbb7Bid8TTEaxhka7E6u5deXP/YVVRAX6MDjQp93vOm/skDYrA0/HIK3frUj76quvWt2/8cYbDBo0iC1btjB79uxTNi8REREREREROX2U19mM62BfK9MTw7E5HNidsDazhOqGlq2PF6dGsTKj2KN+ZySF43A6+XRPHk4nTE8MY2pCGKszStqMa3ALqbx9vd1+dpKTkwNATEwM9957L3V1ddhsNubPn091dTUrVqzgqaeeMs5IAxgyZAiDBw9mzZo1nc71Jz/5CWVlZTzwwAMEBQXx+OOPU19fz8cff2yMa8zFbUWa6YQQrOKEv6m971nTYCc5wp9LUgdhMZvYkVvR6p16m4PdeRVMigvhy30Fnc7bfVyn09kq2DvV+l2QdqLy8nIAwsPDO2xTX19PfX1LydWKiooO24qIiIiIiIhI/2dzC4ZKahpbbTM8UXvVPCfFhTAhpmU744c7c7CYTSSE+fHB9hwa7a7+t+VUcHVaNGsySnA2jXti+OPoIKSy2WzGSrCMjAwee+yxNvNYtmwZy5Yta/VbcHCw6+8qKenwbwoLC2Ps2LH88Ic/NHKRhQsXcsMNN/Dxxx+3yknoZEUaJ3xLOvmezWFiR/bmVzFqUCDxoX7kVdZ12pam6p0OJ1hOnxytfwdpTqeTRx55hJkzZzJmzJgO2z3zzDOtyseKiIiIiIiIyMBm7mX4sjW7vM0ZaSG+XphNJuaNHdKmvZ+XhZpGOyZT2yCKDkKq5m2W3dW8QCg8PJz8/PYDwoiICBoaGowFSAAFBQVERES0O3ZHYR+uQp99wu50sj2ngkmxIXy1r96DN+A0WowG/T1Ie/DBB9m5cyerV6/utN3jjz/OI488YtxXVFQQHx//HcxQRERERERERE4Fb0vfHwtf3WDD4XTy75052DuoUuDTzrjuIZXZLaSyWCz4+vpSV9f16ix3ubm5FBQUMH36dD7++ON22xQXF+Pt7U1ISIgRpg0aNIjiYtcW1oCAgNYvdLIizcfad9/yUFE1aYODGBbp32Vbq9mE+TRL0vpdsYFmDz30EJ9++inLli0jLi6u07Y+Pj4EBwe3+p+IiIiIiIiIDFzh/l593medzcGxslqmJoQa4ZKv1UyC2yH54f7ebd5z3zZ54hKrpKSkHs3l9ddf55prruGSSy4hMDAQms5Ou++++4iMjKS0tJTdu3dz22234ePjQ0REBNdeey0rVqwAYOjQoUZfeZkFFGa3nBHncKt2ChDWh9/SCWw9Xs7Y6K6zmfa+5anW71akOZ1OHnroIT7++GOWL1/e6h9eRERERERERAQg4iSFMKszSpgQE8LlowbjYzVT12gns6SGrLJaADZ9sJrDpeWMnT2asbNGERwR1Oogf/MJ2yaTk5PZt29ft+exdetW/vCHPzBv3jy+973vAVBUVMTKlSspLS0F4Pnnn+fuu+/mpZdeoqGhgdWrV/Ppp59iMpla5Sn/+4O/UXisJUi7JvQOkscnEpcaQ8SQcK588JIefKmOZZXVMiY6CF8vS6ftIgP6PgztLZOzVSx6+rv//vt57733+OSTT0hNTTV+DwkJwc/Pr9N3m1VUVBhLG7U6TURERERERGRg+jQ9j9Laxu90zG8fmE/epoPGfVJaPCaziYxdWQA88+WvmHLxBOP55s2b+eMf//idznHEiBE8/fTTxv2jFzzFjuXpHbYPCPHnh2v/SFF1w3c0Q5cLhkcSH+pZ1vNd6XdBWkclT9944w3uvPNOj/pQkCYiIiIiIiIy8O0rqGJDVul3Nl5tXikLrv59q/PG2hMUFkBsSgxxKUOIGR7NskNfUVVb+Z3N84oLrmawbwz5mYXkHS1g54o95Ge2rVzazNvXm+ez/sGazM6rcvalAG8L140dctqdkdbvgrS+oCBNREREREREZOBrtDv4cEcOjR0UBuhrU+JCifeG3av3sWvlXnat2sPBrRltzhw7ke9I8Bvz3QRGjnon5YuAzqdk8Av05Xef/JIx547mox251Hfxt/SViTEhjIs5/TIbBWkK0kREREREREQGrN25FWw5Xn7Sxwn0sXDV6Gi8TqjaWVNZyzO3Ps/6z7YAkHrWcErzyyjIKmppZIWQi8Dsf/LDtJptTuoPe9Y2PjWGZ776NYMTowDYm1/JxmNlJ3eCgL+XhavTovHuw2qhfaXfFRsQEREREREREfHU6OggjpbVnvTzvWYkhbcJ0QD8g/yIio0w7h+e/0NGTEqmrqae3MN5ZB/IJftALul7d3OgbtdJnaO11ocp48cRfdUgopMGMTgpiuikKAYlRnFL0o+pLqsx2o6elsJ/f/oYwRFBxm8jBwVytLSW/Kr6kzrP6Ulhp2WIhoI0ERERERERERnIzCYTM5PCWbQvn0b7ydmUlzY4iOgg3w6fO9y2ljaf/e7r78PQsYkMHZvY9ORaXnvtNb7++uuTMsfAwED+8MIfiI6Obve5f5CfEaRNu2oKT7z3U3z9fVq1MZlMzBgazud78mk4SVs8Rw4KJDbk9Cow4O70jPdERERERERERPpIiJ8XjSt20lhd1+d9D4vwZ3JcSKdtfPy8jeu6TuZw1113MX369D6dH4Cfnx9PPPFEhyEaTZU5Abx8rPzmo0fbhGjNgnysONftpqGqts/nmRTuz1nxoX3eb19SkCYiIiIiIiIiA9r6z7fwz0fe4NsHXqa2qKLP+k3yt/Dqpb/lvom/IH3d/g7bhUS1nM9eVtjx+GazmZ/85CdcdNFFfTbH8PBwnnrqKYYPH95pO1uDDQAvHy8sVkuH7bZ8s4O3fvIa39z3N6rz+64iampUALOGhp92VTpPpCBNRERERERERAas44dyefa2FwAo3pNF6J4MksP9e9VngLeFuSOi2PDHhRw/kMuRnUf56Yxf8+gFT7Fh0RYcjtbbHkPdgrTyToI0msK0e+65h1/+8peEhYX1ap7nn38+f/rTnxg6dGiXbcsKKtrM9UT5Rwv5w83P43A4KT1wnMDthxgeEdCrOfp5mZkzPJJzEk//EA2dkSYiIiIiIiIiA1VdTT2/nfe/VJe7zv6aNW8q3/vZ5ZhMJpIj/Plw4WbCxiZ53J+fl5nUqEBGDQ7C22ImZcowvnl7hfF8x/J0dixPJ35kLNc/ciVzb5uNt49XqxVp5UWVHo01efJk/vSnP7Fo0SIWL15MZaVn75lMJiZMmMCVV17JmDFjPHqnob6RqrJqAMKi299a2VDfyG+v/18qil3zmHr5JG59/BrMZjPJEf58sGAToWMSjTPguuJnNTMiKpDRg4PwOU0LC7Sn/8xURERERERERKQb/vGLd8jYlQVA/MhYHn39ASPosR0vYtHdL7Dr1TfIX7WZuBBffE8IdByNNiL8vUiJCqBy11q2vvR3Di9YjXdTdc6Z101td9xj+47zfz962VgJFxLZUvmyqxVp7gIDA/ne977Hr3/9ayZMmMAFF1zA0KFDsVhab70MCwtj8uTJzJkzh1GjRnHbbbd5HKIBlOWXGdfhHQRpb/zqXxzccgSAmGGD+eXbD2E2N32v4nIW3f0CO19+ndzlG4gL8cXPq/W3NJsg3N+LEZEBVO/dwLaXX+HA+8v7VYiGVqSJiIiIiIiIyEC0/vMtfDbfVQHTx8+b3yx4FP+glmqQqxZswGQ2kf72Hqb/YTJzRkRReKyQP937D44fKaA4pwRno53Pq96hoqKCxVn78Iu1sHzdUnx8vbn8hxcSGRPOoIRICrKK2p1D9v4cOOGMtPIenNE2aNAgHn/88ZYQ0Gajvr4eu92Ot7c3vr6uiqEffvgheXl5vPHGG9x+++0kJiZ20bNLSV5LkBY6qG2QtvXbnXz0588A8PK28uRHjxIUFmg8X71gA5hg7/v7OOvX45kzIoqygjKe/cF8Us4ezq1PzMNqNmE2m6isrOSbI+n4DjGxbscqvJ63cN3DV3T7m5wqCtJEREREREREZEApzS/jT3f/zbi/9093kDgqrlWbVQvWk3jBIILi/Jl53dk4nU5+Mfd3HD+Y16pdWUEF+aW5xn1IYgAv/ORVTCYzl90zh9HTUtoN0sKjQ/n5a/e73vGw2EB7amtref7557nxxhuNggFWqxWrtW2kU1BQAIDT6WTnzp09CtJOXJFWUVzJH+980bi/+5lbGDa+9XbYlQvWkzB7EGEpQcya51ql94u5/03m7iy2fLGVKeenMW7WaAByc1u+ZVCcP6/+6p+YLRauefBSj+Z6qvWv9XMiIiIiIiIiIp1wOp38791/MwKrc66czBX3XtiqTfaBHI7sPEpociA+Zl8GJUSx5j8b24RoAEXZxUQPjqauvAEAq6+F0d9L4MO3PuI/L37JqHNS2p3HLb++ntQpwwAIDA3A3LQdtDtbOwGys7NpbGwkKiqqy7YjRowwvsGuXbt4//33jXCtM2X55ca1e5DmdDr5y31/pzjHVZ1z0tyxXPvwZa3eLcgqZN+Gg4QOC8RisxKXEsOmr7aRuTvLaPPVa0uN6+joaOpKm76lj4XUG+L5dMFn/Pt/P+1ynqcDBWkiIiIiIiIiMmB8Nn8xG7/YBkDooBAeeeXHbQ7AX7VgAwBHl+YzNmUcNZW1vPST19vtrzC7mIPph/EOaFkBFjo0kKS50Sx85z/kZbYfVL3x639RdLwYmipxNp+T1t0gLS4ujhtuuIGQkJBO2zU2NlJaWtrq/sCBA8yfP5/GxsZO33VfkeZebODrN5cb3yooPJBfvPlgy7loTVYv3AhA1vJ8RiaOpq6mnhceeLVVm3Wfbqa+th6AjP2ZWANazngLTQok8bzBfPHxF7z3h4WdzvN0oCBNRERERERERAaEo3uO8fdH3zLuf/HGA4QNahtArVqwDp8QL/yjfDj/hlm8/ZsPKDpe0m6fuYfzWb5mKWarGafTidPpJHdTMRnf5FFX2sDHz3/BqHNS8A/2474/3cG535sOQFVZNf/zg7/hcDjAbXtnWWEFTqfT479pz549REREdNlu37597Nu3z7j38fHhuuuuY9q0aV2+2ypIG+z6XscP5fLST14zfn/klfuIjAlv8+7KBevwDrISMMSPC26YzXtPLyAvo3W4WFVWbQRu3y77Bqu3xfiWedtKOPJ1LrXFDbzx63+x6evtXc73VNIZaSIiIiIiIiLS7zXUN/LMrS/QUOdafXX1A5dw9qUT27TLPZLPwa0ZJF4wiJizIqkuq+HjF77osN+je4/RkNhA9roirL5mqvPqyNtSitPeEoZ9/7FrmHr5JCwWCxUllaSv3kfR8RK2frOTT1/6mmseupTQpiCtsb6R2qq6VoUPOmKz2fjyyy+5+OKLGTx4cKdtq6urCQoKYsaMGRQVFTFhwgRiY2M9qt5ZekLVTlujjWdv+yt11a5VZJf84AJmXtu2QmnR8WLS1+wnflYUcTOjcDocfNjBFs0vX1vCnFtmUVdfR87GIsxeZqrz68nfUoLD1vItq8uqu5zvqaQVaSIiIiIiIiLS7731X+9zeHsmAImj4/jhH29tt92qBesBsPhYCPeP4M0n38fh6HiF2JEdWUQ3JJG5OI/Dn+cw5KwI/KN8ABg7axSP//MnTLtyChaLa7ticHgQj75+v/H+K798h6x9x1tX7vRwe2d9fT1ms5mkpKQu206ZMoX77ruPqVOnEh0dzbp16zwagxOCtNDBobz7+wXs23AQgJjh0dz/lzvbfW/1x65VZhZfM8Feobz92w+xNdrbbbtjeTrZB3OJNw/nyJd5HPo0h+hJYQREuyqOjp6Wwi/eeIBzb5zu8bxPBQVpIiIiIiIiItKv7Vq1lw//9BkAXt5WHvvnT/Dx82m3bXOQduTLXK67cR6N9Z2fH3Zs/3FSxruKBjgd4B1oJTzFdd7ZTY9fywU3z2pzBtvkC8dzzUOuKpQNdY08e9sLBIcHGc89rdzp7+/PY4895lGhAavVir+/PwB2u529e/dis9k8Gqe0aWtnUFgAR3Zk8t7TCwAwW8w8/s+f4BfY/uq55m+Z+U0+1153TZffcs/a/aROGG7cewdYCU9xBYw3PHoVF91xXptvebpRkCYiIiIiIiIi/Zat0cYL979inDt219M3M3zC0HbbFmYXs2/jIXzDvZn22Ggi48N44r2f8sDzP2DMjJFGu0EJkVi9Xadh1VXXM272aP6x80+8dfCvjBqaRuXxWnArWtCee569hfiRsQAc3HKEzD3HjGeerkhbtGgR33zzjUdt3Y0aNYrx48cbq+S60nxGWsigEF64/xVjhd7tv7mRkWePaPedssJydq3ci0+IF9N+OZqopAh+8cYDPPjXuxl3bprRLio+grDBIaSeNYwpF49n6uWTeXX3n3lj/wtMSJtIZXYNAKsXdvwtTycK0kRERERERESk3/r4+S/ITHeFVKlnDeO6n17WYdst3+wEIDQ5EIu3GW9vb0Iig7nmoUuJjG850P8PXzzBFfdeaNxn7T3O0DEJxAyL5qrvX4HV4grZ1vxnI3Zb+1sZffx8eOydh7BYXWHW7lV7jWflRZ4FaQcOHMBq7f7x9kFBQZxzzjlUVlZ22ba2qtY4C83pcHBwawYAyeMS+f5j13T43rYlu3E6nYQMDcDiY8bHx4fg8CCufuAShgwdZLR7auEv+Hfuq7y44VnCo8MASBwdT9yIIVxx42V4e3sDsO6zzTR0saLtdOBxkHb33XezZs2akzsbEREREREREREPFRwr4u3f/hsAk8nET/72w05XYW1fuguAyuwaxqdOaBVSZe7OAsDqZSF2xBASmlaTAWTtO25cl5aXMPKmOHzDvakormTnyj0djpcyeRi3/HoeAO6FOj1dkTZ58mQmTmxbMMET3377LYsXL+6yXWl+uXGdl1loXD/00j1GCNiebUtc37Iqp5ZRSWn4+LRspc1Md31Lk8lEwqi4DvsoKy9j+Lwh+A/yoaailm3f7vTgLzu1PA7S3njjDS6++GK+/fbbkzsjEREREREREREPvPzIm8Zqqivuu4iUycM6bOt0Oo3wJzDSn7lXzDGe2RptZO/PASAuJQarl7VVAJS1N9u4joqKwoQJ/0hXcLT+sy2dzvF7v7yGmGGtK256EqRVVVWRmJhIeHh4l23bM3jwYAoLC7ts17ytE8DeVCjg4jvPb7XVtT3blrhCL78wXy66aq7xu8Ph4Oge1/eKHjoIX//2z6oDiIiIwGwyG8Ub1nXxLU8H3d7aedVVV3WaaKanp3PLLbf0dl4iIiIiIiIiIh3a9NU244yy0EEh3PX773fa/uiebEryyrD4mBkxL4asY1nGs+OH8oxqk0lj4gFIGNX+ijRfX19uvfk2yjOqAdi+bHen43r7eHHfn1tXvSzOK+3y71u/fj2LFi3qsl1HZs2axbx587psV+oWpNFUcOCe5zrPdXKP5JOXWYjJYmLk9+LJym75lgVZRUa4mZjW8Wo0AC8vL+64/U4qMlznpHX1LU8H3QrSXn/9daKjo7nmmmv48ssv221TVVXF+++/31fzExERERERERFppaGugRcfes24/9H/3EZQWGCn72xt2jbo5e/azhkR0XIm2tH0lkIAiaNdQVrooBCCwgIAOLb3eKu+7NgYe52r+uSRnUcpKyynM+dcMZkJ57ccwL9vw8Eu/8bq6upWc+wuLy8v1q5dS0lJSaftCrOLW93f/cwthEaFdPpOy7e0YDJ1/C2Tmr5lZ2yORsZdnwLA8YO5FBwr6vKdU6lbQVpSUhIrV64kJiaG6667rlfJqIiIiIiIiIhIT3zw3CfkHM4HYOzsUcy9dXaX7zRv66wrbeCquVczeHDLdsuj6S1bNxPTXOGPyWQivml7Z2F2MZWlVUabnJwcglP9jPsdy9I7HdtkMvHgX+9uef9QPrkZ+Z2+M3fuXK688sou/67O7N69m4MHOw/t1n222biOS4nh0nvmdNoeYGvTt2yotHHJzMuIjW1ZvZfZzrfsTG5uLn5DW86q27709F6V1u2tnXFxcaxYsYL4+HjmzZvHZ599dnJmJiIiIiIiIiJygpzDefzr2Y8BsFgtPPTiPZhMpk7fsTXa2LnCVRQgfmo05Y2ttzNmpLdsTUxy246YMjnZuN67viWQGjp0KMFBwcb9Ng/Cn8TR8Xj7ekHTeW3/+MU7HbZ1OBx89dVX1NXVddlvR0wmEyNHjsTPz6/DNgVZhexyK5Zw65PXYzZ3HhU5HA4j7BoyPoIKR+tvmen+Lcd0HaQlJSUREtSyAu50397Z7SANIDY2lhUrVpCUlMQNN9zAJ5980vczExERERERERE5wfxH3qSxvhGAeT+9nKFjErp8Z/+mw9RU1gKQNCOarKysVs8zdh4FwMvHi5hh0cbvY2aOMq53r95rXCckJHDnD+7E6uWqaulp+DMoIdK4Xr1wg7FF8kQlJSXs3r2bigrPqnt2ZN68eYwaNarD5//4f+9gtzmM+4kXjOmyzyM7jlJRXAlA8uy4Nt/ySNO3NJtNrSqfdiQ2NpZ7fnQ3Pn7e0LQizele4vQ006MgDWDIkCGsWLGC5ORkbrzxRhYuXNi3MxMRERERERERcbNn/QGjSmZkbDi3Pnm9R++5B1bRMdGkpKQY96X5ZWQfyAVg+MQkLFaL8SxtRqpxnb52v3HtdDr528svMfay7p3tFTM8utX9Sw+/jq3R1qadl5cXQ4YMITo6us2z7tiwYQNvvPFGu88Obc9gxb/XtfotJDK43bbuWn3L2GhSU1u+UVVZNRk7XcFa0pgEvH29u+zP6XTyt/l/Y9zVriqhhdnFHD+Y2+V7p0qPgzSaSqkuX76cESNGcNNNN/HRRx/13cxERERERERERNy89ZsPjOtb/+t6/AI73rbobtvSXcb1JVdcxNSpU4375i2fAOPPa70iKzImnOikKGgqENDY4FoJZzKZsFqtxI1vCbo8OdsrKa316rmsvcdZ+t7qNu0CAgK46667Ot2W6Qmr1UpeXh4Oh6PNs7ef+ner+7DBIa1CxI64f8s5l1zAjBkzjPtdq/Yaq8nGn5fW7vsnav6WMWlRbmOcvts7PQ7SIiMj2/190KBBLF++nJSUFG6++WZV7BQRERERERGRPrdr1V62fuNaDTUkeTAX33W+R+/VVtWyd90BAOLHxvD2v9+ioKDAeL5jeUuhgPbCn7SZrpVSDXWNHNqWafx+6aWXMvHsica9J9s7k9o5fP9fzyzEbre3+m3JkiV9slhp9OjRzJ07t825Z/s3HWLdp5tb/eZJYYCG+kZ2rXRtcR2UHMG/P/sXx4+3VDTt6lt25OKLL2byOZOM+9P5nDSPg7SCggKmTJnS7rPIyEiWL1/O6NGjeeGFF/pyfiIiIiIiIiJyhnM6nbzxX/8y7m/9r+uxelk7fafZrlX7sDW6gqrR5w3Hbrfj7d2y5XDHClf4Y7FaSJue0ub9tOkjjev0NfuM67i4OAYPizDO9tq2ZFeXZ3u5H74fFh0KQPaBXFZ+uL5Vu7y8vFZz7Cl/f39CQkLaFC1wX9nXLHlsYpf97V13gPraBgDGzE3FZrPh4+NjPN/Z9C1NJhNjZ3d8NtuJYmNjiYgPJTA0AJpW97W3iu500K2tnZ1VboiIiGDp0qWMHz++L+YlIiIiIiIiIgJNIVXzSqi4lCHMuWVWt95tNnH6eC677DJCQ10hVml+GVl7XSuqUqYkt7tVdIzbOWm73YK03bt388mnnzBmliswKjpe0uXZXvEjY40KowHB/sbv7/1hQavgaNq0aa22TPbGp59+yvbt21v9DZu+ct0HhQcavw8d23XRhlbfcto4LrnkEmMHY1VZtbFib+jYBILDgzye4759+1iwYAHjz3N9y4riSjJ2ZXX53qnQqzPSThQeHs7q1atZvHhxX3YrIiIiIiIiImcop9PJm0+2HCN1229u9Ogsr2Zbl7i2g5pMJoZPSSIsLMwIs1qdj3Zu+1sRE9PiCQhxhV7pa/Ybq84iIyNpaGhotYWxq7O9fP19GDJsMDQdqj/qnBEAZO4+xtpPNhnt6urqCAkJ8fhv7ExERAT19fXG/Vtu3zJhVEtVzaHjul6R1vwtAVKmJrf6lu7no407d3S352i32xnndkadJ2fOnQp9GqTRtGxwzpw5fd2tiIiIiIiIiJyBNn65jb3rD0LTGWPnfW+6x++WFZZzZMdRaKrImb5/N0uWLDGeu5/pNa6DM73MZjOjp7tWpZUVlHP8UB4AqampPPDAA0yaO85o634Qf0eaz0mrr6nnsnvmGr+/9/QCnE4ndXV1fPzxx2RkZHj8d3bm5ptvZtq0adB09tj2Za6/OWZ4tLFN02w2kTg6rtN+qsur2b/pMDQFcIePHeKbb74xnvf0fDSAYcOGub7lnO59y1OhW0Ha8uXLueiiixg1ahQ33HBDq6WBzTZs2IDF4nkyLCIiIiIiIiLSHqfT2eo8r9ufurHTY6dO5L6qaeKccTidzlYrvZrPRzNbzK22cJ4obXrLs+ZVbPX19SxatIjYkYONFWs7lqV3ebaXe8GB4MggRkxOBuDg1gw2frnNKDzQVyvS9u/fz5YtW9qs7LvlV/PI2pMNQOyIIfj6+3TSC+xYsQeH3fW3TZozDofDQXBwsPG8+Xw0gHGzu7cirbGxkS+++IKIhFDCBoc09bcHW6OtW/18Fzz+r2/r1q1cdNFF7Nq1i5iYGL799lumTp3K/PnzT+4MRUREREREROSMtO6zzRzccgSA4ROHMuPas7v1/tZvW1Y1TZo7lrlz53L11VcDUFpQbpyPlnrWsHbPR2s2cc5Ytzm5tmBWV1dz6NAhiouLjRVYnpzt5V4d82h6Nrf8ap5x/+7vP8Lf35+f/vSnxMbGdtBD92RlZbFv3z62fruT9DX7oWlFWcqUYTTUNQKQ5Mn5aG7fcuLcsZx//vlcf/310HQ+2uHtrvPRksclEhzh+floALW1tRw6dIj8/HwmXODa3llbVceBpn/704nHQdrvfvc7pkyZwqFDh1iyZAlHjx7lhhtu4MEHH+S55547ubMUERERERERkTPOx88vMq67uxoNt+2BXt5W0maMZPny5WRmugKfTV9uM9p1tYJq5NnDCW+qsrn1m53UVtcRHBxMbGwsgYGBTLygJWhzP5C/PUPdKnce3XOMaVdNMap57l1/kFWfr2PRokV9VrUyMTGR6OhoFrp/y9/cyNH0Y8a9JxU7m7+l2Wxi/LmjWbVqFYcPu7Z6blm8A4ej6Xy0bq5GAwgMDCQ+Pp7g4GAmnO/5tzwVPP4vcPPmzTz66KMEBLhKkQYHB/PPf/6TJ554gieeeILf//73J3OeIiIiIiIiInIGObrnmHGeV1zKEKZePqlb7+ceyScvowCAtBmp+Pr7sHv3bvLz8wFY+dE6o+20q87qtC+z2cy0K6cA0FDXyNZvduLl5cVtt91GWFiYsYqKpnPIOhObEoPZ4opjMnZnYTabW61K+3bhMg4ePGgc3N9bEydOZFRSGpu+dB3PNSghkpnzpnJk51GjTXIXhQaKcko42rQNNPXs4QSEBJCenk5enuu8uBWtvuWUbs/RYrFw6623EhkZycRufMtTweMgraysjKioqDa///d//zdPPvkkTz75JE899VRfz09EREREREREzkCfvPS1cX3V/Zd0ezXa1m9bKkxObDrEPj4+noSEBKrKqtmyeAcAkbHhRvXMzky/pmVb6ZpPNgLwj3/8gx07dpA4Os7js728fbyISxkCwLF9OdhtdmZdfw5R8REA7F1xkKGJyX12/vyePXt45/23jWDuyh9fjMViIWN3yxbUoeM639rpvjKsuSBAXFwciYmJ1FbXsXHRVgBCIoO6XWig2WuvvcbmzZsZkjyY6CRX/pS+Zj8NdQ096u9k8fi/wvj4ePbs2dPus9/85jf85je/4Xe/+x2/+93v+nJ+IiIiIiIiInKGqS6v5pu3lwPgG+DDRXec2+0+3Ks+Np9xdsUVV5CcnMzaTzZha3Qd6j/7+v/P3nmHR1F1Yfzdnmx67xWSkITee++9o4B0pGMBFfVDBCsIgoCgooBgAelI771DCBBIIKT33rN9vj92d7KbrdndhBDv73l8zMzcuffOYXdn5txz3tPJKCddy95NYW1rBQC4fewBpBIppFIpCgsLwWAw1LW97r3U25dSJ00sFCPjZRZYLBYGTu8NAChOrQBSuDW+Xl0IKoWQMaVgsBjg8DgYNFM+TqIiIo1vZw2PAM3AKVW02XLgwIFo3Lgx7hx/QFf/7DqqA1hs0xyAMpkMhYWFAICWveS2FAvFiLkRZ1J/tYXRjrTOnTtj3759Oo+vWLECK1euxMmTJy01NwKBQCAQCAQCgUAgEAj/Qc7uugJBuRAA0Hdyd9g42NTofIqi6IqdNg58hLYJRllZGdatW4fs7Gy1tM7u4zoZ1SeXx0G7Qa0ARVGBJ9dj0b9/f0RGyiOw1LS9LuhPSQyKrIoAS4qRp0wOnNELDAYDgX088Dg52mIaaekPcpFwOhOUlELPNzrDwdUe5cXlyErKBQAENvUz6Eh8eF5+PTxrLsI7haKyshLff/89MjIy1NI6jbWlNvr06YPmzeXRbi1VNOceGrBlXWO0I23y5MlwdnZGXl6ezjbLly/Hd999h+7du1tqfgQCgUAgEAgEAoFAIBD+Q1AUhaNbTtHbwxcMrHEfOSl5KM4rBRT6aCw2CwKBQB71lFdU47ROJZ1VtNRuHrkLBwcHMBgMAKiRtldApC/9d5IixdLd3w1tB7YEh8+GVCbB/bOP9PRgHBRF4fjWs5BUyKPvRiwYBABIfFJVaCDIQKGBwuwi5KblAwDCO4aAy+NAJBJBKpWipKjEImmdANRsWRPNubrGaEdar1698M8//8DV1VVvuyVLluDixYuWmBuBQCAQCAQCgUAgEAiE/xhR5x8jNS4DANCiZySCmurX79KGupB+IADAxcUF/fr1Q9Ld9BqndSppP7gVnbp44+g9nDt3DtevXweAGml7BapcU/LTKqfW4Fl9kHEnHylXcnDy13M1uGLtxNyIQ25eDkJH+SKydyjC2jYCACQ+rtJHM1RoQL2t3Jb29vbo378/Mh/nWSStEwAuXbqEK1euAABcvJzgH+4DAIi9E4+K0kqT+7U0NVPqIxAIBAKBQCAQCAQCgUCoRY78WBWNNsKEaDRoONKqHEXW1ta4duAWvV3TVEQ7J1s07xEBKKqCigUScDgc+njTbuGAQttLWeVSGz6NPcHhsgEASSrRYR2HtoGtgw1kIhluHLmHwuyiGs2vOkd+PAWZRF5koN+kKp25RDX76HdUqtoyqJotrx68TW93H9/ZrLmy2WxwuVXacM26ym0pk8rU5vCqIY40AoFAIBAIBAKBQCAQCPWC7ORc3Pr3HqBIu+w8op3Bc7SR+FjTUZSXl4ejR48i9vFzuv+apHUqUU3vlCVz0KdPH3pbNXouKSZV41wlLDYLfk3kEVdpzzMhFokBAGwOG83GNIZ/Lw9IJVKc+f1yjeenJD+zEFf330J5tgDP/8pAv4m96GMJKvYJNBDxl6DFlkVFRThy5AieRccCyrROhYPRVIYMGYL+/ftXzauZStSeHlvWNcSRRiAQCAQCgUAgEAgEAqFecG73Fchk8giqIW/3MzlVUJmOyOGy4RvqDSgingBAVCEBTEjrVNJjfCd6XlEPohAXV1VVUtUppRpppg2lTppUIkXa80x6v3+oL6Qieerpyd/Og6KoGs8RAC78dQ1SiRQcPgvNJ4SAobhUiqKQ+Eipy+YKW0f9hRySFLZkMhkIiJDPWWlLQam8IIS5aZ0A8PjxYzVbBtXAlnUJcaQRCAQCgUAgEAgEAoFAqBdc3neD/rv/1B562+pCJBAhTaGxFhDpRzt4HB0dkXehEpV5cudPzze6mNS/k4cjOg1vCwDg+3Bw58o9+ligShEBVe0zbQRGao+4Gjl2BKyKHAAA6S8y8eRarEnzvKKwJd/dCgJWOUpL5cUXspNzac0xQ/poUomUrirqE+oNnjUPAGBnZ4fSm1KUZwkAAL3e7GrSHFWJi4vDy5cv6W21ggwGbFmXmO1Ie/ToEYqKzMvZJRAIBAKBQCAQCAQCgfDfJjUunY4kC+8YAnd/N5P6SX6aRke1BamkBz66/hRMXzFYPCZCWgehSfvGJs918Cx5OmdpRiVSH1ZFk7n5uYJvZw0YEUUVGOlH/63aNiYmBs2GVaWcXlPRITOW7ORcxN6JBwC4e7nB3d0dNjbyyDPV4gGq9tFG2otMiIVijbZxD+Ihdi4Hm8+Cf7gPrRtnDt7e3vD09KS3Hd0c4Ogudyg2qIi0Vq1a4eDBg5aZDYFAIBAIBAKBQCAQCIT/JFf2qRQBGFuzIgCqqInjN6uKuDrx+xk4h9rDyomL4fMHgsFgmDxG637N4e7viqSz2biz+zFyUvMAAAwGg46kUo380oaaY+pePP13fHw8YCNRqQ56t8bpnVf2V9myy+COmDVrFng8eTSZLvtoQ60ogUrbY7+dhnOYPaxdeGbbUkmvXr3QubN6wYLApnJnY1FOMYpyi80ewxKY7UgzNVeXQCAQCAQCgUAgEAgEAkGJalpn97EdTe5HW0XKwpxi3DxwH2VZleAwuej1pmlpnUpYLBYGzuiN8PF+8O3uhtPbL9LH1FI29VTu9Axyh4u3EwDgydVYuuCAt7c3/AP90aKnPMorKzFHLYrMGK6o2LJp31CsWbMGlZVyp562Qgy6UK/YKW9bWliGq3tuoyyzEkwxE/2mmJaCW52DBw/i7NmzavsCI6qi9pJjdNuyLiEaaQQCgUAgEAgEAoFAIBBeKZZK6wSAxCdVTielBtjJX8+jskiIR9sT0X9iT1rryxwGzugNrh0HHBs2Tm4/D6lUXiBANWVTX7VJBoOBlr2bAgAEFULEKVIxu3Tpgi5duqCTSnXQG0fuGj0v1bTO4BYBsHXlQyKRQCQSgaIoehwOj0MXYtCFNlue2XkJ5YWVeLQjET3HdKVTWc2lrKwMFRUVavuUEWkwUAW1LiGONAKBQCAQCAQCgUAgEAivFEuldQJAgqIipaObPZw8HCGVSHHs5zNgchjo8EETtBvbwuz5AoCbrwusKm2RE1WI3NR83DsdDVR3/jzRH0nWqncz+u+o808AAFevXsXff/+NzoqCBlCkdxqLalpn97Gd4OPjg549e8Le3h6ZCdnISsoFAER2CTNYaVNZ3ZNvZw2PADfIZDIc3XoaDCYD7ZeEoe3YZnrPrwkdO3ZE69at1fYFRBpvy7qCONIIBAKBQCAQCAQCgUAgvFIsldZZmF2Eohy5llaQIoLq5r/3kJuaD1AAi8ME08oCE1bQrl9rVCiqgJ789RxQ3fmjJ7UTAFr2akr/HXXxMQBAIpGgsLAQ7v5uCGkdBAB4cT+B1mEzhGpaZ49xnSCRSODv7w8Gg4Go84/pY6pOPG2UF5cjO1nudAtsJj///ploZMRngZJRYHFZ4NqxjZqTMXC5XLi5qUciqkX3GbBlXUEcaQQCgUAgEAgEAoFAIBBeGZZM60xQE8eXa3od+fEUAEAmoRAR2AxBQUFmzxkApFIpHibeg197eaXJm//eR05KLpw9HWHnbAsYEUXlEeAG70YeAIBnN59DUCFEixYt0KOHXHdMNb3z5tF7BudUPa3TN9Qb9+/fx5EjRwAAD1Qcaa376nekqeqyVbclAIT7RiI4ONjgnIyBoij8/fffiI2NVdtv62gDVx9nQGHL+qDTTxxpBAKBQCAQCAQCgUAgEF4ZVw/cpv82N61T1fkT1DwASTGpeHhBnjLpE+KFtt1b0Vpm5iKRSAAArXs0BwDIpDL8891RMBgMOpIqP6MQpYVlevtRRoZJxFI8uRYLe3t7cLlcAECXke3pdjeO3DE4p2sHNW0pFotha2sLmUxG28LGgY+QNvqdYGqOtOYByHiZhTsnogAA7v6u6NCnLWQymcE5GYNUKgVFUbCxsdE4pkyVLS0sR35moUXGMwfiSCMQCAQCgUAgEAgEAoHwyog6/4j+u8uo9nrbGiJBrSJlAP78cj+9PXzeAJw+fRq3bt3ScXbN4PF4mDNnDt5cNBZWNvLiBSd+PY/8zEKjCw4AoAsOAMDDC4+RlJSEffv2oaKiAkHN/OEZKI/Qi770FGVF5Xr7eqBiy64KW3bp0gXjxo1DQnQySvJL5WP2igSLpV8fTb1iZwD+/OoAHRE2dE5/nL9wHjdu3NDTg/Gw2WzMmTMHoaGhGscCIoy3ZV1AHGkEAoFAIBAIBAKBQCAQXgkigQhPbz4HAHgGusEryMOs/pTi+EwmAzKpDJf2yh09jm72GDSrNx2ZZQlKSkpw7do12DnbYtjc/gAAsVCM/ev+VdNJS3yi3/nTQkUn7eHFJ7C1laeFSqVSMBgMOr1TKpHi/plonf1IJVI8uSpPjXTycIB/uK+8z4cPkZaWhgfnqpxsrfo0N3h9CSoRaVwrDs7tugwo0i2HzesPW1tbi0X3lZeX4/Lly1r7C2zqT/+dZMCWdQFxpBEIBAKBQCAQCAQCgUB4JcTeiYdIIAYANO8ZaVZfUomUFqT3CfXG398eoo9N+GgkrG2tMXLkSPTq1cvMWctJTU3FkydPIBaLMXbJMHCtOACAYz+dgZufM93OUBSVk7sDghQaZC/uJ8Ce74D58+fDzs4OANB2QEu67ZNrsTr7iY9KREVpJQCgRc9IMBgMQOFIS05ORtQF4/XRKIpCksKR5hHghgPrj0Emk0ejjV0yDLaONhg6dCj69euntx9jSUtLw9OnT1FZWalxLEi1CmpDiEi7ePEiBg8ebJnZEAgEAoFAIBAIBAKBQPjP8OjyU/rvFj3Mc6SlvciEWCh3yrn5ueD6IbmmmLOXE4bNk0eMpaam4t49w6L9xmBrawtfX1/weDw4ezph8Ky+AABBhRDRl6quyxjnj7J6p0xGIfpSDC5fvozCQrkeWESnUNopFnNDtyNN1ZbNu0fQf7u6usLTwwuPrzyTb/s4wzfUW+98spNzaaecZ5A7Lv59HQBg72KHUYvlPqD09HTcuWNYt80YbG1t4eXlpVUjzT/ch/67QTjSevToAU9PT8vMhkAgEAgEAoFAIBAIBMJ/hujLMfTfzXtE6G1riEQVTa+c5Fz67zc/HgWetVzDLC0tDQ8ePDBrHCW+vr6YPn067eQa98FwsDly3bFTv12Ag5s9YKSul6pOWtTFx4iJiUFiYiKgSKVUCu6/fJhEO7iqo2ZLlei+UaNGgVXKhbBSBABo1bcZPWddqOqjFWQV0dpoEz4cAb6dNQAgIyPDYk5JLy8vzJo1C0ymppvK2tYankHugMKWr7pyJ0ntJBAIBAKBQCAQCAQCgVDniIRiPL0RByj00TwD3c3qT9X5k/Y8E1BEpg2e3Zfe36hRIzg7O2s9v6acP38e+/dXFTNw93PFgGnytNGK0kpY21oBAIpyS1CYU6y3rxY9IsBkyp1b0RdiEBYWBj6fTx+P7BwGKCLWYm+/0DhfKpHi8VV5xJmjuwP8m8ijuCoqKrBmzRrcPn+XbqusEqoPpdYcAKTGpgMK3bXhCwbS+4ODg+Hi4mKwL2O4dOkS9uzZo/O4snhDZZkAOSl5FhnTVIgjjUAgEAgEAoFAIBAIBEKdE6eij9bMzGg0AEhUEcdXMvl/Y8Hlcejt4OBgjB8/3uyxoEhtZLPZavsmfDQSTJbc1ZKfUUjvNxSVZuNgg9C2jQBF+mK/Hv0RHBxMH4/s0oT+O+Z6nMb58Q+TUFGi1EeLoCPOcnNzIRaL8fRWlfOtVR/DjjTV6qdK3vx4NKz4PHrb398fEydONNiXMWizpSqqVVBfdXoncaQRCAQCgUAgEAgEAoFAqHOiL1WlIpqrj4ZqEWkA4BXsgf7TeqrtE4vFWLt2LZKTNR1FNaVdu3bo0KGDxph9JneTj6XQa4OR1SZbqlTvPHbwBP788096u2nXKkfaEy06aY9UbNm8e5Ut3d3d0a1LNzy7KHekBUT4wtXbcEReYjVbuvm6YMjbfdX2yWQyrFu3DvHx8Qb7M0Tbtm3RqVMnncdVq6C+6sqdxJFGIBAIBAKBQCAQCAQCoc5R1fRqYW7FTqkUeWn5avve+mwc2Bz1KCc2mw0Gg4HMzEyzxqMoCjKZDF5eXhrHJn48mo5KU2JMFJVqpFhmfDaysrJoPTCPADe4eDsBAJ7dfA6pRKp2rrotq6L7SktLIcyT0hU3jUnrpCgK2SoacwAw8dMx4Fpx1fYxmUyw2WxkZWUZ7NPQeBKJBN7eugsgBKpU7kx+2gAdaS9eaObrEggEAoFAIBAIBAKBQCBA4fh6dvM5AMDd39VsfbTi3BLaWQQAfmHe6D2pq0Y7BoOBYcOGISQkxKzx0tLScOjQIRQUFGgc8w31xggVLTEASHmWZrDPiM5h4HDljr+4s0no27cvnaLJYDDoqLTKMoFaGitFUXhyTR6l5uhmD/9wX/rYuXPn8PBRFL3dqq9hR1pFSQWdcguFft2A6T21th0yZAjCwsIM9qmP7OxsHDx4EDk5OTrb+DfxoTXkkp8atmVtYpYjTSAQ4O7du9i2bRsWLFiALl26wN7eHk2aNDHibAKBQCAQCAQCgUAgEAj/RTJfZtNVJMPaNza7v4yX2Wrbs9e8BRaLpbWtt7c3iov1i/8boqKiAmw2Gw4ODlqPT/l8PBxc7ejtzIRsre1UseLzEN4pFACQ9jQLlSUCCIVC+nhkZ5X0zutV6Z25afkoL64AAIS2a6RWkbOiogK5L+VabUwWEy2M0KLLTFR3aM38ZhI4XI7Wtl5eXhaxJYvFgpOTk842XCsuHN3lti7MKjJrPHMx2pGWm5uLs2fP4rvvvsOkSZMQGRkJOzs7dOzYEXPmzMFPP/2EuLg4tGvXDu+8807tzppAIBAIBAKBQCAQCATCa0uiis5VYISf3rbGsH/dv/TfPqFe6DSsrc62jx49wtGjR80ar3HjxliwYAE4HO0OJltHG8z4ehK9XZBZpJGOqQ069ZIBXLx2AU+ePKGPRXapivx6erOq4ECSHlv269EfMYdeAgDC2jWCjYONwTnsW1tlS/cAV/QY31ln25iYGBw+fNhgn/oIDAzEwoULYWVlpbedg5s9oKiCqkx5fRXoLolQDU9PT/pvJpOJkJAQjBkzBs2bN0dQUBAmTZqEgwcPonv37rU1VwKBQCAQCAQCgUAgEAgNANUqlqr6V6bwMjoJN47cobf7TOymt72bmxsEAgEoilKL3qoJN2/eBJ/PR+vWrXW2GTC9J7a+twOCciFkMhn+3XoaIxcN1ttvy95N8fuKvQAFMIRMCAQC+lhw8wCwOSxIxFI155m6Lf3pv8vLy3H40GEwmAwAFFr3aW7wulJi03Fp7zV6u+f4Lnpt5ObmBqFQfn1MpmlJj3fu3AGTyUT79u31tlM60sRCMSrLBODbWZs0nrkY7UhjMpmQyWQYMmQIfv/9d7WQO3PD+AgEAoFAIBAIBAKBQCD8d1AVjFetyFhTZDIZNi74FaoBSgERvvpOQWRkJPz9/U12ogFAdHQ0goOD9bZhsVho1DIQMdfl0WM7V+xF74ndYO9ip/OcJu0bw8qGB0G5ELF70/HxyirnEpvDhndjT6Q8S0fa80xIpVKwWCwkqdmy6tpTUlJQVFkIJpsBqciwPhpFUdi08FfIpFXGNOTkDAsLw8KFC012okFhS21FG6rjqHCkQaGJ96ocaUZf6cOHD9GzZ08cO3YMrVu3xv79+2t3ZgQCgUAgEAgEAoFAIBAaJMoqlmwOCz6NPQ2218WZnZfw9Eac2j5nT0e95zAYDJw9exbx8fEmj+vp6YnQ0FCD7fxCqypRlhdVYMf//tbbns1ho1l3uY6ZQFyBXTt2q6UxKgsJiIViZCm0zJQRaQwGQ63QAJ/PR2myAOIKKXjWXIR31D/fi3uu4+GFJ2r7jLHlpUuXEBcXp7edPjw8PIwqWKDqgCzKLTF5PHMx2pEWGRmJ8+fP459//gFFUZgwYQL69OmDmJgYI84mEAgEAoFAIBAIBAKBQAAkYgnS4jIAAL5h3mBzjE6WU6MkvxTbPvpDY7+TAecPAOTn56vpj9UEmUyGfv36oVGjRgbbOqhEUQHA8V/OIT4qUe85bfu1AACweCykZaaqVQb1b+JD/50amwGZTIbkGHkVS88gd1jxefRxQaEIj3bL9dGadQ8Hl6ddzw0AyovL8fOS3zX2G3KkAUBBQQEeP35ssJ02KIpCr169jHKkObpVFXYofh0caUrGjh2L2NhYLF++HLdu3UKrVq3w3nvvmRUSSSAQCAQCgUAgEAgEAuG/QfqLTEjEcuF9VU2vmvLbx3+iJL8UAOiKjgDg5GHY+dOmTRu4u7ubNO7du3exY8cOo9o6uKlX9aQoCt/N+BEioVjnOV1GydM5S1MrIMiSgMvl0sdUI85SnqUhOzkXggp5ZU/VNEyKorD/6D64N5fbwpA+2s7P9qJAUQ3T0aNqzo5G2LJ169bw8PAw2E4bDx48wLZt24xqq+qULM57jRxpAGBlZYXPP/8csbGxGD58OHbu3AkAuHr1qqXnRyAQCAQCgUAgEAgEAuE1h6IonPvjCvauOYKjW87Q+939XCGVGq5mWZ2YG3E4+dsFAADfzho2DnwAgBWfB2tb/dUfoXCkNW7c2KTqj2lpaXB0NOxgQjVdL2cv+TkJ0cnY/fk/Os/xCHBDWLtGkIpkeLjrBbKScuhjfk2qUkUv/XMDhzeepLfd/d3oyqCFhYWQUGIIikQAgFZ9dOujPb//Ekd/PAUA4Flz6TkzWUzYu9gavMYWLVogLCys1m3pUE0j7VVhuhocAD8/P+zfvx/nz59HREQEPvvsM3Tv3h3Pnj2z3AwJBAKBQCAQCAQCgUAgvNZc/ucGVk/ZhF+X/YGjW07R+//57ghGOk7F6Z0Xje6rvKQC3761kXbcTF01gY5Mc/J0NCpjrrKyElu3bkViov40S2107NgRAwcONKqtvWuVrlfHoW3B5rAAAHvXHMGTa7p9J11HdwQA+HZ1w19//oXlw7/FJ4O/grWKwP6L+wk4+MNxevvI5pMY4TAF//50BhwGB/FH01GcWA43XxcEtwjQOo6gQohvJ2+ETCa35eTlY1FWWA4oovxYLJbBaxSLxdi6dSueP39uhEXUad++PYYMGWJU2+rFBl4VZjnSlPTq1QvR0dFYv349YmJi0LJlS0t0SyAQCAQCgUAgEAgEAqEBwGLrdsgIyoU4/6fxGW4/vrOdFtqP6ByGQbP6oLSgDDBSHw2KTDs+n4/MzEyjxwUAoVCI2NhYuLm5GdVe1fnDYjExdeUEQBGht3rKJpSXVGicIxKIYGUr1zqrzBdCxpHg1rH7uHvqIW4cvquhu6Y2v0oRzv1xBSf+OYNKRTRa19EddFbV/HnJ70hV6NWFtAnGqHcHozC7GDBSHw0AOBwO7O3ta2xLkUiEp0+fGp1iq3rdRa9baqfWjphMLF68GHFxcZg+fbqluiUQCAQCgUAgEAgEAoHwmtNhSGvYOdnoPN57Yjej+rm87ybO/n4ZUKR0Ltu9iHaiAYCTh4Oes6tgMBiYOHEi/P39IRAIcPbsWaSmpho8Ly4uDteuXYNIJDJqnOrOn3EfDEdkF7mwflZSLn56b6da+9S4dLzVaCF+XLQdAJATXYTYfamwduGC78ZDriwDjVoG6h2zz8RueJYUA5cm8rG7j+2otd3Nf+/h2M9nAUVK7Md/LIagTEinhxprSwCYMGECGjVqhMrKSly4cAFJSUkGz4mPj8e1a9dQWVlp1Bj1JbXTtNIYenB1dcVPP/1k6W4JBAKBQCAQCAQCgUAgvKZwrbjoM7k7Dm86qXGsWbdwDJjW02AfOal52DDnZ3p74eaZ8AryQNy9l/Q+ZyPE8cvLy8Hn83H8+HFkZmbCwcEBxcXFcHZ2hp+fn95zhUIh/Pz8YGVlWIcNWpw/LBYLH/2+CHNaLkVlmQCndlxEp+Ht0Lh1EE78cg4VZZUoyCwEk8MEKAr2ATZoMt4fDCYgFcpQLClEYIQfHpx9pHW8sHaN0PPNLrj91VUUviiFs5cTIjprVsQsyCrE97O20ttzv58KvzAfJMVUORONie4rLy+HjY0NTp06hdTUVNjb26O0tBQ2NjYIDNTv8BMKhfD09IStrWEdNgCwd7EFg8EARVENy5FGIBAIBAKBQCAQCAQCgVCdQTP7aDjS2BwW3tk626CumUwmw3fTNqOsSK7f1XNCZ/Sd3B0AUKioNgkjnD8lJSVYv349bG1tUVYmj2QrLi6GtbU1goKCDF5D27Zt0aZNG4PtlFjbWIFnzYWwUkQ7f7yCPTB/w3SsUziyvpu2GQwWE6UFZeBaceAb5g1uMAXv9i6QCKVgsuS2YfGYCPIPgp2ri9axmEwG3v1pDu6deog76+MAChg+f4BGWidFUVg7YwuKFPPpPKIdBs/uCwB05U4Y4ZSsqKjA2rVrYWNjg/Jy+b9LSUmJ0bZs2bIlWrRoYbCdEhaLBTtnW5Tkl9JzfxVYLLWTQCAQCAQCgUAgEAgEAkEXwc0DNETvxy0djoAI/VFgALB/3b94eDEGAODm54LFW6qcb6rOHycDzh87Ozt06NABFRXq2mQDBw6Es7Oz3nOFQiHWr1+PjIwMg/NVRRmVphpFNWB6L3Qa3hYAUFZcQaenigRiTPp0DJgFXIgrJFD1LwoKRBg9dhTc/V21jjNq8WA0bhWEq5evIuJNuZ27j+2k0e7Ij6dw99RDQKGD9t4vc2hbFtbAlnw+H127dtWwZZ8+fQzqnonFYvzwww9ISUnR26462mxZ1xBHGoFAIBAIBAKBQCAQCIQ6ofOIdvTffHtrTPx0jMFzXjxIwI7//Q0otM0++n0R7Jyq0gFVnT+GBPIZDAYGDBiAJUuWIDg4mN5/+/Ztg/NITk5GaWkp+Hy+wbaqKJ0/JfmlkMlkAACJWAIbR+2acSnP0rD62AoUXBLiyR9JkIrl5/AcuUjPTIerj6bDz8qGhykrJ6CyXIAyWTGkQikc3ezRtFsTtXZJMan45YPd9PbS7fPh6FalhVZQg+g+KJxmS5cuRWhoKL3PGFumpaWhuLi45rZUVEGtLBNAJDBOp87SEEcagUAgEAgEAoFAIBAIhDph7JJh4Ntbg8FkYMEPM2DF5+ltL6gQ4pvJGyERywXwx38wHC16Rqq1KcyumfOHwWCAz+fD09OT3mdjo7sQghI3Nzf06dPHYORadZSVO2Uyio48WztjC87tuqy1/bNbz2HvYoc1p1fAzVVeHZSiKDBZDFhZWcHNtyq1k8VhgcFgYPaat8C3s8a9Uw+R9bAQadfy0GVUB7BYVdVSRUIxvpn0A8RCMQBg5KJBaDewldrYRdnGOyWV8Pl8eHl5qW0bwtnZGb169TK6+qkSteINrygqjWikEQgEAuG1gqIolIukyK8QIb9CjAqRBDIKYDEYsOGx4MrnwsWGC2uO7hLrdYFURqGgQoT8ChGKKsUQSymAAXCYTDjzOXDhc+FozQGLqV8PhCC3ZWGlCHnlYoUtZbQtnaw5cLHhwMmaS2xpBFIZhaJKMfIqRCisEEMskwEUwGEx4Ggt/1w684ktjUEikSAlJQUJCQlISUlBRUUFKIqClZUV/Pz8EBwcjMDAQHC53Fc91XqPRCJBWloaEhISkJSURNuSx+Op2ZLH0/+yTQCkUqmaLcvLy2lb+vr60rY0ViT9v4xMJlOzZVlZGWQyGaysrODt7Y3g4GAEBwcTWxqBjKJQIpAgv1yEgkoRhBIZljxYDxYDcLTmIKtUABc+FxyWZpwPRVH4cdFvSI1NBwCEtA7C1FUTNNoVmOD8AYDevXsjLy8Pz58/h6+vLx4/foyEhARkZmZCJBKBxWLB3t4eQUFBCAoKQkFBQY300ZSoFRzIK4WDqz0eX3mms/2z2/GQSqSwdbTBugursLjfMvj0cQKHwwHf0RW5lWK0e38k2LZWsHO2Q+dhbeBgzUFmiQBXTt6BsEiE8myBRrXOn5f8joRHyQCAwEg/zPp2ksbYBTV0Sirp3r07cnNz8fTpU/j7++PJkydISEhARkYGbUs7OzsEBgYiODgYRUVFaNOmjUFtvOo4ulbZsiSvFO5+2tNcaxPiSCMQCATCa4FYKkNCQQXicspQWCk22N7dloswN1sEOPHr1ClQUCFCbE4ZEgsqIJFRettyWAw0drFBmJstHKw5dTbH14XCChHicsvwMt8IWzIZCHaxQZi7LZyILTUoqhQrbFkud+rqgc1kINiFjzA3WzjziROoOhkZGThz5gwuX75MCyvrgsfjoUuXLujfv79a+hBBTlZWFs6ePYuLFy/Sgt+64HA4tC0bN25cZ3N8XcjJycG5c+dw4cIFlJToj9Bgs9no1KkTBgwYgJCQkBq/xDZ08vLycO7cOZw/fx7FxcV627JYLHTo0AEDBgxAkyZNiC2rUSGS4nleGZ7nlqNSEU2mCwYD8He0RpibLTzteLQtT2w7h1M7LgIAeNZcLPvjHXC4mvd5dV0vB43jusdlICwsDI8fP8aPP/4IijLwvMHhoE+fPhg7dizs7e31tlXFwVW9ciea+OCDnQuwacGvSI3T1FsTVggR/zARYW0bw9bBBj9e34CoxGwkl4px9FkOACDsje50+/j8Ko0yn7dHwG5Aczzddg3NuofT+8/uvoyjW07Lr4PLxsd/vgOeteYCRYGJtgSAsLAwREdH45dffqFTWHXB4XDQo0cPjB8/Ho6Oxjvs6kNEGoMy9ElpgJSUlNDlbWvy4ScQCARC3UNRFOLzynEvrQgiAw4AbVhzWOgY4AR/R+tamZ+ScpEEt5ILkVYsMOn8IGc+2vs7wor9aiPp6gOVYiluJRcipajSpPMDnKzRwd/plUcl1gcEYilupxQiqdA0W/o5WqOjvxP4XGLLsrIy7Ny5E1euXDHp/FatWmH27Nlwda37lfP6Rnl5OXbt2oVLly4ZfGnVRrNmzTBnzhyDQtb/BSorK/HHH3/g3LlzJtkyPDwcc+fOVUvJ+q8iEAiwZ88enDx50iRbhoaGYu7cufD19a2V+b1OSGQyPEwvwdOcUpjibXDhc9Al0BlZj5OxpMdnEIskAIBluxejz6RuWs+ZFrYY6S8yYePAx+HC340aJz4+Hlu3bkVqamqN58jhcDBy5EiMGjUKbLbh+KQ93x7Cb5/8BQD4bP9SdBvdAVBEPt45EYV9647i0eWnaueMemcw5qybhuiMYsRkl8LAmqJWnK056BzojMLn6Xiny6cQCeSL0e9vm4tBM/toPWdOy6VIeJQMDpeN45V/GeUgTkhIwE8//YSkpKQaz5HFYmH48OEYO3YsOBzDi6EHfziOre/tBAx8JmoTEpFGIBAIhHpLhUiK60kFyCgxzTkFhVPmYnwegp356ODvBC7b8vKgL/PLcTul0GCkjz4SCyqQWSJAp0DnWnf61WcSCypwO7kQQqn+VUx9JBdWIqtUiI7+Tgh0rpmAbUMiubACt5ILIZCYbsvUokpklwrQwd8JwS6GtWMaKg8ePMBPP/2EoqIiI1prJyoqCkuWLMG0adPQq1cvi87vdeLRo0fYsmULCgoKTO7j8ePHWLJkCaZMmYK+ffv+Z6OAYmJisGXLFuTm5prcx7Nnz/DBBx9g4sSJGDRo0H/WlnFxcdi8eTOys7NN7uP58+f46KOPMGHCBAwbNuw/a8u8ciGuJhagRCAxuY/8CjH+fZqNuD03IVZEso1cNEivw0QZkWZMWqdEIsE///yDI0eOmOQ0haLi5L59+3D37l0sXLgQ/v7+eturpXaqRFExmUx0HNoGHYe2Qdy9l9j+6V94cPYRAKBxj6Y49iwbRUZkYuiioFKM48+y8XLfLdqWg2f10elEg0pEmpOno8HPsVQqxYEDB3Dw4EGDEWj6+jh06BDu3buHRYsWITAwUG97Rx22rEuII41AIBAI9ZISgRhnnueiXKQ/FcBYEgoqUFQpRt9QN4tFKlEUheiMEkRnWuYmLpDIcDE+Dx38HdHE3c4ifb5OPM4swYN0/Wk0xiKUyHA5IR/lIgkiPf970edPs0txN9V0p48qIimFq4kFKBNK0dz7v2fLc+fOYdu2bSa/bKlSWVmJrVu3Ijs7GxMmTPjPvWhfvnwZW7ZssYgthUIhtm3bhszMTLz11lv/OVveuHEDmzZtglRq/j1SJBJh586dyMjIwIwZM8Bk/rfq0d25cwcbNmyARGK640eJWCzGH3/8gfT0dMyZM+c/Z8u04kpcis+H1ALfcQpA6KRe4LjYo+R8FOasnaK3fWWZPPLayla/Zp1IJML333+PBw8emD1HAEhKSsLy5cuxbNkyhIeH62yny5GmSljbRlh9ejkyE7ORK5DgcSUFiRlONCUUgOBxXcF2sUfukRtYsGmm3vaCcvkCtrUBW0okEvzwww9GVeg0htTUVCxfvhwffvghmjVrprOdemqnZZ4ba8p/65tNIBAIhNeCcpHEok40JQWVYpx9nguRGRE6qjzOLLWYE02V2ylFeJ6rXy+ooRGTVWoxJ5oq99KK8Sy71OL91mdic8os5kRTJSqjGE9q4fNen7l06RJ++eUXizh+VDl48CD2799v0T7rO9evX7eYE02VY8eO4a+//rJon/WdO3fu4IcffrCIE02VM2fO4Pfff7f4v1F9JioqCuvXr7eIE02VixcvWswB/7qQWSLAxfg8izjRVAka2AaDf5wLlh7pixtH79IppBKx7n9LqVSK9evXW8yJpqSyshLffPMN4uPjdbaxd7al/y4t1P+Mx3R1xKNKyqA+bE3x790cQ36aDzbXQDyVYliGHo1hmUyGjRs3WsyJpkQoFGL16tWIjY3V2cZOxZZlhfq1SmsL4kgjEAgEQr1CRlG4/DLf4k40JYWVYtxMNj2lSElGsQBRGbW3CnYruRD55aJa678+kV0qxL00yzt+lNxJLUJOmbDW+q9P5JYJcSelsNb6v59ejEwzUq1fJ5KSkvDzzz/XWv/79u1DVFRUrfVfn0hPT68VJ5qSI0eOWPxlrr6SnZ2NTZs21ZotT548ievXr9dK3/WNvLw8bNiwweIOSSXnz5/HhQsXaqXv+kalWIrLL/NN0vAyhvQKCWJztDufjv9yFitHf0dvl+Srt5NKpchJycWjK0/x3Yrvcf/+/VqZo0AgwNdffI2n9+IgrNR85mAYGZ0okEhx6WUepLVkzCyhDE+z9C8wKlM09UVU/vvvv7h165bF5wdF1OC6detQWqp9nvUh0pOkdhIIBAKhXvEsuxS5texASiqsRGBhBQKcTNPPEklluGEBZ5w+KADXkwowJNyjTquO1jViqQzXk2rXlgBwPbEAwyI9wK4HD1+1hVRG4XpSAWo7/uFGUgGGR3qCw2q4tpRIJNiyZUutvWAr+fnnn7Fu3TrY2DRc/TmZTIYtW7ZALDY/PUkfv/76K8LDwxt0ITGZTIatW7dCKKzdhYHt27ejadOmNaqi97pBURR+/vlnVFaaVojFWHbt2oUWLVo06CIjFEXhppnapsbwIL0YPg7WsLdi0+Pu+vwf/PGFenRvcW4J1s7YguzkHGQl5SI3NR9SiRQsB8Cuj/4oK3MpqyzDx/P+h8oHDLj7u8InxBM+Id7wDfWCVCVSTl8q+p2UIrO0TY0hKqMYvo7WcNRR5ZwyEJGWlpaGf/75pzaniOLiYuzYsQOLFy/WOKamxfaK0vqJI41AIBAI9YZKsQTutjwMCHODRErhSmI+JDIKA8Pc4WjFwY3kAiSbWH2wOreSC+FjbwW2Cc6A+LwydA92gYyi6HmyGAz0auwKGUWBAQZuJReiSGDei2NhpRhPs0vRzKvhvhg+zixBqVD+cOlmw0VbP0c1u/IVVVcBgM1kggHg2LOai0GXCCV4klmKlj41K+P+OvEkqwTF1cSdrdhMjc9lsVBs1neqTCRFdEYJ2vo13JfskydP0pXHHBwcsHTpUkilUjCZTGzbtg2pqanYtWsXXr58CQA4fPgwoqOjazxOQUEB9u7dixkzZlj8GuoLZ8+exYsXL+htbfZMS0vD3Llz4eHhgfLycmzZsgXl5TVL1ykuLsZff/2FuXPn1sJV1A8uX76Mp0/lVf3CwsLwxRdfYObMmWAymVo/o6ZSVlaGXbt2aX2BbSjcuHFD63dW1a729vaYNWsWAMDKygoMBgPLli2r0TiVlZXYuXMnli5darG51zdSiwXoFuSM/Ar5IujjzFJklgos/uwmkVG4k1KIvqFukEqk+G76jzj/51XNdiIJTu+8qLGf30buGKr+252UlGTR7w8viAFRMoXs5FxkJ+fiwbnHGm3O7roEYaUIzbuHo1n3CLh4yZ9zMooFSCyowMRWPmr2zCgRaN1nKjJK/hw8sIn2yseUwlGly+G3bds2enGkuj3z8vLM/t4ouXbtGnr06IEWLVqoz09lxZD5ihabiSONQCAQCPWG+LwKRGeWQCqjEOpmgybutnicWYpLL/MQ6mZrRA/GI5DIkFhYgRDXmvUrlsoQl1OGB2L1eT7JLMXJ2BwAgIcdD0297HAt0fxIq9icMkR62oHZAIW0JTIZnudWvSyXKbTxqv/7n46TV6Rr4mYLDtt0O8TllqGZl32DjPCTyijEadHVE0pkWj+X5n6nnueVoYW3fYOMSpPJZDh58iS9XVJSgs8++wwURSEiIgIjR47Epk2bkJOTg5UrV5o93sWLF/HGG2+Az294FWZlMhlOnDihtk+bPW/fvo3y8nJ8/vnnaNOmDUaMGGGS7tmVK1cwceLEBhmVRlGUmi2HDh1K6zHp+oyaw40bNzB58mQ4OzubPff6SPXPpRJVu6anp9Pf8QEDBpj8Hb179y5ycnLg7q7dafG68yy7FHY8Nn2vVlIbz27pJQIUVYrxUaePkfAo2WB7Gwc+PALdYB/ERzJbrrlV/bebwWBY/Pvj2t4WZTcolBVpXxAozivFv1tP49+tpwEA3o090bxbOHwm9wbsbFAmkmrYU9s+c8guEyK/QgQXPlfjmL6ItISEBDx79oze1nYvtMT3RsmJEyc0HWkqEWmvqtBMw3v6IRAIBMJriVRG4Wl2Ka0JQVFVN/JKce2EuMfmlNVYZ+ZlfgVKhFKNear2wmUxUVhhmTSmCrEUqUW1m3ryqkgqqFRLBakUy7T++ysJdOYjMb+iRmOMaeYFP0drQOE8TS6s2fmvCylFlVq/J7o+l+Z+p8RSCokFDdOWDx48QF5eHr1NURT9O2FjY0NHqrm6uuLzzz/HokWLYGtbs5fFzZs3o127doBCWPny5csWvYb6wpMnT5CZmam2T5s9vby8kJCQAABITEzUW/lOHxKJBBcvakaiNATi4uKQnCx3HLRp0waxsbF0iqeuz6g5yGQynD9/3ux+6iMJCQlqUZJKqttVlS5dupisHUdRFM6ePWvSufWdokoxskqFsOGwMDDMDd2CnMFTLLDU1rNbXE4ZEh+n6G3TdXQHHCrYicOFv+PnqLXw61mVWlv9t7s2vj9i20r8+mId9uf8hg3XvsTS7fPRe2JX+nh1309GfBaunY6GwEb+vKLNntr2mUucDt05fRFpZ86cUdvWdy805Xuzbt06tG7dmt5++PAhsrPVMxFUnw9rM1VXH6+lI+3KlSsYNmwYvL29wWAwcPjw4Vc9JQKBQCCYSXapkNaE4LGYCHOzxYs8/ak9A8Lc8FYbXzipaDxwWAxMbesHG67u6k5KCirEdFqhsSSpOA+qz9PBio1BTdzRwd8R2Sri9ubOM6mBOix0XZe2f38bLgsMhnxFtjqdA50wta0fHKwMB9o3VOePvs+Irs+lNgaEuWFya19MbOWDN1r6YECYm9bVakNjvs7cuHFDY5+Pjw+++OILTJ8+nU6tW7hwIT7//HM8efIEb775plr7sLAwfPzxx9i+fTt27NiBNWvWYPjw4WCxtH/ftY3ZENB1XdXtmZKSQkccNG/eXO1lbMWKFRg8eDC97eHhgU2bNmHatGk1GvN1R3ldDAYD/fr103iZ1fYZBQAvLy989NFH+PXXX7Fz506sX78eI0aMqNGYDQ1t16XLrlA4CphMJnJy5NG9H3/8sdZ0bGtra+zevRuRkZFGjdkQUN4HDj7OxKm4XGSWCNHKgITCgDA3TG3rBy87ntr+SA87TG3rh3YGZAOSCiswcvFg8O2tdcpjFWQVwdZRrj0pkUhw584d+pi2325d358VK1bgzz//xK5du+j/+vfvb8gskMlkuH37Nhxc7RHZOQwDpvXCwBm96eOj3x2Kr09+ijc/HoWmXZuAw2XDv29LuiCBNnvqs7G7LRd9QlzxRksfvNnSB8MiPBTZDPrnmVRYoXVBWbmretqkTCbTKDCg615Y/XuzYsUK7NmzB/7+/nQbPp+Pf/75B25ubvS+JUuWqFVVpSgKN2/eVJ8fiUgzjfLycrRo0QKbN29+1VMhEAgEgoVQ6j6wmAz0aOSC2ymFEBohtiqSyNDaDN2rvBoUNqAoSu88iwUSnIzNwfkXeWhf7UHQnHnmVTS86p0URWm9Ll3//kHOfK2OGzaTgUAnPgQSKUJcDQu25zdAW8LAden7XGrjfloR/opKxz/R6SioEKN3YxedY9ZW5cBXiVLrRZX09HQsX74cq1evpl+gy8rkK/nXr19HYGAg3bZ169b45JNPEB0djXfeeQfTp0/Hhg0b4OvrCycnJ61jJiYm1nphg1eBNltCiz2joqKQn5+PFStWwNPTEwUF2tPi/f39sWrVKly5cgU7d+7U2iYlJQUiUcP7nitt2bVrV9y/f1+jeIO2zygUTp+kpCTMnz8f06dPx7p16zSiO3SRkZFR62L8rwJtn0tddoWWqJoLFy6ga9euYLPZGu0KCwsRExOj0Udubi5KSkosdg31BeV9XBldnlhYAWe+dgF7VYorxWhc7Z7d2NUGRZWGo/kFEhmmrp6MI0W7cLT0D/xw/UvMWTeFPs7msDBgak96Oy0tTe03Qdtvt67vDwD8+eefmDJlCv2fNmerNpRRtkpUb5c8ay7aDWiJGV9NxPorX+BQ4U70mjuAPq7Nnrps7Otghb4hbsgoFuDQk0z8/TAdlxPy4WjFgTVH/2KtWEqhRMuCMn1vr+akysrKQkWF+rOYrnuhtmi0srIyTJw4Ue+ctKHPliQirQYMGjQIX375JUaPHv2qp0IgEAgEC5FfIQIDQI9gF8TmlBlduTMutwxutjx42PK0HmczGejg74gxzbwwvoU3ugY6g8Oquunm1yAFs0QggURGaZ2n6n1cJJVBUq1suaF5RnjYYlRTT0xs5YPRTb3QREVXpEwoNcqp+DpRLtK8Jn3//oHOfK3RZEHOfEhkFB6kFSPYxcZg8aZKsQwVWqLaXmcEYinKdVyToc+lPmQU8CK3HHwuW2saiUhKoVTYsGxZUVGhkYqo+rJcXl4OoVAIHo9Hr4JHREQgKyuLbjN9+nQcOXIEJ06cQGlpKaBwSGzZskUtZVQVkUiE9PT0WrqqV4NIJEJaWprGfm32BIA9e/Zg5cqVSEtLw927dzXOCw0NxYoVK3Do0CHs27dP57hSqRQpKfrTvl43pFIpndbp7++PDh064JNPPkFAQAAWL16s06Z2dnbw9PTEuXPnIBLJHd9paWlqESXW1taYMWMGtmzZgp07d+Lrr7+Gi4vceU5RFBITE+v8emsTXdekza5KOnfurBZRdu/ePUilUjo9W0nPnj31phZXdwa87lAUhfxyEdhMBpS3Gk9bnlbHTHUSCyvg42BFP4+52sgjn6svbo5p5oVITzsMbuKOia3kUdJ8Dgv5inZWfB4iOoVh6JyqKLGm3cIxeHZfelvV7tp+u3V9fwzB4/Ho7862bduwYMECWFtbax0XBqKoeNY8SPlWgOK5tbo99dm4vb8TnmSV4llOGf1cVSKQ4HpSAf1sYMVmokewCya08MaYZl5o5eNA95dfzeaqC2TVI9KqX5O+e2H17w0UaaGhoaF60/dVpQ90jVsfItJIsQECgUAg1AtKhRIEOfPhYcsDh8VAuIct0ooEiMkuRY9gF7jYcCGWyuBqw8X9tGL6PKFEhidZJWjt60CLqqvSJdAZMorC0adZoCigc4ATOvg70YUAymqQ2lkqkrfVNs+cMiFa+zqAouQLeHdTi9TONTTPMqFcRLZCLIWnHQ99QlyRXylCbpmIniePrT3F7nVEm911/fs7WrEhlMi0loNv7GqDhPwKJBZUoJ2fI/wcrJFiQFOuTCgB34iU2tcFfenJLnyu1s+lvu+UEhaTgRA3G5QJJWpadqqUiSSwNyKl9nUhN1dTyDkoKAiTJk2CTCYDgyGv+Obt7Y05c+ZAIBBAIpFg69atgCKNzsPDwyQtpZycHLWUl9ed/Px8rVF22uxpZ2eH999/H1KpFOnp6di1a5faOU2bNsX48ePx22+/4epVzSp91cnJyUHjxo0tej2vkqKiIjqi5s8//6T3r1ixAhs3btRqUwAoLS1FWloa5s2bh/Pnz+PFixcaztz58+eDx+Ph008/RVFREQICAtSid3JychAREVFn11rblJWVaUTUQIddAcDX1xelpaUoLq76jZRKpbhy5Qp69epFp5z5+PigUaNGWLdunc6xlSluDQUpRUEgkcGZz0HnAGdIZDJIKeBGkvz5St99RiSRIb1YgCBnPp7nlqOxqw3i88rhaK0ZzdbIxQYXXsifj3o1dkUrHweNRRx9jhXVCExtv926vj+GmD9/PqRSKV3xc+7cuZg5cyadNVcTXS+KomjpCnsrtoY9te0DAHseG3Y8NhIL9EuhdA92QaVYigOPM8FjM9E3xA0SqQyPs0pRVs2WMhVbVl+drH5Nuu6F2r43UHz/jh49iokTJ2L58uV656xKTk4OZDIZmIrUV1K1s44QCoVqnuWGGFZLIBAIrztSGYWEggokaIk6upyQr/fcZ9llCHe3hZ+jNbJKq8qB89hM+DtZY+/DDIil8rtuVEYJRkR64npiASjFuMYiU7TVNU9D1ZR0zRMKsXglWaVCZBQL4GnHox1p0gaWQqftenTZtUggwdnnmrZ1sGLD3ZaHW8mFkMgopBRVIsTVxqAj7b9gSyW55SKtn0t936nWvg5o6e0AKUWhoEKEC/Hao6hQw+/P64C2tK4XL17g888/19i/bNkyjX3KapG6UhP10dDSEbXZEnrsqa8CakREBIqLixEVFWXU2P8VWyptVlpaqtWmyjbDhw/H2LFj4ePjg4yMDOzYsQOPHz+Gg4MDOnTogHnz5qGwsBAANITW/yu2VEX1s5iWloYvv/xSo82FCxewbt06uLi4ID8/H71790Z0dDRtR200NFsq/S0FFWIce6aZLmzo2S0+vxytvB3wMq8CAY7WOBKThTa+mvIDsTmltJMpIb8CzTztkFqs/gylz0ml+m+emJio8dudn5+v8/sDABMnTsS4cePo7blz54LL5aJDhw6YOXMm7Zjdu3cvvv/+e/z444+gKApisRgURdGOPX3OPtVbqTZ7loukWm3M4zDp47rgc1jwsrfC3ofpkMgoSERSPMosQQtvezzOKtV8htDjpKr+/dFmT+j53gDA8ePHMXDgQLRr105rGrQuJBIJuFz5grI+Z19d8Z9wpH3zzTcWKU9OIBAIhNqDacaNUEpReJhRgtY+DjgVW7VwYstlg8lgYEwzL41zrDksVIilNVrJMmeO+uYJRTRWpIcdbHlsMBTRQKrC+uaOXd+wxPWEuNqioEKEQoWmysu8cvQNlad9VIh1P1QSW+rnQVoxnumo5FXbY79qqmse1RTlYq2zs7PROlSWGru+YcnrOXjwIMLDw/HZZ5/hiy++oFNm62Ls+oA511NcXIzdu3dj9+7dsLGxwejRo/HBBx9g3rx5cHV1hUgkQn6+bocHsaV20tPTER8fjx49euDw4cPo1q0bfv311zoZu75g7s9/ZokQnQNYaO5tj9xykdaoc1Sr/imRUeCwmBoi+vqcVOba/a+//sKJEyfU9vn6+oLJZGpotstkMjg6OqKwsBBsNlttLvqcfabaUqiwjQ2XpVNqgc9lQSJTj+ovFUpgo9BPq25LWS3aEgpn3L59+/Dmm2/is88+M/o8tbFJRFrd8PHHH+P999+nt0tKSuDn5/dK50QgEAgEdaw5LNohYgrxeeWI9LBDI1c+va9cJIGMovDPowydkTPWbOPlQq045kuLapunDZeFrkHOOPc8F1mlQlAAejVSF3i3tsDY9QlzbclgAMEufHCYDIxv4U3vZzIYaOTKx+NM3S/alvh3rE8YEhOu3bEbli0dHEwvXAIAmZmZyMnJQefOnXHo0KEanevoaLgQxOuEMjrPEkgkEqxduxbvv/8+VqxYgZUrV+p1pjU0W9rZ2YHBYJhd3KO8vBz79u3DsGHD4O7ujry8PHC5XDqqShsNzZZ8Ph9sNhsSSc0qdmvjwoULGDlyJFJTU8FgMHD//n297RuaLdlMBthMRo20N6vzMr8czb3sceml/ui16lS/7+lL9TP3d10beXl5kMlkmDNnjs5Iw+rj6nP2MRkM8NjMGuvhlgglKBVKEOis+7mnQiQFm8mEFZtJO9PseGyUKxYc9dmyusPPUra8cOEChg4dih49ehjV3s7Ojk7rRD2JSGtYTz864PF4sLe3V/uPQCAQCPULY6o86YMC8CC9GM08q37jBRIZUosq0cHfETyFw8yKzYS/Y5UYrIuN8bpjTtZcs+/X2ubJVjyoCCQyUAB8HKzgbW9FH+exmeC/QmdJbeBgxQHLjFVEPwdrcFlM/PssG0djsuj/ojOKEeJiq/M8DpMBe17DWke05bLAZdX9gySTIf93bEg4OTmZ/bK7fft2jBw5EgMHDoStrfyz6OXlhblz58LV1VXrOQwGAwEBAWaNW9+wtbWFh4eHxfqTSqX4/vvvkZmZiRUrVuh9nletHNcQ4PF48PX1rfF5NjY2mDBhAry9vcFgMMDlcjF06FCUlpYiIyMDxcXFuHv3LmbPng1HR0cwGAwEBgbSn1soNO0aEmw222LftevXr8PR0RFTp07FlStXDFbebWi2ZDAYcOabp936NLsMZ5/nIrW4ZtVhq4+rz7ESHBxs1hy1ofzuzJw5E3Z2doDCyaQqkq86rkQswakdVYUospNzUF6srmvmYqIt76QUopmnPZq429KFgex5bHQOcIINVx6hn1kiQFs/R7CZDNhwWWjmaYeX+fLxq9tSn8PPUrakKAp79uzBqFGjjGpffVyikWYiZWVliI+Pp7cTExPx8OFDODs7NyiRVgKBQPgvYeoDhCopRZVo6mkHKxWn07XEArT0dsCQcA/w2EwIxFIkFVTQOlo1GZfFZMDJioMCMyLntM2zWCDB48wS9A91A4PBQGpRpZr+hwuf+8qqEtUWTAYDztYco6uzVifEzQaJBRUoEahHFTzLKUOkpx087XjIKtWsvOXcAG2pfJnRdr21iZM11yxnaH0lODgYDx48MPn8Bw8e4Ouvv8aYMWMwYcIEQBG9cOXKFZ36Sb6+vuDxtFf0fZ0JCgqqcYqrPqRSKTZs2IB33nkHn3/+OVauXKkhZu3h4aHmCGooBAUFITU1tUbnSCQSODs74+OPP4aDgwNEIhESExPx9ddf0/rRmzdvxuTJk/Htt9/CysoK6enptGC+k5MTnJycauV6XiVBQUF4+fKl2f0IhULcvHkTvXr1woULF/S2tbGxgbu7u9lj1jdc+BzklJl+7xFJZcis4b2Loii812opmnVtgubdI9CsezisbasWH6s7VoKCgiwS0VmdH3/8EePHj8c333wDW1tbFBcX48aNG3TVYVXnz50TUbh28Da9fWr7RZzafhHu/q5wdHdAkw4h6PzhaGSYIOWeVizAuRe5aO5lj1be8oixMpEECfkVqFREnV1JyEcHfyeMaeYFKUUhIb8CT7JKwWQATtUKPOiLSPP39weLxTLoNDaG27dvY9iwYUYFOWk40upB1U4GZelPVB1w6dIl9OrVS2P/1KlTsXPnToPnl5SUwMHBAcXFxSQ6jUAgEOoJQokU+6Iz61QI3prDwtjmXjXSeXqQVoTHWfr1eSxNez9HhHvY1emYdUF0RjEemvLUaAatfRzQzKvh3ftjskpwT0vlzdqkhZc9WvpYPmXmVXPmzBmDWkeWZvjw4Zg8eXKdjlkXXLp0CVu2bKnTMQcOHIgZM2bU6Zh1wY0bN7Bhw4Y6HbN3796YO3dunY5ZF9y7dw9r1qyp0zG7du2KxYsX1+mYdUFGsQBnX+gvtGRpUi4+wpWP1N/5XbydkJ8hX6gIaR2Mpdvnw7uxJ6z48gWKzz//HE+fPq3TeX777be0AyjmRhze7fo/ve3fWDMF7J4t62h2cnzsrdA31E1tX2VZJYbbTwEAtOrTDGvOquuYff3113j48GGdznPVqlVo0qQJvX339EN8MugrAMDk5WMxdeWEOp0PXteItJ49e1rco0wgEAiEVwuPzUKgszVe5mtWbawtQt1saiyWHupmiydZpairuxCbyUAjF5s6Gq1uCXWzxaPMEtRV4UcmAwhxbZi2bOxqg6j0kjpzRDMUUYENkW7duuGPP/6AQCAworX5MBgM9O/fv07Gqms6d+6M33//HeXl5Ua0tgwN1Zbt27enAwHqioZqy9atW8PV1RV5eborEluaAQMG1NlYdYmXPQ/2PDZKhOZrzhmLKDYVHC4bYlHVmEonGgC8eJCAOS2XAgDc/FzgG+oNnl/dymO4OXrg+u77OJB8EjnJuchMzDF4joeDNWTWHLP0gmtKmLtm9K6+iDQofhfq0pEWEBCAsLAw9Z0qk3xVEWn/CY00AoFAILweNHGvu6grJgMIda15+o8tjw1fFY212ibYmQ9uDQoivE5Yc1gIcOIb0dIyBDrz1dJ+GxI8NgtBLnVnS38na9hwX8v1WINYW1sbLYBsCVq1atUgU74AgMvlonfv3nU2XmRkpElaYq8DbDYbffv2rbPxQkJCakVbqj7AZDLRr1+/OhsvMDAQoaGhdTZeXcJgMLQ6Y2oLeys2Vv06B4cKd2Ltxc8xdeUEtO7bDDxr7TIduan5iDr/GLd+fwRZZd0F4iSdycKulf/gzM5LeHgxBtlJuqP2GEwGZn4zEUNn90WTOrSlLZcFHwcrjf2G0iZbt24NNzc3jf21Rf/+/TXmIVNZgdXm7KsLGuaTOYFAIBBeS1xtuGhUR86AZp724HNNc6q08XUAqw5WwHgsZoNMnVOltY8DXWyhNuEwGWjdwG3Z0tsenDooOsBmMtDap2FVn6vO2LFjaQHp2oTD4TTIlE5VRo0aVSc6WywWC1OnTq31cV4lw4YN01mwwpIwGAxMnz691sd5lQwePNiixTD0MW3atAanzalKmJstHKzqZmGlvZ8TGAwGeNY8tOgRicnLx2L1mc+w/VlV2rN/uC/6TemB8I4hsHNWOKYooCK6TqYIST4FUYr6Pjsnm6q5qGBlw8NXxz7GGx/JRfcbu9jA2bpuivi083fSmpVhSMifyWTW2e9DUFCQVkkvEpFGIBAIBEI12vk5wZpTu7cnJ2uOWTpZDlYctKoDp0x7f0eNsuQNDVseG218a98p09bPscFGUCmx4bLR3q/2HRatfRxgX0cvTa8KBwcHzJw5s9bHGT9+fIONoFJia2uL2bNn1/o4o0ePbnDVOqvD5/PrRLNs+PDhaNy4ca2P8yrh8XiYP39+rb+EDxo0CBEREbU6xquGxWSgS6AzatudEeJqozWCCgCYrKrnRv9wH3y4cyE23vgaB/N24EDudvxw4yu8+8UCeNh61+ocGRQDXSJ6YP6G6Vh5+EP8/HAtDhfuxMH8nZiyYrxaW0c3e6y98DnaDWxVdR1MBroEOZtdId4Qwc58tQr2quirgKqkbdu26Nq1a21ND1AsjsyfPx9stubzBolIIxAIBAKhGjw2E92CXMCoJRUyLouBbsHOZlcbDPew1flAZwkaufAR5Fx3qXp1SXlxOe6efoit7+/Em35zsKbnp/C2qb0V2EAn6warjVZRWon7Z6Pxy4e7MTFgLr7svAy+/NqzpZ+jdZ2mnrxKOnXqhD59+tRa/y1btsSwYcNqrf/6RNu2bTFo0KBa6z8yMhKjRo2qtf7rE82bN8eIESNqrf+wsDCMGzeu1vqvT4SHh2Ps2LG11n+jRo3w5ptv1lr/9Qk3W16tRn07WXPQ1k/3opuarle1xzt7FztEdAxF/6k98dWGVbUaifj23LexZNNCjFo8GJ2Ht0Nw8wDYOMifPxzdqxZw7ZxtseH6lwhrp+mwduZz0a4WFxgdrNho76+nfz22VGXGjBnw8fGx7ORUmDp1KgICArQeo+pBRFrDXk4kEAgEwmuJjUSMh98dRNN3R4DFsdytisNioE+IG5x0aGkYC0VRuH3sHi79dgG2/dvCq71ltU8CnKzROdC5QaWC3D0VhRtH7iLmRhySnqRqFA36e/xqNJ45ED5dLbty7+doha5BLg3Klg/OPcK1Q3cQcyMWSY9T1FZmAeDiJ7+D16Up/Hs1t+i43vZW6BHcsGypDwaDgdmzZyMzM9Pi1d4iIyOxZMkSMJn/nTXtqVOnIiMjA9HRls2vCgsLw4cffqg1aqGhMnHiRGRkZODu3bsW7bdRo0ZYtmwZuFzz7pGvE2PHjkVGRgauX79u0X4DAgLw8ccfw8qq9hbc6huc9FzE/H4VkVMtuwDhYMVGv1A3cFm6fy/5dlV2Li/WXbTK3t4ey5cvx8qVK5Gba9lqo2+99ZbexRfVe/X4D0bAp7GXzrZWuYV48usZNJ1l2SIVdjy5LXls3dkOVrbG2dLW1hb/+9//sHLlSmRlZVl0nm+88QYGDhyo8zilYktt6ad1wX/n7k0gEAiE1wKZTIZv39qEx/uu4+K72yAusUwVTzseG8JzUZjiPBVTQxch+lJMjSpAUxSFl9FJ+HXZH5jgPRufjViD20fv4eL7v+LlsTsWmSMAhDhbY2vPTzCUPwkbF/6KkvxSi/X9qrh7KgqfDP4ax34+i8THKVrtnhqThssf7sCLQzctNm6ICx+/9V+BYTYT8f3bP6Eot+6q3dUW0Zdj8FH/L/Dv1tNIiE7WcKIBQNSZaFz9ZBdi/7lqsXEbOfOxe9gXGMqfiDXTNqMgq9CIs15/mEwmhgwZgtatW1usz65du8LX1xcbNmzA+fPn1dNoGjBKW7Zp08ZiztiOHTuiUaNG+OGHH3DmzBlIpVKL9FvfYTAYGDhwINq1a2cxZ2zbtm0RHh6OjRs34tSpU5BI6q4K46tEWTW3ffv2YLEsI6XQokULtGrVCps3b8bx48chFtddFcZXRUl+Kb4Ytw5RPx7H3XWHQEkt87vmacfD7U92YZTNJHzQdyVS49K1tuPb88FWSGEU5Zbo7dPd3R1ffPEFQkJCLDJHHo+HefPmGYwwFgmqPgc29rqLVpUVlePz0d/h4S+ncfvbfaAklvldc7flIvqrPRhjOxnv9/gMyU9Ttbbj8jjg28nnV2zAli4uLli1ahXCw8MtMkcOh4PZs2dj9OjRetup2pL9imQ7iCONQCAQCPWK3Sv34e7JKABAZWIWBgY7mZ3iGO5ui2ERHji14V9IJVJkxGdhae/PsaD9Mlzccx1SPQ8pJQWl+OOL/ZjV9D3MbfUB9q45gsLsKoeMTCSBd2kZejV2NUvbzZbLwoBQNzBiklCQXgixUIx/t5zGm/5zsWnhr8h4adnVvrqEa2VcdINMIoV7YTH6hriCb4Y2nA2Xhb4hbrBNy0ZOUi7EQglO/noeEwPmYcPcX3Q+iL8OGLIlz5oLkUAMSiqDc14h+oW4wsbEohpQVFbt09gVXmWlyHyRCYlIgrO7LmNS4Hysm7VV54N4Q6C0tBQHDhxAREQEli1bhs8//9yslCAHBwcsXboU06ZNQ1paGgQCAW7evIkHDx4gJiYG2dnZFp1/faKiogIHDx5EcHAwPvroI3zxxRfw9jZdq8jOzg7vvvsu5s6di+TkZAiFQty5cwd3797Fs2fPkJmZadH51ycEAgEOHjwIPz8/fPDBB/jqq6/g5+dncn82NjZYuHAh3n33XSQmJkIkEuHu3bu4desW4uLikJ7++v5eGkIoFOLQoUNwd3fH0qVL8c0335ils2dtbY25c+di2bJlePHiBcRiMR48eIDr16/j+fPnSE1tmL+XUqkUX03cgOxkeYQXMzkLQ8Ld4MI3PbKRzWSgg78T+oe64f7x+5BKpHh44QlmhL+Lz0auxuOrzzTS++xd5amTJXmGFyCdnZ2xatUqTJ48GRyO6XIIERERWLt2rXZB/GoUZRfRfzu6a0+DlclkWD11EzLiFc98SVkY0sQNbjam25LFZKCdnyMGhrnj1oFbkEqkeHz1GWY1fR+fDv0aDy8+0VjgdHCT29KQIw0AHB0dsWLFCkybNs2saNawsDB89913RlXULTTClrUNg6rJcnwDoaSkBA4ODiguLoa9veli0wQCgUCwLHdORuHTIV8DilDtb88sR6vezQAAWaUCxOWUIbmoEsbcuVhMBoKd+WjibgtnxcPc8uHf4tax+xpt3f1dMebdoRixaKDGivSiTp8g9vYLneMENw/AlnurwWKzIJLI8CKvHHG5ZSgVGrea72TNQaibLRq58MFhMVFWVI5RztM02jEYDHQZ1R5TVoxDUDPtmhH1FYqisGbaZpzbfUVvO99QL/zyaB04XA7EUhni88oRm1uGEoFxtnSwYiPM3RaNXWzAYTEhqBBimN1kVJfbYzAY6DisDaasGI/GrYLMubRXwoZ5v+D4z2f1tglpHYT1V78Az5oHsVSGl/nliMspQ5GRtrTnVdmSy2ZCIpZgiPVErRFw7Qe3wlufjUOT9pZZ3a8v/PHHH8jOzsaCBQvo9CyhUIgrV67gzJkzSE5ONqofDw8P9OvXD71794atrS0oisK3334LkUhEt2GxWJBKpRgyZAjatm1ba9f0qti7dy9SUlKwYMEC8PnyhRGRSIRr167h9OnTSExMNKofNzc39OvXD3369IGdnR0oisLatWtRUVEVuay0Zf/+/dGpU6dau6ZXxYEDBxAfH48FCxbA1lauVyiRSHDt2jWcOXMG8fHxRvXj4uKCfv36oW/fvvT70Pr161FSUvXirLRl79690a1bt1q6olfHkSNH8PTpU8yfPx8ODvKXcYlEghs3buDs2bOIi4szqh8nJyf07dsX/fr1g6OjXHtq06ZNKCgooNsobdmtWzf07t27lq7o1bBz+R78+dUBQOHU2Hp/NVx9XCCjKCQXViIupwzZZUKj+rJiMxHqZotQNxu6QNB479kozCrSaBvWrhEmfjoGnYe3AwDMabkUCY+SweGycbzyL6MjX3NycnDmzBmcPHnS6OjBZs2aYcCAAWjbtq3RUaFb3t2BQxtPAADWX/0CTbs00Wjz9zeHsP3TvwCFjtqWe6vhGegOGUUhpbAScbllyCo13paNXW0Q5mYLW57clpMC5yEnJU+jbeNWQZj4yWh0G9MRqPbse1L4N9hGyqzk5eXhzJkzOHHihNo9Th+RkZEYMGAA2rdvb7Qtf/v4T+xZfRgAsPrMcrTua1kpC2P474gJEAgEAqFeU5hTjO+m/0hvz/xmEu1EAwBPOyt42lmhQiRFekkl8svFKKgQoaRciKK8UkhFEvBAoUWrALjwufBxsAaPrX5D7vVmV62OtJyUPGx9fycEFUJM/EQ9nFwq1u14YDAZ+PrEJ2AptCa4bCYiPe0Q4WGL7DIhcspEyC8XoahSjIK8UggrhBCXC9CkiTd83O3gYcuDqw1X7WHP1tEGvmHeSIvLUBuLoihcO3gb989EY0/6L3TY/evA83svEXX+sf5GDOCrE5+Cw5WvDHNYTIR72KGJuy1yykTIKRMiv0KEwkoxCvNKISgXQlIhROPGHvDzdICHLQ9utuq2tOLz0Kh5IF5GJ6kNRVEUbh69h6hzj/FH0hY4uL4+i2rxDxPpiE1d2Dnb4rP9S8Gz5gEKWzZxt0OYmy1yy0XIKVWxZX4ZBOVCiCsECAp0Q6CPE9xsufCw5anZks1hI6x9CJ7deq4x3p0TUYg6/wS7Xm6Gq7dzLVz1q8HX1xe9e/dW0zji8Xi08yE+Ph7Pnj1DQkICkpOTUVlZibKyMlhbWyMsLAzBwcEIDQ1FRESE2ssBg8HAW2+9he3bt9NRANbW1mjXrh2Cgl4/x64xeHt7o0uXLrQTDQC4XC569+6NXr16ISEhAU+fPqVtWVFRgbKyMlhZWSE0NJS2ZdOmTTVsOXnyZPz22290WqeVlRXat2/fYKtOenl5oW3btrQTDQDYbDZ69uyJnj17IikpCU+ePNGwJZfL1bBl9YWjSZMmYfv27RAK5S/qHA4H3bp1Q2ioZXVA6wseHh5o3rw57USDwpbdu3dH9+7dkZKSQtsyKSkJ5eXlKCsrA4fDoW0ZEhKCZs2aaWj0vfHGG9i5cyft5OVwOOjatSuaNNF0nrzOPLryFH99fRBQVM7839734OrjIt9mMBDkLC+cVFQpRmaJAPkVIhRUiFFUVIGK0kpIBCK42FujSZgXXG248La30igG1XVUe/y79YzG2HF3X2LFyDVYe+FztOgZSUdRiUUSVJRWwsbeuGwGd3d3TJ48GW5ubpBKpSgqKkJiYiIyMzMhEonAYrFgb2+PoKAgBAUF4d69e/Dw8ND4bTdEYU5VNoOzp6bYf+ydF9j52R5A8dv2yV/vwjPQnbZloDMfgc58FAsUtlQ8BxcVV6CsuAJSoRhOtjyEh/vA1YYLHy227Da2Iw58f0xj7PioRKwatw5fHf8E7Qe1gqNb1XNRaUEZnDyMK37g6uqKiRMnwsPDAwKBAKWlpUhISKBtyWQyYWtri6CgIAQHByMqKgrOzs6IjIysmS1VMkOctNiyLiCONAKBQCC8ciiKwrqZW1CkeMjoOLQNxi0drrUtn8tCiKstQlyBP77Yj0ObT6AkVx7G36Z/C8w69T+d40R00v8yoG318qPdi/Fet+UoLSjTONZ+YCu4aHEcMBgM2vFXVlSGd7t+hYKsIrqP3pdXoWlz3ZWOmnUN13CkKWGxWaBeE00liqJw8tfz2Lx4O8RC/au8LXs1hXewZtocg8GAhx0PHnY8VJRV4t2uy5GXlk/b8ptT/0OzVrrTmpp1C9dwpNF9vyKBWlM5u+syfpj3C4SV8lVeJosJmRYdmg93LqQfvlVhMBhwt+XB3ZYHQaUQ73VbjuykXNqWnx/8AM3a6o52bNYtXKsjDa9Q7Lc2SEtLw82bNzF27FidEQ0MBgMhISEICQmBVCrF0aNHUVhYiLZt28LDw8NgCqiVlRWsra3pl2w+n4/u3bvXyvW8SjIzM3HlyhWMGzdO50sSg8FAo0aN0KhRI8hkMhw7dgy5ublo3749XFxcDKaAKm1ZVlZGbzdEW+bk5ODChQsYO3as3sIKgYGBCAwMBEVROHHiBDIyMtCxY0c4OTnB19dX7xhWVlbgcrm0I43H46FHjx4Wv5ZXTX5+Ps6ePYvRo0frTUXz9/eHv78/KIrC6dOnkZKSgk6dOsHBwQH+/v56x+Dz+Wopg0pnZ0OirKgcq6dsohcEpq16Ay16RGpt62jNgaM1BxRF4fPR3+Hx1Wf0vWfqyglo1Vu3gzGycxOtjjQlynu5g4rzpzi3xGhHGhTp582bN4eXl+4CAACQnZ2NW7duIT09Hbt378acOXOMdgCpRtU5eainI1aWVeKbyRvpe/rET0ejbf8WWvtxsOLAwUr+2fpywno8OP+ItuUby0ahdV/dRZsiOzfR6khTwlQUdFBdYCzKLTHakQYAlZWVaNKkicGKnvn5+bh9+zaysrKwc+dOzJ8/32idwoJs3basK4hGGoFAIBBeOf9uPYPbxx8AirSA93+dZzAkP+NlFn7/fC/tRAOAvLR8ved4BLhpXQUEgKFz+mHskqEa+7OTciEoE2g9Z9h8w9WUvpywAclP09QccbkG5qnL4efgZo8vj31Ml1Kvz1SWVWL1lE1YP+dn2okW2NQPHB2isMPnGbbl6rc2IfFRspotDf2bh+uwpZ2zLb74d9lrEY0mqBBi3cwtWDNtM+1Ea9K+Mdac+wz8aoLFw+YNQMehbQz2uX72T4h/kGiRz6WNAx8rD3/YIKLRKIrCgQMHUFZWZnRa0M2bN/Ho0SOkpqbi5cuXtENHH8XFxaioqICPjw/8/PwQGan95fN15+DBgygpKTHalnfv3kVUVBTS0tIQFxeH8vJyg+eUlJSgrKwMXl5e8PPzQ0SEZSv/1hcOHTqEwsJCo180o6KicO/ePWRkZCAmJsYoW5aVlaG0tBQeHh4N2pZHjhxBXl6e0bZ8/Pgxbt++jczMTDx69MgoW1ZUVKC4uBhubm4N1pabFv5Kpwk26x6O8R9qXwBV5cS2s7hx5G6N7uO67j1MFhPvbH0bzbvLbetYzflTE86ePYuTJ08abJefXzXXkpISoz4LSgoUjjQrGx6sbdXv3Vve3UnrojXpEIK3PhtnsL8Lf1/F5X031G2ZbqItmQzM3zCddt5Vd0rWhIsXL+L48eMG26nasry8HKWlxhfXUjolmSwm7F3sajQ/S0EcaQQCgUB4pSQ/S8PPS3+nt5dunw8nA8KhFEVh4/xtGtpXeekFuk4BFJEP2hwrDAYDA2f2odMKlVzedxMrRq6GWKSZ3mlta4VWfZpp7Fcl9s4L3D8brbHfVOdPUDN/g1F19YHEJylY0P5jnP+zqmpk+0GtkP4iS6stOTw22g5sqbfPl9FJuPnvPY39pjp//Jr4oFk3y1SZqk1S49KxqOPHOLXjIr1v4IzeWHdpJVr0iES30R3p/X5NfPD2d28Z7DMlNh2X9t7Q2J9v4Pujy5ZejTzQsndTg+O+DlAUhfDwcIwaNcroc3Jycui/ExIScOyY7tV+Jb6+vnBzc8OIESMwY8YMtG7dGhcuXGhQlRIpikJoaCjGjBljtCNNteBCUlISjh49avAcb29veHh4YNiwYZgxYwY6duyI8+fPN7hKiY0bN8a4ceNMsmVKSgoOHTpk8BwPDw94enpi8ODBmDFjBrp3747z58/TEWoNhaCgIIwfP95oR5rqdzw1NRUHDhwwWPXb1dUV3t7eGDhwIGbMmIE+ffrg/PnzqKysNHv+9YHzf17Fhb+uAYrFlGW7Fhm0Z3lJBbZ/ukdjf64B549nkLtWQXk7Jxv0GF+lg2iO8ycrK8uooh2NGjWiNQUFAgG2b9+Offv2GVUxWFlsoPqC7tWDt3Fq+wVA4WRbtnsRLRmii8pyAX5esktjv6HnSxcvJ3gEuGnst7bno9ebXehtRzNsmZmZaTD6FYroWScnJ0ChP/r7779jz549Rv12K4sNOHk4WKxycU0hjjQCgUAgvDJEQjG+mfQDXcZ6xIKB6DC4tcHzLv9zA/fPPtLYX14s19zQh6q4K48v15CiKAqrp2yCoKLqZeHU9gv4+s31kIjVH46ULzFD3u4HLk93pSepRIoNc3/Reiw3Vf+Djl+Yt9oKG0cxzsMLT3Dy1/N6z33VnN55EYs6fIzUWHmlN76dNUYuHIR7Z6I10juV74MDZ/SBtY2Vtu4ARRWrH+b9AkqL0L0hW3oEuMHVpypSimstT+N5eiMORzafqtnF1TEX/rqK+W0/QtITeaU3Kz4PH/6+EEt+nQeuFRfRl2Jw5vdLAAA2h4VP/nwHVorPtC4oisIP837RmhJqyCnp5OEI78ae9DZPUcQj/kEi9q3916RrrE+8ePECJ0+eRP/+/WnBcH1QFIX79+8jJSWF3ufs7GyUM4zH42H+/Plwc5O/0CgFzi9dumTmVdQPEhIS8O+//6Jfv35wdjYuUjEqKgpJSVVp2EpbGnJYcDgczJ07l07JkkqluHXrFs6dO2fmVdQPkpOTcfjwYfTp0weurq5GnfPo0SO1Ag7Ozs6QSqWQGZAFYLFYmDNnDp22KJPJcOfOHZw5ozut7nUiLS0NBw4cQK9eveDurpn+ro0nT56oFXBwcZHrfxn6njMYDMyePRvBwcGA4vfi3r17OHWqft93jCErKQcbF2yjt9/Z+jbc/TWdM9XZ+b89KMnXjDoydB9nMBiI7BJGb1vbyZ8XivNKsXnRb/R+cxxpY8aMMSqNOTo6Wq0gR1FREZ4+fYorV/QXUxIJxSgtlEevqWp65aXnY/3bP9HbCzbOhE9j/emlAPDHqv10hJsqOQZsCQBNu1Y9B1vbym1ZXlSODXN+pn9vVW1Z0+i+UaNGoU+fPgbbPXnyBMXFVVpnRUVFiIuLw8WLF/WeJ5PJaI00XVkmdQFxpBEIBALhlfH78j14+VD+4hQQ4YvZayYbPKe8uBxb39up83j6i0y95w+a1QftB7dCl5Ht8PPD7xDathEAIDU2Hb8t+xMAcPCH41g3aytdoZCj4jBb9OMsbLm3GrO+naR3nCObT9HXpjHHeP1zZDKZWLBxBsLaNcKCH2Zg+T/v08e2vr/T4PmvAkGFEN/N+BFrZ2yh0w+DWwRg7NLhOPLjKdpxw7WqsuXc76diy73VWPDDdL19n9h2Hs9uaa+casgWDIY8XSGsXSO8/d0UrDr8IX3s12V/IPlpao2usy4QCUTYMOdnfDN5IwTlcuduQIQvNt/5Bv3ekj/olxaWqWnTTP/yTaMqkJ7bfQWPLj/VeszQdwcA5n0/DWHtGmHm1xPx9YlPaMfy75/tQfxD4yov1kcEAgEOHjxYo8ibZ8+e4dixY2ovAqmpqUY7O1RxdHTEkCFDjIpqqO+IRCIcOHAAAoH2lHhtPH/+nNaZU5KamgoXFxejI7CU2NnZYdiwYQadRq8DEokEBw4cqFH6WEJCAg4dOoTc3Fx6X3p6OlxcXGocucHn8zFixAiDzszXAZlMhv379xuVeq0kJSUFBw4cUIvuy8jIgKOjo16dOm3weDyMHDmyxp/n+oZUKsXqKZtQUSJftOwzuRt6vdHF4Hlx917i6BbtTsSM+CyD39e3PhuHiE6hGLFgILbcWwNbR7nExYW/ruHinutAtSiqmjh/MjIycP36db16eUqUix3Kf8c+ffpgxowZBtPzi9Q0veTOH5lMhu+m/0inZnYb0wEDphnW0Ut8nIwD67VHPmcn5UKip0gWALz5yWhEdgnDkLf7YeuDNXBwlS/cXj98l16cM9UpmZ2djUuXLoHH07+oBwCXL1+GTCajbdmjRw/MnDkTzZvrr8BZkl9KP1M61kC7zdKQYgMEAoFAeCU8vPgE+9bJo1jYHBaW/bGYrjKoj+2f/q11FU5JyrN0hLQO1nncxp6Pr459Qm9/tGsR5rX+ACKBGIc3n0RZcQXO7b5MH3f3c0VOqlwDpMuo9hg6p5/BB+HctHy68pI2kmIMO296v9kVvd/sSm8Pmd0Xx7edg6BciDVTN+P7y6sMhv7XFcnP0vDl+O/VrmvI7L5wD3DFjv9V2cHd35XWU2k3qBVGLR5i0JaF2UX47eM/dY8dk2Zwft3GdKRLugPAqMWDcWjjCYgEYqyesgk/3PhKI633VZEen4kvxn+v5oTtN7UHFm2eRUftKVOblRFkLXtFYuySYQb7LskvVUujrk7y0zRQFKX336Tj0DZqGmwTPhyBPasPQyKWYvVbm/Dj3W/BtTL8MlIfadGiRY2E1dPT0+Hv74+SkhIUFRWBx+OBz+cjKSkJycnJCAjQXbhBG61atYJIJMLFixfRqVMntWqhrxvNmjVDt27djG6fkZEBX19fVFZWIj8/HxwOB/b29khPT8eLFy8QEhJSo/GbN2+OiIgIXLx4ER06dFCrFvq6ERERgS5dDDsqlGRkZMDLywtSqRQ5OTlgs9lwdnZGdnY2YmJiaqzHFxERgbCwMFy6dEmjWujrhDJtu2PHjka0lpOZmQkPDw8wmUxkZmaCxWLBzc0NWVlZiIqKQuvWhiPoVQkLC0NISAguXbqE1q1b0ymCrxN7vj2MJ9diAUXE96JNMw2eI5VK5ZHQWqLKAUBYKUJOSp7WIjlKGrUIxA/Xv6K3F/04C99M+gEAsHH+NjTr1sRk58+jR4/UomF1QVEUOBwOBg4cCIFAAGdnZzRq1Mgo56halUmF8+fghuN4cE5e0dzF2wnv/jTHYF8ymQwb5m2DVKJ90UUqkSI9PgsB4bpTKwPCfbHh6pf09rs/z8HKMWsBAFve2YHmPSJMdko+fvwYiYmJBp8loCjAMXz4cEgkEjg6OqJx48Y1tqXzK3SkkYg0AoFAINQ5JQWlatE0M76ehMYtDUfTlBWV663cBAApzww7VlTxb+KD2WuqdKVUnWht+regnWgu3k54/5e5Rt3kj2w+iUodBQqgSGNQTSM1hjnrpsC7kbwS4NObz7Fn9eEanV9bnPvjCha2X0Y70ZT6Hg5u9mpOtDb9WtBONEc3eyz9zXBBCQA49tNZlBXpjsYozitBSYHxArUAMPObifAPl1eTevEgEX+s2l+j82uLy/tuYn6bj2gnGteKgyW/zceHOxaqpb6e++MKrXFm52SDD3YuNCrS5ORvF1Ccp9tWlWUC5GcW6jyujSkrxyO4hdxhlBSTiu2f/l2j8+sD0dHRuH37NgYOHAhra2sjzpDTt29fTJ8+HVOmTIGLiwveeOMNzJs3DywWC2lpNfsdUiKTyXD79u3XNv3ryZMnuHr1KgYOHAgbG+OLovTo0QMzZsygbTl+/HjMnTsXHA4H6enpJs2FoijcvXvXKNHr+sizZ89w4cIFDBw4EHZ2xotpd+nSBbNnz8aUKVPg6uqKsWPHYs6cObCyskJGhvZq0MZw7949/Pvv65nC/fz5c5w5cwYDBgyAg4PxFf46dOiAOXPm4K233oKbmxtGjRqFt99+G3w+H1lZWSbNhcFgICoqCocP1497eE2IvfMCu1fuAxTi9Mt2LzKq+NGDs4/w4n6C3jZKOQhj6f1mV/RURMKVFZXjuxlbYOdc5eQtzjPe+WNnZ4dWrVoZbMdgMPDuu++iefPmaN26Nfbs2aOWQq0P1QVgZ09HvIxOwvZP/qL3ffj7IqNE8x9ffYanN+L0tqmpLbuO6oAB03oBACpKK/HdtB9h61T171oTW9ra2qJVq1ZGPd8tXLgQrVq1Qtu2bbFv3z48f669Knh11KqfktROAoFAIPyX2PreTrowQKs+zTDmvSFGncfmsuHspf+maUy0V3WGzOmrpqMFAOM/HIlHl2Lo7Q92LDC6MpA2IdfqpMXV7IXG2tYaH+1aBKaizPvulfvw/P7LGvVhSYSVQqx/+ye5tpwi/TCwqR823f4Gsbfj8dfXB+m2Y5cMw5Nrz+jtJb/Nh7Onk1HjuAcYTpNLja2ZLXnWPCzbvZiO6Nvz7SHEGHgwrU1EQjE2L/oNX074ntb48wvzxubb32Dg9F5qbfMyCrB5YZUmzDs/zYG7n3GphB5G2DLlWc0ewDlcDpbtXkxXYz2w/hgeXnxSoz5eJQUFBTh69KhJIv/KFwU7OzvMmjULgYGB4HA4aNOmDa2jVFOsrKwwYsSI1zItsbi4GEeOHDFJ5J/BYIDBYMDGxgazZs1C48aNwWaz0a5dO5NSZaHQThs5cuRrmZZYVlaGw4cPQyQS1fhcpS2tra0xY8YMhIWFgclkol27dkbrglWHxWJh9OjRJp37qqmsrKxx2rYqDAYDPB4P06ZNQ2RkJBgMBjp06AAPDw+T+xs9ejSYTOZr9dkUCcVYM3UzHQn15sej0bSrcQV7XLydwWTpdzvU9N4DAIs2z4SLt/xZ4sHZR7ilUpCoJs6fZs2aoXv37ka1Vf7us1gsWFtbIzk52ajzVJ0/jm72WDN1M118aez7w9DaQPEqJS5eTmBz9GcjmGLLeRumwTNQ/uz6+OozXPz7On2sJtF9ERER6NWrlxEtq2zJYDBga2trtC2rOyVfFcSRRiAQCIQ6JfpyDM7tlouy2jra4IMdC4zWbbHi8/Db0w344ugyuPtXvVx1GdmeviEbo/OkikQswZqpP2pU/Lxz4j79kDP6nSFo06+F0X0OmzcAP0V9hwkfjaT3BTXzh2+YN71d08g5AIjoFIY3lsmrCUolcp0SYWXdV1NLe56BxZ0/xQmVwgcDpvXChmtfYt/aozi8uaqE/IIfZiD9RSatmzbk7X5qqYGGGDCtF355tA6TPxtL7/MP90VARFXagim2DGkdjLdWyMvLy2QU1kzdhMqyuq+mlpmQjfe6LceRH6sikHpP7IrNd75FUDPN1MCfl+6inW39pvRAj3GdNNrooueELvj1yfeY/uWb9D7fUG8ENfOnt02xZVBTf8z4eiK9vWbaZr1RhPUJFouF9u3b1yilszqXL1/G3r176e1+/frBx8fH5P7Cw8MxcuRIXL16FRUVFSb3U9cwmUy0adPGKJFpXVy/fh1//PEHvd27d29a+N4UQkNDMX78eFy7dq1G2livGgaDgZYtW6Jfv34m93Hr1i38/ntVKnePHj0QFGQ48lsXwcHBePPNN3Hjxg01sfXXgRYtWmDAgAEmn3///n389lvVAkbXrl3RuHFjk/sLCAjA5MmTcfv2bRQV6ZaqqE/sX/cvUhULgGHtGqndkw0R3DwAuxN+xMd/vkPvc3S3R/PuVY44U+499s52+GDHAnp796p99LOgsc6f9PR0rF+/vsa/DwwGA8OHD0d4uHHORFXnT+y9eCQ8kjuNgpsHYPpXb+o5Ux3fUG/sTvgR//vnPTAUC6t2zrZqlbNTYmtuSxt7Pj7YuZC23x9f7AOHJ18gM9aW2dnZWL9+vZpuqLEMGTIETZsaV/1bLSLNw/gIU0tDHGkEAoFAqDPEIjE2LfiV3p717SS4+dYscsPGno/2g1vRN3bfUC98fvADBETKHSvpLzJ1akdUR1AhxMoxa3FJIVSrfCgBQFdKdPd3xbQv36jRHKHQ83BQiWAbt2Q4Zq+uKqZgyoohAEz+bCxCWgfRfexdfcSkfkzl0t7rmN/2IyREyx8CedZcfLBjARZvmYV1M7fgzE65UC2TycAHOxbAI9ANN4/KV4mdvZyMKihRnaCm/nB0q3pYGrV4MOatn0Zvm2rLNz4aiYhOoQCAjJfZ+OOLAyb1YyrXDt3GvDYf4vk9eWQhh8fBuz+9jWW7F4Nvp5li+ODcI/qz6uBqh7nrptZ4zIAIP7UV3GFz+2Pxj7PobVNtOfrdIWjZS669lJuaj98/22vwnFfNy5cvERsbiwEDBtRYOFyVzMxMtZTQ6OhobNu2zexok5s3b7421RKTkpLw+PFjDBw4EByO6XqD1W355MkT/PTTT2bb8s6dOzh58qQRLV89qampePDgAQYNGmSUYLcuqtsyLi4OP/74o9kFLe7du/fapMump6fj9u3bGDRoUI3StqtT3ZYvX77E5s2bTYoYVCUqKgpHjx41q4+6IDMxG39+KZdAYDIZeO+XuWBzavab6e7nCp+QqmqUHQa3waojH9HbKTVMR1TSpl8LjFw4CAAgFkrAZMvdG8Y6f1JTU8HhcEzSUfTz80NycrJRv0+FKsUG6GdOBgPv/jxHbwV4bbj6uCAg3I+uZN6mfwt8dexjOmPB1Pt48+4RGLd0OABAKpFBeVnGaqSlpaWBxWKZpKPo5+eHlJQUo6KxVW1JUjsJBAKB8J/g4IYTSH4qXylr0r4xBs0yLXIhKzGHjnAKiPQDFFFKACARS5Hx0rB2SWF2EZb2WoFbx+4DCifGqsMfofPI9mrtFvwwQ02fqiYkqVSEDIj0hX+TqigVU1YMoUil+2jXIjotce+aw8hKyjGpr5ogEoiwcf42fPXmBlr/zT/cB5vvfIsOQ1rjw36rcPXAbUBRPOJ/e99H93GdsOWd7XQfc9ZOgY29aaLfySopu4GRvvS/N8ywJYvNwoe/L6Srsh7ccAxpz03XEDIWsUiMre/txMoxa1FeLI848m7siY03v8KQt7UXsxAJxdi0UNUJPdnoVOPqqKY/B1SzZaqJtmQymfhgxwJY8eUv/ke3nkbiY+PSNF4FQqEQBw8eNFnnSJXOnTurpQXx+XyUlpbWqGpldZhMJgYNGvRaRFGJxWIcPHgQmZnmVxPu0KGDWlqQjY0NKisrzbbDoEGDalT58lUhkUhw8OBBs7TMlLRr104tOpDP50MkEpkULaLK62JLmUyGQ4cOmaxXqEqbNm3Qv39/epvP50MikahVmTWFAQMGoLKy7iOha8qWd3dAJJCnbI9cNBiNWgSa1E+y2r3HDzYONnD2kqdmmur8AYCZ306iNWSlYrmj2FjnT5MmTTBhwoQaV7QFgLy8PJw6dUqtqqsuVJ0/wgr58+vgWX0Q3qFmhVSUqD0TRfiBa8WFZ5A8dTs1Nt1keYCpqybQEf8SRVZGSX6pUf2FhIRgwoQJJi1MFRQU4PTp00ZpYhZkk9ROAoFAIPyHyEnNwx+rqkRqF/04y6QHF6hEi0HxAAFF0QAlhjSzkp+lYXGnTxB3Vx4JxLezxtcnPkHHoW3oMuBKPINN05RRnSeDwYB/uC+8gj1oLama6nqpEhDhh1GLBwMARAIxfvlgl8l9GUPikxQs6vQJ/v2pKjqm71vdsfn2N2Bz2Vjc+VPEXJdrjFnxeVh15CN0G9MRf399EFlJuQCAlr2botcbxleeq05StQdwVx9nWNvKHZzm2NKnsRfGK1ZgJWIptr6/0+S+jCElNh3vdl2Ogz9URXR0H9cJW+6t1ltwY/+6f5H2XO6oiOgchv7Tepo8h+q2tHexoyt0pZhhS3d/N7z5iVxHSSaVYcu7O+qtBpBIJIK3tzd69+5tVj8ymQw5OTlqOl6hoaEYOXKk2VU3mzVrhjfeeAOxsbH1WjNNLBbDw8MDffv2NasfiqKQnZ0NN7cqjcng4GCMGDHC7EqR4eHheOutt+q9LaVSKVxdXc1K6YTClllZWWq2DAgIwIgRI+DoaN6LZ0hICGbMmIHY2Fizo9tqE6lUCicnJ7NSOqGwZWZmppotvb29MXLkSJP1+5QEBwfj7bffRlxcnEk6jXXBjaN3cetf+YKjs5cTpqwcb3JfSU9S6L8DFVkEysI/JfmlNdI1U8WKz8O89dPV9gnKhQalLyiKQkxMjMn/jh4eHrCyskJpqeGCR9WrzTu42qlJItSURBVbBtC2lP9fUC7UkCsxFi6Pg/kb1G0pk8pQVmjYef706VOTbenm5gY+n2/Uool6aidxpBEIBAKhgbP1vZ10pcqhc/sjtE0jk/uq7ggAAD/VaC89WhsPLz7Bu13+Rzt43HxdsP7qF2jZqykSHiXj9I6LGvM2xRkgk8mQooi+8wxyhxWfBxabRac2pD3PMDoFVRuTPxtLa0NcPXAbD84/NrkvXUilUuxbexQLVFI5uVYcvPfLXHy4cyFeRifjnc6fIiNeHtXj7OmIdZdXot3AVkiNS8e+tfKUFTaHhUWbZxlVxUkbFEXR/+bOXk6wc7IFg8Gg/83lEYqma8VNWDaSTjG+cyIKt4/fN7kvXchkMhzaeALzWn9QlcrJZWPR5ln435739EbqVU+rWWyGExoqK9m2jjZwUUQDKG1ZkFmI8mLTo03Gvj8UXsHyyICHF2Nw9cAtk/uqLQoLC5GQkIBJkybVqBqiNtLS0nD69Gm1yBQWiwWKopCbm2v2XMvLy7F37148ePDA7L5qg+LiYjx//hyTJk2qUTVEbWRmZuLUqVNqdmMymWCxWEZFfBhCIBDgn3/+wZ07d8zuqzYoLS1FTEwMJk2aBGdnZyPO0E1eXh5OnjypZjcGgwEOh2ORyEGRSIR9+/bhxo0bZvdVG5SVlSE6OhqTJk1Sc4CZQlFREY4fP64WJagsQGCJyEGpVIp9+/bhypUrZvdlaQQVQmx5Zwe9PXfdVJOjygEg6WnVsxmdTaD27GZ6VFqHIa3RbpB65U1D6Z0VFRU4d+6cyf+OHA4H7733nlF6edUdaeZElQOgszsAIFD5HKymw2u6LVv3bY6uozuo7TMU4ScUCnH69Gmkpta84BcU98133nkHTZo0Mdi2MFseVcvhcWDjYPrn0VyII41AIBAItc6dk1G4dlCe9ufo7qAmdm4KySopk4FNlamdqmmT2h8gzu6+jI8HfkkLoTdqGYiNt75GcPMAyGQybFywDTKpPFrB1lFe+vvhhSf03GtCdnIu7ThUzhEA/JrIH3QkYikyE0x/ObSx52PmN5Po7a3v7oBEbLkV7czEbHzQeyV++XA3XXQhMNIPm259g8Gz+uDKvpv4sO8qlOSXqhz7GqFtGoGiKGxe9FtVRaolw9UelmtKYXYRSgvkq5SqtlT+m1MURUdrmYK1jRXe/u4tenvLezshEta88qAuclLzsGzAl2rpMX5h3thw/UsMnz/AoIPRUmk1AFBWVE6vVAc29aPHVv33STbjAZxrxcXc76u0235euov+HtQHKIrCgQMHcP++ZZylAoEAVlZWcHJSr0J78+ZN3Lt3T+d5xuLg4IDWrVsjLu7VVZXVBUVROHToEG7frvnvozaEQiG4XK5GxdPbt29bZAwbGxu0b98esbGxZvdVGxw9etRijimBQAA2m60RHXL37l3cumW+c9vKygqdO3eul59LADh+/DiuXbtmkb6EQiFYLJZGxdP79+9b5N+LzWajW7du9dKWf311ANnJcsd2qz7N0HNCZ7P6Uy7i8O2t6cUrYxdBDcFgMDDv+6lqWrfxD5P0niORSMBms+Hp6WnyuE+ePMHhw4cNtstNzaf/NjeqHCq25PA48FKktapJXphhSyikOFQrrSoXAHUhkUjAYrHg7e2tt50+YmNjsX//foPtlBFpzp6OJi/QWgLiSCMQCARCrSKsFGLzoqpqV3PWTqGdVKaijE5isVnwDZVHePmFedNCqy+rPTxRFIXdq/ZhzdTNkCj0M9oPboXvL6+Cq7d85f/srst0eqJPiBfe+2UOff5PS36vsTMgOUZl5TVC1flT9aBTfZ41pd+UHmjSXr4SmhSTin+3mi9MTlEUTv52HnNaLMXjq88AxQPquCXD8OPdbxHUzB971xzBl2+sh1jhbGrdtxk2XPsC7v7ylf/L/9zAg3PyCDmPADdM+t8Ys+aUpGLLQBVbBljQlj3Gd0YzRQWxjPgsHNxgvpg2RVE4u/sy3m6+BFEqEYMjFw3ClvtrjIrKtGRaDaqtYqt9LiMsZ8tOw9qi7QB5lduclDz8s6ZuC2LoQyQSoby83Ow0RCUhISF45513NDRhfHx8IBZbxhk7dOhQjB8/3mw9JksjlUpRXFysph1lDoGBgXjvvfc0BPZ9fHwslvY2YMAATJo0qd7ZkqIo5Ofnm52GqMTX1xfvv/++hoC6JT+XvXv3xtSpU1FQYFoKWW2Sn5+PgQMHWqQvDw8PLFmyRCN61cfHx+xiA0p69OiBWbNm1StbakaVzzTLaVFeUoGclDxAsfCm7CvAgvcevzAfhLev0hzbu0a/g8vBwQHLli3TWAipCRUVFYiLi9ObuZD4JIXWGwOAx24lQQABAABJREFUd7bMNiuqXCQQIV2RCeAf7gMWS66Zq3YfjzbPlp6B7mjePYLe3v/9Ub3XaGNjg48//tisdOeKigo8f/5c7zgSsQTFefIF3FdZaADEkUYgEAiE2mbv6iN05FXzHhHoM6mbWf1JJVKkKiJmfEI8weHKheJ51jwENQ8AFDocyvQ0sUiM72b8iF2f/0P3MXROP6w6/BFdGbGkoBTbPtxNH1+4aSa6jemINv2rnAH7vqtZZS11LZAqh4WqsGzMDfNWoJlMJhZsnEFv/75iL4pyTReSLswuwmcjV+P72T/RBQU8A92w9uLnePu7KWCxWfhh3jb8uuwP+pwB03rhq+OfwMZB7hwtL6nA1vd/p4/P3zCdFqA3lSQ1LZAqWzZRseVTM23JYDCw4IcZtDP2zy/3Iy/D9Jea4rwSrBq3DmumbqYLCrj5umD12c+w4IcZRtnE0mk10PO5VLPlTfNtOW/99DoviGEIsViMjIwMLF68GP7+/hbp8/jx44iJidHYP2TIEAwbNswiYzAYDKSmpmLTpk0WScuzBBKJBCkpKVi8eDGCgnRr+9WE06dPIzo6WmN///79MWrUKIuMwWAwkJWVhY0bN5qcgmRpJBIJEhISsGjRIoSEmCY8Xp3z589rTQfu06cPxo83zxmvhMFgIC8vD5s2bUJiYqJF+jQXqVSKly9fYt68eUaliBnD5cuXtUZEdu/eHRMnmq5xVZ3i4mJs2rQJL168sFifpkJRFDYt/I1eeBy3dDj8wkyPKoeeRZzQto3o+26MmfceAOg8sh3999Mbz3H/rOZvipLbt2/jyBHzFnrCwsIQGRmpt82Wd6vu476hXghWPKuaSmpcBp09oXofb9wykNbhNfeZCIBaeufLh8l0cS5tPHjwAAcOmFf5PDQ0FE2bNtXbpii3hHa0KeVNXhXEkUYgEAiEWiMnNQ97VstXBFls83SylKTEptMpg6pOFQCI7BwGAJDJKDy99QJlReX4ZPDXOPv7ZbrN22vewuIts+mXfAD4Y9V+eoWrx/hOaNu/hcIZMI1ut2f1ITrFwRhUVwOVQrBQhPQreXLd/BSjJu1DMGCavMpdeXEFdnz6t0n9XD14G7ObvU9HPwHAwBm98dPDtWjePQIVpZVYPvxbHP/lLH182qo3sOS3eWBzqqJx9nx7GAWZ8miPjkPboNPwtmZcnRxVWwaq2DKsfWM69cAStmzUIhBD5sijawTlQjWHYU24dew+Zjd7Xy0luM/kbvjl0Tq07tPM6H72r/vXomk1qLbir/q5DGkdBK6V3Cn95Jr5tvRv4lOnBTGM4fTp0zhw4IDFUkGkUimio6O1RqVIpVL88MMPyMmxjAMxICAArq6uuHv3rkX6M5fz589j7969FrOlTCbDw4cPIRRqRv5SFIWNGzdazIno4+MDLy+vemPLy5cv4++//7ZYYQ6KohAVFaXVlgCwefNmizkRPT094efnV290565fv46//vrLosL9uj6XDAYDW7dutZgT0cXFBUFBQfXCljeO3KWjqD0C3DDxU/OiylHt3qPq/LGx59OLoImPUszS6ISi6I0qW/TIXiQkJJhdNdXNzQ1t27bV+f29dyYaDy88obdb9tLvKDIGtfu4ilOSa8VFSJtgAEDa80wU5phXoVeZfqtk63s7IRJoj8JMSEhARUWFWeM5OzujQ4cOegvCFGVXXZPzKyw0AOJIIxAIBEJt8tdXB+n0v1GLB6s9PJnKo8tP6b8jO4WpHWvaNZz++86JB3i36//oBxiuFQfL/3kf45YOV3v5y03LxzFFNUorPg9z11XpOwWE+2LkokGAwhnws5HOAIqi6Hla21ohqGlV9Iudky1th5cPk1BZZt5DHADM/GYi+Pby6LqTv13AiwcJRp9bXlyONdM2Y9XYtbQz0dHdASsPf4glv86DjT0fuWn5eK/7ctw99RBQiOQv270Yk/43Rs2WhTnFOLzxBN1m/obpFnnRVtqSw+Ogcauq6BdrGyuEtJZvJz9NQ0mB4cpZhpi2agLsnOUVAs//cbVGUYMVpZX4fvZPWD78W1oM197FDsv/eR/Ldi2uUUpzaWEZ9n//LwCAyWJi4Sbz0mqUPLrylO4zrF2VQDKHy0GYIk04KzHHrGg8JdULYkRdsHxBjJrw7NkzdOtmXkSsKgwGA02aNEFERITGMRaLhcrKSotFl7BYLEyfPh29e/euF1Una8OWYWFhaNZM09HMYrEgFArx/Plzi4zFZDIxZcoU9OvXr97YsmvXrmaleqnCYDAQGhqK5s2baz0mFostpsfFYDAwadIkDBo0qN7YsmPHjuBwOBbrs3HjxmjZsqXGfgaDAZlMZlFbvvHGGxg6dOgrtaVMJsPOz/bQ2/PWTzM7qhwq9x4AiOgcqnZMuQhKUfJFUHNQyn0oSXmWjqM/ntbaNiQkBK1btzZrPIqi8Ntvv2mNTKYoCjuXqy9uegSYV/wC1Z6Dq9uyaZeqSExzo9J8qtkyMyEbB9Zrl71o3Lgx2rY1b+GUoijs2LFDa2SyEtWiDSS1k0AgEAgNkszEbJzafgEAwLezxpsfWyY1J/py1cNK8x7qL7CRXaoca8d+OkOnEji42uG78yvQfWwnjf7++uoAHeE2fMFAuPqor8C9peoM2H8LCY+SDc4x7XkGfbNv2rWJWvQbVCPnpDI8ux1vxFXrx8nDEZOXjwNU9OCMIerCY8xuvgRnd1VF7HUZ1R7bHq9D5+Hy9IiYG3FY2OFjumqnnZMNvjn9P60puntXH6a15AbP7ktXbzSH7ORcZCXKo3rCO4aAa8VVOx7ZWfWh0fwXbXsXO0xb9Qa9vWvlP3rbK3l89RnmtFyKk7+dp/d1GNIa2x6v0/q5M8T+df/SKaH9p/Y0q1iDksKcYvo7EdommE5tVqJqS6VeoDlUL4jx+4q9Fou6qSkikQiLFi1Chw4djGhtHGVlZejdu7fWapUsFgt9+vSBr6+v1nNNwdraGs+ePcOvv/76Sl+0RSIR5s6diy5dulisz7KyMnTv3l2rVhGDwUCfPn3g52f+QowSKysrxMfH4+eff4ZUanr1ZHMRiUSYNWsWevToYbE+y8vL0aVLF61aRQwGA7169UJAgHmpZarweDwkJydjy5YtFo0EqykikQhTp061mP4hFJpN7du3h4eH9ntZjx49EBhoevGX6nC5XGRmZmLTpk0W01+rKVf23UTSE3nEYpMOIeg8op3BcwxBURQeXZI/u1nbWiGkdbDa8UgV50+MmRHR/uE+GotOf397SGtlbw8PD4SFhWnsrwkMBgM2NjYoKirSOHbr2H3E3VUX6XfxMa8iL1Segzk8jppcCKrZ0tzocp/GnnSqqJJ9a4+golRzAdjV1RXh4eEa+2sCg8GAnZ2dVlsqUS3S5WoBW5oDcaQRCAQCoVb444v9kErkLyij3hlsVplvJaoPYzYOfAS3UH8ZcPN1oaN+lNoePiFe2Hjza0R00nxYykrKoZ191rZWGP/BcI02Ng42ePPj0fT2X18b1oCIvlS1Wti8h6Z2RmRXVYeFZSrIjVg4kH6ouHn0nl6hWWGlEFve3YEP+66iK0nx7a3x4c6FWLF/KRzdHEBRFP796QyW9lpBp2p6Brljw/Wv0ELLNeVlFODfrfJVX64VB29+MlqjjSmorrxqG1fVeWopWw55uy88g+QV2h6cfYRnt3WvkIuEYmz7cDeW9FxBO/ysba3w3i9z8cXRZXD2rLmIcVFuMQ7+IF/1ZXNYmLx8rMnXooqqLbV9LpvWgi37TelBV1eNuR6nNoe6Ij8/H9999x3y8/ONaG08//77Ly5cuKDzeJs2bSz+Muzl5YXMzEy8fKm/glptUVRUhLVr1yI7O9ui1dJOnjyJs2fP6jzeqlUrSCQSizpivby8kJOTY7FIt5pSWlqK77//HmlpaRa15enTp3Hq1Cmdx1u2bAmZTGZxW+bn5+Pp07r/fkPh8NqwYQOSkpIsastz587h+HHdhWeaN28OBoNhUVt6enqipKQET548MaK1ZZFKpdi1smohburKCRaxp6HFxaaqz0Q3zLv38Kx5dBVLpfRDUU4xTmw7r9auoKAA27dvR1ZWllnjAcCECRM0oharR/YpUc1QMIWcFP2Li6oRaubaks1hwzdMXoVT+TkoLSzH0S3qEX4lJSX47bffkJZmXqVQABgzZgzatGmj83iiymJ2oJm2NBfiSCMQCASCxUl7noFziignW0cbjH3fMqLbyU/T6PTDZt3D6UpFUAizr56yCWVFVfoaYe0bY+ONr+DdSHtp8z+/2E873Ea/MwQOrvZa2w2a1QeO7vKokyv7biElNl3vPFWj5lr01OawUH1otExaCJfHwfgPRtDbf319UGu7uHsvMa/NRzikSMEEgJa9IrHt0Tr0m9IDDAYDIoEI38/aio3zt9H2ad4jAhtvfq0zMurvrw9CJJCn8Q6fPxAuXqZXwVLlkQFbRtaCLVlsFt5cVhVB+ddX2p2nL6OTsKDdR/hnbVU1q6Zdm+Dnh2sxeFYfk19A/llzBIJy+er5oFl9LZIKAiNsqarfZylbMplMTPykSl/nTx22rE3u3bsHa2trnVElppKVlQVPT+2/Lcrjf/31l8V00qCoxjhq1CiLX4ux3L9/HxwOB15eXka0Np7MzEy9tszLy8Pff/9t0WILnp6eGDNmjMWvxViioqLAYDAsGrUIIz6XhYWF2LNnD1JSUnS2qSmurq4YO3asxa/FWB4+fAipVGqxIiJKsrOz9dqytLQUe/bsQUKC8XIKhnB0dMS4ceMsfi3GcOGva0hVPN807doEbfpppgebgqHFRXc/V7j5ybMBYm/H69Q0M5agpvLoVaUgPwD8890RiIRVFWuVUU/Vq7GaAkVRePbsmdq+awdv05H8PGu5s4vJYtILS6YSbWBx0dHNAX4K59eL+wlaI/FqQqDClqrO4gPf/6tWyb64WCFlYa/9GbomMBgMvQ75RNWCSU0tF6VsCsSRRiAQCASLs3vVPshk8pvu2CXDaqQNpY/oSyqOAJUHiKykHLzb9X84/+dVtfY9x3fWGQmX9iITZ1SdfUt0O/us+DyMUxynKAp/f6PdSQWtKQyaFe08g9zhrHA0Pbv53GKpRYNn91FLQ01+VrU6KKwUYsf//sY7nT+lH5S5VhzMWz8Nq89+Rgv05qTm4f0en+HUjov0uaPfGYLVZ5bDyV17haSclFyc/FW+2mtlw8OEj0ZobWcK0Sr6aOEdNSvauXg50SmksXfi1R6UzaHf1B70g/2tY/cRH1UlKC0SirF71T4sbL+MToHhcNmYvXoy1l783KyU1oKsQnq1l8PjYOInlkmJhkpEGpPFVIvkU6Kq3xcflWgR/T4A6DmhM7wby19Go84/NrsqaE1p2bIlJk6cCDabbURr43njjTf0poq6u7uDzWYjLy/PouM2b94ct2/ftqgjpCZjT5o0CVwu14jWxjNu3Di9qaKurq7gcrkWt2XTpk3x4MEDizpCjCUyMhKTJk2ClZWVRfsdPXo0unfvrvO4k5MTrK2tLW7LyMhIPH78+JVUnQwPD8ekSZPA55tX1bg6w4cPR69evXQet7Ozg62trcVt2aRJE8TGxiI21jKRwcYgEUuwWyUabdoXb1gsus/Q4iJUotIEFUI1MX1TUBXgV2p/5qUX4MzOS/R+f39/TJ8+3SKOtKSkJJw/f552NkmlUrVK8UrHoF+Yt0YEWU15dMmwLZXyIRKxVCO1tKao2jK8kzzarSi3BCd+OUfv9/b2xtSpU7Wm5teUlJQUnD9/Xqt8gUwmQ+Jj+X3PM8jd7Crm5kIcaQQCgUCwKEkxqbj493VAoTelrNxnCbQ9jN0/G435bT+iH7yUlQcB4Okt3Sk7f6zaR69Wjn3fsLNv6Nz+tAj9hb+uIeOl9nSA6ikMqhUtlTAYDNqRUVFaST8YmAvPmodxS+TpqaoOvwfnHuHtFkvx19cH6XTbkDbB2HJ/DUa/M4QWuY6+HIMFbT+iH7x41lws270Y89ZP03odSv78skpnbuSiwXB0s0xJ8pyUXFoPQ1sKgxKlLcVCMeJrUGhBHxwuBxM+HElvKyOpHl15irmtPsCuz/+ho/WCmwdg851vMf6DEWpRkqbw9zeHIKyUpwMOm9tfQ7PPVApzipEUI3f6hbYJ1vkAqqrfF3vHfP0+aInw++PLuotKO3/+PNLS0vRGlZhCfHw8Xrx4odc5x+VyMW/ePISGhupsYyo5OTk4ceKEES0tx+XLl5GQkABvb2+L9puYmIhnz57pFYhnsViYM2eO2Ro82sjNzcWJEyfqVL/v+vXriI2NtXgEV0pKCqKjo/U6OplMJmbPnq21sIO55Ofn4/jx43Wq4Xf79m08evTI4hFcGRkZuH//vl5HJ4PBwMyZM9GqVSuLjg1F6uHx48frTHfuzO+X6fttqz7NtEY7mYIxi4uwsEanaspfaJtG9N97Vx+inVrp6ekWSeuEohIwl8ulf0Mu771B65E2ahEIqUT+fVBWJzUHQ4uLqB6pb6YtVVNRg1X+3vvdEbqCZ2ZmpkVtyePxtP6GZCflorJMIJ+LBWxpLsSRRiAQCASLsuvzKkHxCR+O0BA0NxWKovBY8QBh4yAvl753zRF8MugrlBaUAQo9tE23vqHHjLkWq/XlKPlpKi78dQ1QOvveMezs49tZY8y7QwGFk2HPt4e1tjOkQ6WkqQUFYVUZOrcfHYV34a9r+GzUanzU/wtkxMsfctgcFt76bBw23vgKAeHylziKonDwh+P4sO8qFOWWAAA8A92w4fqXWosKqJLxMouOXuPbW2PcUsuk8cKIFAYltWXLgTN6wVlRFerawdv4fPR3WNJzBR3Rx2Qx8cayUdh0+xuLPNTlpObh+M9ynSgrPg9vLBtp8BxjeXzFuM+lqn6fJW3Z963ucPeXi5/fPRmF5/drX+MrPz8f165dq5W+7969a1REWFlZGY4dO2bx8Xv37g1Hx7qrWFZcXIzLly/XirPp3r17SE42XMRFIBDgyJEjFp9Dr1694Oxcd6LVZWVluHjxYq04mx48eICkJMPRPCKRCIcPH7b4HLp37w43N7c6c0pWVlbi3LlztWbLxMREg+0kEgkOHjxo8aIV3bp1g6enZ504JUVCMf78cj+9PW3VBIv1nf4i0+DiIqrppD25/kxrG2MJjKxyUJcXl6PtgBYAgKykXPrZ7/Hjx4iKijJrHHq8wEC8//77YDKZkErUdebaD6mqCmq2PlpqnlGLi5a0ZYCKLYtyi9FlpLz4REFmIU4rnv1iYmJw//59s8ZR4uPjg6VLl2pdpFIt9mWuLf/P3lmHN3W+b/yO192FulAoFGhpcZfiDgOGDtkYYwrzfefKxhhssOHu7q4tFC3U3S11j//+OMlJ0iZt5ISV/fK5rl0jyTlvTp6e5LzneZ/nvqnAmEgzYsSIESOUkfE0G7eP3gcA2DpbY8KK0ZSNnZdcQCZ5uvQNwvdzfseWD/eQLaSRY3tigzShISs/ryypVqlntuvLw+REf8YHmif7Jr45GmZWxLaXd91AWR631TaatDCgxYrh0+vUiQqbWphiyttjAQASsQSxJx+Sr3XtH4xNT37GvP/NICezMm25v97ZQVbo9RzRDRsf/Aj/MNUrx4rs+fqIvLLvnfGwstO/TUKGktHAvxBLjikH096XG1DcPRFH/js4MgB/PfoJi7+bDTZHfSWNNuz79hhZ2TfxzdGwdaYuUaJpLLsaKJZMFhOz1sgTg+p056iEwWCgV69erUSgqcDMzAzdu3dvd7uGhgbEx8e36UKmC66urpgyZQqSkpJeSNKCRqOhR48ebYpA64qmsWxsbERiYiLlbXROTk6YPn36C41l9+7d0bt3b8rHNjU11eh8b25uRnJyMkpLS9vdVhscHBwwc+ZMpKSkvLCqtNDQUPTpo70zcntoGksej4fU1FQUFratnaottra2mDVrFtLT0w3uLHth6zWU5RHfq4joHirNmXRFUZKjrUUc766e5Pzq2c0kvT6zR5AbaWiQk5CPOZ/KDXv2f08kPU1NTSmrVK6vr8dvv/2G2tpaXN59C4XphJZj98FdIFHQadN3wa098yUZ7gGusHEk9MoS7qRAwNdd8sLFx4nUeMtJLMDsT+Sapwd+PAEBXwATExPKYtnU1ITffvsNlZWVrV5TSqQZK9KMGDFixMh/iT1fy1c0Z304GSZmHMrGVhSrTX+chVuHY8nHr34+HV+dXEO2Z4aPlN+UxZ56qDROblI+ua+NkzUmrBil8TFY2Jhj0pvRgFR74uBPJ5Vel0gk5HGamHPUtjAAgH8Pb1g7EEmnR5fi9RaElZGXUoi484+VnjOzMsU7fy/H2htfKuldqNKWm7l6Ir4797FGLqtFmSW4uucWAMDS1hxT3qaujRcK4vgsNhPBkf5qt/MK8SAdS59eS1Bpza4LhRnFuH9WeZXVxJyDlRtew7o7X1PaWlCWX046yJpZmioZR1CBLMFLp9NU6qPJcPFxIvXMEu6koLaijrJjGLVwCKkNePfEA2Q/b78KSVdqa2uRkZGBcePG6d1u2xKxWIyhQ4dqlPzx9fWFn59fu9vpQlVVFQ4fPmxwTar6+nqkpKRg/PjxbbZf6oJYLMbAgQM1StB5eXnB39+fbEWnkrq6Ohw5csTgrpMNDQ14/vw5xo8fDw6HuusjpNefPn36tKnbJ8PDwwOBgYGUfzcgTXgeOXIEz549o3xsRZqamvDkyROMHz+ecp05iUSCiIiINnX7ZLi6uiI4OJjy7wakSbojR45QVjmlCqFAqKT7Ov9L6qrR0GJxsdugELXbMRgM9BxOmBvUlNchOVZ3N10WmwX3AOI6lp9SiM6RAeQCUkFaMW4dvodhw4Zh4kRqrrN8Ph91dXXgcrlKi0QLvpqpJI7v202/KirlpKT6WNJoNPSSzoMba5v0cstmMBikQUJRRgm8QjwQEU20MpfllePqntsYNGgQpk6d2s5ImiEUClFXV6dywYTKWFKBMZFmxIgRI0YooTSXi9iTDwAAdq62GLdsBKXj3zsjT4hVlRIOQWZWpvjyxGrM+98MpZurvhMjyH/HnIxTGufkhgvkv2eunghTc+0m4FPeHgsTc+IG6PzWa6goriJfS3+chUrp49ABndvUFWMwGIgaFw4AaG7g4clV/ap/+M187PrfISwPex9JMcoT0P5TIjHmtWFKMbp99B5e77ma1JYzMefg04Pv4rUf5mp8c3Xqz4tkReDUd8fD3JoaUwlIE55FmdIWhj6B4Jiqv+mk0WjoM4H4mwv4Qjy48FSv9xbwBdj77VEsCX0P8dcTlV6LHNsTE94YRfkN6NnNl0n9ukkrozVKZGpKcXYpaYoQGO7XpkAvjUZDX2ksxSIx7p99rHZbbWGbsDFTA2dZKrh27Rru3btnkLFv3ryJvXv3arQth8PBzJkzIRBQY4KhiJOTE3x8fJCZadg22Zs3b+Lu3bsGGTsmJgY7duzQaFsWi4WZM2capDrHzs4OgYGBBo/lnTt3cPv2bQ221J779+9j69atGm3LYDAwY8YMg1TgWVlZoUuXLgY3cIiNjTVYu/Hjx4+xadMmjbal0+mYPn26QRK8smpNQ56Xd4/HobyQqP6JGt8LQeHUJf4FfAEeSq/HphYmCOzl2+b2smsPpIst+iDTSRPwhSjMKMGcT+WJnn3fHsXevXvx4IF+7yHD2toaPXv2RH58Cdl62XN4KLr270xWUZlbm8HR00Hn9xCJRIg7R1yP29JHk9HHALGUSCTITynCXIVY7v/+GA4ePIjY2Ng2RtAcc3NzhIeHq3SmzpbGkm3CIhf8/k2MiTQjRowYMUIJZzZdIpMq45aN0NuZSJGyPC4eXoxXeq5TZ3dsuP+90sRLhpufC2mLnXI/A5UlRHKroaYBl3cTTp0m5hxELx6q9bFYO1hh/PKRgFTcXuZWCQA3D8knEv0mtd+2o5zw032i8/R6ApaFvY/dXx0mWwOdvRxJ44Vbh2PJKq3mRh7WLduMr6avRX11AwDAzd8F62O/w6DpmrfHNDU0k/oYLA6L8sTprcPyJIgmsZTpdgBA7CndY5lwJxmv91yNHZ8dgEDqAOrgYUcmT2NOPKC0SgtSfZpz/xAOWAwmA+Pf0LxKUhP0iWWMHrFUxZilw8mWk1tH7ikloqmkoqJCo8ocXUhLS9NKcD8zMxObNm1CY2MjpcdBo9Ewe/ZsDB8+3KAtieXl5YiKijLI2GlpaXB3d9d4+9zcXGzatAm1tbWUH8uMGTMQHR1t0JZEQ56X6enpWp2XBQUF2LRpE6qqqP8OTpkyBePGjTNoLMvLyxEZGWmQBJa252VJSQk2bdoELre13IO+TJgwAZMnTzZYe+fJjfLFxSmrxlI69pOrCairIuYZUeN7tbm4COlCFZ1B/D1jTj3Q63dN5kANALmJ+Qgb0hUhUtmPnMR85OXmo6mJmup1BoOB3r1748KWa+RzU1aNRV1VPbj5FQAAn9BOermgJtxJIbXmekeHtbm4CAARo8PAYhPxvnf6IWWxzE7IQ0ifIIQN7QoAKMosRU5WLmXXNzqdjoiIiFZVps2NPBSmE1q/Xl08DVJNqy3GRJoRI0aMGNEbfjMf56QJJSaLgbFLh1M2dtqjTKzo/ZHSJGDY3AH449738AxSP9GVJdgkEgnunSba8y7tvInmBqKFcsSrg3SuoJr4ZjQ5Ibqw7RrEYjEkEgluHSESaXQGHf0mt5+w6DmiG6k9EXv6odYT5ZryWvy8aCM+GPYlCtIITQ4Gk4FZH07GlsTfMGLeYEBa8XZ9/x1kPcvFiog1OPuP3LZ84PQ+2Bj3g9bCrdf33SETcUNe6QdrByut9m8PWSwBYMDU9m/iuw0KIfVV7p99TDpzaUpdVT3WLduMdwZ+Trpt0Rl0THt3PLYlrcPYJcQ5LeALcWX3LS0/TdvcOhxL6v8NmBoJBzdqhc8VYzlQg2Rp5z6BZLLr4cWnlLUdQ2qiEP3aMEBa8XZpxw3KxpbB4/GwYMECRES0TrJTwYgRIzBs2DCNt/fw8CBW8vPzKT8WJpOJ48eP48KFCxpsrT08Hg9z5swxiAYVpKYJI0ZonoR3c3MDjUbTyOhBWxgMBk6fPm0QcwhI279mzJiBAQPaNnDRlUGDBmH0aM11SV1dXcFkMjUyetAWOp2OCxcu4MQJ1aY8+sLn8zF58mQMGTLEIOMPGDAAY8ZoLlXg5OQENputkdGDttDpdFy9ehVHjhzRYGvtyHqWi+e3CTH6Tp3dETakK6XjK0pwDJzW/m+Ilb0lQgcQzrxFGSXISy7Q+b0Vkz85Cfmg0WiYtFL+NxWWAEFB1GnB7dq5G8VVhE6eq68zwkeHKTmy+4TqJwWhbSzNLE0RNoxw5uUWVCBdD0dzrxZJSQCY/JY8lo05AkodlQ8ePIi4OOVuktzEfPI+wFfPWFKFMZFmxIgRI0b05uahWLJKZ8C0KNi52Oo9plgsxpFfT2NV309QXVZDPj/382n4cNdb7RoE9FWovLl7Mg5isRin/pTfbOpjhODs5Ui6QJXmcvHo8jOkP85CSXYZACBsSBfYOFq3O46JGYfUsaguq0HK/QyN3l8ikeDyrptY1PltpURESJ9A/PXoRyz+bjZMzDgYs0R+s7/vu2N4M/Ij5CUTEz2OKRvv/rMcnx54h9SW0xSJRIKTirF8gzpTCUjbOnOkk7WQvkFw9LBvdx8Wm4VIqTtWfXUDnt3SzKlKIpHg2v47WNT5baUEY2C4HzbG/YBlv8yDqYUpopfIk8PntlyhtALolAFjWZxdirSHRFuQfw8fuPm13w5BtB0TmlVUtB23JHqx/Lw8v/UqpVUrEokEW7ZsQUxMDGVjKpKcnIzq6mqYm2v+nbGwsMDixYvh49O+eYcuODs748mTJ5RX/0gkEuzYsQO3blGbOJaRlpaGsrIyWFpq3sZsamqKxYsXIyCg7bYmXXFxccGzZ88ob8WVSCTYvXs3rl27pldVijoyMzNRWFgIa+v2rzsy2Gw2Fi1aRGkyQRFXV1ckJCSgubmZ8rEPHDiAS5cuGSSWubm5yMnJga2t5vMYJpOJRYsWoUsX9QLw+uDi4oKUlBQ0NDRQOu6pjcrXHirjKeALSGkNUwsTRIzWzPSFqvZOWVcCAOQkEfOJfpN7k7IJCefSYMKgxlUeAHj1PDBNiSqp8ctHgsFgKCXS9NFUFYlEuHOMMPJicViIGh+u0X79FLse9Iilj2IspXOzyDE9Ye9GfEcSL6WDJaFO85HNZrf63aAqllRiTKQZMWLEiBG9ObnxPPnviSui9R6vqrQan477Hpvf3wWhQF6lZe9mi3lfzNBojMBevqQA/ZOrCbh3+hFZtdV9cBel1UpdiH5Nnlg5v+WKUlunJquFMhR1LDRp78xLKcTqEV/hpwUbyOSlubUZ3vpzCX67/bXSqmdgLz9ywlGWV062Kvp298LGhz8ievEwnSbOiXdTkBVPVDEERwZQqqmCFq2I2rSbKk7AYzWIZWFGMT4e8y2+n/M7maw1tTDBit8XYX3st/DvIU98eHX2IEX6c5MKkKSHELIiqQ8zkXyPEIv37ealZFtPBbrGsg9FbceqcPV1Rs/hxEp5cVYpnrbQodOHwsJClJeXGyxpde3aNZ0qyywtLXHy5Enw+XzKjykqKgojRoygvMWttLQUJSUlBovljRs3dKoss7KywsmTJw2SoAkPD8eoUaPAZLbdgqYtlZWVKCgogLe3N6Xjyrh586ZO1VA2NjY4deoU5W3HABAWFobo6Giw2dTJPABATU0NsrOzDXZe3rp1C9nZ2VrvZ2tri9OnT6O+vp7yYwoNDcWYMWMoNaioq6onjYbMLE0xYt4gysaGirbO9loRZfSZKE8S6SPT4ObnQrY25khF6tkcFkbMGwSONQshr3rh9I7z7YyiGU31TUjYn43ih5Vgm7AwahFRKZmt4DKpjzh+y7ZOTZ3mFRNu+sg0OHo6kO8pq0hjMBkYtWAIWOYMhC7wwcntZ3UevyWTJk1q1QKv7Nj57xsNwJhIM2LEiBEj+pISl47UB0TFi1+YN6lBoSsPL8VjWdj7KgXjh8zqr3Hih0ajoY90EiHgEeLxMibqUY0mo8/4XrB1Jlb/Y04+xPWDhBi3pm2dMqLG9QSdTpOOE6d2u9qKOmx8axuWdnsPT6/JK4QGzeiDrUnrMH75yFY30vE3ElGap6zZMmllNP6I/Q5enT00PsaWKGqqUBHLlmjb1ikjIroHmCxiRfjuyTi1VWP11Q3Y9N5OvNblHSXtvX6Te2Nr0jpMWhmtUn9jzGvKVWlUoFiNNnEFtRUB0KGtU0bP4fq1HbfHmBaJaKpwdHTEzJkztdI30hSJRAIWi4UePXpova9IJEJSUhIyMjSrOtUGDocDb29vXL9+ndJKSTs7O8yYMcNgyR8mk6mRW2dLJBIJkpOTkZqaSvkxsdls+Pn54dq1a5TG0srKCtOnTzdYJR2TyUR4uGZVKopIJBKkpqYiOVmzCl5tYLFYCAwMxNWr1FadWlhYYNq0aQgOpnbRQQadTtc5lmlpaUhIoLaCF9K/b3BwMK5du0bZb/GlHTfQ3CiVupg3SOPkjKZo24oow9XHmVwATInLQHlRpU7vz2Ay4Cl1myxMLwFfupAY/dowQHqZjTmpnw6bjCt7boPGkcDc2QRDZw+AlR1R9Zal4EztraV8hiK6xtLe1RbBkcRvTvbzPNIIQVtoNBq8uhBzxpIcLprqCW250YuHAtI5y/1zjyn7nldVVaG4uFjpOUWXb59QYyLNiBEjRoz8Bzj150Xy3/okAgR8Af7+YBc+Gv0N6cpp62yNQIVqJ20SAWjR3pn2iEj2OXrYK4n86wqTxcTI+YQGmUgoAjePsOrWtK1Tho2jNbr0I24ICtKKkZdSqPS6gC/AsXVnsSBwJU5sOE86Ozp7OeKbMx/h0wPvwt5VuQVFJBRhx2cH8MGwL9FQLa80MDHnYPH3c/QygqgorsLto/elx26l9d+kPXRp65RhbmVGCuBy8ytIR1IZIqEIJzdewPyAlTj62xmy2tHRwx5fHl+N/x39oM33Gzi9D8ytCcfLmwdj0FCjX5tNbUUdru8nErAWNuYYMru/XuO1RJe2ThkmZhyyfVmbtmNN6TMxAtYOxM3G3eNxqCnXXzy+rq4Op0+fhp+fn0FavpqamrBgwQJ06qT9JN7W1hbdunUDi8Wi/Lgg/ey3bt1CYWGhBlu3T0NDA06dOgVfX1+DxXLu3Lk6VRVZWlqiR48elFc6yaivr8edO3co07tqamrCqVOn4O3tbZBYNjc3Y+bMmTol6czMzBAeHk5ppZMijY2NiImJocx1ksfj4cSJE/Dy8jKIyQCPx8PUqVN10nvicDjo3bt3K5F0qmhubkZsbCwlCWSxWIxTf8nnbvpIXahC17ZOGX0mKFalPWxz27aQdR6IhCIUphUB0urygK5+eL4rG+l3c/WuLpdIJDj15wW4hNvBqZsNubgoFovJdkQXHyedE5W6tnXK6EdRdblXiIJOmlRH1tXHGaF9QvB8VzZy7hcqLfLqw6NHj/D0qXwxXSKRIOsZEUs7Fxut5tiGxJhIM2LEiBEjOlPNrcGNA0QiwNLWHENe0S0RkJuUj7f7f4bDa0+Tz0WMDsPaG1+SyRCnTg4I7u2v1bjdB8sF6CFddBy7dAQYTGrcfmSi6Ypos1ooQ6m98wQx+ZRIJIg59QBLQt/DX+/uIFskTMw4mPe/GdiS+Bsix/RsNVZBWhHeHfQ59n57lFxptXO1AaR6V4orm7pw7u8rZDIv+rVhYHOoTQwotSLqEEtlfRV5hV/c+SdY2v09bFi5lWyJZZuwMOeTqdia9JtGyVUTMw6GziaEwnlNfFzbd0fr41Pk/NZrZLvtqAWDYWpO7Q2YYiypOi+pgmixIRLRAr4Ql3fd1HvMuLg4g1R8ydizZ49eemGTJk2ClRW1phwyvL294e3tTZkL3cOHD5GWRk37sir279+Pa9euabClaiZMmAA7OzuDuJV6enrCz8+PstbRJ0+eGKTiS8bhw4dx6dIlnfcfM2YMHB0dDRJLFxcXBAYGUhbLZ8+eITEx0WAutcePH8f587q3+40aNQpubm4GOT5HR0eEhISAx9Pf/OXRpXgUZRAOiD2GhaJTMLUVvLq2dcpQdjTX/drj3UW+6JGTKDcuGL14KOwCLUFn0fSuLn92Kwk5Cfng1wthaWVJSkKUZJeR5lb6aHoptnVGjNa8rVOGokzDXT1iqWhIlZMglzeQxZLBplNWqW9hYaGknVlRXEXO23w6iD4ajIk0I0aMGDGiD+e3XIOAT7gjjl40FCZm2k2WREIR9n13DK/3XE1WzjBZDCxfOx/fnPkIiXdTyaTNwGl9tF7NZ7FZ6DVKvhLKYNKVBPj1xd3fFd2HyMWFaXSaVm2dMvpNkk90ru69jYyn2Vg94it8MeknFKbLy9tHzB+E7am/49XPp7eKtUgkwuG1p7Es7H1yhZXOoGPxd7Px6cF3ye0UBfW1RSgQ4szfl4mx6TSMWz5S57HUodTWOU3ztk4ZiivZ1/bdRtbzXHwU/Q0+GfsdabQAAENn98f2lN+x4OtZMLXQfGKqeP7InGp1QSQS4bRCRcD4N0bpPJY6lNs6tY9l1LheoDOIqeL1A3cpb+9UTESf23JV75tPExMTDB482CBVX/X19SguLtarZbShoQGbNm0ySLKPTqdj/vz5sLW1peQmnsPhYODAgQapVGpubkZ+fj7c3Nx0HoPH42HTpk1ISUmh9NggbWOaO3cunJycKIklm81G//79YWZmRsnxKSIQCJCdna3XeSkUCrFp0yaDtCTSaDS88sorcHNzo6Tti8VioV+/floZVGiKWCxGRkaGXuelWCzG5s2b8eTJE0qPTcb06dPh5eWl92+xweUZdGxFlBHQ0xeOnkR1+OMrz1FRXKXTccjaEaGgkwYAIYP94R7lAHMnE9w8GEM6kOuCLJZpxwqUHIiVHTupaevURudURqdgd3gEugIAEm6noCSnTKfjUIplojyRFjKQiKWFqynuHo9DNbdGzQiaM3HiRERHy/WWlYwGOkhbJ4yJNCNGjBgxog9X98qrM8a/rl0iIOtZLlZGfYTtn+4nk3GeQW5YH/sdpr4zjrB833eb3F7XFsJOQfJJsY2TNWydbXQaRx1hg+WJNBsnK51Kzt38XBDSlxCyz0nMx+s9VyuVyIcO6IyND37A6u1vwsG9dethbnIB3hnwGf7+YBf4zUSFk6uvM367/TVmfTgZXfsFky0OSTGpSpMgbXhyLQGV0gltn4kRcPJ00GkcdWTG5+jc1inDwd2eFLIvyizF8h4fKOmgdY4KwO8x3+KjPavg1MlR6/H9w3wQFEG0G2c8ySZbhrUl8W4qSnMJ/bqI0WFw93fVaRx1FKQVKbV16jK+tYMVeo8h9MC4BRV4qEK3UB86BbsjdCDRQpWfUojEu7onRerr6xEYGIioKO0ThppgZmaG6dOn6+VwaG5uDhcXF4NVJ0kkEmzevBkPH+reCgVpO56Pjw/696e21VgGh8PB9OnT0bVrV73G8PDwMEgiTcbWrVsRG6tfBW9zczPc3d0xePBgyo5LERaLhWnTpqF79+46j8FkMuHj42PQWO7atQt37uhXwcvj8eDk5IRhw6hbDFOETqdj6tSpOun2KY7h5+dn0Fju3bsXN27c0GBL1VRza0gNWkdPe9KhmSqaG3lkNbgubZ2QJmCHzx0IABCLxEru5NqgVEWlMO+xsbMBJDTw64V6VZc31DTgnrT1tPM0b7Dc5Yn3LCWjAd2qqAR8AW4dISrLdWnrhCyWrxJGEhKJBBe26VYJ7K0mlpZWlqBJaODVCiAUiHB5l/4uzxcuXMDNm/Iq9WwlowFjRZoRI0aMGHnJyUnMJ3USuvQLgquvs0b7CQVC7P7qMFZErEH6Y8IZi06nYcYHE/HX458Q0NMXkCaHZMkkNz9nrds6ZRRmyCu6KourUJZfrtM46lDUNKstr0djnfatVfxmfiudM0h1NT4//B7W3vgSgb1aO2OKhCIc+OE4Xu+5mnR+pNFomPzWGGyO/wUhUYHkc4rVP7q20d06FEP+e9icgTqN0RanFfT2hurYJsznCZSSpRIxMbF16uSAj/e9jd/vfkvGRVcUhfIv79QxlgqrzIaI5SkKYolWBgu6V+BpMv4lHWMJAGfPnsXly5cpOiplRCIRTp06BRcXF710mWg0GmbNmoUBAwZQenyK4wcEBOh9E3/hwgVcuHBBgy21RywW49SpU3B0dNRb42r69OkYNIhap0FF/P399Y7lpUuXcO7cOcqOSRGJRILTp0/Dzs5OpTmKNkyZMgVDhw6l7NhaQkVy6dq1azh16hRlx6SIRCLBuXPnYGVlpbdj68SJE5Uqk6hG3/Py7vE4iEVEdeCQWf0pk7qQcX3/HbLCq/+USK3bOmVEL5bPWc5v1c2wwtnbkazeV0r+WFpi7uR54NUQC4+Xd+mWqIs59ZBcCHYOtENVtbxyjgpx/NtH75OO4lHje+msszZq4RCyuvzi9utkp4c22LnYwNLWHFBw7oR0kWnR7NfQXEk4UusaS0XKyspQXi6fq2d1QKMBGBNpRowYMWJEV3Qp3c94mo0VvT/Erv8dIoXevUI8sO7ut1jy41ylCZdiUmXCG7qZGPCaeLh/5jH5WCIBLm67rvU46qgqrcYdqfA+pImthxc1r9qRSCS4cfAuFnV+G7eP3lN6bf6XM7A1aR0GTI1S+dmzE/LwVt9PsPXjfaTOlnuAK369+SXeWLewld7WsDkDSHfQuyfUO1qqQygQ4q5UqNbEnIPe0dqvMrdFXVU9ru4lKhDNLE0xYp52N8gSiQS3j93Hkq7vkOPIeOWjKdiWvA5DZvWjROx70My+GrmDqkMkEpF/b2KVmdqKgKb6JlzcQZznbBMWRi0aovNYvaN7wN6NSPLeO/NI5xYbdQyYGkne6OjjDpqbm6uTcL0mJCcnIz4+npLWVmtra9y/f19JSJlKxo4di5Ej9Wu5NmQs09PT8fTpUwiFQr3HsrKywtOnT/WuwFNHdHS0UnuRLuTl5RkslllZWXj8+DH4fL7eY1lYWCAxMRH37t3TYGvtGTlyJMaNG6fXGIY8L/Pz8/HgwQNK9MfMzc2RlpamdwWeOoYNG4aJEyfqvL+uTs6aIJFIKGsbdfV1JqvLi7NK8fR6otZj0Ol0dAohWhKLM0tJl9K6ujqcunYc/hGEI3FKXAbKCyu0Hl8xll1CuiAwUL5IJxPHZ5uw4OavudGPIlTF0sHNDpFjCU3d8sJKsiJRG2g0GlmVVl5YibqqekBawXz47EF0GSx3By3KLNH5WAGgS5cuSq682dJY0hl0dNLDcZ5qjIk0I0aMGDGiE0qTsXa0rAR8AXZ8fgBv9v4IWfHEyhKdQccrH03Gn49+QudIZbexhtpGXNpJrGqZmHEwcoFubTEPL8ajqV5Z5Pj8tquUaT2d23KVXI2UoakrUkpcOt4e8Bm+fWUd2eKniLWjtUohf6FAiL3fHMUbveS6cnQ6DdPfG4/NT39G1/6q3casHazQpT8xMSlMb+0O2h5PriWgrpKYOEWND9d5lVkdl3bcICe5I+YN0mrlNf1xFt4f+j98Ne0XFGW2tne3drCk9HjNrczQYxgxwefmVyDjSbZW+yfeTVUSDza3olY76cqe22isJSojh84eACs73fWEGEwGRi8kKlXEIjEubqcuEQ0AHFMOeim4g8oqK7Vl/vz5iIyMpPTYZDAYDPTq1QuOjtq3AquCx+Ph+vXrBhEkNzc3R2JiItLTdYsjAMyePRv9+vWj9Lhk0Gg0hIWFwdWVmlZmHo+HGzduUKK/1RJTU1OkpaXp1Yo7Y8YMDBxIfcUppLEMDQ2Fp6enBlu3D5/Px82bNylJcrbExMQE2dnZeP78uc5jTJs2zWBVcxKJBCEhIZQl6gQCAW7fvk1JkrMlbDYbBQUFOiXjq7k1ZELKxccJgb18KT22xJhU0iAquLc/giJ06ySQoVixfF5HIXuZppZEIkFqHKFPWVdXh9raWvQYLW8v19YdtKGmAY+kshF2rrYYFD0AXl5E22FzI480c/Du2kmnitH0x1lIikmVjuGJbgNDtB5DEeXqct1iqVgNJrtWNzQ0oLa2Ft1GyGVO9HEHBYCAgADyuygUCJGXTHS/dAp2p9zgSh+MiTQjRowYMaI1uUnKbZ2qdLtkpD7MxBvha7D3m6NkOblPaCf8ce87LPp2tsqL4pXdt8gE2LA5A2Bpa6HTcd48LG9FDAwnJozc/Ao8uvRMp/EUEQlFOLtZ3kpmakFUgN0/+xhCgfobkYK0Inw3Zx1WRn1MTpIAoNfI7vjskNwUQNWkMTM+ByujPsaOzw+QFX2ewe747c43WPrzvHaTRYqOlrFaTnQU2zp1EQ9uC7FYjFN/yldeJ2i48lqcVYqfFmzAiogP8exmEvl82JAu+OLo++Tjc1uuUJ60UHK01DaWegoxt4VEIsEpioWkRy8eSlby6dpi0xb6nJcAcP36dRQUFOjdKqgKPp8PS0tLvatpFOnXrx+8vb0pG68lJSUluHv3rk773rp1Czk5OXq3CqpCIBDA1NRUr2qalvTp0we+vr6UVJqqorS0VOfKopiYGKSnp+vdKqgKoVAIJpOJKVOmUPbZe/fuDX9/f4PFsqysTOdYxsXFITEx0SBGIrKFtenTp1P22cPDwxEYGGiwWHK5XNy6dUvr65piW6cuBk7toct1vC36ToqAjSPhdHz3eBxqymu1HqObgo7tk2tEItfe3h7dunVD/7HyReCYU9pdexTbOgdOjcLJkydJV+fcxHzyb6OrOL7ydTxa779VxOgwOLjbAdJ5anlRpdZjdFeI5VNpLG1sbNC9e3cMGCufy2gby5acPn2adHXOTy0i57s+3TpOWyeMiTQjRowYMaILtw7L2z/UJQKa6pvwz+rdeKvPx6RVNoPJwNzPpmHjgx9Uan5BlgigYDLGa+Lh3ulHAAALG3PM+GAS+RoVFt0xpx6CW0C0AkSN74VIqWBvfXUDnt9uXcFQlFmCnxZuwOKQt3F9v/wm1zPYHd+c+Qjfn/8EA6f1QWA4EZf0x9lIf5wFSFc3t3+6HysiPiSrn+h0GmatmYRNj3/SWPNLyVJei4mOods6H16MJyvJeg4PRafgth3oSnLK8OuSTVgQ9BYu77pJTljd/F3w5fHV+OnKF+g/ORKhA4jqvLzkQiQqJC2pQNEdVJtYikQi3D5GtAMboq3z2c0kUgumS78g+PfQv8LCxdsJPUd0AwCUZJcpGWFQQeTYnvK245MPtLo5FAgEiI2NRWNjI6XHJOPy5cs4efIkpWPa29tjxIgRyMrKonRcGb1799bJ1VAkEiEmJsZgsbx+/TqOHTtG6Zg2NjYYPXq0QZxQIY2ltbX2BjJisRgxMTFoaNDdDbAtbt26hUOHDlE6ppWVFcaMGYPMTN0MVNojPDxcp1hKJBLcvXsX9fX1BjmumJgY7N+/n9IxLSwsMG7cOGRlZRmk8rRXr16wtW2tq9oehmzrrCiuIueG1g6WOjlMtoTFZpEyDwK+UCd91x5D5VVnT68T1y4Oh4PIyEgEhweQ7qBPryWgoVbz376WsRQKhWRSVnG+4dtd+0WT2oo6XNtPJJ3Nrc0wbI7+xi8MJgOjFhIyD7pWlysl0qSxZLFYiIyMhF9Xb9IdNPFOik5JTxlCoZBcsFNccPbtZrgFKF0wJtKMGDFixIjWKFZ6tWzrlEgkuHkoBos6v41Dv5wiVz/9wryxIe57zP9yJlhs9avKT68nIC+ZaDsMHdhZZ7cjxbbOfpN6o9+kCNi5ECL0904/QmWJflpPpzaeJ/89cUU0+ikmqU7IEyslOWVY+9pfWBi8Cpd33oRYKn5vZW+JFesX4e/4XxA5pie52jhGwRTg3D9XcOf4fSwOeRv7vjtGVvR5d/XE+nvfY/H3c8A2YWt8zG5+LvDuSrQBJd9L11jvytBtnYqJ04kr1GsSleWX4/fX/8bCoLeIyijpuWVpa47la+djS8Kv6DsxgoylosECFclTRRzc7EgDjKz4XBRnt24pVUXi3VTS+dQQbZ0nNYyltowxYCytHazQVZr01LbtmEajwdfXVy/XwrbIyMhAly5dNNhSO3JycrB3717U1NRQPra/vz9GjhyJpibtjE9oNBp8fHzQo0cPyo8JUn20kBD92pNUkZ+fj3379qGyUvsKi/bw9vbGmDFjtE4u0mg0dOrUSS8HyLYw1HlZVFSE/fv3o6ysjPKxPT09MXHiRJ2Si56enoiIiNBgS+0x1HlZWlqKAwcOoLi4WIOttcPNzQ1Tp07VKpaGbus8988Vco4S/dpwreYmbaF8Hb+qdWLSwd0enlL39pT7GWiqbwKPx8M///yD7OxssiJaKBDhwfknGo3Zsq2zS78gREdHky3xT67KW5jDhmj/Pb24/TrpwD5qwRCYWuhmMtCS6MXDyPnRhW3XtK4ut3awgl8YkczKeJKD2so6CIVC/PPPP0hLS0Pfib0BAGKxBPfOPNL5OEeOHEma8jzWM5aGxJhIM2LEiBEjWtFWW2ducgFWj/gK38z6DeWFxE0Ni8PC/C9nYsP97+Ef1n51zMmN1CQClJJ90/uAyWJi5AJiNU4kFOlspw5pDGQTUo9AV/QcHoqI6B6kAH3MqQcozeOSSZ8L264pJX0WfTsbu7M2YtKb0WCylNt+hrzSHybmRKLq3Jar+HLqLyjLI9yLmCwG5nw6FRsf/IigcNUVfe3RTzrRAYB7pzXTBDFkW2dRZgnizhGTV6dODogc17PVNuVFldiwcisWBKzEmc2XyTJ/c2szzPvfDOzO2oip74xrlaAdOC0KFjbm0s8QSzqJUYVie6em+iqGbOvkFlTg7vE4QOqw1X9K73b30ZQ+E8KVWmyqudQmgHRt7ywvL8eECRNgZWVF6fHImDdvnkE0rgICAsDhcJCfn6/B1tpz4cIFrR0Oy8vLMW7cONjY2GiwtfbMmTPHIBpXvr6+MDc3R25urgZba8+VK1e0rqQrLy9HdHQ07O3Vyx7ow8yZM/U2lVCFt7c3rKysDBbL69eva11JV1FRgZEjR8LJyckgxzR16lSMGTOG8nE9PDxga2uLnJwcyscGgNu3b2tVSWfItk6hQIizfxNSF3Q6DeOXU+da6hnkjtCBxEJLfkohEu9q71gaNoSoShMJRXh+OwVMJhM0Gg2NjY3oO0l+ndS0urxlWyedTkdubi5oNBqEAiEpNWHjZE0K9GuKSCTCqb/kZlvj3xil1f5t4ezliF4j5dXligk/TZHFUiKRIP5GEhgMBuh0OpqampS6HmL1aO/MyyPMBcRiMVkBb25thgCKk7/6YkykGTFixIgRrVDV1tlY14S/P9iFZd3fV2r76j2mB/55vhZzP5vWKmGkirI8LnkTbe9mi36TdFuBbtnW2WMYceGPXiy/iTu96VKbWmZtcXKjsqMonU6HuZUZwqQtBGV55Vjg3zrpM//LmdidtRGvfDRZrZg+jU4jHZ5kk14A6DmiG/5+thYLvpqll9hqH4WJzl0NEhaGbus8/dclcoV5/PKRStpMlSVV+OudHZjv/yZObrxATlzNLE0x59Op2J21Ea9+Ph3m1uYqx+aYcjBsDrGqyWvi4/zWa5Qeu+L5qYlOmqHbOs9uvkyeM2OWDG+z8lNbWGwWRs4nTD+EAhHObqa2Kq2vluclpO0fO3bsQGKi9m5u7SGRSLB7926Daa9xOBy89dZbBqmEgfQmXpu2MpFIhB07diA+Pt4gx7N//35kZWUZRHuNxWJhxYoV6NatG+VjQxrLnJwcjas3ZOfO48ePNdhaew4fPozU1FSDxJLBYGD58uXo2bP1ggYVeHh4IC8vT2NDA4lEgn379uHBA/00l9Rx/PhxJCYmGkTHjk6nY+nSpQYzQfHw8EBRURGam5s12NqwbZ13TzxARRFRad1nYgScOlFjzCJDUSj/+B/n29xWFWGK7Z3XnoPBYODVV19FYGAgug3sTC643T/7GAK+oN3xWsZSIBDg8uXLyM3NReqDTDTWEdXAPYZ11Tph+eD8U5RkExWh4aO6wyOAGmMWGYqxPKFDLHu0iCWNRsPcuXPRuXNnBEf6w9aZaN9+eDGeNJDSBrFYjIsXLyI7OxtZ8bmoragDpNVohvjN0wdjIs2IESNGjGjFneP3yX8PmBqF6wfuYlHnVTi89jRZ1u/i7YgvT6zGN6c/gru/5pOAkxsvkq2PY5eO0Cj5porHV54rtXXKEgpufi6IiCbalsryynFlz22tx66rqseV3YROh4k5ByPnE/odlSVVEPLlbqBCaSwUkz5zP5umNukjkUhw+xjRxilzNoXU3fST/W/jhwufwjOobe0wTQjs5UsKzj69+pyc8Knj2c0kg7V1NtY14eJ2IrnF4rAwWprorObW4O8PdmGe35s49vtZssXBxJyDWWsmYXfWRiz4apZGJhTjX5dXbRxZewr8Zupc1Dp19iCTns9vJ5MTPnWk3M8wWFsnr4mHs/8QyS0Gk4Gxy6irCJAxdtkIUsvs2O9n0VSvXetgW7j6OpOOYCn3NWs7Li0tBY/Ho8xpT5GCggJkZWXB3Fz195UKTE1N8fvvvyMpKUmDrbUjIiICs2bN0vgmrqKiAk1NTQaJZUlJCdLS0gweyz///BPPnulvJNOSHj16YPbs2RonVKuqqlBXVwdfX+qrJ8rLy5GUlGTwWP79998GSQR269YNc+fO1ThxVV9fj6qqKoOcl9XV1Xj27BnMzKhtr1fExMQE27dvR1xcHOVjh4SEYO7cueBw2r8m11XVG6ytUyKR4Pj6s+TjCW/obzLQkgFTI2HjRCRobh+5p7XruCptr+rqanC5XDBZTESOJRLHjbVNSsZFqmhqaG7V1imRSMBisWBvb4/HV+S/QT2HaZ/cV4wllfIMMvpMCIejB1Epe+/MI2Q81c51PHRgCOgM4rdQFsva2lqUlZWBwWAgahyhH8tr4ivFQlNksXRwcFDav4cOsTQ0xkSaESNGjBjRmJryWmQ9I5I8Xl088dP8P/Dd7HXkSiSLw8Lcz6ZhS+Jv6DshQquVuGpuDamVxWIzMWbJ8Hb3UUf8dXlVnKIoPADM+WQq+e/93x8jxWE15cja02SSbvjcgRDwhWTS56nC+9LoNMz6cLJGSZ+CtCJ8FP0tvpr2C7j5hIGBLHRikRjNDTzK2jBoNBrZkijgC/HgwtM2t1f8TH3Gh7e5rbYcX38OdVVEu+XgWX1Bp9Ox9eN9eNV3BQ6vPQ1eE5H04piyMf298diVuRGLv58DK3vNhdS9QjwxYCpREVBZUk1pVRqNRiNbEsUiMe6fbfvG05CxPP3XJVSXEe2W/af0hoObHaXjQ5qIHjKbED2urajDmU2X291HG/pq2Srr6uqK119/HQ4ODpQeB6Ri4YMGDTLIDbwiLi4uOjsZtgWTyURDQwNiY2M12BpwcHDA8uXL4epKbfUDAJiZmWHgwIEICAigfGxFXF1dcfu29osj7cFgMMDn8zX+O9na2mL58uXw9PSk/FhMTEzQv39/BAcHUz62IoaKJZ1Oh1gsxs2bmonGW1hYYNmyZQZJSrLZbPTv3x9du3bVYGvdcXFxId0cqYRGo4FGo+H69fZF45/fTiarlfuMD6e0rfPJ1edIvEsIwnfq7K5UsUQVHFMOpr83HpAmWvZ/r12rtSptr/v375OJd0WZhrsn2q5+TIpJJavj+4zrBTqdDjabjTVr1sDd3Z10BoXUPEkbEu6m4PEVYn9XX2dEUNwBAABMFhMzVsudk/d9p10szSxNSX3YvORClBdVIi4uDk+eEBIdfdXoBWsKg8HA6tWr4eXlpVcsXwTGRJoRI0aMGNGYZ7fkbpR5SQXkCicARI3rhS0Jv2L+lzN1qlo6+ONJNDcQZeBjlgyHvav2jlQy4qUrijQajdTWkNGlbxApWFqUUYKbB2NUjqGKmvJaHF9/DpDqldFotFZJH9kEVSKWYNLK6DaTPk31Tdj68T4sCX0Xjy7JW6p6jeyOj/e9TT7e/8NxstqPChQnOg8vtC2uG6+wOqu4qqsv9dUNOLL2NCCtujMx4+BV3xU48MNx8jxgcViYsmosdmVuwNKf58HWSXvHNwCY/bE8eXrwpxMatW5oimIsH1xsO5bPbsq/L90pFM1tqm/CwR9PANLzTzFZTDWvfDSFPMcPrz0FXpP2rRvqUGw7fthOLAHg1KlTBnGYLCsrQ1JSEgYPHkzpDacqxowZg6ioKA221J7y8nLcunVLo/bOs2fPGsQVsaKiAvHx8RgyZIhBWmQVGTVqFCn2TTWyWGqy8HLhwgWDmEhUVVXh4cOHGDZsmMFbnIYPH06KfVNNZWUlbt26BYGg/d/hy5cvG8REoqamBvfu3cOwYcMM0tapyNChQzF48GCDjF1VVYU7d+6029757Ib82iPTuKICiUSCHZ8fIB/P/Wy6wX4zxy0fCUs7YkHy2r47KMos0Wr/ltpeDg4OYLGIboWI0WFgsYnz4OHFthcX428oXseJMblcLjZv3ozaqlokx6YBUhdxbVtcdyrEcvYnUw32PY9ePJRswbxz9D5yk7TT6lQ8h+KvJ8LBwQFsNmEu0WNYV1Ln98HFp1qbQ1RVVeGvv/5CXW09nkvvORzc7eAR6KbVOC8CYyLNiBEjRoxohIAvwPHf5SXnsouji48Tvjq5Bl+f+hBufi46jV1RXEVWo7FNWHjl4yk6H2ddVT0ynxLivr7dvWBl1zqRNefTaeS/9313TGPtm0M/nSSr0SDVWWuZ9JmwQi4Mq2jbrYhQIMTpvy5ifsBKHPjhOKmj5tTJAZ8feR/fn/8Eg2f2I3U9ijJKcEOLhF97hA4IJo0REtUcI6QtDKlxGQAAzyA3vZKbLTn62xlS/J9Op+H0X5fINlMWm4mJK0ZjV+YGvP7bAti56Pe+/j18EDWO0CPj5lfg8i7qqgM6RwXAxIyYNMpW5VUh4AvI1506OcDFmzrh7JMbLqCaS1jND5rZFz6hujndaoJXZw8MkDr1VpXW4PwW6ir8Anr6kFo1iXdT25yA19bWIj4+3iCJtLNnzyI1Vf3fkkqsra3h7OyMs2fPan3D0R4hISGws7Nr9/etsbERjx8/1slNsT3Onz9vkNZVVVhaWsLDwwOnT5/W2o2uPTp37gwHB4d2/0Y8Hg8PHjxAXV3bbd66cPHiRSQkJGiwpf5YWFjAx8cHJ0+e1FjPTFOCgoLg7Ozc7t9IKBQiLi4OtbW1lL4/pAYShmgDVoWZmRkCAgJw8uRJjZKH2hAQEAAXF5d2z0vFxcWuA6irZow7/wTJ99IBqZv4oBnUaq8pYmZpiimrxgLSCvADP5zQav+W2l5TpkzB8OHDybGDpFVWxVmlbUoLKC4udhtEaFyWlJSAy+Ui4W4qOZ/rOUy7Cqon156Ti9PuAa4Y8Sr1JjcyOKYcTH+fqEojKvyOa7V/D4XP9vTac0yYMAGjR48mx+7SjzjHKourUJKjnQNwSUkJKioqkHwvjVyg7jE81OCLWrpgTKQZMWLEiJE2EYvFuLb/DhZ1fhvPb8sr0lgcJuZ9MQNbEn7Vu01t/3fHSB2s8a+P0ith8/x2Mjmp7D5IddVP98FdENI3CACQm1RAOh22xeOrz3DktzPkY9lkqWXSJ3ykvBQ/4Y6yu5REIsGtI7F4reu7WL9iC6pKa8gxZn88BVuT1mHAlEhywjBXKeF3lLKbQ44ph3Q/yk8tUuvAmBSTSlbCdVMTS11IuJuC/T/IJ26yWDJZDIxbNgI70v/Am38sprQ9cbZCldYBCiv8mCwmgiOJCXhZXjnK8stVbpf6IJOcFHYf3IWySWFDTQMO/XwSkCYk530xnZJx22K2QqL70M8nwedRc3NIp9MR0jcQAFDNrUVhenGb2/r4+Bik5UskEmHIkCGUj9vW+z18+BDJyckabK05Tk5OmDdvXrtVVDQaDT4+PvDz080JuC0EAgGGDRtG+bjqEIvFePz4MZ4/196Nri3s7e0xf/78dn+DaTQavLy8EBgYSOn7QxpL2Y3/i0AikeDp06eUG1DY2NhgwYIFGm3r6elpkDZWPp+PESOo15Fsi/j4eDx69IjSMa2srLBw4cI2ryeaLC7qgkQiUaqgmve/mQavOp20MhpmVoRR0+VdN1CWx9V4X0VtryfXEvDgwQMlZ+Ou/eTnmTpnUHWLi87OzujZsyee3ZAn2XoO11zTi6jsO0g+fvXz6WAwDVt1Om7ZcLJj4vr+OyjMUH+9bUlIn0CwpKZXT64l4MmTJ0rOxl2k82uomAe3h5OTE8LCwpB4W76YpYvW3IvAmEgzYsSIESNqeXQ5HisiPsT3c34nXYQAwNLOAluT1uHVL6brLT5flsfFOalIuok5BzPXTNJrPMUWBtlqYUtoNBrmfipPrOz99qjKFV2JRIKHl+KxZtTXWDPiayUXTRabibFLWyd9ZIkAAEiMkU8g4m8k4q0+H+PrGb8qJQgGTIvC389/xcJvXiErmxSPv0s/YkKSl1yIO8fugyq69JVPGpNi0lRuE69BLDVFIpHgybXn+Hjsd3hnwGcQCeQ390wWA6MXDcX21PVY9ddSOHlSr3nVOTIAPUcQk7HirFJc20+dLpViLNVVpSnFciB1To3H1sl15obNHUiJIUV7+HX3JrUHuQUVuLzzBmVjK8YyoY0KP4lEgpkzZ8LExISy95ZIJMjNzcXChQsNro2miJubG3r37m2QFfeTJ0/i/Pm2ndlEIhFmzJhBuYB9Xl4eXn31Vfj7+1M6bls4OTmhT58+BrmhP3fuHE6fPt3mNgKBADNmzIClJTXJChn5+fmYNWuWwbXRFLGzs8OAAQMMEsuLFy/i+PG2q2D4fD6mT58OGxsbSt+7oKAAU6dORZcu1C0OtYe1tTUGDx5skDbSK1eu4MiRI2pfV1xcpPLac/dEHNIfE0L1/j180H9yb8rGVoeFjTkmvUkI8AsFIhz86aTG+ypqe+WnFKK8tAKZmZnk6136tX8dV1pcVIilTFPzyVUigU+j0bSSb3h48SnZweAV4oHBs/pqvK+umFqYYuo74wAAYrEEB7SoSmObsMm5aWkuF6UFZcjIyCBf1ySW6jAzM8PgwYPJWKKF62pHwphIM2LEiBEjrUh/nIU1o77Gh6O+QcaT1o4+oxcOgauPMyXvte/bY6Rw66Q3o3XWwZLRlj6aIuGjwhAYTlRgZD7NQdw5uVC8gC/ApZ03sCzsfXw0+hs8vqzcAjJl1VjsyfkTb29qnfSxsrOEV4gHIBW1Tb6fho/Hfof3h/4PKXHyiUbowM5YH/sdPj/0nlp7cxqNptSGqi7hpwuySRDaWH1V1cKgLUKBEFf33sYb4WuwevhXeHBeWftq/OsjsTv7T7y35XVK2x1VoWw0cVxrowl1dOnf/kq2kj4aRVpztZV1OPKbXGdu7mfT2t2HKua0qPATCqhp/+qqQSwBYM+ePYiJoa7dGQAyMzOxY8cOlJerrio0JNHR0bCwsKBcD8rGxgZ5eXltbnPgwAHKheVzc3Oxfft2lJaWUjquJowcORJ2dnaU/x2tra2Rm5vb5jZHjhzRSPxdGwoLC7Ft2zYUFmrnVEgFQ4cOhYuLC8rKtGvPag9Nzsvjx4/jypUrlL5vaWkptm7d2u7f0RAMHDgQnp6eKCnRTturPWxtbZGbm6t2bqC4uEjVtUcsFmPnF/IKqvlfznxhrXdT3h5LanCd33pNI4dnGYraXsJyKCVT1S2CKqK0IKYQy8uXL+P4sROk47p/Tx+NK/9aVaN9McPgGogyJq4YRcopXN59C6W5mlf49Rgqb+9sKhIiNFT+uHOkP1n9py6W6rh27RqOHT1GVv55hXgYxDyJCoyJNCNGjBgxQlKcVYrv5qzDG+FrlJJH/j180HeSXAicqslYcVYpLmwnbjrMLE0x/f0Jeo1XX91AtjD4dOvU5kSmpSj7nm+Ooq6qHgd+PIFXfVfg54Ubkf289UR/yttj29XtkpW1i4QivNXnE6XkkXdXT3xz5iOsvf4lOke272IXPrI7mfDLis/FvTPUtIYorhgmqEhYNDU0I+0BMZHxCHTVeiLTUNuIw2tPY57fm/jh1fUqE7Jjl43AWxuXvLBJUreBIWRyNT+lEHeOUlPhFxIVQN5EqIqlgC8gq/4cPe3h4kNNwvDI2tNorCV05UYtGKKzRqEuBEX4I3xUdwBASQ4X1/ZRU+EXFOEn1+9Tk0jj8/koKyuDo6N2Qs7tkZSUBE9PTzg5GTahq4779+/j8OHDlGql9e3bt812QJFIhKKiIsqdTxMTE+Hq6go3t39HIPrBgwc4ePAgpVppUVFRGDVqlNrXJRIJCgoKDHJeOjo6olOnTpSOqymPHj3C/v37KVt4AICIiAiMGTOmzW0KCgooPy+Tk5NhZ2dnkJZwTXj69Cn27dtHqe5cjx49MH78eLWJrGe3NFtc1IZbh2ORk0AI1AdHBiBybE9KxtUEawcrjF8+EgAg4Alw+JdT7e4jQ7GyKeNuDrp27Ur+3iougqY/zkZTQ2sDB1ks0WJxsbKyEs3VcuMdxSRTe8Sefoi0h0RlnG83L9Jl/EVgbm2OSSuJCj+RUESaFmmCYixT72Sie/fu5O+tqYUp6ZKak5CPuirNjWwqKyvBrxdCLCb+LtrE8kVjTKQZMWLEiBFUldVg46ptWNR5Fa7vv0s+7+LtiI/2vIWND35ASRaxIk2n05SqRvRhzzdHyDL5KW+PbdPhUhM00UdTJGp8L/iEEjcnKffTMct9KbZ+tBcVRfIVTr8wb9CZxOXS1MJESR9KFTXlteAWVLR63tHTHh9sX4FNT35G5JieGq/eElVp8oTfjs8OUKLvZetkDXdpJVz6oyzwm/lKryfHppHaZZrEUkZZfjn+/mAXZndajr8/2KUUC99uXmSShG3CwqufG17PqyWKydOdXxykxMHT3NocPt2I8yj7WS5pmiAj7WEWmhuJSTZV+mjV3BolB1nFc+RFoRjL3V8dbnUO6UJL/b6a8tZC42w2GzNnzkRICHVtSmKxGCNHjsScOXP+NVHjiIgIcLlcSt0zLSws0NDQoLY6i8FgYMaMGejWjToNGrFYjGHDhmH+/Pn/aiyrqqoodc80MzMDj8dTW2VHo9Ewbdo09OjRg7L3FIvFGDRoEBYtWmRw/Sl1REREoL6+ntJqSRMTEzKJq44pU6YgPFw//VVFJBIJ+vbti9dee+2FVfy0pFevXmhqaqK0wo/D4YBOpyM/v7XzYn11AzKeaLa4qCkikQi7vjxMPn6R1Wgypr03HmwTQqPrzKZLGmuldekbRGp7Pb2ZgC1btigZy8gWQcUiMVkRJUNRH63l4uLIkSNRlyK//vUcrlnyR1Vl34v+nk9eNQamFoREwoVt1zTWSgsK94OZJaFX9/R6ArZt26ZkLKOoOZcUq1o+RBXDhw8HL0u+mNRDw1j+GxgTaUaMGDHy/5jywgr8+fZ2vOrzBk78cZ5MnFjZW+L13xZga/LvGDp7AOqrGpD1TFay7gtza/21dHKTC3Bl101Aqnsh02rQh3gtWxjSH2eTwrUASMMDGo2GfpN7Y92db+Db3QtiIbHKNmXVWFg7WKkcq7KkCn9/sAtzfd7Agwty+3QGk4GlP72KHanrMXL+YJ0m8H3GhyOgJ6HZlPUsl9SU0xdZe6eALyRXRGWoa2FQR8aTbPzw6nrM83sThxUqpSBNWK698SVC+gSS59iEN0ZT6gKqKT2HdyM/d35qEU5uuEDJuDJtL7FYguR7ypNGpfOSItOGA98fJx1jo18bDmcvaqtgNKFr/87kDUNJdhkOr21bP0pTlDTnVLjKJiUlQSQSUXbDIZFIsGvXLty7dw8cjn6aj/rg5eWF1atXU34j9eDBA9y7d0/la6mpqeDz+ZQlFiQSCfbt24fbt2//q7F0d3fH6tWrwWazKa3we/ToEWJjY1W+lpGRgcbGRkp1sA4fPoyrV69SqgWoLc7Ozvjggw9gZmZGaSyfPHmCu3fvqnwtOzsbNTU1YLPZlL3fsWPHcPHiRZiammqwtWFwcHDABx98AGtra0pjGR8fjzt3WlcFa7u4qAlXdt9CfgrRZty1fzB6jXjxQvB2LrZkVRqviY+/V+/WaD9Fba+SLC44bA6qq6vJ19vS9lK3uCgQCJCYmIhn14gkEovD0nix+dbhWLIdNDDcj9QefZFY2Vli8ltEdaiAL8Sm93ZqtB+DySCr8qpKamDCMWkjlpq1d4pEIiQkJOD5DcJ4h86go7ue+ryGxJhIM2LEiJH/hxRnl2Ld8r8xz+9NHF9/jnQTNDHjYM4nU7Er4w9MWTUWbOnKnWJigAqxWolEgg0rt5Kl29PeG0/qNOhDUqx84hM6QHULg4AvwM3DsXhvyBd4s/eHrSZLQb39sS3ld/zv6AcAgMs7iWSfubUZpr7bOtlXlsfFhpVbMddnBQ6vPU0mN2RwTNmY8s5YsE10vyGg0Wh44/dF5OPtnx1AbUWdzuPJUFwxbOmspBhLdfpoQoEQd47fx+oRX+H1Xqtxde9tslqOxWFh7JLh2Jq0Dl+f/BAm5pwWphIT9T5+XaDRaHhjndzlbPeXh1FZornGijoUJ866xFIbshPycEKaAGRxWJj98WS9x9SV5b8uILVQDnx/XK1rqTYo6aSpcPy6efOmkki0vmRkZCA3Nxfe3t6UjakrbDYb69atU5v40gV/f380NTWpfO327dtKItH6kpubi8zMzA4Ty40bN6pN1uhCQECA2ljeuXMHaWmaV160R2FhIVJSUjpMLDdv3owbN6gzFmnrvIyJiVGqFNKX0tJSJCQkdJhYbtu2jVL9N3WxTIqh9tpTX92ALR/uJR8v+GrWv1Z1Ovfz6bB2ICrsbh6KVVqwagtFnTRf62AlbS+l6/hdZRflRDWxLCgoQGxsLKoqiSRSl76BGplwNdY1YfP7u8jH/0Zln4xZH06CvRuxsHnv9CPEtdCyVYdiLN1ZPggLk7vWK+rwqpK8UEVxcTFiYmLALSXmEUERfpQs3BsKYyLNiBEjRv4fkZ9aiJ8WbsCCwLdw9u/LpMg/x5SNyW+Nwfa09Vjw9axWF67sBHnLgKwySh+uH7iLp9cSAGn7KBXVaBKJBLmJBeSYLdtEC9KL8c+aPZjtuRzfzPwVzxSE9C3tLECjExOY3IR8sE1YEAlFWP/GP+Q2C76aBUtbC/JxUWYJfl2yCfMDVuLkxgsQ8IhqNhaHhQlvjELvaKK9p7GuiTwufejaLxjD5gwAANRV1iuJ0+qK0ophi8ofmf6JrbN1Kw2z4qxSbP14H+Z4vY4vp/6i5K5kZW+JuZ9Nw97cv/D25mXoFOwOkYiIpSxxOvez6bBx1M9UQh8Ce/khevFQQPr32fbxfr3H7Kpo3qAmlmZWpnD11c+kQyKR4I8VW8iE5SsfToaDu71eY+qDT9dOmPAGoRvV3MjDP2v26D1mSF+FCbiKijQA6NyZGq0fSF0zZ86c2SFusgEgLCyMUiOFYcOGYdo01UYUEomE0lg6OTlhxowZL9Spsy26d+9OaSJt0KBBmDVrltrXqWw3tre3x7Rp016oU2dbUH1e9uvXD3PnzlX5GtXnpY2NDaZOnYquXTuG+19YWBju3btHme5c7969sWDBglbP5yQqzt3014Xb/ul+VJcR7dL9p0RSpperCxY25lj03Rzy8cZV2zSSvegxTJ44S3uUodSO6OrrDFtnYm6SFJum9PdRjKW/QiwlEglYdDZ41Xzp+JpV6O356jDKC4l26YjoHogYHdbuPobC1MIUS396lXz81zvbNZK9UNJJe5iBxER5MtPBzY7Ug02Ny9BoPLFYDBaDhaYKYkG6p4ax/LcwJtKMGDFi5P8B2c9z8e0rv2FxyDu4vPMmxCKZIKgJZq2ZhN3Zf+KNdQvVir7nJsknEF5dPPU6loaaBmxWKB1fsX4xTMz0bwHi5peT2lSyY+TzBLhx8C4+GP4lFga9hUM/n0Q1V6655Bnsjnf+Xo4DBZsx8Y3RgEIy4OSGC/J21h4+GP860UaQm5SPH+atx8Kgt3B+61Wy1N/EjINp747H7qyNWLnhNfQcLp8AaKMP0Rav/TCHdKs6u/kSMuNz9BrPM8iNTDgqVh1WldWQcZLFUsAX4NaRWKwZ9TXm+b+JAz8cR2WJvIzfzd8Fb/25BHtz/8L8L2cqua+e33INqQ+ICiKvEA9MebttkekXwcJvX4G5tRkA4OKO60iJS9drPKdOjnD0IBJaKffTSdHdxrom0gnLu4un3ivOV3bfwvPbxEq5m5/zv1bZp8i8/80gKwNuHLirJMisC0r6fQ8zWzmCLlu2DAEB7Rt1aMKNGzcQGxvbYZIVADBq1CjMmjWLstYviUSCX3/9FQUFrRP6ixcvpixhcefOHdy6dYvSBIi+DB8+HHPnzqW0jW7dunXIyWn92ztv3jyl6hZ9uHfvHq5cuYIuXajRVKSCQYMGYf78+ZTFkkajYcOGDSorImfPno2ePakRsH/48CEuXLiArl27dphY9uvXDwsXLqSsjZtGo2Hz5s1ITlauopIlf0wtTODUST/jhrRHmTj91yVAWlX++m+tE3cvmlELB5OamtnP83Bm8+V291HU9iouLcKtW7fI12g0GrnA2FjbhPwUuYZfrjSWLDYT7v5yYx9fX1+IEtmQSH1NNNFHy07Iw9F1Z4nxOCy8uX7Rv35uDnmlP1lFVpBWjBPrz7e7j09oJ/LaX1xWhOvXryv9PsjG4zcLkPWsbZdeAOjUqRMYmZYQC6VGAx1YHw3GRJoRI0aM/LdJfZCBLyb/hKXd38eNgzHkBc7S1hzzvpiBPTl/YvH3c5SSHqqQVdTQ6TR4Bunnwrbzi0NkAqbvxAhEjeul13gyFKvm7FxtCcF7z2X49pV1ZPUbpMLsg2f2xU9XPseWhF8x5rVhYJuwMe/LGWRS6caBu9j2yT5AOrF6688lyE7Iw1cz1mJJ6Hu4uuc2WV1lZmWK2R9PwZ6cP7Hsl3mk7pd/D3nlXl6y/hVpAODgbk8KvIvFEmxctU2vmxoajUY6K9WU16GaS6w05yqsvDq422HLh3swu9Pr+HrGr0purgwmAwOmReGHi59ie8rvGL98ZKukaDW3Bts+lreCrNz4Glhsls7HTBU2jtaY/+VM8vHGt7bp7fDn14OIZVN9M8qlJgu5SfK/vVeIfknouqp6/P2BvBXkzT8W69UyTBWWthZY9O1s8vHGtzSrDGgLf2ksBXwhirPk4u7JyclYv369XmPLqKiowK1bt2BhYaHB1i8OJpMJa2trrF27VmXyS1vodDr4fD5yc3OVns/IyMDatWspSYzU1NTg+vXrMDfvWG04DAYDDg4OWLt2bavPrws0Gg0ikahVIi0nJwc///wzJS6h9fX1uHLlSoeMpYuLC3799VfKWqvFYnGrWBYUFODHH3+EQKC/EUxTU9O/roumCjqdDnd3d/z666+UtbC2jGVTfRNKsglTA68QD70SNbKqctlvxaufT4eTJ7WOqrrAYDCwQkH2YufnB1Qa1Cjtw2SQ7qVlKZWAGEq/gf5h8rmb7Pot4AtQkEaI8HsEuYHBlGtKnjp1CsV1xHbm1mZkYk8dsqpy2YL2Kx9NfqGO2+qg0Wh4c/1iuezFV4dRUdy27AWdTkd3aXtnRXoN6KCrjWVeUvvXsvPnz6Owlki4cUzZ6BwVqPPneREYE2lGjBgx8h9DLBYj7vwTfDj6G7wZ+RFiTj4gX7Nxssbi7+dgd/afePWL6Ro5OIlEIjIR5B7gqteNe8bTbJzcQKxycUzZeGPdQp3HakmWQnXW+S1XcXjtadSUy3XE3ANcsfSnV7G/YDM+2f8OegwNVVoNJpIBr5CPZbpx4aPDsOfrw3i952rcPnJPbpVub4kFX8/C3py/sPCbV1qZEHTq7E7+O08qzEsFU94ZBzc/oj3w+a1k3DykX6tNp2CF40wmjjPrmTyWV3bfwsGfTpLtHJC2Pyz+fg7252/C54feQ68R3dWurG9Zsxd1VQ0AgGFzB1AmeEwF418fCW9pxV1KXAYuS80vdKVTsAf571xpLBWTkt5d9Uukbf/0AFkpOGBqJCJGU+cOqC+jFg2h1BBDMZay8xIA8vLyKBPG53A4GDRoEHr37k3JeFRiamoKKysrXL9+Xe+xaDQahg4dCi8vL6XnZbGkohKCxWJhwIAB6NOnj95jUQ2bzYadnR2uXr1KyXiDBw+Gj4+yxEFeXh5oNBolsWQymejfvz/69++v91hUw2Aw4OjoSFksBw0aBF9f5cRDfn4+JBIJJaYNDAYD/fr1w6BBg/Qei2poNBpcXV0p00rr37+/UqWu4u+mt56dBK2rysfqNR6VdOkbhOGvDgQA1FU1YMdnB9rdp8dQotKpOqsBPmzlamSluZt07luQVkwuDrW8jqenppNJ37AhXdq9PrWqKl/971eVy/Dv4YMxS4YD0gXBrQqLoOqQ6aTV5jXCEwFKv4GdOitex9tPpKWlpIHXTLR1hg7sTOo0d1Sos5UxYsSIESP/Kg21jbi88yZObDiPwnRl+2oHdzvM+GAiol8bpnUbZUl2GelmqU9bp1gsJlbhpJVccz6dRonTYG5yAc7/cwUn/7zY6jUWm4n+UyMxdskIdBsU0u5NzujFQ3Hol1MoyigBpBPdBy1EV22drTH9/YkYt2w4TC3Ur3LbOFnDwsYc9dUNlFWkAQCbw8Lrvy3EZxN+AAD8/cFuRI7rBVNz3VzdPBUSafE3EnH/zCOc2NC6pJ/JYqDf5N4Ys2QEwoZ00aglJeFOMi7uIBIB5tZmShocHQEmi4nX1y3EmhFfAQC2frQX/Sf31lncVjGW+cmFiBgVpqSros/NTOrDTJzZJG+rWf7rv99WowiDwcAbvy/COwM+A6SGGINm9G2lVagpni0SvP0mEf8ODg6Gh4eH+h01JC0tDUVFRRg8eLDeYxkCOp2O6dOno7S0VIOt26dr166oqlKuLggICICDg/5VJZmZmcjJycGwYcP0HssQ0Gg0TJkyBUVFRRps3T5dunRBebmyqYa/vz+srKz0TqTl5OQgLS0NI0eO1PMoDQONRsOkSZOQl9d+m5YmdO7cudU57uPjAzabrXcs8/LykJiYiOjoaD2P0nBMmDAB2dnZlIwVHByM4mL53E/x2qPP3K2qrHVVOZPVsVIIi7+fg7vH49BU34yzf1/B2KUjlLoCWqKo7fWs8BF8491JoXyla09K6wWxlpXlpgJLcJ8TC43t6aN11KpyRRZ+Mws3D8WgvroBl3fexLhlIxHSRmWYouZcctkzPHrkifBwwn3UM1jewaLJgrKp0BJl8UTHSkfXR4OxIs2IESNGXn4K0ouxcdU2zPZcjo2rtikl0Vx8nPD2pqXYmbEBk98ao5MWmaJQvleI7jewF7dfJ7XCPIPdMe093Q0Gmht5uLLnFt4d9Dle6/IOjq47CyFfrqPkHuCCZb/Mw/6Czfh479voPlgznZnCtGJUlcp1vxRL1J06OeDNPxZjd9ZGTH9vfJtJNEhvOGQrm9z8CjTVq3Yn04XIsT0RITUz4BZUYN+3x3Qey9XXifz3rv8dwqFfTpGJU0jPoSU/zsW+/M349MC76DksVKMkmkgowvoVW8jHC795BXYutjofp6HoOSwUA6ZGAgCqSmuw63+HdR5LVRUiFfqCLdtq5n0xo0O01bSka79gDJsrN8TY9onuJg7KsZT/BvH5/FYVLNrC4/Fw4sQJ1NTUaLD1v4etrS0cHR2xa9cute6GmpKQkIA9e/Yo/abxeDy9TQEEAgFOnDiB6upqDbb+97CxsYGbmxt27dqF+vp6vcZKTk7Grl27lNo4m5ub9Y6lSCTCiRMnUFlZqdc4hsbKygpeXl7YuXMnamvbbqNrj7S0NOzatQtCofz63dTUpLcGolgsxsmTJ1FRUaHXOIbGwsICfn5+2LlzZ6tEt7ZkZWVh586daG5uBlomf/RIpG35cA9ZVT781YEdqqpchoObHeZ8ShiqSCQSbHhra5tt1j6hnUiXyrrKBqQky9tr3QNcSCfqfOl1XN2CGI/HQ2F8KRpKiZgrJpVUsf2T/fKq8mlRHaqqXIa1gxXmfyWXvdiwcmubUg3u/i6kiVJteT2Sk+QOnc5ejuCYEonC/HYSaXw+H0XPS1FfRFzr2otlR8CYSDNixIiRlxCJRIKHl+Lx6fjvsSh4FU78cZ4U2of0AvTlidXYkbYeY5eO0Ks8OjtBvvKsa0VNbUWdkmX6yg2LtdbJEvAFuHfmEX54dT1muLyGH+f9QZbHK2LvZoftKesx7d3xrdotVSGRSPDk2nN8PulHLO7yDprqmpVet7K3xGeH3sWujA2YuGK0RrbmMpTaJlOoqYaANEn3+q/zwWQRLQSHfj6plVi+UCBE3Pkn+GnBBnwz4ze121nZW2Jn+h+Y8cHEdnX0WnLij/PIfk6cOwE9fTBu+Qit9n+RLP15HtgmxPl4fP05leeVJij/vYnkj0xf0NLWHHYuNjqNe+6fq0h7SLTVeHfxxORV/75Zgzpe+2Gu3BDj78t4dDlep3E8Al3J5LesRam5uRn79u3Tu4JDJBLBz8+vw1ZQKWJiYoLCwkLcvn1br3Hs7e3B4/HA5xMt60KhEPv27VMp9K4NYrEY3t7eGDGi436/ZXA4HJSUlODmTf1auO3s7CAUCsnkplgsxr59+/TWuhKLxfD09MSoUaP0GudFwGazweVy9W49tre3h1gsJpObEokEBw4caCWary0SiQRubm4duhpNBovFQmVlJa5du6bXOHZ2hFmULJZUVEMn3EnGpR03gA5aVa7I5FVjSJOaxLupOP77ObXb0ul09J9MLKDl3SgDvU4+H2WxWaR8RkFqEaE9pyYpeefOXUjciVZEB3e7NjWEUx9mkmYIJuYcvN7BqsoVGb98JNnCmv4oCwd/Oql2WxqNhgFTowAABbe5oNfKY0mn0+EhjUlhRkmbzp3379+H0JX4TbWyt4Rvdy+123YUjIk0I0aMGHmJaKpvwqk/L2Jxl3fw0ehvcP/sY7LCgGPKxtglw/H3s7X46fLn6DshQmctofzUQqxd/Cd+WfQnru2/Qz7Pa+Kjqkz7Ko5N7+9EbQWhVzbklX6kPkV7iEQiPLn2HL8u2YSZrkvw2YQfcHXvbTTVy5NdZlamCAz3Ix87etoj/XFWu6LPzY08nP37MpZ2ew+rh3+F2FMPlV5nsonWhdqKOjQ38JTEZTVFW30IbfAMcscrH00BAIhFYvw47w80N/LUbi8WixF/MxHrlv+NmW5L8cnY73B51000NchjSaPREBTRMpbZShbwmlCcXYqdXxwkx1y5cQllulaGwMXbCfP+R6zASiQS/DT/DzTUNmo9joWNPFmWcj8dvy7dRNrb27naIvVBhtYi/NyCCmz7eB/5uCO21Sji4GaHxd/NIR//suhP1FVpXwHEMeXAxYeolsxPKYREIkFDA1EV4eioe0s4l8vF8+fPMXXq1A5nMqAKc3NzTJkyBc7OznqN4+fnhyVLloDDIZKcDQ0NkEgkerV2VlRU4PHjx5g6dSqsrNpftPi3MTU1xZQpU+Dq6qrXOF5eXliyZAlpBtDU1ASRSKTXeVlVVYW4uDhMnToVtrYdr3K3JRwOB1OmTIGbm37mQ+7u7liyZAmsrYmFGj6fDz6fr9d5WVNTg5iYGEyZMgX29vZ6Hd+LgMViYcqUKXB3d9dga/U4Ozujf+hg/PPOXqxbthmJMURil2PGRmlOmdK1XhP4zXz8/vo/5OOF37wCW2fdFoNeBGwOC29vWko+3vrxPqUEWEtkyZ/qrHokx6UpzXNkczdeEx8/zF2PZzcJJ2omi4HK4ipy4TozOUupgkpd54OAL8C6ZZuVqsplLt8dEQaTgXc2LwOdTnyeXf87hPTHWWq3l1X11+Q2IPl+ulKFqaxVViwSk7IpqshIykJ9ETHvChvalTJHW0PS8Y/QiBEjRowg40k2Nqzcilc8l+OPN7colUg7dXKQtt5twtubl8Gnaye932/7p/txYft1XNxxXclp55dFf2K25zLE30jUeKxbR2JxeSdRAWBmaYplv8xvc3uJRIKke2lku+rq4V/h/NarZGsBpAmL/tILd2NtE1mtA2kCY0XEh1gz4iuVbnRZz3Lx1zs7MNtzGdYt/1vlRGvs0uH4eN/b5OONb21DSU6Zxp9ZhmJ7Wntl7bow+5MpZOKrIK0Y/6zerfS6RCJB6oMMbHp3B2Z3Wo73h/wPZ/++TCY1IU1EWtpZKGwvj2Xm0xy82ftDvDvwc42d/URCEX6c9weZ7Bzz2jB0jtSvTedFMO29cQgdQDh5leRwsemdHTqN4ypdyRbwhDi/RS7InZtUgJVRH+PNyI80TkyKxWL8vHAj6qvlbTXdBobodFwvkgkrRqHnCELfpLywEn+8uaXdfVQh+/401TejvLASdnZ2WLFihc4JC6FQiIMHD+pd7fKiCQoKgpeXF44cOUK2bWkLjUZDcnIy6epnbW2NFStW6JwIEYlEOHToEBISEjTYuuPg7++PgIAAHDlyBI2N2ifLIY1lWloa6Vxpbm6OFStWoFMn3a69EokEhw8fxrNnzzTYuuPg6+uLkJAQHD58GHV1dRrsoZqsrCykpxMV1RwOBytWrNC5fVsikeDo0aN48uQJJcYPLwovLy90794dhw8f1qvl/MjmE4h//Axn/7mCxloiwcNr5OOdgZ9jnu+Kdh0tFdny4V5yftTRq8plhA3piqlSIwQBT4AfXl2vtgqq64Bg2DhagWFCBzx5+GT21xhvMRfrV2xRqi6/fuAu6iqJxSChQIT3Bn+Bud6vo6K4CjXPmpF+hpjb9Z0Yofa4dn1xCBlPiErqjl5VLiOkTxBmfTgZUJjX8ZpUL9YGRfjD0dMedCYNLH8RPnv1W4y3mIu1i/9UaWilirpEHtJOEK/3ayOWHQljIs2IESNGOig15bU49vtZLOvxPl7vtRonN15AQ4184t9tUAg+P/I+dmVswIwPJmrkwKkpbekvCQUismWvPbgFFVi3bDP5+M0/FsPetfVqu0QiQdazXGz9aC/m+a3Aqr6f4MQf51FZItfdMTHnYOjs/vjq5BocKvkH72xeBhZbfWVO+uNsMvlTW1mHExvO443w1VgW9j6O/X5WKTHn4GFH/tsj0BXL1s7HgCmRGDGfcPpqrGvCzws3tlvl1hJVorVUwmQxsWbXSlKD4tSfF/HgwhPkJOZj+6f7sSBwJd6M/AhH151FRZFcf4VjysagGX3wv2Mf4HDJFkREh7X5PplPczSupDrwwwkk3iVWwl18nLDk547bCqIIg8HA6p1vwsyS0L67sP067p6I03qclkLELcl+nqek59cWR387iydXnwPStpHXf+u4rSCK0Ol0fLDtDVjaEhU71/ffVaps1RTPIHdwbFiwcDNFblI+bt++jUePHul8XHw+HxYWFhg3Tnd9xn8LJpOJjIwMXL58WecxUlJScO8e4TwcExODuLg4jRPkLREKhTA1NcWECRN0Pp5/CwaDgaysLFy82NqgRlNSU1MRGxsLAIiLi0NMTIxesWSz2Zg4seO492kKk8lEbm4uzp9vbVCjKWlpaYiJIdynHz16pFcbs0QiAYPBwOTJk3Ue49+CyWSioKAAZ86c0XkMW39LOHdXXTVWza1FWV65ytda8uDiUxxfT7RGsjgsfLDjzQ5dVa7Iou9mk3q+mU9zVOqeCvgC3DkWB445B6JmMZoqeCgpKEFzIw+Xd95Qmrupoq6qAenPM1HCz4eIJ4aJOQcRo1XPo+JvJpKtkUwWMc/oyFXlisz9fBrpxp2bVIBtH7fWPRUKhLhzPA4sDgtioQQNJU0oLS5FcyMPl3bdhGdQ+/Pguro65NVnQ8QXg8VmInJcLwN+Kup4Of6KRowYMfL/BJFQhAcXnuLijuu4d/ohhALl5AXbhIWhr/THxJXR8A9T70ikL6MWDsHRdWdVvmbjaIWhc/q3O4ZYLMZPCzaQCatBM/qQFuUyCtKLcePAXVw/cEflShWLzUTvMT0weGa/Vs6ULDsW+k3ujRsHY1S+/6S3ovHoUjwubL+O2JMPIGiRvGBxWBg8sy+69AvC78uJ9gUGk4GP9q4i32fFuoWIv56IsrxyPLuZhKO/ncX098a3+9llOHs7gsVhQcATtLkSpw+eQe5Y+vM8surnswk/QCRsnfBjshgIHx2GITP7oc+EcCWzBN9Qb1yD+kTHxDejNZr4Jd9Px64vDwEA6HQa1uxaCXMrMx0/2YvHxdsJr69biLWL/wQA/LZ0E0L6BGrVztJeRej45SM10tnLeJpNOqXRaDSs3vkmpclyQ+Pgbo+VG5fgu9nrAAB/rNiC0AGdtWpn6dTZHU6hNvAa6oxbD26gTkhUajQ1NaG4uBjTp0/XuAWsoKAAlZWVWLDg5UhGtsTCwgLTpk0Dl8vVeQxLS0ukpqZi//79ZAVQc3MzSktLMXnyZLi4uGg0TlFREUpLS1/aWJqZmWH69OkoLNT9N9nKygppaWnYv38/0tIIEx2BQAAul4vx48dr3KZXWlqKgoKClzaWHA4HM2bM0Eu30MrKComJiUqxFAqFqKysxOjRo+HlpZlWEpfLRU5ODubPb7vqvaPCYrEwffp08rupC/5+/nhwQ/ViQ/fBXdp0spRRza3BLws3ko+X/DiXkk6HFwXbhI0Pd7+FlVEfQSgQ4dBPJxA5pge69u9MbvPF5J+VHNkT9mTDws0MpvZsdJ7SCQy7tpPinaMCUFRaCEsvU9DohAGUqut6XVU9fpz3B5lkn//VLAT01M8s50XCYrOwZtdKvN5rDQQ8AY79fhaR43qhp4IRwLevrMOdY/fJx0kHcmHhZgozRw4CxnpAbMUnX1PXmXHr4l1YepmAzqCh14juL8280ZhIM2LEiJEOQF5KIS5uv44ru28qVWHJCI4MwOiFQzB4Zl+YW5sb/Hh8Qr0QHBmAlPutJ3TL1s7X6Ib+6K9n8PQa0fbj6GGPVX8R2hV5KYW4d/ohbhyKQfqj1poLdAYdPYaFYsisfug3qTcsbNR/3ujFw1Qm0ixtzXFh6zXs/fpoq9cCw/0wasEQDHmlH2g0GpaFvU9OchZ8NROBveQaYebW5li98018MPRLSCQSbP9kH3qNCEVSbDpiTj3AKx9OJtsBVcFgMOAZ5IasZ7koyiiBUCCkdCWyIK0I9848wo2Dd8nnWibRHNztMPfzaRgwNUrt302xBbUlzl6OmPv5tHaPpam+CT+8uh5iEfH+r3w8BV37BWvxaToGoxYMxr3TD3D3xAPUlNfh1yWbsOqvJdj26X6wWMx2NcraiqW9my0WfDOr3WPgNfHw/ZzfyUT6tHfHaawr2JEYMqsfYk8/wPX9d1Ff3YBfFm3Eml0rsf2T/ZBIgLf+fA1sE7ba/Tt19kB5Ug06DXYik2gAEB8fDxMTE1Kjqj0aGxuxf/9++Pv7o1u3bpR8tn8Df39/eHh44NixYxg+fLjWumTjxo3Dhg0blG7Unz9/DjabDUtLzZK0zc3NOHDgADw8PNCjR8dznNMUHx8fuLu749ixYxg6dChsbLTTfho7diwyMjLIxA+kzqhMJlPjWPL5fOzfvx9OTk7o1evlqMBQRadOneDm5oZjx45h0KBBWuuSjRkzBikpKUqxTEpKAoPB0PgcFwqFOHDgAKysrBAR8XK0hanCw8MDbm5uOH78OPr16wcnJycN9pIzc/FUnPjqUqvnmSwG3vpzSbvtrhKJBL8t3UzOQyNGh2HSyo5v2NAS/x4+mP/lTGz9eB/EYgl+nL8B62O/w9FfT6MgvRhZ8dIWdx9z1BU0ovtif7AtmBDyRGByGLByUq+fSWfQ8famZTi67QRKs6sgFkgwYGqfVttJJBKsX7EF3HzCObbboBBMf1/zhdiOgleIJ177YQ7+kspd/LJwIzY++AEnN1xATmIeMuNzAQDW3uaoK2xEt4W+4FizIeSJwGDTYWFnBjqdBrFYolYrOP1+FsoyqyFsFmGgilh2VIyJNCNGjBj5l6irqsetw7G4uOM6ku+1TljZudhg+NyBGLlgcLvtYoYgetHQVom0sKFdMWzOgHb3zXiSjW2fEALpNBoNk1ZGY9f/DuH+2ccozipVuU/X/sEYMqs/BkyL0tghMmxoV7h4O6IkR7lKo66qAVBo3bRxtMKwuQMxasFg+ITKV7e/m7OObHUIHdgZ0z9o3abUfVAXTHt3HA6vPQ0BX4j3Bv+P1KyqKKrE5ie/tHmM7oGuyHqWC5FQBG5+BWkTrgsCvgDPb6cg7uwj3Dv7GIXpxWq3lVXClRdWwsLGos3kp0egevHtlRsWK1UCquPPt3eQQrLBkQGY+1n7ybeOCI1Gw9ublyExJg3VZTW4d+YRnt9OJtuqu/bvjBHzBqndv61YvrFuoUYrrf+s3kNWMPqFeWPBN6/o9Fk6Ais3vIbnt5JRXliJx1eeY3HIO+T3JzgyAOOWqdfd8Qh0RVMFH482pqHXG0GgSTuLAgIC0K9fP5iamqrdV5HGxkY4Ojq+FM6S7cFgMJCTk4MzZ85g9uzZWu1bV1cHBoMBGo0GgYDQDfLz80Pfvn01Tko2NTXB1tYWo0eP1un4OxIMBgP5+fk4deoU5s2bp9W+9fX1oNFo4HA44PEI3SAfHx/06dNH4+RPc3MzrK2tMWZMx9dLag86nY6ioiKcOHECixcv1mrf+vp6iMVimJmZkbp1Xl5e6NOnj8bGCzwe76Vt224JjUZDSUkJjh8/jmXLlmm1L0/EQ6+3A/Dg91TwauTaYDPXTFLSqlLHuX+uIObkAwCAtYMl3t/2xkulNafI9A8m4N7ZR0i8m4qS7DIs6foOasoJLb/IsT3RxGtC6DwfiEUS0BnEZ2RyGKDxGejcpTPsXGxULmxPfXssvLp44PGpRJTnVoFjykZvFfIYV/fexo0DxCKnhY051uxa+dK0x7Zk0spo3DvzCE+uPge3oAJLQt8lYxk+Kgy11bUInd86luDREdw5GE5ejijJLkNxVmutYbFYjMenE1CczgWTxUDU+JdnUcGYSDPS4RGJRMhNykfGkxwUpBWjJKsU5UVVqOHWoqGmAc0NPAh40osFjQaa7P+01o9poIFGlz1PA2jEBYtGA2h0OkzNTWDjbA1HT3t4BLoioKcvuvYPho2jZjf1Roy0R21FHWJOPsCtI7F4fOV5K90p4iISjlELhiBidJhOTpFUMXhWP2xYuZVsiWQw6Xhr42vtTqqaG3n4ZtZvZDUNg0nHP2v2qNw2oJcvhszsh0Ez+7apy6aKuqp6xJ56SLprtoTOoCNybE+MWjAEkWN7tqoiurr3Nq7vJyY55tZm+LCNSc6Cb17BvbOPkJ9SRCYBACD7WR4aahrarBJ0UmhlKy+s1DqRVlVWg7hzj3H/3GM8uhhPukW1xC/MG14hnri2j9CXIX8XASTcTsag6epX+RzUtNv1nxKJyLHtT2puH7uPC9uuAVItuw93r3xpNEBUYeNojfe2vI7PJvwAAErahM9vJ7eZSLNztSVXXxWJGN2DdAlri/vnHuPkxguAtJX7o72rwOaw2t2vo2Jpa4EPtq/AmpFfA4DS9yfhTnKbiTQre0uwTViQiInVfRpoYDAYGDx4sMYi+ZmZmRCLxS9t61xLZO1fqamp5HP3799HQ0MDhg4d2ua+NBoNQqEQTCbx3aTT6RgwYIDGrXPZ2dng8XhYuHChnp+iY8BgMDB9+nQlw4RHjx6hoqICI0eObHd/kUhEXg/pdDr69esHPz+/dvcDgLy8PNTX1/9nYkmn0zFt2jQ8eSJvl3v69CmKi4sRHd12RRONRoNEIgGfzycfR0VFISgoSKP3LigoQFVV1X8mljQaDdOmTSM1DGk0GhITE5GVlYXx49uuaKIRNzswsWOTiTSnTg545aP2NePyUwux6d2d5ON3t7wOO5eO7yCrDgaDgTU7V+K10HfBb+KTiR8AKMsrx2d738cfn22CxyAHsM3l8xV7thMsLCzg6GnfKpFm62KDV7+YjkdXnyJwjisEe/kI7dlVSSoDUufyP1bITXZW/bVE6zluR4JOp+OD7SuwOORtNNU3K8WyKLMEXx37EGvf+wOdhjqCrhBLa5otrKys4Ohpj5LsMtRXN6CpoVlpcfZ5TDK8pzmi+VAT/AMCYGnb8d20Zby8s1wjLz05CXm4uu82Uu5noKqsGg3VjWhuaAa/WQChQESIeuum26oz1ahBcXYpku+pfp3OoIPJZsLEjA1za3PYOBFJt07BbvAL8zEm3YyopKa8FnePx+HW0Xt4ei1BpWi7bzcvjFowBEPn9O8w55CZpSn8wnyQEkdUpQ2dM0BJNFQRsViM9MfZiDv7GCf/vIAartwZSlHnjcFkIHRgZ0SO6Ymo8eHwCFBfvaOK2so6xJx4gFtH7+HJlWetNOQAwDPIDdGvDcfwuQPUaluV5JRh/Qq5rfuqv5bCqZN6J8CMx1lKEwcZEokEyfczED6yu9p97d3lSSpuQUWbn082ZubTHNw78wj3zz1GalyGShFrOoOOrv2DETW2F6LG94KLjxP+XLVd5ZhJ99JUPi/D1NwElrbmSgYMNDoNb6xr/8akvLACvy3dRD5e8fsiuPtr93ftaIiEIjy+otpBL7mdWDJZTNi62CiZO9BoNKzcuLjdJHRVWQ1+WfQn+Xjpz/Pg1dlD6+PvSIhEItIwoSVJsW3HkkajwcHdDiV5XBATAhrEYjFMTNqvkASAiooKHDhwAFFRUQgI6PjOsZri6ekJd3d3HDp0CCKRCEVFRRCLxRgyZEib55i7uzsGDhyIe/eISY6sCkgTqqurceDAAfTs2RPBwS9fy7Y63Nzc4OrqiiNHjkAgEKC4uBg8Hg8jRoxoM5YuLi4YPHgw7t27B6FQqFUs6+rqsH//fnTp0gUhIR3fhVdTXFxcEB0djePHj4PH46GkpAQNDQ0YNWoU6HT1/nb29vYYOnQo4uLiUF9fD4lEonGFZENDA/bv34+AgACEhr587e/qcHR0xNixY3Hq1Ck0NDSAy+WipqYG0dHRZCJcFTY2Nhg+fDiebvibfO7NDYvb1eUU8AX4fu56NDcS1ZVjl45A3wkvb4usjKfXE1Sa++Qk5KNzVADe/fFNfDr+e3iNdoRjV2K+2Mgm5noOHvZKLuYAsOyXeTC1MMXtCzGgW9PRyG1utUAmc7iULXoOf3UgBs/sZ8BP+WKIv5EIPq+1A2pRRgm8QjywZv07+HjMt3AfYgfnMCIB22xCzCkVtVErCivhEShfCLt55jYYpnQ0cnkY+GH7i40dCWMizYjBSbqXipsHY5AYk4ri7DI0VDdq7P7W0RCLxOA38cFv4qO2oh7FWaqTbgwWA5a2FvAIckOPoV0xauEQOLdxk27kv0dVWQ3uHo/D7aOxeHo9kdSNUsSpkwMGTInEsLkD4d/Dp0OWz6/66zWsGfkNrB0sserPJUqvNdU34fGV57h35hHizj1WWQIPaVtlxJgeiBzTC+Eju2mt8VZTXou7Jx7g9tFYPLmqOhHJMWVBKBRj/PKReGPdwjZjKRJJJzm18knOkFnqJzmVJVX4cNQ3aKpvVvl6cmxam4k0RwVH0IrCSpXbNDU048nV54g7S1SelavZztLOAr3H9EDU2F7oNbK70srd1o/34cxm1Y5+mU9zwGvitTmZtne3Q11VA2g0GkzMOZixelK7wvBisRg/L9xIWsMPmBqJUQuHtLnPy8D+74+TjmUtyU0qaLcK0cHdjkykmViYYPJbY+Dq03YlokQiwa+v/YXqMkILrPeYHpjwxii9PkdH4NhvZ3HgxxMqXyvOKkVVWU2brdwOHvYoyixF+qlC9JgbhOHDh8POzk7t9orU1dXBy8sLAwcO1GDrlws+n4+UlBQyya6JUQCDwYCHhwdGjBiBGzduYODAgXB01GxuUldXB3d3dwwePFjvY+9oCIVCJCcnk67MmsSETqfD3d0dI0eOxLVr1xAVFQVXV80WEOrr6+Hs7Ixhw4bpfewdDZFIhMTERIhExHVaE700WSyHDRuGq1evIjw8HJ6emslZNDQ0wMHB4T/Rtt0SsViM58+fQygkEkG2trbtzhNpNBrc3d0x54up2PXJYfQYGoo+48Lbfa9d/ztMatZ6Brlh2VrtWp07Ig8vxePXJZtUviaRSJAal4Gew7vh+wuf4pfVv8OxK/GahSlxbXdwk19nTMw4CB3YGcNmD4BYLMaj4wkQsvmAkOh8UKSlc/mbf2jX6twReXYrCT/O+0Pt68n30tFnfDh+uvw5vn3zFzhLO11NOUSlnmIsuQUVZCJNIpHg0fHnaKY1QVAvQt+JL1fy1phI6yA0C0QoqeOhopGPykYBmoUiSCQAnUaDlQkT9mYsOJhz4GjBBr0D3myLRCI8vZaAW0dikfogE6W5XDTWNqlMHmgLjUYjK8E4pmyYWprA0s4Cds42cPCwg7u/K9z8XcDmMCEUiiASiCEUCiESiCAUiiESCiERASKhECKhCCKhuMX/RRCLxBDwBCjLLUdZfjmqubVorGkCr4lHVMdp+TlEAhGqy2pQXVaDhNvJ2P0lYb3M4rBg42QFn1AvRI7tiRGvDmxVDtyR4AnFKKlrRkWjAJUNfDSR5yVgyWHC3owNe3M2nC04oNP/nfNSIpGgskkAbj0PFY0C1DQJIJS2VLEZdNiZsWBvxoazJQcWHMP+5JUXVSL2JFEt9exGolJrF8vcBM69/NApKghefYNh6WoHthkHDBpQyGGiuaSOjCXjX4xlVZMA3Ho+Khr5qG4SQMg2w/wb34HNoONJaQOE5UUoikvD41MP8OxGYisnTEUiRodh7ufTERThp7UuRGVJFWJPPSSr+BS/g0wzDpx7+sEzMhA+/TrD0t0ebFM2GHQazNlMPC+pg70ZGy6WqmO547ODSLiTAgBw8XZsd5LDa+SDJ12lVUXC3WSVz1dJz8sGL1eM/PtNsMxNUGdvifMpZbA1ZUJUUYviB+l4fOoBnl5LUGrFVMQntBMix/ZC1LheCI70VxvL2vJalc9DukKa9jCrlTGCQCRGqfTa0/2DaegMgM5iwjvEHdZmHMQX1cDBnPj+MFVUFOz/7jgeXyGqjezdbPH2pmUdMiGsLTVtxFJdFaJQJEZJPQ8VDXyEvDURvmIJ6EwGvDq7w9rCBPFFNeR5yWS0juWRX8/g3hnCbc3G0Qrvb315tWkUaSuWkCaiW06eRWIJce1pECBgaTTcF40CncWEZ6ArKi1M8FQhliwVsYTUkMDBwQFz586l9PN0BPLz85GXl0e2xEFaiSIQCMBmK5s3iMQS8jte0chHZkEjTM1tETRmLupYDDwtrIGdORFLtppYJiQkwMrKSmsdsZeBgoIC5OfnKz1nY2MDPp8PDkd54UEklqCsnofyBiKWWQWNMDG1RGD0HDSxGHhSWAN7MxZcLE3AZqqOZXJyMkxMTP4zrcaKFBUVoaBAWUzc0tISPB6vlZ6hWBbLRj4qGvjIKmgAm2OOwNFzIGAx8LigGvbS85KjRuIiNTUVTCbzP9PSqUhxcXGrWFpYWIDH47WqfBRLFM9LAbLy68HqFYwlsT/DhMnAo4Jq4vfSigMTFbGMO/8EB6WLHQwmAx/ueUsjXdSOTltzIgBIjE1Fz+Hd0LVfMJZ+uAg7N+6BWx97hA7oh8SSOliP6oXRvYLA4LDg3MkBDo5WeFRQjYa8Mlh3s0b+zQKEj1J2mHx6PeGldi5XR21F644MRZJiU9FnfDiCIvyx6ps3sPmnLXDra4duA/sjqbQO5oO7Y3SIDxgcFpJZpuCmlsHOjA1eaSVMg8xRcacKYUO7wsr+5XEmBwCaRFW/yH+c2tpaWFtbo6amRmvHI6opq+chtaweOVWNEGvwlzBnMxDkaIEAB3OYsP4d7SSRSIRbR2JxauNFZD/LQ1N9UystGE2gM+gwszSBvbsdHNzt4ehuBzd/F3h18YBfmE+HrOAqzeMiKTYVGU9yUJhejPKCClSX1aKhthH8Jj6EfKHWsaDRAI4ZBw4e9gjs5YtBM/ogcmyvf1WQsqKBjxRuPbIrGyHS4POYsugIdLBAoKMFzNgv5rgFIjGyKxuRUlaPqibVCYiWuFuZIMjJAh7WJpTcoAoFQiTGpOLB+Sd4cOEpsp7lttrGxt8VYYuGw31wN9A00DszYdIR4GiBIEdzmKvR/qIaoZiIZWpZPSoaNYtl8f1UpB2NQcGtBEjEErBNWGBxWKSWVNT4XvjqxBqN4ywSipAUm4YHF4hYZjzJbrWNta8zwhYMh8ew7qBpoL/FYdIR4GCOIEcLMol65/h9fDmVMAegM+hYe+NLjZwlH1x4gu2fHVDpMspkMXC2aR/odDpEYglyKhuRwq1HeQNf5VgtKXmYgbSjd5F/4zkkIjHYJiyEDe2KqLG9EDm2Z5stp4o01jVhx2cHcH7rVTQ3tE78TV41Bm/8Rtxw1DQLkFJWj8yKBghE7X/H2Qw6/B3MEexkAUtpLOPOP8Gn474nNVx+uPSZkiX6y0xzIw+7vjiIs39fUalJF/3aMLz793IAQG2zAKncemSUN4CvQSxZDBr87c0R5GQBaxNC++zp9QSsGfEVef345vSHGmnTvQzwm/nY/eVhnN50SUlrTsbQ2f3x0Z5VAIA6nhCpZfXIqGgAT9j+AhaLToOf9DtuYyrXkUtNTcWBAwcwadIkdO+uvlr0ZWXTpk0oLVU2baHT6YiMjCS1vep5QqRx65Fe3oBmDWLJpNPga2+GYEcL2JrJk3GZmZnYs2cPxo4di/Dw9itbXja2bt2KgoICpaQknU5Hz549MXbsWABAA1+ING4D0svr0SRoP5YMOg2+dmYIdrKAnUIsc3NzsXPnTowcORJRUS9XC5Mm7Nq1C9nZ2UqxpNFo6NatGyZNmgQAaOSLkFZejzRuA5pUSDO0hEGjwdvOFMFOlnAwl8eyoKAA27dvx+DBgzFgQPsGSC8b+/fvR1pamlIsASAkJATTp08HADQJREjnNiCtvB4N/PZjSacB3nbEd9zRgkgSF2eVYkXEGlLWYfH3czBrzSSDfa4XiUQiwckNF3Dol5Okc6Yi3l088c/zXwFpQUt6eQOSSmrQrEHTlEQsQuHdBHT3dMC4acR3uSy/HCvC16BaKm0y97NpmP/lTKo/1r+CRCLB2b+v4OCPx1uZewGAm78LdqYRFWs8oRgZ5fVILK5Bk0axFKP4fhKC7a0w6ZW+L9UCojGR9i8l0poFItzPq0JOlWrR6PZg0WkI97RBgIO5wU84kUiEmwdjcOqvi8iMz0WzmvYmdTCYdJhZmcHZ2xGdowIxeEZfdOkX9NI6l7SHSCTCoyvPcfPgXaTczwC3oALNDc2QaJlgY3FY8Ax2x6gFgzDxzegXEi++UIwH+dXIqGjQYOvWMOg09HS3RmcnC4Oel4U1zYjNrdRo4qAKR3M2+vnYkTex2lCWX46HF54i7sITPLnyXK3wu2cXTwz4bCbovpoJYreETgN6uFkjxMXSoFWoxbXNiMmpRL2OsRRyaxBAF+He/tu4vOsmAMDNzxkb4n5oVzC0vLACDy48xYOLT/H48jOVN9kA4BbkhkGfzwIjQDetKDoN6OZqBeuaOqyK+pj8my1fOx9T39Hc4UsikeDZrSQcWXuarBySsT3ld7Bc7RGTU4lanvoqvbYQVtTCTyJE1MBgmJi1rWfSFnVV9Tj79xUcX38OlcVynS6vEA9serYWTwprkVTa9uqiOmg0INTFCk7NTVjZ+0Ny8r3wm1cw++MpOh9zR6WhpgHntlzD8d/PKunbufo6Y3vaH4gvqkFCSZ1Ocp40AF1cLOEmFuCtiA/JyfecT6ZiwdezKPwUHYPGuiZc2EbEUnEi7uhhj905f+F5SS2eFddC11lpZycL9HS3BpNBx+PHj1FWVoZRo0a9VJNyTeHz+UhISICpqSkePnyIrCwiwe/i4oIlS5cisaQOT4tqNFqgVUWQowV6eViDxaAjPj4eBQUFGDNmzH8ylgKBAAkJCTAxMcGTJ0+Qnk5ogtrb2+ONFSuQXFqHJ4W1EOl4YgY4mCPc0wZsBh2JiYnIzMzEuHHj2tQMe1kRCoVISEgAi8VCQkICUlNTIZFIYG1tjVWrViGlrB6PC2vIrgFt8bM3Q4SnLThMOlJTU5GUlIQJEyb8J+8nZC2ydDodKSkpSEpKIrXj3nvvPaSVN+BhfrXOsfS2M0OYgxlWD/oMWfHEInDfiRH44uj7/7lzUygQ4tbhWBxee1ppkZbJZuJc0z5kVDTgQX61RouKquhkY4qeLhb4dPiXSInLAACEj+qOb8589J87N0VCEe4cu4/Da08p6cfRGXRc4B9AdmUj7udVg69jR5qHtQn6eNm9sKIMfTEm0v6FRFp+dRPu5lRqtNraHm5WJhjgY6dRdVrW8xx4hXi2+6XWNXHGYDFgYWMONz8XhPQNxJBX+iGol7/Gn+W/TlMTDzcPxiD21ANkPs1BVWkN+E2aVawAAMeUDe+unhj3+iiMeHUg5T/OJbXNuJ1diUYNVgjbw8mCjYG+9pRXVInEEsTlVSGtXLdEnyIMGg29PK3R2antMmI+T4DEuylk1VlOYr7abQPD/RAxOgzdJkcii8HROdGniIM5G4N87SlvSxWLJbiXW4n0CtXJKy0Hw6M/ziB57w1wTNlYH/sdfLu1doETCoRIvJtKVp2pquCTEdDTB+GjwhA2OQrZbBOdE32K1OWU4uq7W1FfUI7Bs/rh472rdL4xzE0uwKZ3d+DRpWewcbbGu3e/R2p5I5Fp0gMaDQhztUaoq6XeN60CvgCXd9/C3x/sQkNNI+b9uhAWQ3vonOhTpKGgHFff3YLanLL/7ORbEaFAiOsH7uKvd3agrqoes76ZA4fxkahu1j+WTcWVuPruVlRnFv9nJ9+KiIREVfvGVdtRw63FlE+nwX3mII0ri9vCgs0AsyQFQ/tEwNLy5WoR0ZXS0lKcOnUKRUVFGDwyGnXWnTSuLG4LczYDrJJUDI7sCWvrjmGAY2i4XC5OnTqFgoIC9B8yDDzHAHA1rCxuCzMWHWxuBgb0DNVY3+9lp6KiAqdPn0Zubi6i+g+ExL0LSuvVSyRoiimTDpOKbPTpFqSxvt/LTnV1NU6dOoXs7GyER/YByycMxXX6x1LU2IybH+1CUWwKPAJdseH+91pr2L5MSCQSPL2egPVv/IOCtGL0GtsLw9cuRmGtdgUiqhA383Hr090ouJUIF29HbHz4I6zs/rvXIIlEgue3k/HHii3IScxH1yFdMX7zCuRX61YgpAibQUMfLzt423X8llhjIu0FJ9IyKxpwN7uSUjNKaxMmRgY6qc3eikQivOKxDFWlNWCymTjTsEdpki4SiXB9/x2c/usSsp7naZQ4YzDpcPJ0RJ8JvTDu9VHwDNSt6sYIoQV1aecNPLr0DHkpBaitqFfpMNMSEwsT+Id5Y8qqsa0cY7Qlr6oJN7PKdV69VoU5m4GRgU6wMmk7AcQtqEBlcRUCw/3aTBwIxWJcz6hAEQUXPEW6uliip7s1+d5CgRDpj7ORcDsZz24n4em1BJVtcgBgZW+J8FHdETG6B3qN7A5bJ2sU1jThekaFzqvXqjBlMTAq0BHWpm1X0FUUV6E0l4vOkQEqY1lXVY/0R1lIuJeGmk6usArpRNkxAkDy/psY0csLw2YTbRYioQgZT7Lx/HYynt9OxtNrCWor+CztLNBrZHdEjApD+KjusHOxRXFtM65llOu84qqKpopaJK87gR+OvNemBkhVaTWKs0oRHBmgMkFUX92A9MdZSIhJQ7WHE6y6elN2jAAQ6GiOqE7tCwtrSmldM65mlOu84qqK5up6JPxyFD8cfKfNyXdNeS3yU4sQ0ifwP5Fs49bzcCW9XOcVV1XwahsR/9MRfL/vrTYn37WVdchLKkDnPoH/iWRbRQMRS01aDzVFLBRgsI8tfJxt29yuvroBWc9y0aVvEBgatN13dKoa+bicztWo9VBTxCIh+nlaItDNoc3tGmobkfk0B52jAsBia1/p3dGoaeLjcno5JYthMiQiEXq7mSHE06nN7Zrqm5D2KAudowLB5rz8saxrFuBSGpeSxTAZErEIPZ046ObdtrlDcyMPqQ8y0DkyAGwTdpvbvgzU8wS4nFZOyWKYDLFQhAffH8aa72fBK0S9wQOviYeU+xkIjvRv1wH0ZaCRL8TlNC4li2EyxCIxHv50FO98Ohn+PXzUbsdv5iP5XjoCI/z+E1p0TQIhrqSVo5KCxTBFIjvZItip7c6WfxtjIu0FJtJyqxpxM7OC0iSaDBsTJkYHO4PTQtxUJBJhpusS1JTL23jmfzkDXfoFYcdnB5H1LFdtkkARBpMBp04O6DspAq98PAXW/+Ese0eAz+fj2G9ncWX3LRRmlGiUWDOzMkVQuD+mfTABvUeFafxexbXNuJLOpTSJJsOCzUB0sLPaJO+Ng3fx0/wNEPCF+Hjf22qdE8USCa5nlKOghtokmgzn5iZwr8bj2e0kpNxLJ+2/VRHc2x+9o3siIjoMAb18lW5mS+t4uJzGpTSJJsOMxcCYzk5qq/xiTj7At6/8Bn6zAO9tfQP9JkUg/VEW0h5lIf1xFtIfZaE4qxSg0TDgu3nwGmYY3SBnPg/lV5/i+Z1kJMWktvn7EtDLB5FjeiFidBiCeiuL6Jc38HAxlUtpEk0GmwaM6+pKan21JO78E3w9Yy2aG3hYueE1DJ3dn4xh+uMspD3MRFEmoU/U78s58Ik2jJZViLMFIjzbTgZoQmUjHxdSyyhNoslgAhjX1UVtm/STa8/xv8k/o7GuCUt/nofp743XaFwBXwBufgVKcrhorG0Eg8mQ/kcHnUFXetzy33QGHSwOC3auNpQnm6qbBDifUkZpEk0GAxKM7eICW1PVN3wJd5Lx2YQfUV/dgPlfzsTcz6ZpNK5QIJTGsgwNNfJYEnFUH0tZnJlsJuxdbSlPNtU2E7GkMokmg0mnYXSQE+zNVccy+X46Phv/PWrK6zDrw8lY/N1sjcYVCUXgFlSgNIeLuqp6hTiqPhdbxpnJZsLOxQZMDTQetaGeJ8S5lFJKk2gyGHQaRgY6wslC9c1zxpNsfDzmW1SV1mDKqrF4/TfNRPRFQhHKCytRklOGusp6jb7Xio+ZLAbsXG0pj2UDX4jzKWWUJtFk0GnAiEBHuFiqvnnOTsjDx9HforywEmOXjsDbm5ZqNK5IKEJFUSVKcriorahrM5aqXmOyGLB1saE8CdokEOFcSinqeYaJ5VB/R7hbq45lfmohPo7+FiU5XIyYNwird7yp0bgikQgVRVUozeGiprxWbSzV/X4yWQzYONtQngRtFopwIaUMNRQmfkgkEgwNcISnjWrzs+KsUnw4+hsUZZRg4PQ++OzguxoNKxKJUFlcjdKcMlRzVceyvd9PWxfqY8kXinEhtYySKuhWSCQY5OegtpqqLI+Lj6K/RV5yIaLG9cLXpz7UaFixWIzK4iqU5HBRXVbTKpbt/X4ymAzYOFlRngQViMS4mFpGSRW0Kvr72MHPvuNWSRoTaS8okdbAF+JkYolBbmRk+NqZYYCv3GZaJBJhpttS1HDbdi1RhTFx1rFoqm/CgR9P4OahGJTkcCHSoP3SwtYc4SO74/XfFsDORfXNeLNQhJMJJQa5kZHhbmWCYQEOrSprjq07i7/e3UE+jhgdhu/OfQJIV2tKc7koyeGiLJeLUhYHjFD1qzv6IhGLcWn5RnCftha4pzPpECvE57fbX6Nrv2BIJBJUc2tRmlOG0hwuivMr0NQrCHQDurDSq+rg29gAj0BXuPo6k5OLI7+ext+rd5M6fCwTFgTNqi9qQTP6I+J9w2pZXVnxF0oepLd6nsGkQ6QQyx8vfYaew7tBIpGgprwWpTnE37wkrxyNPQNBtzRcWTetph6+dXXwDHSFq58LGctTf17Axre2kaLvLA4TAjWrv/4TIxH1iWGFZK2yCuHnYgWPQFfYOttoXaEmEktwOqnEMJNvKXZmLIwNdm7l3Hv9wF38NP8PCKW/Vz6hnfB3/FqgRaJM9h0qySX+X5rDRXlhJfSdnrDYTLj4OsMj0BUeAa7wCHSDe6Ar3ANcYe+qfbWfSCzB2eRSw0y+pdiYMDEuxKWV2+ztY/fx/ZzfSWdXRWFfxUQZ8R0qQ2kul/x3RWGlToZAijBZDLj6OsM90BUeAW5wD3Al4hroCns3O61jKZZIcC65DBWN+rfNqcOKw8T4EOdWDqn3zz7CNzN/IxdMHNztsC9vE2g0GhFLaaKMPDdzuWRsywsq9I4lg8mAq68TcT76u8A90E0aSzfYu9lqXbUpkUhwIZWLMgra5tRhzmZgYheXVg6pjy7H48upv6BJ2slgaWeBw6VbwGAwlJKOJS2+42W5XJTlV+jt7E5n0OHi4yT9jhNxdA90g0eACxw87HWK5eV0LoprDRdLUxYdE7u4tlr4jr+ZiC8m/URqhZpamOBYxXYwWUylpGNpDpf8fpfmlqEkhwtufgVEQv2SVXQ6DS4+TtL4uSp8x93g6KlbLK8ZcAEUUnOmiV1cWsnbJN1Lw2fjfyCdBlkcFo5XbgfHlKOUKCPjmVOGEmlMy/LKKYmls7cT3ANciN9LaRw9Al3h6Gmv0wLPzcxynXW1NYHNoGFiF9dWC99pjzLxydjvUV1WA0i/c8cqtsPcykwpUVaSw21x/SlDWV45ef3XFRqNBmcvB/K8lF3HPQJc4eTloFMs72RXIJMKWRM1MOk0TOzi0kqSJft5Lj6K/hYVRYR2LY1Gw6GSf2DjaK2UKFM6N2Xf8bxyCDQoqmgLGo0Gp04OZPzcA+TnpbOXo06LZfdyK5HK1V9uRx0MOg0TQpxhpYOm9YvAmEh7AYk0iUSCq+nllPRgt8cQfwd0sjGVJtGWoIarmaC0MXH2clFTWYf93x7FneNx4BZUKCV6VME2ZaNr/2C8vnY+vLvK2/luZVUgu9JwFxMZ/bzt4O9ArCiIxWJsWbMHh9eeVtqGzqAjoJcPuHkVqCypJp+38nbC2N3vgWHgFofaPC7OzvkFIp4ATBYD1o5WqKtqaKVj5+bvAiaLgdIcLngKr0V9MgP+Ew3vwnX/xyNIPxoDGo0GtikLAr6w3b+/DAt3e4zb9z6YBi7Lry+uxNnZP0PQwAODxYC1gxUaahrBa1Hp5+LrBI4JG6U5XKUqwPD3JyN4huFduB6tO4nkfTcBGqFBKOSLNJ5AmznbYNz+1WBbGLYsv5FbgzOzfgK/rglmlqZwD3BRmlDKkhnqWivreULU84UQiiS4lV1BLuY4WbARHeyMA08LKdHr7OFmjW5u8uvpkV9PY/P7u1ptF9TbH5VFVZQkyvTB1MKEvFF0V5hQega5wcJGdSyfFtYgvlj7hSltCXW1Qk93uSbVqT8vYsPKra3iFRTuh8rSakoSZfpgYs6Rx9JffqPjGeSm1nDkeXEtHhfWGPzYWlZ1Xth2Db8t29wqgRPQyxc13FpKEmX6YGLGgZu/C3mj46GQZLOyVz0vSy6tQ1x+tcrXqCTQ0Rx9vOT6Xlf33sbPCze2+s307+mDuop6Ym5igMpNTWGbsBS+427kd90zyA3WDqrn/mncesTmVql8jUr87M3Q30e+8H3rSCx+mLu+1Y2yX5g3GqobKEk66gPbhAU3fxcy+Uuel0FusHFUrZ+XWdGAO9mVBj82b1tTDPKTtx7fO/MI38z8VWl+BgC+3b3QWNtESdJRH1hspjSW8vNSFk9bZxuV++RWNeJGZmvXSarxsDbBUH/5wvfDS/H4apo8US7Dp5sXeA3NlCTK9IHFZsLVz5mIn/Q6Lkta2rmoXngsqG7C1Yxygx+bqyUHIwIdyWOIv5GIzyf9iMZa5WSod1dP8JsFKMvl/quxZLIYcPVzIZO/svPSPVD9wmNxbTMupbV28KQaJws2Rgc5dUizG2Mi7QUk0vKqmnA9U/lLS/VNjAxzNgNTQl0x1nR2u+2ADh52GDSjrzFx9h+AW1iBPV8dRtz5J6gsqmrzRoDJYsC/hw9m/TwfGabKN4w0GjA6yAk2JizE5FYit6oJjuZshHvaQCyRtLoZ1xQ2g45p3VwhEYrwxaSf8PDiU433Hfr7Urj1CW7zGGXo+72K33Qez7dd1no/u84eGLNTXuqu7hgdzNno4W4NmtR5NFEH50R+fTOOj/8KggbtE/MDf1qIToNDlZ5Td6yRnWxgZ8YGDcCjwhqUailsm7D9Cp7+dU7rY4yYGoW3t7/Z6nwLcDCHv4M5xBIJ7mbr7jKqiLCZj+MTvgavWvvVtJnbVmLCtEil47QxYen9XVFF8v6bePTbyTa38QnthNABndFtYAi6DugMe1db1DULcCqpFEKxBIGO5uAw6XheTJxzg/0IM5Ar6VxKrkF0GjAl1BWmTDp+XrgRV3bf0nksGydruHg7wtnbEc5eTrC0s4BYJIZIKJL+J4ZYKIKIfE76WOG55gYeijJLUJRRAr6a6kx1eIV4ELEc1AWhA4Lh4G6Pep4QxxKKSUdJdb+L+n5vIHXznBzqCgs2A+uW/41z/1zRegwZNo5WRBy9neDi5QhLe0ulWBL/VhFbhVjyGnkozipDYXpxq5vT9vAMdke3AZ0ROjAEoQM7w8nTAU0CEY48K1KSEzBh0jHE3wFiiQQ00HAvtwosBo2S79OkLi6wMmHiz3d24MR67X+TZFjZW8LZ25E4N72cYO1oBbFI3OrcbDOWTXwUZ5WiKL2kTQkBVXgEuiJ0ABHHbgND4OzlCJ5QhCPPisGk01rFr7pZQMk1R5HxIc6wNWVhy0d7ceintn+T2sLSzkL6HXeCs5cjbJysIRFLFGKnWSxLsonzUhOJEkXc/F2UzksXbycIxRIcflYEgUjSai5hiOtPdLATnCw42Pm/g9jz9RHoqvtiaWtOxNHbES6yWEqgcSzFIjF4TXyU5pShIK24VdKkPVx9nRE6sDNCB4Sg28DOcPV1hkgiwZFnxa2uLarmaFTcD40MdISrlQkO/Hgc2z7er/MijYWNudJ33NZZw1iKxBCJRBALxeA381GSw0VhWrFaTVh1OHs5otugEIRKz013fxeIJcDR58VokiZZWsaLimuOIsP8HeBhY4qj687g7w9265zANbMyhYuPE1yk33E7F5s2Y6l0LZLFkkckmPJTi1oloNrD0dMe3QbKY+kZ5AYJgOPPi1HPF2F2D3eyIvp5cR0EIjHl87dBvvbwtjPD6U0XsfGtbUodGdpgZknEkpgTOcLe1VZlLFVeixRiyc0rR35qEVn1qikO7nZK3/FOnT0AACcT5d0OLeNZVNtM6fWno7Z4GhNpLyCRdim1rJW7CtU3MYqEmtKwJvSdNrexcbLG4ZItlL6vkY5DUWYxtny0D48uxqu9kPf/9lV4j+jR6nlTFh2BjhaobhIgt6oJpiw6+CIJRCpuxrWhj5ctfh/zNdIeZbW5nZ2rrfwmuosXmCPD2z1GGfp+r8QNzXj88Q6kxKZpvI+FjTn6fzUHDlHBSs+3PEY6DRji54AbWRUQ6Vnx8OCXY0g9dEfj7RlMOjx7+KLfH8tBU9Ge0fJYLTlM9PGyxaU0LsxYDAz0tcOFVO1WnSTNfMR/thMJN5M13sfc2gwjf5gHq4ggpfMttawBwwMccD6lDHZmbHR1scTNLGpWZx//cRpJu69rvD2dQYd7104YtXUVBNJ2P9lxZpQ3UPJdaYmEL0D6j4eRn5iP0pwyjSpm3ANcEbV6Cky7+wEAAhyI40koqYOHtQmsTJjwtDHFjcwKyq5B3d2scOyNzYg99aDN7Vomysgbam9HOHVyoFR8VywWo7ygAgVpxdL/ilCYQfy7JLtMo5sENz9nRL43GebhgeRzqn4Xcyqb9P7eyOjqYomLq3fi+oG2v+ctE2XkDbW3I5y8HKmPZWElCtKKUZhejMK0IhSkE7EszirVKJYuPk6IemciLKI6Kz1PgzyP4GzJwf+1d9/xbZT3H8A/p73lJe/t2E5iZ5AEQiYkjBD2LBRKoYyWskoHtKWDUvgBhULpgkJbVgtlbwghQMggezqJ997bsmx5aN3vD8nykm3Zlmc+79fLL8vS6dHj793p7r73jNQwLQ5WmgOyP80L12HHQ6/js39/NexyxjB9v4RERGKfbTMhDOoAdtt3uVxoqm5BVUGf7bLA/bumuN6vFjPh8WE4/UcXwbBmgc/47SptDtgxp0dqmBaHn34f7/9l07DLDUyURQ7YLrWGwHXbF0URTTUtqPLEsTK/xruP1xTV+tXKwxQbiuV3no+g9e5zor7nEqKICTn+JIdoUPDvzfjfo+8Nu9zARFnvPu7eLgM5y6IoimiuNXu2x9o++3g1qgv9i2VodDCW37YRIecNPnfzdY4WiOuh+CA1at7cjhd//b9hlxuYKPPG0ZOgGKo18liIooiWOjOqCmp7t8sCT1wLa73d9IcTEhmE0249B2EXrfA+1zdeCqkkYMecHjEGFSyb9uHZH7807HIDE2XeOHpiGuhYmhss7u3Rc/zp2S6rCvyLZVC4Ead9bz3Cr3D3drg4IxIfnqj1vh6oa52+IvVKuL45jqdueXbY5dQ6FaKSI7zbYWRi/21TF6QNWGusnqFUvHH0bJc9f/tz49EYpsey689E1LfXeZ8bGM9AXvPA0xDhgnkR4y4n0AI7QicN0tplH5REizWqUN/ejbigiZm9rF46che4tubxX9zR9BWdEoXfvvlTwDO+2vP3/Rfb39rtHS9CHapH/LqFPt87cLDivn+LIjDW1HtefTtqSuqHXSZlUSL+cfgJwDN47vacGpR3D/5AXwMqB2K/kmhVOPunlyD3yif8fo9NFBF8SsqIdTRplXC4RJyZEgoJBByoNI95rKWlt5yLis8O+n2Hzulwwbgs1WcSzVddu+xOOFwiBAAKmWRMY+gJKgXO+fkVOL7tYb/f0213QjE33nvQ7dneTFoFatu6IQJo6rCNOBPsaCy+8SxUfHoAbU3+fSe6nC4Yl85BV58Tg556BmpfGUhQyHHDv+5AmkkHW7cdtSX17hNIz4VjweESFB0u6Zdgqy1vhMQzo5lSKkG6SYctBe4T7PRwHbYWNg4aWHhDunsQ7IE3fzIi9FgWF4TsujbsH6YLWX6DFeW5VcP+L0aTAW9UPz9ps3dKJBKEx5sQHm/CkrP7f+fZbT2x7D2hLDxcjIJDJf2SQrVljZAk9Z8dzte6Hs9+c0lGJA5Wmr3jCRU0WlGSUznse7RGDV6ven7SZpyUSCQIjwtDeFwYlpzVv2Wrw+7wtg7qSQwVHilFwcHifkmhurIGCImRg8ruu6sopBK0dNgDtj8VNllRkj18LBVqBV6reG7SZkmUSCQwxYbCFBuKxesy+73mdDhR62kd1LOPFx0tRf6Bon6JjPqKJiDBHUtf8QvkMadHcXMHik8MH0uZXIpXS58JaOJxOIIgICw6BGHRIVh0Zka/15wOJ+rKGvrs455Y7i/q142yobIJYrw7lgPPJSbq+FPa0oHC7OG/LyUSAS8V/HXYmXwDSRAEhEYFIzQqGIvOGBBLpxP1ZY2oLOjdLouPlSF3b2G/REZTdQtcPmYm9XWONtbztoHflxXmzhG/LwHgXyf+hNCo8U/g4w9BEBASGYyQyGAsWNP/xoHT6URDRVO/JHrJsXLk7Mnvl8horjXDGW3y/j0wXoE4VxuoytKFmtzqEZf7x6EnEJU8OYkNQRAQHG5EcLgRmav7x9LlcnliWe1NWpYcL0fO7vx+LajN9a2wR/V2AdbKpTgv3QSrzYl95eYJOX+rbeuGOWf4fRwA/rL7ESRmDD1jaiAJgoAgkxFBJiMyV/VvANDvZpknaVly3L1d9m3129rYBntkaL/3DoxnkFo+ruPPwH280WpDk9U25ARCU2XGJtKeeeYZPPHEE6ipqUFGRgaefvpprFkz8WPqjFalefCF7nAXMeUtncipb+/3/A3L4vDhiVq/N8C6dhs+tb+BnG9ysffTQ8jbV4ia4jpYGtvQ3WWDKIpYeelp4/zPaKZQ69T40TO34kfP3Aqn04lXH34HWcWNkIzy4mvgxXiPcJ0CC6IMMGmVEAC02xwobu5ATl1bv647zZ12/PLde/HiT1+Gub4VzTUtg5o5V+RV4fdX/REVue4Ti/P/dx/0cWHwx3D7VbhOiY+zewcJl0sFXHtKLN7Oqh40M1fI4hScf+vZOPr1CbQ2WtDeMrjb33k3rYchRIej27NhCzb4NX6bRiFFkFqOT3LqoFVIsSIhBJ/l9SYWo/RKLIo2IkQjhygC9dZuHK5qRbOPmXAkQTo8sOnXeOGeF9Bca0ZzjXlQCwaJVIKkhfGoKa5DR2snYtdkDipnKHaXCKvNgcsyoyCVCP26pm9IN8GkVcLV5yzjYGUr8hraB5WjmRODS+44Dwe3HEVrYxvamgcvc/b1axEaFYys7dmwqlWQe1rQ9N3eog2qIWdJHO36HUii1+C3n/0a/77zX2iubkFzbcugu+6CIOCOv96EE9/k4tj2nH6x9LVf+HpuvPWsMHcizaSDQilH/NwYxM+N6fe61dKB7N35OLY9G8d25MDsEqA0aiCVCDgjJRR7y1vQ7XAhOUSDCnPnkLP0tnbaMSdM2y+RNidMC7Mfx59OuxM/fvMneOGHz6OxqhnNteZBQwy0Nlhg77YHfOaosZAr5IhLj0Fcev9YdrZ3emKZg6wd2WjscEA9xPhUfdf1cPuNQSnDsrggmLQKSCQCOm1OFDZZcbzWncD9oM+dXADodrhw16v34MXb/oGGiiY017YMmvTC2toBq6Vj0i6yhyOTyzzj/ERj+QW9z3dau5Czp8C7XdY2W6EdYvIbo0qGlYkh0Cqk/cYD8rU/jRTPvuxOET948U68+P1/oL6sAc215kEtGGydNlgaLQiLCR30/skmlUkRM8c93hzO732+q6MbuXsLvNtlZbUZhvjei+yB8dMrZcMecwBgZWIwUsN0eP94jV8TkjhdIm589ja8/P1nUFtSj5Y686AWDA67E821ZsTMmZxE2nCkMimiUyIRnRIJbOxtgd/d2Y3cfYU4tj0Hx3Zko7S4AcFz3MnygecSCplk2Fl6/T0HGsglAtc8dSMc7Z2oKapDc5150JisLpeIpqrmabGPS6XuCUeikiNwap+Z4W1dNuTtL0KWZx8vyqlCWEb8oPf7Okfz9dy1p/R+H0slAkQR3vONuvZufFnQOOj7UgRw6cPXoavBgsqCGrTUmn12Q68vb5y0RNpwpFIpIhPdrbmWnds7g7qt246Cg8U4tj0bWTtykH+kFBFL53hfHxiv4Y45GMe2ufGXl6O9ohHlOZVoqW/12XW6vrxx0hJpw5FIJIhIcLfkWnpObyztNjsKDpV49/Gc/UWIOq23Vfm7x2rQ7XRhTqgWp8QYsafcPTbiUOdv/p73DrT2rgvQVFCN0uMVaKlrRZePYVnqyxsnLZE2nKFuljnsDhQeLvEee07sykfMyv4JzYHxrGvvHvL448/58MB9HJ7zYCbSAuCNN97APffcg2eeeQarVq3Cc889h40bNyI7Oxvx8YO/vKdS44CL4JEuYgKlqcOGhWvnY+Ha+RP7QTSjSKVSfPeBb2FPWYtfBwDv+wZcjPeINaqwNjkUh6tasbOkGd0OFwwqGRZEGqCWSwclB4rLmrBg9TzUldWjurgOtcX1/cbjsHXZseOdvQAAhV7tdxJtpP3K5nBhSYzRrwFGmztsuPOvN6G9xQpLczvKc6qQvSsPRUdLPV0bHCg4VIyWWjNa6lpxyl0X+lXHbocL9e3dcLhEtHY5oJD2NtOOM6qwJjkU+yrMKC3ogEQA0kw6nJcePuS00oUlDchcNRe1ZQ2oLa5HTXEtOtp6Y+lyulB0uBQAIFUpYEzy/4Qn2qCEUibFu8droJZLcNYcEz7OqfO+frDSPCjh70tThw0/ePK7aG+xoq3FiorcKpzYlYeiI6WoLnI3xy89Vo5DXxxDS60ZC7+/wV3fAdubzeFCsHroZOVo1q8v2oRw/HX3I4Dn5Kv0eAUKDhYj/2AxqotqsfKSU3HJ7efhktvPg8PpwmuHqyAOsV8Mta+Mt54jzW6oNWhw6obF3gucw+XNOFZvxRnJocitb0eD1f3+ILUcoVoF4oPUCFbLsTYptN8JY0lLB+aF6yCXCrA7RYR5Tloarf0/XyOXYlVSCMK0CrR1OVDW0oE0kw6VrZ348zf/B3hOvkpPuGNZcLAYFfnVWH7+kmmRRBuOWqfG0nMWeU/KsypbcLh28PY+cF0Pt9+clRqG0uYObCt2D2ZvVMlgHGabBgBJiB5/2v4Q4IlleU4V8g8WI/9AESryqrDkrIVDDuY/Xai1Kiw5a4H3pDy7uhX7q31P2NDa5cCm3HoEq+VYkRCMT3Prh9yfRhtPl06Dp75+EPC0UirPqUS+Z7ssz63CgtXzEBodMuT7pwOVRonF6zK9Ldjy6izYU9E7YcPA+B2ptgx5zIFnZrnEYA26HE6khmlxoHL4yR96uo/aVAr88avfAZ6WNRW51Z7vyyKUZVdi7mlz3ImraUypVmLRGRneVldFDW3YWWb2eS4x3PFntOdAA3VJZXh8y28BTywr82u835elJ8oxZ3ESEqbBBfZwFCqFexwqT6ursiYrvh4wyYCvuA513vba4d4WPEM1MPClQxTw6Ge/Bjwta6oKarzH8ZLj5UicH4e0Zcnj/G8nlkIpR8bKdGSsTMc1v7gMlS0d+NJzU8FXvIY75oxl2+zZxy1O4OGPfwl4YlldVOfZLotQlFWGmDlRyFiVPllhGRO5Qo75p6dh/ulpuPq+S1Br6cTm/N5zr25PcrykpQNpJnc31OHO3/w97x2o1e7C79//OeDpVllTXIf8A0UoOFiMoqwyRCaYsHi9/ze6p4JMLsPc01Ix97RUXPWzi9HY3oVPcvs3qhgYz3Jz57DHn7GcD0/kLN9jNSMTaU899RRuvvlm3HLLLQCAp59+Gps3b8azzz6LRx99dKqr10/zgIuPkS5iRiKTCFgaa0SsUQ2pREB1axf2VrQMGhCxyWpHpH5iZ5OjmWs0X0aCZ8DMvhfjPU6LD8bx2rZ+BxdLlwPflPqeqWn/rnwcfe6zET9TrpBh3obB47cNZaT9Kq+hHXPD9YjQKVHXPvxArC1WGy4KuhHOrqFj1DN1NQCEzI31q46N1m4sjHLfVVbJJOi7y54aH4xjtRYUNva2fjte2wa9p9XFZh9jXhzcV4RDf/lkxM+VyaWYe84iSKSj6ToheE8i7E4RMsnYxmZotzlxqelm2IYZcLdfLNNjfW5vDVYbFkYbIAAI1shhGdByYqT1O9L3ZpPVjlRPzlaukCN1STJSlyTj/FsH17e12wFxiP1iuH3Fn3rOj9Ah3aSDWi5Fl92F7Lo25HoS3p12FzpszkFT0w+l1e5CUogGETol5FIB8yJ0qDR39ZspcUO6CdtL+o/1Y3O4UNXahaQQDfIbrJgTpkVhoxVBAy4k1yaHoLXLga8KGqFVSHF2qskbS2/c5TLMWZyEOYuTsPHms/yq93TUahvcGsX3uva93yhlEhhUcuQ1WL3dls1dDpj7bMdXLIjCvgozKvq0Yu+bQJfJZUhemIDkhQk473u945LMNOYhEgsSAd4LRJvT5e2u5Gt/8ieeA/U95kllUiQtSEDSggRsuHHmxrK1uzeWvuI33DEHAJJCNHC4RByuasUpMUYcrGrt153pigVRyGtodx9XNXJ8klMPc6e9fyylUiRmxCExIw7nfPeMif6XJ4zZE0tf5xLbipuGPP74cw403Pf6wFgmzItFwrxYnP2dtZP0nweeuXvwfugrrk0dtjFfD/n+vuyNpUQi8bY2Xn/t9Out5K++sfQVwxN1bUOeq/mzbQ65j1v7xzI21T2L8LprVk3Cfz0xWvrstzKJAKdLhAggUqeEpdsx4vnbUEY+v+wtSxAEbwvZM6+ewbHs7L+P+4rnSMefkc6HR9rHp4sZl0iz2Ww4ePAgfvGLX/R7/txzz8WuXbt8vqe7uxvd3b0ryWKZ+Onre3QM6CI00kXMSFYlhsAlivgwuxaiCKxMCMby+OBBU0x3TuEUujT9Dbd9nJEcilCtAnanC2FaBVo67IMuxk/UtcGglEGvlKGk2f8ZD9V9pkkXBAEaowY6owa6YC2MYQYYw/TQGDVQqhUQfIyxMVQdD1YOv191O1w4XmvBklgjNuUOP06bIJVAHaJDe/XQ07YLgoCQqCCY4sIQOkRLL191LGzswHnp4ZAIwAHPWFPeODYNnkWnpLkD56SZIBUEOAcM2NA3lhDcLZJ0QRrognQwhulhMBmgMaih0iiBqOG7Kw2s66HKViSHanBeejikEgFHa8b+nak2GYZNpAmCgODIIITHhcKUGuUz+XOirg1FTVacNzccLlHErtKWfmWMtH5H+t4c+D09nE5PIsBXPTvtTp9197ee7d1ObM5rQIfdiUi9EmelhqGp04aGdpu3nv4m0jpsTjRYbShuHnp2Jl8JWnjGlDol2oiixg4kBKnxwYlaLI0N8r6ukUsRoVdha1EVnKIIS7fDc1KkG1UsZwpf/5Ov9Z9d1+Zzv+l2uGDutGNVUgjyG9rRaLWN2FIFnnU42wy1fYRqFFgS654hTxCA/RXmIb8LxhLP2R5LX/GzOUWfx5wec8K0KG7qQElzB06NC0KcUY3yAcORzAnT4quCRrR1O9Az1nXnLI6lr3N0m9Pl8/jj7znQcN/rs/L70sf24SuufVv8jOV6aNDnzvJY+tw2HS6fx5zRnJ/73MdneSwNKhlWJoTA4XLBKQK7SpuHPN6MJJDnlzPFwP/JVzxHOv6M5rqsR6fdBZcoQhKgiRcCYcYl0hobG+F0OhER0f/iNSIiArW1g/vTAsCjjz6KBx98cJJq2N/Ai9++fF3ELIk1YnG00efySpkE8cFqvHGk2pvpPlxtwSUZkfimpLnfYLOuk28yVhqF4WZQ8TUbla+LcaXc3cLJnwvCHn3HZRNFEVazFVazFXVlg/eFOZcsx+lrFgx6fqg69hgqOZBT14554TrEBalR2zb89O7pp6dCbndAH6KDIViHsNhQmOLCYIoNQVhsKEIigyCTu78+38mqRruPGPiqY2GTFYVN/U9seuLo62DbaXdCIghQyiSDXu83xp3oGS+ptQN1ZYObSSduWILV6xYPen64ug5Mzvc18HvqraxqOIbYplKXpUCWEQt9sA76nljGhnjjGRIV7I3l+8dr3INZ+9je8husyG8Y+qRwqPXrz/emP7Ng9uj5Th+qnsMlroarJ4B+F7G1bd2obu1CpF7pTaSN5nt9uGPPSGos3ViZIMXCaAMarLZBAxhrFFI4XK5+F0JWz1hos/HY4+t/Gmr9D7XfbM6rR2akAYujjTCoZLB0ObCvogU1lqFbyM7KWA6xrzVYbYO+u5s77EPuT6ON50QPpzEV+m4fvuKHIY458IynFq5TYk9ZCxwuEeXmTqSGaQcl0vLq22HxtIrp+bhZGUsf/1TfePo6/vh7DjTc97orMBMmTysjHXt8badDnbeNxqzcLoeIZd94+TrmjOb83Nc+PrD10GzQN5bNHfZ+w5VgmGN6D1/nvVKJMPL5pei+3gnUrJvTwcDtw1c8Mczxp8dorst6iD1dQqaJGZdI6zFwgxxuI/3lL3+Jn/zkJ96/LRYL4uImZ8wBqSDAMYqT4UOVrT4nGwAAnUIGiSDgigVRg96nlkv7XWhPp2wtTT/SMXbV66vbM8ONViFFW7d/yTSXfeTBjHs4bf4v61d5oogj1RYsiTHis9zhu3f+6tV7oFf69/UoGWcse+KokUsHJeTUcilcouhzSvjRxHI0y/rD1/fUUH7+4p2DugUORTqO762h1q8/35uj2R/GU8fh6glPK6eMCD10ShkEz37ad5sYzWePt55FTVYsjDL0G/S9R4fNCZlEAqVM4t02tQr3/jIbjz2B+J+6HC4cqDTjQKV7VsWFUQasSwnD21k1Qw5kPt51OB0F4tiDMcST22V/qWE6NHfYvAM9FzVacXaaCZoB55K+LsTHe8ybjsayXfp7DjTc93qg9ofpZKr+J+7jvUZzfu5rH5+Vx55x/k++znuNKvmI55cSYXDOYqaTBujfGc11WY/p9pU54xJpYWFhkEqlg1qf1dfXD2ql1kOpVEKpnJrBjbUKqV8zIfnDanPAJYp4M6t62BZFAKBVjm5GRjq5aBUjD4I7Eku3A23dDiSGaHCsZuTmzwCweuMpuPKs+RBF0fPjvr0giqL7jrAoQqaQQa6Uo1MhR/a4ajhYYaMVGRF6pIRphlxGENxJLX/pFLJBY3aNhqXbgfZuB5JCB8cxKUSD+vZun3d4Tz8rE5et/p1fsexWyHF8zDUcH3+7IgKAVilD8yimxx7I1/r153tTO6o6jv+71Vc9tQopVieF4Iv8BtS2dUMEsC5lwPTio4zlaMb5GCi7rh11bd2o9TF2RYfdibq2biyJMWJfuRkahdQ7WK9uFHWcKXQKGQD/TvL8YXO6cKS6FRmReuiUUjR3+E6kzcbjeE/CNZD8iaeOsfQSBCA5VAO5RMC3FkV7n5cIAlLC+h+HfH1jjuZ7aKYYSyz9OQca6Xt9NsZSNwH7uH+fOwtj6ecN3YFGc35+0uzjY4zlcPw5v5yq/WEiBfJ/8ue6rIdWIZ12SckZt3YVCgWWLl2KLVu24LLLLvM+v2XLFlxyySVTWjdfQrWKgCXSuhwuVJg7sTw+CAcrW9HtcEElkyBcpxzUHD9UM72mh6XpJVSjQH37+Adt3FfegrXJobA7RZQ0daDb6YJBKUNmpB5HayyDknWJscFIjx9+vK4edqcL2X1mbwoE0TPOxIqEoac/V4suwOUCJFI47A48des/kLe/EAkZcUhbkozUpe6fnunoQzRyVFv8a5I8lP0VZqxOCkGn3YXS5g4IApBu0iEpRIPP8313eYiLCkJGonuE/Kzt2fj73S9ApVP1q2P83BhIZVI4XSJOHK7EZPcUU4kuSD0f6nQ68efb/okTu3IRPy/WPaD/0mSkLU2GMcwAAAjVyPsNLDpavtavP9+bSntv8i5nbwH+/MPnoVB5Jh1YmoK0pclImB8LqUwKo0oOqWdg1UDWs2eQ4C6HCyKAGKMK0QYV8j0TUGgVUqg8CV6Xy4W/3fUCjmw9jvi50d46pi5NRpBn7LxQjRxDzPnhF5vThZq2oZNHO0qasDIxBN9aHI22LgeKmzqQFKrpF8uZQBRF/OMnL2P/5iOIS4/ut10GR7jHhQvVylE4juF7FFIBGRF6FDV3oK3LAYnE/XeXwzlsEl5pm1mxBIB///JVfPPBfsSkRiJtSYr3uyg0yr2th2rlwDh7cY0lnjMxlq/87k18/eYuRKdE9NsuQ6NDIAgCQjX+tfQdKM6ohkIqwYfZtbD1ae08N1yH1FDdiBfeSpt9xnVV+t+j72HLf7YhMince4xMW5aCsJjxxXKkc6CRvteV9pkXy7ef+gif/utLRCSEeY+R6cuSYYoLc48fO8ZYjtdMjOUHf/8MHz7zGUxx7lj2HMcjEkzjjuVoz8/7UjlmXiw//deXeOdPHyEsJqTfuVtkUrhnHw/8dbE/55cqh2PGxXLLf7bhjT+8j+DIoH7XFNEpke7tUhu4WPpzXdYjZBrmNgRRnHmDcLzxxhu4/vrr8Y9//AMrVqzA888/j3/+8584ceIEEhISRny/xWKB0WhEa2srDAbDhNY1p64N+wYMsDeUoaZ5vmFZHD48UYuWTjtkEgGLo42ID1ZDKZOgy+5EaXMHDveZTl50uiB+ugerLl6G1CXJM2rnpfFzOp149Lo/Y/+mIwiNCUHMHPcMMVEpEYhKCkd0aiRsoUHDjoE1GuE6BRZGGWDSult9ttvcF9U59W2Dxqx4e+MD0KrkOP2CJVh4RgYWrp2HsJihE2vvH68ZdyLa1351/txwmHRKvJ1VPehkouD9PTj214+QsSodcXNj8O7TvmfG1BjUMMWG4rb//QQnAtBYJdqgwsIoA0I0cogAGtq7cbjKMuQsNe9d8hAUELHi/KUoza5A9u78QcvI5FLognVYe+XpSLz9QjR3jP9icjTT0Zd8dhCHHn8H81emI2lBPN5+8iOfyynUCoREBuHut+9FtnN0d0L9Wb8jfW9++K3HYFBIsWDNfFQWVOPY9pxBnyOVS6EL0mLFxcsw7yeXj7q1lz/1XBxtQLpJB0EQUGHuhFQioNPuxP4KM+KD1Fg3x504bakz41tRPqYUBSBXyhAcEYQfvfkz5Egm76RjQaQekQYVfrz8F1A5nVi4Zh4WrJ2PBWvnITIxfNoeh6yWDlwadIPP15RqBUKig/HDF+9Evko75s+QSQQsjw9GhF7pnr3KJaK5w45DVa3e/dvXDFWbb/kLZO2dWLB2HhasmY+Fa+chKjli2sbSbrPjfNW1Pl9TaZUIjgjCD56/DYUG3+PA+sufeA70xZ3/gFjXgoVnzMcCz7YZMydy2sZSFEWcp7gGLh/dVFVaJYwmA279260oDQ8bddlnpYahy+4aNLu2UibBlQuj8GVBI2rbun1ukwDw9U//je7SWixc2xvLuPToaRtLALjYcD062wff8FJplTCG6XHzn76H8tjB3bP8MdI50HDf6zvufwXWnPJ++3j8vNhpHcurIm+Bub510PNKjRKGUB1u/MN3UDNn5Gsxfwx1vuFr29z14P9gPlSIhZ5YLlg7DwnzYyGRjGbG8sn1naTbfY4RrFQrYAjV49oHv4XmBak+W435Y6Rtc6h9fO8f3kbjzhPuY/iaeVi4dj4SM+OmdSxvmn8PKnIH33xXqBUwhOhw9S8vQ9vyjDGNpTfcee9I55cHn/4ANVsOI3PNPG8skxbGQyqdvq3+frj0PhQeLhn0vEIlhz5Ehyt+chFsZ54y5NjII/HnfNjXtnlKtBELoyc2bzNaMzKRBgDPPPMMHn/8cdTU1CAzMxN/+tOfsHatf9NFT2Yirb3bgXeP1Yz5S3AsKrYdx7Z7XwAAhMeHYeUlp2L1ZcuRuXoupLLpu+NSYFia23BF2E3DLnPGdWuReM9l4xqQfLTqjxTj8+//bdDzkUnhSFmUgJjUaMSmRSE2zf07KNyIw9UWHBvHjJFj8eXdz6NmT67fyy9Yl4mlT9w85gPKWDTlVGDTDX8a1Xseyvkr8tomt1XGtvteRMXXx/xeXhuiw9VbHh5yzKiJYC6uxcfXPD6q9/zu6J9Q2D25h841SSFIDnUnczqtXbhYf/2wy0tkUty078lBEwUESohGDodLhKXLgRCNHGfNMWFvdjUeWfpTDGz6aIoNRcriRMSk9u7fsWlR3pY1U6m7y4YLNdcNu4wgEfD9Q0+Puzv8aFjrzHj/0ochDtgXQqODMeeUJMSmRiHGE8uY1CiExYRM+UWOrduGS4w3wDHM+JYKtQK37Pmjd3DrydDV0o53L3wQrgETtoREBmHOkiTEpkZ7tk33T1hs6JTH0m6z45aMn6C6yPckWgAQHGHEd7542DvO2WSwtXXinQsehLOrf8IyyGRA6tLkAft4NExxUx9Lh92BHy65D6UnKoZcRh+iw807HkPjOLrDj7pend1454IHYR+Q4DOG6ZG6NNm9XXr279i0KITHh035xbfT4cTdK3+F/ANFQy6j1qtxx74/onaYFs0Br5fNgXcvfBDd5v4Dm+tDdJ5Y9t8uwxOmRyx/tv53OL5z6PNNpVqBew4/japx9noYDZfDifcueRidDf2TpbogLdKWJQ86V49IME35taXT6cT9Gx/BoS+yhlxGppDhvuN/HdSDayKJLhc+uPwRtFf3v2mhMaiRtiwFcWnRiE2LRkxqJGLSohGZaPJOvjVVnE4nfnf5E9jz0cEhl5FIJfh13jMjTq4VaJdkRPo95vJkmXFdO3vcfvvtuP3226e6GiPSKWWIDVKhwjx5X4IF7+zyPq4vb8T7f92E9/+6CYZQPVZctAwrLzkVi86cD61x7HfYafrSB+sQlRyBmuLBM6j0yNmRjXW/v27Y2VQCLf/tb3w+X1tSj9qSwVMfa/RqJC1PxeKHb4AwSaNL2poscFQ3QCqXwunnlNUlR0oQtysHIafPnfD69RgqlsN57Yf/wJJHvwdBOjkXNfZWK2yltZDJpXD4GUtrcztqvs5C6JrMCa9fj5a9udAFadFu9n9feO2H/8CyJ26GZJJOeMQuG17/8b9RV1SH2tIGNNe0jPgel8OJNJMOWROUiFbJpDg9IRhqmQRdDhcKGttRdrQEC1bPRe7eAtj7JFMaKpvQUDm4b6RKo0R0aqT7hNxzoROTFoXY1CgYQvUBqaet24768kbUldajrrQBtaX1qCtrQG1pA+pK69FcM3KLcdElIi1M26/l90TTtFiwYPVc5OwpgL27N1HSVN2CpuoW7B2wvFKtQExqlDd+fRMahlB9QBKWdltPLHvj546lO7ZN1S0Y6d6srdOG1DANDlZNXixVTa1YuHousnfnw9bVG8vmWjP2fXoY+3C43/IKldwdy9SofgnL2LQoGMMMAYtlY2WzN3Y922XP46aq5hFnE85cPQ/p4TrsKRv5+yBQFI1mLFyVjuxdeeju7E06mRss2P/ZEez/7Ei/5eVKOWLmRHq3S/dFY5T3ZlkgYumwO9BQ2TTkdtlY2TRiLOctT8Vckw47rYFpqe8PeWMrFqxIQ/auPHRZe5NOrY1tOLD5KA5sPtp/eYUM0XMi3cnzOf23y+CIoIDE0ulw9omlZ9ssc/+uK21AQ2WTz1aSfaUtTUa6STepiTR5oxkLT0/F8Z25/VoetjW349CWLBza0j/BIlfIEJUS4d3HvceetGiERAYulo1Vvft4/1jWo75i5FgmL0xAerhuUhNpsiYLFpyajOM7c9Fh6U06tZutOPTFMRz6ov/NUZlciqjkCM8+3ntzJ5A3y5xOJ5qqmj37d++2WVdWj9rSBjRUNMHpGP48M2FeLOaG6yY1kSZtaUPmkiQcs3bB2tqbdOqwdOLIV8dx5Kv+oxdLZVJEJYe7t8c5kX328WiERgcH5KaE0+lEU3VL/ziW1qPWc/ypL28cMZYxqVFID9dNaiItUq+cdkk0zOQWaeMxmS3SAKDG0jXkOEeBZlDJsDZUiT0fHcQ37+/D4S+P+byIlUgEpC5NxqIzM7F4fSYyV8+FWqualDpS4ImiiLLsShzZehy7PzqAw18cG/KCRqaQ4ZFNv0L8aWk+pyueCCqZgOI/vYcdb+2GvWt0d8/XPHoDEs5aNGF16+vAU+8j9/Xto36fMSkCF7x2LySTkKTqamnHexc/BGf36FshrPzdtUg+f9mE1Gugw3//BCde/nLU79PFhOLit34BySTc4bS1deK9i38Pu3X0J/zLf3EVUi9fMSH1GijrX58j6/nPRvWekKggvFDyLN49VjOmrgyjJZO4Z65SyaXo7uxG7r5CHNueg2M7spG9O7/fhaI/9CE6RKdEQKlRQiqTQiqTeH73fyyRSiCVuv+WyKSQSiWwNLf1S5SN9zRHppThXct/8c6xmnGNjecvqSDg8gVR0CiksHXbkb+/EFnbc5C1PRvZu/J8dlEbjj5Yi6iUSKi0vmMpkfb5e0As21raR5UoG0nashQ8tesRvJNVDfskxFIiAJdlRkGnlMHWbUfBwWIc256NrB05OPFN/wtFf2iNGkTPiYRap+oXy94YDhFLmQTtZuuoEmXDufKnF+H7j18Ph0vEO1k16J6EVrwCgEsyI2FUyWG32VFwqMS7jx/fmdvvQtEfGoMaMXMiodar+8TQ934+MJbW1o5RJcqGc/EdG3DnX26GSwTezqqesFa8A100PwIhGgUcdgcKD7tjmbUjGyd25qKtZXQ3OTV6tXu71Kt8x2+4WFo6RpUoG855N6/Hj5/7AQAB7x6vmbRWvD3dwpwOJwqPlOLY9mwc25GD4ztzYWnybzKsHmqdCtFzIqExqEcXS6kEHe2do0qUDWf9tWtw38t3QJBI8P7xWrRNUiveDekmROpVcDqdKMkqR1ZPLHfkwNwwuhsgKq0S0XMioTVq/Ipl32NRZ3vXqBJlw1lzxXLc/9o9kMqk+PBELcwBGrt8JGenhiHGqIbT6UTp8QrvPn5se47P7tHDUWk8sQwaPpbuc6L+r3VZu0aVKBvO8guW4IF3fgaZXIZPcurQFIAhY/yxLiUU8cEjT0gw2ZhIm4REGgBsL25CySRkbnu+AHtYW63Y+8kh7Hx/H/ZvOjzkxYxUJsXc5XOw2JNYm78iDQrV9BvUj9xcLhfKsitx9OsT7oPctmy/DnD6EB2e+PIBpCxKBADsKWtBXsPIY12N17qUMMQHqwEADZWNePoHz+PgF1l+tfrSRAThwv/dB4VuYhO9zbmV2PS9pyE6Xe6BSaODEZFogsagwf5N/VssyJUyZK6ehw5LByrza2Bt7cApd12IjOvXT2gdAWDHr15B2ZYj3nrI5DJ0Wbv9usBVh+px4es/h9I4sQcjc3EtPr3+yUFdqYYiSATEpceguaYF7WYrFt66AQtv3TChdQSAXb//H4o/3g94WvREJJoQkRiO6sJaVBXU9Fs2ItGEuLRoVBfXobakHnKdGhe+fh/UAWo5NZS2ikZ8fO0To0qcJi2Ix/NHnwQAHKux4FDV6E7YxmJ5fBDmhvuOhcvlQlN1Cyrzq1GZX4Oq/GpUFtSgqqAGNcX14zqpm2i6IA3erPsX5HI5suvasN/PMU/HY1msERmRvs9NRFFEU3UzKvNrPD/VqCqsQVV+DaqL6qYslnKFrF8rRF9O3XgKHvrg55DKpMhvaMfuSWhJtTjagEXRvsdkE0URTTUtqMp3b4uVnu2yMr8GNUW1frekDbQgkwERiSaExYZi9wf7+yWJJBIBP/rHD3D+LWd5nytqsgZszNPhLIjUY0lskM/XRFFES53Zu1323cerC2tH3DYmijFMj4jEcJjiQrHn44P9zjkEQcDtf/4eLr1zo/e50uYObCsex8wifpoXrsNp8b4H1xZFEeb61t79u6DGHcv8GlQV1vZroTqZDKF69zEyPgx7Pz08qB7ff+K7uOqnF3n/rjR34svCxgmvV5pJixUJIT5fE0UR5gaLZ//u3S7dcZ26WOpDdIhMNCE8wYSDm4+iq6P/tdmND12Da++/3Nuaa7IaZKSEarA6yfe4xaIowtLU5t0uK/NrUFXgjmNVQU2/FqqTSR+sRXiCCREJYTiy9cSgmyPX3n85bnzoGm8s69u6sSlvcC+YQEsIVuPMlKHHsHTHsieONb3bZf7UxVJjUCMyKRyRieE4tiMHbc39rw+v/MlFuPXx73hbxjVZbfgkp27Ch6+KNaqwfk7YlA8F4gsTaZOUSOtyOPHB8doJvdM1N1yH5UMcmAGgu7Pb0yw3C0e2Hkfp8aHHi5Ar5chYmYbF6xZg0boMpJ+aArli+jWpPFn0S5xtO4GsbdlobRz6Llt4fBg62jrR3ueupj5Yi8e/fABzFid5n7M7XfjwRC3aJ/CuYXKIBmuSfR+YC4+W4JkfvYjsXXlwDrNvzLlkOU7/1dUTVkfR5UJIfjliI42ISDTBFBcGhdK9vbtcLnwr8hZvvEOigvHIp/d7k5E9J2oVBTXIEuVwTmACWlLfgjirFVGJJkQkmvp1M3rpgdfx6kPvjFhG4oYlWP3Qdyasji6nC5tv/guasssHvRYSFYSWulaIfS4MFSo5Htv8GyxYM897olaeX4MspxQOtXLC6ilpbEWcxYJIT/IsyNQbyy2vbMPjN/aO57fhxnW457nve8eusNvsqCttQE5ZM6qDxzdw+nBElwuf3/Z3NBwZPOjrUGLTovDv7Ke9JzouUcSnOfVDDsIeCJF6Jc5NM43pJMdhd6C2tMF9geNNDNWiMr8aDRXju6ANiQxCRKIJuiAtaorrUFfWAPso7uqr9Sq8VfcvKFXu7VAURXyW14D69onrsmTSKnDe3HBIxhBLp8OJ2tL63hNzz4VOZX4N6svHd0EbHGFERGI4IhNNMJoMaG+xojyvCsVHSof97u5xylkL8PBHv/DeoBNFEVvyG4adGXa8QjRyXDA3ApIxDA3gdDhRX97ovdDpSbJVF9SgrqxxXC3zgsKNiEgIc8czwf39E5Fo8l5Y9+0dcO9Zv8ORrScAT7L/V6//GCsu6t+qWBRFfFXYiMrWiev+FaSS4cL5kZCOJZbOnljW9CYtPdtlXWnDuGLZkyiLSDR5Y9nznR6REAa1Tu1d9lcXPoJ9n7pvismVcvziP3dh7ZWDWxVvK2pEacvEdf/SK2W4eH4EZGNowe50OtFQ0eTdv72Jtvwa1JXWj6tlXk+iLDLRhIiEnm3S/TsiwQSNvjeWv7/qj9jxjruDuUwuxc9euANnXbdmUJk7S5pQ1DRxjQi0CikuyYiEfAyxdLlcaKxs6ndToif5W1tSP67WZD2JMvd22BvHnn1ca+i9mfmHG/6KL/7j7gkhkUrw4+d+gPNuGnxTdndZM/IbJm44FrVcgksyoqCUjTGWVc3eZGVvYqgGNcV144tlsHbQPu7dNhPC+g1T9PQPnsMn//wC8CTK7/zrzbj49sE3ZfdXtCC7buIaEShlElyaEemdaX00em48Dt7Hq8d941EXpB20j0ckmLzx1AX1xvKZe17Ee3/51Pv3D/74XVz5k4sGlXmoqnVCx7JWSAVckuFuoT8dMZE2SYk0AKht68KW/IYJ6WYTrlPgnFTTqA7MLfWtyPr6BA5/dRxHvz6OyvyaIZdVaZXIXD0Xi9ctwOL1mZhzSuKUD9Q5m402caY1arBg7TwsOiMDi9dnImVRIl5+4A28+rA7saIP1uLxLx7AnFOSBr23yWrD5rz6CelmE6yW47z0cChGODCLooi8/YV46TevI2t7ts+L3RW/uQYpF50W8DoCwIqEYKSZdEO+/uKv/4fXHnkX8fNi8H+f3I/IxHCfy7V02PDxsRq4JqCLp1Elw3lzw6EaosujuaEVt2b+BK2NbbjgB2ejrqwRR7ce7zcmUI9T77sC6VeuCngdAWD/H99F3ps7AU8XiczVc7HwjAycsj4TqUuT8ZuL/4B9nx4CPAOPP7rpV1i4dv6gclq77NiUW4/uCbj5oFfKsHFuONRDnOS0tbTjlsyfoKXWjG//8rJ+dzMHmsgTskN/+xjZr3w16PnQ6GCsv24Ntr+5C3VlvQmSiAQTXin626BxNNq6HdiUW4dOe+BjqVVIsXFuOLSKwI8X53Q43T9OF1wOJ5wOV+9zfR67nC7v3w67E1qjBlX51Xjnz58ge1fesMkziVSC1CVJsDS3o6aot6u7QiXHm3X/hFbffyxRq82BTbn1E9JlSSN3x1KnnIBYOntjNlQs3XF09oulxqBGRIIJ7S3t2PnePnzz3l5kbcv2ecEeFhOCddesgrnBgi2vbPM+P+/0VPzh89/0S2oAQIfNiU25dRNyI0clk2Dj3HAYVIG/AThSLHvjOCCWetWgRNlItr25Cw9f8ycEmQx48IOfY/7paT6X67I7sSm3fkImcVBKJThvbviEjE8zXCz77tcDY6nWqQYlykay68P9eODSx6EP0eF3797r87gDAN0OFz7Lq4d5AiZxkEsFnJcejhBN4G+4DRnLEb4/lRrloETZSA5uOYpfbHgYGoMav33rp1h6ju/hN2xOFzbn1QdkxvCBZBIB56aZYNIF/oaby+WCw+7sH0vnyPu8QiUflCgbybEdOfjpmQ9ApVXiV/+7B8svWOpzObvThS35DaOeMdwfUomAc1JNiNBPQiz77NfD7fNypXxQomwkefsLcffKX0GhlOO+V+7CmsuX+1zO6XLfyKmbgJtiEgE4O9WEKEPge9H0xNLXMWa4fV6mkCEiwdQvUTaS4qwy3HHqzyFIJPjZC7dj/bdX+1zO6RLxZWEDaiyBj6UgAOvnhCHW6P9302RjIm0SE2kAUNXaia1FTQEdZ8WkVeDsVNOIyYqRNFY14cjWE+4BELce9zklcw+NQY2UxYlIyoxHYmY8khbEIzEjblQ7KfXqbO9EeU4VcvYWjDpxtujMDCQvShiU2GyubcHP1v0OTocTv37jJ0hdkjxkefVt3fiisAF2Z+C2y2C1HEv1ckTHjX6w0dLsCvz3wbew99ND3u7IglSClb/9NpI2+j7JGKvT4oIwL2L47nmiKKK6qBaRieHDzk5UllOJ397wd6x69MaAdp80qmQ4J800YrKio60THZYOhMX0tgCsyKvCfx96G7s/OoDONk+LBUHA6fdfhTmXnB6wOgLAsec2QVHVgIWe7TJ1SdKgGYjaze24Z/VvYG3twC/+ezcWnZExZHnNHTZsyW8IaEtevVKGc9NMIyYrOq1daGtuR3jc0E3z4dk29pabA95F+ujzn+HYvz4HPF1fkxbE49wbzsRFt53rbdVTXVyDG+bcDQAIjQ7Bf0v/DpnM9/9l7rTj8/z6gCbTtAopzk0Lh0E19fMWdXV04Yv/7MDHz32OkmPlw94Bl8qlmHdaKq5/4EosXr8AEokE5gYzroq4FfCMI/la5XMIDvN9ftDaZceW/IaAJtM0cinOTTPBOI0G060prsOOd/Zg53t7kbOnwOcyYTEhWH3Zcqy+fDky18yFVCqF0+nEzfPuQVVhLZIWxOPJrx+EPtj3jYq2bgc+z69He3fgYqmSSXBumgnBE5CsmAr15Q0whBmg0gx/kWu1OfB5XkNAk2lKmQTnpJoQqp0lsaxohD5EN2Iys8PmxJb8+oCOpaSQCjgr1YTwCUj8TIXGqiZoDJoRE3Bddie25DegOYCJSblEwPrUsH5D2cxkTTUtUGkUIyaNuh0ufFHQENDZZWUSAetSwhBtnB2xbKkzQ6aQDXnM6WFzuvBlQWNAW5hLBQFnpoQiNmj6Jn5Gw9zQColEMuLkT3anC1sLGwPawlwiAGuTQ5EwDcdF64uJtElOpAFAQ3s3dpQ0B2TgyJRQDZbHB4+pWfNIakrqcHTrCRzZ6k6sNVWPPJ6JKS7UnVjrSa5lxiF+Xqy3m9zJrq2lHeU5VSjLrkR5dgXKc92PR+p240/ibCgul8uvmV6aO2zYUdIckLuwCcFqfHbPP3Hwk0NQ61W49Q/fwbk3nAnlGLrq1ZTU4Y0/vI9tb+1Gu7kDC24+BwtuOmfcg9ErpAJWJIQgMSQwX9JWSwfuWv5LVORVw5AYjo1/uw3ycN/jyYxGrFGFVYkhY2oiPlB9eQPefOIDfPW/b9DW3I6M767Hwh+cB+l4Z5+0O5AidWHFkkS/p0H3d7u0dNmxvbg5IF0TYwwqrEoKGbIl2liJoojsunYcqjKPu8Wxrb0LB556DxVbDmPe8jRc+MNzccZVK4aMVVVRDfL2FOLMb68aMZ5t3Q7sKG4KyB3tSL0Sq5NCJqQlmj9cLhf2fnoYn7+8FUe/PoG2puETmQqVHEvOXohrf30F5p46x2dyP3t3Pr76307c/Oi3odYOfyJstTmws6Q5IDPTheuUWJMUMiEt0UajZ9Kane/uxY5396D4aJnP5aJTIrD68tOx5orlSFuW4nO7a6ppwfEdOTjtgiV+JS12ljYF5I62SavA6qTQaZHcnQqddid2lTYHpJtnqEaONcmhME5Aq76ZoNvhxDelLagIwCx/wWo51iSHIFg9OxKSo2VzuLC7rDkgXWaNKhnWJodOSKu+mcDudGFPeQuKA9Bl1qCUYU1yCMK0syO5O1oOpwv7KswoaBx/l1mdUoo1SaGzJlE+Wk6XiP0VgbmprFVIsTopZEYkyplIm4JEGjw776GqVuTUj22D08ilWJEQPGlZb1EUUZlf7W6xtvU4TnyT61diDZ6uMzGpUUhaEO9pwRaHpAXxiEwKn5XdQ3vGzCrPrkR5TiXKsitRllOJ8uxKNNf6N1C11qjBwjPmexNnSQvjJyVWTpeIozUWHK+1YCzfDEqZBKfHByMxRIPLQm5Eu7n34BRkMuDi28/DRbefiyDT2MaVaqxqwgfPbMbur7ORcceFCEmLGVM55VuzsP/xdxESovW2pnQnfuMRMyfS72RQD1EU8eCVf8Q37+0DPFOWP7XzIRRabMiqsYwpuaKQSnBafBCSQzQBG2DT0tTmTuLmVCJvfxEOf3UMXVIpVvz6aoTOjx9TmZU7T2DfY28jSK/yxjApMx6JC+IRmxo16lj64hJFnKhtw5Hq1jHFUi4VcGpcEOaEagMXy+Y2lOdUoTzbvY+X51aisbUT6bdsgGnh4C7U/qg7WIiuXSdw6c3rsHDt0C31xsMlisipa8fh6tYxtYyWSQQsiw1CmilwsfRX4ZESfPyPz3HoiyzUljb0G2vPF41BjVWXnoZv3XsJEubHBry+oigir6EdBytb4RhjLJfEGDE3XDdlg+iKooj8g8XY+e5e7Hx3z5BDPCQtiPe2PEtaED8hsSxotOJApXlMLaOlgoDFMQbMj9CPaXy52UQURRQ1dWB/RQtsY4ilRAAWRRmRGakf0/hys4koiihp7sC+CvOYhhkQBGBhpAELogxjGl9utilt7sDe8pYxtTIXAGRE6rE42shYAig3d2JPWfOYWpkLAOZF6HBKjBEyP25oznZVrZ3YVdqCjjFOMDM3XIclMcYJadQy09RYurCrtHnMQzakhWmxNC4IihkSSybSpiiR1qOt24H8hnYUNFr9OkiHaRWYa9IhMUQz5QcSS3MbSo9XoORYOUqPl6PkeDlKj1f4PQW6Uq1AeIIJIZFBCI4wIijciOCIoN6/PY+Dwg3TZqIDh92BtuZ2tDa2obXRAktTOyyNFrQ2tqG+rMHbwmw0021rjRrEz4tBwrxYJC1IwMIz5k9a4mwoVpsD+Q1W5De0+3XCE6yWY264DkkhGu+B5NcXPYq9nxwatKxCJcd5N63H95+4fkwt1Hq01Jvx1RcnUN7pQPCCRAgjnAw4umwo3XwI+e/sQnNu5ZDLyZVyRCaaEBTh3h6Dw40IjgxyP44w9ts+e1pavvXkR3j+3lcAz2Cef9//GKJTIgFPa4uCxnbkNVjR6cdBOkglQ3q4HimhGr8Pyk6HE5bmdlia2mDp2TYb29Da2IaGikbvdjnkdNuCgKjlaUi7YhViVs+HZITPdXbbUbrlMPLf3uVzUoEecoUMEYkmBEcEISjCiJCI3jgGeWPp/tufWYI77U4UNLq3S3+61RlVMqSbdEgJ1frd9d3pdHr38bamNs++3gZLowUNlU0oz6lEeU7VsEnxyFNTkXbFKsSuzRix5aTL7oC9tA4rF8UiY17MpCVUuuxOFDZakdfQ7tcJj0EpQ5pJhzlh2jENRjwWjdXN+OS5Ldj90QGU51T6NVGAMUyPc244AxfdtsG7D060bocThY0dyGto96uluU4pRbonlkONeTiRbF02HP8mD3s/Poid7+0dskV0+qkpWH356Vh92WmITYuenLo5XChssiKvvt2vLopaRW8sA93SdKazOV0obrIit74drX50UdTIpUgzaZFm0jGWA9idLhQ3dyCvvh0tfrTaV8slSAvTIdWknbJWu9OV3elCiSeW/nT3VMkkSDXpkBamnfJWu9ONw+VCaXMncuvb/Wq1r5RJkBqmRbpJx1gO4HSJKG1xb5f+tNpXSiWYE6ZFmkk7IWNxzmROl4hys3u79KfrrFwqYE6oFunhuhnXApqJtClOpPVwukQ0ddjQZLWhqcOGbocLLtE9AKRBKUOoVoFQjWLad1cQRRENlU29CbYT5Sg5Vo7ynKpxTTOtD9Z6E2sDk24agxqCRAKJRIAgESCRSDy/BUAQPM8P/7q92wFLU+8Fc2tjG1qb3MmI3ufb+rWwGi1jmB7x82ORMC8W8fNikTA/FvHzYxEaFTwtp/QFAFfPdtlhR3OHDfV1rcjZVwinzY7IcCPWnb8YYZ7tcuD/sPmlrfjjTc8MWfb3Hv42rr3/8oDUs6GxDXt25iG/oBYdECBVygGXCJu1Cy35VWjOrURTdjns1sAOhqk1aqAL0qK+vMHbgu/s69diwZr50AVp+m13gkSCbrkM3QoFuuQyOCUSiIIACQAFXNCKIrRwQQ1A4tk+HTYHLE3taPVskxZP8rZn2+x5rq1l7NulPljbb7sMSYpAY3s3KmrNsLoAqUoBuETYrV1oKahGU24lmk6Uw24N7AxxGoPam1gbmHTTBmkhkfaPpU0uQ5dCji65fEAsRWhFF7SiC2qhTyztzj6JxgH7eZ+EeHuLdVyzyPWlDNIiLCMeIXPjEJQSCZlaCZlCCq1GifiYYJyyLAkmnWrSElO+uEQRLZ1277Gnw+b0HHsAjVyGUK0coRoFgtXyCf+eKjlejq2v7cThrcdQnl2Fjjb/ugElZMTiglvOwZorl/cbH3CyiT2x7LChyWqH1eaAS3S38NEqpAjVKBCqnZxYDqxXeU4lDn6ehQOfH0HWtmx0dw6+UBAEAZlr5mLN5adj1aWnIjzeNGl1HEgURZg77WjqcMfTanPA6XLHUtMTS40CwRr5Sd8CbSSiKKK1y4Emqw2NA2Kplku955chjOWIvLH0nK+325xwukRvLEM0CoRq3N+ZJ3trvpGIoghLt8N77Gnr7o2lSi71xjFEo5jyhgMzgaXLjkar+3y9rdvRG0uZFCGe43goY+mXtm6HO5ZWGyx9YqmUSbxxDNUylv5o74llhw2WLncsBU8sQ7yxlM/YlpFMpE2TRNps53Q4UVVY6265dqwcpScqUHq8HI1Vzd7B5GeL0Ohgd5JsrjtRljA/FvHzYsbcnXE6qS2tx/XJdwAA1lx5On775k+HXLYirwo3zbtnyNcffO8+rLzk1IDXsbO9E/s/O4L9mw5j90cHhp20YSBBIkAqk0IURTjH2MR7ugqOMCJhfizi5rq3yZ6foHDjkBf1XR3dOLD5CPZ9ehh7Pj6AlrohWrT54I2lSxzXdN3TkdxzJ9ducwAjHEHVOhXmnJKEM65agXNuPBOaUcwyN5t1dXRh+9t7seejA8g/UITGqiY4/ezuI5EIWHxWJs781iqsvORUGIeYFOBkZmlqw6EvsnDw86M4uCULDZVNPpeTyqQ45axMrLn8dKy4eBmCI8Y/riMRERHRbMdEGhNpU67T2gVzXSuaa81oqTOjpa7V83cLWupb0VLXihbPa1OVdNMHa2EIM8AYpochVA9DmB7GUH2/54IjgxA/N2ZWz1xqt9lxvupaAMC801Pxl12PDLmsKIq4wnQT2pr7jwMokUlw34t34qzr1kx4fUVRROmJChzYfBT7PzuMrG3Zo0rqCIIAfYgWEQnhiJ4TidCoINhtTpjrzWiuNaPkeAU6/OzKPBF0QVoYQnW922GYHsZQAwyheu/fwRFBiEuPHnHWnZGIoojy3Coc3HwU+zcfxpGvjsMximSjIAC6YB0iEk2ITo5AWGwoHDaHd593/5jRYRn/YMRjoTVqPDEzwBCqgzHMAKfDibryRjSUN8Jc3wpb18itamUKGeLnxmD5hUtw4ffPmdJWPdNJ4ZESfPXaTmRtO4GKvOpRr+fgSCOWn78Uy85dhGUbFo04u9nJxmF3IGdPAQ5sPoKDW44i/0DxkC0rQ6ODsfTcRVh6ziKcet7iEWc3IyIiIqL+mEhjIm1G6Wzv7HfR3VLrTq6JogiXS4ToEuFyuSD2fSz2PBYhel7zPhbds79JZVIY+yYjwgww9CTNQnQBGTB9trgq8haY61thig3Fa+X/GHbZX134CPZ9enjQ83/86ndYdObEDKY+nK6Obhzbno39nx3Bgc+PoCK3etRlSKQSGE0GGIJ1KMtxj7WmUMnx4Ac/h0av9iaFO9s6B22XDpsDH/z9s37JxeUXLkXi/Nje7VLsXV4qlQxO4Hr+1ofoIBvvbJvj0N3ZjWM7cnFgszuWZSeGHnduKBKpe1rtmDmRSD81BUs3LMK8Femwtlj7JdA7LINj2bOPu593+d7HB8RSH6rvt5/3JByVOhVydufj0JYs5O8vQmVhNVpqW+FyjtxCSmvUIG5uNE5ZtwBnXrMSyQsTxxjR2cHhcODY9hwc3JKFvH2FqCyoQXNNi1+x7EuulGHx+gVYdu4iLD13EeLnTt74cTNFdVEtDmw+ioNbjuLIV8eH7AqrUMmx8Iz5WHrOIizbsHhCJl4gIiIiOpkwkcZEGtGo3L7sPhQcKoFEKsEnHa8Om8x5648f4vn7/gMAiEgwoa6sAQAQHh+G54/+ccpbldSXN+DA5qM48PkRHPrimN8TZfii0qoQHheKpIXuCSNWXLQMptj+4zW9+vA7eOm3r/d7bsHaeXjq69+P+XOni4bKJhz8/Cj2bz6Cw19kjWvcNpVWibCYUCQtjMeitfOx4uJlAWvZVXK8HPs+PYQTu/JQnl2JxuoWdHf419JVKpPCFBeK9FPnYMXFy7Dq0lOh0kz/6bknSllOpTuW3+ShLLti3F31UxYnYuk57sRZ5uq53sk8yM3c0IrjO3O93TVriuuGXDZpQbw3CZm5eu64JnYhIiIiov6YSGMijWhUHrr6KWx/azcA4IWcpxGXHjPksl0d3Xjp1/+D0WTEZfecj1+d/wiytmUDAM757hm476U7J63eI3E6nMjZ6+ka9flR5O0vGveg81KZBPoQHUKjQxAcEYRDX2bB5WMcqBdz/zxps+JNBqfTibz9RTjoSVLm7i2AyzW+WEqkPbEMRnRyJJIWxGHu6anIWDkXWoOm37IOhwPFR0qRu68QufsKUZxVhrqyBljNHaNap7ogLeLnx2DxugVYf+1qJMyLHdf/MBO5XC4UZ5Uhe3c+8g8UoehIKerKGtButkIc5zoNjjB6uxguOXsBQiKDA1bvmc7lcqEitwonduXjxK5cZO/KQ2V+zZDLB5kMWHLOQncsz1mIsOiQSa0vERER0cmEiTQm0ohG5eUH3sB/H3obAPC7d+/FqktP8/u9dWUN+P7Cn3q7IP32rZ9izRWnT1hdx6NnsO4Dm48ia3v2sK0/xisqORxrrlyB9GUpWLB2HoLDZ9eA320t7Tj0xTEc2HwEWduzUV1YG9gPEOCebU4QvN09R0Mqd3ftjpkTidSlKVhy9gKcsj4TCpUisPWcpurLG3Bidz4KDhajIrcKtaX1aKlrhbW1Aw6bI2CfI1fIkLlmnqeL4SIkLYiHZIbO1BRondYu5O8vwoldeTixKxc5u/OHbdUpk0uRsWqut9VZyuJExpKIiIhokjCRxkQa0ahsff0bPHLt0wCAm/7vWnz7l5eN6v1bXtmGx2/8GwDAEKrH81lPIjRq+rdEaappwbY3d+H5e1/xe3bBsRIkApRqBdQ6FXRBWhhNBoRGhyA8PgzRKZGIS49GQmYcgmbobIUtdWYc/yYPJ77JxYlvclFwqGTSZvaUSCVQ69QIiw1B6pIkrLhkGRasnn3JSwDoaO9EZW4VqgpqUV1Sh4byRjRVt6Clzoym6ha0tbSju9M24syjYyVXypG2LBkZK9KxaF0mFqydB7X25O0K21dDZROyd+Xh+De5yN6dj6IjpcPuA3KFDKlLkzF/RToWnZmBRWfOh5ozwBIRERFNiakbqZqIZqT4eb1dOctzRz/A/NnXr8Xuj/Zjxzt7YWlqw5O3PIv/+/iX037w6+AII7a9ucubRDv/1rNx5tUrcXxnLk7sykPO7vwhB/seLdElosvajS5rN1rqWlGRN/SkCFK5FEq1AlqjBvpgHdQ6FdQGNbQGDbRGDXTBWhhCdNCH6GA0GREcboAx3IDQqOCAj+/lcrnQYelAa0MbLM1taGtph7WlA20t7Whv7UCHpRMdrR3umXnrW2FpakN7qxVylQxipzjqAenHVEenC9ZWK6ytVpSdqMAX/9nufa0nlhqDBvpgLTR6NdQGNTR6NXRBWuiCtdAHad2TPpiMCArTIyjSOLGxbGqDpbFPLM1WtJut3liaGyxoqTXD0tyGdnMHutq70N1lg3MUM6oORyKVQCqTwOUUR0x2BoUbkbEqHRkr5yJjZRrmLEnmOGeebuPFWWU48U0eTuzOQ/auPNSXNw77niCTAfNXpiNjZTrmr0xH2tLkk6aFJBEREdF0x0QaEY1KbFoUBEGAKIqoyK0a9fsFQcCPnv0+ju/MRUtdK/ZvOoxPnv8CF/7gnAmpb6BsfnErsnfnAwDi0qNx+9M3QqlW4pT1CwDPuGAlx8q9ibUTO3PRUNk0fKGCe5ICfZAGcqUCXdYudLZ1oauz2+/xp5x2JzrsneiwdKKhYoTP81UFQYAgETyPPZUa+Evo+7rnWQGAKMLpcI2pO2WgCYIAY5ge2iCtOxHZ4Yllx9hi2TjSuhuiDuOJpcvpgss5ubGUSCVQaVXQ6FVQapSQSAR0d9rQXNsCh83pqdPgBKcgCEjMjPMmejJWpiMqOWLaJ8QnWrvZiuKsMhQfLUNxVhlKjpWh5Fi5u+XfMBIzemM5f2U6YuZEnvSxJCIiIpqu2LWTXTuJRu36lDtQW1IPjV6N980vj+mCb++nh/DrCx8FAGiNGryU/xcEmYwTUNvxa2204Htzf4S25nYAwBNfPoDF6zJHfF99eQOO78z1dmMszirz6/PCYkKQtCAeYbGhUOlUEEQRVksnmqqb0VLnbsnVYelEd6ctoGNYTTWpXAqlSgGVTgVdkAaGED2CI4MQFhMMjWdCgdYGC3L2FqAkq8yvCQxCo4PdsYzxxBJAR9vJEUuFSu7uHmzUwhCqh9FkgFKrgAABTqcLbS1tKD9RNXLCF4Bap8K801Mxf4Un2XN66pTPujuVnE4nqgtrvQmznp+RWpoBgEqjxNzlc5Cxci7mr0zHvNNToQ/WTUq9iYiIiGj8mEhjIo1o1H514SPY9+lhAMBr5f+AKTZ0TOU8cdPf8flLXwMANt58Fn7yz9sCWs9AeerWf2DTv78EAKy/djV++d8fjamcw18dw31n/x4AED0nEiqNEmXZlX6ND6bWqZC8KAHJCxMxZ3EiUhYnIjEzDkq1EpbmNpRlV6Iyvwat9a3u7n8tni6AbZ3otHSi09qFbms3urvssHfZYO92wGF3wOlwweXytDjqczQQ+/8xJEEiQCIRPF0ApZDKpZDJZZArZJAr5VCo5FCoFVCqFVBplVBpVAgKNyAsLhTRSRGISY1ETFr0oJk3R2K1dKDwcAmKjpSi6Ggpio6UouxEBRx+dGlUaZVIXpiAlEWJSF7kjmXSgnioNP1jaWm0wNLcjvYWK6ytHbBaOtBp6URXh7vbbXenDfZuO+zddjhsAYilIEAi7RNLmRQyxYBYqhRQatyxVKqVCAo3wBQfhsjEcMSkRiEu3R1LS3MbSrLKUXS0FCVZZSjKKkPZiQrYuuwjxkcQBMSkRiJ1abK7m+aqdCRlxkMqk4743tmoraXd3bqsJ57HylB6vGLEVmbwxDIqJQJpfWKZvDDhpI0lERER0WzARBoTaUSj9tzPXsHbT30EAHhs86+x9JxFYyqnpc6MG9PvRoelE4Ig4K97H0X6spQA13Z8svfk40crfwUA0BjUeCHnz2OeHGHzS1vxx5ueAQD84I/fxZU/uQi2bjvKcyrdCaE+SSFra8eI5QmCAFNcKKLnRCImJRLRc9w/MXMiEZXiTtSdTOw2O8pzqlB0pBTFR3tjOdzsh32ZYkO98YueE9UnlhHTcpB8p8OJ+opG1BTVoaa4DtVFdSg9UY7io2VorGr2qwytUYPkhQm9P4sSkJgZf9JtO06nEw0VTagprkNNUR2qi2pRll2JoqOlfneZ1hjUSF6YgKQFCUhZlICkhQlIyozjpABEREREswzHSCOiUes74UBFbvWYE2nBEUG4/rdX4bmfvQJRFPHMj17An3Y8BIlEEsDajp3T4cRfbv+n9+8bf3/NuGYYLT1e4X2ckBEHAFAo5ZizOAlzFid5XxNFEXVlDd7kWnGW+3dtaUO/8kRRRH15I+rLG3Hkq+ODPi8sJsSdXEvpSQ5FIiY1CtEpEbPy4l6ukCNlUSJSFiV6nxNFEQ0VjSgckKisLakf9P6GyiY0VDbh6NcnBr0WGh3cJ2EZ1SfhFgmNfuJi2dneiWpPoqwnwVNTUo+aolrUlTX6PdtpTyuz5EWJSF6Q4GndmIDw+LCTZiyuTmsXaj0JR29Mi2tRXVSH+rIGv1ozok8rsxRPC9GeBGREgumkiSURERHRyYyJNCIatfh5sd7H5Tmjn7mzr0vuPA+f/utLVORWIXt3Pr58dQfOuf6MANRy/D58ZjOKjpQCAFIWJ+Li2zeMq7yy7N5EWlJm3JDLCYKAyMRwRCaGY9Wlp3mf7+liVnSkFIVHSlCRU4Wqwlrv2G0DNVY1o7GqGVnbsge9FhIZ5G3BFp3i/gmJCkJIZBBCooKh0atnRVJAEASEx5sQHm/CyotP9T5vbbWiOKvck6wsQWl2JaoLa2FpavNZTlN1C5qqW3Bse86g14IjjL2tAVOiEJUcjtDoEG88NQbNkLEURRHNtWbUFNX2Se54EmbF9TDXt476fz5ZW5mJooiWOrM7jj2t9IrdcawpqkVL3ehjyVZmRERERDQQu3ayayfRqLWbrbgs5EYAwNzT5uCvex4dV3kHPj+KX573MOBJ8LyY95cJbeXjj6aaFtw070fosHQCAP78zcOYvyJ9XGVem3AbGiqaoDVq8F7zSwFLVFma21BTVIeqghpUFdaiuqgW1YW1qCqoQWuj78TQSFQaJYIjgxAcGYTQqCAER7gTbD2Jtp7fQSbDrBrvqa2l3d1iyRO/6qJad0wLa9O1U/MAAClOSURBVMeU1AIAmUIGtU4FhUrujZXD7kB3hw2dbV2946qNglqnQlRKBKKSIxCdHIGolEhEJUcgLj16VrUyczqdsDS2oaWuFeb6VrTUtaKlzuz+XW+Gud4Cs+dvc32r363K+lJplYhOiURUcjiikt1xjEqJQGxaFCITw2dNLImIiIgoMNgijYhGTRekRfy8GJTnVKHgUAm6OrrH1dpl2bmLsPKSU7Hrg/1orjXj1Yffwa1/+E5A6zxaz9/7ijeJtvHms8adRLNaOrxjLSVkxAX04twQoochRI/0U+cMeq3dbO1NrBXWoqqwBtWexNBwLXS6Orq9raOGI5EIMJoMnoRbsDv5Fm6EWq+GWqeCRq+GWq+GRq+CWqfyPFZDpVNBo1dBoVJMq0SFPliH9GU6pCxKQJe1G13WLvfvjm6Y61tRVVCL2pI61JbUo668Ec01ZrQ1tw07iL/D5hiy1eBwlGoF9CE6GE0GhEQGIyw2BBEJJkSnRCAsJhRqff/4TrdY9nA6nOiydqHT2t0/pp7H7eYOmOvM7kRZn2SZud4CS6PFr9lZRxISFYyo5HB3wizJnSiL9iQig8KN0zJuRERERDQ9MZFGRGOSsXIuynOq4HQ4kbe/EIvOyBhXebc9eQP2f3YE9m473n36Y2y8eT1i06IDVt/RyN1XgK9e2wkAMITqcctj1427zIKDxd7HSRlDd+sMNF2QFmlLU5C2dPAkDh1tne4WVwW1qC9rQHOtGc21Le7fNS1oqTWPOFC/yyV6Eh+tKD5aNur6SaSSPgm3/sk2tU4FpdqTHBIEuH8NeIye59y/Bc9r6PO4Zzmn0+VJinWhu8M2KKHT9/FYWjYFWnenDd2e7rlFKB1x+b6x7ElU9k1oBjKWLpfojlmH7/j1PO7u6Ibd5pjQOEmkEgSZDAiKMCI0OsTdQs/TqizK83i2d2slIiIiosnDRBoRjUnGqnRs+veXAIDjO3PHnUiLSo7AVT+9CK898i4cdieeu/cVPPTBLwJU29F56bdveB/f+PurYQjVj7vMvgPYZ6yeO+7yAkGjVw+a6GAgW5cNLXWt3uRa3yRbU637d3ONGc21Zr8Hvu/L5XTB2trh1yyl051cKUdwhNHzE4SgcCOCwnv/1gdrIZFJ4HS40N3ZjZbaVnf8PAnMllozmjyxHUsibzbG0hu/cCOCIoI8v/vG2ABDqH7aTFBCRERERLMfE2lENCaZfZJBJ3blBaTMa355GT5/+Ws0VjVjz0cHUXCoGKlLkgNStr+O78zBwc+PAgAiE0047+b1ASk3a3vvgP+LzpgfkDIng0KlQESCCREJpmGXc7lcaG+xoqmmBZbGNnS0daKzrROd7V3oaOtCZ1snOto60dXehY72TnS2dXle6/S81oWudvdzkz10p0wuhVKjhEqrhEqr8vwe8FjjeexZTmPQeJNmQRFBCI4wBmyCBlEU0dbcjuZaM1obLO4YtXf1i5M3bu09r3X1xretN76THUupTOo7floVVBqF53f/13ti2Zt0NA47QQMRERER0VRiIo2IxiQ6JRJB4UaY61uRvSsPLpdr3K1C1FoVvv3Ly/HXO/8FAHj1/97B7965N0A19k/f1mjf+e1VkCvk4y7T1mVDzp4CwNPyLjx++KTUTCSRSGAI1Y+79Z7L5UJ3R7c3AWfrtEEURXdCSIT3sTc/1Odv9zKDH8OTnJJIBJ+JMpl8eh0KBUEISCxFUURXR7c3ATfeWHoW8RnLnkRkIPYXIiIiIqLpbHpdPRDRjCEIAjJXz8XOd/fC2tqBshMVSFqQMO5yz7tpHV79v3fQXNOCb97bh5Lj5UjKjA9InUdy+Ktj3i6YsWlROPs7awNSbs6eAti73YPRz6TWaFNBIpFArVNDrVMjJHKqazOzCYIAtVYFtVbFWBIRERERBQgHFSGiMctY2TuT5fFvAtO9U6FS4Fs/u9j792uPvBuQckciiiJe+s3r3r+v/+1VkMqkASm77/hoC88c31hyRERERERENHWYSCOiMctY1WectG9yA1bu+d8/G8Ywd7e2bW/sQkVeVcDKHsr+z44ge3c+ACBhfizOuHplwMqeqeOjERERERERUX9MpBHRmM05JRFKtQIIcCJNrVXhyp9cBHhaiv3vsfcCVrYvoijipd/2tka74cGrIZUGpjWarcvmTdBFJoXPyvHRiIiIiIiIThZMpBHRmMkVcsxdngoAqC1tQFVhTcDKvuj2DdAHawEAX/53B2pK6gJW9kC7PtiPgoPFAICUxYlYddlpASs7Z2/f8dHYrZOIiIiIiGgmYyKNiMbl1PNO8T7e9cGBgJWrNWhw2d0XAABcThfeeOz9gJXdlyiKePX/3vH+fcODV4979tG+jm7tHR9tEcdHIyIiIiIimtGYSCOicVl16anex7s+2BfQsi+9eyM0ejUAYPNLW9FY1RTQ8uFpMdbTGm3OKUk4/cKlAS3/mz4xWbSOiTQiIiIiIqKZjIk0IhqX2LRoxM2NAQBk78pDS31rwMrWB+tw8e0bAAAOuxOfvbA1YGX3+PCZz7yPL71rIwRBCFjZlQU1KD5aBgCYe9ochMeFBaxsIiIiIiIimnxMpBHRuK26xN0qzeUSsffjgwEt+8LbzvUmtz574Su4XK6Ald1SZ8b2N3cDAAyhepwZwJk6AWD7W7u9j9deuSKgZRMREREREdHkYyKNiMZtxSV9und+uD+gZUckmLBswyIAQF1ZAw5uyQpY2Z/+60vYbQ4AwHk3rYdSrQxY2QCw7a1d3sdrr2IijYiIiIiIaKZjIo2Ixm3uaXMQEhkEADi0JQtdHd0BLX/jLWd7H2/61xcBKdPpcOKT57YAAARBwEU/PDcg5fYY2K0zIsEU0PKJiIiIiIho8jGRRkTjJpFIsOKiZQCA7k4bDn5+NKDlr7hoKYIjjIBnZtCWOvO4y9z14QE0VLonLzj9oqWITAwfd5l9sVsnERERERHR7MNEGhEFxER275TJZTj3hjMBT0uyz1/eNu4yP/z7Ju/ji28/b9zlDcRunURERERERLMPE2lEFBCnrM+EWqcCAOz56CAcdkdAy994y1nex5v+/SVEURxzWWXZFTiy9QQAIDYtCkvOXhCQOvZgt04iIiIiIqLZiYk0IgoIhUqB084/BQBgaWrDvk8PB7T8mDlRWLw+EwBQVVCDrG3ZYy7rw2c2ex9ffPt5kEgC+1XIbp1ERERERESzExNpRBQw596wzvv40wBNCtDX+X0mHRhr+U6H05voUqoVOPeGMwJWPwAQRRFf/Ke36ym7dRIREREREc0eTKQRUcAsPXchwuPDAAD7Nx32DuYfKKsuOw2GUD0AYOe7e9Fp7Rp1GUe3ZcPcYAEAnHbBEmiN2oDW8fCXx1CRVw0AWHjGfHbrJCIiIiIimkWYSCOigJFKpTjve+sBAC6XiM9e+Cqg5SuUcqy54nQAgK3LPqbZQft2uzxjArpdfvD3z7yPL7kj8JMYEBERERER0dRhIo2IAmrDTesgkQgAgM9e+ApOpzOg5a8cx+ygTocT37y3F/B06zztgiUBrVttaT32fHQAABAWE9KvrkRERERERDTzMZFGRAEVHheGUze6Jx2oL2/EoS1ZAS1/cZ/ZQfd+fAhOh/+JuoHdOtVaVUDr9vE/PofL5Z5N9MIfnAuZXBbQ8omIiIiIiGhqMZFGRAHXf1KALwNatkIp9ybqLE1tOP5Nrt/vnchunbYuGzb9292VVSaX4vxbzwpo+URERERERDT1mEgjooBbfsEShEQFAwB2f3gALXXmgJa/8uLeLpO7P/Cve+dEd+v8+o1dsDS1AZ6ZOoMjggJaPhEREREREU09JtKIKOCkMik23Hgm4ElgbX7p64CWf9r5p0AqkwIAvvlgP0RRHPE9E9mtUxRFvP+3Td6/OckAERERERHR7MREGhFNiI0393Zt/PDvn8FuswesbH2wDgvPmA8AqC2pR+nx8hHfM5HdOnP3FaLgYDEAIHVJEuadnhbQ8omIiIiIiGh6YCKNiCZEVHIETr9oKQCgobIJW17eFtDy+86I+c37w3fvFEURuz2zaU5Et853n/7Y+/jiOzZCEISAlk9ERERERETTAxNpRDRhrvvVFd7H/3vsvVHNsDmSlRcv8z7e9cG+YZetzK9Gc00LAGDhmRkB7dZZcrwc2950t3Yzhumx7pqVASubiIiIiIiIphcm0ohowsw9LRVLz10EeLpgfvXazoCVHR5vQsriRABAwaESWJrbhlz26NfZ3seLzsgIWB0A4JXfvekdo+3qn18GpVoZ0PKJiIiIiIho+mAijYgm1Hd+3adV2qPvwukMXKu0vkmx7F35Qy53dNuJ3vecOT9gn194uAQ733XPBBoSGYSLfnhuwMomIiIiIiKi6YeJNCKaUJmr53knBqjIq8aOt/cEsOy53sfHd+b4XEYURWR97U6kqXUqpC5JDtjnv/zAG97H377/cqg0bI1GREREREQ0mzGRRkQT7rpfX+l9/Or/vQOXyxWQcjNWpXsfn9iV53OZyvxqNNeaAQCZa+ZBKpMG5LOz9+Rjz8cHAQCmuFCcf+vZASmXiIiIiIiIpi8m0ohowp2yPhPzTk8FAJQer8DuDw8EpNyQyGBEp0QAAPL2F8HWbR+0TNa2iRkfrW9rtOt+dQUUSnnAyiYiIiIiIqLpiYk0IppwgiD0b5X28NveAfrHK2OVu3unvduOgoPFg16fiPHRju3IwaEtWQCAyKRwbPjeuoCUS0RERERERNMbE2lENClO23gKUpckAZ5ZNr9+Y1dAys1Y2ad75ze5/V4TRdE7Y2egxkcTRREv/fZ179/f+c2VkMll4y6XiIiIiIiIpj8m0ohoUgiCgBt+f4337+fvfQWd1q5xl9t3woGB46RVFdSguabFu1wgxkc7sPmIt7tobFoUzv7O2nGXSURERERERDMDE2lENGmWn78Eyy9YAgBorGrG64++N+4y4+bGQB+sBTwt0vp2Gc3ZW+B9vGDN+Lt12rps+NvdL3j/vv6BbwVs8gIiIiIiIiKa/phII6JJddtTN0Imdyef3vrjh6guqh1XeRKJxDtOWmtjGyrzq72vlZ2o8D5OWZw4rs8BgDce/wDVhe76LlgzD+uuWTXuMomIiIiIiGjmYCKNiCZVbGoUrvjxhQAAu82B5372yrjL7DtOWu6+Qu/jsuxK7+PEjNhxfUZ1US3+52lBJ5FKcNffb4EgCOMqk4iIiIiIiGYWJtKIaNJd+6srEBIVDADY9cF+HPj86LjKS1oQ731cnlPlfVx6vBwAoNGrYYoLG3P5oijib3f9G/ZuOwDginsuQFJm/IjvIyIiIiIiotmFiTQimnQavRq3/uE73r+fuedFOOyOMZcXP6+3tVlFnjuR1tneidrSBgBAQkbsuFqP7XxvH/Z/dgQAEBYTgusfuGrMZREREREREdHMxUQaEU2Js65bg/kr0gAAFblV+OBvn425rPCEMChUcqBPi7S+LdMS5seNuezO9k48++MXvX/f/vT3oNapx1weERERERERzVxMpBHRlBAEAXf85SZvS7FXHnwTjVVNYypLKpUiNi0aAFBdWAuH3YHSPhMNJGaMPZH234feQUOFu17LNizC6suXj7ksIiIiIiIimtmYSCOiKZO2NAUbb14PAOiwdOKJm56By+UaU1nx82IAAE6HE1WFtSg93ptISxhjIq30RAXe+dPHAAC5Uo47/3ozJxggIiIiIiI6iTGRRkRT6ubHrkNYTAgA4NCWLHz4zOYxlRM/t3ectN9e/Bi2/Geb9+/cvfk4vjMHoij6XZ7T4cRTtz4Lp8MJALjm55ciZk7UmOpGREREREREswMTaUQ0pQwhevzshdu9f//zvv+gPLdq2Pf4Ejc32vu4uqgOrQ0W798vP/Amfrz2t9j94QG/y3vt/95Fzp4CAEB0SgSu/vklo64TERERERERzS5MpBHRlFt6ziJceudGAICty44/fPevo57Fs+/MnUOxddn8Kit7dx7++/DbAACJVIKf/+duKNXKUdWHiIiIiIiIZh8m0ohoWrj5sesQN9c9zln+gSK8+vA7o3p/bNrw3S6TFyb4NVFAR1snHrv+r3A53WO1fefXV2L+6WmjqgsRERERERHNTkykEdG0oNIo8fNX7oJUJgUAvPbIuzj05TE8fuPfcG38bdj90fDdMhUqBaKSI3y+JggCfvSP70Mml41Yj7//6AXUFNcBAOavSMO1v7p8TP8PERERERERzT5MpBHRtJG+LAXX//YqAIDL6cKvLngEW17ZhobKJvzn92+N+P6Y1Eifz1/w/bP9alW2/e3d+PylrwEAGr0av/jP3d7EHhERERERERETaUQ0rVzzi0sRP8/dxdNh6x0nrfhoGbo6uod9b1hM6KDntEYNbnrk2hE/t6GyCU//4Dnv33f85aYhW7gRERERERHRyYmJNCKaVj569nNU5tcMet7pcCL/QNGw7zXFDk6kXXv/5dAH64Z9n8vlwuM3/g1tLVYAwBnfWoFzvnvGqOtOREREREREsxsTaUQ0bRQeLsHff/SCd6D/gbJ35w/7/rA+ibTw+DCcdd0aXPWzi0f83Hee+hhHvjoOeJJxP3r2+xAEYdT1JyIiIiIiotlt5JG3iYgmiUqngkIlh63L7vP1rG0ncM3PL+33nN3pQllLJxqs3WjLSMI12x6FTK2EKIpQyiT4PL8BIRoFIvVKxBhVkAxIkB3bkYN/3/8a4JmU4L6X7xyxBRsRERERERGdnARRFMWprsRks1gsMBqNaG1thcFgmOrqEFEfxVlleOPx9/H1G7sGtUyTK2X4pOM1CIIAS5cd2XXtKG6ywu7y72tMq5AiNUyLueF6KGUSNFY34/al96GlrhUAcM3PL8XNj143If8XERERERERzXxMpDGRRjQt1Zc34N0/f4pP/vkFutq7vM+/3/oySqwOHK5qhZ/5s0HUcglOjTHg6Use83YXPeWsBXh00684SycRERERERENiWOkEdG0FB5vwm1P3oDXK/6BS+/aCK1Rg+WXn45tlW04WDn2JBoAdNpd2F5qhn7dYghSCcLjw3D/az9iEo2IiIiIiIiGxRZpbJFGNCN02JzYnF8PS5cjoOVW7jiBy9ekYt6ylICWS0RERERERLMPJxsgomnP7nThi4KGgCfRACB2TQYaQzUQRZEzdRIREREREdGw2LWTiKa9g5WtaOn0PZNnIBQ3daCkuWPCyiciIiIiIqLZgYk0IprWaixdyGton/DP2VduRqfdOeGfQ0RERERERDMXu3YS0bQliiIOVJr7PScIwHnp4QhSybGrrBllLZ1QySRYNycMLlGEAAF7ylpg7hpdC7ZupwtZNRYsjw8O8H9BREREREREswVbpBHRtNVotaG5o39CTBSBr4sakV3f5n2u2+HCptx6bM5rwOHqVmRG6cf0eUVNVtidrnHXm4iIiIiIiGYnJtKIaNoaqktnp71/sqvv1MMKqQQtHWMbT83uFDlWGhEREREREQ1pxiXS/u///g8rV66ERqNBUFDQVFeHiCZQtaXL72WNKhk2zg3H8vgg1LV3e5/fkG7C9UtjEayWe5+TSwXcsCwOWoV0XJ9JREREREREJ5cZl0iz2Wy46qqr8MMf/nCqq0JEE6jD5hzU8mw4rV0ObMqtx5cFjTgtrn+S3eZwYUmM0a9ymjpso64rERERERERnRxm3GQDDz74IADgpZdemuqqENEEah5FQksiAC5P/06b0wWHS+z3el5DO+aG6xGhU/ZrreZLe7cTNocLCtmMu89AREREREREE2zGJdLGoru7G93dvRfPFotlSutDRCPrcgzdGu2M5FCEahWwO10I0ypQ3tKJJbFGiKJ7Vs/9Ff1n+ux2uHC81oIlsUZsyq3367OZSCMiIiIiIqKBTopE2qOPPuptyUZEM4MoikO+tq24adBzm/Mahi0vp64d88J1iAtSo7Zt+HHQhvtsIiIiIiIiOnlNiyYXv/vd7yAIwrA/Bw4cGHP5v/zlL9Ha2ur9qaioCGj9iSjwpBIhoOU5RRFHqi1YEmOEBMOXHejPJiIiIiIiotlhWrRIu/POO3HNNdcMu0xiYuKYy1cqlVAqlWN+PxFNPoMq8F9PhY1WZETokRKmGXIZqUSAxsdsnkRERERERETTIpEWFhaGsLCwqa4GEU0jwWoFBAEIZC9LEcChqlasSAgecpkQtRwSgS3SiIiIiIiIaLBpkUgbjfLycjQ3N6O8vBxOpxNHjhwBAMyZMwc6nW6qq0dEASKVCAhRy9HUYQ9oueXmTmRG6qGS+251FqZVBPTziIiIiIiIaPYQxBk2qvaNN96Il19+edDzW7duxZlnnulXGRaLBUajEa2trTAYDBNQSyIKhOy6tkEzcE60C+ZFMJlGREREREREPs24RFogMJFGNDN0O1x4K6saTtfkfE2FahS4cH7EpHwWERERERERzTzTYtZOIiJflDIJUsO0k/Z5GZH6SfssIiIiIiIimnmYSCOiae2UGCO0kzCLZqxRhcRg9YR/DhEREREREc1cTKQR0bSmkEqwIiFkgj9DwIqEEAicrZOIiIiIiIiGwUQaEU17MUYVlsYaJ6RsiQCcmRIGzSS0eiMiIiIiIqKZTTbVFSAi8kdmpAGiCByqag1YmTKJgDNTwhBlUAWsTCIiIiIiIpq9mEgjohljQZQBRpUMu8ta0OVwjausYLUcq5NCEKJRBKx+RERERERENLsxkUZEM0p8sAbhOiX2V5hR3Nwx6vfLJAIyIvVYEGmAVMIx0YiIiIiIiMh/giiK4lRXYrJZLBYYjUa0trbCYDBMdXWIaIzaux3Ib2hHYZMVnfbhW6gZVTKkm3RICdVCIePwkERERERERDR6TKQxkUY044miCKvNiaYOG8yddjhc7q81hVSCEI0coRoFVHJOJkBERERERETjw66dRDTjCYIAnVIGnVKGhOCprg0RERERERHNVuzfRERERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEgjIiIiIiIiIiLyAxNpREREREREREREfmAijYiIiIiIiIiIyA9MpBEREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvIDE2lERERERERERER+YCKNiIiIiIiIiIjID0ykERERERERERER+YGJNCIiIiIiIiIiIj8wkUZEREREREREROQHJtKIiIiIiIiIiIj8wEQaERERERERERGRH5hIIyIiIiIiIiIi8gMTaURERERERERERH5gIo2IiIiIiIiIiMgPTKQRERERERERERH5gYk0IiIiIiIiIiIiPzCRRkRERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEgjIiIiIiIiIiLyAxNpREREREREREREfmAijYiIiIiIiIiIyA9MpBEREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvKDbKorMBVEUQQAWCyWqa4KERERERERERFNA3q9HoIgDLvMSZlIa2trAwDExcVNdVWIiIiIiIiIiGgaaG1thcFgGHYZQexpnnUScblcqK6u9ivTSMOzWCyIi4tDRUXFiBsbzXxc3ycfrvOTC9f3yYfr/OTDdX5y4fo++XCdn1y4vgOPLdKGIJFIEBsbO9XVmFUMBgN33JMI1/fJh+v85ML1ffLhOj/5cJ2fXLi+Tz5c5ycXru/JxckGiIiIiIiIiIiI/MBEGhERERERERERkR+YSKNxUSqVeOCBB6BUKqe6KjQJuL5PPlznJxeu75MP1/nJh+v85ML1ffLhOj+5cH1PjZNysgEiIiIiIiIiIqLRYos0IiIiIiIiIiIiPzCRRkRERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEijUXv22WexcOFCGAwGGAwGrFixAps2bZrqatEEq6qqwne+8x2EhoZCo9Fg8eLFOHjw4FRXiyZIW1sb7rnnHiQkJECtVmPlypXYv3//VFeLAmT79u246KKLEB0dDUEQ8P7773tfs9vt+PnPf44FCxZAq9UiOjoa3/3ud1FdXT2ldabxGW6dA8CNN94IQRD6/Zx++ulTVl8an5HWd3t7O+68807ExsZCrVZj3rx5ePbZZ6esvjQ+jz76KE499VTo9XqEh4fj0ksvRV5eXr9l3n33XWzYsAFhYWEQBAFHjhyZsvrS+Pmzzvv6wQ9+AEEQ8PTTT09qPSkw/FnfA4/hPT9PPPHElNV7NmMijUYtNjYWjz32GA4cOIADBw5g/fr1uOSSS3DixImprhpNkJaWFqxatQpyuRybNm1CdnY2nnzySQQFBU111WiC3HLLLdiyZQv+85//4NixYzj33HNx9tlno6qqaqqrRgFgtVqxaNEi/O1vfxv0WkdHBw4dOoTf/OY3OHToEN59913k5+fj4osvnpK6UmAMt857nHfeeaipqfH+fPrpp5NaRwqckdb3j3/8Y3z22Wf473//i5ycHPz4xz/GXXfdhQ8++GDS60rjt23bNtxxxx3Ys2cPtmzZAofDgXPPPRdWq9W7jNVqxapVq/DYY49NaV0pMPxZ5z3ef/997N27F9HR0VNSVxo/f9Z33+N3TU0NXnjhBQiCgCuuuGJK6z5bCaIoilNdCZr5QkJC8MQTT+Dmm2+e6qrQBPjFL36Bb775Bjt27JjqqtAk6OzshF6vxwcffIALLrjA+/zixYtx4YUX4uGHH57S+lFgCYKA9957D5deeumQy+zfvx+nnXYaysrKEB8fP6n1o8Dztc5vvPFGmM3mQS2XaObztb4zMzNx9dVX4ze/+Y33uaVLl+L888/HQw89NEU1pUBpaGhAeHg4tm3bhrVr1/Z7rbS0FElJSTh8+DAWL148ZXWkwBpqnVdVVWH58uXYvHkzLrjgAtxzzz245557prSuNH7D7eM9Lr30UrS1teHLL7+c9PqdDNgijcbF6XTi9ddfh9VqxYoVK6a6OjRBPvzwQyxbtgxXXXUVwsPDccopp+Cf//znVFeLJojD4YDT6YRKper3vFqtxs6dO6esXjR1WltbIQgCW6HOcl9//TXCw8ORlpaGW2+9FfX19VNdJZogq1evxocffoiqqiqIooitW7ciPz8fGzZsmOqqUQC0trYCnhvddHLwtc5dLheuv/563HvvvcjIyJjC2lGgjbSP19XV4ZNPPmEjlwnERBqNybFjx6DT6aBUKnHbbbfhvffew/z586e6WjRBiouL8eyzzyI1NRWbN2/GbbfdhrvvvhuvvPLKVFeNJoBer8eKFSvw0EMPobq6Gk6nE//973+xd+9e1NTUTHX1aJJ1dXXhF7/4Ba699loYDIaprg5NkI0bN+LVV1/FV199hSeffBL79+/H+vXr0d3dPdVVownwl7/8BfPnz0dsbCwUCgXOO+88PPPMM1i9evVUV43GSRRF/OQnP8Hq1auRmZk51dWhSTDUOv/DH/4AmUyGu+++e0rrR4Hlzz7+8ssvQ6/X4/LLL5/0+p0sZFNdAZqZ0tPTceTIEZjNZrzzzju44YYbsG3bNibTZimXy4Vly5bhkUceAQCccsopOHHiBJ599ll897vfnerq0QT4z3/+g5tuugkxMTGQSqVYsmQJrr32Whw6dGiqq0aTyG6345prroHL5cIzzzwz1dWhCXT11Vd7H2dmZmLZsmVISEjAJ598whPxWegvf/kL9uzZgw8//BAJCQnYvn07br/9dkRFReHss8+e6urRONx5553IyspiC/KTiK91fvDgQfz5z3/GoUOHIAjClNaPAsufffyFF17AddddN6h3CQUOW6TRmCgUCsyZMwfLli3Do48+ikWLFuHPf/7zVFeLJkhUVNSgJOm8efNQXl4+ZXWiiZWSkoJt27ahvb0dFRUV2LdvH+x2O5KSkqa6ajRJ7HY7vvWtb6GkpARbtmxha7STTFRUFBISElBQUDDVVaEA6+zsxP3334+nnnoKF110ERYuXIg777wTV199Nf74xz9OdfVoHO666y58+OGH2Lp1K2JjY6e6OjQJhlrnO3bsQH19PeLj4yGTySCTyVBWVoaf/vSnSExMnNI609j5s4/v2LEDeXl5uOWWWya9ficTtkijgBBFkd0/ZrFVq1YNmmI5Pz8fCQkJU1YnmhxarRZarRYtLS3YvHkzHn/88amuEk2CniRaQUEBtm7ditDQ0KmuEk2ypqYmVFRUICoqaqqrQgFmt9tht9shkfS/ny6VSuFyuaasXjR2oijirrvuwnvvvYevv/6aN71OAiOt8+uvv35Q69INGzbg+uuvx/e+971Jri2N12j28X//+99YunQpFi1aNKl1PNkwkUajdv/992Pjxo2Ii4tDW1sbXn/9dXz99df47LPPprpqNEF+/OMfY+XKlXjkkUfwrW99C/v27cPzzz+P559/fqqrRhNk8+bNEEUR6enpKCwsxL333ov09HSefM0S7e3tKCws9P5dUlKCI0eOICQkBNHR0bjyyitx6NAhfPzxx3A6naitrQU8g9oqFIoprDmN1XDrPCQkBL/73e9wxRVXICoqCqWlpbj//vsRFhaGyy67bErrTWMz3PqOj4/HGWecgXvvvRdqtRoJCQnYtm0bXnnlFTz11FNTWm8amzvuuAOvvfYaPvjgA+j1eu93ttFohFqtBgA0NzejvLwc1dXVAOC9QRoZGYnIyMgprD2NxUjrPDQ0dNBNMLlcjsjISKSnp09RrWms/NnHAcBiseCtt97Ck08+OYW1PUmIRKN00003iQkJCaJCoRBNJpN41llniZ9//vlUV4sm2EcffSRmZmaKSqVSnDt3rvj8889PdZVoAr3xxhticnKyqFAoxMjISPGOO+4QzWbzVFeLAmTr1q0igEE/N9xwg1hSUuLzNQDi1q1bp7rqNEbDrfOOjg7x3HPPFU0mkyiXy8X4+HjxhhtuEMvLy6e62jRGw61vURTFmpoa8cYbbxSjo6NFlUolpqeni08++aTocrmmuuo0BkN9Z7/44oveZV588UWfyzzwwANTWncaG3/W+UAJCQnin/70p0mtJwWGv+v7ueeeE9VqNc/ZJ4EgulcMERERERERERERDYOTDRAREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvIDE2lERERERERERER+YCKNiIiIiIiIiIjID0ykEREREZ1ETCYTBEEY9ud73/veVFeTiIiIaFqSTXUFiIiIiGhyOJ1OfPTRRz5fKysrw0033QSXy8VEGhEREdEQBFEUxamuBBERERFNnYqKCpxxxhmorq7GBx98gA0bNkx1lYiIiIimJXbtJCIiIjqJVVVVYd26daiursZ7773HJBoRERHRMNi1k4iIiOgkVV1djXXr1qGiogLvvPMONm7cONVVIiIiIprWmEgjIiIiOgnV1tZi/fr1KC0txdtvv40LL7xwqqtERERENO2xaycRERHRSaaurg7r169HcXEx3nzzTVx88cVTXSUiIiKiGYEt0oiIiIhOIg0NDTjrrLNQUFCAN954A5deeulUV4mIiIhoxmCLNCIiIqKTRGNjI9avX4+8vDy89tpruPzyy6e6SkREREQzClukEREREZ0EmpqacPbZZyMnJwevvvoqrrrqqqmuEhEREdGMI4iiKE51JYiIiIho4litVqxZswaHDx/G3XffjW9/+9s+l9PpdMjMzJz0+hERERHNFEykEREREc1yX3zxBc4555wRl7vmmmvwv//9b1LqRERERDQTMZFGRERERERERETkB042QERERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEgjIiIiIiIiIiLyAxNpREREREREREREfmAijYiIiIiIiIiIyA9MpBEREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvLD/wOD4Nh1dAXZTAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAKpCAYAAAB5OgHrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ5hV1f328e9p03sBptJn6B0UFCxgwa6oSew9xhLzGPO3JDHVqOkxMVhjb1EwdkVRQJDee5sZhum9t9OeF2dmzzlMOwNDmeH+XFeurL332muvM/jqvn5rLZPb7XYjIiIiIiIiIiIinTIf7wmIiIiIiIiIiIj0BgrSRERERERERERE/KAgTURERERERERExA8K0kRERERERERERPygIE1ERERERERERMQPCtJERERERERERET8oCBNRERERERERETEDwrSRERERERERERE/HBSBmlut5uqqircbvfxnoqIiIiIiIiIiPQSJ2WQVl1dTWRkJNXV1cd7KiIiIiIiIiIi0kuclEGaiIiIiIiIiIhIdylIExERERERERER8YOCNBERERERERERET8oSBMREREREREREfGDgjQRERERERERERE/KEgTERERERERERHxg4I0ERERERERERERPyhIExERERERERER8YOCNBERERERERERET8oSBMREREREREREfGDgjQRERERERERERE/KEgTERERERERERHxg4I0ERERERERERERPyhIExERERERERER8YOCNBERERERERERET8oSBMREREREREREfGDgjQRERERERERERE/KEgTERERERERERHxg4I0ERERERERERERPyhIExERERERERER8YOCNBERERERERERET8oSBMREREREREREfGDgjQRERERERERERE/KEgTERERERERERHxg4I0ERERERERERERPyhIExERERERERER8YOCNBERERERERERET8oSBMREREREREREfGDgjQRERERERERERE/KEgTERERERERERHxg4I0ERERERERERERPyhIExERERERERER8YOCNBERERERERERET8oSBMREREREREREfGDgjQRERERERERERE/KEgTERERERERERHxg/V4T0BERERERERE5ETgdruxO9043W5MgM1ixmI2He9pyQlEQZqIiIiIiIiInLQqG+xklNZRUttEaV0TjQ6X8cxsgqhgG7EhASRGBJEaFYxZwdpJTUGaiIiIiIiIiJx0cirr2VFQTX51Y4d9XG4oq7NTVmdnb0ktwTYzaXFhjOofToBVu2WdjBSkiYiIiIiIiMhJo8HuZPXBCrLK6rr9br3dxeb8KvaW1DJ9UDTJkcFHZY5y4lJ8KiIiIiIiIiInheKaRj7YXnBYIZq3OruTxXtLWJNdjtvt7rH5yYlPQZqIiIiIiIiI9HmF1Y0s2lNMg9ceaEdqZ1ENK7LKFKadRBSkiYiIiIiIiEifVlFvZ/G+Yhyung+89pfWsS6nssfHlROTgjQRERERERER6bNcbjfLM8uwO49e1diOwmryqxqO2vhy4tBhAyIiIiIiIiLSZ20vqKa0rolrJiZRWtcEwNb8avKqGogLDWBiUiQmILeyge2F1Yf9ne+yyrhk9ABsFtUs9WUK0kRERERERESkT2pyutiSXwVATZOTL3YXG8/MJhifEMHX+0pw9sCSz5omJ3uKaxg9IOKIx5ITl2JSEREREREREemTMkprjX3RQm0Wzk+PZ+bgGAItZuJDA3G43Jw5NJZzhscTHWw74u/tLq7VwQN9nCrSRERERERERKRP2lNca7QXbs2n0eliWGwoE5MiKaxpJCrYxic7CwkNsDB9YAyf7y4C4Lz0eOJDA3F5hWLrcyrZXVzT6feqGx3kVzeSGBF0FH+VHE+9viLt8ccfx2Qy8ZOf/OR4T0VEREREREREThANdifl9XbjutHpAiCzvI6YEBuNDhdFNY04XG4qGxwEWEw+76/PqeDNjbnG/7oK0VoU6NCBPq1XV6StXbuW5557jnHjxh3vqYiIiIiIiIjICaTlYAEAq9mE0+XGDQwIC6Sq0UFJbSPjEsIBCLKa8fdQT6vZxOTkSJIjg7GYTeRVNrD6YLlxKmhpnb3LMaT36rUVaTU1NVx77bU8//zzREdHH+/piIiIiIiIiMgJpMwr0IoIsnLhyP6cnx7PqAHhbMytpMnpZl9JHeen9+PsYXGsO1jh17inDYohwGLmwx0FLNyaj9kEp6S25hJlXgGe9D29tiLt7rvv5sILL2TOnDn8/ve/77RvY2MjjY2NxnVVVdUxmKGIiIiIiIiIHC9NzUs5aQ7VPt5Z2KbPvtJa9pXWtrkPMCk5kgmJkcb1u1vysJhNpEYH886mPKMCbWNeFZeOHsCKzDLcXktIpW/qlUHa22+/zYYNG1i7dq1f/R9//HF+85vfHPV5iYiIiIiIiMiJwXWEh2duyKlkZ5HvvmiRQTbMJhPzxia06R9ss1Bnd+J2g9vtxmQytekjvV+vC9IOHjzIfffdx6JFiwgK8u8UjIcffpj777/fuK6qqiIlJeUozlJEREREREREjiebueeDrNomBy63m/9uycPZQVJnNZsUovVhvS5IW79+PUVFRUyePNm453Q6WbZsGf/6179obGzEYrH4vBMYGEhgYOBxmK2IiIiIiIiIHA8RQT0feTQ4XBysqOeU1CjW51TS6HARZDXTLyyQ7Ip6ACKPwnflxNHr/nVnz57N1q1bfe7dfPPNjBgxggcffLBNiCYiIiIiIiIiJ5/Y0ICjMu7yzDImJEZy4cj+BFrNNNidZJXVGUHa0fqunBh6XZAWHh7OmDFjfO6FhoYSGxvb5r6IiIiIiIiInJwiAq0EWsyHtfn/F7uLO3zmcLlZl1PBupz2T/mMU5DWp5mP9wRERERERERERHqayWRiSGzIMf2m1WxiYPSx/aYcW72uIq09S5YsOd5TEBEREREREZETTHq/sDYnbx5NQ2JDCLCoZqkv07+uiIiIiIiIiPRJkUE2UqKCj8m3zCYY1S/8mHxLjh8FaSIiIiIiIiLSZ52aGk2AxXTUvzM+IZLIYNtR/44cXwrSRERERERERKTPCgmwMC0l+qh+IzbExpgBqkY7GShIExEREREREZE+bWhc6FELusICLJw1LA6z+ehXvcnxpyBNRERERERERPq8SUmRjO3hMC080IprxVZWvPUtbre7R8eWE5PJfRL+S1dVVREZGUllZSURERHHezoiIiIiIiIicoxkldWxKrucRofriMYZEhtCxhvf8Pqj7wDQLzWO6x+9irOvnUlAoPZK66sUpClIExERERERETmp1NudrDtYwf7iGkyW7i3Wiwi0Urt6J6/96FlsgTYa6xp9nscMiOKSu8/n4jvPJSJW+6b1NVraKSIiIiIiIiInlWCbhQnRgXxw+WMUbVxLQ1lFp/2tZhNBTdWEZ2dydlIYb9z9HC6nq02IBlBWUMHLv3ybawf+iM9eXHwUf4UcD6pIU0WaiIiIiIiIyEln0StL+NPNTxMcG8CZV5zO4ndWEZOeRFxaEmFx4ZTnV+BqaOQPb91HkMnFE394AsyQ8UkBZTuraaxr6vIbAwbF81rGv4/J75Fjw3q8JyAiIiIiIiIicqx9u2AVsSMiCE8JIWloAk1VdRSs3QullVgH9WP319sAsDXZyS0pwGQx4Xa7GXLBAIp3VPr1jYt/dN5R/hVyrGlpp4iIiIiIiIicVGqr6li/aDMJ02KITArF3mA3nsUOiCYuKca4Ls4pw2Kx4GhwYjKZAIhJDyM4NqDTb9z2xLVc/bNLj+KvkONBQZqIiIiIiIiInFRWf7wee5OD+pJGkqJTyN1XYDwbMLgfcUmxxnVJbhlB5mDcLs/OWCazieEXJzH5njTCEoM7/MZ3H6zF6XAe5V8ix5qCNBERERERERE5qSxbsApMkLuylNmXnkVBZpHxLCktkfjk1iCtMKuIdxe+iy3EszuW2+2mtrABe52D6GFhvgObIDzac2/Hyj2888cPjtVPkmNEQZqIiIiIiIiInDTqa+pZ+9lGBkyOYfytQxl9Wjql+eXG8yHjBpKclmBcZ+/KobyyjLriBlxON/WlTex5P4fVf9rFwWXFPmPHp8Ty+48fwmz2LAF99df/Ze+GjGP46+RoU5AmIiIiIiIiIieNNZ9upKnBTnhSMMG2YCwWC1Vl1cbztMlDSB2ZZFwf3JVHrHkAW17K5Lvfb6d4SwVN1Q7jeUCQzWgXZ5dyYGcu33/ocgCcDidPXP8UjfWNx+z3ydGlIE1EREREREREThrLFqwCIPe7Ek4/dRYADTXNQZcJ4pNjiU2MISTcs/9Z9s5cYm3xOOqdmCwmUs7oR9zoCAAeePkuPql7k1lXTTfGn/+Tl7jmF/MYPmmw8f6LD795rH+mHCUK0kRERERERETkpNBQ18iaTzZgCTCTOqM/08+disPhMA4FCAj0VJeZTCajKq3wQDHn3nQm3/u/S7n+F1cRTAjWYM9+aSXZZQA8+Mo92AI99+prGnj+/17nwVfvNarV3n/qUzYs3npcfrP0LAVpIiIiIiIiInJS2LpsBw11jUQPDyNuQgR2h52sbQeN5yERIUY7xWt5Z1l+Bbc9cR3X/+oqbrzlBnKWe/ZGW7ZgJQABQQFc+8srjf4fP7OIhCH9ue2J64x7f775aeqq64/6b5SjS0GaiIiIiIiIiJwUNnzlqQozW8xEBEcRGhrKvo2ZxvPIuHCjnToi2Whn78wx2uZgE9P/bzSWIDMZmw+Quy8fgGsfmUd4jOfETqfDydP3vcSl95zPpDljASjOKeXNxxYcg18pR5OCNBERERERERE5KWz82hOkFW+r5JZbbva0c8qM5xGx3kFaa0Va9q5co22z2bAEm4hI9lSvrXh/jfHspt9+z2gvevkbHA4nP3nmh9ial4wu+NvH5OzNP0q/To4FBWkiIiIiIiIi0udVFFeyf1MWJjOc+rORlFR6lmdWl1YZfcKiQo2298md3kFadHQ040aNp67Ec0CB995nl9x1PqFRnoDNYXfy7E9fJWFIf65+4BLj3jP3v3xUf6ccXQrSRERERERERKTP2/zNdgACowKwBJkxmz2RSFVpjdEnLLo1SEsY0h9bgOcAgYM7W4M0k8nE2eeeRVxqDADbvt2JvcluPL/uF617pX32wlc4HA6+99BlxCfHArD6kw2s/mT9UfylcjQpSBMRERERERGRPm/DV1sAaKy0MzRxOCkpKQBUl7cGaRFee6RZrBaShicAkLMnD4fd0TrWhg0Muai/Z7z6Jnau2ms8u+InFxISHgyAvdHBfx5+k+DQIO740/VGn/n3v0JTY2v4Jr2HgjQRERERERER6fNalmCGRAcy/cxTsVo91Wa1FXVGn6i4CJ93Bo9LheYlmfs3H2jtFxWFOcBkXG/6epvRNpvNXP3gpcb1B09/jsvl4oyrZzB21kgAcvfm8/4/Pj0Kv1KONgVpIiIiIiIiItKn5WcUUpBZBMCYK4ay9NslxrO66nqjHdkv0ue90TNGGO3tK3YZ7XHjxnHFJa1LODd9s83nvR88dDlBoYEANDXYefnRtzGZTNz9j1swmz0B3Bu/f4+SvDKkd1GQJiIiIiIiIiJ92kavAwEiEyOIjY01rutrG4x2zIAon/dGn5ZutLd5BWlms5m9B3YzcKLnQIKdq/b4jGM2m7ny/ouN64V//wSXy8XQ8YO48Ifner5b08CLD7/Rg79SjgUFaSIiIiIiIiLSp21YvMVozz5jNueee65x3VTXZLRjE6N93hs8NtXY72z7it243W7j2bZt2xh+xkBoXvq5bfkun3ev/9VVBAYHANBY18Qbjy0E4Kbffo/wmDAAvnptGXs3ZPTob5WjS0GaiIiIiIiIiPRZLpfL2MMsNCaEvfm7cDhaDw5obGgN0uKSY33etVgsjJyeBkBZfjkFWZ7loSaTifT0dAaNTDX6eu+TRnNV2qX3zjWu3/3TB7hcLiJiw7nh11cb9994bEEP/lo52hSkiYiIiIiIiEiflbHlAJUl1QCMP28Eu3bvora21njuaGwN1SKaK8W8jZ7htbzTq+ps3rx5zL7oTON649db27x78++/jy3QBs1LOd/984cAXHDbbKP6bcX7a8jcln3Ev1OODQVpIiIiIiIiItJnbfyqNeAaOTWN5ORk4uLijHsOu9PTMHmqyA415nTvAwd2G+01a9aw8KMFDBnnWd65b0Mm1eU1Pu9arVYu+uEc4/qtx98HICAogKsfaD3Z880/LDzSnynHiII0EREREREREemzvCvFTjlnKjfccANWq9W453K6ALBY2o9IRpwyHHPzM++TO61WKwUFBYw/azQAbrebLUt3tHn/tj9ejzXA873ayjoW/uMTAC64Yw5R8REALH3nOw7uzu2R3ytHl4I0EREREREREemT7E12ti7bCc0HCRwszeKNN1pPynS5XMYBAhabtd0xgkODGDphEABZ2w8aVWcjRoxgzpw5TJo9zujrfTpoi4AAG+fffJZx/dpv3wUgKCSQec0ne7rdbt564v0e+c1ydClIExEREREREZE+aeeqvTTUNQIwac44ysrKcLlcxvOaita90mwB7QdpAGNOa13eueM7z/LOkJAQwsPDGTNzhFGxtumbbe2+/6O/3YTFavF8s7yWj5/9EoBL7jqP8OhQABa//i35GYVH9Hvl6FOQJiIiIiIiIiJ90oavthjtiWePZdKkScyaNcu4V5JTarQDggM6HGfsrFFGe/WnGwEoLS1l4cKFVNZUkDZlKAAHduRQVlDe5v2AoADmXN/63Zd/+RYAIeHBXH7fhdC8xPSdJ/932L9Vjg0FaSIiIiIiIiLSJ3kvtZw4ewwul4vY2FjjXklemdEODOk4SJt8zjijYm3lh2txu90EBwdjMplwOp1MPHuM0XfT1+1Xpd3zz1uwWD0xTGVJNYte+QaAy398ASERwQB88fI3FB0sOYJfLEebgjQRERERERER6XNqq+rYtWYfACkjkohLiuXDDz9k48aNRp+y/AqjHRQS2OFYIeHBTJg9FoCS3DL2rM8gNDSUH/3oR6SkpDDh7LFG340dBGlBIUGccfUM4/qFh98EICwqlMvumQvNJ4gu/PsnR/Cr5WhTkCYiIiIiIiIifc6WpTuMEzknNYdgTqeTiIgIo09FYaXRbqkK68hpl0412is/WAvAunXryMnJYfSMNGyBNuhknzSAH//7dmM/tfKCCr55ZwUAV/zkQuP9L19dSlOj/TB+sRwLCtJEREREREREpM/x3h9t0hzPyZo333wzEydONO5XlVYb7dDI0E7HO/XiKUb7uw89QdqOHTvIyMggMDiQ0TPSACjILCI/s/1DA0IjQjjt8mnG9XMPvApAZFwEs6481ZjTivfXdPPXyrGiIE1ERERERERE+pyWvcrMZhPjzhiF3W7n888/p76+3uhT6RWktZye2ZHYhGhGnjocgMyt2eRnFDJkyBCioqIAmHBW6/LOjvZJA7j/uR9iMpugeZloxpYsAObeNtvo8+kLX3X798qxoSBNRERERERERPqUmopasrYfBGD45CGERYVSWVnJ7t27KS1tPamzuqzGaIfHhHc57oxLWpd3fvfBWi655BLGjvUEaBO8DxzoZHlnWFSYEcjhtVfauFmjSE5L8Lz/9TZy9+X7/Xvl2FGQJiIiIiIiIiJ9SubWbKOdNnkoAGFhYfTv35/o6GjjWW1FndGOiA3rctwZl7Uuy1zxwRref/99Fi1aBED61KEEhwVBcxDmdrs7HOem337faG/8agsulwuTycTcW1ur0j57YbFfv1WOLQVpIiIiIiIiItKneAdpg8cNBCAoKIhbbrnF57CBuqrWZZ5R/SK7HDd1RJJRNbZ9+S4qyiupq/OEcVablTEzRwJQVlBBQWZRh+NMPHssoVEh0HxS50f//gKAc248E6vNAsCiV5bgsDu6+cvlaFOQJiIiIiIiIiJ9SsaWA0Z78NhUAKqqqnjyyScpKysznnkHVUGhQX6NPeNST1Way+UmpDGcSZMmGc+GTRhktFuWlnbk7O+fbrQX/OMTAKL7RTK9+XTQ8sJKVn603q85ybGjIE1ERERERERE+pTMrV5B2pgUAOrr63G5XEYFGc1VZC3sjU1+jd1yuibAuo+3+FS4DRqTarSztnUepN30+9blnfn7CynKLgbggtvmGPc/06EDJxwFaSIiIiIiIiLSZ7hcLmNp54BB8YRGek7jjIuL44wzzmDAgAFGX0uAxWg31vkXpKVNGWpUuZHQxOcff2E8GzQ6xWgf2NF5kBYRE+7T/8VHPIcOTJozlgGD4gFY98VmI2CTE4OCNBERERERERHpMwoPFFNf0wBe+6MBmM1m4uLisFhawzObV0VaU71/QZrJZDKqxlxONwd35hnPktMTMVs8UUvmtuwOx2hxzSNXGO3vPlhrzPO8m88GwO12s+y9VX7NS44NBWkiIiIiIiIi0mdkbvE6aMBrqWVhYSELFiygqKj1EABrgFeQ1uBfkAYw+7qZBATZ2PthLute3W68GxBoI2m45zCCg7vycDqcnY5z1g9OJzA4AICG2kaWvbcSgFlXTTf6fPfhWr/nJUefgjQRERERERER6TO8DxoY4lWRZrVaff4fwBrY2m5ssPv9jfDoMGZeeSpxIyMwR8C3C1YbzwY178lmb7STt7+gy7FOvXiK0X7jsQXQfDpoSnoiNJ8OWllS5ffc5OhSkCYiIiIiIiIifUaG90EDXkFaXFwcd955J7GxscY9m1dFmr0bFWk0HwoQPzaSmOHhfOp1KMCgUa37nnV14ADA7U9e2zr3LQeorfIchjD9Es/pnS6Xm1Uf6/TOE4WCNBERERERERHpM7KaDxoICLKRNKz1YAGXy8WKFSuoqmqt7rIF2ox2Uzcq0gDGzhyJqclCXXEjW5buIGePZ6+0loo0gKztXQdp/Qf2Mw4XwA2vPPo2AKddNtXo07J/mhx/CtJEREREREREpE9oqGskd28+AANHp2Cxth4s0NTUxNatWzl4sDXcCjiCIM1kMjF19CnkrS4F4LMXFhvfbeFPkAZw2Y8vMNpfvf4tACNOGU50/0gA1i/aTENdY7fmJ0eHgjQRERERERER6RMO7MjB5XIDMHhsqs+zwMBAEhMTCQsLM+4FNG/0z2EEaW63m2zTXuJGRACw6JUlNDXaSRo2wFgyesDPIO3yH19ghH7VZTVsWbYds9nMqRd59k9rrG9iw5dbujU/OToUpImIiIiIiIhIn5DpfdDA2IE+z0wmE7feeispKa0VY95LO+2N3QvSGhoaqK2tZdRpaQBUFFfx5StLsNqspIxIAiBnTz72pq7HNZvNjD9ztHH90i+0vPNEpSBNRERERERERPoE7xM7vQ8aaPHaa6+xcuVK4zogyCtIa3J061tBQUGcfvrpXHrTRca9t594H4fdwcDRyQA4HU5y9uT7Nd6tT7QeOrBj5R6amuxMnD2WoNBAAFZ9vA6n09mtOUrPU5AmIiIiIiIiIn1C5rZsoz1kXGqb501NTZSWlhrXgV5LOx2N3QvS3G43KSkpjDttNFPOGw9AQVYxX7+5nEGjW7/tz8mdAGmThhDVz7Mnmsvp4t0/fkBAUABTz58AQGVJNTtX7unWHKXnKUgTERERERERkV7P7XaTsdlTkRYzIIqo+Mg2fU4//XTGjRtnXNt8KtK6t7Rz3759vPXWWzQ0NHDtz+cZ9996fCGpzUs76cY+aQDn3XyW0f7o2UUAnHLhZOPe5iU7ujVH6XkK0kRERERERESk1ysrqKCqtBqAQWPbVqMBJCQkEBDQWoXmU5Fm715FWlNTExaLhYCAAMacPtLY4yxnTz5FB0uMflnbszsZxdd1v5yHyWwCoDS3nAM7cxg7c6TxfPt3u7o1R+l5CtJEREREREREpNfL6OSggRarV6/mww8/NK4DgwONtqOpe/uPpaenc/vtt2M2e6KVa7yq0j57cbGx/1rW9hy/xwwKCSJtylDj+sWH3iBhSH+i+3uq67Z/t1v7pB1nCtJEREREREREpNfL2uq9P1r7QVp0dDS1tbXGdcARVKTt3buX7OzWb048ewyjpntO8MzadpDYpBgA8vYV0Fjf6Pe4N/3me0Z73aJNmEwmRp82AoC6qnoOdCOYk56nIE1EREREREREer2Mrd4ndra/tHPy5MnccMMNxnVQSGuQ5rR3r9Jr48aN7Nu3z7g2mUw+VWk15Z7Azu12k70z1+9xp5w3gZDwYADsjQ7WfbmZMc1BGsD2FVreeTwpSBMRERERERGRXq9laafZYiZ1ZHK7fUwmE0uXLqWyshKAwBCvpZ2O7gVpoaGhDB061OfetLkTGT5pMADVZTXG/axuHDgAMGZma3D20b+/YPRp6cb1NgVpx5WCNBERERERERHp1dxuNzm78wBIGp5AQKCt3X4ul4sdO3awf/9+AIK8grTuVqRddNFFTJs2zefeoVVpLbK2dS9Iu+D2c4z21m93MmziYONghO0rdndrLOlZCtJEREREREREpFerq6qjqcEOQHxyTIf9rFYraWlpBAd7lk4GhnoFad2oSCsvL+eJJ56goqKizbPTLptm7JXWojsndwJMv3gyZosnsqkuq6GqtJoRpwwHoPBAMcU5pd0aT3qOgjQRERERERER6dXKCloDregBUZ32vfrqqxk2bBgAwWFBxn2nw+X39woKCnA6ndhsbSvfTCYTdz91CyaTybiXn1Hk99gAZrOZlPRE4/p/T33G6Bmtyzu1T9rxoyBNRERERERERHo1nyCtX+dB2ooVK3jttdcACD7MirSkpCTOPfdcQkJC2n2eNnkoc28927guPFDs99gtZs47tXXO/1vDmNO9DxzQ8s7jRUGaiIiIiIiIiPRqFYWVRjumi4o0m81GQUEBbrebqH6Rxv2WpaH+qKmpYejQoT5VZ4e6+bEfYDZ7njfVN7Fz9V6/xwe49N65Rjtnbz7p04YZ1/s2ZXZrLOk5CtJEREREREREpFfrztLOMWPGMGfOHEwmEwFBAZhawq6GJr+/9+mnn7J69epO+0TFR5I4PMG4/ufdL+By+b98NCougsi4cABcThebvt5GbGI0ANk7c/0eR3qWgjQRERERERER6dV8grT+kZ32DQsLIzQ0lOrqagDjNEy3y01dTb1f36urqyMuLq7LfsMmDjLaezdk8OWrS/0av8W4M0cb7U9fWEzqyGQAqkqrqSiu7ORNOVoUpImIiIiIiIhIr1ZR2BqkdbW0E+Drr79m5cqVAIRGtu5zlrn5gF/fu/HGG5k2bVqX/Q7dr+3Fh9+gtrLWr28AXHrX+UZ756o9pI5IMq5VlXZ8KEgTERERERERkV6trND/pZ0AqampVFVVARAZF2Hc37+l6yAtKyuLr776CovF0mXfyPgIn+vywkpefPjNLt9rMf7M0VgDrADUVdUTER9uPDu4S0Ha8aAgTURERERERER6tfLmpZ1mi5mI2PAu+19wwQVccsklAMQmxRj3c3Z3HU5t3bqVoqIiv+YV5RWkWW2eQOyjZxax9vONfr0PMHhMqtHev6k16FNF2vGhIE1EREREREREerWWPdKi+kViNvsXdbz00kuUlZWRMLifca8gs7jL92JjY5k8ebJf3/CuSJty/gSj/edb51NVWu3XGGd+b4bR3rt+v9HO3pXj1/vSsxSkiYiIiIiIiEiv5XK5qCjyLNP0Z380AJPJRHFxMXv37iU5PdG4X5xT2uW7aWlpfu2PxiEVaQmD+zHlvPEAlOWX8/cfPYfb7e5yjIt+dG7r/A6WGnu6qSLt+FCQJiIiIiIiIiK9VnVZDU6HE/zcHw3AarUyY8YM4uLiGDJ2IGFJwVhDLFQUV3X6XmZmJk8//TT19f6d7uldkVZVVs1PX7yL8JgwAL59bxWL3/i2yzFCwoKJSYg2rluWrhZll1Dv5ymj0nMUpImIiIiIiIhIr9WyrBMgun+k3++Fh4ezaNEidhdsZ9yNg4kfHUltRecnaubl5RESEkJQUJBf3/AO0iqLq4hLjOG++XcY9/55zwsUZXuWk+bsyaOxvrHdcSafM85o19c0GO2cPfl+zUN6jvV4T0BERERERERE5HCVewVpMf07r0irq6vjtddeY+DAgWzcuJGmpiaKioow28zUlTTSWN/U6ftjx45l4MCBmEwmv+YWFhWK2WLG5XRR2VztdsZV01n50UwWv/4tdVX1PH7dU0QPiOLb91aROjKJZzf92TiYoMVlP76AL19dCkB1eY1x/+CuXIZPGuLXXKRnqCJNRERERERERHqt8sJKo93V0s6AgACqq6tZs2YNTU2toVneylIqM2txOV00NdnbfdftdrNmzRoiIiLafd4es9lMZJxnKab3stF7nrqV+JRYALYt38W3762C5n3P9m7IbDNO2qQhBAQHAOC0O437RQe73tNNepaCNBERERERERHptbyXdnZ12IDVauXOO+/krLPOIjw83LgfFBlotLO2HWz33by8PFasWEFFRUW7zzvSsryzsrjKOFwgLCqUeT+5qN3+O1fuaff+8ImD29wr8eNwBOlZCtJEREREREREpNcqLyg32tFdLO0ECAsLY+bMmQwaNMhYohka37rnWcbmrHbfa2xsJD4+nqSkpG7NLzLOE6Q1NdhpqPXsb7b4jW95/sHX2+2/Y9Xudu/Puf6MNvdK8sq6NRc5cgrSRERERERERKTXKi/yf2mnt5kzZ2Kz2QAwNXr2JDMFweaNW9i0aRNbt27lwIEDOBwOAJKTk/nRj36ExWLp1vy8DxxoWd75/IOvGSeNHmpHBxVp5958JpjAbLUQPTyRAVOH0xQeQkF1A/X29seSnqfDBkRERERERESk1+rO0k5v8fHx3HnnnTz99NMU1+cSeSGYg02sL/iO9X/4zuhns9lISUmhrq6Om266iUmTJnVrfi0VaTQv70wY3J8zrprBwn980m7/4oOllOSWEpcUa9yrbnSwp7iWS978GaEp8VgCWuOcL3Z7Tv0MsVmICw1gSGwIKVHBmP08EEG6R0GaiIiIiIiIiPRaLad22gKshEaG+PWOw+Hg448/5tNPPzX2PDMHtx882e12MjIyAHjyySeZPHky11xzDcnJyX59KyreN0gD+NHfbuLM75/Ge3/9iOULVuFyuX3e+ebtFVz100soq2tiQ24luZWeJaERQxM6/E6d3Ul2RT3ZFfWE2CyM7B/GqP7hCtR6mII0EREREREREem1WoK06AFRxp5nncnKyuLpp5/mwIED3f6W2+1m3bp1bN68mauuuoqLL764y6We7S3tBBh5ynB++c795GcWsvDvn/Dxs1/iaPIsI60sqWZzXiVb8qs4JGPzS53dyfqcSrLK6jhtcAzRzSd+ypHTHmkiIiIiIiIi0mtVl9cCEBEb3mXfZcuW8fDDDx9WiObNbrfz5ptv8oc//IH6+vpO+3pXpFWVVLd5njC4P3f/4xbeyXuOc288g7NuPJPEG2azKe/wQjRvpXV2Pt5RSFZZ3ZENJAYFaSIiIiIiIiLSa7mcLgAs1s4jjiVLlvCvf/0Lp7PnNubfunUrjz32GA0NDR326agi7VARMeHc9/xdjPvZPIpr7T02R5cblmaUklFa22NjnswUpImIiIiIiIhIr+V2e8q2OlvWuW3bNubPn39Uvr9nzx6eeuopYx6HsgXajLbT7uhwHLfbzdKMUkrrei5E87Y8q4yimsajMvbJREGaiIiIiIiIiPRK3uGVydx+kFZfX8/8+fM7DLp6wrp161i2bJkfc+w4htlTXEteVceVbUfK7YYVmWU4miv45PDosAERERERERER6ZV8QqoOKtLeeOMNiouLefXVV9m/fz8A//vf/9i8eXO79w7Xyy+/zLhx44iOjvado8t7ju2/W9PoYF1OBddMTKK0rgmArfnV1DY5OHWgZzyr2YwJ+Hhn4WHPsarRwca8KqamRB32GCc7BWkiIiIiIiIi0iv5hFTtVKSVl5ezePFiAIqKivjNb37j87y9e4ertraWzz77jGuuucZ3jn5UpO0orMbhclPT5OSL3cU+z1quR8SHYbN2fSppV3YVVTM2IZwga+enjUr7tLRTRERERERERHol75DK3E5ItXjxYuNwgbi4OH79619z7733EhYW1uG9I/HNN99gt/vucdZVRZrd6WJf80EAoTYL56fHM3NwDIEW398zKCaEzNIjP33T5YZ9JTp44HCpIk1EREREREREeiWXV0jFISGV2+3m66+/Nq7vueceampqOOuss/jBD37A888/3+49gF/96lekpaX5nPD5+uuvs2jRok7nU1lZyfr16zn11FN95mFMsZ2wL7uiHrvT02fh1nwanS6GxYYyMSmSVdnlAIQGWDCZoKapdT79wgIYmxBBfGggJqCmyUFGWR07C6txdbEd3N7iWsYMiOi8k7Sr1wVp8+fPZ/78+WRlZQEwevRoHn30UebOnXu8pyYiIiIiIiIix1InFWmlpaWUlJQY1zU1NQCsWLGCOXPmdHivxRtvvMGnn37a7Snt2rXLJ0hzdVGRVlTdepJmY/NBAJnldaTFhxr3B8eEkFXWWo2WHBnErCGxbMytZHlmGY0OFxFBVsYOiCDYZqHWK3BrT1Wjgwa7kyCblnd2V68L0pKTk3niiScYNmwYAK+88gqXXnopGzduZPTo0cd7eiIiIiIiIiJyjHQWUmVkZBjtwMBAmpqacLvdjBo1ioKCgnbv+SMwMJBrr72WKVOmYLPZ2LRpE//5z3+or68HIDMz0/eFLpafthwuYDWbcLrcuIEBYYFUNTqMPoNiQvhqT+veadNSo9lWUM3OohrjXlWDgxVZZcZ1kNXMKanRDAgPxOFyk1FWx6bcStxe302KDPbrN0urXhekXXzxxT7Xjz32GPPnz2fVqlUK0kREREREREROIp0tm8zOzjbaiYmJ/PCHP6ShoQGHw8H8+fPbveePu+66C6fTyQMPPIDT6eTOO+/k1ltv5V//+hcABw4c8Onf1fLT8nrPnmoRQVZmDIzB4XLhdMN3zaFYVJCVRoeLBoenWi0i0Ep4oJXMss73OZs1JJZ6u5MFW/MJtJqZMzweh9PF1oJqAMrr7QrSDkOvC9K8OZ1O3n33XWpra5k+fXqH/RobG2lsbC2VrKqqOkYzFBEREREREZGjpbON/FsqxGiuEnvooYd8npeWlra55+2aa67hqquuMq7vvPNOAgICOOWUU7j11lupq/MstXznnXf461//ytNPP43b7aa+vh63242peUKdHYjgcmPsZ1ZWZ+fjnYVt5lHR4OBLr2q0QJtnjM6Wb4bYLCREBPHOplwcLjeOJidb8qsYnxhhBGkOZxcbqUm7emWQtnXrVqZPn05DQwNhYWG8//77jBo1qsP+jz/+eI8dZysiIiIiIiIiJ4bOKtJM7W1I1g1vvvlmmz3SkpOTMZvNRvVZC5fLRVRUFOXl5ZhMJp9v+4Z9vnM6nBk22j2VaaEBFqob2w/TQgIsOFytVWwA1Y0OQrUn2hHrlUFaeno6mzZtoqKiggULFnDjjTeydOnSDsO0hx9+mPvvv9+4rqqqIiUl5RjOWERERERERER6WmcVaUFBQT3+vZKSElwuFz/84Q9pampqt09wsO9ySd+w75AgzQRmE12esumtqtFBdaODQTEhbM2vbrdPXZMTq9lMkNVshGnhgVZq7a3Bm81yZEHjyartLne9QEBAAMOGDWPKlCk8/vjjjB8/nn/84x8d9g8MDCQiIsLnfyIiIiIiIiLSu3VWkZaamtrj36usrGTt2rXceuuthIeHAxAZGcnUqVM7/G6nFWkmE9HBtm7PY012OWMHRDCiXxiBFs/vjgi0MmNgNKEBFursTvKrGpiSEoXVbCI0wMLYAeHsL23dVy0qOKDb35VeWpF2KLfb7bMHmoiIiIiIiIj0fZ1VpA0ZMuSofPPpp5/m6quv5vHHHycsLIzKykq+++471q5dC8DgwYN959hJRRpAbEgApXX2bs0hp7KBr/YWMy4hgomJkQDUNDnIKK2jvrnqbFlGKaekRjNvbAJOt5uM0jq2FbRWsMWGdj/Ak14YpD3yyCPMnTuXlJQUqqurefvtt1myZAmff/758Z6aiIiIiIiIiBxDnW3kHxsbS3x8PMXFxe282bnO9llvaGjg1Vdf5dVXX233+YgRI3zn2ElFGkC/8ED2lHR+Amd7imqa+GpvScfzdLhYmlHa7rOIICtBVu2Xdjh63dLOwsJCrr/+etLT05k9ezarV6/m888/55xzzjneUxMRERERERGRY8jlvbnYIRmVyWTirLPOOqbziYyMZMqUKT73uqpIGxgVTMAx3q8sLS70mH6vL+l1FWkvvvji8Z6CiIiIiIiIiJwIOqlIA5g9ezYLFizA6Wz/dMuedvbZZ2O1+kYtri4q0qwWM8PiQtlRWHNM5mgxmRiqIO2w9bqKNBERERERERER2oRUbZ9HR0czZ86cYzKX0NBQ5s6d2+a+2+Uy2uZ2KtIARvUPx9rBs542ol+YlnUeAQVpIiIiIiIiItIrdXZqZ4trr72W+Pj4oz6Xm2++maioqDb3vabYftoHhAZYmZLS9t2eFhFoZUJSxFH/Tl+mIE1EREREREREeqXOTu1sERQUxF133dXu0s+eMm3aNGbOnNnuM38q0mjetywpIuiozA/AbILTBsdgPYp/h5OB/noiIiIiIiIi0itZA1r3I7M3OjrsN3r0aO6666529yg7Uunp6dx7770dju1dkdbZ900mE6ckhFGTWdDjczQBMwfH0i8ssMfHPtkoSBMRERERERGRXikiJsxoVxRXddp31qxZ3HvvvVgsPbc/2Lhx4/j5z39OYGDHAZXT0XrQQXundrZwu93Mv/dFPrnlKQo37O+xOZpNEFtYwj+veJIl//3OZzmsdJ+CNBERERERERHplSxWC+HNYVplF0EawOmnn84TTzzB4MGDj+i7NpuN66+/nkceeYSgoM6XY1aVVhvtiNjwDvt9NH8RX766FHttA8t/9h8GWT0h2JGICw3g4lED+Ne8P7Jl2Q4e+/7fuHPSz/jm7RU+AZ/4T0GaiIiIiIiIiPRaUfGezfP9CdIABg4cyGOPPcZ1111HTExMt75lNpuZNm0af/rTn7j44ov92netvKDCaEf3j2y3z46Vu5n//14yrn/6/J2cMSGFi0b1JzkyCLfT1e57HQkNsDA1JYq5I/oRFWzD5rUENmPzAf5wzd+5Ydg9LPjbx9RV13dr7JOdgjQRERERERER6bUim4O0uup6mhrtfr1jtVq55JJLePrppxk3bhzDhg0jNja23b5uhxtzrY0RI0Zwxx138NOf/pTExES/51dW6BWkDWh7MmdNRS2P/eDvOOyeCrEr77+YM66e4ekfHMAwRyPvX/Z7tr64iPqDxVg62GetJr8MR3YhcXlFzIoOYFT/cMzNfafOndimf1F2Cc/89BVuHH4vOXvz/f49JzurH31ERERERERERE5IkXGtyyWrSqqIS2o/EGuP2WzmoYcewmKxYDKZqKysJD8/n6amJhrrmvjF+U/iqoaAUBe2U218++23OJ1OzjnnHL+/UV5YabRj2gnS/nnPCxRllwAwduZIbnviWp/n6z7fRF1hBZuf/Zzpaf25/NKJrFm+iyULV7N95R4cDXaqDxbTWFFLdP9IygsrsVjNPLPpTwwalQrAxLPHsuzdle3Or6Koku0rdpE8PMHv33QyU5AmIiIiIiIiIr1WZFyE0a4o7l6Qtnr1arKysvj+97/vGSsyksjI1uWX4YERVFZVEZYUjMvlWV65cuVKZs2a1ekBA95alnZ67+fWYvEb3/L1m8sBCI0M4aHX7sVi9T0MYd2iTUZ7ynnjydufz6Nn/ardQwMqm/djczpc/Ozs3/L02ifolxLHqOlpHc5v1Ix0owJOuqalnSIiIiIiIiLSa7Us7aQb+6S12LZtGzabrcPnE84aA0BDWROuJs89t9vN4sWL2bNnj1/fKGsO0qL6RfjsqVaQVcRTdz9vXP/437fTLzXe592mhia2LN0BQHxKLKkjk/n7nc91ePKmy9G6l1pFUSUPnfs7KoorGTg6mZDw4Db9YxOjefLLXxIU4l8oKArSRERERERERKQXi4pvrSDrbpA2ZswYpk+f3uHzS+85HwCXw42b1pBq7dq1vPXWW+zatavT8V0uFxVFnqWd3ss6nU4nf7zxX9RVeTb6n33dTM7+welt3t+7IZOmBs++bxPOHsPKD9ex+Zvtfv++g7vzeGTuYzTUNDDilGFtnpfmlfPZ84v9Hk8UpImIiIiIiIhIL+ZdkVbRjSCtsbGR2NjYTg8OGHv6SGyBVkZdMxBLQGuEkp6ezpAhQ6itre30G1Wl1biaT9z0PmjgnSc/YOu3OwHoPzCee/95a7vvb1/RGtSlTR7Cv378ot+/r8XeDZn88pInmX3dLGjeU+72J68znr/w0Osc2JnT7XFPVgrSRERERERERKTXOtylnatXr+aDDz7ost/gsQMJirJRvq8as8PKmDFjuPjii7n++uuZPHlyp++27I8GEN3PE6TtXruPV3/9XwDMZhMPvXYvoZGh7b6/Y+Vuo713fSbFB0v9/n3etn67k8Qh/Xl13794PWs+V//sUi67dy4ATQ12nrz+KexN/p14erJTkCYiIiIiIiIivVbUYQZp5eXlJCUlddnv7GtOZ/sbB9jxVja7X8/F5XJht/sXOpV5B2kDoqivqefx657C6XAC8IOHr2DM6SPbfdftdrP9O88+bCERwXz52lI/f1lbwyYOZtCYVBKG9Df2Q7vtiWtJGeH5/Xs3ZPLG7xYc9vgnEwVpIiIiIiIiItJr+SztLPE/SDvnnHO49NJLu+x34R1zqMyqxe1yU5RTzJ49e9i5c6df3ygvrDTaMQOiePanr5K7Nx+AEdOGcd2jV3b4bt7+AmN/tZT0JNyu9g8Y6Ex8SixPr32Cp9c+QViUb9VbYHCgzymhbz2+0KcCTtqnIE1EREREREREeq3DWdpZXV3Ne++9h8Vi6bJvUEgQcUkxALidEG2LJSgoyK/veC/trK2s5ZPnv/KMGRrIg6/9GKvN2uG7O75rPRX01Isnc+dfbuT0y6dhtjRHOab235ty/gT6D4wDoKKoisFjU31OC/WWNnko1//qKgBcLjdP3vBP6mvq/fptJysFaSIiIiIiIiLSawUE2ggJD4ZuBGn79u0jMzPT729MPne80d7zYQ7Dhw/36z3vpZ2LXmldmnnLY9eQPDyh03e9DxoYc9oI5v2/i7j7qVuMwwumnjeB1zOfbvNecFiQsVzU3mgnY0t2p9/5/oOXMfJUz+/J21/Iiw+/6ddvO1kpSBMRERERERGRXi0iLhy6cWpnWFgYkyZNIjAw0K/+V9x3gdHOy8/n73//O9XV1V2+V17UGqTlZxRC835ll9x1Xpfvbm9eZmm2mEmfOhSAzG0HjecDR6XQf2A/Ipt/e4vigyWMmNYa9O1ctYfOWKwWHnz1XmPvtI/mf0Hm1gNdzu9kpSBNRERERERERHq1lgMHasprjY38OxMXF8cFF1zQZb8WQ8YNIjAkwPON4jqcTid5eXldvue9tLPFvU/fZuxL1pGailoObM8BYOj4gQSHeSruDmxvDdIGjUkBIHVkss+7FYWVRoUZwK7Ve7ucZ9KwBH7wyBXQvMTz6ftewu3u/p5sJwMFaSIiIiIiIiLSq7Xsk+Z2u6kqq+m0r91u59///jd793YdMHlLm+ypCrPXOLAVhpGSktLlO2WHBGkX3DabUaemdfle5tZsI8jyri7zCdJGNwdpI3xPHq0ur2XI+IHYAm0A7PQjSAO48v6LSBjSH4DNS7az7L1Vfr13slGQJiIiIiIiIiK9WncOHKisrMThcBAaGtppv0Odc+OZRnv38gy/9lgrPlhqtCNiw7n18Wv9+lb2zhyjPXB0a2CXtaP1fupIT4CWckiQ1lDXiC3AxvBJgwHI21dApR+nmQYEBXDnX280rp994BUa6hr9mu/JREGaiIiIiIiIiPRqUXH+B2kxMTFcccUVJCcnd9rvUOfcMAuTyXNUpjUevvjii07719XUU1tZZ1zf9sS1RMSGd/pOi4O7co12S1DmdruNirQBg+KN5Z4tgVoLp92Jy+UibcpQ417m1s4PHGgx/eIpTDnPc7BC8cFS3nnyf369dzJRkCYiIiIiIiIivZp3RVpXBw7k5+cDGKGYv6xWK/0HxwNQm19PXXVdp/uIvfnYAqMdHh3KeTef5fe3sne37r+WOiIRgKLsEuprGuCQKrVhEwe3eb+poYnktETjOm9/oV/fNZlM/OhvNxt7uL3zxw/Iz/Tv3ZOFgjQRERERERER6dV8grSiyk77rlmzhnXr1h3Wd6ZfNBmA0l3V5H1S1WEYV3SwhIV//9S4Hn/WGMxm/yOYloq0kPBgYhNjAMja1lpVNsgrSIvuH0XisAE+79fXNPjcy9uX7/e3U0ckcfmPPQcx2BvtPPez1/x+92SgIE1EREREREREerV+qXFGO3dv56GRw+EgKSmp0z4dufy+C4126CQLubm57fZ743fvYW+0G9fewVdXGusbKcwqBiBlRKIR1m1bvsvoc2gV2ujT0n2u66rrSRza37jOy+heVdl1j15JdP9IAJYvXM2Gr7Z06/2+TEGaiIiIiIiIiPRqg8akGu0DOw522vfKK69kzpw5h/WdhMH9CYnw7E0WFGNjxVdtT7bM21/A5y9943MvZkCU39/I2ZNvLBn1Pkhg89LtRnvcGaN83hkzY4TPdWNtI/0HxmO2eGKfvH0Ffn8fIDQixOdghBceer3TZawnEwVpIiIiIiIiItKrRfeLJDLOs5F/1raOg7T6+nr++c9/Ul5eftjfGjU9DYC8VaXs/GZfm+ev/+49XE6Xz71DT9bsjM9BA+me9+pr6tmzLsMYK2ZAtM87o0/3DdIaahux2qwMGOTZ0y1/f2G3g7BzbjjDqHzbuyGTNZ9t7Nb7fZWCNBERERERERHp9Vqq0soKKqgqrW63T2FhIeXl5UdUXTX31tkA5K4sYceyvT7Psnflsvj1ZQDGhv0Ag8em4q+Du7wOGmg+kXP7d3twOpwAjD+kGg0gJT0Rk7l1v7b6Ws+hBAlDPfuk1VXXd3kIw6HMZjPX/Hyecf3G799TVZqCNBERERERERHpCwaOSjbaWdvbr0qLjo5m8uTJxMTEHPZ3Tr/iFCxWCwMmRTPkkv5sXb7TePbab9/F5fKETdYAT5AWkxBNZFxEh+MdKnd/6x5vLSdvbl7Suqxz/Jmj27xjNpsJDA5oHaN5n7jEoa0HDuTv797yToDTLptq7O+2c9VeNn69rdtj9DUK0kRERERERESk1/PeJ62j5Z0BAQFMnz69WydoHspsNjPujFE01ToJjLTx0s/fAiBz6wGWvL0CgIjYcBrrmgAYMs7/ajSAiqLWyrHYRM8Szi2d7I/WIig00Gjv33QAgCSvkztzu7lPGs2/9QePXGFcv/nYgm6P0dcoSBMRERERERGRXm/wmNaTMTuqSFu+fDkLFy484m/d9vg1lGyvZPubB9j+3W6amuy88uv/Gs9Pv3ya0R4ydmC3xq4oqoTmpaFhUaHU1zawe+1+aF7Ceej+aC1CwoONdsuBC96nmZbmHd6+cGdcPZ2k4QnQXBm3zasC72SkIE1EREREREREer2Bo72DtOx2+9TV1REYGNjus+5ImzKMqPhwIgeFgsnN/J+8xIr310DzUs5+A+ONvoO6sT8aXkFaVL8ITCYTO77bbeyPNu6Mtss6W4REhhjtnN2efdbCokONe7UVtd2aRwuLxcIPHr7cuH7jJK9KU5AmIiIiIiIiIr1eeHSYsRTywPacdjfGnzlzJnPnzu2R751542mknB5PaEIwX7y0xLj/g4cv9zl5c8g4/yvS3G63sbQzql8k+LE/WouAIJvRriypJntXLmFRrUFazWEGaQCzr51pnAC67ovN7Fqzt8t3+ioFaSIiIiIiIiLSJ7RUpVWVVlNeWNHmeWZmJo2NjT3yrWv/bx7ORicuuwt7ox2A+JRYLrh9DplbPRVxFquFlBFJfo9ZU1FrVJ+1BGnrv9xiPO9ofzQAm83mc/3d/9b4BmmVdX7P41BWm5XvPdhalfbmH458eWxvpSBNRERERERERPqEwT7LO3PaPF+2bBl79uzpkW9FRkdS9nUTtQUNxr0r7rsQkwmyd3q+nTIikYBAWyej+GpZ1knz0s6CrCL2rPPsjzZs4mBiE9rfHw3AGmj1uf7uw7WERrUu9zzcpZ0tzr3pTOKSPKedrvxwHQd353b5Tl+kIE1ERERERERE+gSffdK2td0nLSAggH79+vXY94ZfmURMerhxfc6NZ5CzOw+H3VNV1p1lnRxyYmdUfCTL3l1pXM+6cnqn79oCfIO0nav20lDXWn13JEs7AQICbVxx34XG9WcvLD6i8XorBWkiIiIiIiIi0icMGtO6sf+Bdk7uvOuuuxg9uuN9xrqrtr6GsITW0zJXvL+GjC2tAd7gMYd30ADNSzuXvecVpF11aqfv2tqpfFv76UZCIjzzq6k4/KWdLc658QysNgsAX766FHuT/YjH7G0UpImIiIiIiIhInzBwVLLRzjokSKuvr+cf//gHFRVt9047HG63m+LNlVRlt1Z6vfvnj8jYcsC4HtzNirTKkmqf691rW5d1Jg1L6PRd2yFLO2le3tmyT9qRLu2kuUrutMunAVBRXMV3H6w74jF7GwVpIiIiIiIiItInhIQH03+g53TJrO0HfU7urK2tpbKykurq6k5G8N/mJdvZ8+UBnz3ScvbksXvdPuO6u0s7HU0Oo52xOctod7Wsk0Mq0gKDAwDY+NVWQsJbKtKOPEgDuOC2OUb70xe+6pExexMFaSIiIiIiIiLSZwwc7alKq6uqpzin1LgfGRnJ+PHjiY+P75HvfPjvzxl2URIDZ/f3OQRg16q9AIRHhxqb8/vL5XS1jrNmr9HualknzXuYtYhpno+9yUFT84miTQ12n2DxcE04ewwDBnv2mdvw5RbyMwuPeMzeREGaiIiIiIiIiPQZg0a37kuWta11eafNZmPatGkEBQUd8TeKDpaw4n9rMVtNBIUGcv2vrzKeNdY3eeYxNhWTydStcZ1eQVp+RhEAQycM6nJZJ4AtKMBoR8ZHGO3qshoAzGZTt+fTHrPZ7FOV9vmLXx/xmL2JgjQRERERERER6TMGeZ3c6X3gQFlZGc8//zxFRUVH/I1Pnv0Sl9NF5qICxqSNZe6ts9ts9j9kbPeWdXJIRVqLM66a4de7gUGt3w8ODzIOGWjZG81s6bkI6NybzjTG++Llb3A6nD029olOQZqIiIiIiIiI9BmDxrQGaZnbW0/QdDo9YY/L1Tas6g6n08nnL30DQHBsIFMvnoDZbGbq+RN8+nV3fzQ6CNL8WdYJYAturUhz2V2cfsUpnrbLs5yzJ4O02IRopl88GYDSvHJWf7qhx8Y+0SlIExEREREREZE+I3VkkrGE8cD2HON+XFwcV199NQMGDDii8bev2E1ZfjkA6XNTyczJAOC2J6716ZcwrH+3xz40SPPntM4W3hVpdrudubfO9nnek0EawFyv5Z2fvbi4R8c+kSlIExEREREREZE+IzA4kIShnhAre0eOUYHmdDrJy8szKtMO17J3Vxrt2P6xhIaGApCSnoQ1wGo8++6Dtd0e+9Ag7aIfnuP3u4FeFWn2RgejZ6STOjLJuNcT+6N5m3LeeOMwhfVfbKauur5Hxz9RKUgTERERERERkT5lcPPyzoa6Rg7uzgOguLiY5cuXU1xcfNjjOp1Ovl24GgBboI0bb72Bs88+23jmfSrmN2+t6Pb4dTWtYVRgSCBnXzvT73fraxqMti3Qislk8jkUwNHD+5hZLBZmXDoVmk8HXfv5ph4d/0SlIE1ERERERERE+pRR09ON9uZvtgMQHByMxWIhJCTksMf1XtY55bzxLF/5LevWrYPmUzad9tawqrK4ip2r93Rr/H0bMo321PMnEBzq/wmjFSVVRjs00lMlN+f6WcY9R6ODpkZ7t+bTlZYgDWDlh92vwOuNFKSJiIiIiIiISJ8y4ewxRnvTN1sBiIqK4qGHHiIyMvKwx/Ve1jnryunk5uZSWFgIwN71GW36/+eRt/we2+l0sm9ja5A2cfbYbs2tqqTaaIdHe4K0yLgIAkM8Sz7dbjff/W9Nt8bsyrgzRhEa6QkmV3+yAYfd0aPjn4gUpImIiIiIiIhInzJ0wiDCojxh0qZvtuNyuXA4HDz33HOHvbTz0GWd0y+ZQnp6OkOHDvV85+utbd7ZsmyHz3LNzqz5dCM1FbXGdVBIYLfm5/1ueEy40bZaLUb70xd69lAAW4CNaRdMNL6/ZdnOHh3/RKQgTURERERERET6FIvFwvizRgNQXVZDxuYDuFwuiouLjQqy7jp0WWdoRAhjx44lPd2zjHTDYk+QZguwEhkfAc2HB/zz7hf9Gv+Dpz/3ufYOxvxRW1FntFu+73Q4qa1qDfI2Lt5K3v6Cbo3blRmXeC3vPIwDFnobBWkiIiIiIiIi0udMOKt1eefGr7dhs9mYOHEi/fr1O6zxDl3W6XK5mD9/Prt27SI/o5CCzCIARp+Wzi2P/cDo+81by2lqaOp07IO7c1m/aLPPPe9gzB91XoFZZJynIq2qtLpNv0+f/6pb43Zl6tyJWG2eqrcVH6zxOXChL1KQJiIiIiIiIiJ9zsRD9kkzmUzMmjXrsPZIc7lcbZZ1NjU1YbfbsVgsbFzcuqxzwtljueC2OYTHhEFzVdjT973U6fgf/vuLNve6W5FW77WENGZAFAAVxa0HEJjMJgA+emZRt8fuTGhEiLEnXfHBUvZvyuqxsU9ECtJEREREREREpM9JHZlsBEpbl+3EYXfw7rvvsnz58m6PlbXtoLGsc/I54wiNCCEoKIh58+YxbNgwNizeYvSdNGccADf++mrj3qKXv6Gpqf0TM8sLK/j8xa+heVloi5rK7oVdDXWNRjs2MRqAiqJK497gManQXLn2v39+1q2xuzLj0mlGe0UPH2hwolGQJiIiIiIiIiJ9jslkMiql6msa2L12PxaLhbq67i2ZBNi8ZLvRbjlNs7GxkYqKCkwmE5u+3gZAaGQIaZOHAHDpPXONEy0ddifP/vTVdsd++4n/GSHY7GtnGvdru1k11tTQGtTFJcUCUFHUWpF2yoWTMFs8MdDCf3xCXbV/hyD4Y/olU4z2qo/X99i4JyIFaSIiIiIiIiLSJ3nvk7bp623MnTuX6dOnd3uczUtbg7RxZ4wCICMjg8WLF7Nr/V4qSzx7kY0/czQWr1Myr/3FPKP92Qtf4XA4fMYtyS3lo2cWARAYHODTv6abe6TZG1uDtOgBnuWr3hVpqSOTjaCuuqym3eWkhysuMYahEwYBsH9TFrXdrKbrTRSkiYiIiIiIiEifNOGQfdKcTme3T+10uVxsWboDgPDoUIaMGwiA2WwmJCSE7Ut3G31bqtVazPt/FxEcHgSAvdHBCw+94fP8zT+8bwRgl9x1Hv0H9TOWd7Z3UEBnHE2tIZ3V6hnDO0iL6hfJDx6+HJPJs1fagr9+5LMc9EiNnuE5vdTtdrNj1d4eG/dEoyBNRERERERERPqkhMH9GTDYc0rn9u/2sGXzFr755ptujZG17SDVZTUAjJ01CrPZE6WkpaVx3333sembbUbflv3RWpjNZr73s0uN64/+/YVRlVZ4oJjPXvCcoBkUGsjV/3cpJpOJ+BTPsszCrOJunYDpdLo837S0Rj2+QVoEKelJnPG9GZ5nxVV8+lzPneA55vSRRnv7il09Nu6JRkGaiIiIiIiIiPRZLcs77Y12HFXgdDq79X5LNRrA+DNGG+3Vq1ez+KvFbF22E5o3+E9JT2zz/g8euYKg0EBo3sfs1Uf/C8Abv1+Aw+6Zy+U/voCoeM9yzMRhAwCoq673OXWzK26XJ3TzXlpanFtmtKP7ew5euObhy417//3zBzQ1NPn9jc6MPi3daCtIExERERERERHphSZ6Le8s3lbO3Xff3a33ffZHO3OU0d69ezc5WbnG8shJc8YZyya9mc1mrvjJRcb1wqc+4eCeXL542VMZFxIRzJU/vdh4njBkgNHO31/g1xzraloPDvA++fPgrlzPN8KDjRNMB48dyGmXe07ZLM0r54uXuleh15F+KXH0S40DYNfqfTjsji7f6Y0UpImIiIiIiIhIn+W7T9p2nn32Wb/3SetofzSAwYMHYy9oXXo58eyx7Y4BcONvriYgOACAxromfv+9v+FqXop55f+7mIiYcKNv0rDWIC13n39BWqlX5ZktyOb5Tn0jhVnFAKSMSPQJ+a555Aqj/faT/6Oxvmf2SmupSmuoa2T/pqweGfNEoyBNRERERERERPqsmAHRDByVDMCetfsoKyvjwIEDfr17YPtBY9N/7/3RANLT09m9uDUsmjh7TLtj0FyVdund5xvXGZs93w+PCeOKn1zg0zfRK0jL8zNIK/EK0gJDPIFd7t4CY4+1lBFJPv3TJg9l2gUTASjKLuG9v3zs13e6MuY0733Sdnfat7dSkCYiIiIiIiIifVrLPmkup5tB/YYwYMCALt8B2NzB/miFhYU888wzZO3NBiB1ZBJxSbGdjnXLH36ALdDmc+/qBy4hNDLU517i0P5GOz/Dv8q5soIKox0c6jklNHtnjnEvJT2pzTu3P3m9cTDBW48vpOhgiV/f6oz3Pmnbvuub+6QpSBMRERERERGRPm3i7NZll1W7GwgLC/PrvZbKMYARpw432mVlngqwxmrPRv2dLetsYbVafeZhMsGl985t0y9hSH9jGaa/SzvLvYK0oDBPkHZwV55x79CKNIBBo1OMKrnG+iae/7/X/PpWZwaNSSEkIhiA7ct3devU0d5CQZqIiIiIiIiI9GnjzhhlhFOZeft5++23/XrvwI6DRrtleSjAkCFDiKiKx9no2eds0pxxXY5VX1PP/k2ZxrXbDZ+9sLhNv4CgAOKSY6AbSzu9T/cMjQgBIHt3rnEvdWTbIA3ghl9fTWScZ3+2Je9853OwwuGwWCyMmp4GzVVyBZlFRzTeiUhBmoiIiIiIiIj0aeHRYQybNBiAwv0llJeXd1kt5Xa7ydruCdL6pcYZARXA/v372b/Zsz+a2WxivNdpnh15/bfvUZpX7nPvtd++227flgMHqkqrqSiu7HLs6rIaox0W7Vkq2nJip9li9lku6i0sKpRb/nCtcf3v+17C6XB2+b3OjJjWWrmXuTX7iMY6ESlIExEREREREZE+b2LzPmlFmysYnTjO5xTL9pTkllFXVQ/AwNEpPs+++fobHMGeky7Tpg5rs8/ZobK2H2TB3z8BwGKzYLF64pia8lo+fvbLNv2HThhstHev2dflb/MO0iJiwnC5XOTs9iztTBzaH1uArcN3z7v5TIZPHgJAxpYDfPr8V11+rzOpI1sr97z3aesrFKSJiIiIiIiISJ83oXl/MpfDza5teygo6HzZZEs1GsAgr2WdAPXVDVQdrANg0uzO90dzu908dffzRqXXNQ9fwezrZhnPX/7lW23eGXlqmtHeuXpvF7/ME8i1iIiLID+jkMZ6z/5t7e2P5s1isXD3P24xrl/65dvGSaWHI2VEotHO3pXbad/eSEGaiIiIiIiIiPR5Y04fYZyaWeUsZ/369Z32z9rmtT/aIRVprr2BFG/xbPDf1f5oX72+jK3LdkJzddj3HryUe/91q3FiZmVJNYte+cbnnZGnDDPa/gRptVV1RjuqXwQ7Vu4xrtMmD+3y/dEz0plzvSfcqy6r4eVH3+nynY6kpCca1X6qSBMRERERERER6YWCQ4OYfK4n9CraVkGZ10mX7TngXZE2JtVob9u2jfIwTzVbYHAAI6entfs+QHV5Dc/9rPU0zLufupXA4ECCQoI483szjPvPP/iGz3vxKXHEJEQDsGv1XlwuV6dzrS5vXdoZlxTDju92G9ejZqR3+m6LWx+/luDmEz8/fmYRW7/d6dd7hwoMDqT/oHhoPjm0r53cqSBNRERERERERE4Ks+ZNB+DA14VUb2tq87y2qo61X2xi2/Kd7N2w37jvferlpnWbsNfbARgzcyQBgR3vP/bSz9+ioshzWMDMeacwbe5E49mP/327UZVWUVTJe3/9yHhmMpmMqrS6qnoONu931hHvPdLSpww1KtLMZpNPdVtn4hJjuP5XV0PzctQ/3vQv6qrr/Xr3UC1/r7rqekrzyg5rjBOVgjQREREREREROSmcevFkrDYLlgAzhWEHWPjcR/z9zudYt2gzAI9e+iSPzH2M/zfrUTK2NJ84aYI7xv2Uv9z6bxx2BzXZTWQvKwZg2vkTO/zWukWb+eiZRQAEhQZy519v8nkeGhHCOTecYVy/9Iu3aGqyG9cjTmmtdHv9t+/x6GVP8uIjb+J0tj1Vs76moXXcyBDjtMwh4wcRHBbs99/nip9cwJjTRwBQkFnE/P/3st/vektJbw0es3f2rX3SFKSJiIiIiIiIyEkhMDiAgaNTcNpduF0uPnzlEz557kuevP4pAMryy9u+5PaESp+/9A1bvt3BztV7KN/r2Yz/9HmntPudypIq/nTTv4zrWx67hn4pcW36/eTZOwgMDgCgqcHO3+94Frfbzef/WcyOVa3LM5e8s4KVH67j7SfeJ3uH775jDocDp90TrtkCbexcvc9YTjmqk2Wn7bFYLPzfK/cYSzw//8/XfPfB2m6NQZuTOxWkiYiIiIiIiIj0Kh/N/4KrBtzG/k1Z4IZ9H+dRvt+zJDJieAilpaWccdWMDt8Pjw6lvLaUmGnBWIMtjDx1eLvhmNvt5q+3P2PswTblvPFcdu/cdse0Wq3c+sS1xvWXry7lkojr+cttz7Dyg3XtvhMSEeJzfXBXntezYJ/90UafNqKTv0j7Egb35y6vUzz/dsczlBd2vp/cobyXwva1kzsVpImIiIiIiIhIn/fSL9+mrqp1z6+IgaFMuH0o428dQsqcWDIyMjjvlrM6fP+2J69n1+a91Jc14qh3MrN5v7VDffbCYqOKKzIunAf+c7dximV7Lr/3AmISoozrhtrGDvuGRATTL9U3vNu7vnUvt6j4CLZ/t8u4Hu3nQQOHOu+mMzntsqkAVBRX8dc7nsHtdnNgx0G+Xbgah93R6fupI1qDtIO7+tbJnQrSRERERERERKTPO/eGM7CFWjn9V2MYe+Mg+o+Pwmw1E54cggkTSUlJJAzuz6Q5Y9u8O/q0dM6/5Sy2f7SPLS9lQvPhAYfK2ZPns6/Y/c//iNjm0zc78u5fPqSyuMqv3zBoTGqbUC5rW+vporFJMexctReaT+88NHTzl8lk4ifP/pCofpEArPpoPY9d83fuGP8Av73yz7z3l486fT8iNpyo+AgAcvbkH9YcTlQK0kRERERERESkz7vjzzdwzjVnUJFZQ0RqKGZrayQS2RRPYmIiAHNvne3zntli5r75d5C3vwDbcBfWIAtpU4YyYFA/n34Ou4PHr3uKhjpPRdmFt89hxqVTO53Tyo/X89zPXsPpcPn1G4aMTW1zL2dva1AVFhliHDwwakZ6p5VwXYmKj+T+5+80rpe+8x0up2eeKz9qf9mpt34D46F53zmno+0BCb2VgjQRERERERER6fPMZjM/eeaHDAlPZ9trWVTnty7zdIe3npY547JpWAOsxvWFd8xh8JhUvlzwNTHDwzFbTMy8om012qu//i971nmWWSanJfDDv97Y5ZwcXqd0tufQIGxQO0FacXap0bbbWwOrsaeP7PL7XUmbMpSofhFt7u9dn0FTY+dzj0+OAcDlchv7xfUFCtJERERERERE5KRgMpm456lbOeeKs6nNb8DtcuN2uzFZWgOrgEAbp1w4CYDAkEBu/+P1AGz+egdFWyuoLWzg9Hmn+oy7ZdkO3n7ifwBYrBYefuM+gkODupzPzCtO5er/uxSTuf3KsYShvlVv/VJi2/QpL2oNqYoPlhjtKeeN7/L7nSkrKOfuqQ9SUdR22am9ycG+jZmdvh+bGNM6r5zSTvv2JgrSREREREREROSkYTKZuONP15MQmkxDRRMmk4mRo9NpsDvJraxnZ1E18/71Qx5c/gf+tOufNJgtFGQVkbklm70f5DJk/ECShycY41WWVPHkDf/E7XYDcONvvkfa5KF+z+f2J67jlb3/JDktoc2zqpJqvvfgpQAEhwUx8ZxxlNc1sb+klu0F1WwrqKL/WeNJOCWNgMgQMrccAGDA4H4kDW87Xnes/mQDpXnlHT73Ph30UA0OJ7HjBpN21emMuu4s9lc1sr+klvK6JlzNf6feyuR29/JfcBiqqqqIjIyksrKSiIi2JYoiIiIiIiIi0vetXbadPfVVBPRPoc7RSTzidFJbnMO2l5cyY8IIrvvFvObbTh6Z+xgbvtoKwNhZI/nT4l9hsVgOaz7v/uVDnn/wddwuz1wCgmx8VPsGmUVVZFQ0UljbhNPV8Tyrc0rI/Gw9g8IDuPfPNxzWHFpUllTxq8v/yPYV7Qdmk2aP5ckvHzWua5sc7C2uZX9ZLTWNHe+JZjGbGBAWSHq/MJIigzAfwT5ux4OCNAVpIiIiIiIiIieVeruTtQcryCqro7uhSLAJTh0SR2p0MC8+8iZvP/E+AFH9Ipm//kniktouv+yOqrJqbh9zPxXFVdz66n2YRw+itqmbm/W73QyJC2VqchRBtsML9TzDuNmybAfv/eUjVn283ueZLdDKp/Vv0WB3si6ngozS7v8tQwMsTEmOYlBMyGHP8VhTkKYgTUREREREROSkkVFay5rsChqd/p2U2ZGw2jr+c9kfaKqsw2wx88evHmX8GaN7ZI71diers8s5UF7vR++OBVnNnDowmoHRRx5UHdiZw7t/+ZBFLy3B7XYTHB7EP7OeZdWBchr8PHW0IwOjgzklNZrgIwj9jhUFaQrSRERERERERPo8t9vNhtxKthVU99iY1QdL+Oqe+Vz/wCXM+38X9ciYVQ12Fu0p7n4VWifGJ0QwPjGizSmgh6Mwu4SPn1nEsO/NJKvzgzu7JTTAwrlp8UQE2Xpu0KNAQZqCNBEREREREZE+ze12sz6nku2FPReitXBU1fK904YSFth+AORyuXj9t+/x+X++5nsPXsald5/f4VjVjQ4+21VEvb3nQrQW4xIimJgU2SNjbcqtZHN+29M8j1SwzcLcEf0ID7T2+Ng9RUGagjQRERERERGRPm1fSS0rssqO2vgxITYuHNEfs9m34sveZOcvt85n8RvfAhAUGsjC0pewBfiGbk6nk6KcUpYV1tFgPnrLG6f2C2FU6pHt4ZZZVseyjNIem9OhooKsXDRqABbziXkIwYkb8YmIiIiIiIiIHKHaJgdrDpYf1W+U1dnZWlDF+MTWiq+66np+M+9PxomeAA21jbz663cJCLJRmFVM4YEiCrKKKT5Yytg7zmfMTbOP6jy/3VPE72f/mvh+ESSlJZA8PJHktASShieQOGwAwaFBnb7fsnfb0VTR4GBzXiWTkqOO6ncOlyrSVJEmIiIiIiIi0md9va+YgxUNXDMxidK6JgC25leTV9UAQL+wAOaO6M/bm3JpPIJN880muHjUAKKCbZQVlPPI3MfYv/mAX+9GD09k7qv3c92UlDZzjAsNYGJSJCYgt7LhiJenZi3ayPJfvNbus/jkWJLSEhgxdRhjZ41i9Iw0QiNDjedL95eQ1XwAQnt/z1NSo4gJCcAErM+tpLC68bDmaAIuGtWfmJCAw3r/aFJFmoiIiIiIiIj0SRX1dg5WeAKzmiYnX+wubtNnVP9wSmqbjvhbLjfsLKwmsa6Ou6c+SGO9f2OGR4cy7Z6LMFvMbeZoNnkOCvh6XwlOV8/UQQ2cM4GNT39MbX7byrLinFKKc0rZ9PU23n7yf5jNJoZOGMTYmaMYcdYYshP7G30PnWt4oJXIIBuf7SoixGZh1pAYPm/n7+0PN7C9sJqZg49sGerRoCBNRERERERERPqkPcU1RjvUZuH89Hhqm5ysya6g0ekiOTKIoppGUqLMPfK9jLI6ljz1Qechmgn+75V7GDpuEP0HxmEJCeLdLXm43G3nGBVsw+Fyc+bQWMyYWJdTQXn9kR2VaTKbeHj5H4irqiFnTz65e/PJ2ZtH7p58cvbkU1XaWvHmcrnZuyGTvRsymeCAMTe2BmmHzrXB7sThcmMCAqxmGrpZ3Xfp6AGsz6kgp9ITfGaV1TE1OYog29HbM+5wKEgTERERERERkT7H7Xazv7TOuF64NZ9Gp4thsaFMTIpkVXY56f3C+GZfCSlRwT7vnpceT3xoIC6v3bDW51Sy2yuYa4/D5WbGneex/N3vaOooTHNDVFwEQ8YNBGBXUTUtxWaHzrGwppGoYBuf7CwkNMDC9IExfL67yBiqX1gAYxMiiA8NxATUNDnIKKtjZ2HrmO05UNXItHEDGTp+UJtnpfnlbFu+i63LdrD1251kbs3G7XYz5IIpPv3a+3vWNjm4fEwCFrOJb/aX+Pw9+4UF8vGOQiMItFlMXDMxmfe25FHb5OSD7QU+47vckFVex4h+4Z3+zY+1XhekPf744yxcuJBdu3YRHBzMjBkzePLJJ0lPTz/eUxMRERERERGRE0RVo4MmZ2tVVGNzO7O8jrT4UIbEhHCwor7DwGl9TgU7izoPztoTkBDDJ7VvUJJXxt71Gexdn8Ge9fvZuz6DsoIKwmPCSBmRZPQv9lpWeugcsyvqKappxOFyU9ngIMDSepJlcmQQs4bEsjG3kuWZZTQ6XEQEWRk7IIJgm4XaJmeHc6y3u6izOwkNaBsLxSZEc8ZV0znjqukAVJVVs2nlXjLjI336HTrXxIhAAq0WFm7LJ9hmZvaweD7eWWj0b3K4mJQUyeJ9JfirJ5bc9rReF6QtXbqUu+++m6lTp+JwOPj5z3/Oueeey44dOwgNDfVjBBERERERERHp60q9Qhir2YTT5cYNDAgLpKrRQVSwjdjQAFKjgokOtjFrcCxf7u16Ty+r2cTk5EiSI4OxmE3kVTaw+mA5dqfb57txiTHEJcYw/eLWSq7yokpCwoMIDA5sM8/25lhS28i4BE9FVpDVjNMr9JuWGs22gmqfsK+qwcGKrDLjOshq5pTUaAaEB+Jwuckoq2NTbiXu5u+2F6QdKiImnIEzRpC5v7TTvyeYjMMa7E43VrPJZ5zdxTWM6BdO/7BACmvaHkIwb2wCaw5WcLCi3rinIK0HfP755z7XL730Ev369WP9+vXMmjXruM1LRERERERERE4clQ0Oox0RZGXGwBgcLhdON3yXVeZTsXVeejzLMks7GMnXaYNicLndfLijALcbZgyM5pTUaJZnlrX57qGi+/lWdbndbqqa+7c3xyanm30ldZyf3g+zCdYdrPD0DbQSHmgls6y207nOGhJLvd3Jgq35BFrNzBkej8PpYmtBdafzPFTVIX3bm2tdk5MhsSGcn94Pi9nE5vwqn3caHS62FVQxKTmSz3YV4Y+qBgdutxuTyeRH72Oj1wVph6qsrAQgJiamwz6NjY00NramnVVVVR32FREREREREZHez+G1ZrOszu6zzPBQ7Z3mOSk5kgmJrcHXu1vysJhNpEYH886mPKMCbWNeFZeOHsCKzDLczd/1N/xxuT0nVHY2x32ltewr9Q3MAm2ewxE6W74ZYrOQEBHEO5tycbjcOJqcbMmvYnxiBFsLqn3+Pl05tG9Hc20JEzuys7CGkf3CSIkKpqC6ocvvupv/RpYTJ0fr3UGa2+3m/vvv5/TTT2fMmDEd9nv88cf5zW9+c0znJiIiIiIiIiLHj/kIw5cNOZVt9kiLDLJhNpmYNzahTf9gm4U6uxOTCb8rqA630KrR7llCGRpgobqx/TAtJMCCw+XyOT2zutFBaPMpmN35dk/lWE63m015VUxKiuTzXW2Xd7b77RMoRKO3B2n33HMPW7ZsYfny5Z32e/jhh7n//vuN66qqKlJSUo7BDEVERERERETkeAiwmHt8zNomBy63m/9uycPZQUVXYDe+azaZsJpN3aoOo/kghepGB4NiQtiaX91un7omJ1azmSCr2QjTwgOt1Nqd3Z5noLXn/pb7SmoZ3T+coXEhXfa1mk2YT7Akref/qzpG7r33Xj788EO++eYbkpOTO+0bGBhIRESEz/9EREREREREpO+KCbH1+JgNDhcHK+o5JTXKCJeCrGZSo4K9vhtwTOa5JrucsQMiGNEvzAjFIgKtzBgYTWiApzouv6qBKSlRWM0mQgMsjB0Qzv7mZaLe8yzIKuLtJ97ni5e/IXPrAZwO3yq36B78W7qBDbmVjB3QdTbT3b/lsdDrKtLcbjf33nsv77//PkuWLGHw4MHHe0oiIiIiIiIicoKJPUohzPLMMiYkRnLhyP4EWs002J1kldWR3Xza5Np3lrO/vJKxs0YxduZIImLDu5xnUU33T6fMqWzgq73FjEuIYGLzXm41TQ4ySuuob646W5ZRyimp0cwbm4DT7SajtI5tBZ4KNu8A78+3/JvNS7Yb14HBAQwZP5Dk9ERiE2K4+J7zuz2/zmRX1DNmQDhBzctMOxIX2vNh6JEyud3u7tUPHmd33XUXb775Jh988AHp6enG/cjISIKDgzt9t0VVVRWRkZFUVlaqOk1ERERERESkj/pwewHl9fZj+s2v7p5Pwdq9xvWg0SmMnTmS9GnDSElPJDkt0SdcO1hRz9f7So7pHONCA7hwZH/j+oGzf+0TpB0qNDKE27/7IyW13Q/8jsTZw+JIifIv6zlWel2Q1tGGfS+99BI33XSTX2MoSBMRERERERHp+3YV1bA6u/yYfa++oJwFl/4euohawqNDSUpLJDktgaS0RJg9Caf12C0aTGmox74vl8KsYgoOFLFl6Q4Ks9qeXNoiICiAf2Q/x4qszk/l7EmhARauGJtwwu2R1uuCtJ6gIE1ERERERESk77M7Xby7OQ97NzfzP1xTkqNICYBty3exddlOtn67g70bMnE5XZ2+N+bmOUz40QXHZI6NlbUsvOi3OBv9q9QLDgvitx88yJgzRvHe5nwau/gtPWViYiTjEk+8zKbX7ZEmIiIiIiIiIuIPm8XMuIQI1udWHvVvhQVaSIsPxWYxM+OSqcy4ZCoAddX17Fy1hwPbc8jZk0fO3nxy9+ZTlN26nHP3f5cz/IrphPaPPurz3PL8F+2GaCaTiUNrrVLSE3n881/Qf2A8AOMTI1hzsOKozzHEZmFEv7Cj/p3DoYo0VaSJiIiIiIiI9Fkut5vPdhUd9f29zkuPZ0B4kN/9G+oayd9fQM6efHL25FPUYCfq4ulHdY5Ve3IpW7ic/gPjGTCoH/0HxTNgUDz9BsbztzueYel/Vxp9R01P43cfPuSzn5vb7eaL3cUU1jQe1XnOGR5HUuSJtTdaCwVpCtJERERERERE+rTKejuf7CrE7jw6Ecjo/uFMSYk64nFWHShnd3FNj8zpUIEWMxeM7E9EUPuLE79+81sev+4pAKZfMoVH3vwJQSGBbfpVNzr4eEchTUdpieeIfmGcknr0K/MOl5Z2ioiIiIiIiEifFhlsw750C/aJw7GF+l815o+hsSFMTo7skbGmpUbR6HSRVVbXI+O1sFlMzB4e12GIBnDWD06nurwWs8XMBbfNxmK1tNsvPNCKe+U2mkYNJiCsZ6vGBsWEMLUHAsmjSRVpqkgTERERERER6dNWfbyeX17yBLGjUjnzz7cQHNczWcCgEAsvXfEEgUEB/Hj+7Yyenn7EY7rcbtZkl7O7uLZH5hhis3D28DhiQwJ6ZLz1X27mkbmPETkskTP/ckuP7euWHh/KtNToE+6UzkOZj/cERERERERERESOltx9+TxxvWfJYumObKJ2ZDIkJuSIxgwNsDBneDyr/7iQ3D35ZGw5wE9O+wUPnP1rVn+yHpfr8Jc9mk0mTh0Yw9nD4gi2HVlsMzgqiCnB7h4L0QoPFPOHa/6By+WmfE8uYZv2MSw29IjGDLaZmT0sjlMHxpzwIRpa2ikiIiIiIiIifVVDXSO/mfdnais9SyVnzjuF7/2/CzGZTAyJDeHdheuIHjvI7/GCbWbS48MY2T+cAIuZtClD+fLVpcbzzUu2s3nJdlJGJHHl/Rcz5/pZBATaDmvuKVHB9AtLYHtBJWt35BMUE+7HWx5JkUGkBlm4e+APAYiMj+CZjX8iLjHmsOYC0NRo5zdX/pmq0moATrlwEtc9fBlms5khsSG8s2AtUWMGYvIzDAu2mhkeH8ao/uEEWntPnVfvmamIiIiIiIiISDc897PXyNyaDUDKiCQe+M/dRtDjyC3hk1ufYusLL1H47TqSI4MIOiTQcdkdxIbYSIsPpXrrd2x4+ln2L1hOgMXT7/QrTmn3uwd35fK3O54xKuEOV6DVTEheCQsv+i3LHn6F7C/WU7rzIE67w6dfsM1McmQQI6ODKH/za8J2H+Dg8u3G88riKq5NvZNXfvXOYc/lpZ+/xd71GQAkDu3Pg6/ei9nc/PcqreSTW59iyzP/IX/JapIjg9pU05lNEBNiY3hcKLU7V7PxmefZ8/aSXhWioYo0EREREREREemLVn28no/mfwFAYHAAv1rwACHhrZvjf7tgNSazie2v7mDGHyYze3g8xQeL+csPnyM3o4jSvDLcdicf17xGVVUVi7J3EZxkYcnKrwkMCuDC288hLjGGfqlxFGWXtDuHnN15R/w71n6+CZfDSfbizdTtzqEkpxSTxcw98+/g3BvPxGI2YWsO9u459WF2r9nHJ3//mLv/ebPPOC6Xm9d/9x5fvPwNj33yCIPHpPo9hw1fbeG9v34EgC3AyqPvPUB4dJjxfPmC1WCCnW/vYuovxjN7eDwVRRU8cct80qYN47pH5mE1mzCbTVRXV/NlxnaCEkys3Pwttn9YuOK+i47473SsKEgTERERERERkT6lvLCCv9z6b+P6h3+5kYEjk336fLtgFQPP7kd4cginXzENt9vNz+b8lty9BT79KoqqKCzPN64jB4by1I9fwGTynG45anpau0FazIAofvriXUf8W9Yt2my0HU12ANxOF2njBxJk8z1ZM39/69yf/elr7Y5XfLCUO8b/lDv/ciPzftJ1gFVVWs0fb/qXcX3r49cydLzvcthlC1aROqsf0WnhzJznqdL72ZzfkbUtm/WfbmDKWaMZN3OUZ475rX/L8OQQXvj565gtFi67Z26XczkR9K76ORERERERERGRTrjdbv5867+pKK4C4NSLJ3PRD8/x6ZOzJ4+MLQeIGhJGoDmIfqnxrPjfmjYhGkBJTikD+g+gobIJAGuQhVHfS+XdV97jf//6jJGnprU7j2t/cSXpU4Ye0W+prapj16o9AKSOTKK+usF4NmT8QJ++9iY7NRV1xrWjyXf5pw83vP7b97r8vtvt5u93PktpXjkAk+aM5fL7LvDpU5RdzK7Ve4kaGobFYSU5LZG1n28ka1u20efzF7822gMGDKChvPlvGWgh/aoUPlzwEf/984ddzudEoCBNRERERERERPqMj+YvYs2nGwGI6hfJ/c//qM0G+N8uWA3Aga8LGZs2jrrqep7+8X/aHa84p5S92/cTENq6qC9qcBiD5gxg4Wv/oyCrqN33XvrFW5Tklh7Rb9m1ei8ulxuA8WeOoanBU5FmtpgJCPA9xCBndx4up/+nhU6/ZEqXfb54eYnxtwqPCeNnL9/Tui9as+UL1wCQvaSQEQNH0VDXyFN3v+DTZ+WH62isbwQgc3cW1tDWSrqoQWEMPLM/n77/KW/+YaHf8z9eFKSJiIiIiIiISJ9wYMdBnn3gFeP6Zy/dTXS/yDb9vl2wksBIGyHxgZx11Uxe/dU7lOSWtTtm/v5Clqz4GrPVjNvtxu12k7+2lMwvC2gob+L9f3zKyFPTCIkI5s6/3MgZ35sBQE1FLX+65d+4XP6HW4fa8d0eoz1kbAputydUCwoNbNM3Y0t2m3sd+dnLd/F/L9/TaZ/cffk8/eMXjev7n7+z3VM/ly1YSUC4ldCEYM6+ahZvPraAgkzfcLGmotYI3L765kusARbjb1mwsYyML/KpL23ipV+8xdovNvn9O44H7ZEmIiIiIiIiIr1eU6Odx697yqjauvTu85k2d2KbfvkZhezdkMnAs/uRODWO2oo63n/q0w7HPbDzIE0Dm8hZWYI1yExtQQMF68txO91Gn+8/dBmnXDgJi8VCVVk125fvoiS3jA1fbuHDp7/gsnsPb/+vbd/tMtq24ACj7b3Rf4vMrQf8HnfHd3s494azOnzusDt44vp/0lDrqSI7/5azOf3ytieUluSWsn3FblJmxpN8ejxul4t3O1ii+dmLi5l97UwaGhvIW1OC2WamtrCRwvVluBytf8vailq/f8fxoIo0EREREREREen1Xvnl2+zflAXAwFHJ3P7H69rt9+2CVQBYAi3EhMTy8qNvG8sn25OxOZsBTYPIWlTA/o/zSJgaS0i8pyJs7MyRPPz6j5l+8RQsFs9yxYiYcB74T+shA88/+BrZu3K7/XucTie7Vu0FICYhmrL8CuNZTEJUm/4HduR0OFZEbBhXPXCxcf3pC4spL6rosP8bv1/ArtWebycOG8Bdf7+p3X7L3/dUmVmCzETYonj1N+/isDvb7bt5yXZy9uaTYh5GxmcF7PswjwGTogkdEATAqOlp/Oyluznj6hkdzutEoCBNRERERERERHq1rd/u5N2/fASALcDKQ6//mMDgtssf8QrSMj7L54qr52FvtHc69sHduaSN9xwa4HZBQJiVmLRwAH7w8OWcfc3MNnuwTT5nvFGF1tRg54nrn8Jh72Tz/3Yc2J5DXXU9AKNPS+egVxjXf2B8m/5xSW2XXfYfFM8Hla+yoPgl7vjjDUT3j2z+HW5+d9Vf2/3urjV7efOxBdC8F9vDr/+Y4LDgdvu2/C2zvizk8isu6/JvueO73aRPGGZcB4RaiUmLAOCqBy7h3BvPbPO3PNEoSBMRERERERGRXsthd/DUXc8b+4fd/Ng1DJswuN2+xTml7Fqzj6CYAKY/NIq4lGgeefMn3P2PWxhz2gijX7/UOKwBnt2wGmobGTdrFM9t+Quv7P0nIwePpjrXE3C1bMTfntueuJaUEUkA7F2fweu/6/qUTG/bV7Qu6xw9Pd1n37GU9MQ2/X/0t5t49N2f8q/VjzNoTIrn92aXYDK3BlPe+6Jt/XYnu9bu8xnD6XTy1F3PGxV6N/zqakZMG97u/CqKK9m6bCeBkTamPziK+EGx/Oylu7nnn7cy7ozRRr/4lFii+0eSPnUoU84bzykXTuaFbX/lpd1PMWH0RKpzPCeNLl/Y8d/yRKIgTURERERERER6rff/8SlZ2w8CkD51KFf85IIO+67/cgsAUUPCsASYCQgIIDIugsvunUtcSqzR7w+fPsJFPzzHuM7emcvgMakkDh3AJd+/CKvFE7Kt+N8anI72lzIGBgfy0Gv3YrF6lny+9YeFZGzxfx+z7St3G+1RM9IpzS83rgePG9imf0BQADPnnUr61GGMOjUNAJfLzd71GUafKedNYNjE1pDxr7fN9xnj42e+ZO+GTACGjBvI9x+6rMP5bVy8DbfbTeTgUCyBZgIDA4mICefSu88nYXA/o9+vF/6M/+a/wL9WP0HMgGgABo5KIXl4AhddfQEBAZ6931Z+tI6mLiraTgR+B2m33norK1asOLqzERERERERERHxU9HBEl79zX8BMJlM/Pjftxt7lbVn09dbAajOqWN8+gSs1tYzGLO2eU69tNosJA1PILW5mgzw2eOsvLKMET9IJigmgKrSarYs29Hh99ImD+XaX8yD5lDr3z95yaic68r2FZ4gLSDIxrCJg6gprzGeeYdh7RnZHKQB7GzeZ63FI2/eZ7Qzt2azb5MnOCsrKOelX7xlPLv36duMELA9Gxd7/pY1efWMHDSawMDWpbRZ2z1/S5PJROrI5A7HqKisYNi8BEL6BVJXVc/Gr7Z0+rtOBH4HaS+99BLnnXceX3311dGdkYiIiIiIiIiIH565/2XjZMmL7jyXtMlDO+zrdruN8CcsLoQ5F802njnsDnJ25wGQnJaI1Wb1CYCyd7Zu5B8fH48JEyFxnuBo1UfrO53j9x68jMSh/aF5w/1l763q8neVFZQbSznTpw7DFmAzTiOleblkZ0ac0rocc+fqPT7PUtKTSJ/a+nf6y62eqrTn/u81ais9yyzPu+ksn6Wu7dm42BN6BUcHce4lc4z7LpfLOPhgwOB+BIW0v1cdQGxsLGaT2Ti8YWUXf8sTQbeXdl5yySUsWrSow+fbt2/n2muvPdJ5iYiIiIiIiIh0aO3nG409yqL6RXLz77/faf8DO3IoK6jAEmhm+LxEsg9mG89y9xUYp0227C+WOrL9irSgoCCuu+Z6KjNrAdj0zbZOvxsQaOPOv7aeevnsA6/QUNfY6TuZW1vnljbFE3p5n4bpXUnXntSRSYREeA4I2Llqb5squJ++2Hqq6L6NmXzx8jcsfv1bAMKjQ7ntyc5znfyMQgqyijFZTIz4XgrZOa3zLcouMcLNgaM7rkYDsNls3HjDTVRlegK8rv6WJ4JuBWn/+c9/GDBgAJdddhmfffZZu31qamp4++23e2p+IiIiIiIiIiI+mhqa+Ne9LxrXd/zpesKjwzp9Z0PzskFbiCeEio1treo60LzHGs37d9EczoVHhwJwcGeuz1hOHIy9wnP6ZMaWA1QUV3b67VMvmszU8ycAUHywlHee/F+n/Q/uyjPaLZVxLXuxmS1dRzlms5n0qZ75leWXU5xT6vN88JhUhk4YZFw/dfcLRvvWx68lKj6y0/Fb/5YWTKaO/5aDmv+WnXG47Iy70rMUNXdvPkUHS7p853jqVpA2aNAgli1bRmJiIldccQWffPLJ0ZuZiIiIiIiIiEg73nnyA/L2FwIwdtZI5lw3q8t3WpZ1NpQ3ccmcS+nfv7/x7MD21qWbA0d7wh+TyURKc4hVnFNKtdceZXl5eUSkBxvXm7/Z3um3TSYTP/rbTcaeY+/88QPyMws77O9dAddSGeduPknTYvUvyhk+aUjr79uR0+b5/S/8yGg31TcBMGLaMObeNrtN30NtaP5bNlU7OP/0C0hKaq3ey2rnb9mZ/Px8gge3Vtht+vrErkrr9tLO5ORkli5dSkpKCvPmzeOjjz46OjMTERERERERETlE3v4C3nrifQAsVgv3/us2TCZTp+847A62LPUcCpByygAq7RU+zzO3ty5NHOS1HDFtcmsY5b1p/+DBg4kIjzCuN/oR/qSkJ3HFfZ4TRe2Ndp772Wsd9j242ytIG5FEQ12DcW0N6HxZZ4uk4QlGO39/29AubdIQkr360HzAgNnceVTkcrmMsCthfCxVLt+/ZZb333JM10HaoEGDiAxvrYA70Zd3djtIA0hKSmLp0qUMGjSIq666ig8++KDnZyYiIiIiIiIicoj597+MvdGz8f68n1zI4DGpXb6ze+1+6qrrARh02gCys7N9nmduOQCALdBG4tABxv0xp4802tuW7zTaqamp3HTLTVhtngozf8Ofa395JdH9PaHR8oWrjSWSh8puXkoaGRdORGw4pbnlxrOAoAC/vtVywAFA3r78dvscemhBZFx4l+NmbD5AVWk1AENmJbf5W2Y0/y3NZpPPyacdSUpK4rY7biUw2PO7Nn29ze+TTY+HwwrSABISEli6dClDhgzh6quvZuHChT07MxERERERERERLztW7TFOyYxLiuG6R6/06z3vwGpA4gDS0tKM6/LCCnL2eIKmYRMHGcsvAUaflm60t3+322i73W7+/czTjL2ge3t7hUaEcNsT1xnXT9/3Hxx2h0+f2spayvI9wVlKcxBVkltmPG8JnLqSOKw1EMzdX9Dm+b5NmW0q6f5087+7HNfnb5k0gPT01r9RTUUtmVs8wdqgMal+hX5ut5t/z/834y71nBJanFNK7t72g78TwWEHaQD9+/dnyZIlDB8+nB/84Ae89957PTczEREREREREREvr/zqHaN93S+vJDgsuNP+LTZ+vdVon3/RuZxyyinGdcuST4DxZ47xeS8uMYYBg+IB2LV6L/YmTyWcyWTCarWSPL41rPJ3b685189ixCnDobny7Os3l/s8P7jb66CB5iCtJVgDCAoN9Os7cUkx2AJt0MHSzld//d829zYv3d7mYIJDef8tZ59/NqeddppxvfXbnUY12fgzR/s1z5a/ZeLoeK9vnLjLO/0O0uLi4tq9369fP5YsWUJaWhrXXHONTuwUERERERERkR639dudbPjSUw2VMKQ/5918ll/v1dfUs3PlHgBSxiby6n9foaioyHi+eUnrQQHthT+jT/dUSjU12Nm3Mcu4P3fuXCZOm2hc+7u802w288M/XW9cv/X4QpxOp3Gd7XVCaEtFWllh6z5kweH+hYdms5mEIf0AyNtfiMvlMp7tXruPlR+ug+bALWFI8zJQN/zltvkdjtnUaGfrMs8S135DYvnvR2+Rm9s6367+lh0577zzmHzqJOP6RN4nze8graioiClTprT7LC4ujiVLljBq1CieeuqpnpyfiIiIiIiIiJzk3G43L/3yLeP6ul9eidXm36b7W7/dhcPuCapGnTkMp9NJQEDrksPNSz3hj8VqYfSMtDbvj54xwmhvX7HLaCcnJ9N/aKyx1HLj4q1+7+015vSRRtCUsyefZe+uMp4d3NU2SKssqTLuhfgZpOG1vNPeaKc0r7Wqzbuy75qfz+PH8283rjd8uYWygnLas3PlHhqbT/gcMycdh8NBYGBrhdyW5r+lyWRi7KyR7Y7RnqSkJGJTogiLCoXm6j7v4O9E0q2lnZ2d3BAbG8vXX3/N+PHje2JeIiIiIiIiIiLQHFK1VEIlpyUw+9qZ3Xq3xcQZ47nggguIioqC5v3RWirA0qYMaXep6BivfdK2eQVp27Zt44MPP2DMTE9gVJJb1q29va79xTyj/eYfFhjBUcGBYuN+y8mbVSXVxr2w6FC/v5E4pHXpad6+AuM3rP18EwADBsVz/i1nMeWc8fQf6Fla6Xa7+evtz7Q7ns/fcvo4zj//fGMFY01FrVGxN3hsKhExXR9c0GLXrl0sWLCA8Wd6/pZVpdVkbs3u8r3j4Yj2SDtUTEwMy5cvZ9GiRT05rIiIiIiIiIicpNxuNy8/2rqN1PW/utrnQICubFjsWQ5qMpkYNmUQ0dHRmEwmOHR/tDPaX4o4cHQKoZEhAGxfsduoOouLi6OpqclnCWN39vaacNYYRk33VMBlbTvIdx+sBaCiqNLoEzPAE/hVldUY9yJiwvz+hveBA3nNBw684vW3vPYXV2IL8OyjdvdTNxv313y2kaqyag7V8rcESDtliM/f0nt/tHFnjPJ7jjQXZzmdTsZ57VHn755zx1qPBmkAISEhzJ49u6eHFREREREREZGT0JrPNrJz1V4ABo1O4czvzfD73YriSjI2H4DmEzm3797G4sWLjefee3qN62BPL7PZzKgZnqq0iqJKcpsru9LT07n77ruZNGec0dd7I/6umEwmrv1F66mjbz62ALfbbQRpAUE2gsOCAKgprzX6RcT5X+kVnxxrtMsLK9n0zTY2feP5zYnDBnDODWcYz6dfPJW45v5ul5u/3f6sz1i1lbXsXrsfgNSRSew/uI8vv/zSeH64+6MBDB061PO3nH14f8tjqVtB2pIlSzj33HMZOXIkV111FZs2bWrTZ/Xq1Vgs/ifDIiIiIiIiIiLtcbvdPvt53fDrqzvddupQ3lVNE2ePw+12ExkZadxr2R/NbDH7LOE81OgZrc9aqtgaGxv55JNPSBrR36hY2/zN9m7t7TX1/AkMnzwEgL0bMlnz2UYqijz7oUX1izSqveqq6ox3ouIjOxitrdCoEKNdU17jW9n36FVtKvt+9NcbjfaKD9ZQU9FaCbd56Q5cTs9vmzR7HC6Xi4iICON5y/5oAONmda8izW638+mnnxKbGkV0/8jm8XbgsDu6Nc6x4Pd/fRs2bODcc89l69atJCYm8tVXX3HKKacwf37HpzmIiIiIiIiIiByulR+tY+/6DACGTRzMaZdP69b7G75qrWqaNGcsc+bM4dJLLwWgvKjS2B8tferQdvdHazFx9livOXmWYNbW1rJv3z5KS0uNCqzu7u1lMpm49uete6W9/rt3qSppDdJa1Fc3GO3o5uWe/mjZvB8ga/tBtq/YDc0VZWf94LQ2/WddOZ2YBM/4bpebf/zoeePZRq+/5cQ5YznrrLO48kpPRV1NRS37N3n2RxsybiARsf5XzQHU19ezb98+CgsLmXC2Z3lnfU0De5r/7U8kfgdpv/3tb5kyZQr79u1j8eLFHDhwgKuuuop77rmHJ5988ujOUkREREREREROOu//4xOj3d1qNLyWB9oCrIw+bQRLliwhK8sT+Kz9bKPRr6sKqhHThhn7lW34cgv1tQ1ERESQlJREWFgYE89uDdq8N+T3x/RLpjBoTAoAu1bvw+Xy7DMW1a+12quhrtFoxyYcXpDWEnQB3PCrqztcTXj7k9cZ7WXvraKuph68/pZms4nxZ4zi22+/Zf9+z1LP9Ys2G/PubjUaQFhYGCkpKURERDDhrMP/Wx4Lfv8XuG7dOh544AFCQz3/CBEREbz++us88sgjPPLII/z+978/mvMUERERERERkZPIgR0Hjf28ktMSOOXCSd16Pz+jkILMIgBGn5ZOUEgg27Zto7CwEIBl7600+k6/ZGqnY5nNZqZfPAWApgY7G77cgs1m4/rrryc6OtqoogLY9E33Nsk3m80+VWktvCvSGuubjHZsQozfY4d5Le0sK6gAoF9qHKfPO6XDd+Zcd4YR4rmcLv5594uU5JVxYEcOAOnThhEaGcr27dspKPDsF7fU5285xe/5tbBYLFx33XXExcUx8Qj+lseC30FaRUUF8fHxbe7/7ne/49FHH+X/s3fW4VFcXRh/17Mbd1dIQhLc3d2dFihOsUIF2tL2o0iVFgoFCm0pUqAtFHd3d4ImSNzdk9X5/tjdyW7WJSGk9/c8POzM3Ln3zsnuzuy557znyy+/xJIlS6w9PwKBQCAQCAQCgUAgEAj/QQ7+cpJ+PXh2X5Oj0e6dqaww2UwhYu/v74+AgACUFJTi7qloAICbrwsi2oYa7K/90Mq00qsHbwEAfv/9d0RHRyMw0s8iba9OI9vC3d9VbZ+qFpqoQsWR5utsdL98ez6ts6Zk0Kw+BrXtp3w7jn59/p/LuHX8Hr2tLAjg5+eHwMBAlJdW4NZR+XFHN3uTCw0o2bRpE+7cuQPvEE94Bcn9T0+uxqpde23A6Hehv78/nj59qvXY4sWLsXjxYixbtgzLli2z5vwIBAKBQCAQCAQCgUAg/McoLSzF6W0XAAA2tjz0ntjF4DlVUa36qNQ4GzhwIEJCQnDt4G1IxFJAoQtmjJOuafeGdBXNm0fuQSqRQiqVIj8/HwwGQ13b684rk+bKYrHQd3J3tX2qEWkSUaVjzkZgY3S/TCYTto6V2m8cHgf9pnbXew4A9JvSHfYudgAAqUSGPSuP0MeUtuzbty/q16+PW0fv0RFzHYe10ShgYCwymQz5+fkAgKbd5LYUC8V4ci3WrP6qC6Mdae3bt8fu3bt1Hl+8eDGWLl2K48ePW2tuBAKBQCAQCAQCgUAgEP6DnN52CRWlcl2wnuM7w9bR1uA5qlAURVfstHUUIKxFCEpKSrBy5UpkZmaqpXV2HtXOqD65PA5a9WsGKIoKPL4ag969eyMqSh6Bpabtdc70lMS+U7qpbdu7VF6zVCKvlslgMjTOMwRTxbHV9a32cHRz0NteydufDaNfp8SmAQB4fC4i2oWhvLwcP/30E9LS0tTSOo21pTZ69OiBxo3l0W5NVTTnHphhy+rEaEfa+PHj4eLigpycHJ1tFi1ahB9//BGdO3e21vwIBAKBQCAQCAQCgUAg/IegKAqH1p+gtwfP6WtyH1lJOSjMKQYU+mgsNgsVFRXyqKecApPTOpW0V9FSu37wNhwdHenUSUu1vTwC3BEQ4UdvJ8ek0a9lUrkjzdRoL4qiaIckAAyZbbwtR3w4ECwOi+4HACLahoLL40AkEkEqlaKooMgqaZ0A1GxpieZcdWO0I61bt274999/4ebmprfd/Pnzcf78eWvMjUAgEAgEAoFAIBAIBMJ/jPtnHyFZEQHVpGsUghsGmNxH3MNE+nVI4yAAgKurK3r16oWE26kmp3Uqad2/Ge3MunboDs6cOYOrV68CgFW0vRq0qU+/jr4oL7QgkVSmdbI5bJP6e3ItFiKVQgXhrerrba8Kk8mkUyyVKG3p4OCA3r17I/1RjlXSOgHgwoULuHTpEgDA1dsZARG+AICYWy9RVlxudr/WxjSlPgKBQCAQCAQCgUAgEAiEauTgL5XRaEPMiEaDhiMtkH7N5/NxZe8NetvUVER7Zzs07hIJKKqCiisk4HA49PGGnSIAhbaXssqlKfiH+9KvX9yJQ35mAfIzCul9HJ5pjjRVW1YtOmAMU74dq7YdEFk5Pz6fj8v7btLbnUe3N7l/VdhsNrhcLr3dqKPcljKpTO3v+bohjjQCgUAgEAgEAoFAIBAItYLMxGzcOHwHUKRdth/SyuA52oh/pOpIk0e05eTk4NChQ4h59Jzu35S0TiWq6Z2yRA569OhBb6tGzyU8STZr7nTfMhlO/XlRbZ8pvrDc9Hxc3lPpNGSxTXcBhTUPAdem0lH44l48AKCgoAAHDx7Es+gYQJnWqXAwmsuAAQPQu3dvejuoUaUtEy20pTUhjjQCgUAgEAgEAoFAIBAItYIz2y9BJpPrcQ14t5fZqYLxj5IAABwuG35hPoAi4gkARGXyVElT0zqVdBndjp7X/Xv3ERtbWVUySNWR9th0549SC03J8U1nYWNbGaUlrXJcH+f+vgKpREpvm2tL1UIP1w/fBlRsWVEs11+zNK0TAB49eqRmy2ALbVldEEcagUAgEAgEAoFAIBAIhFrBxd3X6Ne9J3Yxqw9RhYiuMhkY5U87eJycnJBzrhzlOXLnT9e3OpjVv7OnE9oNbgkAEPhycOvSHfpYUFRlsYDEp5Y70lJfpOPlvQSdx/VxScWWAMBkme4CkkqkKCkopbfz0gqQ8CQZ9vb2KL4uRWlGBQCg29sdTe67KrGxsXj16hW9HahiywQzbFldWOxIe/jwIQoKCqwzGwKBQCAQCAQCgUAgEAj/SZJjU+lIsoi2ofAIcDern8SnKXRUW7BKeuDDq0/B9BODxWMitHkwGrQ2Xni/Kv2nydM5i9PKkfwgnd7v7u8GgT0fsFJEGgDcOHJX5ThlVD+ZidmIufUSUNFVM8eRlvIiHWKhWG3fps/+Quy9lxC7lIItYCEgwpfWjbMEHx8feHl50dtO7o5w8nAE6lpEWrNmzbBv3z7rzIZAIBAIBAKBQCAQCATCf5JLu1WKAIw0rQiAKqrC9MGNKgsNHPvzFFzCHGDjzMXg2X3NEt9X0rxXY3gEuCHhdCZubX+ErOQcQCHor4ykykzMNrnapKojTZl2eu3QbXofJTMuIu2Sijaaja2NvD8zHGnxWkT+75yKxqGNx+ES7gC+K89iWyrp1q0b2rdXL1gQ1NAfAFCQVYiC7EIdZ9YsFjvSKMo4byiBQCAQCAQCgUAgEAgEgi5U0zo7j2xrdj/xDzULDeRnFeL63rsoySgHh8lFt7fNS+tUwmKx0HdKd0SM9odfZ3ec3HyePhYUpSKSb2LlTlUfS0gTeT8Z8Vn0PmWknSFU0zp5Aq5izqa7gFSdkly+vB+JSIKLf19HSXo5mGImek0wLwW3Kvv27cPp06fV9gVF+tOvE5+YXgW1OiAaaQQCgUAgEAgEAoFAIBBeK9ZK6wSA+MdJ9OuQxvKItON/nEV5gRAPN8ej99iu4PF5Fs+575Tu4NpzwLFl4/jms5BK5cL+QVGqzh/TUhIFDgL6df3mIRrHKSMcaappnSFNAuloMbMi0lRs2W5QS/q1sFiMh1vi0XVERzqV1VJKSkpQVlamtk8ZkQYrVEG1FsSRRiAQCAQCgUAgEAgEAuG1Yq20TgCIeyh3/ji5O8DZ0wlSiRRHfjsFJoeBNh83QKuRTSyeLwC4+7nCptwOWffzkZ2cizsno4Gqzh8VR5Qx2DlVOtL8w300jhuT2qma1tl5ZDuUF8sLAtjYmu48jFfYUmDPx+yfJ9H7GUwGWs8PR8uRjUzuUxdt27ZF8+bN1fYFRplvy+qCONIIBAKBQCAQCAQCgUAgvFasldaZn1mAgiy5llawIhrt+uE7yE7OBSiAxWGCaWOFCSto1as5yhRVQI//cQao6vwxMbXTzsmWfs1kyosiqGKMupZqWmf7oa3oqptOnk4mzaW0sBSZidkAgKBGAXDxdIa7v6t8HjIKLC4TXHu2SX3qg8vlwt1dPRJRLbrPRFtWF8SRRiAQCAQCgUAgEAgEAuG1Yc20TlVNrxBFxc6Dv5wAAMgkFCKDGiE4OFjn+aYglUrxIP4O/FvLK01eP3wXWUnZcPFygr2LHWBGFJWtiiOtpKAU7Qa3UjtuSKe+alqnvbMdfczJ3cGkuSj/JlCxpb1z5fwSTmUiJEQz/dQcKIrCP//8g5iYGLX9dk62cPN1kY/3OKlW6PQTRxqBQCAQCAQCgUAgEAiE18blvTfp15amdao6f4IbByLhSTIenHsMAPAN9UbLzs1oLTNLkUgkAIDmXRoDioqb//54CAwGg46kyk3LR3F+idF9qqZ2lhaUocPQ1ibN6co+dVsqo/NgqSOtcSDSXmXQabMAUJRahrtnHpjUpy6kUikoioKtra3GMWWqbHF+KXLT860yniUQRxqBQCAQCAQCgUAgEAiE18b9sw/p1x2GmeY4qkrcI9WKnYH46+s99PbgWX1w8uRJ3LhxQ8fZpsHj8TBjxgy8PXckrT927I+zyE3PN7vggGpqZ0lhKYIbBcAryPgIvXsqtuw4rDUKsorobScPR6P7QZXovuDGgfjrm71qx4N7eeHU0TMm9akLNpuNGTNmICwsTONYYKT5xRuqA+JIIxAIBAKBQCAQCAQCgfBaEFWI8PT6cwCAV5A7vIM9LepPKY7PZDIgk8pwYZdcL8zJ3QH9pnWHnZ0dZEYI9htDUVERrly5AnsXOwya2RsAIBaKsWflYTWdtPjHxjt/qqZ2MhgMjfROkUis9VypRIrHl+Wpkc6ejgiI8FOPSDPVkaYSkca14eDMtosAAIGdvEqnuESC4vwSlJWUm9SvNkpLS3Hx4kWt0YJBDQPo1wkm2LK6II40AoFAIBAIBAKBQCAQCK+FmFsvIaqQO4Yad42yqC+pREoL0vuG+eCf7/fTx8Z8OhR8Oz6GDh2Kbt26WThrOcnJyXj8+DHEYjFGzh8Erg0HAHDk11Nw93eh25kSRWXrqJ7aCQAt+zRVayMqE2o99+X9eJQVy51aTbpGgcFgmO1IoygKCQpHmmegO/auOgKZTK5PNvrTIfAIcMPLI6mIP52BbUv+NbpfXaSkpODp06coL9d0ygWrVkGtCxFp58+fR//+/a0zGwKBQCAQCAQCgUAgEAj/GR5efEq/btLFMkdayot0iIVyp5y7vyuu7r8FAHDxdsagWfKIseTkZNy5c8eicZTY2dnBz88PPB4PLl7O6D+tJwCgokyI6AuV12WK84fL44DH5wIACrLlaZmR7dTTHctLtDvSVG3ZuHOkvA81R5rxGmmZidm0U84r2APn/7kKAHBwtcewef0xeHYf2Pny4dPalY5UswQ7Ozt4e3tr1UgLiPClX9cJR1qXLl3g5eVlndkQCAQCgUAgEAgEAoFA+M8QffEJ/bpxl0iL+opX0fTKSsymX7/92TDw+HINs5SUFNy7d8+icZT4+flh8uTJYDAYAIBRHw8Gm8MCAJzYdA6OCnF/U3W9PBWaaBnxWZDJZLBzsgWTVem+UXWOqaJmS0V0n7kaaar6aHkZBXS1zDGfDIHAno8RHw2Eg58tvFo6ozCnGM9uPjfpGqvi7e2NadOmgcnUdFPx7fjwCvYAFLZ83ZU7SWongUAgEAgEAoFAIBAIhBpHJBTj6bVYQKGP5hXkYVF/qs6flOfpgCIyrf/0nvT+evXqwcXFRev5pnL27Fns2VNZzMDD3w19JsnTRsuKy8G3swEUkWX5Opxf2vCpLw9WEgvFyE2TV6nk8Dj08ZibLzTOkUqkeHT5GaBwmAU0kEdxZSZVOhRdvZ2NnkO8SnXO5JhUQKG7NnhOX0BRHMDVwR3luSIAwJ+LLUvvvHDhAnbu3KnzuLJ4Q3lJBbKSciway1KII41AIBAIBAKBQCAQCARCjROroo/WyMJoNACIVxHHVzL+fyPBVXFChYSEYPTo0RaPBQCpqalgs9lq+8Z8OpSOHlM6wWBiVJpvvcqsv7SXGQAAHl/FkXbrpcY5Lx8koKxIqY8WSUfJKZ1gjm72cHC1N3oOqtVPlbz92XDYCHj09rgPR+Lp3/J2z65bFpGmzZaqqFZBfd3pncSRRiAQCAQCgUAgEAgEAqHGib5QmYpoqT4aqkSkAYB3iCd6T+qqtk8sFmPFihVITNR0FJlKq1at0KZNG40xe4zvJB9LWFld05Rqkz71venXqQpHmo0iug0AXj1M0DjnoYotG3eW27K0sJR25vk38NU4Rx/xVWzp7ueKAe/2VNvXsGMEWs9vAKd6digrLkfqi3STxlClZcuWaNeunc7jqlVQX3flTuJIIxAIBAKBQCAQCAQCgVDjqGp6NbG0YqdUipyUXLV973w5CmyOepQTm80Gg8FAerr5Th8oqlrKZDJ4e3trHBv72XA1TTOYGEXlXc+Tfp3+ShGRZsOl9yU9TYFUIlU7R92W8ui+5Ng0ep9/uPGONIqikKmiMQcAY78YAa7KHACAyWSCAQbsvOROvn1rjhk9RtXxJBIJfHx8dLYJUqncmfi0DjrSXrzQzNclEAgEAoFAIBAIBAKBQIDC8aVMB/QIcLNYH60wuwgyWaUIvX+4D7qP66jRjsFgYNCgQQgNDbVovJSUFOzfvx95eXkax/zCfDBEoSWmJOlZitF9+9avTO1MVTjSWIoiBgAgFkrU0lgpisLjKzEAACd3BwRE+AEAkmNUHGkmRKSVFZXRKbdQ6Nf1mdxVa9sAhxDkxhYDAG4dM6+IQ2ZmJvbt24esrCydbQIa+ILJlKerJj413pbVgUWOtIqKCty+fRsbN27EnDlz0KFDBzg4OKBBgwbWmyGBQCAQCAQCgUAgEAiEOkX6q0wIy+VC9eGt61vcX9qrTLXt6T+8AxaLpbWtj48PCguNF//XRllZGdhsNhwdtVfCnLBkNBzdKjXJ0uMytbbThmegO1hs+dyVGmlVI+seX42hX2en5KK0sAwAENaqHq2PlqTQRwOAgAjjHWnp8eoOranfjQOHy9Hatu+4nuA5yo9lJmRDJBJrbaePsrIysFgsODvrLobAteHSVUfzMwpMHsOaGO1Iy87OxunTp/Hjjz9i3LhxiIqKgr29Pdq2bYsZM2bg119/RWxsLFq1aoX333+/emdNIBAIBAKBQCAQCAQC4Y0lXkXnKijSX29bY9iz8jD92jfMG+0GtdTZ9uHDhzh06JBF49WvXx9z5swBh6PdwWTnZIsp346jt/PSCzTSMXXBYrPgGegGKByOFEWBzVV3Cj69Hku/TtBhy+SYysitABMi0navqLSlR6Abuoxur7NtXPwrNBghH5OiKJzZdtHoceg5BwXhvffeg42Njd52ju4OgKIKKkVRettWJ7pLIlTBy6sytJDJZCI0NBQjRoxA48aNERwcjHHjxmHfvn3o3Llzdc2VQCAQCAQCgUAgEAgEQh1AtYqlqv6VObyKTsC1g7fo7R5jO+lt7+7ujoqKClAURUdvmcr169chEAjQvHlznW36TO6KDR9uQUWpEDKZDIc3nMTQuf2N6t831BtprzJRVlyO7OQcOHs4qR1XdZ6p2zKAfp2kSO3k8DjwUDjmDJEUk4oLu67Q211Hd9BrI3d3d7B5LIABgAJO/3kR/af11NleG7du3QKTyUTr1q31tlM60sRCMcpLKiCw55s0jrUw2pHGZDIhk8kwYMAA/Pnnn2ohd5aGRBIIBAKBQCAQCAQCgUD476AqGK9akdFUZDIZ1sz5A6oBSoGRfnrPiYqKQkBAgNlONACIjo5GSEiI3jYsFgv1mgbhyVV59NjWxbvQfWwnOLja6z0PAMJa1MPtEw8AAM9uvoR3iLqGXMrzdEilUrBYLCSo2VJ+7RKxhE4L9Q/30ZnmqgpFUVj73h+QSSuNacjJGR4ejqF9R+DKV48BAC/uxRkcpyrR0dFaizZUxUnhSINCE+91OdKMTu188OABunbtiiNHjqB58+bYs2dP9c6MQCAQCAQCgUAgEAgEQp1EWcWSzWGpieubyqmtF/D0WqzaPhcvJ53toSg4cPr0abx8+dLscb28vBAWFmawnX9YZSXK0oIybPnfP0b1H9G2shhCzM0X8G+g7hwUC8XIUGiZKSPSGAyGSqGBVDqV1L+B7mqYqpzfeRUPzj1W22eMLROyXsGzkTzYSlguwssH8UaNp8TT0xPh4eEG26k6IAuyi0waw5oY7UiLiorC2bNn8e+//4KiKIwZMwY9evTAkydPjDibQCAQCAQCgUAgEAgEAkEeLZUSK0879Av30RDSN5ai3GJs/HSHxn5nA84fAMjNzcXjx48NttOGTCZDr169UK9ePYNtHVWiqADg6O9n8PK+YUeTagGGZzefI6RxgEab5Jg0yGQyJD6Ra6F5BXvARsADADy59ryyr1aGK5SWFpbit/l/auw35EgDgLy8PAS2r4wo27/mmMFzlFAUhW7duhnlSHNyryzsUPgmONKUjBw5EjExMVi0aBFu3LiBZs2a4cMPP7QoJJJAIBAIBAKBQCAQCATCf4PUF+mQiOXRUqqaXqay6bO/UJRbDAB0RUcAcPY07Pxp0aIFPDw8DLbTxu3bt7Flyxaj2jq6q1f1pCgKP075BSKh/uqWTu6O8KnnCQB4cTcOAZGaxQKSnqUgMzEbFWVCoEoa5pNrlVU9ozoYdlJt/XIX8hTVMJ08K+fsZIQtmzdvjuCwIHr77qlog+couXfvHjZu3GhUW1WnZGHOG+RIAwAbGxssWbIEMTExGDx4MLZu3QoAuHz5srXnRyAQCAQCgUAgEAgEAuENh6IonNlxCbt+OIhD60/R+z383SCVGlfNUpUn12JxfNM5AIDAng9bRwEAwEbAA99Of/VHKBxp9evXN6v6Y0pKCpycDDuYUEXXy8Vbfk5cdCK2L/nX4LkRbeWpo6IKMdJeZoLBVA9guvDvNRxYc5ze9ghwp9M5lemuHB4H9ZsF6x3n+d1XOPTLCQAAj8+l58xkMeHgamdwnk2aNEG/0b3pAKvctHyUlZQbPA8m2tKxikba68IsR5oSf39/7NmzB2fPnkVkZCS+/PJLdO7cGc+ePbPeDAkEAoFAIBAIBAKBQCC80Vz89xqWT1iLPxbuwKH1J+j9//54EEOdJuLk1vNG91VaVIbv31lDO8EmLhtDR6Y5ezkZlTFXXl6ODRs2ID7eND0vAGjbti369u1rVFsHt0pdr7YDW4LNkYv+7/rhIB5f0e87adC6MiVz7ZxNGk6/F3fjsO/no/T2wXXHMcRxAnb9cABprzIBAOGt6oHL4+gco6JMiO/Hr4FMJu97/KKRKMkvBRRRfsYUKRCLxfjjjz8Q3LEyau7ob6cNngcArVu3xoABA4xqW7XYwOvCIkeakm7duiE6OhqrVq3CkydP0LRpU2t0SyAQCAQCgUAgEAgEAqEOwGLrdshUlApx9i/jM9x+eX8zLbQf2T4c/ab1QHFeCWCkPhoUmXYCgQDp6elGjwsAQqEQMTExcHd3N6q9qvOHxWJi4tIxgCJCb/mEtSgtKtMco1yI/WuO4cyOi/S+mFsvACOC54TlIpzcUumUjGynP63zt/l/IlmhVxfaIgTDPuiP/MxCwEh9NADgcDhwcHBAvTaVabrnd141eJ5IJMLTp0+NTrFVjUgreNNSO7V2xGRi3rx5iI2NxeTJk63VLYFAIBAIBAKBQCAQCIQ3nDYDmsPe2Vbn8e5jOxnVz8Xd13H6T7mDSWDPx8Ltc2knGgA4ezrqObsSBoOBsWPHIiAgABUVFTh9+jSSk5MNnhcbG4srV65AJBIZNU5V58+ojwfTmmUZCdn49cOtGuesmLIe6z/Ygtjbr4waoypufq7066j2uh1p1w/fwRFF5JiNgIfPdsxDRYmQTg811pYAMGbMGPQc3g0sGyYCunkgtzDH4DkvX77ElStXUF5uXBponUjt1Iabmxt+/fVXa3dLIBAIBAKBQCAQCAQC4Q2Fa8NFj/GdtR5r1CkCfSZ1NdhHVnIOVs/4jd5+b91UeAd70hFUAOBihDh+aWkpKIrC0aNHsXnzZvz666+4du0asrKyDJ4rFArh7+8PGxvDOmzQ4vxhsVj49M+5tI7biS3nce3gbWQl52Drop24ezoaUqnMqL61Ed6qHl18AAAi24dpbZeXkY+fpm2gt2f+NBH+4b5qtjQmuq+0VJ4GeuLECRw+eRAtZoXCv6M7eC5sPLz0RO+5QqEQXl5esLMzrMMGAA6udnTa7ut0pJlXY5ZAIBAIBAKBQCAQCAQCwQT6Te2BA2uPq+1jc1h4f8N0g7pmMpkMP05ah5ICueOm65j26KlwzOUrqk3CCOdPUVERVq1aBTs7O5SUyCPZCgsLwefzERysX5QfAFq2bIkWLVoYbKeEb2sDHp8LYbmIdv54h3hi9urJWKlwZP04aR0YLCaK80rA+4mLdbe+w8t78UiPyzR6HABgMhmY8/MUzO+6GADgG+oNJ3fNqDKKorBiynoUKObTfkgr9J/eEwDoyp0wwilZVlaGFStWwNbWlnaocR04EJdJUBhfioO/nETjzlE6z2/atCmaNGli9PWxWCzYu9ihKLeYnvvrwOoRaQQCgUAgEAgEAoFAIBAIVQlpHIiQJoFq+0YtGIzASH+D5+5ZeRgPzssjnNz9XTFvfaXzTdX542zA+WNvb482bdqgrExdm6xv375wcXHRe65QKMSqVauQlpZmcL6qKKPSVKOo+kzuhnaDWwIASgrL6PRUYbkIGfHZWH5qEVy8nU0aZ9i8/pBKpBCLJABAp5BW5eAvJ3D7xANAoYP24e8zaFvmm2BLgUCAjh07atgy4UwGyrKFiL6gOyJNLBbj559/RlJSkglXqN2WNQ1xpBEIBAKBQCAQCAQCgUCoEdoPaUW/FjjwMfaLEQbPeXEvDlv+9w+g0Db79M+5sHeuTAdUdf4YEshnMBjo06cP5s+fj5CQEHr/zZs3Dc4jMTERxcXFEAgEBtuqonT+FOUWQyaTp21KxBLYOmnXjHt6PRbeIZ5YfmoR7F2MS3u0seVhwtIxuHMqmt7XqFOkRruEJ8n4/ePt9PaCzbPVotbyTIjuA4AePXpgwYIFCAurTCH1aesGKJxduooCpKSkoLCw0HRbKqqglpdUQFRhnE6dtSGONAKBQCAQCAQCgUAgEAg1wsj5gyBw4IOhSEO0EfD0tq8oE+K78WsgEcsF8Ed/PBhNuqqnC+Znmub8YTAYEAgE8PLyovfZ2uouhKDE3d0dPXr0MBi5VhVl5U6ZjKIjz1ZMWY8z2y5qbf/sxnMAQFCUP747/gVYbN2uGxaHBQaDgek/vAOBPR93Tj6gj7Xso542KRKK8d24nyEWigEAQ+f2Q6u+zdTaFGQa75RUIhAI4O3tTW8zqcoKrYfWHdd6jouLC7p162Z09VMlasUbXlNUGtFIIxAIBMIbBUVRKBVJkVsmQm6ZGGUiCWQUwGIwYMtjwU3AhastF3yO7hLrNYFURiGvTITcMhEKysUQSymAAXCYTLgIOHAVcOHE54DF1K8HQpDbMr9chJxSscKWMtqWznwOXG05cOZziS2NQCqjUFAuRk6ZCPllYohlMoACOCwGnPjy96WLgNjSGCQSCZKSkhAXF4ekpCSUlZWBoijY2NjA398fISEhCAoKApfLfd1TrfVIJBKkpKQgLi4OCQkJtC15PJ6aLXk8/T+2CYBUKlWzpVJQncfjwc/Pj7alsSLp/2VkMpmaLUtKSiCTyWBjYwMfHx+EhIQgJCSE2NIIZBSFogoJcktFyCsXQSiRYf69VWAxACc+BxnFFXAVcMFhaTqLKIrCL3M3ITkmFQAQ2jwYE5eN0WiXZ4bzBwC6d++OnJwcPH/+HH5+fnj06BHi4uKQnp4OkUgEFosFBwcHBAcHIzg4GHl5eSbpoylRKziQUwxHNwc8uvRMZ/tnN19CKpGCxWYhvFV9fLxlDlbN+B2egW4orJDAJdwPzuG+4DkKYO9ij/aDWsCRz8HL5DzEP5OnnYY0DoSbj7rD77f5fyLuYSKgcNJN+36cxth5JjollXTu3BnZ2dl4+vQp3JzcwHaPBcsZOHn1OArWZMr1zeztERQUhJCQEBQUFKBFixYGtfGq4uRWacuinGJ4+LuZdL41II40AoFAILwRiKUyxOWVITarBPnlYoPtPey4CHe3Q6CzoEadAnllIsRklSA+rwwSGaW3LYfFQH1XW4S728GRz6mxOb4p5JeJEJtdgle5RtiSyUCIqy3CPezgTGypQUG5WGHLUrlTVw9sJgMhrgKEu9vBRUCcQFVJS0vDqVOncPHiRVpYWRc8Hg8dOnRA79691dKHCHIyMjJw+vRpnD9/nhb81gWHw6FtWb9+/Rqb45tCVlYWzpw5g3PnzqGoSH+EBpvNRrt27dCnTx+Ehoaa/CO2rpOTk4MzZ87g7NmzKCws1NuWxWKhTZs26NOnDxo0aEBsWYUykRTPc0rwPLsU5YpoMl0wGECAEx/h7nbwsufRtjy28QxObDkPAODxuVi4431wuJr3eXVdL01xfd3jMhAeHo5Hjx7hl19+AUUZeN7gcNCjRw+MHDkSDg4Oetuq4uimXrkTDXzx8dY5WDvnDyTHauqtCcuEePkgHuEt5d937Ud3gFu3JniRU4pSkaYtX+ZWapSNPLUMKVeewptBgaIo2pant1/EofUn5dfBZeOzv94Hj6+5QJFnpi0BIDw8HNHR0bgTdwP2XeTjilGGK1euaLTlcDjo0qULRo8eDScn4x12tSEijUEZeqfUQYqKiuDo6IjCwkKT3vwEAoFAqHkoisLLnFLcSSmAyIADQBt8DgttA50R4MSvlvkpKRVJcCMxHymFFWadH+wiQOsAJ9iwX28kXW2gXCzFjcR8JBWUm3V+oDMfbQKcX3tUYm2gQizFzaR8JOSbZ0t/Jz7aBjhDwCW2LCkpwdatW3Hp0iWzzm/WrBmmT58ON7eaXzmvbZSWlmLbtm24cOGCwR+t2mjUqBFmzJgBDw+Papnfm0R5eTl27NiBM2fOmGXLiIgIzJw5Uy0l679KRUUFdu7ciePHj5tly7CwMMycORN+fn7VMr83CYlMhgepRXiaVQxzvA2uAg46BLkg41Ei5nf5khbOX7h9HnqM66T1nEnh85D6Ih22jgIcyP/TqHFevnyJDRs2IDk52eQ5cjgcDB06FMOGDQObbTg+aef3+7Hp878BAF/uWYBOw9sAisjHW8fuY/fKQ3h48anaOcPe748ZKychOq0QTzKLYWBNUSsufA7aB7kg/3kq3u/wBUQV8sXojzbORL+pPbSeM6PpAsQ9TASHy8bR8r+NchDHxcXh119/RUJCgslzZLFYGDx4MEaOHAkOx/Bi6L6fj2LDh1sBA++J6oREpBEIBAKh1lImkuJqQh7SisxzTkHhlDn/MgchLgK0CXAGV4/GhLm8yi3FzaR8g5E++ojPK0N6UQXaBblUu9OvNhOfV4abifkQSmVm95GYX46MYiHaBjgjyMU0Adu6RGJ+GW4k5qNCYr4tkwvKkVlcgTYBzghxNawdU1e5d+8efv31VxQUFBjRWjv379/H/PnzMWnSJHTr1s2q83uTePjwIdavX4+8vDyz+3j06BHmz5+PCRMmoGfPnv/ZKKAnT55g/fr1yM7ONruPZ8+e4eOPP8bYsWPRr1+//6wtY2NjsW7dOmRmZprdx/Pnz/Hpp59izJgxGDRo0H/WljmlQlyOz0NRhcTsPnLLxDj8NBOxO69DrIhkGzq3n16HiTIizZi0TolEgn///RcHDx40y2kKRcXJ3bt34/bt23jvvfcQEBCgt71aaqdKFBWTyUTbgS3QdmALxN55hc1f/I17px8CAOp3aYgjzzJRYEQmhi7yysU4+iwTr3bfoG3Zf1oPnU40qESkOXs5GXwfS6VS7N27F/v27aOLKJiKVCrF/v37cefOHcydOxdBQUF62zvpsGVNQhxpBAKBQKiVFFWIcep5ttbwdXOIyytDQbkYPcPcrRapRFEUotOKEJ1unZt4hUSG8y9z0CbACQ087K3S55vEo/Qi3EvVn0ZjLEKJDBfjclEqkiDK678Xff40sxi3k813+qgiklK4HJ+HEqEUjX3+e7Y8c+YMNm7caPaPLVXKy8uxYcMGZGZmYsyYMf+5H9oXL17E+vXrrWJLoVCIjRs3Ij09He+8885/zpbXrl3D2rVrIZVafo8UiUTYunUr0tLSMGXKFDCZ/616dLdu3cLq1ashkZjv+FEiFouxY8cOpKamYsaMGf85W6YUluPCy1xIrfAZpwCEjesGjqsDis7ex4wVE/S2Ly+RR17b2OnXrBOJRPjpp59w7949i+cIAAkJCVi0aBEWLlyIiIgIne10OdJUCW9ZD8tPLkJ6fCayKyR4VE5BYoETTQkFIGRUR7BdHZB98BrmrJ2qt31FqXwBm2/AlhKJBD///LNR1U6NITk5GYsWLcInn3yCRo0a6WynntppnedGU/lvfbIJBAKB8EZQKpJY1YmmJK9cjNPPsyGyIEJHlUfpxVZzoqlyM6kAz7P16wXVNZ5kFFvNiabKnZRCPMsstnq/tZmYrBKrOdFUuZ9WiMfV8H6vzVy4cAG///67VRw/quzbtw979uyxap+1natXr1rNiabKkSNH8Pfff1u1z9rOrVu38PPPP1vFiabKqVOn8Oeff1r9b1SbuX//PlatWmUVJ5oq58+ft5oD/k0hvagC51/mWMWJpkpw3xbo/8tMsPRIX1w7dJtOIZWIdf8tpVIpVq1aZTUnmpLy8nJ89913ePnypc42Di529OvifP3PeEw3Jzwspwzqw5pKQPfGGPDrbLC5BuKpFMMy9GgMy2QyrFmzxmpONCVCoRDLly9HTEyMzjb2KrYsydevVVpdEEcagUAgEGoVMorCxVe5VneiKckvF+N6ovkpRUrSCitwP636VsFuJOYjt1RUbf3XJjKLhbiTYn3Hj5JbyQXIKhFWW/+1iewSIW4l5Vdb/3dTC5FuQar1m0RCQgJ+++23aut/9+7duH//frX1X5tITU2tFieakoMHD1r9x1xtJTMzE2vXrq02Wx4/fhxXr16tlr5rGzk5OVi9erXVHZJKzp49i3PnzlVL37WNcrEUF1/lmqXhZQypZRLEZGl3Ph39/TSWDv+R3i7KVW8nlUqRlZSNh5ee4sfFP+Hu3bvVMseKigp8+9W3eHonFsJyzWcOhpHRiRUSKS68yoG0moyZIZThaYb+BUZliqa+iMrDhw/jxo0bVp8fFFGDK1euRHGx9nnWhkhPktpJIBAIhFrFs8xiZFezAykhvxxB+WUIdDZPP0skleGaFZxx+qAAXE3Iw4AIzxqtOlrTiKUyXE2oXlsCwNX4PAyK8gS7Fjx8VRdSGYWrCXmo7viHawl5GBzlBQ6r7tpSIpFg/fr11fYDW8lvv/2GlStXwta27urPyWQyrF+/HmKx5elJ+vjjjz8QERFRpwuJyWQybNiwAUJh9S4MbN68GQ0bNjSpit6bBkVR+O2331Bebl4hFmPZtm0bmjRpUqeLjFAUhesWapsaw73UQvg68uFgw6bH3bbkX+z4Sj26tzC7CCumrEdmYhYyErKRnZwLqUQKliNg30N/lJWllJSX4LNZ/0P5PQY8AtzgG+oF31Af+IV5Q6oSKacvFf1WUoFF2qbGcD+tEH5OfDjpqHJOGYhIS0lJwb///ludU0RhYSG2bNmCefPmaRxT02J7TWn9xJFGIBAIhFpDuVgCDzse+oS7QyKlcCk+FxIZhb7hHnCy4eBaYh4Szaw+WJUbifnwdbAB2wxnwMucEnQOcYWMouh5shgMdKvvBhlFgQEGbiTmo6DCsh+O+eViPM0sRiPvuvvD8FF6EYqF8odLd1suWvo7qdlVoKi6CgBsJhMMAEeemS4GXSSU4HF6MZr6mlbG/U3icUYRCquIO9uwmRrvy0Kh2KLPVIlIiui0IrT0r7s/so8fP05XHnN0dMSCBQsglUrBZDKxceNGJCcnY9u2bXj16hUA4MCBA4iOjjZ5nLy8POzatQtTpkyx+jXUFk6fPo0XL17Q29rsmZKSgpkzZ8LT0xOlpaVYv349SktNS9cpLCzE33//jZkzZ1bDVdQOLl68iKdP5VX9wsPD8dVXX2Hq1KlgMpla36PmUlJSgm3btmn9AVtXuHbtmtbPrKpdHRwcMG3aNACAjY0NGAwGFi5caNI45eXl2Lp1KxYsWGC1udc2kgsr0CnYBbll8kXQR+nFSC+usPqzm0RG4VZSPnqGuUMqkeLHyb/g7F+XNduJJDi59bzGfkELuWOo6nd3QkKCVT8/vGAGRIkUMhOzkZmYjXtnHmm0Ob3tAoTlIjTuHIFGnSPh6i1/zkkrrEB8XhnGNvNVs2daUYXWfeYio+TPwX0baK98TCkcVbocfhs3bqQXR6raMycnx+LPjZIrV66gS5cuaNKkifr8VFYMma9psZk40ggEAoFQa3iZU4bo9CJIZRTC3G3RwMMOj9KLceFVDsLc7YzowXgqJDLE55ch1M20fsVSGWKzSnBPrD7Px+nFOB6TBQDwtOehobc9rsRbHmkVk1WCKC97MOugkLZEJsPz7MofyyUKbbyqf/+TsfKKdA3c7cBhm2+H2OwSNPJ2qJMRflIZhVgtunpCiUzr+9LSz9TznBI08XGok1FpMpkMx48fp7eLiorw5ZdfgqIoREZGYujQoVi7di2ysrKwdOlSi8c7f/483nrrLQgEda/CrEwmw7Fjx9T2abPnzZs3UVpaiiVLlqBFixYYMmSIWbpnly5dwtixY+tkVBpFUWq2HDhwIK3HpOs9agnXrl3D+PHj4eLiYvHcayNV35dKVO2amppKf8b79Olj9mf09u3byMrKgoeHdqfFm86zzGLY89j0vVpJdTy7pRZVoKBcjE/bfYa4h4kG29s6CuAZ5A6HYAES2XLNrarf3QwGw+qfH7fWdii5RqGkQPuCQGFOMQ5vOInDG04CAHzqe6Fxpwj4ju8O2NuiRCTVsKe2fZaQWSJEbpkIrgKuxjF9EWlxcXF49uwZva3tXmiNz42SY8eOaTrSVCLSXlehmbr39EMgEAiENxKpjMLTzGJaE4KiKm/k5eLqCXGPySoxWWfmVW4ZioRSjXmq9sJlMZFfZp00pjKxFMkF1Zt68rpIyCtXSwUpF8u0/v2VBLkIEJ9bZtIYIxp5w9+JDyicp4n5pp3/ppBUUK71c6LrfWnpZ0ospRCfVzdtee/ePeTk5NDbFEXR3xO2trZ0pJqbmxuWLFmCuXPnws7OtB+L69atQ6tWrQCFsPLFixeteg21hcePHyM9PV1tnzZ7ent7Iy4uDgAQHx+vt/KdPiQSCc6f14xEqQvExsYiMVHuOGjRogViYmLoFE9d71FLkMlkOHv2rMX91Ebi4uLUoiSVVLWrKh06dDBbO46iKJw+fdqsc2s7BeViZBQLYcthoW+4OzoFu4CnWGCprme32KwSxD9K0tum4/A22J+3FQfy/8Rv91fAv2tlam3V7+7q+PyI7crxx4uV2JO1CauvfI0Fm2ej+9iO9PGqvp+0lxm4cjIaFbby5xVt9tS2z1JidejO6YtIO3XqlNq2vnuhOZ+blStXonnz5vT2gwcPkJmpnomg+nxYnam6+ngjHWmXLl3CoEGD4OPjAwaDgQMHDrzuKREIBALBQjKLhbQmBI/FRLi7HV7k6E/t6RPujnda+MFZReOBw2JgYkt/2HJ1V3dSklcmptMKjSVBxXlQdZ6ONmz0a+CBNgFOyFQRt7d0ngl11GGh67q0/f1tuSwwGPIV2aq0D3LGxJb+cLQxHGhfV50/+t4jut6X2ugT7o7xzf0wtpkv3mrqiz7h7lpXqw2N+SZz7do1jX2+vr746quvMHnyZDq17r333sOSJUvw+PFjvP3222rtw8PD8dlnn2Hz5s3YsmULfvjhBwwePBgslvbPu7Yx6wK6rquqPZOSkuiIg8aNG6v9GFu8eDH69+9Pb3t6emLt2rWYNGmSSWO+6Sivi8FgoFevXho/ZrW9RwHA29sbn376Kf744w9s3boVq1atwpAhQ0was66h7bp02RUKRwGTyURWljy697PPPtOajs3n87F9+3ZERUUZNWZdQHkf2PcoHSdis5FeJEQzAxIKfcLdMbGlP7zteWr7ozztMbGlP1oZkA1IyC/D0Hn9IXDg65THyssogJ2TXHtSIpHg1q1b9DFt3926Pj+LFy/GX3/9hW3bttH/evfubcgskMlkuHnzJhzdHBDVPhx9JnVD3ynd6ePDPxiIb49/gbc/G4aGHRuAw2UjoGdTuiCBNnvqs7GHHRc9Qt3wVlNfvN3UF4MiPRXZDPrnmZBfpnVBWbmratqkTCbTKDCg615Y9XOzePFi7Ny5EwEBAXQbgUCAf//9F+7u7vS++fPnq1VVpSgK169fV58fiUgzj9LSUjRp0gTr1q173VMhEAgEgpVQ6j6wmAx0qeeKm0n5EBohtiqSyNDcAt2rHBMKG1AUpXeehRUSHI/JwtkXOWhd5UHQknnmlNW96p0URWm9Ll1//2AXgVbHDZvJQJCzABUSKULdDAu259ZBW8LAdel7X2rjbkoB/r6fin+jU5FXJkb3+q46x6yuyoGvE6XWiyqpqalYtGgRli9fTv+ALimRr+RfvXoVQUFBdNvmzZvj888/R3R0NN5//31MnjwZq1evhp+fH5ydnbWOGR8fX+2FDV4H2mwJLfa8f/8+cnNzsXjxYnh5eSEvT3tafEBAAJYtW4ZLly5h69atWtskJSVBJKp7n3OlLTt27Ii7d+9qFG/Q9h6FwumTkJCA2bNnY/LkyVi5cqVGdIcu0tLSql2M/3Wg7X2py67QElVz7tw5dOzYEWw2W6Ndfn4+njx5otFHdnY2ioqKrHYNtQXlfVwZXR6fXwYXgXYBe1UKy8WoX+WeXd/NFgXlhqP5KyQyTFw+HgcLtuFQ8Q78fPVrzFg5gT7O5rDQZ2JXejslJUXtO0Hbd7euzw8A/PXXX5gwYQL9T5uzVRvKKFslqrdLHp+LVn2aYso3Y7Hq0lfYn78V3Wb2oY9rs6cuG/s52qBnqDvSCiuw/3E6/nmQiotxuXCy4YDP0b9YK5ZSKNKyoEzf26s4qTIyMlBWpv4sputeqC0araSkBGPHjtU7J23osyWJSDOBfv364euvv8bw4cNf91QIBAKBYCVyy0RgAOgS4oqYrBKjK3fGZpfA3Y4HTzue1uNsJgNtApwwopE3RjfxQccgF3BYlTfdXBNSMIsqJJDIKK3zVL2Pi6QySKqULTc0z0hPOwxr6IWxzXwxvKE3GqjoipQIpUY5Fd8kSkWa16Tv7x/kItAaTRbsIoBERuFeSiFCXG0NFm8qF8tQpiWq7U2mQixFqY5rMvS+1IeMAl5kl0LAZWtNIxFJKRQL65Yty8rKNFIRVX8sl5aWQigUgsfj0avgkZGRyMjIoNtMnjwZBw8exLFjx1BcXAwoHBLr169XSxlVRSQSITU1tZqu6vUgEomQkpKisV+bPQFg586dWLp0KVJSUnD79m2N88LCwrB48WLs378fu3fv1jmuVCpFUpL+tK83DalUSqd1BgQEoE2bNvj8888RGBiIefPm6bSpvb09vLy8cObMGYhEcsd3SkqKWkQJn8/HlClTsH79emzduhXffvstXF3lznOKohAfH1/j11ud6LombXZV0r59e7WIsjt37kAqldLp2Uq6du2qN7W4qjPgTYeiKOSWisBmMqC81XjZ8bQ6ZqoSn18GX0cb+nnMzVYe+Vx1cXNEI29EedmjfwMPjG0mj5IWcFjIVbSzEfAQ2S4cA2dURok17BSB/tN70tuqdtf23a3r82MIHo9Hf3Y2btyIOXPmgM/nax0XBqKoeHwepAIbQPHcWtWe+mzcOsAZjzOK8SyrhH6uKqqQ4GpCHv1sYMNmokuIK8Y08cGIRt5o5utI95dbxeaqC2RVI9KqXpO+e2HVzw0UaaFhYWF60/dVpQ90jVsbItJIsQECgUAg1AqKhRIEuwjgaccDh8VAhKcdUgoq8CSzGF1CXOFqy4VYKoObLRd3Uwrp84QSGR5nFKG5nyMtqq5KhyAXyCgKh55mgKKA9oHOaBPgTBcCKDEhtbNYJG+rbZ5ZJUI093MERckX8G4nF6ida2ieJUK5iGyZWAovex56hLoht1yE7BIRPU8eW3uK3ZuINrvr+vs72bAhlMi0loOv72aLuNwyxOeVoZW/E/wd+UgyoClXIpRAYERK7ZuCvvRkVwFX6/tS32dKCYvJQKi7LUqEEjUtO1VKRBI4GJFS+6aQna0p5BwcHIxx48ZBJpOBwZBXfPPx8cGMGTNQUVEBiUSCDRs2AIo0Ok9PT7O0lLKystRSXt50cnNztUbZabOnvb09PvroI0ilUqSmpmLbtm1q5zRs2BCjR4/Gpk2bcPmyZpW+qmRlZaF+/fpWvZ7XSUFBAR1R89dff9H7Fy9ejDVr1mi1KQAUFxcjJSUFs2bNwtmzZ/HixQsNZ+7s2bPB4/HwxRdfoKCgAIGBgWrRO1lZWYiMjKyxa61uSkpKNCJqoMOuAODn54fi4mIUFlZ+R0qlUly6dAndunWjU858fX1Rr149rFy5UufYyhS3uoKUolAhkcFFwEH7QBdIZDJIKeBagvz5St99RiSRIbWwAsEuAjzPLkV9N1u8zCmFE18zmq2eqy3OvZA/H3Wr74Zmvo4aizj6HCuqEZjavrt1fX4MMXv2bEilUrri58yZMzF16lQ6a84UXS+KomjpCgcbtoY9te0DAAceG/Y8NuLz9EuhdA5xRblYir2P0sFjM9Ez1B0SqQyPMopRUsWWMhVbVl2drHpNuu6F2j43UHz+Dh06hLFjx2LRokV656xKVlYWZDIZmIrUV1K1s4YQCoVqnuW6GFZLIBAIbzpSGYW4vDLEaYk6uhiXq/fcZ5kliPCwg78THxnFleXAeWwmApz52PUgDWKp/K57P60IQ6K8cDU+D5RiXGORKdrqmqehakq65gmFWLySjGIh0gor4GXPox1p0jqWQqftenTZtaBCgtPPNW3raMOGhx0PNxLzIZFRSCooR6ibrUFH2n/BlkqyS0Va35f6PlPN/RzR1McRUopCXpkI515qj6KCiZ+fNwFtaV0vXrzAkiVLNPYvXLhQY5+yWqSu1ER91LV0RG22hB576quAGhkZicLCQty/f9+osf8rtlTarLi4WKtNlW0GDx6MkSNHwtfXF2lpadiyZQsePXoER0dHtGnTBrNmzUJ+fj4AaAit/1dsqYrqezElJQVff/21Rptz585h5cqVcHV1RW5uLrp3747o6Gjajtqoa7ZU+lvyysQ48kwzXdjQs9vL3FI083HEq5wyBDrxcfBJBlr4acoPxGQV006muNwyNPKyR3Kh+jOUPieV6t88Pj5e47s7NzdX5+cHAMaOHYtRo0bR2zNnzgSXy0WbNm0wdepU2jG7a9cu/PTTT/jll19AURTEYjEoiqIde/qcfaq3Um32LBVJtdqYx2HSx3Uh4LDg7WCDXQ9SIZFRkIikeJhehCY+DniUUaz5DKHHSVX186PNntDzuQGAo0ePom/fvmjVqpXWNGhdSCQScLnyBWV9zr6a4j/hSPvuu++sUp6cQCAQCNUH04IboZSi8CCtCM19HXEipnLhxI7LBpPBwIhG3hrn8DkslImlJq1kWTJHffOEIhorytMedjw2GIpoIFVhfUvHrm1Y43pC3eyQVyZCvkJT5VVOKXqGydM+ysS6HyqJLfVzL6UQz3RU8qrusV83VTWPTEW5WOvi4mK0DpW1xq5tWPN69u3bh4iICHz55Zf46quv6JTZmhi7NmDJ9RQWFmL79u3Yvn07bG1tMXz4cHz88ceYNWsW3NzcIBKJkJur2+FBbKmd1NRUvHz5El26dMGBAwfQqVMn/PHHHzUydm3B0q//9CIh2gey0NjHAdmlIq1R56hS/VMio8BhMTVE9PU5qSy1+99//41jx46p7fPz8wOTydTQbJfJZHByckJ+fj7YbLbaXPQ5+8y1pVBhG1suS6fUgoDLgkSmHtVfLJTAVqGfVtWWsmq0JRTOuN27d+Ptt9/Gl19+afR5amOTiLSa4bPPPsNHH31EbxcVFcHf3/+1zolAIBAI6vA5LNohYg4vc0oR5WmPem4Cel+pSAIZReHfh2k6I2f4bOPlQm04lkuLapunLZeFjsEuOPM8GxnFQlAAutVTF3jnW2Hs2oSltmQwgBBXAThMBkY38aH3MxkM1HMT4FG67h/a1vg71iYMiQlX79h1y5aOjuYXLgGA9PR0ZGVloX379ti/f79J5zo5GS4E8SahjM6zBhKJBCtWrMBHH32ExYsXY+nSpXqdaXXNlvb29mAwGBYX9ygtLcXu3bsxaNAgeHh4ICcnB1wul46q0kZds6VAIACbzYZEYlrFbm2cO3cOQ4cORXJyMhgMBu7evau3fV2zJZvJAJvJMEl7syqvckvR2NsBF17pj16rStX7nr5UP0u/17WRk5MDmUyGGTNm6Iw0rDquPmcfk8EAj800WQ+3SChBsVCCIBfdzz1lIinYTCZs2EzamWbPY6NUseCoz5ZVHX7WsuW5c+cwcOBAdOnSxaj29vb2dFonaklEWt16+tEBj8eDg4OD2j8CgUAg1C6MqfKkDwrAvdRCNPKq/I6vkMiQXFCONgFO4CkcZjZsJgKcKsVgXW2N1x1z5nMtvl9rmydb8aBSIZGBAuDraAMfBxv6OI/NhOA1OkuqA0cbDlgWrCL6O/LBZTFx+FkmDj3JoP9FpxUi1NVO53kcJgMOvLq1jmjHZYHLqvkHSSZD/nesSzg7O1v8Y3fz5s0YOnQo+vbtCzs7+XvR29sbM2fOhJubm9ZzGAwGAgMDLRq3tmFnZwdPT0+r9SeVSvHTTz8hPT0dixcv1vs8r1o5ri7A4/Hg5+dn8nm2trYYM2YMfHx8wGAwwOVyMXDgQBQXFyMtLQ2FhYW4ffs2pk+fDicnJzAYDAQFBdHvWyg07eoSbDbbap+1q1evwsnJCRMnTsSlS5cMVt6ta7ZkMBhwEVim3fo0swSnn2cjudC06rBVx9XnWAkJCbFojtpQfnamTp0Ke3t7QOFkUhXJVx1XIpbgxJbKQhSZiVkoLVTXNXM105a3kvLRyMsBDTzs6MJADjw22gc6w5Yrj9BPL6pAS38nsJkM2HJZaORlj1e58vGr2lKfw89atqQoCjt37sSwYcOMal91XKKRZiYlJSV4+fIlvR0fH48HDx7AxcWlTom0EggEwn8Jcx8gVEkqKEdDL3vYqDidrsTnoamPIwZEeILHZqJCLEVCXhmto2XKuCwmA842HORZEDmnbZ6FFRI8Si9C7zB3MBgMJBeUq+l/uAq4r60qUXXBZDDgwucYXZ21KqHutojPK0NRhXpUwbOsEkR52cPLnoeMYs3KWy510JbKHzParrc6ceZzLXKG1lZCQkJw7949s8+/d+8evv32W4wYMQJjxowBFNELly5d0qmf5OfnBx5Pe0XfN5ng4GCTU1z1IZVKsXr1arz//vtYsmQJli5dqiFm7enpqeYIqisEBwcjOTnZpHMkEglcXFzw2WefwdHRESKRCPHx8fj2229p/eh169Zh/Pjx+P7772FjY4PU1FRaMN/Z2RnOzs7Vcj2vk+DgYLx69crifoRCIa5fv45u3brh3Llzetva2trCw8PD4jFrG64CDrJKzL/3iKQypJt476IoCh82W4BGHRugcedINOocAb5d5eJjVcdKcHCwVSI6q/LLL79g9OjR+O6772BnZ4fCwkJcu3aNrjqs6vy5dew+ruy7SW+f2HweJzafh0eAG5w8HNGgTSjafzIcaWZIuacUVuDMi2w09nZAMx95xFiJSIK43DKUK6LOLsXlok2AM0Y08oaUohCXW4bHGcVgMgDnKgUe9EWkBQQEgMViGXQaG8PNmzcxaNAgo4KcNBxptaBqJ4Oy9juqBrhw4QK6deumsX/ixInYunWrwfOLiorg6OiIwsJCEp1GIBAItQShRIrd0ek1KgTP57AwsrG3STpP91IK8ChDvz6PtWnt74QIT/saHbMmiE4rxANznhotoLmvIxp51717/5OMItzRUnmzOmni7YCmvtZPmXndnDp1yqDWkbUZPHgwxo8fX6Nj1gQXLlzA+vXra3TMvn37YsqUKTU6Zk1w7do1rF69ukbH7N69O2bOnFmjY9YEd+7cwQ8//FCjY3bs2BHz5s2r0TFrgrTCCpx+ob/QkrVJOv8Qlz5V/83v6uOM3DT5QkVo8xAs2DwbPvW9YCOQL1AsWbIET58+rdF5fv/997QD6Mm1WHzQ8X9627/1wwSwuzatodnJ8XWwQc8wd7V95SXlGOwwAQDQrEcj/HBaXcfs22+/xYMHD2p0nsuWLUODBg3o7dsnH+Dzft8AAMYvGomJS8fU6Hzwpkakde3a1eoeZQKBQCC8XnhsFoJc+HiVq1m1sboIc7c1WSw9zN0OjzOKUVN3ITaTgXqutjU0Ws0S5m6Hh+lFqKnCj0wGEOpWN21Z380W91OLaswRzVBEBdZFOnXqhB07dqCiosKI1pbDYDDQu3fvGhmrpmnfvj3+/PNPlJaWGtHaOtRVW7Zu3ZoOBKgp6qotmzdvDjc3N+Tk6K5IbG369OlTY2PVJN4OPDjw2CgSWq45ZyyimGRwuGyIRZVjKp1oAPDiXhxmNF0AAHD3d4VfmA94/jUrj+Hu5Imr2+9ib+JxZCVmIz0+y+A5no58yPgci/SCTSXcQzN6V19EGhTfCzXpSAsMDER4eLj6TpVJvq6ItP+ERhqBQCAQ3gwaeNRc1BWTAYS5mZ7+Y8djw09FY626CXERgGtCQYQ3CT6HhUBngREtrUOQi0At7bcuwWOzEOxac7YMcObDlvtGrscahM/nGy2AbA2aNWtWJ1O+AIDL5aJ79+41Nl5UVJRZWmJvAmw2Gz179qyx8UJDQ6tFW6o2wGQy0atXrxobLygoCGFhYTU2Xk3CYDC0OmOqCwcbNpb9MQP787dixfklmLh0DJr3bAQeX7tMR3ZyLu6ffYQbfz6ErLzmAnESTmVg29J/cWrrBTw4/wSZCbqj9hhMBqZ+NxYDp/dEgxq0pR2XBV9HG439htImmzdvDnd3d4391UXv3r015iFTWYHV5uyrCermkzmBQCAQ3kjcbLmoV0POgEZeDhBwzXOqtPBzBKsGVsB4LGadTJ1TpbmvI11soTrhMBloXsdt2dTHAZwaKDrAZjLQ3LduVZ+rysiRI2kB6eqEw+HUyZROVYYNG1YjOlssFgsTJ06s9nFeJ4MGDdJZsMKaMBgMTJ48udrHeZ3079/fqsUw9DFp0qQ6p82pSri7HRxtamZhpbW/MxgMBnh8Hpp0icL4RSOx/NSX2PysMu05IMIPvSZ0QUTbUNi7KBxTFFAWXSNThCSXgihJfZ+9s23lXFSwseXhmyOf4a1P5aL79V1t4cKvmSI+rQKctWZlGBLyZzKZNfb9EBwcrFXSi0SkEQgEAoFQhVb+zuBzqvf25MznWKST5WjDQbMacMq0DnDSKEte17DjsdHCr/qdMi39nepsBJUSWy4brf2r32HR3NcRDjX0o+l14ejoiKlTp1b7OKNHj66zEVRK7OzsMH369GofZ/jw4XWuWmdVBAJBjWiWDR48GPXr16/2cV4nPB4Ps2fPrvYf4f369UNkZGS1jvG6YTEZ6BDkgup2Z4S62WqNoAIAJqvyuTEgwhefbH0Pa659i305W7A3ezN+vvYNPvhqDjztfKp1jgyKgQ6RXTB79WQsPfAJfnuwAgfyt2Jf7lZMWDxara2TuwNWnFuCVn2bVV4Hk4EOwS4WV4g3RIiLQK2CvSr6KqAqadmyJTp27Fhd0wMUiyOzZ88Gm635vEEi0ggEAoFAqAKPzUSnYFcwqkmFjMtioFOIi8XVBiM87XQ+0FmDeq4CBLvUXKpeTVJaWIrbJx9gw0db8bb/DPzQ9Qv42FbfCmyQM7/OaqOVFZfj7ulo/P7JdowNnImv2y+En6D6bOnvxK/R1JPXSbt27dCjR49q679p06YYNGhQtfVfm2jZsiX69etXbf1HRUVh2LBh1dZ/baJx48YYMmRItfUfHh6OUaNGVVv/tYmIiAiMHDmy2vqvV68e3n777Wrrvzbhbser1qhvZz4HLf11L7qp6XpVebxzcLVHZNsw9J7YFd+sXlatkYjvznwX89e+h2Hz+qP94FYIaRwIW0f584eTR+UCrr2LHVZf/RrhrTQd1i4CLlpV4wKjow0brQP09K/HlqpMmTIFvr6+1p2cChMnTkRgYKDWY1QtiEir28uJBAKBQHgjsZWI8eDHfWj4wRCwONa7VXFYDPQIdYezDi0NY6EoCjeP3MGFTedg17slvFtbV/sk0JmP9kEudSoV5PaJ+7h28DaeXItFwuNkjaJB/4xejvpT+8K3o3VX7v2dbNAx2LVO2fLemYe4sv8WnlyLQcKjJLWVWQA4//mf4HVoiIBuja06ro+DDbqE1C1b6oPBYGD69OlIT0+3erW3qKgozJ8/H0zmf2dNe+LEiUhLS0N0tHXzq8LDw/HJJ59ojVqoq4wdOxZpaWm4ffu2VfutV68eFi5cCC7Xsnvkm8TIkSORlpaGq1evWrXfwMBAfPbZZ7Cxqb4Ft9oGJzUbT/68jKiJ1l2AcLRho1eYO7gs3d+XAvtKO5cW6i5a5eDggEWLFmHp0qXIzrZutdF33nlH7+KL6r169MdD4FvfW2dbm+x8PP7jFBpOs26RCnue3JY8tu5sBxs742xpZ2eH//3vf1i6dCkyMjKsOs+33noLffv21XmcUrGltvTTmuC/c/cmEAgEwhuBTCbD9++sxaPdV3H+g40QF1mniqc9jw3hmfuY4DIRE8PmIvrCE5MqQFMUhVfRCfhj4Q6M8ZmOL4f8gJuH7uD8R3/g1ZFbVpkjAIS68LGh6+cYKBiHNe/9gaLcYqv1/bq4feI+Pu//LY78dhrxj5K02j35SQoufrIFL/Zft9q4oa4CbOq9GINsx+Knd39FQXbNVburLqIvPsGnvb/C4Q0nERedqOFEA4D7p6Jx+fNtiPn3stXGreciwPZBX2GgYCx+mLQOeRn5Rpz15sNkMjFgwAA0b97can127NgRfn5+WL16Nc6ePaueRlOHUdqyRYsWVnPGtm3bFvXq1cPPP/+MU6dOQSqVWqXf2g6DwUDfvn3RqlUrqzljW7ZsiYiICKxZswYnTpyARFJzVRhfJ8qqua1btwaLZR0phSZNmqBZs2ZYt24djh49CrG45qowvi6Kcovx1aiVuP/LUdxeuR+U1Drfa172PNz8fBuG2Y7Dxz2XIjk2VWs7gYMAbIUURkF2kd4+PTw88NVXXyE0NNQqc+TxeJg1a5bBCGNRReX7wNZBd9GqkoJSLBn+Ix78fhI3v98NSmKd7zUPOy6iv9mJEXbj8VGXL5H4NFlrOy6PA4G9fH6FBmzp6uqKZcuWISIiwipz5HA4mD59OoYPH663naot2a9JtoM40ggEAoFQq9i+dDduH78PACiPz0DfEGeLUxwjPOwwKNITJ1YfhlQiRdrLDCzovgRzWi/E+Z1XIdXzkFKUV4wdX+3BtIYfYmazj7Hrh4PIz6x0yMhEEvgUl6BbfTeLtN3suCz0CXMH40kC8lLzIRaKcXj9SbwdMBNr3/sDaa+su9pXk3BtjItukEmk8MgvRM9QNwgs0Iaz5bLQM9QddimZyErIhlgowfE/zmJs4Cysnvm7zgfxNwFDtuTxuRBViEFJZXDJyUevUDfYmllUA4rKqj3qu8G7pBjpL9IhEUlwettFjAuajZXTNuh8EK8LFBcXY+/evYiMjMTChQuxZMkSi1KCHB0dsWDBAkyaNAkpKSmoqKjA9evXce/ePTx58gSZmZlWnX9toqysDPv27UNISAg+/fRTfPXVV/DxMV+ryN7eHh988AFmzpyJxMRECIVC3Lp1C7dv38azZ8+Qnp5u1fnXJioqKrBv3z74+/vj448/xjfffAN/f3+z+7O1tcV7772HDz74APHx8RCJRLh9+zZu3LiB2NhYpKa+ud+XhhAKhdi/fz88PDywYMECfPfddxbp7PH5fMycORMLFy7EixcvIBaLce/ePVy9ehXPnz9HcnLd/L6USqX4ZuxqZCbKI7yYiRkYEOEOV4H5kY1sJgNtApzRO8wdd4/ehVQixYNzjzEl4gN8OXQ5Hl1+ppHe5+AmT50syjG8AOni4oJly5Zh/Pjx4HDMl0OIjIzEihUrtAviV6Egs4B+7eShPQ1WJpNh+cS1SHupeOZLyMCABu5wtzXfliwmA638ndA33AM39t6AVCLFo8vPMK3hR/hi4Ld4cP6xxgKno7vcloYcaQDg5OSExYsXY9KkSRZFs4aHh+PHH380qqJuvhG2rG4YlCnL8XWEoqIiODo6orCwEA4O5otNEwgEAsG63Dp+H18M+BZQhGp/f2oRmnVvBADIKK5AbFYJEgvKYcydi8VkIMRFgAYednBRPMwtGvw9bhy5q9HWI8ANIz4YiCFz+2qsSM9t9zlibr7QOU5I40Csv7McLDYLIokML3JKEZtdgmKhcav5znwOwtztUM9VAA6LiZKCUgxzmaTRjsFgoMOw1piweBSCG2nXjKitUBSFHyatw5ntl/S28wvzxu8PV4LD5UAsleFlTilisktQVGGcLR1t2Aj3sEN9V1twWExUlAkxyH48qsrtMRgMtB3UAhMWj0b9ZsGWXNprYfWs33H0t9N624Q2D8aqy1+Bx+dBLJXhVW4pYrNKUGCkLR14lbbkspmQiCUYwB+rNQKudf9meOfLUWjQ2jqr+7WFHTt2IDMzE3PmzKHTs4RCIS5duoRTp04hMTHRqH48PT3Rq1cvdO/eHXZ2dqAoCt9//z1EIhHdhsViQSqVYsCAAWjZsmW1XdPrYteuXUhKSsKcOXMgEMgXRkQiEa5cuYKTJ08iPj7eqH7c3d3Rq1cv9OjRA/b29qAoCitWrEBZWWXkstKWvXv3Rrt27artml4Xe/fuxcuXLzFnzhzY2cn1CiUSCa5cuYJTp07h5cuXRvXj6uqKXr16oWfPnvTvoVWrVqGoqPKHs9KW3bt3R6dOnarpil4fBw8exNOnTzF79mw4Osp/jEskEly7dg2nT59GbGysUf04OzujZ8+e6NWrF5yc5NpTa9euRV5eHt1GactOnTqhe/fu1XRFr4eti3bir2/2Agqnxoa7y+Hm6woZRSExvxyxWSXILBEa1ZcNm4kwdzuEudvSBYJG+0xHfkaBRtvwVvUw9osRaD+4FQBgRtMFiHuYCA6XjaPlfxsd+ZqVlYVTp07h+PHjRkcPNmrUCH369EHLli2Njgpd/8EW7F9zDACw6vJXaNihgUabf77bj81f/A0odNTW31kOryAPyCgKSfnliM0uQUax8bas72aLcHc72PHkthwXNAtZSTkabes3C8bYz4ej04i2QJVn3+PCf8A2UmYlJycHp06dwrFjx9TucfqIiopCnz590Lp1a6Ntuemzv7Bz+QEAwPJTi9C8p3WlLIzhvyMmQCAQCIRaTX5WIX6c/Au9PfW7cbQTDQC87G3gZW+DMpEUqUXlyC0VI69MhKJSIQpyiiEVScADhSbNAuEq4MLXkQ8eW/2G3O3tjlodaVlJOdjw0VZUlAkx9nP1cHKpWLfjgcFk4Ntjn4Ol0JrgspmI8rJHpKcdMkuEyCoRIbdUhIJyMfJyiiEsE0JcWoEGDXzg62EPTzse3Gy5ag97dk628Av3QUpsmtpYFEXhyr6buHsqGjtTf6fD7t8Ent95hftnH+lvxAC+OfYFOFz5yjCHxUSEpz0aeNghq0SErBIhcstEyC8XIz+nGBWlQkjKhKhf3xP+Xo7wtOPB3U7dljYCHuo1DsKr6AS1oSiKwvVDd3D/zCPsSFgPR7c3Z1Ht5YN4OmJTF/YudvhyzwLw+DxAYcsGHvYId7dDdqkIWcUqtswtQUWpEOKyCgQHuSPI1xnudlx42vHUbMnmsBHeOhTPbjzXGO/Wsfu4f/Yxtr1aBzcfl2q46teDn58funfvrqZxxOPxaOfDy5cv8ezZM8TFxSExMRHl5eUoKSkBn89HeHg4QkJCEBYWhsjISLUfBwwGA++88w42b95MRwHw+Xy0atUKwcFvnmPXGHx8fNChQwfaiQYAXC4X3bt3R7du3RAXF4enT5/StiwrK0NJSQlsbGwQFhZG27Jhw4Yathw/fjw2bdpEp3Xa2NigdevWdbbqpLe3N1q2bEk70QCAzWaja9eu6Nq1KxISEvD48WMNW3K5XA1bVl04GjduHDZv3gyhUP5DncPhoFOnTggLs64OaG3B09MTjRs3pp1oUNiyc+fO6Ny5M5KSkmhbJiQkoLS0FCUlJeBwOLQtQ0ND0ahRIw2Nvrfeegtbt26lnbwcDgcdO3ZEgwaazpM3mYeXnuLvb/cBisqZ/9v1Idx8XeXbDAaCXeSFkwrKxUgvqkBumQh5ZWIUFJShrLgckgoRXB34aBDuDTdbLnwcbDSKQXUc1hqHN5zSGDv29issHvoDVpxbgiZdo+goKrFIgrLictg6GJfN4OHhgfHjx8Pd3R1SqRQFBQWIj49Heno6RCIRWCwWHBwcEBwcjODgYNy5cweenp4a3+2GyM+qzGZw8dIU+4+59QJbv9wJKL7bPv/7A3gFedC2DHIRIMhFgMIKhS0Vz8EFhWUoKSyDVChGUVI28mJS0LZjOIa91V7Dlp1GtsXen45ojP3yfjyWjVqJb45+jtb9msHJvfK5qDivBM6exhU/cHNzw9ixY+Hp6YmKigoUFxcjLi6OtiWTyUTWq1xI8inIChloP7kZXFxcEBUVZZotVTJDnLXYsiYgjjQCgUAgvHYoisLKqetRoHjIaDuwBUYtGKy1rYDLQqibHULdgB1f7cH+dcdQlC0P42/RuwmmnfifznEi2+n/MaBt9fLT7fPwYadFKM4r0TjWum8zuGpxHDAYDNrxV1JQgg86foO8jAK6j+4Xl6FhY92Vjhp1jNBwpClhsVmg3hBNJYqicPyPs1g3bzPEQv2rvE27NYRPiGbaHIPBgKc9D572PJSVlOODjouQk5JL2/K7E/9Do2a605oadYrQcKTRfb8mgVpzOb3tIn6e9TuE5fJVXiaLCZkWHZpPtr5HP3yrwmAw4GHHg4cdDxXlQnzYaREyE7JpWy7Z9zEatdQd7dioU4RWRxpeo9hvdZCSkoLr169j5MiROiMaGAwGQkNDERoaCqlUikOHDiE/Px8tW7aEp6enwRRQGxsb8Pl8+ke2QCBA586dq+V6Xifp6em4dOkSRo0apfNHEoPBQL169VCvXj3IZDIcOXIE2dnZaN26NVxdXQ2mgCptWVJSQm/XRVtmZWXh3LlzGDlypN7CCkFBQQgKCgJFUTh27BjS0tLQtm1bODs7w8/PT+8YNjY24HK5tCONx+OhS5cuVr+W101ubi5Onz6N4cOH601FCwgIQEBAACiKwsmTJ5GUlIR27drB0dERAQEBescQCARqKYNKZ2ddoqSgFMsnrKUXBCYtewtNukRpbevE58CJzwFFUVgy/Ec8uvyMvvdMXDoGzbrrdjBGtW+g1ZGmRHkvd1Rx/hRmFxntSIMi/bxx48bw9tZdAAAAMjMzcePGDaSmpmL79u2YMWOG0Q4g1ag6Z0/1dMTyknJ8N34NfU8f+8VwtOzdRGs/jjYcONrI31tfj1mFe2cfajyjiqJfYeTYDhrnRrVvoNWRpoSpKOigusBYkF1ktCMNAMrLy9GgQQOdFT0H2o2DsEwEGxcORCIRMjIysHXrVsyePdtoncK8TN22rCmIRhqBQCAQXjuHN5zCzaP3AEVawEd/zDIYkp/2KgN/LtlFO9EAICclV+85noHuWlcBAWDgjF4YOX+gxv7MhGxUlFRoPWfQbMPVlL4esxqJT1PUHnKyDcxTl8PP0d0BXx/5jC6lXpspLynH8glrsWrGb7QTLaihPzg6RGEHzzJsy+XvrEX8w0Q1Wxr6m0fosKW9ix2+OrzwjYhGqygTYuXU9fhh0jraidagdX38cOZLCKoIFg+a1QdtB7Yw2Oeq6b/i5b14q7wvbR0FWHrgkzoRjUZRFPbu3YuSkhKj04KuX7+Ohw8fIjk5Ga9evaIdOvooLCxEWVkZfH194e/vj6go7T8+33T27duHoqIio215+/Zt3L9/HykpKYiNjUVpaanBc4qKilBSUgJvb2/4+/sjMtK6lX9rC/v370d+fr7RPzTv37+PO3fuIC0tDU+ePDHKliUlJSguLoanp2edtuXBgweRk5NjtC0fPXqEmzdvIj09HQ8fPjTKlmVlZSgsLIS7u3udteXa9/6g0wQbdY7A6E+0L4CqcmzjaVw7eNuk+7iuew+TxcT7G95F485y2zpVcf6YwunTp3H8+HGD7XJzK+daVFRk1HtBSZ7CkWZjywPfTv3evf6DrbQuWoM2oXjny1EG+zv3z2Vc3H1N60Lvq/va0+V12pLJwOzVk2nnXVWnpCmcP38eR48e1Xlc6eDku1Y6sUtLS1FcbHxxLaVTksliwsHV3qT5WQviSCMQCATCayXxWQp+W/Anvb1g82w4GxAOpSgKa2Zv1NC+yknN03UKoIh80OZYYTAY6Du1B51WqOTi7utYPHQ5xCLN9E6+nQ2a9WiksV+VmFsvcPd0tMZ+c50/wY0CDEbV1QbiHydhTuvPcPavyqqRrfs1Q+qLDK225PDYaNm3qd4+X0Un4PrhOxr7zXX++DfwRaNO1qkyVZ0kx6ZibtvPcGLLeXpf3yndsfLCUjTpEoVOw9vS+/0b+OLdH98x2GdSTCou7LqmsT/XwOdHly2963miafeGBsd9E6AoChERERg2bJjR52RlZdGv4+LicOSI7tV+JX5+fnB3d8eQIUMwZcoUNG/eHOfOnatTlRIpikJYWBhGjBhhtCNNteBCQkICDh06ZPAcHx8feHp6YtCgQZgyZQratm2Ls2fP1rlKifXr18eoUaPMsmVSUhL2799v8BxPT094eXmhf//+mDJlCjp37oyzZ8/SEWp1heDgYIwePdpoR5rqZzw5ORl79+41WPXbzc0NPj4+6Nu3L6ZMmYIePXrg7NmzKC8vt3j+tYGzf13Gub+vAIrFlIXb5hq0Z2lRGTZ/sVNjf3aq/vu4V7CHVkF5e2dbdBldqYNoifMnIyPDqKId9erVozUFKyoqsHnzZuzevduoisHKYgNVF3Qv77uJE5vPAQon28Ltc2nJEF2Ul1bgt/nbNPYro8NFFWLE3NbUS3T1doZnoLvGfr6DAN3eroxgc7LAlunp6XqjXx3c5I6vwoRS8FiV+qN//vkndu7cadR3t7LYgLOno9UqF5sKcaQRCAQC4bUhEorx3bif6TLWQ+b0RZv+zQ2ed/Hfa7h7+qHG/tJCueaGPlTFXXkCuYYURVFYPmEtKsoqfyyc2HwO3769ChKx+sOR8kfMgHd7gcvTXelJKpFi9czftR7LTtb/0Ogf7qO2wsZRjPPg3GMc/+Os3nNfNye3nsfcNp8hOUZe6U1gz8fQ9/rhzqlojfRO5e/BvlN6gG9ro607QFHF6udZv4PSInRvyJaege5w862MlOLy5SugT6/F4uC6E6ZdXA1z7u/LmN3yUyQ8lld6sxHw8Mmf72H+H7PAteEi+sITnPrzAgCAzWHh87/eh43iPa0LiqLw86zftaaEGnJKOns6wae+F73NUxTxeHkvHrtXHDbrGmsTL168wPHjx9G7d29aMFwfFEXh7t27SEpKove5uLgY5Qzj8XiYPXs23N3lP2iUAucXLlyw8CpqB3FxcTh8+DB69eoFFxfjIhXv37+PhITKNGylLQ05LDgcDmbOnEmnZEmlUty4cQNnzpyx8CpqB4mJiThw4AB69OgBNzc3o855+PChWgEHFxcXSKVSyAzIArBYLMyYMYNOW5TJZLh16xZOndKdVvcmkZKSgr1796Jbt27w8NBMf9fG48eP1Qo4uLrK9b8Mfc4ZDAamT5+OkJAQQPF9cefOHZw4UbvvO8aQkZCFNXM20tvvb3gXHgGazpmqbP3fThTlakYdGbqPMxgMRHUIp7f59vLnhcKcYqybu4neb4kjbcSIEUalMUdHR6sV5CgoKMDTp09x6ZL+YkoioRjF+fLoNVVNr5zUXKx691d6e86aqfCtrz+9FAB2LNtDR7ipwlKJ+j+4VnuEXcOOlc/BfDu5LUsLSrF6xm/0962qLU2N7hs2bBh69Oih87hSEsUtyhFCSWXGR0FBAWJjY3H+/Hmd50LxvaTUSNOVZVITEEcagUAgEF4bfy7aiVcP5D+cAiP9MP2H8QbPKS0sxYYPt+o8nvoiXe/5/ab1QOv+zdBhaCv89uBHhLWsBwBIjknFpoV/AQD2/XwUK6dtoCsUclQcZnN/mYb1d5Zj2vfj9I5zcN0J+to05vhS/xyZTCbmrJmC8Fb1MOfnKVj070f0sQ0fbTV4/uugokyIH6f8ghVT1tPphyFNAjFywWAc/OUE7bjh2lTacuZPE7H+znLM+Xmy3r6PbTyLZze0V041ZAsGQ56uEN6qHt79cQKWHfiEPvbHwh1IfJps0nXWBKIKEVbP+A3fjV+DilK5czcw0g/rbn2HXu/IH/SL80vUtGkmf/22URVIz2y/hIcXn2o9ZuizAwCzfpqE8Fb1MPXbsfj22Oe0Y/nPL3fi5QPjKi/WRioqKrBv3z6TIm+ePXuGI0eOoLCwUvQ4OTnZaGeHKk5OThgwYIBRUQ21HZFIhL1796KiQntKvDaeP39O68wpSU5Ohqurq9ERWErs7e0xaNAgg06jNwGJRIK9e/ealD4WFxeH/fv3Izs7m96XmpoKV1dXkyM3BAIBhgwZYtCZ+SYgk8mwZ88eo1KvlSQlJWHv3r1q0X1paWlwcnLSq1OnDR6Ph6FDh5r8fq5tSKVSLJ+wFmVF8kXLHuM7odtbmlpcVYm98wqH1mt3Iqa9zDD4eX3ny1GIbBeGIXP6Yv2dH2DnJJe4OPf3FZzfeRWoEkVlivMnLS0NV69e1auXp0S52KH8O/bo0QNTpkwxmJ5foKbpJXf+yGQy/Dj5Fzo1s9OINugzybCOXvyjROxdpT3yWaIS9X/vjOaCMwC8/flwRHUIx4B3e2HDvR/gqIgQu3rgNr04Z65TMjMzExcuXACPp3tRzytI7nQN7OoJMCpt2aVLF0ydOhWNG+uvwFmUW0w/UzqZoN1mbUixAQKBQCC8Fh6cf4zdK+VRLGwOCwt3zKOrDOpj8xf/aF2FU5L0LBWhzUN0Hrd1EOCbI5/T259um4tZzT+GqEKMA+uOo6SwDGe2X6SPe/i7IStZrgHSYVhrDJzRy+CDcHZKLl15SRsJTww7b7q/3RHd3+5Ibw+Y3hNHN55BRakQP0xch58uLjMY+l9TJD5Lwdejf1K7rgHTe8Ij0A1b/ldpB48AN1pPpVW/Zhg2b4BBW+ZnFmDTZ3/pHvtJisH5dRrRli7pDgDD5vXH/jXHIKoQY/mEtfj52jcaab2vi9SX6fhq9E9qTtheE7tg7rppdNSeMrVZGUHWtFsURs4fZLDvotxitTTqqiQ+TQFFUXr/Jm0HtlDTYBvzyRDsXH4AErEUy99Zi19ufw+ujeEfI7WRJk2amCSsnpqaioCAABQVFaGgoAA8Hg8CgQAJCQlITExEYKDuwg3aaNasGUQiEc6fP4927dqpVQt902jUqBE6depkdPu0tDT4+fmhvLwcubm54HA4cHBwQGpqKl68eIHQ0FCTxm/cuDEiIyNx/vx5tGnTRq1a6JtGZGQkOnQw7KhQkpaWBm9vb0ilUmRlZYHNZsPFxQWZmZl48uSJyXp8kZGRCA8Px4ULFzSqhb5JKNO227Zta0RrOenp6fD09ASTyUR6ejpYLBbc3d2RkZGB+/fvo3lzwxH0qoSHhyM0NBQXLlxA8+bN6RTBN4md3x/A4ysxgCLie+7aqQbPkUql8khoLVHlACAsFyErKUdrkRwl9ZoE4eer39Dbc3+Zhu/G/QwAWDN7Ixp1amC28+fhw4dq0bC6oCgKHA4Hffv2RUVFBVxcXFCvXj2jnKNqVSYVzp99q4/i3hl5RXNXH2d88OsMg33JZDKsnrURUon2RRdKJr+HUxSFvIwClBaVaRRdCIzww+rLX9PbH/w2A0tHrAAArH9/Cxp3iTTbKfno0SPEx8frfZbwC5MXkJFJZCh8IMLbnw+Fk5MT6tevb7ItXV6jI41EpBEIBAKhxinKK1aLppny7TjUb2o4mqakoFRv5SYASHpm2LGiSkADX0z/oVJXStWJ1qJ3E9qJ5urjjI9+n2nUTf7guuMo11GgAIo0BtU0UmOYsXICfOrJKwE+vf4cO5cfMOn86uLMjkt4r/VC2omm1PdwdHdQc6K16NWEdqI5uTtgwSbDBSUA4Mivp1FSoDsaozCnCEV5xgvUAsDU78YiIEJeTerFvXjsWLbHpPOri4u7r2N2i09pJxrXhoP5m2bjky3vqaW+ntlxidY4s3e2xcdb3zMq0uT4pnMozNFtq/KSCuSm5+s8ro0JS0cjpIncYZTwJBmbv/jHpPNrA9HR0bh58yb69u0LPp9vxBlyevbsicmTJ2PChAlwdXXFW2+9hVmzZoHFYiElxbTvISUymQw3b958Y9O/Hj9+jMuXL6Nv376wtTW+KEqXLl0wZcoU2pajR4/GzJkzweFwkJqaatZcKIrC7du39Ype12aePXuGc+fOoW/fvrC3N15Mu0OHDpg+fTomTJgANzc3jBw5EjNmzICNjQ3S0rRXgzaGO3fu4PDhNzOF+/nz5zh16hT69OkDR0fjK/y1adMGM2bMwDvvvAN3d3cMGzYM7777LgQCATIyMsyaC4PBwP3793HgQO24h5tCzK0X2L50N6DQ4lq4fa5RxY/unX6IF3fj9LZRykEYS/e3O6KrIhKupKAUP05ZD3uXSidvYY7xzh97e3s0a9bMYDsGg4EPPvgAjRs3RvPmzbFz5061FGp9qC4Au3g54VV0AjZ//je975M/5xolmv/o8jM8vRart42TR6UT7PD6kwb77DisDfpM6gYAKCsux4+TfoGdc+Xf1RRb2tnZoVmzZnqf74IayVPH7657gcz7eWjZsiV2796N58+1VwWvilr1U5LaSSAQCIT/Ehs+3EoXBmjWoxFGfDjAqPPYXDZcvPXfNI2J9qrKgBk91XS0AGD0J0Px8MITevvjLXOMrgykTci1Kimxpv2g4dvx8em2ubSQ7Palu/H87iuT+rAmwnIhVr37q1xbTpF+GNTQH2tvfoeYmy/x97f76LYj5w/C4yvP6O35m2bDxcvZqHE8Ag2nySXHmGZLHp+Hhdvn0RF9O7/fjycGHkyrE5FQjHVzN+HrMT/RGn/+4T5Yd/M79J3cTa1tTloe1r1XqQnz/q8z4OFvXCqhpxG2THpm2o8ZDpeDhdvn0dVY9646ggfnH5vUx+skLy8Phw4dMkvkX/lDwd7eHtOmTUNQUBA4HA5atGhB6yiZio2NDYYMGfJGpiUWFhbi4MGDZon8MxgMMBgM2NraYtq0aahfvz7YbDZatWplVqosFNppQ4cOfSPTEktKSnDgwAGIRCKTz1Xaks/nY8qUKQgPDweTyUSrVq2M1gWrCovFwvDhw80693VTXl5uctq2KgwGAzweD5MmTUJUVBQYDAbatGkDT09Ps/sbPnw4mEzmG/XeFAnF+GHiOjoS6u3PhqNhR+MK9rj6uIDJ0u92MPXeAwBz102Fq4/8WeLe6Ye4oVKQyBTnT6NGjdC5c2ej2iq/91ksFvh8PhITE406T9X54+TugB8mrqOLL438aBCaGyhepcTV2xlsjv5sBO+QSi3Ti/9eN6rfWasn0SmXjy4/w/l/rtLHTInui4yMRLdu3fS2UZWhKCkoBYPBgJ2dndG2rOqUfF0QRxqBQCAQapToi09wZrtclNXOyRYfb5ljtG6LjYCHTU9X46tDC+ERUPnjqsPQ1vTDjTE6T6pIxBL8MPEXjYqft47dpR9yhr8/AC16NTG6z0Gz+uDX+z9izKdD6X3BjQLgF+5Db5saOQcAke3C8dZCeTVBqUSuUyIsr/lqainP0zCv/Rc4plL4oM+kblh95WvsXnEIB9ZVCtzO+XkKUl+k07ppA97tpZYaaIg+k7rh94crMf7LkfS+gAg/BEZWVoQyx5ahzUPwzmJ5eXmZjMIPE9eivKTmq6mlx2Xiw06LcPCXygik7mM7Yt2t7xHcSDM18LcF22hnW68JXdBlVDuNNrroOqYD/nj8EyZ//Ta9zy/MB8GK1WGYacvghgGY8u1YevuHSev0RhHWJlgsFlq3bm1SSmdVLl68iF27dtHbvXr1gq+vr9n9RUREYOjQobh8+TLKysrM7qemYTKZaNGihV6RaUNcvXoVO3bsoLe7d+9OC9+bQ1hYGEaPHo0rV66YpI31umEwGGjatCl69epldh83btzAn39WpnJ36dIFwcGGI791ERISgrfffhvXrl1TE1t/E2jSpAn69Olj9vl3797Fpk2VCxgdO3ZE/fr1ze4vMDAQ48ePx82bN1FQoFuqojaxZ+VhJCsWAMNb1VO7JxsipHEgtsf9gs/+ep/e5+ThgMadKx1x5tx7HFzs8fGWOfT29mW76WdBY50/qampWLVqlcnfDwwGA4MHD0ZEhHHORFXnT8ydl4h7KHcahTQOxORv3tZzpjp+YT7YHvcL/vfvh2AoFlbtXezUKmc7eVZGpCU8SdLaT1VsHQT4eOt7tP12fLUbHJ58gcxYW2ZmZmLVqlVquqHacHJzABQBa0JFdsaAAQPQsKFx1b/VItI8jY8wtTbEkUYgEAiEGkMsEmPtnD/o7Wnfj4O7n2mRG7YOArTu34y+sfuFeWPJvo8RGCV3rKS+SNepHVGVijIhlo5YgQsKoVrlQwkAulKiR4AbJn39lklzhELPw1Elgm3U/MGYvryymII5q68AMP7LkQhtHkz3sWv5QbP6MZcLu65idstPERctfwjk8bn4eMsczFs/DSunrseprXKhWiaTgY+3zIFnkDuuH5KvErt4OxtVUKIqwQ0D4ORe+bA0bF5/zFo1id4215ZvfToUke3CAABprzKx46u9ZvVjLlf238SsFp/g+R15ZCGHx8EHv76LhdvnQWCvmWJ478xD+r3q6GaPmSsnmjxmYKS/2gruoJm9Me+XafS2ubYc/sEANO0m117KTs7Fn1/uMnjO6+bVq1eIiYlBnz59TBYOVyU9PV0tJTQ6OhobN260ONrk+vXrb0y1xISEBDx69Ah9+/YFh2O+3mBVWz5+/Bi//vqrxba8desWjh/XXsGutpGcnIx79+6hX79+egW7DVHVlrGxsfjll18sLmhx586dNyZdNjU1FTdv3kS/fv1MStuuSlVbvnr1CuvWrTMrYlCV+/fv49ChQxb1UROkx2fir6/lEghMJgMf/j4TbI5p35ke/m7wDa2sRtmmfwssO/gpvZ1kYmqnkha9mmDoe/0AAGKhBEy23L1hrPMnOTkZHA7HLB1Ff39/JCYmGvX9lK9SbIB+5mQw8MFvM/RWgNeGm68rAiP86UrmLXo3wTdHPqMzFrKTc2HrKL8eiViKe2e1Fx2oSuPOkRi1YDAAQCqRQXlZxmqkpaSkgMViGaWjqLxmqUQGiUQCf39/JCUlGRWNrWpLktpJIBAIhP8E+1YfQ+JT+apjg9b10W+aeZELGfFZdIRTYJQ/oIhSguKhIe2VYe2S/MwCLOi2GDeO3AUUToxlBz5F+6Gt1drN+XmKmj6VKSSoVIQMjPJDQIPKKJWkGPM0lDhcDj7dNpdOS9z1wwFkJGSZ1ZcpiCpEWDN7I755ezWt/xYQ4Yt1t75HmwHN8UmvZbi89yagKB7xv10fofOodlj//ma6jxkrJmiI3hpLokrKblCUH/33hgW2ZLFZ+OTP9+iqrPtWH0HKc/M1hIxFLBJjw4dbsXTECpQWyiOOfOp7Yc31bzDgXe3FLERCMda+p+qEHm90qnFVVNOfA6vYMtlMWzKZTHy8ZQ5sBPIf/oc2nET8I+PSNF4HQqEQ+/btM1vnSJX27durpQUJBAIUFxebVLWyKkwmE/369XsjoqjEYjH27duH9HTLqwm3adNGLS3I1tYW5eXlFtuhX79+JlW+fF1IJBLs27fPIi0zJa1atVKLDhQIBBCJRAajRQzxpthSJpNh//79ZusVqtKiRQv07t2b3hYIBJBIJGpVZs2hT58+KC+v+UhoU1n/wRaIKuQp20Pn9ke9JkFm9ZOodu/xh62jLVy85amZ5i7iAMDU78fRGrJSsdxRbKzzp0GDBhgzZozJFW0BICcnBydOnFCr6qoLVeePsEz+/Np/Wg9EtDGtkIoStWeiSH9wbbjwCpanbifHpCKibRh9/PB64xdkJi4bQ0f8KyuAFuUWG+XgCg0NxZgxY4xamOKrLBYmx6QhLy8PJ0+eNEoTMy+TpHYSCAQC4T9EVnIOdiyrFKmd+8s0sx5coBItBsUDBBRFA5QY0sxKfJaCee0+R+xteSSQwJ6Pb499jrYDW9BlwJV4hZinKaM6TwaDgYAIP3iHeNJaUqbqeqkSGOmPYfP6AwBEFWL8/vE2s/syhvjHSZjb7nMc/rXyYaznO52x7uZ3YHPZmNf+Czy5KtcYsxHwsOzgp+g0oi3++XYfMhKyAQBNuzdEt7eMrzxXlYQqD+Buvi7g28kdnJbY0re+N0YrVmAlYik2fLTV7L6MISkmFR90XIR9P1dGdHQe1Q7r7yzXW3Bjz8rDSHkud1REtg9H70ldzZ5DVVs6uNrTFbqSLLClR4A73v5crqMkk8qw/oMttVYDSCQSwcfHB927d7eoH5lMhqysLDUdr7CwMAwdOtTiqpuNGjXCW2+9hZiYmFqtmSYWi+Hp6YmePXta1A9FUcjMzIS7e6XGZEhICIYMGWJxpciIiAi88847td6WUqkUbm5uFqV0QmHLjIwMNVsGBgZiyJAhcHKy7IdnaGgopkyZgpiYGIuj26oTqVQKZ2dni1I6obBlenq6mi19fHwwdOhQs/X7lISEhODdd99FbGysWTqNNcG1Q7dx47B8wdHF2xkTlo42u6+Ex5VphkGKLAJl4Z+i3GKTdM1UsRHwMGvVZLV9FaVCg9IXFEXhyZMnZv8dPT09YWNjg+JiwwWPqlabd3SzV5NEMJV4FVsG0raU/19RKkTH4ZWLwg8vPdHSg3a4PA5mr1a3pUwqQ0m+Yef506dPjbalasbGqwfxcHd3h0AgMGrRRD21kzjSCAQCgVDH2fDhVrpS5cCZvRHWop7ZfVV1BACAv2q0lx6tjQfnH+ODDv+jHTzufq5YdfkrNO3WEHEPE3Fyy3mNeZvjDJDJZEhSRN95BXvARsADi82iUxtSnqcZnYKqjfFfjqS1IS7vvYl7Zx+Z3ZcupFIpdq84hDkqqZxcGw4+/H0mPtn6Hl5FJ+L99l8g7aU8qsfFywkrLy5Fq77NkBybit0r5CkrbA4Lc9dNM6pKpzYoiqL/5i7ezrB3tgODwaD/5vIIRfO14sYsHEqnGN86dh83j941uy9dyGQy7F9zDLOaf1yZysllY+66afjfzg/1RupVTauZZ4ETGior2XZOtnBVRAMobZmXno/SQvOjTUZ+NBDeIfLIgAfnn+Dy3htm91Vd5OfnIy4uDuPGjTOpGqI2UlJScPLkSbXIFBaLBYqikJ2dbfFcS0tLsWvXLty7d8/ivqqDwsJCPH/+HOPGjTOpGqI20tPTceLECTW7MZlMsFgsoyI+DFFRUYF///0Xt27dsriv6qC4uBhPnjzBuHHj4OLiYsQZusnJycHx48fV7MZgMMDhcKwSOSgSibB7925cu3bN4r6qg5KSEkRHR2PcuHFqDjBzKCgowNGjR9WiBJUFCKwROSiVSrF7925cunTJ4r6sTUWZEOvf30Jvz1w50eyocgBIeFr5bEZnE6g9u5kfldZmQHO06qdeedNQemdZWRnOnDlj9t+Rw+Hgww8/NEovr6ojzZKocgB0dgcABCmfg1V0eN393egCD0W5JcjPMl6Lr3nPxug4vI3aPkMRfkKhECdPnkRysnEFv5SRiACQ9DQVLBYL77//Pho0aGDw3PxMeVQth8ehU1hfB8SRRiAQCIRq59bx+7iyT5725+ThqCZ2bg6JKimTQQ2VqZ2qaZPaH8ZOb7+Iz/p+TQuh12sahDU3vkVI40DIZDKsmbMRMqk8WsHOSV76+8G5x/TcTSEzMZt2HCrnCAD+DeQPOhKxFOlx5v84tHUQYOp34+jtDR9sgURsvRXt9PhMfNx9KX7/ZDtddCEoyh9rb3yH/tN64NLu6/ik5zIU5RarHPsWYS3qgaIorJu7qbIi1fzBag/LppKfWYDiPPkqpaotlX9ziqLoaC1z4Nva4N0f36G313+4FSKh6ZUHdZGVnIOFfb5WS4/xD/fB6qtfY/DsPgYdjNZKq4GiQpaysEZQQ396bNW/T6IFP2a4NlzM/KlSu+23Bdvoz0FtgKIo7N27F3fvWsdZWlFRARsbGzg7q1ehvX79Ou7cuaPzPGNxdHRE8+bNERv7+qrK6oKiKOzfvx83b5r+/agNoVAILperUfH05s2bVhnD1tYWrVu3RkxMjMV9VQeHDh2ymmOqoqICbDZbIzrk9u3buHHDcue2jY0N2rdvXyvflwBw9OhRXLlyxSp9CYVCsFgsjYqnd+/etcrfi81mo1OnTrXSln9/sxeZiXLHdrMejdB1THuL+lMu4ggc+PTilbGLoIZgMBiY9dNENa3blw8S9J4jkUjAZrPh5eWlt50+Hj9+jAMHDhhsl52cS7+2NKocKrbk8DjwVqS1qso0pMSmwS+sUpNu/5pjJvU/Y8UEtUqrygVAXUgkErBYLPj4+Ohtp0S1InuqQo4lJiYGe/bsMXiuMiLNxcvJ7AVaa0AcaQQCgUCoVoTlQqybW1ntasaKCbSTylyU0UksNot+UPAP96GFVl9VeXiiKArbl+3GDxPXQaLQz2jdvxl+urgMbj7ylf/T2y7S6Ym+od748PcZ9Pm/zv/TZGdA4hOVlddIVedP5YNO1XmaSq8JXdCgtXwlNOFJMg5vsFyYnKIoHN90FjOaLMCjy88AxQPqqPmD8Mvt7xHcKAC7fjiIr99aBbHC2dS8ZyOsvvIVPALkK/8X/72Ge2fkEXKege4Y978RFs0pQcWWQSq2DLSiLbuMbo9GigpiaS8zsG+15WLaFEXh9PaLeLfxfNxXiRgcOrcf1t/9waioTGum1aDKKrba+zLSerZsN6glWvaRV7nNSsrBvz/UbEEMfYhEIpSWllqchqgkNDQU77//voYmLhCTNAABAABJREFUjK+vL8Ri6zhjBw4ciNGjR1usx2RtpFIpCgsL1bSjLCEoKAgffvihhsC+r6+v1dLe+vTpg3HjxtU6W1IUhdzcXIvTEJX4+fnho48+0hBQt+b7snv37pg4cSLy8vKMaF2z5Obmom/fvlbpy9PTE/Pnz9eIXvX19bW42ICSLl26YNq0abXKlppR5VMtclqUFpUhKykHUCy8KfsKtOK9xz/cFxGtKzXHdv2g38Hl6OiIhQsXaiyEmEJZWRliY2P1Zi7EP06i9cYA4P310y2KKhdViJCqyAQIiPAFiyXXzFW7j0cnoOPwtvT21f2mReJ6BXmgcedIenvPT4f0XqOtrS0+++wzo1M7fepXOi9zUuVOxrKyMjx//lzvOBKxBIU58gXc11loAMSRRiAQCITqZtfyg3TkVeMukegxrpNF/UklUiQrImZ8Q73A4cqF4nl8HoIbBwIKHQ5leppYJMaPU37BtiX/0n0MnNELyw58SldGLMorxsZPttPH31s7FZ1GtEWL3pXOgN0/mlZZS10LpNJhoSos++SaZSvQTCYTc9ZMobf/XLwLBdnmC0nnZxbgy6HL8dP0X+mCAl5B7lhxfgne/XECWGwWfp61EX8s3EGf02dSN3xz9HPYOsqdo6VFZdjw0Z/08dmrJ9MC9OaSoKYFUmnLBiq2fGqhLRkMBub8PIV2xv719R7kpJn/o6YwpwjLRq3EDxPX0QUF3P1csfz0l5jz8xSjbGLttBroeV+q2fK65bactWpyjRfEMIRYLEZaWhrmzZuHgIAAq/R59OhRPHmiqT8zYMAADBo0yCpjMBgMJCcnY+3atVZJy7MGEokESUlJmDdvHoKDdWv7mcLJkycRHR2tsb93794YNmyYVcZgMBjIyMjAmjVrjE5Bqm4kEgni4uIwd+5chIaaJzxelbNnz2pNB+7RowdGj7bMGa+EwWAgJycHa9euRXx8vFX6tBSpVIpXr15h1qxZRqWIGcPFixe1RkR27twZY8ear3FVlcLCQqxduxYvXrywWp/mQlEU1r63iV54HLVgMPzDzY8qh55FnLCW9ej77hML7z0A0H5oK/r102vPcfe05neKkps3b+LgQcsWesLDwxEVFaW3zfoPKu/jfmHeCFE8q5pLcmwanT2heh+v3zSI1uF9ei0WQ+dWOpNTnqebrA+pmt756kEiXZxLG/fu3cPevcZXPrdXWVAXV8idjGFhYWjYsKHe8wqyi2hHm1Le5HVBHGkEAoFAqDayknOwc7l8RZDFtkwnS0lSTCqdMqjqVAGAqPbhAACZjMLTGy9QUlCKz/t/i9N/XqTbvPvDO5i3fjr9Ix8AdizbQ69wdRndDi17N1E4AybR7XYu30+nOBjDq+jKlVWlECwUIf1KHl+1PMWoQetQ9Jkkr3JXWliGLV/8Y1Y/l/fdxPRGH9HRTwDQd0p3/PpgBRp3jkRZcTkWDf4eR38/TR+ftOwtzN80C2xOZTTOzu8PIC9dHu3RdmALtBvc0oKrk6NqyyAVW4a3rk+nHljDlvWaBGHADHl0TUWpUM1haAo3jtzF9EYfqaUE9xjfCb8/XInmPRoZ3c+elYetmlaDKiv+qu/L0ObB4NrIndKPr1huy4AGvjVaEMMYTp48ib1791otFUQqlSI6OlprVIpUKsXPP/+MrCzrOBADAwPh5uaG27dvW6U/Szl79ix27dplNVvKZDI8ePAAQqFm5C9FUVizZo3VnIi+vr7w9vauNba8ePEi/vnnH6sV5qAoCvfv39dqSwBYt26d1ZyIXl5e8Pf3rzW6c1evXsXff/9tVeF+Xe9LBoOBDRs2WM2J6OrqiuDg4Fphy2sHb9NR1J6B7hj7hWVR5ahy71F1/tg6COhF0PiHSRZpdEJR9EaV9XpkL+Li4iyumuru7o6WLVvq/PzeORWNB+ce09tNu+l3FBmD2n1cxSnJteEitEUIoHCcAQxah00mleHqAdPeW8r0WyUbPtwKUYX2KMy4uDiUlZUZ3beNbeViovLv4+LigjZt2uh1+BVkVi4Wu7zGQgMgjjQCgUAgVCd/f7OPTv8bNq+/2sOTuTy8+JR+HdUuXO1Yw44R9Otbx+7hg47/ox9guDYcLPr3I4xaMFjtx192Si6OKKpR2gh4mLmyUt8pMMIPQ+f2AxTOgN+MdAZQFEXPk29ng+CGldEv9s52tB1ePUhAeYllD3EAMPW7sRA4yKPrjm86hxf34ow+t7SwFD9MWodlI1fQzkQnD0csPfAJ5v8xC7YOAmSn5OLDzotw+8QDQCGSv3D7PIz73wg1W+ZnFeKAQoeDw2Vj9urJVvmhrbQlh8dB/WaV0S98WxuENpdvJz5NQVGe4cpZhpi0bAzsXeQVAs/uuGxS1GBZcTl+mv4rFg3+nhbDdXC1x6J/P8LCbfNMSmkuzi/Bnp8OAwCYLCbeW2tZWo2Sh5ee0n2Gt6oUSOZwOQhXpAlnxGdZFI2npGpBjPvnrF8QwxSePXuGTp0si4hVhcFgoEGDBoiMjNQ4xmKxUF5ebrXoEhaLhcmTJ6N79+61oupkddgyPDwcjRppOppZLBaEQiGeP39ulbGYTCYmTJiAXr161RpbduzY0aJUL1UYDAbCwsLQuHFjrcfEYrHV9LgYDAbGjRuHfv361Rpbtm3bFhwOx2p91q9fH02bNtXYz2AwIJPJrGrLt956CwMHDnyttpTJZNj65U56e9aqSRZHlUPl3gMAke3D1I4pF0EpSr4IagmqumBQFDA49MtJrW1DQ0PRvHlzi8ajKAqbNm3SGplMURS2LlJf3PQMtKz4Bao8B1e1ZcMOlZGYT6/FqqVnHvvjrEnj+FaxZXpcJvau0i57Ub9+fbRsafzCKY9f+Z6SKiIfKYrCli1btEYmK1Et2kBSOwkEAoFQJ0mPz8SJzecAAAJ7Pt7+zDqpOdEXKx9WGndR/wEb1aHSsXbk11N0KoGjmz1+PLsYnUe20+jv72/20hFug+f0hZuv+grcO6rOgD03EPcw0eAcU56n0Tf7hh0bqEW/QTVyTirDs5svjbhq/Th7OmH8olGAih6cMdw/9wjTG8/H6W2VEXsdhrXGxkcr0X6wPD3iybVYvNfmM7pqp72zLb47+T+tKbq7lh+gteT6T+9JV2+0hMzEbGTEy6N6ItqGgmvDVTse1V71odHyH9oOrvaYtOwtenvb0n/1tlfy6PIzzGi6AMc3VT6othnQHBsfrdT6vjPEnpWH6ZTQ3hO7WlSsQUl+ViH9mQhrEUKnNitRtaVSL9ASqhbE+HPxLqtF3ZiKSCTC3Llz0aZNGyNaG0dJSQm6d++utVoli8VCjx494Ofnp/Vcc+Dz+Xj27Bn++OOP1/pDWyQSYebMmejQoYPV+iwpKUHnzp21ahUxGAz06NED/v6WL8QosbGxwcuXL/Hbb79BKjW/erKliEQiTJs2DV26dLFan6WlpejQoYNWrSIGg4Fu3bohMNCy1DJVeDweEhMTsX79eqtGgpmKSCTCxIkTraZ/CIVmU+vWreHpqf1e1qVLFwQFmV/8pSpcLhfp6elYu3at1fTXTOXS7utIeCyPWGzQJhTth7QyeI4hKIrCwwvyZze+nQ1Cm4eoHY9Scf48sTAiOiDCV2PR6Z/v92ut7O3p6Ynw8HCN/abAYDBga2uLggLNqpg3jtxF7G11kX5XX8sq8kLlOZjD46jJhaCKLR9ficGg2ZUalqZKYPjW96JTRZXsXnEQZcWaC8Bubm6IiIjQ2K8LropzVqKoYM9gMGBvb6/VlkpUi3S5WcGWlkAcaQQCgUCoFnZ8tQdSxc1x2Pv9LSrzrUT1YczWUYCQJuo/Btz9XOmoH6W2h2+oN9Zc/xaR7TQfljISsmhnH9/OBqM/HqzRxtbRFm9/Npze/vtbwxoQ0RcqVwsbd9HUzojqqOqwsE4FuSHv9aUfKq4fuqOWDlkVYbkQ6z/Ygk96LqMrSQkc+Phk63tYvGcBnNwdQVEUDv96Cgu6LaZTNb2CPbD66jdoouWactLycHiDfNWXa8PB258P12hjDqorr9rGVXWeWsuWA97tCa9geYW2e6cf4tlN3SvkIqEYGz/ZjvldF9MOP76dDT78fSa+OrQQLl6mixgXZBdi38/yVV82h4Xxi0aafS2qqNpS2/uyYTXYsteELnR11SdXY9XmUFPk5ubixx9/RG5urhGtjefw4cM4d+6czuMtWrSw+o9hb29vpKen49Ur/RXUqouCggKsWLECmZmZVq2Wdvz4cZw+fVrn8WbNmkEikVjVEevt7Y2srCyrRbqZSnFxMX766SekpKRY1ZYnT57EiRMndB5v2rQpZDKZ1W2Zm5uLp09r/vMNhcNr9erVSEhIsKotz5w5g6NHdReeady4MRgMhlVt6eXlhaKiIjx+/NiI1tZFKpVi29LKhbiJS8dYxZ6GFhcbqj4TXbPs3sPj8+gqlkrph4KsQhzbqB6NlZeXh82bNyMjI8Oi8QBgzJgxGlGLVSP7lKhmKJhDVpL+xUXVCLUn12LQvEdjsDlye5cVlSM93vhq8WwOG37h8iqcyvdBcX4pDq1Xj/ArKirCpk2bkJJifNVVG0HlvJURaQAwYsQItGjRQud58SqL2UEW2tJSiCONQCAQCFYn5XkaziiinOycbDHyI+uIbic+TaHTDxt1jqArFUEhzL58wlqUFFTqa4S3ro81176BTz3tpc3/+moP7XAb/v4AOLo5aG3Xb1oPOHnIo04u7b6BpJhUvfNUjZpr0lWbw0L1odE6aSFcHgejPx5Cb//97T6t7WLvvMKsFp+qlUJv2i0KGx+uRK8JXcBgMCCqEOGnaRuwZvZG2j6Nu0RizfVvdUZG/fPtPogq5Gm8g2f3hau3+VWwVHlowJZR1WBLFpuFtxdWRlD+/Y125+mr6ATMafUp/l1RWc2qYccG+O3BCvSf1sPsHyD//nAQFaXy1fN+03paJRUERthSVb/PWrZkMpkY+3mlvs5fOmxZndy5cwd8Pl9nVIm5ZGRkwMtL+3eL8vjff/9tNZ00KKoxDhs2zOrXYix3794Fh8OBt7e3Ea2NJz09Xa8tc3Jy8M8//1i12IKXlxdGjBhh9Wsxlvv374PBYFg1ahFGvC/z8/Oxc+dOJCUl6WxjKm5ubhg5cqTVr8VYHjx4AKlUarUiIkoyMzP12rK4uBg7d+5EXJzxcgqGcHJywqhRo6x+LcZw7u8rSFY83zTs2AAtemmmB5uDocVFD383uPvLswFibr7UqWlmLMEN5dGrSkF+APj3x4MQCSsr1iqjnqpWYzUHiqLw7NkztX1X9t2kI/l5fLnTiMli0gtL5hJtYHHRyd0R/grn14u7cRCWC9UcTtuXGpexoCRIYUtVZ/Henw6rVbIvLFRIWThof4bWhqpGmnLRHQqHnT6HfLxqwaSG1otSNgfiSCMQCASC1dm+bDdkMvlNd+T8QSZpQ+kj+oKKI0DlASIjIQsfdPwfzv51Wa1919HtdUbCpbxIxylVZ9983c4+GwEPoxTHKYrCP99pd1JBawqDZkU7r2APuCgcTc+uP7daalH/6T3U0lATn1WuDgrLhdjyv3/wfvsv6Adlrg0Hs1ZNwvLTX9ICvVnJOfioy5c4seU8fe7w9wdg+alFcPbQXiEpKykbxxXaGza2PIz5dIjWduYQraKPFtFWs6Kdq7cznUIac+ul2oOyJfSa2IV+sL9x5C5e3q8UlBYJxdi+bDfea72QToHhcNmYvnw8VpxfYlFKa15GPr3ay+FxMPZz66REQyUijcliqkXyKVHV73t5P94q+n0A0HVMe7rU/f2zjyyuCmoqTZs2xdixY8Fms41obTxvvfWW3lRRDw8PsNls5OTkWHXcxo0b4+bNm1Z1hJgy9rhx48Dlco1obTyjRo3Smyrq5uYGLpdrdVs2bNgQ9+7ds6ojxFiioqIwbtw42NjYWLXf4cOHo3PnzjqPOzs7g8/nW92WUVFRePTo0WupOhkREYFx48ZBILCsqnFVBg8ejG7duuk8bm9vDzs7O6vbskGDBoiJiUFMjHUig41BIpaoOVkmffWW1aL7DC0uQiUqraJMqCambw6qAvxK7c+c1Dyc2nqB3h8QEIDJkydbxZGWkJCAs2fP0s4mqVSqVile6Rj0D/fRiCAzlYcXDNtSKR8iEUsRe/sVhrxXWb1TtQiSMajaMqKdPNqtILsIx34/Q+/38fHBxIkTtabm68LGtvJ7T6ri8ExKSsLZs2e1yhfIZDLEP5Lf97yCPSyuYm4pxJFGIBAIBKuS8CQZ5/+5Cij0ppSV+6yBtoexu6ejMbvlp/SDl7LyIAA8vaE7ZWfHst30auXIjww7+wbO7E2L0J/7+wrSXmlPB6iawqBa0VIJg8GgHRllxeX0g4Gl8Pg8jJovT09VdfjdO/MQ7zZZgL+/3Uev/IW2CMH6uz9g+PsDaJHr6ItPMKflp7SmB4/PxcLt8zBr1SSt16Hkr68rdeaGzu0PJ3frlCTPSsqm9TC0pTAoUdpSLBTjpQmFFvTB4XIw5pOh9LYykurhpaeY2exjbFvyLx2tF9I4EOtufY/RHw9Ri5I0h3++2w9huTwdcNDM3hqafeaSn1WIhCdyp19YixCdD6Cq+n0xtyzX74OWCL8dX9dcVNrZs2eRkpKiN6rEHF6+fIkXL17odc5xuVzMmjULYWFhOtuYS1ZWFo4dO2ZES+tx8eJFxMXFwcfHx6r9xsfH49mzZ3oF4lksFmbMmGGSBo+xZGdn49ixYzWq33f16lXExMRYPYIrKSkJ0dHReh2dTCYT06dP11rYwVJyc3Nx9OjRGtXwu3nzJh4+fGj1CK60tDTcvXtXr6OTwWBg6tSpaNasmVXHhiL18OjRozWmO3fqz4v0/bZZj0Zao53MwZjFRVhZo1M1AiusRT369a7l+2mnVmpqqlXSOqGoBMzlcunvkIu7rtF6pPWaBEEqkX8elNVJLcHQ4iKqRupfjUXviV3BUTwbl5dU4PqRu1rP04ZqKmqIyutdPx6kK3imp6ebbEvViDSZSkSar68veDye1u+QzIRslJdUyOdiBVtaCnGkEQgEAsGqbFtSKSg+5pMhGoLm5kJRFB4pHiBsHeXl0nf9cBCf9/sGxXklgEIPbe2N7+gxn1yJ0frjKPFpMs79fQVQOvveN+zsE9jzMeKDgYDCybDz+wNa2xnSoVLSsIogrLUYOLMXHYV37u8r+HLYcnza+yukvZQ/5LA5LLzz5SisufYNAiPkP+IoisK+n4/ik57LUJBdBADwCnLH6qtfay0qoEraqww6ek3gwMeoBdZJ44URKQxKqsuWfad0g4uiKtSVfTexZPiPmN91MR3Rx2Qx8dbCYVh78zurPNRlJefg6G9ynSgbAQ9vLRxq8BxjeXTJuPelqn6fNW3Z853O8AiQi5/fPn4fz+9Wv8ZXbm4urly5Ui19375926iIsJKSEhw5csTq43fv3h1OTjVXsaywsBAXL16sFmfTnTt3kJhouIhLRUUFDh48aPU5dOvWDS4uNSdaXVJSgvPnz1eLs+nevXtISDAczSMSiXDgwAGrz6Fz585wd3evMadkeXk5zpw5U222jI+PN9hOIpFg3759Vi9a0alTJ3h5edWIU1IkFOOvr/fQ25OWjbFa36kv0g0uLqKKTtrjq8+0tjGWoKhKB3VpYSla9mkCAMhIyKaf/R49eoT79+9bNA49XlAQPvroIzCZTEgl6jpzrQdUVgW1WB8tOceoxcWqtmQymWjdt9LZu93IIkoAEKhiy4LsQnQYKi8+kZeej5OKZ78nT57g7l3jnXOomtqpEpHm6+uLBQsWaF2kUi32ZaktrQFxpBEIBALBarx8EI/Le+Vh486ejhg8p6/Bc4wl6VkK7eSJah+O78b9jD8W7qBTSNsMaI51CoeGMvw8L6NAq57ZtqW76Qf90R8b7+wb8l5fCBzkbU9vu4CspGyNNsakMKDKiuGD89YTFebb8TH8gwEAAEpG4frBO/Sxhh0b4Nf7P2LCktH0w6xSW27Dh1vpCL3mvRrjl9vLUb+p9pVjVXZ8tacysu/DQXBwsTxNQolaoYHXYEsen4eRCyoLUFw9cIt+3aBNKDbc/QFTvx0LLk93JI0p/P3NPjqyb8h7feHsaT1HibG2bFhNtmRz2Hjr00rHoC7dOWvCYrHQokULDRFoayAQCNCkSROD7UpLSxEdHa23Cpk5eHt7Y/jw4Xj69GmNOC0YDAaaNWumVwTaXIy1ZVlZGZ48eWL1NDoPDw+MGjWqRm3ZpEkTtG7d2up98/l8o97vFRUVePbsGTIzjRceNwY3NzeMGTMGMTExNRaV1qhRI7RrZ3plZEMYa0uhUIjY2FikpurXTjUVZ2dnvPXWW3jx4kW1V5Y9sekcspLkn6tW/ZppLc5kLqqSHPoWcYIa+tPPVw8vPrXomv3CfeiCBgmPkzHuf5UFe/75Tu705PP5VotULikpwapVq1BUVITT2y8h9YVcy7FJ16j/s3fW4U2d7xu/43V3oa5YkdLiLsUdBgwdsjHmg7n7xsYYbMBwd3enSKFoqbu7e6Pn98dJTpI2bSMnrHx/+VzXrpHknDcnT09y3vO8z3PfIBSSRLouuLVnviTD1c8ZVvakXlncnSQIBUIs/Xke9Xrak0w0qCnd4OTlQGm8ZcXnYc6ncs3Tgz+fhFAghJGRkcaxNDaTV3oqatk1Njbijz/+QEVFRYt9lBJphoo0AwYMGDDwv8Teb+UrmrM/mgIjBXtrXVEUq019koHII1HU41e/mIFvTq2h2jN7j5LflEWdfqQ0TnZCLrWvlYMlJq4crfYxmFmZYvKbEYBUe+LQL6eUXicIgjpOI1Neqy0MAODbwxOWdmTS6fHlGJXW7NqQk5SP6AtPlJ4zsTDGu1tWYO3Nr5X0LlRpy81aPQk/nP9ELZfVgvQiXNsbCQAwtzbF1Hfoa+OFgjg+h8tGYJhvq9t5BLtRjqXPrseptGbXhvy0Qjw4p7zKamTKw6oNr2HdnW9pbS0oyS2jHGRNzI2VjCPoQJbgZTIZKvXRZDh5OVB6ZnF3klBTXkvbMYxeNJTSBrx78iEyY9uvQtKWmpoapKWlYfz48Tq32zZHIpFg2LBhaiV/vL294ePj0+522lBZWYkjR47oXZOqrq4OSUlJmDBhQpvtl9ogkUgwaNAgtRJ0Hh4e8PX1pVrR6aS2thZHjx7Vu+tkfX09YmNjMWHCBPB49F0fIb3+9O3bt03dPhlubm7w9/en/bsBacLz6NGjeP78Oe1jK9LY2IinT59iwoQJtOvMEQSB0NDQNnX7ZDg7OyMwMJD27wakSbqjR4/SVjmlCpFQpKT7uuBr+qrR0Gxxsdvg4Fa3Y7FY6DmCNDeoLqtFYpT2brocLgeufuR1LDcpH0FhftQCUl5KISKP3Mfw4cMxaRI911mBQIDa2lqUlpYqLRIt/GaWkji+dzfdqqiUk5Ktx5LBYKCXdB7cUNOI57cS4OrnTOm+EgSBvWqaDrBYLMogoSCtCB7BbgiNIKvbSnLKcG3vbQwePBjTpk1rZyRlFKvpFBNpIpEItbW1KhdM6IwlHRgSaQYMGDBggBaKs0sRdeohAMDG2Rrjl4+kdfz7Z+UJscpi0iHIxMIYX59cjflfzVS6ueo3KZT6971T0UrjnNpwkfr3rNWTYGyq2QR86jvjqJL0C9uuo7ywknot9UkGKqSPuw4MalNXjMViIXx8bwBAUz0fT6/pVv0jaBJg91eHsSLkAyTcU56ADpgahrGvDVeK0e1j9/F6z9WUtpyRKQ+fHXoPr/00T+2bq9N/X6IqAqe9NwGmlvSYSkCa8CxIl7Yw9PUHz7j1m04Gg4G+E8m/uVAgwsOLz3R6b6FAiH3fH8PSru8j5ka80mth43pi4hujab8BPbf5CqVfN3lVhFqJTHUpzCymTBH8e/u0KdDLYDDQTxpLiViCB+eetLqtpnCNuJilhrMsHVy/fh3379/Xy9i3bt3Cvn371NqWx+Nh1qxZEArpMcFQxMHBAV5eXkhP12+b7K1bt3D37l29jH3v3j3s3LlTrW05HA5mzZqll+ocGxsb+Pv76z2Wd+7cwe3bt9XYUnMePHiAbdu2qbUti8XCzJkz9VKBZ2Fhgc6dO+vdwCEqKkpv7cZPnjzBpk2b1NqWyWRixowZeknwyqo19Xle3j0RjbJ8svonfEIvBPSmL/EvFAjxSHo9NjYzgn8v7za3l117IF1s0QWZTppQIEJ+WhHmfiZP9Oz//hj27duHhw91ew8ZlpaW6NmzJ3JjiqjWy54juqLLgCCqisrU0gT27nZav4dYLEb0efJ63JY+moy+KmI58XX5wvHlXTdV7qcKWSwJgkBuUgHmKcTywI/HcejQIURFRbUxQksUvy+KiTRTU1P07t1bpTN1pjSWXCMOteD3X2JIpBkwYMCAAVo4u+kylVQZv3ykzs5EipTklOLRpRil5zoFuWLDgx+VJl4yXHycKFvspAdpqCgik1v11fW4sod06jQy5SFiyTCNj8XSzgITVowCpOL2MrdKALh1WD6R6D+5/bYd5YSf9hO6ZzfisDzkA+z55gjVGujoYU8ZL0QeiaKqtJoa+Fi3fDO+mbEWdVX1AAAXXyesj/oBg2eo3x7TWN9E6WNweBzaE6eRR+RJEHViKdPtAICo09rHMu5OIl7vuRo7Pz8IodQB1M7Nhkqe3jv5kNYqLUj1ac7/SzpgsdgsTHhD/SpJddAllvd0iKUqxi4bQbWcRB69r5SIppPy8nK1KnO0ISUlRSPB/fT0dGzatAkNDQ20HgeDwcCcOXMwYsQIvbYklpWVITw8XC9jp6SkwNXVVe3ts7OzsWnTJtTU1NB+LDNnzkRERIReWxL1eV6mpqZqdF7m5eVh06ZNqKyk/zs4depUjB8/Xq+xLCsrQ1hYmF4SWJqel0VFRdi0aRNKS1vKPejKxIkTMWXKFL21d57aKF9cnPr2OFrHfnotDrWV5DwjfEKvNhcXIV2oYrLIv+e90w91+l2TOVADQHZ8LkKGdkGwVPYjKz4XOdm5aGykp3qdxWKhT58+uLj1OvXc1LfHobayDqW55QAAr66ddHJBjbuTRGnN9YkIaXNxEQBCx4SAwyXjff/MIxAEgekfTKDiW11Wi8QH6lX9KcYyMy4HwX0DEDKsCwCgIL0YWRnZOl3fZPcOkCbYQkNDW1SZNjXwkZ9Kav16dHbXSzWtphgSaQYMGDBgQGcETQKclyaU2BwWxi0bQdvYKY/TsbLPx0oTquHzBuKv+z/CPaD1ia4swUYQBO6fIdvzLu+6haZ6soVy5KuDta6gmvRmBDUhurj9OiQSCQiCQORRMpHGZDHRf0r7CYueI7tR2hNRZx5pPFGuLqvBr4s34sPhXyMvhdTkYLFZmP3RFGyN/wMj5w8BpBVvNw7cQcbzbKwMXYNz/8ptywfN6IuN0T9pLNx6Y/8dKhE39JX+sLSz0Gj/9pDFEgAGTmv/Jr7b4GBKX+XBuSeUM5e61FbWYd3yzXh30BeU2xaTxcT09yZge8I6jFtKntNCgQhX90Rq+GnaJvJIFKX/N3BaGOxc6BU+V4zlIDWSpUF9/alk16NLz2hrO4bURCHiteGAdBX68k71V8XVhc/nY+HChQgNbZlkp4ORI0di+PDham/v5uZGruTn5tJ+LGw2GydOnMDFixfV2Fpz+Hw+5s6dqxcNKkhNE0aOVD8J7+LiAgaDoZbRg6awWCycOXNGL+YQkLZ/zZw5EwMHtm3goi2DBw/GmDHq65I6OzuDzWarZfSgKUwmExcvXsTJk6pNeXRFIBBgypQpGDp0qF7GHzhwIMaOVV+qwMHBAVwuVy2jB01hMpm4du0ajh49qsbWmpHxPBuxt0lh/05BrggZ2oXW8RUlOAZNb/83xMLWHF0Hks68BWlFyEnM0/q9FZM/WXG5YDAYmLxK/jcVFQEBAfRpwe3etQeFlaROnrO3I3qPCVFyZPfqqpsUhKaxNDE3Rshw0pm3NK8cqU8ywGazqfgCwPZPDqj13h7NkpIAMOUteSwbsoRaOSrL5tGERDlheujQIURHK3eTZMfnUvcB3jrGki4MiTQDBgwYMKAztw5HUVU6A6eHw8bJWucxJRIJjv5+Bm/3+xRVJdXU8/O+mI6Pdr/VrkFAP4XKm7unoiGRSHD6b/nNpi5GCI4e9pQLVHF2KR5feY7UJxkoyiwBAIQM7Qwre8t2xzEy4VE6FlUl1Uh6kKbW+xMEgSu7b2Fx0DtKiYjgvv745/HPWPLDHBiZ8DB2qfxmf/8Px/Fm2MfISSQnejxjLt77dwU+O/gupS2nLgRB4JRiLN+gz1QC0rbOLOlkLbhfAOzdbNvdh8PlIEzqjlVXVY/nkeq5fhEEgesH7mBx0DtKCUb/3j7YGP0Tlv82H8ZmxohYKk8On996ldYKoNN6jGVhZjFSHpFtQb49vODi0347BNl2TGpW0dF23JyIJfLz8sK2a7RWrRAEga1bt+LevXu0jalIYmIiqqqqYGqq/nfGzMwMS5YsgZdX++Yd2uDo6IinT5/SXv1DEAR27tyJyEh6E8cyUlJSUFJSAnNz9duYjY2NsWTJEvj5td3WpC1OTk54/vw57a24BEFgz549uH79uk5VKa2Rnp6O/Px8WFq2f92RweVysXjxYlqTCYo4OzsjLi4OTU1NtI998OBBXL58WS+xzM7ORlZWFqyt1Z/HsNlsLF68GJ07ty4ArwtOTk5ISkpCfX09reOe3qh87aEznkKBkJLWMDYzQugY9Uxf6GrvlHUlAEBWAjmf6D+lDyWbEHc+BUYselzlAYBfxwfbmKySmrBiFFgsllIiTRdNVbFYjDvHSSMvDo+D8Am91dqvv2LXgzSWi79/hXou9nYCRKL2Fx29FGMpnZuFje0JWxfyOxJ/ORUcQgvNR+np1nw+xeVyW/xu0BVLOjEk0gwYMGDAgM6c2niB+veklRE6j1dZXIXPxv+IzR/shkgor9KydbHG/C9nqjWGfy9vSoD+6bU43D/zmKra6j6ks9JqpTZEvCZPrFzYelWprVOd1UIZijoW6rR35iTlY/XIb/DLwg1U8tLU0gRv/b0Uf9z+VmnV07+XDzXhKMkpo1oVvbt7YOOjnxGxZLhWE+f4u0nIiCGrGALD/GjVVEGzVkRN2k0VJ+BRasQyP60Qn4z9Hj/O/ZNK1hqbGWHln4uxPup7+PaQJz48gtwokf7shDwk6CCErEjyo3Qk3ifF4r27eSjZ1tOBtrHsS1PbsSqcvR3RcwS5Ul6YUYxnzXTodCE/Px9lZWV6S1pdv35dq8oyc3NznDp1CgKBgPZjCg8Px8iRI2lvcSsuLkZRUZHeYnnz5k2tKsssLCxw6tQpvSRoevfujdGjR4PNbrsFTVMqKiqQl5cHT09PWseVcevWLa2qoaysrHD69Gna244BICQkBBEREeBy6ZN5AIDq6mpkZmbq7byMjIxEZmamxvtZW1vjzJkzqKuro/2YunbtirFjx9JqUFFbWUcZDZmYG2Pk/MG0jQ0VbZ3ttSLK6DtJniTSRabBxceJam3MkorUc3kcjJw/GDxLDoJf9cCZnRfaGUU9GusaEXcgE4WPKsA14mD0YrJSMlPBZVIXcfzmbZ3qOs0rJtxkMg3BfQOoZKJYJMGx39uvwLV3t6PeU1aRxmKzMHrhUHBMWei60AundpzT+HNRFWnNEmmTJ09u0QKv7Nj53xsNwJBIM2DAgAEDupIUnYrkh2TFi0+IJ6VBoS2PLsdgecgHKgXjh84eoHbih8FgoK90EiHkk+LxMibpUI0mo++EXrB2JFf/7516hBuHSDFudds6ZYSP7wkmkyEdJ7rV7WrKa7Hxre1Y1u19PLsurxAaPLMvtiWsw4QVo1rcSMfcjEdxjrJmy+RVEfgr6gd4BLmpfYzNUdRUoSOWzdG0rVNGaEQPsDnkivDdU9GtVo3VVdVj0/u78Frnd5W09/pP6YNtCesweVWESv2Nsa8pV6XRgWI12qSV9FYEQIu2Thk9R+jWdtweY5slounC3t4es2bN0kjfSF0IggCHw0GPHj003lcsFiMhIQFpaepVnWoCj8eDp6cnbty4QWulpI2NDWbOnKm35A+bzVbLrbM5BEEgMTERycnJtB8Tl8uFj48Prl+/TmssLSwsMGPGDL1V0rHZbPTurV6ViiIEQSA5ORmJiepV8GoCh8OBv78/rl2jt+rUzMwM06dPR2AgvYsOMphMptaxTElJQVwcvRW8kP59AwMDcf36ddp+iy/vvImmBqnUxfzBaidn1EXTVkQZzl6O1AJgUnQaygoqtHp/FpsFd6nbZH5qEQTShcSI14ZTlVD3Tummwybj6t7bYPAImDoaYdicgbCwIRNVGQrO1J4aymcoom0sbZ2tERhG/uZkxuZQRggjF8iTpqf/vtTuOAwGAx6dyTljUVYpGutIbbkxS4YB0jnLg/NPNP6eM5iqE2mVlZUoLCxUek7R5durqyGRZsCAAQMG/gdQvAjrkggQCoTY8uFufDzmO8qV09rREv4K1U6aJALQrL0z5TGZ7LN3s1US+dcWNoeNUQtIDTKxSIzSHNKqW922ThlW9pbo3J+8IchLKUROUr7S60KBEMfXncNC/1U4ueEC5ezo6GGP785+jM8OvgdbZ+UWFLFIjJ2fH8SHw79GfZW80sDIlIclP87VyQiivLASt489kB67hcZ/k/bQpq1ThqmFCSWAW5pbTjmSyhCLxDi18SIW+K3CsT/OUtWO9m62+PrEanx17MM232/QjL4wtSQdL28duof6at3abGrKa3HjAJmANbMyxdA5A3QarznatHXKMDLhUe3LmrQdq0vfSaGwtCNvNu6eiEZ1me7i8bW1tThz5gx8fHz00vLV2NiIhQsXolMnzSfx1tbW6NatGzgcDu3HBelnj4yMRH5+vhpbt099fT1Onz4Nb29vvcVy3rx5WlUVmZubo0ePHrRXOsmoq6vDnTt3aNO7amxsxOnTp+Hp6amXWDY1NWHWrFlaJelMTEzQu3dvWiudFGloaMC9e/doc53k8/k4efIkPDw89GIywOfzMW3aNK30nng8Hvr06dNCJJ0umpqaEBUVRUsCWSKR4PQ/8rmbLlIXqtC2rVNG34mKVWmP2ty2LWSdB2KRGPkpBYC0utyviw9id2ci9W62ztXlBEHg9N8X4dTbBg7drKjFRYlEQrUjOnk5aJ2o1LatU0Z/FdXl87+aSf0WleSUIT+1sNX9ZXgEK+ikSXVknb0c0bVvMGJ3ZyLrQb7SIq86yBaR0SyX+fjxYzx7Jl9MJwgCGc/JWNo4WWk0x9YnhkSaAQMGDBjQmqrSatw8SCYCzK1NMfQV7RIB2Qm5eGfA5ziy9gz1XOiYEKy9+TWVDHHoZIfAPr4ajdt9iFyAXnahHrdsJFhsetx+ZKLpimiyWihDqb3zJDn5JAgC904/xNKu7+Of93ZSLRJGJjzM/2omtsb/gbCxPVuMlZdSgPcGf4F93x+jVvlsnK0Aqd6V4sqmNpzfcpVK5kW8NhxcHr2JAaVWRC1iqayvIq/wi77wFMu6v48Nq7ZRLbFcIw7mfjoN2xL+UCu5amTCw7A5pFA4v1GA6/vvaHx8ilzYdp1qtx29cAiMTem9AVOMJV3nJV2QLTZkIlooEOHK7ls6jxkdHa2Xii8Ze/fu1UkvbPLkybCwoNeUQ4anpyc8PT1pc6F79OgRUlLoaV9WxYEDB3D9+nU1tlTNxIkTYWNjoxe3Und3d/j4+NDWOvr06VO9VHzJOHLkCC5fvqz1/mPHjoW9vb1eYunk5AR/f3/aYvn8+XPEx8frzaX2xIkTuHBB+3a/0aNHw8XFRS/HZ29vj+DgYPD5upu/PL4cg4I00gGxx/Cu6BRIbwWvtm2dMpQdzbW/9nh2li96ZMXLjQvGLBkGG39zMDkMnavLn0cmICsuF4I6EcwtzClJiKLMEsrcShdNL8W2ztAx6rd1ylCUabgrjaWJmTF8QuSVxls/2tfuOIqGVFlxcnkDWSxZXKbGsWwtGW5mZqaknVleWEnN27w6iD4aDIk0AwYMGDCgCxe2XodQQAqVjlk8DEYmmk2WxCIx9v9wHK/3XE1VzrA5LKxYuwDfnf0Y8XeTqaTNoOl9NV7N53A56DVavhLKYjOVBPh1xdXXGd2HysWFGUyGRm2dMvpPlk90ru27jbRnmVg98ht8OfkXpZXCkQsGY0fyn3j1ixktYi0Wi3Fk7RksD/mAWmFlsphY8sMcfHboPWo7RUF9TREJRTi75Qo5NpOB8StGaT1Wayi1dU5Xv61ThuJK9vX9t5ERm42PI77Dp+N+oIwWAGDYnAHYkfQnFn47G8Zm6k9MFc8fmVOtNojFYpxRqAiY8MZorcdqDeW2Ts1jGT6+F5gscqp44+Bd2ts7FRPR57de0/nm08jICEOGDNFL1VddXR0KCwt1ahmtr6/Hpk2b9JLsYzKZWLBgAaytrWm5iefxeBg0aJBeKpWampqQm5sLFxcXrcfg8/nYtGkTkpKSaD02SNuY5s2bBwcHB1piyeVyMWDAAJiYmNByfIoIhUJkZmbqdF6KRCJs2rRJLy2JDAYDr7zyClxcXGhp7+RwOOjfv79GBhXqIpFIkJaWptN5KZFIsHnzZjx9+pTWY5MxY8YMeHh46PxbrHd5Bi1bEWX49fSGvTtZHf7kaizKCyu1Og5ZOyIUdNIAIHiIL1zD7WDqYIRbh+5RDuTaIItlyvE8JQdiZcdOeto6NdE5ldEp0BVu/s4AgLjbSSjKIk2x5n0xg9rmwYX22zKVYhkvT6QFDyJjaeZsjLsnolFVWt3KCC1hKCTSFN9/0qRJiIiQ6y0rGQ10kLZOGBJpBgwYMGBAF67tk1dnTHhds0RAxvNsrAr/GDs+O0Al49wDXLA+6gdMe3c8afm+/za1vbYthJ0C5JNiKwdLWDtaaTVOa4QMkSfSrBwstCo5d/FxQnA/Usg+Kz4Xr/dcrVQi33VgEDY+/Amrd7wJO9eWrYfZiXl4d+Dn2PLhbgiayAonZ29H/HH7W8z+aAq69A+kWhwS7iUrTYI04en1OFRIJ7R9J4XCwd1Oq3FaIz0mS+u2Thl2rraUkH1BejFW9PhQSQctKNwPf977Hh/vfRsOnew1Ht83xAsBoWS7cdrTTKplWFPi7yajOJvUrwsdEwJXX2etxmmNvJQCpbZObca3tLNAn7GkHlhpXjkeqdAt1IVOga7oOohsocpNykf8Xe2TInV1dfD390d4uOYJQ3UwMTHBjBkzdHI4NDU1hZOTk96qkwiCwObNm/HokfatUJC243l5eWHAAHpbjWXweDzMmDEDXbp00WkMNzc3vSTSZGzbtg1RUbpV8DY1NcHV1RVDhgyh7bgU4XA4mD59Orp37671GGw2G15eXnqN5e7du3Hnjm4VvHw+Hw4ODhg+nL7FMEWYTCamTZumlW6f4hg+Pj56jeW+fftw8+ZNNbZUTVVpNaVBa+9uSzk000VTA5+qBtemrRPSBOyIeYMAABKxRMmdXBOUqqgU5j1WNlYAwYCgTqRTdXl9dT3uS1tPg6Z7guMqT7xnKBkNaFdFJRQIEXmUrCzXpq0Tsli+SmqiEQSBi9vJSuD+k0JhbEZWwQubhLi6p+2qcM9WYmluYQ4GwQC/RgiRUIwru9Wv2may5IvjMr0+ALh48SJu3ZIfT6aS0YChIs2AAQMGDLzkZMXnUjoJnfsHwNnbUa39REIR9nxzBCtD1yD1CemMxWQyMPPDSfjnyS/w6+kNSJNDsmSSi4+jxm2dMvLT5BVdFYWVKMkt02qc1lDUNKspq0NDreatVYImQQudM0h1Nb448j7W3vwa/r1aOmOKRWIc/OkEXu+5mnJ+ZDAYmPLWWGyO+Q3B4f7Uc4rVP9q20UUevkf9e/jcQVqN0RZnFPT2hmnZJizgC5WSpYSEnNg6dLLDJ/vfwZ93v6fioi2KQvlXdmkZS4VVZn3E8jQNsUQLgwXtK/DUGf+ylrEEgHPnzuHKlSs0HZUyYrEYp0+fhpOTk066TAwGA7Nnz8bAgQNpPT7F8f38/HS+ib948SIuXryoxpaaI5FIcPr0adjb2+uscTVjxgwMHkyv06Aivr6+Osfy8uXLOH/+PG3HpAhBEDhz5gxsbGxUmqNowtSpUzFs2DDajq05dCSXrl+/jtOnT9N2TIoQBIHz58/DwsJCZ8fWSZMmKVUm0Y2u5+XdE9GQiMnqn6GzB9AmdSHjxoE7VIXXgKlhGrd1yohYIp+zXNimnWGFo6c9Vb2vlPwxN8e8KfPBryYXHq/s1i5Rd+/0I2oh2NHfBpVV8so5OsTxbx97QDmKh0/opbXO2uhFQ6nq8ks7blCdHgOmyp0xD/1yqs0xbJysYG5tCig4d0K6yLR4zmtoqiAdqTWJpeK511Qnb/8uKSlBWZl8rp7RAY0GYEikGTBgwIABbdGmdD/tWSZW9vkIu786TAm9ewS7Yd3d77H053lKEy7FpMrEN7QzMeA38vHg7BPqMUEAl7bf0Hic1qgsrsIdqfA+pImtR5fUr9ohCAI3D93F4qB3cPvYfaXXFnw9E9sS1mHgtHCVnz0zLgdv9fsU2z7ZT+lsufo54/dbX+ONdYta6G0NnzuQEna9e7J1R8vWEAlFuCsVqjUy5aFPhOarzG1RW1mHa/vICkQTc2OMnK/ZDTJBELh9/AGWdnmXGkfGKx9PxfbEdRg6uz8tYt+DZ/VTyx20NcRiMfX3JleZ6a0IaKxrxKWd5HnONeJg9OKhWo/VJ6IHbF3IJO/9s4+1brFpjYHTwqgbHV3cQbOzs7USrleHxMRExMTE0NLaamlpiQcPHigJKdPJuHHjMGqUbi3X+oxlamoqnj17BpFIpPNYFhYWePbsmc4VeK0RERGh1F6kDTk5OXqLZUZGBp48eQKBQKDzWGZmZoiPj8f9+/fV2FpzRo0ahfHjx+s0hj7Py9zcXDx8+JAW/TFTU1OkpKToXIHXGsOHD8ekSZO03l9bJ2d1IAiCtrZRZ29Hqrq8MKMYz27EazwGk8lEp2CyJbEwvZiqeqqtrcXp6yfgG0rqhCVFp6Esv1zj8RVj2Tm4M/z95Yt0MnF8rhEHLr7qG/0oQlcs7VxsEDaO1NQty6+gKhIX/zCH2iYnMR+VJVWtjsFgMKiqtLL8CtRW1gHSCuYj5w6h8xC5O2hBepFax6U4H+M3yn/HOnfurOTKmymNJZPFRCcdHOfpxpBIM2DAgAEDWqE0GWtHy0ooEGLnFwfxZp+PkRFDriwxWUy88vEU/P34FwSFKbuN1dc04PIuclXLyISHUQu1a4t5dCkGjXXKIscXtl+jTevp/NZr1GqkDJkrUnskRafinYGf4/tX1lEtfopY2luqFPIXCUXY990xvNFLrivHZDIw4/0J2PzsV3QZoNptzNLOAp0HkBOT/NSW7qDt8fR6HGoryIlT+ITeWq8yt8blnTepSe7I+YM1WnlNfZKBD4Z9hW+m/4aC9OIWr1vamdN6vKYWJugxnJzgl+aWI+1ppkb7x99NVhIPNrWgVzvp6t7baKghKyOHzRkICxvt9YRYbBbGLCIrVSRiCS7toC8RDQA8Yx56KbiDyiorNWXBggUICwtTY0vNYbFY6NWrF+ztNW8FVgWfz8eNGzf0IkhuamqK+Ph4pKZqF0cAmDNnDvr370/rcclgMBgICQmBszM9rcx8Ph83b96kRX+rOcbGxkhJSdGpFXfmzJkYNIj+ilNIY9m1a1e4u7ursXX7CAQC3Lp1i5YkZ3OMjIyQmZmJ2NhYrceYPn263qrmCIJAcHAwbYk6oVCI27dv05LkbA6Xy0VeXp5Wyfiq0moqIeXk5QD/Xt60Hlv8vWTKICqwjy8CQrXrJJChWLF8QUtTAJmmFkEQSI4m9Slra2tRU1ODHmPk7eWauoPWV9fjsVQ2wsbZGoMjBsLDg2w7bGrgU2YOnl06aVUxmvokAwn3kqVjuKPboGCNx1BEubqcjKWdiw1c/eS/xTs+PdjmGIrVYLJrdX19PWpqatBtpFzmRN15sFAgpP5t7SiXRfHz86O+iyKhCDmJZPdLp0BX2g2udMGQSDNgwIABAxqTnaDc1qlKt0tG8qN0vNF7DfZ9d4wqJ/fq2gl/3f8Bi7+fo/KieHVPJJUAGz53IMytzbQ6zltH5K2I/r3JCWNpbjkeX36u1XiKiEVinNssbyWTaU08OPcEImHrNyJ5KQX4Ye46rAr/hJokAUCvUd3x+WG5KYCqSWN6TBZWhX+CnV8cpCr63ANd8ced77Ds1/ntJosUHS2j1JzoyFBs69RGPLgtJBIJTv8tX3mdqObKa2FGMX5ZuAErQz/C81sJ1PMhQzvjy2MfUI/Pb71Ke9JCydFS01jqKMTcFgRB4DTNQtJjlgyjVo61bbFpC13OSwC4ceMG8vLydG4VVIVAIIC5ubnO1TSK9O/fH56enmpsqR1FRUW4e/euVvtGRkYiKytL51ZBVQiFQhgbG+tUTdOcvn37wtvbm5ZKU1UUFxdrXVl07949pKam6twqqAqRSAQ2m42pU6fS9tn79OkDX19fvcWypKRE61hGR0cjPj5eL0YisoW1GTNm0PbZe/fuDX9/f73FsrS0FJGRkRpf1xTbOrUxcGoPba7jbdFvciis7Emn47snolFdVqPxGN0UdGyfXicTuba2tujWrRsGjJMvAt87rdm1R7Gtc9C0cJw6dYpydc6Oz6X+NtqK4ytfxyN0/luFjgmBnasNIJ2nlhVUAABmfDCB2kZxzqyK7gqxfCaNpZWVFbp3746B4+RzGXVjKVJYiDYykXdRnDlzhnJ1zk0uoOa7Xt06TlsnDIk0AwYMGDCgDZFH5O0frSUCGusa8e/qPXir7yeUVTaLzcK8z6dj48OfVGp+QZYIoGEyxm/k4/6ZxwAAMytTzPxwMvWarnbnkE6iSvPIVoDwCb0QJhXsrauqR+ztlhUMBelF+GXRBiwJfgc3Dshvct0DXfHd2Y/x44VPMWh6X/j3JuOS+iQTqU8yAOnq5o7PDmBl6EdU9ROTycDsNZOx6ckvamt+KVnKazBp1Hdb56NLMVQlWc8RXdEpsG0HuqKsEvy+dBMWBryFK7tvURNWF18nfH1iNX65+iUGTAlD14FkdV5OYj7iFZKWdKDoDqpJLMViMW4fJ9uB9dHW+fxWAqUF07l/AHx76F5h4eTpgJ4juwEAijJLlIww6CBsXE952/GphxrdHAqFQkRFRaGhoYHWY5Jx5coVnDrVtnaMptja2mLkyJHIyMigdVwZffr00crVUCwW4969e3qL5Y0bN3D8+HFax7SyssKYMWP04oQKaSwtLTU3kJFIJLh37x7q67V3A2yLyMhIHD58mNYxLSwsMHbsWKSna2eg0h69e/fWKpYEQeDu3buoq6vTy3Hdu3cPBw4coHVMMzMzjB8/HhkZGXqpPO3VqxesrVvqqraHPts6ywsrqbmhpZ25Vg6TzeFwOZTMg1Ag0krftccwedXZsxvktYvH4yEsLAyBvf0od9Bn1+NQX6P+b1/zWIpEIiopqzjf8O6u+aJJTXktrh8gk86mliYYPld34xcWm4XRi0iZB8Xq8oglw8Hmksn+hppGRF980uoYSok0aSw5HA7CwsLg08WTcgeNv5OkVtJTLCKTugymcpJQJBJRC3aKC87e3fS3AKUNhkSaAQMGDBjQGMVVq+ZtnQRB4Nbhe1gc9A4O/3aaWv30CfHEhugfseDrWeBwW19VfnYjDjmJZNth10FBWrsdKbZ19p/cB/0nh8LGiRShv3/mMSqKdNN6Or3xAvXvSSsj0F8xSXVSnlgpyirB2tf+waLAt3Fl1y1IpOL3FrbmWLl+MbbE/IawsT2p1caxCqYA5/+9ijsnHmBJ8DvY/8NxqqLPs4s71t//EUt+nAuuEVftY3bxcYJnF7INKPF+qtp6V/pu61RMnE5a2bomUUluGf58fQsWBbxFVkZJzy1za1OsWLsAW+N+R79JoVQsFQ0W6EieKmLnYkMZYGTEZKMws2VLqSri7yZTzqf6aOs8pWYsNWWsHmNpaWeBLtKkp6ZtxwwGA97e3jq5FrZFWloaOnfurMaWmpGVlYV9+/ahurqa9rF9fX0xatQoNDZqZnzCYDDg5eWFHj160H5MkOqjBQfr1p6kitzcXOzfvx8VFRW0j+3p6YmxY8dqnFxkMBjo1KmTTg6QbaGv87KgoAAHDhxASUkJ7WO7u7tj0qRJWiUX3d3dERoaqsaWmqOv87K4uBgHDx5EYWGhGltrhouLC6ZNm6ZRLPXd1nn+36vUHCXitREazU3aQvk6fk3jxKSdqy3cpe7tSQ/S0FjXCD6fj3///ReZmZlURbRIKMbDC0/VGrN5W2fn/gGIiIigWuKfXpO3MIcM1fx7emnHDcqBffTCoTA2085koDkRS4ZT86OL269DIpGAyWSi9yj59XPze7tb3d/SzgI+IWQyK+1pFmoqaiESifDvv/8iJSUF/Sb1AQBIJATun33c7vHI5nDNDS9GjRpFmfI80TGW+sSQSDNgwIABAxrRVltndmIeVo/8Bt/N/gNl+eRNDYfHwYKvZ2HDgx/hG9J+dcypjfQkApSSfTP6gs1hY9RCcjVOLBJrbacOaQxkE1I3f2f0HNEVoRE9KAH6e6cfojinlEr6XNx+XSnps/j7OdiTsRGT34wAm6Pc9jP0lQEwMiUTVee3XsPX035DSQ7pXsTmsDD3s2nY+PBnBPRWXdHXHv2lEx0AuH9GPU0QfbZ1FqQXIfo8OXl16GSHsPE9W2xTVlCBDau2YaHfKpzdfIUq8ze1NMH8r2ZiT8ZGTHt3fIsE7aDp4TCzMpV+hijKSYwuFNs71dVX0WdbZ2leOe6eiAakDlsDpvZpdx916Tuxt1KLTVUpvQkgbds7y8rKMHHiRFhYWNB6PDLmz5+vF40rPz8/8Hg85ObmqrG15ly8eFFjh8OysjKMHz8eVlZWamytOXPnztWLxpW3tzdMTU2RnZ2txtaac/XqVY0r6crKyhAREQFb29ZlD3Rh1qxZOptKqMLT0xMWFhZ6i+WNGzc0rqQrLy/HqFGj4ODgoJdjmjZtGsaOHUv7uG5ubrC2tkZWVhbtYwPA7du3Naqk02dbp0gowrktpNQFk8nAhBX0uZa6B7ii6yByoSU3KR/xdzV3LA0ZSlaliUVixN5OApvNBoPBQENDA/pNll8n1a0ub97WyWQykZ2dDQaDAZFQRElNWDlYUgL96iIWi3H6H7nZ1oQ3Rmu0f1s4etij1yh5dbks4ffGn4uobXKS8pH4IKXVMWSxJAgCMTcTwGKxwGQy0djYqNT1ENVOLAUK+miyuTN1DDmkuYBEIqEq4E0tTeBHc/JXVwyJNAMGDBgwoBGq2jobahux5cPdWN79A6W2rz5je+Df2LWY9/n0FgkjVZTklFI30bYu1ug/WbsV6OZtnT2Gkxf+iCXym7gzmy63qWXWFqc2KjuKMplMmFqYIETaQlCSU4aFvi2TPgu+noU9GRvxysdTWhXTZzAZlMOTbNILAD1HdsOW52ux8JvZOomt9lWY6NxVI2Gh77bOM/9cplaYJ6wYpaTNVFFUiX/e3YkFvm/i1MaL1MTVxNwYcz+bhj0ZG/HqFzNgammqcmyeMQ/D55KrmvxGAS5su07rsSuen+ropOm7rfPc5ivUOTN26Yg2Kz81hcPlYNQC0vRDJBTj3GZ6q9L6aXheQtr+sXPnTsTHa+7m1h4EQWDPnj16017j8Xh466239FIJA+lNvCZtZWKxGDt37kRMTIxejufAgQPIyMjQi/Yah8PBypUr0a1bN9rHhjSWWVlZamsDys6dJ09ab5HShSNHjiA5OVkvsWSxWFixYgV69my5oEEHbm5uyMnJUdvQgCAI7N+/Hw8faq6dqA4nTpxAfHy8XnTsmEwmli1bpjcTFDc3NxQUFKCpqUmNrfXb1nn35EOUF5CV1n0nhcKhEz3GLDIUhfJP/HWhzW1VEaLY3nk9FiwWC6+++ir8/f3RbVAQteD24NwTJQH81mgeS6FQiCtXriA7OxvJD9PRUEtWA/cY3kXjhOXDC89QlElWhPYe3R1ufvQYs8hQjOVJaSydvRwR3E8uEfLHss2t7t+jWSwZDAbmzZuHoKAgBIb5UqYBjy7FUAZSqqgqkjuEchTmtBKJBJcuXUJmZiYyYrJRU14LSKvR9PGbpwuGRJoBAwYMGNCIOyceUP8eOC0cNw7exeKgt3Fk7RmqrN/J0x5fn1yN7858DFdf9ScBpzZeolofxy0bqVbyTRVPrsYqtXXKEgouPk4IjSDblkpyynB1722Nx66trMPVPaROh5EpD6MWkPodFUWVEAnkbqAiaSwUkz7zPp/eatKHIAjcPk62ccqcTSF1N/30wDv46eJncA9oWztMHfx7eVOCs8+uxVITvtZ4fitBb22dDbWNuLSDTG5xeByMkSY6q0qrseXD3Zjv8yaO/3mOanEwMuVh9prJ2JOxEQu/ma2WCcWE1+VVG0fXnoagiT4XtU5BblTSM/Z2IjXha42kB2l6a+vkN/Jx7l8yucViszBuOX0VATLGLR9JaZkd//McGus0ax1sC2dvR8oRLOmBem3HxcXF4PP5tDntKZKXl4eMjAyYmqr+vtKBsbEx/vzzTyQkJKixtWaEhoZi9uzZat/ElZeXo7GxUS+xLCoqQkpKit5j+ffff+P5c92NZJrTo0cPzJkzR+2EamVlJWpra+HtTX/1RFlZGRISEvQeyy1btuglEditWzfMmzdP7cRVXV0dKisr9XJeVlVV4fnz5zAxobe9XhEjIyPs2LED0dHRtI8dHByMefPmgcdr/5pcW1mnt7ZOgiBwYv056vHEN3Q3GWjOwGlhsHIgEzS3j97X2HVclbZXVVUVSktLweawETaOTBw31DQqGReporG+qUVbJ0EQ4HA4sLW1xZOr8t+gnsM1T+4rxpJOeQYZfSf2hr0bWSl7/+xjpD0jdXc/2PYGtU1mbA71fHO6DgoGk0X+FspiWVNTg5KSErBYLISPJ/Vj+Y0CpVg0R9a1AgA8Y3kbsCyWdnZ2Svv30CKW+saQSDNgwIABA2pTXVaDjOdkksejszt+WfAXfpizjlqJ5PA4mPf5dGyN/wP9JoZqtBJXVVpNaWVxuGyMXTqi3X1aI+aGvCpOURQeAOZ+Oo3694Efj1PisOpydO0ZKkk3Yt4gCAUiKunzTOF9GUwGZn80Ra2kT15KAT6O+B7fTP8NpbmkgYEsdBKxBE31fNraMBgMBtWSKBSI8PDisza3V/xMfSf0bnNbTTmx/jxqK8l2yyGz+4HJZGLbJ/vxqvdKHFl7BvxGMunFM+ZixvsTsDt9I5b8OBcWtuoLqXsEu2PgNLIioKKoitaqNAaDQbUkSsQSPDjX9o2nPmN55p/LqCoh2y0HTO0DOxcbWseHNBE9dA4pelxTXouzm660u48m9NOwVdbZ2Rmvv/467OzsaD0OSMXCBw8erJcbeEWcnJy0djJsCzabjfr6ekRFRamxNWBnZ4cVK1bA2Zne6gcAMDExwaBBg+Dn50f72Io4Ozvj9m3NF0fag8ViQSAQqP13sra2xooVK+Du7k77sRgZGWHAgAEIDAykfWxF9BVLJpMJiUSCW7fUE403MzPD8uXL9ZKU5HK5GDBgALp06aLG1trj5OREuTnSCYPBAIPBwI0bN9rdNvZ2IlWt3HdCb1rbOp9ei0X8XVIQvlOQq1LFEl3wjHmY8T7pLkkQBA78qFmrtSptrwcPHlCJd0WZhrsn265+TLiXTFXH9x3fC0wmE1wuF2vWrIGrqyvlDAqpeZImxN1NwpOr5P7O3o4IpbkDAADYHDZmrpY7J+//gYyle4ArZXYFAGuX/KNyfxNzY0ofNicxH2UFFYiOjsbTp6RER79W9IKbo7hYJpMzgfT3dvXq1fDw8NApli8CQyLNgAEDBgyozfNIuRtlTkIetcIJAOHje2Fr3O9Y8PUsraqWDv18Ck31ZBn42KUjYOusuSOVjBjpiiKDwaC0NWR07hdACZYWpBXh1qG27b4VqS6rwYn15wGppgODwWiR9JFNUAkJgcmrItpM+jTWNWLbJ/uxtOt7eHxZ3lLVa1R3fLL/HerxgZ9OUNV+dKA40Xl0sW1x3RiF1VnFVV1dqauqx9G1ZwBp1Z2RCQ+veq/EwZ9OUOcBh8fB1LfHYXf6Biz7dT6sHTR3fAOAOZ/Ik6eHfjmpVuuGuijG8uGltmP5/Jb8+9KdRtHcxrpGHPr5JCA9/xSTxXTzysdTqXP8yNrT4De23rqhKYptx4/aiSUAnD59Wi8OkyUlJUhISMCQIUNoveFUxdixYxEeHq7GlppTVlaGyMhItdo7z507pxdXxPLycsTExGDo0KF6aZFVZPTo0ZTYN93IYqnOwsvFixf1YiJRWVmJR48eYfjw4XpvcRoxYgQl9k03FRUViIyMhFDY/u/wlStX9GIiUV1djfv372P48OF6aetUZNiwYRgyZIhexq6srMSdO3fabe98flN+7ZFpXNEBQRDY+cVB6vG8z2fo7Tdz/IpRMLchFySv77+DgvQijfZvru1lZ2cHDofsVggdEwKO1Lny0aW2Fxdjbipex8kxS0tLsXnzZtRU1iAxitQXc/F10rjFdZdCLOd8Ok1v3/OIJcOoFsw7xx4gO4HU6vxgu7wqLe1pJuUA3hzFcyjmRjzs7OzA5ZJVZT2Gd6ESYw8vPWv1+lOp0NppZGokf76yEv/88w9qa+oQK73nsHO1gZu/i06fWR8YEmkGDBgwYEAthAIhTvwpLzmXXRydvBzwzak1+Pb0R3DxcdJq7PLCSqoajWvEwSufTNX6OGsr65D+jBT39e7uAQublomsuZ9Np/69/4fjamvfHP7lFFWNBqnOWvOkz8SVcmFYRdtuRURCEc78cwkL/Fbh4E8nKB01h052+OLoB/jxwqcYMqs/petRkFaEmxok/Nqj68BAStw1vpVjhLSFITk6DQDgHuCiU3KzOcf+OEuJ/zOZDJz55zLVZsrhsjFp5RjsTt+A1/9YCBsn3d7Xt4cXwseTemSlueW4spu+6oCgcD8YmZCTRtmqvCqEAiH1ukMnOzh50iecfWrDRVSVklbzg2f1g1dX7Zxu1cEjyA0DpU69lcXVuLCVvgo/v55elFZN/N3kNhNANTU1iImJ0Usi7dy5c0hObv1vSSeWlpZwdHTEuXPnNHaja4/g4GDY2Ni0+/vW0NCAJ0+eaOWm2B4XLlzQS+uqKszNzeHm5oYzZ86o/ZuuLkFBQbCzs2v3b8Tn8/Hw4UPU1rbd5q0Nly5dQlxcnBpb6o6ZmRm8vLxw6tQptfXM1CUgIACOjo7t/o1EIhGio6NRU1ND6/tDaiChjzZgVZiYmMDPzw+nTp1SK3moCX5+fnBycmr3vFRcXOwykL5qxugLT5F4PxWQuokPnkmv9poiJubGmPr2OEBaAX7wp5Ma7d9c22vq1KkYMWIENXaAtMqqMKO4TWkBxcXFboNJjcuioiKUlpYi7m4yNZ/rOVyzCqqn12OpxWlXP2eMfJV+kxsZPGMeZnxAVqWRFX4nAABeXTpRlXsA8NuSv1Xu30Phsz27HouJEydizJgx1Nid+5PnWEVhJYqyVDsAyyroASjJXBQVFaG8vByJ91OoBeoeI7rqfVFLGwyJNAMGDBgw0CYSiQTXD9zB4qB3EHtbXpHG4bEx/8uZ2Br3u85tagd+OE7pYE14fbROCZvY24nUpLL7YNVVP92HdEZwvwAAQHZCHuV02BZPrj3H0T/OUo9lk6XmSZ/eo+Sl+HF3lN2lCIJA5NEovNblPaxfuRWVxdXUGHM+mYptCeswcGoYNWGYp5TwO0bbzSHPmEe5H+UmF7TqwJhwL5mqhOvWSiy1Ie5uEg78dIJ6LIslm8PC+OUjsTP1L7z51xJa2xPnKFRpHaSxwo/NYSMwjJyAl+SUoSS3TOV2yQ/TqUlh9yGdaZsU1lfX4/CvpwBpQnL+lzNoGbct5igkug//egoCPj03h0wmkxI8riqtQX5qYZvbenl56aXlSywWY+jQobSP29b7PXr0CImJiWpsrT4ODg6YP39+u1VUDAYDXl5e8PHRzgm4LYRCIYYPH077uK0hkUjw5MkTxMbGqrG1+tja2mLBggXt/gYzGAx4eHjA39+/ze20QSgUUjf+LwKCIPDs2TPaDSisrKywcOFCtbZ1d3fXSxurQCDAyJH060i2RUxMDB4/fkzrmBYWFli0aFGb1xN1Fhe1gSAIpQqq+V/N0nvV6eRVETCxII2aruy+iZKcUrX3VdT2eno9Dg8fPlRyNu7SX36eteYM2trioqOjI3r27InnN+VJtp4j1Nf0Iiv7DlGPX/1iBlhs/Vadjl8+guqYuHHgDvLTyOvte1uWU9skR6epvA4H9/WnDAKeXo/D06dPlZyNO0vn11AxD5ZRXS6vgDa1kifSHBwcEBISgvjb8sUsbbTmXgSGRJoBAwYMGGiVx1disDL0I/w490/KRQgAzG3MsC1hHV79cobO4vMlOaU4LxVJNzLlYdaayTqNp9jCIFstbA6DwcC8z+SJlX3fH1O5oksQBB5djsGa0d9izchvlVw0OVw2xi1rmfRRdD6KvyefQMTcjMdbfT/BtzN/V5qYDJweji2xv2PRd69QlU2Kx9+5PzkhyUnMx53jD0AXnfvJJ40J91RbnceoEUt1IQgCT6/H4pNxP+DdgZ9DLJTf3LM5LIxZPAw7ktfj7X+WwcGdfs2roDA/9BxJTsYKM4px/QB9ulSKsWytKk0ploPoc2o8vk6uMzd83iBaDCnaw6e7J6U9WJpXjiu7btI2tmIs49qo8CMIArNmzYKRkVGr22gKQRDIzs7GokWL9K6NpoiLiwv69OmjlxX3U6dO4cKFtl3uxGIxZs6cSbuAfU5ODl599VX4+vrSOm5bODg4oG/fvnq5oT9//jzOnDnT5jZCoRAzZ86EuTk9yQoZubm5mD17tt610RSxsbHBwIED9RLLS5cu4cSJE21uIxAIMGPGDFhZWdH63nl5eZg2bRo6d6Zvcag9LC0tMWTIEL20kV69ehVHjx5t9XXFxUU6rz13T0Yj9QkpSO/bwwsDpvShbezWMLMyxeQ3SQF+kVCMQ7+cUntfRW2v3KR8lBWXIz09nXq9c//2r+NKi4sKsZRpaj69RibwGQyGRvINjy49ozoYPILdMGR2P7X31RZjM2NMe3c8AEAiIXBQWpXm39sXnp3l+o6/LW5ZlcY14lJz0+LsUhTnlSAtLY16XZ1Y1iqYM8ladiGt4BwyZAgVSzRzXe1IGBJpBgwYMGCgBalPMrBm9Lf4aPR3SHva0rlnzKKhcPZypOW99n9/nBJunfxmhNY6WDLa0kdTpPfoEEpYNf1ZFqLPy4XihQIhLu+6ieUhH+DjMd/hyRXlFpCpb4/D3qy/8c6mlkkfCxtzeAS7AVJR28QHKfhk3A/4YNhXSIqWTzS6DgrC+qgf8MXh91u1N2cwGEptqK0l/LRBNglCG6uvqloYNEUkFOHavtt4o/carB7xDR5eUNa+mvD6KOzJ/Bvvb32d1nZHVSgbTZzQ2GiiNToPaH8lW0kfjSatuZqKWhz9Q64zN+/z6e3uQxdzm1X4iYT0tH91USOWALB3717cu0dfuzMApKenY+fOnSgrU11VqE8iIiJgZmZGux6UlZUVcnJy2tzm4MGDtAvLZ2dnY8eOHSguLqZ1XHUYNWoUbGxsaP87WlpaIjs7u81tjh49qpb4uybk5+dj+/btyM/XzKmQDoYNGwYnJyeUlKhuz9IWdc7LEydO4OrVq7S+b3FxMbZt29bu31EfDBo0CO7u7igq0kzbqz2sra2RnZ3d6txAcXGRrmuPRCLBri/lFVQLvp71wlrvpr4zjtLgurDtuloOzzIUtb1EZVBKpra2CKqI0oKYQiyvXLmCE8dPUo7rvj291K78a1GN9uVMvWsgypi0cjQlp3BlTySKs8kKv3cVqtLi7iahOLvl97/HMHl7Z2OBCF27yh8HhflS1X+txbK2Si4loKglfP36dRw/dpyq/PMIdtOLeRIdGBJpBgwYMGCAojCjGD/MXYc3eq9RSh759vBCv8lyIXC6JmOFGcW4uIO86TAxN8aMDybqNF5dVT3VwuDVrVObE5nmoux7vzuG2so6HPz5JF71XolfF21EZmzLif7Ud8a1q9slK2sXi8R4q++nSskjzy7u+O7sx1h742sEhbXvYtd7VHcq4ZcRk437Z+lpDVFcMYxTkbBorG9CykNyIuPm76zxRKa+pgFH1p7BfJ838dOr61UmZMctH4m3Ni59YZOkboOCqeRqblI+7hyjp8IvONyPuolQFUuhQEhV/dm728LJi56E4dG1Z9BQQ+rKjV44VGuNQm0ICPVF79HdAQBFWaW4vp+eCr+AUB+5fl8riTSBQICSkhLY22sm5NweCQkJcHd3h4ODfhO6rfHgwQMcOXKEVq20fv36tdkOKBaLUVBQQLvzaXx8PJydneHi8t8IRD98+BCHDh2iVSstPDwco0ePbvV1giCQl5enl/PS3t4enTp1onVcdXn8+DEOHDhA28IDAISGhmLs2LFtbpOXl0f7eZmYmAgbGxu9tISrw7Nnz7B//35aded69OiBCRMmtJrIeh6p3uKiJkQeiUJWHClEHxjmh7BxPWkZVx0s7SwwYcUoAICQL8SR3063u48MxcqmtLtZ6NKlC/V7q7gImvokE431LQ0cZLFEs8XFiooKNFXJjXcUk0ztEXXmEVIekZVx3t08KJfxF4GppSkmryIr/MQiMWVaFNw3QEnc/9dFLavSFGOZfCcd3bt3p35vjc2MKa21rLhc1Fa2NLKpr5brm1rayefqFRUVENSJIJGQfxdNYvmiMSTSDBgwYMAAKkuqsfHt7Vgc9DZuHLhLPe/kaY+P976FjQ9/QlEGuSLFZDKUqkZ0Ye93R6ky+anvjGvT4VId1NFHUyR8Qi94dSVvTpIepGK26zJs+3gfygvkK5w+IZ5gssnLpbGZkZI+lCqqy2pQmlfe4nl7d1t8uGMlNj39FWFje6q9ektWpckTfjs/P0iLvpe1gyVcpZVwqY8zIGgSKL2eGJVCaZepE0sZJbll2PLhbszptAJbPtytFAvvbh5UkoRrxMGrX+hfz6s5isnTXV8eosXB09TSFF7dyPMo83k2ZZogI+VRBpoayEk2XfpoVaXVSg6yiufIi0Ixlnu+OdLiHNKG5vp91WUthca5XC5mzZqF4GD62pQkEglGjRqFuXPn/meixqGhoSgtLaXVPdPMzAz19fWtVmexWCzMnDkT3brRp0EjkUgwfPhwLFiw4D+NZWVlJa3umSYmJuDz+a1W2TEYDEyfPh09evSg7T0lEgkGDx6MxYsX611/qjVCQ0NRV1dHa7WkkZERlcRtjalTp6J3b930VxUhCAL9+vXDa6+99sIqfprTq1cvNDY20lrhx+PxwGQykZvb0mGxrqoeaU/VW1xUF7FYjN1fH6Eev8hqNBnT358ArhGp0XV202W1tdI69wugtL2e3YrD1q1blYxlZIugErGEqoiSoaiP1nxxcdSoUahNkl//eo5QL/mjqrLvRX/Pp7w9FsZmpETCxe3XKa20dzYto7aJuRXfYl4b0NsHJuakXt2zG3HYvn27krGMouZcQlRL+ZDGGvk8SeYgCqljMD9DvpjUQ81Y/hcYEmkGDBgw8P+Ysvxy/P3ODrzq9QZO/nWBSpxY2Jrj9T8WYlvinxg2ZyDqKuuR8VxWsu4NU0vdtXSyE/NwdfctQKp7IdNq0IUYDVsYUp9kUsK1ACjDAwaDgf5T+mDdne/g3d0DEhG5yjb17XGwtLNQOVZFUSW2fLgb87zewMOLcvt0FpuFZb+8ip3J6zFqwRCtJvB9J/SGX09SsynjeTalKacrsvZOoUBErYjKaK2FoTXSnmbip1fXY77PmziiUCkFacJy7c2vEdzXnzrHJr4xhlYXUHXpOaIb9blzkwtwasNFWsaVaXtJJAQS7ytPGpXOS5pMGw7+eIJyjI14bQQcPeitglGHLgOCqBuGoswSHFnbtn6UuihpzqlwlU1ISIBYLKbthoMgCOzevRv3798Hj6eb5qMueHh4YPXq1bTfSD18+BD3799X+VpycjIEAgFtiQWCILB//37cvn37P42lq6srVq9eDS6XS2uF3+PHjxEVFaXytbS0NDQ0NNCqg3XkyBFcu3aNVi1ATXF0dMSHH34IExMTWmP59OlT3L17V+VrmZmZqK6uBpfLpe39jh8/jkuXLsHY2FiNrfWDnZ0dPvzwQ1haWtIay5iYGNy507IqWNPFRXW4uicSuUlkm3GXAYHoNfLFC8HbOFlTVWn8RgG2rN6j1n6K2l5FGaXgcXmoqqqiXm9L26u1xUWhUIj4+Hg8v04mkTg8jtqLzZFHoqh2UP/ePpT26IvEwsYcU94iq0OFAhE2vb8LkM6hnX2kEi4EsPa1f5T2Y7FZVFVeZVE1jHhGbcSyZXV5k0LFn6zDQywWIy4uDrE3SeMdJouJ7jrq8+oTQyLNgAEDBv4fUphZjHUrtmC+z5s4sf485SZoZMLD3E+nYXfaX5j69jhwpSt3iokBOsRqCYLAhlXbqNLt6e9PoHQadCEhSj7x6TpQdQuDUCDErSNReH/ol3izz0ctJksBfXyxPelPfHXsQwDAlV1kss/U0gTT3muZ7CvJKcWGVdswz2sljqw9QyU3ZPCMuZj67jhwjbS/IWAwGHjjz8XU4x2fH0SNglCrtiiuGDZ3VlKMZWv6aCKhCHdOPMDqkd/g9V6rcW3fbapajsPjYNzSEdiWsA7fnvoIRqa8ZqYSk3Q+fm1gMBh4Y53c5WzP10dQUaS+xkprKE6ctYmlJmTG5eCkNAHI4XEw55MpOo+pLSt+X0hpoRz88USrrqWaoKSTpsLx69atW0oi0bqSlpaG7OxseHp60jamtnC5XKxbt67VxJc2+Pr6orGxUeVrt2/fVhKJ1pXs7Gykp6d3mFhu3Lix1WSNNvj5+bUayzt37iAlRbVxizbk5+cjKSmpw8Ry8+bNuHmTPmORts7Le/fuKVUK6UpxcTHi4uI6TCy3b99Oq/5ba7FMuEfvtaeuqh5bP9pHPV74zez/rOp03hczqJbAW4ejlBas2kJRJ83bMlBJ20vpOn5X2UU5vpVY5uXlISoqCpUVZBKpcz9/tUy4GmobsfmD3dTj/6KyT8bsjybD1oVMZt0/8xjRUjmStza8Rm3z5MpzVJZUKe2nGEtXjhdCQuSu9Yo6vKokL2T3HQBg60pW9xUWFuLevXsoLSbnEQGhPrQs3OsLQyLNgAEDBv4fkZucj18WbcBC/7dwbssVSuSfZ8zFlLfGYkfKeiz8dnaLC1dmnLxlQFYZpQs3Dt7Fs+txgLR9lI5qNIIgkB2fR43ZvE00L7UQ/67ZiznuK/DdrN/xXEFI39zGDAwmOYHJjssF14gDsUiM9W/8S22z8JvZMLeWOwsVpBfh96WbsMBvFU5tvAghn6xm4/A4mPjGaPSJINt7GmobqePShS79AzF87kAAQG1FnZI4rbYorRg2q/yR6Z9YO1q20DArzCjGtk/2Y67H6/h62m9K7koWtuaY9/l07Mv+B+9sXo5Oga4Qi8lYyhKn8z6fASt73UwldMG/lw8ilgwDpH+f7Z8c0HnMLormDa3E0sTCGM7eupl0EASBv1ZupRKWr3w0BXautjqNqQteXTph4hukblRTAx//rtmr85jB/RQm4Coq0gAgKIgerR9IXTNnzZrVIW6yASAkJIRWI4Xhw4dj+nTVRhQEQdAaSwcHB8ycOfOFOnW2Rffu3WlNpA0ePBizZ89u9XU6241tbW0xffr0F+rU2RZ0n5f9+/fHvHnzVL5G93lpZWWFadOmoUuXjuH+FxISgvv379OmO9enTx8sXLiwxfNZ8YpzN9114XZ8dgBVJWS79ICpYbTp5WqDmZUpFv8wl3q88e3tasle9BguT5ylPE5Takd09nak2gwTolKU/j6KsfRViCVBEOAwueBXCaTjq1eht/ebIyjLJ9ulQyN6IHRMSLv76AtjM2Ms++VV6vE/7+6AUCBE79EhVLU7QRD4/bVNSvsp6aQ9SkN8vDyZaediQ+nBJkentZDRkHWAAIC9GznHlEgk4LA4aCwnF6R7qhnL/wpDIs2AAQMG/h+QGZuN71/5A0uC38WVXbcgEcsEQY0we81k7Mn8G2+sW9Sq6Ht2gnwC4aFgi60N9dX12CwtHQeAleuXwMhE9xag0twySptKdowCvhA3D93FhyO+xqKAt3D411OoKpVrLrkHuuLdLStwMG8zJr0xBlBIBpzacFHeztrDCxNeJ9sIshNy8dP89VgU8BYubLtGlfobmfAw/b0J2JOxEas2vIaeI+QTAFX6ENrw2k9zKbeqc5svIz0mS6fx3ANcqISjYtVhZUk1FSdZLIUCISKPRmHN6G8x3/dNHPzpBCqK5KuTLr5OeOvvpdiX/Q8WfD1LyX31wtbrSH5IVhB5BLth6jtti0y/CBZ9/wpMLU0AAJd23kBSdKpO4zl0soe9G5nQSnqQSonuNtQ2Uk5Ynp3ddV5xvronErG3yZVyFx/H/6yyT5H5X82kKgNuHryrJMisDUr6fY/SWziCLl++HH5+7Rt1qMPNmzcRFRXVYZIVADB69GjMnj2bttYvgiDw+++/Iy+vZUJ/yZIltCUs7ty5g8jISFoTILoyYsQIzJs3j9Y2unXr1iErq+Vv7/z585WqW3Th/v37uHr1Kjp3pkdTkQ4GDx6MBQsW0BZLBoOBDRs2qKyInDNnDnr2pEfA/tGjR7h48SK6dOnSYWLZv39/LFq0iLY2bgaDgc2bNyMxUbmKSpb8MTYzgkMn3YwbUh6n48w/lwFpVfnrf7RM3L1oRi8aQmlqZsbm4OzmK+3uo6jtVVhcgMjISOo1BoNBLTA21DQiN0mu4ZctjSWHy4arr9zYx9vbG+J4Lgipr4k6+miZcTk4tu4cOR6PgzfXL/7Pz82hrwygqsjyUgpxcv0FAMDK9YuobR6cf4KaCnk3hFfXTtS1v7CkADdu3FD6fZCNJ2gSIuO5snmXbPEZAMysyEXqTp06gZVuDolIajTQgfXRYEikGTBgwMD/NskP0/DllF+wrPsHuHnoHnWBM7c2xfwvZ2Jv1t9Y8uNcpaSHKmQVNUwmA+4Burmw7fryMJWA6TcpFOHje+k0ngzFqjkbZ2tS8N59Ob5/ZR1V/QapMPuQWf3wy9UvsDXud4x9bTi4RlzM/3omlVS6efAutn+6H5BOrN76eyky43Lwzcy1WNr1fVzbe5uqrjKxMMacT6Zib9bfWP7bfEr3y7eHvHIvJ1H3ijQAsHO1pQTeJRICG9/ertNNDYPBoJyVqstqUVVKrjRnK6y82rnaYOtHezGn0+v4dubvSm6uLDYLA6eH46dLn2FH0p+YsGJUi6RoVWk1tn8ibwVZtfE1cLgcrY+ZLqzsLbHg61nU441vbdfZ4c+nBxnLxromlEmFebMT5H97j2DdktC1lXXY8qG8FeTNv5bo1DJMF+bWZlj8/Rzq8ca31KsMaAtfaSyFAhEKM+Ti7omJiVi/fr1OY8soLy9HZGQkzMzM1Nj6xcFms2FpaYm1a9eqTH5pCpPJhEAgQHZ2ttLzaWlpWLt2LS2Jkerqaty4cQOmph2rDYfFYsHOzg5r165t8fm1gcFgQCwWt0ikZWVl4ddff6XFJbSurg5Xr17tkLF0cnLC77//TltrtUQiaRHLvLw8/PzzzxAKdTeCaWxs/M910VTBZDLh6uqK33//nbYW1uaxbKxrRFEmaWrgEeymU6JGVlUu+6149YsZcHCn11FVG1gsFlYqyF7s+uKgSoMapX3YLMq9tCSpApBA6TfQN0Q+d5Ndv4UCIfJSSBF+twAXsNhyTcnTp0+jsJbcztTShErstYasqly2oP3Kx1NeqON2azAYDLy5folc9uKbIygvrETfCaGwk7ZeEhICfyzdTO3DZDLRXdreWZ5aDSaYrcYyJ0H5WiabIyielxcuXEB+DZlw4xlzERTur6dPSw+GRJoBAwYM/I8hkUgQfeEpPhrzHd4M+xj3Tj2kXrNysMSSH+diT+bfePXLGWo5OInFYioR5OrnrNONe9qzTJzaQK5y8Yy5eGPdonb3UZcMheqsC1uv4cjaM6guk6+cufo5Y9kvr+JA3mZ8euBd9BjWVWk1mEwGvEI9luk39B4Tgr3fHsHrPVfj9tH7cqt0W3Ms/HY29mX9g0XfvdLChKBTkCv17xypMC8dTH13PFykArCxkYm4dVi3VptOgQrHmUgeZ8ZzeSyv7onEoV9OUe0ckLY/LPlxLg7kbsIXh99Hr5HdW11Z37pmH2or6wEAw+cNpE3wmA4mvD4KntKKu6ToNFyRml9oS6dAN+rf2dJYKiYlPbvolkjb8dlBqlJw4LQwhI6hzx1QV0YvHkqrIYZiLGXnJQDk5OTQJozP4/EwePBg9OnTh5bx6MTY2BgWFha4ceOGzmMxGAwMGzYMHh4eSs/LYklHJQSHw8HAgQPRt29fnceiGy6XCxsbG1y7do2W8YYMGQIvL2WJg5ycHDAYDFpiyWazMWDAAAwYMEDnseiGxWLB3t6etlgOHjwY3t7KiYfc3FwQBEGLaQOLxUL//v0xePBgnceiGwaDAWdnZ9q00gYMGKBUqav4u+mpYydBy6rycTqNRyed+wVgxKuDAAC1lfXY+fnBdvfpMYysdKrKqIcXV7kaWWnuJp375qUUUomf5tfx1ORUKukbMrRzu9enFlXlq//7qnIZvj28MHbpCEC6ILhNugi6Yu0Capu7p6JRVyV3lpbppNXkNMAdfkq/gZ2CFK/jzRJp0kSiTGMVAFKSUsBvIts6uw4KonSaOyqGRJoBAwYM/I9QX9OAk39dwOKgd/DpuB/w+HIM9Zqdqw3eWLcIezI2YvaayTC1MFF73KLMEkrLQJe2TolEQq7CSSu55n42nRanwezEPGx6b6eSHbsMDpeNoa/0x2/Xv8KOpD8x44OJbWpzjVkyDC4KJfsMBgMPLzxF9Pmn1HPWjpZY9ut87M3ciLmfTmvVJMHKwZJ6ja6KNADg8jh4/Q95AnLLh3vQqOB+pCnuCom0mJvx+Hf1Hmz7eH+L7dgcFgbP7Iufr3yBnSnrMXvNZFg7WrU5dtydRFzaSSYCTC1NlDQ4OgJsDhuvKyRzt328D/XV9VqPpxjLXOlNjKKuii43M8mP0nF2k7ytZsXv/31bjSIsFotWQwx3FQleAAgMDMSwYcN0OFKSlJQUPHr0CIMHD6bdJZMOmEwmZsyYgdDQUFrGU6UN5efnhxEjRug8dnp6OqKiojBkyBBaHSvpgsFgYOrUqQgPD6dlvM6dO7c4Z3x9fTFq1CidE2lZWVmIjIzEkCFDwOF0vJtIBoOByZMno1+/frSMFxQU1CLx4OXlhdGjR+scy5ycHFy7dg1Dhgz5Tx1k22LixIkYNGgQLWMFBgYqff8Urz26zN0qS1pWlbM5Het7vuTHuTA2I51tz225irSnmW1ur6jt9Tz/MWJi5PNlpWtPUssFseaV5cZCc5TGkguN7emjddSqckUWfTebmrte2XULCfdTMHhmP9g4kfM9QkLgz9fl+sGKmnOJJc/x+PFj6rF7oLyDRXFBWSKRANLCNTZH/v03FpmjJIbsWOno+mgwJNIMGDBg4OUnL7UQG9/ejjnuK7Dx7e3ITy2kXnPycsA7m5ZhV9oGTHlrrFZaZIpC+R7Bbm1u2xaXdtygtMLcA10x/X3tDQaaGvi4ujcS7w3+Aq91fhfH1p2DSCDXUXL1c8Ly3+bjQN5mfLLvHXQfop7OTH5KISqL5bpfiiXqDp3s8OZfS7AnYyNmvD8BxmZtt4owGAxqZbM0txyNdardybQhbFxPhErNDErzyrH/++Naj+Xs7UD9e/dXh3H4t9NKIrBOXg5Y+vM87M/djM8Ovoeew7uqlXgQi8RYv3Ir9XjRd69QFucdiZ7Du2LgtDAAQGVxNXZ/1TIhqy6qqhDp0Bds3lYz/8uZHaKtpjld+gdi+Dy5Icb2T7U3cVCOpfw3SCAQtKhg0RQ+n4+TJ0+iurpaja3/O6ytrWFvb4/du3e36m6oLnFxcdi7d6/Sbxqfz9fZFEAoFOLkyZOoqqpSY+v/DisrK7i4uGD37t2oq6tTY4/WSUxMxO7du5XaOJuamnSOpVgsxsmTJ1FRUaHTOPrGwsICHh4e2LVrF2pq2m6ja4+UlBTs3r0bIpH8+t3Y2KizBqJEIsGpU6dQXl6u0zj6xszMDD4+Pti1axcqK3Vzj87IyMCuXbvQ1EQurGXTlEjb+tFeqqp8xKuDOlRVuQw7FxvM/Yw0VCEIAhve2tZmm7VX106US2VtRT2SEuXtta5+TlSVVG5S2wtifD4f+THFqC8mY66YVFLFjk8PyKvKp4d3qKpyGZZ2FljwjVz2YsOqbRCLxFj6i9wYJPLofTRI57Suvk6UiVJNWR0SE+QOnY4e9uAZk4nCXIVEmmL7LUdadSYQCFAQW4y6AnLc9mLZETAk0gwYMGDgJYQgCDy6HIPPJvyIxYFv4+RfFyihfUgvQF+fXI2dKesxbtlIncqjM+PkAqHaVtTUlNcqWaav2rBEY50soUCI+2cf46dX12Om02v4ef5fVHm8IrYuNtiRtB7T35vQot1SFQRB4On1WHwx+Wcs6fwuGmuVq7ssbM3x+eH3sDttAyatHKOWrbkMpbZJBdFaXWEwGHj99wXUSt7hX09pJJYvEooQfeEpflm4Ad/N/KPV7SxszbEr9S/M/HBSuzp6zTn51wVkxpLnjl9PL4xfMVKj/V8ky36dD64ReT6eWH9e5XmlDsp/bzL5I9MXNLc2pVZ0NeX8v9eQ8ohsq/Hs7I4pb//3Zg2t8dpP8+SGGFuu4PGVmHb3UYWbvzOV/JZVpDU1NWH//v3IzGy72qA9xGIxfHx8MHz4cJ3GeREYGRkhPz8ft2/f1mkcW1tb8Pl8CARky7pIJML+/ftVCr1rgkQigaenJ0aO7Ljfbxk8Hg9FRUW4dUu3Fm4bGxuIRCIquSmRSLB//36dta4kEgnc3d0xevRoncZ5EXC5XJSWlurcemxrawuJREIlNwmCwMGDB1uI5msKQRBwcXFBRESETuO8CDgcDioqKnD9+nWdxrGxIXWsZLGkoxo67k4iLu+8CXTQqnJFprw9ljKpib+bjBN/nm91WyaTiQFTyAW0nJslYNbK56McLoeSz8hLLiC151pJSt65cxeEK9mKaOdq06aGcPKjdMoMwciUh9c7WFW5IhNWjKJaWFMfZ+DQL6cwYt5gWNqTc2qJWII/lpIOngwGAwOnkdW+ebdLwayRx5LJZMJNGpP8tCLKuTM9Rq5XaWJBLko/ePAAImfyN9XC1hze3ZWlCDoihkSaAQMGDLxENNY14vTfl7Ck87v4eMx3eHDuCVVhwDPmYtzSEdjyfC1+ufIF+k0M1VpLKDc5H2uX/I3fFv+N6wfuUM/zGwWoLNG8imPTB7uoNq+hr/Sn9CnaQywW4+n1WPy+dBNmOS/F5xN/wrV9t9FYJ092mVgYw7+3D/XY3t0WqU8y2hV9bmrg49yWK1jW7X2sHvENok4/UnqdzSVbF2rKa9FUz1cSl1WXtvQhdMU9wBWvfDwVkE5qfp7/F5oa+K1uL5FIEHMrHutWbMEsl2X4dNwPuLL7llJbKIPBQEBo81hmKlnAq0NhZjF2fXmIGnPVxqW06VrpAydPB8z/ilyBJQgCvyz4C/U1DRqPY2YlT5YlPUjF78s2Ufb2Ns7WSH6YprEIf2leObZ/Im+17YhtNYrYudhgyQ9zqce/Lf4btZWaVwDxjHlw8iKrJXOT8kEQBOrryaoIe3vtW8JLS0sRGxuLadOmdTiTAVWYmppi6tSpcHR01GkcHx8fLF26lGpxq6+vB0EQsLPTvrKxvLwcT548wbRp02Bh0f6ixX+NsbExpk6dCmdnZ53G8fDwwNKlSykzgMbGRojFYp3Oy8rKSkRHR2PatGmwtu54lbvN4fF4mDp1KlxcdDMfcnV1xdKlS2FpSS7UCAQCCAQCnc7L6upq3Lt3D1OnToWtra1Ox/ci4HA4mDp1KlxdXdXYunUcHR0xoOsQ/PvuPqxbvhnx98jELs+Ei+KsEo0lIARNAqUWvkXfvdKunMN/CZfHwTubllGPt32yXykB1hxZ8qcqow6J0SlK8xzZ3I3fKMBP89bj+S3SiZrNYaGisJJauE5PzFCqoGqt80EoEGLd8s1KVeUyl++OCIvNwrubl4PJJD/P7q8OI/VJBpb8KL+23zochZIc0pFcVtVfnV2PxAepShWmslZZiViCgrQiAEDGM7kOr7V0zpSWkIG6AnLeFTKsS4eUXGhOxz9CAwYMGDCAtKeZ2LBqG15xX4G/3tyqVCLt0MlO2nq3Ce9sXg6vLp10fr8dnx3AxR03cGnnDSWnnd8W/4057ssRczNe7bEij0bhyi6yAsDE3BjLf1vQ5vYEQSDhfgrVrrp6xDe4sO0a1VoAacJigPTC3VDTSFXrQJrAWBn6EdaM/EalG13G82z88+5OzHFfjnUrtqicaI1bNgKf7H+Herzxre0oyipR+zPLUGxPy6XRcEDGnE+nUomvvJRC/Lt6j9LrBEEg+WEaNr23E3M6rcAHQ7/CuS1XlLSrTCyMYW5jprC9PJbpz7LwZp+P8N6gL9R29hOLxPh5/l9UsnPsa8MRFKZbm86LYPr749F1IOnkVZRVik3v7tRqHGfpSraQL8KFrXJB7uyEPKwK/wRvhn2sdmJSIpHg10UbUVclb6vpNihYq+N6kUxcORo9R5L6JmX5Ffjrza3t7qMK2fensa4JZfkVsLGxwcqVK7VOWIhEIhw6dEjnapcXTUBAADw8PHD06FGqbUtTGAwGEhMTKVc/S0tLrFy5UutEiFgsxuHDhxEXF6fG1h0HX19f+Pn54ejRo2ho0DxZDmksU1JSKOdKU1NTrFy5Ep06aXftJQgCR44cwfPnz9XYuuPg7e2N4OBgHDlyBLW12ushZmRkIDWVrKjm8XhYuXKl1u3bBEHg2LFjePr0KS3GDy8KDw8PdO/eHUeOHNGp5fzo5pOIefIc5/69ioYaMsHDbxDg3UFfYL73ynYdLRXZ+tE+an7U0avKZYQM7YJpUiMEIV+In15dT1VBNafLwEBY2VuAZcQE3Pn4dM63mGA2D+tXblWqLr9x8C5qK8jFIJFQjPeHfIl5nq+jvLAS1c+bkHqWnNv1m9S6nuXuLw9Tum0dvapcRnDfAMz+aAqgMK8b9kp/2LuTCUCCIPD19LUAgIBQX9i724LJZoDjK8bnr36PCWbzsHbJ3yoNrRT10mRaybXxfKScJJ/v30YsOxKGRJoBAwYMdFCqy2pw/M9zWN7jA7zeazVObbyI+mr5xL/b4GB8cfQD7E7bgJkfTlLLgVNd2tJfEgnFVMtee5TmlWPdcrlV9pt/LYGtc8vVdoIgkPE8G9s+3of5Pivxdr9PcfKvC6gokuvuGJnyMGzOAHxzag0OF/2LdzcvB4fbemVO6pNMKvlTU1GLkxsu4I3eq7E85AMc//OcUmLOzs2G+rebvzOWr12AgVPDMHIB6fTVUNuIXxdtbLfKrTmqRGvphM1hY83uVZQGxem/L+HhxafIis/Fjs8OYKH/KrwZ9jGOrTuH8gK5/grPmIvBM/viq+Mf4kjRVoRGhLT5PunPstSupDr400nE3yVXwp28HLD0147bCqIIi8XC6l1vwsScbDO4uOMG7p6M1nic5kLEzcmMzVHS82uLY3+cw9NrsYC0beT1PzpuK4giTCYTH25/A+bWZMXOjQN3lSpb1cU9wBU8Kw7MXIyRnZCL27dvKwkZa4pAIICZmRnGj9den/G/gs1mIy0tDVeuXNF6jKSkJNy/TzoP37t3D9HR0WonyJsjEolgbGyMiRMnan08/xUsFgsZGRm4dOmS1mMkJycjKioKABAdHY179+7pFEsul4tJkzqOe5+6sNlsZGdn48KFC1qPkZKSgnv3SPfpx48f69TGTBAEWCwWpkyZovUY/xVsNht5eXk4e/as1mNY+5rDsbvqqrGq0hqU5JSpNc7DS89wYj3ZGsnhcfDhzjc7dFW5Iot/mEPp+aY/y1KpeyoUCHHneDR4pjyImyRoLOejKK8ITQ18XNl1U2nuporaynqkxqajSJALMV8CI1MeQseonkfF3IrHoV9OAdKKttW73uzQVeWKzPtiOuXGnZ2Qh+2fHMCnCovMKY/S8eDCY/w470/UlNVCIiJQX9SI4sJiNDXwcXn3LbgHtJwHF2XIF6bd/F1QW1uLnLpMiAUScLhshI3v9UI/p7a8HH9FAwYMGPh/glgkxsOLz3Bp5w3cP/MIIqFy8oJrxMGwVwZg0qoI+IZ46e04Ri8aimPrzql8zcreAsPmDmh3DIlEgl8WbqASVoNn9qUsymXkpRbi5sG7uHHwjpIznwwOl40+Y3tgyKz+CBvfC8amRvLXbDjoP6UPbh66p/L9J78VgceXY3Bxxw1EnXoIYbPkBYfHwZBZ/dC5fwD+XEG2L7DYLHy8723qfVauW4SYG/EoySnD81sJOPbHOcx4f0K7n12Go6c9ODwOhHyhys9HB+4Brlj263yq6ufziT9BLGqZ8GNzWOg9JgRDZ/VH34m9lcwSvLt64jpaT3RMejNCrYlf4oNU7P76MACAyWRgze5VGjnE/tc4eTrg9XWLsHbJ3wCAP5ZtQnBff43aWdqrCJ2wYpRaOntpzzIppzQGg4HVu96kNVmub+xcbbFq41L8MGcdAOCvlVvRdWCQRu0snYJc4dDVCh7DHBH58CZqRWSlRmNjIwoLCzFjxgy1W8Dy8vJQUVGBhQtfjmRkc8zMzDB9+nSUlpZqPYa5uTmSk5Nx4MABqgKoqakJxcXFmDJlCpycnNodAwAKCgpQXFz80sbSxMQEM2bMQH6+9r/JFhYWSElJwYEDB5CSQproCIVClJaWYsKECWq36RUXFyMvL++ljSWPx8PMmTN10i20sLBAfHy8UixFIhEqKiowZswYeHiop5VUWlqKrKwsLFjQdtV7R4XD4WDGjBnUd1MbfH188fCm6sWG7kM6w7dH+/PGqtJq/LZoI/V46c/zaOl0eFFwjbj4aM9bWBX+MURCMQ7/chJhY3ugy4Agapsvp/yKhxfkbuxxezNh5mICY1sugqZ2Asum7aR4ULgfCorzYe5hDAaTNIBSdV2vrazDz/P/opLsC76ZDb+eupnlvEg4XA7W7F6F13utgZAvxPE/zyFsfC907hdAtQ5/Nu4npX0SDmbDzMUYJvY8+I1zg8RCQL0m68woK5Abqnh37YTIS3dh7mEEJouBXiO7vzTzRkNFmgEDBgx0AHKS8vHvmr2Y02kFPp/4E+4cf6CURAsM88M7m5bhcOG/eH/bG3pNogGAV1cPBLbSjrd87QK1buiP/X4Wz66TbT/2brZ4+x9SuyInKR+Hfz2FN0LXYFHAW9j15SGlJBOTxUSvUd3xwfY3cLhoK746vhpDZvVXSqLJiFiiWizc3NoUF7ddxydjf0DkkSilJJp/bx+s2vAaDhVswRvrFmH/98epSc7Cb2bBv5dcI8zU0hSrd71JtYjs+HQ/Mp5n4ezmK/hk3A/titKzWCxKfLYgrQgioXqVSOqSl1KAo7+fweVdcsHn5kk0O1cbvLN5GQ4V/otvT32EYXMGtnAcVWxBbY6jhz3mfTG93WNprGvET6+uh0RMvv8rn0xFl/6BWnyq/5bRC4eg/2SyraC6rBa/L92Esvxy/LJoA/5Ytqndv2FbsbR1scbC72a3ewz8Rj5+nPsn9Rsw/b3xausKdiSGzu6Poa/0BwDUVdXjt8UbUVFUSekvCpoEbe7fKcgNZQnVICQElUQDgJiYGNTU1FAaVe3R0NCAAwcOUK14Lyu+vr7o0aMHjh8/rpVb4vjx48FgMJRu1GNjY1FVVQVzc/WStE1NTTh48KBON/sdAS8vL/Tp0wfHjx/XynF03LhxYDKZVOIHUmfU8vJytWMpEAhw4MABnU0K/ms6deqE/v374/jx41q5ZI4dOxYsFksplgkJCSgtLVVbe08kEuHgwYNISEjQ+P07Em5ubhg8eDBOnDiBkhLN5SRmLZmG/MiWfwM2h4W3/l7abrsrQRD4Y9lmqhsgdEwIJq/q+IYNzfHt4YUFX5O6pxIJgZ8XbEBlSTW2frQXX037FRkx0hZ3L1MwOQx0X+KLoBmd0H2pD0xceLBwaF0/k8li4p1Ny5H+OAvFzyohERIYOK1vi+0IgsD6lVtRmkv+PboNDsaMD9RfiO0oeAS747WfFHRPF23E4h9fabGdpScZy26LvBE00wPdlnjDrJMRzGxMKK01mVaworyIf6gPUh9koCSmCqImMQapiGVHxVCRZsCAAQP/EbWVdYg8EoVLO28g8X7LmxIbJyuMmDcIoxYOabddTB9ELB6GpAfKxxUyrAuGzx3Y7r5pTzOx/VNSIJ3BYGDyqgjs/uowHpx7gsKMYpX7dBkQiKGzB2Dg9HC1HSJDhnWBk6c9irKUqzRqK+sBhdZNK3sLDJ83CKMXDoFXV/nq9g9z11GtDl0HBWHGhy3blLoP7ozp743HkbVnIBSI8P6QryjNqvKCCmx++lubx+jq74yM59kQi8QozS2nbMK1QSgQIvZ2EqLPPcb9c0+Qn1rY6raySriy/AqYWZm1mfx0829dfHvVhiUqk5jN+fudnZSQbGCYH+Z93n7yrSPCYDDwzubliL+XgqqSatw/+xixtxOptuouA4Iwcv7gVvdvK5ZvrFuk1krrv6v3UsllnxBPLPyu5aT1ZWHVhtcQG5mIsvwKPLkaiyXB71Lfn8AwP4xf3rrujpu/MxrLBXi8MQW93ggAQ9pZ5Ofnh/79+8PY2LjVfRVpaGiAvb39S+Es2R4sFgtZWVk4e/Ys5syZo9G+tbW1YLFYYDAYEApJ3SAfHx/069dP7aRkY2MjrK2tMWbMGK2OvyPBYrGQm5uL06dPY/78+RrtW1dXBwaDAR6PBz6fNHnx8vJC37591U7+NDU1wdLSEmPHdny9pPZgMpkoKCjAyZMnsWTJEo32raurg0QigYmJCaVb5+Hhgb59+6ptvMDn81/atu3mMBgMFBUV4cSJE1i+fLlG+/LFfPR6xw8P/0wGv1quDTZrzWQlrarWOP/vVdw79RAAYGlnjg+2v/FSac0pMuPDibh/7jHi7yajKLMES7u8i+oyMoETNq4nGvmN6DrfCxIxASaL/IxsHgsMAQtBnYNg42SlJC8iY9o74+DR2Q1PTsejLLsSPGMu+qiQx7i27zZuHrwLSHV91+xe9dK0xzZn8qoI3D/7GE+vxaI0rxzvD/5K6XW2EQtdF7SMJfhMBAYFwsHDHkWZJSiUtnQ2Ss0aIDW1enImDoWppWBzWAif8HK0dcKQSDPwMiAWi5GdkIu0p1nISylEUUYxygoqUV1ag/rqejTV8yHkSy8WDAYYsv8zWj5mgAEGU/Y8A2CQFywGA2AwmTA2NYKVoyXs3W3h5u8Mv57e6DIgEFb26t3UGzDQHjXltbh36iEij0bhydXYFrpT5EWkN0YvHIrQMSFaOUXSxZDZ/bFh1TaqmovFZuKtja+1O6lqauDju9l/UNU0LDYT/67Zq3Jbv17eGDqrPwbP6temLpsqaivrEHX6EeWu2Rwmi4mwcT0xeuFQhI3r2aI18dq+27hxgJzkmFqa4KM2JjkLv3sF9889Rm5SAZUEAIDM5zmor66HqWXrN6EOCq1sZfkVGifSKkuqEX3+CR6cf4LHl2Iot6jm+IR4wiPYHdf3k/oy1O8igLjbiRg8o/VVPrtW2u0GTA1D2Lj2JzW3jz/Axe3XAamW3Ud7Vr00GiCqsLK3xPtbX8fnE8mWBUVtwtjbiW0m0mycrcFkMiCRKLeGhI7pQbmEtcWD809wauNFQNrK/fG+t8Hlcdrdr6Nibm2GD3esxJpR3wLSyjQZcXcS20ykWdiag2vEASEhV/cZYIDFYmHIkCFqi+Snp6dDIpG8tK1zzZG1fylWMT148AD19fUYNmxYm/syGAyIRCKw2eR3k8lkYuDAgWq3zmVmZoLP52PRokU6foqOAYvFwowZM5QMEx4/fozy8nKMGjWq3f3FYjF1PWQymejfvz98fHza3Q8AcnJyUFdX9z8TSyaTienTp+PpU3m73LNnz1BYWIiIiLYrmhgMBgiCgEAgoB6Hh4cjICBArffOy8tDZWXl/0wsGQwGpk+fTmkYMhgMxMfHIyMjAxMmtF3RxCBvdmBkw6USaQ6d7PDKx+1rxuUm52PTe7uox+9tfR02Th3fQbY1WCwW1uxahde6vgdBo4BKogFASU4ZPt/3Af76fBPcBtuBayqfr9hyHWBmZgZ7d9sWiTRrJyu8+uUMPL72DP5znSHcJ0DXnl1aVPkXZhbjr5Vyk523/1mq8Ry3I8FkMvHhjpVYEvwOZSSliKhJjKSjufCJcAZTIZaWDGtYWFjA3t0WRZklqKuqR0NtA3V/wOGxEX8/GZ7T7dF0uBG+fn4wt+74btoyXt5ZroGXnqy4HFzbfxtJD9JQWVKF+qoGNNU3QdAkhEgoJkW9tdNt1ZoqVKMwsxiJ91W/zmQxweayYWTChamlKawcyKRbp0AX+IR4GZJuBlRSXVaDuyeiEXnsPp5dj1Mp2u7dzQOjFw7FsLkDOsw5ZGJuDJ8QLyRFk1Vpw+YOVBINVUQikSD1SSaizz3Bqb8vorpU3nak2KLKYrPQdVAQwsb2RPiE3nDza716RxU1FbW4d/IhIo/dx9Orz1toyAGAe4ALIl4bgRHzBraqbVWUVYL1K+W27m//swwOnVp3Akx7kqE0CZNBEAQSH6Sh96jure5r6ypPUpXmtd/2QhAE0p9l4f7Zx3hw/gmSo9NUilgzWUx0GRCI8HG9ED6hF5y8HPD32ztUjplwP0Xl8zKMTY1gbm2qZMDAYDLwxrr2b0zK8svxx7JN1OOVfy6Gq69mf9eOhlgkxpOrqh30EtuJJZvDhrWTlZK5A4PBwKqNS9pNQleWVOO3xX9Tj5f9Oh8eQW4aH39HQiwWU4YJzUmIajuWDAYDdq42KMopBTkhYEAikcDIqP0KSQAoLy/HwYMHER4eDj+/ju8cqy7u7u5wdXXF4cOHIRaLUVBQAIlEgqFDh7Z5jrm6umLQoEG4f5+c5MiqgNShqqoKBw8eRM+ePREY+PK1bLeGi4sLnJ2dcfToUQiFQhQWFoLP52PkyJFtxtLJyQlDhgzB/fv3IRKJNIplbW0tDhw4gM6dOyM4uOO78KqLk5MTIiIicOLECfD5fBQVFaG+vh6jR48Gk9m6mpCtrS2GDRuG6Oho1NXVgSAItSsk6+vrceDAAfj5+aFr15ev/b017O3tMW7cOJw+fRr19fUoLS1FdXU1IiIiqES4KqysrDBixAg827CFeu7NDUva1eUUCoT4cd56NDWQ1ZXjlo1Ev4kvh3NiWzy7EafS3CcrLhdB4X547+c38dmEH+Exxh72Xcj5YgOXnOvZudkquZgDwPLf5sPYzBi3L94D05KJhtKmFgtkModL2aLniFcHYcis/nr8lC+GmJvxEPBVO6ACQFl8Ncriq+E3yRWOIWQCtsmInFMqaqPG3kmi/m1iboxbZ2+DZcxEQykfgz5qf7GxI2FIpBnQOwn3k3Hr0D3E30tGYWYJ6qsa1HZ/62hIxBIIGgUQNApQU16HwgzVSTcWhwVzazO4Bbigx7AuGL1oKBzbuEk38L9HZUk17p6Ixu1jUXh2I57SjVLEoZMdBk4Nw/B5g+Dbw6tDls+//c9rWDPqO1jamePtv5cqvdZY14gnV2Nx/+xjRJ9/orIEHtK2ytCxPRA2thd6j+rWZvWWKqrLanD35EPcPhaFp9dUJyJ5xhyIRBJMWDEKb6xb1GYsxWLpJKdGPskZOrv1SU5FUSU+Gv2dylU4AEiMSmkzkWav4Ahanl+hcpvG+iY8vRaL6HNk5VlZK9uZ25ihz9geCB/XC71GdVdaudv2yX6c3aza0S/9WRb4jfw2J9O2rjaorawHg8GAkSkPM1dPblcYXiKR4NdFGylr+IHTwjB60dA293kZOPDjCcqxrDnZCXntViHaudpQiTQjMyNMeWssnL3arkQkCAK/v/YPqkpILbA+Y3tg4hujdfocHYHjf5zDwZ9PqnytMKMYlSXVbbZy27nZoiC9GKmn89FjXgBGjBgBGxubVrdXpLa2Fh4eHhg0aJAaW79cCAQCJCUlUUl2dYwCWCwW3NzcMHLkSNy8eRODBg2Cvb16c5Pa2lq4urpiyJAhOh97R0MkEiExMZFyZVYnJkwmE66urhg1ahSuX7+O8PBwODurt4BQV1cHR0dHDB+uWuPzZUYsFiM+Ph5iMXmdtrVt31xEFsvhw4fj2rVr6N27N9zd1ZOzqK+vh52d3f9E23ZzJBIJYmNjIRKRiSBra+t254kMBgOurq6Y++U07P70CHoM64q+43u3+167vzqC1McZgHQxcvlazVqdOyKPLsfg96WbVL5GEASSo9PQc0Q3/HjxM/y2+k/YdyFfMzMmr+12LvLrjJEJD10HBWH4nIGQSCR4fCIOIq4AEJGdD4o0dy5/8y/NWp07Is8jE/Dz/L/U2rYuvwmO0k5XYx5ZqacYyzgFbWELW3M8PhGLJkYjhHVi9Jv0ciVvDYm0DkKTUIyiWj7KGwSoaBCiSSQGQQBMBgMWRmzYmnBgZ8qDvRkXzA54sy0Wi/Hsehwij0Yh+WE6irNL0VDTqDJ5oCkMBoOqBOMZc2FsbgRzGzPYOFrBzs0Grr7OcPF1ApfHhkgkhlgogUgkglgohkgkgVgkAiEGxCIRxCIxxCJJs/+LIRFLIOQLUZJdhpLcMlSV1qChuhH8Rj5ZHafh5xALxagqqUZVSTXibidiz9ek9TKHx4GVgwW8unogbFxPjHx1UIty4I4EXyRBUW0TyhuEqKgXoJE6LwFzHhu2JlzYmnLhaMajhCRfNARBoKJRiNI6PsobhKhuFEIkbanispiwMeHA1oQLR3MezHj6/ckrK6hA1CmyWur5zXil1i6OqREce/mgU3gAPPoFwtzZBlwTHlgMIJ/HRlNRLRVL1n8Yy8pGIUrrBChvEKCqUQgR1wQLbv4ALouJp8X1EJUVoCA6BU9OP8Tzm/EtnDAVCR0TgnlfzEBAqI/GuhAVRZWIOv2IquJT/A6yTXhw7OkD9zB/ePUPgrmrLbjGXLCYDJhy2YgtqoWtCRdO5qpjufPzQ4iTrog5edq3O8nhNwjAl67SqiLurmrDgUrpeVnv4YxRW94Ex9QItbbmuJBUAmtjNsTlNSh8mIonpx/i2fU4pVZMRby6dkLYuF4IH98LgWG+rcaypqx18XGxSIyURxnoOjBI6XmhWIJi6bWn+4fTEQSAyWHDM9gVliY8xBRUw86U/P6wVVQUHPjhBJ5cJauNbF2s8c6m5R0yIawp1W3EsrUqRJFYgqI6PsrrBQh+axK8JQSYbBY8glxhaWaEmIJq6rxks1rG8ujvZ3H/LOm2ZmVvgQ+2vbzaNIq0FUtIE9HNJ89iCUFee+qF8FsWAdfFo8HksOHu74wKMyM8U4glR0UsITUksLOzw7x582j9PB2B3Nxc5OTkUC1xkFaiCIVCcLlcpW3FEoL6jpc3CJCe1wBjU2sEjJ2HWg4Lz/KrYWNKxpLbSizj4uJgYWGhsY7Yy0BeXh5yc3OVnrOysoJAIACPp7zwIJYQKKnjo6yejGVGXgOMjM3hHzEXjRwWnuZXw9aEAydzI3DZqmOZmJgIIyOj/5lWY0UKCgqQl5en9Jy5uTn4fH4LPUOJLJYNApTXC5CRVw8uzxT+Y+ZCyGHhSV4VbKXnJa8ViYvk5GSw2ez/mZZORQoLC1vE0szMDHw+v0Xlo4RQPC+FyMitA6dXIJZG/QojNguP86rI30sLHoxUxDL6wlMcki52sNgsfLT3LbV0UTs6bc2JACA+Khk9R3RDl/6BWPbRYuzauBcufW3RdWB/xBfVwnJ0L4zpFQAWjwPHTnaws7fA47wq1OeUwLKbJXJv5aH3aGWHyWc34l5q5/LWUDQHaI/hY4fi7p27cOlng26DBiChuBamQ7pjTLAXWDwORGY8DP/LERUp+TASiFCSn4zyO5UIGdYFFrYvjzM5ADAIVf0i/+PU1NTA0tIS1dXVaguC6ouSOj6SS+qQVdkAiRp/CVMuCwH2ZvCzM4UR57/RThKLxYg8GoXTGy8h83kOGusaW2jBqAOTxYSJuRFsXW1g52oLe1cbuPg6waOzG3xCvDpkBVdxTikSopKR9jQL+amFKMsrR1VJDeprGiBoFEAkEGkcCwYD4JnwYOdmC/9e3hg8sy/CxvX6TwUpy+sFSCqtQ2ZFA8RqfB5jDhP+dmbwtzeDCffFHLdQLEFmRQOSSupQ2dh6qbEirhZGCHAwg5ulES03qCKhCPH3kvHwwlM8vPgMGc+zW2xj5euMkMUj4DqkGxhq6J0ZsZnwszdDgL0pTFvR/qIbkYSMZXJJHcob1Itl4YNkpBy7h7zIOBASAlwjDjg8DqUlFT6hF745uUbtOItFYiREpeDhRTKWaU8zW2xj6e2IkIUj4Da8Oxhq6G/x2Ez42ZkiwN6MSqLeOfEAX08jzQGYLCbW3vxaLWfJhxefYsfnB6kVW0XYHBbONe4Hk8mEWEIgq6IBSaV1KKtv25FQRtGjNKQcu4vcm7EgxBJwjTgIGdYF4eN6IWxczzZbThVpqG3Ezs8P4sK2a2iqb5n4m/L2WLzxB3nDUd0kRFJJHdLL6yEUt/8d57KY8LUzRaCDGcylsYy+8BSfjf+R0nD56fLn6Dn8f6O1pqmBj91fHsK5LVdVatJFvDYc721ZAQCoaRIiubQOaWX1EKgRSw6LAV9bUwQ4mMHSiNQ+e3YjDmtGfkNdP74785Fa2nQvA4ImAfZ8fQRnNl1W0pqTMWzOAHy8920AQC1fhOSSOqSV14Mvan8Bi8NkwEf6HbcyluvIJScn4+DBg5g8eTK6d2+9WvRlZdOmTSguVjZtYTKZCAsLo7S96vgipJTWIbWsHk1qxJLNZMDb1gSB9mawNpEn49LT07F3716MGzcOvXu3X9nysrFt2zbk5eUpJSWZTCZ69uyJcePGAQDqBSKklNYjtawOjcL2Y8liMuBtY4JABzPYKMQyOzsbu3btwqhRoxAe/nK1MKnD7t27kZmZqRRLBoOBbt26YfLkyQCABoEYKWV1SCmtR6MKaYbmsBgMeNoYI9DBHHam8ljm5eVhx44dGDJkCAYObN8A6WXjwIEDSElJUYolAAQHB2PGjBkAgEahGKml9Ugpq0O9oP1YMhmApw35Hbc3I5PEhRnFWBm6hpJ1WPLjXMxeM1lvn+tFQhAETm24iMO/naKcMxXx7OyOf2N/B6QFLall9UgoqkaTGk1ThESM/Ltx6O5uh/HTye9ySW4ZVvZegyqptMm8z6dTzqEvOwRB4NyWqzj084kW5l7N2fD0V4gcbRBfWI1GtWIpQeGDBATaWmDyK/1eqgVEQyLtP0qkNQnFeJBTiaxK1aLR7cFhMtDb3Qp+dqZ6P+HEYjFuHbqH0/9cQnpMNppaaW9qDRabCRMLEzh62iMo3B9DZvZD5/4BL61zSXuIxWI8vhqLW4fuIulBGkrzytFU3wRCwwQbh8eBe6ArRi8cjElvRryQeAlEEjzMrUJaeb0aW7eExWSgp6slghzM9Hpe5lc3ISq7Qq2JgyrsTbno72VD3cRqQkluGR5dfIboi0/x9Gpsq8Lv7p3dMfDzWWB6qyeI3RwmA+jhYolgJ3O9VqEW1jThXlYF6rSMpai0Gn5MMe4fuI0ru28BAFx8HLEh+qd2BUPL8svx8OIzPLz0DE+uPFd5kw0ALgEuGPzFbLD8tNOKYjKAbs4WsKyuxdvhn1B/sxVrF2Dau+o7fBEEgeeRCTi69gxVOSRjR9Kf4Djb4l5WBWr4rVfptYWovAY+hAjhgwJhZNK2nklb1FbW4dyWqzix/jwqCuU6XR7Bbtj0fC2e5tcgoVj91UVFGAygq5MFHJoasarPR9Tke9F3r2DOJ1O1PuaOSn11Pc5vvY4Tf55T0rdz9nbEjpS/EFNQjbiiWq3kPBkAOjuZw0UixFuhH1GT77mfTsPCb2fT+Ck6Bg21jbi4nYyl4kTc3s0We7L+QWxRDZ4X1kDbWWmQgxl6ulqCzWLiyZMnKCkpwejRo1+qSbm6CAQCxMXFwdjYGI8ePUJGBpngd3JywtJlyxBfVItnBdVqLdCqIsDeDL3cLMFhMRETE4O8vDyMHTv2fzKWQqEQcXFxMDIywtOnT5GaSmqC2tra4o2VK5FYXIun+TUQa3li+tmZore7FbgsJuLj45Geno7x48e3qRn2siISiRAXFwcOh4O4uDgkJyeDIAhYWlri7bffRlJJHZ7kV1NdA5riY2uCUHdr8NhMJCcnIyEhARMnTvyfvJ+QtcgymUwkJSUhISGB0o57//33kVJWj0e5VVrH0tPGBCF2Jlg9+HNkxJCLwP0mheLLYx/8z52bIqEIkUeicGTtGaVFWjaXjfON+5FWXo+HuVVqLSqqopOVMXo6meGzEV8jKToNANB7dHd8d/bj/7lzUywS487xBziy9nQL/bheo7qj+9zBQBdvCLTsSHOzNEJfD5sXVpShK4ZE2n+QSMutasTdrAq1Vlvbw8XCCAO9bNSqTsuIzYJHsHu7X2ptE2csDgtmVqZw8XFCcD9/DH2lPwJ6+ar9Wf7XaWzk49ahe4g6/RDpz7JQWVwNQaN6FSsAwDPmwrOLO8a/PhojXx1E+49zUU0TbmdWoEGNFcL2cDDjYpC3Le0VVWIJgeicSqSUaZfoU4TFYKCXuyWCHNouIxbwhYi/m0RVnWXF57a6rX9vH4SOCUG3KWHIYPG0TvQpYmfKxWBvW9rbUiUSAvezK5Barjp5peFgePzXWSTuuwmeMRfro36Ad7eWLnAioQjxd5OpqjNVFXwy/Hp6offoEIRMCUcm10jrRJ8itVnFuPbeNtTllWHI7P74ZN/bWt8YZifmYdN7O/H48nNYOVrivbs/Irmsgcw06QCDAYQ4W6Krs7nON61CgRBX9kRiy4e7UV/dgPm/L4LZsB5aJ/oUqc8rw7X3tqImq+R/dvKtiEgowo2Dd/HPuztRW1mH2d/Nhd2EMFQ16R7LxsIKXHtvG6rSC/9nJ9+KiEVkVfvGt3egurQGUz+bDtdZg9WuLG4LMy4L7KIkDOsbCnPzl6tFRFuKi4tx+vRpFBQUYMioCNRadlK7srgtTLkscIqSMSSsJywtO4YBjr4pLS3F6dOnkZeXhwFDh4Nv74dSNSuL28KEwwS3NA0De3ZVW9/vZae8vBxnzpxBdnY2wgcMAuHaGcV1rUskqIsxmwmj8kz07Ragtr7fy05VVRVOnz6NzMxM9A7rC45XCAprdY+luKEJtz7ejYKoJLj5O2PDgx811rB9mSAIAs9uxGH9G/8iL6UQvcb1woi1S5Bfo1mBiCokTQJEfrYHeZHxcPK0x8ZHP8PC5n/3GkQQBGJvJ+KvlVuRFZ+LLkO7YMLmlcit0q5ASBEui4G+HjbwtOn4LbGGRNoLTqSll9fjbmYFrWaUlkZsjPJ3aDV7KxaL8YrbclQWV4PNZeNs/V6lSbpYLMaNA3dw5p/LyIjNUStxxmIz4eBuj74Te2H866Ph7q9d1Y0BUgvq8q6beHz5OXKS8lBTXqfSYaY5RmZG8A3xxNS3x7VwjNGUnMpG3Moo03r1WhWmXBZG+TvAwqjtBFBpXjkqCivh39unzcSBSCLBjbRyFNBwwVOki5M5erpaUu8tEoqQ+iQTcbcT8fx2Ap5dj1PZJgepSGbv0d0ROqYHeo3qDmsHS+RXN+JGWrnWq9eqMOawMNrfHpbGbVfQlRdWoji7FEFhfipjWVtZh9THGYi7n4LqTs6wCO5E2zECQOKBWxjZywPD55BtFmKRGGlPMxF7OxGxtxPx7HpcqxV85jZm6DWqO0JHh6D36O6wcbJGYU0TrqeVab3iqorG8hokrjuJn46+36YGSGVxFQozihEY5qcyQVRXVY/UJxmIu5eCKjcHWHTxpO0YAcDf3hThndoXFlaX4tomXEsr03rFVRVNVXWI++0Yfjr0bpuT7+qyGuQmFyC4r///RLKttI6Pq6llWq+4qoJf04CYX47ix/1vtTn5rqmoRU5CHoL6+v9PJNvK68lYqtN6qC4SkRBDvKzh5Wjd5nZ1VfXIeJ6Nzv0CwFKj7b6jU9kgwJXUUrVaD9VFIhahv7s5/F3s2tyuvqYB6c+yEBTuBw5X80rvjkZ1owBXUstoWQyTQYjF6ONigmB3hza3a6xrRMrjDASF+4PLe/ljWdskxOWUUloWw2QQEjF6OvDQzbNtc4emBj6SH6YhKMwPXCNum9u+DNTxhbiSUkbLYpgMiUiMhz8ewZofZ8MjuHWDB34jH0kP0hAY5tuuA+jLQINAhCsppbQshsmQiCV49MsxvPvZFPj28Gp1O0GTAIn3U+Ef6vM/oUXXKBThakoZKmhYDFMkrJM1Ah3a7mz5rzEk0l5gIi27sgG30stpTaLJsDJiY0ygI3jNxE3FYjFmOS9FdZm8jWfB1zPRuX8Adn5+CBnPs1tNEijCYrPg0MkO/SaH4pVPpsLyfzjL3hEQCAQ4/sc5XN0Tify0IrUSayYWxgjo7YvpH05En9Ehar9XYU0TrqaW0ppEk2HGZSEi0LHVJO/NQ3fxy4INEApE+GT/O606J0oIAjfSypBXTW8STYZjUyNKr8Xg+e0EJN1Ppey/VRHYxxd9InoiNCIEfr28lW5mi2v5uJJSSmsSTYYJh4WxQQ6tVvndO/UQ37/yBwRNQry/7Q30nxyK1McZSHmcgdQnGUh9nIHCjGKAwcDAH+bDY7h+dIMcBXyUXXuG2DuJSLiX3Obvi18vL4SN7YXQMSEI6KMsol9Wz8el5FJak2gyuAxgfBdnSuurOdEXnuLbmWvRVM/Hqg2vYdicAVQMU59kIOVROgrSSX2i/l/PhVeEfrSsgh3NEOredjJAHSoaBLiYXEJrEk0GG8D4Lk6ttkk/vR6Lr6b8iobaRiz7dT5mvD9BrXGFAiFKc8tRlFWKhpoGsNgs6X9MMFlMpcfN/81kMcHhcWDjbEV7sqmqUYgLSSW0JtFksEBgXGcnWBurvuGLu5OIzyf+jLqqeiz4ehbmfT5drXFFQpE0liWor5bHkoxj67GUxZnNZcPW2Zr2ZFNNExlLOpNoMthMBsYEOMDWVHUsEx+k4vMJP6K6rBazP5qCJT/MUWtcsUiM0rxyFGeVorayTiGOqs/F5nFmc9mwcbICWw2NR02o44twPqmY1iSaDBaTgVH+9nAwU33znPY0E5+M/R6VxdWY+vY4vP6HeiL6YpEYZfkVKMoqQW1FnVrfa8XHbA4LNs7WtMeyXiDChaQSWpNoMpgMYKS/PZzMVd88Z8bl4JOI71GWX4Fxy0binU3L1BpXLBKjvKACRVmlqCmvbTOWql5jc1iwdrKiPQnaKBTjfFIx6vj6ieUwX3u4WqqOZW5yPj6J+B5FWaUYOX8wVu98U61xxWIxygsqUZxViuqymlZj2drvJ5vDgpWjFe1J0CaRGBeTSlBNY+KHgiAwzM8e7laqzc8KM4rx0ZjvUJBWhEEz+uLzQ++pNaxYLEZFYRWKs0pQVao6lu39flo70R9LgUiCi8kltFRBt4AgMNjHrtVqqpKcUnwc8T1yEvMRPr4Xvj39kVrDSiQSVBRWoiirFFUl1S1i2d7vJ4vNgpWDBe1JUKFYgkvJJbRUQatigJcNfGw7bpWkIZH2ghJp9QIRTsUX6eVGRoa3jQkGesttpsViMWa5LEN1aduuJaowJM46Fo11jTj480ncOnwPRVmlEKvRfmlmbYreo7rj9T8WwsZJ9c14k0iMU3FFermRkeFqYYThfnYtKmuOrzuHf97bST0OHROCH85/CkhXa4qzS1GUVYqS7FIUc3hgdW19dUdXCIkEl1dsROmzlgL3TDYTEoX4/HH7W3TpHwiCIFBVWoPirBIUZ5WiMLccjb0CwNSjCyuzshbeDfVw83eGs7cjNbk4+vsZbFm9h9Lh4xhxIGxSfVELmDkAoR/oV8vq6sp/UPQwtcXzLDYTYoVY/nz5c/Qc0Q0EQaC6rAbFWeTfvCinDA09/cE0119ZN6O6Dt61tXD3d4azjxMVy9N/X8TGt7ZTou8cHhvCVlZ/fSeFIfxT/QrJWmTkw8fJAm7+zrB2tNK4Qk0sIXAmoUg/k28pNiYcjAt0bOHce+PgXfyy4C+IpL9XXl07YUvMWqBZokz2HSrKJv9fnFWKsvwK6Do94XDZcPJ2hJu/M9z8nOHm7wJXf2e4+jnD1lnzaj+xhMC5xGL9TL6lWBmxMT7YqYXb7O3jD/Dj3D8pZ1cXXyfsSiGt6BUTZeR3qATF2aXUv8vzK7QyBFKEzWHB2dsRrv7OcPNzgaufMxlXf2fYuthoHEsJQeB8YgnKG3Rvm2sNCx4bE4IdWzikPjj3GN/N+oNaMLFztcH+nE1gMBhkLKWJMurczC6lYluWV65zLFlsFpy9Hcjz0dcJrv4u0li6wNbFWuOqTYIgcDG5FCU0tM21himXhUmdnVo4pD6+EoOvp/2GRmkng7mNGY4UbwWLxVJKOhY1+46XZJeiJLdcZ2d3JosJJy8H6XecjKOrvwvc/Jxg52arVSyvpJaisEZ/sTTmMDGps3OLhe+YW/H4cvIvlFaosZkRjpfvAJvDVko6FmeVUt/v4uwSFGWVojS3HGKRbskqJpMBJy8HafycFb7jLrB31y6W1/W4AAqpOdOkzk4t5G0S7qfg8wk/UU6DHB4HJyp2gGfMU0qUUfHMKkGRNKYlOWW0xNLR0wGufk7k76U0jm7+zrB3t9VqgedWepnWutrqwGUxMKmzc4uF75TH6fh03I+oKqkGpN+54+U7YGphopQoK8oqbXb9KUFJThl1/dcWBoMBRw876ryUXcfd/Jzh4GGnVSzvZJYjnQ5Zk1ZgMxmY1NmphSRLZmw2Po74HuUFpHYtg8HA4aJ/YWVvqZQoUzo3Zd/xnDII1SiqaAsGgwGHTnZU/Fz95Oelo4e9Votl97MrkFyqu9xOa7CYDEwMdoSFFprWLwJDIu0FJNIIgsC11DJaerDbY6ivHTpZGUuTaEtRXaqeoLQhcfZyUV1RiwPfH8OdE9EozStXSvSogmvMRZcBgXh97QJ4dpG380VmlCOzQn8XExn9PW3ga0euKEgkEmxdsxdH1p5R2obJYsKvlxdKc8pRUVRFPW/h6YBxe94HS88tDjU5pTg39zeI+UKwOSxY2lugtrK+hY6di68T2BwWirNKwVd4LfzTmfCdpH8Xrgc/H0XqsXtgMBjgGnMgFIja/fvLMHO1xfj9H4Ct57L8usIKnJvzK4T1fLA4LFjaWaC+ugH8ZpV+Tt4O4BlxUZxVqlQF2PuDKQicqX8XrsfrTiFx/y2AQWoQigRitSfQJo5WGH9gNbhm+i3LbyitxtnZv0BQ2wgTc2O4+jkpTShlyYzWWivr+CLUCUQQiQlEZpZTizkOZlxEBDri4LN8WvQ6e7hYopuL/Hp69Pcz2PzB7hbbBfTxRUVBJS2JMl0wNjOibhRdFSaU7gEuMLNSHctn+dWIKdR8YUpTujpboKerXJPq9N+XsGHVthbxCujtg4riKloSZbpgZMqTx9JXfqPjHuDSquFIbGENnuRX6/3Ymld1Xtx+HX8s39wigePXyxvVpTW0JMp0wciEBxdfJ+pGx00hyWZhq3pellhci+jcKpWv0Ym/vSn6esj1va7tu41fF21s8Zvp29MLteV15NxED5Wb6sI14ih8x12o77p7gAss7VTP/VNK6xCVXanyNTrxsTXBAC/5wnfk0Sj8NG99ixtlnxBP1FfV05J01AWuEQcuvk5U8pc6LwNcYGWvWj8vvbwedzIr9H5sntbGGOwjbz2+f/Yxvpv1u9L8DAC8u3ugoaaRlqSjLnC4bGks5eelLJ7WjlYq98mubMDN9Jauk3TjZmmEYb7yhe9Hl2PwzXR5olyGVzcP8OubaEmU6QKHy4azjyMZP+l1XJa0tHFSvfCYV9WIa2llej82Z3MeRvrbU8cQczMeX0z+GQ01yslQzy7uEDQJUZJd+p/Gks1hwdnHiUr+ys5LV//WFx4La5pwOaVtB086cDDjYkyAQ4c0uzEk0l5AIi2nshE30pW/tHTfxMgw5bIwtaszxhnPabcd0M7NBoNn9jMkzv4HKM0vx95vjiD6wlNUFFS2eSPA5rDg28MLs39dgDRj5RtGBgMYE+AAKyMO7mVXILuyEfamXPR2t4KEIFrcjKsLl8XE9G7OIERifDn5Fzy69EztfYf9uQwufQPbPEYZun6vYjZdQOz2KxrvZxPkhrG75KXurR2jnSkXPVwtwZA6j8Zr4ZwoqGvCiQnfQFiveWJ+0C+L0GlIV6XnWjvWsE5WsDHhggHgcX41ijUUto3bcRXP/jmv8TGGTgvHOzvebHG++dmZwtfOFBKCwN1M7V1GFRE1CXBi4rfgV2m+mjZr+ypMnB6mdJxWRhydvyuqSDxwC4//ONXmNl5dO6HrwCB0GxSMLgODYOtsjdomIU4nFEMkIeBvbwoem4nYQvKcG+JDmoFcTS2l5RrEZABTuzrDmM3Er4s24uqeSK3HsnKwhJOnPRw97eHo4QBzGzNIxBKIRWLpfxJIRGKIqeekjxWea6rnoyC9CAVpRRC0Up3ZGh7BbmQsB3dG14GBsHO1RR1fhONxhZSjZGu/i7p+byB185zS1RlmXBbWrdiC8/9e1XgMGVb2FmQcPR3g5GEPc1tzpViS/1YRW4VY8hv4KMwoQX5qYYub0/ZwD3RFt4FB6DooGF0HBcHB3Q6NQjGOPi9QkhMwYjMx1NcOEoIAAwzcz64Eh8Wg5fs0ubMTLIzY+PvdnTi5XvPfJBkWtuZw9LQnz00PB1jaW0AilrQ4N9uMZaMAhRnFKEgtalNCQBVu/s7oOpCMY7dBwXD0sAdfJMbR54VgMxkt4lfVJKTlmqPIhGBHWBtzsPXjfTj8S9u/SW1hbmMm/Y47wNHDHlYOliAkhELs1ItlUSZ5XqojUaKIi6+T0nnp5OkAkYTAkecFEIqJFnMJfVx/IgId4GDGw66vDmHvt0ehre6LubUpGUdPezjJYklA7VhKxBLwGwUozipBXkphi6RJezh7O6LroCB0HRiMboOC4OztCDFB4OjzwhbXFlVzNDruh0b528PZwggHfz6B7Z8c0HqRxszKVOk7bu2oZizFEojFYkhEEgiaBCjKKkV+SmGrmrCt4ehhj26Dg9FVem66+jpBQgDHYgvRKE2yNI8XHdccRYb72sHNyhjH1p3Flg/3aJ3ANbEwhpOXA5yk33EbJ6s2Y6l0LZLFkk8mmHKTC1okoNrD3t0W3QbJY+ke4AICwInYQtQJxJjTw5WqiI4trIVQLKF9/jbY2xaeNiY4s+kSNr61XakjQxNMzMlYknMie9g6W6uMpcprkUIsS3PKkJtcQFW9qoudq43Sd7xTkBsA4FS8vNuheTwLappovf501BZPQyLtBSTSLieXtHBXofsmRpGuxgys6fpum9tYOVjiSNFWWt/XQMehIL0QWz/ej8eXYlq9kA/4/lV4juzR4nljDhP+9maoahQiu7IRxhwmBGICYhU345rQ18Maf479FimPM9rczsbZWn4T3dkD7FG92z1GGbp+ryT1TXjyyU4kRaWovY+ZlSkGfDMXduGBSs83P0YmAxjqY4ebGeUQ61jx8PC340g+fEft7VlsJtx7eKP/XyvAUNGe0fxYzXls9PWwxuWUUphwWBjkbYOLyZqtOhFNAsR8vgtxtxLV3sfU0gSjfpoPi9AApfMtuaQeI/zscCGpBDYmXHRxMsetDHpWZ5/8dQYJe26ovT2TxYRrl04Yve1tCKXtfrLjTCurp+W70hxCIETqz0eQG5+L4qwStSpmXP2cEb56Koy7+wAA/OzI44krqoWbpREsjNhwtzLGzfRy2q5B3V0scPyNzYg6/bDN7Zonyqgbak97OHSyo1V8VyKRoCyvHHkphdL/CpCfRv67KLNErZsEFx9HhL0/Baa9/annVP0uZlU06vy9kdHFyRyXVu/CjYNtf8+bJ8qoG2pPezh42NMfy/wK5KUUIj+1EPkpBchLJWNZmFGsViydvBwQ/u4kmIUH/V979x3fRnn/Afxz2lte8t6O7SR2BkkgZELCCGHPQqEUymgpq3RAWzoohR9QKJQuKLRltVD2hhAChAyyp5N4770ty5aH1v3+kCwv2ZZteebzfr38siydHj3+3p3u7nvP6Pe8gN48QoReidQwLQ5WmgOyP80L12HHQ6/js39/NexyxjB9v4RERGKfbTMhDOoAdtt3uVxoqm5BVUGf7bLA/bumuN6vFjPh8WE4/UcXwbBmgc/47SptDtgxp0dqmBaHn34f7/9l07DLDUyURQ7YLrWGwHXbF0URTTUtqPLEsTK/xruP1xTV+tXKwxQbiuV3no+g9e5zor7nEqKICTn+JIdoUPDvzfjfo+8Nu9zARFnvPu7eLgM5y6IoimiuNXu2x9o++3g1qgv9i2VodDCW37YRIecNPnfzdY4WiOuh+CA1at7cjhd//b9hlxuYKPPG0ZOgGKo18liIooiWOjOqCmp7t8sCT1wLa73d9IcTEhmE0249B2EXrfA+1zdeCqkkYMecHjEGFSyb9uHZH7807HIDE2XeOHpiGuhYmhss7u3Rc/zp2S6rCvyLZVC4Ead9bz3Cr3D3drg4IxIfnqj1vh6oa52+IvVKuL45jqdueXbY5dQ6FaKSI7zbYWRi/21TF6QNWGusnqFUvHH0bJc9f/tz49EYpsey689E1LfXeZ8bGM9AXvPA0xDhgnkR4y4n0AI7QicN0tplH5REizWqUN/ejbigiZm9rF46che4tubxX9zR9BWdEoXfvvlTwDO+2vP3/Rfb39rtHS9CHapH/LqFPt87cLDivn+LIjDW1HtefTtqSuqHXSZlUSL+cfgJwDN47vacGpR3D/5AXwMqB2K/kmhVOPunlyD3yif8fo9NFBF8SsqIdTRplXC4RJyZEgoJBByoNI95rKWlt5yLis8O+n2Hzulwwbgs1WcSzVddu+xOOFwiBAAKmWRMY+gJKgXO+fkVOL7tYb/f0213QjE33nvQ7dneTFoFatu6IQJo6rCNOBPsaCy+8SxUfHoAbU3+fSe6nC4Yl85BV58Tg556BmpfGUhQyHHDv+5AmkkHW7cdtSX17hNIz4VjweESFB0u6Zdgqy1vhMQzo5lSKkG6SYctBe4T7PRwHbYWNg4aWHhDunsQ7IE3fzIi9FgWF4TsujbsH6YLWX6DFeW5VcP+L0aTAW9UPz9ps3dKJBKEx5sQHm/CkrP7f+fZbT2x7D2hLDxcjIJDJf2SQrVljZAk9Z8dzte6Hs9+c0lGJA5Wmr3jCRU0WlGSUznse7RGDV6ven7SZpyUSCQIjwtDeFwYlpzVv2Wrw+7wtg7qSQwVHilFwcHifkmhurIGCImRg8ruu6sopBK0dNgDtj8VNllRkj18LBVqBV6reG7SZkmUSCQwxYbCFBuKxesy+73mdDhR62kd1LOPFx0tRf6Bon6JjPqKJiDBHUtf8QvkMadHcXMHik8MH0uZXIpXS58JaOJxOIIgICw6BGHRIVh0Zka/15wOJ+rKGvrs455Y7i/q142yobIJYrw7lgPPJSbq+FPa0oHC7OG/LyUSAS8V/HXYmXwDSRAEhEYFIzQqGIvOGBBLpxP1ZY2oLOjdLouPlSF3b2G/REZTdQtcPmYm9XWONtbztoHflxXmzhG/LwHgXyf+hNCo8U/g4w9BEBASGYyQyGAsWNP/xoHT6URDRVO/JHrJsXLk7Mnvl8horjXDGW3y/j0wXoE4VxuoytKFmtzqEZf7x6EnEJU8OYkNQRAQHG5EcLgRmav7x9LlcnliWe1NWpYcL0fO7vx+LajN9a2wR/V2AdbKpTgv3QSrzYl95eYJOX+rbeuGOWf4fRwA/rL7ESRmDD1jaiAJgoAgkxFBJiMyV/VvANDvZpknaVly3L1d9m3129rYBntkaL/3DoxnkFo+ruPPwH280WpDk9U25ARCU2XGJtKeeeYZPPHEE6ipqUFGRgaefvpprFkz8WPqjFalefCF7nAXMeUtncipb+/3/A3L4vDhiVq/N8C6dhs+tb+BnG9ysffTQ8jbV4ia4jpYGtvQ3WWDKIpYeelp4/zPaKZQ69T40TO34kfP3Aqn04lXH34HWcWNkIzy4mvgxXiPcJ0CC6IMMGmVEAC02xwobu5ATl1bv647zZ12/PLde/HiT1+Gub4VzTUtg5o5V+RV4fdX/REVue4Ti/P/dx/0cWHwx3D7VbhOiY+zewcJl0sFXHtKLN7Oqh40M1fI4hScf+vZOPr1CbQ2WtDeMrjb33k3rYchRIej27NhCzb4NX6bRiFFkFqOT3LqoFVIsSIhBJ/l9SYWo/RKLIo2IkQjhygC9dZuHK5qRbOPmXAkQTo8sOnXeOGeF9Bca0ZzjXlQCwaJVIKkhfGoKa5DR2snYtdkDipnKHaXCKvNgcsyoyCVCP26pm9IN8GkVcLV5yzjYGUr8hraB5WjmRODS+44Dwe3HEVrYxvamgcvc/b1axEaFYys7dmwqlWQe1rQ9N3eog2qIWdJHO36HUii1+C3n/0a/77zX2iubkFzbcugu+6CIOCOv96EE9/k4tj2nH6x9LVf+HpuvPWsMHcizaSDQilH/NwYxM+N6fe61dKB7N35OLY9G8d25MDsEqA0aiCVCDgjJRR7y1vQ7XAhOUSDCnPnkLP0tnbaMSdM2y+RNidMC7Mfx59OuxM/fvMneOGHz6OxqhnNteZBQwy0Nlhg77YHfOaosZAr5IhLj0Fcev9YdrZ3emKZg6wd2WjscEA9xPhUfdf1cPuNQSnDsrggmLQKSCQCOm1OFDZZcbzWncD9oM+dXADodrhw16v34MXb/oGGiiY017YMmvTC2toBq6Vj0i6yhyOTyzzj/ERj+QW9z3dau5Czp8C7XdY2W6EdYvIbo0qGlYkh0Cqk/cYD8rU/jRTPvuxOET948U68+P1/oL6sAc215kEtGGydNlgaLQiLCR30/skmlUkRM8c93hzO732+q6MbuXsLvNtlZbUZhvjei+yB8dMrZcMecwBgZWIwUsN0eP94jV8TkjhdIm589ja8/P1nUFtSj5Y686AWDA67E821ZsTMmZxE2nCkMimiUyIRnRIJbOxtgd/d2Y3cfYU4tj0Hx3Zko7S4AcFz3MnygecSCplk2Fl6/T0HGsglAtc8dSMc7Z2oKapDc5150JisLpeIpqrmabGPS6XuCUeikiNwap+Z4W1dNuTtL0KWZx8vyqlCWEb8oPf7Okfz9dy1p/R+H0slAkQR3vONuvZufFnQOOj7UgRw6cPXoavBgsqCGrTUmn12Q68vb5y0RNpwpFIpIhPdrbmWnds7g7qt246Cg8U4tj0bWTtykH+kFBFL53hfHxiv4Y45GMe2ufGXl6O9ohHlOZVoqW/12XW6vrxx0hJpw5FIJIhIcLfkWnpObyztNjsKDpV49/Gc/UWIOq23Vfm7x2rQ7XRhTqgWp8QYsafcPTbiUOdv/p73DrT2rgvQVFCN0uMVaKlrRZePYVnqyxsnLZE2nKFuljnsDhQeLvEee07sykfMyv4JzYHxrGvvHvL448/58MB9HJ7zYCbSAuCNN97APffcg2eeeQarVq3Cc889h40bNyI7Oxvx8YO/vKdS44CL4JEuYgKlqcOGhWvnY+Ha+RP7QTSjSKVSfPeBb2FPWYtfBwDv+wZcjPeINaqwNjkUh6tasbOkGd0OFwwqGRZEGqCWSwclB4rLmrBg9TzUldWjurgOtcX1/cbjsHXZseOdvQAAhV7tdxJtpP3K5nBhSYzRrwFGmztsuPOvN6G9xQpLczvKc6qQvSsPRUdLPV0bHCg4VIyWWjNa6lpxyl0X+lXHbocL9e3dcLhEtHY5oJD2NtOOM6qwJjkU+yrMKC3ogEQA0kw6nJcePuS00oUlDchcNRe1ZQ2oLa5HTXEtOtp6Y+lyulB0uBQAIFUpYEzy/4Qn2qCEUibFu8droJZLcNYcEz7OqfO+frDSPCjh70tThw0/ePK7aG+xoq3FiorcKpzYlYeiI6WoLnI3xy89Vo5DXxxDS60ZC7+/wV3fAdubzeFCsHroZOVo1q8v2oRw/HX3I4Dn5Kv0eAUKDhYj/2AxqotqsfKSU3HJ7efhktvPg8PpwmuHqyAOsV8Mta+Mt54jzW6oNWhw6obF3gucw+XNOFZvxRnJocitb0eD1f3+ILUcoVoF4oPUCFbLsTYptN8JY0lLB+aF6yCXCrA7RYR5Tloarf0/XyOXYlVSCMK0CrR1OVDW0oE0kw6VrZ348zf/B3hOvkpPuGNZcLAYFfnVWH7+kmmRRBuOWqfG0nMWeU/KsypbcLh28PY+cF0Pt9+clRqG0uYObCt2D2ZvVMlgHGabBgBJiB5/2v4Q4IlleU4V8g8WI/9AESryqrDkrIVDDuY/Xai1Kiw5a4H3pDy7uhX7q31P2NDa5cCm3HoEq+VYkRCMT3Prh9yfRhtPl06Dp75+EPC0UirPqUS+Z7ssz63CgtXzEBodMuT7pwOVRonF6zK9Ldjy6izYU9E7YcPA+B2ptgx5zIFnZrnEYA26HE6khmlxoHL4yR96uo/aVAr88avfAZ6WNRW51Z7vyyKUZVdi7mlz3ImraUypVmLRGRneVldFDW3YWWb2eS4x3PFntOdAA3VJZXh8y28BTywr82u835elJ8oxZ3ESEqbBBfZwFCqFexwqT6ursiYrvh4wyYCvuA513vba4d4WPEM1MPClQxTw6Ge/Bjwta6oKarzH8ZLj5UicH4e0Zcnj/G8nlkIpR8bKdGSsTMc1v7gMlS0d+NJzU8FXvIY75oxl2+zZxy1O4OGPfwl4YlldVOfZLotQlFWGmDlRyFiVPllhGRO5Qo75p6dh/ulpuPq+S1Br6cTm/N5zr25PcrykpQNpJnc31OHO3/w97x2o1e7C79//OeDpVllTXIf8A0UoOFiMoqwyRCaYsHi9/ze6p4JMLsPc01Ix97RUXPWzi9HY3oVPcvs3qhgYz3Jz57DHn7GcD0/kLN9jNSMTaU899RRuvvlm3HLLLQCAp59+Gps3b8azzz6LRx99dKqr10/zgIuPkS5iRiKTCFgaa0SsUQ2pREB1axf2VrQMGhCxyWpHpH5iZ5OjmWs0X0aCZ8DMvhfjPU6LD8bx2rZ+BxdLlwPflPqeqWn/rnwcfe6zET9TrpBh3obB47cNZaT9Kq+hHXPD9YjQKVHXPvxArC1WGy4KuhHOrqFj1DN1NQCEzI31q46N1m4sjHLfVVbJJOi7y54aH4xjtRYUNva2fjte2wa9p9XFZh9jXhzcV4RDf/lkxM+VyaWYe84iSKSj6ToheE8i7E4RMsnYxmZotzlxqelm2IYZcLdfLNNjfW5vDVYbFkYbIAAI1shhGdByYqT1O9L3ZpPVjlRPzlaukCN1STJSlyTj/FsH17e12wFxiP1iuH3Fn3rOj9Ah3aSDWi5Fl92F7Lo25HoS3p12FzpszkFT0w+l1e5CUogGETol5FIB8yJ0qDR39ZspcUO6CdtL+o/1Y3O4UNXahaQQDfIbrJgTpkVhoxVBAy4k1yaHoLXLga8KGqFVSHF2qskbS2/c5TLMWZyEOYuTsPHms/yq93TUahvcGsX3uva93yhlEhhUcuQ1WL3dls1dDpj7bMdXLIjCvgozKvq0Yu+bQJfJZUhemIDkhQk473u945LMNOYhEgsSAd4LRJvT5e2u5Gt/8ieeA/U95kllUiQtSEDSggRsuHHmxrK1uzeWvuI33DEHAJJCNHC4RByuasUpMUYcrGrt153pigVRyGtodx9XNXJ8klMPc6e9fyylUiRmxCExIw7nfPeMif6XJ4zZE0tf5xLbipuGPP74cw403Pf6wFgmzItFwrxYnP2dtZP0nweeuXvwfugrrk0dtjFfD/n+vuyNpUQi8bY2Xn/t9Out5K++sfQVwxN1bUOeq/mzbQ65j1v7xzI21T2L8LprVk3Cfz0xWvrstzKJAKdLhAggUqeEpdsx4vnbUEY+v+wtSxAEbwvZM6+ewbHs7L+P+4rnSMefkc6HR9rHp4sZl0iz2Ww4ePAgfvGLX/R7/txzz8WuXbt8vqe7uxvd3b0ryWKZ+Onre3QM6CI00kXMSFYlhsAlivgwuxaiCKxMCMby+OBBU0x3TuEUujT9Dbd9nJEcilCtAnanC2FaBVo67IMuxk/UtcGglEGvlKGk2f8ZD9V9pkkXBAEaowY6owa6YC2MYQYYw/TQGDVQqhUQfIyxMVQdD1YOv191O1w4XmvBklgjNuUOP06bIJVAHaJDe/XQ07YLgoCQqCCY4sIQOkRLL191LGzswHnp4ZAIwAHPWFPeODYNnkWnpLkD56SZIBUEOAcM2NA3lhDcLZJ0QRrognQwhulhMBmgMaih0iiBqOG7Kw2s66HKViSHanBeejikEgFHa8b+nak2GYZNpAmCgODIIITHhcKUGuUz+XOirg1FTVacNzccLlHErtKWfmWMtH5H+t4c+D09nE5PIsBXPTvtTp9197ee7d1ObM5rQIfdiUi9EmelhqGp04aGdpu3nv4m0jpsTjRYbShuHnp2Jl8JWnjGlDol2oiixg4kBKnxwYlaLI0N8r6ukUsRoVdha1EVnKIIS7fDc1KkG1UsZwpf/5Ov9Z9d1+Zzv+l2uGDutGNVUgjyG9rRaLWN2FIFnnU42wy1fYRqFFgS654hTxCA/RXmIb8LxhLP2R5LX/GzOUWfx5wec8K0KG7qQElzB06NC0KcUY3yAcORzAnT4quCRrR1O9Az1nXnLI6lr3N0m9Pl8/jj7znQcN/rs/L70sf24SuufVv8jOV6aNDnzvJY+tw2HS6fx5zRnJ/73MdneSwNKhlWJoTA4XLBKQK7SpuHPN6MJJDnlzPFwP/JVzxHOv6M5rqsR6fdBZcoQhKgiRcCYcYl0hobG+F0OhER0f/iNSIiArW1g/vTAsCjjz6KBx98cJJq2N/Ai9++fF3ELIk1YnG00efySpkE8cFqvHGk2pvpPlxtwSUZkfimpLnfYLOuk28yVhqF4WZQ8TUbla+LcaXc3cLJnwvCHn3HZRNFEVazFVazFXVlg/eFOZcsx+lrFgx6fqg69hgqOZBT14554TrEBalR2zb89O7pp6dCbndAH6KDIViHsNhQmOLCYIoNQVhsKEIigyCTu78+38mqRruPGPiqY2GTFYVN/U9seuLo62DbaXdCIghQyiSDXu83xp3oGS+ptQN1ZYObSSduWILV6xYPen64ug5Mzvc18HvqraxqOIbYplKXpUCWEQt9sA76nljGhnjjGRIV7I3l+8dr3INZ+9je8husyG8Y+qRwqPXrz/emP7Ng9uj5Th+qnsMlroarJ4B+F7G1bd2obu1CpF7pTaSN5nt9uGPPSGos3ViZIMXCaAMarLZBAxhrFFI4XK5+F0JWz1hos/HY4+t/Gmr9D7XfbM6rR2akAYujjTCoZLB0ObCvogU1lqFbyM7KWA6xrzVYbYO+u5s77EPuT6ON50QPpzEV+m4fvuKHIY458IynFq5TYk9ZCxwuEeXmTqSGaQcl0vLq22HxtIrp+bhZGUsf/1TfePo6/vh7DjTc97orMBMmTysjHXt8badDnbeNxqzcLoeIZd94+TrmjOb83Nc+PrD10GzQN5bNHfZ+w5VgmGN6D1/nvVKJMPL5pei+3gnUrJvTwcDtw1c8Mczxp8dorst6iD1dQqaJGZdI6zFwgxxuI/3lL3+Jn/zkJ96/LRYL4uImZ8wBqSDAMYqT4UOVrT4nGwAAnUIGiSDgigVRg96nlkv7XWhPp2wtTT/SMXbV66vbM8ONViFFW7d/yTSXfeTBjHs4bf4v61d5oogj1RYsiTHis9zhu3f+6tV7oFf69/UoGWcse+KokUsHJeTUcilcouhzSvjRxHI0y/rD1/fUUH7+4p2DugUORTqO762h1q8/35uj2R/GU8fh6glPK6eMCD10ShkEz37ad5sYzWePt55FTVYsjDL0G/S9R4fNCZlEAqVM4t02tQr3/jIbjz2B+J+6HC4cqDTjQKV7VsWFUQasSwnD21k1Qw5kPt51OB0F4tiDMcST22V/qWE6NHfYvAM9FzVacXaaCZoB55K+LsTHe8ybjsayXfp7DjTc93qg9ofpZKr+J+7jvUZzfu5rH5+Vx55x/k++znuNKvmI55cSYXDOYqaTBujfGc11WY/p9pU54xJpYWFhkEqlg1qf1dfXD2ql1kOpVEKpnJrBjbUKqV8zIfnDanPAJYp4M6t62BZFAKBVjm5GRjq5aBUjD4I7Eku3A23dDiSGaHCsZuTmzwCweuMpuPKs+RBF0fPjvr0giqL7jrAoQqaQQa6Uo1MhR/a4ajhYYaMVGRF6pIRphlxGENxJLX/pFLJBY3aNhqXbgfZuB5JCB8cxKUSD+vZun3d4Tz8rE5et/p1fsexWyHF8zDUcH3+7IgKAVilD8yimxx7I1/r153tTO6o6jv+71Vc9tQopVieF4Iv8BtS2dUMEsC5lwPTio4zlaMb5GCi7rh11bd2o9TF2RYfdibq2biyJMWJfuRkahdQ7WK9uFHWcKXQKGQD/TvL8YXO6cKS6FRmReuiUUjR3+E6kzcbjeE/CNZD8iaeOsfQSBCA5VAO5RMC3FkV7n5cIAlLC+h+HfH1jjuZ7aKYYSyz9OQca6Xt9NsZSNwH7uH+fOwtj6ecN3YFGc35+0uzjY4zlcPw5v5yq/WEiBfJ/8ue6rIdWIZ12SckZt3YVCgWWLl2KLVu24LLLLvM+v2XLFlxyySVTWjdfQrWKgCXSuhwuVJg7sTw+CAcrW9HtcEElkyBcpxzUHD9UM72mh6XpJVSjQH37+Adt3FfegrXJobA7RZQ0daDb6YJBKUNmpB5HayyDknWJscFIjx9+vK4edqcL2X1mbwoE0TPOxIqEoac/V4suwOUCJFI47A48des/kLe/EAkZcUhbkozUpe6fnunoQzRyVFv8a5I8lP0VZqxOCkGn3YXS5g4IApBu0iEpRIPP8313eYiLCkJGonuE/Kzt2fj73S9ApVP1q2P83BhIZVI4XSJOHK7EZPcUU4kuSD0f6nQ68efb/okTu3IRPy/WPaD/0mSkLU2GMcwAAAjVyPsNLDpavtavP9+bSntv8i5nbwH+/MPnoVB5Jh1YmoK0pclImB8LqUwKo0oOqWdg1UDWs2eQ4C6HCyKAGKMK0QYV8j0TUGgVUqg8CV6Xy4W/3fUCjmw9jvi50d46pi5NRpBn7LxQjRxDzPnhF5vThZq2oZNHO0qasDIxBN9aHI22LgeKmzqQFKrpF8uZQBRF/OMnL2P/5iOIS4/ut10GR7jHhQvVylE4juF7FFIBGRF6FDV3oK3LAYnE/XeXwzlsEl5pm1mxBIB///JVfPPBfsSkRiJtSYr3uyg0yr2th2rlwDh7cY0lnjMxlq/87k18/eYuRKdE9NsuQ6NDIAgCQjX+tfQdKM6ohkIqwYfZtbD1ae08N1yH1FDdiBfeSpt9xnVV+t+j72HLf7YhMince4xMW5aCsJjxxXKkc6CRvteV9pkXy7ef+gif/utLRCSEeY+R6cuSYYoLc48fO8ZYjtdMjOUHf/8MHz7zGUxx7lj2HMcjEkzjjuVoz8/7UjlmXiw//deXeOdPHyEsJqTfuVtkUrhnHw/8dbE/55cqh2PGxXLLf7bhjT+8j+DIoH7XFNEpke7tUhu4WPpzXdYjZBrmNgRRnHmDcLzxxhu4/vrr8Y9//AMrVqzA888/j3/+8584ceIEEhISRny/xWKB0WhEa2srDAbDhNY1p64N+wYMsDeUoaZ5vmFZHD48UYuWTjtkEgGLo42ID1ZDKZOgy+5EaXMHDveZTl50uiB+ugerLl6G1CXJM2rnpfFzOp149Lo/Y/+mIwiNCUHMHPcMMVEpEYhKCkd0aiRsoUHDjoE1GuE6BRZGGWDSult9ttvcF9U59W2Dxqx4e+MD0KrkOP2CJVh4RgYWrp2HsJihE2vvH68ZdyLa1351/txwmHRKvJ1VPehkouD9PTj214+QsSodcXNj8O7TvmfG1BjUMMWG4rb//QQnAtBYJdqgwsIoA0I0cogAGtq7cbjKMuQsNe9d8hAUELHi/KUoza5A9u78QcvI5FLognVYe+XpSLz9QjR3jP9icjTT0Zd8dhCHHn8H81emI2lBPN5+8iOfyynUCoREBuHut+9FtnN0d0L9Wb8jfW9++K3HYFBIsWDNfFQWVOPY9pxBnyOVS6EL0mLFxcsw7yeXj7q1lz/1XBxtQLpJB0EQUGHuhFQioNPuxP4KM+KD1Fg3x504bakz41tRPqYUBSBXyhAcEYQfvfkz5Egm76RjQaQekQYVfrz8F1A5nVi4Zh4WrJ2PBWvnITIxfNoeh6yWDlwadIPP15RqBUKig/HDF+9Evko75s+QSQQsjw9GhF7pnr3KJaK5w45DVa3e/dvXDFWbb/kLZO2dWLB2HhasmY+Fa+chKjli2sbSbrPjfNW1Pl9TaZUIjgjCD56/DYUG3+PA+sufeA70xZ3/gFjXgoVnzMcCz7YZMydy2sZSFEWcp7gGLh/dVFVaJYwmA279260oDQ8bddlnpYahy+4aNLu2UibBlQuj8GVBI2rbun1ukwDw9U//je7SWixc2xvLuPToaRtLALjYcD062wff8FJplTCG6XHzn76H8tjB3bP8MdI50HDf6zvufwXWnPJ++3j8vNhpHcurIm+Bub510PNKjRKGUB1u/MN3UDNn5Gsxfwx1vuFr29z14P9gPlSIhZ5YLlg7DwnzYyGRjGbG8sn1naTbfY4RrFQrYAjV49oHv4XmBak+W435Y6Rtc6h9fO8f3kbjzhPuY/iaeVi4dj4SM+OmdSxvmn8PKnIH33xXqBUwhOhw9S8vQ9vyjDGNpTfcee9I55cHn/4ANVsOI3PNPG8skxbGQyqdvq3+frj0PhQeLhn0vEIlhz5Ehyt+chFsZ54y5NjII/HnfNjXtnlKtBELoyc2bzNaMzKRBgDPPPMMHn/8cdTU1CAzMxN/+tOfsHatf9NFT2Yirb3bgXeP1Yz5S3AsKrYdx7Z7XwAAhMeHYeUlp2L1ZcuRuXoupLLpu+NSYFia23BF2E3DLnPGdWuReM9l4xqQfLTqjxTj8+//bdDzkUnhSFmUgJjUaMSmRSE2zf07KNyIw9UWHBvHjJFj8eXdz6NmT67fyy9Yl4mlT9w85gPKWDTlVGDTDX8a1Xseyvkr8tomt1XGtvteRMXXx/xeXhuiw9VbHh5yzKiJYC6uxcfXPD6q9/zu6J9Q2D25h841SSFIDnUnczqtXbhYf/2wy0tkUty078lBEwUESohGDodLhKXLgRCNHGfNMWFvdjUeWfpTDGz6aIoNRcriRMSk9u7fsWlR3pY1U6m7y4YLNdcNu4wgEfD9Q0+Puzv8aFjrzHj/0ochDtgXQqODMeeUJMSmRiHGE8uY1CiExYRM+UWOrduGS4w3wDHM+JYKtQK37Pmjd3DrydDV0o53L3wQrgETtoREBmHOkiTEpkZ7tk33T1hs6JTH0m6z45aMn6C6yPckWgAQHGHEd7542DvO2WSwtXXinQsehLOrf8IyyGRA6tLkAft4NExxUx9Lh92BHy65D6UnKoZcRh+iw807HkPjOLrDj7pend1454IHYR+Q4DOG6ZG6NNm9XXr279i0KITHh035xbfT4cTdK3+F/ANFQy6j1qtxx74/onaYFs0Br5fNgXcvfBDd5v4Dm+tDdJ5Y9t8uwxOmRyx/tv53OL5z6PNNpVqBew4/japx9noYDZfDifcueRidDf2TpbogLdKWJQ86V49IME35taXT6cT9Gx/BoS+yhlxGppDhvuN/HdSDayKJLhc+uPwRtFf3v2mhMaiRtiwFcWnRiE2LRkxqJGLSohGZaPJOvjVVnE4nfnf5E9jz0cEhl5FIJfh13jMjTq4VaJdkRPo95vJkmXFdO3vcfvvtuP3226e6GiPSKWWIDVKhwjx5X4IF7+zyPq4vb8T7f92E9/+6CYZQPVZctAwrLzkVi86cD61x7HfYafrSB+sQlRyBmuLBM6j0yNmRjXW/v27Y2VQCLf/tb3w+X1tSj9qSwVMfa/RqJC1PxeKHb4AwSaNL2poscFQ3QCqXwunnlNUlR0oQtysHIafPnfD69RgqlsN57Yf/wJJHvwdBOjkXNfZWK2yltZDJpXD4GUtrcztqvs5C6JrMCa9fj5a9udAFadFu9n9feO2H/8CyJ26GZJJOeMQuG17/8b9RV1SH2tIGNNe0jPgel8OJNJMOWROUiFbJpDg9IRhqmQRdDhcKGttRdrQEC1bPRe7eAtj7JFMaKpvQUDm4b6RKo0R0aqT7hNxzoROTFoXY1CgYQvUBqaet24768kbUldajrrQBtaX1qCtrQG1pA+pK69FcM3KLcdElIi1M26/l90TTtFiwYPVc5OwpgL27N1HSVN2CpuoW7B2wvFKtQExqlDd+fRMahlB9QBKWdltPLHvj546lO7ZN1S0Y6d6srdOG1DANDlZNXixVTa1YuHousnfnw9bVG8vmWjP2fXoY+3C43/IKldwdy9SofgnL2LQoGMMMAYtlY2WzN3Y922XP46aq5hFnE85cPQ/p4TrsKRv5+yBQFI1mLFyVjuxdeeju7E06mRss2P/ZEez/7Ei/5eVKOWLmRHq3S/dFY5T3ZlkgYumwO9BQ2TTkdtlY2TRiLOctT8Vckw47rYFpqe8PeWMrFqxIQ/auPHRZe5NOrY1tOLD5KA5sPtp/eYUM0XMi3cnzOf23y+CIoIDE0ulw9omlZ9ssc/+uK21AQ2WTz1aSfaUtTUa6STepiTR5oxkLT0/F8Z25/VoetjW349CWLBza0j/BIlfIEJUS4d3HvceetGiERAYulo1Vvft4/1jWo75i5FgmL0xAerhuUhNpsiYLFpyajOM7c9Fh6U06tZutOPTFMRz6ov/NUZlciqjkCM8+3ntzJ5A3y5xOJ5qqmj37d++2WVdWj9rSBjRUNMHpGP48M2FeLOaG6yY1kSZtaUPmkiQcs3bB2tqbdOqwdOLIV8dx5Kv+oxdLZVJEJYe7t8c5kX328WiERgcH5KaE0+lEU3VL/ziW1qPWc/ypL28cMZYxqVFID9dNaiItUq+cdkk0zOQWaeMxmS3SAKDG0jXkOEeBZlDJsDZUiT0fHcQ37+/D4S+P+byIlUgEpC5NxqIzM7F4fSYyV8+FWqualDpS4ImiiLLsShzZehy7PzqAw18cG/KCRqaQ4ZFNv0L8aWk+pyueCCqZgOI/vYcdb+2GvWt0d8/XPHoDEs5aNGF16+vAU+8j9/Xto36fMSkCF7x2LySTkKTqamnHexc/BGf36FshrPzdtUg+f9mE1Gugw3//BCde/nLU79PFhOLit34BySTc4bS1deK9i38Pu3X0J/zLf3EVUi9fMSH1GijrX58j6/nPRvWekKggvFDyLN49VjOmrgyjJZO4Z65SyaXo7uxG7r5CHNueg2M7spG9O7/fhaI/9CE6RKdEQKlRQiqTQiqTeH73fyyRSiCVuv+WyKSQSiWwNLf1S5SN9zRHppThXct/8c6xmnGNjecvqSDg8gVR0CiksHXbkb+/EFnbc5C1PRvZu/J8dlEbjj5Yi6iUSKi0vmMpkfb5e0As21raR5UoG0nashQ8tesRvJNVDfskxFIiAJdlRkGnlMHWbUfBwWIc256NrB05OPFN/wtFf2iNGkTPiYRap+oXy94YDhFLmQTtZuuoEmXDufKnF+H7j18Ph0vEO1k16J6EVrwCgEsyI2FUyWG32VFwqMS7jx/fmdvvQtEfGoMaMXMiodar+8TQ934+MJbW1o5RJcqGc/EdG3DnX26GSwTezqqesFa8A100PwIhGgUcdgcKD7tjmbUjGyd25qKtZXQ3OTV6tXu71Kt8x2+4WFo6RpUoG855N6/Hj5/7AQAB7x6vmbRWvD3dwpwOJwqPlOLY9mwc25GD4ztzYWnybzKsHmqdCtFzIqExqEcXS6kEHe2do0qUDWf9tWtw38t3QJBI8P7xWrRNUiveDekmROpVcDqdKMkqR1ZPLHfkwNwwuhsgKq0S0XMioTVq/Ipl32NRZ3vXqBJlw1lzxXLc/9o9kMqk+PBELcwBGrt8JGenhiHGqIbT6UTp8QrvPn5se47P7tHDUWk8sQwaPpbuc6L+r3VZu0aVKBvO8guW4IF3fgaZXIZPcurQFIAhY/yxLiUU8cEjT0gw2ZhIm4REGgBsL25CySRkbnu+AHtYW63Y+8kh7Hx/H/ZvOjzkxYxUJsXc5XOw2JNYm78iDQrV9BvUj9xcLhfKsitx9OsT7oPctmy/DnD6EB2e+PIBpCxKBADsKWtBXsPIY12N17qUMMQHqwEADZWNePoHz+PgF1l+tfrSRAThwv/dB4VuYhO9zbmV2PS9pyE6Xe6BSaODEZFogsagwf5N/VssyJUyZK6ehw5LByrza2Bt7cApd12IjOvXT2gdAWDHr15B2ZYj3nrI5DJ0Wbv9usBVh+px4es/h9I4sQcjc3EtPr3+yUFdqYYiSATEpceguaYF7WYrFt66AQtv3TChdQSAXb//H4o/3g94WvREJJoQkRiO6sJaVBXU9Fs2ItGEuLRoVBfXobakHnKdGhe+fh/UAWo5NZS2ikZ8fO0To0qcJi2Ix/NHnwQAHKux4FDV6E7YxmJ5fBDmhvuOhcvlQlN1Cyrzq1GZX4Oq/GpUFtSgqqAGNcX14zqpm2i6IA3erPsX5HI5suvasN/PMU/HY1msERmRvs9NRFFEU3UzKvNrPD/VqCqsQVV+DaqL6qYslnKFrF8rRF9O3XgKHvrg55DKpMhvaMfuSWhJtTjagEXRvsdkE0URTTUtqMp3b4uVnu2yMr8GNUW1frekDbQgkwERiSaExYZi9wf7+yWJJBIBP/rHD3D+LWd5nytqsgZszNPhLIjUY0lskM/XRFFES53Zu1323cerC2tH3DYmijFMj4jEcJjiQrHn44P9zjkEQcDtf/4eLr1zo/e50uYObCsex8wifpoXrsNp8b4H1xZFEeb61t79u6DGHcv8GlQV1vZroTqZDKF69zEyPgx7Pz08qB7ff+K7uOqnF3n/rjR34svCxgmvV5pJixUJIT5fE0UR5gaLZ//u3S7dcZ26WOpDdIhMNCE8wYSDm4+iq6P/tdmND12Da++/3Nuaa7IaZKSEarA6yfe4xaIowtLU5t0uK/NrUFXgjmNVQU2/FqqTSR+sRXiCCREJYTiy9cSgmyPX3n85bnzoGm8s69u6sSlvcC+YQEsIVuPMlKHHsHTHsieONb3bZf7UxVJjUCMyKRyRieE4tiMHbc39rw+v/MlFuPXx73hbxjVZbfgkp27Ch6+KNaqwfk7YlA8F4gsTaZOUSOtyOPHB8doJvdM1N1yH5UMcmAGgu7Pb0yw3C0e2Hkfp8aHHi5Ar5chYmYbF6xZg0boMpJ+aArli+jWpPFn0S5xtO4GsbdlobRz6Llt4fBg62jrR3ueupj5Yi8e/fABzFid5n7M7XfjwRC3aJ/CuYXKIBmuSfR+YC4+W4JkfvYjsXXlwDrNvzLlkOU7/1dUTVkfR5UJIfjliI42ISDTBFBcGhdK9vbtcLnwr8hZvvEOigvHIp/d7k5E9J2oVBTXIEuVwTmACWlLfgjirFVGJJkQkmvp1M3rpgdfx6kPvjFhG4oYlWP3Qdyasji6nC5tv/guasssHvRYSFYSWulaIfS4MFSo5Htv8GyxYM897olaeX4MspxQOtXLC6ilpbEWcxYJIT/IsyNQbyy2vbMPjN/aO57fhxnW457nve8eusNvsqCttQE5ZM6qDxzdw+nBElwuf3/Z3NBwZPOjrUGLTovDv7Ke9JzouUcSnOfVDDsIeCJF6Jc5NM43pJMdhd6C2tMF9geNNDNWiMr8aDRXju6ANiQxCRKIJuiAtaorrUFfWAPso7uqr9Sq8VfcvKFXu7VAURXyW14D69onrsmTSKnDe3HBIxhBLp8OJ2tL63hNzz4VOZX4N6svHd0EbHGFERGI4IhNNMJoMaG+xojyvCsVHSof97u5xylkL8PBHv/DeoBNFEVvyG4adGXa8QjRyXDA3ApIxDA3gdDhRX97ovdDpSbJVF9SgrqxxXC3zgsKNiEgIc8czwf39E5Fo8l5Y9+0dcO9Zv8ORrScAT7L/V6//GCsu6t+qWBRFfFXYiMrWiev+FaSS4cL5kZCOJZbOnljW9CYtPdtlXWnDuGLZkyiLSDR5Y9nznR6REAa1Tu1d9lcXPoJ9n7pvismVcvziP3dh7ZWDWxVvK2pEacvEdf/SK2W4eH4EZGNowe50OtFQ0eTdv72Jtvwa1JXWj6tlXk+iLDLRhIiEnm3S/TsiwQSNvjeWv7/qj9jxjruDuUwuxc9euANnXbdmUJk7S5pQ1DRxjQi0CikuyYiEfAyxdLlcaKxs6ndToif5W1tSP67WZD2JMvd22BvHnn1ca+i9mfmHG/6KL/7j7gkhkUrw4+d+gPNuGnxTdndZM/IbJm44FrVcgksyoqCUjTGWVc3eZGVvYqgGNcV144tlsHbQPu7dNhPC+g1T9PQPnsMn//wC8CTK7/zrzbj49sE3ZfdXtCC7buIaEShlElyaEemdaX00em48Dt7Hq8d941EXpB20j0ckmLzx1AX1xvKZe17Ee3/51Pv3D/74XVz5k4sGlXmoqnVCx7JWSAVckuFuoT8dMZE2SYk0AKht68KW/IYJ6WYTrlPgnFTTqA7MLfWtyPr6BA5/dRxHvz6OyvyaIZdVaZXIXD0Xi9ctwOL1mZhzSuKUD9Q5m402caY1arBg7TwsOiMDi9dnImVRIl5+4A28+rA7saIP1uLxLx7AnFOSBr23yWrD5rz6CelmE6yW47z0cChGODCLooi8/YV46TevI2t7ts+L3RW/uQYpF50W8DoCwIqEYKSZdEO+/uKv/4fXHnkX8fNi8H+f3I/IxHCfy7V02PDxsRq4JqCLp1Elw3lzw6EaosujuaEVt2b+BK2NbbjgB2ejrqwRR7ce7zcmUI9T77sC6VeuCngdAWD/H99F3ps7AU8XiczVc7HwjAycsj4TqUuT8ZuL/4B9nx4CPAOPP7rpV1i4dv6gclq77NiUW4/uCbj5oFfKsHFuONRDnOS0tbTjlsyfoKXWjG//8rJ+dzMHmsgTskN/+xjZr3w16PnQ6GCsv24Ntr+5C3VlvQmSiAQTXin626BxNNq6HdiUW4dOe+BjqVVIsXFuOLSKwI8X53Q43T9OF1wOJ5wOV+9zfR67nC7v3w67E1qjBlX51Xjnz58ge1fesMkziVSC1CVJsDS3o6aot6u7QiXHm3X/hFbffyxRq82BTbn1E9JlSSN3x1KnnIBYOntjNlQs3XF09oulxqBGRIIJ7S3t2PnePnzz3l5kbcv2ecEeFhOCddesgrnBgi2vbPM+P+/0VPzh89/0S2oAQIfNiU25dRNyI0clk2Dj3HAYVIG/AThSLHvjOCCWetWgRNlItr25Cw9f8ycEmQx48IOfY/7paT6X67I7sSm3fkImcVBKJThvbviEjE8zXCz77tcDY6nWqQYlykay68P9eODSx6EP0eF3797r87gDAN0OFz7Lq4d5AiZxkEsFnJcejhBN4G+4DRnLEb4/lRrloETZSA5uOYpfbHgYGoMav33rp1h6ju/hN2xOFzbn1QdkxvCBZBIB56aZYNIF/oaby+WCw+7sH0vnyPu8QiUflCgbybEdOfjpmQ9ApVXiV/+7B8svWOpzObvThS35DaOeMdwfUomAc1JNiNBPQiz77NfD7fNypXxQomwkefsLcffKX0GhlOO+V+7CmsuX+1zO6XLfyKmbgJtiEgE4O9WEKEPge9H0xNLXMWa4fV6mkCEiwdQvUTaS4qwy3HHqzyFIJPjZC7dj/bdX+1zO6RLxZWEDaiyBj6UgAOvnhCHW6P9302RjIm0SE2kAUNXaia1FTQEdZ8WkVeDsVNOIyYqRNFY14cjWE+4BELce9zklcw+NQY2UxYlIyoxHYmY8khbEIzEjblQ7KfXqbO9EeU4VcvYWjDpxtujMDCQvShiU2GyubcHP1v0OTocTv37jJ0hdkjxkefVt3fiisAF2Z+C2y2C1HEv1ckTHjX6w0dLsCvz3wbew99ND3u7IglSClb/9NpI2+j7JGKvT4oIwL2L47nmiKKK6qBaRieHDzk5UllOJ397wd6x69MaAdp80qmQ4J800YrKio60THZYOhMX0tgCsyKvCfx96G7s/OoDONk+LBUHA6fdfhTmXnB6wOgLAsec2QVHVgIWe7TJ1SdKgGYjaze24Z/VvYG3twC/+ezcWnZExZHnNHTZsyW8IaEtevVKGc9NMIyYrOq1daGtuR3jc0E3z4dk29pabA95F+ujzn+HYvz4HPF1fkxbE49wbzsRFt53rbdVTXVyDG+bcDQAIjQ7Bf0v/DpnM9/9l7rTj8/z6gCbTtAopzk0Lh0E19fMWdXV04Yv/7MDHz32OkmPlw94Bl8qlmHdaKq5/4EosXr8AEokE5gYzroq4FfCMI/la5XMIDvN9ftDaZceW/IaAJtM0cinOTTPBOI0G060prsOOd/Zg53t7kbOnwOcyYTEhWH3Zcqy+fDky18yFVCqF0+nEzfPuQVVhLZIWxOPJrx+EPtj3jYq2bgc+z69He3fgYqmSSXBumgnBE5CsmAr15Q0whBmg0gx/kWu1OfB5XkNAk2lKmQTnpJoQqp0lsaxohD5EN2Iys8PmxJb8+oCOpaSQCjgr1YTwCUj8TIXGqiZoDJoRE3Bddie25DegOYCJSblEwPrUsH5D2cxkTTUtUGkUIyaNuh0ufFHQENDZZWUSAetSwhBtnB2xbKkzQ6aQDXnM6WFzuvBlQWNAW5hLBQFnpoQiNmj6Jn5Gw9zQColEMuLkT3anC1sLGwPawlwiAGuTQ5EwDcdF64uJtElOpAFAQ3s3dpQ0B2TgyJRQDZbHB4+pWfNIakrqcHTrCRzZ6k6sNVWPPJ6JKS7UnVjrSa5lxiF+Xqy3m9zJrq2lHeU5VSjLrkR5dgXKc92PR+p240/ibCgul8uvmV6aO2zYUdIckLuwCcFqfHbPP3Hwk0NQ61W49Q/fwbk3nAnlGLrq1ZTU4Y0/vI9tb+1Gu7kDC24+BwtuOmfcg9ErpAJWJIQgMSQwX9JWSwfuWv5LVORVw5AYjo1/uw3ycN/jyYxGrFGFVYkhY2oiPlB9eQPefOIDfPW/b9DW3I6M767Hwh+cB+l4Z5+0O5AidWHFkkS/p0H3d7u0dNmxvbg5IF0TYwwqrEoKGbIl2liJoojsunYcqjKPu8Wxrb0LB556DxVbDmPe8jRc+MNzccZVK4aMVVVRDfL2FOLMb68aMZ5t3Q7sKG4KyB3tSL0Sq5NCJqQlmj9cLhf2fnoYn7+8FUe/PoG2puETmQqVHEvOXohrf30F5p46x2dyP3t3Pr76307c/Oi3odYOfyJstTmws6Q5IDPTheuUWJMUMiEt0UajZ9Kane/uxY5396D4aJnP5aJTIrD68tOx5orlSFuW4nO7a6ppwfEdOTjtgiV+JS12ljYF5I62SavA6qTQaZHcnQqddid2lTYHpJtnqEaONcmhME5Aq76ZoNvhxDelLagIwCx/wWo51iSHIFg9OxKSo2VzuLC7rDkgXWaNKhnWJodOSKu+mcDudGFPeQuKA9Bl1qCUYU1yCMK0syO5O1oOpwv7KswoaBx/l1mdUoo1SaGzJlE+Wk6XiP0VgbmprFVIsTopZEYkyplIm4JEGjw776GqVuTUj22D08ilWJEQPGlZb1EUUZlf7W6xtvU4TnyT61diDZ6uMzGpUUhaEO9pwRaHpAXxiEwKn5XdQ3vGzCrPrkR5TiXKsitRllOJ8uxKNNf6N1C11qjBwjPmexNnSQvjJyVWTpeIozUWHK+1YCzfDEqZBKfHByMxRIPLQm5Eu7n34BRkMuDi28/DRbefiyDT2MaVaqxqwgfPbMbur7ORcceFCEmLGVM55VuzsP/xdxESovW2pnQnfuMRMyfS72RQD1EU8eCVf8Q37+0DPFOWP7XzIRRabMiqsYwpuaKQSnBafBCSQzQBG2DT0tTmTuLmVCJvfxEOf3UMXVIpVvz6aoTOjx9TmZU7T2DfY28jSK/yxjApMx6JC+IRmxo16lj64hJFnKhtw5Hq1jHFUi4VcGpcEOaEagMXy+Y2lOdUoTzbvY+X51aisbUT6bdsgGnh4C7U/qg7WIiuXSdw6c3rsHDt0C31xsMlisipa8fh6tYxtYyWSQQsiw1CmilwsfRX4ZESfPyPz3HoiyzUljb0G2vPF41BjVWXnoZv3XsJEubHBry+oigir6EdBytb4RhjLJfEGDE3XDdlg+iKooj8g8XY+e5e7Hx3z5BDPCQtiPe2PEtaED8hsSxotOJApXlMLaOlgoDFMQbMj9CPaXy52UQURRQ1dWB/RQtsY4ilRAAWRRmRGakf0/hys4koiihp7sC+CvOYhhkQBGBhpAELogxjGl9utilt7sDe8pYxtTIXAGRE6rE42shYAig3d2JPWfOYWpkLAOZF6HBKjBEyP25oznZVrZ3YVdqCjjFOMDM3XIclMcYJadQy09RYurCrtHnMQzakhWmxNC4IihkSSybSpiiR1qOt24H8hnYUNFr9OkiHaRWYa9IhMUQz5QcSS3MbSo9XoORYOUqPl6PkeDlKj1f4PQW6Uq1AeIIJIZFBCI4wIijciOCIoN6/PY+Dwg3TZqIDh92BtuZ2tDa2obXRAktTOyyNFrQ2tqG+rMHbwmw0021rjRrEz4tBwrxYJC1IwMIz5k9a4mwoVpsD+Q1W5De0+3XCE6yWY264DkkhGu+B5NcXPYq9nxwatKxCJcd5N63H95+4fkwt1Hq01Jvx1RcnUN7pQPCCRAgjnAw4umwo3XwI+e/sQnNu5ZDLyZVyRCaaEBTh3h6Dw40IjgxyP44w9ts+e1pavvXkR3j+3lcAz2Cef9//GKJTIgFPa4uCxnbkNVjR6cdBOkglQ3q4HimhGr8Pyk6HE5bmdlia2mDp2TYb29Da2IaGikbvdjnkdNuCgKjlaUi7YhViVs+HZITPdXbbUbrlMPLf3uVzUoEecoUMEYkmBEcEISjCiJCI3jgGeWPp/tufWYI77U4UNLq3S3+61RlVMqSbdEgJ1frd9d3pdHr38bamNs++3gZLowUNlU0oz6lEeU7VsEnxyFNTkXbFKsSuzRix5aTL7oC9tA4rF8UiY17MpCVUuuxOFDZakdfQ7tcJj0EpQ5pJhzlh2jENRjwWjdXN+OS5Ldj90QGU51T6NVGAMUyPc244AxfdtsG7D060bocThY0dyGto96uluU4pRbonlkONeTiRbF02HP8mD3s/Poid7+0dskV0+qkpWH356Vh92WmITYuenLo5XChssiKvvt2vLopaRW8sA93SdKazOV0obrIit74drX50UdTIpUgzaZFm0jGWA9idLhQ3dyCvvh0tfrTaV8slSAvTIdWknbJWu9OV3elCiSeW/nT3VMkkSDXpkBamnfJWu9ONw+VCaXMncuvb/Wq1r5RJkBqmRbpJx1gO4HSJKG1xb5f+tNpXSiWYE6ZFmkk7IWNxzmROl4hys3u79KfrrFwqYE6oFunhuhnXApqJtClOpPVwukQ0ddjQZLWhqcOGbocLLtE9AKRBKUOoVoFQjWLad1cQRRENlU29CbYT5Sg5Vo7ynKpxTTOtD9Z6E2sDk24agxqCRAKJRIAgESCRSDy/BUAQPM8P/7q92wFLU+8Fc2tjG1qb3MmI3ufb+rWwGi1jmB7x82ORMC8W8fNikTA/FvHzYxEaFTwtp/QFAFfPdtlhR3OHDfV1rcjZVwinzY7IcCPWnb8YYZ7tcuD/sPmlrfjjTc8MWfb3Hv42rr3/8oDUs6GxDXt25iG/oBYdECBVygGXCJu1Cy35VWjOrURTdjns1sAOhqk1aqAL0qK+vMHbgu/s69diwZr50AVp+m13gkSCbrkM3QoFuuQyOCUSiIIACQAFXNCKIrRwQQ1A4tk+HTYHLE3taPVskxZP8rZn2+x5rq1l7NulPljbb7sMSYpAY3s3KmrNsLoAqUoBuETYrV1oKahGU24lmk6Uw24N7AxxGoPam1gbmHTTBmkhkfaPpU0uQ5dCji65fEAsRWhFF7SiC2qhTyztzj6JxgH7eZ+EeHuLdVyzyPWlDNIiLCMeIXPjEJQSCZlaCZlCCq1GifiYYJyyLAkmnWrSElO+uEQRLZ1277Gnw+b0HHsAjVyGUK0coRoFgtXyCf+eKjlejq2v7cThrcdQnl2Fjjb/ugElZMTiglvOwZorl/cbH3CyiT2x7LChyWqH1eaAS3S38NEqpAjVKBCqnZxYDqxXeU4lDn6ehQOfH0HWtmx0dw6+UBAEAZlr5mLN5adj1aWnIjzeNGl1HEgURZg77WjqcMfTanPA6XLHUtMTS40CwRr5Sd8CbSSiKKK1y4Emqw2NA2Kplku955chjOWIvLH0nK+325xwukRvLEM0CoRq3N+ZJ3trvpGIoghLt8N77Gnr7o2lSi71xjFEo5jyhgMzgaXLjkar+3y9rdvRG0uZFCGe43goY+mXtm6HO5ZWGyx9YqmUSbxxDNUylv5o74llhw2WLncsBU8sQ7yxlM/YlpFMpE2TRNps53Q4UVVY6265dqwcpScqUHq8HI1Vzd7B5GeL0Ohgd5JsrjtRljA/FvHzYsbcnXE6qS2tx/XJdwAA1lx5On775k+HXLYirwo3zbtnyNcffO8+rLzk1IDXsbO9E/s/O4L9mw5j90cHhp20YSBBIkAqk0IURTjH2MR7ugqOMCJhfizi5rq3yZ6foHDjkBf1XR3dOLD5CPZ9ehh7Pj6AlrohWrT54I2lSxzXdN3TkdxzJ9ducwAjHEHVOhXmnJKEM65agXNuPBOaUcwyN5t1dXRh+9t7seejA8g/UITGqiY4/ezuI5EIWHxWJs781iqsvORUGIeYFOBkZmlqw6EvsnDw86M4uCULDZVNPpeTyqQ45axMrLn8dKy4eBmCI8Y/riMRERHRbMdEGhNpU67T2gVzXSuaa81oqTOjpa7V83cLWupb0VLXihbPa1OVdNMHa2EIM8AYpochVA9DmB7GUH2/54IjgxA/N2ZWz1xqt9lxvupaAMC801Pxl12PDLmsKIq4wnQT2pr7jwMokUlw34t34qzr1kx4fUVRROmJChzYfBT7PzuMrG3Zo0rqCIIAfYgWEQnhiJ4TidCoINhtTpjrzWiuNaPkeAU6/OzKPBF0QVoYQnW922GYHsZQAwyheu/fwRFBiEuPHnHWnZGIoojy3Coc3HwU+zcfxpGvjsMximSjIAC6YB0iEk2ITo5AWGwoHDaHd593/5jRYRn/YMRjoTVqPDEzwBCqgzHMAKfDibryRjSUN8Jc3wpb18itamUKGeLnxmD5hUtw4ffPmdJWPdNJ4ZESfPXaTmRtO4GKvOpRr+fgSCOWn78Uy85dhGUbFo04u9nJxmF3IGdPAQ5sPoKDW44i/0DxkC0rQ6ODsfTcRVh6ziKcet7iEWc3IyIiIqL+mEhjIm1G6Wzv7HfR3VLrTq6JogiXS4ToEuFyuSD2fSz2PBYhel7zPhbds79JZVIY+yYjwgww9CTNQnQBGTB9trgq8haY61thig3Fa+X/GHbZX134CPZ9enjQ83/86ndYdObEDKY+nK6Obhzbno39nx3Bgc+PoCK3etRlSKQSGE0GGIJ1KMtxj7WmUMnx4Ac/h0av9iaFO9s6B22XDpsDH/z9s37JxeUXLkXi/Nje7VLsXV4qlQxO4Hr+1ofoIBvvbJvj0N3ZjWM7cnFgszuWZSeGHnduKBKpe1rtmDmRSD81BUs3LMK8Femwtlj7JdA7LINj2bOPu593+d7HB8RSH6rvt5/3JByVOhVydufj0JYs5O8vQmVhNVpqW+FyjtxCSmvUIG5uNE5ZtwBnXrMSyQsTxxjR2cHhcODY9hwc3JKFvH2FqCyoQXNNi1+x7EuulGHx+gVYdu4iLD13EeLnTt74cTNFdVEtDmw+ioNbjuLIV8eH7AqrUMmx8Iz5WHrOIizbsHhCJl4gIiIiOpkwkcZEGtGo3L7sPhQcKoFEKsEnHa8Om8x5648f4vn7/gMAiEgwoa6sAQAQHh+G54/+ccpbldSXN+DA5qM48PkRHPrimN8TZfii0qoQHheKpIXuCSNWXLQMptj+4zW9+vA7eOm3r/d7bsHaeXjq69+P+XOni4bKJhz8/Cj2bz6Cw19kjWvcNpVWibCYUCQtjMeitfOx4uJlAWvZVXK8HPs+PYQTu/JQnl2JxuoWdHf419JVKpPCFBeK9FPnYMXFy7Dq0lOh0kz/6bknSllOpTuW3+ShLLti3F31UxYnYuk57sRZ5uq53sk8yM3c0IrjO3O93TVriuuGXDZpQbw3CZm5eu64JnYhIiIiov6YSGMijWhUHrr6KWx/azcA4IWcpxGXHjPksl0d3Xjp1/+D0WTEZfecj1+d/wiytmUDAM757hm476U7J63eI3E6nMjZ6+ka9flR5O0vGveg81KZBPoQHUKjQxAcEYRDX2bB5WMcqBdz/zxps+JNBqfTibz9RTjoSVLm7i2AyzW+WEqkPbEMRnRyJJIWxGHu6anIWDkXWoOm37IOhwPFR0qRu68QufsKUZxVhrqyBljNHaNap7ogLeLnx2DxugVYf+1qJMyLHdf/MBO5XC4UZ5Uhe3c+8g8UoehIKerKGtButkIc5zoNjjB6uxguOXsBQiKDA1bvmc7lcqEitwonduXjxK5cZO/KQ2V+zZDLB5kMWHLOQncsz1mIsOiQSa0vERER0cmEiTQm0ohG5eUH3sB/H3obAPC7d+/FqktP8/u9dWUN+P7Cn3q7IP32rZ9izRWnT1hdx6NnsO4Dm48ia3v2sK0/xisqORxrrlyB9GUpWLB2HoLDZ9eA320t7Tj0xTEc2HwEWduzUV1YG9gPEOCebU4QvN09R0Mqd3ftjpkTidSlKVhy9gKcsj4TCpUisPWcpurLG3Bidz4KDhajIrcKtaX1aKlrhbW1Aw6bI2CfI1fIkLlmnqeL4SIkLYiHZIbO1BRondYu5O8vwoldeTixKxc5u/OHbdUpk0uRsWqut9VZyuJExpKIiIhokjCRxkQa0ahsff0bPHLt0wCAm/7vWnz7l5eN6v1bXtmGx2/8GwDAEKrH81lPIjRq+rdEaappwbY3d+H5e1/xe3bBsRIkApRqBdQ6FXRBWhhNBoRGhyA8PgzRKZGIS49GQmYcgmbobIUtdWYc/yYPJ77JxYlvclFwqGTSZvaUSCVQ69QIiw1B6pIkrLhkGRasnn3JSwDoaO9EZW4VqgpqUV1Sh4byRjRVt6Clzoym6ha0tbSju9M24syjYyVXypG2LBkZK9KxaF0mFqydB7X25O0K21dDZROyd+Xh+De5yN6dj6IjpcPuA3KFDKlLkzF/RToWnZmBRWfOh5ozwBIRERFNiakbqZqIZqT4eb1dOctzRz/A/NnXr8Xuj/Zjxzt7YWlqw5O3PIv/+/iX037w6+AII7a9ucubRDv/1rNx5tUrcXxnLk7sykPO7vwhB/seLdElosvajS5rN1rqWlGRN/SkCFK5FEq1AlqjBvpgHdQ6FdQGNbQGDbRGDXTBWhhCdNCH6GA0GREcboAx3IDQqOCAj+/lcrnQYelAa0MbLM1taGtph7WlA20t7Whv7UCHpRMdrR3umXnrW2FpakN7qxVylQxipzjqAenHVEenC9ZWK6ytVpSdqMAX/9nufa0nlhqDBvpgLTR6NdQGNTR6NXRBWuiCtdAHad2TPpiMCArTIyjSOLGxbGqDpbFPLM1WtJut3liaGyxoqTXD0tyGdnMHutq70N1lg3MUM6oORyKVQCqTwOUUR0x2BoUbkbEqHRkr5yJjZRrmLEnmOGeebuPFWWU48U0eTuzOQ/auPNSXNw77niCTAfNXpiNjZTrmr0xH2tLkk6aFJBEREdF0x0QaEY1KbFoUBEGAKIqoyK0a9fsFQcCPnv0+ju/MRUtdK/ZvOoxPnv8CF/7gnAmpb6BsfnErsnfnAwDi0qNx+9M3QqlW4pT1CwDPuGAlx8q9ibUTO3PRUNk0fKGCe5ICfZAGcqUCXdYudLZ1oauz2+/xp5x2JzrsneiwdKKhYoTP81UFQYAgETyPPZUa+Evo+7rnWQGAKMLpcI2pO2WgCYIAY5ge2iCtOxHZ4Yllx9hi2TjSuhuiDuOJpcvpgss5ubGUSCVQaVXQ6FVQapSQSAR0d9rQXNsCh83pqdPgBKcgCEjMjPMmejJWpiMqOWLaJ8QnWrvZiuKsMhQfLUNxVhlKjpWh5Fi5u+XfMBIzemM5f2U6YuZEnvSxJCIiIpqu2LWTXTuJRu36lDtQW1IPjV6N980vj+mCb++nh/DrCx8FAGiNGryU/xcEmYwTUNvxa2204Htzf4S25nYAwBNfPoDF6zJHfF99eQOO78z1dmMszirz6/PCYkKQtCAeYbGhUOlUEEQRVksnmqqb0VLnbsnVYelEd6ctoGNYTTWpXAqlSgGVTgVdkAaGED2CI4MQFhMMjWdCgdYGC3L2FqAkq8yvCQxCo4PdsYzxxBJAR9vJEUuFSu7uHmzUwhCqh9FkgFKrgAABTqcLbS1tKD9RNXLCF4Bap8K801Mxf4Un2XN66pTPujuVnE4nqgtrvQmznp+RWpoBgEqjxNzlc5Cxci7mr0zHvNNToQ/WTUq9iYiIiGj8mEhjIo1o1H514SPY9+lhAMBr5f+AKTZ0TOU8cdPf8flLXwMANt58Fn7yz9sCWs9AeerWf2DTv78EAKy/djV++d8fjamcw18dw31n/x4AED0nEiqNEmXZlX6ND6bWqZC8KAHJCxMxZ3EiUhYnIjEzDkq1EpbmNpRlV6Iyvwat9a3u7n8tni6AbZ3otHSi09qFbms3urvssHfZYO92wGF3wOlwweXytDjqczQQ+/8xJEEiQCIRPF0ApZDKpZDJZZArZJAr5VCo5FCoFVCqFVBplVBpVAgKNyAsLhTRSRGISY1ETFr0oJk3R2K1dKDwcAmKjpSi6Ggpio6UouxEBRx+dGlUaZVIXpiAlEWJSF7kjmXSgnioNP1jaWm0wNLcjvYWK6ytHbBaOtBp6URXh7vbbXenDfZuO+zddjhsAYilIEAi7RNLmRQyxYBYqhRQatyxVKqVCAo3wBQfhsjEcMSkRiEu3R1LS3MbSrLKUXS0FCVZZSjKKkPZiQrYuuwjxpF0WsMAAC1rSURBVEcQBMSkRiJ1abK7m+aqdCRlxkMqk4743tmoraXd3bqsJ57HylB6vGLEVmbwxDIqJQJpfWKZvDDhpI0lERER0WzARBoTaUSj9tzPXsHbT30EAHhs86+x9JxFYyqnpc6MG9PvRoelE4Ig4K97H0X6spQA13Z8svfk40crfwUA0BjUeCHnz2OeHGHzS1vxx5ueAQD84I/fxZU/uQi2bjvKcyrdCaE+SSFra8eI5QmCAFNcKKLnRCImJRLRc9w/MXMiEZXiTtSdTOw2O8pzqlB0pBTFR3tjOdzsh32ZYkO98YueE9UnlhHTcpB8p8OJ+opG1BTVoaa4DtVFdSg9UY7io2VorGr2qwytUYPkhQm9P4sSkJgZf9JtO06nEw0VTagprkNNUR2qi2pRll2JoqOlfneZ1hjUSF6YgKQFCUhZlICkhQlIyozjpABEREREswzHSCOiUes74UBFbvWYE2nBEUG4/rdX4bmfvQJRFPHMj17An3Y8BIlEEsDajp3T4cRfbv+n9+8bf3/NuGYYLT1e4X2ckBEHAFAo5ZizOAlzFid5XxNFEXVlDd7kWnGW+3dtaUO/8kRRRH15I+rLG3Hkq+ODPi8sJsSdXEvpSQ5FIiY1CtEpEbPy4l6ukCNlUSJSFiV6nxNFEQ0VjSgckKisLakf9P6GyiY0VDbh6NcnBr0WGh3cJ2EZ1SfhFgmNfuJi2dneiWpPoqwnwVNTUo+aolrUlTX6PdtpTyuz5EWJSF6Q4GndmIDw+LCTZiyuTmsXaj0JR29Mi2tRXVSH+rIGv1ozok8rsxRPC9GeBGREgumkiSURERHRyYyJNCIatfh5sd7H5Tmjn7mzr0vuPA+f/utLVORWIXt3Pr58dQfOuf6MANRy/D58ZjOKjpQCAFIWJ+Li2zeMq7yy7N5EWlJm3JDLCYKAyMRwRCaGY9Wlp3mf7+liVnSkFIVHSlCRU4Wqwlrv2G0DNVY1o7GqGVnbsge9FhIZ5G3BFp3i/gmJCkJIZBBCooKh0atnRVJAEASEx5sQHm/CyotP9T5vbbWiOKvck6wsQWl2JaoLa2FpavNZTlN1C5qqW3Bse86g14IjjL2tAVOiEJUcjtDoEG88NQbNkLEURRHNtWbUFNX2Se54EmbF9TDXt476fz5ZW5mJooiWOrM7jj2t9IrdcawpqkVL3ehjyVZmRERERDQQu3ayayfRqLWbrbgs5EYAwNzT5uCvex4dV3kHPj+KX573MOBJ8LyY95cJbeXjj6aaFtw070fosHQCAP78zcOYvyJ9XGVem3AbGiqaoDVq8F7zSwFLVFma21BTVIeqghpUFdaiuqgW1YW1qCqoQWuj78TQSFQaJYIjgxAcGYTQqCAER7gTbD2Jtp7fQSbDrBrvqa2l3d1iyRO/6qJad0wLa8eU1AIAmUIGtU4FhUrujZXD7kB3hw2dbV2946qNglqnQlRKBKKSIxCdHIGolEhEJUcgLj16VrUyczqdsDS2oaWuFeb6VrTUtaKlzuz+XW+Gud4Cs+dvc32r363K+lJplYhOiURUcjiikt1xjEqJQGxaFCITw2dNLImIiIgoMNgijYhGTRekRfy8GJTnVKHgUAm6OrrH1dpl2bmLsPKSU7Hrg/1orjXj1Yffwa1/+E5A6zxaz9/7ijeJtvHms8adRLNaOrxjLSVkxAX04twQoochRI/0U+cMeq3dbO1NrBXWoqqwBtWexNBwLXS6Orq9raOGI5EIMJoMnoRbsDv5Fm6EWq+GWqeCRq+GWq+GRq+CWqfyPFZDpVNBo1dBoVJMq0SFPliH9GU6pCxKQJe1G13WLvfvjm6Y61tRVVCL2pI61JbUo668Ec01ZrQ1tw07iL/D5hiy1eBwlGoF9CE6GE0GhEQGIyw2BBEJJkSnRCAsJhRqff/4TrdY9nA6nOiydqHT2t0/pp7H7eYOmOvM7kRZn2SZud4CS6PFr9lZRxISFYyo5HB3wizJnSiL9iQig8KN0zJuRERERDQ9MZFGRGOSsXIuynOq4HQ4kbe/EIvOyBhXebc9eQP2f3YE9m473n36Y2y8eT1i06IDVt/RyN1XgK9e2wkAMITqcctj1427zIKDxd7HSRlDd+sMNF2QFmlLU5C2dPAkDh1tne4WVwW1qC9rQHOtGc21Le7fNS1oqTWPOFC/yyV6Eh+tKD5aNur6SaSSPgm3/sk2tU4FpdqTHBIEuH8NeIye59y/Bc9r6PO4Zzmn0+VJinWhu8M2KKHT9/FYWjYFWnenDd2e7rlFKB1x+b6x7ElU9k1oBjKWLpfojlmH7/j1PO7u6Ibd5pjQOEmkEgSZDAiKMCI0OsTdQs/TqizK83i2d2slIiIiosnDRBoRjUnGqnRs+veXAIDjO3PHnUiLSo7AVT+9CK898i4cdieeu/cVPPTBLwJU29F56bdveB/f+PurYQjVj7vMvgPYZ6yeO+7yAkGjVw+a6GAgW5cNLXWt3uRa3yRbU637d3ONGc21Zr8Hvu/L5XTB2trh1yyl051cKUdwhNHzE4SgcCOCwnv/1gdrIZFJ4HS40N3ZjZbaVnf8PAnMllozmjyxHUsibzbG0hu/cCOCIoI8v/vG2ABDqH7aTFBCRERERLMfE2lENCaZfZJBJ3blBaTMa355GT5/+Ws0VjVjz0cHUXCoGKlLkgNStr+O78zBwc+PAgAiE0047+b1ASk3a3vvgP+LzpgfkDIng0KlQESCCREJpmGXc7lcaG+xoqmmBZbGNnS0daKzrROd7V3oaOtCZ1snOto60dXehY72TnS2dXle6/S81oWudvdzkz10p0wuhVKjhEqrhEqr8vwe8FjjeexZTmPQeJNmQRFBCI4wBmyCBlEU0dbcjuZaM1obLO4YtXf1i5M3bu09r3X1xretN76THUupTOo7floVVBqF53f/13ti2Zt0NA47QQMRERER0VRiIo2IxiQ6JRJB4UaY61uRvSsPLpdr3K1C1FoVvv3Ly/HXO/8FAHj1/97B7965N0A19k/f1mjf+e1VkCvk4y7T1mVDzp4CwNPyLjx++KTUTCSRSGAI1Y+79Z7L5UJ3R7c3AWfrtEEURXdCSIT3sTc/1Odv9zKDH8OTnJJIBJ+JMpl8eh0KBUEISCxFUURXR7c3ATfeWHoW8RnLnkRkIPYXIiIiIqLpbHpdPRDRjCEIAjJXz8XOd/fC2tqBshMVSFqQMO5yz7tpHV79v3fQXNOCb97bh5Lj5UjKjA9InUdy+Ktj3i6YsWlROPs7awNSbs6eAti73YPRz6TWaFNBIpFArVNDrVMjJHKqazOzCYIAtVYFtVbFWBIRERERBQgHFSGiMctY2TuT5fFvAtO9U6FS4Fs/u9j792uPvBuQckciiiJe+s3r3r+v/+1VkMqkASm77/hoC88c31hyRERERERENHWYSCOiMctY1WectG9yA1bu+d8/G8Ywd7e2bW/sQkVeVcDKHsr+z44ge3c+ACBhfizOuHplwMqeqeOjERERERERUX9MpBHRmM05JRFKtQIIcCJNrVXhyp9cBHhaiv3vsfcCVrYvoijipd/2tka74cGrIZUGpjWarcvmTdBFJoXPyvHRiIiIiIiIThZMpBHRmMkVcsxdngoAqC1tQFVhTcDKvuj2DdAHawEAX/53B2pK6gJW9kC7PtiPgoPFAICUxYlYddlpASs7Z2/f8dHYrZOIiIiIiGgmYyKNiMbl1PNO8T7e9cGBgJWrNWhw2d0XAABcThfeeOz9gJXdlyiKePX/3vH+fcODV4979tG+jm7tHR9tEcdHIyIiIiIimtGYSCOicVl16anex7s+2BfQsi+9eyM0ejUAYPNLW9FY1RTQ8uFpMdbTGm3OKUk4/cKlAS3/mz4xWbSOiTQiIiIiIqKZjIk0IhqX2LRoxM2NAQBk78pDS31rwMrWB+tw8e0bAAAOuxOfvbA1YGX3+PCZz7yPL71rIwRBCFjZlQU1KD5aBgCYe9ochMeFBaxsIiIiIiIimnxMpBHRuK26xN0qzeUSsffjgwEt+8LbzvUmtz574Su4XK6Ald1SZ8b2N3cDAAyhepwZwJk6AWD7W7u9j9deuSKgZRMREREREdHkYyKNiMZtxSV9und+uD+gZUckmLBswyIAQF1ZAw5uyQpY2Z/+60vYbQ4AwHk3rYdSrQxY2QCw7a1d3sdrr2IijYiIiIiIaKZjIo2Ixm3uaXMQEhkEADi0JQtdHd0BLX/jLWd7H2/61xcBKdPpcOKT57YAAARBwEU/PDcg5fYY2K0zIsEU0PKJiIiIiIho8jGRRkTjJpFIsOKiZQCA7k4bDn5+NKDlr7hoKYIjjIBnZtCWOvO4y9z14QE0VLonLzj9oqWITAwfd5l9sVsnERERERHR7MNEGhEFxER275TJZTj3hjMBT0uyz1/eNu4yP/z7Ju/ji28/b9zlDcRunURERERERLMPE2lEFBCnrM+EWqcCAOz56CAcdkdAy994y1nex5v+/SVEURxzWWXZFTiy9QQAIDYtCkvOXhCQOvZgt04iIiIiIqLZiYk0IgoIhUqB084/BQBgaWrDvk8PB7T8mDlRWLw+EwBQVVCDrG3ZYy7rw2c2ex9ffPt5kEgC+1XIbp1ERERERESzExNpRBQw596wzvv40wBNCtDX+X0mHRhr+U6H05voUqoVOPeGMwJWPwAQRRFf/Ke36ym7dRIREREREc0eTKQRUcAsPXchwuPDAAD7Nx32DuYfKKsuOw2GUD0AYOe7e9Fp7Rp1GUe3ZcPcYAEAnHbBEmiN2oDW8fCXx1CRVw0AWHjGfHbrJCIiIiIimkWYSCOigJFKpTjve+sBAC6XiM9e+Cqg5SuUcqy54nQAgK3LPqbZQft2uzxjArpdfvD3z7yPL7kj8JMYEBERERER0dRhIo2IAmrDTesgkQgAgM9e+ApOpzOg5a8cx+ygTocT37y3F/B06zztgiUBrVttaT32fHQAABAWE9KvrkRERERERDTzMZFGRAEVHheGUze6Jx2oL2/EoS1ZAS1/cZ/ZQfd+fAhOh/+JuoHdOtVaVUDr9vE/PofL5Z5N9MIfnAuZXBbQ8omIiIiIiGhqMZFGRAHXf1KALwNatkIp9ybqLE1tOP5Nrt/vnchunbYuGzb9292VVSaX4vxbzwpo+URERERERDT1mEgjooBbfsEShEQFAwB2f3gALXXmgJa/8uLeLpO7P/Cve+dEd+v8+o1dsDS1AZ6ZOoMjggJaPhEREREREU09JtKIKOCkMik23Hgm4ElgbX7p64CWf9r5p0AqkwIAvvlgP0RRHPE9E9mtUxRFvP+3Td6/OckAERERERHR7MREGhFNiI0393Zt/PDvn8FuswesbH2wDgvPmA8AqC2pR+nx8hHfM5HdOnP3FaLgYDEAIHVJEuadnhbQ8omIiIiIiGh6YCKNiCZEVHIETr9oKQCgobIJW17eFtDy+86I+c37w3fvFEURuz2zaU5Et853n/7Y+/jiOzZCEISAlk9ERERERETTAxNpRDRhrvvVFd7H/3vsvVHNsDmSlRcv8z7e9cG+YZetzK9Gc00LAGDhmRkB7dZZcrwc2950t3Yzhumx7pqVASubiIiIiIiIphcm0ohowsw9LRVLz10EeLpgfvXazoCVHR5vQsriRABAwaESWJrbhlz26NfZ3seLzsgIWB0A4JXfvekdo+3qn18GpVoZ0PKJiIiIiIho+mAijYgm1Hd+3adV2qPvwukMXKu0vkmx7F35Qy53dNuJ3vecOT9gn194uAQ733XPBBoSGYSLfnhuwMomIiIiIiKi6YeJNCKaUJmr53knBqjIq8aOt/cEsOy53sfHd+b4XEYURWR97U6kqXUqpC5JDtjnv/zAG97H377/cqg0bI1GREREREQ0mzGRRkQT7rpfX+l9/Or/vQOXyxWQcjNWpXsfn9iV53OZyvxqNNeaAQCZa+ZBKpMG5LOz9+Rjz8cHAQCmuFCcf+vZASmXiIiIiIiIpi8m0ohowp2yPhPzTk8FAJQer8DuDw8EpNyQyGBEp0QAAPL2F8HWbR+0TNa2iRkfrW9rtOt+dQUUSnnAyiYiIiIiIqLpiYk0IppwgiD0b5X28NveAfrHK2OVu3unvduOgoPFg16fiPHRju3IwaEtWQCAyKRwbPjeuoCUS0RERERERNMbE2lENClO23gKUpckAZ5ZNr9+Y1dAys1Y2ad75ze5/V4TRdE7Y2egxkcTRREv/fZ179/f+c2VkMll4y6XiIiIiIiIpj8m0ohoUgiCgBt+f4337+fvfQWd1q5xl9t3woGB46RVFdSguabFu1wgxkc7sPmIt7tobFoUzv7O2nGXSURERERERDMDE2lENGmWn78Eyy9YAgBorGrG64++N+4y4+bGQB+sBTwt0vp2Gc3ZW+B9vGDN+Lt12rps+NvdL3j/vv6BbwVs8gIiIiIiIiKa/phII6JJddtTN0Imdyef3vrjh6guqh1XeRKJxDtOWmtjGyrzq72vlZ2o8D5OWZw4rs8BgDce/wDVhe76LlgzD+uuWTXuMomIiIiIiGjmYCKNiCZVbGoUrvjxhQAAu82B5372yrjL7DtOWu6+Qu/jsuxK7+PEjNhxfUZ1US3+52lBJ5FKcNffb4EgCOMqk4iIiIiIiGYWJtKIaNJd+6srEBIVDADY9cF+HPj86LjKS1oQ731cnlPlfVx6vBwAoNGrYYoLG3P5oijib3f9G/ZuOwDginsuQFJm/IjvIyIiIiIiotmFiTQimnQavRq3/uE73r+fuedFOOyOMZcXP6+3tVlFnjuR1tneidrSBgBAQkbsuFqP7XxvH/Z/dgQAEBYTgusfuGrMZREREREREdHMxUQaEU2Js65bg/kr0gAAFblV+OBvn425rPCEMChUcqBPi7S+LdMS5seNuezO9k48++MXvX/f/vT3oNapx1weERERERERzVxMpBHRlBAEAXf85SZvS7FXHnwTjVVNYypLKpUiNi0aAFBdWAuH3YHSPhMNJGaMPZH234feQUOFu17LNizC6suXj7ksIiIiIiIimtmYSCOiKZO2NAUbb14PAOiwdOKJm56By+UaU1nx82IAAE6HE1WFtSg93ptISxhjIq30RAXe+dPHAAC5Uo47/3ozJxggIiIiIiI6iTGRRkRT6ubHrkNYTAgA4NCWLHz4zOYxlRM/t3ectN9e/Bi2/Geb9+/cvfk4vjMHoij6XZ7T4cRTtz4Lp8MJALjm55ciZk7UmOpGREREREREswMTaUQ0pQwhevzshdu9f//zvv+gPLdq2Pf4Ejc32vu4uqgOrQ0W798vP/Amfrz2t9j94QG/y3vt/95Fzp4CAEB0SgSu/vklo64TERERERERzS5MpBHRlFt6ziJceudGAICty44/fPevo57Fs+/MnUOxddn8Kit7dx7++/DbAACJVIKf/+duKNXKUdWHiIiIiIiIZh8m0ohoWrj5sesQN9c9zln+gSK8+vA7o3p/bNrw3S6TFyb4NVFAR1snHrv+r3A53WO1fefXV2L+6WmjqgsRERERERHNTkykEdG0oNIo8fNX7oJUJgUAvPbIuzj05TE8fuPfcG38bdj90fDdMhUqBaKSI3y+JggCfvSP70Mml41Yj7//6AXUFNcBAOavSMO1v7p8TP8PERERERERzT5MpBHRtJG+LAXX//YqAIDL6cKvLngEW17ZhobKJvzn92+N+P6Y1Eifz1/w/bP9alW2/e3d+PylrwEAGr0av/jP3d7EHhERERERERETaUQ0rVzzi0sRP8/dxdNh6x0nrfhoGbo6uod9b1hM6KDntEYNbnrk2hE/t6GyCU//4Dnv33f85aYhW7gRERERERHRyYmJNCKaVj569nNU5tcMet7pcCL/QNGw7zXFDk6kXXv/5dAH64Z9n8vlwuM3/g1tLVYAwBnfWoFzvnvGqOtOREREREREsxsTaUQ0bRQeLsHff/SCd6D/gbJ35w/7/rA+ibTw+DCcdd0aXPWzi0f83Hee+hhHvjoOeJJxP3r2+xAEYdT1JyIiIiIiotlt5JG3iYgmiUqngkIlh63L7vP1rG0ncM3PL+33nN3pQllLJxqs3WjLSMI12x6FTK2EKIpQyiT4PL8BIRoFIvVKxBhVkAxIkB3bkYN/3/8a4JmU4L6X7xyxBRsRERERERGdnARRFMWprsRks1gsMBqNaG1thcFgmOrqEFEfxVlleOPx9/H1G7sGtUyTK2X4pOM1CIIAS5cd2XXtKG6ywu7y72tMq5AiNUyLueF6KGUSNFY34/al96GlrhUAcM3PL8XNj143If8XERERERERzXxMpDGRRjQt1Zc34N0/f4pP/vkFutq7vM+/3/oySqwOHK5qhZ/5s0HUcglOjTHg6Use83YXPeWsBXh00684SycRERERERENiWOkEdG0FB5vwm1P3oDXK/6BS+/aCK1Rg+WXn45tlW04WDn2JBoAdNpd2F5qhn7dYghSCcLjw3D/az9iEo2IiIiIiIiGxRZpbJFGNCN02JzYnF8PS5cjoOVW7jiBy9ekYt6ylICWS0RERERERLMPJxsgomnP7nThi4KGgCfRACB2TQYaQzUQRZEzdRIREREREdGw2LWTiKa9g5WtaOn0PZNnIBQ3daCkuWPCyiciIiIiIqLZgYk0IprWaixdyGton/DP2VduRqfdOeGfQ0RERERERDMXu3YS0bQliiIOVJr7PScIwHnp4QhSybGrrBllLZ1QySRYNycMLlGEAAF7ylpg7hpdC7ZupwtZNRYsjw8O8H9BREREREREswVbpBHRtNVotaG5o39CTBSBr4sakV3f5n2u2+HCptx6bM5rwOHqVmRG6cf0eUVNVtidrnHXm4iIiIiIiGYnJtKIaNoaqktnp71/sqvv1MMKqQQtHWMbT83uFDlWGhEREREREQ1pxiXS/u///g8rV66ERqNBUFDQVFeHiCZQtaXL72WNKhk2zg3H8vgg1LV3e5/fkG7C9UtjEayWe5+TSwXcsCwOWoV0XJ9JREREREREJ5cZl0iz2Wy46qqr8MMf/nCqq0JEE6jD5hzU8mw4rV0ObMqtx5cFjTgtrn+S3eZwYUmM0a9ymjpso64rERERERERnRxm3GQDDz74IADgpZdemuqqENEEah5FQksiAC5P/06b0wWHS+z3el5DO+aG6xGhU/ZrreZLe7cTNocLCtmMu89AREREREREE2zGJdLGoru7G93dvRfPFotlSutDRCPrcgzdGu2M5FCEahWwO10I0ypQ3tKJJbFGiKJ7Vs/9Ff1n+ux2uHC81oIlsUZsyq3367OZSCMiIiIiIqKBTopE2qOPPuptyUZEM4MoikO+tq24adBzm/Mahi0vp64d88J1iAtSo7Zt+HHQhvtsIiIiIiIiOnlNiyYXv/vd7yAIwrA/Bw4cGHP5v/zlL9Ha2ur9qaioCGj9iSjwpBIhoOU5RRFHqi1YEmOEBMOXHejPJiIiIiIiotlhWrRIu/POO3HNNdcMu0xiYuKYy1cqlVAqlWN+PxFNPoMq8F9PhY1WZETokRKmGXIZqUSAxsdsnkRERERERETTIpEWFhaGsLCwqa4GEU0jwWoFBAEIZC9LEcChqlasSAgecpkQtRwSgS3SiIiIiIiIaLBpkUgbjfLycjQ3N6O8vBxOpxNHjhwBAMyZMwc6nW6qq0dEASKVCAhRy9HUYQ9oueXmTmRG6qGS+251FqZVBPTziIiIiIiIaPYQxBk2qvaNN96Il19+edDzW7duxZlnnulXGRaLBUajEa2trTAYDBNQSyIKhOy6tkEzcE60C+ZFMJlGREREREREPs24RFogMJFGNDN0O1x4K6saTtfkfE2FahS4cH7EpHwWERERERERzTzTYtZOIiJflDIJUsO0k/Z5GZH6SfssIiIiIiIimnmYSCOiae2UGCO0kzCLZqxRhcRg9YR/DhEREREREc1cTKQR0bSmkEqwIiFkgj9DwIqEEAicrZOIiIiIiIiGwUQaEU17MUYVlsYaJ6RsiQCcmRIGzSS0eiMiIiIiIqKZTTbVFSAi8kdmpAGiCByqag1YmTKJgDNTwhBlUAWsTCIiIiIiIpq9mEgjohljQZQBRpUMu8ta0OVwjausYLUcq5NCEKJRBKx+RERERERENLsxkUZEM0p8sAbhOiX2V5hR3Nwx6vfLJAIyIvVYEGmAVMIx0YiIiIiIiMh/giiK4lRXYrJZLBYYjUa0trbCYDBMdXWIaIzaux3Ib2hHYZMVnfbhW6gZVTKkm3RICdVCIePwkERERERERDR6TKQxkUY044miCKvNiaYOG8yddjhc7q81hVSCEI0coRoFVHJOJkBERERERETjw66dRDTjCYIAnVIGnVKGhOCprg0RERERERHNVuzfRERERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEgjIiIiIiIiIiLyAxNpREREREREREREfmAijYiIiIiIiIiIyA9MpBEREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvIDE2lERERERERERER+YCKNiIiIiIiIiIjID0ykERERERERERER+YGJNCIiIiIiIiIiIj8wkUZEREREREREROQHJtKIiIiIiIiIiIj8wEQaERERERERERGRH5hIIyIiIiIiIiIi8gMTaURERERERERERH5gIo2IiIiIiIiIiMgPTKQRERERERERERH5gYk0IiIiIiIiIiIiPzCRRkRERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEgjIiIiIiIiIiLyAxNpREREREREREREfmAijYiIiIiIiIiIyA9MpBEREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvKDbKorMBVEUQQAWCyWqa4KERERERERERFNA3q9HoIgDLvMSZlIa2trAwDExcVNdVWIiIiIiIiIiGgaaG1thcFgGHYZQexpnnUScblcqK6u9ivTSMOzWCyIi4tDRUXFiBsbzXxc3ycfrvOTC9f3yYfr/OTDdX5y4fo++XCdn1y4vgOPLdKGIJFIEBsbO9XVmFUMBgN33JMI1/fJh+v85ML1ffLhOj/5cJ2fXLi+Tz5c5ycXru/JxckGiIiIiIiIiIiI/MBEGhERERERERERkR+YSKNxUSqVeOCBB6BUKqe6KjQJuL5PPlznJxeu75MP1/nJh+v85ML1ffLhOj+5cH1PjZNysgEiIiIiIiIiIqLRYos0IiIiIiIiIiIiPzCRRkRERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEijUXv22WexcOFCGAwGGAwGrFixAps2bZrqatEEq6qqwne+8x2EhoZCo9Fg8eLFOHjw4FRXiyZIW1sb7rnnHiQkJECtVmPlypXYv3//VFeLAmT79u246KKLEB0dDUEQ8P7773tfs9vt+PnPf44FCxZAq9UiOjoa3/3ud1FdXT2ldabxGW6dA8CNN94IQRD6/Zx++ulTVl8an5HWd3t7O+68807ExsZCrVZj3rx5ePbZZ6esvjQ+jz76KE499VTo9XqEh4fj0ksvRV5eXr9l3n33XWzYsAFhYWEQBAFHjhyZsvrS+Pmzzvv6wQ9+AEEQ8PTTT09qPSkw/FnfA4/hPT9PPPHElNV7NmMijUYtNjYWjz32GA4cOIADBw5g/fr1uOSSS3DixImprhpNkJaWFqxatQpyuRybNm1CdnY2nnzySQQFBU111WiC3HLLLdiyZQv+85//4NixYzj33HNx9tlno6qqaqqrRgFgtVqxaNEi/O1vfxv0WkdHBw4dOoTf/OY3OHToEN59913k5+fj4osvnpK6UmAMt857nHfeeaipqfH+fPrpp5NaRwqckdb3j3/8Y3z22Wf473//i5ycHPz4xz/GXXfdhQ8++GDS60rjt23bNtxxxx3Ys2cPtmzZAofDgXPPPRdWq9W7jNVqxapVq/DYY49NaV0pMPxZ5z3ef/997N27F9HR0VNSVxo/f9Z33+N3TU0NXnjhBQiCgCuuuGJK6z5bCaIoilNdCZr5QkJC8MQTT+Dmm2+e6qrQBPjFL36Bb775Bjt27JjqqtAk6OzshF6vxwcffIALLrjA+/zixYtx4YUX4uGHH57S+lFgCYKA9957D5deeumQy+zfvx+nnXYaysrKEB8fP6n1o8Dztc5vvPFGmM3mQS2XaObztb4zMzNx9dVX4ze/+Y33uaVLl+L888/HQw89NEU1pUBpaGhAeHg4tm3bhrVr1/Z7rbS0FElJSTh8+DAWL148ZXWkwBpqnVdVVWH58uXYvHkzLrjgAtxzzz245557prSuNH7D7eM9Lr30UrS1teHLL7+c9PqdDNgijcbF6XTi9ddfh9VqxYoVK6a6OjRBPvzwQyxbtgxXXXUVwsPDccopp+Cf//znVFeLJojD4YDT6YRKper3vFqtxs6dO6esXjR1WltbIQgCW6HOcl9//TXCw8ORlpaGW2+9FfX19VNdJZogq1evxocffoiqqiqIooitW7ciPz8fGzZsmOqqUQC0trYCnhvddHLwtc5dLheuv/563HvvvcjIyJjC2lGgjbSP19XV4ZNPPmEjlwnERBqNybFjx6DT6aBUKnHbbbfhvffew/z586e6WjRBiouL8eyzzyI1NRWbN2/GbbfdhrvvvhuvvPLKVFeNJoBer8eKFSvw0EMPobq6Gk6nE//973+xd+9e1NTUTHX1aJJ1dXXhF7/4Ba699loYDIaprg5NkI0bN+LVV1/FV199hSeffBL79+/H+vXr0d3dPdVVownwl7/8BfPnz0dsbCwUCgXOO+88PPPMM1i9evVUV43GSRRF/OQnP8Hq1auRmZk51dWhSTDUOv/DH/4AmUyGu+++e0rrR4Hlzz7+8ssvQ6/X4/LLL5/0+p0sZFNdAZqZ0tPTceTIEZjNZrzzzju44YYbsG3bNibTZimXy4Vly5bhkUceAQCccsopOHHiBJ599ll897vfnerq0QT4z3/+g5tuugkxMTGQSqVYsmQJrr32Whw6dGiqq0aTyG6345prroHL5cIzzzwz1dWhCXT11Vd7H2dmZmLZsmVISEjAJ598whPxWegvf/kL9uzZgw8//BAJCQnYvn07br/9dkRFReHss8+e6urRONx5553IyspiC/KTiK91fvDgQfz5z3/GoUOHIAjClNaPAsufffyFF17AddddN6h3CQUOW6TRmCgUCsyZMwfLli3Do48+ikWLFuHPf/7zVFeLJkhUVNSgJOm8efNQXl4+ZXWiiZWSkoJt27ahvb0dFRUV2LdvH+x2O5KSkqa6ajRJ7HY7vvWtb6GkpARbtmxha7STTFRUFBISElBQUDDVVaEA6+zsxP3334+nnnoKF110ERYuXIg777wTV199Nf74xz9OdfVoHO666y58+OGH2Lp1K2JjY6e6OjQJhlrnO3bsQH19PeLj4yGTySCTyVBWVoaf/vSnSExMnNI609j5s4/v2LEDeXl5uOWWWya9ficTtkijgBBFkd0/ZrFVq1YNmmI5Pz8fCQkJU1YnmhxarRZarRYtLS3YvHkzHn/88amuEk2CniRaQUEBtm7ditDQ0KmuEk2ypqYmVFRUICoqaqqrQgFmt9tht9shkfS/ny6VSuFyuaasXjR2oijirrvuwnvvvYevv/6aN71OAiOt8+uvv35Q69INGzbg+uuvx/e+971Jri2N12j28X//+99YunQpFi1aNKl1PNkwkUajdv/992Pjxo2Ii4tDW1sbXn/9dXz99df47LPPprpqNEF+/OMfY+XKlXjkkUfwrW99C/v27cPzzz+P559/fqqrRhNk8+bNEEUR6enpKCwsxL333ov09HSefM0S7e3tKCws9P5dUlKCI0eOICQkBNHR0bjyyitx6NAhfPzxx3A6naitrQU8g9oqFIoprDmN1XDrPCQkBL/73e9wxRVXICoqCqWlpbj//vsRFhaGyy67bErrTWMz3PqOj4/HGWecgXvvvRdqtRoJCQnYtm0bXnnlFTz11FNTWm8amzvuuAOvvfYaPvjgA+j1eu93ttFohFqtBgA0NzejvLwc1dXVAOC9QRoZGYnIyMgprD2NxUjrPDQ0dNBNMLlcjsjISKSnp09RrWms/NnHAcBiseCtt97Ck08+OYW1PUmIRKN00003iQkJCaJCoRBNJpN41llniZ9//vlUV4sm2EcffSRmZmaKSqVSnDt3rvj8889PdZVoAr3xxhticnKyqFAoxMjISPGOO+4QzWbzVFeLAmTr1q0igEE/N9xwg1hSUuLzNQDi1q1bp7rqNEbDrfOOjg7x3HPPFU0mkyiXy8X4+HjxhhtuEMvLy6e62jRGw61vURTFmpoa8cYbbxSjo6NFlUolpqeni08++aTocrmmuuo0BkN9Z7/44oveZV588UWfyzzwwANTWncaG3/W+UAJCQnin/70p0mtJwWGv+v7ueeeE9VqNc/ZJ4EgulcMERERERERERERDYOTDRAREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvIDE2lERERERERERER+YCKNiIiIiIiIiIjID0ykEREREZ1ETCYTBEEY9ud73/veVFeTiIiIaFqSTXUFiIiIiGhyOJ1OfPTRRz5fKysrw0033QSXy8VEGhEREdEQBFEUxamuBBERERFNnYqKCpxxxhmorq7GBx98gA0bNkx1lYiIiIimJXbtJCIiIjqJVVVVYd26daiursZ7773HJBoRERHRMNi1k4iIiOgkVV1djXXr1qGiogLvvPMONm7cONVVIiIiIprWmEgjIiIiOgnV1tZi/fr1KC0txdtvv40LL7xwqqtERERENO2xaycRERHRSaaurg7r169HcXEx3nzzTVx88cVTXSUiIiKiGYEt0oiIiIhOIg0NDTjrrLNQUFCAN954A5deeulUV4mIiIhoxmCLNCIiIqKTRGNjI9avX4+8vDy89tpruPzyy6e6SkREREQzClukEREREZ0EmpqacPbZZyMnJwevvvoqrrrqqqmuEhEREdGMI4iiKE51JYiIiIho4litVqxZswaHDx/G3XffjW9/+9s+l9PpdMjMzJz0+hERERHNFEykEREREc1yX3zxBc4555wRl7vmmmvwv//9b1LqRERERDQTMZFGRERERERERETkB042QERERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEgjIiIiIiIiIiLyAxNpREREREREREREfmAijYiIiIiIiIiIyA9MpBEREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvLD/wMHNIO9W2+kAQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -537,7 +498,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 18, "id": "f9bcaaa4-3bad-46fd-ac51-c3adf2a6a9e0", "metadata": {}, "outputs": [], @@ -547,17 +508,22 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "id": "42587393-219a-429e-8774-c84872304c1d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[n ⟶ p + e⁻ + 𝜈, p + e⁻ ⟶ n + 𝜈]" + "[Co56 + e⁻ ⟶ Fe56 + 𝜈,\n", + " Co56 ⟶ Ni56 + e⁻ + 𝜈,\n", + " Fe56 ⟶ Co56 + e⁻ + 𝜈,\n", + " n ⟶ p + e⁻ + 𝜈,\n", + " Ni56 + e⁻ ⟶ Co56 + 𝜈,\n", + " p + e⁻ ⟶ n + 𝜈]" ] }, - "execution_count": 19, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -569,21 +535,33 @@ }, { "cell_type": "code", - "execution_count": 34, - "id": "2dcf2c8b-2dc7-4aa9-bb80-ec6f91244f5c", + "execution_count": 21, + "id": "e227dc53-80a8-4967-98e6-6d174acc06ec", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "(Ni56 + e⁻ ⟶ Co56 + 𝜈, Fe56 ⟶ Co56 + e⁻ + 𝜈)" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" + "name": "stderr", + "output_type": "stream", + "text": [ + "/raid/zingale/development/pynucastro/pynucastro/rates/derived_rate.py:85: UserWarning: C12 partition function is not supported by tables: set pf = 1.0 by default\n", + " warnings.warn(UserWarning(f'{nuc} partition function is not supported by tables: set pf = 1.0 by default'))\n", + "/raid/zingale/development/pynucastro/pynucastro/rates/derived_rate.py:85: UserWarning: N13 partition function is not supported by tables: set pf = 1.0 by default\n", + " warnings.warn(UserWarning(f'{nuc} partition function is not supported by tables: set pf = 1.0 by default'))\n", + "/raid/zingale/development/pynucastro/pynucastro/rates/derived_rate.py:85: UserWarning: N14 partition function is not supported by tables: set pf = 1.0 by default\n", + " warnings.warn(UserWarning(f'{nuc} partition function is not supported by tables: set pf = 1.0 by default'))\n" + ] } ], + "source": [ + "net.write_network()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2dcf2c8b-2dc7-4aa9-bb80-ec6f91244f5c", + "metadata": {}, + "outputs": [], "source": [ "ni56_cap = weak_lib.get_rate_by_name(\"ni56(,)co56\")\n", "ni56_cap_r = weak_lib.get_rate_by_name(\"fe56(,)co56\")\n", @@ -592,22 +570,10 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "id": "391a9630-9efa-4842-8f36-fb88d0e26b5f", "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "'TabularRate' object has no attribute 'modify_products'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[35], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mni56_cap\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodify_products\u001b[49m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfe56\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 2\u001b[0m ni56_cap_r\u001b[38;5;241m.\u001b[39mmodify_prducts(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mni56\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 3\u001b[0m ni56_cap, ni56_cap_r\n", - "\u001b[0;31mAttributeError\u001b[0m: 'TabularRate' object has no attribute 'modify_products'" - ] - } - ], + "outputs": [], "source": [ "ni56_cap.modify_products(\"fe56\")\n", "ni56_cap_r.modify_prducts(\"ni56\")\n", @@ -624,42 +590,20 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "id": "8447e10c-3280-4bc3-a5cd-b4548cfad99a", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "91" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "len(net.get_rates())" ] }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "id": "e7a88fb1-332f-42ad-95b6-283fb024e7ef", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "29" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "len(net.unique_nuclei)" ] From a0a3983e3d9e1bd3c24f0c04fa61c30983af1d70 Mon Sep 17 00:00:00 2001 From: Michael Zingale Date: Thu, 14 Nov 2024 09:41:46 -0500 Subject: [PATCH 4/8] add a init_species_all_equal option to burn_cell if this is True, then we don't need to specify the mass fractions individually, instead they are all initialized to X = 1/NumSpec --- unit_test/burn_cell/GNUmakefile | 2 +- unit_test/burn_cell/_parameters | 2 ++ unit_test/burn_cell/burn_cell.H | 11 +++++++---- 3 files changed, 10 insertions(+), 5 deletions(-) diff --git a/unit_test/burn_cell/GNUmakefile b/unit_test/burn_cell/GNUmakefile index 8372650eb..394010020 100644 --- a/unit_test/burn_cell/GNUmakefile +++ b/unit_test/burn_cell/GNUmakefile @@ -24,7 +24,7 @@ EOS_DIR := helmholtz # This sets the network directory NETWORK_DIR := aprox13 - +SCREEN_METHOD := screen5 CONDUCTIVITY_DIR := stellar INTEGRATOR_DIR = VODE diff --git a/unit_test/burn_cell/_parameters b/unit_test/burn_cell/_parameters index 9047a84f8..9dc27e92e 100644 --- a/unit_test/burn_cell/_parameters +++ b/unit_test/burn_cell/_parameters @@ -19,3 +19,5 @@ density real 1.e7 temperature real 3.e9 skip_initial_normalization bool 0 + +init_species_all_equal bool 0 diff --git a/unit_test/burn_cell/burn_cell.H b/unit_test/burn_cell/burn_cell.H index 71f379471..ad7771e7b 100644 --- a/unit_test/burn_cell/burn_cell.H +++ b/unit_test/burn_cell/burn_cell.H @@ -21,12 +21,15 @@ void burn_cell_c() // Make sure user set all the mass fractions to values in the interval [0, 1] for (int n = 1; n <= NumSpec; ++n) { - massfractions[n-1] = get_xn(n); + if (unit_test_rp::init_species_all_equal) { + massfractions[n-1] = 1.0_rt / static_cast(NumSpec); + } else { + massfractions[n-1] = get_xn(n); - if (massfractions[n-1] < 0 || massfractions[n-1] > 1) { - amrex::Error("mass fraction for " + short_spec_names_cxx[n-1] + " not initialized in the interval [0,1]!"); + if (massfractions[n-1] < 0 || massfractions[n-1] > 1) { + amrex::Error("mass fraction for " + short_spec_names_cxx[n-1] + " not initialized in the interval [0,1]!"); + } } - } // Echo initial conditions at burn and fill burn state input From e19e45267500dc4ae053d7921d83f03bca63dd47 Mon Sep 17 00:00:00 2001 From: Michael Zingale Date: Thu, 14 Nov 2024 09:45:47 -0500 Subject: [PATCH 5/8] update --- .../neutron_approximation.ipynb | 76 +------ networks/He-C-Fe-group-simple/newnet.png | Bin 146964 -> 146951 bytes .../partition_functions.H | 214 +++++++++--------- 3 files changed, 115 insertions(+), 175 deletions(-) diff --git a/networks/He-C-Fe-group-simple/neutron_approximation.ipynb b/networks/He-C-Fe-group-simple/neutron_approximation.ipynb index 2275b1a4c..f2028a284 100644 --- a/networks/He-C-Fe-group-simple/neutron_approximation.ipynb +++ b/networks/He-C-Fe-group-simple/neutron_approximation.ipynb @@ -394,7 +394,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAKpCAYAAAB5OgHrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddZRcRd7G8W/LuGsyGncnCSEJbsFdXtxdF1hsYRdYdFl2cVkkuBMIFhIgJBB3dx9317b3j+6+053pmcyE6MzzOSfn3Fu3bt3qgb+e86sqk8vlciEiIiIiIiIiIiKtMu/vCYiIiIiIiIiIiBwMFKSJiIiIiIiIiIi0gYI0ERERERERERGRNlCQJiIiIiIiIiIi0gYK0kRERERERERERNpAQZqIiIiIiIiIiEgbKEgTERERERERERFpAwVpIiIiIiIiIiIibdApgzSXy0VlZSUul2t/T0VERERERERERA4SnTJIq6qqIiYmhqqqqv09FREREREREREROUh0yiBNRERERERERESkvRSkiYiIiIiIiIiItIGCNBERERERERERkTZQkCYiIiIiIiIiItIGCtJERERERERERETaQEGaiIiIiIiIiIhIGyhIExERERERERERaQMFaSIiIiIiIiIiIm2gIE1ERERERERERKQNFKSJiIiIiIiIiIi0gYI0ERERERERERGRNlCQJiIiIiIiIiIi0gYK0kRERERERERERNpAQZqIiIiIiIiIiEgbKEgTERERERERERFpAwVpIiIiIiIiIiIibaAgTUREREREREREpA0UpImIiIiIiIiIiLSBgjQREREREREREZE2UJAmIiIiIiIiIiLSBgrSRERERERERERE2kBBmoiIiIiIiIiISBsoSBMREREREREREWkDBWkiIiIiIiIiIiJtoCBNRERERERERESkDRSkiYiIiIiIiIiItIGCNBERERERERERkTZQkCYiIiIiIiIiItIGCtJERERERERERETaQEGaiIiIiIiIiIhIGyhIExERERERERERaQMFaSIiIiIiIiIiIm2gIE1ERERERERERKQNFKSJiIiIiIiIiIi0gYI0ERERERERERGRNlCQJiIiIiIiIiIi0gbW/T0BEREREREREZEDgcvlwuZw4XC5MAFBFjMWs2l/T0sOIArSRERERERERKTTqqi3saWkluKaRkpqG2mwO41nZhPEhgWREB5ManQombFhmBWsdWoK0kRERERERESk08muqGNNfhV5VQ0t9nG6oLTWRmmtjY3FNYQFmembGMnALlEEW7VbVmekIE1EREREREREOo16m4P5WeVsK61t97t1NifL8yrZWFzD2O5xpMeE7ZU5yoFL8amIiIiIiIiIdApF1Q1MXp2/WyGar1qbg183FrNgRxkul2uPzU8OfArSRERERERERKTDK6hqYNqGIup99kD7s9YWVjN7W6nCtE5EQZqIiIiIiIiIdGjldTZ+3VSE3bnnA6/NJbUsyq7Y4+PKgUlBmoiIiIiIiIh0WE6Xi1lbS7E59l7V2JqCKvIq6/fa+HLg0GEDIiIiIiIiItJhrc6voqS2kYtHpFFS2wjAyrwqcivrSYwIZkRaDCYgp6Ke1QVVu/2dOdtKOWNQV4IsqlnqyBSkiYiIiIiIiEiH1OhwsiKvEoDqRgdT1xcZz8wmGJYSzfRNxTj2wJLP6kYHG4qqGdQ1+k+PJQcuxaQiIiIiIiIi0iFtKakx9kWLCLJwUr8kjugRT4jFTFJECHani6N7JXBCnyTiwoL+9PfWF9Xo4IEOThVpIiIiIiIiItIhbSiqMa4nrcyjweGkd0IEI9JiKKhuIDYsiB/WFhARbGFst3h+Wl8IwIR+SSRFhOD0CcUWZ1ewvqi61e9VNdjJq2ogNTp0L/4q2Z8O+oq0p556CpPJxJ133rm/pyIiIiIiIiIiB4h6m4OyOptx3+BwArC1rJb48CAa7E4KqxuwO11U1NsJtpj83l+cXc7HS3OMf7sK0bzydehAh3ZQV6QtXLiQ//3vfwwdOnR/T0VEREREREREDiDegwUArGYTDqcLF9A1MoTKBjvFNQ0MTYkCINRqpq2HelrNJkamx5AeE4bFbCK3op75WWXGqaAltbZdjiEHr4O2Iq26uppLLrmEN998k7i4uP09HRERERERERE5gJT6BFrRoVZOHdCFk/olMbBrFEtzKmh0uNhUXMtJ/ZI5tncii7LK2zTu+O7xBFvMfLsmn0kr8zCbYExmUy5R6hPgScdz0Fak3XLLLZx66qkcf/zxPP744632bWhooKGhwbivrKzcBzMUERERERERkf2l0bOUE0+o9v3agmZ9NpXUsKmkplk7wCHpMQxPjTHuv1iRi8VsIjMujM+W5RoVaEtzKzlzUFdmby3F5bOEVDqmgzJI+/TTT1myZAkLFy5sU/+nnnqKRx99dK/PS0REREREREQODM4/eXjmkuwK1hb674sWExqE2WTi3CEpzfqHBVmotTlwucDlcmEymZr1kYPfQRekZWVlcccddzBt2jRCQ9t2CsYDDzzAXXfdZdxXVlaSkZGxF2cpIiIiIiIiIvtTkHnPB1k1jXacLhefr8jF0UJSZzWbFKJ1YAddkLZ48WIKCwsZOXKk0eZwOPj99995+eWXaWhowGKx+L0TEhJCSEjIfpitiIiIiIiIiOwP0aF7PvKotzvJKq9jTGYsi7MraLA7CbWaSY4MYUd5HQAxe+G7cuA46P7rHnfccaxcudKv7aqrrqJ///7cd999zUI0EREREREREel8EiKC98q4s7aWMjw1hlMHdCHEaqbe5mBbaa0RpO2t78qB4aAL0qKiohg8eLBfW0REBAkJCc3aRURERERERKRzig6xEmIx79bm/1PXF7X4zO50sSi7nEXZgU/5TFSQ1qGZ9/cERERERERERET2NJPJRM+E8H36TavZRLe4fftN2bcOuoq0QGbMmLG/pyAiIiIiIiIiB5h+yZHNTt7cm3omhBNsUc1SR6b/uiIiIiIiIiLSIcWEBpERG7ZPvmU2wcDkqH3yLdl/FKSJiIiIiIiISId1WGYcwRbTXv/OsJQYYsKC9vp3ZP9SkCYiIiIiIiIiHVZ4sIVDM+L26jcSwoMY3FXVaJ2BgjQRERERERER6dB6JUbstaArMtjCMb0TMZv3ftWb7H8K0kRERERERESkwzskLYYhezhMiwqx4py9ktmf/IHL5dqjY8uByeTqhP+lKysriYmJoaKigujo6P09HRERERERERHZR7aV1jJvRxkNduefGqdnQjhbPvqND//+GQDJmYlc9vfzOfaSIwgO0V5pHZWCNAVpIiIiIiIiIp1Knc3BoqxytpTUgKl9SzKjQ6zUzF/LBze9QVBIEA21DX7P47vGcsYtJ3H6jScSnaB90zoaBWkK0kREREREREQ6pX/f8hZ5duhx0kiiMhJb7Gc1m+gaGUzPmBC6J0dzSuhF2G2OVscODQ/h5heu4uRrjtsLM5f9xbq/JyAiIiIiIiIisq85nU4WTJpHWUEF6z6YDsFBxPdLI7FvGpGJUZTlleOsb+DJT+7A2mjj/1Kvp6GukUv/fh7WYOsug7T62gY+fuIrBWkdjII0EREREREREel0tqzYTllBBQDdB2eyYdFm8hduhJIKrN2TWT99FQBBjTbmfruIhrpGAD7855ckZyRSX9PQ6vgAp980YS//CtnXdGqniIiIiIiIiHQ6i6YuN67jusQY1wld40hMizfui7JLKckvb3rRBUVZJbsc/9qnL+GCv565J6csBwAFaSIiIiIiIiLS6ayatda4Npub4pGuPZJJTEsw7otzStm+Osvv3bZsNz9n8kIc9taXf8rBR0GaiIiIiIiIiHQqTqeTNXPWAxCTGEVlaZXxLK1vKknpTUFawbZCtq7c0baBTRAVFwnAmrkb+Oxfk/f01GU/U5AmIiIiIiIiIp1K1vpcqspqABg4rh+leU1LN3sO7UZ63xTjfvvabLavyW7TuEkZCTz+/f2YzSYA3n/kczYu2bLH5y/7j4I0EREREREREelUvNVoAIPG9ferSOs7sieZA9KM+42Lt2BrsLU4VnhMuHFdtKOE7Wtz+L/7zwbAYXfw9GUv0lC364MJ5OCgIE1EREREREREOpXVs32DtL7UV3uCLhMkpSeQkBpPeFQYALmb8gOOcdT5Y/nbJ3cyuew9jjx/rNH+2p0Tufihc+lzSA8AdqzN4e0HPt67P0j2GQVpIiIiIiIiItKprJnrDtKsQRZ6DMs0DgUIDgkCwGQyGVVppfnlnPuXUzn8nDEcdf44Y4xB4/tz9IXjAbjvvVsJCrECUFddz5v3fsh9799GcKh7vK9f/JElv67cx79S9gYFaSIiIiIiIiLSaVQUV5K1PheAPiN7kre50HgWHt20TDPDZ3nn8ZcexT++vIcL7zvTaFs7f4NxHRwazCUPn2fcf//6NFJ6duHapy812v591SvUVtXtpV8l+4qCNBERERERERHpNNbMbQrABo7tx6alW437mMQo4zqzf7pxvWOt+7CBHkMyjSqzdfM3+Y17yYPnEhXvPrHTYXfwyh0TOfPWkzjk+CEAFGWX8PETX+213yX7hoI0EREREREREek0/A4aGN+fouxS4z46wTdIa6pI27EuBwBrkJW+o3oBkLelgLLCCr+xr3zsQuN62ru/Ybc7uPP1GwjyLBn96r/fk70xb6/8Ltk3FKSJiIiIiIiISKexYckW43rAYX2oKqk07iNjI4xr35M7vUEawIAxfYzrdfM3+o19xs0nERHrXh5qtzl44+73SenZhQvuOcNoe/2ud/f4b5J9R0GaiIiIiIiIiHQaWZ5QLCo+koSUOCpLqo1nkXFNQVpKzy4EBbsPEMha2xSk9W8lSAO49KGmvdKmvPULdrudC+8/i6T0BADm/7CE+T8s3uO/S/YNBWkiIiIiIiIi0inUVddRlFUCQEb/NEwmE1VlTUFatM8eaRarhbQ+KQBkb8jFbrPDTkHaRp/91bzOufNUwqPCALA12HnngY8Jiwjl+mcvM/q8dtd7NDbY9spvlL1LQZqIiIiIiIiIdAre0zoBMvulAlBTXmu0xSZG+/XvMTQTPEsyNy/fDkBSegKh4SEA5G3Ob/YNs9nMBT6ne05+5SecTidHXTCOIUcOACBnYx5fv/DjHv51si8oSBMRERERERGRTiFrXVOQluE5TKC2qs5oi0mO8es/aFx/43r17HUAmEwmUnp1ASB/ayEOu6PZdy66/2xCI9xhW2O9jXf//ikmk4lbXrgas9kEwEePf0lxbmmzd+XApiBNRERERERERDqFLJ9DAzIHpANQV1NvtMV3jfXrP2h8P+N6lSdIA0jt3RU8lWqFWcXNvmM2mznvrtON+0nP/4DT6aTXsO6cesOJ7u9W1/P2Ax/toV8m+4qCNBERERERERHpFHasyzauM/q7l3Y21jYabQmpcX79ewzJNPY7Wz17PS6XC4C0Xl2NPnmbCwJ+67J/nE9IWDAADbWNfPTEJACufOxCouIjAfjlg9/Z6HOKqBz4FKSJiIiIiIiISKfgXdoZFGyla/dkABrqm4K0RM/Jml4Wi4UBY/sCUJpXRv62QgBSfIK0nE3N90nDU5V25m0nG/dfPDsZp9NJdEIUlz9ygdH+0RNf7aFfJ/uCgjQRERERERER6fAcdgc5G/MASOuTgsVqAcDeYDf6RHsqxXwNGuezvHOWe3mnd2knLRw44HXV4/9HUEgQeJZyfvHvbwE45drjjOq32V8vYOuqHX/698m+oSBNRERERERERDq8wh3F2BrdoZl3WSeefc4AMLmryHY2+HDfAwfWA5DqOWwAILeVIM1qtXLaDccb95889TUAwaHBXHBP08meHz85aXd/luxjCtJEREREREREpMMrKyg3rhPTmpZwOh1OACyWwBFJ/zF9MHueeU/uTMpIwBrkrmhraWmn17X/ugxrsBWAmopaJr3wAwCnXH88sUnRAMz8bA5Z63NaHUcODArSRERERERERKTDKy+sNK5jk2MAcDqdxgECliBrwPfCIkLpNbw7ANtWZ1FVVo3FYiG5WxIARVklrX43ODiIk646xrj/4LEvAAgND+Fcz8meLpeLT57++k/+QtkXFKSJiIiIiIiISIdXXlhhXHuDtOryGqMtKDhwkAYweHzT8s41c9zLO737qdVW1uF0Olv99k3/vdLYk626rIbv3/gZgDNunkBUXAQAv374B3lbAp8AKgcOBWkiIiIiIiIi0uGV+QVp7iWVxdlN1WTBYcEtvjvkyIHG9fwflwIQEesOwFwuF7WVda1+Ozg0mOMvO9K4f/fhTwAIjwrj7DtOBc8S08+e+abdv0v2LQVpIiIiIiIiItLhBapIK84tNdpCwlsO0kaeMNSoWJv77UJcLheRseHGc9/Ktpbc+tLVWKzuGKaiuIpp7/0GwNm3n0J4dBgAU9/9jcKs4t34dbKvKEgTERERERERkQ6vvKhpj7Q4T5BWmtd0AEFoeEiL74ZHhTH8uCEAFOeUsmHxFiJjIoznbQnSQsNDOeqCccb9Ww98DEBkbARn3XoyeE4QnfT8D+38ZbIvKUgTERERERERkQ6vPMDSzvKCpjZvVVhLxp852rieO3mhsbQToKa8tk1zuP3V64wTQMvyy/nts9kAnHPnqQSFBAHw8/szaWywtfFXyb6mIE1EREREREREOjxvkBYSFkxoRCgAlSVVxvMInwqzQA47fZRxPefbhUTGtq8iDSAiOpzxZx9q3P/vnvcBiEmM5sjzDjPmNPvrBW38VbKvKUgTERERERERkQ6vwrO0MyYpGpPJ5G7zCdK8p2e2JCEljgGH9QFg68odOOx241lbgzSAu/53Ayaz+/vFOaVsWbENgJOvPc7o8+Nbv7R5PNm3FKSJiIiIiIiISIfXWO9eLhnisxdaVWm1cR0VH7XLMcad0bS8M3tjnnHd1qWdAJGxkUYgh89eaUOPHEh63xQAlk1fRc6mvBbHkP1HQZqIiIiIiIiIdHgOuwMAi6UpCvENwKITInc5xrizmpZlblq61biuq65v11yufOz/jOulv6zA6XRiMpk4+ZqmqrQpb/3arjFl31CQJiIiIiIiIiIdntPhBDA2+weorawzrmM9J3m2JrN/mlE1tmNtjtHuO2ZbjDh2CBGx4eA5qfO7V6cCcMIVR2MNsgAw7b0Z2G32VseRfU9BmoiIiIiIiIh0eIGCNN+gynsAwa6MO9NdleZyuoy29gZpAMf+3+HG9Vcv/ABAXHIMYz2ng5YVVDD3u8XtHlf2LgVpIiIiIiIiItLheYM0i7UpCrEGWY1rW0Njm8bxnq7pa3eCtCsfb1rembe5gMIdRQCccu3xRvsUHTpwwFGQJiIiIiIiIiIdmsvlwumpIPMNvSzBFuO6obZtQVrfUb3oMSTTr82yG0FadHwU3QdlGPdvP+g+dOCQ44fQtXsSAIumLjcCNjkwKEgTERERERERkQ7N6XQa175BWpBPRVpjXduCNJPJ5Fc1BmC27l68cvGD5xjXcyYvdI9lNjPhqmPBEwD+/uW83Rpb9g4FaSIiIiIiIiLSoXmXdbJTkGYN9gnS6tsWpAEcd+kRxqEAAC6foK49jrnocELCggGor2ng9y/nAnDk+WONPnO+XbhbY8veoSBNRERERERERDo0h70p6PJdhmkNaQrSGuptbR4vKi6SPiN7Gfdblm/f7bkddvoo4/qjJ74Cz+mgGf1SAVg9ax0VxZW7Pb7sWQrSRERERERERKRDC/INzHyWcAb5VKTZ2lGRBjB4fD/jetXsdbs9t+ueucS43rJiOzWVtQCMPcN9eqfT6WLe9zq980ChIE1EREREREREOjSLxUJ4dBgA1eW1RntQSJBx3diOijSApIxE4zp7Qx7ZG3J3a25duiUbhwvggvf+/ikA488abfTx7p8m+5+CNBERERERERHp8CJjIwCoLqs22oL/RJC283LLKW/9uttzO+v2U4zrXz78A4D+Y/oQ1yUGgMXTllNf27Db48ueoyBNRERERERERDo8I0jzqUgL9mz0z+4EaUX+Qdq092bQ2NC+MbzOvv0ULFb34QVVpdWs+H01ZrOZw05z75/WUNfIkp9X7NbYsmcpSBMRERERERGRDi8iNhwAW4PNOKHTd2mnrZ0hWPlOQVp5USU/vzdjt+ZmNpsZdvQg437iQ1reeaBSkCYiIiIiIiIiHZ63Ig2gurwGgOBQnyCt0d6u8coLK5q1ffr019ht7RvH65qnmw4dWDN3A42NNkYcN4TQiBAA5n2/CIfDsVtjy56jIE1EREREREREOjz/IM29vDPEZ2mnvWH3grTw6DBGTRgGQP62IqZ/PGu35tf3kJ7EJrv3RHM6nHzxr8kEhwYz+qThAFQUV7F27obdGlv2HAVpIiIiIiIiItLhBapIC/KrSGvn0s5C99LO2OQYLvnbuUb7J09N2u3KsQlXHWNcf/fGNADGnDrSaFs+Y81ujSt7joI0EREREREREenwfIO0qlL3yZ1+FWntWJJpa7QZYVxscgyDDx9g7HGWvSGP37+Yt1tzvPThczGZTQCU5JSxfW02Q44YYDxfPWfdbo0re46CNBERERERERHp8OJT4ozrwh3FAISEhRht9sa2V5FVFFcZ13HJ0QBc7FOV9vGTX+F0Ots9x9DwUPqO6mXcv33/R6T07EJcF/eSz9Vz1muftP1MQZqIiIiIiIiIdHipvbsa13mb8wEI3s2KtJLcMuM6Nskdco04djADx/YFYNuqLOZ+u2i35nnloxca14umLcNkMjFofH8Aaivr2L46e7fGlT1DQZqIiIiIiIiIdHhpPkFaridICw1vCtIctrZXemWvzzWuvQGdyWTyq0r76PEvcblc7Z7nqAnDCY8KA8DWYGfRz8sZ7AnSAFbP1vLO/UlBmoiIiIiIiIh0eInp8ViDLADkbHIHaSHhPks77W0P0rLW5RjXGf3TjOtDTx5Bn0N6ALBxyVYW/Lhkt+Y6+Iim4Oy7V6cyaHw/436VgrT9SkGaiIiIiIiIiHR4FouFlJ5dAMjbXIDL5SLUJ0hrT0XajnVNyyszBzQFaTtXpb3x1w/atWTU65TrTjCuV/6xlt4jehgHI6yevb7d48meoyBNRERERERERDqFlF7uIK2hrpGSvDJCInyCtHZVpLmXdgYFW+naPdnv2fizDjX2Sstal8M3L01p9zzHnj4Ss8Ud2VSVVlNZUkX/MX0AKNheRFF2SbvHlD1DQZqIiIiIiIiIdAqpvXwPHCggLDLUuHfY23bKpsPuIGdjHgBpfVKwWC1+z00mE7e8eDUmkwmADx79gtL8soBjtcRsNpPRL9W4/+bFKQwa17S8U/uk7T8K0kRERERERESkU/AN0nI25RO2GxVpeVsLsTW6l2tm9E8N2KfvyF6cfM2xANRW1fHOg5+0e65HnHuYcT37mwUMPtz3wAEt79xfFKSJiIiIiIiISKeQ6nNyZ/b6HGKTY4z7xnpbm8bwPWggs396i/2ueuIiImLCAZj67m+sW7CxXXM987aTm+a6MY9+h/Y27jct29qusWTPUZAmIiIiIiIiIp1Cz6HdjOsNi7cQHBqMyexegtlY39imMVo6sXNnsUkxXPHohcb9K7e/g9PZtuWjALGJ0cQkRgHgdDhZNn0VCalxAOxYm7OLt2VvUZAmIiIiIiIiIp1CUnoCiWnxAKxfsAmHw2GchulyuqitrtvlGNvWZBnXLS3t9Dr9phPpPigDgHULNvHz+zPbNd+hRw8yrn9861cyB7gr4CpLqigvqmjXWLJnKEgTERERERERkU7De/plbVUdWetyjeWXAFuXb9/l++vmbwLAYrXQbWDLSzsBrEFWbnr+KuP+7Qc+oqaips1zPfPmk4zrtfM2kOlTAaeqtP1DQZqIiIiIiIiIdBoDPEEannAqJjHauN+8ovUgrbKkylja2eeQHoSEhbTaH+CQ44ZwxLljACgrqODtBz5u81yHHT0Ia7AVgNrKOqKTooxnvktMZd9RkCYiIiIiIiIinUZ/vyBtIwmepZ54DiBozZq5G4zrQeP6tfmb1z97ubGE9LvXp7Hwp6VtfrfH4EzjevOypqBPFWn7h4I0EREREREREek0+ozsidnijkNWzlpLfXW98Sx/a1Gr766es964HtiOIK1r92Suf/Zy4/7f17xGZUlVm949+sJxxvXGxZuN6x3rstv8fdlzFKSJiIiIiIiISKfgcDjYsnw70QnuJZLZ63NZ+cda43lRdkmr76+Zu3tBGp6DB0ZNGAZAaV4Zz9/0P1wu1y7fO+2mE5vml1Vi7OmmirT9Q0GaiIiIiIiIiHR45UUVXD/0bu48/CHKCwOfeFleVNni+3abnfUL3AcNdO2eRGJqfIt9AzGZTNz99s1ExUcC8MeX8/j1oz92+V54ZBjxKXHGvTcELNxRTF0bThmVPUtBmoiIiIiIiIh0eJuXbdtlFVdNecsnam5eto2GukbYjWo0r8TUeO547Xrj/qVb36Jwh3s5afaGXBrqGgK+N/KEocZ1nc9S1OwNebs1D9l9CtJEREREREREpMMbdvQgBhzWp9U+3qAsEL/90cbuXpAGcNT5Yznu0iPAcxLnU5e+yGMXPMdV/e/g5lH3YbfZm71z1u2nGNdVZdXGtU7u3PcUpImIiIiIiIhIh2cNsvLEDw/SY0hmi32cDieNjbaAz3yDtEHjdz9IA7j1xWtIykgAYNWsdfzx5Tzw7Hu2ccnWZv37HtKTYM+pnw6bw2gvzGp9TzfZ8xSkiYiIiIiIiEinEBUXydNTHyK1d9cW+2xbldWszeFwsGz6KgDCo8LoMbjlMK4tImMjOPfO0wI+Wzt3Q8D2PiN6NGsr3sXhCLLnKUgTERERERERkU4jvmscz0x72Ni0H8BibYpHtizf1uydTUu2UllSBcCI4wZjsVr+1Bx+/egP3rzvw4DP1sxbH7D9+MuOatZWnFv6p+Yh7acgTUREREREREQ6la7dk3lm2kOYLe5YJDoxGoCwxGiyiqrJqagjr7Ke0tpGnE4Xi6YuN94dNWHEn/7+m/d9gMPuCPhsTQsVaSdedTSYwGy1ENcnla6j+9AYFU5+VT11tsBjyZ5ncrlcrv09iX2tsrKSmJgYKioqiI6O3t/TEREREREREZH9oCCrmKWrc9hR1YgjMozwpJhmfcwmqNpWyJZflrHxm3m8MfcJunZP/lPffe0v7zLphR9afP5J1uskpiUY91UNdjYUVTNn9gYiMpKwBFubvRMeZCExIpieCeFkxIZhNpn+1BwlMAVpCtJEREREREREOhWH08WagirWFlZRZ3O2+T2X00lmfASHpMUQGxb0p+awdv5GvvzPd8z6ah5Op380c/2zl3H+3WdQWtvIkpwKcirq2zV2eJCFAV0iGdglSoHaHqYgTUGaiIiIiIiISKdRWtvIrK2llNUFPp2zLcwmGJ4aw6Cufz6oyttawKTnf+D7N37G3mgH4ML7zmL0baexIq8S559IbRLCgxjfI544z4mf8ucpSFOQJiIiIiIiItIpbC6pYfa2UvZUEpISFcIxvRMJsvz5LegrS6t44+73sGFi+L3nUlSz+0GfL7MJjuiRQPf48D0yXmenIE1BmoiIiIiIiEiHt6nYHaLtaUkRwZzQN2mPhGmNdifTNhRSUrtnQjRfR/SIp2dCxB4ft7PRqZ0iIiIiIiIi0qHlVdYzZy+EaABFNY38sbWUP1un5HK5mLmlZK+EaACztpVSWN2wV8buTBSkiYiIiIiIiEiHZXM43cs59+I3ssrr2FJS+6fG2FBUQ25l+w4VaA+XC2ZvLcXuaPvhCtJc8/NSRUREREREREQ6iMXZFdQ0Orh4RBoltY0ArMyrIreyPmDb7lqQVUZKdCjhwZZ2v1vdYGdRdnmz+dQ02jmsWxwAVrMZE/D92oLdnmNlg52luZWMzojd7TE6OwVpIiIiIiIiItIh1TY62FBcDUB1o4Op64v8ngdq212NDhfrCqs4JL39IdWagirsTlfA+Xjv+ydFEmT9cyeEAqwrrGJIShSh1vYHfqKlnSIiIiIiIiLSQW0srjZO6IwIsnBSvySO6BFPiOdggEBtf+57NTic7VtEanM42VRSs8v5dI8PZ+ufXD4K4HS5D16Q3aOKNBERERERERHpcFwuFxt9AqNJK/NocDjpnRDBiLQY5u0oC9gGMKFfEkkRITh9DhBYnF3B+qLqVr9Zb3eSVV5H9/jwNs9zR3kdNoerxTkCRARbMJncFXReyZHBDEmJJikiBBNQ3WhnS2ktawuq2FWWt7GohsFdo9s8R2ly0FWkvfbaawwdOpTo6Giio6MZO3YsU6ZM2d/TEhEREREREZEDSK3NQY1P8NTg2WR/a1kt8eFBLbZ5Lc4u5+OlOca/XYVoXu09GbOwqql/S/PpER/OttKmarT0mFCO75NEbkU9X6/K45NlOczcUkJsaBBhQbteslnZYKfe5thlP2nuoKtIS09P5+mnn6Z3794AvPfee5x55pksXbqUQYMG7e/piYiIiIiIiMgBoKSm0bi2mk04nC5cQNfIECob7AHb2sJqNjEyPYb0mDAsZhO5FfXMzyozqspKam3tm6fncIHW5tM9PpxfNjTtnXZoZhyr8qtYW9gU7lXW25m9rdS4D7WaGZMZR9eoEOxOF1tKa1mWU2GcXlpS20haTFi75ioHYZB2+umn+90/8cQTvPbaa8ybN09BmoiIiIiIiIgAUFbXFGhFh1oZ1y0eu9OJwwVztpUGbGuL8d3jcbpcfLsmH5cLxnWLY0xmHLO2lnq+27jLMbxcLpcxz5bmExtqpcHupN7urlaLDrESFWJla2nr+5wd2TOBOpuDr1bmEWI1c3yfJOwOJyvzq4y/j4K09jvogjRfDoeDL774gpqaGsaOHdtiv4aGBhoamkolKysr99EMRURERERERGR/8FaIAZTW2vh+bYHf85pGR7M2X4ekxzA8Nca4/2JFLhazicy4MD5blmuMvzS3kjMHdWX21lJcgN3hwuVyYTLt+oRNpwtjP7NAcwQor7fzs081WkiQ2Zh/S8KDLKREh/LZshzsThf2Rgcr8ioZlhptBGl2R/sORRC3gzJIW7lyJWPHjqW+vp7IyEi+/vprBg4c2GL/p556ikcffXSfzlFEREREREREDl5Lsiv8lk4CxIQGYTaZOHdISrP+YUEWaj37jrUlRANoWy9/DTZ3ZVpEsIWqhsBhWniwBbuzqYoNoKrBTkQb9k+T1h2UQVq/fv1YtmwZ5eXlfPXVV1xxxRXMnDmzxTDtgQce4K677jLuKysrycjI2IczFhEREREREZF9KciyOzFV62oa7ThdLj5fkYujhaMx2/NdkwnMJnZ5yqavygY7VQ12useHszKvKmCf2kYHVrOZUKvZCNOiQqzU+BwwsDf+Pp3BQXdqJ0BwcDC9e/dm1KhRPPXUUwwbNowXXnihxf4hISHGKZ/efyIiIiIiIiLSccWFBbWhV/vU251kldcxJjOWEKs7Ugm1msmMbdprLDYsuM3jmUym3Zrngh1lDOkaTf/kSEIs7nlEh1gZ1y2OiGB3ZVxeZT2jMmKxmk1EBFsY0jWKzSVN+6q1Z57S5KCsSNuZy+Xy2wNNRERERERERDq3hIi9ExTN2lrK8NQYTh3QhRCrmXqbg22ltewor3N/N7x9wVhCeHC7T/rMrqjnl41FDE2JZoRnH7fqRjtbSmqp81Sd/b6lhDGZcZw7JAWHy8WWklpW5TdVsCVE7PmgsTM46IK0Bx98kJNPPpmMjAyqqqr49NNPmTFjBj/99NP+npqIiIiIiIiIHCDCgyxEBFta3ZS/JVPXF7X4zO50sSi7nEXZ5QGfd4kKade3kqNC2FDc+gmcgRRWN/LLxuIWn9fbnczcUhLwWXSolVCr9kvbHQddkFZQUMBll11GXl4eMTExDB06lJ9++okTTjhhf09NRERERERERA4QJpOJPokRLMut3GffDLWaSY8Ja0PPJt1iw1hgMdG4D0/R7JsYsc++1dEcdEHa22+/vb+nICIiIiIiIiIHgT6JkSzPq8S1jzKqPokRWMzt28TfajHTOzGCNQXVbej951lMJnopSNttB12QJiIiIiIiIiLSFuHBFvomRrK+aO+HVMEWEzumLOLLbxYw9MiBZA5IIzkjkaSMBKITojCZWg7YBnaJYkNRDfb2HN+5m/onR2pZ559gcrn2VS574KisrCQmJoaKigqd4CkiIiIiIiLSgdkcTr5dnU/1buyV1h6HJIRyV6+bAz4LCQsmrW8KNz53BSOOHRKwz/qiauZtL9urc4wOsXL6oC5Yzea9+p2OTH85EREREREREemwgixmxnePp30LLtsnMzaMXslRmC2BY5aGuka2LN/Ol//5rsUx+iZGkBYdutfmaDbB+B7xCtH+JP31RERERERERKRD6xodyvge8Xtl7OTIYI7oEU94RChXPX5Rq31HnzSixWcmk4kxKZFUb83f43M0AUf0SCA5sn0nikpzCtJEREREREREpMPrlRDBET3iaedZAK3qGhHMgn98zH+ufY3K0irOv+d0eg3vHrBvXJcYJlx9bItjuVwuXrvtbX64+kUKlmzeY3M0myChoJiXznmGGZ/PoRPu8LVHaY807ZEmIiIiIiIi0mmU1jYye1sppbW23R7DYjIxIi2aX/75Kd+/9jMA1mArp994IoPG9+PxC/8b8L2+o3rx8Od30bV7crNn3746lZdufQuAsKgw7p75BDsc8GfOH0iMCGZ893guirsce6MdgJ7DuvF/953NkecdhkWHDrSbgjQFaSIiIiIiIiKditPpYk1hFUu3FOMMDmr7ew4HGTFhzP/PN8x46xdMJlOzCi+z2URiegKFO4qNNovVjMPuBCAqLoL7PridMaccYjxfM3c9dx/9D+w294EID336F466YBxldY0sya4gq7QWUwv7rwUSEWyhb0IY9/W+GXuDHbPZhHOnRC45M5Fz7jiVk689jvCosDaP3dlpaaeIiIiIiIiIdCpms4nBXaPZ/J9JzLx3Ijumr6CmIPCJmfb6RkrX7GDFm1P5+ozHqZ2+jD/e/Q08yzF35nS6/EK0nkO78fzsx0np2QWAqrIaHjrtKSY+9AkOh4Pq8hqeuOh5I0Q7767TOeqCcQDEhQXT297A12c9zsq3p1G2Lht7feBKuuq8Uuw7CkjMLeTIuGCKZqzE3mA35rSzwh3FvH73e1zR5zayN+btxl+xc7Lu7wmIiIiIiIiIiOxrdpudpT+voLaqjvJlW6gqryEkLpKugzKJTYkjb1M+DRXVVG4vAqfLCM3efuAjwiJDqS6v2eU3ouIjeXrqQ8R1ieXVRc/w7FWvMGfyQgA+fnISa+dvJCImzAjehhwxgGufvsRvjEU/LaO2oJzlb/xE7g8LKM4rJ7pbMt2Gd6cwqwR7vY2qrCIaymuI6xJDWUEFFquZe9+7pU1/h/LCClbPXkd6n5Td+Ct2PgrSRERERERERKTTWTtvI7VVdQBkDkxn9Zz1NJRVYy8oIygiiMKlgTf8r62qIyohcpfjBwVb+cv/biSuSywAkbERPDLpr3zx7295+8GPcTqcLP11pdE/Iiac+z+4rdm+ZYumLTOu7TYHLoeTii35rNjS/HTPipIqABx2J6/c8W6b/g4Dx/UzKuBk17S0U0REREREREQ6ncXTlhvX0QlRxnViajyJqfGtvltVUr3L8W9+8WqOOGeMX5vJZOKCv57Js7/+g5gk/z3bDzt9JEkZiX5tjfWNrJi5BoCkjATqqhta/abTsw8bQGVx1S7nmJAaxzM/P0xoeMgu+4qbgjQRERERERER6XRWzV5nXDt99jrr2jOZxPSEPz3+5/+abFS87WzQ+H7Gnmlev374B/+84DlqKmuNto1LttLo2RNt+LGDaahtPUhrr5LcMqa8+eseHbOjU5AmIiIiIiIiIp2K3WZn/YJN4Dm9srywwniW2T+N5MymyjCzte3RiTXESvfBmQDkbSng9bveC9jvs2cms27+RgDCo5tOzPzjq/nceuj95G0tAGC1T9jXfWB6wMMNdkf/MX2M67fu/5Dta7P3yLidgYI0EREREREREelUNi/fTr2numvQ+H6U5Zcbz3oO705Gv1TjPip21/uheYWEBfPIpHsIiwwFYMrbvzL3u0V+fdYv3MT7j3wOntNDn/j+AR6bfB+RsREAZG/I487xD7F5+TbWzF1vvLd0+qrd/r07O/zsQznrtpMBaKy38cxlL2JrDHwaqPhTkCYiIiIiIiIincqaOU0B1cCx/agqa9rzrO/InmQOSDfug0KDWh2r59BumC3ueKWmvJYpb0/npv9eaTz/z3WvU+apeKurruOpS1/EYXcAcNED5zD48AGMPX0Ury56hoz+aQCU5pdz11F/Z9kM9/5o4dFhLJq6PMDX28ZsMTPs6EHG/XuPfM7lj11ofG/jkq189M+vdnv8zkRBmoiIiIiIiIh0Kr6VXoPH96ehthE8hwFEx0cRnRBFTKL7AIL62voWx4lOjOKFOU9w3t2nG21fPvcdR5x3GGPPGAVAeWEFz9/wBi6Xizfufp+cjXkA9D+0N5f+/TzjvZSeXXj+j38y4DD3ssvayjpqymsAyOiXtlu/MykjgVcWPs2Uhk94etpDhHgOFbDV23jl1rf9Tgn95KlJfn8XCUxBmoiIiIiIiIh0KqtnuwOj0IgQUnol43S4T7sMDgs2+nir0qpLa4xllzurLK7ip3emc82TFxMRGw6Aw+7gmcte4i//u5FYz8mccyYv5J0HP+aHN38xvnvfB7djDbL6jRedEMW/fvkHY049xK89tks0aX26+n/cFPi3jTppOF26ufd4Ky+spMeQTMxmM1arlev/danRb/rHs4hNiuayf5wPgNPp4pnLX6KuOvABCeKmIE1EREREREREOo3CrGKKskvAs+n+tpVZxrOImHDjOrN/UxXYoPH9Whzv82cn47A7uOO16422+T8sweV08pc3bzTaPnt2snF99RMXk94nJeB4oeEhPDLpr6T3bXo+//slVJVW+/UbPWE4H259pdn7YZGhDD58AAC2BhtbVuwwnp1x80kkZbhPJHW5XDx71av8331nGVVwuZsLePuBj1v8raIgTUREREREREQ6Ed/90QaN68fmFduN+9jkaOPad5+0fqN7NxsnKMRdTVaUVcL0j2dxzIXj6dojGTwh1XPXvsa4M0Zz0lXHuNuc7hM3e4/owRk3T2h1jtYgK5Ygi19bZYl/kNZtYAZduiUbS1C9irKK6X9o06mca+dt8Hv+14m3GNfLZqyirLCC+96/jVDPss/vXpvK1pXbkcAUpImIiIiIiIhIp7F6pyCtvKDpxM6ouKYTOjMGNFWk1VfXExIejC9bg924/uyZb3A4HNz60jVG28IpyygvruTcu07zW4Z56g0nGPuStaS6vIYda3IASEqPx2Rqvo6z++AM2CnwAygvqDAqzADWzd/o93zEsUNI6dnFfeOC5659jbTeKVz04DngWeL5yh0Tcblcrc6xs1KQJiIiIiIiIiKdxubl24zr/mP6UFFcZdz77oXWzSdI27E+h74jezUbK9PTJ2t9LrO/XsCYUw7xWzr53+te56MnJoFPJvXDGz/jcDhanePWlTuMIOuw00bx4Md3NOuTnOHeB813CSpAVVkNPYd1IyjEfdro2p2CNIBbX77auF48dTllheWcd9dpRsC2fMZqfv9yXqtz7KwUpImIiIiIiIhIp5G11l3pFZ8SR1RcJJUlTUFaVHxTRVpieoKx3HHH2hxOuOLoZmP5nqb5yVNf43K5uOm/Vxptc75dyIxPZwNgtrgjmE1Lt/LT29NbneOOtdnGdbdBGRx94Xh2Lkp76/4Pqa2qI2OnIK2+toGg4CD6HNIDgNxN+VQUV/r1OfSkQ0jOdAdx7sDvDYJDg7nxP1cYfd645z3qaxtanWdnpCBNRERERERERDqFypIqyovcoVJm/1TwLKP08g3SzGYzGZ4++VsKOOK8Mc2WWFZX1NBnZE/wBGSLpi7jiHMOIyE1zt3BpxLtvLtPN67f+dsnVJX573nmK2tdjnHtDcp2Xmm5YfEW/n7mM6T0TPZrd9gcOJ1O+o5qqqDbunIHO7v5haaqtHk/LKaytIqxp49i1IRh4Nn77bNnvmlxjp2VgjQRERERERER6RSy1uca195qspqKWqMtNinar3+v4e6qLqfTxeal2+jSI8nvef6WQi564Bzj/uMnJwFww7OX+/Xrd2hvrnnyYo65aDx4Ar33//F5i/Pc4TPPzP6pNDba/J57DyJYPmM1k1+d2uz9xvpG0vumGve5mwua9Rl/5mgS0tyBn8vp4vkb/ofJZOKm/15l7OH22b8mk7e1+budmYI0EREREREREekUfCu9vJv011XVG22xXWL9+g8+vL9xvXr2esaeNtLveeGOYkafPNyoGls1ax0LpixlkM97ALGJ0ZjNZq575jJjuei3rZyO6Z1neFQYCanxlOWV+T0/5sJxhEWGArDk5xXGtVdddT2pvbsa97mb8gJ+54Z/Ny3lnP31fGoqa8nsn8bZt58CgK3Bxv/++kHAdzsrBWkiIiIiIiIi0in47j3mXbZZX9MUpMWn+Adpg8Y3BWKrZq/j7DtO9Xvucrko2lHM5f8432h7/e73+ODRL/z6LZq2jPraepLSE5pOx3Q4efXO5qdjNtQ1ULCtyJijyWSiOLvUr8+YU0fyz2/vNw4UqKuu93teW1VHaq8uxn3ulsBVZcdcOJ64ru7f7HS6eOHG/wFw6d/PI65LDACzJs1nyS8rAr7fGSlIExEREREREZFOwW9pp6eKrL620WhLTI3365/Wu6ux3HPt3A106ZZEeHSYX5/cTfkcdcE4Bo7r5/7Guhymvvub+6FnSzWH3ckrt08E8Dsdc9lvq1n40zK/8bI35BnhmneOJTtVpA09aiDDjh7E37+421iG6auhpoEu3ZKMAw5yN+W3+De59ulLjeuZX8ylvraeiOhwrnnqEqP9rfs/bBb4dVYK0kRERERERESkU9jhWTIZGhFCUnoCePYT80r07BnmZTKZjGWa1eU1bF+TzcCxff365G4uwGQycbPPaZ0upzt0OvTkQ4y2nz+YSWN9I8GhwVz7dFNI9dETX/mFVH4HDXj2cSvYUWS0BYUGEd/VPc/DThvJfe/f1uwQhPqaBqxBVrp2d+/plre5oMUg7MTLjyLGExY6HU5euvVtAE64/Ch6j3DvEbdxyVYWTFka8P3ORkGaiIiIiIiIiHR4jQ028j1LHDP6pxnhk73RbvSJjI1s9t6gcT7LO2et4+RrjvN77q326je6N+POHG20B4UE8eBHtxMZFwGe0zRfv+s9AA4/ZwzdB2UAsGbOepbPWG28l7XO56CBAe4gbdOSbUZbdLz/HI/5v/Hc/uq1fm2/fPg7ACm93Puk1VbVGaeVBnLV4/9nXP/64R801jdiNpu5+G/nGu0fPf6lqtIUpImIiIiIiIhIZ1CwrRCnp1IsvW+K0W63OcBTfRaI34EDc9Zx+DljsFib4pT1Czca175Bk73RTnFuGZc+fJ7RNuWd6djtdsxms7FXGp6Qyitnc9PBAN6TN333dktM919+CnDaDSdiDW5a4vnda9P4aeJvpPZqOnAgb3PLyztPve6EpsDP7uDVO93LUMefNdoI/NbO28jS6ataHKOzUJAmIiIiIiIiIh1eeWFTRVZCSlMY5XQ6ATBbA0ckvUd0JzjUvan/6lnrMJvNDD1qkPF883L3yZtbV25n7reLjHaXy8Ub97zP2befYuyrZm+08+a9HwFw1AVjSevjDvSW/baaVbPXNZ9nqnsJZ6HP0k7fcMxXZGyE3/1/r3sNh91h3Oe0sk8awOWPXGBcT313Bo2NtmaB38dPfNXqGJ2BgjQRERERERER6fDKCyuM69hk94mUTqcTPEVk1qDmm/YDBAUH0e/Q3gDkbyuiOLeUa5+62HjeWG+jsdHGe498brRFxIYDsHDKUhZNXc6F951lPPvu9anY7XYsFgsXPXC20e4NqbzztFgtRMZGUFdTT2VptdEvKSMx4DzDo/wPQXA6XUz/+A/jviS3LMBbTc6+7RQiYtzztjfa+d89H8BOgd/yGatZNWttq+N0dArSRERERERERKTD8w/Sopu1BYUEtfju4PE++6T9sZa+o3r7nZb56u3vMPvrBQDEp8Rx8/NXG8/euOc9zrvrNEIjQgGw1dt49+HPADjukiOMAwEW/rSM9Ys2G3OKTY7GZDKxZs56I+wDjFNEdxbuCcEArMFW8Bw64FVTXtPanweAi32qz3588+eAgd9HnbwqTUGaiIiIiIiIiHR4vksmvRVpxdklRpt3+WYgw45uWso574fFACRlJBht096baVxf9MDZnHDZkcbpnjvW5vDj/37l/LtPM/p88+KPOJ1OrEFWLrzPJ6R6/Etjnt45+h5EABDXJSbgHH3nb2+0k9Iz2e95VVl1gLf8nXf36YRFegK/BjvvPPAx7BT4LZq6nHULNrY6TkemIE1EREREREREOryyAEs7S/KaljuGhIe0+O7QowYa+5zN/34JdpudPqN6GM9tDTbwhGunXHc8JpOJm/57pfH8/Uc+44xbTyIkLBiAhrpGPnzsCwBOvPJoEtPce7bN/XaRsa+Zd46Lf17hN5f4lLiAcwwK8g8Cx515qBGKAayZt+vwy2w2c/5fzzTuJ786NWDg9/GTk3Y5VkelIE1EREREREREOrzyoqYgLc6ztLM0v9xo8w2ddhYUHMShpxwCQHV5DSv/WEtsQvPKsHPuOJVgzxLR/of24fjLjgSgqqyGd//2KWfdforR94vnvsfpdBIcEsQFPuGVV2xyNPnbCtmwaLNfe0Jq81M7AawhVr/7NXPXc+cb1xv3W1dsZ+FPS1v8jV6X/O0cI1RsrGvkvX+4937bOfDLWp+zy7E6IgVpIiIiIiIiItLh+e6HFuPZZ6y8qGm5586b9e9s3Bmjjes53ywkYqdTMgFOuOIov/trnryY0Ah3KPXDm78w+IiBBHmWYNbX1PPpM98AcPK1xzU7dTM2KYbfv5jb7BveMGtnQcH+QdraeRsZfMQAv7YnL36BnE15rf5Os9nMOXc2BX5f/bcp8DvnjlON9ilv/drqOB2VgjQRERERERER6fC8e4+FR4UREuYOtyp9grSdg6ydHXrycONkzznfLjROuPTlPXDAKzEtgev/dZlx/+KNbzDhymOM+8+fnQxAaHgIx196pN+7sckx/P5l8yAtIrr5d2nhsISFPy4lLKqp0q66vIZHzn6Wuuq6Vn/rlY/9n7HnWkNtA1/8+1vwBIXev8HP78/E1mhrdZyOSEGaiIiIiIiIiHR4lcXu0Cw6MaqpraRpA/7IuMhW34+IiWDYMYMBKNxRTG1VbbM+X/z7u2Ztp914IoccPwSAouwS6qrqjDCqpryWRVOXAXDKdcft9KaL9Qv9l3WaTKYW5xe009JOPIFflOd3mS3uCGjb6iyevfpVXC5Xs/5eZrOZ0244wbj/5uWfwFMlN/7sQ8FTzTdn8qIWx+ioFKSJiIiIiIiISIdna7TDTqdb+p5kGR3fekUawPgzm5Z3rvpjXbPn2RtyKc0v82szmUzc/dZNxmEFv370Bz2HdTOev/fIZwD0GNKN5G5JRvuy6auajW+2thzj+FakeQ81WPrLSmPJqsViNubwx5fz+PTpb1r9rVf88/+M4K44u8TYE+2Ua483+vz41i+tjtERKUgTERERERERkQ7P6XCCT2UWnoowr2jPvmmtGXvGKON6w+ItxrXv8sm3H/y42XvJmUnc9N+rjPu8rQXG9fqFm6mvrQdg4GF9jPY18zY0G8ca1LzqzCvYJ0jznuxpa7TT6DlR1NZo5/4PbjfCsYkPfcKy35qHdV7hkWH0GdnTuH/r/o8AGH7sYLr2SAZgyc8r/H5LZ6AgTUREREREREQ6vEBBWq3PXmFxyc1P4dxZYloCfUf1As/eYV6HHDfEuP7jq3kB351w5dEcdtpIAKpKaggOcwdfLqeLjx+fBECPoU2VanVV7nCt28B0oy3Q8k3jWWiwcR3jEwpWlbqr7sxmE2NPH8Xlj1zg/q7Lxb+vfpXaqpb3S/P2BVj401KcTidms9mvKu2nt6e3+H5HpCBNRERERERERDo8b5Bm8QnSvG0A1uDmm/UHMs5neadX/zF9jKWVdVX1zP1+cbM+JpOJO9+4gag49xLSxrqmjfp/mjjdMzdLs/fGnDrSuDabW45xQnyWrIZFhRrLOGvKa9zven73xX87h6FHDQSgYHsRb9z9XotjjjnlEKPaztZgZ+q7MwA48cqjjfGmvvsbDrujxTE6GgVpIiIiIiIiItLhOezNK9J8l0o21jW2aZwjzj2sWZs1yMrok4Yb9x88+nnAdxNS4rjtleuatZcVVLBhyRa/YM/ryPObvhfouVdQWFNFmtPm5PBzxrivne5DBby/22w2c887NxMa4T659Me3fmXhT0tbHPfI88Ya1194ThlNSIlj7OnugK8kt4z5Py5p8f2ORkGaiIiIiIiIiHRoLpfLOKXSL0gLbqoAa6hrCPjuzsoLK5q1mS1mrn36EuN+05KtfstGfR194TiOOK95GPfOgx8HDMrMPid1thak+Vak2Ww2Tr7G/xRQ39+d0qMLN/z7CuP+uWtf8zt4wdfVT1xkXGetbzpM4WSf5Z1T3v61xXl1NArSRERERERERKRD8w2gWqpIa2hjRdrvX8xt1ma2mMnol0ZSRgJ4grsPH/0i4Psmk4nbX7mW2J32ZFs2fRUOu71Z/7nfNS0TdTpbCdJ8KtJsDXYGjetH5oA0v+/6OvX64xl54jDwVJW9eufEgOPGd40jvW+qcf/O3z4BYNSEYSSmxQOweOryVvda60gUpImIiIiIiIhIh+ZoIUgL8tkXzVZva/Ze83Ec/DFpfrN2m+dkzNNuPNFom/b+zBbHiU2K4c7Xr/cf2+5gxe9rm/WdPXmBcd1aRVpddb1xHRRixWQy+R0KYN9pHzOTycTdb91EREw4AL988Duzv1lAIBfce6Zx/ceX7sMULBaLsV+crdHOwp+WtTi3jkRBmoiIiIiIiIh0aC6fSi7fDfutIe2rSFs9ez2lee6ljTGJUUb7hkVbALjgr2cYQV1FUSVr529ocazxZx3KiVce7de2Zu564zoy1n0owZbl2402735ngZQXVxrXETHud4+/7Eijzd5gp7HBPyxMSk/g5uevMu6fv/F/VPiM4zXhyqONE0Nrq+qMwxR8D16Y++3CFufWkShIExEREREREZEOLSgkCLPZvbSxvsancivY57CBNlSk+S7rHDS+v3G9atZaXC4XVquVIYcPMNrfefCTVse77eVr6T4k07i3NTQt7Rxy5IBm/V2tBGmVxVXGtfdk0JjEaELC3Us+XS4XcwJUnJ1w+VGMPWMUePZ/e+HmN4395LzMZjOjJjQdpvDhY+5lq0OPGmhUtM3/YQl2W/OlqR2NgjQRERERERER6dDMZrMR+FSX1xrtQSE+SzsbWg/SfJd1BoUEMWBMH+NZcU4p6xZsAuDqJ5s251/x+5oWDx0ACA0P4fFv7/dbburV/9A+zdp2Drh8VZfXGNdR8U3VclZr04EKP77V/FAAk8nEna9fT1R8JHiWbs74bE6zftc9c6lxvXHxFupr6wkKDuLQU0YY3w+0NLWjUZAmIiIiIiIiIh1ehGepZI1P4BTsc9Jl4y6Wdvou6xw1YRg1lf4B2Y9v/gLAwLH9jIMEnA4nL93ydqvjdumWxMUPntOsPTQihNReXfzaWqtIq/EJCGOSosGz75rvPJf+upLczfnN3o3vGscdr15n3L9061uUeH6rV0a/NBLTmw5T+OCxLwEYd4bP8s7JHX95p4I0EREREREREenwvHuOVZXVGJVdfkHaLirSfJd1HnneWCqK/PcSm/HpbKMq7KrH/89o/+2TWTTWtx7SHXvx4c3asjfkMu7MQ/3aXLQcpNX6BGbe/dsqS6qa9fMGfjs76oJxHHXBWACqSqt5/a53m/U57cYTjOupE38DYPTJI7AGuaveZk9e0GrVXEegIE1EREREREREOrzIWPfSTofdQX1tA+wUpLW2tNPpdPot6xx7xijKiyr8+tTXNvDNS1MAOOXa442lkg67g1fumNjq3L59dWqztukfz2L4sYP9G1vJqOp8lpDGd40FoNwn7DN59oj77vVpfstAfd328rVGCDfjszmsnrPe7/n59/gfprBh0SYiosONeRZllbB52bZWf+vBTkGaiIiIiIiIiHR43qWd+CzvDAoNNtpsjS1vlL9tVZaxrHPkCUOJiA6nvLApSPOGS5Ne+IHaKnegdcUjFxjPp737G42NgYO6soJyfnp7erP2mopavn7xB7/TQVvjDQcBElLjwHN4gFePwe5DDWor64zAb2cxidFc8VhTNd1rf5mI0+fE0+DgIAb7HLLw1gMfA/hVzs0OcKBBR6IgTUREREREREQ6vMiYpiDNe+BAiE9Fmr2h5SBt+YzVxvWI44YAUF7orvaKio80lmZWlVbz3WvTADjz1pONAw7sNgdv3P1+wLE/ffobIwQLiwz1e7Z42griU+L82uz2wPP0PXU0MS3Bb44AY049JGDgt7NTrj2O7oMzAFi/cDO/fvSH3/Orn/A5TGHmaux2u3HqJ8C87xcHHLejUJAmIiIiIiIiIh2ed2knPidcBvtUpNlbqUhbPrMpSBt61EDwqfaKTY7hogfOwWRyL5388j/fGcHYJQ+da7w35a1fmoVgxTklfPe6O3gLCQvm3LtObfbtrSt3+N031Abeb813aWpc1xi/OQJkDkjnuEuOAE/gF2g5KYDFauGm/15l3L/9wEfU1dQb94PG9/dZturk6xd+JDE1nl7DuwOwedk2aioCLx3tCBSkiYiIiIiIiEiHFxkXaVx7N+EPDvNZ2mkLHKQ5nU5WzFwDQFRcBD2HdqOhroG6ane4FJscTWb/NI48/zDwhFdT3voVgHP/chphUe4qM1uDnbfu/8hv7I+f/NoIwM64eQKXPnz+Ln+H97s78w0CrVarMRcvd+B3thH4feUT+O3skOOGGFVmJbllfP6vyX7PT7jsSON68ss/ATBoXD/wnOi5Zt7GXf6Og5WCNBERERERERHp8JIyEozrgm1FAISENwVpjkZHwPe2rcqiqrQagCFHDsRsNvud2Bmb7K7+uvjBpuqzz5+dTGODDbPZzIV/PdNo/+7VqUZVWsH2Iqa85T5BMzQihAvuPROLxeI3p+gA+6NVlVUHnKfD4d7LzLt8k2ZBWjQZ/dI46sJx7mdFlfz4v8AneAJc/+zlxmmcnz87mcIdRcazyx+90AjkCrYXkbe1gMGHDzCer569rsVxD3YK0kRERERERESkw0vt1dW4zt2UD57llF72FirSvNVoAMOOGgRAUXap0RbnCdJ6Du3GuDNHA1CcU8q0d2cAcNGD5xAaEQKefcze//vnAHz0+FfYbe7w7uzbTyE2yT2Od4kkQFVJFWNOO8RvPrM9p4fuzOV0H+lpsVqMtqIcn3l2cZ/kefEDZxttn/97Mo31gZeKpvdJ4cxbTzbm/dYDTdV0EdHh9BzWzbh/58GPGTS+n3GvIE1ERERERERE5CCW2tsnSNviCdLCQ4w2b6i1M7/90Y5274+WtS7HaEvvm2pcX/y3pqq0z575GrvNjtls5pw7TzPaJ734A1kbcpj67m8AhEeHcd7dpxvPew3rYVy7XHD4WWOwWJvim0+e+obsDbl+c6ytbjo4ICjYalx75xkeFUZ8V3eQ1mNIN8af7T5lsyS3jKkTfwv4uwEuffg8ohPcVXG/fTKb1XPWG898K+2W/rqS5IxEkjMTAVg3f1OLweTBTkGaiIiIiIiIiHR48V1jCfUEZ0ZFms8yykCnYQbaHw1gx9pso0/mgDTjut+oXow+aTgA+duKmPbeTACuePQCYz+2htpGHr/wvzg9SzHP+8vpRMc3LeFM8wn8AH796A9j+ShAY30j957wmN9SyxKfyrMgz0mkDXUNxhLWjP6pxlJMgIsfPMe4/vSZb2ioC7xXWmRsBFc+dqFx//pd7+J0uud91IXjjGWkFcVVlBdXGlVp9bUNbF62LeCYBzsFaSIiIiIiIiLS4ZlMJlJ6dQEgf2shDofDCNYAHAEq0ravzjIOJvDujwaQtb6pIiyjf5rfO5c8dJ5xPfGhT6ipqMFsNnPmLScZ7VuWbwcgKj6Sc+48xe/91J2CtHULNhEWGerXVpRVwr0n/JOygnLwLCX18oaDORvzcblcAefYd2QvDj1lBACFO4r58rnvA/7NAE657ni6D8ow5jL941kAmM1m0vukGP0mvzSFweN990lbH2C0g5+CNBERERERERHpFLwhld3moCirhNDIMOOZw+5s1n95gP3RAHZ4lkyGRoSQmBbv986gcf044rymEzw/eOxLAK5+8iKCQoL8+l5wzxlExET4z9ET9nnV19Qb+5/5ytmYx/0THqeqrJrS/HKjPSzCHbr5Vs1l9Etr9v51z1xmVJR98tQkCrOKm/XBs+fajf+5wrh/+4GPjAq28WcdarT/8dU8v33SVs3pmPukKUgTERERERERkU4htWdTSJW7KZ+wiKaKNKejeUWat3IMoP9hfcCztDJ/SwEAGf1SjSo1Xzc8eznBniWW37w0he1rs7FarYw4bojRx2SCM287udm7KT27+C3DJMBJnZFx7vBty4rt/O3UJ/2WeYZ6qtey1rVcNQfQfVCGUSXXUNfIm/d+0KyP18gThnHYaSPBU/02daL7IIWzbm+af9b6XDIHphMe7Q4nV89aZ1TEdSQK0kRERERERESkU0jt3bQUMWdTPqERTUsmA1WkbV+TZVx3G5huvOf0VIhlDkgP+J0u3ZL4v/vO9ozr4LW/vEttVS2bl201+rhcMOWtX5u9GxwaTGK6f5VbbVW93/2IYwcb+6atnbeR79/42XgWER0OwI71TQci+O7j5uvyRy4gJtG9P9uMz+b4Haywsyt89kr7/NnJ2G124rvGERUfCYDT4WTBj0sZOLYvAKX55eRvLWxxvIOVgjQRERERERER6RR89x/LWpdDXNemTfwbav033He5XGxb7Q7SkjMTjYDK98TOQEsmvS649wy6dEsCYPG05fzripcpyS3z6/PBY18EfHfnAwfsjf4HIRRsL+bpqQ8RGeuuTCvc3rQs01ut5p2n2WJutlzU6BsbwdVPXmLcv3rHRBz2wKeX9h7eg9Enj/B8v4jfPpkNwNAjBxp9fnzzZ/of2se437pyR8CxDmYK0kRERERERESkU+g9vLtxvX7hJqxWq7FPmK3BP6wqzimltrIOgG6ezfYBdqz1CdL6p7b4rZCwEG749+XG/exvFgJgCbJgsbq/WV1W41dN5tVreI9Wf0fWuhx6Du3GEz88QKjP8lT3d4NwOp1kew5ESO3VhaDgoBZGgglXHU2fkT3Bs1T0xzd/abHvxQ+cbVx/8vTXOJ1OTrvpRKNt9ez1flV6vvu0dRQK0kRERERERESkU4hOiCLNc9LkxiVbaWywGSd3ulwuKkurjL7eajSA7gPTfdqbqqwC7T3m6/BzxjD82MF+bRc/cA7HXXqkcf/uw580e2/AYX1bHbeuup7inFIGju3HMz//HYvVYjyb8+0ilk5fRUNdY5vmaLFYuOWFq437iQ9/apxUurPBhw9gyBHukzmz1uUw+5uFjDphGJYg9/drKmqJiGk6wGGHT/VeR6EgTUREREREREQ6jf5jegNga7CxZfk2ImLDjWebljbtYbZtlc/+aD4VaWvmbgAgNDyEzF2EVCaTqdkBA8decji3vXyNUQlXUVzFtPd+83tvgGeOrfFWew08rK9fZVxNeS2Pnfuscd93ZK9djjVoXD+Ov8wd7lWVVvPu3z9rse9FvlVpT03C5XLR3efvs2DKMuOwBFWkiYiIiIiIiIgcxAaMaar2Wjd/k7FpPzvt6bXdtyJtcCYAhVnFFGWVgCeQ860EC6SqrJqvX/jRuHe54LW/vEtIWAhHXzjOaH/zvo/83kvKSCQ+Ja7VsX2XmHqrz7x8DycYOK5fq+N4XfPUJYR5Tvz8/vVprPxjbcB+oyYMp/cI99LTjYu3sPjnFRx5/ljj+cKfltKlu3tvuKx1uR3u5E4FaSIiIiIiIiLSafQf07QZ/tr5G0hMazohc+vKHSycuoxVs9aycclmo9176uVaTzUawMCxuw6oJv7tE8oLKwAICnHvU7bgx6X88L9fuP3V64yqtPLCCr78z3fGeyaTaZdVab7VXlWl1cZ1v9H+FWiF29t2cmZiajyX/eMC8Cxz/deVL1NbVdesn8lkalaVduYtJxn3eZsLjAq52qo6SnJL2/T9g4WCNBERERERERHpNHoOzSQ41B1qLZu+ivytTUHT7G8W8ODJT/CXI//OlhWe6jQTXD/0bp675lVW/L7G6DtofP9Wv7No2nK+e30aAKERIdzx2nXGszfufo/ywgpOuPwoo23iQ5/Q2Ggz7vuPaX2fNN/9x+qqmyrQHpt8n1+/5659na/++32rY3mdc+cpDD7c/bvytxby2l/eDdhv/NmHktHPHZatmLmGrSt3ENc1FjwhnMvpM8+1HWufNAVpIiIiIiIiItIplBWU89M7vxEcFgxAaX6533LOhpqG5i+53KHSTxN/Y8kvK43mAYf1ad7Xo6K4kmevfNm4v/qJi5lw5TGcev0JANTXNvDM5S9x2yvXEOKZS2O9jeevfwOXy8VP7/zKmnnrW/0tWZ4gzW6347A5wFP1ZgSAPl6/+z3evPcDnE5ns2e+LBYL9753q7HE86d3pjNn8sKA/S687yzj/tOnv+YQn73gfMNJBWkiIiIiIiIiIgeZ/G2FXD3gTl68+U2qy2oC9rEEt7znWWRcBDmb8gDoNjCdqLjIgP1cLhf/ue51SvPLARg1YRhn3XYyADf8+zJSe3cFYO28jXz57++55ulLjHd/fn8mZ0RfxnPXvs7cyYta/T1lBRVUlVWTtS7XaAuPDmPNnKYA7vBzxhjXn//7W565/CXqawOEhT5SenThZp9TPP97/euUFZQ363fsxYeTlJEAwPwfljDyxKHGs8IdRcZ1Rzu5U0GaiIiIiIiIiHR4RVklVJcHDtC8nPaWN8Y/+epjcTndzwe1soH/lLd+Naq4YhKjuOedW4xTLMMiw7jv/dswm933Hzz2BQPH9iOua9OBB/WBquJasGNtDhsXN+3lFpsUzeo564z7G5+7wr0Xm+d70z+exe1jHyR7Q27A8bwmXHk0488aDUB5USX/uf51XC4X29dk8cek+dhtdoKCg7jgnjONdxb8uNRYMttY37RENWtdxzq5U0GaiIiIiIiIiHR4gw/vz3GXHNFqH1ujjUOOH9KsfdD4fkTERBj3LZ2Emb0h129fsbvevImEnU7fHHhYXy564BwAHHYHD5z0OGX5Fe3+Pd7vbVvVdLpoQlo8a+dtBCAxLZ7kzEROv/FEHv7ibkIjQsBzoMIto+/n9y/ntjiuyWTizjduME40nffdYp64+HmuH3YPj533b758zn0wwknXHEtsUjQAv385j8yB6cYY3lAte0Pebv22A5WCNBERERERERHp8EwmE/e8czOHnT6yxT4up4tjdwrbzBYzd7x2vd+eZYEq0uw2O09d+qKxdPLU645n3JmjA37n0r+fR5+RPWGnEzfbqzi7lOyNTUFVZEy4cfDAwHH9jEq4w88ew8vznzJOH62tquOfF/yH1+96F7vNHnDs2KQY7nrzRuN+5mdzcDrce6zN/c697DQ0PIRTb3Dv++Z0OInvEmv09/YtzSvDYXfs9m880ChIExEREREREZFOwRpk5eHP7mLY0YP8H5iaLrtmJmENthr3p15/PGl9Ulgx031iZ1yXGNL6pDQb+/1HPmfDIvcyy/S+KdzwnytanIfFauHQUw7Z5Xy9QVhLirJLKNpRYtzbbE2B1ZDDB/j17TYwg5fnP8UxF4032r56/gfuPuYRinNKCKTvqF7EJkc3a9+4eAuNDe7lm6defwJmizte2rR0q9HH7pmL0+ky9ovrCBSkiYiIiIiIiEinERwazGOT7yOjf5rRZrE2HTKwfV0OY051h1wh4SFc96/LWD17nbF32cgThzULuFb8voZPn/7GGOuBj+4gLCK0xTl88OgXfPTPL3c515Reya0+L8ktpaywKaQqyio2rkdNGNasf1hkGA98eAe3vXwt1iD3b14zZz03HXIvS35Z4de3NL+MW0bfR3lhZbNxbI12IzRLSk9grKfKrzS/nOjEqGb9i7IDB3UHIwVpIiIiIiIiItKphEeF8dyMR4iIDQegS7dEQmIjSDmsP/kuM+e+fAP3zXqSZ9e9RL3ZwqKpy413R08Y7jdWRXElz1z+Ei6X+yCCKx69kL4je7X6/e/fmNameVYWV3Hhfe4N/cMiQzFZzMT2SqHHKaPof9GRBA3sRpdjhpEypi/BMeFsXbEdgK49kgNWzeGpcjvj5gn8949/kpyZCJ4DBe6f8DgfPf4VTqcTu83Os1e9SkluWYtz8z0d9PSbJhjXQcFWgmPCSRnTl77nH87AS49hc2UDm4trKKttxOlq+UCHg4HJ5TrIf8FuqKysJCYmhoqKCqKjm5coioiIiIiIiEjHV9VgY21OBau3l2KOCmuxn6PBRt789WycNJf/TrqLuGT3XmAOh4MHT36CJb+sBGDIkQN49td/YLFYWhwL4Ps3fuaNu98z9lNrSXBoEN/VfMTWwkq2lDewo6gKa2hwy78nu5itUxbTPSqY2/59+S5+PVSWVPH05S+xcMpSo230ySPoPbw7nzz1davvHnLcEJ75+e8AOJ1Obhz3EFHDetLj5JFEpSe2+J7FbKJrZAj9kiNJiwnFvIvlqwcaBWkK0kREREREREQ6lTqbg4VZ5WwrraW9oUhUiJVR6bFkxoXx9oMf8+nT7sApNjmG1xY/Q2JaQpvGqSyp4rvXpzH55SmUFfif2hkaEUJjvY1r3r8D86Du1DS2c7N+l4ueiRGMTo8lNKj1UM/pdPLJk1/z3j8+o6WIaODYvqyZu8GvLSjEyo91n1Bvc7Aou5zNxTXQzlAsItjCqPRYuseHt+u9/UlBmoI0ERERERERkU5jS0kNC3aU0+A5VXJ3RdbU8s5ZT9JYUYvZYuZfv/ydYUcNasOb/hrrG5n+8Sze+8dnFOeUAnD9C1eTdMpotpfV/ak5hlrNHNYtjm5xuw6qlvyygicvfp6K4qpmz3oO7cb9H9zOVy98z7SJM3C5XIRFhfLStjeYt72Mevuf+1t2iwtjTGYcYbsI/Q4ECtIUpImIiIiIiIh0eC6XiyU5FazKbx4U7a6qrGJ+ufU1LrvnDM79y2l/aiyn08m092ZQ7zJhH9Wv/VVorRiWEs2w1OhdngL64T+/4L1/fB7w2e2vXMvpN02gYEcx378+jd4XHsE22x6bIhHBFk7sm0R0aNCeG3QvUJCmIE1ERERERESkQ3O5XCzOrmB1wZ4L0bzslTVcOL4XkSGBAyCn08mHj33JT+9M58L7zuLMW05qcayqBjtT1hVSZ9tzIZrX0JRoRqTFtPi8oriSS7vf3OK+bcGhQXyw5RXiu8axLKeC5XnNT/P8s8KCLJzcP5moEOseH3tP0amdIiIiIiIiItKhbS6p3SshGoA1OoLfNpfgdDavU7I12vjXFS/zwWNfUJRdwlv3f4itsXkZl8PhIG97IT8uz94rIRrAirxK1uwoafF5/raiVg8/aKy38dy1r7O1tHavhGh49q6bvrEIR4C/5YHiwI34RERERERERET+pJpGOwuyyvbqN0prbazMr2RYalPFV21VHY+e+6xxoidAfU0D7z/yBcGhQRRsK6JgeyH524ooyiphyPUnMfjK4/bqPP/YUMjjxz1CUnI0aX1TSO+TSnrfFNL6pJDRP5Wb/nMli6YtoyirhMKsYmor/fdoi0iOYf6Ovfu3LK+3szy3gkPSY/fqd3aXlnZqaaeIiIiIiIhIhzV9UxFZ5fVcPCKNktpGAFbmVZFbWQ9AcmQwJ/fvwqfLcmj4E5vmm01w+sCuxIYFUZpfxoMnP8Hm5dvb9G5cn1ROfv8uLh2V0WyOiRHBjEiLwQTkVNT/6cq6bdOWMuuhDwI+S0pPIK1vCv1H92bIkQPpPjiD2so6Ni3dSm1lLdEnjmR7ufvvFujvOSYzlvjwYEzA4pwKCqparnBrjQk4bWAX4sOD/8Qv3TtUkSYiIiIiIiIiHVJ5nY0sT/BT3ehg6vqiZn0GdomiuKbxT3/L6YK1BVWk1tZyy+j7aKhr25hRcREceutpmC3mZnM0m9wHBUzfVLzHljt2O344S1/5npq85pVlRdklFGWXsGz6Kj595hvMZhO9hndnyBED6X/MYCNEI8DfMyrESkxoEFPWFRIeZOHInvH8FODv3RYuYHVBFUf0SNjNX7n3KEgTERERERERkQ5pQ1G1cR0RZOGkfknUNDpYsKOcBoeT9JhQCqsbyIjdM1vIbymtZcaLk1sP0Uxw73u30mtod7p0S8QSHsoXK3JxuprPMTYsCLvTxdG9EjBjYlF2OWV1f+6oTJPZxAOzniSxsprsDXnkbMwje2MuORvyyN6QR2VJU8Wb0+li45KtbFyyleF2GHxFF+PZznOttzmwO12YgGCrmfp2VvedOagri7PLya5wh3XbSmsZnR5LaJDlT/3ePU1BmoiIiIiIiIh0OC6Xi80ltcb9pJV5NDic9E6IYERaDPN2lNEvOZLfNhWTERvm9+6EfkkkRYTg9NkNa3F2Bet9grlA7E4X426cwKwv5tDYUpjmgtjEaHoO7QbAusIqvMVmO8+xoLqB2LAgflhbQESwhbHd4vlpfaExVHJkMENSokmKCMEEVDfa2VJay9qCpjED2V7ZwKFDu9FrWPdmz0ryylg1ax0rf1/Dyj/WsnXlDlwuFz1PGeXXL9Dfs6bRztmDU7CYTfy2udjv75kcGcL3awqMIDDIYuLiEel8uSKXmkYHk1fn+43vdMG2slr6J0e1+jff1w66IO2pp55i0qRJrFu3jrCwMMaNG8czzzxDv3799vfUREREREREROQAUdlgp9HRVBXV4LneWlZL36QIesaHk1Ve12LgtDi7nLWFrQdngQSnxPNDzUcU55aycfEWNi7ewobFm9m4eAul+eVExUeS0T/N6F/ks6x05znuKK+jsLoBu9NFRb2dYIvJ6JseE8qRPRNYmlPBrK2lNNidRIdaGdI1mrAgCzWNLZ/+WWdzUmtzEBHcPBZKSInjqPPHctT5YwGoLK1i2dyNbE2K8eu381xTo0MIsVqYtCqPsCAzx/VO4vu1BUb/RruTQ9Ji+HVTMW21J5bc7mkHXZA2c+ZMbrnlFkaPHo3dbudvf/sbJ554ImvWrCEiImJ/T09EREREREREDgAlPiGM1WzC4XThArpGhlDZYCc2LIiEiGAyY8OICwviyB4J/Lxx13t6Wc0mRqbHkB4ThsVsIreinvlZZdgcLr/vJqbGk5gaz9jTmyq5ygorCI8KJSQspNk8A82xuKaBoSnuiqxQqxmHT+h3aGYcq/Kr/MK+yno7s7eVGvehVjNjMuPoGhWC3eliS2kty3IqcHm+GyhI21l0fBTdxvVn6+aSVv+eYDIOa7A5XFjNJr9x1hdV0z85ii6RIRRUNz+E4NwhKSzIKiervOmkUAVpe8BPP/3kdz9x4kSSk5NZvHgxRx555H6bl4iIiIiIiIgcOCrq7cZ1dKiVcd3isTudOFwwZ1upX8XWhH5J/L61pIWR/I3vHo/T5eLbNfm4XDCuWxxjMuOYtbW02Xd3FpfsX9Xlcrmo9PQPNMdGh4tNxbWc1C8ZswkWZZW7+4ZYiQqxsrW0ptW5HtkzgTqbg69W5hFiNXN8nyTsDicr86tanefOKnfqG2iutY0OeiaEc1K/ZCxmE8vzKv3eabA7WZVfySHpMUxZV0hbVNbbcblcmEymNvTeNw66IG1nFRUVAMTHx7fYp6GhgYaGprSzsrKyxb4iIiIiIiIicvCz+6zZLK21+S0z3Fmg0zwPSY9heGpT8PXFilwsZhOZcWF8tizXqEBbmlvJmYO6MntrKS7Pd9sa/jhd7hMqW5vjppIaNpX4B2YhQe7DEVpbvhkeZCElOpTPluVgd7qwNzpYkVfJsNRoVuZX+f19dmXnvi3N1RsmtmRtQTUDkiPJiA0jv6q+1b54Tu90usBy4ORoB3eQ5nK5uOuuuzj88MMZPHhwi/2eeuopHn300X06NxERERERERHZf8x/MnxZkl3RbI+0mNAgzCYT5w5JadY/LMhCrc2ByUSbK6h2t9CqweZeQhkRbKGqIXCYFh5swe50+p2eWdVgJ8JzCmZ7vr2nciyHy8Wy3EoOSYvhp3XNl3cG/PYBFKJxsAdpt956KytWrGDWrFmt9nvggQe46667jPvKykoyMjL2wQxFREREREREZH8Itpj3+Jg1jXacLhefr8jF0UJFV0g7vms2mbCaTe2qDsNzkEJVg53u8eGszKsK2Ke20YHVbCbUajbCtKgQKzU2R7vnGWLdc3/LTcU1DOoSRa/E8F32tZpNmA+wJG3P/1+1j9x22218++23/Pbbb6Snp7faNyQkhOjoaL9/IiIiIiIiItJxxYcH7fEx6+1OssrrGJMZa4RLoVYzmbFhPt8N3ifzXLCjjCFdo+mfHGmEYtEhVsZ1iyMi2F0dl1dZz6iMWKxmExHBFoZ0jWKzZ5mo7zzztxXy6dNfM/Xd39i6cjsOu3+VW9we/Fu6gCU5FQzpuutspr1/y33hoKtIc7lc3HbbbXz99dfMmDGDHj167O8piYiIiIiIiMgBJmEvhTCztpYyPDWGUwd0IcRqpt7mYFtpLTs8p00u/GwWm8sqGHLkQIYcMYDohKhdzrOwuv2nU2ZX1PPLxiKGpkQzwrOXW3WjnS0ltdR5qs5+31LCmMw4zh2SgsPlYktJLavy3RVsvgHev69+leUzVhv3IWHB9BzWjfR+qSSkxHP6rSe1e36t2VFex+CuUYR6lpm2JDFiz4ehf5bJ5XK1r35wP7v55pv5+OOPmTx5Mv369TPaY2JiCAsLa/Vdr8rKSmJiYqioqFB1moiIiIiIiEgH9e3qfMrqbPv0m7/c8hr5Czca990HZTDkiAH0O7Q3Gf1SSe+b6heuZZXXMX1T8T6dY2JEMKcO6GLc33PsI35B2s4iYsK5bs6/KK5pf+D3ZxzbO5GM2LZlPfvKQRektbRh38SJE7nyyivbNIaCNBEREREREZGOb11hNfN3lO2z79Xll/HVmY/DLqKWqLgI0vqmkt43hbS+qXDcITis+27RYEZ9HbZNORRsKyJ/eyErZq6hYFvzk0u9gkODeWHH/5i9rfVTOfekiGAL5wxJOeD2SDvogrQ9QUGaiIiIiIiISMdnczj5YnkutnZu5r+7RqXHkhEMq2atY+Xva1n5xxo2LtmK0+Fs9b3BVx3P8JtO2SdzbKioYdJpj+FoaFulXlhkKI9Nvo/BRw3ky+V5NOzit+wpI1JjGJp64GU2B90eaSIiIiIiIiIibRFkMTM0JZrFORV7/VuRIRZ++NuHrJi+kj6H9KDX8B6cftMEohOiqCiupLKoivxthWRvzCNnYx6FO5qWc67/fBZ9zhlLRJe4vT7PFW9ODRiimUwmdq61yuiXylM/PUSXbkkADEuNZkFW+V6fY3iQhf7JkXv9O7tDFWmqSBMRERERERHpsJwuF1PWFe71/b0OjQvm9j63tvg8ODSI21+9jglXHgNAfW0DeZvzyd6QR/aGPArrbcSePnavzrFyQw6lk2bRpVsSXbsn06V7El27J5HcLYn/Xv86Mz+fa/QdOLYv//z2fr/93FwuF1PXF1FQ3bBX53l8n0TSYg6svdG8FKQpSBMRERERERHp0CrqbPywrgCbY+9EIIO6RDEiNYozoy+noa7lwG7MqYfw+HcPtPh83vYy1hdV75U5hljMnDKgC9GhgRcnTv/4D5669EUAxp4xigc/vpPQ8JBm/aoa7Hy/poDGvbTEs39yJGMy935l3u7S0k4RERERERER6dBiwoKwzVyBbUQfgiJC9+jYvRLCGZkeg8lk4v4Pb+fRc//dYt+Trj621bH6BLv47fdVpB45eI/OMchi4rg+iS2GaADHXHQ4VWU1mC1mTrn2OCxWS8B+USFWXHNX0TiwB8GRe7ZqrHt8OKMzYvfomHuaeX9PQERERERERERkb5r3/WI+vGsiv9zyOnXFlXts3O7hFt46+VFuHPFXVs9dz/izDmX0ySMC9o1JjGLAYX1bHMtus/PERc/z270TWf/l7D02x/AgC3XTFnFrv9t49S8TqauuC9jPZDJx5i0ncfqNJ7YYogEs/nk5793+Nj/f+Co1BXvuRNR+SREc0SP+gDulc2cK0kRERERERESkw8rZlMfTl7mXLJas2UHsmq30jA//U2NGBFs4vk8S8/81iZwNeWxZsZ07xz/EX497lHFnjMIa1DyIqiiu4uaR97J85uqAY75574es/H0tLqeLrR/9xqGJYYQF/bnYpkdsKKPCXHzx8CeU5pXx9Qs/8n/pN/D2Ax9RnFva7vEKthfx5MUv4HS6KNuQQ+SyTfROiPhTcwwLMnNc70QO63bgh2hojzTtkSYiIiIiIiLSUdXXNnD72AfZunIHAEecO4aHP78bk8lETkUd0+dvwRnf9lygtqiC4T2TGNk7iWCLmW9ensIrt7/TrF9UfCRVpU17nUXGRVBdVgOA2Wziqicu5sJ7z8TkCY5mfDabJy56HgBrkIXnZj7GwMP60mB3sjq/goVr8giNj2r2nZakxYSSGWrhlm43AGAywc7pjzXIwjEXH875d59Bj8GZuxyzscHGnYc/xMbFW8Cz39tjk+/DbDaTV1nP9AVbsEVHYDK3LfwLCzLTJzGSgV2iCLEePHVeB89MRURERERERETa4X9//cAI0TL6p3HPO7cY4VVaTBir/v0Vk899kuX/+4kEC4TuFOg4Gu2UrNnBlu8WMPPeiXx9xj/Z8MkMgi3ufoefMybgd31DtDGnHsLba55nxHFDAHA6Xbz9wEf84+x/UV1eQ/62Qv57wxtG/5tfuJqBniWgIVYz4bnFTDrtMX5/4D12TF1MydosHDa73/dqiyrI/n0VBVMXU/bxdCLXbydrVlPlW6ASKrvNwc/vzeSWUfexbsHGXf4tJ/7tEyNES+3Vhfvevw2zJzRLiQ5l3UvfMvmcJ1n2+o/E4WxWTeew2SlZm8WmyfOIzy0k/80pDIgPPahCNFSRpoo0ERERERERkY5o3veLefiMpwEICQvmlUXP0G1AuvG8rqaecxOuwtZoJzkzkQ+3vkpxdjHP3fA/crYUUpJbir2uEddOp1NarBa+rXyf4NBgAC7pfhOFO4oDziE5M5F3N7xIUHAQDoeDDx79go8e/8p4ntIzmfDocDYv2wbAcZccwX3v32aEfQAfPPYF7z/yOQCJ6QkUZ5dgsphJ6plMRWEVjkYbds9JoWaLGadnvre8dBWv3DaxTX+rhz79C0ddMK7F50t+WcF9J/4TgKBgKy/Nf4pew7obz22NNs5JuIr6mgZik2P4LPd/VBZX8vTVr9H30N5c+uC5nBN3OQ01DX7jpvVJ4c2VzxEUHNSmeR4IDq7YT0RERERERERkF8oKynnumleN+xueu8IvRANYMXMNtkZ3ZdfoCcMB+Ovxj7H4p2Xkb8jFVl3fLEQDcNgdPHjKkzid7mcDxwY+QCC+ayx///IeIySyWCxc+dj/8cQPDxIVHwlA3pZCI0Tr0i2R216+xi9EA1g0bblxbW+0AeByOCncmE9DRY0RogFGiAbwxt0ftOlvddJVx3D4uYEr6wAqS6r415UvG/fXPHWJX4gGsHr2euo9IdmoCcMwm8389fh/svjHJXzyyOesm7uO0PCQZmPnbMzjmctfwuFwtGmuBwIFaSIiIiIiIiLSYbhcLv59zauUF7lP5zzs9JGcdsMJzfot+XmFcT1ywnBmf7OAnI35bfrG8hmree3Od3G5XC2exHnJQ+fRb1SvZu2HnjyC1xb/i8yB/sFet4EZWIKsfm01lbWsm7cBgMwBadRV1bdpfgD2Rvsu+8R1jeXWl6/BYgl8SqfL5eL5G9+gJNd9Ouchxw/h7DtOadZvsc/fctSJw1n401K2rdphtP309nRiEgLv8Tbz87m8cOObHCwLJhWkiYiIiIiIiEiH8d1r01jw41IAYpNjuOvNm5pVeQGsnrPOuO47smfAQwNa883LU3jvH5+1WJE28aFPKM4pCfgsOiESW4PNr23BlKXcMe5vZG/MM9rWzd+I0+kOmIYdPZgGn+qzPaEsv5yJf/ukxedT353BH1/NB88BCn9991ZjXzRfvn/L/of14cVb3vJ7PvfbRcQmx7T4nSlv/8r//vrBQRGmKUgTERERERERkQ5h+5os3rjnPeP+rxNvIS5AgFNf28Cmpe4llZkD0vj6hR8ozikNOKY12BqwHeCjx79i64odjDn1EMKjw7jxuSs46kL3XmPV5TU8e/WrxhJQX6/95T3yNheAZ+P+0Aj3ssctK7Zz66H3s+L3NQCsmbPBeCcpM7HNf4ddOfeuUwkKcS85/er5H1jy68pmfXI25fHK7W8b93e9eSOJqfHN+tltdtYv2ARA1+5JTH1nOvlbC/36VJfX4NxFSPblf77j21en7vZv2lcUpImIiIiIiIjIQa+xwcZTl75IY7270uvMW07i0JNHBOy7YdFmHHb3vlzpfVP5+sUfWxw3Ki6i1e/O+GIOj3/3AJNKJnLuX07j9leuJTHNHTgt+XkF377iHw7N+no+U97+FYDQiBCenPI3Xl7wNJkD0gCoqajl/gmPM+vr+azyqfSaNWluG/8Su1Zf3cA1T15s3P/7qleoLq8x7u02O09f9pKx79lJVx/L4WcH3kdt87Jtxt+826AMvvj3twH7FWcHrs7zNeOz2e3+LfuagjQREREREREROei99/Cnxsb93Qamc92/Lm2x75o5643r/K2FxvLJQAItC/WKiAnnovvPBs9hAgDR8VHc887NRp837/uAHetyACjOLeU/171uPLvlhatJ651CtwHpvDz/KUZ7gj9bg41/nv8cK39fC0BMYhQbFm5pw18hsOiESM6/53Tj/se3fuXoi8Yx/JhBABRll/CyT/XZR49/xbr5GwFI7d2Vm5+/ssWxV/v8LYtzSrHbAh8csHOV2s66dEvi4r+d245ftX8oSBMRERERERGRg9rKP9byxXPfARAUbOX+D28nJKz5KZFevuGPd1llS6rKq1t8Zrc56DEks1n7yBOGcdZtJwPQWG/j6ctexNZo4z/XvkZVqXu8I84dw4SrjjHeCYsM47Fv7uWEK44CwOl0GfuodQ/wjbbo0j2JyRXv81XRRK7/1+XEdXEvc3U5XTxx4fP8deItRMSEA/Drh38w8/M5rFuwkY+f+AoAs8XMAx/eTlhkWIvf8P1bhke33G9nvvnkjc9dwQdbXjFOTz2QKUgTERERERERkYOW3WbnxZubTn286omL6T28R4v9XS6XEf5EJ0Tx6Df3cssLVzN4fH+jT3JmorE3mq3eTkJaXMCxGmobWlwWeu3Tl5DR371cc+PiLTx1yQss/GkZAAmpcdz5+g3Nqt2sQVb++s4tXHjvmX7ttnob3Ydk+LUFhwYZS0h35h23aEcxJnPTN+5991bjeuUfayktqOC2l6812p6/8Q3+c93rRoXe5f+4gP6H9gn4Dbx/y9nu5adhkaE8/Pld3PrSNQw9apDRJykjgbguMfQb3XSCqdli5t73bzPuS3JLW638O5AoSBMRERERERGRg9bXL/zIttVZAPQb3Ytz7jyl1f7ZG3KNqrCB4/oSmxTDWbedTGJGgtHnyR8f5LQbTjDuB48f0HwgT+4z+eWfqKmsbfY4JCyE+z+4DYvVveTTe/olwG0vX0t0QlTA+ZlMJq59+lL6jOxptK2Zu4H8Lf5LI0efNJy31zwfcAxvqOh0uti4uGlJ6KgJw+k9oilk/M+1r3HsxYdz5PljAagur2Xryh0A9Bzajf+7/6yA43sVZRVTklsGQP8xfYhLjuXMW04ipUey0eeRSX/l87y3eHn+00Y46XQ4GXHcEKPPWs8y0oNBm4O0a665htmzD/xN30RERERERESkcyjMKub9Rz8HTwB1+6vXGXuVtWT17KaliIPGNVWhbVvlDpCsQRbS+qSQ6akmA+gxtFuzcayegKy6vIbvX/854Lf6juzFJQ/57/t16MkjGHfm6F3+Nm/Y5+Xd+N+r28AMwqPCWqxK81o7zz+kevDjO4zrrSt3sHn5Nu549TpiEv2DvdteudYIAVuyyu9v2c+43rba/bc0mUxkDkg32sMiQ31+Tz0pPbuAp2LPbrO3+q0DRZuDtIkTJzJhwgR++eWXvTsjEREREREREZE2eP2ud42A6bQbT6TvyF67fMd3Ty9v+GO32clenwueUzytQVa/AKi8oJzIWP/TO+02h7Ec8av/fkdDnX/Q5TXmtJF+96NPHrHLZYyl+WXG5vzdB2f4BVBe3Qa5l3p6T/tsydr5G/zuM/ql+S2zfO6a14hOiCKtT6rRFhETTv9De7c6Ljsd2jDQ87d0Op1sX5MNQNceyYSGN+1BFx0faVxvXrqN/mPc32ioazQq4Q507V7aecYZZzBt2rQWn69evZpLLrnkz85LRERERERERKRFC39aaiyXjE2O4arH/69N73krz0wmk7F8MmdTvnHaZPfBzQOqHetyGDS+X7Ox+oxyv19WUMHUiTOaPXe5XLx250S/ts+fnUx9beDQzcs3VBp5wjD+/dsjzfqEe8K1zP7pzZ75Wjtvo7HU0+vut5tOFd20dCtT3/2NNXObQrGailq+fWVqq+MCbF3VNE9vOFe4o9gIN7sN8p9bXNdY43rb6iwGjOnrN8+DQbuCtHfeeYeuXbty1llnMWXKlIB9qqur+fTTT/fU/ERERERERERE/DTWN/LybW8b99c/exlRcZGtvoMn2NqxLgeALt0SjWqp7Z491vAsmcQTzkXFuavQstbmcOoNJzYbLzkj0bj+/NnJzZYn/vz+TFbNcm/GHxIeDEBRVgmfPfNNq/PMWpdrXGcOSHdX2u1UxPbCzW9SsL1olxVppXllFGWX+LX1GJxJr+HdjfsXb3mr2XvvPfIZZYUVu5in+28ZmxxDdLx7aajv37L7QP8DEpIzm/5euZvy6T+m6SCDnSvnDlTtCtK6d+/O77//TmpqKueccw4//PDD3puZiIiIiIiIiEgAnz0zmdzNBQAMOXIAx196ZJveK80vp7ayDoAMn6Wb21dnG9feJZMmk8noU5RdwsCxfbBY/WOU8sIKDj1lBAAF24v47ZOmveWryqp5894PjPtbXrza2HPss39NJm9rQYvz9IZ9+FbG+ReVUZxTyr0nPEZsl5hd/m7vUktfd711k3HdWNcIQP9DezPhyqMBqK2s450HP25xzKqyasoKKvznCGwL8Lf0Suvd1bgu3FFMr+HdMXtOFQ00xwNRu5d2pqenM3PmTDIyMjj33HP57rvv9s7MRERERERERER2krs5n0+e/hoAi9XCbS9fu8s9x7yyfAOqfk17gm1d3bREsbvPcsS+Pidnrl+wmYz+/tVfuZsLuOiBc4z7T57+GofDvUR04t8+obyoEoAjzjuMk68+jnPucJ8oamuw8b+/fkBLstb7zLN/GvW19X7PvXum5W7K572/f7bL3523uXlo1/eQnqT3SfFru+2Va7nmqUsIjw4DYOrE31i/cFMLc2yqmsvo5xuk+fwtB/sHaTGJ0cZ1fW0DwSFBRpVa7qb8ZktQD0TtDtIA0tLSmDlzJt27d+f8889n8uTJe35mIiIiIiIiIiI7ee2ud7E12AA4985T6TE4s83v7ljbFFD5hmJbV2wHICgkiNReTVVTgw8fYFyvmrWWI849zG+80rwyeg3vzpAj3f2y1uUwdeIMNi/fxvdvuE/yDI0I4ab/XAnAJQ+fR5yngmzWpPks+WVFq/OMSYwiOiGKkpwyv+cnX3OcEUBtX5NtLBv1Co0I8bvP3ZQX8DtJGQl+9zGJUcR1ieXyf1wAnqWwr9zxDk6ns8U5slNF2hbP39JsNvmdfAoQ7HPwgMOzJ12K5+9dU1Hb7KTSA9FuBWkAKSkpzJw5k549e3LBBRcwadKkPTszEREREREREREfa+ZtYN53iwFITIvn0r+f1673fSvSvEFaWUE52RvcQVPvEd2N5ZeA3wEDq+es56zbTm42Zt7mAq7650XG/cSHPuHtBz4yqqsu+/v5JKW7A6uI6HCuffpSo+8rd7zTbF+1mooaSvPK/OZYnFPq12fEcUN45ue/G6FcQ22j3/Oew7r53edszm82703LtrJ0+iq/tmevehWAM289yQjH1s7byC8f/N7s/UB/y+ryGraucFekdR+cSXBoywGf93f7Bpc5m5rP80Cz20EaQJcuXZgxYwZ9+vThoosu4ssvv9xzMxMRERERERER8fHeP5qWMV768HmERYa16/0d65tXUa2YucZoG3b0YL/+ianxdO2eBMC6+RsJiwwlJinar0/u5nyGHDGAI88fC5590xb+tAyApPSEZuHb8ZcdaWyyv2NtDtM/nuX33HfJpLeiyxuseQ05oj/pfVJ4ZtrDxoEIvg47baTffaClne8/8nmztuUzV1OUXYI1yMrNz19ltH/w6OfNAr+dl58CrPxjrREgDjt6ULPxQ30q57wVab77puUFCPwONG0O0hITEwO2JycnM2PGDPr27cvFF1+sEztFREREREREZI9b+cdalvzsXgqZ0rMLE646pt1jZHmWI0bFRxr7dS2fsdp4Hij8GXR4fwAa621sWrqN4cf4h225niqqa5++hKCQIL9nF//t3GZVWWazmRuevcy4/+SpSca+arSw/DRnS1PAFBIRQkSMOzzrMaQbT/z4N0LC/ZdyDjysLyZz075x2Rvz/JZnrl+4ibnfLgJPZV9Kzy7uBy547trXABh5wjBGTRgGQP62In796A+/b3jnGRoeYiwR3dXf0neeDrt3aWcXo61DVaQVFhYyatSogM8SExOZMWMGAwcO5MUXX9yT8xMRERERERGRTs7lcjHx4U+M+0sfPg9rkLVdY9RW1VGUXQKegMp7QMHyme7wx2K1MGhc32bvDRrX37hePXsdZ956kt9z7+mhKT26cOR5TXuohYSHMOGqowPOZfDhA4ygKXtDHr9/Mc94FmjJ5Oal24y2mIQov7EGjOnD49/d79f26bOTSfUJqBw2ByW5TVVtvpV9F//tXG5/7TrjfsnPKyjNd/e95KGmpbOfPNV0kEJjg428Le7fnd4vFbPZHS+t8PwtTSaTsW+cr1CfIM1udwd7fhVpW1o+yfRA0a6lnd4/TCAJCQlMnz6dYcOG7Yl5iYiIiIiIiIgAsPTXlaz8fS0A6X1TOO6SI9o9RuGOYuM6rY87vCkrKDcqq/qO6hlwqehgn33SVs1ex5DDBxASFuzX5lXg842G2gbWzNnQ4nwueehc4/rjJ78yKsbytxf5zNN9qqbvck/vfmu+hh8zmOCwpmq4RVOWEZsc49fHWzm3avY6Y+lp1+5JnHT1MYw6YRhdurmXsLpcLv5z3eue396f4ce4A7+cjXnM/HwuACU5pTgdniDM87esLq9hkyfw6zEkk+h4/8CPnfZIc3oq0rr27KAVaW0RHx/PrFmzmDZt2p4cVkREREREREQ6KZfLxbt/b9pG6rJ/XOB3IEBblRdWGNfxXWJh5/3Rjmq+FBGg26AMImLCAVg9ez0ul4txZ442nudscIdcS6evZNUfa/3efe2ud/2WbfoafsxgBo51V8BtW5XFnMkLm8+zq3ueRdk+IWDflIDjeZd7eq2evd7vfsmv7mWx7/n8LS956DyCgt0B3C0vNu2JtmDKUipLq8BTseb1yZOTcDqdlPnMMc7zt/TdH23oUQMDzjHEJ0hzeIK4sIhQ4lPioKPtkdZW4eHhHHfccXt6WBERERERERHphBZMWcraeRsB6D4og6MvHLdb4/gGVN5qLd89vYYG2NMLz+q8geP6GWPkbMrn2qcvMZ7bbQ6qyqp49+GmgMpb3bV52TamvTsj4Lgmk8lv6eTHT3yFy+Uy5hkcGkRYZCiVJVXUVtQZ/RJS4wKOFxHd+sELMz6dw7LfVrHsN/dvTu3dlRMuP8p4Pvb00SR6qt1cThf/ve4N8AZ+nt+/bXUWs79ZuMu/ZaD90fCEZl7ePdIAktLjASgvrPTby+1A1K4gbcaMGZx44okMGDCA888/n2XLljXrM3/+fCyW9ifDIiIiIiIiIiK+XC6X335elz9yQavbTrWmvLDSuDbCH8+eXmaL2W8J584GjWt6tmLmGpIzk/wOFnj6spdYM9e9jLPbwHTueedm49nEhz6hprI24LijTxpOn5E9Adi4ZCsLpiw15hmbHIPJZGLF72v83olNigk4VrhPkBZo/7jcLflM9An7Lvv7+c0q+276zxXG9ezJC6gur3YHfj5VaR8/8RXlBT4VaZ6/pXd/NIChRwauSAuNbArSvEtDASJi3dV0LpeLuqq6gO8eKNr8f9+SJUs48cQTWblyJampqfzyyy+MGTOG1157be/OUEREREREREQ6pbnfLWLj4i0A9B7Rg/FnH7rbY+1cRVVWWGHsj9ZvdK+A+6N5jThuiM+c3EswU3s37e21aOpy4/qKRy9k+DGDOcJz8EBZQQWfPvV1wHF3Dqk+/OcXVBY3BWnstPwUIM6z3HNn3iWaAHabnb6jevl3cMGaOe7lnpkD0jjmovHNxjjyvLHEp7jHdzldvHDTm7BT4Ldp6VZWzmpawhqbHEN1eQ2bl7n3R+s5tBvRCc33R2OnwwacDpdxHRnbtCy1ujxw6HigaHOQ9thjjzFq1Cg2bdrEr7/+yvbt2zn//PO59dZbeeaZZ/buLEVERERERESk0/n6hR+M6z9TjUazIC2ahVOWGvctVVB59T+0t7Ff2ZKfV1BXU0/PYd2M597qqp7Duhlh33XPXEpQsLsy7Kv/ft/iiZRjzxhF98EZAKybvwmn02XM0eVyscBnngAJKYGDNGuwfxXaoPH9Ah5MAHD5Py5ocTXhdc9calz//uU8aqvrmgV+i39eYVzHJkezeNpyY96t/S19//u5fJZwRnr2oMNzaMGBrM3/By5atIh77rmHiAh3ShgdHc2HH37Igw8+yIMPPsjjjz++N+cpIiIiIiIiIp3I9jVZxn5e6X1TGHPqIX9qvPIi/4q037+ca9yPPWN0C2+5mc1mxp4+CoDGehtLfl5BdFzzqqvz/nK6ERal9OjCuX/5f/bOOryp643j31iT1N0d2tIWd3dnuMuwwbAB24AB25DBBB0MGDLY0O03xnB3dyhQrAXq7po2nt8fSW6SRpo2aSnd+TwPD7n3nnvuuW+S3pPveeUjAIBIKMamWTupZPxl+1YXqdTHGBuZgJS3aRr7nTwcdY6RxdYU0iIuRmLxX3O02jl5OqD90FZ677X7uE6wd7UFFALh5lm/AwrBL6CBLwAgLz1fY5zXNWzZXG/f6qjnQtP0SKslQlp+fj5cXFy09q9cuRJLly7F0qVLsXz5cnOPj0AgEAgEAoFAIBAIBMJ/kOO/nqdeD5jZ2yRvNADIU8uRxmAy8PiCPBzT2csRoa2Dyj2/7SBVWOnt4w80xB8lbQZpikijvx5CFQd4dP4Zzu66rLPvDsNaw8VH03vM3sUONw7d1Wrr5KW72IB6aCcAJLxK1plPjcVhlZvbfvKPqmIKV/93E/wSPuh0OoZ8/pFWW7YVGw9ORwAA7Jxt9BYaoKDJ/1N6sEEtRxoA8GpLaKePjw9evXql89iyZcuwbNkyrFixAitWrDDn+AgEAoFAIBAIBAKBQCD8x+AV8HBxn7zaJceKjZ4TOpV7TnkoQzttHKzw8OwTiEXyqpEdh7UxSqRr3LU+uIpk+fdPRYBro51T7ciG0xrbljZcfPHbdGp7+7y9SI/P1DqPwWCg96SuGvvsXW1xXYeQxrHkaO0DACZbu8DAvZOPYW1vqbEvPTYTmUnZOvtQ0mdyV9g4WgMAJGIpdi36CwDQaUQbjaIGFhwWnl9/BUGpEADQfnArrQIGZaHR5EqaTE1Is3GohR5pbdu2xaFDh/QeX7ZsGb777jucPXvWXGMjEAgEAoFAIBAIBAKB8B/k4r4b4PMEAIDu4zrCyk7b+6uiFOUWAwBsnGw0wjo7Dm9j1PkWbBZa9GkCACjMKUJeRr5WmzM7L2nta9W3KXpPlotkpcV8rJu8VSOsUUnvyV00tkuL+VphnTQ6zeD4ynL7+APQdQhb87ssh5Av1NsXAIxePJh6ffnPGwAArhUH3cZ0UF2TY4Ebh+9R28bYkhLSZLo90mqNkDZu3Dg4OjoiO1u/arlkyRKsXbsWHTt2NNf4CAQCgUAgEAgEAoFAIPyHkMlkOLH1HLU9YFZvs/QrUXig0en0Cod1Kmmrlkvt2XXtqL2c1DzEvUjU2j/95wlw9XWWn3ftJU6oha0qcfV1gW+oN7X96PxTrTaGvL1YakKa0mvs5e1olBbztdqmxWbgl5m6c7YpGfrFR2Cw5NcrzuMh8oY8X13fqd2pNvwSQcXCOtXEQPVra+RIy6slQlqXLl3wzz//wNnZ2WC7efPm4erVq+YYG4FAIBAIBAKBQCAQCIT/GE8uP0dSdCoAoFHncATU9zVLv8rKmnwev8JhnUpa9m1CiVnxzxOo/XbOqsIDvy/+U+s8K1tLzP9jJrW9a9EBJL9J1WpXr1Vd6vW7J/Fax5ks7fBNJRYclZDm6K7Koybii3S2v7DnGi7uu663PzqdjsZd6lPbu7/9GwBQt0kA6Ay5zcRCcYXCOuX9Krzq1DQ8Jkt1nkQsKbeP94lpmfoIBAKBQCAQCAQCgUAgEMzI8V9V3mgDzeSNBgAShZBWUlRK7TM2rFOJjYM1GnYKAwBKjAOAVh+pKoo+vhipM3SzSdcG1P0ISoVYO+lXSCSaopFPiBf1WiSQC2DqHnNlK3Oqw1IT0tSFPSU0Gg2edd019m39fDeyknP09jn5xzHU61d330AolI+JZaE9jo4j2urtR2McOoRL5XsDgBLpaio1e3QEAoFAIBAIBAKBQCAQ/jNkJGTh3slHgCLssu3AFuWeYyzSMkJaRcM6laiHdyrxC/WBlZ08qb9YKMapHRd1nvvJqrGUmPXq7hv8u/5Uuddr3a8Z9ZqmP0WahkeaBdcC9q6aFTsZTDqGft5PYx+voATrp2zTG+IZ3DQQDm7yfqQSKQ6uPg4AoDM15SRbJ2s0UgiM5UFXy/OmFBylREgjEAgEAoFAIBAIBAKBQKgYl/bfgFRRzbHfpz2MChU0FkqsUWhGFQ3rVNJ2YHOtfXQGHZ1HqjyyjmzQLZBxrThYsHsWlXB/79K/Ef8ySXuMarQb2op6LdFxXAmbY6FqJ5LAp56nxnEGk4GPpvcEs4w32eMLz3D6N+0iCUrUq4me/u0CAEAm0RTe/Ov7Gv1eqQtlyoIHREgjEAgEAoFAIBAIBAKBQKgg1w/doV73nNDJbP3KZDItr6vOo9pVqq+YZwla+xhMBiZ+P5raTnmXjuzUXJ3n129XD8O+/AgAIBKKsWbiFohFYkCPkJabkke91nVcCduSTb0WicRaSftpdBrodDqadm+gde6O+XuRFpuhs98x3w6hCgTkpOQh/mWSlqCnrIhqDOpCmbIQgvp9mVM8rQpMFtIiIyORn69d8pVAIBAIBAKBQCAQCAQCwViSolMQ91xe8TK0dRBcfV3M1ndZASqoaQDqtayrt70hbvx7V2sfnUGHvbMt/MJUVTd/X/yX3j4mrhwF31B5PrS3j2Px1w9HdI4TAO6deqx2H/qrbKrnLSstKqVsWZYpq8Zp7ePzBFj3yVadud04lhyEtKijdl9/auV2i3+RhLwM47QhdS9APk8AlBXSartHWpMmTXDkyBHzjIZAIBAIBAKBQCAQCATCf5Ibh+5RrzsOq1gRgPIoWwlywMzeVHhlRRAKRLhz/KF8Q+10XkEJAGDUokHUvltH7uvtx4Jjga/2fEZ5Zx1Y+S8ennuCgpwirbZ3TjykXst0CF1KivNVHmh8haeXOsriCAH1feHoYU/tV+Z2i7z+Csc2n9XZ94TlI6nXjy48g1SsOQ6ZTKYh+BlC6X0HALZO8qII/6nQTn0J6QgEAoFAIBAIBAKBQCAQjEU9rLPjsNZm7Tsvo4B6zWDS0WV05cI6H194hpJCebECFy8nav/re28AAF3HdKCS/vN5fNw+/lBPT0BIi7oYv2wEoNBWfhzzC17ejqKOK8Wu9LhMap8yf5wuCtVEuCI1UU0p+ImFYvAK5Pv7Te1OHVZP/v/74j+RFJ2i1XfzXo1hacul+qG6Vjv3joF7VUf9fCtbuYhHqnYSCAQCgUAgEAgEAoFAIBhJVYZ1AsClAzeo17ZONmBz2Qbb60Nd7GvUtT71+uWdaEgkEtDpdLRSq7J5YMUhg/2N/now2g2SVwEtzuchVi3/WuMu2rnMZAaFNFWeMl6+3EMusJEfOFaqe73y1y0AwKhFgykRrCiPRwmLQr4Iayf9quXBBwCdhrfV2mdlawlHDwcAQMSlSJTytD3hyqL0jFP3CFS/HhHSCAQCgUAgEAgEAoFAIBAMUNVhnad/u0hts9isSvUjFIhw98QjAIClLRd+9byoY0W5xXh0/hkA4JNVY6j9757GITMxS2+fdDodC/Z8Bh9FX+pRf3Ua+2m1NxTaWZSnnfC/47A2GoLVmV2XAUVoaWjrIGp/RnwWvII8AACv773FoXUntPqa9MMorX0MJh1t+surmAr5Ijy+8Ezv+JQo87DRmWpFB4pUApy68FcTIUIagUAgEAgEAoFAIBAIhPdKVYZ13j35CFlJOdR2qY78YcagHtbZblBLFJWpinl21yUAgFcdD3jVdZfvlAHrp2w32K+VrSWWH1mgEWIJhcgW1DRAY5+h7FpKLzR12g5qoSFSvXsShzePYwAA09aOp/a/uvsGU1aNocawb/k/iHuuWZ3UwdUeLj5OGvtKi/mURx2MCO+USqWA4h6YLFV1zvxMVeitg5u9rlNrDERIIxAIBAKBQCAQCAQCgfDeqOqwzuO/ntPY5uXzKpXvXVPsa4P8rAKN43dPPqa8z+Zsm0rtf3L5OXLT8wz2XZxXrJX/7M3jGLQZ0EJjn6FxlxSVamwHNvKDjYO1VruTW88DAMLahMA72IPaf+LXCxj2ZX8AgEgoxubPfte6no2Dlca2kC9CaJtgWNrI86fdO/VYZ1ioktx0VWVPdc/A/KxC6rWdi63e82sCREgjEAgEAoFAIBAIBAKB8N64eVhV3dLcYZ3xL5Pw9MoLAACbawEoEvaXFZ3KQyTUDOts2qOhhhcVFJUn/1krD4ls2q0h3ANcAYX4tX7KNoP9lxX7AODW4ftaHmmGKJufrOOwNhpjZFowAUW+OErw26om+F19jn7Te1Ihns9vvsbNw6qQ29SYdMRGJmpdV8QXoUWfxoAixPXFrSitNkpyU3Op1xYcC+q1uijp4EqENAKBQCAQCAQCgUAgEAgEnTy5HEm9bje4pVn7/vP7f6nXXmreV7x8np4zdPPmUSwV1tmqX1NYsFnIz5R7UdFoqrxeZ3ZdRk6a3Pvss82fUOc/PPsU+dmFOvtOik7Btb9vAwCs7Cyp/SKhGLsW/QlXP2ejxigoEWhstx/ckhojAIS0qAMokv0fXHMcANCkawN4BLrJG8iAzZ/twrR1qpDPnV/th5AvBAD8+cNhndctzueh7QDjwjuVtkGZXGjqgh/xSCMQCAQCgUAgEAgEAoFA0IGQL8Sru28AAO7+LvAIcDNb33HPE3DtoDwc097FFnUb+1PHinXkEzPEs2svqdfKappK8cfOxQ79p/cEAIgEIvy7/iQAoFXfplROMZlMhg1TdedK2/fdISqsc8DM3hrHEl4lg8liauwTCkU6+xGUCKnXdi628A311hCoWvVtSolXZ3+/ohL8tkym2jw+/wwhLeugaXf5PabHZ+HIxtNIfpOKS/uuAwAsrbka181OzUPLvk3BYMpznt07/Vjn+FAmtJNrzaFeKwU/SxtupSuqVhdESCMQCAQCgUAgEAgEAoHwXoh68A5CvlwYatg53Kx9713+D/V65MJBsHNWeToVV9Aj7dl1lZDWqHMYZDIZJVLZu9pi2Lz+sODIc36d2n4BBQrvsxkbJlLn3T35CMX5mpU1414k4rqa2Dfsy37UMTpDLtmkvkvXOEdYxvOM2s9XCWmNu4SDRqNpCGnuAW4YMKMXoBD8lJU5W/ZuCldfudebTCbDxk9/w/T1E6jCA3/9eAS7Fv9JiX0jFg6Epa1KTDv+61lY21uhXqu61HjzMlSCmTr5GarxaAppKlvWdEwW0q5evYq+ffuaZzQEAoFAIBAIBAKBQCAQ/jNEXn9FvW7UyXxC2tuIWNw++gAA4OjhgP4zesJaLfF+QZbuMEtdiEVivLodDQBw9nKEZx138Hl8SgC0d7WDo7sD+k7pDgDglwhweMMpAECHIa3h6OEAAJBJZdgw7TeNvvct/4dK6D/iq0GwdbKlcrk5ejiARtOs5AkApcW6hTSxSJXkX2lLdSGtrOB3esdFKjfZzF9UXmn3Tj+Gk5cj+k7trrgen7KlrZMNBs/piwYdQqn2ERfkobnhbetR+14o7FWWArXwVmt7K8q+RbnFlC1rOiYLaZ06dYK7u7t5RkMgEAgEAoFAIBAIBALhP4O6p1fDTmFm63fvsoPU69GLB4PNZcPdX1UNNC02w+i+3jyKAV/hBdaos9LTSyUIKcWf4QsGgMmShzce33IORXlycWi6Ws6xW0fuo6RYnmvt3ZM43DoiL7Tg6G6P/jPk4aFuinEWZBVi0vejtcZTtsiBEpla1U+ld1/ZcTq42VMCmVzwOw0AaDewBZy8VILfxmm/YcKKkRo52wBg5FcDYWnDRY8Jnal9pcV8vL7/BvXbq4S0l7d1FxwozFF55CmFzYLsIi1b1mRIaCeBQCAQCAQCgUAgEAiEakcoEOHVHbnnkru/C9z9Xc3S76u70bh/OgIA4OLjRAlHnnVVTkCpMcYLac+uqbzmGio8vTISsqh9Tu72AABXH2f0mtgFAFBSVIpjm88CALqMbk8JRFKJFJtn7gK0xL4h4FiyNcYpEojQbVwHjFgwUGM8Z3Ze1hqjRCzR2Pat5yUfZ6LaOBWecSMWDARLUcHzxK8qwW/auglU29tH74PFZqH3J12pfUwWA/1nykNDfUM8Na63d9k/CG8bQm3rE9LUQ2ptnWzkY1SzpaPCljUZIqQRCAQCgUAgEAgEAoFAqHai1fKjNagib7Rx3w6DBVseyuhZR11IS9d5ri50ec0lRaVQ+3wUohUUudiUuc2O/nIaJUVy77NPfhpDtbn69y08u/4S907Jk/K7eDuh79Ru1HEvtXGmxWRgyqqxYCnuAQBO/XYBT6481xjj85sqsY/BYlAhocpx2jnbUMKVi7cTeqoLfpsUgt/IdnBQCFlSqQybZu5EUrTqPsUiCR6dfwYAcA/ULArx+u4b2DrZULZ4GxFHefGpw1Mr8mDnYmPQljUVIqQRCAQCgUAgEAgEAoFAqHbUK2GaKz9a5I1XiLgkF5k8At3Qc6IqBNHG0ZrKy1U2gb8+xCIxXt6Se1c5eTrAS+Etlvhat/jjEeiGbuM6AACK8nhUrrTek7pSQpZELMVPYzdR54z9digsOBbUtmddD+p1yrt00Gg0OLiphTzKgKUDV+P1/bfULqUHHgAqBxqvgIec1DytMQLAqEWDqCqbR345TeUum7JqHNXm2t+38eD0E43zfluwD0KBCFwrDpX7DQpBLuVtGuq3q6e4RwmiH77TsqdSWAQABzd7g7asqRAhjUAgEAgEAoFAIBAIBEK1o1kJ03QhTSaTYc+Sv6ntj5cOB5PFpLZpNBoVNpmVlA2hQFRun7ryowFAYrR+8WfM4iGUV9rB1ceQmZQNAJiwYiTVJic1FwDgHuCKXpO6aJzvUUfl7ZWm8JxTFiBQwucJ8E3fHxAbmQAAeH5LFUppZSOvqJkUnaoaY4jmGN39XdFjfCdAEW6ptFvP8Z1g5ywX/KRqOdeU56fHZeLoL2cAgBIVlRzZdAbh7VThnS9uaYd3lhbzqdfKcFd1rzff/6qQ9vbtWyNaEQgEAoFAIBAIBAKBQPgvIpFI8PruGwCAq6+zWfKjXTt4B89vvgYA+IR4ouvY9lptPBUilVQqQ0Z8Zrl9qotBDTuqwk+TFF5UNg5WsHex1TjHO9gTA2f1BgAISoXY+dV+AMCAGb0ojzgl45YM0xD7UEagSlEIaQxFEQN1ivJ4WNRrJZLepCL+eSK130pxjaQoNSFNh0A1ceUocK05AIDTv13CuydxAIBJP2gWOHD1dcKiA7NBp8tFxL9+OIzCnCINwQ8AHpyJ0Cw4cEe7cqdALdzTydNBMU65LTmWbLj4OGmdU9MwSUjj8/l4+PAhdu7ciVmzZqFdu3awtbVFvXr1jDibQCAQCAQCgUAgEAgEwn+RtJgMCEqFAICQlnVN7o9XWILt8/ZS21PXfAwGQ1t80siTZkR4Z9wLlUClHGdJUSmyknMAAD6h3pSXmjrjl4+gPLuuHbxDed817KyWC44GdBzRVutcNz8XKuxSOcayYpubn7yyZ15GARZ0XU7ZEgAsFZU2E9Vyj/mGagtpTh4OGLdkGKDw5vt17h+QyWToOqYDaHTVPXkFeSK4WR30+aQbdf/HNp/VsCUAZMRnwdnHifI0e3UnGlKpVKONgK8ap4u3I0RCEVX4wTvEE3R6zQ+cNHqEWVlZuHjxItauXYuxY8ciPDwcNjY2aN26NaZNm4bt27cjOjoaLVq0wNy5c6t21AQCgUAgEAgEAoFAIBA+WOJeJFGv/cN8TO5v37J/kJsmzwfWZkBztOnfXGc7jzoVq9wZrxgnnU6jwg6T36g8vcpWr1RibW+FyT+Opba3zt2NzKRsRFyMVDWSAXu++UvrXAaTATc/Z0AhOMpkMjAtNEXBoGaBCGjgCwBUHjQlVgohLSkqWTVOPSGTg+f2hXewPCfbi1tRuPr3bfz1wxHI1MI6n998DaFQhNFfD6EEvmObz8DJ01GjL5lMhsv7b1DhnbyCEo38ZwAgFoip13bOtkh9lw6pRC62+dTTbcuahtFCmru7O3r37o1Fixbhn3/+gUwmw9ChQ7Fy5Ur8+eefkMlkOHLkCC5fvoyff/65akdNIBAIBAKBQCAQCAQC4YMl4aWakFbfNCEt5lk8jm2W5+1icy0wc+MkvW29g1RCWryat5kuJBIJEl/LxSjPuu5UQQBjk+P3mtQZQc0CAQCxkQn4buha8HmalSxP7rgIsVisda5XkFzcKikqRVZSNhxc7TWOp7xNw6rz31I539SxUYR2JipCO1lsFlwVwlxZWBYszNigstf2L/fg0LrjGm3EQjF2fbUfbn4uGoUUYp/Fa/V3ce91BDerQ22XtbFYJJG/oAF0Op0aI3TkcaupGC2kKd3r+vXrh8zMTLx69Qp///03vv76a/Tt27cqx0ggEAgEAoFAIBAIBAKhFpHwSiWk+YVXXkiTSqXYNGsXlRh/zDdDDeZbq9PYn8r1FfVAu6qkOulxmRDyRVpjTNIImfTWez6DwcCsXyZT228exQIArB2swLFiAwBEfBF2f/u31rnqYtTr++/gEah5T8lv0mDnYos1F5dSfSmRSqQQi8RUWKhPiKfOMFclLfs0QeuPmgGKUFGJWO4h1rhrfarNKYXgN/KrQVQo67WDt8G00Aw5fRsRqxFGqp6nTTk2uW3oiuPG2bImYbSQ9vTpU3Tu3BmnTp1C06ZN8e+//1btyAgEAoFAIBAIBAKBQCDUSuIVHmlMFkOr+mNFuLDnGl4pktr7hHhi2Lz+BttzrbnwV4RExr9IRGlxqd62CS9VoZHq4aexzxOo1+WFI4a3DUHXMZpFDz5d8zGGq43z+OazWrnEQlsHUa+j7r+FTz1NkUkkECE9LhNufi5aXmm3jz3A+b3XIBFLjBojAEz/eQIVtgkAzt6OWHH8K6oYgUggxh9f/w++9bzQfmgrQCG6OXtphneq52oDgES18FKpVAqZTC54Kq8Vp2ZL39oW2hkeHo7Lly9TYZ0jR45Et27d8PLlSyPOJhAIBAKBQCAQCAQCgUAAxCIxkqPlnkreIZ5aifSNpTCnCDsXHqC2P9syBRZsVrnnhbaUi1RSqYzyEtOFeqEBpUeaTCbDqzvyaqM2jtbwCHTTe74SF2/NSpR1Gvtj3NLhYHPloaKCUiEOrDik0Ua9AMPr+28Q2NBXq9+kqFRIpVKkvtUsmiAWSbBp+m+qvloEaZ1bFnsXW7DYqvfBydMRXCsuhi8YSO07/us5SKVSjF40mNpXmFOk1dft4w8ooUw9DLY4n0e9Zinep5e35SIox4pd+zzSlAwbNgxRUVFYsmQJ7t27hyZNmuCLL77QWaWCQCAQCAQCgUAgEAgEAkGdlLdpVK4s//raApGx/L74T0rI6TyqHZp2a2DUefVaB1OvX99/q7edevipMo9b8ptU6prhbUPKrTKZHp+JY5vPauxbP2UbxCIJBs1Rpcn6Z91JjVxp9i528KwjF+nePo6Fb5h2/rDE18nISMgCv0SgdUyqVixAmfzfEHuWHtTI3xb94B2u/O8Wxn4zBGxLeeiosFSIP775H4KaBqJ5r0YAgJJCbY++J5eeU15ySdGpkEjk73XCK5V3GseKjcykbKr6aWjrYA2PuJpMpeqKcjgcLF++HFFRURgwYAD27NkDALh586a5x0cgEAgEAoFAIBAIBALhA0cmk+HSgRs4uOY4Tmy9QO139XGmhJaK8PJONM7+fgUAYGnDxbR1440+VzNs8o3GsZR3afhn7XGc2HoeLxUho3QGHU6eDorrqtqHtTEsUMlkMmyZ/TsV7mjjaA0AiH2WgP3L/8HElSNhwZF7ZglKBNg6Z3eZccoFPyFfhNR3GaDRNR2Yrv1zB8c2aYp0ANB1dAeN7VuH71Ehlbp48zgGJ349BwAaOc82z9qF7JRcDPlcJfj9+/NJlBSXYvTiIXr7y0nNg5eiqINIIEJmQjYA4N2TOKqNg6s9FZILAGFtgnX0VDOplJCmxMfHB//++y8uX76MsLAwLF26FB07dsTr16/NN0ICgUAgEAgEAoFAIBAIHzTX/7mD1eM3Y9eiAzix9Ry1/5+1xzHIfgLO77lqdF+8whKs+ngTJQ5NWDESzp6O5Z6nxCfEE5a2XABAxKXnmNP2a4z1n4H7px/ju6HrsHPhAWz+bBclAEklUgx1noyZLRYi8poqvVVYW8Piz5mdl3D/dAQAwNHDAd8d+wpMltzr6uCa44i69xZjlwyj2p/eeQn52YXUdr2WKsFv86zftcSwt49jceSX01rXDWyk6eV3aP1JrPtkK8Qi7eqg/BIBVo3bRHmwTVg+At3GyoW44nwe1k3eivHLR1D2kogkWDVuExp0CNX2dFPT+dLjMqnXysqniWoeaS6+TlRYJxTefR8KJglpSrp06YJnz55hw4YNePnyJRo3bmyObgkEAoFAIBAIBAKBQCDUAgyF7fF5Alz+0/gIt1/n/kEJNWFtQzBwVm+jz3117w02z9oFkUAuKpUW8/H63ltkJmbj/J6rBsf59nEsnl1/Sd1PSIu6etsmRadg2xd7qO2526aiQftQTPhuJKDwVls9fjMGzuoNOxdbQCHYfT/iZxTlFePb/j/huJrgGPXgLaDfqUyD87u1RckLe65h2eA1KOXxNfbvmLcXSYp8dUHNAjH0y4/w2eZPqLxuTy4/x4lfz2P2lk+oc+6efITkN6kIblpH8yJq40uNyaBeK/Okqe/zDvLAy7tyIY1Go1Hedx8CZhHSAIBOp2POnDmIjo7GpEmTzNUtgUAgEAgEAoFAIBAIhA+cVv2awsbBSu/xrmM66D2mzvVDd3Fx73VAEdK5aP9so3NrxTyLx+ftvsWpHRchEoi0jjt5OKL7uI56z3fzd0FmotxLrW4Tf3AUucPKIhKK8NO4TVRIZ79Pe6DtgBYAgOELBlCeXOnxWdj+xR4s2D2LOvfZtZcY6jIZ909HUAUZKoqzWnGDEQsGgKUI13xw5gnmd1mOjIQsQCGIndpxEQDAsWRj8YE5YFmwYG1vhflqY9q16E8ENQ1UVQeVAdMaL8DRzWf0jkHEV9lX6ZGWk5pL7fOs646Yp/EAAL9wb1jb6/9s1DTMJqQpcXZ2xvbt283dLYFAIBAIBAKBQCAQCIQPFAuOBbrpEakadAhFr4mdy+0jMykbG6ftoLY/2/IJPALKr5qpRCaTGcwVFtDAF90/7kiFX5al96Su1GtD+dH2LT+Et4/l1UB9Qjwxbb0qfxuDwcDCvbPBteYAAM7tvgqJSAL3AFfVOKVGup7pgM210Cg+MHz+APx07lsqNPPNoxjMaPYVrvx1Ez9P2Ua1m/7zBPiEqAoaNO3WAEPm9gMUec5WfbwZC/aoxDVdQqQ66nZOVAiC+VmqsFUGkwGpRAoACC8n11xNw+xCGoFAIBAIBAKBQCAQCARCWfp80k1rH5PFwNxtU0Gj0XSeo0QqlWLtxC0ozucBADqPbGvQe0wXdRsHYOLKUXqPBzT0g52zLdoNbql1rPPIthDyhdS2vpxekTde4eDqY4BCLFp0YA64VhyNNh6Bbpi5URXJt2L4Oo2cYqZQp0kA3ilEPK8gD9i72KFR53BsuLGSEuuKcovx07hNlLDVdmAL9J3aXauvyT+Ohl+YN6AoFDCv07IKjcWCawEASH2bBpSp8JmdpPJOC/uA8qOBCGkEAoFAIBAIBAKBQCAQqoPAhn4IbOSnsW/4/AHwC/Mp99x/15/E06vy/GQuPk6Ys7V88U0XY74eguHz+us85h8uF43KCn4cKzam/zwRL25HUft0iT/F+TyNIggTV4xEcLM6Wu0AoNekLmgzoDkAQCKWVvg+9OHs6QiRUJ7/Tb0YQGBDP2x9tBqt+zfTaM+0YGLyj2N02pLNZWPR/jmgM+TSkdKDzFgkInk11vysQggFIsqLjcFi4NV9tUIDZYsW1HCIkEYgEAgEAoFAIBAIBAKhWmg7sAX12tKWizHfDC33nLcRsdj97f8ARWL6hXtnw8bBulLXp9FomLrmYy2xzNbJBlxrefhjk24NwFbLfzbmm6HgWnPw6s4bQOFR5qKWh0zJplk7kZWUAwBo0DEUwxcM0DsOsUgMKyPygjH0hJnqQ1CiKibQoEOYxjEbB2tM+n40GEyVFCQWirGo50q8vBMNXUjEEnCsdOeCKw+JWEK9fvPoHfWaa8XG8xuvAQBOng7wrONeqf7fF0RIIxAIBAKBQCAQCAQCgVAtDJvXH5a2XNDoNMz6ZbLehP1K+CUC/DRuE8QK76YRCwagUedwk8ZAo9Ewd/tUNO3RkNpnbW9JvabT6Rg8pw8AwN3fFSMWDMDTKy8oYah5r8ZafV7+8yau/u82AMDKzhKL9s0Gg6FfBFs3eSsu7bte7lg9Alw1hK+ylBXa0uNVIaLNezXSOCYUiLD6482UBxxbEXqZnZKLeZ2X4cjG0xq5zRJeJeHLTks1QjL14eTlSL2m0bW925TehADAtmRThRia92xcKc/C9wnzfQ+AQCAQCISKIJPJwBNKkFMiRE6JCCVCMaQygEGjwYrNgLOlBZysLMCt4OqduZFIZcgtESKnRIj8UhFEEhlAA1h0OhwtWXCytIA9lwWGjokGQROJVIa8UiGyeSKFLaWULR24LDhZseDAtSC2NAKJVIb8UhGyS4TIKxFBJJUCMoDFoMGeK/9cOloSWxqDWCxGYmIiYmNjkZiYiJKSEshkMnA4HPj4+CAwMBD+/v6wsLB430Ot8YjFYiQnJyM2Nhbx8fGULdlstoYt2ezKeUT8l5BIJBq25PF4lC29vb0pW3I4HCN6+28jlUo1bFlcXAypVAoOhwNPT08EBgYiMDCQ2NIIpDIZCvli5PCEyC0VQiCWYl7EBjBogD2XhfQiPpwsLcBiaItFMpkMv87+HUlRKQCAoKYBmLBipFnGxWAw8P3JRZjdajGS3qRh7HcjkVbIRw5PiEKBGMFTemPplN7gsOhIyOcj4u5bgEYDZDK06K0ppCVFp2DTzJ3U9txtn8LV18Xg9ZUeWeWRnZKHBbtnYcO03+Dm54wCvhiOId5wCPEC284SNo42KMouREF8JnJeJyE1Sl4hM7ChH5w9HTX62jFvL2IjEwAA/uE+WHF8IdZO/hXPb7yGRCzBti/34MWdKMzbNQOQyfD9qA0Q8g0XFVAycsEAbP18DwDA2sUGlt6ucAr1gY2vC5hsFgq8HNF07gDkRadAmleInLR8nbb8ECBCGoFAIBA+CEQSKWJzSxCdWYy80vIf6K7WFghxsYafg2W1igK5JUJEZRYjLrcE4nIqLrEYNNR1skKIizXsuKxqG+OHQl6JENFZxYjJMcKWdBoCnawQ4moNB2JLLfJLRQpb8uSirgGYdBoCnSwR4mINR0siApUlNTUVFy5cwPXr18Hj8Qy2ZbPZaNeuHXr27InAwMBqG+OHQnp6Oi5evIirV6+iuLjYYFsWi0XZsm7dutU2xg+FzMxMXLp0CVeuXEFhYaHBtkwmE23atEGvXr0QFBT0wXmCVDXZ2dm4dOkSLl++jIKCAoNtGQwGWrVqhV69eqFevXrElmUoEUrwJrsYb7J4KBVJDLal0QBfey5CXKzhbsOmbHlm5yWc230VUHhPLTowFywL8z3nmSwmvr22EtGZxUgp4CPtTZbetjbDOmBQ2zDEHL+Peh1Cqf2lxaX4bug6lBTJvba6jeuALqPalXvtBXtmYfOsXUhSVLTUC02GtiPawblLI7zN5oEn1Lalq9prqViC5Fuv4EGTVyhV2vLi/us4sfU8AIBlwcTiP+fCI9ANay8twx/f/A//rD0OALj57z3ERSYgoIEv4l8kyYdAoxmsdgoA/g390HJCF3DC/ODdIRx0pvaidliDAOp10/Q8vDt2F6Emehe+D2iy8qxRCyksLISdnR0KCgpga2v7vodDIBAIBAPIZDK8y+bhUXI+hOUIALrgshho7ecAX3tulYxPCU8oxr2EPCQX8I1orU2AoyVa+tqDo2PS8V+jVCTBvYQ8JOaXH0agCz8HLlr5Orx3r8SaAF8kwf3EPMTnVc6WPvZctPZ1gKUFsWVxcTH27NmDGzduVOr8Jk2aYOrUqXB2djb72D40eDwe9u3bh2vXrpX7w0wXDRo0wLRp0+Dq6mpE69pNaWkpDhw4gEuXLlXKlqGhoZg+fTo8PDyqZHwfEnw+H3///TfOnj1bKVsGBwdj+vTp8Pb2rpLxfUiIpVI8TSnEq8wiVEZtcLJkoZ2/I9KfJ2Bep6VU4vxF++eg29gOZhtnVrEAd+Jzkc8XV/hcOg1o4GGLBu42+HH0Rtw4dBdQeHltuvsDlWutPKRSKR6ceYJD608g8vorjWMuvs4QCcX49PjXSKczUc6aok4cuSy09XdE3psUzG33DeVd9uXO6Vo54u4cf4g1E7eAV1Cis6+2g1ri+fWXKMrTXESyd7VFaO+maLFgKHKNWOwuC50GhLvZoJGn3QfjEU+ENCKkEQgEQo2lRCjB7fhcpBZWTpxSJ9DREq18HWBhIMdEZYnJ4eF+Yl65nj7lwWHS0cbfscpFv5pMXG4J7ifkQVDBqlBlYTPpaO3rAH9HSyNa104S8kpwLyEPfBMrgVkwaGjl64BAp/ITItdWIiIisH37duTn55vUD5fLxcSJE9GlSxezje1DIzIyElu3bkVubq5J/bDZbIwfPx7du3f/z3oBvXz5Elu3bkVWln4PGmOwsLDAmDFj0KdPn/+sLaOjo7FlyxZkZGSY1A+LxcLIkSPRv3///6wts3kC3IzLRWElxCl1aACi/7yKB5tOATIZBs3ug1m/TDbLGKVSGZ6kFuBlehFMFUNoRSU4MXULCmLTYWnLxa8PV8M7qHLCdPSjGPzxzV+IuBgJAFhw5CuUBvkgvxLilMYYAcQcuoW7Px+DTCJF3ynd8MVv03W2TY1Jx/KhaxEXmah1zNnLEVsfrcb1Q3fxxzd/obSID2dvRyy8uwaRaYUm29Key0KHAMcPwhueCGlESCMQCIQaSSFfhAtvsnS6r1cWRy4L3YNdzOapJJPJ8Cy1EM/SDIfRVJRWvvao52pj1j4/BJ6nFSIixXAYTUVp7m2HcPf/3rP+VUYRHiaZJvqUpYmnHRp6/vdseenSJezcubNSHir6GDJkCEaOHPmf+6F9/fp1bN261ay2/Oijj/Dxxx//52x5584dbN68GRKJ+Z6RPXv2xOTJk0Gn/7fq0T148AAbN26EWGya8KNOly5dMG3atP+cLZMLSnHtXQ4kZvyOx517jMLLT7DmwhIwWfozU/FLBKAz6LBgGw77lEhluBaTXekIAl0Ii0tx9ctd+Gz5cLQd0MJg26K84nKrjabFZSCLL8bzUlm5qS0qQuKVSGQdv4N1V5YbtNOvc//Asc1ndR4bvXgwJv8wBhKJBC/uvkGOqxOSCgVmGyOTTkPXus7wsK3ZuQf/W99sAoFAIHwQ8IRis4toAJBbKsLFN1kQmuiho+R5WpHZRTQAuJ+YjzdZhvMF1TZepheZXUQDgEfJBXidUWT2fmsyUZnFZhfRAOBJagFeVMHnvSZz7do1/Pbbb2YVfgDgyJEj+Pfff83aZ03n9u3bZhfRAODUqVP466+/zNpnTefBgwf45ZdfzCqiAcCFCxewd+9es79HNZknT55gw4YNZhXRAODq1atmF+BrOmmFfFx9l21WEQ0AAno3Q99fp4NhIPXFnRMPMcrrU4z0mIq0OP1ehVKZ+UU0ALCw5qLn1pkI7tZQb5tSHh/Lh67FEKdJ2DL7d4P90Z3tEWlmEQ0AfLs2RL/tM8G00C9IZiRk4cSv5/Qe/3vVMbx7GgcanY48DxezimgAIJbKcPldNjKKzNuvuSFCGoFAIBBqFFKZDNdjcswuoinJKxXhboJpIUUAkFrAx5NU8ws/Su4l5CGHJ6yy/msSGUUCPEo2v/Cj5EFSPjKLa/aEzFxkFQvwIDGvyvp/nFKANDOEWn8IxMfHY8eOHVXW/6FDh/DkyZMq678mkZKSUiUimpLjx4/j/v37VdJ3TSMjIwObN2+uMluePXsWt2/frpK+axrZ2dnYuHGj2QVJJZcvX8aVK1eqpO+aRqlIgusxOZXK4WUMKSViRGXqXmA8/dtFfDdkLXgFJSjO5+HCnmsaxyUSCTITsxB54xWOnY00u4imhMZk4NzzNLx9nghBqeacIz+rAF91+w63jz6gxlxarJm7lFdYgrjnCbh16jHOP0+BpIqMmS6Q4tKdd8hOzdX5d4TP40Nq4NoymQy/ztmNV+lFSKhk/tXyUHoN8sVV8900B6RqJ4FAIBBqFK8zipBVxQJSfF4p/PNK4OdQufxZQokUd8wgxhlCBuB2fC76hbp9MIlXK4NIIsXt+Kq1JQDcjstF/3A3MGtxmI1EKsPt+FyTc5SUx534XAwIdweLUXttKRaLsXXr1ir7ga1kx44dWL9+Paysam/+OalUiq1bt0IkMi3HT3ns2rULoaGhtTpti1QqxbZt2yAQVO3CwB9//IH69evD3t6+Sq/zPpHJZNixYwdKS6tGCFCyb98+NGrUqFYXGZHJZLhrhtym5RGRUgAvOy5sOUzquvuW/4MDKzW9e8/vuYqspBxkJGQiPT4LWUk5kIglcAjyRJ+9X1SpJ5GEycC+f+7h/o+H4OrrDK8gd9i72ePxhWcoyFJ5dItFEqz6eDPoDDoy4uXjLMqVC4XtVo5DQK+qLaSSDAZ2tF8CYVYBvIM94R3sAa+6HvAK9oB3sCeWH12A13ffICs5B1lJOchKykZmUg6kivc4rEejKl1MBgC+WIoHifnoGOhUpdepLCRHWi1+2BIIBMKHRqlIjGKBBBKZDGKJDDficiCWytA7xBX2HBbuJOSabfWLw6RjaAMPMCshBrzKKISzFRtStXEyaDR0qesMqUwGGmi4l5CHfL7pPxybetmhgUftfVZFJOfjebo89NLFygLNfew17GqpqLoKAEw6HTQAp15XLhl0Iw9bNPayM+v4axLPUgvwNFUz9JLDpGt9LgsEIpO/U+FuNmjuU3t/ZJ88eRL79+8HANjZ2WH+/PmQSCSg0+nYuXMnkpKSsG/fPsTExAAAjh07hmfPnlXqWr1798bkyeZJoF0TOX/+PH7/XRXGpMueycnJmD59Otzc3MDj8bB161bweDyD/eqia9eumD5ddwLt2sDVq1exbds2AEBISAhWrlyJTz75BHQ6Xedn1BTat2+POXPmmGnkNY/bt2/jl19+0dqvbldbW1tMmTIFAMDhcECj0bBo0aIKX6tly5aYP3++WcZdE0nML4WHDRs5JfJF0OdpRUgr4lfJ3M3LloPuwS6QiCVYO+lXXP7zptHn9t79OZzDfTGmiZfGWHNLhGafv53/dDOynsZV+Dz3lsHovmW61hhTC/k695lCRkQMLk7/Ve9xO2cbhLSsiwYdwtCwYygCG/ujKKcIQoEIz0UMZCg8/cuOiycUm23eBgDdg1zgZVfz8qURjzQCgUAg1BjeZZfgWVohJFIZgl2sUM/VGs/TinAtJhvBLoYTs1YUvliKuLwSBDlXrF+RRIrozGJEiDTH+SKtCGejMgEAbjZs1Pewwa040z2tojKLEe5uA3otTKQtlkrxJkv1Y7lYkRuv7Pt/Plpeka6eizVYzMrbITqrGA08bGulh59EKkO0jrx6ArFU5+fS1O/Um+xiNPK0rZVeaVKpFGfPqpIsFxYWYunSpZDJZAgLC8OgQYOwefNmZGZm4rvvvjP5elevXsWoUaNgaVn7KsxKpVKcOXNGY58ue96/fx88Hg/Lly9Hs2bNMHDgwErlPbtx4wbGjBlTKxfKZTKZhi0/+ugjvHv3DjDwGTWFO3fuYNy4cXB0dDR57DWRsp9LJep2TUlJob7jvXr1qvR39OHDh8jMzISra9V6Gb0vXmcUwYbNpJ7VSqpi7pZSyEd+qQgL2yxGbGRCue2t7Czh5u8Cv3ZhcA73BQAUCyUaY6UBZp+/tZjRF1e+3AU+zzjvUQaTDltnW7SY2VfnGPXtMwW3pnUQ3K0h3l17QXmaqVOQXYQHZ57gwRl5CgI21wKhbYLRoF9zyDqocsHpGpe55m0A8DqzqEYKabVv9kMgEAiEDxKJVIZXGUVUTgiZTP4PAEpFVRMuEJVZXOE8MzE5JSgUSLTGqd6LBYOOvBLzhDGViCRIyq/a0JP3RXxuqUYoSKlIqvP9V+LvaIm4nJIKXWNoAw/42HMBhXiakFex8z8UEvNLdX5P9H0uTf1OiSQyxOXWTltGREQgOzub2pbJZNTfCSsrK8THxwMAnJ2dsXz5csyePRvW1hX7sbhlyxa0aCGv7CYQCHD9+nWz3kNN4cWLF0hLS9PYp8ueHh4eiI2NBQDExcUhNDS0UtcTi8W4evWqGUZe84iOjkZCglw4aNasGaKioqgQT32fUVOQSqW4fPmyyf3URGJjY/H27Vut/WXtqk67du0qnTtOJpPh4sWLlTq3ppNfKkJ6kQBWLAZ6h7igQ4Aj2IoFlqqau0VnFiPueaLBNu2HtMLR3D04lrcXO56sQ4cvB1LHyo61KuZvTk3qoN3oDka3l4ilENHpsK3nrXOM+vaZytids3CKdwB/vN6IlScWYdq68ej3aQ807hIOexfNBQlBqRBPr7zAmzLzMEPjqsy8bWC4O7zVhLOUAj6KBOYtBmIOPkgh7caNG+jfvz88PT1Bo9Fw7Nix9z0kAoFAIJhIRpEAfEU1TTaDjhAXa7zNNhza0yvEBR8384YDV1XCm8WgYUJzH1hZ6K/upCS3RFThh3O8mnhQdpx2HCb61HNFK197yuXdHOOMr6WChb770vX+W1kwQKPJVz7L0tbfAROa+8COU76jfW0Vfwx9RvR9LnXRK8QF45p6Y0wTL4xq7IVeIS5wsrSo8DU/ZO7cuaO1z8vLCytXrsSkSZPw6tUrAMBnn32G5cuX48WLFxg9erRG+5CQECxevBh//PEHdu/ejTVr1mDAgAFgMHR/33Vdszag777K2jMxMRGNGjUCADRs2FBDmFy2bBn69u1Lbbu5uWHz5s2YOHFiha75oaO8LxqNhh49euDChQsax3V9RgHAw8MDCxcuxK5du7Bnzx5s2LABAwcO1Orf0DVrG7ruS59doRDN6XQ6MjPlXkuLFy/WGY7N5XKxf/9+hIeHG3XN2oDyOXDkeRrORWchrVCAJuWkUOgV4oIJzX3gYcPW2B/uZoMJzX3Qopy0AfF5JRg0py8sbbnQ56yfm54Pa3t57kmpVIYEtQVJXWM1NH9TPhOV/0KM8LKTAejyRX941nEHi61/btJpeBvUb18PLAsmfLs3Bk2Rx1XXGA3Z2NXaAt2CnDGqsRdGN/ZC/zA3RTSD4XHG55WAyWLCJ8QLrT9qhmFf9sfn2z/F2svL8U/6LvzxeiO+2DEN3cZ1gIuPE0Cjwa9bI40+9I2r7LzN2Lnw8ZfpWgUhauJ844MM7eTxeGjUqBEmTZqEoUOHvu/hEAgEAsEMKPMrMOg0dKrjhPuJeRCIy1/NFIqlaOplh8vvssttq4tsnhC2HJYRLeWryobGWcAX42xUJhy4LLTxc8AZRaiAqePMLql91TtlMpnO+9L3/gc4WuqcSDHpNPg7WIIvliDI2QqPkg0nv82phbZEOfdl6HOpi8fJ+XidWQw6DWjmbY+udZ1wKDJNq11OiRAymQy0WhZ2rMx7pk5KSgqWLFkCPz8/fPrpp/jmm29QXCwPpb19+za6d+9OtW3atCnmzp2LgwcPYsuWLSgqKoKnpycGDRoEBwcHDW83JXFxcZBIJHqFtg8VXbaEHnuGhIRg2bJliI6ORm6u7rAqX19ffPPNN7h06RIOHTqks01iYiKEQiEsLHQLwB8qSlu2b98ejx8/1ireoMumUIg+t2/fxoYNGyASieDl5QVvb2+jrpmamorS0lJwudwquKP3h67PpT67Qoc32pUrVzBt2jTs27cPYrFYo11eXh5evnyp1UdWVhYKCwtrXdix8jmu9C6PyytBsEv5xVMKSkWo62yFtCKVaFXX2Qr5peV7g/HFUkxYPQ4zN0wEv0SA2GfxePM4Fm8ex+Dt41jkZxai14TOVPt8vkijAqausRp6TiqfiRVFyGFj71t5hd3MxGy8eRyLt49j8DYiFjFP4+Ee4Io5W6fC1skGglIBzj5LgXIGo2uM+mzsbcdBx0AnPEkpwK24XAjEUthymGjgbgsuiwGejgVIJSKJDIUCMex0zINpNBp8QrzgE+KFvlPlz7iYmAzcytOcb+gbl655W2XnwjVx7vZBCml9+vRBnz593vcwCAQCgWBGckqEoAHoFOiEqMxioyt3RmcVo56rDdys2Tq9bZh0Gpp528HbjgsGnYbUAj7uJ+VBJJEpriuCsQWBCvliiKUyneOk00CVfRdKpBCXKR1e3jjD3KwR4mINLosBvkiKVxlFiFLkvCoWSCAQS8FmfpCO5DrhCSVaQqmh99/f0RKX3mjnBglwtIRYKsOTlAI08bLD45QCrZBQdUpFUpQIJbA0whPwQ4EvkuidKJf3uTSEVAa8zeIhzM0GbAZdqyKbUCJDkUBCVVCrDZSUlGiFIjKZTOrHMo/Hg0AgAJvNhlAopHJSpaenU+0nTZqE48ePa+RgSk1NxdatW/VeVygUIiUlBb6+vlVyX+8DoVCI5ORkrf267AkAf//9N6AQNPLz87XOCw4OxsKFC3Ho0CGcO3dO73UlEgkSExNRt25dM97N+0UikVBhnb6+vggICECLFi3g5+eHOXPmYPXq1TptamNjA3d3d1y6dAlCofxvanJyssb7wuVyMXr0aDRv3hyWlpZITU3F+vXrkZOTA5lMhri4OISFhb2X+64KlPdUFl12/eGHHwAAbdu2xY8//ki1ffToEaZMmYIWLVrg7t271P7OnTsbDC2OjY1F48aNzX5P7wuZTIYcnhBMOg0SqQwyAO7WbBQa4ekfl1eCUFdrsBg0iCQyOFvJhe/sMs/+oQ08EJVVDD97Luy5LOSUCHEzNhc5PCGsLJjgWLIR1iYEYW1C9F4rR61PXWOt7HOy3Pml4ro0Gg1ufi5w83NBhyGtdPbF5rIhseQAQonOMRqycUtfB7xIL9IQ+wr5Yo2K6BwmHa18HeBuw4ZYKkNsbgmephRAphinLiFNFzR7ayBP1a+hcemat5U3F4biPX+QlK+R1iTHyN8E1UntmfkQCAQC4YOmSCBGgKMl3KzZYDFoCHWzRnI+Hy8zitAp0AlOVhYQSaRwtrLAYzWvI4FYihfphWjqbUcli1Wnnb8jpDIZTrxKh0wGtPVzQCtfByqRbHEFQjuLhPK2usaZWSxAU287yGQAjQY8TNL8IVjeOIsF8mStJSIJ3G3Y6BbkjJxSIbKKhdQ42cza42Ghy+763n97DhMCsZQK/VWnrrMVYnNKEJdbghY+9vCx4yKxnJxyxQJxrRLSDIUnO1la6PxcGvpOKWHQaQhysUKxQKwloikpFoprlZCWlaVDrA0IwNixYyGVSkGj0bBv3z54enpi2rRp4PP5EIvFVCVFDw8PuLm5VSqXUmZmZq0S0nJyciCRaAu8uuxpY2ODL7/8EhKJBCkpKdi3b5/GOfXr18eIESPw+++/4+bN8qv0ZWZm1iohLT8/nxLC/vzzT2r/smXLsGnTJp02BYCioiIkJydjxowZuHz5Mt6+favlETlz5kyw2Wx88803yM/Ph5+fH3UtKGxZm4S04uJilJRoezfrsisAeHt7o6ioCAUFqr+REokEN27cQJcuXSghzcvLC3Xq1MH69ev1XlsZGlpbkMhk4IulcLRkoa2fI8RSKSQy4I5CwDH0nBGKpUgp4CPA0RJvsnio62yFd9k82HO1BZ06Tla48lY+P+pS1xlNvOxQJNDvZVUW9WekLYepNVZ9z8nyKH9+afwYZTIZFQKpa4y69gGALZsJGzYTcbmGU6F0DHRCqUiCw8/TwGbS0T3IBWKJFM/Tiyo0zrLzDX3j0jdvK28urI9ioaTGecDXnpmPAQQCgUbSyMLCQoPtCQQCgVD9SBQrZLE6wveux+YYPPd1RjFCXa3hY89FepEqrwKbSYevAxcHn6ZSK4RPUgsxMNwdt+NyIVNc11ikirb6xlleNSV944QiWbyS9CIBUgv4cLdhU0KapIJFEWo6uu5Hn13z+WJc1OGNZsdhwtWajXsJeRBLZUjML0WQs1W5Qtp/wZZKsnhCnZ9LQ9+ppt52aOxpB4lMhtwSIa4YCMGoyPfnQ0BXWNfbt2+xfPlyrf2LFi3S2qcM29IXmmgIdfGiNqDLljBgT0MVUMPCwlBQUIAnT54Yde3/ii2VNisqKtJpU2WbAQMGYNiwYfDy8kJqaip2796N58+fw87ODq1atcKMGTOQl5cHAFqFCv4rtlRH/bOYnJyM77//XqvNlStXsH79ejg5OSEnJwddu3bFs2fPKDvqorbZUqrQSHJLRDj1OkPreHlzt3c5PDTxtENMdgn87Lk4/jIdzby186NFZRZRIlNsTgkauNsgqUwOLUNI1B5TusbKK6capvKZqORQZCoYdFr580tFERBjxB+pEWPUZWM2i04d14cliwEPWw4OPk2BWCqDWChBZFohGnna4nl6UYXmRGUf+free33zNpQzFy7v2oyao6P9N4S0n376ySzlyQkEAoFQddBNWGWSyGR4mlqIpl52OBelWjixtmCCTqNhaAMPrXO4LAZKRBLQy8vEaqYxGhonFN5Y4W42sGYzQVN4A6kn1jf12jUNc9xPkLM1ckuEyFPkVInJ5qF7sAssFe9tVV67JmHu+4lILjA6H0xtsyWTadrUWLlY6+joiIwM7R8XVXntmoY57+fIkSMIDQ3F0qVLsXLlShQVFVXbtWsCptxPQUEB9u/fj/3798PKygpDhgzBggULMGPGDDg7O0MoFCInR7/gQWypm5SUFLx79w6dOnXCsWPH0KFDB+zatatarl1TMPXPf1qhAG39GGjoaYssnlCn1znKVP8US2VgMejlJtFXpyJtdaHrmWjHYZU/v6TBaA+qytpSoLCNlQVDr5eepQUDYqmmd1iRQAwrltwzvzptiXLmwoaoadON2pNsxQCLFy9GQUEB9S8pKel9D4lAIBAIZeCyTAu1e5fNAw1AHWdLah9PKIZUJsM/kan439MU6t+BiGRKaOFWIO8Yh2X6Y1PXOK0sGGgf4IjHyfk4qBhjSoGmVxXXDNeuSZhqSxoNCHSyhC2biRGNPDGikSc6BDqBTqNp2LYqrl3TMPW7Y9q1a5ct7ewMV5srj7S0NGRmZqJt27YVPtfe3nClug8NcyZVF4vFWLduHbKysrBs2TLY2NgYbF/bbGljY2OWkCYej4dDhw6Bw+HA1dUV2dnZsLCwgJOT/kShtc2WlpaWZhO0rly5gs6dO6NZs2ag0Wh4/Pixwfa1zZZMOg1ME5WVmBweGrjb4F05VdrLUpHnXlU8I42aX1bgunQarVJ5cAsFYhQJxPB31D/vKRFKwKTTwVHr34bNBK8S4+SYyZa65sKGYDPpNW7hrnbNfvTAZrNha2ur8Y9AIBAINQtHS+MSnepDBiAipQAN3FV/4/liKZLyS9HK156aoHCYdPjaqyqQOVkZn3fMgWth8oqYrnEqJ6J8sRQyAF52HHjacqjjbCYdlu9RLKkK7DgsMEyYgPvYcWHBoOPk6wyceJlO/XuWWoAgJ/2l6Vl0GmwNlKL/ELG2YMDiPcQ70GkwOkHxh4KDg4PJP3b/+OMPDBo0CL1794a1tfyz6OHhgenTp8PZ2VnnOTQaDX5+fiZdt6ZhbW0NNzc3s/UnkUjw888/Iy0tDcuWLTM4n/f39zfbdWsCbDbb6Eqb6lhZWWHkyJHw9PQEjUaDhYUFPvroIxQVFSE1NRUFBQV4+PAhpk6dCnt7e9BoNPj7+1OfWyhy2tUmmEym2b5rt2/fhr29PSZMmIAbN27ozAmoTm2zJY1Gg6OlablbX2UU4+KbLCQVGE7JUJaKXNfJxDHqwpj5pYNa/lCxSIydCw9g1cebcGjdCTy9+gK8Ak3xsLLjfJCYhwbutqjnag02Qz4WWzYTbf0cYGUh945LK+SjuY89mHQarCwYaOBug5gc+fXVbfnidhR+HLsR27/cg8t/3kRiVAqkUpUnm7lsqWsubIiqeA9N5YOcSRYXF+Pdu3fUdlxcHJ4+fQpHR8dalaSVQCAQ/kuY4yGZmF+K+u42Gitmt+Jy0djTDv1C3cBm0sEXSRCfW0Ll0arIdRl0Ghw4LOQaUZ69IuMs4IvxPK0QPYNdQKPRkJRfqpH/w8nSokYlWDUHdBoNjlyW0dVZyxLkYoW43BIU8jUT377OLEa4uw3cbdhIL9IOGXCshbZU/pjRdb9ViQPXwiQxtKYSGBiIiIiISp8fERGBH3/8EUOHDsXIkSMBANnZ2bhx44be/Ene3t5gs9mVvmZNJSAgoMIhroaQSCTYuHEj5s6di+XLl+O7777TSAIPAG5ubhpCUG0hICCgwlE1YrEYjo6OWLx4Mezs7CAUChEXF4cff/yRyh+9ZcsWjBs3DqtWrQKHw0FKSgqVMN/BwQEODg5Vcj/vk4CAAMTExJjcj0AgwN27d9GlSxdcuXLFYFsrKyu4urqafM2ahpMlC5l6qi8ag1AiRVoFn10ymQxfNJmPBu3roWHHMDToGAo3Pxe9z3ZTF2r1Ud788tyGkzj/LgUNOoSCzqDjn7XHAQCX/1QVTHH1dYa9qx3qtQpC26+GILUSqdyTC/i49DYLDT1s0USRy61YKEZsTglKFV5nN2Jz0MrXAUMbeEAikyE2pwQv0otApwEOagUetn2xB28eaX43ONYcuPk5w97FDmOWDAPd1k4rV1pl0DVn14dTFb2HpkCTyT68jLvXrl1Dly5dtPZPmDABe/bsKff8wsJC2NnZoaCggHinEQgEQg1BIJbg0LO0ak0Ez2UxMKyhR4XcxSOS8/E83XB+HnPT0sceoW6GQ5k+RJ6lFuBpZWaNJtDUyw4NPGrfs/9leiEe6ai8WZU08rBFYy/TQiFrIhcuXCg315G5GTBgAMaNG1et16wOrl27hq1bt1brNXv37o3JkydX6zWrgzt37mDjxo3Ves2uXbti+vTp1XrN6uDRo0dYs2ZNtV6zffv2mDNnTrVeszpILeDj4lvDhZbMTeLVSNxYqPmb38XHCQ06hMIvzAfewR7wDvaEZ113cCzlCxTnojKRYYLgVxnOfLweudEpRrcftWY8mJ0bV+mYyuJly0H3YBdq+5uPfsSDM/qLurDYTHz5bBNSCo0vEmAO+oS4wtWmZi02fZAeaZ07d8YHqP8RCAQCwQBsJgP+jlzE5GhXbawqgl2sKpxzIdjFGi/Si1BdTyEmnYY6TlbVdLXqJdjFGpFphWZZ2TQGOg0Icq6dtqzrbIUnKYXVJkTTFF6BtZEOHTrgwIED4POr54cCjUZDz549q+Va1U3btm2xd+9e8HgVy39kCrXVli1btqQcAaqL2mrLpk2bwtnZGdnZ+isSm5tevXpV27WqEw9bNmzZTBQKxEa0Ng/CqCSwLJgQCVXXzErKwZW/bmm1dfFxgnewJ/x7NIZV1ybVNkZefAb4aforuOri8cFbaNkkCDS76nu25t6Pwvbtp5GekIWM+CwkRRkW/rjWHIS4WlerkObAZcHFuuaFdv4ncqQRCAQC4cOgnmv1eV3RaUCwc8XDf6zZTHir5cCoagIdLWFRiQS0HwJcFgN+DsYlmjUH/o6WZkuUW9NgMxkIcKo+W/o6cGFl8UGux5YLl8tFp06dqu16TZo0qZUhXwBgYWGBrl27Vtv1wsPDK5VL7EOAyWSie/fu1Xa9oKAgBAYGVtv1qhM6nY4ePXpU2/X8/f0RHBxcbderTmg0GkJcqy+U2pbDxIpd03A0bw/WXV2OCd+NRNPuDSjPs7JkJeXgyeXnOP7tXyjJqj4R+umeyygprNjC8NvHsbj/6+kqG1NZilNzsGvSZhzeeBq3jz7AuydxEJTqT7fhWccN25+shZcdB9YW1TeXCnG1rpEpOWrnzJxAIBAIHyTOVhaoU01iQAN3W1hWciLQzNsOjGp4qLMZ9FoZOqdOUy87k6t+GQOLTkPTWm7Lxp62YFVD0QEmnYamXrWr+lxZhg0bVm5lSHPAYrFqZUinOoMHD66WPFsMBgMTJkyo8uu8T/r376+3YIU5odFomDRpUpVf533St29fsxbDMMTEiRNrpBBgLkJcrGHHqZ6FlZY+DqDRaGBz2WjUKRzjlgzD6gtLcTRvD7ZFrMG3B7/ExJWj0GN8J4S2DoKNo1zkk4oleLzheLWMMet5POLPaVZwZbGZsLLTnt/SGXQ4ezmCwZTPR2NOPkBudHK1jPPR+mOQqYUE0Bl0uPk5g8XWzkfWok8TbH+yFi7ezqDTaGjhWz25Ex0tWQiqoVEZtXMpkUAgEAgfLC18HJBayEepSGpE68rhwGWZlCfLjsNCEy87PErON+u4ytLS175KyrbXJKzZTDTztsf9xIqFQFSU5j72tdaDSomVBRMtfRxwOz63Sq/T1MsOttX0o+l9YWdnh08++aTKc1KNGDGi1npQKbG2tsbUqVOrPCfVkCFDal21zrJYWlpi+vTp+P7776v0OgMGDEDdunWr9BrvGzabjZkzZ2L58uVVmjKoT58+CAsLq7L+awIMOg3t/B1xNiqzStNeBDlbwcuOo/MYk8VE3cYBqNtYuzJqYU4Rkt+mIflNGlJTs0HzrDoxWiqWgPkyTkOgAgCRQAxRmfBXexdbfH9qMUJa1IVYJEZ6fBZS3qQiISUPJVIpaPSq83niv0lG167hcJvcGW7+LnD3d6UEvfWfbMW53Veptj0ndsYXO6aByVI9933tuQh0tERsbtWlY6HTgHb+jqDX0KJGH2SxAVMhxQYIBAKhZpNWyMfFN5mQwfwPTwsGDb3rucKBa1q+BalMhivvspFSUDV5Iuo4WaKdv2OtXMXmFfDw6t5bPDr/FDcO3QXXhoPRhxcjlWdaNVR9+Dtw0THQqVbasqSoFK/vvcHji5G4dvA2LNgsfHzsGySXVI0tfey56FKndtqyLDKZDL/99hsuX75cJf03btwYixYtAr0KfyzVJHbv3o2zZ89WSd/h4eH45ptvwGTWboFXyZ9//onjx6vGuyYkJARLliyBhUXNy0lUFRw6dAiHDh2qkr7r1KmDZcuWgcPRLf7UNl6kFeJxStWETzpwWehdzxUWDNP+XvJFEpyJykRRFeV0a+PngGAXa4zwnIq8dP2LrRxLNrY/XQuvuh46j7/OKMKDpKpZrLXjMNGnnivYTN0LtRGXn2NhjxUAgDFfD8HElaN0PvMFYinORmWggF81tmzpa4/Qakz5UlGIkEaENAKBQKhxFOYWYfmM31H/84FgsMz3w4jFoKF7kAtcrU2r/COTyXDv1COc/v0KrHs2h0dL8+Y+8VMIPxUthFCTeXjuCe4cf4iXd6IR/yJJywPAJ9wbdT/pDa/25l2597HnoFOgMxg1dEWzMkRcisStow/w8k4U4p8nQlpm5bvVgOZgt6sP3y4NzXpdT1sOutatXbYsD6lUihUrVuDVq1dm7Tc8PByLFi0Cm12zqpBVJVKpFD/99BOePXtm1n5DQkLw9ddfg8utvtyV7xuZTIZ169bh4cOHZu23Tp06+Pbbb2FlVTNDqaoCmUyGTZs24fbt22bt18/PD0uWLPlP/daMfhSD3/feRPiEbmbt147DRK8QV7N56BcLxDgfnYliocQs/Slp7m2HcHf5+x39KAaftVoEXS56NBoNqy8tQZMuDfT2FfciEVu3XED9KeYtUmHDZqJXiEu5HvrPb74Gg0lHWJsQg+14QjHOR2eZXZhs4mmHhp41+7tDhLT/0B83AoFA+BCQSqX4tv8qPDz7BO4tgtDppwlg2ZqeN82GzUTBuUc4+M2fcPN3wZe/TUfDTmFGe9bIZDLERibg6v9u4cLea8jLkK+60i2YaLVoGOp81NLkMQJAkCMXv3T6GkXZxej9SVdM/G4kbJ1q7oqcMTw89wRf9/2x3HZ0JgMtFgxB0OA2ZrlukJMlfu22BHlpeej+cSdM/mE07F0+7Dxpz66/xPwuyw22seCwIBJJ0OyLgag3ooNZrlvH0RK/9fkOWQlZ6DKqHaasGgtH9+rJkfK+efjwIS5fvoyIiAiz9Ne+fXtYWVkhOzsbzZs3R5cuXf4zXmlPnz7F+fPnERERYZZwutatW8PR0RHp6elo2rQpunXrBgajdofDK3n+/DnOnTuHx48fQyo1PRVC8+bN4e7ujpSUFDRp0gTdu3f/z3j4vX79GqdPn8bjx48hkZgurjRq1AgBAQGIj49Ho0aN0LNnT7BY2nmnahOFOUWY2XwhMhKyEDKyA5p/PhA0E73HAMDdho1rC3bjybknaNAxFHN+nQKfEC+T++UJxbgWk4Nsnv7k+sbCpNPQ0tceQWUKWP08dTvO/q7t0cy14WDtpWUIaaE7fLo4n4dZLRch9V06goa0Qcv5Q0DT4z1WEVytLXBv+V+4f+Q+wtoEY+62qfAL8zG531KRBNdicpBZLDC5LwaNhha+9ghxqb4CFpXlv/HUJhAIBMIHw/7vDuHh2ScAgNK4dPQOdECAo2lCWqirNfqHueHcxpOQiCVIfZeO+V2XY1bLRbj6921IxPonzoW5RTiw8l9Mqf8FpjdZgINrjlMiGgBIhWJ4FhWjS11ncFmVf6xaWzDQK9gFtJfxyE3Jg0ggwsmt5zHadzo2f7YLqTHple77fWPBMS5ESCqWwDWvAN2DnGFpwsqzlQUD3YNcYJ2cgcz4LIgEYpzddRlj/GZg4/TfkBRtuLx7TaY8W7K5FhDyRZBJpHDMzkOPIGdYmVBdi8tioFtdZ3gUFyHtbRrEQjEu7ruOsf4zsX7KNiS8Sqp03zWdoqIiHD58GGFhYVi0aBGWL19uUnJyOzs7zJ8/HxMnTkRycjL4fD7u3r2LiIgIvHz5EhkZGWYdf02ipKQER44cQWBgIBYuXIiVK1fC09Oz0v3Z2Njg888/x/Tp05GQkACBQIAHDx7g4cOHeP36NdLS0sw6/poEn8/HkSNH4OPjgwULFuCHH36Aj0/lfwxbWVnhs88+w+eff464uDgIhUI8fPgQ9+7dQ3R0NFJSPty/l+UhEAhw9OhRuLq6Yv78+fjpp59MyrPH5XIxffp0LFq0CG/fvoVIJEJERARu376NN2/eICmpdv69lEgk+GHMRmQkZAEA6Anp6BfqAifLyocHM+k0tPJ1QM9gFzw+/RgSsQRPr7zA5NDPsXTQajy/+dokMd7KQh7e2MzbDqY4WbtZszEg3F1LRAOAST+M1llgoLSIjy86LMGJree17kEqlWL1hM1IfaeY88Wno189F7hYVd6WDDoNLXzs0TvEFfcO34NELMHzm68xpf6X+OajH/H06guTbMllMdA7xAUtfOxN8lh3sbJA/3C3D0JEA/FIIx5pBAKBUJN4cPYJvukn91yi02lYdWEJmnSVu76nF/ERnVmMhPxSGPPkYtBpCHS0RD1XazgqJnNLBqzCvVOPtdq6+jpj6OcfYeDs3lreDLPbfI2o+2/1XiewoR+2PloNBpMBoViKt9k8RGcVG+3m7sBlIdjFGnWcLMFi0FGcz8Ngx4la7Wg0GtoNbonxy4YjoIGfUX3XFGQyGdZM3IJL+28YbOcd7IHfIteDZcGCSCLFu2weorKKUWhk/g07DhMhrtao62QFFoMOfokA/W3GaYVW0Gg0tO7fDOOXjUDdJtqJiWs6G2f8htM7LhpsE9Q0ABturgSby4ZIIkVMDg/RmcXIN9KWtmyVLS2YdIhFYvTjjtEKIwWAln2b4OOlw1GvZVCl76kmcuDAAWRkZGDWrFlUjiOBQIAbN27gwoULSEhIMKofNzc39OjRA127doW1tTVkMhlWrVoFoVDlCcFgMCCRSNCvXz80b968yu7pfXHw4EEkJiZi1qxZsLSU/7AUCoW4desWzp8/j7i4OKP6cXFxQY8ePdCtWzfY2NhQIY4lJaqE10pb9uzZE23amMe7tSZx+PBhvHv3DrNmzYK1tfwHp1gsxq1bt3DhwgW8e/fOqH6cnJzQo0cPdO/enfo9tGHDBhQWFlJtlLbs2rUrOnQwj3drTeL48eN49eoVZs6cCTs7ubeyWCzGnTt3cPHiRURHRxvVj4ODA7p3744ePXrA3l5e0Xjz5s3IzVUVflHaskOHDujatWsV3dH7Yc+Sv/HnD4cBAPaudtj2eDWcvZwglcmQkFeK6MxiZBjprcRh0hHsYo1gFysq/FBfvrGQFnUw5puhaDughUnjLxaIcfjoIwhc7MG2My6sOfVeNHp2roem4V4GIxuObjqDrZ/vprb9wn2Q8FIlqHYd0x6fb/8UXGt5aPr/fjqKP775CwBg42iNrY9Ww93fFVKZDIl5pYjOKkZ6kfG2rOtshRAXa1iz5bYc6z8DmYnZWm3rNgnAmK+HoMPQ1kb1rQ+eUIyjxyPAs7MGx9G4aAp3GzZCXKzh68D9oFKaECGNCGkEAoFQI8jLLMCnDechP1Pu7TV19TiMWDBQq12JUIKUwlLk8ETILRGikCdAfnYRJEIx2JChURM/OFlawMuOCzZT00Psyv9u4aexv+gdw6TvR2PM10M09s1s/hXeRuj+kUej0/C/xO1w8nTU2C+TyZBRLEBmsRA5PCHyS0XIzS6CoEQAEY+PevU84eVqAzdrNpytLLQmYZNC5yI5OlXnNbnWHPyd8hssbT6cfEDRD99h2eA1yEk1UJmTBux9uwWegZoePzKZDJnFQmQWC5BTIkReqQh52UXg8wQQlwhQt64bfNzt4GbNhou1ti2nN1mAmGfxOi/JsWTjQPxW2Dl/OHOBd0/jsGzQGp0TYSXqk291ZDIZsnhCZBap2TKnGHyeAKISPgL8XeDv5QAXawu4WbO1bDmn7Td4fe+Nzmuy2Czsi9kC5zLfhQ+Za9euITg4WKfnlEwmw7t37/D69WvExsYiISEBpaWlKC4uBpfLRUhICAIDAxEcHIywsDCt0M3k5GT88ccflBeAtbU1WrRogfDwcDg5OVXbPVYXN2/eREBAgM4KpTKZDLGxsXj16hVly5KSEhQXF4PD4SA4OJiyZf369bVsmZaWht9//50KybOyskLLli0RGhoKFxeXarvH6uLOnTvw8vKCn5/uBZX4+Hi8ePFCy5YWFhZatiy7cJSZmYk//vgDAoH8hzqHw0Hr1q1Rr149k7wxayr37t2Dm5sbAgJ0L6gkJiZStoyPjwePx0NxcTFYLBZly6CgIDRo0EArDDYrKwt79uyhRF4Oh4NWrVqhXr16cHd3r5b7qw4ib7zC/C7yyqd0Bh1rLi1Fo07hWu3yS0VIK+Qjp0SI3BIR8vNLUFJUCjFfCCdbLuqFeMDZygKethwtr6ZNs3bi5LYLesew7spyNOqsfc2KMLvN13j7NB4erUPwydZPUcpgopAvgkQmA51GA5tJh5OlBRLvReOfhftQlJSNXpO6YP7vMw32KxaJMb/rcry8HY1hX/bHJz+Nwc6vDuDIL6epNn5h3lhyaB5Ki0oxt923kEqkoNFo+PHsN2jes5FWnwV8hS0V8+D8ghIUF5RAIhChMDELuVHJaN0+BINHtdWy5fb5e3H451N6x/vD6a/Rsk+TStlQyfyuy/H8dhQ8W9fDxC1TIGKzUSAQQSKV2zLpRSJyo5KRF52CsGA3vL74DIv/nAvPOh/W9+K/EfhOIBAIhBqNTCbD+k+2UiJa64+aYfj8ATrbWlowEORsjSBn4MDKf3F0yxkUZhUBAJr1bIQp577Ve52wNoaLAuhaVVy4fw6+6LAERbnFWsda9m6iJaIp+3G34cDdhoPi/GJ83v4H5KbnU310vb4C9Rvqz/HRoH2oXiGNwWRAZoZ8ONWBTCbD2V2XsWXOHxAJDFeRbNylvpaIBoUt3WzYcLNho6S4FJ+3X4Ls5BzKlj+d+xYNmugPa2rQIVSvkEb7wJLmX9x3Hb/M+A2CUrknE51Bh1Si/Vn4as9nWiIaFLZ0tWbD1ZoNfqkAX3RYgoz4LMqWy48sQIPm+r0dG3QI1Suk1dTy9JUhOTkZd+/exbBhw/R6GtBoNAQFBSEoKAgSiQQnTpxAXl4emjdvDjc3t3JFBw6HAy6XS/3ItrS0RMeOHavkft4naWlpuHHjBoYPH643DxyNRkOdOnVQp04dSKVSnDp1CllZWWjZsiWcnJzKDQFV2rK4uJjaro22zMzMxJUrVzBs2DCDucv8/f3h7+8PmUyGM2fOIDU1Fa1bt4aDg4NOIVMdDocDCwsLSkhjs9no1KmT2e/lfZOTk4OLFy9iyJAhBquT+vr6wtfXFzKZDOfPn0diYiLatGkDOzs7+Pr6GryGpaWlRl40JpOJzp07m/U+3jfF+TysHr+ZWhCYuGKUThENAOy5LNhzWZDJZFg+ZC2e33xNPXsmfDcSTbrW03ud8Lb1DApppj7LC3OKEP3gHWQyGZg5BWgfqruSJgCwojgoSpIvZJ3fcxUTV4yCs5f+BSQmi4k1l5YhJyUXHoo5zowNExHeLgTrP9mGkqJSJLxKxmctF4FrzaGe6WO+GaJTRAMAOw4Ldhz5Z+v7kRsQcTlSa44qfBaDYWPaaZ0b3raeQSGNbmJeu5KiUry4FQWpWAJpajY6NdD+m/NR2wUQlMjnMUqfz89aLcae6E0fVE5gkiONQCAQCO+dk9su4P5peSJve1c7fLlrRrlFAFJj0rF3+UFKRAOA7OQcg+e4+bnA0d1e57GPpvXAsHkfae3PiM8Cv5iv85z+M8uvpvT9yI1IeJWsMcnJKmec+gQ/OxdbfH9qMayMDD14n5QWl2L1+M3YMG0HJaL51/cBS0+lqAEzyrfl6o83Iy4yQcOW5b3noXpsaeNojZUnF30Q3mj8EgHWf7IVayZuoUS0ei3rYs2lpbC01fRM7D+jF1p/1KzcPjdM3Y53EXFm+Vxa2Vniu2Nf1QpvNJlMhsOHD6O4uNjoQiR3795FZGQkkpKSEBMTQwk6higoKEBJSQm8vLzg4+OD8HDTvClqKkeOHEFhYaHRtnz48CGePHmC5ORkREdHg8fjlXtOYWEhiouL4eHhAR8fH4SFmbfyb03h6NGjyMvLM7qYwpMnT/Do0SOkpqbi5cuXRtmyuLgYRUVFcHNzq9W2PH78OLKzs4225fPnz3H//n2kpaUhMjLSKFuWlJSgoKAALi4utdaWmz/bRXlHN+gYihFf6V4AVefMzou4c/xhhZ7j+p49dAYdc7d9ioYdTbNtxKVISgxs3rOxwbZpcZmqDRkwr/NSlPJ0zxGVWLBZlIimpOOwNvj14Sr415cvBPJ5Air/bkiLuvh46fByx33lfzdx/dAdnQu9MU90R1LotSWdhpkbJ+kV74zl6dUXVN7hZnpsaaWjgFhRbjEW9/kBvMISnefURIiQRiAQCIT3SsLrZOyYv5fanv/HTDi4Gq6sKJPJsGnmTq3cV9kpufpOARSeD7qEFRqNht6fdAPLQrOq1vVDd7Fs0GqIhNp5pbjWHDTppr90OQBEPXiLxxefae2vrPgT0MC3XK+6mkDci0TMarkYl/+8Se1r2acJUt6m67Qli81E896GJ68xz+Jx9+Qjrf2VFX986nmhQYdQg+fWBJKiUzC79WKc232V2td7clesv/YdGnUKR4chqnwmPvW88Onaj8vtMzEqBdcO3tHan1PO90efLT3quKFx1/rlXvdDQCaTITQ0FIMHDzb6nMxM1Q+r2NhYnDqlf7Vfibe3N1xcXDBw4EBMnjwZTZs2xZUrVyAWG5fD7kNAJpMhODgYQ4cONVpIUy+4EB8fjxMnTpR7jqenJ9zc3NC/f39MnjwZrVu3xuXLlyESGfaC/dCoW7cuhg8fXilbJiYm4ujRo+We4+bmBnd3d/Tt2xeTJ09Gx44dcfnyZcpDrbYQEBCAESNGGC2kqX/Hk5KScPjw4XKTszs7O8PT0xO9e/fG5MmT0a1bN1y+fBmlpaUmj78mcPnPm7jy1y1AsZiyaN/scu3JKyzBH9/8rbU/K8Xwc9w9wBX2OuaFNg5W6DTC9DyITy4/p14372VYSEqL0SwKkxqTgeVD1kJYjte9LryDPbH53k9o2ElTCBQJRchJNfw8LuXxsWPePq39Su9wIV+EqIfa+RKdPBzg5qcd8s61tUSX0doebBXFGFvaOuv2OnvzKAZLB66GoPTD+HtDhDQCgUAgvDeEAhF+GvsLhHz5BGTgrN5o1bdpuedd/+cOHl+M1NrPK5Dn3DBE/Xaq8AG2JRtQ/OBbPX4z+CWqh/e5P67gx9EbIBZpVvRU/ojp92kPWLD1l7OXiCXYOP03nceykgxPGn1CPDXc21mK6zy98gJnd2mXUq9JnN9zFbNbLUZSlLzSm6UNF4M+64NHF55phXcqfw/2ntwNXCuO3j6lUil+mfEbZDoS3ZdnSzc/F42wCwuuPIzn1Z1oHN9yrmI3V81c+esmZjZfiPgX8sTEHEs2vtr7GebtmgELjgWeXXuJC3uvAQCYLAa+/nMuOIrPtD5kMhl+mfGbzpDQ8kRJBzd7eNZV5TBhK4p4vIuIw6F1Jyt1jzWJt2/f4uzZs+jZsyeVMNwQMpkMjx8/RmJiIrXP0dHRKDGMzWZj5syZVA4vZYLza9eumXgXNYPY2FicPHkSPXr0gKOjcZ6KT548QXy8KgxbacvyBAsWi4Xp06fDw0MejiWRSHDv3j1cunTJxLuoGSQkJODYsWPo1q0bnJ2djTonMjJSo4CDo6MjJBIJpOWkBWAwGJg2bRoVtiiVSvHgwQNcuKA/rO5DIjk5GYcPH0aXLl3g6qod/q6LFy9eaBRwUOYwLO97TqPRMHXqVAQGBgKKvxePHj3CuXM1+7ljDOnxmdg0aye1PXfbp3D1LT8f4Z5v/0ZhTpHW/vKe4zQaDeHtQqhtro18vlCQXYQts3+v4Oi1eXVXnrKAzqAjrG2Iwbaxz7WLzERcjMSqcb8YrACvj+K8YsRGavYZ+ywBM5otxMPzT/Wed2DFv8jVUYCBoeb1f3zzWZ3n1m+vmgdzreW25OXzsHHaDpOqd0LNllCkg9CFrpQoSiKvv8L3IzdALKr5i0pESCMQCATCe2Pvkr8R81T+w8kvzBtT14wr9xxeAQ/bvtij93jK2zSD5/eZ0g0t+zZBu0EtsOPpWgQ3rwMASIpKwe+L/gQAHPnlNNZP2UZVKGSpCWazf52CrY9WY8qqsQavc3zLOeretMb4zvAY6XQ6Zm2ajJAWdTDrl8lY8s+X1LFtX+4p9/z3Ab9EgLWTf8W6yVup8MPARn4YNn8Ajv96jhJuLDgqW07/eQK2PlqNWb9MMtj3mZ2X8fqe7sqp5dmCRpOHK4S0qINP147HimNfUcd2LTqAhFdJBs9/Hwj5QmyctgM/jdsEPk8u7vqFeWPLg5/Q42N5vqKivGKN3DSTvh9tVAXSS/tvIPL6K53HyvvuAMCMnycipEUdfPLjGPx45mtKWN679G+8e2pc5cWaCJ/Px5EjRyrkefP69WucOnUKBQUF1L6kpCSjxQ517O3t0a9fPyph/oeMUCjE4cOHwecbDndS582bN1SeOSVJSUlwcnIy2gNLiY2NDfr371+uaPQhIBaLcfjwYaNCCZXExsbi6NGjyMrKovalpKTAyclJb546fVhaWmLgwIEm/7iuCUilUvz7779GhV4rSUxMxOHDhzW8+1JTU2Fvb28wT50u2Gw2Bg0aVOHPc01DIpFg9fjNKCmUL1p2G9cBXUaV78kU/SgGJ7bqFhFT36WX+339eOlwhLUJxsBZvbH10RpY28tTXFz56xau/n27UvcCxbM0XlFFs26TAIOLegAQ/zxR5/6bh+/jz+8PV+jaUqkUayf9iuI8+fe7cdf6cA+QC7yFOUX4tt+POLNTe0Eg7nkCDm/Q7fksVvP6j7ikveAMAKO/HoLwdiHo92kPbItYAzuFh9jtYw+pxbnKUMrj450ipNQvzBs2DtY627n7GxZd7516jN3fansu1jSIkEYgEAiE98LTqy9waL3ci4XJYmDRgTlgcw170wDAH9/8T+cqnJLE1ykGz7eytcQPp77G8iNfwauuBxbum02JO8e2nMXqCVs0hDpXH2fKk6rd4Jb4aFoPBDUNBIOpP4QhKzkHe5bqnwTEvyxfvOk6uj223F+FQbP7oE3/5ug3tTugyKOxZsKWSq18VhUJr5Mxu9ViXNijmoD1m9odnYa3wb5lB6kfYa6+zpT3YYs+TTB4Tr9ybZmXkY/fF/+p/9ovk8sdX4ehrbHl/ioMn9cfzXo0wuA5fQFF6MPq8ZshEtacELCUd2mY0/YbnFabPPeY0Amb7/8EvzB5LhVlaLPSg6xxl3AMm9e/3L4Lc4o0wqjLkvAqudwfzK0/aoYt91dh1KLBaNgxHCO/klfWFYskWP3xZgj5QqPvtabRqFEj9OnTx+j2KSkp8PX1pbzX2Gw27O3tER8fj4QEba+F8mjSpAm6dOmCq1evVkiEqok0aNAA/fr1M7p9amoqvL29KW8fFosFJycnpKSk4O1b3SK6IRo2bIhevXrh6tWrVEGHD5WwsDAMGFB+7iklqamp8PDwoDyumEwmXF1dkZGRgZcvX1bq+v369cO1a9cqJELVNJRh24MGDTL6nLS0NLi5uVHejgwGA+7u7sjJycGTJ08qPIaQkBAMGDAA165dQ2FhYYXPrwn8veoYXtyKAhQe37M3f1LuORKJRO4JrcOrHAAEpUKDlagBoE4jf/xy+wd8tvkTeAd5YPavU6hjm2buRHY54aH6UF+kKy91RkF2ocH5Z/Qj7VBKQxzZeBoRl+ShkE6eDlhy8EtsfbQarfvL85xKpTJsmLYDB1b+Sz2bpVIpNs7YqXcOKJPKKLE2Nz1fZ84xv1BvbLz5PT7f/im86nrg8x3TqGNb5+5GWlyG1jnG8OZhDLVoGm7As8872HABGQB4U0Fbvg+IkEYgEAiEaqcwt0jDm2byj2NRt3H53jTF+TyDlZsAIPF1+cKKOr71vDB1jSqv1KX916nXzXo2QqaiOpOTpwO+/G26UavJx7ecRameAgVQhDGoh5Eaw7T14+FZR56s9tXdN/h79bEKnV9VXDpwA5+1XESJgxwrNhbtnw07F1uNFcVmPRpRE2V7F1vM/738ghIAcGr7RRTn6/fGKMguRGGudqiIIT75aQx8Q+VVU99GxOHAin8rdH5Vcf3QXcxstpDyZLTgsDDv95n4avdnGqvklw7coHKc2ThYYcGez4zyNDn7+xUUZOu3VWkxHzlpeXqP62L8dyMQ2Ehe6TP+ZRL++OZ/FTq/JvDs2TPcv38fvXv3BpfLNeIMOd27d8ekSZMwfvx4ODk5YdSoUZgxYwYYDAaSkyv2d0iJVCrF/fv3P9jwrxcvXuDmzZvo3bs3rKyML4rSqVMnTJ48mbLliBEjMH36dLBYLKSkGF4c0YdMJsPDhw9x+vTpSp3/vnn9+jWuXLmC3r17w8bG+Ep27dq1w9SpUzF+/Hg4Oztj2LBhmDZtGjgcDlJTdVeDNoZHjx7h5MkPM4T7zZs3uHDhAnr16gU7O8M5WNVp1aoVpk2bho8//hguLi4YPHgwPv30U1haWiI9Pb1SY6HRaHjy5AmOHasZz/CKEPXgLfZ/dwhQ5OJatH+2UcWPIi5G4u3jWINtlOkgjKXr6PborPCEK87nYe3krZXyQn11J5p6bUj8AYDkN/q9tl18nDBjg2HvenVinsXjj6//ora/2jsbtk42sHGwxndHv8KwL1WLY3uXHcTmWbsgkUjw/OZrjTHrwt5VVUTp5Nbz5Y6l/eBW6DWxC6Courl24q+V8o5+qTYuQyGy/g30V7y14LDQZkBzfLZlit42NQUipBEIBAKh2tn2xR6qMECTbg0w9AvjPBeYFkw4ehjOXWSMt1dZ+k3rrlW+fMRXgxB5TbV6v2D3LKPLcutK5FqW5OiK/aDhWnOxcN9sKpHs/u8O4c3jmAr1YU4EpQJs+HS7PLecIvzQv74PNt//CVH33+GvH49QbYfN648Xt15T2/N+nwlHdwejruPqV36YXFJUxWzJ5rKxaP8cyhPu71VHNSaA1Y1QIMKW2b/j+5E/Uzn+fEI8seX+T+g9qYtG2+zUXGz5TJUTZu72aXD1MS6U0M0IW5bn0VkWlgULi/bPoaqxHt5wCk+vvqhQH++T3NxcnDhxolJJ/pVCsI2NDaZMmQJ/f3+wWCw0a9aM8qyqKBwOBwMHDvwgwxILCgpw/PjxSiX5p9FooNFosLKywpQpU1C3bl0wmUy0aNGiUqGyUHi1DRo06IMMSywuLsaxY8cgFFbcw1NpSy6Xi8mTJyMkJAR0Oh0tWrQwOi9YWRgMBoYMGVKpc983paWlFQ7bVodGo4HNZmPixIkIDw8HjUZDq1at4ObmZsTZuvsbMmQI6HT6B/XZFApEGt7woxcPQf32xhXscfJ0BJ1hWHao6LMHAGZv+QROnvK5RMTFSJz4tXzRqCwv76oJaWo5dHXhEehKzQOt7DQrT+ak5IJRzj0qkYglWDNhC1V8adiX/dFUrXgVnU7HtHXj8ena8dS+k9sv4IdRG2DraA0my3BRB49AVS7T6//cNWpMMzZOpEIun998jX/Xl180pyyv7honSpZNQ6Fuy1mbPsGKYwvhF+pd4etXN0RIIxAIBEK18uz6S1zafwMAYG1vhQW7Zxmdt4VjycbvrzZi5YlFcPVV/bhqN6gl9aPWmDxP6ohFYqyZ8KtWxc8HZx5Tk5whc/uhWQ/jS4L3n9EL25+sxciFqhCSgAa+8A5RubNX1HMOAMLahGDUInk1QYlYnqfkfVQ3Sn6Tijltv8EZtcIHvSZ2wcZb3+PQuhM4tkWV4HbWL5OR8jaNypvW79MeaP1RM6Ov1WtiF/wWuR7jlg6j9vmGesMvTDXJqowtg5oG4uNl8vLyUqkMayZsRmlx9VdTS4vNwBcdluD4ryoPpK5j2mPLg1UIaOCn1X7H/H2U2NZjfCd0Gm58xbLOI9th14ufMen70dQ+72BPBKitDlfGlgH1fTH5xzHU9pqJWwx6EdYkGAwGWrZsiU6dOlW6j+vXr+PgwYPUdo8ePeDl5VXp/pThZzdv3vygwhLpdDqaNWuGbt26VbqP27dv48CBA9R2165dqcT3lSE4OBgjRozArVu3PqiwRBqNhsaNG6NHjx6V7uPevXvYu1cVyt2pUycEBJTv+a2PwMBAjB49Gnfu3PngwhIbNWqEXr16Vfr8x48f4/ffVQsY7du3R926dSvdn5+fH8aNG4f79+8jP19/qGBN4t/1J5GkWAAMaVFH45lcHoEN/bA/9lcs/nMutc/e1RYNO6qEuMo8e2wdbbBg9yxqe+fC/UioQD8SsQRR9+WhnS4+TnDxNrwA4ujugN3Rv2BfzBYs3Ddb45hUKsPBNceNuu6xzWepAgOBDf0w6YfROtsNn9cfC/fNphb9bh6+jy1z/sCOp+vw7T9fgKZYWLVxtNaonG3vpvJIi3+pO6dbWaxsLbFgz2fUXHrPkv8h5pnuPL+6kEqllKecnbMNvII89La1d7YFFAEJdAYdSw7No44pc6x9CBAhjUAgEAjVhkgowuZZu6jtKavGljtxKYuVrSVa9m2Cgiz5RN472APLjyyAX7hcWEl5m2Z0/jB+iQDfDV2Ha4pEtcpJCQCqUqKrrzMmfj+qQmOEIp+HnZoH2/B5AzB1taqYQmVWXwFg3NJhCGoaQPVxcLVxEzdzce3gbcxsvhCxz+STQDbXAgt2z8KcrVOw/pOtVJ40Op2GBbtnwc3fBXdPPAIAOHo4GFVQoiwB9X1h76IKxxk8py9mbJhIbVfWlqMWDqJyoqTGZODAyoolCjaVW0fvY0azr/DmkdyzkMVm4fPtn2LR/jmwtNEOMYy4FEl9Vu2cbTB9/YQKX9MvzAeO7iqvzv7Te2KOWq6ZytpyyOf90LhLOKAIXd679GC557xvYmJiEBUVhV69elU4cbg6aWlpGiGhz549w86dO032Nrl79+4HUy0xPj4ez58/R+/evcFi6a9mXB5lbfnixQts377dZFs+ePAAZ8/qrmBX00hKSkJERAT69OkDNrv8vKH6KGvL6Oho/Ppr5UK21Hn06NEHEy6bkpKC+/fvo0+fPhUK2y5LWVvGxMRgy5YtlfIYVOfJkyc4ceKESX1UB2lxGfjze3kKBDqdhi9+mw4mq2J/M119nDXElVZ9m2HF8YXUdmIFQzuVNOvRCIM+k+e2FPJF2DTT+L+9sZEJlEd9ed5oSmwdbeAR4IbQ1kHUPqW33YU9V5GdmmvgbCA7JQd7l8mfjzQaDZ/vmGawAnz3cR2x8sRCcKzkfwsir7/CD6M3ws7Jlqpk3qxnI/xwajEVsZCVlEN5eYlFEkRc1l10oCwNO4Zh+PwB1Hkbp/9mtHd0UnQqihRFE8LahpSbukN5z1KJFHWb+lPto+6/MXheTYIIaQQCgUCoNo5sPIOEV/LVwnot66LPlMp5LqTHZVIeTn7h8gTsvgo3cLFIgtSY8nOX5GXkY36XZbh36jGgEDFWHFuItoNaarSb9cvkcqs46SNerSKkX7g3fOupvFQSoyqXQ4llwdJYoTy45hjS4zMr1VdFEPKF2DRzJ34YvZHK/+Yb6oUtD1ahVb+m+KrHCtw8fB9QFI/49uCX6Di8DbbO/YPqY9q68bCytdR7DUMkqIXs+od7U+83TLAlg8nAV3s/o6qyHtl4CslvKp9DyFhEQhG2fbEH3w1dB16B3OPIs647Nt39Af0+7aFzAioUiLD5M3URepzRocZlUQ9/9itjy6RK2pJOp2PB7lngWMon+ye2nUfc84on3K8uBAIBjhw5Uuk8R+q0bdsWHTt2pLYtLS1RVFRkUsEAOp2OPn36fBBeVCKRCEeOHEFamunVhFu1aoUuXVThzFZWVigtLTXZDn369KlQ5cv3hVgsxpEjR0zKZaakRYsWGt6BlpaWEAqFGlVmK8OHYkupVIqjR49WOl+hOs2aNUPPnj2pbUtLS4jFYo0qs5WhV69eKC2tfk/oirL1891UoaBBs/uiTiP/SvWToPHs8YGVnRUcPeShmZVdxAGAT1aNpXLIRl5/hRuHjAtnVE/pEN7GcH60sti72FHXVCISinH4Z8MhkTvm76PmUH2ndENoqyCD7QGgRe8mWHdlOVVdMzYyAd+P3EAd9w/zgQXHgqr4mRSVgtDWqsIJJ7cavyAzYcVIyuM/6v5bKoKkPNTztoUZYUuu2mJhbmo+tRge8yyhwjmE3xdESCMQCARCtZCZlI0DK1RJamf/OsXokM6yKL3FoJhAQFE0QEl5ObMSXidjTpuvEf1Q7glkacPFj2e+RuuPmlETFSXugZXLKaM+ThqNBt9Qb3gEulG5pCqa10sdvzAfjcqTvy3YV+m+jCHuRSJmt/kaJ7erJmPdP+6ILfd/AtOCiTltv8HL2/JJFMeSjRXHF6LD0Nb4349HkB6fBSjKundRJAauDPFlJuDOXo7gWssFTlNs6VXXAyPUVmC3fbmn3HNMITEqBZ+3X4Ijv6g8OjoOb4Otj1YbLLjx7/qTVKLjsLYh6Dmxc6XHUNaWtk42sHexVYyv8rZ09XXB6K/leZSkEim2fr67xuYAEgqF8PT0RNeuXU3qRyqVIjMzUyOPV3BwMAYNGgQOp3ICvJIGDRpg1KhRiIqKqtE500QiEdzc3NC9e3eT+pHJZMjIyICLiyrHZGBgIAYOHAhra2uT+g4NDcXHH39c420pkUjg7OxsUkgnFLZMT0/XsKWfnx8GDhxIVZmtLEFBQZg8eTKioqJM9m6rSiQSCRwcHEwK6YTClmlpaRq29PT0xKBBgyqdv09JYGAgPv30U0RHR1cqT2N1cOfEQ9w7KV9wdPRwwPjvRlS6r/gXqjBDf4Vwoiz8U5hThILsyoUMcyzZGon+dyzYh1Je+QsZr++pvJ/C21VMSAOAegoRTCqRgsWWz+1O7biAwhzdRX0iLkVShYLsnG00UiKUR0iLuth463sqj5m6rfwoW8r/5/MEaD9EtSgcecP4ar0WbBZmblTZcteiAzorf5bl1V2VLesbYUv1iI2Yp3Go11Jly3cRhgtT1BSIkEYgEAiEamHbF3uoVaaPpvdEcLM6le6rrBAAAD7q3l4GcmQ8vfoCn7f7lhJ4XLydsOHmSjTuUh+xkQk4v/uq1rgrIwZIpVIkKrzv3ANcwbFkg8FkUKENyW9SjQ5B1cW4pcPg4CYPd7x5+D4iLj+vdF/6kEgkOLTuBGaphXJacFj44rfp+GrPZ4h5loC5bb9B6ju5V4+juz3WX/8OLXo3QVJ0Cg6tk4esMFkMzN4yxagqnbqQyWTUe+7o4QAbB2vQaDTqPZd7KFZ+BXPkokFUiPGDM09w//TjSvelD6lUiqObzmBG0wWqUE4LJmZvmYJv//7CoKde2bCaOSaI0FDzCrC2t4KTwhtAacvctDzwCirvbTLsy4/gEShfpX969SVuHr5X6b6qwmCLpAABAABJREFUiry8PMTGxmLs2LEVqoaoi+TkZJw/f17DM4XBYEAmkyErK8vksfJ4PBw8eBAREREm91UVFBQU4M2bNxg7dmyFqiHqIi0tDefOndOwG51OB4PBQEZGhslj5fP5+Oeff/DgwQOT+6oKioqK8PLlS4wdOxaOjo5GnKGf7OxsnD17VsNuNBoNLBbLLJ6DQqEQhw4dwp07d0zuqyooLi7Gs2fPMHbsWA0BrDLk5+fj9OnTGl6CygIE5vAclEgkOHToEG7cMM7zpzrhlwiwde5uanv6+gmV9ioHgPhXqrkZFU2gMXervFdaq35N0aJPE0AR2njQiMrmynkFg8nQyBVqLKGtVF5f9RSv+TwBjm3WDiM3h1e5d7AnNt7+gaqUraREIXT5qOXhdfFxpkJOC3OKkZdpfC6+pt0bov2QVgCAvIwC/Lmy/MrmCWoRGHUal++xqPREBIDEV5oedK/vvTV6rO8TIqQRCAQCocp5cPYJbh2Rh/3Zu9ppJDuvDOoPbP/6ytBO9bBJ3ZOxi/uvY3Hv76lE6HUa+2PTvR8R2NAPUqkUm2bthFQi91awtpeXdH965QU19oqQkZBFCYfKMQKATz35REcskiAttvI/Dq1sLfHJT2Op7W2f74ZYZL4V7bS4DCzo+h1++2o/VXTBP9wHm+/9hL5TuuHGobv4qvsKauVVfuxHBDerA5lMhi2zf1dVpJo3QGOyXFHyMvJRlCsP7VK3pfI9l8lkBsvSlwfXioNP135MbW/9Yg+EgopXHtRHZlI2FvX6XiM8xifEExtvf48BM3uVKzCaK6wGAIrzeVRhDf/6PtS11d+fBBN+zFhwLDD9Z1Xuth3z99WoMA2ZTIbDhw/j8WPziKV8Ph8cDgcODppVaO/evYtHjx6Z3L+dnR2aNm2K6Oj3V1VWHzKZDEePHsX9+xX/+6gLgUAACwsLrYqn9+/fN8s1rKys0LJlS0RFRZncV1Vw4sQJswlTfD4fTCZTy2Pq4cOHuHfPdHGbw+Ggbdu2NfJzCQCnT5/GrVu3zNKXQCAAg8HQqnj6+PFjs7xfTCYTHTp0qJG2/OuHw8hIkAvbTbo1QOeRbU3qT7mIY2nLpRavjF0ELQ8ajYYZP0+gKlr+s/YE0uL0z7GkUilVPd2zrnuFc74BQL1WqoITtk7WVMqNY5vPUEWBlBxad8IsXuVOHg74+dp3YHMtqH2bZv2OV3ejNdI0JEenwjtYlZPu6KYzFbrOtHXjYcFRpL345YzBHHYymYyKDHD1dQbXuvx8hOoV2VNi0hGqZsvXD4iQRiAQCAQCBKUCbJmtqnY1bd14SqSqLOqriMqJgk+IJ5VoNeapZqUhmUyG/SsOYc2ELRCL5F5gLfs2wc/XV8DZU77yf3HfdSo80SvIA1/8No06f/u8vRUWAxJeqq28hqmLP6qJTtlxVpQe4zuhXkv55CP+ZRJObjM9MblMJsPZ3y9jWqP5eH7zNaCYoA6f1x+/PlyFgAa+OLjmOL4ftQEihdjUtHsDbLy1Eq6+8pX/6//cQcQluYecm58Lxn471KQxxavZ0l/Nln5mtGWnEW3RQFFBLPVdOo5sND2Ztkwmw8X91/Fpw3l4ouYxOGh2H2x9vMYor0xzhtUAoHIUouznMsx8tmzTvzma95JXuc1MzMY/RlYyqw6EQiF4PJ7JYYhKgoKCMHfuXK1iBV5eXhCJzCPGfvTRRxgxYoTJ+ZjMjUQiQUFBgUbuKFPw9/fHF198oZVg38vLy2xhb7169cLYsWNrnC1lMhlycnJMDkNU4u3tjS+//BKWlpreQ+b8XHbt2hUTJkxAbq7h5Orvg5ycHPTu3dssfbm5uWHevHla3qteXl4mFxtQ0qlTJ0yZMqVG2VLbq/yTSnuVAwCvsASZidmAYuFN2ZefGZ89PiFeGDK3HwBAJBBhx3z9aS8yE7OpBSrfep562xkisKEfdR85KbnoNq4DAKAoj4fTOy5S7dLiMvDXD/JiRnQGHXO3TjXJq5zFZmks9glKBPim309gKEREAIh5Fo/2Q1pT27ePVswT193fFSMWDAQU1U23faE/VUN+ZgG1QO1j5KKpZ1136nV2Sg58w7wpEVQpcNZ0iJBGIBAIhCrl4OrjlOdVw05h6Da2g0n9ScQSJCk8ZryC3MGykK+YsblsBDSUu7vHv0ikwtNEQhHWTv4V+5b/Q/Xx0bQeWHFsIVUZsTC3CDu/2k8d/2zzJ+gwtDWa9VSJAYfWVqyylmYuEJVgoZ5YVj3RbWWg0+mYtWkytb132UHkZ1U+kXReRj6WDlqNn6dup5Lhuvu7YN3V5fh07XgwmAz8MmMndi06QJ3Ta2IX/HD6a1jZycVRXmEJtn25lzo+c+MkKgF9ZVG3pZ+aLeup2fKVibak0WiY9ctkSoz98/t/y62+ZYiC7EKsGL4eayZsoQoKuHg7YfXFpZj1y2SjbGLusBoY+Fxq2PKu6bacsWFStRfEKA+RSITU1FTMmTMHvr4VD+PRxenTp/HypXb+mX79+qF///5muQaNRkNSUhI2b95slrA8cyAWi5GYmIg5c+YgIEB/br+KcP78eTx79kxrf8+ePTF48GCzXINGoyE9PR2bNm1CUlKSEWdUPWKxGLGxsZg9ezaCgspPPG4Mly9f1hkO3K1bN4wYYZoYr4RGoyE7OxubN29GXFycWfo0FYlEgpiYGMyYMQP16hlXhbE8rl+/rtMjsmPHjhgzxvgcV+VRUFCAzZs34+3b9++NI5PJsPmz36mFx+HzB8AnpPJe5TCwiBPcvA713H1p4rMHAMZ8O5SqTH376AM8vqj9NwVlwkgre28WHAs4e8sXY1PepWPkV4MoYe3fn09SC7AaXuWf9UFgQz8DvZZPUnQqVbFTea/F+Tz8tmAfJUa9uhONQbNVYnLym7QK54ccuXAQXHzknoOPzj+jinOVRdOWxomSNmoL6iK+GAwGgyqWkBaTUWPzq6pDhDQCgUAgVBmZSdn4W5GngsE0LU+WksSoFCpkUF1UAYDwtvIEp1KpDK/uvUVxPg9f9/0RF/dep9p8uuZjzNk6lfqRDwAHVvyLgmx5iGKnEW3QvGcjhRgwkWr39+qjVIiDMcQ8U62sKhPBQuHSr+TFbdNDjOq1DEKvifIqd7yCEuz+5n+V6ufmkfuY2uBLyvsJAHpP7ortT9ehYccwlBSVYsmAVTj9m2qVdeKKUZj3+wyNkIi/Vx1Dbprc26P1R83QZkBzE+5Ojrot/dVsGdKyLpUDxBy2rNPIH/2myb1r+DyBhmBYEe6deoypDb7UCAnuNq4Dfotcj6bdGhjdz7/rT5o1rAZlVvzVP5dBTQOoMI4Xt0y3pW89r2otiGEM58+fx+HDh03+G6REIpHg2bNnOr1SJBIJfvnlF2RmmkdA9PPzg7OzMx4+fGiW/kzl8uXLOHjwoNlsKZVK8fTpUwgE2p6/MpkMmzZtMpuI6OXlBQ8Pjxpjy+vXr+N///uf2X44ymQyPHnyRKctAWDLli1mExHd3d3h4+NTY/LO3b59G3/99ZdZE/fr+1zSaDRs27bNbCKik5MTAgICaoQt7xx/SHlRu/m5YMw3pnmVo8yzR30Rx8rWkloEjYtMNClHp7K/KavGUdtb9aS9SFILVTTWi0oXXgrPqqLcYji42aH9UHlusdz0fBxadwKPLjwzq1c5ytiy37SeCGsjzy+Wn1kIKP4my8NIaVQeNqlEitvHKvbZ4liyMW2dKlXDti/2QMjXft6ph32qR10Y7NtKtZiofH+UXmr8EgFy043P6fa+IEIagUAgEKqMv344QoX/DZ7TV2PyVFkir7+iXpctV16/fSj1+sGZCHze/ls8vfICUCTJX/LPlxg+f4DGj7+s5BycUlSj5FiyMX29atLgF+qNQbP7AAoxYIeRYoBMJqPGybXmIKC+yvvFxsGaskPM03iUFpfq7cdYPvlpDCxt5d51Z3+/grcVqHjEK+BhzcQtWDFsHSUm2rva4btjX2HerhmwsrVEVnIOvui4BA/PPQUUSfIX7Z+Dsd8O1bBlXmYBjinycLAsmJi5cZJZfmgrbclis1C3icr7hWvFQVBT+XbCq2QU5uqulFURJq4YCRtHeYXAywduVshrsKSoFD9P3Y4lA1YhL0PuGWjrZIMl/3yJRfvmVCikuSivGP/+fBJQhIJ8ttm0sBolkTdeUX2GtFDlJGFZsBCiCBNOj8s0yRtPSdmCGE+umL8gRkV4/fo1OnQwzSNWHRqNhnr16iEsLEzrGIPBQGlpqdm8SxgMBiZNmoSuXbvWiKqTVWHLkJAQNGigLTQzGAwIBAK8efNG57kVhU6nY/z48ejRo0eNsWX79u1NCvVSh0ajITg4GA0bNtR5TCQSmS0fF41Gw9ixY9GnT58aY8vWrVuDxWKZrc+6deuicePGWvtpNBqkUqlZbTlq1Ch89NFH79WWUqkUe5b+TW3P2DDRZK9yqD17ACCsbbDGMeUiqEwmXwQ1lW7jOiC0tdy7M/F1Ck78el6rTZKG+FN5Ic0jUBWimBqTgYkrRqm8sVcfw86FqmiHaWs/NtmrHGXmwY06h+GH019TBQjEQpVo+OpONBp2VD2fzuy6XOFrdRzWGo06hwMA0mIzcHiDdtoLDVsaKUqyuarPlETh+eipbktFEauaDBHSCAQCgVAlpMVl4NwfVwAAljZcjF5sntCcZ9dVYVQNO2n+gFUvX35q+wUqlMDO2QZrLy9Dx2FttPr764fDlIfbgFm94eylmej6Y3Ux4N97iI1MKHeMyW9SqdW0+u3raXi/Qd1zTiLF6/vvjLhrwzi42WPckuGAWj44Y3hy5TmmNpyHi/tUHnvtBrfEzufr0XZAC0ARfvpZq8VU1U4bByv8dP5bnSG6B1cfo0IZ+k7tTlVvNIWMhCykx8m9ekJbB8GCY6FxPLytKnzn1R3Tf2jbOtlg4opR1Pa+7/4x2F7J85uvMa3xfJz9XTVRbdWvKXY+X6/zc1ce/64/SYWE9pzQ2aRiDUryMguo70Rws0AqtFmJui2V+QJNoWxBjL3LDr63cA2hUIjZs2ejVatWZuuzuLgYXbt21VmtksFgoFu3bvD2Nm513hi4XC5ev36NXbt2vdcf2kKhENOnT0e7du3M1mdxcTE6duyoVbQBCoGhW7du8PExfSFGCYfDwbt377Bjxw5IJJWvnmwqQqEQU6ZMQadOnczWJ4/HQ7t27bQKDUBhyy5dusDPz7TQMnXYbDYSEhKwdetWs3qCVRShUIgJEyaYLf8hAJSUlKBly5Zwc9P9LOvUqRP8/Stf/KUsFhYWSEtLw+bNm82Wf62i3Dh0F/Ev5B6L9VoFoe3AFib3KZPJEHlNPnfjWnMQ1DRQ43h4O7Vnjxk8oul0Omb9MplafPrfqqNalb3VvaiMDUfUhXqur9R36fCt54UBM+W5DgWlQmruFNjQD51HmedvpnIezGKzENoqCNb2Vlh1folGcQEAiLgYif4zVTksK5MCQ572YhIVfnto3XGtQgoatjQy35yFmjgrVlSwV7dlChHSCAQCgfBf5cDKfyFRPBwHz+1b4TLfulCfjFnZWWqVAHfxdqK8fpS5PbyCPLDp7o8IK+O9BgDp8ZmU2Me15mDEggFabazsrDB68RBq+68fD5c7zmfXVKuFDTuFax0Pb68uWJingtzAz3rD2Uueq+PuiUca4ZBlEZQKsPXz3fiq+wpkJeUAiipaX+35DMv+nQ97FzvIZDKc3H4B87sso0I13QNcsfH2D2ik456yU3Nxcpt81deCw8Lor4dotakMGiuvumypJp6ay5b9Pu1O5eqIuBiJ1/f1r5ALBSLs/Go/5nVeRgl+XGsOvvhtOlaeWARHd21hoDzyswpw5Bf5qi+TxcC4JcMqfS/qqNtS1+eyfhXYssf4TtRq/8vb0RpjqC5ycnKwdu1a5OTkmLXfkydP4sqVK3qPN2vWzOw/hj08PJCWloaYmBiz9mss+fn5WLduHTIyMswW1gkAZ8+excWLF/Ueb9KkCcRisVmFWA8PD2RmZprN062iFBUV4eeff0ZycrJZbXn+/HmcO3dO7/HGjRtDKpWa3ZY5OTl49ar6v99QCF4bN25EfHy8WW156dIlnD6tv/BMw4YNQaPRzGpLd3d3FBYW4sWLF2br01gkEgn2fadaiJvw3Uiz2LO8xcX66nOiO+Z59oS0qIsOw+TJ9vMzC3Bmp6Y3ltKLytHDgcrxWhm81IW0GLn4M27pMFg7aPY5fvkIs3idZibqXlx0cLXD6otLqZxtAHBh/3XUaxlE5U0rKSw1WMlUHwEN/NBtXEdAUUjhxFZNDz+lLa3treDgZm9UnxxL1aIo5ZGmZsu0GCKkEQgEAuE/SPKbVFxSeDlZ21th2JfmSbqd8CqZCj9s0DEUDIZqMsYvEWD1+M1U5SAocmhtuvMDPOu46+zvz5X/UoLbkLn9YOdsq7NdnyndYO8q9zq5ceiewTLgKOM1p3SJV6e++uqriUnylViwWVSFJQD468cjOttFP4rBjGYLNUqhN+4Sjp2R69FjfCfQaDQI+UL8PGUbNs3cSdmnYacwbLr7o17PqP/9eIRKpjtgZm84eVRcQNJFZDm2DK8CWzKYDIxepPKgVFbbKkvMs3jMarEQ/6w7Qf2Qqt++HnY8XYe+U7pV+gfIP2uOg8+Tr573mdIdbn4uleqnLOXZUj1/n7lsSafTMeZrVX6dP/XYsip59OgRuFyuXq+SypKeng53d91/W5TH//rrL7PlSYOiGuPgwYPNfi/G8vjxY7BYLHh4eBjR2njS0tIM2jI7Oxv/+9//zFpswd3dHUOHDjX7vRjLkydPQKPRzOq1CCM+l3l5efj777+RmJiot01FcXZ2xrBhw8x+L8by9OlTSCQSsxURUZKRkWHQlkVFRfj7778RG2t8OoXysLe3x/Dhw81+L8Zw5a9blChSv309NOuhHR5cGcpbXHT1caaS2kfdf6czp1llGKO2oPfP2uNUpcvC3CLkZxUCJlTsVOJRR/W3WCmk2TraoN2gltR+jhXbLPliAeCZgcVFVx9nrL28nModyy/mY8mAVRpVufd/Z1zEQllGLRpMzWkOqxVSKOXxqWqsPvU8jZ73qOdIUy66e+qwZU2GCGkEAoFAMDv7VxyCVFFRaNi8/hXKDWWIZ9fUhAC1CUR6fCY+b/8tLv95U6N95xFt9XrCJb9NwwV1sW+efrGPY8nGcMVxmUyG//2kW6SCzhAG7Yp27gGucFQITa/vvjFbaFHfqd00wlATXquqZAlKBdj97f8wt+031ETZgsPCjA0TsfriUrj6ysWazKRsfNlpKc7tvkqdO2RuP6y+sAQOrtohbFCskJ5V5N7gWLExcuFAne0qwzO1/GjKnCfqOHk4UCGkUQ/eaZSEN4UeEzpRE/t7px7j3RNVQmmhQIT9Kw7hs5aLqBAYlgUTU1ePw7qry00Kac1Nz6NWe1lsFsZ8bZ6QaKh5pNEZdA1PPiXq+fvePYkzS/4+AOg8si210vzk8nOTq4JWlMaNG2PMmDFgMplGtDaeUaNGGQwVdXV1BZPJRHZ2tlmv27BhQ9y/f9+sQkhFrj127FhYWFgY0dp4hg8fbjBU1NnZGRYWFma3Zf369REREWFWIcRYwsPDMXbsWHA4HLP2O2TIEHTs2FHvcQcHB3C5XLPbMjw8HM+fP38vVSdDQ0MxduxYWFqann9KnQEDBqBLly56j9vY2MDa2trstqxXrx6ioqIQFWUe7yxjEIvEGiLLxJWjzObdV97iItS80vglAo1k+qZQp5E/JWBlp+Tiwp5rAEB54qNMjrPKoL5QmxYj9/aSSCR4fU/l6crnCXDt4B2TrqMk8pphW3oHeaDNR81U7ct4gasXQaoIvvW80GmEPE1FflYhzvx2CQCQk6LKp6pv0VoXHCvV3z2JRJ6qwM3flQohTY2puOdcdUOENAKBQCCYlfiXSbj6v9uAIt+UsnKfOdA1GXt88RlmNl9ITbyUlQcB4NU9/SE7B1YcglTx8B72Zfli30fTe1JJ6K/8dUvvalnZEAb1ipZKaDQaJWSUFJUi7rl5fhCzuWwMnycPT1UX/CIuReLTRvPx149HqJW/oGaB2Pp4DYbM7UeFGzy7/hKzmi9E9MMYRX8WWLR/DmZsmKjzPpT8+b0qz9yg2X1h76JbcKsomYlZSIuVT6Z05UdTorSlSCDCuwoUWjAEy4KFkV8NoraVnlSRN15hepMF2Lf8H8pbL7ChH7Y8WIURCwZqeElWhv/9dBSCUnk4YP/pPbVy9lWWvMwCxL+Ui37BzQL1JjxWz98X9cD0/H3Q4eF34Pvq80q7fPkykpOTDXqVVIZ3797h7du3BsU5CwsLzJgxA8HBwXrbVJbMzEycOXPGiJbm4/r164iNjYWnp2keHGWJi4vD69evDSaIZzAYmDZtGkJDQ/W2qSxZWVk4c+ZMtebvu337NqKioszuwZWYmIhnz54ZFDrpdDqmTp2qs7CDqeTk5OD06dPVmsPv/v37iIyMNLsHV2pqKh4/fmxQ6KT9n72zDm/qfN/4HWvq7kJbqhSXUqC4F3cYMHT4sDFkbGxjY2xjYzAGGzDc3d0p0KItUnd390Z/f5zkJGnT9iQ5YfD95XNdu0aSc96cPD3Jec/9Ps/9MBiYPXs22rdvT+t7A0BRURGuXr363nznbh18SF5v2/drrdRKQR2oLC5CCx6dUqbIdRw9+et5CPgClOSVks9JFx/VxdDEgKxYkM4LH54MQVq0YuXCnjVHyCwuTWhqcREAugxXzH5LepNKZqlVV9Qg9Morpfs1hXyG38nfLoJXw1OIpXkDi63KkM9IE0nmpXpcDmxcCG9HXWmnDh06dOj4f8eh72WG4hNXjaxnaK4uYrEY7yQTCCMzol36yU0XsTboJ5QXVQASP7S/nv5Mvmfk4xilN0epUem4d+wxIBX7ljYt9hmaGGDssmGARGQ48csFpds15UMlRb68M4IGc10pw+YPILPw7h17jG9H/4rVA38kOyCxOSx8+u14bAv5Ca6SNuVisRjn/ryKVf1/IMsd7N1ssPXJBqVNBeTJSswhs9cMTQ0w/kt6ynjRRAmDPNqK5eBZfWBpT/h9PD73DN+P+Q0ren9HZvQxWUxMWjMafz37Gc3baG7enZdegKu7CJ8ofUMuJq0Z1eQ+VHkXTO28lPfvozOW/T/tCdtmxAT5xfVwxL3SvsdXYWEhHj9+rJWxX7x4QSkjrKKiAleuXKH9/fv27Qtzc2peNHRQWlqKhw8fakVsevnyJVJTm27iUlNTg4sXL9J+DH369IGlpSWFLemhoqIC9+/f14rYFBYWhpSUprN5eDweLly4QPsx9OzZEzY2Nu9NlKyursadO3e0Fsvk5OQmtxMIBDh37hztTSt69OgBe3v79yJK8mr5OLrhDPl4xg8TaRs7Mz67ycVF1PFJi3gSTdv7+/h7otOgtgCAnJR83Dv2GCV5ZeTrqog/DWHpQPwWlxVWQChQ9JnzlXTDzk8vxJnNlzV6n7z0AkqLi/KxlGYVSheOAeAwxSZKdXFv7YrAUUTziaLsYtzcfx/FasZSobRT7tiksSwvrvxPG8FQQSek6dChQ4cO2kh4nYxHZ4m0cQs7M4xYNJi2sdOiM0iRp2U3H/w85U/sWXOELCENGNoB2yWCRouuRAZIUU6JUj+zQ+tPkxP9CSupi30jPx8MQ1Ni29uHHiAvLb/eNlRKGFDH2+v1ffpMhQ2MDTBm2VAAgFgkRujFl+Rrrbr7Ymf4b5j2/QRyMiv1lvtn+QFyotVhQBvsePErPNspXzmW58iPZ2SZfcuHw9RS86YSUhRbvL//WHINuBj3pawBxZMLz8l/+wZ44Z9XmzB742TocRvOpFGFYz+dIzP7Rn4+mLJpLxWoxrKVlmLJ5rAxabVMGGzId45OWCwWOnbsiHbt2tE+tqGhIdq2bdvkdpWVlXjz5g1KSkpofX8HBweMGTMGUVFR70W0YDAYaN++PTp27Ehha9WgGsuqqipERkbSXkZna2uL8ePHv9dYtm3bFp07d6awtWoYGBhQOt9ramoQHR2N3Fx6y6esra0xceJExMTEvLestNatW6NrV9U7IzcF1VjW1tYiNjYWmZmNe6eqioWFBSZNmoT4+HitCwo39t4jfa78g9orbc6kLvKWHI0t4ri1ciHnV28fRtH6mad8I2vYc/zncyjKKSYf0yGkSSsa+LV83Nh3D5nxhJdj294tsfLA52Q22MlfL6AgU/2mN001X5Li5OUAcxvC85fDrS9cJoQlo0pN64bJchl+J369gMJsWWmnKrE0MJZlesqLfPLVIVVl9NhLaAudkKZDhw4dOmjjyI+yFc1Ja0ZDX669tabIm9XGhyUh+HQo+fjTb8fjh4uryQtwp4Gym7LQSy8VxkmNSif3Nbc1w4hFgygfg7G5EUZ9HgRIuoKe3HRR4XWxWEwep74Rt8ESBgDwbO8GM2tCdHp160291uzqkhaTiefXwxSeMzQ1wPLd87H5wXq4+rmQzyvzlpu4aiQ2XltLqctqVmIO7h4JBgCYWBhhzDL6ynghZ47P0WPDN8Czwe1c/ZzJjqWv70XUa82uLpkJ2Xh2VbEEQt+Ii8XbP8PWxz/SkoUmJS+9gOwga2hioNA4gg6kAi+TyVDqjybF3t2W9DOLeByDssJy2o5h0Mw+pDfgkwsvkPyu6SwkdSkrK0NCQgKGDRumcbltXUQiEfr27UtJ/GnevDk8PDxofX8pxcXFOH36tNY9qSoqKhATE4Phw4c3Wn6pDiKRCD179qQk0Lm6usLT05OWznd1KS8vx5kzZ7TedbKyshLv3r3D8OHDweXSd32E5PrTtWvXRn37pDg7O8Pb25v27wYkgueZM2fw9u1b2seWp7q6GuHh4Rg+fDjtPnNisRj+/v6N+vZJcXBwgK+vL+3fDUhEujNnziA8PJz2saUI+AIF39fp6+nLRkOdxcU2vfwa3I7FYqFDf6K5QWlBOaJD6eum2yrQl1xAyojLxrtHsow3c1vlTaZUQV78OSYXyxk/TEQzXyeMWEjMM2uqarF37TG130dRlGw4lgwGAx0l82BeDR+dgxRLj8ViMY6o2XTAu6MH/CXj5aUVIPzOO/I1CxViKZ9NJy+kGcnFsqK4st5+HxI6IU2HDh06dNBCbmo+Qi++ACTtxIfNG0Dr+E+vyASx4lzCk8HQ1ADrL6yq11a820h/8t8hF58rjHNx+w3y3xNXjYSBkWoT8DHLhpIp6df33kNhtmxlMz4sCUWSx617tGjUV4zFYqHLMMLHoqayFuF3Ncv+4dXwcOj7U5jf7ktEhShOQLuPCcCQz/opxOjR2adY0GEV6S2nb8TFNye/wGe/TKV8c3Xp75tkRuDYL4Zr1EK+LqlR6aTZbIuu3uAaNHzTyWAw0HUE8Tfn8wR4ceO1Ru/N5/Fx9KezmNN6Bd7cj1R4LWBoB4xYOIj2G9Cru26T/nWjFgdREjKpkp2cSzZF8O7k0aA/GiSx7CaJpUgowrOrYQ1uqyp6+nqYSKGzLB3cu3cPT58+1crYDx8+xNGjRylty+VyMXHiRPD59DTBkMfW1hbu7u5ITNRumezDhw/x5MkTrYwdEhKCAwcOUNqWw+Fg4sSJWsnOsbS0hLe3t9Zj+fjxYzx69IjClqrz7Nkz7N27l9K2LBYLEyZM0EoGnqmpKVq2bKn1Bg6hoaFaKzcOCwvDzp07KW3LZDIxfvx4rQi80mxNbZ6XT84/R4HEML7L8I7w6USf8M/n8fFScj02MNaHd8fmjW4vvfZAsthCJ1O+kWVSvQuWF9I0z0gzMpddU/NSicy+Dv1bo1V3wtPx0+/Gw8SCmB/dORyMmOeqL34IhUI8v0ZcjxvzR5PSVS6W1i7W8Ouq6NV588B9JXtRY6pcLOUz11WJpfz3RSEjzUwWy4oSnZCmQ4cOHTr+H3Bl5y1SVBk2b0CD3g3qkJeWj5c33yg816yFE7Y/+1lh4iXF0cMebq2IzKuYZwlkGn9laSVuHyY6deobcRE0u6/Kx2JmbYrh8wcCkjR+abdKAHh4SpYlJ9/6vCEUBT/1J42v70dgXrsvcfiH02RpoJ2rDdl4Ifh0KJmlVVNVi63zduGH8ZvJSYqjpz22hW5Er/HUy2OqK2twU+KNxuFyaBdOg0/LRBAqsZT6dgBA6CX1YxnxOBoLOqzCgXUnwJd0ALV2tiTF05ALL2jN0oLEn+bav0QHLBabheELqWdJUkGTWIZoEEtlDJnbnyw5CT7zVEGIppPCwkJKmTnqEBcXp5LhfmJiInbu3Imqqipaj4PBYGDy5Mno37+/VksSCwoK0KVLF62MHRcXBycnJ8rbp6amYufOnSgrK6OwtWpMmDABQUFBWi1J1OZ5GR8fr9J5mZGRgZ07d6K4mP7v4JgxYzBs2DCtxrKgoAABAQFaEbBUPS9zcnKwc+dO5OfXt3vQlBEjRmD06NFaK++8uEO2uDhm6VBaxw6/G4FySVZRl+EdG11chGShSloGGXLpBa2/a+36tCLFJHmBhpbSTiWLiPKxNLU0wbTvZZl+W+buAp+n2uJKxOMY0muuc1C7RhcXAcB/cDtw9Ih4v7gWhnWnvoCFvcwuoqywAtHP1Mv68+vqg3Z9WwF1yi/VjaX03gF1svt0QpoOHTp06Pifh1fDwzWJoMTmsDB0bn/axo57lYhFnb9SmFD1m9oDfz39GS4+DU90pQKbWCzG08tEed6tgw9RU0mUUA74tJfaGVQjPw8iDVxv7LsHkUgEsViM4DOEkMZkMRE4umnBosOANuAaEIJj6OWXKk+USwvK8NusHVjZbz0y4ghPDhabhUlrRmNP5BYMmNYbkGS83T/+GElvU7HIfzWuSkQbAOg5vit2PP8F7q1U63h2/9hjcpLT55NAmFlrXh4hjzSWANBjbNM38W16+ZH+Ks+uhkHAV63TWXlxBbbO24XlPb9FalQGIPk7jvtiOPZFbcXQOcQ5zecJcOdwsIqfpnGCT4eS/n89xgbA2pFe43P5WPakIJa26OpNil0vb76mrewYkiYKQZ/1AySr0LcOPKBtbCm1tbWYMWMG/P3ri+x0MGDAAPTr14/y9s7OzhCLxUhPT6f9WNhsNs6fP48bN25Q2Fp1amtrMWXKFK14UEHSNGHAAOoivKOjIxgMBqVGD6rCYrFw+fJlrTSHgMTgf8KECejRo/EGLurSq1cvDB5M3ZfUwcEBbDabUqMHVWEymbhx4wYuXFDelEdTeDweRo8ejT59+mhl/B49emDIEOpWBba2ttDT06PU6EFVmEwm7t69izNnzlDYWjWS3qaSZY7NWjihXZ9WtI4vb8HRc1zTvyGmViZo3YPI4spKyEFadAZtx8JgMDBq8ZB6z5laGWs8dt2u7w7N7dBpsKK/3rD5A0g7iKS3qTjyg2p/T1VjaWhigHb9iM68+RmFKMopwXdnviTnrgDw+6y/VToGeUYvqf/9MLNRbR4oPRaxnJCmUNpZQu/iE93ohDQdOnTo0KExD0+Fklk6PcZ1gaW9hcZjikQinPnjMpZ2+1qhvfbUb8dhzaElTTYI6CaXefPk4nOIRCJc+lt2s6lJIwQ7VxuyC1Ruaj5e3X6L+LAk5CTnAQDa9WkJc5umV+b0Dbmkj0VJXiliniVQen+xWIzbhx5iVotlCkKEX1dv/PPqV8zeOBn6hlwMmSO72T+28Rw+D/iKbMnONdDDF//OxzcnltebBFJ5/4vysVxIX1MJSMo6UyIJ0cGvmw9snK2a3Iejx0HA0A6AZBXzbTC1rl9isRj3jj/GrBbLFARG704e2PH8F8z7fRoMjA0QNEcmDl/bc4fWlfJLWoxldnIu4l4SZUGe7d3h6GHf5D5E2THhWUVH2XFdgmbLzsvre+/SmrUiFouxZ88ehISE0DamPNHR0SgpKYGREfXvjLGxMWbPng1396abd6iDnZ0dwsPDac/+EYvFOHDgAIKD6RWOpcTFxSEvLw8mJtTLmA0MDDB79mx4eTVe1qQu9vb2ePv2Le2luGKxGIcPH8a9e/cUbmTpIjExEZmZmTAzo54Roqenh1mzZsHHhz5jeXkcHBwQERGBmpoa2sc+ceIEbt26pZVYpqamIiUlBRYW1OcxbDYbs2bNQsuWDRvAa4K9vT1iYmJQWUlvhs6lHYrXHjrjyefxSWsNA2N9+A+m1vRFm+WdgaM7K9gmmFgZ02LTUHcONXz+wHrjsjlsrDywCCw28fyJXy9QLvEUCoV4fI5o5MXhctBleCdK+wXKVz1ceIGW3XwwYaWsgVJadCain6uXlRYwpAOsHGXfEX0jruq+yJLTTX4+JS2BBYBKXUaaDh06dOj4X+fijuvkv0cuCtJ4vOLcEnwz7Gfs+vIQBHxZlpaVowWmfTeB0hjeHZuTBvThdyPw9PIrMmurbe+WcGvp0sQIjRP0mUxYub7njkJZJ5XVQinyPhZUyjvTYjKxasAP2DRjOyleGpkZYsnfc7Dl0Y9wby0zwPfu6EGugOalFZClis3bumLHy18RNLufWhPnyCcxSHpDZDH4BnjR6qmCOqWIqpSbyk/AQynEMjMhG2uH/ISfp/xJirUGxvpY9OcsbAv9CZ7tZcKHawtn0qQ/NSoDUTQZIce+TET0U2Iy3byNq0LbejpQN5ZdaSo7VoZDczt06E+slGcn5eJ1HR86TcjMzERBQYHWRKt79+6plVlmYmKCixcvgsfj0X5MXbp0wYABA2gvccvNzUVOTo7WYvngwQO1MstMTU1x8eJFrQg0nTp1wqBBg8BmN16CpipFRUXIyMiAm5sbreNKefjwoVrZUObm5rh06RLtZccA0K5dOwQFBUFPjz6bBwAoLS1FcnKy1s7L4OBgJCcnq7yfhYUFLl++jIqKCtqPqXXr1hgyZAitDSrKiyvIRkOGJgYYMK0XbWNDSVlnU6WIUrqOlIlEmtg0KEOPy1H4nHQJhxx9WaMJFoeFQbOUZ0p6tnPH1HVEB1GRUIRNM3ZQyviuW9ZJtdO8vOAmtWn47Jep4Mh1Gv9q0E8oyS9Vun9jsNgsDJrRR+GxqpAZaWJdaacOHTp06Ph/SMzzeMS+IDJePNq51TM0VZWXt95gXrsvlRrG95nUnfLEh8FgoKtkEsGvJczjpYzUIBtNStfhHWFhR6z+h1x8ifsnCTNuqmWdUroM6wAmkyEZ53mD25UVlmPHkn2Y22YFXt+TZQj1mtAVe6O2Yvj8gfVupN88iERumqJny6jFQfgrdCNcWzhTPsa6yHuq0BHLuqha1inFP6g92BxiMvfk4vMGs8YqSiqxc8VBfNZyuYL3XuDoztgbtRWjFgcpXaUe8pliVhodyGejjVxEb0YA1CjrlNKhv2Zlx00xpI4QTRc2NjaYOHGiSv5GVBGLxeBwOGjfvj2FrRURCoWIiopCQgK1rFNV4HK5cHNzw/3792nNlLS0tMSECRO0Jv6w2WxK3TrrIhaLER0djdjYWNqPSU9PDx4eHrh37x6tsTQ1NcX48eO1lknHZrPRqRO1LBV5xGIxYmNjER1NLYNXFTgcDry9vXH3Lr1Zp8bGxhg3bhx8felddJDCZDLVjmVcXBwiIujN4IXk7+vr64t79+7R9lt868AD1FRJrC6m9aIszlBF1VJEKQ7uduQCYMzzBBRkFdF6XFJrAQCoKqui5Xue+FomvHq0cYOpZcNZtpPWjIK3ZPExPSYTB9adbHJ8dWNp5WAB3wDiNyf5XRqyk4gGTkPnya6/laVV2DBxi8p2GAAwWM5nuKayRuXvOYNZX0gz1DUb0KFDhw4d/1+49PdN8t+aCAF8Hh+7Vx7CV4M3kF05LezMyAkHVBQCUKe8M+4VIfbZOFspmPyrC5vDxsDphAeZUCBEfhrRqYlqWacUcxsztAwkbggy4rKRFpOp8Dqfx8e5rVcxw3sxLmy/TnZ2tHO1wYYrX+GbE1/AykGxBEUoEOLAuhNY2W89KuU8JvSNuJj98xSNGkEUZhfj0dlnkmM3Vflv0hTqlHVKMTI1JA1w89MLyY6kUoQCIS7uuIHpXotxdssVMtvRxtkK68+vwvdnVzb6fj3Hd4WRZJL38GQIKks1m+SVFZbj/nFCgDU2N0Kfyd01Gq8u6pR1StE35JLly6qUHVOl60h/mFkTNxtPzj9HaYHm5vHl5eW4fPkyPDw8tFLyVV1djRkzZqBZM9X8BCHJVmnTpg04HA6FrVWnvLwcwcHByMzMpLB101RWVuLSpUto3ry51mI5depUtbKKTExM0L59e9oznaRUVFTg8ePHtPldVVdX49KlS3Bzc9NKLGtqajBx4kS1RDpDQ0N06tSJ1kwneaqqqhASEkJb18na2lpcuHABrq6uWmkyUFtbi7Fjx6JFixYq78vlctG5c2fo66vWCZwqNTU1CA0NpUVAFolEuPSPbO6midWFMtQt65TSdYR8VtrLRrdVFdcWzqSAw68VaJxdLhaLFRZ+fQM8G92ezWFj1YFFZFbY2S1XSJ86Zahb1iklUEl2+cwNnyhs8+ZBJI7/fF6lcSERPVmSxUuhQKSwyEsF6SIy5LRMFkvue629Hjq0oBPSdOjQoUOH2pTkl+LBCUIIMLEwQp9P1BMCUqPSsaz7OpzefJl8zn9wO2x+sJ4UQ2ybWcO3c+MTlLq07S0zoJdekIfOHaBWCroy5Fc2paiyWihFobzzAjH5FIvFCLn0AnNar8A/XxwgSyT0DbmY9v0E7IncgoAhHeqNlRGXhS96fYujP50lV/ksHYhOTTWVtQorm+pwbfcdUswL+qwf9Lj0CgMKpYhqxFLRX0WW4ff8ejjmtl2B7Yv3kiWxevocTPl6LPZGbaEkruobctF3MmEUXlvNw71jj1U+Pnmu771HltsOmtEbBkb03oDJx5Ku85IuiBIbQojm8wS4feihxmM+f/5cKxlfUo4cOaKRX9ioUaNgakpvUw4pbm5ucHNzQ3V1NYWtm+bly5eIi6OnfFkZx48fx71799Tef8SIEbC0tNRKt1IXFxd4eHjQVjoaHh6ulYwvKadPn8atW7fU3n/IkCGwsbHRSizt7e3h7e1NWyzfvn2LyMhIrXWpPX/+PK5fv05hS+UMGjQIjo6OWjk+Gxsb+Pn5obZW8+Yvr269QVZCDgCgfb/WaOZLbwavumWdUhQ7mtN77YEk61CKptnlb4OjkCdZSAUAGxfrJvdx9XPBzB8nAZK53m8zd6C6Qvlvt3xZp/9g6mWdUuRtGp5IYmlobKBgXQEARzecRUK46iXN0s6gUCOWysRwoVCW1cZkfdhS1Yd9dDp06NCh44Pm+p574POIdPDBs/qqbDQqFAhxbOM5LOiwisycYXNYmL95OjZc+QqRT2JJ0abnuK4qr+Zz9DjoOEi2EspiMxUM+DXFydMBbfvIzIUZTIZKZZ1SAkfJJjp3jz5CwutkrBrwA74btQmZ8dnkawOm98L+2D/x6bfj68VaKBTi9ObLmNfuS3KFlcliYvbGyfjm5BfkdvKG+qoi4AtwZfdtYmwmA8PmD1R7rIZQKOscR72sU4r8Sva9Y4+Q9C4VXwVtwNdDN5KNFgCg7+Tu2B/zJ2b8OAkGxtQnpvLnj7RTrToIhUJclssIGL5wkNpjNYRiWafqsewyrCM5kb1/4gnt5Z3yQvS1PXc1vvnU19dH7969tZL1VVFRgezsbI1KRisrK7Fz506tiH1MJhPTp0+HhYUFLTfxXC4XPXv21EqmUk1NDdLT0+Ho6Kj2GLW1tdi5cydiYmJoPTZIbAGmTp0KW1tbWmKpp6eH7t27w9DQkMLWqsHn85GcnKzReSkQCLBz506tlCQyGAx88skncHR0pKW8k8PhIDAwUKUGFVQRiURISEjQ6LwUiUTYtWsXwsPDaT02KePHj4erq6vGv8Vat2dQsxRRileH5rBxIbLDw+68Q2F2Ma3HJ/+9fngyRKMSQvlYom5GVSOMWT6U9F3NTsrFv6uPKt1OPpaq+JxKaebrBGdvBwBAxKMY5KQQTbGmfjteYTuhQIhfp/8FXq1qjVbk5+VPzj9XyW+NISekSX8fRDohTYcOHTp0/H/g7lFZdsbwBaoJAUlvU7G4y1fY/81xUoxz8XHEttCNGLt8GNHy/dgjcnt1Swib+cgmxea2ZrCwM1drnIZo11smpJnbmqpU1inF0cMeft2ICVVKZDoWdFilkCLfukcL7HjxC1bt/xzWTvVLD1OjM7C8xzrsXnkIvBpiEuTQ3A5bHv2ISWtGo1WgL9lcISokliydVJXwexEokkxou470hy2FlVdVSHyTonZZpxRrJyvSyD4rMRfz269U8EFr0cULf4b8hK+OLIVtMxuVx/ds5w4ff6LcOCE8mSwZVpXIJ7HITSX86/wHt4OTp4Na4zRERlyWQlmnOuObWZui8xDCDyw/oxAvlfgWakIzXye07kmUUKXHZCLyifqiSEVFBby9vdGli+qCIRUMDQ0xfvx4jTocGhkZwd7eXmvZSWKxGLt27cLLl5qVQlVVVcHd3R3du9NbaiyFy+Vi/PjxaNWqlUZjODs7a0VIk7J3716EhmqWwVtTUwMnJyf07t2btuOSh8PhYNy4cWjbtq3aY7DZbLi7u2s1locOHcLjx5pl8NbW1sLW1hb9+tG3GCYPk8nE2LFj1fLtkx/Dw8NDq7E8evQoHjx4QGFL5ZTkl5KliDYuVmSHZrqoqaols8HVKeuERJzpP7UnIBFW5LuT04G8WKNJdnllaSWe1ik9pSr+sFgsrNy/iFwUvfzPTYTdeauwDZ/HR/AZIrNcnbJOSGP5KdFgQSwW48Y+IhM4cKQ/DIwVs+BTItJxeP1plcaXj6WAL8TtQ9SztpksmQgn9euTLp5DJ6Tp0KFDh47/VVIi05EalQEAaBnoA4fmdpT2E/AFOPzDaSzyX434MCKNnMlkYMLKkfgnbBO8OjQHJOKQVExy9LBTuaxTSmaCLKOrKLsYeekFjW6vKvKeZmUFFagqV720ilfDq+dzBgD27rb49vQKbH6wHt4d63fGFAqEOPHLeSzosIrs/MhgMDB6yRDsevM7/Lp4k8/JZ/+oW0YXfCqE/He/KT3VGqMxLsv57fVVs0yYV8tXEEvFImLl2baZNdYeW4Y/n/xExkVd5I3ybx9UM5Zyq8zaiOUlGmKJeg0W1M/AozL+LTVjCQBXr17F7du3aToqRYRCIS5dugR7e3uNfJkYDAYmTZqEHj160Hp88uN7eXlpfBN/48YN3Lhxg8KWqiMSiXDp0iXY2Nho7HE1fvx49OpFb6dBeTw9PTWO5a1bt3Dt2jXajkkesViMy5cvw9LSUmlzFFUYM2YM+vbtS2FL9aBDXLp37x4uXbpE2zHJIxaLce3aNZiammrcsXXkyJEYMGAAbcdWF03Pyyfnn5PiR59J3WmzupBy//hjMsOr+5gAlcs6pQTNls1Zru+lr2GFsnFuH1JPqAu59JJcCJaiivjj5OmA2b9MIR//PvtvBe/VR2efkR3FuwzvqHZDiEEz+5DHdXP/fVKs6j4moN62pzZdQNRT6mX98kIaVIyl/LlXU1FTbzydkKZDhw4dOv4nUSd1P+F1MhZ1XoND358ijd5d/Zyx9clPmPPrVIUJl7yoMmKhek0Maqtr8exKGPlYLAZu7ruv8jgNUZxbgscS431IhK2XN6ln7YjFYjw4+QSzWizDo7NPFV6bvn4C9kZtRY+xXZR+9uSINCzp9jX2rj1G+mw5eTngj4frsXDrzHp+W/2m9CCNXZ9caLijZUMI+AI8kRjV6htx0TlI9VXmxigvrsDdo0QGoqGJgUKLeiqIxWI8OvcMc1otJ8eR8slXY7Aveiv6TAqkxey718RulLqDNoRQKCT/3sQqM70ZAdUV1bh5gDjP9fQ5GDSrT5P7NETnoPawciRE3qdXXtFeYtNjbAC5Iq9Jd9DU1FS1jOupEB0djTdv3tBS2mpmZoZnz57h9Wt6s/ukDB06FAMHalZyrc1YxsfH4/Xr1xAIVO8QVxdTU1O8fv1a4wy8hggKCkJQUJBGY6SlpWktlklJSQgLCwOPx9N4LGNjY0RGRuLp06cUtladgQMHYtiwYRqNoc3zMj09HS9evKDFf8zIyAhxcXEaZ+A1RL9+/TBy5Ei191e3kzMVxGIxbWWjDs3tyOzy7KRcvL4fScsxygs10mtPzPMEFGQWqjyWfCylqCr+jFg4SKFJ0o6l+8k5BV2xtHa0RMBQwlO3ILOIzEictXFyvW1FIjF+n7kDtdXUvgtSTzN9IyKWye/SkJWYQ2lf+flYbTXxOyb/96FaJvtf8WEfnQ4dOnTo+GBRmIw14WXF5/Fx4NsT+LzzV0h6kwpIJhuffDUaf7/ahBYBit3GKsuqcOsgsaqlb8jFwBnqlcW8vPkG1RWKJsfX992lzevp2p679VYjpV2RmiLmeTyW9ViHnz7ZSpb4yWNmY6bUyF/AF+DohrNY2FHmK8dkMjB+xXDsev0bWnVX3m3MzNoULbsT3UEz4+t3B22K8HsRKC+qAAB0Gd5J7VXmhrh14AGZ2j9gWi+VVl7jw5LwZd/v8cO435GVmFvvdTNrE1qP18jUEO37ERP8/PRClQ16I5/EKpgHG5nS651058gjVJURmZF9J/eAqaX6fkIsNguDZxKZKiKhCDf30ydEAwDXgIuOct1BpZmVqjJ9+nQEBNRfXacDFouFjh07wsZG9VJgZdTW1uL+/ftaMSQ3MjJCZGQk4uPViyMATJ48GYGBgbQelxQGg4F27drBwYGeUuba2lo8ePCAtmwVeQwMDBAXF6dRKe6ECRPQsyf9GaeQxLJ169ZwcXGhZTwej4eHDx/SInLWRV9fH8nJyXj37p3aY4wbN05rWXNisRh+fn60CXV8Ph+PHj2iReSsi56eHjIyMtQS40vyS0lByt7dFt4dm9N6bJEhsWSDKN/OnvDxV6+SQIp8xvJ1DZsCSJEXasxsZM1fVO0OWllaiVcS2whpN2+oIaQxmUx8uXchOee5feghLv9zC/FhSYgKITq0urVyQZuefiqNWxfF7HIiltaOlnDykv0WS+ORHpuF/V8fpzSuNJ4mFsbkc1TnwXyezI/Nws5MYTzoMtJ06NChQ8f/IqlRimWdyny7pMS+TMTCTqtxdMNZMp3cvXUz/PV0I2b9NFmpWHTncDApgPWb0kPhAq0KD0/LShG9OxETxvz0Qry69baRvaghFAhxdZeslEzqNfHsahgE/IZvRDLisrBxylYs7rKWnCQBQMeBbbHulKwpgLJJY+KbFCzushYHvj1BZvS5+Dphy+MNmPvbtCbFIvmOlqEUJzpS5Ms61TEPbgyRSIRLf8tWXkdQXHnNTsrFphnbsch/Dd4+jCKfb9enJb47+yX5+NqeO7SLFgodLVWNpYZGzI0hFotxiWYj6cGz+5Irx3SW2EjR5LwEgPv37yMjI0PjUkFl8Hg8mJiYaJxNI09gYCDc3NxoG68uOTk5ePLkiVr7BgcHIyUlReNSQWXw+XwYGBholE1Tl65du6J58+a0ZJoqIzc3V+3MopCQEMTHx2tcKqgMgUAANpuNMWPG0PbZO3fuDE9PT63FMi8vT+1YPn/+HJGRkVppJCJdWBs/fjxtn71Tp07w9vbWWizz8/MRHBys8nVNvqxTnQZOTaHOdbwxuo3yh7lE3Hly/jlKC8o0HhNyn9nESk78uaTatUe+rNNLTpBUp1TWztUGS3fOJR//vWw/Dqw7QT4euShI47+V/+B2sHayBCTz1IKsIgDA+C+Hk9vUVtWCI5mTn/vzGt4GRzUwGoFYLCaPy8hcJiZSjaVAbiFa35CYQytkpNFcdkw3OiFNhw4dOnSoTPBpWflHQ0JAdUU1/l11GEu6rkVKBGEgz2KzMHXdOOx48YtSzy9IhQAaJmO11bV4evkVAMDY3AgTVo4iX9O03Tkkk6j8DKIUoMvwjgiQGPZWlFTi3aP6GQxZiTnYNHM7Zvstw/3jsptcF18nbLjyFX6+/jV6jusK705EXOLDkhEflgRITFj3f3Mci/zXkNlPTCYDk1aPws6wTZQ9vxRayqswadR2WefLm2/ITLIO/VujmW/jHehyUvLwx5ydmOGzBLcPPSRvJhw97bH+/CpsuvMduo8OQOseRHZeWnQmIuVESzqQ7w6qSiyFQiEenSPKgbVR1vn2YRTZsKFloE+9FvfqYO9miw4D2gAAcpLzFBph0EHA0A6ysuOLL1S6OeTz+QgNDUVVVRWtxyTl9u3buHjxIq1jWllZYcCAAUhKSqJ1XCmdO3dWq6uhUChESEiI1mJ5//59nDt3jtYxzc3NMXjwYK10QoUklmZmqjeQEYlECAkJQWWl+t0AGyM4OBinTp2idUxTU1MMGTIEiYnqNVBpik6dOqkVS7FYjCdPnqCiokIrxxUSEoLjx6ll31DF2NgYw4YNQ1JSklYyTzt27AgLi/q+qk2hzbLOwuxicm5oZm2iVofJunD0OKTNA58nUNvfVR49LocUi0RCEdkd9PW9CFSWUf/tk4+lZzvZdVbdLKq+n3THuC8IUUsoEOL5daLzq5GZIfpN0bzxC4vNwqCZhM2DfHZ50Ox+YOsRYn9NZS36f0pk0IrFYvw2cweqKxr2/WUwGGQ2Hr9WQHYHjXwcQ0n0FAoI0YzBlImEQl1Gmg4dOnTo+F9GPtOrblmnWCzGw1MhmNViGU79folcXfJo54btz3/G9PUTwdFreFX59f0IpEUTZYete7ZA8zauah2jfFln4KjOCBzlD0t7woT+6eVXKMrRzOvp0o7r5L9HLgpCoLxIdUEmrOSk5GHzZ/9gpu9S3D74ECKJ+b2plQkWbZuF3W9+R8CQDuSq3hC5pgDX/r2Dx+efYbbfMhzbeI7M6HNr5YJtT3/G7J+nQE9fj/IxO3rYw60VUQYU/TSest+Vtss65YXTkYsa9iTKSy/Anwt2Y6bPEiIziiwpMML8zdOxJ+IPdBvpT8ZSvsECHeKpPNaOlmQDjKQ3qchOrl9SqozIJ7Fk51NtlHVepBhLVRmixViaWZuilUT0VLXsmMFgoHnz5hp1LWyMhIQEtGzZksKWqpGSkoKjR4+itLSU9rE9PT0xcOBAVFer1viEwWDA3d0d7du3p/2YIPFH8/PTrDxJGenp6Th27BiKiopoH9vNzQ1DhgxRWVxkMBho1qyZRh0gG0Nb52VWVhaOHz+OvLw82sd2cXHByJEj1RIXXVxc4O/vT2FL1dHWeZmbm4sTJ04gOzubwtaq4ejoiLFjx6oUS22XdV779w45Rwn6rL9Kc5PGULyO36VFmDSWZE9VllSRGdECvhAvJOJVU8iXdVo6WMDUUpbZJl/mqSqf/TKFtI2Q0n9qTxgYq9dkoC5Bs/uR86Mb++5BJBKByWSi00DZ9TPiUTRaSWxAcpLzsHvl4UbHlMWyEt1GdgYkPmtPr7xq8nikczj5zLOKYtk5rUks3wc6IU2HDh06dKhEY2WdqdEZWDXgB2yYtAUFmcRNDYfLwfT1E7H92c8Kq3YNoWiuqr4QoCD2je8KNoeNgTOI1TihQKhRO/XUqHRyQurs7YAO/VvDP6g9aUAfcukFctPySdHnxr57CqLPrJ8m43DSDoz6PAhsjmLZT59PupOmrdf23MX6sb8jL43oNMrmsDDlm7HY8eJX+HRSntHXFIGSiQ4APL1MzRNEm2WdWYk5eH6NmLzaNrNGwLAO9bYpyCrC9sV7McNrMa7suk2WtRqZGWLa9xNwOGkHxi4fVk+g7TmuC4zNjSSfIZTsJEYX8uWdVP1VtFnWmZ9RiCfnnwMALO3N0X1M5yb3oUrXEZ0USmxK8ukVgNQt7ywoKMCIESNgampKYWvVmTZtmlY8rry8vMDlcpGenk772JB03lS1w2FBQQGGDRsGc3NzClurzpQpU7TicdW8eXMYGRkhNTWV9rEB4M6dOypn0hUUFCAoKAhWVg3bHmjCxIkTNW4qoQw3NzeYmppqLZb3799XOZOusLAQAwcOhK2trVaOaezYsRgyZAjt4zo7O8PCwgIpKSm0jw0Ajx49UimTTptlnQK+AFd3E1YXTCYDw+fT17XUxccJrXsSCy3pMZmIfKJZ91dIqhQgqSDoNkp2naSaXS5f1tlzbBeUFpaTr5nbqH8tYrFZWHNkMZhsmURTmF1MW1ajnasNOg6UZZeH3yU8Cxf+OZPcJj02C6OXDiEbMVzZdRuvbr9pcEwjuVjKZ+qHNhFLnpw/mnTuDIlXqhQzDWL5PtAJaTp06NChQyWUlXVWlVdj98pDmNf2S4Wyr85D2uPfd5sxdd24eoKRMvLS8smbaCtHCwSOUm8Fum5ZZ/t+REekoNmym7jLO2816mXWGBd3KHYUZTKZMDI1JDsv5aUVYIZnfdFn+vqJOJy0A598NbpBM30GkwFHT3ugjldEhwFtsPvtZsz4YZJSXzmqdJXLnHtCQbDQdlnn5X9ukZPE4fMHKngzFeUU45/lBzDd83Nc3HGDnLgamhhgyjdjcThpBz79djyMzIyUjs014KLflB6ApCPU9b33aD12+fOTik+atss6r+66TZ4zQ+b0bzTzU1U4ehwMnE40/RDwhbi6i96stG4qnpeQ+EQdOHAAkZH0dHOTRywW4/Dhw1rzXuNyuViyZIlWMmEguYlXpaxMKBTiwIEDePOm4RsmTTh+/DiSkpK04r3G4XCwaNEitGnThvaxIYllSkoKZW9A6bkTFhZGYWvVOX36NGJjY7USSxaLhfnz56NDh/oLGnTg7OyMtLQ0yg0NxGIxjh07hhcvVPdOpML58+cRGRmpFR87JpOJuXPnaq0JirOzM7KyslBTU0Nha+2WdT658AKFWUSmddeR/rBtRk9jFinyRvnn/7re6LZUkIo/VWXVaNXdhxTWnl0NUzDAb4i6sZRfWDK31Uz8iXuRBJFA9lvz+NwzXJLrYq8p8rG8IImlg7sd/LrJLEKO/HAGczZ9Sj7esWRfg/NlaewEfCHc2zQjmwa8vPmGbCCljBJJwyVI5kPk83n0xVLb6IQ0HTp06NChEo/PPyP/3WNsF9w/8QSzWizF6c2XybR+ezcbrL+wChsufwUnT+rd2S7uuEmWPg6dO4CS+KaMsDvvFMo6pYKCo4c9/IOIsqW8tALcOfJI5bHLiytw5zDh06FvxMXA6YR/R1FOMQQ8WTdQgSQW8qLP1HXjGhR9xGIxHp0jyjilnU0h8Yj4+vgy/HLjG7j4NO4dRgXvjs1Jw9nXd9+hqrzx8q+3D6O0VtZZVV6Nm/sJcYvD5WCwROgsyS/F7pWHMM3jc5z78yp4NcTEVt+Ii0mrR+Fw0g7M+GESpSYUwxfIsjbObL4EXg19XdSatXAmRc93j6JRJrcqrYyYZwlaK+usra7F1X8JcYvFZmHoPPoyAqQMnTeA9DI79+fVRr1TVMWhuR3cWzcDAMQ8o1Z2nJubi9raWto67cmTkZGBpKQkGBkp/77SgYGBAf78809ERTVu6KwO/v7+mDRpEuWsk8LCQlRXV2slljk5OYiLi9N6LP/++2+8fat5I5m6tG/fHpMnT6YsqBYXF6O8vBzNm9NbOgdJpltUVJTWY7l7926tCIFt2rTB1KlTKQtXFRUVKC4u1sp5WVJSgrdv38LQUHvlY/r6+ti/fz+eP39O+9h+fn6YOnUquNymr8nlxRVaK+sUi8U4v+0q+XjEQs2bDNSlx9gAmNsSAs2jM09V7jpeF2k5olgsBq+aj4ChhHBcVVat0LhIGdWVNQplnS0DfVCSJ/MDkx6nusjHUso/yw80afxPla4jOsHGmciUfXrlFRJeE767X+5dSG6T/C4Nvl084dfNB5BkqV3+55bS8YzlmgxUl9egyzAiK622moewOw3/HkurVgCAayArA5b3VtM0ltpGJ6Tp0KFDhw7KlBaUIektIfK4tnTBpul/YePkreRKJIfLwdR147Ancgu6jfBXqXSgJL+U9Mri6LExZE7/JvdpiDf3ZVlx8qnmADDl67Hkv4//fI7s2EWVM5svkyJd/6k9wecJSNHntdz7MpgMTFozmpLokxGXha+CfsIP435HfjrRwEAaOpFQhJrKWtrKMBgMBlmSyOcJ8OLG60a3l/9MXYd3anRbVTm/7RrKJX4YvSd1A5PJxN61x/Bp80U4vfkyaqsJ0YtroIfxK4bjUOIOzP55CkytqBupu/q5oMdYIiOgKKeE1qw0BoNBliSKhCI8u9r4jac2Y3n5n1vkSm73MZ1h7WhJ6/iQCNF9JhOmx2WF5biy83aT+6hCNxVLZR0cHLBgwQJYW1vTehyQmIX36tVLKzfw8tjb26vdybAx2Gw2KisrERoaSmFrwNraGvPnz4eDA/WFD6oYGhqiZ8+e8PLyon1seRwcHPDokeqLI03BYrHA4/Eo/50sLCwwf/58uLi40H4s+vr66N69O3x9fWkfWx5txZLJZEIkEuHhQ2qm8cbGxpg3b55WREk9PT10794drVq1on1seezt7REcHEz7uAwGAwwGA/fv329y23ePosls5a7DO9Fa1hl+9x0inxDNfJq1cEL7vvTHk2vAxfgVhBG/WCzG8Z81a1oizaKCRGSUt2l4cqHx7MeokFgyO77rsI5gMpnktZfFZimMrSoRT2IQdocot3Roboexy4cCEjuSHyf8QTa40gQ2h40Jq2Sdk49tJGLp4uNENrsCgC1zdmHhlhnk48PrTyldLDSS+7yET5pyv+C6yC+WSe1MAKBYTpQ0s1a9ac77RCek6dChQ4cOyrwNlnWjTIvKIFc4AaDLsI7YE/EHpq+fqFbW0slfL6KmkkgDHzKnP6wcVO9IJeWNZEWRwWCQ3hpSWnbzQbs+hElzVkIOHp4MUTqGMkoLynB+2zVA4unAYDDqiT7SCapYJMaoxUGNij7VFdXYu/YY5rT+Aq9uyUqqOg5si7XHlpGPj/9ynsz2owP5ic7LG42b676RW51t25s+c+uKkkqc2XwZkGTd6Rty8WnzRTjxy3nyPOBwORizdCgOJW7H3N+mwULN1cnJa2Xi6clNFyiVblBFPpYvbjYey7cPZd+Xtn3oi2V1RTVO/noBkJx/8mIx3Xzy1RjyHD+9+RJqqxsu3VAV+bLjl03EEgAuXbqklQ6TeXl5iIqKQu/evWm94VTGkCFD0KVLFwpbqk5BQQGCg4MplXdevXpVK10RCwsL8ebNG/Tp00crJbLyDBo0CIGBgVoZWxpLKgsvN27c0EoTieLiYrx8+RL9+vXTSlmnPP3790ePHj20MnZRURGCg4PB5zf9O3z79m2tNJEoLS3F06dP0a9fP62UdcrTt29f9O7dWytjFxcX4/Hjx02Wd759ILv2tOtDn9AlFotx4NsT5OOp68Zr7Tdz2PyBMJGY+t879hhZiTlqjyVfGVBZUgX/we3AkXSufHmz8cXFNw/kr+NELKVCmrmtqUaf/6BcLCd/PRZzfv2UbD5QkleK9WN/oyWrPmh2X7IE8/HZZ0iNIrw6v9wny0pLCE8G15CLAZKqi/LiShxef7reWMZysawoqUL7fq1IYezFzdcNXn+K5Uo79Y30yX9LY2liYUSrPYU20AlpOnTo0KGDEnweH+f/lKWcSy+O9u62+OHiavx4aQ0cPezVGrswu5jMRtPT5+CTtWPUPs7y4gokvibMfZu3dYWpZX0ha8o348h/H9t4jrL3zalNF8lsNEh81uqKPiMWDSJfjwqJVTqOgC/A5X9uYrrXYpz45Tzpo2bbzBrfnvkSP1//Gr0nBpKea1kJOXigguDXFK17+JLmrpENHCMkJQyxzxMAAC4+jhqJm3U5u+UKaf7PZDJw+Z9bZJkpR4+NkYsG41DidizYMgOW9pq9r2d7d3QZRviR5acX4vYh+rIDWnTxIk15pavyyuDz+OTrts2sYe9Gn3H2xe03UJJPrOL2mtgN7q3V63RLBdcWzugh6dRbnFuK63voy/Dz6uBOruZHPoltVAAqKyvDmzdvtCKkXb16FbGxDf8t6cTMzAx2dna4evUqbYbSUvz8/GBpadnk71tVVRXCwsLU6qbYFNevX9dK6aoyTExM4OzsjMuXL1P+TadKixYtYG1t3eTfqLa2Fi9evEB5eeNl3upw8+ZNREREUNhSc4yNjeHu7o6LFy9S9jOjio+PD+zs7Jr8GwkEAjx//hxlZWWNbqcOd+7c0UoZsDIMDQ3h5eWFixcvUhIPVcHLywv29vZNnpfyi4utetCXzfj8ejiin8YDkm7ivSbQ670mj6GJAcYsJTK0REIRTvxyQe2x5MsRK0oqYWhiAB9JF+7spNxGrQXkFxfb9PKDWCxGqeT6q0kpYvi9d+TitJOXAwZ82hMsNgvfnFgOezfCcy72RSL+mLNT4983rgEX478kstKIDL/zAAD3Vs3g0c6N3O732X9j1k+TyTnOpX9uIjU6Q2Es+Qy8ipJKcA24aBlInGNF2cXISVHeAVjeC03e5kImSn7YZZ3QCWk6dOjQoaMpRCIR7h1/jFktluHdI1lGGofLxrTvJmBPxB8al6kd33iO9MEavmCQRoLNu0fR5KSybS/lWT9te7ckvR9SozLIToeNEXb3Lc5suUI+lopfdUWfTgNlZvwRjxW7S4nFYgSfCcVnrb7AtkV7UJxbSo4xee0Y7I3aih5jAsgVzakKgt9Z2m4OuQZceEk8UtJjsxrswBgVEktmwrVpIJbqEPEkBsd/OU8+lsaSzWFh2LwBOBD/Fz7/azat5YmT5bK0TtCY4cfmsOEbQEzA89IKkJdeoHS72BeJZNZi294taVu1ryytxKnfLgISQXLad+NpGbcxJssJ3ad+uwheLT03h0wmkzQ8LskvQ2Z8dqPburu7a6XkSygUok+fPrSP29j7vXz5EtHR0RS2po6trS2mTZvWZBYVg8GAu7s7PDzU6wTcGHw+H/369aN93IYQiUQICwvDu3fvaB3XysoK06dPb/I3mMFgwNXVFd7e3o1upw58Ph/9+6tveaAqYrEYr1+/pr0Bhbm5OWbMmEFhS8DFxUUrZaw8Hg8DBtDvI9kYb968watXr2gd09TUFDNnzmz0ekJlcVEdxGKxQgbVtO8naj3rdNTiIBiaEo2abh96gLy0fLXGka8UkM7DWgXKzrOGOoMqW1ysLK0i5zDqij9EZt9J8vGn344Hi80ij/W7cytJH7G7Rx/h76X7NV54GTavPxmH+8cfIzOBuN5+sXseuU3s8wTUVtZi0prRgETA3PXlIYVxTKxktiXSWLaUzK+hZB4spbRQlgFtJBE2eTU8VJURC6o6IU2HDh06dHzUvLr9Bov81+DnKX8iJ1m2qmRiaYy9UVvx6XfjNTafz0vLxzWJSbq+ERcTV4/SaDz5EoY2vZR3xGMwGJj6jUxYOfrTWaWTErFYjJe33mD1oB+xesCPCl00OXpsDJ1bX/SR73wUGSKbQLx5EIklXdfixwl/KAgEPcZ1we53f2Dmhk/IVT/5428ZSExI0qIz8fjcM9BFy26ySWNUSJzSbd5QiCVVxGIxwu+9w9qhG7G8xzoI+bKbezaHhcGz+mJ/7DYs/WcubF3o97xqEeCFDgOIrn7ZSbm4d5w+Xyr5WDaUlaYQy570dWo8t1XmM9dvak9aGlI0hUdbN9J7MD+jELcPPqBtbPlYRjSS4ScWizFx4kTo6+s3uI2qiMVipKamYubMmVr3RpPH0dERnTt31kpJ1MWLF3H9euNd7oRCISZMmEC7gX1aWho+/fRTeHp60jpuY9ja2qJr165auaG/du0aLl++3Og2fD4fEyZMgIkJvd4+6enpmDRpkta90eSxtLREjx49tBLLmzdv4vz5841uw+PxMH78eJibm9P63hkZGRg7dixatqRvcagpzMzM0Lt3b62Ukd65cwdnzpxp8HX5xUU6rz1PLjxHfBhhVO/Z3h3dR3embeyGMDY3wqjPgwDJAtzJTRfVGsehuR35b2mJaMvApq/jCouLklgW58pKFNXtMvny5muygsHVzxm9J3VTeN2znTvWHFlCNvu5uOMGDqw7oXQsqhgYG2Ds8mEAAJFIjBOSrDTvTp5waynzd/x91t8Yt2IYbFyIBgUvrofj+XWZ9YJ8LLNViGW5nN+atGT3Y+rYCZ2QpkOHDh06lBEfloTVg37EmkEbkBCeXO/1wTP7wMHdTum+qnLsp3Okceuoz4PU9sGS0pg/mjydBrUjjVUTX6fg+TWZUTyfx8etgw8wr92X+GrwBoTdViwBGbN0KI6k/I1lO+uLPqaWJnD1cwYAJISnIPpZHNYO3Ygv+36PGMlKJgC07tkC20I34ttTK+Dspdzgm8FgKJShNiT4qYNUoEMjq691SxjUQcAX4O7RR1jYaTVW9f8BL64rel8NXzAQh5P/xoo9C2gtd1SGYqOJ8yo3mmiIlt2bXslW8EejyWuurKgcZ7bIfOamrhvX5D50MaVOhp+AT0/5VysKsQSAI0eOICSEvnJnAEhMTMSBAwdQUKA8q1CbBAUFwdjYmHY/KHNzc6SlpTW6zYkTJ2g3lk9NTcX+/fuRm5tL67hUGDhwICwtLWn/O5qZmSE1NbXRbc6cOUPJ/F0VMjMzsW/fPmRmatapUB369u0Le3t75OUpL89SFyrn5fnz53Hnzh1a3zc3Nxd79+5t8u+oDXr27AkXFxfk5Kjv7aUMCwsLpKamNjg3kF9cpOvaIxKJcPA7WQbV9PUTte4nKWXMsqGkB9f1vfcodXiui4NHfSGtoUVQeRQWxCSxlF9kVieLvl422ncTlHogdh8dgBVynTWPbTxHZqOry8hFg8jSzNuHg5GbSmT4LZfLSot4EoOSvFLM+fVT8rmdKw6S13xHJbFsEeAJJouQmRqKZXmJzEpAmhmXLRdLKy00TKIbnZCmQ4cOHTpIspNysXHKVizstFpBPPJs745uo2RG4HRNxrKTcnFjP3HTYWhigPFfjtBovIqSSrKEwb1Ns0ZLGOqash/ZcBblxRU48esFfNp8EX6buQPJ7+pP9McsG9qkb5c0rV0oEGJJ168VxCO3Vi7YcOUrbL6/Hi0Cmu5i12lgW1LwS3qTiqdX6CkNkV8xjFAiWFRX1iDuBSH8OXs7qDxBrCyrwunNlzHN43P88uk2pYLs0HkDsGTHHK10mFRGm55+pLiaHpOJx2fpyfDz6+JF3kQoiyWfxyez/mxcrGDvTo9geGbzZbIMYtCMPmp7FKqDj78nOg1qCwDIScnHvWP0ZPj5+HvI/PsaENJ4PB7y8vJgY2NDy3tKiYqKgouLC2xttSvoNsSzZ89w+vRpWr3SunXr1mg5oFAoRFZWFu2dTyMjI+Hg4ABHR0dax6XKixcvcPLkSVq90rp06YJBgwY1+LpYLEZGRoZWzksbGxs0a9aM1nGp8urVKxw/fpy2hQcA8Pf3x5AhQxrdJiMjg/bzMjo6GpaWllopCafC69evcezYMVp959q3b4/hw4c3KGS9Daa2uKgKwadDkRJBGNT7BnghYGgHWsalgpm1KYbPHwgA4Nfycfr3SyqPIX+tzE4kxH75RdD4sGRUV9Zv4CCNJeQWF9OiZQJ3sxbOKh9L6OWXiHuZCABo3saV7DKujIHTe2PRn7PIx/+uPoIru9Tvnm1kZoRRi4kMP6FASDYt8uvqA2dv2W/3bzP/Ru+J3eDXlRAb02Myya7ddm62ZKZcliSWBsYGpNdaSkQ6yovrN7KpLJX5m0q7c2oay/eNTkjToUOHDh0ozivFjqX7MKvFUtw//oR83t7NBl8dWYIdL35BThKxUsRkMhSyRjThyIYzZJr8mGVDG+1wSQUq/mjydBneEe6tiZuTmGfxmOQ0F3u/OorCLNkKp0c7NzDZxOXSwFhfwR9KGaUFZUpblNu4WGHl/kXYGf4bAoZ0oLx6S2SlyQS/A+tO0OLvZWFrBidJJlz8q6R6naCiQ+NI3w8qsZSSl16A3SsPYXKz+di98pBCLJq3cSVFEj19Dj79Vvt+XnWRF08PfneSlg6eRmZGcG9DnEfJb1PJpglS4l4moaaKaEpBlz9aSX6pQgdZ+XPkfSEfy8M/nKalm1hd/77SgvpG43p6epg4cSL8/OgrUxKJRBg4cCCmTJny3jIr6uLv74/8/Hxau2caGxujsrKywewsFouFCRMmoE2bNrS9p0gkQr9+/TB9+vT/NJbFxcW0ds80NDREbW1tg1l2DAYD48aNQ/v27Wl7T5FIhF69emHWrFla959qCH9/f1RUVNCaLamvr0+KuA0xZswYdOqkmf+qPGKxGN26dcNnn32m9a6nDdGxY0dUV1fTmuHH5XLBZDKRnp5e77WKkkokhFNbXKSKUCjEIbnuje8zG03KuBXDoadPdHS8svOWyl5phiYGZNfKzARZhqB0EVQkFJFeaFLk/dHkFxfTY2Tij4uvatYKyjL7mvqej1ochBk/TCIfb1v4r0ZWFaOXDoGBMWGRcGPfPdIrbdnOueQ2bx5GoiCzCAu2yLwND31/EmVF5dDjcmDbjBC8M+OzyTm4vOdcVGh9+5DqMtk8Sfq3kI9lMxVj+V+gE9J06NCh4/8xBZmF+HvZfnzqvhAX/rpOCiemViZYsGUG9kb/ib6Te6CiuBJJb4lSCM8OzRVah6tLanQG7hx6CEh8L6ReDZrwRsUShviwZNK4FgDZ8IDBYCBwdGdsfbwBzdu6QiQgshrGLB0KM2vlvg1FOcXYvfIQprovxIsbsvbpLDYLczd9igOx2zBwem+1JvBdh3eCVwfCsynpbSrpKacp0vJOPk9ArohKUVbC0BgJ4cn45dNtmObxOU7LZUpBIlhufrAefl29yXNsxMLBtHYBpUqH/m3Iz50em4WL22/QMq7U20skEiP6qeKkUeG8pKlpw4mfz5MdY4M+6w87V3qzYKjQqnsLdOjfGpCUt5ze3Lh/FFUUPOeUdJWNioqCUCikTVgQi8U4dOgQnj59Ci5XM89HTXB1dcWqVatoF0xevHiBp0+fKn0tNjYWPB6PNmFBLBbj2LFjePTo0X8aSycnJ6xatQp6enq0Zvi9evUKoaGhSl9LSEhAVVUVrT5Yp0+fxt27d2n1AlQVOzs7rFy5EoaGhrTGMjw8HE+ePFH6WnJyMkpLS6Gnp0fb+507dw43b96EgYEBha21g7W1NVauXAkzMzNaY/nmzRs8flxfTFF1cZEKdw4Hk4JHq+6+6DiAPhGeKpb2FmRWWm01D7tXHVZ5DAdJVlpRdjGZfdaYt1dDi4tpCuKPahm4wadDkfSGmFt7d/IgvUebYvLXYzB+xXBA8pv767S/EHr5pUrvLcXU0gSjlxDZoXyeADtXHAQkc2iyBFYMbP7sH/h29kL/T3sCAMqLK3FYIqhKY1lZWoXyImIhqGUTzRtq5DL+pBUe6bHyouR/k82sCjohTYcOHTr+H5KdnIut83djmsfnOL/tGtlNUN+Qiylfj8WhhL8wZulQ6HGJFT95YYAOs1qxWIzti/dCJCImeONWDFdooa0uUaGyiU/rHspLGPg8Ph6eDsWKPt/h885r6k2WfDp7Yl/Mn/j+7EoAwO2DhNhnZGaIsV/UF/vy0vKxffFeTHVfhNObL5PihhSugR7GLB8KPX31bwgYDAYWyqXz7193AmVyRq3qIr9iWLezknwsG/JHE/AFeHz+GVYN+AELOq7C3aOPyGw5DpeDoXP6Y2/UVvx4cQ30jbh1mkqM1Pj41YHBYGDhVlmXs8PrT6MoR3WPlbrIZ2mqE0tVSI5IwwWJAMjhcjB57WiNx1SX+X/MIL1QTvx8vsGupaqg4JOmpOPXw4cPkZiYWO95dUlISEBqairc3NxoG1Nd9PT0sHXr1gaFL3Xw9PREdXW10tcePXqEhIQEpa+pQ2pqKhITEz+YWO7YsaNBsUYdvLy8Gozl48ePERenvHGLOmRmZiImJuaDieWuXbvw4AF9jUUaOy9DQkIQG9twsxFVyc3NRURExAcTy3379tHq/9ZQLKNC6L32VJRUYs+ao+TjGT9M+s+yTqd+O54sCXx4KlRhwYoKTp6y8s6cJCLLVOE6/kSxi3JkA7GUioqWDhYqLTJXlVcrdMBUJbOPwWBgzqZPMXQOUbYvEorw44Q/8Pp+BOX3l2fSmlGwciTErKeXX5HNBJZs/4zcJuz2WxTnlWD2xslkY6xLf99EdnKuQqmsrHmDXOdOJUKa9L4DAKycpNl9RIaqsbkRLOzobTKiDXRCmg4dOnT8PyI9NhObZm7HDO8luLr7NmnyzzXQw+glQ7A/bhtm/Dip3mQgOUJWMiDNjNKE+yee4PU94oJv72ZDSzaaWCxGamQGOWbdMtGM+Gz8u/oIJrvMx4aJf+CtnJG+iaUxGBKPh9SIdOjpcyAUCLFt4b/kNjN+mAQTC1mb76zEHPwxZyemey3GxR03wK8lstk4XA5GLByEzkFEeU9VeTV5XJrQKtAX/ab0AACUF1UomNOqi8KKYZ3MH6n/iYWdWT0Ps+ykXOxdewxTXBdg/djfEX73HfmaqZUJpq4bh6Op/2DZrnlo5usEoZCIpVQ4nbpuPMxt/rvW5t4dPRA0uy8g+fvsW3tc4zFbyTdvaCCWhqYGCh2u1EEsFuOvRXtIwfKTNaNh7WSl0Zia4N6qGUYsJHyjaqpq8e/qIxqP6ddNbgKuJCMNAFq0oMfrB5KumRMnTvwgbrIBoF27drQ2UujXrx/GjVPeiEIsFtMaS1tbW0yYMOG9dupsjLZt29IqpPXq1QuTJk1q8HU6y42trKwwbty499qpszHoPi8DAwMxdepUpa/RfV6am5tj7NixaNWqFW1jakK7du3w9OlT2nznOnfujBkzZtR7PiVSfu6muS/c/m+Ok50Vu48JoM0vVx2MzY0wa+MU8vGOpftUsr2QvxZLyzsdmtuRZYZRoXEKfx/5WHpKYllWWI6SfMJ+QNVstCM/nEZBJlEu7R/UHv6D26m0P4PBwOK/P0PvSYGAxC/u25G/IvpZvErjQOJpNneTrJnAP8v3g8/jo9OgdmS2u1gsxh+f7YS1kxXpZywSinD6t0uKDQcksbR2tCT9YGOfJ9Sz0ZBWgACAjbMlqitryGYHLr6O/5lAqwo6IU2HDh06/h+Q/C4VP32yBbP9luP2wYcQCYlSRQNjfUxaPQqHk//Gwq0zGzR9T42STSBc5dpiq0NlaSV2SVLHAWDRttnk6pYm5KcXkN5U0mPk1fLx4OQTrOy/HjN9luDUbxfJSQ8kfhbLd8/HiYxdGLlwMCAnBlzcfkNWztreHcMXEGUEqVHp+GXaNsz0WYLre++Sqf76hlyM+2I4DiftwOLtn6FDf1m5gzJ/CHX47JcpZLeqq7tuIfFNikbjufg4koKjfNZhcV4pGSdpLPk8PoLPhGL1oB8xzfNznPjlPIpyZG3fHT3tseTvOTia+g+mr5+o0H31+p57iH1BZBC5+jljzLLGTabfBzN/+gRGZoYAgJsH7iPmueqTT3lsm9nAxpkQtGKexZMm51Xl1eTk0K2li8aTwzuHg/HuEbFS7uhh959l9skz7fsJZGbAgxNPFAyZ1UHBv+9lYr2OoPPmzYOXV9ONOqjw4MEDhIaGfjBiBQAMGjQIkyZNoq30SywW448//kBGRn1Bf/bs2bQJFo8fP0ZwcDCtAoim9O/fH1OnTqW1jG7r1q1ISan/2ztt2jS0bt2alvd4+vQp7ty5g5Yt6fFUpINevXph+vTptMWSwWBg+/btSjMiJ0+ejA4d6DGwf/nyJW7cuIFWrVp9MLEMDAzEzJkzaSvjZjAY2LVrF6KjFbOopOKPgbE+6WOlLnGvEnH5n1uAJKtc3i/rv2LQzN6kp2byuzSVjPflM9Kk4g+DwSAXGKvKqskMKQBIlcSSo8cm95Uv63Txoe7plRyRhrNbrxLjcTn4fNsstc5NFouF1Qc/R5dhHQEA1RU1+HrIT0qbOzVFn0+6k1lkGXHZuLDtOgBg0baZ5DbProWhrKhc0Vdt/32YyC1cK3jOScbj1fCR9FaxeZd08RkAjM2NkRmXTT5W1Wvuv0InpOnQoUPH/zCxLxLw3ehNmNv2Szw4GUJOgE0sjDDtuwk4kvI3Zv88RUH0UIY0o4bJZMDFRzPfgoPfnSIFmG4j/ckJgKbIZ81ZOlgQhvcu8/DTJ1vJ7DdIjNl7T+yGTXe+xZ6IPzDks37Q09fDtPUTSFHpwYkn2Pf1MUAysVry9xwkR6ThhwmbMaf1Ctw98ojMrjI0NcDktWNwJOVvzPt9Gun75dlelrmXFq15RhoAWDtZkQbvIpEYO5bu0+imhsFgkJ2VSgvKUZJPrDSnyq28WjtZYs+aI5jcbAF+nPCHQjdXFpuFHuO64Jeb32B/zJ8YPn9gPVG0JL8U+9bKSkEW7/gMHD2O2sdMF+Y2Zpi+fiL5eMeSfRp3+PNoT8SyuqIGBZImC6lRsr+9q59mInR5cQV2r5SVgnz+12yNSobpwsTCGLN+mkw+3rFEtcwAZXhKYsnnCZCdJDN3j46OxrZt2zQaW0phYSGCg4NhbGxMYev3B5vNhpmZGTZv3qxU/FIVJpMJHo+H1NRUhecTEhKwefNmWoSR0tJS3L9/H0ZGmpfo0wmLxYK1tTU2b95c7/OrA4PBgFAorCekpaSk4LfffqOlS2hFRQXu3LnzQcbS3t4ef/zxB22l1SKRqF4sMzIy8Ouvv4LP17wRTHV19X/ui6YMJpMJJycn/PHHH7SVsNaNZXVFNXKSiaYGrn7OGomI0qxy6W/Fp9+Oh60LvR1V1YHFYil0sTz47QmlDWqU4Sw3l016J/tt8Gwnm7tJr998Hh8ZEqHH2ccRLDbhKalgjk+xy6Q0q1y6oP3JV6M16rjN5rDxzcnlaNeHyA4sL67Eit7fqVzmyWAw8Pm22TLbix9OozC7GF2H+8NaUnopFomxZc4umFgYY/gCIhOdX8tXsGBIbiCWaVGK1zLpHEH6fopecx9+x07ohDQdOnTo+N9DJBLh+fVwrBm8AZ8HfIWQiy/I18xtzTD75yk4nPw3Pv1uPKUOTkKhkBSCnLwcNLpxT3idjIvbiVUuroEeFm6d2eQ+VEmSy866vucuTm++jNICmY+Yk5cD5m76FMczduHr48vRvm9rhdVgQgz4hHws9W/oNLgdjvx4Ggs6rMKjM0/JiaSplQlm/DgJR1P+wcwNn9RrQtCshWxFTX6CoCljlg8j0+jfBUfj4SnNSm3kOyNJW48nvZXF8s7hYJzcdJEs54Ck/GH2z1NwPH0nvj21Ah0HtG1wZX3P6qMoL64EAPSb2oM2w2M6GL5gINwkGXcxzxNwW9L8Ql3kJ3+pkljKi5JurTQT0vZ/c4LMFOwxNgD+g+nrDqgpg2b1obUhhnwspeclAKSlpdFmjM/lctGrVy907tyZlvHoxMDAAKamprh//77GYzEYDPTt2xeurq4Kz0tjSUeWDofDQY8ePdC1a1eNx6IbPT09WFpa4u7du7SM17t3b7i7K1ocpKWlgcFg0BJLNpuN7t27o3v37hqPRTcsFgs2Nja0xbJXr15o3lyx5DA9PR1isZiWpg0sFguBgYHo1auXxmPRDYPBgIODA21ead27d1fI1JX/3XTTsJKgflb5UI3Go5OW3XwUDPAPrDtBaT/31s3AIX2AZRnpCnM3ydw3Iy6bFH7kr+OKHTupLTLXyypfpXlWOdeAi/UXVpO2CFXl1Vgb9BMenlbeGKUhPNu7Y4jEd626ogZ7JYug8zdPJ7d5cvE5KkoqMHb5UDJ+D0+HkNUSirGUv47XEdIkQqLUY1WdWP7X6IQ0HTp06PgfobKsChf+uo5ZLZbh66Eb8erWG/I1aydLLNw6E4eTdmDS6lEwMjWkPG5Och7pZaBJWadIJCJW4SSZXFO+GUdLp8HU6Azs/OKAQjt2KRw9Nvp8Eojf732P/TF/YvyXIxr15ho8uy8c5dL9GQwGXlwPx/Nr4eRzFnZmmPvbNBxJ3oEpX49tsEmCua0Z+RpdGWkAoMflYMEWmQC5e+VhsuOUOsin0L95EIl/Vx3G3q+O1duOzWGh14Su+PX2tzgQtw2TVo9q0gw24nE0bh4ghAAjM0MFD44PATaHjQVyYu7er46isrRS7fHkY5kuuYmR91XR5GYm9mUiruyUldXM/+O/L6uRh8Vi0doQw0WJwAsAvr6+6Nu3rwZHShAXF4eXL1+iV69etHfJpAMmk4nx48fD39+flvGUeUN5eXmhf//+Go+dmJiI0NBQ9O7dm9aOlXTBYDAwZswYdOnShZbxWrZsWe+c8fT0xMCBAzUW0lJSUhAcHIzevXuDw/nvM3frwmAwMGrUKHTr1o2W8Vq0aFFPGHd3d8egQYM0jmVaWhru3r2L3r17/6cdZBtjxIgR6NmzJy1j+fr6Knz/5K89mszdivPqZ5WzOR/W93z2z1PIUsOru+9QKm3k6HHIxZ+shBzyeqVw7YmpvyAmn1keL/c+rn5NZ1FpM6vc0MQAv95ah4ChREk0nyfAT5O24OIO1TqTz9wwiZy73j74EFFP49BrQjdY2hPzPbFIjD8X/AtLewsMnkVci2sqa2EuqWwpyCxCviQjX14Qk19QFolEgCQRms0hvv8JKsbyQ+DDmzno0KFDhw6VyIjPxo6l+zDZZT52LN2HzHiZz4C9uy2W7ZyLgwnbMXrJELW8yOSN8jW5uN3cf5/0CnPxdcK4Feo3GKipqsWdI8H4ote3+KzlcpzdehUCnsxHycnLHvN+n4bjGbuw9ugytO1NzWcmMy4bxbky3y/5kifbZtb4/K/ZOJy0A+NXDIeBceOlIgwGg1zZzE8vRHWF8u5k6hAwtAP8Jc0M8jMKceync2qP5dDclvz3oe9P4dTvlxRMYO3dbTHn16k4lr4L35z4Ah36taYkPAgFQmxbtId8PHPDJ2SL8w+JDv1ao8fYAABAcW4pDn1fX5ClirIsRDr8BeuW1Uz7bsIHUVZTl1aBvug3VdYQY9/X6jdxUIyl7DeIx+PVy2BRldraWly4cAGlpaUUtv7vsLCwgI2NDQ4dOtRgd0OqRERE4MiRIwq/abW1tRo3BeDz+bhw4QJKSkoobP3fYW5uDkdHRxw6dAgVFRUajRUdHY1Dhw4plHHW1NRoHEuhUIgLFy6gqKhIo3G0jampKVxdXXHw4EGUlVEro2uIuLg4HDp0CAKB7PpdXV2tsQeiSCTCxYsXUVhYqNE42sbY2BgeHh44ePAgios16x6dlJSEgwcPoqaGWFhLpUlI27PmCJlV3v/Tnh9UVrkUa0dLTPmGaKgiFouxfcleSmXWvp1l55nUpN/Jy75elpSyBTGhQIgYyT42zlaUmv7s//q4LKt8XBfas8r1Dbn4/txKDJrRB5DGYvFe7P/mOOUSfjNrU0z/QWZ7sX3xXggFQszZJGsMEnzmKaoqqjFh5QgyVkXZsvNXGhc7VxtwDQihUD7jTL78lsPlQCwWk02aTK1MNCp1fZ/ohDQdOnTo+AgRi8V4eesNvhn+M2b5LsWFv66TRvsA0L5fa6y/sAoH4rZh6NwB0OOqv7KdHCEzCFU3o6assFyhZfri7bNV9sni8/h4euUVfvl0GybYf4Zfp/1FpsfLY+Voif0x2zDui+H1yi2VIRaLEX7vHb4d9Stmt1yO6nLF7C5TKxOsO/UFDiVsx8hFg8E1oC5GKpRNypnWagqDwcCCP6aTK3mnfruoklm+gC/A8+vh2DRjOzZM2NLgdqZWJjgY/xcmrBzZpI9eXS78dR3J74hzx6uDO4bNH6DS/u+Tub9Ng54+cT6e33ZN6XlFBcW/NyH+SP0FTSyMyBVdVbn2713EvSTKatxaumD00v++WUNDfPbLVFlDjN238er2myb3UYazt4PMO0WSkVZTU4Njx44hOVl1I2V5hEIhPDw80K9fP43GeR/o6+sjMzMTjx490mgcKysr1NbWgscjStYFAgGOHTum1OhdFUQiEdzc3DBgwIf7/ZbC5XKRk5ODhw81K+G2tLSEQCAgxU2RSIRjx45p7HUlEong4uKCQYMGaTTO+0BPTw/5+fkalx5bWVlBJBKR4qZYLMaJEyfqmearilgshqOjI4KCgjQa533A4XBQVFSEe/fuaTSOpSXhYyWNJR3Z0BGPo3HrwAPgA80ql2f00iFkk5rIJ7E4/+e1Jvdp0UUmpEnFH44eh7TPyIjNIrznlIiSye/SUFNZCwDw6+bd5HvFvkwkmyHoG3GxQEtZ5WwOGyv2LsCkNaPJ545tPIc/5uyk7F06fP5AsoQ1/lUSTm66iP5Te8HMhphTi4QibJmzE/Zutug7mShBl1+AlcaSyWSSXnSZCTlk587ENzIfNUNTA6THZqG8iDhv/bp5fzBNQZpCJ6Tp0KFDx0dEdUU1Lv19E7NbLsdXgzfg2dUwcpWJa6CHoXP6Y/fbzdh0+1t0G+GvtpdQemwmNs/+G7/P+hv3jj8mn6+t5qE4T/Usjp1fHiTT5vt8Eoj2fal1NhMKhQi/9w5/zNmJiQ5zsG7EL7h79BGqK2Ril6GpAbw7eZCPbVysEB+W1ORqZE1VLa7uvo25bVZgVf8fEHrppcLrbD2idKGssBw1lbWkuawqNOYPoSkuPk745KsxgGRS8+u0v1BTVdvg9iKRCG8eRmLr/N2Y6DgXXw/diNuHHiqUhTIYDPj4141lskILeCpkJ+fi4HcnyTEX75hDm6+VNrB3s8W074kVWLFYjE3T/0JlWZXK4xiby8SymGfx+GPuTrK9vaWDBWJfJKhswp+fUYh9a2Wlth9iWY081o6WmL1xCvn491l/o7xY9QwgrgEX9u5EtmR6TCbEYjEqK4msCBsb9UvC8/Pz8e7dO4wdO/aDazKgDCMjI4wZMwZ2dnYajePh4YE5c+aQJW6VlZUQi8WwtlY/s7GwsBBhYWEYO3YsTE2bXrT4rzEwMMCYMWPg4OCg0Tiurq6YM2cO2QyguroaQqFQo/OyuLgYz58/x9ixY2Fh8eFl7taFy+VizJgxcHTUzMvIyckJc+bMgZkZsVDD4/HA4/E0Oi9LS0sREhKCMWPGwMqq6Syh/xoOh4MxY8bAyUmzToV2dnbo3ro3/l1+FFvn7SIzfLiGeshNyVPZAoJXw8OfC/4lH8/c8EmTdg7/JXpcDpbtnEs+3rv2mIIApgzfAMWMNAFfgIqSSnLuVlvNwy9Tt+HtQ6ITNZvDQlF2MarKqxHxRGaw37Jb412f+Tw+ts7bpZBVLu3yrQ0YDAZmb5yMhVtnkqLUjX338P3Y3xqdJ0phsVlYvmsemExi30Pfn0J8WBJm/yy7tj88FYq8tHxMWj2q3v7Rz+IhFAhRUVJJlsqKhCKyO2rSa5kPr4W9OaJCZIsQTcXyQ0InpOnQoUPHR0BCeDK2L96LT1zm46/P9yikSNs2s5aU3u3Esl3z4N6qmcbvt/+b47ix/z5uHriv0Gnn91l/Y7LLPLx5EEl5rOAzobh9kMgAMDQxwLzfpze6vVgsRtTTOLJcdVX/H3B9712ytAASwaK7pByvqqyazNaBRMBY5L8Gqwf8oDSVPeltKv5ZfgCTXeZh6/zdSidaQ+f2x9pjy8jHO5bsQ05KHuXPLEW+PC2dxoYDUiZ/PYYUvjLisvHvqsMKr4vFYsS+SMDOLw5gcrP5+LLP97i6+7aCd5WhqQFMLI3ltpfFMvF1Cj7vvAZf9PyWclmAUCDEr9P+IsXOIZ/1Q4sAzcp03gfjVgxD6x4tAAA5KfnYufyAWuM4SFay+bUCXN8jM+ROjcrA4i5r8XnAV5SFSZFIhN9m7kBFiayspk1PP7WO630yYtEgdBjQBpD4pfz1+Z4m91GG9PtTXVGDgswiWFpaYtGiRWoLFgKBACdPntQ42+V94+PjA1dXV5w5c4Ys21IVBoOB6OhosqufmZkZFi1apLYQIhQKcerUKUREqNYZ7r/G09MTXl5eOHPmDKqqVBfLIYllXFwc2bnSyMgIixYtQrNm6l17xWIxTp8+jbdv31LY+sOhefPm8PPzw+nTp1Ferr4fYlJSEuLjiQwWLpeLRYsWqV2+LRaLcfbsWYSHh380WS2QiLNt27bF6dOnNSo5P7PrAt6EvcXVf++gqozImKyt4mF5z28xrfkiyh0tAWDPmqPk/OhDzyqX0q5PK4yVNELg1/Lxy6fbyCwoZdi52sDMhmi69fp+BMbazMJoyxng1fDIbe6feEJmSwn4Qqzo/R2mui1A+L135DZSk/+GOPTdKdID7H1mlY9eMgRrjy0lqxeeXn6F1QN/RFlR099Xv64+ZFabdF7X95NA2LgQAqBYLMb6cZvh6ueCwNGKDXsiQ2IxznY2RlvOQIXcQpo0u1zeL83O1YYUfSFpHvGxoBPSdOjQoeMDpbSgDOf+vIp57b/Ego6rcHHHDVSWyib+bXr54dszX+JQwnZMWDmSUgdOqjTmvyTgC8mSvabIzyjE1nm7yMef/zUbVg71V9vFYjGS3qZi71dHMc1jEZZ2+xoX/rqOohyZ746+ERd9J3fHDxdX41TOv1i+ax44eg1n5sSHJZPiT1lROS5sv46FnVZhXrsvce7PqwrCnLWzJflvZ28HzNs8HT3GBGDAdKLTV1V5NX6buYOS54Y8ykxr6YTNYWP1ocWkB8Wlv2/ixY1wpESmY/83xzHDezE+D/gKZ7deRWGWzL+Ca6CHXhO64vtzK3E6Zw/8g9o1+j6Jr1MoZ1Kd+OUCIp8QkyJ7d1vM+e3DLQWRh8ViYdXBz2FoQnjf3dh/H08uPFd5HHkjYmUkv0tT8PNrjLNbriL8LjFZt3ayxIItH1aDgYZgMplYuW8hTCyIjJ37x58oZLZSxcXHCVxzDowdDZAalY5Hjx7h1atXah8Xj8eDsbExhg1T35/xv4LNZiMhIQG3b99We4yYmBg8fUp0Hg4JCcHz588pC+R1EQgEMDAwwIgRI9Q+nv8KFouFpKQk3Lx5U+0xYmNjERpKdMR7/vw5QkJCNIqlnp4eRo7UvHvf+4bNZiM1NRXXr19Xe4y4uDiEhBDdp1+9eqVRGbNYLAaLxcLo0aMpbP1hwWazkZGRgStXrqg9hoWnCezaKs8aK8kvQ15aAaVxXtx8jfPbiNJIDpeDlQc+/6CzyuWZtXEy6eeb+DpFqe+pWCzG9b13sazHOpTmE6KSkC8kxUf5ju/KKC+uRHQoIf7qG3Lh0da1wW3fPIzEyU0XAUlG26qDn7/XrPLeEwPx07WvyblNVEgsvuj5LfLSmz4Xpn47jmzIkBqVgX1rj+NruUXmuJeJeHErHJUlik2aREIRuQBYnCsThqXz4Jwk2cK0s7cjKaSxOSx4d9LMA/V98uHWBujQoUPH/0OEAiFe3HiNmwfu4+nllxDwFcULPX0O+n7SHSMXB8GznbvWjmPQzD44u/Wq0tfMbUzRd0r3JscQiUTYNGM7KVj1mtCVbFEuJSM+Gw9OPMH9E48VOvNJ4eix0XlIe/SeGIiAYR1hYKQve82Sg8DRnfHgZIjS9x+1JAivbr3Bjf33EXrxBfh1xAsOl4PeE7uhZaAP/pxPlC+w2Cx8dXQp+T6Lts7Em/uRyEsrwNuHUTi75SrGrxje5GeXYudmAw6XA34tX+nnowMXHyfM/W0amfWzbsQvEArqC35sDgudBrdDn4mB6Dqik0KzhOat3XAPDQsdIz8PojTxi34Wj0PrTwEAmEwGVh9arFKH2P8aezdbLNg6E5tn/w0A2DJ3J/y6eqtUztJURujw+QMp+ewlvE4mO6UxGAysOvg5rWK5trF2ssLiHXOwcfJWAMBfi/agdY8WKpWzNGvhBNvW5nDta4fgFw9QLiAm5NXV1cjOzsb48eMpl4BlZGSgqKgIM2Z8HGJkXYyNjTFu3Djk5+erPYaJiQliY2Nx/PhxMgOopqYGubm5GD16NOztqRk8Z2VlITc396ONpaGhIcaPH4/MTPV/k01NTREXF4fjx48jLo5oosPn85Gfn4/hw4dTLtPLzc1FRkbGRxtLLpeLCRMmaORbaGpqisjISIVYCgQCFBUVYfDgwXB1bVikkCc/Px8pKSmYPr3xrPcPFQ6Hg/Hjx5PfTXXw9PDEiwfKFxva9m4Jz/ZNzxtL8kvx+8wd5OM5v06lpdLhfaGnr4c1h5dgcZevIOALcWrTBQQMaY9W3VuQ27x7FI0/5uxscIxmvk6If5XU4OteHdwRH0ac8z6dPRucH5UXV+DXaX+RIvv0HybBq8P7F4o69GuNzQ/WY+2Qn1CcW0pkyAd8hW9OfkFm4iuDo8fB6kOLsaDjavBr+Tj351UEDOuIlt18SPFrbdBGsgOnMpr5OiFRUsoprcwoyJI1VHFwsyGf9+zQXCUf4v8aXUaaDh06dHwApMVk4t/VRzC52XysG/ELHp97piCi+QZ4YdnOuTiV/S9W7F2oVRENANxbuyp4R8gzb/N0Sjf0Z/+4gtf3iLIfG2crLP2H8K5Ii8nEqd8uYqH/asz0WYKD351UEJmYLCY6DmyLL/ctxKmcPfj+3Cr0nhioIKJJCZqt3CzcxMIIN/bew9ohGxF8OlRBRPPu5IHF2z/DyazdWLh1Jo79dI6c5Mz4YSK8O8o8wozMjLDq4Odkicj+r48h6W0Kruy6jbVDNzZpSs9iseAiMVrNSsiBgE8tE4kqGXFZOPPHZdw6KDN8riuiWTtZYtmuuTiZ/S9+vLgGfSf3qNdxVL4EtS52rjaY+u24Jo+luqIav3y6DSIh8f6frB2DVoEfj9eFlEEzeiNwlD8gWZX+Y85OFGQWYtPM7dgyd2eTf8PGYmnlaIEZGyY1eQy11bX4ecqf5G/AuC+GUfYV/JDoMykQfT4JBABUlFTi91k7UJRTTPovypfPKKNZC2cURJVCLBKTIhoAvHnzBmVlZaRHVVNUVVXh+PHjZCnex4qnpyfat2+Pc+fOqdUtcdiwYWAwGAo36u/evUNJSQlMTKiJtDU1NThx4oRGN/sfAu7u7ujcuTPOnTunVsfRoUOHgslkksIPJJ1RCwsLKceSx+Ph+PHjGjcp+K9p1qwZAgMDce7cObW6ZA4ZMgQsFkshllFRUcjPz6fsvScQCHDixAlERUWp/P4fEs7OzujVqxfOnz+PvDzV7SQmzh6LzOD6fwM2h4Ulf89pstxVLBZjy9xdZDWA/+B2GLX4w2/YUBfP9u6Yvp7wPRWJxPh1+nYU55Viz5oj+H7sb+DosRqtaGjds2Fxicliovck2WKyX1fljQbEYjG2LdqD/HTi79Gmlx/Gf0l9IZZuPNu7488nP5GNFIpySvBl3+9x+vdLjWbTuvq54LNf5HxPZ+7ArJ8/kW3QRCJuqx4tSK81qVewvL2ISG7/lg3E8kNFl5GmQ4cOHf8R5cUVCD4dipsH7iP6af2bEkt7c/Sf2hMDZ/RuslxMGwTN6kt23pHSrm8r9JvSo8l9E8KTse9rwiCdwWBg1OIgHPr+FJ5dDUN2Uq7SfVp190WfSd3RY1wXyh0i2/VtBXs3G+SkKGZplBdXAnKlm+Y2pug3tScGzegN99ay1e2NU7aSpQ6te7bA+JX1y5Ta9mqJcV8Mw+nNl8HnCbCi9/dkynphVhF2hf/e6DE6eTsg6W0qhAIh8tML4dBcfdNwPo+Pd49i8PzqKzy9GobM+OwGt5VmwhVkFsHY3LhR8dPZu2Hz7cXbZysVMevy97IDpJGsb4AXpq5rWnz7EGEwGFi2ax4iQ+JQkleKp1de4d2jaLKsulX3FhgwrVeD+zcWy4VbZ1LK0Pt31RFSXPZo54YZGz5pcp8PlcXbP8O74GgUZBYh7M47zPZbTn5/fAO8MGxew747zt4OqC7k4dWOOHRc6AOGpLLIy8sLgYGBMDAwaHBfeaqqqmBjY/NRdJZsChaLhZSUFFy5cgWTJ09Wad/y8nKwWCwwGAzw+YRvkIeHB7p160ZZlKyuroaFhQUGDx6s1vF/SLBYLKSnp+PSpUuYNm2aSvtWVFSAwWCAy+WitpYw73Z3d0fXrl0piz81NTUwMzPDkCEfbhdeqjCZTGRlZeHChQuYPXu2SvtWVFRAJBLB0NCQ9K1zdXVF165dKTdeqK2t/WjLtuvCYDCQk5OD8+fPY968eSrtWyusRcdlXnjxZyxqS2XeYBNXj1LoKt0Q1/69g5CLLwAAZtYm+HLfwo/Ka06e8StH4OnVV4h8Eouc5DzMabWcLNm0tLfAV8eWYcOEzRCJ6itBvp29YGlvrmAvImXssqEozJRlVDXk6XX36CM8OPEEkPj6rj60+D8vj3VoboetT37Cxslb8fpeBERCEXavOozIkBh8uW8RjM2VXwdGLQ7C0yuvEH73HfIzCrGi1/eU39OzvTtsXW2Qk5yHbElJZ3V5Nfl6ZoJsHtuU19yHhk5I0/HBIxQKkRqVjoTwFGTEZSMnKRcFWcUozS9DZWklaiprwa+VXCwYDDCk/2fUf8wAAwym9HkGwCAuWAwGwGAyYWCkD3M7M9i4WMHZ2wFeHZqjVXdfmNtQu6nXoaMpygrLEXLxBYLPhCLszrt6vlNsDgtdhnfCoBl94D+4nVqdIumi96RAbF+8l8zmYrGZWLLjsyYnVTVVtdgwaQuZTcNiM/Hv6iNKt/Xq2Bx9Jgai18RujfqyKaO8uAKhl16S3TXrwmQxETC0AwbN6IOAoR3qpd7fPfoI948TkxwjM0OsaWSSM2PDJ3h69RXSY7JIEQAAkt+mobK0EkZmDd+E2sqVshVkFqkspBXnleL5tTA8uxaGVzffoEpuAiKPRzs3uPq54N4xwl+G/F0EEPEoGr3Gd23wPawbKLfrPiYAAUM7NnmMj849w4199wCJl92aw4s/6M6STWFuY4YVexZg3YhfAEDBm/Ddo+hGhTRLBwswmYx6k3P/we3RY2yXJt/72bUwXNxxA5CUcn91dCn0uBwNPs1/i4mFMVbuX4TVA38EJJlpUiIeRzcqpJlamUBPnwOxiFjdZ4ABFouF3r17UzbJT0xMhEgk+mhL5+oiLf+Sz2J69uwZKisr0bdv30b3ZTAYEAgEYLOJ7yaTyUSPHj0ol84lJyejtrYWM2fO1PBTfBiwWCyMHz9eoWHCq1evUFhYiIEDBza5v1AoJK+HTCYTgYGB8PDwaHI/AEhLS0NFRcX/TCyZTCbGjRuH8PBw8rnXr18jOzsbQUGNZzQxGAyIxWLweDzycZcuXeDjQ+2mOiMjA8XFxf8zsWQwGBg3bhzpYchgMBAZGYmkpCQMH954RhODuNmBvqUeKaTZNrPGJ1817RmXHpuJnV8cJB9/sWcBLO0//A6yDcFisbD64GJ81voL8Kp5Cr5nEY+jsWTHZ1j+7wLSykEKk8WEi68TbFys6glpFvbm+PS78VjR+zvyuRZd6mdRZSfn4q9FsiY7S/+Zo/IcV1tY2Jrhl5vf4NB3p3Bs4zkAwJMLL5D8bjXWnV6htOKFyWRi5f5FmO23jGwkRRW3li6wcbFCTnIeKkoqUVVeRd4fcLhsRMp1P9UJaTp0UCQlIg13jz1CzLMEFOeVoLKkCjWVNeDV8CHgCwlTb/V8W9WmBKXITs5F9FPlrzNZTLD12NA31IORmRHMbQnRrZmvIzzauetENx1KKS0ow5PzzxF89ile34tQatrevI0rBs3og75Tun8w55ChiQE82rkj5jmRldZ3Sg+4+Chf0RSJRIgPS8bzq2G4+PcNlObLyo7kS1RZbBZa92yBgCEd0GV4Jzh7NZy9o4yyonKEXHiB4LNPEX7nbT0POQBw8XFE0Gf90X9qjwa9rXJS8rBtkayt+9J/5sK2WcOdABPCkpSaz4rFYkQ/S0CngW0b3NfKSSZS5Wc0XfYiFouR+DoFT6+8wrNrYYh9nqA07Z7JYqJVd190GdoRXYZ3hL27Lf5eul/pmFFP45Q+L8XASB8mFkYKDRgYTAYWbm36xqQgsxBb5sq8Rhb9OQtOnqr9XT80hAIhwu4o76AX3UQs2Rw2LOzNFZo7MBgMLN4xu0kRujivFL/Pkk3q5/42Da4tnFU+/g8JoVBINkyoS1Ro47FkMBiwdrJETlq+pH6EAZFIBH39pjMkAaCwsBAnTpxAly5d4OX14XeOpYqLiwucnJxw6tQpCIVCZGVlQSQSoU+fPo2eY05OTujZsyeePiUmOdIsICqUlJTgxIkT6NChA3x9P76S7YZwdHSEg4MDzpw5Az6fj+zsbNTW1mLAgAGNxtLe3h69e/fG06dPIRAIVIpleXk5jh8/jpYtW8LP78PvwksVe3t7BAUF4fz586itrUVOTg4qKysxaNAgMJkNuwlZWVmhb9++eP78OSoqKiAWiylnSFZWVuL48ePw8vJC69YfX/l7Q9jY2GDo0KG4dOkSKisrkZ+fj9LSUgQFBZFCuDLMzc3Rv39/vN6+m3zu8+2zm/Sd4vP4+HnqNtRUEdmVQ+cOQLcR/jR+ov+G1/cjlDb3SYlIR2VZFQbP7IOq0ir884WsS7eplQn0uBxYO1spdDEHgHm/T0NNFY/0R/No5wZTK8Vsf2mHS+miZ/9Pe6L3xEAtfUL1YLFYmLnhE/h19cav0/5CeXElshJzsbTb11i8/TMMnlV/UebNg0jwahvugKoMQ1NDGJoYKHijvnssE870jfXJihwXH0dYO1oqHedDRSek6dA6UU9j8fBkCCJDYpGdnIfKkirK3d8+NERCEXjVPPCqeSgrrEB2knLRjcVhwcTCGM4+jmjftxUGzewDu0Zu0nX871GcV4on55/j0dlQvL4fSfpGyWPbzBo9xgSg39Se8Gzv/kGmzy/95zOsHrgBZtYmWPr3HIXXqiuqEXbnHZ5eeYXn18KUpsBDUlbpP6Q9AoZ0RKeBbRrN3lJGaUEZnlx4gUdnQxF+V7kQyTXgQCAQYfj8gVi4dWajsRQKJZOcMtkkp8+khic5RTnFWDNoQ4OrcNGhcY0KaTZyHUHlywHkqa6sQfjdd3h+lcg8K2hgOxNLY3Qe0h5dhnZEx4FtYWJhTL62d+0xXNmlvKNf4usU1FbXNjqZtnKyRHlxJRgMBvSNuJiwalSTxvAikQi/zdxBtobvMTYAg2b2aXSfj4HjP58nO5bVJTUqo8ksRGsnS1JI0zfWx+glQ+Dg3ngmolgsxh+f/YOSPMILrPOQ9hixcJBGn+ND4NyWqzjx6wWlr2Un5aI4r7TRUm5rZytkJeYi/lIm2k/1Qf/+/WFpSW2yXV5eDldXV/Ts2ZPC1h8XPB4PMTExpMhOpVEAi8WCs7MzBgwYgAcPHqBnz56wsaE2NykvL4eTkxN69+6t8bF/aAgEAkRHR5NdmanEhMlkwsnJCQMHDsS9e/fQpUsXODhQW0CoqKiAnZ0d+vVT7vH5MSMUChEZGQmhkLhOW1k13VxEGst+/frh7t276NSpE1xcqNlZVFZWwtra+n+ibLsuIpEI7969g0BACEEWFhZNzhMZDAacnJww5buxOPT1abTv2xpdh3Vq8r0OfX+aNNd38XHEvM2qlTp/iLy89abBhgJisRixzxPQoX8bjFk2FNkpubiwjeg8a25DlGbLizr6hly07tkC/Sb3wJ0jweTz/oPqdzyv27n8879UK3V+nwQM7Yi/X23CjxP+QNzLRPBq+Nj82T+IeByDxTtkAmzY3bf4ddpflMb0aO+GxHCiuQCLTQjo8rGMkPMW5urroVxIzB87KYnlh45OSPtAqOELkVNei8IqHoqq+KgRCCEWA0wGA6b6bFgZcmBtxIWNsR6YH+DNtlAoxOt7EQg+E4rYF4nITc1HVVm1UvFAVRgMBpkJxjXQg4GJPkwsjWFpZw5rZ0s4eTrA0dMeelw2BAIhhHwRBAIBhHwhBAIRhAIBxEJAKBBAKBBCKBDV+b8QIqEI/Fo+8lILkJdegJL8MlSVVqO2upbIjlPxcwj5QpTklaIkrxQRj6JxeD3RepnD5cDc1hTurV0RMLQDBnzas57p94dErUCEnPIaFFbxUVTJQzV5XgImXDasDPVgZaQHO2MuaST5vhGLxSiq5iO/ohaFVXyUVvMhkJRU6bGYsDTkwMpQD3YmXBhztfuTV5BVhNCLRLbU2weRCqVdHCN92HX0QLMuPnDt5gsTB0voGXLBYgCZXDZqcsrJWLL+w1gWV/ORX8FDYRUPJdV8CPQMMf3BRuixmAjPrYSgIAtZz+MQdukF3j6IrNcJUx7/we0w9dvx8PH3UNkXoiinGKGXXpJZfPLfQbYhF3YdPOAS4A33wBYwcbKCnoEeWEwGjPTYeJdTDitDPdibKI/lgXUnESFZEbN3s2lyklNbxUOtZJVWGRFPlDccKJacl5WuDhi4+3NwjPRRbmWC6zF5sDBgQ1hYhuwX8Qi79AKv70UolGLK4966GQKGdkSXYR3hG+DZYCzLCho2HxcKhIh7mVSvOxNfKEKu5NrTduU4tADA5LDh5ucEM0Mu3mSVwtqI+P6wlWQUHN94HmF3iGwjK0cLLNs574MUhFWltJFYNpSFKBCKkFNRi8JKHvyWjERzkRhMNguuLZxgZqyPN1ml5HnJZtWP5Zk/ruDpFaLbmrmNKb7c+/F608jTWCwhEaK7jVTMfBCKxMS1p5IPr7lBcJo1CEwOGy7eDigy1sdruVhylMQSkoYE1tbWmDp1Kq2f50MgPT0daWlpZEkcJJkofD4fenp6CtsKRWLyO15YxUNiRhUMjCzgM2QqyjksvM4shaUREUu9BmIZEREBU1NTlX3EPgYyMjKQnp6u8Jy5uTl4PB64XMWFB6FIjLyKWhRUErFMyqiCvoEJvIOmoJrDQnhmKawMObA30YceW3kso6Ojoa+v/z9TaixPVlYWMjIyFJ4zMTFBbW1tPT9DkTSWVTwUVvKQlFEJPa4RvAdPAZ/DQlhGCawk5yW3AYuL2NhYsNns/5mSTnmys7PrxdLY2Bi1tbX1Mh9FYvnzko+k9ApwOvpiTuhv0Gez8CqjhPi9NOVCX0ksn18Px0nJYgeLzcKaI0so+aJ+6DQ2JwKAyNBYdOjfBgCwcMtMVJZUISIkFp/9uxCROeUwG9QRgzv6gMXlwK6ZNaxtTPEqowQRyfngWhijtriinvjz+n7ER9e53N7NFlse/Yidyw/g8s5bAICbB+4jPjwJ355eATaHjY2T/6Q83tA5/bFt4R6AwYB1K1dEZJfCqHdbDPZzB4vLgcCYi35/2aEoLhO8nGJU3HuLmsLyj1JIY4gba9PwP0pZWRnMzMxQWlpK2RBUW+RV1CI2rwIpxVVQ4nVYDyM9FnxsjOFlbQR9zn/jnSQUChF8JhSXdtxE8ts0VFdUKzVqbAomiwlDE31YOVnC2skKNk6WcPS0h2tLZ3i0c/8gM7hy0/IRFRqLhPAUZMZnoyCjECV5ZagsqwKvmgcBT6ByLBgMgGvIhbWzFbw7NkevCV0RMLTjf2pIWVjJQ0x+BZKLqiCk8HkMOEx4WxvD28YYhnrv57j5QhGSi6oQk1eB4mpqqcZOpvrwsTWGs5k+LTeoAr4AkSGxeHE9HC9uvEbS29R625h7OqDdrP5w6t0GDAp+Z/psJrxsjOFjYwSjRjoK0YlARMQyNq8ChVXUYpn9LBZxZ0OQERwBsUgMPX0OOFwO6SXVZXhH/HBhNeU4CwVCRIXG4cUNIpYJ4cn1tjFrbod2M/rDuV9bMCj4b3HZTHhZG8HHxpgUUR+ff4b1Y4nmAEwWE5sfrKfUWfLFjXDsX3dCaTt0NoeFq9XHwGQyIRSJkVJUhZj8ChRUNt6RUErOywTEnX2C9AfvIBaKoKfPQbu+rdBlaEcEDO3QaMmpPFXl1Tiw7gSu772Lmsr6wt/opUOwcAtxw1Faw0dMXgUSCyvBFzb9HddjMeFpbQRfW2OYSGL5/Ho4vhn2M+nh8sutdejQ73+jtKamqhaHvjuJq7vvKPWkC/qsH77YPR8AUFbDR2x+BRIKKsGjEEsOiwFPKyP42BrDTJ/wPnt9PwKrB/xAXj82XF5DyZvuY4BXw8Ph9adxeectBa85KX0nd8dXR5YCAMprBYjNq0BCYSVqBU0vYHGYDHhIvuPmBjIfudjYWJw4cQKjRo1C27YNZ4t+rOzcuRO5uYpNW5hMJgICAkhvr4paAeLyKxBfUIkaCrFkMxlobmUIXxtjWBjKxLjExEQcOXIEQ4cORadOTWe2fGzs3bsXGRkZCqIkk8lEhw4dMHToUABAJU+AuPxKxBdUoJrfdCxZTAaaWxrC19YYlnKxTE1NxcGDBzFw4EB06dK0X+LHxqFDh5CcnKwQSwaDgTZt2mDUqFEAgCqeEHEFFYjLr0S1EmuGurAYDLhZGsDX1gTWRrJYZmRkYP/+/ejduzd69Gi6AdLHxvHjxxEXF6cQSwDw8/PD+PHjAQDVfCHi8ysRV1CBSl7TsWQyADdL4jtuY0yIxNlJuVjkv5q0dZj98xRMWj1Ka5/rfSIWi3Fx+w2c+v0i2TlTHreWLvj33R+AJKElvqAScfkVqKAQSyFfgMzgSMye2weOFkR2el56ARZ1Wo0SibXJ1HXjyM6hHwt3jz7C1nm7yBJfAxN9OHrYI/G1JMOMw4Kwie/t9vDfcPnqa+i3cIUJBV84kUCIjOBITJ/ZEy7Wxh/VAqJOSPuPhLQavhDP0oqRUqzcNLopOEwGOrmYw8vaSOsnnFAoxMOTIbj0z00kvklFjYomgyw2E4amhrBzs0GLLt7oPaEbWgb6/OedS7SFUCjEqzvv8PDkE8Q8S0B+RiFqKmsgVlFg43A5cPF1wqAZvTDy86D3Ei+eQIQX6SVIKKyksHV9WEwGOjiZoYWtdn8IM0trEJpaRGnioAwbIz0EuluSN7GqkJdegJc3XuP5jXCE33nXoPG7S0sX9Fg3Eczm1Ayx68JkAO0dzeBnb6LVLNTsshqEpBRRmjgoQ5BfCi+mEE+PP8LtQw8BAI4edtj+/BeFskNlFGQW4sWN13hx8zXCbr9VepMNAI4+juj17SSwvNTzimIygDYOpjArLcfSLmvJv9n8zdMxdjn1Dl9isRhvg6NwZvNlMnNIyv6YP8FxsEJIShHKahvO0msMQWEZPMQCdOnpC33Dxv1MGqO8uAJXd9/B+W3XUJQt8+ly9XPGzrebEZ5Zhqjc+n5vVGAwgNb2prCtqcbizmvIyffMDZ9g8toxah/zh0plaSWu7bmH839eVfC3c2huh/1xf+FNVikicsrVsvNkAGhpbwJHER9L/NeQk+8pX4/FjB8n0fgpPgyqyqtxYx8RS/kuuzbOVjic8g/e5ZThbXYZ1J2VtrA1RgcnM7BZTISFhSEvLw+DBg36qCblVOHxeIiIiICBgQFevnyJpCRC4Le3t8ecuXMRmVOO11mllBZoleFjY4yOzmbgsJh48+YNMjIyMGTIkP/JWPL5fEREREBfXx/h4eGIjyf8eqysrLBw0SJE55YjPLMMQjVPTC9rI3RyMYcei4nIyEgkJiZi2LBhjXqGfawIBAJERESAw+EgIiICsbGxEIvFMDMzw9KlSxGTV4GwzFKyakBVPKwM4e9iAS6bidjYWERFRWHEiBH/k/cT0hJZJpOJmJgYREVFkd5xK1asQFxBJV6ml6gdSzdLQ7SzNsSqXuuQ9IZYBO420h/fnf3yf+7cFPAFCD4ditObLyss0rL12LhWfQwJhZV4kV5CaVFRGc3MDdDB3hjf9F+PmOcJAIBOg9piw5WvPspzMyUyHT+M+x3psVlKX+83pQcy4rLq+cd1HNgWbaf0Alo1B0/NijRnM310dbV8b0kZmqIT0v4DIS29pBpPUooorbY2haOpPnq4W1LKTkt6lwJXP5cmv9TqCmcsDgvG5kZw9LCHXzdv9PkkED4dPSl/lv91qqtr8fBkCEIvvUDi6xQU55aCV00tYwUAuAZ6cGvlgmELBmHApz1p/3HOKavBo+QiVFFYIWwKW2M99GxuRXtGlVAkxvO0YsQVqCf0ycNiMNDRxQwtbE0a3Y5Xy0fkkxgy6ywlMr3Bbb07ecB/cDu0GR2AJBZXbaFPHmsjPfRqbkV7WapIJMbT1CLEFyoXr1QcDK/+uoLoow/ANdDDttCNaN6mfhc4AV+AyCexZNaZsgw+KV4d3NFpUDu0G90FyXr6agt98pSn5OLuF3tRkVGA3pMCsfboUrVvDFOjM7DziwN4destzO3M8MWTnxFbUEUoTRrAYADtHMzQ2sFE45tWPo+P24eDsXvlIVSWVmHaHzNh3Le92kKfPJUZBbj7xR6UpeT9z06+5RHwBbh/4gn+WX4A5cUVmLRhCqyHB6CkRvNYVmcX4e4Xe1GSmP1RT76pIhQQWe07lu5HaX4ZxnwzDk4Te1HOLG4MYz0W2Dkx6NvVHyYmjf+2/6+Qm5uLS5cuISsrC70HBqHcrBnlzOLGMNJjgZMTi94BHWBm9mE0wNE2+fn5uHTpEjIyMtC9Tz/U2nghn2JmcWMYcpjQy09Ajw6tKfv7fewUFhbi8uXLSE1NRZfuPSF2aoncioYtEqhiwGZCvzAZXdv4UPb3+9gpKSnBpUuXkJycjE4BXcFxb4fscs1jKayqwcOvDiErNAbO3g7Y/uxnlT1sPybEYjFe34/AtoX/IiMuGx2HdkT/zbORWaZagogyRDU8BH9zGBnBkbB3s8GOl7/C1PLjvQZVlVfjl0+3IfTSy3qvGRjrY1/Mn8hKyMFfi/YgJTIdrfq0wvBdi5Beol6CkDx6LAa6ulrCzfLDLomFTkh7/0JaYmElniQX0dqM0kyfjYHetg2qt0KhEJ84z0NxbinYemxcqTyiMEkXCoW4f/wxLv9zC0nv0igJZyw2E7YuNug6oiOGLRgEF2/1sm50EF5Qtw4+wKtbb5EWk4GywgqlHWbqom+sD892bhizdCh6jNWsRCCtuBoPkwrUXr1WhpEeCwO9bWGq37gAlJ9RiKLsYnh38mhUOBCIRLifUIgsGi548rSyN0EHJzPyvQV8AeLDkhHxKBpvH0Xh9b0IpWVykHT26TSoLfwHt0fHgW1hYWuGzNJq3E8oVHv1WhkGHBYGedvAzKDxDLrC7GLkpuajRYCX0liWF1cg/lUSIp7GobSZA0z9mtF2jAAQffwhBnR0Rb/JRJmFUCBEQngy3j2KxrtH0Xh9L6LBDD4TS2N0HNgW/oPaodOgtrC0t0B2WQ3uJRSoveKqjOrCMkRvvYBfzqxo1AOkOLcE2Um58A3wUioQVZRUIj4sCREhcShxtoVpKzfajhEAvG2M0KVZ08bCVMktr8HdhAK1V1yVUVNSgYjfz+KXk8sbnXyXFpQhPTYLfl29/yfEtvyKWtyJL1B7xVUZtWVVeLPpDH4+tqTRyXdZUTnSojLQoqv3/4TYVlhJxJJK6SFVRAI+ertbwN3OotHtKkoqkfQ2FS27+YBFoez+Q6e4iofb8fmUSg+pIhIKEOhiAm/HxstzKsuqkPg6BS26eIGjp3qm94dGaTUPt+MLaFkMkyIWCtHZ0RB+LraNblddUY24V0lo0cUbetyPP5blNXzcisunZTFMilgkRAdbLtq4Nd7coaaqFrEvEtAiwAt6+nqNbvsxUFHLx+24AloWw6SIBEK8+Pk0Vv88Ca5+DTd4qK2uRcyzBPgGeDbZAfRjoIonwO24fFoWw6SIhCK83HQWy78ZDc/27g1ux6vhIfppPLz9PT5oL7ofxm/Go7NKOurVsWSo5gtwJ64ARTQshskT0MwCvraNV7b81+iEtPcopKUWV+FhYiGtIpoUc302BvvagVvH3FQoFGKiwxyUFsjKeKavn4CWgT44sO4kkt6mNigSyMNis2DbzBrdRvnjk7VjYPYRq+wfAzweD+e2XMWdw8HITMihJKwZmhrAp5Mnxq0cgc4qGDZml9XgTnw+rSKaFGM9FoJ87RoUeR+cfIJN07eDzxNg7bFlDXZOFInFuJ9QgIxSekU0KXY11ci/+wZvH0Uh5mk86Q2gDN/Onugc1AH+Qe3g1bG5ws1sbnktbsfl0yqiSTHksDCkhW2DWX4hF1/gp0+2gFfDx4q9CxE4yh/xr5IQ9yoJ8WFJiH+VhOykXIDBQI+N0+DaTzu+QXa8WhTcfY13j6MRFRLb6O+LV0d3BAzpCP/B7eDTWdFEv6CyFjdj82kV0aToMYBhrRxIr6+6PL8ejh8nbEZNZS0Wb/8MfSd3J2MYH5aEuJeJyEok/IkC10+Be5B2vKz87Izh79K4GECFoioebsTm0SqiSWEDGNbKvsEy6fB77/D96N9QVV6Nub9Nw/gVwymNy+fxkZ9eiJyUfFSVVYHFZkn+Y4LJYio8rvtvJosJDpcDSwdz2sWmkmo+rsfk0SqiSWFBjKEt7WFhoPyGL+JxNNaN+BUVJZWYvn4ipq4bR2lcAV8giWUeKktlsSTi2HAspXFm67Fh5WBBu9hUVkPEkk4RTQqbycBgH1tYGSmPZfSzeKwb/jNKC8oxac1ozN44mdK4QoEQ+RmFyE3JR3lxhVwclZ+LdePM1mPD0t4cbAoej6pQUSvAtZhcWkU0KSwmAwO9bWBrrPzmOSE8GWuH/ITi3FKMWToUC7ZQM9EXCoQoyCxCTkoeyosqKH2v5R+zOSxYOljQHstKngDXY/JoFdGkMBnAAG8b2Jsov3lOjkjD2qCfUJBZhKFzB2DZzrmUxhUKhCjMKkJOSj7KCssbjaWy19gcFizszWkXQav5QlyLyUVFrXZi2dfTBk5mymOZHpuJtUE/ISclHwOm9cKqA59TGlcoFKIwqxi5KfkoLShrMJYN/X6yOSyY25nTLoLWCIS4EZOHUhqFHxKxGH29bOBirrz5WXZSLtYM3oCshBz0HN8V605+QWlYoVCIouwS5KbkoSRfeSyb+v20sKc/ljyBCDdi82jJgq6HWIxeHtYNZlPlpeXjq6CfkBadiS7DOuLHS2soDSsSiVCUXYyclHyU5JXWi2VTv58sNgvmtqaURdDkiDTMbbOi0W2+P7cSnYd3ws3YPFqyoJXR3d0SHlYfbpakTkh7T0JaJU+Ai5E5WrmRkdLc0hA9msvaTAuFQkx0nIvS/Ma7lihDJ5x9WFRXVOPErxfw8FQIclLymzR6BABjCyN0GtgWC7bMgKW98pvxGoEQFyNytHIjI8XJVB/9vKzrZdac23oV/3xxgHzsP7gdNl77GpCs1uSm5iMnJR95qfnI5XDBat3w6o6miEUi3Jq/A/mv6xvcM9lMiOTis+XRj2gV6AuxWIyS/DLkpuQhNyUf2emFqO7oA6YWu7Ayi8vRvKoSzt4OcGhuR04uzvxxGbtXHSZ9+Dj6HPBrlF/UfCZ0h/+X2vWyurPoH+S8iK/3PIvNhFAulr/eWocO/dtALBajtKAMuSnE3zwnrQBVHbzBNNFeWjejtALNy8vh4u0ABw97MpaX/r6BHUv2kabvHC4b/AZWfz1HBqDL19o1kjVNyoSHvSmcvR1gYWeucoaaUCTG5agc7Uy+JVgacjDU165e5977J55g0/S/IJD8Xrm3bobdbzYDdYQy6XcoJ5X4f25KPgoyi6Dp9ISjx4Z9czs4ezvA2csBzt6OcPJ2gJOXA6wcVM/2E4rEuBqdq53JtwRzfTaG+dnX6zb76Nwz/DzlT7Kzq6OnPQ7GEa3o5YUy4juUh9zUfPLfhZlFajUEkofNYcGhuR2cvB3g7OUIJy8HIq7eDrBytFQ5liKxGNei81BYpXnZXEOYctkY7mdXr0Pqs6uvsGHiFnLBxNrJEsfSdoLBYBCxlAhl5LmZmk/GtiCjUONYstgsODS3Jc5HT3s4eTtKYukIK0cLlbM2xWIxbsTmI4+GsrmGMNJjYWRL+3odUl/dfoP1Y39HtaSSwcTSGKdz94DFYimIjjl1vuN5qfnISy/UuLM7k8WEvbut5DtOxNHJ2xHOXvawdrZSK5a34/ORXaa9WBpwmBjZ0qHewvebh5H4btQm0ivUwFgf5wr3g81hK4iOuSn55Pc7NzUPOSn5yE8vhFCgmVjFZDJg724riZ+D3HfcETYu6sXynhYXQCFpzjSypX09e5uop3FYN/wXlBUSSQQcLgfni/aDa8BVEMrIeKbkIUcS07y0AlpiaedmCycve+L3UhJHZ28H2LhYqbXA8zCxQG1fbSrosRgY2dKh3sJ33KtEfD30Z5TklQKS79y5wv0wMjVUEMpyUvLrXH/ykJdWQF7/1YXBYMDO1Zo8L6XXcWcvB9i6WqsVy8fJhUikw9akAdhMBka2tK9nyZL8LhVfBf2EwizCu5bBYOBUzr8wtzFTEMoUzk3pdzytAHwKSRWNwWAwYNvMmoyfk5fsvLRztVFYLMtLL8AM7yUNdpMHAB9/T0w9tRKx+Zrb7TQEi8nACD87mKrhaf0+0Alp70FIE4vFuBtfQEsNdlP08bRGM3MDiYg2B6X51AyldcLZx0VpUTmO/3QWj88/R35GoYLQoww9Az206u6LBZunw62VrJwvOKkQyUXau5hICXSzhKc1saIgEomwZ/URnN58WWEbJosJr47uyE8rRFFOCfm8qZsthh5eAZaWSxzK0vJxdcrvENbyweawYGZjivLiyno+do6e9mBzWMhNyUet3Gtdvp4Az5Ha78L17NcziD8bAgaDAT0DDvg8QZN/fynGTlYYduxLsLWcll+RXYSrk38Dv7IWLA4LZtamqCytQm2dTD/75rbg6ushNyVfIQuw05ej4TtB+124Xm29iOhjDwEG4UEo4AkpT6AN7cwx7Pgq6BlrNy2/Kr8UVyZtAq+8GoYmBnDysleYUErFjIZKKytqBajgCSAQihGcXEgu5tga6yHI1w4nXmfS4tfZ3tEMbRxl19Mzf1zGri8P1dvOp7MnirKKaRHKNMHAWJ+8UXSSm1C6+DjC2Fx5LF9nluJNtuoLU6rS2sEUHZxknlSX/r6J7Yv31ouXTycPFOWW0CKUaYK+EVcWS0/ZjY6Lj2ODDUfeZZchLLNU68dWN6vzxr572DJvVz0Bx6tjc5Tml9EilGmCviEXjp725I2Os5zIZmqlfF4WnVuO5+klSl+jE28bI3R1lfl73T36CL/N3FHvN9OzgzvKCyuIuYkWMjepoqfPkfuOO5LfdRcfR5hZK5/7x+VXIDS1WOlrdOJhZYju7rKF7+Azofhl6rZ6N8oe7dxQWVJJi+ioCXr6HDh62pPiL3le+jjC3Ea5f15iYSUeJxdp/djcLAzQy0NWevz0yitsmPiHwvwMAJq3dUVVWTUtoqMmcPTYkljKzktpPC3szJXuk1pchQeJ9btO0o2zmT76esoWvl/eeoMfxsmEcinubVxRW1lDi1CmCRw9Nhw87Ij4Sa7jUtHS0l75wmNGSTXuJhRo/dgcTLgY4G1DHsObB5H4dtSvqCpTFEPdWrmAV8NHXmr+fxpLNocFBw97Uvx19naAsYURSvJKUVVeg4KMQuRnFCIrIQeZ8TkQi0WYd3AJyrzotYhRhq2xHgb72H6QzW50Qtp7ENLSiqtxP1HxS0v3TYwUIz0WxrR2wFCDyU2WA1o7W6LXhG464ex/gPzMQhz54TSeXw9HUVZxozcCbA4Lnu3dMem36UgwULxhZDCAwT62MNfnICS1CKnF1bAx0kMnF3OIxOJ6N+NU0WMxMa6NA8QCIb4btQkvb76mvG/fP+fCsatvo8coRdPv1Zud1/Fu322V97Ns4YwhB2Wp7g0do7WRHto7mYEh6TwaqUbnRF5FDc4P/wH8StWF+Z6bZqJZ79YKzzV0rAHNzGFpqAcGgFeZpchV0dg2Yv8dvP7nmsrH6D+2C5bt/7ze+eZlbQRPayOIxGI8SVa/y6g8ghoezo/4EbUlqq+mTdy3GCPGBSgcp7k+R+PvijKijz/Eqy0XG93GvXUztO7RAm16+qFVjxawcrBAeQ0fl6JyIRCJ4W1jBC6biXfZxDnX24NoBnInPp+WaxCTAYxp7QADNhO/zdyBO4eD1R7L3NYM9m42sHOzgZ2rLUwsjSESiiAUCCX/iSASCCEkn5M8lnuuprIWWYk5yErIAa+B7MyGcPVzJmLZqyVa9/CFtZMVKmoFOBeRTXaUbOh3UdPvDSTdPEe3doCxHgtb5+/GtX/vqDyGFHMbUyKObrawd7WBiZWJQiyJfyuJrVwsa6tqkZ2Uh8z47Ho3p03h4uuENj1aoHVPP7Tu2QK2Ltao5gtx5m2Wgp2APpuJPp7WEInFYICBp6nF4LAYtHyfRrW0h6k+G38vP4AL21T/TZJiamUCOzcb4tx0tYWZjSlEQlG9c7PRWFbzkJ2Ui6z4nEYtBJTh7O2A1j2IOLbp6Qc7VxvUCoQ48zYbbCajXvxKavi0XHPkGe5nBwsDDvZ8dRSnNjX+m9QYJpbGku+4LexcbWBuawaxSCwXO2qxzEkmzksqFiXyOHraK5yX9m62EIjEOP02C3yhuN5cQhvXnyBfW9gac3Hw+5M48uMZqOv7YmJhRMTRzQb20liKQTmWIqEItdU85KbkISMuu55o0hQOze3QumcLtO7hhzY9W8ChuR2EYjHOvM2ud21RNkej435ooLcNHEz1ceLX89i39rjaizTG5kYK33ELO4qxFIogFAohEojAq+EhJyUfmXHZDXrCNoSdqw3a9PJDa8m56eRpD5EYOPsuG9USkaVuvOi45sjTz9MazuYGOLv1CnavPKy2gGtoagB7d1vYS77jlvbmjcZS4VokjWUtITClx2bVE6CawsbFCm16ymLp4uMIMYDz77JRwRNicnsnMiP6XXY5+EIR7fO3Xs2t4GZpiMs7b2LHkn0KFRmqYGhCxJKYE9nAysFCaSyVXovkYpmfVoD02Cwy65Uq1k6WCt/xZi2cAQAXI2XVDnXjmVVWQ+v150Mt8dQJae9BSLsVm1evuwrdNzHytDZgYHXr5Y1uY25rhtM5e2h9Xx0fDlmJ2djz1TG8uvmmwQt5958+hduA9vWeN+Aw4W1jjJJqPlKLq2HAYYInFEOo5GZcFbq6WuDPIT8i7lVSo9tZOljIbqJbuoI9sFOTxyhF0++VqLIGYWsPICY0jvI+xuZG6P7DFFh38VV4vu4x/l979x3fRnn/AfyjvSUveW/HdhI7O5AdSICEsGehUApltJRVoIVSOoDCDygUSherLbNQ9oYQAoQMsqcT7723LcuWh9b9/pAsL9mWbXnm8369/LIsnR49/t6d7u57zxCLgHVJIfiuqBGOMbZ4OPDnD5D7zi6fl5dIxYhZlIhVf78ZIi/dM/rXVaeQYkVcIL7Kq4daJsHaxCB8mVs/ojoKnVYc+/2rOLE92+f3aAxqbHj8x9Cfktpne8uts+DM5BBszqlDkFqO9HAdthf55+7s4b9/iqzXt/m8vFgiRlR6LDb+5xewubv7ddezoMHil32lP8FqQ/6f3kV5ZjlqS+p8ajETlRyB5fdeAtWCJABAcoirPidqWhFtUEKvlCImQIXvChv9dgxaEKnHB7e8gD2fHBhyuf6JMs8FdbwRobEhfh181+l0oqGiERV51e6fKlQWuB7XFNf5dJEQmRSGZb+8GJqlKZ7nvH0vljR1jHm/6ZYersOWe1/FtreG3s/7J8o8F9TxRoTGGf0fy8omVORVozK/GpV5VajId8WyuqjWp1iGJ4Ri+V0XQrt8Tp/nRejJI4TpFEgO0eBQhckv+9OcUC12PvwWvvzPt0MuZwjR9UlIhMX32jbjQqDyY7d9p9OJxqpmVOb32i7zXb+ri+p8ajETGhuC5b84H/o187zGb3dJk9+OOd2SQzQ48sxH+Ohvm4dcrn+iLLzfdqnR+6/bviAIaKxuRqU7jhV51Z59vLqwxqdWHsboYCy77RwErHedE/U+lxAEjMvxJzFIjfz/bMH/HvtwyOX6J8p69nHXdunPWRYFQUBTjcm9Pdb02serUFXgWyyDIwOx7OZNCDp74Lmbt3M0f1wPxQaoUP3ODrz8u/8NuVz/RJknju4ExWCtkUdDEAQ015pQmV/Ts13mu+NaUDNkl7luQeEBOPWmsxBy/grPc73jJZeI/XbM6RalV8K8eT+eu+uVIZfrnyjzxNEdU3/H0lRvdm2P7uNP93ZZme9bLANCDTj1J+sReqmrt8MFaeH4JLPG87q/rnV6C9cp4Pz+BJ6+8bkhl1NplYhIDPNsh+HxfbdNbYDGb62xuodS8cTRvV12/+3LjUdDiA5LrzkdET9c53mufzz9ec0Dd0OEc+eEjbkcf/PvCJ00QEunbUASLdqgRF1bF2ICxmf2sjrJ8F3gWpvGfnFHU1dkUgT+8I5rkMiOtg68eO9/sePdPZ7xIlTBOsSum+/1vf0HK+79tyAAo02959a1obq4bshlkhbE4/kjTwLuwXN3ZFejrGvgB3obUNkf+5VYo8SZv7wQOZc96fN7rIKAwEVJw9bRqFHA7hRwelIwxBDhYIVp1GMtLblxA8q/POTzHTqH3QnD0mSvSTRvde20OWB3ChABkEvFoxpDT6SU46xfX4oT2x/x+T1dNgfks2M9B93u7c2okaOmtQsCgMZ267AzwY7EwuvOQPkXB9Ha6Nt3otPhhGHJLHT2OjHorqe/9pX+RHIZrv33rUgxamHtsqGmuM51Aum+cMw/UozCI8V9Emw1ZQ0Qu2c0U0jESDVqsTXfdYKdGqrFtoKGAQMLb0x1DYLd/+ZPWpgOS2MCkFXbigNDdCHLq7egLKdyyP/FYNTj7aoXJ2z2TrFYjNBYI0JjjVh8Zt/vPJu1O5Y9J5QFR4qQf7i4T1KoprQB4oS+s8N5W9dj2W8uTAvHoQqTZzyh/AYLirMrhnyPxqDGW5UvTtiMk2KxGKExIQiNCcHiM/q2bLXb7J7WQd2JoYKjJcg/VNQnKVRbWg9RfPiAsnvvKnKJGM3tNr/tTwWNFhRnDR1LuUqON8tfmLBZEsViMYzRwTBGB2PhuvQ+rznsDtS4Wwd17+OFx0qQd7CwTyKjrrwRiHPF0lv8/HnM6VbU1I6izKFjKZVJ8EbJs35NPA5FJBIhJDIIIZFBWHB6Wp/XHHYHakvre+3j7lgeKOzTjbK+ohFCrCuW/c8lxuv4U9LcjoKsob8vxWIRXsn/+5Az+fqTSCRCcEQggiMCseC0frF0OFBX2oCK/J7tsuh4KXL2FfRJZDRWNcPpZWZSb+dooz1v6/99WW7qGPb7EgD+nfkXBEeMfQIfX4hEIgSFByIoPBDz1vS9ceBwOFBf3tgniV58vAzZe/P6JDKaakxwRBo9f/ePlz/O1fqrNHeiOqdq2OWeP/wkIhInJrEhEokQGGpAYKgB6av7xtLpdLpjWeVJWhafKEP2nrw+LahNdS2wRfR0AdbIJDg71QiL1YH9ZaZxOX+rae2CKXvofRwA/rbnUcSnDT5jqj+JRCIEGA0IMBqQvqpvA4A+N8vcScviE67tsner35aGVtjCg/u8t388A1SyMR1/+u/jDRYrGi3WQScQmizTNpH27LPP4sknn0R1dTXS0tLwzDPPYM2a8R9TZ6QqTAMvdIe6iClr7kB2XVuf569dGoNPMmt83gBr26z4wvY2sr/Pwb4vDiN3fwGqi2phbmhFV6cVgiBg5UWnjvE/o+lCpVXhF8/ehF88exMcDgfeeOR9ZBQ1QDzCi6/+F+PdQrVyzIvQw6hRQASgzWpHUVM7smtb+3Tdaeqw4Tcf3IOXf/kqTHUtaKpuHtDMuTy3En+8/M8oz3GdWJzzv3uhiwmBL4bar0K1CnyW1TNIuEwiwlWLovFeRtWAmbmCFibhnJvOxLHvMtHSYEZb88Buf2dfvx76IC2O7ciCNVDv0/htarkEASoZPs+uhUYuwYq4IHyZ25NYjNApsCDSgCC1DIIA1Fm6cKSyBU1eZsIRB2jxwObf4aU7X0JTjQlN1aYBLRjEEjES5seiuqgW7S0diF6TPqCcwdicAixWOy5Oj4BELOrTNX1jqhFGjQLOXmcZhypakFvfNqAc9awoXHjr2Ti09RhaGlrR2jRwmTOvWYvgiEBk7MiCRaWEzN2Cpvf2FqlXDjpL4kjXb39inRp/+PJ3+M9t/0ZTVTOaapoH3HUXiUS49e/XI/P7HBzfkd0nlt72C2/PjbWe5aYOpBi1kCtkiJ0dhdjZUX1et5jbkbUnD8d3ZOH4zmyYnCIoDGpIxCKclhSMfWXN6LI7kRikRrmpY9BZels6bJgVoumTSJsVooHJh+NPh82Bu965Gy/9/EU0VDahqcY0YIiBlnozbF02n2eOGk8yuQwxqVGISe0by462Dncss5GxMwsN7XaoBhmfqve6Hmq/0SukWBoTAKNGDrFYhA6rAwWNFpyocSVwP+51JxcAuuxO3P7GnXj55udRX96IpprmAZNeWFraYTG3T9hF9lCkMql7nJ9ILDu35/kOSyey9+Z7tsuaJgs0g0x+Y1BKsTI+CBq5pM94QN72p+Hi2ZvNIeBnL9+Gl3/6POpK69FUYxrQgsHaYYW5wYyQqOAB759oEqkEUbNc483hnJ7nO9u7kLMv37NdVlSZoI/tucjuHz+dQjrkMQcAVsYHIjlEi49OVPs0IYnDKeC6527Gqz99FjXFdWiuNQ1owWC3OdBUY0LUrIlJpA1FIpUgMikckUnhwKaeFvhdHV3I2V+A4zuycXxnFkqK6hE4y5Us738uIZeKh5yl19dzoP6cAnDl09fB3taB6sJaNNWaBozJ6nQKaKxsmhL7uETimnAkIjEMp/SaGd7aaUXugUJkuPfxwuxKhKQNHDfJ2zmat+euWtTzfSwRiyAI8Jxv1LZ14Zv8hgHflwKAix65Gp31ZlTkV6O5xuS1G3pdWcOEJdKGIpFIEB7vas21dEPPDOrWLhvyDxXh+I4sZOzMRt7REoQtmeV5vX+8hjrmYAzb5qbfXIK28gaUZVegua7Fa9fpurKGCUukDUUsFiMsztWSa8lZPbG0WW3IP1zs2cezDxQi4tSeVuUfHK9Gl8OJWcEaLIoyYG+Za2zEwc7ffD3v7W/t7eeiMb8KJSfK0Vzbgk4vw7LUlTVMWCJtKIPdLLPb7Cg4Uuw59mTuzkPUyr4Jzf7xrG3rGvT448v5cP99HO7zYCbS/ODtt9/GnXfeiWeffRarVq3CCy+8gE2bNiErKwuxseM/6N1INPS7CB7uIsZfGtutmL92LuavnTu+H0TTikQiwY8f+AH2ljb7dADwvK/fxXi3aIMSaxODcaSyBbuKm9Bld0KvlGJeuB4qmWRAcqCotBHzVs9BbWkdqopqUVNU12c8DmunDTvf3wcAkOtUPifRhtuvrHYnFkcZfBpgtKnditv+fj3ami0wN7WhLLsSWbtzUXisxN21wY78w0VorjGhubYFi24/z6c6dtmdqGvrgt0poKXTDrmkp5l2jEGJNYnB2F9uQkl+O8QiIMWoxdmpoYNOK11QXI/0VbNRU1qPmqI6VBfVoL21J5ZOhxOFR0oAABKlHIYE3094IvUKKKQSfHCiGiqZGGfMMuKz7FrP64cqTAMS/t40tlvxs6d+jLZmC1qbLSjPqUTm7lwUHi1BVaGrOX7J8TIc/vo4mmtMmP/Tja769tverHYnAlWDJytHsn690cSF4u97HgXcJ18lJ8qRf6gIeYeKUFVYg5UXnoILbzkbF95yNuwOJ948UglhkP1isH1lrPUcbnZDjV6NUzYu9FzgHClrwvE6C05LDEZOXRvqLa73B6hkCNbIERugQqBKhrUJwX1OGIub2zEnVAuZRASbQ0CI+6SlwdL389UyCVYlBCFEI0drpx2lze1IMWpR0dKBv37/f4D75Ksk0xXL/ENFKM+rwrJzFk+JJNpQVFoVlpy1wHNSnlHRjCM1A7f3/ut6qP3mjOQQlDS1Y3uRazB7g1IKwxDbNACIg3T4y46HAXcsy7IrkXeoCHkHC1GeW4nFZ8wfdDD/qUKlUWLxGfM8J+VZVS04UOV9woaWTjs259QhUCXDirhAfJFTN+j+NNJ4OrVqPP3dQ4C7lVJZdgXy3NtlWU4l5q2eg+DIoEHfPxUo1QosXJfuacGWW2vG3vKeCRv6x+9olXnQYw7cM8vFB6rRaXcgOUSDgxVDT/7Q3X3UqpTjz98+CLhb1pTnVLm/LwtRmlWB2afOciWupjCFSoEFp6V5Wl0V1rdiV6nJ67nEUMefkZ4D9dcpkeKJrX8A3LGsyKv2fF+WZJZh1sIExE2BC+yhyJVy1zhU7lZXpY0WfNdvkgFvcR3svO3NIz0teAZrYOBNuyDCY1/+DnC3rKnMr/Ycx4tPlCF+bgxSliaO8b8dX3KFDGkrU5G2MhVX3ncxKprb8Y37poK3eA11zBnNttm9j5sdwCOf/QZwx7KqsNa9XRaiMKMUUbMikLYqdaLCMioyuQxzl6dg7vIUXHHvhagxd2BLXs+5V5c7OV7c3I4Uo6sb6lDnb76e9/bXYnPijx/9GnB3q6wuqkXewULkHypCYUYpwuOMWLje9xvdk0Eqk2L2qcmYfWoyLv/VBWho68TnOX0bVfSPZ5mpY8jjz2jOh8dzlu/RmpaJtKeffho33HADbrzxRgDAM888gy1btuC5557DY489NtnV66Op38XHcBcxw5GKRVgSbUC0QQWJWISqlk7sK28eMCBio8WGcN34ziZH09dIvoxE7gEze1+Mdzs1NhAnalr7HFzMnXZ8X+J9pqYDu/Nw7IUvh/1MmVyKORsHjt82mOH2q9z6NswO1SFMq0Bt29ADsTZbrDg/4Do4OgePUffU1QAQNDvapzo2WLowP8J1V1kpFaP3LntKbCCO15hR0NDT+u1ETSt07lYXW7yMeXFofyEO/+3zYT9XKpNg9lkLIJaMpOuEyHMSYXMIkIpHNzZDm9WBi4w3wDrEgLt9Ypka7XV7q7dYMT9SDxGAQLUM5n4tJ4Zbv8N9bzZabEh252xlchmSFycieXEizrlpYH1buuwQBtkvhtpXfKnn3DAtUo1aqGQSdNqcyKptRY474d1hc6Ld6hgwNf1gWmxOJASpEaZVQCYRYU6YFhWmzj4zJW5MNWJHcd+xfqx2JypbOpEQpEZevQWzQjQoaLAgoN+F5NrEILR02vFtfgM0cgnOTDZ6YumJu0yKWQsTMGthAjbdcIZP9Z6KWqwDW6N4X9fe9xuFVAy9Uobceoun27Kp0w5Tr+340nkR2F9uQnmvVuy9E+hSmRSJ8+OQOD8OZ/+kZ1yS6cY0SGJBLILnAtHqcHq6K3nbn3yJZ3+9j3kSqQQJ8+KQMC8OG6+bvrFs6eqJpbf4DXXMAYCEIDXsTgFHKluwKMqAQ5UtfbozXTovArn1ba7jqlqGz7PrYOqw9Y2lRIL4tBjEp8XgrB+fNt7/8rgxuWPp7Vxie1HjoMcfX86Bhvpe7x/LuDnRiJsTjTN/tHaC/nP/M3UN3A+9xbWx3Trq6yHv35c9sRSLxZ7Wxuuvmnq9lXzVO5beYphZ2zrouZov2+ag+7ilbyyjk12zCK+7ctUE/Nfjo7nXfisVi+BwChAAhGsVMHfZhz1/G8zw55c9ZYlEIk8L2dOvmMax7Oi7j3uL53DHn+HOh4fbx6eKaZdIs1qtOHToEO67774+z2/YsAG7d+/2+p6uri50dfWsJLN5/Kev79ber4vQcBcxw1kVHwSnIOCTrBoIArAyLhDLYgMHTDHdMYlT6NLUN9T2cVpiMII1ctgcToRo5Ghutw24GM+sbYVeIYVOIUVxk+8zHqp6TZMuEomgNqihNaihDdTAEKKHIUQHtUENhUoOkZcxNgar46GKoferLrsTJ2rMWBxtwOacocdpE0nEUAVp0VY1+LTtIpEIQREBMMaEIHiQll7e6ljQ0I6zU0MhFgEH3WNNeeLYOHAWneKmdpyVYoREJIKj34ANvWMJkatFkjZADW2AFoYQHfRGPdR6FZRqBRAxdHel/nU9XNGCxGA1zk4NhUQswrHq0X9nqoz6IRNpIpEIgeEBCI0JhjE5wmvyJ7O2FYWNFpw9OxROQcDukuY+ZQy3fof73uz/PT2UDnciwFs9O2wOr3X3tZ5tXQ5sya1Hu82BcJ0CZySHoLHDivo2q6eevibS2q0O1FusKGoafHYmbwlauMeUWhRpQGFDO+ICVPg4swZLogM8r6tlEoTplNhWWAmHIMDcZXefFGlHFMvpwtv/5G39Z9W2et1vuuxOmDpsWJUQhLz6NjRYrMO2VIF7Hc40g20fwWo5Fke7ZsgTiYAD5aZBvwtGE8+ZHktv8bM6BK/HnG6zQjQoamxHcVM7TokJQIxBhbJ+w5HMCtHg2/wGtHbZ0T3WdccMjqW3c3Srw+n1+OPrOdBQ3+sz8vvSy/bhLa69W/yM5npowOfO8Fh63TbtTq/HnJGcn3vdx2d4LPVKKVbGBcHudMIhALtLmgY93gzHn+eX00X//8lbPIc7/ozkuqxbh80JpyBA7KeJF/xh2iXSGhoa4HA4EBbW9+I1LCwMNTUD+9MCwGOPPYaHHnpogmrYV/+L3968XcQsjjZgYaTB6/IKqRixgSq8fbTKk+k+UmXGhWnh+L64qc9gs86TbzJWGoGhZlDxNhuVt4txhczVwsmXC8JuvcdlEwQBFpMFFpMFtaUD94VZFy7D8jXzBjw/WB27DZYcyK5tw5xQLWICVKhpHXp699TlyZDZ7NAFaaEP1CIkOhjGmBAYo4MQEh2MoPAASGWur8/3M6rQ5iUG3upY0GhBQWPfE5vuOHo72HbYHBCLRFBIxQNe7zPGneAeL6mlHbWlA5tJx29cjNXrFg54fqi69k/O99b/e+rdjCrYB9mmkpcmQZoWDV2gFrruWEYHeeIZFBHoieVHJ6pdg1l72d7y6i3Iqx/8pHCw9evL96Yvs2B26/5OH6yeQyWuhqongD4XsTWtXahq6US4TuFJpI3ke32oY89wqs1dWBknwfxIPeot1gEDGKvlEtidzj4XQhb3WGgz8djj7X8abP0Ptt9sya1DergeCyMN0CulMHfasb+8GdXmwVvIzshYDrKv1VusA767m9ptg+5PI43neA+nMRl6bx/e4odBjjlwj6cWqlVgb2kz7E4BZaYOJIdoBiTScuvaYHa3iun+uBkZSy//VO94ejv++HoONNT3utM/EyZPKcMde7xtp4Odt43EjNwuB4ll73h5O+aM5Pzc2z7ev/XQTNA7lk3ttj7DlWCIY3o3b+e9ErFo+PNLwXW9469ZN6eC/tuHt3hiiONPt5Fcl3UTuruETBHTLpHWrf8GOdRG+pvf/AZ3332352+z2YyYmIkZc0AiEsE+gpPhwxUtXicbAACtXAqxSIRL50UMeJ9KJulzoT2VsrU09UhG2VWvty73DDcauQStXb4l05y24Qcz7uaw+r6sT+UJAo5WmbE4yoAvc4bu3vnbN+6ETuHb16N4jLHsjqNaJhmQkFPJJHAKgtcp4UcSy5Es6wtv31OD+fXLtw3oFjgYyRi+twZbv758b45kfxhLHYeqJ9ytnNLCdNAqpBC599Pe28RIPnus9SxstGB+hL7PoO/d2q0OSMViKKRiz7apkbv2l5l47PHH/9Rpd+JghQkHK1yzKs6P0GNdUgjey6gedCDzsa7Dqcgfxx6MIp7cLvtKDtGiqd3qGei5sMGCM1OMUPc7l/R2IT7WY95UNJrt0tdzoKG+1/21P0wlk/U/cR/vMZLzc2/7+Iw89ozxf/J23mtQyoY9vxSLBuYspjuJn/6dkVyXdZtqX5nTLpEWEhICiUQyoPVZXV3dgFZq3RQKBRSKyRncWCOX+DQTki8sVjucgoB3MqqGbFEEABrFyGZkpJOLRj78ILjDMXfZ0dplR3yQGserh2/+DACrNy3CZWfMhSAI7h/X7QVBEFx3hAUBUrkUMoUMHXIZssZUw4EKGixIC9MhKUQ96DIikSup5SutXDpgzK6RMHfZ0dZlR0LwwDgmBKlR19bl9Q7v8jPScfHqB32KZZdchhOjruHY+NoVEQA0CimaRjA9dn/e1q8v35uaEdVx7N+t3uqpkUuwOiEIX+fVo6a1CwKAdUn9phcfYSxHMs5Hf1m1baht7UKNl7Er2m0O1LZ2YXGUAfvLTFDLJZ7BerUjqON0oZVLAfh2kucLq8OJo1UtSAvXQauQoKndeyJtJh7HuxOu/uRLPLWMpYdIBCQGqyETi/CDBZGe58UiEZJC+h6HvH1jjuR7aLoYTSx9OQca7nt9JsZSOw77uG+fOwNj6eMN3f5Gcn5+0uzjo4zlUHw5v5ys/WE8+fN/8uW6rJtGLplySclpt3blcjmWLFmCrVu34uKLL/Y8v3XrVlx44YWTWjdvgjVyvyXSOu1OlJs6sCw2AIcqWtBld0IpFSNUqxjQHD9YPbWmh6WpJVgtR13b2Adt3F/WjLWJwbA5BBQ3tqPL4YReIUV6uA7Hqs0DknXx0YFIjR16vK5uNocTWb1mb/IHwT3OxIq4wac/VwlOwOkExBLYbXY8fdPzyD1QgLi0GKQsTkTyEtdP93T0QWoZqsy+NUkezIFyE1YnBKHD5kRJUztEIiDVqEVCkBpf5Xnv8hATEYC0eNcI+Rk7svDPO16CUqvsU8fY2VGQSCVwOAVkHqnARPcUUwpOSNwf6nA48Neb/4XM3TmInRPtGtB/SSJSliTCEKIHAASrZX0GFh0pb+vXl+9Nha0neZe9Lx9//fmLkCvdkw4sSULKkkTEzY2GRCqBQSmDxD2wqj/r2T1IcKfdCQFAlEGJSL0See4JKDRyCZTuBK/T6cQ/bn8JR7edQOzsSE8dk5ckIsA9dl6wWoZB5vzwidXhRHXr4MmjncWNWBkfhB8sjERrpx1Fje1ICFb3ieV0IAgCnr/7VRzYchQxqZF9tsvAMNe4cMEaGQrGMHyPXCJCWpgOhU3taO20Qyx2/d1pdwyZhFdYp1csAeA/v3kD3398AFHJ4UhZnOT5LgqOcG3rwRoZMMZeXKOJ53SM5WsPvoPv3tmNyKSwPttlcGQQRCIRgtW+tfTtL8agglwixidZNbD2au08O1SL5GDtsBfeCqtt2nVV+t9jH2Lr69sRnhDqOUamLE1CSNTYYjncOdBw3+sK2/SL5XtPf4ov/v0NwuJCPMfI1KWJMMaEuMaPHWUsx2o6xvLjf36JT579EsYYVyy7j+NhccYxx3Kk5+e9Ke3TL5Zf/PsbvP+XTxESFdTn3C08IdS9j/v/utiX80ul3T7tYrn19e14+08fITA8oM81RWRSuGu71Pgvlr5cl3ULmoK5DZEgTL9BON5++21cc801eP7557FixQq8+OKL+Ne//oXMzEzExcUN+36z2QyDwYCWlhbo9fpxrWt2bSv29xtgbzCDTfN87dIYfJJZg+YOG6RiERZGGhAbqIJCKkanzYGSpnYc6TWdvOBwQvhiL1ZdsBTJixOn1c5LY+dwOPDY1X/Fgc1HERwVhKhZrhliIpLCEJEQisjkcFiDA4YcA2skQrVyzI/Qw6hxtfpss7ouqrPrWgeMWfHepgegUcqw/NzFmH9aGuavnYOQqMETax+dqB5zItrbfnXO7FAYtQq8l1E14GQi/6O9OP73T5G2KhUxs6PwwTPeZ8ZU61UwRgfj5v/djUw/NFaJ1CsxP0KPILUMAoD6ti4cqTQPOkvNhxc+DDkErDhnCUqyypG1J2/AMlKZBNpALdZethzxt5yHpvaxX0yOZDr64i8P4fAT72PuylQkzIvFe0996nU5uUqOoPAA3PHePchyjOxOqC/rd7jvzU9+8Dj0cgnmrZmLivwqHN+RPeBzJDIJtAEarLhgKebcfcmIW3v5Us+FkXqkGrUQiUQoN3VAIhahw+bAgXITYgNUWDfLlThtrjXhBxFephQFIFNIERgWgF+88ytkiyfupGNeuA7heiXuWnYflA4H5q+Zg3lr52Le2jkIjw+dsschi7kdFwVc6/U1hUqOoMhA/Pzl25Cn1Iz6M6RiEZbFBiJMp3DNXuUU0NRuw+HKFs/+7W2Gqi03/g3Stg7MWzsH89bMxfy1cxCRGDZlY2mz2nCO8iqvryk1CgSGBeBnL96MAr33cWB95Us8+/v6tuch1DZj/mlzMc+9bUbNCp+ysRQEAWfLr4TTSzdVpUYBg1GPm/5xE0pCQ0Zc9hnJIei0OQfMrq2QinHZ/Ah8k9+AmtYur9skAHz3y/+gq6QG89f2xDImNXLKxhIALtBfg462gTe8lBoFDCE63PCXn6AsemD3LF8Mdw401Pf6zvtfgyW7rM8+HjsnekrH8vLwG2GqaxnwvEKtgD5Yi+v+9CNUzxr+WswXg51veNs2dz/0P5gOF2C+O5bz1s5B3NxoiMUjmbF8Yv0o4RavYwQrVHLog3W46qEfoGlestdWY74YbtscbB/f96f30LAr03UMXzMH89fORXx6zJSO5fVz70R5zsCb73KVHPogLa74zcVoXZY2qrH0hjrvHe788tAzH6N66xGkr5njiWXC/FhIJFO31d/Pl9yLgiPFA56XK2XQBWlx6d3nw3r6okHHRh6OL+fD3rbNRZEGzI8c37zNSE3LRBoAPPvss3jiiSdQXV2N9PR0/OUvf8Hatb5NFz2RibS2Ljs+OF496i/B0SjffgLb73kJABAaG4KVF56C1RcvQ/rq2ZBIp+6OS/5hbmrFpSHXD7nMaVevRfydF49pQPKRqjtahK9++o8Bz4cnhCJpQRyikiMRnRKB6BTX74BQA45UmXF8DDNGjsY3d7yI6r05Pi8/b106ljx5w6gPKKPRmF2Ozdf+ZUTveTj778htndhWGdvvfRnl3x33eXlNkBZXbH1k0DGjxoOpqAafXfnEiN7z4LG/oKBrYg+daxKCkBjsSuZ0WDpxge6aIZcXSyW4fv9TAyYK8JcgtQx2pwBzpx1BahnOmGXEvqwqPLrkl+jf9NEYHYykhfGISu7Zv6NTIjwtayZTV6cV56mvHnIZkViEnx5+Zszd4UfCUmvCRxc9AqHfvhAcGYhZixIQnRyBKHcso5IjEBIVNOkXOdYuKy40XAv7EONbylVy3Lj3z57BrSdCZ3MbPjjvITj7TdgSFB6AWYsTEJ0c6d42XT8h0cGTHkub1YYb0+5GVaH3SbQAIDDMgB99/YhnnLOJYG3twPvnPgRHZ9+EZYBRj+Qlif328UgYYyY/lnabHT9ffC9KMssHXUYXpMUNOx9Hwxi6w4+4Xh1deP/ch2Drl+AzhOiQvCTRtV269+/olAiExoZM+sW3w+7AHSt/i7yDhYMuo9KpcOv+P6NmiBbNfq+X1Y4PznsIXaa+A5vrgrTuWPbdLkPjpkYsf7X+QZzYNfj5pkIlx51HnkHlGHs9jITT7sCHFz6Cjvq+yVJtgAYpSxMHnKuHxRkn/drS4XDg/k2P4vDXGYMuI5VLce+Jvw/owTWeBKcTH1/yKNqq+t60UOtVSFmahJiUSESnRCIqORxRKZEIjzd6Jt+aLA6HAw9e8iT2fnpo0GXEEjF+l/vssJNr+duFaeE+j7k8UaZd185ut9xyC2655ZbJrsawtAopogOUKDdN3Jdg/vu7PY/ryhrw0d8346O/b4Y+WIcV5y/FygtPwYLT50JjGP0ddpq6dIFaRCSGobpo4Awq3bJ3ZmHdH68ecjYVf8t773uvz9cU16GmeODUx2qdCgnLkrHwkWshmqDRJa2NZtir6iGRSeDwccrq4qPFiNmdjaDls8e9ft0Gi+VQ3vz581j82E8gkkzMRY2txQJrSQ2kMgnsPsbS0tSG6u8yELwmfdzr1615Xw60ARq0mXzfF978+fNY+uQNEE/QCY/QacVbd/0HtYW1qCmpR1N187DvcdodSDFqkTFOiWilVILlcYFQScXotDuR39CG0mPFmLd6NnL25cPWK5lSX9GI+oqBfSOVagUik8NdJ+TuC52olAhEJ0dAH6zzSz2tXTbUlTWgtqQOtSX1qCmpQ21pPWpK6lFbUoem6uFbjAtOASkhmj4tv8ebutmMeatnI3tvPmxdPYmSxqpmNFY1Y1+/5RUqOaKSIzzx653Q0Afr/JKwtFm7Y9kTP1csXbFtrGrGcPdmrR1WJIeocahy4mKpbGzB/NWzkbUnD9bOnlg21Ziw/4sj2I8jfZaXK2WuWCZH9ElYRqdEwBCi91ssGyqaPLHr3i67HzdWNg07m3D66jlIDdVib+nw3wf+Im8wYf6qVGTtzkVXR0/SyVRvxoEvj+LAl0f7LC9TyBA1K9yzXbouGiM8N8v8EUu7zY76isZBt8uGisZhYzlnWTJmG7XYZfFPS31fyBpaMG9FCrJ256LT0pN0amloxcEtx3Bwy7G+y8uliJwV7kqez+q7XQaGBfgllg67o1cs3dtmqet3bUk96isavbaS7C1lSSJSjdoJTaTJGkyYvzwZJ3bl9Gl52NrUhsNbM3B4a98Ei0wuRURSmGcf9xx7UiIRFO6/WDZU9uzjfWNZh7ry4WOZOD8OqaHaCU2kSRvNmHdKIk7sykG7uSfp1Gay4PDXx3H46743R6UyCSISw9z7eM/NHX/eLHM4HGisbHLv3z3bZm1pHWpK6lFf3giHfejzzLg50Zgdqp3QRJqkuRXpixNw3NIJS0tP0qnd3IGj357A0W/7jl4skUoQkRjq2h5nhffaxyMRHBnol5sSDocDjVXNfeNYUoca9/Gnrqxh2FhGJUcgNVQ7oYm0cJ1iyiXRMJ1bpI3FRLZIA4Bqc+eg4xz5m14pxdpgBfZ+egjff7QfR7457vUiViwWIXlJIhacno6F69ORvno2VBrlhNSR/E8QBJRmVeDothPY8+lBHPn6+KAXNFK5FI9u/i1iT03xOl3xeFBKRSj6y4fY+e4e2DpHdvd8zWPXIu6MBeNWt94OPv0Rct7aMeL3GRLCcO6b90A8AUmqzuY2fHjBw3B0jbwVwsoHr0LiOUvHpV79Hfnn58h89ZsRv08bFYwL3r0P4gm4w2lt7cCHF/wRNsvIT/iX3Xc5ki9ZMS716i/j318h48UvR/SeoIgAvFT8HD44Xj2qrgwjJRW7Zq5SyiTo6uhCzv4CHN+RjeM7s5C1J6/PhaIvdEFaRCaFQaFWQCKVQCIVu3/3fSyWiCGRuP4WSyWQSMQwN7X2SZSN9TRHqpDiA/N/8f7x6jGNjecriUiES+ZFQC2XwNplQ96BAmTsyEbGjixk7c712kVtKLpADSKSwqHUeI+lWNLr736xbG1uG1GibDgpS5Pw9O5H8X5GFWwTEEuxCLg4PQJahRTWLhvyDxXh+I4sZOzMRub3fS8UfaExqBE5KxwqrbJPLHtiOEgspWK0mSwjSpQN5bJfno+fPnEN7E4B72dUo2sCWvGKAFyYHg6DUgab1Yb8w8WeffzErpw+F4q+UOtViJoVDpVO1SuG3vfz/rG0tLSPKFE2lAtu3Yjb/nYDnALwXkbVuLXi7e/8uWEIUstht9lRcMQVy4ydWcjclYPW5pHd5FTrVK7tUqf0Hr+hYmluH1GibChn37Aed73wMwAifHCiesJa8XZ3C3PYHSg4WoLjO7JwfGc2TuzKgbnRt8mwuqm0SkTOCodarxpZLCVitLd1jChRNpT1V63Bva/eCpFYjI9O1KB1glrxbkw1IlynhMPhQHFGGTK6Y7kzG6b6kd0AUWoUiJwVDo1B7VMsex+LOto6R5QoG8qaS5fh/jfvhEQqwSeZNTD5aezy4ZyZHIIogwoOhwMlJ8o9+/jxHdleu0cPRal2xzJg6Fi6zon6vtZp6RxRomwoy85djAfe/xWkMik+z65Fox+GjPHFuqRgxAYOPyHBRGMibQISaQCwo6gRxROQue3+AuxmabFg3+eHseuj/Tiw+cigFzMSqQSzl83CQndibe6KFMiVU29QP3JxOp0ozarAse8yXQe57Vk+HeB0QVo8+c0DSFoQDwDYW9qM3Prhx7oaq3VJIYgNVAEA6isa8MzPXsShrzN8avWlDgvAef+7F3Lt+CZ6m3IqsPknz0BwOF0Dk0YGIizeCLVejQOb+7ZYkCmkSF89B+3mdlTkVcPS0o5Ft5+HtGvWj2sdAWDnb19D6dajnnpIZVJ0Wrp8usBVBetw3lu/hsIwvgcjU1ENvrjmqQFdqQYjEosQkxqFpupmtJksmH/TRsy/aeO41hEAdv/xfyj67ADgbtETFm9EWHwoqgpqUJlf3WfZsHgjYlIiUVVUi5riOsi0Kpz31r1Q+anl1GBayxvw2VVPjihxmjAvFi8eewoAcLzajMOVIzthG41lsQGYHeo9Fk6nE41VzajIq0JFXjUq86pQkV+NyvxqVBfVjemkbrxpA9R4p/bfkMlkyKptxQEfxzwdi6XRBqSFez83EQQBjVVNqMirdv9UobKgGpV51agqrJ20WMrk0j6tEL05ZdMiPPzxryGRSpBX34Y9E9CSamGkHgsivY/JJggCGqubUZnn2hYr3NtlRV41qgtrfG5J628BRj3C4o0IiQ7Gno8P9EkSicUi/OL5n+GcG8/wPFfYaPHbmKdDmReuw+LoAK+vCYKA5lqTZ7vsvY9XFdQMu22MF0OIDmHxoTDGBGPvZ4f6nHOIRCLc8tef4KLbNnmeK2lqx/aiMcws4qM5oVqcGut9cG1BEGCqa+nZv/OrXbHMq0ZlQU2fFqoTSR+scx0jY0Ow74sjA+rx0yd/jMt/eb7n7wpTB74paBj3eqUYNVgRF+T1NUEQYKo3u/fvnu3SFdfJi6UuSIvweCNC44w4tOUYOtv7Xptd9/CVuOr+SzytuSaqQUZSsBqrE7yPWywIAsyNrZ7tsiKvGpX5rjhW5lf3aaE6kXSBGoTGGREWF4Kj2zIH3By56v5LcN3DV3piWdfahc25A3vB+FtcoAqnJw0+hqUrlt1xrO7ZLvMmL5ZqvQrhCaEIjw/F8Z3ZaG3qe3142d3n46YnfuRpGddoseLz7NpxH74q2qDE+lkhkz4UiDdMpE1QIq3T7sDHJ2rG9U7X7FAtlg1yYAaAro4ud7PcDBzddgIlJwYfL0KmkCFtZQoWrpuHBevSkHpKEmTyqdek8mTRJ3G2PRMZ27PQ0jD4XbbQ2BC0t3agrdddTV2gBk988wBmLUzwPGdzOPFJZg3axvGuYWKQGmsSvR+YC44V49lfvIys3blwDLFvzLpwGZb/9opxq6PgdCIorwzR4QaExRthjAmBXOHa3p1OJ34QfqMn3kERgXj0i/s9ycjuE7Xy/GpkCDI4xjEBLa5rRozFgoh4I8LijX26Gb3ywFt44+H3hy0jfuNirH74R+NWR6fDiS03/A2NWWUDXguKCEBzbQuEXheGcqUMj2/5PeatmeM5USvLq0aGQwK7SjFu9RQ3tCDGbEa4O3kWYOyJ5dbXtuOJ63rG89t43Trc+cJPPWNX2Kw21JbUI7u0CVWBYxs4fSiC04mvbv4n6o8OHPR1MNEpEfhP1jOeEx2nIOCL7LpBB2H3h3CdAhtSjKM6ybHb7KgpqXdd4HgSQzWoyKtCffnYLmiDwgMQFm+ENkCD6qJa1JbWwzaCu/oqnRLv1v4bCqVrOxQEAV/m1qOubfy6LBk1cpw9OxTiUcTSYXegpqSu58TcfaFTkVeNurKxXdAGhhkQFh+K8HgjDEY92potKMutRNHRkiG/u7stOmMeHvn0Ps8NOkEQsDWvfsiZYccqSC3DubPDIB7F0AAOuwN1ZQ2eC53uJFtVfjVqSxvG1DIvINSAsLgQVzzjXN8/YfFGz4V1794B95zxII5uywTcyf7fvnUXVpzft1WxIAj4tqABFS3j1/0rQCnFeXPDIRlNLB3dsazuSVq6t8vakvoxxbI7URYWb/TEsvs7PSwuBCqtyrPsb897FPu/cN0UkylkuO/127H2soGtircXNqCkefy6f+kUUlwwNwzSUbRgdzgcqC9v9OzfnkRbXjVqS+rG1DKvO1EWHm9EWFz3Nun6HRZnhFrXE8s/Xv5n7Hzf1cFcKpPgVy/dijOuXjOgzF3FjShsHL9GBBq5BBemhUM2ilg6nU40VDT2uSnRnfytKa4bU2uy7kSZazvsiWP3Pq7R99zM/NO1f8fXr7t6QoglYtz1ws9w9vUDb8ruKW1CXv34DceikolxYVoEFNJRxrKyyZOs7EkMVaO6qHZssQzUDNjHPdtmXEifYYqe+dkL+PxfXwPuRPltf78BF9wy8KbsgfJmZNWOXyMChVSMi9LCPTOtj0T3jceB+3jVmG88agM0A/bxsDijJ57agJ5YPnvny/jwb194/v7Zn3+My+4+f0CZhytbxnUsa7lEhAvTXC30pyIm0iYokQYANa2d2JpXPy7dbEK1cpyVbBzRgbm5rgUZ32XiyLcncOy7E6jIqx50WaVGgfTVs7Fw3TwsXJ+OWYviJ32gzplspIkzjUGNeWvnYMFpaVi4Ph1JC+Lx6gNv441HXIkVXaAGT3z9AGYtShjw3kaLFVty68alm02gSoazU0MhH+bALAgCcg8U4JXfv4WMHVleL3ZX/P5KJJ1/qt/rCAAr4gKRYtQO+vrLv/sf3nz0A8TOicL/fX4/wuNDvS7X3G7FZ8er4RyHLp4GpRRnzw6FcpAuj6b6FtyUfjdaGlpx7s/ORG1pA45tO9FnTKBup9x7KVIvW+X3OgLAgT9/gNx3dgHuLhLpq2dj/mlpWLQ+HclLEvH7C/6E/V8cBtwDjz+2+beYv3bugHJaOm3YnFOHrnG4+aBTSLFpdihUg5zktDa34cb0u9FcY8IPf3Nxn7uZ/Y3nCdnhf3yGrNe+HfB8cGQg1l+9Bjve2Y3a0p4ESVicEa8V/mPAOBqtXXZszqlFh83/sdTIJdg0OxQauf/Hi3PYHa4fhxNOuwMOu7PnuV6PnQ6n52+7zQGNQY3KvCq8/9fPkbU7d8jkmVgiRvLiBJib2lBd2NPVXa6U4Z3af0Gj6zuWqMVqx+acunHpsqSWuWKpVYxDLB09MRsslq44OvrEUq1XISzOiLbmNuz6cD++/3AfMrZneb1gD4kKwrorV8FUb8bW17Z7np+zPBl/+ur3fZIaANBudWBzTu243MhRSsXYNDsUeqX/bwAOF8ueOPaLpU45IFE2nO3v7MYjV/4FAUY9Hvr415i7PMXrcp02Bzbn1I3LJA4KiRhnzw4dl/Fphopl7/26fyxVWuWARNlwdn9yAA9c9AR0QVo8+ME9Xo87ANBld+LL3DqYxmESB5lEhLNTQxGk9v8Nt0FjOcz3p0KtGJAoG86hrcdw38ZHoNar8Id3f4klZ3kffsPqcGJLbp1fZgzvTyoWYUOKEUat/2+4OZ1O2G2OvrF0DL/Py5WyAYmy4RzfmY1fnv4AlBoFfvu/O7Hs3CVel7M5nNiaVz/iGcN9IRGLcFayEWG6CYhlr/16qH1eppANSJQNJ/dAAe5Y+VvIFTLc+9rtWHPJMq/LOZyuGzm143BTTCwCzkw2IkLv/1403bH0dowZap+XyqUIizP2SZQNpyijFLee8muIxGL86qVbsP6Hq70u53AK+KagHtVm/8dSJALWzwpBtMH376aJxkTaBCbSAKCypQPbChv9Os6KUSPHmcnGYZMVw2mobMTRbZmuARC3nfA6JXM3tV6FpIXxSEiPRXx6LBLmxSI+LWZEOyn16GjrQFl2JbL35Y84cbbg9DQkLogbkNhsqmnGr9Y9CIfdgd+9fTeSFycOWl5daxe+LqiHzeG/7TJQJcMSnQyRMSMfbLQkqxz/fehd7PvisKc7skgixso//BAJm7yfZIzWqTEBmBM2dPc8QRBQVViD8PjQIWcnKs2uwB+u/SdWPXadX7tPGpRSnJViHDZZ0d7agXZzO0KieloAludW4r8Pv4c9nx5ER6u7xYJIhOX3X45ZFy73Wx0B4PgLmyGvrMd893aZvDhhwAxEbaY23Ln697C0tOO+/96BBaelDVpeU7sVW/Pq/dqSV6eQYkOKcdhkRYelE61NbQiNGbxpPtzbxr4yk9+7SB978Usc//dXgLvra8K8WGy49nScf/MGT6ueqqJqXDvrDgBAcGQQ/lvyT0il3v8vU4cNX+XV+TWZppFLsCElFHrl5M9b1Nneia9f34nPXvgKxcfLhrwDLpFJMOfUZFzzwGVYuH4exGIxTPUmXB52E+AeR/LNihcQGOL9/KCl04atefV+TaapZRJsSDHCMIUG060uqsXO9/di14f7kL033+syIVFBWH3xMqy+ZBnS18yGRCKBw+HADXPuRGVBDRLmxeKp7x6CLtD7jYrWLju+yqtDW5f/YqmUirEhxYjAcUhWTIa6snroQ/RQqoe+yLVY7fgqt96vyTSFVIyzko0I1syQWJY3QBekHTaZ2W51YGtenV/HUpJLRDgj2YjQcUj8TIaGykao9ephE3CdNge25tWjyY+JSZlYhPXJIX2GspnOGquboVTLh00addmd+Dq/3q+zy0rFIqxLCkGkYWbEsrnWBKlcOugxp5vV4cQ3+Q1+bWEuEYlwelIwogOmbuJnJEz1LRCLxcNO/mRzOLGtoMGvLczFImBtYjDipuC4aL0xkTbBiTQAqG/rws7iJr8MHJkUrMay2MBRNWseTnVxLY5ty8TRba7EWmPV8OOZGGOCXYm17uRaegxi50R7usmd7Fqb21CWXYnSrAqUZZWjLMf1eLhuN74kzgbjdDp9mumlqd2KncVNfrkLGxeowpd3/guHPj8MlU6Jm/70I2y49nQoRtFVr7q4Fm//6SNsf3cP2kztmHfDWZh3/VljHoxeLhFhRVwQ4oP88yVtMbfj9mW/QXluFfTxodj0j5shC/U+nsxIRBuUWBUfNKom4v3VldXjnSc/xrf/+x6tTW1I+/F6zP/Z2ZCMdfZJmx1JEidWLI73eRp0X7dLc6cNO4qa/NI1MUqvxKqEoEFboo2WIAjIqm3D4UrTmFscW9s6cfDpD1G+9QjmLEvBeT/fgNMuXzForCoLq5G7twCn/3DVsPFs7bJjZ1GjX+5oh+sUWJ0QNC4t0XzhdDqx74sj+OrVbTj2XSZaG4dOZMqVMiw+cz6u+t2lmH3KLK/J/aw9efj2f7tww2M/hEoz9ImwxWrHruImv8xMF6pVYE1C0Li0RBuJ7klrdn2wDzs/2IuiY6Vel4tMCsPqS5ZjzaXLkLI0yet211jdjBM7s3HquYt9SlrsKmn0yx1to0aO1QnBUyK5Oxk6bA7sLmnySzfPYLUMaxKDYRiHVn3TQZfdge9LmlHuh1n+AlUyrEkMQqBqZiQkR8pqd2JPaZNfuswalFKsTQwel1Z904HN4cTesmYU+aHLrF4hxZrEIIRoZkZyd6TsDif2l5uQ3zD2LrNahQRrEoJnTKJ8pBxOAQfK/XNTWSOXYHVC0LRIlDORNgmJNLh33sOVLciuG90Gp5ZJsCIucMKy3oIgoCKvytVibdsJZH6f41NiDe6uM1HJEUiYF+tuwRaDhHmxCE8InZHdQ7vHzCrLqkBZdgVKsypQml2BsqwKNNX4NlC1xqDG/NPmehJnCfNjJyRWDqeAY9VmnKgxYzTfDAqpGMtjAxEfpMbFQdehzdRzcAow6nHBLWfj/Fs2IMA4unGlGiob8fGzW7Dnuyyk3XoeglKiRlVO2bYMHHjiAwQFaTytKV2J31hEzQr3ORnUTRAEPHTZn/H9h/sB95TlT+96GAVmKzKqzaNKrsglYpwaG4DEILXfBtg0N7a6krjZFcg9UIgj3x5Hp0SCFb+7AsFzY0dVZsWuTOx//D0E6JSeGCakxyJ+XiyikyNGHEtvnIKAzJpWHK1qGVUsZRIRTokJwKxgjf9i2dSKsuxKlGW59vGynAo0tHQg9caNMM4f2IXaF7WHCtC5OxMX3bAO89cO3lJvLJyCgOzaNhypahlVy2ipWISl0QFIMfovlr4qOFqMz57/Coe/zkBNSX2fsfa8UetVWHXRqfjBPRcibm603+srCAJy69twqKIF9lHGcnGUAbNDtZM2iK4gCMg7VIRdH+zDrg/2DjrEQ8K8WE/Ls4R5seMSy/wGCw5WmEbVMloiEmFhlB5zw3SjGl9uJhEEAYWN7ThQ3gzrKGIpFgELIgxID9eNany5mUQQBBQ3tWN/uWlUwwyIRMD8cD3mRehHNb7cTFPS1I59Zc2jamUuApAWrsPCSANjCaDM1IG9pU2jamUuAjAnTItFUQZIfbihOdNVtnRgd0kz2kc5wczsUC0WRxnGpVHLdFNt7sTukqZRD9mQEqLBkpgAyKdJLJlIm6REWrfWLjvy6tuQ32Dx6SAdopFjtlGL+CD1pB9IzE2tKDlRjuLjZSg5UYbiE2UoOVHu8xToCpUcoXFGBIUHIDDMgIBQAwLDAnr+dj8OCNVPmYkO7DY7Wpva0NLQipYGM8yNbTA3mNHS0Iq60npPC7ORTLetMagROycKcXOikTAvDvNPmzthibPBWKx25NVbkFff5tMJT6BKhtmhWiQEqT0Hkt+d/xj2fX54wLJypQxnX78eP33ymlG1UOvWXGfCt19noqzDjsB58RANczJg77SiZMth5L2/G005FYMuJ1PIEB5vRECYa3sMDDUgMDzA9TjM0Gf77G5p+e5Tn+LFe14D3IN5/vPA44hMCgfcrS3yG9qQW29Bhw8H6QClFKmhOiQFq30+KDvsDpib2mBubIW5e9tsaEVLQyvqyxs82+Wg022LRIhYloKUS1chavVciIf5XEeXDSVbjyDvvd1eJxXoJpNLERZvRGBYAALCDAgK64ljgCeWrr99mSW4w+ZAfoNru/SlW51BKUWqUYukYI3PXd8dDodnH29tbHXv660wN5hRX9GIsuwKlGVXDpkUDz8lGSmXrkL02rRhW046bXbYSmqxckE00uZETVhCpdPmQEGDBbn1bT6d8OgVUqQYtZgVohnVYMSj0VDVhM9f2Io9nx5EWXaFTxMFGEJ0OOva03D+zRs9++B467I7UNDQjtz6Np9ammsVEqS6YznYmIfjydppxYnvc7Hvs0PY9eG+QVtEp56ShNWXLMfqi09FdErkxNTN7kRBowW5dW0+dVHUyHti6e+WptOd1eFEUaMFOXVtaPGhi6JaJkGKUYMUo5ax7MfmcKKoqR25dW1o9qHVvkomRkqIFslGzaS12p2qbA4nit2x9KW7p1IqRrJRi5QQzaS32p1q7E4nSpo6kFPX5lOrfYVUjOQQDVKNWsayH4dTQEmza7v0pdW+QiLGrBANUoyacRmLczpzOAWUmVzbpS9dZ2USEWYFa5Aaqp12LaCZSJvkRFo3h1NAY7sVjRYrGtut6LI74RRcA0DqFVIEa+QIVsunfHcFQRBQX9HYk2DLLEPx8TKUZVeOaZppXaDGk1jrn3RT61UQicUQi0UQiUUQi8Xu3yJAJHI/P/Trti47zI09F8wtDa1oaXQlI3qeb+3TwmqkDCE6xM6NRtycaMTOiUbc3GjEzo1GcETglJzSFwCc3dtluw1N7VbU1bYge38BHFYbwkMNWHfOQoS4t8v+/8OWV7bhz9c/O2jZP3nkh7jq/kv8Us/6hlbs3ZWLvPwatEMEiUIGOAVYLZ1ozqtEU04FGrPKYLP4dzBMjUENbYAGdWX1nhZ8Z16zFvPWzIU2QN1nuxOJxeiSSdEll6NTJoVDLIYgEkEMQA4nNIIADZxQARC7t0+71Q5zYxta3Nuk2Z287d42u59rbR79dqkL1PTZLoMSwtDQ1oXyGhMsTkCilANOATZLJ5rzq9CYU4HGzDLYLP6dIU6tV3kSa/2TbpoADcSSvrG0yqTolMvQKZP1i6UAjeCERnBCJeoVS5ujV6Kx337eKyHe1mwZ0yxyvSkCNAhJi0XQ7BgEJIVDqlJAKpdAo1YgNioQi5YmwKhVTlhiyhunIKC5w+Y59rRbHe5jD6CWSRGskSFYLUegSjbu31PFJ8qw7c1dOLLtOMqyKtHe6ls3oLi0aJx741lYc9myPuMDTjShO5btVjRabLBY7XAKrhY+GrkEwWo5gjUTE8v+9SrLrsChrzJw8KujyNieha6OgRcKIpEI6WtmY80ly7HqolMQGmucsDr2JwgCTB02NLa74mmx2uFwumKp7o6lWo5Ateykb4E2HEEQ0NJpR6PFioZ+sVTJJJ7zyyDGclieWLrP19usDjicgieWQWo5gtWu78yTvTXfcARBgLnL7jn2tHb1xFIpk3jiGKSWT3rDgenA3GlDg8V1vt7aZe+JpVSCIPdxPJix9Elrl90VS4sV5l6xVEjFnjgGaxhLX7R1x7LdCnOnK5YidyyDPLGUTduWkUykTZFE2kznsDtQWVDjarl2vAwlmeUoOVGGhsomz2DyM0VwZKArSTbblSiLmxuN2DlRo+7OOJXUlNThmsRbAQBrLluOP7zzy0GXLc+txPVz7hz09Yc+vBcrLzzF73XsaOvAgS+P4sDmI9jz6cEhJ23oTyQWQSKVQBAEOEbZxHuqCgwzIG5uNGJmu7bJ7p+AUMOgF/Wd7V04uOUo9n9xBHs/O4jm2kFatHnhiaVTGNN03VORzH0n12a1A8McQVVaJWYtSsBpl6/AWdedDvUIZpmbyTrbO7HjvX3Y++lB5B0sRENlIxw+dvcRi0VYeEY6Tv/BKqy88BQYBpkU4GRmbmzF4a8zcOirYzi0NQP1FY1el5NIJVh0RjrWXLIcKy5YisCwsY/rSERERDTTMZHGRNqk67B0wlTbgqYaE5prTWiubXH/3YzmuhY017ag2f3aZCXddIEa6EP0MITooA/WQR+igyFY1+e5wPAAxM6OmtEzl9qsNpyjvAoAMGd5Mv62+9FBlxUEAZcar0drU99xAMVSMe59+TaccfWaca+vIAgoySzHwS3HcODLI8jYnjWipI5IJIIuSIOwuFBEzgpHcEQAbFYHTHUmNNWYUHyiHO0+dmUeD9oADfTB2p7tMEQHQ7Ae+mCd5+/AsADEpEYOO+vOcARBQFlOJQ5tOYYDW47g6LcnYB9BslEkArSBWoTFGxGZGIaQ6GDYrXbPPu/6MaHdPPbBiEdDY1C7Y6aHPlgLQ4geDrsDtWUNqC9rgKmuBdbO4VvVSuVSxM6OwrLzFuO8n541qa16ppKCo8X49s1dyNieifLcqhGv58BwA5adswRLNyzA0o0Lhp3d7GRjt9mRvTcfB7ccxaGtx5B3sGjQlpXBkYFYsmEBlpy1AKecvXDY2c2IiIiIqC8m0phIm1Y62jr6XHQ317iSa4IgwOkUIDgFOJ1OCL0fC92PBQju1zyPBdfsbxKpBIbeyYgQPfTdSbMgrV8GTJ8pLg+/Eaa6Fhijg/Fm2fNDLvvb8x7F/i+ODHj+z98+iAWnj89g6kPpbO/C8R1ZOPDlURz86ijKc6pGXIZYIobBqIc+UIvSbNdYa3KlDA99/GuodSpPUrijtWPAdmm32vHxP7/sk1xcdt4SxM+N7tkuhZ7lJRLxwASu+29dkBbSsc62OQZdHV04vjMHB7e4YlmaOfi4c4MRS1zTakfNCkfqKUlYsnEB5qxIhaXZ0ieB3m4eGMvufdz1vNP7Pt4vlrpgXZ/9vDvhqNAqkb0nD4e3ZiDvQCEqCqrQXNMCp2P4FlIagxoxsyOxaN08nH7lSiTOjx9lRGcGu92O4zuycWhrBnL3F6AivxpN1c0+xbI3mUKKhevnYemGBViyYQFiZ0/c+HHTRVVhDQ5uOYZDW4/h6LcnBu0KK1fKMP+0uVhy1gIs3bhwXCZeICIiIjqZMJHGRBrRiNyy9F7kHy6GWCLG5+1vDJnMeffPn+DFe18HAITFGVFbWg8ACI0NwYvH/jzprUrqyupxcMsxHPzqKA5/fdzniTK8UWqUCI0JRsJ814QRK85fCmN03/Ga3njkfbzyh7f6PDdv7Rw8/d0fR/25U0V9RSMOfXUMB7YcxZGvM8Y0bptSo0BIVDAS5sdiwdq5WHHBUr+17Co+UYb9XxxG5u5clGVVoKGqGV3tvrV0lUglMMYEI/WUWVhxwVKsuugUKNVTf3ru8VKaXeGK5fe5KM0qH3NX/aSF8Vhylitxlr56tmcyD3Ix1bfgxK4cT3fN6qLaQZdNmBfrSUKmr549poldiIiIiKgvJtKYSCMakYeveBo73t0DAHgp+xnEpEYNumxnexde+d3/YDAacPGd5+C35zyKjO1ZAICzfnwa7n3ltgmr93Acdgey97m7Rn11DLkHCsc86LxEKoYuSIvgyCAEhgXg8DcZcHoZB+rlnL9O2Kx4E8HhcCD3QCEOuZOUOfvy4XSOLZZiSXcsAxGZGI6EeTGYvTwZaStnQ6NX91nWbrej6GgJcvYXIGd/AYoySlFbWg+LqX1E61QboEHs3CgsXDcP669ajbg50WP6H6Yjp9OJooxSZO3JQ97BQhQeLUFtaT3aTBYIY1yngWEGTxfDxWfOQ1B4oN/qPd05nU6U51Qic3ceMnfnIGt3LiryqgddPsCox+Kz5rtiedZ8hEQGTWh9iYiIiE4mTKQxkUY0Iq8+8Db++/B7AIAHP7gHqy461ef31pbW46fzf+npgvSHd3+JNZcuH7e6jkX3YN0HtxxDxo6sIVt/jFVEYijWXLYCqUuTMG/tHASGzqwBv1ub23D46+M4uOUoMnZkoaqgxr8fIIJrtjmRyNPdcyQkMlfX7qhZ4UhekoTFZ87DovXpkCvl/q3nFFVXVo/MPXnIP1SE8pxK1JTUobm2BZaWdtitdr99jkwuRfqaOe4uhguQMC8W4mk6U5O/dVg6kXegEJm7c5G5OwfZe/KGbNUplUmQtmq2p9VZ0sJ4xpKIiIhogjCRxkQa0Yhse+t7PHrVMwCA6//vKvzwNxeP6P1bX9uOJ677BwBAH6zDixlPIThi6rdEaaxuxvZ3duPFe17zeXbB0RKJRVCo5FBpldAGaGAw6hEcGYTQ2BBEJoUjJjUScekxCJimsxU215pw4vtcZH6fg8zvc5B/uHjCZvYUS8RQaVUIiQ5C8uIErLhwKeatnnnJSwBob+tARU4lKvNrUFVci/qyBjRWNaO51oTGqma0Nrehq8M67MyjoyVTyJCyNBFpK1KxYF065q2dA5Xm5O0K21t9RSOydufixPc5yNqTh8KjJUPuAzK5FMlLEjF3RSoWnJ6GBafPhYozwBIRERFNiskbqZqIpqXYOT1dOctyRj7A/JnXrMWeTw9g5/v7YG5sxVM3Pof/++w3U37w68AwA7a/s9uTRDvnpjNx+hUrcWJXDjJ35yJ7T96gg32PlOAU0GnpQqelC821LSjPHXxSBIlMAoVKDo1BDV2gFiqtEiq9Chq9GhqDGtpADfRBWuiCtDAYDQgM1cMQqkdwRKDfx/dyOp1oN7ejpb4V5qZWtDa3wdLcjtbmNrS1tKPd3IH2lnbXzLx1LTA3tqKtxQKZUgqhQxjxgPSjqqPDCUuLBZYWC0ozy/H16zs8r3XHUq1XQxeogVqngkqvglqngjZAA22gBroAjWvSB6MBASE6BIQbxjeWja0wN/SKpcmCNpPFE0tTvRnNNSaYm1rRZmpHZ1snujqtcIxgRtWhiCViSKRiOB3CsMnOgFAD0lalIm3lbKStTMGsxYkc58zdbbwooxSZ3+cic08usnbnoq6sYcj3BBj1mLsyFWkrUzF3ZSpSliSeNC0kiYiIiKY6JtKIaESiUyIgEokgCALKcypH/H6RSIRfPPdTnNiVg+baFhzYfASfv/g1zvvZWeNSX3/Z8vI2ZO3JAwDEpEbilmeug0KlwKL18wD3uGDFx8s8ibXMXTmor2gculCRa5ICXYAaMoUcnZZOdLR2orOjy+fxpxw2B9ptHWg3d6C+fJjP81YFkQgiscj92F2p/r9EvV93PysCIAhw2J2j6k7pbyKRCIYQHTQBGlcist0dy/bRxbJhuHU3SB3GEkunwwmnY2JjKZaIodQoodYpoVArIBaL0NVhRWkbI+wAADBJSURBVFNNM+xWh7tOAxOcIpEI8ekxnkRP2spURCSGTfmE+HhrM1lQlFGKomOlKMooRfHxUhQfL3O1/BtCfFpPLOeuTEXUrPCTPpZEREREUxW7drJrJ9GIXZN0K2qK66DWqfCR6dVRXfDt++IwfnfeYwAAjUGNV/L+hgCjYRxqO3YtDWb8ZPYv0NrUBgB48psHsHBd+rDvqyurx4ldOZ5ujEUZpT59XkhUEBLmxSIkOhhKrRIiQYDF3IHGqiY017pacrWbO9DVYfXrGFaTTSKTQKGUQ6lVQhughj5Ih8DwAIREBULtnlCgpd6M7H35KM4o9WkCg+DIQFcso9yxBNDeenLEUq6UuboHGzTQB+tgMOqh0MghgggOhxOtza0oy6wcPuELQKVVYs7yZMxd4U72LE+e9Fl3J5PD4UBVQY0nYdb9M1xLMwBQqhWYvWwW0lbOxtyVqZizPBm6QO2E1JuIiIiIxo6JNCbSiEbst+c9iv1fHAEAvFn2PIzRwaMq58nr/4mvXvkOALDphjNw979u9ms9/eXpm57H5v98AwBYf9Vq/Oa/vxhVOUe+PY57z/wjACByVjiUagVKsyp8Gh9MpVUicUEcEufHY9bCeCQtjEd8egwUKgXMTa0ozapARV41WupaXN3/mt1dAFs70GHuQIelE12WLnR12mDrtMLWZYfdZofD7oTT6W5x1OtoIPT9Y1AisQhiscjdBVACiUwCqUwKmVwKmUIGuVIGuUoOhUoOpUYBpVqJgFA9QmKCEZkQhqjkcESlRA6YeXM4FnM7Co4Uo/BoCQqPlaDwaAlKM8th96FLo1KjQOL8OCQtiEfiAlcsE+bFQqnuG0tzgxnmpja0NVtgaWmHxdyODnMHOttd3W67Oqywddlg67LBbvVDLEUiiCW9YimVQCrvF0ulHAq1K5YKlQIBoXoYY0MQHh+KqOQIxKS6YmluakVxRhkKj5WgOKMUhRmlKM0sh7XTNmx8RCIRopLDkbwk0dVNc1UqEtJjIZFKhn3vTNTa3OZqXdYdz+OlKDlRPmwrM7hjGZEUhpResUycH3fSxpKIiIhoJmAijYk0ohF74Vev4b2nPwUAPL7ld1hy1oJRldNca8J1qXeg3dwBkUiEv+97DKlLk/xc27HJ2puHX6z8LQBArVfhpey/jnpyhC2vbMOfr38WAPCzP/8Yl919PqxdNpRlV7gSQr2SQpaW9mHLE4lEMMYEI3JWOKKSwhE5y/UTNSscEUmuRN3JxGa1oSy7EoVHS1B0rCeWQ81+2JsxOtgTv8hZEb1iGTYlB8l32B2oK29AdWEtqotqUVVYi5LMMhQdK0VDZZNPZWgMaiTOj+v5WRCH+PTYk27bcTgcqC9vRHVRLaoLa1FVWIPSrAoUHivxucu0Wq9C4vw4JMyLQ9KCOCTMj0NCegwnBSAiIiKaYThGGhGNWO8JB8pzqkadSAsMC8A1f7gcL/zqNQiCgGd/8RL+svNhiMViP9Z29Bx2B/52y788f1/3xyvHNMNoyYlyz+O4tBgAgFwhw6yFCZi1MMHzmiAIqC2t9yTXijJcv2tK6vuUJwgC6soaUFfWgKPfnhjweSFRQa7kWlJ3cigcUckRiEwKm5EX9zK5DEkL4pG0IN7znCAIqC9vQEG/RGVNcd2A99dXNKK+ohHHvssc8FpwZGCvhGVEr4RbONS68YtlR1sHqtyJsu4ET3VxHaoLa1Bb2uDzbKfdrcwSF8QjcV6cu3VjHEJjQ06asbg6LJ2ocSccPTEtqkFVYS3qSut9as2IXq3MktwtRLsTkGFxxpMmlkREREQnMybSiGjEYudEex6XZY985s7eLrztbHzx729QnlOJrD15+OaNnTjrmtP8UMux++TZLSg8WgIASFoYjwtu2Tim8kqzehJpCekxgy4nEokQHh+K8PhQrLroVM/z3V3MCo+WoOBoMcqzK1FZUOMZu62/hsomNFQ2IWN71oDXgsIDPC3YIpNcP0ERAQgKD0BQRCDUOtWMSAqIRCKExhoRGmvEygtO8TxvabGgKKPMnawsRklWBaoKamBubPVaTmNVMxqrmnF8R/aA1wLDDD2tAZMiEJEYiuDIIE881Xr1oLEUBAFNNSZUF9b0Su64E2ZFdTDVtYz4fz5ZW5kJgoDmWpMrjt2t9IpccawurEFz7chjyVZmRERERNQfu3ayayfRiLWZLLg46DoAwOxTZ+Hvex8bU3kHvzqG35z9COBO8Lyc+7dxbeXji8bqZlw/5xdoN3cAAP76/SOYuyJ1TGVeFXcz6ssboTGo8WHTK35LVJmbWlFdWIvK/GpUFtSgqrAGVQU1qMyvRkuD98TQcJRqBQLDAxAYHoDgiAAEhrkSbN2Jtu7fAUb9jBrvqbW5zdViyR2/qsIaV0wLakaV1AIAqVwKlVYJuVLmiZXdZkdXuxUdrZ0946qNgEqrRERSGCISwxCZGIaIpHBEJIYhJjVyRrUyczgcMDe0orm2Baa6FjTXtqC51uT6XWeCqc4Mk/tvU12Lz63KelNqFIhMCkdEYigiEl1xjEgKQ3RKBMLjQ2dMLImIiIjIP9gijYhGTBugQeycKJRlVyL/cDE627vG1Npl6YYFWHnhKdj98QE01ZjwxiPv46Y//civdR6pF+95zZNE23TDGWNOolnM7Z6xluLSYvx6ca4P0kEfpEPqKbMGvNZmsvQk1gpqUFlQjSp3YmioFjqd7V2e1lFDEYtFMBj17oRboCv5FmqASqeCSquEWqeCSqeCWqeESqt0P1ZBqVVCrVNCrpRPqUSFLlCL1KVaJC2IQ6elC52WTtfv9i6Y6lpQmV+DmuJa1BTXobasAU3VJrQ2tQ45iL/dah+01eBQFCo5dEFaGIx6BIUHIiQ6CGFxRkQmhSEkKhgqXd/4TrVYdnPYHei0dKLD0tU3pu7HbaZ2mGpNrkRZr2SZqc4Mc4PZp9lZhxMUEYiIxFBXwizBlSiLdCciA0INUzJuRERERDQ1MZFGRKOStnI2yrIr4bA7kHugAAtOSxtTeTc/dS0OfHkUti4bPnjmM2y6YT2iUyL9Vt+RyNmfj2/f3AUA0AfrcOPjV4+5zPxDRZ7HCWmDd+v0N22ABilLkpCyZOAkDu2tHa4WV/k1qCutR1ONCU01za7f1c1orjENO1C/0ym4Ex8tKDpWOuL6iSXiXgm3vsk2lVYJhcqdHBKJ4PrV7zG6n3P9FrlfQ6/H3cs5HE53UqwTXe3WAQmd3o9H07LJ37o6rOhyd88tRMmwy/eOZXeisndC05+xdDoFV8zavcev+3FXexdsVvu4xkksESPAqEdAmAHBkUGuFnruVmUR7sczvVsrEREREU0cJtKIaFTSVqVi83++AQCc2JUz5kRaRGIYLv/l+Xjz0Q9gtznwwj2v4eGP7/NTbUfmlT+87Xl83R+vgD5YN+Yyew9gn7Z69pjL8we1TjVgooP+rJ1WNNe2eJJrvZNsjTWu303VJjTVmHwe+L43p8MJS0u7T7OUTnUyhQyBYQb3TwACQg0ICO35WxeogVgqhsPuRFdHF5prWlzxcycwm2tMaHTHdjSJvJkYS0/8Qg0ICAtw/+4dYz30wbopM0EJEREREc18TKQR0aik90oGZe7O9UuZV/7mYnz16ndoqGzC3k8PIf9wEZIXJ/qlbF+d2JWNQ18dAwCExxtx9g3r/VJuxo6eAf8XnDbXL2VOBLlSjrA4I8LijEMu53Q60dZsQWN1M8wNrWhv7UBHawc62jrR3tqJjtYOtLd2oLOtE+1tHeho7XS/1uF+rROdba7nJnroTqlMAoVaAaVGAaVG6f7d77Ha/di9nFqv9iTNAsICEBhm8NsEDYIgoLWpDU01JrTUm10xauvsEydP3Nq6X+vsiW9rT3wnOpYSqcR7/DRKKNVy9+++r3fHsifpaBhyggYiIiIiosnERBoRjUpkUjgCQg0w1bUga3cunE7nmFuFqDRK/PA3l+Dvt/0bAPDG/72PB9+/x0819k3v1mg/+sPlkMllYy7T2mlF9t58wN3yLjR26KTUdCQWi6EP1o259Z7T6URXe5cnAWftsEIQBFdCSIDnsSc/1Otv1zIDH8OdnBKLRV4TZVLZ1DoUikQiv8RSEAR0tnd5EnBjjaV7Ea+x7E5E+mN/ISIiIiKayqbW1QMRTRsikQjpq2dj1wf7YGlpR2lmORLmxY253LOvX4c3/u99NFU34/sP96P4RBkS0mP9UufhHPn2uKcLZnRKBM780Vq/lJu9Nx+2Ltdg9NOpNdpkEIvFUGlVUGlVCAqf7NpMbyKRCCqNEiqNkrEkIiIiIvITDipCRKOWtrJnJssT3/une6dcKccPfnWB5+83H/3AL+UORxAEvPL7tzx/X/OHyyGRSvxSdu/x0eafPrax5IiIiIiIiGjyMJFGRKOWtqrXOGnf5/it3HN+eiYMIa5ubdvf3o3y3Eq/lT2YA18eRdaePABA3NxonHbFSr+VPV3HRyMiIiIiIqK+mEgjolGbtSgeCpUc8HMiTaVR4rK7zwfcLcX+9/iHfivbG0EQ8MofelqjXfvQFZBI/NMazdpp9STowhNCZ+T4aERERERERCcLJtKIaNRkchlmL0sGANSU1KOyoNpvZZ9/y0boAjUAgG/+uxPVxbV+K7u/3R8fQP6hIgBA0sJ4rLr4VL+Vnb2v9/ho7NZJREREREQ0nTGRRkRjcsrZizyPd3980G/lavRqXHzHuQAAp8OJtx//yG9l9yYIAt74v/c9f1/70BVjnn20t2PbesZHW8Dx0YiIiIiIiKY1JtKIaExWXXSK5/Huj/f7teyL7tgEtU4FANjyyjY0VDb6tXy4W4x1t0abtSgBy89b4tfyv+8VkwXrmEgjIiIiIiKazphII6IxiU6JRMzsKABA1u5cNNe1+K1sXaAWF9yyEQBgtznw5Uvb/FZ2t0+e/dLz+KLbN0EkEvmt7Ir8ahQdKwUAzD51FkJjQvxWNhEREREREU08JtKIaMxWXehqleZ0Ctj32SG/ln3ezRs8ya0vX/oWTqfTb2U315qw4509AAB9sA6n+3GmTgDY8e4ez+O1l63wa9lEREREREQ08ZhII6IxW3Fhr+6dnxzwa9lhcUYs3bgAAFBbWo9DWzP8VvYX//4GNqsdAHD29euhUCn8VjYAbH93t+fx2suZSCMiIiIiIprumEgjojGbfeosBIUHAAAOb81AZ3uXX8vfdOOZnseb//21X8p02B34/IWtAACRSITzf77BL+V269+tMyzO6NfyiYiIiIiIaOIxkUZEYyYWi7Hi/KUAgK4OKw59dcyv5a84fwkCwwyAe2bQ5lrTmMvc/clB1Fe4Ji9Yfv4ShMeHjrnM3titk4iIiIiIaOZhIo2I/GI8u3dKZVJsuPZ0wN2S7KtXt4+5zE/+udnz+IJbzh5zef2xWycREREREdHMw0QaEfnFovXpUGmVAIC9nx6C3Wb3a/mbbjzD83jzf76BIAijLqs0qxxHt2UCAKJTIrD4zHl+qWM3duskIiIiIiKamZhIIyK/kCvlOPWcRQAAc2Mr9n9xxK/lR82KwML16QCAyvxqZGzPGnVZnzy7xfP4glvOhljs369CduskIiIiIiKamZhIIyK/2XDtOs/jL/w0KUBv5/SadGC05TvsDk+iS6GSY8O1p/mtfgAgCAK+fr2n6ym7dRIREREREc0cTKQRkd8s2TAfobEhAIADm494BvP3l1UXnwp9sA4AsOuDfeiwdI64jGPbs2CqNwMATj13MTQGjV/reOSb4yjPrQIAzD9tLrt1EhERERERzSBMpBGR30gkEpz9k/UAAKdTwJcvfevX8uUKGdZcuhwAYO20jWp20N7dLk8bh26XH//zS8/jC2/1/yQGRERERERENHmYSCMiv9p4/TqIxSIAwJcvfQuHw+HX8leOYXZQh92B7z/cB7i7dZ567mK/1q2mpA57Pz0IAAiJCupTVyIiIiIiIpr+mEgjIr8KjQnBKZtckw7UlTXg8NYMv5a/sNfsoPs+OwyH3fdEXf9unSqN0q91++z5r+B0umYTPe9nGyCVSf1aPhEREREREU0uJtKIyO/6TgrwjV/LlitknkSdubEVJ77P8fm949mt09ppxeb/uLqySmUSnHPTGX4tn4iIiIiIiCYfE2lE5HfLzl2MoIhAAMCeTw6iudbk1/JXXtDTZXLPx7517xzvbp3fvb0b5sZWwD1TZ2BYgF/LJyIiIiIiosnHRBoR+Z1EKsHG604H3AmsLa9859fyTz1nESRSCQDg+48PQBCEYd8znt06BUHAR//Y7PmbkwwQERERERHNTEykEdG42HRDT9fGT/75JWxWm9/K1gVqMf+0uQCAmuI6lJwoG/Y949mtM2d/AfIPFQEAkhcnYM7yFL+WT0RERERERFMDE2lENC4iEsOw/PwlAID6ikZsfXW7X8vvPSPm9x8N3b1TEATscc+mOR7dOj945jPP4wtu3QSRSOTX8omIiIiIiGhqYCKNiMbN1b+91PP4f49/OKIZNoez8oKlnse7P94/5LIVeVVoqm4GAMw/Pc2v3TqLT5Rh+zuu1m6GEB3WXbnSb2UTERERERHR1MJEGhGNm9mnJmPJhgWAuwvmt2/u8lvZobFGJC2MBwDkHy6Gual10GWPfZflebzgtDS/1QEAXnvwHc8YbVf8+mIoVAq/lk9ERERERERTBxNpRDSufvS7Xq3SHvsADof/WqX1Topl7c4bdLlj2zN73nP6XL99fsGRYuz6wDUTaFB4AM7/+Qa/lU1ERERERERTDxNpRDSu0lfP8UwMUJ5bhZ3v7fVj2bM9j0/syva6jCAIyPjOlUhTaZVIXpzot89/9YG3PY9/eP8lUKrZGo2IiIiIiGgmYyKNiMbd1b+7zPP4jf97H06n0y/lpq1K9TzO3J3rdZmKvCo01ZgAAOlr5kAilfjls7P25mHvZ4cAAMaYYJxz05l+KZeIiIiIiIimLibSiGjcLVqfjjnLkwEAJSfKseeTg34pNyg8EJFJYQCA3AOFsHbZBiyTsX18xkfr3Rrt6t9eCrlC5reyiYiIiIiIaGpiIo2Ixp1IJOrbKu2R9zwD9I9V2ipX905blw35h4oGvD4e46Md35mNw1szAADhCaHY+JN1fimXiIiIiIiIpjYm0ohoQpy6aRGSFycA7lk2v3t7t1/KTVvZq3vn9zl9XhMEwTNjp7/GRxMEAa/84S3P3z/6/WWQyqRjLpeIiIiIiIimPibSiGhCiEQiXPvHKz1/v3jPa+iwdI653N4TDvQfJ60yvxpN1c2e5fwxPtrBLUc93UWjUyJw5o/WjrlMIiIiIiIimh6YSCOiCbPsnMVYdu5iAEBDZRPeeuzDMZcZMzsKukAN4G6R1rvLaPa+fM/jeWvG3q3T2mnFP+54yfP3NQ/8wG+TFxAREREREdHUx0QaEU2om5++DlKZK/n07p8/QVVhzZjKE4vFnnHSWhpaUZFX5XmtNLPc8zhpYfyYPgcA3n7iY1QVuOo7b80crLty1ZjLJCIiIiIioumDiTQimlDRyRG49K7zAAA2qx0v/Oq1MZfZe5y0nP0FnselWRWex/Fp0WP6jKrCGvzP3YJOLBHj9n/eCJFINKYyiYiIiIiIaHphIo2IJtxVv70UQRGBAIDdHx/Awa+Ojam8hHmxnsdl2ZWexyUnygAAap0KxpiQUZcvCAL+cft/YOuyAQAuvfNcJKTHDvs+IiIiIiIimlmYSCOiCafWqXDTn37k+fvZO1+G3WYfdXmxc3pam5XnuhJpHW0dqCmpBwDEpUWPqfXYrg/348CXRwEAIVFBuOaBy0ddFhEREREREU1fTKQR0aQ44+o1mLsiBQBQnlOJj//x5ajLCo0LgVwpA3q1SOvdMi1ubsyoy+5o68Bzd73s+fuWZ34ClVY16vKIiIiIiIho+mIijYgmhUgkwq1/u97TUuy1h95BQ2XjqMqSSCSITokEAFQV1MBus6Ok10QD8WmjT6T99+H3UV/uqtfSjQuw+pJloy6LiIiIiIiIpjcm0oho0qQsScKmG9YDANrNHXjy+mfhdDpHVVbsnCgAgMPuQGVBDUpO9CTS4kaZSCvJLMf7f/kMACBTyHDb32/gBANEREREREQnMSbSiGhS3fD41QiJCgIAHN6agU+e3TKqcmJn94yT9ocLHsfW17d7/s7Zl4cTu7IhCILP5TnsDjx903Nw2B0AgCt/fRGiZkWMqm5EREREREQ0MzCRRkSTSh+kw69eusXz97/ufR1lOZVDvsebmNmRnsdVhbVoqTd7/n71gXdw19o/YM8nB30u783/+wDZe/MBAJFJYbji1xeOuE5EREREREQ0szCRRkSTbslZC3DRbZsAANZOG/7047+PeBbP3jN3DsbaafWprKw9ufjvI+8BAMQSMX79+h1QqBQjqg8RERERERHNPEykEdGUcMPjVyNmtmucs7yDhXjjkfdH9P7olKG7XSbOj/NpooD21g48fs3f4XS4xmr70e8uw9zlKSOqCxEREREREc1MTKQR0ZSgVCvw69duh0QqAQC8+egHOPzNcTxx3T9wVezN2PPp0N0y5Uo5IhLDvL4mEonwi+d/CqlMOmw9/vmLl1BdVAsAmLsiBVf99pJR/T9EREREREQ08zCRRkRTRurSJFzzh8sBAE6HE78991FsfW076isa8fof3x32/VHJ4V6fP/enZ/rUqmzHe3vw1SvfAQDUOhXue/0OT2KPiIiIiIiIiIk0IppSrrzvIsTOcXXxtFt7xkkrOlaKzvauId8bEhU84DmNQY3rH71q2M+tr2jEMz97wfP3rX+7ftAWbkRERERERHRyYiKNiKaUT5/7ChV51QOed9gdyDtYOOR7jdEDE2lX3X8JdIHaId/ndDrxxHX/QGuzBQBw2g9W4KwfnzbiuhMREREREdHMxkQaEU0ZBUeK8c9fvOQZ6L+/rD15Q74/pFciLTQ2BGdcvQaX/+qCYT/3/ac/w9FvTwDuZNwvnvspRCLRiOtPREREREREM9vwI28TEU0QpVYJuVIGa6fN6+sZ2zNx5a8v6vOczeFEaXMH6i1daE1LwJXbH4NUpYAgCFBIxfgqrx5BajnCdQpEGZQQ90uQHd+Zjf/c/ybgnpTg3ldvG7YFGxEREREREZ2cRIIgCJNdiYlmNpthMBjQ0tICvV4/2dUhol6KMkrx9hMf4bu3dw9omSZTSPF5+5sQiUQwd9qQVduGokYLbE7fvsY0cgmSQzSYHaqDQipGQ1UTbllyL5prWwAAV/76Itzw2NXj8n8RERERERHR9MdEGhNpRFNSXVk9PvjrF/j8X1+js63T8/xHLa+i2GLHkcoW+Jg/G0AlE+OUKD2eufBxT3fRRWfMw2Obf8tZOomIiIiIiGhQHCONiKak0Fgjbn7qWrxV/jwuun0TNAY1ll2yHNsrWnGoYvRJNADosDmxo8QE3bqFEEnECI0Nwf1v/oJJNCIiIiIiIhoSW6SxRRrRtNBudWBLXh3MnXa/lluxMxOXrEnGnKVJfi2XiIiIiIiIZh5ONkBEU57N4cTX+fV+T6IBQPSaNDQEqyEIAmfqJCIiIiIioiGxaycRTXmHKlrQ3OF9Jk9/KGpsR3FT+7iVT0RERERERDMDE2lENKVVmzuRW9827p+zv8yEDptj3D+HiIiIiIiIpi927SSiKUsQBBysMPV5TiQCzk4NRYBSht2lTSht7oBSKsa6WSFwCgJEEGFvaTNMnSNrwdblcCKj2oxlsYF+/i+IiIiIiIhopmCLNCKashosVjS1902ICQLwXWEDsupaPc912Z3YnFOHLbn1OFLVgvQI3ag+r7DRApvDOeZ6ExERERER0czERBoRTVmDdenssPVNdvWeelguEaO5fXTjqdkcAsdKIyIiIiIiokFNu0Ta//3f/2HlypVQq9UICAiY7OoQ0TiqMnf6vKxBKcWm2aFYFhuA2rYuz/MbU424Zkk0AlUyz3MyiQjXLo2BRi4Z02cSERERERHRyWXaJdKsVisuv/xy/PznP5/sqhDROGq3Oga0PBtKS6cdm3Pq8E1+A06N6Ztkt9qdWBxl8KmcxnbriOtKREREREREJ4dpN9nAQw89BAB45ZVXJrsqRDSOmkaQ0BKLAKe7f6fV4YTdKfR5Pbe+DbNDdQjTKvq0VvOmrcsBq90JuXTa3WcgIiIiIiKicTbtEmmj0dXVha6unotns9k8qfUhouF12gdvjXZaYjCCNXLYHE6EaOQoa+7A4mgDBME1q+eB8r4zfXbZnThRY8biaAM259T59NlMpBEREREREVF/J0Ui7bHHHvO0ZCOi6UEQhEFf217UOOC5Lbn1Q5aXXduGOaFaxASoUNM69DhoQ302ERERERERnbymRJOLBx98ECKRaMifgwcPjrr83/zmN2hpafH8lJeX+7X+ROR/ErHIr+U5BAFHq8xYHGWAGEOX7e/PJiIiIiIioplhSrRIu+2223DllVcOuUx8fPyoy1coFFAoFKN+PxFNPL3S/19PBQ0WpIXpkBSiHnQZiVgEtZfZPImIiIiIiIimRCItJCQEISEhk10NIppCAlVyiESAP3tZCgAOV7ZgRVzgoMsEqWQQi9gijYiIiIiIiAaaEom0kSgrK0NTUxPKysrgcDhw9OhRAMCsWbOg1Wonu3pE5CcSsQhBKhka221+LbfM1IH0cB2UMu+tzkI0cr9+HhEREREREc0cImGajap93XXX4dVXXx3w/LZt23D66af7VIbZbIbBYEBLSwv0ev041JKI/CGrtnXADJzj7dw5YUymERERERERkVfTLpHmD0ykEU0PXXYn3s2ogsM5MV9TwWo5zpsbNiGfRURERERERNPPlJi1k4jIG4VUjOQQzYR9Xlq4bsI+i4iIiIiIiKYfJtKIaEpbFGWAZgJm0Yw2KBEfqBr3zyEiIiIiIqLpi4k0IprS5BIxVsQFjfNniLAiLggiztZJREREREREQ2AijYimvCiDEkuiDeNStlgEnJ4UAvUEtHojIiIiIiKi6U062RUgIvJFergeggAcrmzxW5lSsQinJ4UgQq/0W5lEREREREQ0czGRRkTTxrwIPQxKKfaUNqPT7hxTWYEqGVYnBCFILfdb/YiIiIiIiGhmYyKNiKaV2EA1QrUKHCg3oaipfcTvl4pFSAvXYV64HhIxx0QjIiIiIiIi34kEQRAmuxITzWw2w2AwoKWlBXq9frKrQ0Sj1NZlR159GwoaLeiwDd1CzaCUItWoRVKwBnIph4ckIiIiIiKikWMijYk0omlPEARYrA40tlth6rDB7nR9rcklYgSpZQhWy6GUcTIBIiIiIiIiGht27SSiaU8kEkGrkEKrkCIucLJrQ0RERERERDMV+zcRERERERERERH5gIk0IiIiIiIiIiIiHzCRRkRERERERERE5AMm0oiIiIiIiIiIiHzARBoREREREREREZEPmEgjIiIiIiIiIiLyARNpREREREREREREPmAijYiIiIiIiIiIyAdMpBEREREREREREfmAiTQiIiIiIiIiIiIfMJFGRERERERERETkAybSiIiIiIiIiIiIfMBEGhERERERERERkQ+YSCMiIiIiIiIiIvIBE2lEREREREREREQ+YCKNiIiIiIiIiIjIB0ykERERERERERER+YCJNCIiIiIiIiIiIh8wkUZEREREREREROQDJtKIiIiIiIiIiIh8wEQaERERERERERGRD5hIIyIiIiIiIiIi8gETaURERERERERERD5gIo2IiIiIiIiIiMgHTKQRERERERERERH5gIk0IiIiIiIiIiIiHzCRRkRERERERERE5AMm0oiIiIiIiIiIiHzARBoREREREREREZEPmEgjIiIiIiIiIiLyARNpREREREREREREPmAijYiIiIiIiIiIyAdMpBEREREREREREfmAiTQiIiIiIiIiIiIfMJFGRERERERERETkAybSiIiIiIiIiIiIfCCd7ApMBkEQAABms3myq0JERERERERERFOATqeDSCQacpmTMpHW2toKAIiJiZnsqhARERERERER0RTQ0tICvV4/5DIiobt51knE6XSiqqrKp0wjDc1sNiMmJgbl5eXDbmw0/XF9n3y4zk8uXN8nH67zkw/X+cmF6/vkw3V+cuH69j+2SBuEWCxGdHT0ZFdjRtHr9dxxTyJc3ycfrvOTC9f3yYfr/OTDdX5y4fo++XCdn1y4vicWJxsgIiIiIiIiIiLyARNpREREREREREREPmAijcZEoVDggQcegEKhmOyq0ATg+j75cJ2fXLi+Tz5c5ycfrvOTC9f3yYfr/OTC9T05TsrJBoiIiIiIiIiIiEaKLdKIiIiIiIiIiIh8wEQaERERERERERGRD5hIIyIiIiIiIiIi8gETaURERERERERERD5gIo1G7LnnnsP8+fOh1+uh1+uxYsUKbN68ebKrReOssrISP/rRjxAcHAy1Wo2FCxfi0KFDk10tGietra248847ERcXB5VKhZUrV+LAgQOTXS3ykx07duD8889HZGQkRCIRPvroI89rNpsNv/71rzFv3jxoNBpERkbixz/+Maqqqia1zjQ2Q61zALjuuusgEon6/CxfvnzS6ktjM9z6bmtrw2233Ybo6GioVCrMmTMHzz333KTVl8bmsccewymnnAKdTofQ0FBcdNFFyM3N7bPMBx98gI0bNyIkJAQikQhHjx6dtPrS2Pmyznv72c9+BpFIhGeeeWZC60n+4cv67n8M7/558sknJ63eMxkTaTRi0dHRePzxx3Hw4EEcPHgQ69evx4UXXojMzMzJrhqNk+bmZqxatQoymQybN29GVlYWnnrqKQQEBEx21Wic3Hjjjdi6dStef/11HD9+HBs2bMCZZ56JysrKya4a+YHFYsGCBQvwj3/8Y8Br7e3tOHz4MH7/+9/j8OHD+OCDD5CXl4cLLrhgUupK/jHUOu929tlno7q62vPzxRdfTGgdyX+GW9933XUXvvzyS/z3v/9FdnY27rrrLtx+++34+OOPJ7yuNHbbt2/Hrbfeir1792Lr1q2w2+3YsGEDLBaLZxmLxYJVq1bh8ccfn9S6kn/4ss67ffTRR9i3bx8iIyMnpa40dr6s797H7+rqarz00ksQiUS49NJLJ7XuM5VIEARhsitB019QUBCefPJJ3HDDDZNdFRoH9913H77//nvs3LlzsqtCE6CjowM6nQ4ff/wxzj33XM/zCxcuxHnnnYdHHnlkUutH/iUSifDhhx/ioosuGnSZAwcO4NRTT0VpaSliY2MntH7kf97W+XXXXQeTyTSg5RJNf97Wd3p6Oq644gr8/ve/9zy3ZMkSnHPOOXj44YcnqabkL/X19QgNDcX27duxdu3aPq+VlJQgISEBR44cwcKFCyetjuRfg63zyspKLFu2DFu2bMG5556LO++8E3feeeek1pXGbqh9vNtFF12E1tZWfPPNNxNev5MBW6TRmDgcDrz11luwWCxYsWLFZFeHxsknn3yCpUuX4vLLL0doaCgWLVqEf/3rX5NdLRondrsdDocDSqWyz/MqlQq7du2atHrR5GlpaYFIJGIr1Bnuu+++Q2hoKFJSUnDTTTehrq5usqtE42T16tX45JNPUFlZCUEQsG3bNuTl5WHjxo2TXTXyg5aWFsB9o5tODt7WudPpxDXXXIN77rkHaWlpk1g78rfh9vHa2lp8/vnnbOQyjphIo1E5fvw4tFotFAoFbr75Znz44YeYO3fuZFeLxklRURGee+45JCcnY8uWLbj55ptxxx134LXXXpvsqtE40Ol0WLFiBR5++GFUVVXB4XDgv//9L/bt24fq6urJrh5NsM7OTtx333246qqroNfrJ7s6NE42bdqEN954A99++y2eeuopHDhwAOvXr0dXV9dkV43Gwd/+9jfMnTsX0dHRkMvlOPvss/Hss89i9erVk101GiNBEHD33Xdj9erVSE9Pn+zq0AQYbJ3/6U9/glQqxR133DGp9SP/8mUff/XVV6HT6XDJJZdMeP1OFtLJrgBNT6mpqTh69ChMJhPef/99XHvttdi+fTuTaTOU0+nE0qVL8eijjwIAFi1ahMzMTDz33HP48Y9/PNnVo3Hw+uuv4/rrr0dUVBQkEgkWL16Mq666CocPH57sqtEEstlsuPLKK+F0OvHss89OdnVoHF1xxRWex+np6Vi6dCni4uLw+eef80R8Bvrb3/6GvXv34pNPPkFcXBx27NiBW265BRERETjzzDMnu3o0BrfddhsyMjLYgvwk4m2dHzp0CH/9619x+PBhiESiSa0f+Zcv+/hLL72Eq6++ekDvEvIftkijUZHL5Zg1axaWLl2Kxx57DAsWLMBf//rXya4WjZOIiIgBSdI5c+agrKxs0upE4yspKQnbt29HW1sbysvLsX//fthsNiQkJEx21WiC2Gw2/OAHP0BxcTG2bt3K1mgnmYiICMTFxSE/P3+yq0J+1tHRgfvvvx9PP/00zj//fMyfPx+33XYbrrjiCvz5z3+e7OrRGNx+++345JNPsG3bNkRHR092dWgCDLbOd+7cibq6OsTGxkIqlUIqlaK0tBS//OUvER8fP6l1ptHzZR/fuXMncnNzceONN054/U4mbJFGfiEIArt/zGCrVq0aMMVyXl4e4uLiJq1ONDE0Gg00Gg2am5uxZcsWPPHEE5NdJZoA3Um0/Px8bNu2DcHBwZNdJZpgjY2NKC8vR0RExGRXhfzMZrPBZrNBLO57P10ikcDpdE5avWj0BEHA7bffjg8//BDfffcdb3qdBIZb59dcc82A1qUbN27ENddcg5/85CcTXFsaq5Hs4//5z3+wZMkSLFiwYELreLJhIo1G7P7778emTZsQExOD1tZWvPXWW/juu+/w5ZdfTnbVaJzcddddWLlyJR599FH84Ac/wP79+/Hiiy/ixRdfnOyq0TjZsmULBEFAamoqCgoKcM899yA1NZUnXzNEW1sbCgoKPH8XFxfj6NGjCAoKQmRkJC677DIcPnwYn332GRwOB2pqagD3oLZyuXwSa06jNdQ6DwoKwoMPPohLL70UERERKCkpwf3334+QkBBcfPHFk1pvGp2h1ndsbCxOO+003HPPPVCpVIiLi8P27dvx2muv4emnn57UetPo3HrrrXjzzTfx8ccfQ6fTeb6zDQYDVCoVAKCpqQllZWWoqqoCAM8N0vDwcISHh09i7Wk0hlvnwcHBA26CyWQyhIeHIzU1dZJqTaPlyz4OAGazGe+++y6eeuqpSaztSUIgGqHrr79eiIuLE+RyuWA0GoUzzjhD+Oqrrya7WjTOPv30UyE9PV1QKBTC7NmzhRdffHGyq0Tj6O233xYSExMFuVwuhIeHC7feeqtgMpkmu1rkJ9u2bRMADPi59tprheLiYq+vARC2bds22VWnURpqnbe3twsbNmwQjEajIJPJhNjYWOHaa68VysrKJrvaNEpDrW9BEITq6mrhuuuuEyIjIwWlUimkpqYKTz31lOB0Oie76jQKg31nv/zyy55lXn75Za/LPPDAA5NadxodX9Z5f3FxccJf/vKXCa0n+Yev6/uFF14QVCoVz9kngEhwrRgiIiIiIiIiIiIaAicbICIiIiIiIiIi8gETaURERERERERERD5gIo2IiIiIiIiIiMgHTKQRERERERERERH5gIk0IiIiIiIiIiIiHzCRRkRERERERERE5AMm0oiIiIiIiIiIiHzARBoREREREREREZEPmEgjIiIiOokYjUaIRKIhf37yk59MdjWJiIiIpiTpZFeAiIiIiCaGw+HAp59+6vW10tJSXH/99XA6nUykEREREQ1CJAiCMNmVICIiIqLJU15ejtNOOw1VVVX4+OOPsXHjxsmuEhEREdGUxK6dRERERCexyspKrFu3DlVVVfjwww+ZRCMiIiIaArt2EhEREZ2kqqqqsG7dOpSXl+P999/Hpk2bJrtKRERERFMaE2lEREREJ6GamhqsX78eJSUleO+993DeeedNdpWIiIiIpjx27SQiIiI6ydTW1mL9+vUoKirCO++8gwsuuGCyq0REREQ0LbBFGhEREdFJpL6+HmeccQby8/Px9ttv46KLLprsKhERERFNG2yRRkRERHSSaGhowPr165Gbm4s333wTl1xyyWRXiYiIiGhaYYs0IiIiopNAY2MjzjzzTGRnZ+ONN97A5ZdfPtlVIiIiIpp2RIIgCJNdCSIiIiIaPxaLBWvWrMGRI0dwxx134Ic//KHX5bRaLdLT0ye8fkRERETTBRNpRERERDPc119/jbPOOmvY5a688kr873//m5A6EREREU1HTKQRERERERERERH5gJMNEBERERERERER+YCJNCIiIiIiIiIiIh8wkUZEREREREREROQDJtKIiIiIiIiIiIh8wEQaERERERERERGRD5hIIyIiIiIiIiIi8gETaURERERERERERD5gIo2IiIiIiIiIiMgHTKQRERERERERERH5gIk0IiIiIiIiIiIiHzCRRkRERERERERE5AMm0oiIiIiIiIiIiHzw/4ZZPOHofRyxAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNQAAAKrCAYAAAA57NCnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddZiU5f7H8ffEdics7C7dLSACii1itz+7O496VDz2MY96jt2FgR1YCLYC0t0N29059ftjZp6dYWeXXRrm87ouruvJ+7ln9a/P9b3vr8nlcrkQERERERERERGRNjHv7QmIiIiIiIiIiIjsTxSoiYiIiIiIiIiItIMCNRERERERERERkXZQoCYiIiIiIiIiItIOCtRERERERERERETaQYGaiIiIiIiIiIhIOyhQExERERERERERaQcFaiIiIiIiIiIiIu0Q1IGay+WisrISl8u1t6ciIiIiIiIiIiL7iaAO1KqqqoiLi6OqqmpvT0VERERERERERPYTQR2oiYiIiIiIiIiItJcCNRERERERERERkXZQoCYiIiIiIiIiItIOCtRERERERERERETaQYGaiIiIiIiIiIhIOyhQExERERERERERaQcFaiIiIiIiIiIiIu2gQE1ERERERERERKQdFKiJiIiIiIiIiIi0gwI1ERERERERERGRdlCgJiIiIiIiIiIi0g4K1ERERERERERERNpBgZqIiIiIiIiIiEg7KFATERERERERERFpBwVqIiIiIiIiIiIi7aBATUREREREREREpB0UqImIiIiIiIiIiLSDAjUREREREREREZF2UKAmIiIiIiIiIiLSDgrURERERERERERE2kGBmoiIiIiIiIiISDsoUBMREREREREREWkHBWoiIiIiIiIiIiLtoEBNRERERERERESkHRSoiYiIiIiIiIiItIMCNRERERERERERkXZQoCYiIiIiIiIiItIOCtRERERERERERETaQYGaiIiIiIiIiIhIOyhQExERERERERERaQcFaiIiIiIiIiIiIu2gQE1ERERERERERKQdFKiJiIiIiIiIiIi0gwI1ERERERERERGRdlCgJiIiIiIiIiIi0g4K1ERERERERERERNrBurcnICIiIiIiIiKyL3G5XNgcLhwuFyYgxGLGYjbt7WnJPkSBmoiIiIiIiIgEvYp6GxtLaimuaaSktpEGu9O4ZzZBfEQISZGhdIoNJzM+ArMCtqCmQE1EREREREREglZ2RR0r86vIq2po8RmnC0prbZTW2lhXXENEiJneydH07xBDqFW7aQUjBWoiIiIiIiIiEnTqbQ7mZJWzubS23e/W2ZwsyatkXXENo7smkB4XsVvmKPsuxagiIiIiIiIiElSKqhuYsiJ/h8I0X7U2B7+sK2bu1jJcLtcum5/s+xSoiYiIiIiIiEjQKKhqYPraIup99kjbWasKq5m5uVShWhBRoCYiIiIiIiIiQaG8zsYv64uwO3d98LWhpJb52RW7fFzZNylQExEREREREZEDntPlYsamUmyO3VdFtrKgirzK+t02vuw71JRARERERERERA54K/KrKKlt5PxhnSmpbQRgWV4VuZX1JEeFMqxTHCYT5FTUs6Kgaoe/M2tzKacM6EiIRTVMBzIFaiIiIiIiIiJyQGt0OFmaVwlAdaODaWuKjHtmEwxJi+XXDcU4dsFS0OpGB2uLqhnQMXanx5J9l+JSERERERERETmgbSypMfZNiwqxcHyfFA7rlkiYxUxKVBh2p4sjeiRxbK8UEiJCdvp7a4pq1KDgAKcKNRERERERERE5oK0tqjGOv1yeR4PdSc+kKIZ1jqOguoH4iBC+X1VAVKiF0V0S+XFNIQDj+6SQEhWG0yccW5BdwZqi6la/V9VgJ6+qgU6x4bvxV8nedMBUqD3xxBOYTCZuvfXWvT0VEREREREREdlH1NsclNXZjPMGuxOATWW1JEaG0GB3UljdgN3poqLeTqjF5Pf+guxyJi/KMf5tL0zzyldzggPaAVGhNm/ePF577TUGDx68t6ciIiIiIiIiIvsQbwMCAKvZhMPpwgV0jA6jssFOcU0Dg9NiAAi3mmlrE1Cr2cTw9DjS4yKwmE3kVtQzJ6vM6CJaUmvb7hiy/9rvK9Sqq6u54IILeOONN0hISNjb0xERERERERGRfUipT7AVG27lxP4dGN8nhf4dYliUU0Gjw8X64lqO75PKUT2TmZ9V3qZxx3ZNJNRi5puV+Xy5LA+zCUZlNuUSpT5Bnhx49vsKtRtuuIETTzyRY445hkceeaTVZxsaGmhoaDDOKysr98AMRURERERERGRvaXQ4jePSWhvfrSxo9sz6khrWl9Q0uw5wUHocQzvFGeefLc3FYjaRmRDBJ4tzjIq0RbmVnDqgIzM3leICGny+Kwee/TpQ+/jjj1m4cCHz5s1r0/OPP/44Dz300G6fl4iIiIiIiIjsG5w72WxzYXYFqwr9902LCw/BbDJx5qBOzZ6PCLFQa3PgcoHL5cJkMjV7RvZ/+22glpWVxS233MJPP/1EeHjbumZMnDiR2267zTivrKwkIyNjN85SRERERERERPamEPOuD7RqGu04XS4+XZqLo4XEzmo2KUw7gO23gdqCBQsoLCzkoIMOMq45HA7+/PNPXnzxRRoaGrBYLH7vhIWFERYWthdmKyIiIiIiIiJ7Q2z4ro8+6u1OssrrGJUZz4LsChrsTsKtZlKjw9haXgdA3G74ruw79tv/ukcffTTLli3zu3bZZZfRt29f7rrrrmZhmoiIiIiIiIgEn6So0N0y7oxNpQztFMeJ/ToQZjVTb3OwubTWCNR213dl37DfBmoxMTEMHDjQ71pUVBRJSUnNrouIiIiIiIhIcIoNsxJmMe9Qk4Bpa4pavGd3upifXc787MBdQZMVqB3QzHt7AiIiIiIiIiIiu4vJZKJ7UuQe/abVbKJLwp79puxZ+22FWiC///773p6CiIiIiIiIiOxj+qRGN+vUuTt1T4ok1KIapgOZ/uuKiIiIiIiIyAEtLjyEjPiIPfItswn6p8bskW/J3qNATUREREREREQOeIdkJhBqMe327wxJiyMuImS3f0f2LgVqIiIiIiIiInLAiwy1cHBGwm79RlJkCAM7qjotGChQExEREREREZGg0CM5arcFXtGhFo7smYzZvPur4GTvU6AmIiIiIiIiIkHjoM5xDNrFoVpMmBXnzGXM/OgvXC7XLh1b9k0mVxD/l66srCQuLo6KigpiY2P39nREREREREREZA/ZXFrL7K1lNNidOzVO96RINn74Gx/c/wkAqZnJXHT/2Rx1wWGEhmkvtQOVAjUFaiIiIiIiIiJBqc7mYH5WORtLasDUvqWasWFWauas4v3rXiMkLISG2ga/+4kd4znlhuM5+drjiE3SvmoHGgVqCtREREREREREgtrTN7xJnh26HT+cmIzkFp+zmk10jA6le1wYXVNjOSH8POw2R6tjh0eGcf1zlzHhiqN3w8xlb7Hu7QmIiIiIiIiIiOwtTqeTuV/OpqyggtXv/wqhIST26Uxy785EJ8dQlleOs76Bxz66BWujjf/rdDUNdY1ceP9ZWEOt2w3U6msbmPzoFwrUDjAK1EREREREREQkaG1cuoWyggoAug7MZO38DeTPWwclFVi7prLm1+UAhDTa+Pub+TTUNQLwwb8/JzUjmfqahlbHBzj5uvG7+VfInqYunyIiIiIiIiIStOZPW2IcJ3SIM46TOiaQ3DnROC/KLqUkv7zpRRcUZZVsd/wrn7iAc/556q6csuwDFKiJiIiIiIiISNBaPmOVcWw2N8UkHbulktw5yTgvzilly4osv3fbsi39rCnzcNhbXxYq+x8FaiIiIiIiIiISlJxOJytnrQEgLjmGytIq417n3p1ISW8K1Ao2F7Jp2da2DWyCmIRoAFb+vZZP/jNlV09d9jIFaiIiIiIiIiISlLLW5FJVVgNA/zF9KM1rWtLZfXAX0nunGedbVmWzZWV2m8ZNyUjike/uxmw2AfDeg5+ybuHGXT5/2XsUqImIiIiIiIhIUPJWpwEMGNPXr0Kt9/DuZPbrbJyvW7ARW4OtxbEi4yKN46KtJWxZlcP/3X06AA67gycuep6Guu03MJD9gwI1EREREREREQlKK2b6Bmq9qa/2BF4mSElPIqlTIpExEQDkrs8POMbhZ4/mXx/dypSySYw7e7Rx/ZVb3+H8e8+k10HdANi6Koe3Jk7evT9I9hgFaiIiIiIiIiISlFb+7Q7UrCEWug3JNJoHhIaFAGAymYwqtdL8cs78x4kcesYoDj97jDHGgLF9OeLcsQDcNelGQsKsANRV1/PGnR9w13s3ERruHu+r539g4S/L9vCvlN1BgZqIiIiIiIiIBJ2K4kqy1uQC0Gt4d/I2FBr3ImOblm9m+Cz7PObCw3ng8zs4965TjWur5qw1jkPDQ7ngvrOM8+9enU5a9w5c+cSFxrWnL3uJ2qq63fSrZE9RoCYiIiIiIiIiQWfl301BWP/RfVi/aJNxHpccYxxn9k03jreucjcl6DYo06g6Wz1nvd+4F9xzJjGJ7g6fDruDl255h1NvPJ6DjhkEQFF2CZMf/WK3/S7ZMxSoiYiIiIiIiEjQ8WtIMLYvRdmlxnlskm+g1lShtnV1DgDWECu9R/QAIG9jAWWFFX5jX/rwucbx9Hd/w253cOur1xDiWUr6xf++I3td3m75XbJnKFATERERERERkaCzduFG47jfIb2oKqk0zqPjo4xj306f3kANoN+oXsbx6jnr/MY+5frjiYp3Lxu12xy8dvt7pHXvwDl3nGJce/W2d3f5b5I9R4GaiIiIiIiIiASdLE84FpMYTVJaApUl1ca96ISmQC2tewdCQt2NBrJWNQVqfVsJ1AAuvLdpL7Wpb/6M3W7n3LtPIyU9CYA53y9kzvcLdvnvkj1DgZqIiIiIiIiIBJW66jqKskoAyOjbGZPJRFVZU6AW67OHmsVqoXOvNACy1+Zit9lhm0Btnc/+a15n3HoikTERANga7Lw9cTIRUeFc/dRFxjOv3DaJxgbbbvmNsnspUBMRERERERGRoOLt7gmQ2acTADXltca1+ORYv+e7Dc4Ez1LNDUu2AJCSnkR4ZBgAeRvym33DbDZzjk830Ckv/YjT6eTwc8YwaFw/AHLW5fHVcz/s4l8ne4ICNREREREREREJKlmrmwK1DE/TgdqqOuNaXGqc3/MDxvQ1jlfMXA2AyWQirUcHAPI3FeKwO5p957y7Tyc8yh26NdbbePf+jzGZTNzw3OWYzSYAPnzkc4pzS5u9K/s2BWoiIiIiIiIiElSyfJoLZPZLB6Cupt64ltgx3u/5AWP7GMfLPYEaQKeeHcFTuVaYVdzsO2azmbNuO9k4//LZ73E6nfQY0pUTrznO/d3qet6a+OEu+mWypyhQExEREREREZGgsnV1tnGc0de95LOxttG4ltQpwe/5boMyjf3QVsxcg8vlAqBzj47GM3kbCgJ+66IHziYsIhSAhtpGPnz0SwAuffhcYhKjAfj5/T9Z59N1VPZ9CtREREREREREJKh4l3yGhFrp2DUVgIb6pkAt2dOJ08tisdBvdG8ASvPKyN9cCECaT6CWs775Pmp4qtROvWmCcf7ZU1NwOp3EJsVw8YPnGNc/fPSLXfTrZE9QoCYiIiIiIiIiQcNhd5CzLg+Azr3SsFgtANgb7MYzsZ7KMV8Dxvgs+5zhXvbpXfJJC40JvC575P8ICQsBzxLPz57+BoATrjzaqIab+dVcNi3futO/T/YMBWoiIiIiIiIiEjQKtxZja3SHZ97lnnj2QQPA5K4q29bAQ30bE6wBoJOnKQFAbiuBmtVq5aRrjjHOP3r8KwBCw0M5546mTqCTH/tyR3+W7GEK1EREREREREQkaJQVlBvHyZ2blnY6HU4ALJbAUUnfUb0we+55O32mZCRhDXFXuLW05NPryv9chDXUCkBNRS1fPvc9ACdcfQzxKbEA/PHJLLLW5LQ6juwbFKiJiIiIiIiISNAoL6w0juNT4wBwOp1GowFLiDXgexFR4fQY2hWAzSuyqCqrxmKxkNolBYCirJJWvxsaGsLxlx1pnL//8GcAhEeGcaanE6jL5eKjJ77ayV8oe4ICNREREREREREJGuWFFcaxN1CrLq8xroWEBg7UAAaObVr2uXKWe9mnd7+12so6nE5nq9++7n+XGnu2VZfV8N1rPwFwyvXjiUmIAuCXD/4ib2PgjqGy71CgJiIiIiIiIiJBo8wvUHMvtSzObqouC40IbfHdQeP6G8dzflgEQFS8OwhzuVzUVta1+u3Q8FCOuWiccf7ufR8BEBkTwem3nAiepaefPPl1u3+X7FkK1EREREREREQkaASqUCvOLTWuhUW2HKgNP3awUcH29zfzcLlcRMdHGvd9K91acuMLl2OxuuOYiuIqpk/6DYDTbz6ByNgIAKa9+xuFWcU78OtkT1GgJiIiIiIiIiJBo7yoaQ+1BE+gVprX1KggPDKsxXcjYyIYevQgAIpzSlm7YCPRcVHG/bYEauGR4Rx+zhjj/M2JkwGIjo/itBsngKfj6JfPft/OXyZ7kgI1EREREREREQka5QGWfJYXNF3zVom1ZOypI43jv6fMM5Z8AtSU17ZpDje/fJXRMbQsv5zfPpkJwBm3nkhIWAgAP733B40Ntjb+KtnTFKiJiIiIiIiISNDwBmphEaGER4UDUFlSZdyP8qk4C+SQk0cYx7O+mUd0fPsq1ACiYiMZe/rBxvnrd7wHQFxyLOPOOsSY08yv5rbxV8mepkBNRERERERERIJGhWfJZ1xKLCaTyX3NJ1DzdttsSVJaAv0O6QXApmVbcdjtxr22BmoAt71+DSaz+/vFOaVsXLoZgAlXHm0888ObP7d5PNmzFKiJiIiIiIiISNBorHcvowzz2SutqrTaOI5JjNnuGGNOaVr2mb0uzzhu65JPgOj4aCOYw2cvtcHj+pPeOw2Axb8uJ2d9XotjyN6jQE1EREREREREgobD7gDAYmmKRHyDsNik6O2OMea0puWa6xdtMo7rquvbNZdLH/4/43jRz0txOp2YTCYmXNFUpTb1zV/aNabsGQrURERERERERCRoOB1OAKMpAEBtZZ1xHO/p/NmazL6djSqyratyjOu+Y7bFsKMGERUfCZ7Ont++PA2AYy85AmuIBYDpk37HbrO3Oo7seQrURERERERERCRoBArUfAMrb6OC7RlzqrtKzeV0GdfaG6gBHPV/hxrHXzz3PQAJqXGM9nQTLSuo4O9vF7R7XNm9FKiJiIiIiIiISNDwBmoWa1MkYg2xGse2hsY2jePtxulrRwK1Sx9pWvaZt6GAwq1FAJxw5THG9alqTrDPUaAmIiIiIiIiIkHB5XLh9FSU+YZfllCLcdxQ27ZArfeIHnQblOl3zbIDgVpsYgxdB2QY52/d425OcNAxg+jYNQWA+dOWGEGb7BsUqImIiIiIiIhIUHA6ncaxb6AW4lOh1ljXtkDNZDL5VZEBmK07FrOcf88ZxvGsKfPcY5nNjL/sKPAEgX9+PnuHxpbdQ4GaiIiIiIiIiAQF73JPtgnUrKE+gVp92wI1gKMvPMxoHgDg8gns2uPI8w4lLCIUgPqaBv78/G8Axp092nhm1jfzdmhs2T0UqImIiIiIiIhIUHDYmwIv3+WZ1rCmQK2h3tbm8WISouk1vIdxvnHJlh2e2yEnjzCOP3z0C/B0E83o0wmAFTNWU1FcucPjy66lQE1EREREREREgkKIb3Dms7QzxKdCzdaOCjWAgWP7GMfLZ67e4bld9eQFxvHGpVuoqawFYPQp7m6fTqeL2d+p2+e+QoGaiIiIiIiIiAQFi8VCZGwEANXltcb1kLAQ47ixHRVqACkZycZx9to8stfm7tDcOnRJNZoQ4IJJ938MwNjTRhrPePdXk71PgZqIiIiIiIiIBI3o+CgAqsuqjWuhOxGobbsMc+qbv+zw3E67+QTj+OcP/gKg76heJHSIA2DB9CXU1zbs8Piy6yhQExEREREREZGgYQRqPhVqoZ6GAOxIoFbkH6hNn/Q7jQ3tG8Pr9JtPwGJ1NzmoKq1m6Z8rMJvNHHKSe3+1hrpGFv60dIfGll1LgZqIiIiIiIiIBI2o+EgAbA02o6On75JPWzvDsPJtArXyokp+mvT7Ds3NbDYz5IgBxvk792rZ575KgZqIiIiIiIiIBA1vhRpAdXkNAKHhPoFao71d45UXVjS79vETX2G3tW8cryueaGpOsPLvtTQ22hh29CDCo8IAmP3dfBwOxw6NLbuOAjURERERERERCRr+gZp72WeYz5JPe8OOBWqRsRGMGD8EgPzNRfw6ecYOza/3Qd2JT3XvmeZ0OPnsP1MIDQ9l5PFDAagormLV32t3aGzZdRSoiYiIiIiIiEjQCFShFuJXodbOJZ+F7iWf8alxXPCvM43rHz3+5Q5Xko2/7Ejj+NvXpgMw6sThxrUlv6/coXFl11GgJiIiIiIiIiJBwzdQqyp1d/r0q1Brx1JNW6PNCOXiU+MYeGg/Yw+07LV5/PnZ7B2a44X3nYnJbAKgJKeMLauyGXRYP+P+ilmrd2hc2XUUqImIiIiIiIhI0EhMSzCOC7cWAxAWEWZcsze2vaqsorjKOE5IjQXgfJ8qtcmPfYHT6Wz3HMMjw+k9oodx/tbdH5LWvQMJHdxLQVfMWqN91PYyBWoiIiIiIiIiEjQ69exoHOdtyAcgdAcr1Epyy4zj+BR32DXsqIH0H90bgM3Ls/j7m/k7NM9LHzrXOJ4/fTEmk4kBY/sCUFtZx5YV2Ts0ruwaCtREREREREREJGh09gnUcj2BWnhkU6DmsLW98it7Ta5x7A3qTCaTX5Xah498jsvlavc8R4wfSmRMBAC2Bjvzf1rCQE+gBrBippZ97k0K1EREREREREQkaCSnJ2INsQCQs94dqIVF+iz5tLc9UMtanWMcZ/TtbBwfPGEYvQ7qBsC6hZuY+8PCHZrrwMOaArRvX57GgLF9jPPlCtT2KgVqIiIiIiIiIhI0LBYLad07AJC3oQCXy0W4T6DWngq1raubll1m9msK1LatUnvtn++3aymp1wlXHWscL/trFT2HdTMaKKyYuabd48muo0BNRERERERERIJKWg93oNZQ10hJXhlhUT6BWrsq1NxLPkNCrXTsmup3b+xpBxt7qWWtzuHrF6a2e56jTx6O2eKObqpKq6ksqaLvqF4AFGwpoii7pN1jyq6hQE1EREREREREgkqnHr6NCQqIiA43zh32tnXldNgd5KzLA6BzrzQsVovffZPJxA3PX47JZALg/Yc+ozS/LOBYLTGbzWT06WScf/38VAaMaVr2qX3U9h4FaiIiIiIiIiISVHwDtZz1+UTsQIVa3qZCbI3uZZwZfTsFfKb38B5MuOIoAGqr6nj7no/aPdfDzjzEOJ759VwGHurbmEDLPvcWBWoiIiIiIiIiElQ6+XT6zF6TQ3xqnHHeWG9r0xi+DQky+6a3+Nxlj55HVFwkANPe/Y3Vc9e1a66n3jShaa7r8uhzcE/jfP3iTe0aS3YdBWoiIiIiIiIiElS6D+5iHK9dsJHQ8FBMZvfSzMb6xjaN0VKHz23Fp8RxyUPnGucv3fw2TmfblpUCxCfHEpccA4DT4WTxr8tJ6pQAwNZVOdt5W3YXBWoiIiIiIiIiElRS0pNI7pwIwJq563E4HEb3TJfTRW113XbH2Lwyyzhuacmn18nXHUfXARkArJ67np/e+6Nd8x18xADj+Ic3fyGzn7sirrKkivKiinaNJbuGAjURERERERERCTrebpm1VXVkrc41lmUCbFqyZbvvr56zHgCL1UKX/i0v+QSwhli57tnLjPO3Jn5ITUVNm+d66vXHG8erZq8l06ciTlVqe4cCNREREREREREJOv08gRqekCouOdY437C09UCtsqTKWPLZ66BuhEWEtfo8wEFHD+KwM0cBUFZQwVsTJ7d5rkOOGIA11ApAbWUdsSkxxj3fpaey5yhQExEREREREZGg09cvUFtHkmcJKJ5GBa1Z+fda43jAmD5t/ubVT11sLC399tXpzPtxUZvf7TYw0zjesLgp8FOF2t6hQE1EREREREREgk6v4d0xW9yxyLIZq6ivrjfu5W8qavXdFbPWGMf92xGodeyaytVPXWycP33FK1SWVLXp3SPOHWMcr1uwwTjeujq7zd+XXUeBmoiIiIiIiIgEFYfDwcYlW4hNci+dzF6Ty7K/Vhn3i7JLWn1/5d87FqjhaVAwYvwQAErzynj2utdxuVzbfe+k645rml9WibHnmyrU9g4FaiIiIiIiIiISNMqLKrh68O3ceui9lBcG7pBZXlTZ4vt2m501c90NCTp2TSG5U2KLzwZiMpm4/a3riUmMBuCvz2fzy4d/bfe9yOgIEtMSjHNvGFi4tZi6NnQllV1LgZqIiIiIiIiIBI0Nizdvt6qrprzlDpwbFm+moa4RdqA6zSu5UyK3vHK1cf7CjW9SuNW9zDR7bS4NdQ0B3xt+7GDjuM5niWr22rwdmofsOAVqIiIiIiIiIhI0hhwxgH6H9Gr1GW9gFojf/mmjdyxQAzj87NEcfeFh4Onc+fiFz/PwOc9wWd9buH7EXdht9mbvnHbzCcZxVVm1caxOn3ueAjURERERERERCRrWECuPfn8P3QZltviM0+GksdEW8J5voDZg7I4HagA3Pn8FKRlJACyfsZq/Pp8Nnn3R1i3c1Oz53gd1J9TTJdRhcxjXC7Na3/NNdj0FaiIiIiIiIiISVGISonli2r106tmxxWc2L89qds3hcLD41+UARMZE0G1gy6FcW0THR3HmrScFvLfq77UBr/ca1q3ZteLtNFGQXU+BmoiIiIiIiIgEncSOCTw5/T5jc38Ai7UpJtm4ZHOzd9Yv3ERlSRUAw44eiMVq2ak5/PLhX7xx1wcB762cvSbg9WMuOrzZteLc0p2ah7SfAjURERERERERCUodu6by5PR7MVvc8UhsciwAEcmxZBVVk1NRR15lPaW1jTidLuZPW2K8O2L8sJ3+/ht3vY/D7gh4b2ULFWrHXXYEmMBstZDQqxMdR/aiMSaS/Kp66myBx5Jdz+RyuVx7exJ7S2VlJXFxcVRUVBAbG7u3pyMiIiIiIiIie0FBVjGLVuSwtaoRR3QEkSlxzZ4xm6BqcyEbf17Muq9n89rfj9Kxa+pOffeVf7zLl8993+L9j7JeJblzknFe1WBnbVE1s2auJSojBUuotdk7kSEWkqNC6Z4USUZ8BGaTaafmKIEpUFOgJiIiIiIiIhKUHE4XKwuqWFVYRZ3N2eb3XE4nmYlRHNQ5jviIkJ2aw6o56/j8v98y44vZOJ3+Ec3VT13E2befQmltIwtzKsipqG/X2JEhFvp1iKZ/hxgFa7uYAjUFaiIiIiIiIiJBp7S2kRmbSimrC9zNsy3MJhjaKY4BHXc+sMrbVMCXz37Pd6/9hL3RDsC5d53GyJtOYmleJc6dSG+SIkMY2y2RBE+HUNl5CtQUqImIiIiIiIgElQ0lNczcXMquSkTSYsI4smcyIZad36q+srSK126fhA0TQ+88k6KaHQ/8fJlNcFi3JLomRu6S8YKdAjUFaiIiIiIiIiJBY32xO0zb1VKiQjm2d8ouCdUa7U6mry2kpHbXhGm+DuuWSPekqF0+brBRl08RERERERERCQp5lfXM2g1hGkBRTSN/bSplZ+uWXC4Xf2ws2S1hGsCMzaUUVjfslrGDiQI1ERERERERETng2RxO9zLP3fiNrPI6NpbU7tQYa4tqyK1sX/OB9nC5YOamUuyOtjdhkOaa91cVERERERERETnALMiuoKbRwfnDOlNS2wjAsrwqcivrA17bUXOzykiLDScy1NLud6sb7MzPLm82n5pGO4d0SQDAajZjAr5bVbDDc6xssLMot5KRGfE7PEawU6AmIiIiIiIiIge02kYHa4urAahudDBtTZHf/UDXdlSjw8XqwioOSm9/WLWyoAq70xVwPt7zPinRhFp3rqMowOrCKgalxRBubX/wJ1ryKSIiIiIiIiIHuHXF1UZHz6gQC8f3SeGwbomEeRoIBLq2c9+rweFs3+JSm8PJ+pKa7c6nW2Ikm3ZyWSmA0+Vu0CA7RhVqIiIiIiIiInLAcrlcrPMJjr5cnkeD3UnPpCiGdY5j9taygNcAxvdJISUqDKdPo4EF2RWsKapu9Zv1didZ5XV0TYxs8zy3ltdhc7hanCNAVKgFk8ldUeeVGh3KoLRYUqLCMAHVjXY2ltayqqCK7WV664pqGNgxts1zlCb7bYXaK6+8wuDBg4mNjSU2NpbRo0czderUvT0tEREREREREdmH1Noc1PgEUA1292b8m8pqSYwMafGa14LsciYvyjH+bS9M82pvJ83CqqbnW5pPt8RINpc2Vaelx4VzTK8Ucivq+Wp5Hh8tzuGPjSXEh4cQEbL9pZyVDXbqbY7tPifN7bcVaunp6TzxxBP06tULl8vFpEmTOPXUU1m0aBEDBgzY29MTERERERERkX1ASU2jcWw1m3A4XbiAjtFhVDbYA15rC6vZxPD0ONLjIrCYTeRW1DMnq8yoMiuptbVvnp4mBK3Np2tiJD+vbdpb7eDMBJbnV7GqsCnkq6y3M3NzqXEebjUzKjOBjjFh2J0uNpbWsjinwuh2WlLbSOe4iHbNVfbjQO3kk0/2O3/00Ud55ZVXmD17tgI1EREREREREQGgrK4p2IoNtzKmayI2hxOnE2ZtKQ14rS3Gdk3E6XLxzcp8XC4Y0yWBUZkJzNhU6vlu43bH8HK5XMY8W5pPfLiVBruTek/1WmyYlZgwK5tKW98HbVz3JOpsDr5YlkeY1cwxvVKwO5wsy68y/j4K1Npvvw3UfDkcDj777DNqamoYPXp0i881NDTQ0NBUQllZWbmHZigiIiIiIiIie4O3YgygtNbGdysL/O7XNDqaXfN1UHocQzvFGeefLc3FYjaRmRDBJ4tzjPEX5VZy6oCOzNxUiguwO1y4XC5Mpu135HS6MPY7CzRHgPJ6Oz/5VKeFhZiN+bckMsRCWmw4nyzOwe50YW90sDSvkiGdYo1Aze5oX/MEcduvA7Vly5YxevRo6uvriY6O5quvvqJ///4tPv/444/z0EMP7dE5ioiIiIiIiMj+a2F2hd+SSoC48BDMJhNnDurU7PmIEAu1nn3J2hKmAbTtKX8NNnelWlSohaqGwKFaZKgFu7Opqg2gqsFOVBv2V5PW7deBWp8+fVi8eDEVFRV8/vnnXHLJJfzxxx8thmoTJ07ktttuM84rKyvJyMjYgzMWERERERERkT0pxLIjcVXrahrtOF0uPl2ai6OFVprt+a7JBGYT2+3K6auywU5Vg52uiZEsy6sK+ExtowOr2Uy41WyEatGhFmp8GhHsjr9PMNhvu3wChIaG0rNnT4YPH87jjz/OkCFDeO6551p8PiwszOgK6v0nIiIiIiIiIgeuhIiQNjzVPvV2J1nldYzKjCfM6o5Wwq1mMuOb9iKLjwht83gmk2mH5jl3axmDOsbSNzWaMIt7HrFhVsZ0SSAq1F0pl1dZz4iMeKxmE1GhFganxbKhpGnftfbMU5rs1xVq23I6nX57pImIiIiIiIhIcEuK2j2B0YxNpQztFMeJ/ToQZjVTb3OwubSWreV17u9Gti8gS4oMbXdn0OyKen5eV8TgtFiGefZ5q260s7GkljpPFdqfG0sYlZnAmYPScLhcbCypZXl+U0VbUtSuDxyDwX4bqE2cOJEJEyaQmZlJVVUVkydP5vfff2fatGl7e2oiIiIiIiIiso+IDLEQFWppdfP+lkxbU9TiPbvTxfzscuZnlwe83yEmrF3fSo0JY21x6x07AymsbuTndcUt3q+3O/ljY0nAe7HhVsKt2k9tR+y3gVphYSEXX3wxeXl5xMXFMXjwYKZNm8axxx67t6cmIiIiIiIiIvsIk8lEr+QoFudW7rFvhlvNpMdFtOHJJl3iI5hrMdG4B7tu9k6O2mPfOtDst4HaW2+9tbenICIiIiIiIiL7gV7J0SzJq8S1h7KqXslRWMzt2+zfajHTMzmKlQXVbXh651lMJnooUNth+22gJiIiIiIiIiLSFpGhFnonR7OmaPeHVaEWE1unzufzr+cyeFx/Mvt1JjUjmZSMJGKTYjCZWg7a+neIYW1RDfb2tPvcQX1To7XccyeYXK49lc/ueyorK4mLi6OiokIdP0VEREREREQOYDaHk29W5FO9A3uptcdBSeHc1uP6gPfCIkLp3DuNa5+5hGFHDQr4zJqiamZvKdutc4wNs3LygA5Yzebd+p0Dmf5yIiIiIiIiInLAC7GYGds1kfYtxGyfzPgIeqTGYLYEjlsa6hrZuGQLn//32xbH6J0cRefY8N02R7MJxnZLVJi2k/TXExEREREREZGg0DE2nLHdEnfL2KnRoRzWLZHIqHAue+S8Vp8defywFu+ZTCZGpUVTvSl/l8/RBBzWLYnU6PZ1IJXmFKiJiIiIiIiISNDokRTFYd0SaWfPgFZ1jApl7gOT+e+Vr1BZWsXZd5xMj6FdAz6b0CGO8Zcf1eJYLpeLV256i+8vf56ChRt22RzNJkgqKOaFM57k909nEcQ7gO0S2kNNe6iJiIiIiIiIBJ3S2kZmbi6ltNa2w2NYTCaGdY7l539/zHev/ASANdTKydcex4CxfXjk3P8FfK/3iB7c9+ltdOya2uzeNy9P44Ub3wQgIiaC2/94lK0O2Jk+BclRoYztmsh5CRdjb7QD0H1IF/7vrtMZd9YhWNScoN0UqClQExEREREREQlKTqeLlYVVLNpYjDM0pO3vORxkxEUw579f8/ubP2MymZpVfJnNJpLTkyjcWmxcs1jNOOxOAGISorjr/ZsZdcJBxv2Vf6/h9iMewG5zN0649+N/cPg5Yyira2RhdgVZpbWYWtifLZCoUAu9kyK4q+f12BvsmM0mnNskc6mZyZxxy4lMuPJoImMi2jx2sNOSTxEREREREREJSmaziYEdY9nw3y/548532PrrUmoKAnfYtNc3UrpyK0vfmMZXpzxC7a+L+evd38CzTHNbTqfLL0zrPrgLz858hLTuHQCoKqvh3pMe5517P8LhcFBdXsOj5z1rhGln3XYyh58zBoCEiFB62hv46rRHWPbWdMpWZ2OvD1xZV51Xin1rAcm5hYxLCKXo92XYG+zGnLZVuLWYV2+fxCW9biJ7Xd4O/BWDk3VvT0BEREREREREZG+x2+ws+mkptVV1lC/eSFV5DWEJ0XQckEl8WgJ56/NpqKimcksROF1GePbWxA+JiA6nurxmu9+ISYzmiWn3ktAhnpfnP8lTl73ErCnzAJj82JesmrOOqLgII4AbdFg/rnziAr8x5v+4mNqCcpa89iO538+lOK+c2C6pdBnalcKsEuz1NqqyimgoryGhQxxlBRVYrGbunHRDm/4O5YUVrJi5mvReaTvwVww+CtREREREREREJGitmr2O2qo6ADL7p7Ni1hoayqqxF5QREhVC4aLAjQFqq+qISYre7vghoVb+8fq1JHSIByA6PooHv/wnnz39DW/dMxmnw8miX5YZz0fFRXL3+zc129ds/vTFxrHd5sDlcFKxMZ+lG5t3A60oqQLAYXfy0i3vtunv0H9MH6MiTrZPSz5FREREREREJGgtmL7EOI5NijGOkzslktwpsdV3q0qqtzv+9c9fzmFnjPK7ZjKZOOefp/LULw8Ql+K/p/shJw8nJSPZ71pjfSNL/1gJQEpGEnXVDa1+0+nZpw2gsrhqu3NM6pTAkz/dR3hk2HafFTcFaiIiIiIiIiIStJbPXG0cO332QuvYPZXk9KSdHv/T/0wxKuC2NWBsH2NPNa9fPviLf5/zDDWVtca1dQs30ejZM23oUQNpqG09UGuvktwypr7xyy4d80CnQE1EREREREREgpLdZmfN3PXg6XZZXlhh3Mvs25nUzKZKMbO17RGKNcxK14GZAORtLODV2yYFfO6TJ6ewes46ACJjmzps/vXFHG48+G7yNhUAsMIn9OvaPz1gE4Qd0XdUL+P4zbs/YMuq7F0ybjBQoCYiIiIiIiIiQWnDki3Ue6q9BoztQ1l+uXGv+9CuZPTpZJzHxG9/vzSvsIhQHvzyDiKiwwGY+tYv/P3tfL9n1sxbz3sPfgqebqOPfjeRh6fcRXR8FADZa/O4dey9bFiymZV/rzHeW/Tr8h3+vds69PSDOe2mCQA01tt48qLnsTUG7h4q/hSoiYiIiIiIiEhQWjmrKajqP7oPVWVNe6L1Ht6dzH7pxnlIeEirY3Uf3AWzxR2z1JTXMvWtX7nuf5ca9/971auUeSrg6qrrePzC53HYHQCcN/EMBh7aj9Enj+Dl+U+S0bczAKX55dx2+P0s/t29f1pkbATzpy0J8PW2MVvMDDligHE+6cFPufjhc43vrVu4iQ///cUOjx9MFKiJiIiIiIiISFDyrfwaOLYvDbWN4GkaEJsYQ2xSDHHJ7kYF9bX1LY4TmxzDc7Me5azbTzauff7Mtxx21iGMPmUEAOWFFTx7zWu4XC5eu/09ctblAdD34J5ceP9Zxntp3Tvw7F//pt8h7uWYtZV11JTXAJDRp/MO/c6UjCRemvcEUxs+4onp9xLmaT5gq7fx0o1v+XUV/ejxL/3+LhKYAjURERERERERCUorZrqDo/CoMNJ6pOJ0uLtjhkaEGs94q9SqS2uM5Zjbqiyu4se3f+WKx84nKj4SAIfdwZMXvcA/Xr+WeE8nz1lT5vH2PZP5/o2fje/e9f7NWEOsfuPFJsXwn58fYNSJB/ldj+8QS+deHf0/bgr820YcP5QOXdx7wJUXVtJtUCZmsxmr1crV/7nQeO7XyTOIT4nlogfOBsDpdPHkxS9QVx24kYK4KVATERERERERkaBTmFVMUXYJeDbn37wsy7gXFRdpHGf2baoKGzC2T4vjffrUFBx2B7e8crVxbc73C3E5nfzjjWuNa588NcU4vvzR80nvlRZwvPDIMB788p+k9266P+e7hVSVVvs9N3L8UD7Y9FKz9yOiwxl4aD8AbA02Ni7datw75frjSclwdzB1uVw8ddnL/N9dpxlVcbkbCnhr4uQWf6soUBMRERERERGRIOS7f9qAMX3YsHSLcR6fGmsc++6j1mdkz2bjhIS5q8uKskr4dfIMjjx3LB27pYInrHrmylcYc8pIjr/sSPc1p7tDZ89h3Tjl+vGtztEaYsUSYvG7VlniH6h16Z9Bhy6pxtJUr6KsYvoe3NTFc9XstX73//nODcbx4t+XU1ZYwV3v3US4Zznot69MY9OyLUhgCtREREREREREJOis2CZQKy9o6vAZk9DU0TOjX1OFWn11PWGRofiyNdiN40+e/BqHw8GNL1xhXJs3dTHlxZWcedtJfsszT7zmWGPfspZUl9ewdWUOACnpiZhMzdd3dh2YAdsEfwDlBRVGxRnA6jnr/O4PO2oQad07uE9c8MyVr9C5Zxrn3XMGeJZ+vnTLO7hcrlbnGKwUqImIiIiIiIhI0NmwZLNx3HdULyqKq4xz373SuvgEalvX5NB7eI9mY2V6nslak8vMr+Yy6oSD/JZU/u+qV/nw0S/BJ5v6/rWfcDgcrc5x07KtRqB1yEkjuGfyLc2eSc1w75PmuzQVoKqshu5DuhAS5u5OumqbQA3gxhcvN44XTFtCWWE5Z912khG0Lfl9BX9+PrvVOQYrBWoiIiIiIiIiEnSyVrkrvxLTEohJiKaypClQi0lsqlBLTk8ylkFuXZXDsZcc0Wws3+6bHz3+FS6Xi+v+d6lxbdY38/j945kAmC3uKGb9ok38+Navrc5x66ps47jLgAyOOHcs2xapvXn3B9RW1ZGxTaBWX9tASGgIvQ7qBkDu+nwqiiv9njn4+INIzXQHcu7g7zVCw0O59r+XGM+8dsck6msbWp1nMFKgJiIiIiIiIiJBpbKkivIid7iU2bcTeJZXevkGamazmQzPM/kbCzjsrFHNll5WV9TQa3h38ARl86ct5rAzDiGpU4L7AZ/KtLNuP9k4fvtfH1FV5r8nmq+s1TnGsTcw23YF5toFG7n/1CdJ657qd91hc+B0Ouk9oqmibtOyrWzr+ueaqtRmf7+AytIqRp88ghHjh4Bnb7hPnvy6xTkGKwVqIiIiIiIiIhJUstbkGsfe6rKailrjWnxKrN/zPYa6q7ycThcbFm2mQ7cUv/v5Gws5b+IZxvnkx74E4JqnLvZ7rs/BPbnisfM58ryx4An23nvg0xbnudVnnpl9O9HYaPO7721YsOT3FUx5eVqz9xvrG0nv3ck4z91Q0OyZsaeOJKmzO/hzOV08e83rmEwmrvvfZcYeb5/8Zwp5m5q/G8wUqImIiIiIiIhIUPGt/PJu5l9XVW9ci+8Q7/f8wEP7GscrZq5h9EnD/e4Xbi1m5IShRhXZ8hmrmTt1EQN83gOIT47FbDZz1ZMXGctIv2mlm6Z3npExESR1SqQsr8zv/pHnjiEiOhyAhT8tNY696qrr6dSzo3Geuz4v4HeuebppiefMr+ZQU1lLZt/OnH7zCQDYGmy8/s/3A74brBSoiYiIiIiIiEhQ8d2bzLucs76mKVBLTPMP1AaMbQrGls9czem3nOh33+VyUbS1mIsfONu49urtk3j/oc/8nps/fTH1tfWkpCc1ddN0OHn51ubdNBvqGijYXGTM0WQyUZxd6vfMqBOH8+9v7jYaD9RV1/vdr62qo1OPDsZ57sbAVWZHnjuWhI7u3+x0unju2tcBuPD+s0joEAfAjC/nsPDnpQHfD0YK1EREREREREQkqPgt+fRUldXXNhrXkjsl+j3fuWdHYxnoqr/X0qFLCpGxEX7P5K7P5/BzxtB/TB/3N1bnMO3d39w3PVuuOexOXrr5HQC/bpqLf1vBvB8X+42XvTbPCNm8cyzZpkJt8OH9GXLEAO7/7HZjeaavhpoGOnRJMRoh5K7Pb/FvcuUTFxrHf3z2N/W19UTFRnLF4xcY19+8+4NmwV+wUqAmIiIiIiIiIkFlq2cpZXhUGCnpSeDZb8wr2bOnmJfJZDKWb1aX17BlZTb9R/f2eyZ3QwEmk4nrfbp7upzu8OngCQcZ1356/w8a6xsJDQ/lyieawqoPH/3CL6zya0jg2eetYGuRcS0kPITEju55HnLScO5676ZmzRLqaxqwhljp2NW951vehoIWA7HjLj6cOE9o6HQ4eeHGtwA49uLD6TnMvYfcuoWbmDt1UcD3g40CNREREREREREJGo0NNvI9Sx8z+nY2Qih7o914Jjo+utl7A8b4LPucsZoJVxztd99b/dVnZE/GnDrSuB4SFsI9H95MdEIUeLpvvnrbJAAOPWMUXQdkALBy1hqW/L7CeC9rtU9Dgn7uQG39ws3GtdhE/zke+X9jufnlK/2u/fzBnwCk9XDvo1ZbVWd0Nw3kskf+zzj+5YO/aKxvxGw2c/6/zjSuf/jI56pSU6AmIiIiIiIiIsGkYHMhTk/lWHrvNOO63eYATzVaIH6NCWat5tAzRmGxNsUqa+atM459Ayd7o53i3DIuvO8s49rUt3/FbrdjNpuNvdTwhFVeORuaGgh4O3X67v2WnO6/LBXgpGuOwxratPTz21em8+M7v9GpR1NjgrwNLS/7PPGqY5uCP7uDl291L08de9pII/hbNXsdi35d3uIYwUKBmoiIiIiIiIgEjfLCpgqtpLSmUMrpdAJgtgaOSnoO60pouHvz/xUzVmM2mxl8+ADj/oYl7k6dm5Zt4e9v5hvXXS4Xr93xHqfffIKx75q90c4bd34IwOHnjKZzL3ewt/i3FSyfubr5PDu5l3YW+iz59A3JfEXHR/md/++qV3DYHcZ5Tiv7qAFc/OA5xvG0d3+nsdHWLPib/OgXrY4RDBSoiYiIiIiIiEjQKC+sMI7jU90dLJ1OJ3iKyqwhzTf3BwgJDaHPwT0ByN9cRHFuKVc+fr5xv7HeRmOjjUkPfmpci4qPBGDe1EXMn7aEc+86zbj37avTsNvtWCwWzpt4unHdG1Z552mxWoiOj6Kupp7K0mrjuZSM5IDzjIzxb5bgdLr4dfJfxnlJblmAt5qcftMJRMW5521vtPP6He/DNsHfkt9XsHzGqlbHOdApUBMRERERERGRoOEfqMU2uxYSFtLiuwPH+uyj9tcqeo/o6ddd8+Wb32bmV3MBSExL4PpnLzfuvXbHJM667STCo8IBsNXbePe+TwA4+oLDjMYB835czJr5G4w5xafGYjKZWDlrjRH6AUbX0W1FesIwAGuoFTzNCbxqymta+/MAcL5PNdoPb/wUMPj7MMir1BSoiYiIiIiIiEjQ8F1K6a1QK84uMa55l3UGMuSIpiWes79fAEBKRpJxbfqkP4zj8yaezrEXjTO6gW5dlcMPr//C2befZDzz9fM/4HQ6sYZYOfcun7Dqkc+NeXrn6NuwACChQ1zAOfrO395oJ617qt/9qrLqAG/5O+v2k4mI9gR/DXbenjgZtgn+5k9bwuq561od50CmQE1EREREREREgkZZgCWfJXlNyyDDIsNafHfw4f2NfdDmfLcQu81OrxHdjPu2Bht4QrYTrjoGk8nEdf+71Lj/3oOfcMqNxxMWEQpAQ10jHzz8GQDHXXoEyZ3de7r9/c18Y98z7xwX/LTUby6JaQkB5xgS4h8Ijjn1YCMcA1g5e/shmNls5ux/nmqcT3l5WsDgb/JjX253rAOVAjURERERERERCRrlRU2BWoJnyWdpfrlxzTd82lZIaAgHn3AQANXlNSz7axXxSc0rxc645URCPUtH+x7ci2MuGgdAVVkN7/7rY067+QTj2c+e+Q6n00loWAjn+IRYXvGpseRvLmTt/A1+15M6Ne/yCWANs/qdr/x7Dbe+drVxvmnpFub9uKjF3+h1wb/OMMLFxrpGJj3g3htu2+Ava03Odsc6EClQExEREREREZGg4btfWpxnH7LyoqZloNtu6r+tMaeMNI5nfT2PqG26agIce8nhfudXPHY+4VHucOr7N35m4GH9CfEszayvqefjJ78GYMKVRzfr0hmfEsefn/3d7BveUGtbIaH+gdqq2esYeFg/v2uPnf8cOevzWv2dZrOZM25tCv6++F9T8HfGLSca16e++Uur4xyoFKiJiIiIiIiISNDw7k0WGRNBWIQ75Kr0CdS2DbS2dfCEoUYn0FnfzDM6YvryNibwSu6cxNX/ucg4f/7a1xh/6ZHG+adPTQEgPDKMYy4c5/dufGocf37ePFCLim3+XVpoqjDvh0VExDRV3lWX1/Dg6U9RV13X6m+99OH/M/Zka6ht4LOnvwFPYOj9G/z03h/YGm2tjnMgUqAmIiIiIiIiIkGjstgdnsUmxzRdK2naqD86IbrV96Piohhy5EAACrcWU1tV2+yZz57+ttm1k649joOOGQRAUXYJdVV1RihVU17L/GmLATjhqqO3edPFmnn+yz1NJlOL8wvZZsknnuAvxvO7zBZ3FLR5RRZPXf4yLper2fNeZrOZk6451jj/+sUfwVM1N/b0g8FT3TdryvwWxzhQKVATERERERERkaBha7TDNt0wfTtfxia2XqEGMPbUpmWfy/9a3ex+9tpcSvPL/K6ZTCZuf/M6o6nBLx/+RfchXYz7kx78BIBug7qQ2iXFuL741+XNxjdbW45zfCvUvM0PFv28zFjKarGYjTn89flsPn7i61Z/6yX//j8jwCvOLjH2TDvhymOMZ3548+dWxzgQKVATERERERERkaDhdDjBp1ILT4WYV6xnX7XWjD5lhHG8dsFG49h3WeVb90xu9l5qZgrX/e8y4zxvU4FxvGbeBupr6wHof0gv4/rK2WubjWMNaV6F5hXqE6h5O4HaGu00ejqQ2hrt3P3+zUZI9s69H7H4t+ahnVdkdAS9hnc3zt+8+0MAhh41kI7dUgFY+NNSv98SDBSoiYiIiIiIiEjQCBSo1frsJZaQ2rxr57aSOyfRe0QP8Owt5nXQ0YOM47++mB3w3fGXHsEhJw0HoKqkhtAIdwDmcrqY/MiXAHQb3FS5VlflDtm69E83rgVa1mncCw81juN8wsGqUncVntlsYvTJI7j4wXPc33W5ePryl6mtank/Ne+zAPN+XITT6cRsNvtVqf341q8tvn8gUqAmIiIiIiIiIkHDG6hZfAI17zUAa2jzTf0DGeOz7NOr76hexpLLuqp6/v5uQbNnTCYTt752DTEJ7qWljXVNG/r/+M6vnrlZmr036sThxrHZ3HKcE+azlDUiJtxY3llTXuN+1/O7z//XGQw+vD8ABVuKeO32SS2OOeqEg4zqO1uDnWnv/g7AcZceYYw37d3fcNgdLY5xoFGgJiIiIiIiIiJBw2FvXqHmu4Sysa6xTeMcduYhza5ZQ6yMPH6ocf7+Q58GfDcpLYGbXrqq2fWyggrWLtzoF/B5jTu76XuB7nuFRDRVqDltTg49Y5T72OluPuD93WazmTvevp7wKHen0x/e/IV5Py5qcdxxZ402jj/zdCVNSktg9MnuoK8kt4w5Pyxs8f0DjQI1EREREREREQkKLpfL6GrpF6iFNlWENdQ1BHx3W+WFFc2umS1mrnziAuN8/cJNfstJfR1x7hgOO6t5KPf2PZMDBmZmn86erQVqvhVqNpuNCVf4dw31/d1p3TpwzdOXGOfPXPmKX4MGX5c/ep5xnLWmqenCBJ9ln1Pf+qXFeR1oFKiJiIiIiIiISFDwDaJaqlBraGOF2p+f/d3smtliJqNPZ1IyksAT4H3w0GcB3zeZTNz80pXEb7Nn2+Jfl+Ow25s9//e3TctHnc5WAjWfCjVbg50BY/qQ2a+z33d9nXj1MQw/bgh4qsxevvWdgOMmdkwgvXcn4/ztf30EwIjxQ0junAjAgmlLWt2L7UCiQE1EREREREREgoKjhUAtxGffNFu9rdl7zcdx8NeXc5pdt3k6aZ507XHGtenv/dHiOPEpcdz66tX+Y9sdLP1zVbNnZ06Zaxy3VqFWV11vHIeEWTGZTH7NA+zb7HNmMpm4/c3riIqLBODn9/9k5tdzCeScO081jv/63N10wWKxGPvJ2RrtzPtxcYtzO5AoUBMRERERERGRoODyqezy3djfGta+CrUVM9dQmude8hiXHGNcXzt/IwDn/PMUI7CrKKpk1Zy1LY419rSDOe7SI/yurfx7jXEcHe9uXrBxyRbjmnc/tEDKiyuN46g497vHXDTOuGZvsNPY4B8apqQncf2zlxnnz177OhU+43iNv/QIo8NobVWd0XTBt0HD39/Ma3FuBxIFaiIiIiIiIiISFELCQjCb3Use62t8KrlCfZoStKFCzXe554CxfY3j5TNW4XK5sFqtDDq0n3H97Xs+anW8m168kq6DMo1zW0PTks9B4/o1e97VSqBWWVxlHHs7icYlxxIW6V4K6nK5mBWgAu3Yiw9n9CkjwLM/3HPXv2HsN+dlNpsZMb6p6cIHD7uXsw4+vL9R4Tbn+4XYbc2XrB5oFKiJiIiIiIiISFAwm81G8FNdXmtcDwnzWfLZ0Hqg5rvcMyQshH6jehn3inNKWT13PQCXP9a0if/SP1e22JwAIDwyjEe+udtvGapX34N7Nbu2bdDlq7q8xjiOSWyqnrNamxov/PBm8+YBJpOJW1+9mpjEaPAs6fz9k1nNnrvqyQuN43ULNlJfW09IaAgHnzDM+H6gJasHGgVqIiIiIiIiIhI0ojxLKGt8gqdQn86YjdtZ8um73HPE+CHUVPoHZT+88TMA/Uf3MRoOOB1OXrjhrVbH7dAlhfPvOaPZ9fCoMDr16OB3rbUKtRqfoDAuJRY8+7L5znPRL8vI3ZDf7N3Ejgnc8vJVxvkLN75Jiee3emX06UxyelPThfcf/hyAMaf4LPuccuAv+1SgJiIiIiIiIiJBw7snWVVZjVHp5ReobadCzXe557izRlNR5L/X2O8fzzSqxC575P+M6799NIPG+tbDuqPOP7TZtey1uYw59WC/ay5aDtRqfYIz7/5ulSVVzZ7zBn/bOvycMRx+zmgAqkqrefW2d5s9c9K1xxrH0975DYCRE4ZhDXFXwc2cMrfVKroDgQI1EREREREREQka0fHuJZ8Ou4P62gbYJlBrbcmn0+n0W+45+pQRlBdV+D1TX9vA1y9MBeCEK48xllA67A5euuWdVuf2zcvTml37dfIMhh410P9iK1lVnc/S0sSO8QCU+4R+Js8ect++Ot1veaivm1680gjjfv9kFitmrfG7f/Yd/k0X1s5fT1RspDHPoqwSNize3Opv3d8pUBMRERERERGRoOFd8onPss+Q8FDjmq2x5Q31Ny/PMpZ7Dj92MFGxkZQXNgVq3pDpy+e+p7bKHWxd8uA5xv3p7/5GY2PgwK6soJwf3/q12fWailq+ev57v26irfGGhABJnRLA02TAq9tAd/OD2so6I/jbVlxyLJc83FRd98o/3sHp0yE1NDSEgT7NGN6cOBnAr5JuZoDGBwcSBWoiIiIiIiIiEjSi45oCNW9jgjCfCjV7Q8uB2pLfVxjHw44eBEB5obv6KyYx2liyWVVazbevTAfg1BsnGI0Q7DYHr93+XsCxP37iayMMi4gO97u3YPpSEtMS/K7Z7YHn6dulNLlzkt8cAUadeFDA4G9bJ1x5NF0HZgCwZt4GfvnwL7/7lz/q03ThjxXY7XajSyjA7O8WBBz3QKFATURERERERESChnfJJz4dMUN9KtTsrVSoLfmjKVAbfHh/8Kn+ik+N47yJZ2AyuZdUfv7fb42A7IJ7zzTem/rmz83CsOKcEr591R3AhUWEcuZtJzb79qZlW/3OG2oD78fmu2Q1oWOc3xwBMvulc/QFh4En+Au0zBTAYrVw3f8uM87fmvghdTX1xvmAsX19lrM6+eq5H0julEiPoV0B2LB4MzUVgZeUHggUqImIiIiIiIhI0IhOiDaOvZv1h0b4LPm0BQ7UnE4nS/9YCUBMQhTdB3ehoa6Bump3yBSfGktm386MO/sQ8IRYU9/8BYAz/3ESETHuqjNbg5037/7Qb+zJj31lBGGnXD+eC+87e7u/w/vdbfkGglar1ZiLlzv4O90I/r7wCf62ddDRg4yqs5LcMj79zxS/+8deNM44nvLijwAMGNMHPB1AV85et93fsb9SoCYiIiIiIiIiQSMlI8k4LthcBEBYZFOg5mh0BHxv8/IsqkqrARg0rj9ms9mvw2d8qrsa7Px7mqrRPn1qCo0NNsxmM+f+81Tj+rcvTzOq1Aq2FDH1TXfHzfCoMM6581QsFovfnGID7J9WVVYdcJ4Oh3uvM++yTpoFarFk9OnM4eeOcd8rquSH1wN3/AS4+qmLje6dnz41hcKtRca9ix861wjmCrYUkbepgIGH9jPur5i5usVx93cK1EREREREREQkaHTq0dE4zl2fD55lll72FirUvNVpAEMOHwBAUXapcS3BE6h1H9yFMaeOBKA4p5Tp7/4OwHn3nEF4VBh49jl77/5PAfjwkS+w29wh3uk3n0B8insc79JJgKqSKkaddJDffGZ6uo1uy+V0twC1WC3GtaIcn3l2cHf+PH/i6ca1T5+eQmN94CWk6b3SOPXGCca835zYVF0XFRtJ9yFdjPO375nMgLF9jHMFaiIiIiIiIiIiB4BOPX0CtY2eQC0yzLjmDbe25bd/2hHu/dOyVucY19J7dzKOz/9XU5XaJ09+hd1mx2w2c8atJxnXv3z+e7LW5jDt3d8AiIyN4KzbTzbu9xjSzTh2ueDQ00ZhsTbFOB89/jXZa3P95lhb3dRgICTUahx75xkZE0FiR3eg1m1QF8ae7u7KWZJbxrR3fgv4uwEuvO8sYpPcVXK/fTSTFbPWGPd8K+8W/bKM1IxkUjOTAVg9Z32LAeX+ToGaiIiIiIiIiASNxI7xhHsCNKNCzWd5ZaDumYH2TwPYuirbeCazX2fjuM+IHow8figA+ZuLmD7pDwAueegcY7+2htpGHjn3fzg9SzTP+sfJxCY2Le3s7BP8Afzy4V/GslKAxvpG7jz2Yb8lmCU+lWghns6lDXUNxtLWjL6djCWaAOffc4Zx/PGTX9NQF3gvtej4KC59+Fzj/NXb3sXpdM/78HPHGMtLK4qrKC+uNKrU6msb2LB4c8Ax93cK1EREREREREQkaJhMJtJ6dAAgf1MhDofDCNgAHAEq1LasyDIaGHj3TwPIWtNUIZbRt7PfOxfce5Zx/M69H1FTUYPZbObUG443rm9csgWAmMRozrj1BL/3O20TqK2eu56I6HC/a0VZJdx57L8pKygHzxJTL29ImLMuH5fLFXCOvYf34OAThgFQuLWYz5/5LuDfDOCEq46h64AMYy6/Tp4BgNlsJr1XmvHclBemMnCs7z5qawKMtv9ToCYiIiIiIiIiQcUbVtltDoqySgiPjjDuOezOZs8vCbB/GsBWz1LK8Kgwkjsn+r0zYEwfDjurqePn+w9/DsDlj51HSFiI37Pn3HEKUXFR/nP0hH5e9TX1xv5ovnLW5XH3+EeoKqumNL/cuB4R5Q7ffKvoMvp0bvb+VU9eZFSYffT4lxRmFTd7Bs+ebNf+9xLj/K2JHxoVbWNPO9i4/tcXs/32UVs+68DcR02BmoiIiIiIiIgElU7dm8Kq3PX5REQ1Vag5Hc0r1LyVZAB9D+kFniWX+RsLAMjo08moWvN1zVMXE+pZevn1C1PZsiobq9XKsKMHGc+YTHDqTROavZvWvYPf8kwCdPaMTnCHcBuXbuFfJz7mt/wz3FPNlrW65So6gK4DMoyquYa6Rt648/1mz3gNP3YIh5w0HDzVcNPecTdcOO3mpvlnrckls386kbHukHLFjNVGhdyBRIGaiIiIiIiIiASVTj2blijmrM8nPKppKWWgCrUtK7OM4y790433nJ6Kscx+6QG/06FLCv931+mecR288o93qa2qZcPiTcYzLhdMffOXZu+GhoeSnO5f9VZbVe93Puyogca+aqtmr+O7134y7kXFRgKwdU1T4wTffd58XfzgOcQlu/dv+/2TWX4NGLZ1ic9eap8+NQW7zU5ixwRiEqMBcDqczP1hEf1H9wagNL+c/E2FLY63v1KgJiIiIiIiIiJBxXd/sqzVOSR0bNrsv6HWf2N+l8vF5hXuQC01M9kIqnw7fAZaSul1zp2n0KFLCgALpi/hP5e8SElumd8z7z/8WcB3t21MYG/0b5hQsKWYJ6bdS3S8u1KtcEvTck1v9Zp3nmaLudkyUuPZ+Cguf+wC4/zlW97BYQ/c7bTn0G6MnDDM8/0ifvtoJgCDx/U3nvnhjZ/oe3Av43zTsq0Bx9qfKVATERERERERkaDSc2hX43jNvPVYrVZjHzFbg39oVZxTSm1lHQBdPJvyA2xd5ROo9e3U4rfCIsK45umLjfOZX88DwBJiwWJ1f7O6rMavusyrx9Burf6OrNU5dB/chUe/n0i4z7JV93dDcDqdZHsaJ3Tq0YGQ0JAWRoLxlx1Br+HdwbOE9Ic3fm7x2fMnnm4cf/TEVzidTk667jjj2oqZa/yq9nz3cTtQKFATERERERERkaASmxRDZ09nynULN9HYYDM6fbpcLipLq4xnvdVpAF37p/tcb6q6CrQ3ma9DzxjF0KMG+l07f+IZHH3hOOP83fs+avZev0N6tzpuXXU9xTml9B/dhyd/uh+L1WLcm/XNfBb9upyGusY2zdFisXDDc5cb5+/c97HR2XRbAw/tx6DD3J08s1bnMPPreYw4dgiWEPf3aypqiYpravSw1aea70ChQE1EREREREREgk7fUT0BsDXY2LhkM1Hxkca99Yua9jjbvNxn/zSfCrWVf68FIDwyjMzthFUmk6lZI4KjLjiUm168wqiMqyiuYvqk3/ze6+eZY2u81V/9D+ntVylXU17Lw2c+ZZz3Ht5ju2MNGNOHYy5yh3xVpdW8e/8nLT57nm+V2uNf4nK56Orz95k7dbHRVEEVaiIiIiIiIiIiB4B+o5qqv1bPWW9s7s82e35t8a1QG5gJQGFWMUVZJeAJ5nwrwwKpKqvmq+d+MM5dLnjlH+8SFhHGEeeOMa6/cdeHfu+lZCSTmJbQ6ti+S0+91Whevk0M+o/p0+o4Xlc8fgERng6h3706nWV/rQr43IjxQ+k5zL0kdd2CjSz4aSnjzh5t3J/34yI6dHXvHZe1OveA6/SpQE1EREREREREgk7fUU2b5q+as5bkzk0dNTct28q8aYtZPmMV6xZuMK57u2Su8lSnAfQfvf2g6p1/fUR5YQUAIWHufczm/rCI71//mZtfvsqoUisvrODz/35rvGcymbZbpeZb/VVVWm0c9xnpX5FWuKVtnTaTOyVy0QPngGf5638ufZHaqrpmz5lMpmZVaqfecLxxnrehwKiYq62qoyS3tE3f318oUBMRERERERGRoNN9cCah4e5wa/Gvy8nf1BQ4zfx6LvdMeJR/jLufjUs91WomuHrw7Txzxcss/XOl8eyAsX1b/c786Uv49tXpAIRHhXHLK1cZ9167fRLlhRUce/HhxrV37v2Ixkabcd53VOv7qPnuT1ZX3VSR9vCUu/yee+bKV/nif9+1OpbXGbeewMBD3b8rf1Mhr/zj3YDPjT39YDL6uEOzpX+sZNOyrSR0jAdPGOdy+sxz1YG1j5oCNREREREREREJKmUF5fz49m+ERoQCUJpf7rfMs6GmoflLLne49OM7v7Hw52XG5X6H9Gr+rEdFcSVPXfqicX75o+cz/tIjOfHqYwGor23gyYtf4KaXriDMM5fGehvPXv0aLpeLH9/+hZWz17T6W7I8gZrdbsdhc4CnCs4IAn28evsk3rjzfZxOZ7N7viwWC3dOutFY+vnj278ya8q8gM+de9dpxvnHT3zFQT57xfmGlArURERERERERET2U/mbC7m83608f/0bVJfVBHzGEtrynmjRCVHkrM8DoEv/dGISogM+53K5+O9Vr1KaXw7AiPFDOO2mCQBc8/RFdOrZEYBVs9fx+dPfccUTFxjv/vTeH5wSexHPXPkqf0+Z3+rvKSuooKqsmqzVuca1yNgIVs5qCuIOPWOUcfzp09/w5MUvUF8bIDT0kdatA9f7dP3839WvUlZQ3uy5o84/lJSMJADmfL+Q4ccNNu4Vbi0yjg+0Tp8K1EREREREREQkaBRllVBdHjhI83LaW95Af8LlR+Fyuu8PaGWj/6lv/mJUdcUlx3DH2zcYXS8joiO4672bMJvd5+8//Bn9R/choWNTY4T6QFVyLdi6Kod1C5r2eotPiWXFrNXG+bXPXOLeq83zvV8nz+Dm0feQvTY34Hhe4y89grGnjQSgvKiS/179Ki6Xiy0rs/jryznYbXZCQkM4545TjXfm/rDIWErbWN+0dDVr9YHV6VOBmoiIiIiIiIgEjYGH9uXoCw5r9Rlbo42DjhnU7PqAsX2IiosyzlvqnJm9Ntdv37Hb3riOpG26dfY/pDfnTTwDAIfdwcTjH6Esv6Ldv8f7vc3Lm7qRJnVOZNXsdQAkd04kNTOZk689jvs+u53wqDDwNF64YeTd/Pn53y2OazKZuPW1a4wOqLO/XcCj5z/L1UPu4OGznubzZ9wNFI6/4ijiU2IB+PPz2WT2TzfG8IZr2Wvzdui37asUqImIiIiIiIhI0DCZTNzx9vUccvLwFp9xOV0ctU3oZraYueWVq/32NAtUoWa32Xn8wueNJZUnXnUMY04dGfA7F95/Fr2Gd4dtOnS2V3F2KdnrmgKr6LhIo0FB/zF9jMq4Q08fxYtzHje6ldZW1fHvc/7Lq7e9i91mDzh2fEoct71xrXH+xyezcDrce7D9/a17OWp4ZBgnXuPeF87pcJLYId543vtsaV4ZDrtjh3/jvkaBmoiIiIiIiIgEFWuIlfs+uY0hRwzwv2FqOuyYmYI11Gqcn3j1MXTulcbSP9wdPhM6xNG5V1qzsd978FPWzncvv0zvncY1/72kxXlYrBYOPuGg7c7XG4i1pCi7hKKtJca5zdYUXA06tJ/fs136Z/DinMc58ryxxrUvnv2e2498kOKcEgLpPaIH8amxza6vW7CRxgb3ss4Trz4Ws8UdM61ftMl4xu6Zi9PpMvaTOxAoUBMRERERERGRoBMaHsrDU+4io29n45rF2tSMYMvqHEad6A67wiLDuOo/F7Fi5mpjb7Phxw1pFnQt/XMlHz/xtTHWxA9vISIqvMU5vP/QZ3z478+3O9e0Hqmt3i/JLaWssCmsKsoqNo5HjB/S7PmI6AgmfnALN714JdYQ929eOWsN1x10Jwt/Xur3bGl+GTeMvIvywspm49ga7UZ4lpKexGhP1V9pfjmxyTHNni/KDhzY7Y8UqImIiIiIiIhIUIqMieCZ3x8kKj4SgA5dkgmLjyLtkL7ku8yc+eI13DXjMZ5a/QL1Zgvzpy0x3h05fqjfWBXFlTx58Qu4XO6GBZc8dC69h/do9fvfvTa9TfOsLK7i3LvcG/9HRIdjspiJ75FGtxNG0Pe8cYT070KHI4eQNqo3oXGRbFq6BYCO3VIDVtHhqXo75frx/O+vf5OamQyexgN3j3+EDx/5AqfTid1m56nLXqYkt6zFufl2Ez35uvHGcUioldC4SNJG9ab32YfS/8Ij2VDZwIbiGspqG3G6Wm78sD8wuVz7+S/YCZWVlcTFxVFRUUFsbPPSRRERERERERE58FU12FiVU8GKLaWYYyJafM7RYCNvzhrWffk3//vyNhJS3XuFORwO7pnwKAt/XgbAoHH9eOqXB7BYLC2OBfDdaz/x2u2TjP3WWhIaHsK3NR+yqbCSjeUNbC2qwhoe2vLvyS5m09QFdI0J5aanL97Or4fKkiqeuPgF5k1dZFwbOWEYPYd25aPHv2r13YOOHsSTP90PgNPp5Nox9xIzpDvdJgwnJj25xfcsZhMdo8PokxpN57hwzNtZ1rqvUaCmQE1EREREREQkKNXZHMzLKmdzaS3tDUdiwqyMSI8nMyGCt+6ZzMdPuIOn+NQ4XlnwJMmdk9o0TmVJFd++Op0pL06lrMC/y2d4VBiN9TaueO8WzAO6UtPYzk39XS66J0cxMj2e8JDWwz2n08lHj33FpAc+oaWoqP/o3qz8e63ftZAwKz/UfUS9zcH87HI2FNdAO8OxqFALI9Lj6ZoY2a739iYFagrURERERERERILOxpIa5m4tp8HThXJHRdfU8vZpj9FYUYvZYuY/P9/PkMMHtOFNf431jfw6eQaTHviE4pxSAK5+7nJSThjJlrK6nZpjuNXMIV0S6JKw/cBq4c9Leez8Z6kormp2r/vgLtz9/s188dx3TH/nd1wuFxEx4byw+TVmbymj3r5zf8suCRGMykwgYjvh375AgZoCNREREREREZGg4XK5WJhTwfL85oHRjqrKKubnG1/hojtO4cx/nLRTYzmdTqZP+p16lwn7iD7tr0prxZC0WIZ0it1u19AP/v0Zkx74NOC9m1+6kpOvG0/B1mK+e3U6Pc89jM22XTZFokItHNc7hdjwkF036G6gQE2BmoiIiIiIiEhQcLlcLMiuYEXBrgvTvOyVNZw7tgfRYYGDIKfTyQcPf86Pb//KuXedxqk3HN/iWFUNdqauLqTOtuvCNK/BabEM6xzX4v2K4kou7Hp9i/u6hYaH8P7Gl0jsmMDinAqW5DXv/rmzIkIsTOibSkyYdZePvauoy6eIiIiIiIiIBIUNJbW7JUwDsMZG8duGEpzO5nVLtkYb/7nkRd5/+DOKskt48+4PsDU2L+tyOBzkbSnkhyXZuyVMA1iaV8nKrSUt3s/fXNRqk4TGehvPXPkqm0prd0uYhmdvu1/XFeEI8LfcV+y7UZ+IiIiIiIiIyC5S02hnblbZbv1Gaa2NZfmVDOnUVAFWW1XHQ2c+ZXQABaivaeC9Bz8jNDyEgs1FFGwpJH9zEUVZJQy6+ngGXnr0bp3nX2sLeeToB0lJjaVz7zTSe3UivXcanXulkdG3E9f991LmT19MUVYJhVnF1Fb67+EWlRrHnK27929ZXm9nSW4FB6XH79bv7Cgt+dSSTxEREREREZED3q/ri8gqr+f8YZ0pqW0EYFleFbmV9QCkRocyoW8HPl6cQ8NObK5vNsHJ/TsSHxFCaX4Z90x4lA1LtrTp3YRenZjw3m1cOCKj2RyTo0IZ1ikOkwlyKup3utJu8/RFzLj3/YD3UtKT6Nw7jb4jezJoXH+6DsygtrKO9Ys2UVtZS+xxw9lS7v67Bfp7jsqMJzEyFBOwIKeCgqqWK95aYwJO6t+BxMjQnfilu4cq1ERERERERETkgFZeZyPLEwBVNzqYtqao2TP9O8RQXNO4099yumBVQRWdamu5YeRdNNS1bcyYhCgOvvEkzBZzszmaTe6GAr9uKN5lyyC7HDOURS99R01e80qzouwSirJLWPzrcj5+8mvMZhM9hnZl0GH96XvkQCNMI8DfMybMSlx4CFNXFxIZYmFc90R+DPD3bgsXsKKgisO6Je3gr9x9FKiJiIiIiIiIyAFtbVG1cRwVYuH4PinUNDqYu7WcBoeT9LhwCqsbyIjfNVvNbyyt5ffnp7Qeppngzkk30mNwVzp0ScYSGc5nS3NxuprPMT4iBLvTxRE9kjBjYn52OWV1O9da02Q2MXHGYyRXVpO9No+cdXlkr8slZ20e2WvzqCxpqoBzOl2sW7iJdQs3MdQOAy/pYNzbdq71Ngd2pwsTEGo1U9/Oar9TB3RkQXY52RXu0G5zaS0j0+MJD7Hs1O/d1RSoiYiIiIiIiMgBy+VysaGk1jj/cnkeDXYnPZOiGNY5jtlby+iTGs1v64vJiI/we3d8nxRSosJw+uyWtSC7gjU+AV0gdqeLMdeOZ8Zns2hsKVRzQXxyLN0HdwFgdWEV3uKzbedYUN1AfEQI368qICrUwuguify4ptAYKjU6lEFpsaREhWECqhvtbCytZVVB05iBbKls4ODBXegxpGuzeyV5ZSyfsZplf65k2V+r2LRsKy6Xi+4njPB7LtDfs6bRzukD07CYTfy2odjv75kaHcZ3KwuMQDDEYuL8Yel8vjSXmkYHU1bk+43vdMHmslr6psa0+jff0/bbQO3xxx/nyy+/ZPXq1URERDBmzBiefPJJ+vTps7enJiIiIiIiIiL7iMoGO42Opiop7/5om8pq6Z0SRffESLLK61oMnhZkl7OqsPUALZDQtES+r/mQ4txS1i3YyLoFG1m7YAPrFmykNL+cmMRoMvp2Np4v8lluuu0ct5bXUVjdgN3poqLeTqjFZDybHhfOuO5JLMqpYMamUhrsTmLDrQzqGEtEiIWaxpa7hdbZnNTaHESFNo+HktISOPzs0Rx+9mgAKkurWPz3OjalxPk9t+1cO8WGEWa18OXyPCJCzBzdM4XvVhUYzzfanRzUOY5f1hfTVrtiKe6utt8Gan/88Qc33HADI0eOxG63c88993DcccexcuVKoqKi9vb0RERERERERGQfUOITxljNJhxOFy6gY3QYlQ124iNCSIoKJTM+goSIEMZ1S+Knddvf88tqNjE8PY70uAgsZhO5FfXMySrD5nD5fTe5UyLJnRIZfXJTZVdZYQWRMeGERYQ1m2egORbXNDA4zV2hFW414/AJ/w7OTGB5fpVf6FdZb2fm5lLjPNxqZlRmAh1jwrA7XWwsrWVxTgUuz3cDBWrbik2MocuYvmzaUNLq3xNMRshmc7iwmk1+46wpqqZfagwdosMoqG7erODMQWnMzSonq7yps6gCtV3oxx9/9Dt/9913SU1NZcGCBYwbN26vzUtERERERERE9h0V9XbjODbcypiuidgcTpxOmLWl1K+Ca3yfFP7cVNLCSP7Gdk3E6XLxzcp8XC4Y0yWBUZkJzNhU2uy720pI9a/ycrlcVHqeDzTHRoeL9cW1HN8nFbMJ5meVu58NsxITZmVTaU2rcx3XPYk6m4MvluURZjVzTK8U7A4ny/KrWp3ntiq3eTbQXGsbHXRPiuT4PqlYzCaW5FX6vdNgd7Isv5KD0uOYurqQtqist+NyuTCZTG14es/YbwO1bVVUVACQmJjY4jMNDQ00NDSln5WVlS0+KyIiIiIiIiL7P7vPWs7SWhvfrSxo8dlA3T8PSo9jaKemAOyzpblYzCYyEyL4ZHGOUZG2KLeSUwd0ZOamUlye77Y1BHK63B0tW5vj+pIa1pf4B2dhIe4mCq0t64wMsZAWG84ni3OwO13YGx0szatkSKdYluVX+f19tmfbZ1uaqzdUbMmqgmr6pUaTER9BflV9q8/i6fbpdIFl38nTDoxAzel0cuuttzJ27FgGDhzY4nOPP/44Dz300B6dm4iIiIiIiIjsPeadDGEWZlc020MtLjwEs8nEmYM6NXs+IsRCrc2ByUSbK6p2tPCqweZeWhkVaqGqIXCoFhlqwe50+nXbrGqwE+Xpmtmeb++qPMvhcrE4t5KDOsfx4+rmyz4DfnsfCtM4UAK1G264geXLlzNjxoxWn5s4cSK33XabcV5ZWUlGRsYemKGIiIiIiIiI7A2hFvMuH7Om0Y7T5eLTpbk4WqjwCmvHd80mE1azqV3VYngaLlQ12OmaGMmyvKqAz9Q2OrCazYRbzUaoFh1qocbmaPc8w6y77m+5vriGAR1i6JEcud1nrWYT5n0sUdv1/1ftYTfeeCPfffcdv/32G+np6a0+GxYWRmxsrN8/ERERERERETlwJUaG7PIx6+1OssrrGJUZb4RM4VYzmfERPt8N3SPznLu1jEEdY+mbGm2EY7FhVsZ0SSAq1F0tl1dZz4iMeKxmE1GhFganxbLBs3zUd575mwv5+ImvmPbub2xatgWH3b/qLWEX/i1dwMKcCgZ13H42096/5Z6w31aouVwubrrpJr766it+//13unXrtrenJCIiIiIiIiL7mKTdFMbM2FTK0E5xnNivA2FWM/U2B5tLa9nq6U4575MZbCirYNC4/gw6rB+xSTHbnWdhdfu7WWZX1PPzuiIGp8UyzLPXW3WjnY0ltdR5qtD+3FjCqMwEzhyUhsPlYmNJLcvz3RVtvkHe05e/zJLfVxjnYRGhdB/ShfQ+nUhKS+TkG49v9/xas7W8joEdYwj3LD9tSXLUrg9Fd5bJ5XK1r55wH3H99dczefJkpkyZQp8+fYzrcXFxREREtPquV2VlJXFxcVRUVKhaTUREREREROQA9c2KfMrqbHv0mz/f8Ar589YZ510HZDDosH70ObgnGX06kd67k1/IllVex6/ri/foHJOjQjmxXwfj/I6jHvQL1LYVFRfJVbP+Q3FN+4O/nXFUz2Qy4tuW9ewp+22g1tLGfu+88w6XXnppm8ZQoCYiIiIiIiJy4FtdWM2crWV77Ht1+WV8ceojsJ3IJSYhis69O5HeO43OvTvB0QfhsO65xYQZ9XXY1udQsLmI/C2FLP1jJQWbm3c69QoND+W5ra8zc3PrXTx3pahQC2cMStvn9lDbbwO1XUGBmoiIiIiIiMiBz+Zw8tmSXGzt3PR/R41IjycjFJbPWM2yP1ex7K+VrFu4CafD2ep7Ay87hqHXnbBH5thQUcOXJz2Mo6FtlXsR0eE8POUuBh7en8+X5NGwnd+yqwzrFMfgTvteZrPf7qEmIiIiIiIiItIWIRYzg9NiWZBTsdu/FR1m4ft/fcDSX5fR66Bu9BjajZOvG09sUgwVxZVUFlWRv7mQ7HV55KzLo3Br0zLPNZ/OoNcZo4nqkLDb57n0jWkBwzSTycS2tVcZfTrx+I/30qFLCgBDOsUyN6t8t88xMsRC39To3f6dHaEKNVWoiYiIiIiIiBzwnC4XU1cX7vb9vw5OCOXmXje2eD80PISbX76K8ZceCUB9bQN5G/LJXptH9to8CuttxJ88erfOsXJtDqVfzqBDlxQ6dk2lQ9cUOnZNIbVLCv+7+lX++PRv49n+o3vz72/u9tvvzeVyMW1NEQXVDbt1nsf0SqZz3L61d5qXAjUFaiIiIiIiIiJBoaLOxverC7A5dk8UMqBDDMM6xXBq7MU01LUc3I068SAe+XZii/dnbyljTVH1bpljmMXMCf06EBseeNHir5P/4vELnwdg9CkjuGfyrYRHhjV7rqrBzncrC2jcTUs/+6ZGMypz91fq7Sgt+RQRERERERGRoBAXEYLtj6XYhvUiJCp8l47dIymS4elxmEwm7v7gZh468+kWnz3+8qNaHatXqIvf/lxOp3EDd+kcQywmju6V3GKYBnDkeYdSVVaD2WLmhCuPxmK1BHwuJsyK6+/lNPbvRmj0rq0i65oYyciM+F065q5m3tsTEBERERERERHZE2Z/t4APbnuHn294lbriyl02btdIC29OeIhrh/2TFX+vYexpBzNywrCAz8Ylx9DvkN4tjmW32Xn0vGf57c53WPP5zF02x8gQC3XT53Njn5t4+R/vUFddF/A5k8nEqTccz8nXHtdimAaw4KclTLr5LX669mVqCnZdB9U+KVEc1i1xn+vquS0FaiIiIiIiIiJywMtZn8cTF7mXMpas3Er8yk10T4zcqTGjQi0c0yuFOf/5kpy1eWxcuoVbx97LP49+iDGnjMAa0jyQqiiu4vrhd7LkjxUBx3zjzg9Y9ucqXE4Xmz78jYOTI4gI2bn4plt8OCMiXHx230eU5pXx1XM/8H/p1/DWxA8pzi1t93gFW4p47PzncDpdlK3NIXrxenomRe3UHCNCzBzdM5lDuuz7YRraQ017qImIiIiIiIgc6OprG7h59D1sWrYVgMPOHMV9n96OyWQip6KOX+dsxJnY9lygtqiCod1TGN4zhVCLma9fnMpLN7/d7LmYxGiqSpv2QotOiKK6rAYAs9nEZY+ez7l3norJEyD9/slMHj3vWQCsIRae+eNh+h/Smwa7kxX5FcxbmUd4Ykyz77Skc1w4meEWbuhyDQAmE2ybAllDLBx5/qGcffspdBuYud0xGxts3HrovaxbsBE8+8E9POUuzGYzeZX1/Dp3I7bYKEzmtoWAESFmeiVH079DDGHW/afua/+ZqYiIiIiIiIjIDnj9n+8bYVpG387c8fYNRojVOS6C5U9/wZQzH2PJ6z+SZIHwbYIdR6OdkpVb2fjtXP648x2+OuXfrP3od0It7ucOPWNUwO/6hmmjTjyIt1Y+y7CjBwHgdLp4a+KHPHD6f6guryF/cyH/u+Y14/nrn7uc/p6loWFWM5G5xXx50sP8OXESW6ctoGRVFg6b3e97tUUVZP+5nIJpCyib/CvRa7aQNaOpEi5QSZXd5uCnSX9ww4i7WD133Xb/lu/86yMjTOvUowN3vXcTZk94lhYbzuoXvmHKGY+x+NUfSMDZrLrOYbNTsiqL9VNmk5hbSP4bU+mXGL5fhWmoQk0VaiIiIiIiIiIHstnfLeC+U54AICwilJfmP0mXfunG/bqaes5Mugxbo53UzGQ+2PQyxdnFPHPN6+RsLKQktxR7XSOubbpZWqwWvql8j9DwUAAu6HodhVuLA84hNTOZd9c+T0hoCA6Hg/cf+owPH/nCuJ/WPZXI2Eg2LN4MwNEXHMZd791khH4A7z/8Ge89+CkAyelJFGeXYLKYSemeSkVhFY5GG3ZPZ1GzxYzTM98bXriMl256p01/q3s//geHnzOmxfsLf17KXcf9G4CQUCsvzHmcHkO6GvdtjTbOSLqM+poG4lPj+CT3dSqLK3ni8lfofXBPLrznTM5IuJiGmga/cTv3SuONZc8QEhrSpnnuC/av+E9EREREREREpI3KCsp55oqXjfNrnrnEL0wDWPrHSmyN7kqvkeOHAvDPYx5mwY+LyV+bi626vlmYBuCwO7jnhMdwOt33+o8O3GggsWM8939+hxEWWSwWLn34/3j0+3uISYwGIG9joRGmdeiSzE0vXuEXpgHMn77EOLY32gBwOZwUrsunoaLGCNMAI0wDeO3299v0tzr+siM59MzAlXYAlSVV/OfSF43zKx6/wC9MA1gxcw31nrBsxPghmM1m/nnMv1nww0I+evBTVv+9mvDIsGZj56zL48mLX8DhcLRprvsCBWoiIiIiIiIicsBxuVw8fcXLlBe5u3kecvJwTrrm2GbPLfxpqXE8fPxQZn49l5x1+W36xpLfV/DKre/icrla7Nx5wb1n0WdEj2bXD54wjFcW/IfM/v4BX5f+GVhCrH7XaiprWT17LQCZ/TpTV1XfpvkB2Bvt230moWM8N754BRZL4K6eLpeLZ699jZJcdzfPg44ZxOm3nNDsuQU+f8sRxw1l3o+L2Lx8q3Htx7d+JS4p8B5wf3z6N89d+wb7y0JKBWoiIiIiIiIicsD59pXpzP1hEQDxqXHc9sZ1zaq+AFbMWm0c9x7ePWBzgdZ8/eJUJj3wSYsVau/c+xHFOSUB78UmRWNrsPldmzt1EbeM+RfZ6/KMa6vnrMPpdAdNQ44YSINPNdquUJZfzjv/+qjF+9Pe/Z2/vpgDnkYL/3z3RmPfNF++f8u+h/Ti+Rve9Lv/9zfziU+Na/E7U9/6hdf/+f5+EaopUBMRERERERGRA8qWlVm8dsck4/yf79xAQoAgp762gfWL3EstM/t15qvnvqc4pzTgmNZQa8DrAB8+8gWblm5l1IkHERkbwbXPXMLh57r3Iqsur+Gpy182lob6euUfk8jbUACeDf7Do9zLITcu3cKNB9/N0j9XArBy1lrjnZTM5Db/HbbnzNtOJCTMvRT1i2e/Z+Evy5o9k7M+j5dufss4v+2Na0nulNjsObvNzpq56wHo2DWFaW//Sv6mQr9nqstrcG4nLPv8v9/yzcvTdvg37SkK1ERERERERETkgNHYYOPxC5+nsd5d+XXqDcdz8IRhAZ9dO38DDrt736703p346vkfWhw3JiGq1e/+/tksHvl2Il+WvMOZ/ziJm1+6kuTO7uBp4U9L+eYl/5BoxldzmPrWLwCER4Xx2NR/8eLcJ8js1xmAmopa7h7/CDO+msNyn8qvGV/+3ca/xPbVVzdwxWPnG+dPX/YS1eU1xrndZueJi14w9kU7/vKjOPT0wPusbVi82fibdxmQwWdPfxPwueLswNV6vn7/ZGa7f8uepkBNRERERERERA4Yk+772Njgv0v/dK76z4UtPrty1hrjOH9TobGsMpBAy0W9ouIiOe/u08HTdAAgNjGGO96+3njmjbveZ+vqHACKc0v571WvGvdueO5yOvdMo0u/dF6c8zgjPQGgrcHGv89+hmV/rgIgLjmGtfM2tuGvEFhsUjRn33Gycf7Dm79wxHljGHrkAACKskt40aca7cNHvmD1nHUAdOrZkeufvbTFsVf4/C2Lc0qx2wI3GNi2am1bHbqkcP6/zmzHr9o7FKiJiIiIiIiIyAFh2V+r+OyZbwEICbVy9wc3ExbRvKukl28I5F1u2ZKq8uoW79ltDroNymx2ffixQzjtpgkANNbbeOKi57E12vjvla9QVeoe77AzRzH+siONdyKiI3j46zs59pLDAXA6XcY+a10DfKMtOnRNYUrFe3xR9A5X/+diEjq4l7+6nC4ePfdZ/vnODUTFRQLwywd/8cens1g9dx2TH/0CALPFzMQPbiYiOqLFb/j+LSNjW35uW7455bXPXML7G18yuq3uyxSoiYiIiIiIiMh+z26z8/z1TV0iL3v0fHoO7dbi8y6XywiBYpNieOjrO7nhucsZOLav8UxqZrKxd5qt3k5S54SAYzXUNrS4XPTKJy4go697Gee6BRt5/ILnmPfjYgCSOiVw66vXNKt+s4ZY+efbN3Dunaf6XbfV2+g6KMPvWmh4iLG0dFvecYu2FmMyN33jzndvNI6X/bWK0oIKbnrxSuPas9e+xn+vetWo2Lv4gXPoe3CvgN/A+7ec6V6WGhEdzn2f3saNL1zB4MMHGM+kZCSR0CGOPiObOp6aLWbufO8m47wkt7TVSsB9SZsDteuuu47p06fv3tmIiIiIiIiIiOyAr577gc0rsgDoM7IHZ9x6QqvPZ6/NNarE+o/pTXxKHKfdNIHkjCTjmcd+uIeTrjnWOB84tl/zgTz5z5QXf6SmsrbZ7bCIMO5+/yYsVvdSUG+3TICbXryS2KSYgPMzmUxc+cSF9Bre3bi28u+15G/0XzI58vihvLXy2YBjeMNFp9PFugVNS0VHjB9Kz2FNYeN/r3yFo84/lHFnjwaguryWTcu2AtB9cBf+7+7TAo7vVZRVTEluGQB9R/UiITWeU284nrRuqcYzD375Tz7Ne5MX5zxhhJROh5NhRw8ynlnlWV66P2hzoPbaa69x4okn8vrrr+/eGYmIiIiIiIiItENhVjHvPfQpeIKom1++ytjLrCUrZjYtURwwpqkqbfNyd5BkDbHQuVcamZ7qMoBug7s0G8fqCcqqy2v47tWfAn6r9/AeXHCv/75gB08YxphTR273t3lDPy9vgwCvLv0ziIyJaLFKzWvVbP+w6p7JtxjHm5ZtZcOSzdzy8lXEJfsHfDe9dKURBrZkud/fso9xvHmF+29pMpnI7JduXI+IDvf5PfWkde8Ango+u83e6rf2Fe1a8hkaGsp1113HI4880upzP/30E5dddtnOzk1EREREREREZLteve1dI2g66drj6D28x3bf8d3zyxsC2W12stfkgqfrpzXE6hcElReUEx3v3+3TbnMYyxS/+N+3NNT5B15eo04a7nc+csKw7S5vLM0vMzbx7zowwy+I8uoywL0E1NsdtCWr5qz1O8/o09lv+eUzV7xCbFIMnXt1Mq5FxUXS9+CerY7LNs0d+nv+lk6nky0rswHo2C2V8MimPepiE6ON4w2LNtN3lPsbDXWNRmXcvq5dgdrTTz/NuHHjeOCBB7jllltafK6wsJD33ntvV8xPRERERERERKRF835cZCyjjE+N47JH/q9N73kr0Uwmk7GsMmd9vtGdsuvA5kHV1tU5DBjbp9lYvUa43y8rqGDaO783u+9yuXjl1nf8rn361BTqawOHb16+4dLwY4fw9G8PNnsm0hOyZfZNb3bP16rZ64wloF63v9XUhXT9ok1Me/c3Vv7dFI7VVNTyzUvTWh0XYNPypnl6Q7rCrcVGyNllgP/cEjrGG8ebV2TRb1Rvv3nuD9oVqMXFxTFt2jROO+00XnjhBc4//3zs9v2jFE9EREREREREDiyN9Y28eNNbxvnVT11ETEJ0q+/gCbi2rs4BoEOXZKN6aotnDzY8SynxhHQxCe6qtKxVOZx4zXHNxkvNSDaOP31qSrNliz+99wfLZ7g37Q+LDAWgKKuET578utV5Zq3ONY4z+6W7K++2KWp77vo3KNhStN0KtdK8MoqyS/yudRuYSY+hXY3z5294s9l7kx78hLLCiu3M0/23jE+NIzbRvWTU92/Ztb9/I4XUzKa/V+76fPqOamp4sG0l3b6q3V0+Q0ND+eyzz7jyyiv5+OOPOemkk6itbb7pnoiIiIiIiIjI7vTJk1PI3VAAwKBx/TjmwnFteq80v5zayjoAMnyWdG5ZkW0ce5dSmkwm45mi7BL6j+6Fxeofp5QXVnDwCcMAKNhSxG8fzTTuVZVV88ad7xvnNzx/ubEn2Sf/mULepoIW5+kN/fCtlPMvMqM4p5Q7j32Y+A5x2/3d3iWYvm578zrjuLGuEYC+B/dk/KVHAFBbWcfb90xuccyqsmrKCir85whsDvC39Orcs6NxXLi1mB5Du2L2dCENNMd9UbsDNQCz2czrr7/OxIkTmT59OkcddRQlJSVteFNEREREREREZOflbsjnoye+AsBitXDTi1dud08yryzfoKpP055hm1Y0LV3s6rNMsbdPp801czeQ0de/Gix3QwHnTTzDOP/oia9wONxLR9/510eUF1UCcNhZhzDh8qM54xZ3B1Jbg43X//k+Lcla4zPPvp2pr633u+/dUy13fT6T7v9ku787b0Pz8K73Qd1J75Xmd+2ml67kiscvIDI2AoBp7/zGmnnrW5hjUxVdRh/fQM3nbznQP1CLS441jutrGwgNCzGq1nLX5zdbmrov2qFAzevRRx/l2WefZd68eRx22GFkZ+8fKaKIiIiIiIiI7N9eue1dbA02AM689US6Dcxs87tbVzUFVb7h2KalWwAICQuhU4+mKqqBh/YzjpfPWMVhZx7iN15pXhk9hnZl0Dj3c1mrc5j2zu9sWLKZ715zd/4Mjwrjuv9eCsAF951FgqeibMaXc1j489JW5xmXHENsUgwlOWV+9ydccbQRRG1ZmW0sJ/UKjwrzO89dnxfwOykZSX7ncckxJHSI5+IHzgHPEtmXbnkbp9PZ4hzZpkJto+dvaTab/DqlAoT6NChwePasS/P8vWsqapt1Nt0X7VSgBnDzzTfzwQcfsGHDBsaOHcvq1at3zcxERERERERERAJYOXsts79dAEBy50QuvP+sdr3vW6HmDdTKCsrJXusOnHoO62osywT8GhGsmLWG026a0GzMvA0FXPbv84zzd+79iLcmfmhUW110/9mkpLuDq6jYSK584kLj2ZduebvZvms1FTWU5pX5zbE4p9TvmWFHD+LJn+43wrmG2ka/+92HdPE7z9mQ32ze6xdvYtGvy/2uPXXZywCceuPxRki2avY6fn7/z2bvB/pbVpfXsGmpu0Kt68BMQsNbDvq8v9s3wMxZ33ye+5o2B2rJyckt3jvvvPP45ptvKC0t5dBDD2X27Nm7an4iIiIiIiIiIn4mPdC0vPHC+84iIjqiXe9vXdO8qmrpHyuNa0OOGOj3fHKnRDp2TQFg9Zx1RESHE5cS6/dM7oZ8Bh3Wj3FnjwbPvmrzflwMQEp6UrMQ7piLxhmb8W9dlcOvk2f43fddSumt8PIGbF6DDutLeq80npx+n9E4wdchJw33Ow+05PO9Bz9tdm3JHysoyi7BGmLl+mcvM66//9CnzYK/bZelAiz7a5URJA45YkCz8cN9Kum8FWq++6rlBQj+9jVtDtQKCws599xzW7w/fvx4fv75Z0wmEy+//PKump+IiIiIiIiIiGHZX6tY+JN7iWRa9w6Mv+zIdo+R5VmmGJMYbeznteT3Fcb9QCHQgEP7AtBYb2P9os0MPdI/dMv1VFVd+cQFhISF+N07/19nNqvSMpvNXPPURcb5R49/aey7RgvLUnM2NgVNYVFhRMW5Q7Rug7rw6A//IizSf4ln/0N6YzI37SuXvS7Pb9nmmnnr+fub+eCp9Evr3sF9wwXPXPkKAMOPHcKI8UMAyN9cxC8f/uX3De88wyPDjKWj2/tb+s7TYfcu+exgXDugKtQALBZLq/dHjRrFn3/+SefOrbdqFRERERERERFpL5fLxTv3fWScX3jfWVhDrO0ao7aqjqJsd2PFjL6djUYGS/5wh0AWq4UBY3o3e2/AmL7G8YqZqzn1xuP97nu7jaZ168C4s5r2WAuLDGP8ZUcEnMvAQ/sZgVP22jz+/KxpxV+gpZQbFm02rsUlxfiN1W9ULx759m6/ax8/NYVOPkGVw+agJLepys230u/8f53Jza9cZZwv/GkppfnuZy+4t2lJ7UePNzVcaGywkbfR/bvT+3TCbHbHTEs9f0uTyWTsK+cr3CdQs9vdAZ9fhdrGljuf7it2eg+1bfXr149ly5bx448/7uqhRURERERERCSILfplGcv+XAVAeu80jr7gsHaPUbi12Dju3Msd4pQVlBuVVr1HdA+4hHSgzz5qy2euZtCh/QiLCPW75lXg842G2gZWzlrb4nwuuPdM43jyY18YFWT5W4p85unuwum7DNS7H5uvoUcOJDSiqTpu/tTFxKfG+T3jraRbPnO1sSS1Y9cUjr/8SEYcO4QOXdxLW10uF/+96lXPb+/L0CPdwV/Oujz++PRvAEpySnE6PIGY529ZXV7Dek/w121QJrGJ/sEf2+yh5vRUqHXsfgBXqLVVXFwcxx577O4YWkRERERERESCkMvl4t37PzbOL3rgHL/GAW1VXlhhHCd2iIdt9087vPkSRYAuAzKIiosEYMXMNbhcLsacOtK4n7PWHXYt+nUZy/9a5ffuK7e967ec09fQIwfSf7S7Im7z8ixmTZnXfJ4d3fMsyvYJA3unBRzPuwzUa8XMNX7nC39xL5ed5PO3vODeswgJdQdxNzzftGfa3KmLqCytAk8Fm9dHj32J0+mkzGeOCZ6/pe/+aYMP7x9wjmE+gZrDE8hFRIWTmJYAB9oeagArV67k4osvZuTIkUyYMIFJkyYZfyRfH3744XaXh4qIiIiIiIiItNXcqYtYNXsdAF0HZHDEuWN2aBzfoMpbveW759fgAHt+4dnzrP+YPsYYOevzufKJC4z7dpuDqrIq3r2vKajyVnttWLyZ6e/+HnBck8nkt6Ry8qNf4HK5jHmGhocQER1OZUkVtRV1xnNJnRICjhcV23qDht8/nsXi35az+Df3b+7UsyPHXny4cX/0ySNJ9lS/uZwu/nfVa+AN/jy/f/OKLGZ+PW+7f8tA+6fhCc+8vHuoAaSkJwJQXljpt9fbvqjNgdq6desYNWoUn332GS6Xi+XLl3PZZZcxbtw48vP3/eRQRERERERERPZPLpfLb7+vix88x9ivq73KCyuNYyME8uz5ZbaY/ZZ2bmvAmKZ7S/9YSWpmil8DgicueoGVf7uXd3bpn84db19v3Hvn3o+oqawNOO7I44fSa3h3ANYt3MTcqYuMecanxmEymVj650q/d+JT4gKOFekTqAXaXy53Yz7v+IR+F91/drNKv+v+e4lxPHPKXKrLq93Bn0+V2uRHv6C8wKdCzfO39O6fBjB4XOAKtfDopkDNu2QUICreXV3ncrmoq6oL+O6+os3/9917771ER0ezbNky5s+fT1ZWFu+99x7Lli1j9OjRrFmzpg2jiIiIiIiIiIi0z9/fzmfdgo0A9BzWjbGnH7zDY21bVVVWWGHsn9ZnZI+A+6d5DTt6kM+c3EszO/Vs2vtr/rQlxvElD53L0CMHcpinQUFZQQUfP/5VwHG3Das++PdnVBY3BWpssywVIMGzDHRb3qWbAHabnd4jevg/4IKVs9wZTma/zhx53thmY4w7azSJae7xXU4Xz133BmwT/K1ftIllM5qWtsanxlFdXsOGxe7907oP7kJsUvP909imKYHT0bTyMTq+ablqdXng8HFf0eZAbfbs2dx000307NnTuHbhhRcye/ZszGYzhx56KHPnzt1d8xQRERERERGRIPXVc98bxztTnUazQC2WeVMXGectVVR59T24p7Gf2cKfllJXU0/3IV2M+95qq+5Duhih31VPXkhIqLtS7Iv/fddiB8vRp4yg68AMAFbPWY/T6TLm6HK5mOszT4CktMCBmjXUvyptwNg+ARsYAFz8wDktbtl11ZMXGsd/fj6b2uq6ZsHfgp+WGsfxqbEsmL7EmHdrf0vf/34un6Wd0Z496vA0N9iXtfn/wJKSEjp27Njset++fZk1axbp6ekcffTRTJs2bVfPUURERP6fvbOObiJrw/gTa5K6u0NboLi7O4u7LLaw2AIr6LcC6+jC4iyw6ArL4u7uUKBogbq7t/H5/kgySRptk5bSvb9zOGRm7ty58ybp3Dz3FQKBQCAQCIT/KPEvEul8X76hXmjVr6lZ/eVlanqoXfv3Nr3dZkALPWfJYTKZaNO/OQBAJBAj4nwk7J20vbCGfdafFo28gjww9LMPAABikQTrZm3TmY+eyWRqiFXqY4yJjEfym1SN/S5ezjrHyOFqCmoR5yOx+M85Wu1cvJ3QfmgrvffafVwnOLrbAwqhcP2sHYBC+Atq4A8AyE3L0xjnVQ1bNtfbtzrqudI0PdRqiKAWGBiIyMhIncc8PDxw9epVNGnSBAMGDMCBAwcsOUYCgUAgEAgEAoFAIBAI/1GOblQ57gyY2dss7zQAyFXLocZis/DwnDxM09XHGXVbhxg9v+0gVbjpzaP3NEQgJW0GaYpJo/83hC4i8ODsE5zeflFn3x2GtYabn6Y3maObA64duK3V1sVHd1EC9ZBPAIh/kaQz3xqHxzFaUHLyT6qiC5f/ug5BiQBMJhNDPv1Aqy3Xhot7JyMAAA6udnoLEtAw5P8pPdqglkMNAIprSshn586dceDAAUgkEp3H7e3tcf78efTu3RvHjh2z5BgJBAKBQCAQCAQCgUAg/Acpzi/G+T3y6pg8Gy56Tuhk9BxjKEM+7ZxscP/0I0jE8iqTHYe1MUmsa9y1PviKpPp3T0SAb6edc+3QmpMa29Z2fHz223R6e8sXu5EWl6F1HovFQu9JXTX2Obrb46oOQY1nzdPaBwBsrnYhgjvHH8LW0VpjX1pMBjISs3T2oaTP5K6wc7YFAEglMmxf9CcAoNOINhrFD6x4HDy9+gLCUhEAoP3gVlqFDsrCYMgVNUpNULNzqoEeahMnTkTbtm3x4MEDvW24XC4OHz6MOXPmoGPHjpYaI4FAIBAIBAKBQCAQCIT/IOf3XIOgWAgA6D6uI2wctL3BykthThEAwM7FTiPcs+PwNiadb8XloEWfJgCAguxC5KbnabU5te2C1r5WfZui92S5WFZaJMCqyZs0wh2V9J7cRWO7tEigFe7JYDIMjq8sN4/eA1OHwDWvy1KIBCK9fQHA6MWD6dcX/7gGAODb8NBtTAfVNXlWuHbwDr1tii1pQY3S7aFWYwS15s2b48CBA2jdurXhDplMrF27FpcvX7bE+AgEAoFAIBAIBAKBQCD8B6EoCsc2naG3B8zqbZF+pQqPNCaTWe5wTyVt1XKtPSlTfRMAslNyEfssQWv/9F8mwN3fVX7elec4tlE7D727vxv86/rS2w/OPtZqY8j7i6MmqCm9yJ7fjEJpkUCrbWpMOn6dqTunm5Khn30AFkd+vaLcYkRek+ez6zu1O91GUCIsX7inmiiofm2NHGq5NURQIxAIBAKBQCAQCAQCgUCoKh5dfIrEqBQAQKPO4Qiq72+RfpWVOAXFgnKHeypp2bcJLWrFPY2n9zu4qgoU7Fj8h9Z5NvbWmPf7THp7+6J9SHqdotWuTqva9Ou3j+K0jrM52mGdSqx4KkHN2VOVZ00sEOtsf27XFZzfc1Vvf0wmE4271Ke3d371NwCgdpMgMFlym0lEknKFe8r7VXjZqWl5bI7qPKlEarSPdwkR1AgEAoFAIBAIBAKBQCBUO45uVHmnDbSQdxoASBWCWklhKb3P1HBPJXZOtmjYqR4A0KIcALT6QFWB9OH5SJ0hnU26NqDvR1gqwspJGyGVaopHfmE+9GuxUC6EqXvQla3kqQ5HTVBTF/iUMBgMeNf21Ni36dOdyEzK1tvn5J/G0K9f3H4NkUg+Jo6V9jg6jmirtx+NcegQMJXvDQBarKuuVO/REQgEAoFAIBAIBAKBQPjPkR6fiTvH5TncXX2c0XZgC6PnmIqsjKBW3nBPJephn0oC6vrBxkGe/F8ikuDE1vM6z/1o2Vha1Hpx+zX+XX3C6PVa92tGv2boT6Gm4aFmxbeCo7tmhU8Wm4mhn/bT2FecX4LVUzbrDf0MbRoMJw95PzKpDPuXHwUAMNmaspK9iy0aKYRGYzDV8sAphUcZEdQIBAKBQCAQCAQCgUAgECrGhb3XIFNUf+z3cQ+TQghNhRZtFNpRecM9lbQd2FxrH5PFROeRKg+tQ2t0C2V8Gx7m75xFJ+bf/c3fiHueqD1GNdoNbUW/luo4roTLs1K1E0vhV8db4ziLzcIH03uCXca77OG5Jzj5m3YxBSXq1UdP/nYOAEBJNQW4wPr+Jr9X6oKZsjDCf05Qe/36NQoLCy3RFYFAIBAIBAKBQCAQCIT/OFcP3KJf95zQyWL9UhSl5YXVeVS7CvUV/SReax+LzcLEH0bT28lv05CVkqPz/Prt6mDY5x8AAMQiCVZM3ACJWALoEdRyknPp17qOK+Fac+nXYrFEK7k/g8kAk8lE0+4NtM7dOm83UmPSdfY75qshdCGB7ORcxD1P1BL2lBVUTUFdMFMWTFC/L0uKqJWB2YKaUChE3bp1cfjwYcuMiEAgEAgEAoFAIBAIBMJ/lsSoZMQ+lVfIrNs6BO7+bhbru6wQFdI0CHVa1tbb3hDX/r2ttY/JYsLR1R4B9VRVOncs/lNvHxO/HwX/uvJ8aW8exuDPHw/pHCcA3DnxUO0+9FflVM9rVlpYStuyLFOWjdPaJygWYtVHm3TmfuNZ8xDWopbaff2hlfst7lkictPz9I5NHXWvQEGxECgrqP0XPNQMlVclEAgEAoFAIBAIBAKBQDCVawfu0K87DitfsQBjlK0cOWBmbzrssjyIhGLcOnpfvqF2enF+CQBg1KJB9L4bh+7q7ceKZ4UFuz6hvbX2ff8v7p95hPxs7SjAW8fu068pHYKXkqI8lUeaQOH5pY6yiEJQfX84eznS+5W53yKvvsCR9ad19j1h6Uj69YNzTyCTaI6DoigN4c8QSm88ALB3kRdP+M+FfBIIBAKBQCAQCAQCgUAgWAL1cM+Ow1pbtO/c9Hz6NYvNRJfRFQv3fHjuCUoK5EUN3Hxc6P0v77wGAHQd04EuDiAoFuDm0ft6egLCWtTG+CUjAIUg9dOYX/H85iv6uFL0SovNoPcp88vpokBNjCtUE9eUwp9EJEFxvnx/v6nd6cPqRQJ2LP4DiVHJWn0379UY1vZ8uh+6a7Vzbxm4V3XUz7exl4t5pMongUAgEAgEAoFAIBAIBEI5qcxwTwC4sO8a/drexQ5cPtdge32oi36NutanXz+/FQWpVAomk4lWalU59313wGB/o/83GO0GyauGFuUVI0YtP1vjLtq5ziiDgpoqj1lxntxjLrhRAHg2qnu99OcNAMCoRYNpMawwt5gWGEUCMVZO2qjl0QcAnYa31dpnY28NZy8nAEDEhUiUFmt7xpVF6Smn7iGofj0iqBEIBAKBQCAQCAQCgUAgmEBlh3ue/O08vc3hcirUj0goxu1jDwAA1vZ8BNTxoY8V5hThwdknAICPlo2h9799HIuMhEy9fTKZTMzf9Qn8FH2pp9aq1ThAq72hkM/CXO3CAB2HtdEQrk5tvwgoQk7rtg6h96fHZcInxAsA8PLOGxxYdUyrr0k/jtLax2Iz0aa/vOqpSCDGw3NP9I5PiTJPG5OtVpygUCXEqQuA1REiqBEIBAKBQCAQCAQCgUCoFlRmuOft4w+QmZhNb5fqyC9mCurhnu0GtURhmSqap7dfAAD41PKCT21P+U4KWD1li8F+beytsfTQfI3QSyjEtpCmQRr7DKWyV3qlqdN2UAsNserto1i8fhgNAJi2cjy9/8Xt15iybAw9hj1L/0HsU81qpk7ujnDzc9HYV1okoD3sYELYp0wmAxT3wOaoqnnmZahCcp08HHWdWm0gghqBQCAQCAQCgUAgEAiEd05lh3se3XhGY7s4r7hCRRY1Rb82yMvM1zh++/hD2httzuap9P5HF58iJy3XYN9FuUVa+dFeP4xGmwEtNPYZGndJYanGdnCjANg52Wq1O77pLACgXpsw+IZ60fuPbTyHYZ/3BwCIRRKs/2SH1vXsnGw0tkUCMeq2CYW1nTy/2p0TD3WGiyrJSVNVAlX3FMzLLKBfO7jZ6z2/OkAENQKBQCAQCAQCgUAgEAjvnOsHVdUwLR3uGfc8EY8vPQMAcPlWgCKxf1nxyRhikWa4Z9MeDTW8qqCoVPnPSnmoZNNuDeEZ5A4oRLDVUzYb7L+s6AcANw7e1fJQM0TZ/GUdh7XRGCPbig0o8snRwt8mNeHv8lP0m96TDv18ev0lrh9UheKmRKchJjJB67pigRgt+jQGFKGvz2680mqjJCclh35txbOiX6uLk07uRFAjEAgEAoFAIBAIBAKBQDDIo4uR9Ot2g1tatO8/fviXfu2j5o1VnFes5wzdvH4QQ4d7turXFFZcDvIy5F5VDIYq79ep7ReRnSr3Rvtk/Uf0+fdPP0ZeVoHOvhOjknHl75sAABsHa3q/WCTB9kV/wD3A1aQxCkuEGtvtB7ekxwgAYS1qAYqiAPtXHAUANOnaAF7BHvIGFLD+k+2YtkoVCrptwV6IBCIAwB8/HtR53aK8YrQdYFrYp9I2KJMrTV34Ix5qBAKBQCAQCAQCgUAgEAgGEAlEeHH7NQDAM9ANXkEeFus79mk8ruyXh2k6utmjduNA+liRjnxjhnhy5Tn9Wll9UykCObg5oP/0ngAAsVCMf1cfBwC06tuUzjlGURTWTNWdS23PtwfocM8BM3trHIt/kQQ2h62xTyQS6+xHWCKiXzu42cO/rq+GUNWqb1NaxDq945JK+NswmW7z8OwThLWshabd5feYFpeJQ2tPIul1Ci7suQoAsLbla1w3KyUXLfs2BYstz4l25+RDneNDmZBPvi2Pfq0U/qzt+BWuwFpVmC2oWVlZ4fLly+jVq5dlRkQgEAgEAoFAIBAIBALhP8Wre28hEsgFooadwy3a9+6l/9CvRy4cBAdXledTUTk91J5cVQlqjTrXA0VRtFjl6G6PYV/0hxVPnhPsxJZzyFd4o81YM5E+7/bxByjK06zEGfssAVfVRL9hn/ejjzFZcukm5W2axjmiMp5o9H6BSlBr3CUcDAZDQ1DzDPLAgBlyDUcsFNOVPFv2bgp3f7kXHEVRWPvxb5i+egJdoODPnw5h++I/aNFvxMKBsLZXiWpHN56GraMN6rSqTY83N10lnKmTl64aj6agprJldcdsQY3BYKBTp07w8LCcekwgEAgEAoFAIBAIBALhv0Pk1Rf060adLCeovYmIwc3D9wAAzl5O6D+jJ2zVEvTnZ+oOv9SFRCzBi5tRAABXH2d41/KEoFhAC4GO7g5w9nRC3yndAQCCEiEOrjkBAOgwpDWcvZwAAJSMwpppv2n0vWfpP3Ti/xELBsHexZ7O9ebs5QQGQ7PyJwCUFukW1CRiVTEApS3VBbWywt/Jrefp3GUzf1V5qd05+RAuPs7oO7W74noC2pb2LnYYPKcvGnSoS7ePOCcP2Q1vW4fe90xhr7Lkq4W92jra0PYtzCmibVndISGfBAKBQCAQCAQCgUAgEN4p6p5fDTvVs1i/u5fsp1+PXjwYXD4XnoGq6qGpMekm9/X6QTQECq+wRp2Vnl8qYUgpAg2fPwBsjjzs8eiGMyjMlYtE09Vykt04dBclRfJcbG8fxeLGIXlBBmdPR/SfIQ8b9VCMMz+zAJN+GK01nrLFEJRQalVCld5+Zcfp5OFIC2Vy4e8kAKDdwBZw8VEJf2un/YYJ343UyOkGACMXDIS1HR89JnSm95UWCfDy7mvUb68S1J7f1F2YoCBb5aGnFDjzswq1bFmdIYIagUAgEAgEAoFAIBAIhHeGSCjGi1tyTybPQDd4BrpbpN8Xt6Nw92QEAMDNz4UWkLxre9JtUqJNF9SeXFF50TVUeH6lx2fS+1w8HQEA7n6u6DWxCwCgpLAUR9afBgB0Gd2eFopkUhnWz9wOaIl+Q8Cz5mqMUywUo9u4Dhgxf6DGeE5tu6g1RqlEqrHtX8dHPs4EtXEqPOVGzB8IjqLi57GNKuFv2qoJdNubh++Cw+Wg90dd6X1sDgv9Z8pDRv3DvDWut3vJPwhvG0Zv6xPU1ENt7V3s5GNUs6WzwpbVGSKoEQgEAoFAIBAIBAKBQHhnRKnlT2tQSd5p474aBiuuPMTRu5a6oJam81xd6PKiS3yVTO/zU4hXUORqU+Y+O/zrSZQUyr3RPvp5DN3m8t838OTqc9w5IU/e7+brgr5Tu9HHfdTGmRqdjinLxoKjuAcAOPHbOTy69FRjjE+vq0Q/FodFh4oqx+ngakcLWG6+LuipLvytUwh/I9vBSSFoyWQU1s3chsQo1X1KxFI8OPsEAOAZrJn+6+Xt17B3saNt8SYilvbqU6dYrRiEg5udQVtWV4igRiAQCAQCgUAgEAgEAuGdoV4501L50yKvvUDEBbnY5BXsgZ4TVaGJds62dN6uson+9SERS/D8htzbysXbCT4K77GEl7pFIK9gD3Qb1wEAUJhbTOdS6z2pKy1oSSUy/Dx2HX3O2K+GwopnRW971/aiXye/TQODwYCTh1ooJAV8M3A5Xt59Q+9SeuQBoHOkFecXIzslV2uMADBq0SC6KuehX0/Suc2mLBtHt7ny903cO/lI47zf5u+BSCgG34ZH54aDQphLfpOK+u3qKO5Riqj7b7XsqRQYAcDJw9GgLasrlSaoRUdHV1bXBAKBQCAQCAQCgUAgEGoImpUzzRfUKIrCrq//prc//GY42Bw2vc1gMOhwyszELIiEYqN96sqfBgAJUfpFoDGLh9BeavuXH0FGYhYAYMJ3I+k22Sk5AADPIHf0mtRF43yvWirvr1SFJ52yUIESQbEQX/b9ETGR8QCApzdUIZY2dvIKnIlRKaoxhmmO0TPQHT3GdwIUYZhKu/Uc3wkOrnLhT6aWk015flpsBg7/egoAaHFRyaF1pxDeThX2+eyGdthnaZGAfq0Mg1X3gvP/LwhqqampOHfuHH755RdMnjwZLVq0gK2tLUJDQy0zQgKBQCAQCAQCgUAgEAg1EqlUipe3XwMA3P1dLZI/7cr+W3h6/SUAwC/MG13Httdq460Qq2QyCulxGUb7VBeFGnZUhaUmKryq7Jxs4Ohmr3GOb6g3Bs7qDQAQloqwbcFeAMCAGb1oDzkl474epiH6oYxQlawQ1FiKYgfqFOYWY1Gv75H4OgVxTxPo/TaKayS+UhPUdAhVE78fBb4tDwBw8rcLePsoFgAw6UfNQgju/i5YtG82mEy5mPjnjwdRkF2oIfwBwL1TEZqFCW5pV/oUqoWBung7KcYptyXPmgs3Pxetc6obJgtqeXl5uHHjBrZs2YJPPvkEnTp1gqurK3x9fdGnTx/Mnz8f//zzD4RCIXr06IHPPvusckdOIBAIBAKBQCAQCAQC4b0mNTodwlIRACCsZW2z+ysuKMGWL3bT21NXfAgWS1uE0sijZkLYZ+wzlVClHGdJYSkyk7IBAH51fWmvNXXGLx1Be3pd2X+L9sZr2FktVxwD6Diirda5HgFudDimcoxlRTePAHkl0Nz0fMzvupS2JQBYKypzJqjlJvOvqy2ouXg5YdzXwwCFd9/Gub+Doih0HdMBDKbqnnxCvBHarBb6fNSNvv8j609r2BIA0uMy4ernQnuevbgVBZlMptFGKFCN083XGWKRmC4Q4RvmDSaz+mcoM3mELi4u6NSpE2bOnIk//vgDYrEYAwcOxPLly7Fp0yZQFIU9e/YgMjIShw8fxqpVqyp35AQCgUAgEAgEAoFAIBDea2KfJdKvA+v5md3fniX/ICdVni+szYDmaNO/uc52XrXKV+kzTjFOJpNBhyMmvVZ5fpWtdqnE1tEGk38aS29vmrsTGYlZiDgfqWpEAbu+/FPrXBabBY8AV0AhPFIUBbaVpjgY0iwYQQ38AYDOk6bERiGoJb5KUo1TTyjl4Ll94Rsqz9n27MYrXP77Jv788RAotXDPp9dfQiQSY/T/htBC35H1p+Di7azRF0VRuLj3Gh32WZxfopEfDQAkQgn92sHVHilv0yCTykU3vzq6bVndMFlQYzAYCAwMxJUrV5Cbm4tbt25hx44dmDdvHrp37165oyQQCAQCgUAgEAgEAoFQ44h/riao1TdPUIt+Eocj6+V5vbh8K8xcO0lvW98QlaAWp+Z9pgupVIqEl3JRyru2J104wNQk+r0mdUZIs2AAQExkPL4duhKCYs3Kl8e3nodEItE61ydELnKVFJYiMzELTu6OGseT36Ri2dmv6Jxw6tgpQj4TFCGfHC4H7gqBriwcKw5mrFHZa8vnu3Bg1VGNNhKRBNsX7IVHgJtGwYWYJ3Fa/Z3ffRWhzWrR22VtLBFL5S8YAJPJpMcIHXneqismC2rPnj1DgwYN0KNHD0yfPh2pqamVOzICgUAgEAgEAoFAIBAINZr4FypBLSC84oKaTCbDulnb6QT6Y74cajAfW63GgXQusFf3tKtQqpMWmwGRQKw1xkSNUEpfveezWCzM+nUyvf36QQwAwNbJBjwbLgBALBBj51d/a52rLkq9vPsWXsGa95T0OhUObvZYcf4bui8lMqkMErGEDhf1C/PWGf6qpGWfJmj9QTNAEUIqlcg9xhp3rU+3OaEQ/kYuGESHuF7ZfxNsK81Q1DcRMRrhpep53JRjk9uGqThumi2rEyYLanXq1MGRI0dw+fJlvHjxArVr18aCBQuQk5NTuSMkEAgEAoFAIBAIBAKBUCOJU3iosTksrWqR5eHcrit4oUh+7xfmjWFf9DfYnm/LR6AiVDLuWQJKi0r1to1/rgqZVA9LjXkaT782FqYY3jYMXcdoFkf4eMWHGK42zqPrT2vlGqvbOoR+/eruG/jV0RSbxEIx0mIz4BHgpuWldvPIPZzdfQVSidSkMQLA9F8m0OGcAODq64zvji6gixaIhRL8/r+/4F/HB+2HtgIU4purj2bYp3ouNwBIUAs7lclkoCi58Km8VqyaLf1rWsinkrZt2+LatWv466+/cPr0aQQHB2PlypU6k+8RCAQCgUAgEAgEAoFAIOhCIpYgKUruueQb5q2VcN9UCrILsW3hPnr7kw1TYMXlGD2vbku5WCWTUbTXmC7UCxIoPdQoisKLW/LqpHbOtvAK9tB7vhI3X83KlbUaB2LcN8PB5ctDSIWlIuz77oBGG/VCDS/vvkZwQ3+tfhNfpUAmkyHljWZxBYlYinXTf1P11SJE69yyOLrZg8NVvQ8u3s7g2/AxfP5Aet/RjWcgk8kwetFgel9BdqFWXzeP3qMFM/Xw2KK8Yvo1R/E+Pb8pF0N5Ntya56FWlgEDBuDJkyf45ZdfcOrUKVAUhQsXLqCgoMCyIyQQCAQCgUAgEAgEAoFQ40h+k0rn0gqsry0UmcqOxX/Qgk7nUe3QtFsDk86r0zqUfv3y7hu97dTDUpV53pJep9DXDG8bZrQqZVpcBo6sP62xb/WUzZCIpRg0py+9759VxzVyqTm6OcC7llyse/MwBv71tPOLJbxMQnp8JgQlQq1jMrWiAsoiAYbY9c1+jfxuUffe4tJfNzD2yyHgWstDSkWlIvz+5V8IaRqM5r0aAQBKCrQ9/B5deEp7zSVGpUAqlb/X8S9U3mo8Gy4yErPoaql1W4dqeMhVZ8yqQ8pkMjF58mS8efMGP//8M/7++2/4+/tj0aJFSEszXnaWQCAQCAQCgUAgEAgEwn8HiqJwYd817F9xFMc2naP3u/u50oJLeXh+Kwqnd1wCAFjb8TFt1XiTz9UMp3ytcSz5bSr+WXkUxzadxXNFKCmTxYSLt5Piuqr29doYFqooisKG2TvoMEg7Z1sAQMyTeOxd+g8mfj8SVjy5p5awRIhNc3aWGadc+BMJxEh5mw4GUzNC8Mo/t3BknaZYBwBdR3fQ2L5x8A4daqmL1w+jcWzjGQDQyIm2ftZ2ZCXnYMinKuHv31+Oo6SoFKMXD9HbX3ZKLnwUxR/EQjEy4rMAAG8fxdJtnNwd6VBdAKjXJlRHT9UTswQ1JVwuFwsXLkRMTAymTp2KdevWITg42BJdEwgEAoFAIBAIBAKBQKghXP3nFpaPX4/ti/bh2KYz9P5/Vh7FIMcJOLvrssl9FReUYNmH62iRaMJ3I+Hq7Wz0PCV+Yd6wtucDACIuPMWctv/D2MAZuHvyIb4dugrbFu7D+k+200KQTCrDUNfJmNliISKvPKf7qdfWsAh0atsF3D0ZAQBw9nLCt0cWgM2Re2HtX3EUr+68wdivh9HtT267gLwsVfRfnZYq4W/9rB1aotibhzE49OtJresGN9L0+juw+jhWfbQJErF2NVFBiRDLxq2jPdomLB2BbmPlglxRXjFWTd6E8UtH0PaSiqVYNm4dGnSoq+35pqb3pcVm0K+VlVIT1DzU3Pxd6HBPKLz93hcsIqgpcXR0xMqVKxEVFYVRo0ZZsmsCgUAgEAgEAoFAIBAI7zmGwvkExUJc/OO6yX1tnPs7LdjUaxuGgbN6m3zuizuvsX7WdoiFcnGptEiAl3feICMhC2d3XTY4zjcPY/Dk6nP6fsJa1NbbNjEqGZs/20Vvz908FQ3a18WEb0cCCu+15ePXY+Cs3nBwswcUwt0PI35BYW4Rvur/M46qCY+v7r0B9DuZaXB2p7Y4eW7XFSwZvAKlxQKN/Vu/2I1ERT67kGbBGPr5B/hk/Ud03rdHF5/i2MazmL3hI/qc28cfIOl1CkKb1tK8iNr4UqLT6dfKPGrq+3xDvPD8tlxQYzAYtDfe+4BFBTUlfn5++P333yujawKBQCAQCAQCgUAgEAjvKa36NYWdk43e413HdNB7TJ2rB27j/O6rgCLUc9He2Sbn3op+EodP232FE1vPQywUax138XJG93Ed9Z7vEeiGjAS511rtJoHgKXKLlUUsEuPncevoUM9+H/dA2wEtAADD5w+gPbvS4jKx5bNdmL9zFn3ukyvPMdRtMu6ejKALN5QXV7UiCCPmDwBHEcZ579QjzOuyFOnxmYBCGDux9TwAgGfNxeJ9c8Cx4sDW0Qbz1Ma0fdEfCGkarKomSgHTGs/H4fWn9I5BLFDZV+mhlp2SQ+/zru2J6MdxAICAcF/YOur/bFQ3KkVQIxAIBAKBQCAQCAQCgUAoixXPCt30iFUNOtRFr4mdjfaRkZiFtdO20tufbPgIXkHGq2wqoSjKYC6xoAb+6P5hRzossyy9J3WlXxvKn7Zn6QG8eSivHuoX5o1pq1X53VgsFhbung2+LQ8AcGbnZUjFUngGuavGKTPRFU0HXL6VRpGC4fMG4OczX9Ehm68fRGNGswW49Od1/DJlM91u+i8T4BemKnzQtFsDDJnbD1DkQVv24XrM36US2XQJkuqo2zlBIQzmZarCWVlsFmRSGQAg3EguuuoGEdQIBAKBQCAQCAQCgUAgVBl9PuqmtY/NYWHu5qlgMBg6z1Eik8mwcuIGFOUVAwA6j2xr0JtMF7UbB2Hi9/rTVAU1DICDqz3aDW6pdazzyLYQCUT0tr6cX5HXXmD/8iOAQjRatG8O+DY8jTZewR6YuXYSvf3d8FUaOcfMoVaTILxViHk+IV5wdHNAo87hWHPte1q0K8wpws/j1tECV9uBLdB3anetvib/NBoB9XwBRUGBLzotKddYrPhWAICUN6lAmYqgWYkqb7V671H+NBBBjUAgEAgEAoFAIBAIBEJVEtwwAMGNAjT2DZ83AAH1/Iye++/q43h8WZ6/zM3PBXM2GRfhdDHmf0Mw/Iv+Oo8FhsvFo7LCH8+Gi+m/TMSzm6/ofbpEoKK8Yo1iCRO/G4nQZrW02gFAr0ld0GZAcwCAVCIr933ow9XbGWKRPD+cetGA4IYB2PRgOVr3b6bRnm3FxuSfxui0JZfPxaK9c8BkySUkpUeZqUjF8uqteZkFEAnFtFcbi8PCi7tqBQnKFjeo5hBBjUAgEAgEAoFAIBAIBEKV0nZgC/q1tT0fY74cavScNxEx2PnVX4Aigf3C3bNh52RboeszGAxMXfGhlmhm72IHvq08LLJJtwbgquVHG/PlUPBteXhx6zWg8DBzU8tTpmTdrG3ITMwGADToWBfD5w/QOw6JWAIbE/KGsfSEn+pDWKIqOtCgQz2NY3ZOtpj0w2iw2CpJSCKSYFHP7/H8VhR0IZVIwbPRnSvOGFKJlH79+sFb+jXfhoun114CAFy8neBdy7NC/b8riKBGIBAIBAKBQCAQCAQCoUoZ9kV/WNvzwWAyMOvXyXoT+ysRlAjx87h1kCi8nUbMH4BGncPNGgODwcDcLVPRtEdDep+tozX9mslkYvCcPgAAz0B3jJg/AI8vPaMFoua9Gmv1efGP67j8100AgI2DNRbtmQ0WS78YtmryJlzYc9XoWL2C3DUEsLKUFdzS4lSho817NdI4JhKKsfzD9bRHHFcRkpmVnIMvOi/BobUnNXKfxb9IxOedvtEI1dSHi48z/ZrB1PZ2U3oXAgDXmksXbGjes3GFPA3fJex3PQACgUAgECoCRVEoFkmRXSJCdokYJSIJZBTAYjBgw2XB1doKLjZW4JdzNc/SSGUUckpEyC4RIa9UDLGUAhgAh8mEszUHLtZWcORzwNIx4SBoIpVRyC0VIatYrLCljLalE58DFxsOnPhWxJYmIJVRyCsVI6tEhNwSMcQyGUABHBYDjnz559LZmtjSFCQSCRISEhATE4OEhASUlJSAoijweDz4+fkhODgYgYGBsLKyetdDrfZIJBIkJSUhJiYGcXFxtC25XK6GLbncinlI/JeQSqUatiwuLqZt6evrS9uSx+OZ0Nt/G5lMpmHLoqIiyGQy8Hg8eHt7Izg4GMHBwcSWJiCjKBQIJMguFiGnVAShRIYvItaAxQAc+RykFQrgYm0FDktbNKIoChtn70Diq2QAQEjTIEz4bqRFxsVisfDD8UWY3WoxEl+nYuy3I5FaIEB2sQgFQglCp/TGN1N6g8dhIj5PgIjbbwAGA6AotOitKaglRiVj3cxt9PbczR/D3d/N4PWVHlrGyErOxfyds7Bm2m/wCHBFvkAC5zBfOIX5gOtgDTtnOxRmFSA/LgPZLxOR8kpeUTO4YQBcvZ01+tr6xW7ERMYDAALD/fDd0YVYOXkjnl57CalEis2f78KzW6/wxfYZAEXhh1FrIBIYLj6gZOT8Adj06S4AgK2bHax93eFS1w92/m5gcznI93FG07kDkBuVDFluAbJT83Ta8n2ACGoEAoFAeK8QS2WIySlBVEYRckuNP9jdba0Q5maLACfrKhUHckpEeJVRhNicEkiMVGjisBio7WKDMDdbOPA5VTbG94XcEhGiMosQnW2CLZkMBLvYIMzdFk7EllrklYoVtiyWi7sGYDMZCHaxRpibLZytiRhUlpSUFJw7dw5Xr15FcXGxwbZcLhft2rVDz549ERwcXGVjfF9IS0vD+fPncfnyZRQVFRlsy+FwaFvWrl27ysb4vpCRkYELFy7g0qVLKCgoMNiWzWajTZs26NWrF0JCQt47z5DKJisrCxcuXMDFixeRn59vsC2LxUKrVq3Qq1cv1KlTh9iyDCUiKV5nFeF1ZjFKxVKDbRkMwN+RjzA3W3jacWlbntp2AWd2XgYU3lSL9s0Fx8pyz3k2h42vrnyPqIwiJOcLkPo6U29bu2EdMKhtPUQfvYs6HerS+0uLSvHt0FUoKZR7cXUb1wFdRrUzeu35u2Zh/aztSFRUwNQLg0LbEe3g2qUR3mQVo1ikbUt3tdcyiRRJN17AiyGvaKq05fm9V3Fs01kAAMeKjcV/zIVXsAdWXliC37/8C/+sPAoAuP7vHcRGxiOogT/iniXKh8BgGKyOCgCBDQPQckIX8OoFwLdDOJhs7cXteg2C6NdN03Lx9sht1DXT2/BdwKCMWaMGU1BQAAcHB+Tn58Pe3v5dD4dAIBAIBqAoCm+zivEgKQ8iI0KALvgcFloHOMHfkV8p41NSLJLgTnwukvIFJrTWJsjZGi39HcHTMfn4r1EqluJOfC4S8oyHF+giwImPVv5O79xLsTogEEtxNyEXcbkVs6WfIx+t/Z1gbUVsWVRUhF27duHatWsVOr9JkyaYOnUqXF1dLT62943i4mLs2bMHV65cMfoDTRcNGjTAtGnT4O7ubkLrmk1paSn27duHCxcuVMiWdevWxfTp0+Hl5VUp43ufEAgE+Pvvv3H69OkK2TI0NBTTp0+Hr69vpYzvfUIik+FxcgFeZBSiIqqDizUH7QKdkfY0Hl90+oZOsL9o7xx0G9vBYuPMLBLiVlwO8gSScp/LZAANvOzRwNMOP41ei2sHbgMKr691t3+kc7EZQyaT4d6pRziw+hgir77QOObm7wqxSIKPj/4PaUw2jKwt6sSZz0HbQGfkvk7G3HZf0t5mn2+brpVD7tbR+1gxcQOK80t09tV2UEs8vfochbmai0mO7vao27spWswfihwTFr3LwmQA4R52aOTt8N54yBNBjQhqBAKBUO0pEUlxMy4HKQUVE6nUCXa2Rit/J1gZyEFRUaKzi3E3Ideo548xeGwm2gQ6V7r4V52JzSnB3fhcCMtZRaosXDYTrf2dEOhsbULrmkl8bgnuxOdCYGblMCsWA638nRDsYjxxck0lIiICW7ZsQV5enln98Pl8TJw4EV26dLHY2N43IiMjsWnTJuTk5JjVD5fLxfjx49G9e/f/rFfQ8+fPsWnTJmRm6veoMQUrKyuMGTMGffr0+c/aMioqChs2bEB6erpZ/XA4HIwcORL9+/f/z9oyq1iI67E5KKiASKUOA0DUH5dxb90JgKIwaHYfzPp1skXGKJNReJSSj+dphTBXFGEUluDY1A3Ij0mDtT0fG+8vh29IxQTqqAfR+P3LPxFxPhIAMP/QApSG+CGvAiKVxhgBRB+4gdu/HAEllaHvlG747LfpOtumRKdh6dCViI1M0Drm6uOMTQ+W4+qB2/j9yz9RWiiAq68zFt5egcjUArNt6cjnoEOQ83vhHU8ENSKoEQgEQrWmQCDGudeZOt3aK4ozn4PuoW4W81yiKApPUgrwJNVweE15aeXviDrudhbt833gaWoBIpINh9eUl+a+Dgj3/O8961+kF+J+onniT1maeDugofd/z5YXLlzAtm3bKuSxoo8hQ4Zg5MiR/7kf3FevXsWmTZssassPPvgAH3744X/Olrdu3cL69eshlVruGdmzZ09MnjwZTOZ/q37dvXv3sHbtWkgk5glA6nTp0gXTpk37z9kyKb8UV95mQ2rB73jsmYcouPgIK859DTZHf+YqQYkQTBYTVlzD4aBSGYUr0VkVjijQhaioFJc/345Plg5H2wEtDLYtzC0yWp00NTYdmQIJnpZSRlNelIeES5HIPHoLqy4tNWinjXN/x5H1p3UeG714MCb/OAZSqRTPbr9GtrsLEguEFhsjm8lA19qu8LKv3rkJ/1vfbAKBQCC8VxSLJBYX0wAgp1SM868zITLTY0fJ09RCi4tpAHA3IQ+vMw3nE6ppPE8rtLiYBgAPkvLxMr3Q4v1WZ15lFFlcTAOARyn5eFYJn/fqzJUrV/Dbb79ZVAACgEOHDuHff/+1aJ/VnZs3b1pcTAOAEydO4M8//7Ron9Wde/fu4ddff7WomAYA586dw+7duy3+HlVnHj16hDVr1lhUTAOAy5cvW1yIr+6kFghw+W2WRcU0AAjq3Qx9N04Hy0BKjFvH7mOUz8cY6TUVqbH6vQxllOXFNACwsuWj56aZCO3WUG+b0mIBlg5diSEuk7Bh9g6D/TFdHRFpYTENAPy7NkS/LTPBttIvTKbHZ+LYxjN6j/+97AjePo4Fg8lErpebRcU0AJDIKFx8m4X0Qsv2a2mIoEYgEAiEaomMonA1OtviYpqS3FIxbsebF2oEACn5AjxKsbwApOROfC6yi0WV1n91Ir1QiAdJlheAlNxLzENGUfWemFmKzCIh7iXkVlr/D5PzkWqBEOz3gbi4OGzdurXS+j9w4AAePXpUaf1XJ5KTkytFTFNy9OhR3L17t1L6rm6kp6dj/fr1lWbL06dP4+bNm5XSd3UjKysLa9eutbgwqeTixYu4dOlSpfRd3SgVS3E1OrtCOb5MIblEglcZuhcaT/52Ht8OWYni/BIU5RXj3K4rGselUikyEjIRee0FjpyOtLiYpoTBZuHM01S8eZoAYanmnCMvMx8Lun2Lm4fv0WMuLdLMbVpcUILYp/G4ceIhzj5NhrSSjJkmlOHCrbfISsnR+XdEUCyAzMC1KYrCxjk78SKtEPEVzM9qDKUXoUBSOd9NS0CqfBIIBAKhWvIyvRCZlSwkxeWWIjC3BAFOFcuvJZLKcMsCopwhKAA343LQr67He5OgtSKIpTLcjKtcWwLAzdgc9A/3ALsGh99IZRRuxuWYncPEGLficjAg3BMcVs21pUQiwaZNmyrth7aSrVu3YvXq1bCxqbn56WQyGTZt2gSx2LwcQMbYvn076tatW6PTuchkMmzevBlCYeUuEPz++++oX78+HB0dK/U67xKKorB161aUllaOIKBkz549aNSoUY0uRkJRFG5bIPepMSKS8+HjwIc9j01fd8/Sf7Dve01v37O7LiMzMRvp8RlIi8tEZmI2pBIpnEK80Wf3Z5XqWSRls7Dnnzu4+9MBuPu7wifEE44ejnh47gnyM1Ue3hKxFMs+XA8mi4n0OPk4C3PkgmG778chqFflFlxJAgtb238NUWY+fEO94RvqBZ/aXvAJ9YJvqDeWHp6Pl7dfIzMpG5mJ2chMzEJGYjZkive4Xo9GlbqoDAACiQz3EvLQMdilUq9TUUgONZJDjUAgEKodpWIJioRSSCkKEimFa7HZkMgo9A5zhyOPg1vxORZbDeOxmRjawAvsCogCL9IL4GrDhUxtnCwGA11qu0JGUWCAgTvxucgTmP8DsqmPAxp41dxnVURSHp6myUMy3Wys0NzPUcOu1ooqrQDAZjLBAHDiZcWSRjfyskdjHweLjr868SQlH49TNEMyeWym1ucyXyg2+zsV7mGH5n4198f28ePHsXfvXgCAg4MD5s2bB6lUCiaTiW3btiExMRF79uxBdHQ0AODIkSN48uRJha7Vu3dvTJ5smUTb1ZGzZ89ixw5VeJMueyYlJWH69Onw8PBASUkJNm7ciOLiYoP96qJr166YPl13ou2awOXLl7F582YAQFhYGL7//nt89NFHYDKZOj+j5tC+fXvMmTPHQiOvfty8eRO//vqr1n51u9rb22PKlCkAAB6PBwaDgUWLFpX7Wi1btsS8efMsMu7qSEJeKbzsuMgukS+GPk0tRGqhoFLmbj72PHQPdYNUIsXKSRtx8Y/rJp/be+encA33x5gmPhpjzSkRWXz+dvbj9ch8HFvu8zxbhqL7hulaY0wpEOjcZw7pEdE4P32j3uMOrnYIa1kbDTrUQ8OOdRHcOBCF2YUQCcV4KmYhXeH5X3ZcxSKJxeZtANA9xA0+DtUvnxrxUCMQCARCteNtVgmepBZAKqMQ6maDOu62eJpaiCvRWQh1M5zAtbwIJDLE5pYgxLV8/YqlMkRlFCFCrDnOZ6mFOP0qAwDgYcdFfS873Ig13/PqVUYRwj3twKyBCbclMhleZ6p+NBcpcueVff/PRskr2IW52cKKXXE7RGUWoYGXfY30+JPKKETpyLsnlMh0fi7N/U69zipCI2/7GumlJpPJcPq0KhlzQUEBvvnmG1AUhXr16mHQoEFYv349MjIy8O2335p9vcuXL2PUqFGwtq55FWllMhlOnTqlsU+XPe/evYvi4mIsXboUzZo1w8CBAyuUF+3atWsYM2ZMjVwwpyhKw5YffPAB3r59Cxj4jJrDrVu3MG7cODg7O5s99upI2c+lEnW7Jicn09/xXr16Vfg7ev/+fWRkZMDdvXK9jt4VL9MLYcdl089qJZUxd0suECCvVIyFbRYjJjLeaHsbB2t4BLohoF09uIb7AwCKRFKNsTIAi8/fWszoi0ufb4eg2DRvUhabCXtXe7SY2VfnGPXtMwePprUQ2q0h3l55RnueqZOfVYh7px7h3il5agIu3wp124SiQb/moDqocsXpGpel5m0A8DKjsFoKajVv9kMgEAiE9xqpjMKL9EI6Z4RMBih9qUvFlRNG8CqjqNx5aKKzS1AglGqNU70XKxYTuSWWCW8qEUuRmFe5ISnviricUo0QkVKxTOf7ryTI2Rqx2SXlusbQBl7wc+QDChE1Prd8578vJOSV6vye6PtcmvudEkspxObUTFtGREQgKyuL3qYoiv47YWNjg7i4OACAq6srli5ditmzZ8PWtnw/Gjds2IAWLeSV4IRCIa5evWrRe6guPHv2DKmpqRr7dNnTy8sLMTExAIDY2FjUq1evQteTSCS4fPmyBUZe/YiKikJ8vFxAaNq0KV69ekWHfur7jJqDTCbDxYsXze6nOhITE4M3b95o7S9rV3XatWtX4dxyFEXh/PnzFTq3upNXKkZaoRA2HBZ6h7mhQ5AzuIqFlsqau0VlFCH2aYLBNu2HtMLhnF04krsbWx+tQofPB9LHyo61MuZvLk1qod3oDia3l0pkEDOZsK/jq3OM+vaZy9hts3CieB9+f7kW3x9bhGmrxqPfxz3QuEs4HN00FyaEpSI8vvQMr8vMwwyNqyLztoHhnvBVE9CS8wUoFFq2aIgleK8FtWvXrqF///7w9vYGg8HAkSNH3vWQCAQCgWAm6YVCCBTVN7ksJsLcbfEmy3DIT68wN3zYzBdOfFXpbw6LgQnN/WBjpb8alJKcEnG5H9JxaiJC2XE68NjoU8cdrfwdaVd4S4wzroYKF/ruS9f7b2PFAoMhXwktS9tAJ0xo7gcHnnEH/JoqAhn6jOj7XOqiV5gbxjX1xZgmPhjV2Bu9wtzgbM3R2bamfi5v3bqltc/Hxwfff/89Jk2ahBcvXgAAZs+ejaVLl+LZs2cYPXq0RvuwsDAsXrwYv//+O3bu3IkVK1ZgwIABYLF0f991XbMmoO++ytozISEBjRo1AgA0bNhQI6fckiVL0LdvX3rbw8MD69evx4QJE8p1zfcd5X0xGAz07NkT586d0ziu6zMKAF5eXli4cCG2b9+OXbt2Yc2aNRg4cKBW/4auWdPQdV/67AoAbm5uYDKZyMiQezEtWrRIZ5g2n8/H3r17ER4ebtI1awLK58ChZ6k4E5WJ1AIhmhhJrdArzA0TmvvBy46rsT/cww4TmvuhhZF0AnG5JRg0py+s7fnQ57yfk5YHW0f53xGZjEK82sKkrrEamr8pn4nKf2EmeN1RALp81h/etTzB4eqfm3Qa3gb129cBx4oN/+6NwVDkedU1RkM2dre1QrcQV4xq7IPRjX3Qv56HIrrB8DjjckvA5rDhF+aD1h80w7DP++PTLR9j5cWl+CdtO35/uRafbZ2GbuM6wM3PBWAwENCtkUYf+sZVdt5m6lz46PM0rcIR1XG+8V6HfBYXF6NRo0aYPHkyhgwZ8q6HQyAQCAQLoMy/wGIy0KmWC+4l5EIoMb66KZLI0NTHARffZhltq4usYhHseboFg7JQFGVwnPkCCU6/yoATn4M2AU44pQghMHecWSU1r9onRVE670vf+x/kbK1zQsVmMhDoZA2BRIoQVxs8SDKcJDe7BtoSRu7L0OdSFw+T8vAyowhMBtDM1xFda7vi38hUrXbZJSJQFAVGDQtHVuZFUyc5ORlff/01AgIC8PHHH+PLL79EYaE899/NmzfRvXt3um3Tpk0xd+5c7N+/Hxs2bEBhYSG8vb0xaNAgODk5aXi/KYmNjYVUKtUruL2v6LIl9NgzLCwMS5YsQVRUFHJydIdb+fv748svv8T58+fx77//6myTkJAAkUgEKysri97Lu0Zpy/bt2+Phw4daRR502RQAFi9ejJs3b2LNmjUQi8Xw8fGBr6+vSddMSUlBaWkp+Hx+JdzRu0PX51KfXQGgbdu2Gt5ply9fxrRp07Bnzx5IJKpFuXbt2iE3NxfPnz/X6iMzMxMFBQU1LhxZ+RxXPq9jc0sQ6ma8yEp+qRi1XW2QWqgSr2q72iCv1Lh3mEAiw4Tl4zBzzUQISoSIeRKH1w9j8PphNN48jEFeRgF6TehMt88TiDUqZuoaq6HnpPKZWF5EPC52v5FX5M1IyMLrhzF48zAabyJiEP04Dp5B7pizaSrsXewgLBXi9JNkKGcwusaoz8a+Djx0DHbBo+R83IjNgVAigz2PjQae9uBzWCjWsRCpRCylUCCUwEHHPJjBYMAvzAd+YT7oO1X+jIuOTseNXM35hr5x6Zq3VXQuXB3nbu+1oNanTx/06dPnXQ+DQCAQCBYku0QEBoBOwS54lVFkcqXPqMwi1HW3g4ctV6f3DZvJQDNfB/g68MFiMpCSL8DdxFyIpZTiumKYWkCoQCCBREbpHCeTAbpcvEgqg6RMyXFj46znYYswN1vwOSwIxDK8SC/EK0VOrCKhFEKJDFz2e+1grkGxSKolmBp6/wOdrXHhtXbukCBna0hkFB4l56OJjwMeJudrhYqqUyqWoUQkhbUJnoHvCwKxVO+E2djn0hAyCniTWYx6HnbgsphaFdxEUgqFQildca0mUFJSohWiyGaz6R/NxcXFEAqF4HK5EIlEdM6qtLQ0uv2kSZNw9OhRjRxNKSkp2LRpk97rikQiJCcnw9/fv1Lu610gEomQlJSktV+XPQHg77//BhTCRl5entZ5YWFhWLBgAQ4cOIAzZ87ova5UKkVCQgJq165twbt5t0ilUjrc09/fH0FBQWjRogUCAgIwZ84cLF++XKdN7ezs4OnpiQsXLkAkkv9NTUpK0nhf+Hw+Ro8ejWbNmsHGxgYpKSlYvXo1srOzQVGUWSG41RHlPZVFl11//PFHQCGo/fTTT3TbBw8eYMqUKWjRogVu375N7+/cubPBkOOYmBg0btzY4vf0rqAoCtnFIrCZDEhlFCgAnrZcFJjg+R+bW4K67rbgsBgQSym42sgF8Kwyz/6hDbzwKrMIAY58OPI5yC4R4XpMDrKLRbCxYoNnzUW9NmGo1yZM77Wy1frUNdaKPieNzi8V12UwGPAIcINHgBs6DGmlsy8unwupNQ8QSXWO0ZCNW/o74VlaoYboVyCQaFRQ57GZaOXvBE87LiQyCjE5JXicnA9KMU5dgpouGI62QK6qX0Pj0jVvMzYXhuI9v5eYp5HuJNvE3wRVSc2Z+RAIBAKhRlAolCDI2RoetlxwWAzU9bBFUp4Az9ML0SnYBS42VhBLZXC1scJDNS8koUSGp2kFaOrrQCeVVaddoDNkFIVjL9JAUUDbACe08neiE84WlSPks1Akb6trnBlFQjT1dQBFAQwGcD9R8wehsXEWCeVJXUvEUnjacdEtxBXZpSJkFonocXLZNcfjQpfd9b3/jjw2hBIZHRKsTm1XG8RklyA2pwQt/Bzh58BHgpGcc0VCSY0S1AyFLbtYW+n8XBr6TilhMRkIcbNBkVCiJaYpKRJJapSglpmpQ7QNCsLYsWMhk8nAYDCwZ88eeHt7Y/r06SgtLYVYLMaWLVsARXidh4dHhXItZWRk1ChBLTs7G1KpttCry552dnb4/PPPIZVKkZycjD179micU79+fYwYMQI7duzA9evGq/plZGTUKEEtLy+PFsT++OMPev+SJUuwbt06nTYFgMLCQiQnJ2PGjBm4ePEi3rx5o+UhOXPmTHC5XHz11VfIy8tDQEAAfS0obFmTBLWioiKUlGh7O+uyKwD4+vqisLAQ+fmqv5FSqRTXrl1Dly5daEHNx8cHtWrVwurVq/VeWxkyWlOQUhQEEhmcrTloG+gMsVQGmQy4FS+fXxl6zogkMiTnCxDkbI3XmcWo7WqDt1nFcORrCzvBzta4/DYLJWIputR2RRMfBxQK9XtdlUX9GWnPY2uNVd9z0hjG55emj5GiKDo0UtcYde0DAHsuG3ZcNmJzDKdI6RjsglKxFAefpoLLZqJ7iBskUhmephWWa5xl5xv6xqVv3mZsLqyPIpG02nnE15yZjwkIhUKN5JIFBQUG2xMIBAKh6pEqVsxidIT1XY3JNnjuy/Qi1HW3hZ8jH2mFqrwLXDYT/k587H+cTK8YPkopwMBwT9yMzQGluK6pyBRt9Y3TWPUlfeOEIqm8krRCIVLyBfC049KCmrScxROqO7ruR59d8wQSnNfhnebAY8Pdlos78bmQyCgk5JUixNXGqKD2X7Clksxikc7PpaHvVFNfBzT2doCUopBTIsIlA6EZ5fn+vA/oCvd68+YNli5dqrV/4cKFWvuU4Vz6QhYNoS5i1AR02RIG7GmoYmq9evWQn5+PR48emXTt/4otlTYrLCzUaVMAWLp0KQYMGIBhw4bBx8cHKSkp2LlzJ54+fQoHBwe0atUKM2bMQG5uLgBoFTT4r9hSHfXPYlJSEn744QetNpcuXcLq1avh4uKC7OxsdO3aFU+ePKHtqIuaZkuZQivJKRHjxIt0rePG5m5vs4vRxNsB0VklCHDk4+jzNDTz1c6fFpVZRItNMdklaOBph8QyObYMIVV7TOkaa7GR6pnKZ6KSA5EpYDEZxueXimIhpohAMhPGqMvGXA6TPq4Paw4LXvY87H+cDImMgkQkRWRqARp52+NpWmG55kRlH/n63nt98zYYmQsbuzar+uhp/y1B7eeff7ZIWXMCgUAgVB5MM1adpBSFxykFaOrjgDOvVAsotlZsMBkMDG3grXUOn8NCiVgKprGMrRYao6FxQuGdFe5hB1suCwwwwGIyNBLwm3vt6oYl7ifE1RY5JSLkKnKuRGcVo3uoG6wV721lXrs6Yen7iUjKNzlfTE2zJZtt3hRZuWjr7OyM9HTtHxmVee3qhiXv5/Dhw6hTpw6++eYbfP/993T+uqq4dnXAnPvJz8/H3r17sXfvXtjY2GDIkCGYP38+ZsyYAVdXV4hEImRn6xc+iC11k5ycjLdv36JTp044cuQIOnTogO3bt1fJtasL5v75Ty0Qom0ACw297ZFZLNLphY4y1UIlMgocFtNosn11ytNWF7qeiQ48jvH5JQMme1RV1JZChW1srFh6vfasrViQyDS9xQqFEthw5J76VWlLGJkLG6K6TTdqThIWE1i8eDHy8/Ppf4mJie96SAQCgUAoA59jXgje26xiMADUcrWm9xWLJJBRFP6JTMFfj5Ppf/sikmjBhV+OvGQ8jvmPT13jtLFioX2QMx4m5WH/Y/lYk/M1vaz4Frh2dcJcWzIYQLCLNey5bIxo5I0RjbzRIdgFTAZDw7aVce3qhrnfHfOuXbNs6eBguDqdMVJTU5GRkYG2bduW+1xHR8OV7d43LJl8XSwWY9WqVcjMzMSSJUtgZ2dnsH1Ns6WdnZ1FQp2Ki4tx4MAB8Hg8uLu7IysrC1ZWVnBx0Z9ItKbZ0tra2mLC1qVLl9C5c2c0a9YMDAYDDx8+NNi+ptmSzWSAbabCEp1djAaednhrpKp7Wcrz3KuMZ6RJ88tyXJfJYFQoT26BUIJCoQSBzvrnPSUiKdhMJnhq/dtasVBcgXHyLGRLXXNhQ3DZzGq3gFezZj9G4HK5sLe31/hHIBAIhOqFs7VpCVH1QQGISM5HA0/V33iBRIbEvFK08nekJyo8NhP+jqqKZS42puclc+Jbmb1CpmucygmpQCIDBcDHgQdvex59nMtmwvodiiaVgQOPA5YZE3E/Bz6sWEwcf5mOY8/T6H9PUvIR4qK/pD2HyYC9gRL27yO2VixYvYM4CCYDJicyfl9wcnIy+0fv77//jkGDBqF3796wtZV/Fr28vDB9+nS4urrqPIfBYCAgIMCs61Y3bG1t4eHhYbH+pFIpfvnlF6SlpWHJkiUG5/OBgYEWu251gMvlmlyZUx0bGxuMHDkS3t7eYDAYsLKywgcffIDCwkKkpKQgPz8f9+/fx9SpU+Ho6AgGg4HAwED6cwtFzruaBJvNtth37datW3B0dMSECRNw7do1nTkD1alptmQwGHC2Ni+364v0Ipx/nYnEfMOpGspSnuu6mDlGXZgyv3RSyy8qEUuwbeE+LPtwHQ6sOobHl5+hOF9TRKzoOO8l5KKBpz3quNuCy5KPxZ7LRtsAJ9hYyb3lUgsEaO7nCDaTARsrFhp62SM6W359dVs+u/kKP41diy2f78LFP64j4VUyZDKVZ5ulbKlrLmyIyngPzeW9nkkWFRXh7du39HZsbCweP34MZ2fnGpXMlUAgEP5LWOJhmZBXivqedhoraDdic9DY2wH96nqAy2ZCIJYiLqeEzrNVnuuymAw48TjIMaGse3nGmS+Q4GlqAXqGuoHBYCAxr1QjP4iLtVW1SsRqCZgMBpz5HJOruZYlxM0GsTklKBBoJsh9mVGEcE87eNpxkVaoHUrgXANtqfxRo+t+KxMnvpVZomh1JTg4GBERERU+PyIiAj/99BOGDh2KkSNHAgCysrJw7do1vfmVfH19weVyK3zN6kpQUFC5Q18NIZVKsWbNGsydOxdLly7Ft99+q5EsHgA8PDw0BKGaQlBQULmjbCQSCZydnbF48WI4ODhAJBIhNjYWP/30E51fesOGDRg3bhyWLVsGHo+H5ORkOrG+k5MTnJycKuV+3iVBQUGIjo42ux+BQIDbt2+jS5cuuHTpksG2NjY2cHd3N/ua1Q0Xaw4y9FRrNAWRVIbUcj67KIrCZ03moUH7OmjYsR4adKwLjwA3vc92cxds9WFsfnlmzXGcfZuMBh3qgsli4p+VRwEAF/9QFVZx93eFo7sD6rQKQdsFQ5BSgVTvSfkCXHiTiYZe9miiyPVWJJIgJrsEpQovtGsx2Wjl74ShDbwgpSjEZJfgWVohmAzASa0QxObPduH1A83vBs+WB48AVzi6OWDM18PAtHfQyqVWEXTN2fXhUknvoTkwKOr9zch75coVdOnSRWv/hAkTsGvXLqPnFxQUwMHBAfn5+cRbjUAgEKoJQokUB56kVmnCeD6HhWENvcrlRh6RlIenaYbz91ialn6OqOthOMTpfeRJSj4eV2T2aAZNfRzQwKvmPfufpxXggY5KnZVJIy97NPYxL0SyOnLu3DmjuZAszYABAzBu3LgqvWZVcOXKFWzatKlKr9m7d29Mnjy5Sq9ZFdy6dQtr166t0mt27doV06dPr9JrVgUPHjzAihUrqvSa7du3x5w5c6r0mlVBSr4A598YLshkaRIuR+LaQs3f/G5+LmjQoS4C6vnBN9QLvqHe8K7tCZ61fKHizKsMpJsh/FWEUx+uRk5UssntR60YD3bnxpU6prL42PPQPdSN3v7yg59w75T+4i8cLhufP1mH5ALTiwlYgj5h7nC3q16LTu+1h1rnzp3xHuuBBAKBQNABl81CoDMf0dnaVR4ri1A3m3LnZAh1s8WztEJU1VOIzWSglotNFV2tagl1s0VkaoFFVjpNgckAQlxrpi1ru9rgUXJBlQnSDIWXYE2kQ4cO2LdvHwSCqvnBwGAw0LNnzyq5VlXTtm1b7N69G8XF5cuPZA411ZYtW7akHQKqippqy6ZNm8LV1RVZWforGFuaXr16Vdm1qhIvey7suWwUCCUmtLYMoleJ4FixIRaprpmZmI1Lf97Qauvm5wLfUG8E9mgMm65NqmyMxXHpEKTqr/iqi4f7b6BlkxAwHKru2Zpz9xW2bDmJtPhMpMdlIvGVYQGQb8tDmLttlQpqTnwO3GyrX8jnfyqHGoFAIBDeD+q4V50XFpMBhLqWPyzIlsuGr1qOjMom2NkaVhVIVPs+wOewEOBkWkJaSxDobG2xhLrVDS6bhSCXqrOlvxMfNlbv9fqsXvh8Pjp16lRl12vSpEmNDAUDACsrK3Tt2rXKrhceHl6hXGPvA2w2G927d6+y64WEhCA4OLjKrleVMJlM9OjRo8quFxgYiNDQ0Cq7XlXCYDAQ5l51Idb2PDa+2z4Nh3N3YdXlpZjw7Ug07d6A9kQrS2ZiNh5dfIqjX/2JksyqE6Mf77qIkoLyLRC/eRiDuxtPVtqYylKUko3tk9bj4NqTuHn4Ht4+ioWwVH8aDu9aHtjyaCV8HHiwtaq6uVSYu221TNVRM2fmBAKBQHivcbWxQq0qEgUaeNrDuoITgma+DmBVwcOdy2LWyJA6dZr6OJhdJcwUOEwGmtZwWzb2tgenCooTsJkMNPWpWdXqyjJs2DCjlSQtAYfDqZGhnuoMHjy4SvJwsVgsTJgwodKv8y7p37+/3sIWloTBYGDSpEmVfp13Sd++fS1aNMMQEydOrJaCgKUIc7OFA69qFlha+jmBwWCAy+eiUadwjPt6GJaf+waHc3dhc8QKfLX/c0z8fhR6jO+Euq1DYOcsF/tkEikerjlaJWPMfBqHuDOaFV85XDZsHLTnt0wWE64+zmCx5fPR6OP3kBOVVCXjfLD6CCi1EAEmiwmPAFdwuNr5ylr0aYItj1bCzdcVTAYDLfyrJreiszUHIdU0SqNmLikSCAQC4b2nhZ8TUgoEKBXLTGhdMZz4HLPyaDnwOGji44AHSXkWHVdZWvo7Vkq59+qELZeNZr6OuJtQvtCI8tLcz7HGelQpsbFio6WfE27G5VTqdZr6OMC+in48vSscHBzw0UcfVXrOqhEjRtRYjyoltra2mDp1aqXnrBoyZEiNq+5ZFmtra0yfPh0//PBDpV5nwIABqF27dqVe413D5XIxc+ZMLF26tFJTCfXp0wf16tWrtP6rAywmA+0CnXH6VUalpsMIcbWBjwNP5zE2h43ajYNQu7F2JdWC7EIkvUlF0utUpKRkgeFdeaK0TCIF+3mshlAFAGKhBOIyYbGObvb44cRihLWoDYlYgrS4TCS/TkF8ci5KZDIwmJXnAyV4nYSuXcPhMbkzPALd4BnoTgt7qz/ahDM7L9Nte07sjM+2TgObo3ru+zvyEexsjZicykvTwmQA7QKdwaymxY/e66IE5kKKEhAIBEL1JrVAgPOvM0DB8g9RKxYDveu4w4lvXj4GGUXh0tssJOdXTh6JWi7WaBfoXCNXtYvzi/Hizhs8OPsY1w7cBt+Oh9EHFyOl2LzqqfoIdOKjY7BLjbRlSWEpXt55jYfnI3Fl/01YcTn48MiXSCqpHFv6OfLRpVbNtGVZKIrCb7/9hosXL1ZK/40bN8aiRYvArMQfTdWJnTt34vTp05XSd3h4OL788kuw2TVb6FXyxx9/4OjRyvG2CQsLw9dffw0rq+qXs6gyOHDgAA4cOFApfdeqVQtLliwBj6dbBKppPEstwMPkygmrdOJz0LuOO6xY5v29FIilOPUqA4WVlPOtTYATQt1sMcJ7KnLT9C+68qy52PJ4JXxqe+k8/jK9EPcSK2fR1oHHRp867uCydS/YRlx8ioU9vgMAjPnfEEz8fpTOZ75QIsPpV+nIF1SOLVv6O6JuFaaCKS9EUCOCGoFAIFRbCnIKsXTGDtT/dCBYHMv9QOKwGOge4gZ3W/MqBVEUhTsnHuDkjkuw7dkcXi0tmxslQCEAlbdgQnXm/plHuHX0Pp7fikLcs0QtjwC/cF/U/qg3fNpbdiXfz5GHTsGuYFXTFc6KEHEhEjcO38PzW68Q9zQBsjIr4a0GNAe3XX34d2lo0et62/PQtXbNsqUxZDIZvvvuO7x48cKi/YaHh2PRokXgcqtX1bLKRCaT4eeff8aTJ08s2m9YWBj+97//gc+vutyW7xqKorBq1Srcv3/fov3WqlULX331FWxsqmeIVWVAURTWrVuHmzdvWrTfgIAAfP311/+p35pRD6KxY/d1hE/oZtF+HXhs9Apzt5jHfpFQgrNRGSgSSS3Sn5Lmvg4I95S/31EPovFJq0XQ5bLHYDCw/MLXaNKlgd6+Yp8lYNOGc6g/xbLFLOy4bPQKczPqsf/0+kuw2EzUaxNmsF2xSIKzUZkWFyibeDugoXf1/u4QQY0IagQCgVAtkclk+Kr/Mtw//QieLULQ6ecJ4Nibn1fNjstG/pkH2P/lH/AIdMPnv01Hw071TPa0oSgKMZHxuPzXDZzbfQW56fJVWKYVG60WDUOtD1qaPUYACHHm49dO/0NhVhF6f9QVE78dCXuX6rtCZwr3zzzC//r+ZLQdk81Ci/lDEDK4jUWuG+JijY3dvkZuai66f9gJk38cDUe39zuP2pOrzzGvy1KDbax4HIjFUjT7bCDqjOhgkevWcrbGb32+RWZ8JrqMaocpy8bC2bNqcqi8a+7fv4+LFy8iIiLCIv21b98eNjY2yMrKQvPmzdGlS5f/jJfa48ePcfbsWURERFgkzK5169ZwdnZGWloamjZtim7duoHFqtlh8kqePn2KM2fO4OHDh5DJzE+R0Lx5c3h6eiI5ORlNmjRB9+7d/zMefy9fvsTJkyfx8OFDSKXmiyyNGjVCUFAQ4uLi0KhRI/Ts2RMcjnZeqppEQXYhZjZfiPT4TISN7IDmnw4Ew0xvMgDwtOPiyvydeHTmERp0rIs5G6fAL8zH7H6LRRJcic5GVrH+JPymwmYy0NLfESFlCl39MnULTu/Q9nDm2/Gw8sIShLXQHVZdlFeMWS0XIeVtGkKGtEHLeUPA0ONNVh7cba1wZ+mfuHvoLuq1CcXczVMRUM/P7H5LxVJcic5GRpHQ7L5YDAZa+DsizK3qCl1UlP/GU5tAIBAI7x17vz2A+6cfAQBKY9PQO9gJQc7mCWp13W3Rv54Hzqw9DqlEipS3aZjXdSlmtVyEy3/fhFSifwJdkFOIfd//iyn1P8P0JvOxf8VRWkwDAJlIAu/CInSp7Qo+p+KPV1srFnqFuoHxPA45ybkQC8U4vuksRvtPx/pPtiMlOq3Cfb9rrHimhQ7JJFK45+aje4grrM1YibaxYqF7iBtsk9KREZcJsVCC09svYkzADKyd/hsSowyXha/OGLMll28FkUAMSiqDc1YueoS4wsaMalx8DgvdarvCq6gQqW9SIRFJcH7PVYwNnInVUzYj/kVihfuu7hQWFuLgwYOoV68eFi1ahKVLl5qVxNzBwQHz5s3DxIkTkZSUBIFAgNu3byMiIgLPnz9Henq6RcdfnSgpKcGhQ4cQHByMhQsX4vvvv4e3t3eF+7Ozs8Onn36K6dOnIz4+HkKhEPfu3cP9+/fx8uVLpKamWnT81QmBQIBDhw7Bz88P8+fPx48//gg/v4r/KLaxscEnn3yCTz/9FLGxsRCJRLh//z7u3LmDqKgoJCe/v38vjSEUCnH48GG4u7tj3rx5+Pnnn83Kw8fn8zF9+nQsWrQIb968gVgsRkREBG7evInXr18jMbFm/r2USqX4ccxapMdnAgCY8WnoV9cNLtYVDxtmMxlo5e+EnqFueHjyIaQSKR5feobJdT/FN4OW4+n1l2aJ8jZW8rDHZr4OMMfp2sOWiwHhnlpiGgBM+nG0zkIEpYUCfNbhaxzbdFbrHmQyGZZPWI+Ut4o5X1wa+tVxg5tNxW3JYjLQws8RvcPccefgHUglUjy9/hJT6n+OLz/4CY8vPzPLlnwOC73D3NDCz9EsD3Y3Gyv0D/d4L8Q0EA814qFGIBAI1ZF7px/hy35yTyYmk4Fl575Gk65yl/i0QgGiMooQn1cKU55gLCYDwc7WqONuC2fFpO7rActw58RDrbbu/q4Y+ukHGDi7t5Z3w+w2/8Oru2/0Xie4YQA2PVgOFpsFkUSGN1nFiMosMtn93YnPQaibLWq5WIPDYqIorxiDnSdqtWMwGGg3uCXGLxmOoAYBJvVdXaAoCismbsCFvdcMtvMN9cJvkavBseJALJXhbVYxXmUWocDE/BwOPDbC3G1R28UGHBYTghIh+tuN0wq5YDAYaN2/GcYvGYHaTbQTGFd31s74DSe3njfYJqRpENZc/x5cPhdiqQzR2cWIyihCnom2tOeqbGnFZkIilqAff4xWeCkAtOzbBB9+Mxx1WoZU+J6qI/v27UN6ejpmzZpF50ASCoW4du0azp07h/j4eJP68fDwQI8ePdC1a1fY2tqCoigsW7YMIpHKM4LFYkEqlaJfv35o3rx5pd3Tu2L//v1ISEjArFmzYG0t/4EpEolw48YNnD17FrGxsSb14+bmhh49eqBbt26ws7OjQx9LSlSJsZW27NmzJ9q0sYy3a3Xi4MGDePv2LWbNmgVbW/kPT4lEghs3buDcuXN4+/atSf24uLigR48e6N69O/17aM2aNSgoKKDbKG3ZtWtXdOhgGW/X6sTRo0fx4sULzJw5Ew4Ocu9liUSCW7du4fz584iKijKpHycnJ3Tv3h09evSAo6O8AvL69euRk6MqEKO0ZYcOHdC1a9dKuqN3w66v/8YfPx4EADi6O2Dzw+Vw9XGBjKIQn1uKqIwipJvovcRjMxHqZotQNxs6LFFfPrKwFrUw5suhaDughVnjLxJKcPDwAwjdHMF1MC3cOeVOFHp2roOm4T4GIx0OrzuFTZ/upLcDwv0Q/1wlrHYd0x6fbvkYfFt5yPpfPx/G71/+CQCwc7bFpgfL4RnoDhlFISG3FFGZRUgrNN2WtV1tEOZmC1uu3JZjA2cgIyFLq23tJkEY878h6DC0tUl966NYJMHhoxEodrAFz9m06ApPOy7C3Gzh78R/r1KdEEGNCGoEAoFQrcjNyMfHDb9AXobc+2vq8nEYMX+gVrsSkRTJBaXILhYjp0SEgmIh8rIKIRVJwAWFRk0C4GJtBR8HPrhsTY+xS3/dwM9jf9U7hkk/jMaY/w3R2Dez+QK8idD9Y4/BZOCvhC1w8XbW2E9RFNKLhMgoEiG7WIS8UjFysgohLBFCXCxAnTre8HG3g4ctF642VlqTsUl15yIpKkXnNfm2PPyd/Bus7d6ffEFR999iyeAVyE4xUMmTAex+swHewZoeQBRFIaNIhIwiIbJLRMgtFSM3qxCCYiEkJULUru0BP08HeNhy4WarbcvpTeYj+kmczkvyrLnYF7cJDq7vz1zg7eNYLBm0QueEWIn6JFwdiqKQWSxCRqGaLbOLICgWQlwiQFCgGwJ9nOBmawUPW66WLee0/RIv77zWeU0Ol4M90RvgWua78D5z5coVhIaG6vSkoigKb9++xcuXLxETE4P4+HiUlpaiqKgIfD4fYWFhCA4ORmhoKOrVq6cV0pmUlITff/+d9gqwtbVFixYtEB4eDhcXlyq7x6ri+vXrCAoK0lnRlKIoxMTE4MWLF7QtS0pKUFRUBB6Ph9DQUNqW9evX17JlamoqduzYQYfq2djYoGXLlqhbty7c3Nyq7B6rilu3bsHHxwcBAboXVuLi4vDs2TMtW1pZWWnZsuwCUkZGBn7//XcIhfIf7DweD61bt0adOnXM8s6srty5cwceHh4ICtK9sJKQkEDbMi4uDsXFxSgqKgKHw6FtGRISggYNGmiFx2ZmZmLXrl202Mvj8dCqVSvUqVMHnp6eVXJ/VUHktReY10VeKZXJYmLFhW/QqFO4Vru8UjFSCwTILhEhp0SMvLwSlBSWQiIQwcWejzphXnC1sYK3PU/Ly2ndrG04vvmc3jGsurQUjTprX7M8zG7zP7x5HAev1mH4aNPHKGWxUSAQQ0pRYDIY4LKZcLG2QsKdKPyzcA8KE7PQa1IXzNsx02C/ErEE87ouxfObURj2eX989PMYbFuwD4d+PUm3Cajni68PfIHSwlLMbfcVZFIZGAwGfjr9JZr3bKTVZ75AYUvFPDgvvwRF+SWQCsUoSMhEzqsktG4fhsGj2mrZcsu83Tj4ywm94/3x5P/Qsk+TCtlQybyuS/H05it4t66DiRumQMzlIl8ohlQmt2XiswTkvEpCblQy6oV64OX5J1j8x1x413q/vhf/jYB4AoFAILwXUBSF1R9tosW01h80w/B5A3S2tbZiIcTVFiGuwL7v/8XhDadQkFkIAGjWsxGmnPlK73XqtTFcPEDXKuPCvXPwWYevUZhTpHWsZe8mWmKash9POx487XgoyivCp+1/RE5aHt1H16vfoX5D/TlAGrSvq1dQY7FZoCyQL6cqoCgKp7dfxIY5v0MsNFx1snGX+lpiGhS29LDjwsOOi5KiUnza/mtkJWXTtvz5zFdo0ER/uFODDnX1CmqM9yy5/vk9V/HrjN8gLJV7NjFZTMik2p+FBbs+0RLToLCluy0X7rZcCEqF+KzD10iPy6RtufTQfDRort/7sUGHunoFtepa1r4iJCUl4fbt2xg2bJhezwMGg4GQkBCEhIRAKpXi2LFjyM3NRfPmzeHh4WFUfODxeODz+fSPbWtra3Ts2LFS7uddkpqaimvXrmH48OF688QxGAzUqlULtWrVgkwmw4kTJ5CZmYmWLVvCxcXFaGio0pZFRUX0dk20ZUZGBi5duoRhw4YZzG0WGBiIwMBAUBSFU6dOISUlBa1bt4aTk5NOQVMdHo8HKysrWlDjcrno1KmTxe/lXZOdnY3z589jyJAhBquZ+vv7w9/fHxRF4ezZs0hISECbNm3g4OAAf39/g9ewtrbWyJvGZrPRuXNni97Hu6YorxjLx6+nFwYmfjdKp5gGAI58Dhz5HFAUhaVDVuLp9Zf0s2fCtyPRpGsdvdcJb1vHoKBm7rO8ILsQUffegqIosLPz0b6u7sqbAMB5xUNhonxB6+yuy5j43Si4+uhfSGJz2FhxYQmyk3PgpZjjzFgzEeHtwrD6o80oKSxF/IskfNJyEfi2PPqZPubLITrFNABw4HHgwJN/tn4YuQYRFyO15qiiJ9EYNqad1rnhbesYFNSYZua9KyksxbMbryCTSCFLyUKnBtp/cz5oOx/CEvk8RukD+kmrxdgVte69yhlMcqgRCAQCodpwfPM53D0pT/jt6O6Az7fPMFosICU6DbuX7qfFNADISso2eI5HgBucPR11HvtgWg8M++IDrf3pcZkQFAl0ntN/pvHqSz+MXIv4F0kak51MI+PUJ/w5uNnjhxOLYWNiSMK7pLSoFMvHr8eaaVtpMS2wvh84eipLDZhh3JbLP1yP2Mh4DVsae8/r6rGlnbMtvj++6L3wThOUCLH6o01YMXEDLabVaVkbKy58A2t7TU/F/jN6ofUHzYz2uWbqFryNiLXI59LGwRrfHllQI7zTKIrCwYMHUVRUZHLBktu3byMyMhKJiYmIjo6mhR1D5Ofno6SkBD4+PvDz80N4uHneFdWVQ4cOoaCgwGRb3r9/H48ePUJSUhKioqJQXFxs9JyCggIUFRXBy8sLfn5+qFfPspWCqwuHDx9Gbm6uyUUXHj16hAcPHiAlJQXPnz83yZZFRUUoLCyEh4dHjbbl0aNHkZWVZbItnz59irt37yI1NRWRkZEm2bKkpAT5+flwc3OrsbZc/8l22lu6Qce6GLFA90KoOqe2nceto/fL9RzX9+xhspiYu/ljNOxonm0jLkTSomDzno0Ntk2NzVBtUMAXnb9BabHuOaISKy6HFtOUdBzWBhvvL0NgffmCoKBYSOfnDWtRGx9+M9zouC/9dR1XD9zSueAb/Uh3ZIVeWzIZmLl2kl4Rz1QeX35G5yVupseWNjoKjRXmFGFxnx9RXFCi85zqCBHUCAQCgVAtiH+ZhK3zdtPb836fCSd3w5UYKYrCupnbtHJjZSXn6DsFUHhC6BJYGAwGen/UDRwrzSpcVw/cxpJByyEWaeed4tvy0KSb/pLnAPDq3hs8PP9Ea39FRaCgBv5GveyqA7HPEjCr5WJc/OM6va9lnyZIfpOm05YcLhvNexuexEY/icPt4w+09ldUBPKr44MGHeoaPLc6kBiVjNmtF+PMzsv0vt6Tu2L1lW/RqFM4OgxR5Tvxq+ODj1d+aLTPhFfJuLL/ltb+bCPfH3229KrlgcZd6xu97vsARVGoW7cuBg8ebPI5GRmqH1gxMTE4cUL/6r8SX19fuLm5YeDAgZg8eTKaNm2KS5cuQSIxLcfd+wBFUQgNDcXQoUNNFtTUCzPExcXh2LFjRs/x9vaGh4cH+vfvj8mTJ6N169a4ePEixGLDXrHvG7Vr18bw4cMrZMuEhAQcPnzY6DkeHh7w9PRE3759MXnyZHTs2BEXL16kPdZqCkFBQRgxYoTJgpr6dzwxMREHDx40msTd1dUV3t7e6N27NyZPnoxu3brh4sWLKC0tNXv81YGLf1zHpT9vAIpFlUV7Zhu1Z3FBCX7/8m+t/ZnJhp/jnkHucNQxL7RzskGnEebnSXx08Sn9unkvw4JSarRm8ZiU6HQsHbISIiNe+LrwDfXG+js/o2EnTUFQLBIjO8Xw87i0WICtX+zR2q/0FhcJxHh1XzufoouXEzwCtEPh+fbW6DJa26OtvJhiS3tX3V5orx9E45uByyEsfT/+3hBBjUAgEAjvHJFQjJ/H/gqRQD4RGTirN1r1bWr0vKv/3MLD85Fa+4vz5Tk5DFG/nSqsgGvNBRQ//JaPXw9Bieohfub3S/hp9BpIxJoVQJU/Zvp93ANWXE0BTh2pRIq103/TeSwz0fDk0S/MW8PtnaO4zuNLz3B6u3YJ9urE2V2XMbvVYiS+kleGs7bjY9AnffDg3BOtsE/l78Lek7uBb8PT26dMJsOvM34DpSMhvjFbegS4aYRjWPHl4T0vbkXh6IYz5bu5KubSn9cxs/lCxD2TJzDmWXOxYPcn+GL7DFjxrPDkynOc230FAMDmsPC/P+aCp/hM64OiKPw64zedoaLGxEknD0d411blOOEqin28jYjFgVXHK3SP1Yk3b97g9OnT6NmzJ51Y3BAUReHhw4dISEig9zk7O5skinG5XMycOZPO8aVMhH7lyhUz76J6EBMTg+PHj6NHjx5wdjbNc/HRo0eIi1OFZyttaUy44HA4mD59Ory85GFaUqkUd+7cwYULF8y8i+pBfHw8jhw5gm7dusHV1dWkcyIjIzUKPTg7O0MqlUJmJF0Ai8XCtGnT6HBGmUyGe/fu4dw5/eF27xNJSUk4ePAgunTpAnd37bB4XTx79kyj0IMyx6Gx7zmDwcDUqVMRHBwMKP5ePHjwAGfOVO/njimkxWVg3axt9PbczR/D3d94vsJdX/2NguxCrf3GnuMMBgPh7cLobb6dfL6Qn1WIDbN3lHP02ry4LU9lwGQxUa9tmMG2MU+1i9FEnI/EsnG/GqwYr4+i3CLERGr2GfMkHjOaLcT9s4/1nrfvu3+Ro6NQA0stCuDo+tM6z63fXjUP5tvKbVmcV4y107aaVe0TaraEIk2ELnSlSlESefUFfhi5BhJx9V9cIoIagUAgEN45u7/+G9GP5T+gAur5YuqKcUbPKc4vxubPduk9nvwm1eD5faZ0Q8u+TdBuUAtsfbwSoc1rAQASXyVjx6I/AACHfj2J1VM20xUNOWrC2eyNU7DpwXJMWTbW4HWObjhD35vWGN8aHiOTycSsdZMR1qIWZv06GV//8zl9bPPnu4ye/y4QlAixcvJGrJq8iQ5LDG4UgGHzBuDoxjO0gGPFU9ly+i8TsOnBcsz6dZLBvk9tu4iXd3RXWjVmCwZDHsYQ1qIWPl45Ht8dWUAf275oH+JfJBo8/10gEoiwdtpW/DxuHQTFcpE3oJ4vNtz7GT0+lOczKswt0shdM+mH0SZVLL2w9xoir77QeczYdwcAZvwyEWEtauGjn8bgp1P/owXm3d/8jbePTavUWB0RCAQ4dOhQuTxxXr58iRMnTiA/P5/el5iYaLLooY6joyP69etHJ9Z/nxGJRDh48CAEAsNhUOq8fv2azkOnJDExES4uLiZ7ZCmxs7ND//79jYpH7wMSiQQHDx40KcRQSUxMDA4fPozMzEx6X3JyMlxcXPTmsdOHtbU1Bg4caPaP7OqATCbDv//+a1JItpKEhAQcPHhQw9svJSUFjo6OBvPY6YLL5WLQoEHl/jxXN6RSKZaPX4+SAvniZbdxHdBllHHPpqgH0Ti2SbeYmPI2zej39cNvhqNem1AMnNUbmx6sgK2jPPXFpT9v4PLfNyt0L1A8S+MUVTdrNwkyuLgHAHFPE3Tuv37wLv744WC5ri2TybBy0kYU5cq/34271odnkFzoLcguxFf9fsKpbdoLA7FP43FwjW5PaIlaFEDEBe2FZwAY/b8hCG8Xhn4f98DmiBVwUHiM3Txyn16kqwilxQK8VYSaBtTzhZ2Trc52noGGxdc7Jx5i51fanozVDSKoEQgEAuGd8vjyMxxYLfdqYXNYWLRvDrh8w941APD7l3/pXJVTkvAy2eD5NvbW+PHE/7D00AL41PbCwj2zaZHnyIbTWD5hg4Zg5+7nSntWtRvcEh9M64GQpsFgsfWHNmQmZWPXN/onA3HPjYs4XUe3x4a7yzBodh+06d8c/aZ2BxR5NlZM2FChldDKIv5lEma3Woxzu1QTsX5Tu6PT8DbYs2Q//WPM3d+V9kZs0acJBs/pZ9SWuel52LH4D/3Xfp5kdHwdhrbGhrvLMPyL/mjWoxEGz+kLKEIilo9fD7Go+oSGJb9NxZy2X+Kk2iS6x4ROWH/3ZwTUk+daUYY8Kz3KGncJx7Av+hvtuyC7UCO8uizxL5KM/nBu/UEzbLi7DKMWDUbDjuEYuUBeiVcilmL5h+shEohMvtfqRqNGjdCnTx+T2ycnJ8Pf35/2ZuNyuXB0dERcXBzi47W9GIzRpEkTdOnSBZcvXy6XGFUdadCgAfr162dy+5SUFPj6+tLePxwOBy4uLkhOTsabN7rFdEM0bNgQvXr1wuXLl+nCD+8r9erVw4ABxnNTKUlJSYGXlxftgcVms+Hu7o709HQ8f/68Qtfv168frly5Ui4xqrqhDOceNGiQyeekpqbCw8OD9n5ksVjw9PREdnY2Hj16VO4xhIWFYcCAAbhy5QoKCgrKfX514O9lR/DsxitA4QE+e/1HRs+RSqVyz2gdXuYAICwVGaxcDQC1GgXi15s/4pP1H8E3xAuzN06hj62buQ1ZRsJG9aG+WGcspUZ+VoHB+WfUA+0QS0McWnsSERfkIZIu3k74ev/n2PRgOVr3l+dBlckorJm2Ffu+/5d+NstkMqydsU3vHJCSUbRom5OWpzMnWUBdX6y9/gM+3fIxfGp74dOt0+hjm+buRGpsutY5pvD6fjS9eBpuwNPPN9RwoRkAeF1OW74LiKBGIBAIhHdGQU6hhnfN5J/GonZj4941RXnFBis9AUDCS+MCizr+dXwwdYUq79SFvVfp1816NkKGopqTi7cTPv9tukmry0c3nEapnkIGUIQ3qIeXmsK01ePhXUue1PbF7df4e/mRcp1fWVzYdw2ftFxEi4Q8Gy4W7Z0NBzd7jRXGZj0a0RNmRzd7zNthvPAEAJzYch5Fefq9M/KzClCQox1CYoiPfh4D/7ryKqtvImKx77t/y3V+ZXH1wG3MbLaQ9my04nHwxY6ZWLDzE41V8wv7rtE50OycbDB/1ycmeZ6c3nEJ+Vn6bVVaJEB2aq7e47oY/+0IBDeSVwaNe56I37/8q1znVweePHmCu3fvonfv3uDz+SacIad79+6YNGkSxo8fDxcXF4waNQozZswAi8VCUlL5/g4pkclkuHv37nsbFvbs2TNcv34dvXv3ho2N6cVTOnXqhMmTJ9O2HDFiBKZPnw4Oh4PkZMOLJPqgKAr379/HyZMnK3T+u+bly5e4dOkSevfuDTs70yvftWvXDlOnTsX48ePh6uqKYcOGYdq0aeDxeEhJ0V092hQePHiA48ffz9Du169f49y5c+jVqxccHAznaFWnVatWmDZtGj788EO4ublh8ODB+Pjjj2FtbY20tLQKjYXBYODRo0c4cqR6PMPLw6t7b7D32wOAIlfXor2zTSqSFHE+Em8exhhso0wTYSpdR7dHZ4VnXFFeMVZO3lQhr9QXt6Lo14ZEIABIeq3fi9vNzwUz1hj2tlcn+kkcfv/fn/T2gt2zYe9iBzsnW3x7eAGGfa5aJNu9ZD/Wz9oOqVSKp9dfaoxZF47uqmJLxzedNTqW9oNbodfELoCiSufKiRsr5C39XG1chkJnAxvor5BrxeOgzYDm+GTDFL1tqgtEUCMQCATCO2PzZ7voAgJNujXA0M9M82RgW7Hh7GU4t5Ep3l9l6Tetu1bZ8xELBiHyimo1f/7OWSaX89aV8LUsSVHl+2HDt+Vj4Z7ZdMLZvd8ewOuH0eXqw5IIS4VY8/EWee45RVhiYH0/rL/7M17dfYs/fzpEtx32RX88u/GS3v5ix0w4ezqZdB33AOPhc4mvymdLLp+LRXvn0J5xfy87rDERrGpEQjE2zN6BH0b+QucA9Avzxoa7P6P3pC4abbNScrDhE1XOmLlbpsHdz7QQQw8TbGnMw7MsHCsOFu2dQ1dvPbjmBB5fflauPt4lOTk5OHbsWIWKASgFYTs7O0yZMgWBgYHgcDho1qwZ7WlVXng8HgYOHPhehivm5+fj6NGjFSoGwGAwwGAwYGNjgylTpqB27dpgs9lo0aJFhUJoofByGzRo0HsZrlhUVIQjR45AJCq/x6fSlnw+H5MnT0ZYWBiYTCZatGhhct6wsrBYLAwZMqRC575rSktLyx3OrQ6DwQCXy8XEiRMRHh4OBoOBVq1awcPDw4Szdfc3ZMgQMJnM9+qzKRKKNbzjRy8egvrtTSvs4+LtDCbLsPxQ3mcPAMze8BFcvOVziYjzkTi20bh4VJbnt9UENbUcu7rwCnan54E2DpqVKrOTc8Ayco9KpBIpVkzYQBdpGvZ5fzRVK3LFZDIxbdV4fLxyPL3v+JZz+HHUGtg724LNMVz8wStYlev06j+3TRrTjLUT6VDMp9df4t/VxovrlOXFbdPEybLpKdRtOWvdR/juyEIE1PUt9/WrGiKoEQgEAuGd8OTqc1zYew0AYOtog/k7Z5mc14VnzcWOF2vx/bFFcPdX/chqN6gl/ePWlDxQ6kjEEqyYsFGrQui9Uw/pyc6Quf3QrIfppcT7z+iFLY9WYuRCVWhJUAN/+Iap3NzL60kHAPXahGHUInn1QalEnsfkXVRDSnqdgjltv8QptQIJvSZ2wdobP+DAqmM4skGVCHfWr5OR/CaVzqvW7+MeaP1BM5Ov1WtiF/wWuRrjvhlG7/Ov64uAeqrJVkVsGdI0GB8ukZell8korJiwHqVFVV99LTUmHZ91+BpHN6o8krqOaY8N95YhqEGAVvut8/bQoluP8Z3QabjpFc46j2yH7c9+waQfRtP7fEO9EaS2WlwRWwbV98fkn8bQ2ysmbjDoVVidYLFYaNmyJTp16lThPq5evYr9+/fT2z169ICPj0+F+1OGpV2/fv29CldkMplo1qwZunXrVuE+bt68iX379tHbXbt2pRPkV4TQ0FCMGDECN27ceK/CFRkMBho3bowePXpUuI87d+5g925ViHenTp0QFGTcE1wfwcHBGD16NG7duvXehSs2atQIvXr1qvD5Dx8+xI4dqoWM9u3bo3bt2hXuLyAgAOPGjcPdu3eRl6c/hLA68e/q40hULASGtail8Uw2RnDDAOyN2YjFf8yl9zm626NhR5UgV5Fnj72zHebvnEVvb1u4F/Hl6EcqkeLVXXnIp5ufC9x8DS+EOHs6YWfUr9gTvQEL98zWOCaTUdi/4qhJ1z2y/jRdiCC4YQAm/ThaZ7vhX/THwj2z6cW/6wfvYsOc37H18Sp89c9nYCgWWO2cbTUqbTt6qDzU4p7rzvlWFht7a8zf9Qk9l9719V+IfqI7D7AuZDIZ7Tnn4GoHnxAvvW0dXe0BRYACk8XE1we+oI8pc7C9DxBBjUAgEAhVjlgkxvpZ2+ntKcvGGp3AlMXG3hot+zZBfqZ8Qu8b6oWlh+YjIFwusCS/STU5v5igRIhvh67CFUVCW+XkBABdWdHd3xUTfxhVrjFCke/DQc2jbfgXAzB1uaroQkVWYwFg3DfDENI0iO5j/3LTJnCW4sr+m5jZfCFinsgng1y+FebvnIU5m6Zg9Ueb6DxqTCYD83fOgkegG24fewAAcPZyMqnwRFmC6vvD0U0VpjN4Tl/MWDOR3q6oLUctHETnTEmJTse+78uXUNhcbhy+ixnNFuD1A7mnIYfLwadbPsaivXNgbacdehhxIZL+rDq42mH66gnlvmZAPT84e6q8PPtP74k5arloKmrLIZ/2Q+Mu4YAipHn3N/uNnvOuiY6OxqtXr9CrV69yJxhXJzU1VSNU9MmTJ9i2bZvZ3ie3b99+b6orxsXF4enTp+jduzc4HP3Vj41R1pbPnj3Dli1bzLblvXv3cPq07op31Y3ExERERESgT58+4HKN5xXVR1lbRkVFYePGioVyqfPgwYP3Jow2OTkZd+/eRZ8+fcoVzl2WsraMjo7Ghg0bKuRBqM6jR49w7Ngxs/qoClJj0/HHD/LUCEwmA5/9Nh1sTvn+Zrr7uWqILK36NsN3RxfS2wnlDPlU0qxHIwz6RJ77UiQQY91M0//2xkTG0x72xrzTlNg728EryAN1W4fQ+5Ted+d2XUZWSo6Bs4Gs5GzsXiJ/PjIYDHy6dZrBivHdx3XE98cWgmcj/1sQefUFfhy9Fg4u9nTl82Y9G+HHE4vpCIbMxGza60siliLiou7iBGVp2LEehs8bQJ+3dvpvJntLJ0aloFBRXKFe2zCjKT2U9yyTylC7aSDd/tXd1wbPq04QQY1AIBAIVc6htacQ/0K+elinZW30mVIxT4a02Aza4ykgXJ6o3V/hHi4RS5ESbTy3SW56HuZ1WYI7Jx4CCjHjuyML0XZQS412s36dbLTqkz7i1CpIBoT7wr+Oymsl4VXFcixxrDgaK5b7VxxBWlxGhfoqDyKBCOtmbsOPo9fS+eH86/pgw71laNWvKRb0+A7XD94FFEUmvtr/OToOb4NNc3+n+5i2ajxs7K31XsMQ8WqhvIHhvvT7DTNsyWKzsGD3J3QV10NrTyDpdcVzDJmKWCTG5s924duhq1CcL/dA8q7tiXW3f0S/j3vonIiKhGKs/0RdjB5ncghyWdTDogPK2DKxgrZkMpmYv3MWeNbySf+xzWcR+7T8ifmrCqFQiEOHDlU4D5I6bdu2RceOHelta2trFBYWmlVYgMlkok+fPu+FV5VYLMahQ4eQmmp+9eFWrVqhSxdVmLONjQ1KS0vNtkOfPn3KVSnzXSGRSHDo0CGzcp0padGihYa3oLW1NUQikUZV2orwvthSJpPh8OHDFc5nqE6zZs3Qs2dPetva2hoSiUSjKm1F6NWrF0pLq94zurxs+nQnXVBo0Oy+qNUosEL9xGs8e/xg42ADZy95yGZFF3MA4KNlY+kcs5FXX+DaAdPCHNVTPYS3MZw/rSyObg70NZWIRRIc/MVwqOTWeXvoOVTfKd1Qt1WIwfYA0KJ3E6y6tJSuxhkTGY8fRq6hjwfW84MVz4quEJr4Khl1W6sKLBzfZPrCzITvRtIRAK/uvqEjSoyhntetngm25KstGuak5NGL4tFP4sudY/hdQQQ1AoFAIFQpGYlZ2PedKpnt7I1TTA71LIvSewyKiQQUxQWUGMupFf8yCXPa/A9R9+WeQdZ2fPx06n9o/UEzesKixDO4Yjln1MfJYDDgX9cXXsEedK6p8ub9Uiegnp9Gpcrf5u+pcF+mEPssAbPb/A/Ht6gmZd0/7IgNd38G24qNOW2/xPOb8skUz5qL744uRIehrfHXT4eQFpcJKMrBd1EkEK4IcWUm4q4+zuDbyoVOc2zpU9sLI9RWZDd/vsvoOeaQ8CoZn7b/God+VXl4dBzeBpseLDdYmOPf1cfphMj12oah58TOFR5DWVvau9jB0c1eMb6K29Ld3w2j/yfPsySTyrDp053VNkeQSCSCt7c3unbtalY/MpkMGRkZGnm+QkNDMWjQIPB4FRPilTRo0ACjRo3Cq1evqnVONbFYDA8PD3Tv3t2sfiiKQnp6OtzcVDkog4ODMXDgQNja2prVd926dfHhhx9We1tKpVK4urqaFeoJhS3T0tI0bBkQEICBAwfSVWkrSkhICCZPnoxXr16Z7e1WmUilUjg5OZkV6gmFLVNTUzVs6e3tjUGDBlU4v5+S4OBgfPzxx4iKiqpQHseq4Nax+7hzXL7w6OzlhPHfjqhwX3HPVOGHgQoBRVkgqCC7EPlZFQsl5llzNQoCbJ2/B6XFxhc0Xt5ReUOFtyufoAYAdRRimEwqA4crn9ud2HoOBdm6i/9EXIikCwo5uNpppEowRliL2lh74wc6z5m6rQJoW8r/FxQL0X6IanE48prp1X2tuBzMXKuy5fZF+3RWCi3Li9sqW9Y3wZbqERzRj2NRp6XKlm8jDBewqC4QQY1AIBAIVcrmz3bRq04fTO+J0Ga1KtxXWUEAAPzUvb8M5NB4fPkZPm33FS30uPm6YM3179G4S33ERMbj7M7LWuOuiCggk8mQoPDG8wxyB8+aCxabRYc8JL1OMTk0VRfjvhkGJw95GOT1g3cRcfFphfvSh1QqxYFVxzBLLcTTisfBZ79Nx4JdnyD6STzmtv0SKW/lXj7Ono5YffVbtOjdBIlRyTiwSh7KwuawMHvDFJOqeuqCoij6PXf2coKdky0YDAb9GRr4HQABAABJREFUnss9Fiu+ojly0SA69PjeqUe4e/JhhfvSh0wmw+F1pzCj6XxViKcVG7M3TMFXf39m0HOvbLjNHDPEaKh5Cdg62sBF4R2gtGVOai6K8yvufTLs8w/gFSxftX98+TmuH7xT4b4qi9zcXMTExGDs2LHlqp6oi6SkJJw9e1bDU4XFYoGiKGRmZpo91uLiYuzfvx8RERFm91UZ5Ofn4/Xr1xg7dmy5qifqIjU1FWfOnNGwG5PJBIvFQnp6utljFQgE+Oeff3Dv3j2z+6oMCgsL8fz5c4wdOxbOzs4mnKGfrKwsnD59WsNuDAYDHA7HIp6EIpEIBw4cwK1bt8zuqzIoKirCkydPMHbsWA0hrCLk5eXh5MmTGl6DykIFlvAklEqlOHDgAK5dM80TqCoRlAixae5Oenv66gkV9jIHgLgXqrkZHV2gMXeruJdaq35N0aJPE0AR8rjfhEroynkFi83SyCVqKnVbqbzA6iheC4qFOLJeO7zcEl7mvqHeWHvzR7qytpISheDlp5an183PlQ5FLcguQm6G6bn6mnZviPZDWgEActPz8cf3xiuhx6tFZNRqbNyDUemZCAAJLzQ96l7eeWPyWN8lRFAjEAgEQpVx7/Qj3DgkDwd0dHfQSIpeEdQf3IH1lSGf6uGUuidl5/dexeLeP9AJ02s1DsS6Oz8huGEAZDIZ1s3aBplU7r1g6ygvBf/40jN67OUhPT6TFhCVYwQAvzryCY9ELEVqTMV/JNrYW+Ojn8fS25s/3QmJ2HIr3Kmx6Zjf9Vv8tmAvXZwhMNwP6+/8jL5TuuHagdtY0P07eiVWfuwnhDarBYqisGH2DlUFqy8GaEyay0tueh4Kc+QhX+q2VL7nFEUZLGdvDL4NDx+v/JDe3vTZLoiE5a9UqI+MxCws6vWDRtiMX5g31t78AQNm9jIqNFoq3AYAivKK6QIcgfX96Gurvz/xZvyoseJZYfovqtxuW+ftqVbhGxRF4eDBg3j40DKiqUAgAI/Hg5OTZtXa27dv48GDB2b37+DggKZNmyIq6t1VodUHRVE4fPgw7t4t/99HXQiFQlhZWWlVSL17965FrmFjY4OWLVvi1atXZvdVGRw7dsxiApVAIACbzdbyoLp//z7u3DFf5ObxeGjbtm21/FwCwMmTJ3Hjxg2L9CUUCsFisbQqpD58+NAi7xebzUaHDh2qpS3//PEg0uPlAneTbg3QeWRbs/pTLuZY2/PpRSxTF0ONwWAwMOOXCXQFzH9WHkNqrP45lkwmo6ute9f2LHdOOACo00pVmMLexZZOxXFk/Sm6eJCSA6uOWcTL3MXLCb9c+RZcvhW9b92sHXhxO0ojfUNSVAp8Q1U56w6vO1Wu60xbNR5WPEU6jF9PGcxxR1EUHSng7u8Kvq3xfIXqFdyTo9NQV82WL+8RQY1AIBAIBBphqRAbZquqY01bNZ4WqyqK+qqicsLgF+ZNJ2SNfqxZmYiiKOz97gBWTNgAiVjuFdaybxP8cvU7uHrLPQHO77lKhy36hHjhs9+m0edv+WJ3uUWB+OdqK7H11EUg1YSn7DjLS4/xnVCnpXwSEvc8Ecc3m5/AnKIonN5xEdMazcPT6y8BxUR1+Bf9sfH+MgQ18Mf+FUfxw6g1ECtEp6bdG2Dtje/h7i/3BLj6zy1EXJB7zHkEuGHsV0PNGlOcmi0D1WwZYEFbdhrRFg0UFcdS3qbh0Frzk25TFIXze6/i44Zf4JGaB+Gg2X2w6eEKk7w0LRluA4DOYYiyn8t6lrNlm/7N0byXvCpuRkIW/jGx8llVIBKJUFxcbHZ4opKQkBDMnTtXq6iBj48PxGLLiLIffPABRowYYXa+JksjlUqRn5+vkVvKHAIDA/HZZ59pJeL38fGxWDhcr169MHbs2GpnS4qikJ2dbXZ4ohJfX198/vnnsLbW9Cay5Oeya9eumDBhAnJyDCdhfxdkZ2ejd+/eFunLw8MDX3zxhZY3q4+Pj9lFCZR06tQJU6ZMqVa21PYy/6jCXuYAUFxQgoyELECxAKfsK8CCzx6/MB8MmdsPACAWirF1nv50GBkJWfRClX8db73tDBHcMIC+j+zkHHQb1wEAUJhbjJNbz9PtUmPT8eeP8qJHTBYTczdNNcvLnMPlaCz6CUuE+LLfz2ApxEQAiH4Sh/ZDWtPbNw+XzzPXM9AdI+YPBBTVUDd/pj+FQ15GPr1Q7Wfi4ql3bU/6dVZyNvzr+dJiqFLorO4QQY1AIBAIVcL+5UdpT6yGneqh29gOZvUnlUiRqPCg8QnxBMdKvoLG5XMR1FDuBh/3LIEOWxOLxFg5eSP2LP2H7uODaT3w3ZGFdCXFgpxCbFuwlz7+yfqP0GFoazTrqRIFDqwsXyUuzVwhKuFCPQGtekLcisBkMjFr3WR6e/eS/cjLrHjC6dz0PHwzaDl+mbqFTprrGeiGVZeX4uOV48Fis/DrjG3YvmgffU6viV3w48n/wcZBLpIWF5Rg8+e76eMz106iE9VXFHVbBqjZso6aLV+YaUsGg4FZv06mRdk/fvjXaLUuQ+RnFeC74auxYsIGuvCAm68Llp//BrN+nWySTSwdbgMDn0sNW94235Yz1kyq8sIZxhCLxUhJScGcOXPg71/+8B5dnDx5Es+fa+en6devH/r372+RazAYDCQmJmL9+vUWCdezBBKJBAkJCZgzZw6CgvTn/isPZ8+exZMnT7T29+zZE4MHD7bINRgMBtLS0rBu3TokJiaacEblI5FIEBMTg9mzZyMkxHiCclO4ePGizjDhbt26YcQI80R5JQwGA1lZWVi/fj1iY2Mt0qe5SKVSREdHY8aMGahTx7Sqjca4evWqTg/Jjh07YswY03NgGSM/Px/r16/Hmzfv3juHoiis/2QHvQA5fN4A+IVV3MscBhZzQpvXop+7z8189gDAmK+G0pWsbx6+h4fntf+moEx4aUXvzYpnBVdf+aJs8ts0jFwwiBbY/v3lOL0Qq+Fl/kkfBDcMMNCrcRKjUugKn8p7Lcorxm/z99Ci1ItbURg0WyUqJ71OLXf+yJELB8HNT+5J+ODsE7qIV1k0bWmaOGmntrAuFkjAYrHoogqp0enVNv+qOkRQIxAIBEKlk5GYhb8VeSxYbPPyaClJeJVMhxKqiysAEN5WnghVJqPw4s4bFOUV4399f8L53VfpNh+v+BBzNk2lf+wDwL7v/kV+ljx0sdOINmjes5FCFJhIt/t7+WE69MEUop+oVlqVCWOhcPVX8uym+aFHdVqGoNdEeVW84vwS7Pzyrwr1c/3QXUxt8DntDQUAvSd3xZbHq9CwYz2UFJbi6wHLcPI31arrxO9G4YsdMzRCJf5edgQ5qXLvj9YfNEObAc3NuDs56rYMVLNlWMvadI4QS9iyVqNA9Jsm97YRFAs1hMPycOfEQ0xt8LlGqHC3cR3wW+RqNO3WwOR+/l193KLhNijjAaD+uQxpGkSHdzy7Yb4t/ev4VGnhDFM4e/YsDh48aPbfICVSqRRPnjzR6aUilUrx66+/IiPDMkJiQEAAXF1dcf/+fYv0Zy4XL17E/v37LWZLmUyGx48fQyjU9gSmKArr1q2zmJjo4+MDLy+vamPLq1ev4q+//rLYD0iKovDo0SOdtgSADRs2WExM9PT0hJ+fX7XJS3fz5k38+eefFk3wr+9zyWAwsHnzZouJiS4uLggKCqoWtrx19D7tVe0R4IYxX5rnZY4yzx71xRwbe2t6MTQ2MsGsHJ7K/qYsG0dvb9KTDiNRLYTRVK8qXfgoPK0Kc4rg5OGA9kPlucdy0vJwYNUxPDj3xKJe5ihjy37TeqJeG3n+sbyMAkDxN1keXsqg87TJpDLcPFK+zxbPmotpq1QpHDZ/tgsigfbzTj0cVD0Kw2DfNqpFReX7o/RaE5QIkZNmes63dwUR1AgEAoFQ6fz54yE6LHDwnL4ak6iKEnn1Bf26bJnz+u3r0q/vnYrAp+2/wuNLzwBFMv2v//kcw+cN0PgRmJmUjROK6pU8ay6mr1ZNHgLq+mLQ7D6AQhTYaqIoQFEUPU6+LQ9B9VXeMHZOtrQdoh/HobSoVG8/pvLRz2NgbS/3tju94xLelKNCUnF+MVZM3IDvhq2iRUVHdwd8e2QBvtg+Azb21shMysZnHb/G/TOPAUUy/UV752DsV0M1bJmbkY8jijwdHCs2Zq6dZJEf3Epbcrgc1G6i8obh2/AQ0lS+Hf8iCQU5uitrlYeJ342EnbO8ouDFfdfL5UVYUliKX6ZuwdcDliE3Xe4paO9ih6//+RyL9swpV6hzYW4R/v3lOKAIEflkvXnhNkoir72g+wxrocpZwrHiIEwRPpwWm2GWd56SsoUzHl2yfOGM8vDy5Ut06GCeh6w6DAYDderUQb169bSOsVgslJaWWszbhMViYdKkSejatWu1qFJZGbYMCwtDgwbagjOLxYJQKMTr1691nltemEwmxo8fjx49elQbW7Zv396sEDB1GAwGQkND0bBhQ53HxGKxxfJ1MRgMjB07Fn369Kk2tmzdujU4HI7F+qxduzYaN26stZ/BYEAmk1nUlqNGjcIHH3zwTm0pk8mw65u/6e0Zayaa7WUOtWcPANRrG6pxTLkYSlHyxVBz6TauA+q2lnt7JrxMxrGNZ7XaJGqIQBUX1LyCVaGLKdHpmPjdKJV39vIj2LZQFf0wbeWHZnuZo8w8uFHnevjx5P/oQgUSkUo8fHErCg07qp5Pp7ZfLPe1Og5rjUadwwEAqTHpOLhGOx2Ghi1NFCe5fNVnSqrwhPRWt6Wi2FV1hghqBAKBQKhUUmPTceb3SwAAazs+Ri+2TMjOk6uq8KqGnTR/yKqXPT+x5RwdYuDgaoeVF5eg47A2Wv39+eNB2uNtwKzecPXRTIj9oboo8O8dxETGGx1j0usUenWtfvs6Gt5wUPekk8rw8u5bE+7aME4ejhj39XBALV+cKTy69BRTG36B83tUHnztBrfEtqer0XZAC0ARlvpJq8V0lU87Jxv8fPYrnaG7+5cfoUMc+k7tTld7NIf0+Eykxcq9fOq2DoEVz0rjeHhbVVjPi1vm/+C2d7HDxO9G0dt7vv3HYHslT6+/xLTG83B6h2rC2qpfU2x7ulrn584Y/64+ToeK9pzQ2ayiDkpyM/Lp70Ros2A65FmJui2V+QTNoWzhjN1L9r+zMA6RSITZs2ejVatWFuuzqKgIXbt21VndksVioVu3bvD1NW213hT4fD5evnyJ7du3v9Mf3CKRCNOnT0e7du0s1mdRURE6duyoVdwBCqGhW7du8PMzf0FGCY/Hw9u3b7F161ZIpRWvtmwuIpEIU6ZMQadOnSzWZ3FxMdq1a6dVkAAKW3bp0gUBAeaFnKnD5XIRHx+PTZs2WdQzrLyIRCJMmDDBYvkRAaCkpAQtW7aEh4fuZ1mnTp0QGFjxIjFlsbKyQmpqKtavX2+x/Gzl5dqB24h7JvdgrNMqBG0HtjC7T4qiEHlFPnfj2/IQ0jRY43h4O7VnjwU8pJlMJmb9OplehPpr2WGtSuDqXlWmhinqQj0XWMrbNPjX8cGAmfJciMJSET13Cm4YgM6jLPM3UzkP5nA5qNsqBLaONlh29muNIgQAEHE+Ev1nqnJcViQ1hjwdxiQ6LPfAqqNaBRc0bGliPjorNZFWoqh4r27LZCKoEQgEAuG/zr7v/4VU8ZAcPLdvucuD60J9UmbjYK1VOtzN14X2AlLm/vAJ8cK62z+hXhlvNgBIi8ugRT++LQ8j5g/QamPjYIPRi4fQ23/+dNDoOJ9cUa0eNuwUrnU8vL26cGGZinMDP+kNVx95Lo/bxx5ohEmWRVgqxKZPd2JB9++QmZgNKKpuLdj1CZb8Ow+Obg6gKArHt5zDvC5L6BBOzyB3rL35IxrpuKeslBwc3yxfBbbicTD6f0O02lQEjZVYXbZUE1EtZct+H3enc3lEnI/Ey7v6V8xFQjG2LdiLLzovoYU/vi0Pn/02Hd8fWwRnT22BwBh5mfk49Kt8FZjNYWHc18MqfC/qqNtS1+eyfiXYssf4TvTq//ObURpjqCqys7OxcuVKZGdnW7Tf48eP49KlS3qPN2vWzOI/ir28vJCamoro6GiL9msqeXl5WLVqFdLT0y0W7gkAp0+fxvnz5/Ueb9KkCSQSiUUFWS8vL2RkZFjM8628FBYW4pdffkFSUpJFbXn27FmcOXNG7/HGjRtDJpNZ3JbZ2dl48aLqv99QCF9r165FXFycRW154cIFnDypv0BNw4YNwWAwLGpLT09PFBQU4NmzZxbr01SkUin2fKtakJvw7UiL2NPYImN99TnRLcs8e8Ja1EaHYfKk/HkZ+Ti1TdM7S+lV5ezlROeArQg+6oJatFwEGvfNMNg6afY5fukIi3ihZiToXmR0cnfA8vPf0DndAODc3quo0zKEzqtWUlBqsPKpPoIaBKDbuI6AouDCsU2aHn9KW9o62sDJw9GkPnnWqsVR2kNNzZap0URQIxAIBMJ/mKTXKbig8HqydbTBsM8tk5w7/kUSHZbYoGNdsFiqSZmgRIjl49fTlYagyLG17taP8K7lqbO/P77/lxbehsztBwdXe53t+kzpBkd3uRfKtQN3DJYPRxkvOqWrvDr11VdjzUymr8SKy6ErMgHAnz8d0tku6kE0ZjRbqFFCvXGXcGyLXI0e4zuBwWBAJBDhlymbsW7mNto+DTvVw7rbP+n1lPrrp0N00t0BM3vDxav8QpIuIo3YMrwSbMliszB6kcqjUlmdqyzRT+Iwq8VC/LPqGP2Dqn77Otj6eBX6TulW4R8i/6w4CkGxfDW9z5Tu8Ahwq1A/ZTFmS/X8fpayJZPJxJj/qfLv/KHHlpXJgwcPwOfz9XqZVJS0tDR4eur+26I8/ueff1osjxoU1RsHDx5s8XsxlYcPH4LD4cDLy8uE1qaTmppq0JZZWVn466+/LFqUwdPTE0OHDrX4vZjKo0ePwGAwLOrFCBM+l7m5ufj777+RkJCgt015cXV1xbBhwyx+L6by+PFjSKVSixUbUZKenm7QloWFhfj7778RE2N6mgVjODo6Yvjw4Ra/F1O49OcNWhyp374OmvXQDhuuCMYWGd39XOnk96/uvtWZ86wijFFb2Ptn5VG6MmZBTiHyMgsAMyp8KvGqpfpbrBTU7J3t0G5QS3o/z4ZrkXyyAPDEwCKju58rVl5cSueWFRQJ8PWAZRpVvPd+a1oEQ1lGLRpMz2kOqhVcKC0W0NVb/ep4mzzvUc+hplx899Zhy+oMEdQIBAKBUGns/e4AZIoKRMO+6F+u3FGGeHJFTRBQm0ikxWXg0/Zf4eIf1zXadx7RVq9nXNKbVJxTF/2+0C/68ay5GK44TlEU/vpZt1gFnaEN2hXwPIPc4awQnF7efm2xkKO+U7tphKfGv1RV1RKWCrHzq78wt+2X9ITZisfBjDUTsfz8N3D3l4s2GYlZ+LzTNziz8zJ97pC5/bD83NdwctcObYNixfS0IjcHz4aLkQsH6mxXEZ6o5U9T5kRRx8XLiQ4tfXXvrUYpeXPoMaETPcG/c+Ih3j5SJZ4WCcXY+90BfNJyER0aw7FiY+rycVh1ealZoa45abn06i+Hy8GY/1kmVBpqHmpMFlPDs0+Jen6/t49iLZLfDwA6j2xLrzw/uvjU7Cqi5aVx48YYM2YM2Gy2Ca1NZ9SoUQZDSN3d3cFms5GVlWXR6zZs2BB37961qCBSnmuPHTsWVlZWJrQ2neHDhxsMIXV1dYWVlZXFbVm/fn1ERERYVBAxlfDwcIwdOxY8Hs+i/Q4ZMgQdO3bUe9zJyQl8Pt/itgwPD8fTp0/fSZXKunXrYuzYsbC2Nj8/lToDBgxAly5d9B63s7ODra2txW1Zp04dvHr1Cq9eWcZbyxQkYomG2DLx+1EW8/YztsgINS81QYlQI+m+OdRqFEgLWVnJOTi36woA0J75KJMDrSKoL9imRsu9v6RSKV7eUXm+CoqFuLL/llnXURJ5xbAtfUO80OaDZqr2ZbzC1YsllQf/Oj7oNEKeviIvswCnfrsAAMhOVuVb1bd4rQuejervnlQqT2HgEehOh5amRJffk66qIYIagUAgECqFuOeJuPzXTUCRj0pZ6c8S6JqUPTz/BDObL6QnYMpKhQDw4o7+UJ593x2ATPEQH/a5cdHvg+k96WT1l/68oXf1rGxog3oFTCUMBoMWNEoKSxH71DI/jLl8LoZ/IQ9bVRf+Ii5E4uNG8/DnT4folcCQZsHY9HAFhsztR4chPLn6HLOaL0TU/WhFf1ZYtHcOZqyZqPM+lPzxgyoP3aDZfeHoplt4Ky8ZCZlIjZFPqnTlT1OitKVYKMbbchRkMATHioORCwbR20rPqshrLzC9yXzsWfoP7b0X3DAAG+4tw4j5AzW8JivCXz8fhrBUHibYf3pPrZx+FSU3Ix9xz+XiX2izYL2JkdXz+726Z35+P/yfvbMOb+p83/gda+ruQluqFJdSoLgXdxgwdPiwMWRsbGNjbGNjMAYbMNzd3SlQvKVQd3f3Rn9/nOQkadP2JDlh8P3lc127Rpo3b06fnuS853mf576VVPwd2fD+qtTu3r2LjIyMRqtM1CEhIQHx8fGNJun09PSwYMECeHt7NzhGXfLy8nDt2jUKI+nj4cOHSEpKgqOjZhUddUlOTkZ0dHSjQvIsFgvz5s1DixYtGhyjLvn5+bh27dp71fd78uQJYmJiaK/oSktLQ3h4eKMJTyaTiTlz5ig1gNCUwsJCXL169b1q/D1//hxv376lvaIrKysLr1+/bjThyWAwMHv2bLRv357W9waAoqIiXL169b3p0t06+JC83rbv11qpxII6UNlkhBY0PKVMkXMoPfnreQj4ApTklZI/k25CqouhiQHZwSBdFz48GYK0aMVOhj1rjpBVXZrQ1CYjAHQZrlgNlxSeSlatVVfU4OmV10pf1xTyFX8nf7sIXg1PIZbmDWy6KkO+Qk0kWZfqcTmwcSG0H3Utnzp06NCh4/8th76XCY9PXDWynvC5uojFYryTLCSMzAib9ZObLmJt0E8oL6oAJHppfz37mXzPyMcxSm+SUqPSce/YY0Ca9FvadNLP0MQAY5cNAyTJhhO/XFA6rimdKinybZ8RNIjwShk2fwBZlXfv2GN8O/pXrB74I+mYxOaw8Om347Et5Ce4SuzNxWIxzv15Fav6/0C2Qdi72WDrkw1KzQfkyUrMIavZDE0NMP5Letp70URrgzzaiuXgWX1gaU/ogTw+9xzfj/kNK3p/R1b4MVlMTFozGn89/xnN22gu8p2XXoCruwgdKX1DLiatGdXka6jyLpjaeSmv70dnLPt/2hO2zYiF8svrYYh7rX0NsMLCQjx+/Fgrc798+ZJShVhFRQWuXLlC+/v37dsX5ubUtGrooLS0FA8fPtRK0unVq1dITW3a7KWmpgYXL16k/Rj69OkDS0tLCiPpoaKiAvfv39dK0ik0NBQpKU1X9/B4PFy4cIH2Y+jZsydsbGzeW3Kyuroad+7c0Vosk5OTmxwnEAhw7tw52s0tevToAXt7+/eSnOTV8nF0wxny8YwfJtI2d2Z8dpObjKijoxbxJJq29/fx90SnQW0BADkp+bh37DFK8srI51VJAjWEpQPxXVxWWAGhQFGHzlfinp2fXogzmy9r9D556QWUNhnlYymtMpRuIAPAYYpmS3Vxb+2KwFGESUVRdjFu7r+PYjVjqdDyKXds0liWF1f+p4YxVNAl1HTo0KFDB+0kvEnGo7NEObmFnRlGLBpM29xp0RlksqdlNx/8POVP7FlzhGwtDRjaAdsliY0WXYmKkKKcEqV6Z4fWnyYX/BNWUk/6jfx8MAxNibG3Dz1AXlp+vTFUWhtQR/vrzX36xIcNjA0wZtlQAIBYJMbTi6/I51p198XOsN8w7fsJ5KJWqj33z/ID5IKrw4A22PHyV3i2U76TLM+RH8/IKv2WD4eppebmE1IUreHffyy5BlyM+1JmVPHkwgvy374BXvjn9SbM3jgZetyGK2tU4dhP58hKv5GfD6Ys7ksFqrFspaVYsjlsTFotSxA2pEtHJywWCx07dkS7du1on9vQ0BBt27ZtclxlZSXCw8NRUlJC6/s7ODhgzJgxiIqKei/JCwaDgfbt26Njx44URqsG1VhWVVUhMjKS9vY6W1tbjB8//r3Gsm3btujcuTOF0aphYGBA6XyvqalBdHQ0cnPpbauytrbGxIkTERMT896q1Fq3bo2uXVV3Um4KqrGsra1FbGwsMjMb11ZVFQsLC0yaNAnx8fFaTyzc2HuP1MHyD2qv1MRJXeSlOhrbzHFr5UKur94+jKL1d57yjczY5/jP51CUU0w+piOhJu1w4NfycWPfPWTGE1qPbXu3xMoDn5PVYSd/vYCCTPXNcZoyaZLi5OUAcxtCE5jDrZ/ATAhNRpWakg6T5Sr+Tvx6AYXZspZPVWJpYCyr/JRP9sl3i1SV0SM7oS10CTUdOnTo0EE7R36U7XBOWjMa+nK22JoiL2obH5qE4NNPyceffjseP1xcTV6IOw2U3Zw9vfRKYZ7UqHTytea2ZhixaBDlYzA2N8Koz4MAiYvoyU0XFZ4Xi8XkceobcRtsbQAAz/ZuMLMmkk+vb4XXs3RXl7SYTLy4HqrwM0NTAyzfPR+bH6yHq58L+XNl2nMTV43ExmtrKbmyZiXm4O6RYACAiYURxiyjr70XciL6HD02fAM8Gxzn6udMOpy+uRdRz9JdXTITsvH8qmJrhL4RF4u3f4atj3+kpSpNSl56Aek4a2hioGAwQQfSRC+TyVCqnybF3t2W1DuLeByDssJy2o5h0Mw+pHbgkwsvkfyu6aokdSkrK0NCQgKGDRumcRtuXUQiEfr27UspCdS8eXN4eHjQ+v5SiouLcfr0aa1rVlVUVCAmJgbDhw9vtC1THUQiEXr27EkpUefq6gpPT09anPLqUl5ejjNnzmjdpbKyshLv3r3D8OHDweXSd32E5PrTtWvXRnX9pDg7O8Pb25v2zwYkic8zZ87g7du3tM8tT3V1NcLCwjB8+HDadejEYjH8/f0b1fWT4uDgAF9fX9o/G5Ak686cOYOwsDDa55Yi4AsUdGGnr6evOg11Nhnb9PJrcByLxUKH/oQJQmlBOaKf0ue+2yrQl9xIyojLxrtHsgo4c1vlZlSqIJ8EOiYXyxk/TEQzXyeMWEisM2uqarF37TG130cxOdlwLBkMBjpK1sG8Gj46Bym2JIvFYhxR05zAu6MH/CXz5aUVIOzOO/I5CxViKV9dJ59QM5KLZUVxZb3XfUjoEmo6dOjQoYNWclPz8fTiS0BiQz5s3gBa5392RZYYK84lNBsMTQ2w/sKqenbk3Ub6k/8OufhCYZ6L22+Q/564aiQMjFRbiI9ZNpQsVb++9x4Ks2U7nfGhSSiSPG7do0WjumMsFgtdhhE6FzWVtQi7q1k1EK+Gh0Pfn8L8dl8iKkRxIdp9TACGfNZPIUaPzj7Dgg6rSO05fSMuvjn5BT77ZSrlm6xLf98kKwTHfjFcI+v5uqRGpZOitC26eoNr0PDNJ4PBQNcRxN+czxPg5Y03Gr03n8fH0Z/OYk7rFQi/H6nwXMDQDhixcBDtN6JXd90m9e1GLQ6ilNCkSnZyLmme4N3Jo0H9NEhi2U0SS5FQhOdXQxscqyp6+nqYSMGJlg7u3buHZ8+eaWXuhw8f4ujRo5TGcrlcTJw4EXw+PWYZ8tja2sLd3R2Jidptn3348CGePHmilblDQkJw4MABSmM5HA4mTpyolWodS0tLeHt7az2Wjx8/xqNHjyiMVJ3nz59j7969lMayWCxMmDBBKxV5pqamaNmypdaNHp4+faq1NuTQ0FDs3LmT0lgmk4nx48drJdErrd7U5nn55PwLFEiE5bsM7wifTvRtAPB5fLySXI8NjPXh3bF5o+Ol1x5INl3oZMo3ssqqd8HyCTXNK9SMzGXX1LxUotKvQ//WaNWd0Hz89LvxMLEg1kd3Dgcj5oXqmyBCoRAvrhHX48b006R0lYultYs1/LoqannePHBfyauoMVUulvKV7KrEUv7zolChZiaLZUWJLqGmQ4cOHTr+H3Fl5y0yuTJs3oAGtR3UIS8tH69uhiv8rFkLJ2x//rPCAkyKo4c93FoRlVgxzxPI8v7K0krcPkw4e+obcRE0u6/Kx2JmbYrh8wcCkvJ+qbslADw8Jauak7dMbwjFxJ/6i8c39yMwr92XOPzDabJl0M7VhjRoCD79lKzaqqmqxdZ5u/DD+M3kYsXR0x7bnm5Er/HU22aqK2twU6KdxuFyaE+gBp+WJUOoxFKq6wEATy+pH8uIx9FY0GEVDqw7Ab7EMdTa2ZJMooZceElr1RYk+jXX/iUcs1hsFoYvpF41SQVNYhmiQSyVMWRuf7IVJfjMM4WENJ0UFhZSqtRRh7i4OJWE+RMTE7Fz505UVVXRehwMBgOTJ09G//79tdqqWFBQgC5dumhl7ri4ODg5OVEen5qaip07d6KsrIzCaNWYMGECgoKCtNqqqM3zMj4+XqXzMiMjAzt37kRxMf2fwTFjxmDYsGFajWVBQQECAgK0kshS9bzMycnBzp07kZ9fXwZCU0aMGIHRo0drre3z4g7ZJuOYpUNpnTvsbgTKJVVGXYZ3bHSTEZINK2l7ZMill7R+r7Xr04pMKsknamhp+VSymSgfS1NLE0z7Xlb5t2XuLvB5qm2yRDyOIbXoOge1a3STEQD8B7cDR4+I98troVh36gtY2MtkJMoKKxD9XL0qQL+uPmjXtxVQpy1T3VhK7x1Qp9pPl1DToUOHDh3/b+DV8HBNklhic1gYOrc/bXPHvU7Eos5fKSys+k3tgb+e/QwXn4YXvNJEm1gsxrPLRNverYMPUVNJtFYO+LSX2hVVIz8PIoVeb+y7B5FIBLFYjOAzREKNyWIicHTTiYsOA9qAa0AkHp9efqXygrm0oAy/zdqBlf3WIyOO0OxgsVmYtGY09kRuwYBpvQFJBdz944+R9DYVi/xX46okeQMAPcd3xY4Xv8C9lWoOafePPSYXO30+CYSZteZtE/JIYwkAPcY2fTPfppcfqb/y/GooBHzVnNHKiyuwdd4uLO/5LVKjMgDJ33HcF8OxL2orhs4hzmk+T4A7h4NV/G0aJ/j0U1IfsMfYAFg70iuQLh/LnhSSpi26epNJr1c339DWjgyJ2ULQZ/0Aya70rQMPaJtbSm1tLWbMmAF///rJdjoYMGAA+vXrR3m8s7MzxGIx0tPTaT8WNpuN8+fP48aNGxRGq05tbS2mTJmiFY0qSMwVBgygnox3dHQEg8GgZAihKiwWC5cvX9aKiQQkRgATJkxAjx6NG72oS69evTB4MHXdUgcHB7DZbEqGEKrCZDJx48YNXLig3LxHU3g8HkaPHo0+ffpoZf4ePXpgyBDqEga2trbQ09OjZAihKkwmE3fv3sWZM2cojFaNpLepZPtjsxZOaNenFa3zy0tz9BzX9HeIqZUJWvcgqrqyEnKQFp1B27EwGAyMWjyk3s9MrYw1nruuS7xDczt0Gqyovzds/gBSJiLpbSqO/KDa31PVWBqaGKBdP8LJNz+jEEU5JfjuzJfk2hUAfp/1t0rHIM/oJfU/H2Y2qq0DpccilkuoKbR8ltC7CUU3uoSaDh06dOigjYennpJVOz3GdYGlvYXGc4pEIpz54zKWdvtawZZ76rfjsObQkiaNBLrJVeI8ufgCIpEIl/6W3XRqYphg52pDukblpubj9e23iA9NQk5yHgCgXZ+WMLdpeqdO35BL6lyU5JUi5nkCpfcXi8W4feghZrVYppCQ8OvqjX9e/4rZGydD35CLIXNkN/3HNp7D5wFfkVbuXAM9fPHvfHxzYnm9xSCV978oH8uF9JlPQNLumRJJJB/8uvnAxtmqyddw9DgIGNoBkOxqvg2m5hImFotx7/hjzGqxTCHR6N3JAzte/IJ5v0+DgbEBgubIksTX9tyhdef8khZjmZ2ci7hXRLuQZ3t3OHrYN/kaoh2Z0LSiox25LkGzZefl9b13aa1iEYvF2LNnD0JCQmibU57o6GiUlJTAyIj6Z8bY2BizZ8+Gu3vTJh/qYGdnh7CwMNqrgcRiMQ4cOIDgYHoTyFLi4uKQl5cHExPq7c0GBgaYPXs2vLwab3dSF3t7e7x9+5b2Fl2xWIzDhw/j3r17Cje0dJGYmIjMzEyYmVGvENHT08OsWbPg40OfAL08Dg4OiIiIQE1NDe1znzhxArdu3dJKLFNTU5GSkgILC+rrGDabjVmzZqFly4aF4jXB3t4eMTExqKykt2Ln0g7Faw+d8eTz+KTkhoGxPvwHUzOH0WbbZ+DozgpyCiZWxrTIN9RdQw2fP7DevGwOGysPLAKLTfz8xK8XKLd+CoVCPD5HGH5xuBx0Gd6J0usC5bsgLrxEy24+mLBSZrSUFp2J6BfqVakFDOkAK0fZZ0TfiKu6brLkdJNfT0lbYwGgUlehpkOHDh06/r9wccd18t8jFwVpPF9xbgm+GfYzdn15CAK+rGrLytEC076bQGkO747NSaH6sLsReHb5NVnF1bZ3S7i1dGlihsYJ+kyWYLm+545CuyeV3UMp8joXVNo+02IysWrAD9g0YzuZxDQyM8SSv+dgy6Mf4d5aJpTv3dGD3BHNSysgWxibt3XFjle/Imh2P7UW0JFPYpAUTlQ1+AZ40aq5gjotiqq0ocovxJ9SiGVmQjbWDvkJP0/5k0zaGhjrY9Gfs7Dt6U/wbC9LgLi2cCbF/FOjMhBFk2By7KtERD8jFtXN27gq2N3Tgbqx7EpTO7IyHJrboUN/Yuc8OykXb+ro1GlCZmYmCgoKtJa8unfvnlqVZiYmJrh48SJ4PB7tx9SlSxcMGDCA9ta33Nxc5OTkaC2WDx48UKvSzNTUFBcvXtRKoqZTp04YNGgQ2OzGW9NUpaioCBkZGXBzc6N1XikPHz5UqzrK3Nwcly5dor0dGQDatWuHoKAg6OnRJ/8AAKWlpUhOTtbaeRkcHIzk5GSVX2dhYYHLly+joqKC9mNq3bo1hgwZQquRRXlxBWlIZGhigAHTetE2N5S0ezbVoiil60hZskgT+QZl6HE5Cr8nXQlEjr7MkILFYWHQLOWVk57t3DF1HeE4KhKKsGnGDkoV4HXbPak608sn3qTyDZ/9MhUcOWfyrwb9hJL8UqWvbwwWm4VBM/ooPFYVskJNrGv51KFDhw4d/4+JeRGP2JdEBYxHO7d6wqeq8upWOOa1+1KpsHyfSd0pL4AYDAa6ShYT/FpCZF7KSA2q06R0Hd4RFnZENUDIxVe4f5IQ7aba7imly7AOYDIZknleNDiurLAcO5bsw9w2K/DmnqxiqNeErtgbtRXD5w+sd0Md/iASuWmKmi6jFgfhr6cb4drCmfIx1kVec4WOWNZF1XZPKf5B7cHmEIu6JxdfNFhFVlFSiZ0rDuKzlssVtPkCR3fG3qitGLU4SOmu9ZDPFKvU6EC+Om3kInorBKBGu6eUDv01a0duiiF1EtJ0YWNjg4kTJ6qkf0QVsVgMDoeD9u3bUxitiFAoRFRUFBISqFWhqgKXy4Wbmxvu379Pa+WkpaUlJkyYoLUkEJvNpuTuWRexWIzo6GjExsbSfkx6enrw8PDAvXv3aI2lqakpxo8fr7XKOjabjU6dqFWtyCMWixEbG4voaGoVvarA4XDg7e2Nu3fprUI1NjbGuHHj4OtL7+aDFCaTqXYs4+LiEBFBb0UvJH9fX19f3Lt3j7bv4lsHHqCmSiKBMa0X5SQNVVRtUZTi4G5HbgTGvEhAQVYRrccllRwAgKqyKlo+54lvZAlYjzZuMLVsuOp20ppR8JZsQqbHZOLAupNNzq9uLK0cLOAbQHznJL9LQ3YSYfQ0dJ7s+ltZWoUNE7eoLJMBAIPldIhrKmtU/pwzmPUTaoY6UwIdOnTo0PH/jUt/3yT/rUlCgM/jY/fKQ/hq8AbSxdPCzoxceEDFhADqtH3GvSaSfjbOVgpmAOrC5rAxcDqhUSYUCJGfRjg7UW33lGJuY4aWgcSNQUZcNtJiMhWe5/P4OLf1KmZ4L8aF7ddJJ0g7VxtsuPIVvjnxBawcFFtThAIhDqw7gZX91qNSToNC34iL2T9P0cgwojC7GI/OPpccu6nKf5OmUKfdU4qRqSEplJufXkg6mEoRCoS4uOMGpnstxtktV8jqRxtnK6w/vwrfn13Z6Pv1HN8VRpLF3sOTIags1WyxV1ZYjvvHiUSssbkR+kzurtF8dVGn3VOKviGXbGtWpR2ZKl1H+sPMmrjpeHL+BUoLNBeZLy8vx+XLl+Hh4aGVVrDq6mrMmDEDzZqppjcISfVKmzZtwOFwKIxWnfLycgQHByMzM5PC6KaprKzEpUuX0Lx5c63FcurUqWpVGZmYmKB9+/a0Vz5JqaiowOPHj2nTw6qursalS5fg5uamlVjW1NRg4sSJaiXrDA0N0alTJ1orn+SpqqpCSEgIbS6VtbW1uHDhAlxdXbViRlBbW4uxY8eiRYsWKr+Wy+Wic+fO0NdXzTmcKjU1NXj69CktiWSRSIRL/8jWbppIYChD3XZPKV1HyFepvWp0rKq4tnAmEzn8WoHG1eZisVhhA9g3wLPR8WwOG6sOLCKrxM5uuULq2ClD3XZPKYFKqs1nbvhEYUz4g0gc//m8SvNCkvxkSTYxhQKRwmYvFaSbyZDLabJYcp9r7Xnt0IIuoaZDhw4dOjSmJL8UD04QCQETCyP0+US9hEBqVDqWdV+H05svkz/zH9wOmx+sJ5Mits2s4du58YVKXdr2lgnVSy/MQ+cOUKs0XRnyO51SVNk9lKLQ9nmBWISKxWKEXHqJOa1X4J8vDpCtE/qGXEz7fgL2RG5BwJAO9ebKiMvCF72+xdGfzpK7fpYOhLNTTWWtwk6nOlzbfYdM6gV91g96XHoTBAotimrEUlF/RVbx9+J6GOa2XYHti/eSrbJ6+hxM+Xos9kZtoZRk1Tfkou9kQlC8tpqHe8ceq3x88lzfe49swx00ozcMjOi9EZOPJV3nJV0QrTdEQprPE+D2oYcaz/nixQutVIBJOXLkiEZ6YqNGjYKpKb3mHVLc3Nzg5uaG6upqCqOb5tWrV4iLo6etWRnHjx/HvXv31H79iBEjYGlpqRV3UxcXF3h4eNDWUhoWFqaVCjApp0+fxq1bt9R+/ZAhQ2BjY6OVWNrb28Pb25u2WL59+xaRkZFac7U9f/48rl+/TmGkcgYNGgRHR0etHJ+NjQ38/PxQW6u5SczrW+HISsgBALTv1xrNfOmt6FW33VOKogM6vdceSKoQpWhabf42OAp5kg1VALBxsW7yNa5+Lpj54yRAstb7beYOVFco/+6Wb/f0H0y93VOKvHzDE0ksDY0NFCQtAODohrNICFO91VnqJAo1YqksKS4UyqrcmKwPO2X1YR+dDh06dOj4KLi+5x74PKJMfPCsvioLkgoFQhzbeA4LOqwiK2nYHBbmb56ODVe+QuSTWDJ503NcV5V39zl6HHQcJNsZZbGZCkL9muLk6YC2fWQixAwmQ6V2TymBo2QLnrtHHyHhTTJWDfgB343ahMz4bPK5AdN7YX/sn/j02/H1Yi0UCnF682XMa/cluePKZDExe+NkfHPyC3KcvPC+qgj4AlzZfZuYm8nAsPkD1Z6rIRTaPcdRb/eUIr+zfe/YIyS9S8VXQRvw9dCNpCEDAPSd3B37Y/7EjB8nwcCY+gJV/vyROtuqg1AoxGW5CoHhCwepPVdDKLZ7qh7LLsM6kgva+yee0N72KZ+QvrbnrsY3ofr6+ujdu7dWqsAqKiqQnZ2tUStpZWUldu7cqZWkH5PJxPTp02FhYUHLzTyXy0XPnj21UrlUU1OD9PR0ODo6qj1HbW0tdu7ciZiYGFqPDRK5gKlTp8LW1paWWOrp6aF79+4wNDSkMFo1+Hw+kpOTNTovBQIBdu7cqZVWRQaDgU8++QSOjo60tH1yOBwEBgaqZGRBFZFIhISEBI3OS5FIhF27diEsLIzWY5Myfvx4uLq6avxdrHXZBjVbFKV4dWgOGxeiWjz0zjsUZhfTenzyn+uHJ0M0ai2UjyXqVlg1wpjlQ0ld1uykXPy7+qjScfKxVEUHVUozXyc4ezsAACIexSAnhTDPmvrteIVxQoEQv07/C7xa1QxZ5NflT86/UEmPjSGXUJN+P4h0CTUdOnTo0PH/ibtHZdUawxeolhBIepuKxV2+wv5vjpNJORcfR2x7uhFjlw8jrOKPPSLHq9ta2MxHtjg2tzWDhZ25WvM0RLvesoSaua2pSu2eUhw97OHXjVhYpUSmY0GHVQql8617tMCOl79g1f7PYe1UvyUxNToDy3usw+6Vh8CrIRZDDs3tsOXRj5i0ZjRaBfqSJgxRIbFkS6WqhN2LQJFkYdt1pD9sKezEqkJieIra7Z5SrJ2sSMH7rMRczG+/UkEnrUUXL/wZ8hO+OrIUts1sVJ7fs507fPyJNuSEsGSylVhVIp/EIjeV0LfzH9wOTp4Oas3TEBlxWQrtnurMb2Ztis5DCL2w/IxCvFKia6gJzXyd0Lon0VqVHpOJyCfqJ0cqKirg7e2NLl1UTxxSwdDQEOPHj9fIEdHIyAj29vZaq1YSi8XYtWsXXr3SrEWqqqoK7u7u6N6d3hZkKVwuF+PHj0erVq00msPZ2VkrCTUpe/fuxdOnmlX01tTUwMnJCb1796btuOThcDgYN24c2rZtq/YcbDYb7u7uWo3loUOH8PixZhW9tbW1sLW1Rb9+9G2KycNkMjF27Fi1dP3k5/Dw8NBqLI8ePYoHDx5QGKmckvxSskXRxsWKdHSmi5qqWrI6XJ12T0iSNP2n9gQkCRZ5N3M6kE/aaFJtXllaiWd1WlKpJoFYLBZW7l9Ebo5e/ucmQu+8VRjD5/ERfIaoNFen3RPSWH5KGDGIxWLc2EdUBgeO9IeBsWJVfEpEOg6vP63S/PKxFPCFuH2IehU3kyVLxkn1/KSb6NAl1HTo0KFDx/86KZHpSI3KAAC0DPSBQ3M7Sq8T8AU4/MNpLPJfjfhQorycyWRgwsqR+Cd0E7w6NAckSSJpUsnRw07ldk8pmQmyCq+i7GLkpRc0Ol5V5DXPygoqUFWuessVr4ZXTwcNAOzdbfHt6RXY/GA9vDvWd9IUCoQ48ct5LOiwinSKZDAYGL1kCHaF/w6/Lt7kz+SrgdRtrws+FUL+u9+UnmrN0RiX5fT4+qrZPsyr5SskTcUiYifatpk11h5bhj+f/ETGRV3kBfVvH1QzlnK7ztqI5SUaYol6RgzqV+RRmf+WmrEEgKtXr+L27ds0HZUiQqEQly5dgr29vUa6TQwGA5MmTUKPHj1oPT75+b28vDS+mb9x4wZu3LhBYaTqiEQiXLp0CTY2NhprYI0fPx69etHrTCiPp6enxrG8desWrl27RtsxySMWi3H58mVYWloqNVFRhTFjxqBv374URqoHHUmme/fu4dKlS7QdkzxisRjXrl2Dqampxg6vI0eOxIABA2g7trpoel4+Of+CTIL0mdSdNgkMKfePPyYrvrqPCVC53VNK0GzZmuX6XvqMLZTNc/uQegm7kEuvyA1hKaokgZw8HTD7lynk499n/62gzfro7HPSgbzL8I5qG0cMmtmHPK6b+++TSavuYwLqjT216QKinlFv95dPqEHFWMqfezUVNfXm0yXUdOjQoUPH/zTqlPQnvEnGos5rcOj7U6QgvKufM7Y++Qlzfp2qsPCST66MWKie2UFtdS2eXwklH4vFwM1991WepyGKc0vwWCLQD0mC69VN6lU8YrEYD04+wawWy/Do7DOF56avn4C9UVvRY2wXpb97ckQalnT7GnvXHiN1uJy8HPDHw/VYuHVmPT2uflN6kAKwTy407IDZEAK+AE8kgrb6Rlx0DlJ917kxyosrcPcoUZFoaGKgYG1PBbFYjEfnnmNOq+XkPFI++WoM9kVvRZ9JgbSIgvea2I2Sm2hDCIVC8u9N7DrTWyFQXVGNmweI81xPn4NBs/o0+ZqG6BzUHlaORLL32ZXXtLfe9BgbQO7Qa+ImmpqaqpbAPRWio6MRHh5OS8urmZkZnj9/jjdv6K32kzJ06FAMHKhZK7Y2YxkfH483b95AIFDdUa4upqamePPmjcYVeQ0RFBSEoKAgjeZIS0vTWiyTkpIQGhoKHo+n8VzGxsaIjIzEs2fPKIxWnYEDB2LYsGEazaHN8zI9PR0vX76kRZ/MyMgIcXFxGlfkNUS/fv0wcuRItV+vrvMzFcRiMW3tpA7N7chq8+ykXLy5H0nLMconbKTXnpgXCSjILFR5LvlYSlE1CTRi4SAFM6UdS/eTawq6YmntaImAoYTmbkFmEVmhOGvj5HpjRSIxfp+5A7XV1D4LUs0zfSMilsnv0pCVmEPptfLrsdpq4ntM/u9DtX32v+LDPjodOnTo0PHBo7Aoa0Lris/j48C3J/B556+QFJ4KSBYdn3w1Gn+/3oQWAYruZJVlVbh1kNjl0jfkYuAM9dplXt0MR3WFohjy9X13adOCurbnbr3dSamLUlPEvIjHsh7r8NMnW8nWP3nMbMyUCv4L+AIc3XAWCzvKdOeYTAbGrxiOXW9+Q6vuyt3JzKxN0bI74SaaGV/fTbQpwu5FoLyoAgDQZXgntXedG+LWgQdkyf+Aab1U2omND03Cl32/xw/jfkdWYm69582sTWg9XiNTQ7TvRyz089MLVRbyjXwSqyAybGRKr7bSnSOPUFVGVEr2ndwDppbq6w2x2CwMnklUroiEItzcT19CGgC4Blx0lHMTlVZaqsr06dMREFB/t50OWCwWOnbsCBsb1VuElVFbW4v79+9rRbjcyMgIkZGRiI9XL44AMHnyZAQGBtJ6XFIYDAbatWsHBwd6Wpxra2vx4MED2qpX5DEwMEBcXJxGLboTJkxAz570V6BCEsvWrVvDxcWFlvl4PB4ePnxIS7KzLvr6+khOTsa7d+/UnmPcuHFaq6ITi8Xw8/OjLWHH5/Px6NEjWpKdddHT00NGRoZaSfmS/FIyMWXvbgvvjs1pPbbIkFjSSMq3syd8/NXrLJAiX8F8XUPzACnyCRszG5lJjKpuopWllXgtkZOQun9DjYQak8nEl3sXkmue24ce4vI/txAfmoSoEMLR1a2VC9r09FNp3rooVpsTsbR2tISTl+y7WBqP9Ngs7P/6OKV5pfE0sTAmf0Z1HcznyfTaLOzMFOaDrkJNhw4dOnT8L5MapdjuqUzXS0rsq0Qs7LQaRzecJcvM3Vs3w1/PNmLWT5OVJo3uHA4mE2H9pvRQuFCrwsPTshZF707EwjE/vRCvb71t5FXUEAqEuLpL1mIm1aJ4fjUUAn7DNyQZcVnYOGUrFndZSy6WAKDjwLZYd0pmHqBs8ZgYnoLFXdbiwLcnyAo/F18nbHm8AXN/m9Zk0kjeAfMpxQWPFPl2T3VEhhtDJBLh0t+yndgRFHdis5NysWnGdizyX4O3D6PIn7fr0xLfnf2SfHxtzx3akxcKDpiqxlJDwebGEIvFuESz4PTg2X3JnWQ6W2+kaHJeAsD9+/eRkZGhcQuhMng8HkxMTDSurpEnMDAQbm5utM1Xl5ycHDx58kSt1wYHByMlJUXjFkJl8Pl8GBgYaFRdU5euXbuiefPmtFSeKiM3N1ftSqOQkBDEx8dr3EKoDIFAADabjTFjxtD2u3fu3Bmenp5ai2VeXp7asXzx4gUiIyO1Yjgi3WAbP348bb97p06d4O3trbVY5ufnIzg4WOXrmny7pzpGT02hznW8MbqN8oe5JMnz5PwLlBaUaTwn5H5nEyu5JNAl1a498u2eXnKJSXVaaO1cbbB051zy8d/L9uPAuhPk45GLgjT+W/kPbgdrJ0tAsk4tyCoCAIz/cjg5praqFhzJmvzcn9fwNjiqgdkIxGIxeVxG5rKkItVYCuQ2pPUNiTW0QoUaze3IdKNLqOnQoUOHDrUJPi1rC2koIVBdUY1/Vx3Gkq5rkRJBCM2z2CxMXTcOO17+olQTDNKEAA2LstrqWjy7/BoAYGxuhAkrR5HPaWqTDsliKj+DaBHoMrwjAiTCvhUllXj3qH5FQ1ZiDjbN3I7Zfstw/7jsZtfF1wkbrnyFn69/jZ7jusK7ExGX+NBkxIcmARKx1v3fHMci/zVkNRSTycCk1aOwM3QTZU0wBSt6FRaP2m73fHUznKws69C/NZr5Nu5Yl5OShz/m7MQMnyW4fegheVPh6GmP9edXYdOd79B9dABa9yCq9dKiMxEpl7ykA3k3UVViKRQK8egc0SasjXbPtw+jSGOHloE+8GyvecWFvZstOgxoAwDISc5TMMygg4ChHWTtyBdfqnSTyOfz8fTpU1RVVdF6TFJu376Nixcv0jqnlZUVBgwYgKSkJFrnldK5c2e1XBCFQiFCQkK0Fsv79+/j3LlztM5pbm6OwYMHa8U5FZJYmpmpbjQjEokQEhKCykr13QMbIzg4GKdOnaJ1TlNTUwwZMgSJieoZrTRFp06d1IqlWCzGkydPUFFRoZXjCgkJwfHj1KpxqGJsbIxhw4YhKSlJK5WoHTt2hIVFfd3VptBmu2dhdjG5NjSzNlHLkbIuHD0OKf/A5wnU1n+VR4/LIZNGIqGIdBN9cy8ClWXUv/vkY+nZTnadVbeqqu8n3THuCyK5JRQI8eI64RRrZGaIflM0N4hhsVkYNJOQf5CvNg+a3Q9sPSLpX1NZi/6fEhW1YrEYv83cgeqKhnWBGQwGWZ3HrxWQbqKRj2MoJT+FAiJ5xmDKkoVCXYWaDh06dOj4/4B85Vfddk+xWIyHp0Iwq8UynPr9Ernb5NHODdtf/Izp6yeCo9fwLvOb+xFIiybaEVv3bIHmbVzVOkb5ds/AUZ0ROMoflvaEWP2zy69RlKOZFtSlHdfJf49cFIRA+WTVBVmCJSclD5s/+wczfZfi9sGHEElE8k2tTLBo2yzsDv8dAUM6kLt8Q+TMA679ewePzz/HbL9lOLbxHFnh59bKBdue/YzZP0+Bnr4e5WN29LCHWyuiPSj6WTxlPSxtt3vKJ1BHLmpYsygvvQB/LtiNmT5LiEopstXACPM3T8eeiD/QbaQ/GUt5IwY6kqjyWDtakkYZSeGpyE6u32qqjMgnsaRTqjbaPS9SjKWqDNFiLM2sTdFKkvxUtR2ZwWCgefPmGrkcNkZCQgJatmxJYaRqpKSk4OjRoygtLaV9bk9PTwwcOBDV1aoZpDAYDLi7u6N9+/a0HxMk+ml+fpq1LSkjPT0dx44dQ1FREe1zu7m5YciQISonGRkMBpo1a6aRY2RjaOu8zMrKwvHjx5GXl0f73C4uLhg5cqRaSUYXFxf4+/tTGKk62jovc3NzceLECWRnZ1MYrRqOjo4YO3asSrHUdrvntX/vkGuUoM/6q7Q2aQzF6/hdWhKUxpJqqsqSKrJCWsAX4qUkidUU8u2elg4WMLWUVbrJt3+qyme/TCHlJKT0n9oTBsbqmRHUJWh2P3J9dGPfPYhEIjCZTHQaKLt+RjyKRiuJPEhOch52rzzc6JyyWFai28jOgESH7dmV100ej3QNJ1+JVlEsO6c1ieX7QJdQ06FDhw4datFYu2dqdAZWDfgBGyZtQUEmcXPD4XIwff1EbH/+s8IuXkMoirCqnxBQSPqN7wo2h42BM4jdOaFAqJENe2pUOrkwdfZ2QIf+reEf1J4Uqg+59BK5aflk8ufGvnsKyZ9ZP03G4aQdGPV5ENgcxXagPp90J8Vdr+25i/Vjf0deGuFMyuawMOWbsdjx8lf4dFJe4dcUgZIFDwA8u0xNM0Sb7Z5ZiTl4cY1YxNo2s0bAsA71xhRkFWH74r2Y4bUYV3bdJttdjcwMMe37CTictANjlw+rl6jtOa4LjM2NJL/DU9J5jC7k2z6p6q9os90zP6MQT86/AABY2puj+5jOTb6GKl1HdFJovSnJpzcRpG7bZ0FBAUaMGAFTU1MKo1Vn2rRpWtHA8vLyApfLRXp6Ou1zQ+LUqaojYkFBAYYNGwZzc3MKo1VnypQpWtHAat68OYyMjJCamkr73ABw584dlSvrCgoKEBQUBCurhuUQNGHixIkam08ow83NDaamplqL5f3791WurCssLMTAgQNha2urlWMaO3YshgwZQvu8zs7OsLCwQEpKCu1zA8CjR49UqqzTZrungC/A1d2EBAaTycDw+fS5nLr4OKF1T2LDJT0mE5FPNHOLhaRrAZKOgm6jZNdJqtXm8u2ePcd2QWlhOfmcuY361yIWm4U1RxaDyZalagqzi2mrcrRztUHHgbJq87C7hKbhwj9nkmPSY7MweukQ0rDhyq7beH07vME5jeRiKV+5/7SJWPLk9NOka2dItFSlmGkQy/eBLqGmQ4cOHTrUQlm7Z1V5NXavPIR5bb9UaAfrPKQ9/n23GVPXjauXOFJGXlo+eTNt5WiBwFHq7UjXbfds349wUAqaLbuZu7zzVqNaZ41xcYeiAymTyYSRqSHp1JSXVoAZnvWTP9PXT8ThpB345KvRDYruM5gMOHraA3W0JDoMaIPdbzdjxg+TlOrOUaWrXCXdEwqJC223e17+5xa5WBw+f6CCdlNRTjH+WX4A0z0/x8UdN8gFrKGJAaZ8MxaHk3bg02/Hw8jMSOncXAMu+k3pAUgcpK7vvUfrscufn1R01LTd7nl1123ynBkyp3+jlaCqwtHjYOB0whxEwBfi6i56q9S6qXheQqIjdeDAAURG0uP+Jo9YLMbhw4e1ps3G5XKxZMkSrVTGQHIzr0q7mVAoxIEDBxAe3vCNkyYcP34cSUlJWtFm43A4WLRoEdq0aUP73JDEMiUlhbJ2oPTcCQ0NpTBadU6fPo3Y2FitxJLFYmH+/Pno0KH+xgYdODs7Iy0tjbLxgVgsxrFjx/DyperailQ4f/48IiMjtaJzx2QyMXfuXK2ZpTg7OyMrKws1NTUURmu33fPJhZcozCIqr7uO9IdtM3oMXKTIC+qf/+t6o2OpIE0CVZVVo1V3HzLB9vxqqIJQfkPUjaX8BpO5rWZJoLiXSRAJZN81j889xyU513tNkY/lBUksHdzt4NdNJh1y5IczmLPpU/LxjiX7GlwvS2Mn4Avh3qYZaS7w6mY4aTSljBKJMRMk6yHy53n0xVLb6BJqOnTo0KFDLR6ff07+u8fYLrh/4glmtViK05svk+X+9m42WH9hFTZc/gpOntTd3C7uuEm2RA6dO4BSEk4ZoXfeKbR7ShMLjh728A8i2pny0gpw58gjlecuL67AncOEjoe+ERcDpxP6HkU5xRDwZO6hAkks5JM/U9eNazD5IxaL8egc0d4pdUKFREPi6+PL8MuNb+Di07i2GBW8OzYnhWnf3H2HqvLG28LePozSWrtnVXk1bu4nklwcLgeDJQnPkvxS7F55CNM8Pse5P6+CV0MscPWNuJi0ehQOJ+3AjB8mUTKrGL5AVsVxZvMl8Groc11r1sKZTH6+exSNMrldamXEPE/QWrtnbXUtrv5LJLlYbBaGzqOvQkDK0HkDSK2zc39ebVRbRVUcmtvBvXUzAEDMc2rtyLm5uaitraXNmU+ejIwMJCUlwchI+eeVDgwMDPDnn38iKqpx4Wd18Pf3x6RJkyhXoRQWFqK6ulorsczJyUFcXJzWY/n333/j7VvNDWfq0r59e0yePJlyYrW4uBjl5eVo3pzeljpIKt+ioqK0Hsvdu3drJSHYpk0bTJ06lXICq6KiAsXFxVo5L0tKSvD27VsYGmqvrUxfXx/79+/HixcvaJ/bz88PU6dOBZfb9DW5vLhCa+2eYrEY57ddJR+PWKi5GUFdeowNgLktkah5dOaZyi7ldZG2KYrFYvCq+QgYSiSQq8qqFQyOlFFdWaPQ7tky0AcleTK9MOlxqot8LKX8s/xAkwYBVOk6ohNsnInK2WdXXiPhDaHL++XeheSY5Hdp8O3iCb9uPoCkau3yP7eUzmcsZ0ZQXV6DLsOIKrXaah5C7zT8fSztYgEAroGsPVhee03TWGobXUJNhw4dOnSoTGlBGZLeEske15Yu2DT9L2ycvJXcmeRwOZi6bhz2RG5BtxH+KrUUlOSXklpaHD02hszp3+RrGiL8vqxKTr4EHQCmfD2W/Pfxn8+RDl9UObP5Mpms6z+1J/g8AZn8eSP3vgwmA5PWjKaU/MmIy8JXQT/hh3G/Iz+dMDqQhk4kFKGmspa29gwGg0G2KvJ5Ary88abR8fK/U9fhnRodqyrnt11DuUQvo/ekbmAymdi79hg+bb4IpzdfRm01kfziGuhh/IrhOJS4A7N/ngJTK+qC665+LugxlqgQKMopobVKjcFgkK2KIqEIz682fgOqzVhe/ucWubPbfUxnWDta0jo/JAnpPpMJceSywnJc2Xm7ydeoQjcVW2gdHBywYMECWFtb03ockIiK9+rVSys38vLY29ur7XzYGGw2G5WVlXj69CmF0YC1tTXmz58PBwfqGyBUMTQ0RM+ePeHl5UX73PI4ODjg0SPVN0magsVigcfjUf47WVhYYP78+XBxcaH9WPT19dG9e3f4+vrSPrc82oolk8mESCTCw4fUxOWNjY0xb948rSQn9fT00L17d7Rq1Yr2ueWxt7dHcHAw7fMyGAwwGAzcv3+/ybHvHkWT1ctdh3eitd0z7O47RD4hTH+atXBC+770x5NrwMX4FYRgv1gsxvGfNTM3kVZVQZJslJdveHKh8WrIqJBYslq+67COYDKZ5LWXxWYpzK0qEU9iEHqHaMN0aG6HscuHAhKZkh8n/EEaYWkCm8PGhFUyp+VjG4lYuvg4kaZYALBlzi4s3DKDfHx4/Smlm4ZGcr8voaOmXE+4LvKbZlKZEwAolktOmlmrbq7zPtEl1HTo0KFDh8q8DZa5V6ZFZZA7ngDQZVhH7In4A9PXT1SriunkrxdRU0mUhw+Z0x9WDqo7WEkJl+wwMhgMUntDSstuPmjXhxBzzkrIwcOTIUrnUEZpQRnOb7sGSDQfGAxGveSPdKEqFokxanFQo8mf6opq7F17DHNaf4HXt2StVh0HtsXaY8vIx8d/OU9W/9GB/ILn1Y3GRXjD5XZr2/amTwS7oqQSZzZfBiRVePqGXHzafBFO/HKePA84XA7GLB2KQ4nbMfe3abBQc7dy8lpZEvXkpguUWjqoIh/Llzcbj+Xbh7LPS9s+9MWyuqIaJ3+9AEjOP/mkMd188tUY8hw/vfkSaqsbbulQFfl25FdNxBIALl26pBVHyry8PERFRaF379603ngqY8iQIejSpQuFkapTUFCA4OBgSm2fV69e1YqLYmFhIcLDw9GnTx+ttM7KM2jQIAQGBmplbmksqWzA3LhxQytmE8XFxXj16hX69eunlXZPefr3748ePXpoZe6ioiIEBweDz2/6e/j27dtaMZsoLS3Fs2fP0K9fP620e8rTt29f9O7dWytzFxcX4/Hjx022fb59ILv2tOtDX8JLLBbjwLcnyMdT143X2nfmsPkDYSIR/7937DGyEnPUnku+U6CypAr+g9uBI3G6fHWz8U3G8Afy13EiltKEmrmtqUa//0G5WE7+eizm/PopaVJQkleK9WN/o6XKPmh2X7I18/HZ50iNIrQ8v9wnq1JLCEsG15CLAZIujPLiShxef7reXMZysawoqUL7fq3IBNnLm28avP4Uy7V86hvpk/+WxtLEwohW2QptoEuo6dChQ4cOleDz+Dj/p6wUXXqRtHe3xQ8XV+PHS2vg6GGv1tyF2cVkdZqePgefrB2j9nGWF1cg8Q0hAty8rStMLesntKZ8M47897GN5yhr45zadJGsToNEh61u8mfEokHk81EhsUrnEfAFuPzPTUz3WowTv5wnddZsm1nj2zNf4ufrX6P3xEBSky0rIQcPVEj8NUXrHr6kCGxkA8cISWtD7IsEAICLj6NGSc66nN1yhTQJYDIZuPzPLbL9lKPHxshFg3EocTsWbJkBS3vN3tezvTu6DCP0yvLTC3H7EH3VAi26eJHivdJdemXweXzyedtm1rB3o09g++L2GyjJJ3Z1e03sBvfW6jnjUsG1hTN6SJx9i3NLcX0PfRV/Xh3cyd39yCexjSaCysrKEB4erpWE2tWrVxEb2/Dfkk7MzMxgZ2eHq1ev0iY8LcXPzw+WlpZNfr9VVVUhNDRULffFprh+/bpWWlqVYWJiAmdnZ1y+fJnydzpVWrRoAWtr6yb/RrW1tXj58iXKyxtv/1aHmzdvIiIigsJIzTE2Noa7uzsuXrxIWe+MKj4+PrCzs2vybyQQCPDixQuUlZU1Ok4d7ty5o5X2YGUYGhrCy8sLFy9epJREVAUvLy/Y29s3eV7KbzK26kFfdeOL62GIfhYPSNzHe02gV5tNHkMTA4xZSlRsiYQinPjlgtpzybcpVpRUwtDEAD4S1+7spNxGJQfkNxnb9PKDWCxGqeT6q0mLYti9d+QmtZOXAwZ82hMsNgvfnFgOezdCky72ZSL+mLNT4+83rgEX478kqtSIir/zAAD3Vs3g0c6NHPf77L8x66fJ5Brn0j83kRqdoTCXfEVeRUkluAZctAwkzrGi7GLkpCh3DJbXSpOXv5AlJz/sdk/oEmo6dOjQoYMqIpEI944/xqwWy/DukaxCjcNlY9p3E7An4g+N29eObzxH6mQNXzBIo8TNu0fR5OKybS/lVUBte7cktSFSozJIZ8TGCL37Fme2XCEfS5NgdZM/nQbKRPsjHiu6UYnFYgSfeYrPWn2BbYv2oDi3lJxj8tox2Bu1FT3GBJA7nFMVEn9nabtJ5Bpw4SXRUEmPzWrQsTEqJJasjGvTQCzVIeJJDI7/cp58LI0lm8PCsHkDcCD+L3z+12xa2xYny1VtnaCx4o/NYcM3gFiI56UVIC+9QOm42JeJZBVj294tadvFryytxKnfLgKSxOS078bTMm9jTJZLeJ/67SJ4tfTcJDKZTFIYuSS/DJnx2Y2OdXd310ormFAoRJ8+fWift7H3e/XqFaKjoymMpo6trS2mTZvWZFUVg8GAu7s7PDzUcw5uDD6fj379+tE+b0OIRCKEhobi3bt3tM5rZWWF6dOnN/kdzGAw4OrqCm9v70bHqQOfz0f//upLIaiKWCzGmzdvaDeqMDc3x4wZMyiMBFxcXLTS3srj8TBgAP06k40RHh6O169f0zqnqakpZs6c2ej1hMomozqIxWKFiqpp30/UehXqqMVBMDQlDJ1uH3qAvLR8teaR7xyQrsNaBcrOs4acRJVtMlaWVpFrGHWTQESl30ny8affjgeLzSKP9btzK0mdsbtHH+Hvpfs13oAZNq8/GYf7xx8jM4G43n6xex45JvZFAmorazFpzWhAksjc9eUhhXlMrGRyJtJYtpSsr6FkHSyltFBWEW0kSXDyanioKiM2VnUJNR06dOjQ8T/B69vhWOS/Bj9P+RM5ybJdJhNLY+yN2opPvxuvsUh9Xlo+rknE1PWNuJi4epRG88m3NrTppdxBj8FgYOo3sgTL0Z/OKl2ciMVivLoVjtWDfsTqAT8quG5y9NgYOrd+8kfeKSkyRLaQCH8QiSVd1+LHCX8oJAp6jOuC3e/+wMwNn5C7gPLH3zKQWJikRWfi8bnnoIuW3WSLx6iQOKVjwinEkipisRhh995h7dCNWN5jHYR82U0+m8PC4Fl9sT92G5b+Mxe2LvRrYrUI8EKHAYQLYHZSLu4dp0+3Sj6WDVWpKcSyJ33Ojue2ynTo+k3tSYtxRVN4tHUjtQnzMwpx++AD2uaWj2VEIxV/YrEYEydOhL6+foNjVEUsFiM1NRUzZ87UunaaPI6OjujcubNWWqUuXryI69cbd8UTCoWYMGEC7UL3aWlp+PTTT+Hp6UnrvI1ha2uLrl27auXG/tq1a7h8+XKjY/h8PiZMmAATE3q1f9LT0zFp0iSta6fJY2lpiR49emglljdv3sT58+cbHcPj8TB+/HiYm5vT+t4ZGRkYO3YsWrakb5OoKczMzNC7d2+ttJfeuXMHZ86cafB5+U1GOq89Ty68QHwoIWjv2d4d3Ud3pm3uhjA2N8Koz4MAyUbcyU0X1ZrHobkd+W9p62jLwKav4wqbjJJYFufKWhfVdaV8dfMN2dHg6ueM3pO6KTzv2c4da44sIU2BLu64gQPrTiidiyoGxgYYu3wYAEAkEuOEpErNu5Mn3FrK9B9/n/U3xq0YBhsXwsjg5fUwvLguk2SQj2W2CrEsl9Njk7byfkwOn9Al1HTo0KFDR2PEhyZh9aAfsWbQBiSEJdd7fvDMPnBwt1P6WlU59tM5UuB11OdBautkSWlMP02eToPakQKsiW9S8OKaTFCez+Pj1sEHmNfuS3w1eANCbyu2hoxZOhRHUv7Gsp31kz+mliZw9XMGACSEpSD6eRzWDt2IL/t+jxjJziYAtO7ZAtuebsS3p1bA2Uu5EDiDwVBoT20o8acO0kQdGtmNrdvaoA4CvgB3jz7Cwk6rsar/D3h5XVEba/iCgTic/DdW7FlAaxukMhQNKc6rbEjREC27N72zraCfRpMWXVlROc5skenQTV03rsnX0MWUOhV/Aj49bWGtKMQSAI4cOYKQEPraoAEgMTERBw4cQEGB8ipDbRIUFARjY2Pa9aLMzc2RlpbW6JgTJ07QLkCfmpqK/fv3Izc3l9Z5qTBw4EBYWlrS/nc0MzNDampqo2POnDlDSSReFTIzM7Fv3z5kZmrmbKgOffv2hb29PfLylLdtqQuV8/L8+fO4c+cOre+bm5uLvXv3Nvl31AY9e/aEi4sLcnLU1/5ShoWFBVJTUxtcG8hvMtJ17RGJRDj4nayiavr6iVrXm5QyZtlQUqPr+t57lByh6+LgUT+h1tBmqDwKG2OSWMpvNqtTVV+vOu27CUo1EruPDsAKOSfOYxvPkdXp6jJy0SCyZfP24WDkphIVf8vlqtQinsSgJK8Uc379lPzZzhUHyWu+o5JYtgjwBJNFpJsaimV5iUxiQFoply0XSystGCvRjS6hpkOHDh066pGdlIuNU7ZiYafVCkkkz/bu6DZKJhhO16IsOykXN/YTNx+GJgYY/+UIjearKKkkWxvc2zRrtLWhrnj7kQ1nUV5cgRO/XsCnzRfht5k7kPyu/oJ/zLKhTep6ScvdhQIhlnT9WiGJ5NbKBRuufIXN99ejRUDTrnedBrYlE39J4al4doWelhH5HcQIJYmL6soaxL0kEoDO3g4qLxQry6pwevNlTPP4HL98uk1pYnbovAFYsmOOVhwpldGmpx+ZZE2PycTjs/RU/Pl18SJvJpTFks/jk1WANi5WsHenJ3F4ZvNlsj1i0Iw+amsYqoOPvyc6DWoLAMhJyce9Y/RU/Pn4e8j0/RpIqPF4POTl5cHGxoaW95QSFRUFFxcX2NpqN7HbEM+fP8fp06dp1VLr1q1bo22CQqEQWVlZtDulRkZGwsHBAY6OjrTOS5WXL1/i5MmTtGqpdenSBYMGDWrwebFYjIyMDK2clzY2NmjWrBmt81Ll9evXOH78OG0bEADg7++PIUOGNDomIyOD9vMyOjoalpaWWmkVp8KbN29w7NgxWnXp2rdvj+HDhzeY0HobTG2TURWCTz9FSgQhZO8b4IWAoR1omZcKZtamGD5/IACAX8vH6d8vqTyH/LUyO5FI+stvhsaHJqO6sr7RgzSWkNtkTIuWJbqbtXBW+VieXn6FuFeJAIDmbVxJV3JlDJzeG4v+nEU+/nf1EVzZpb7btpGZEUYtJir+hAIhaW7k19UHzt6y7+7fZv6N3hO7wa8rkXRMj8kkXb7t3GzJyrksSSwNjA1ILbaUiHSUF9c3vKkslemfSt08NY3l+0aXUNOhQ4cOHSTFeaXYsXQfZrVYivvHn5A/t3ezwVdHlmDHy1+Qk0TsHDGZDIUqEk04suEMWT4/ZtnQRh0xqUBFP02eLsM7wr01cZMS8zwek5zmYu9XR1GYJdvx9GjnBiabuGwaGOsr6Ecpo7SgTKm1uY2LFVbuX4SdYb8hYEgHyru5RJWaLPF3YN0JWvS/LGzN4CSpjIt/nVTPOSr6aRypC0IlllLy0guwe+UhTG42H7tXHlKIRfM2rmSyRE+fg0+/1b7eV13kk6gHvztJi+OnkZkR3NsQ51Hy21TSXEFK3Ksk1FQR5hV06aeV5JcqOM7KnyPvC/lYHv7hNC3uY3X1/UoL6guS6+npYeLEifDzo699SSQSYeDAgZgyZcp7q7Soi7+/P/Lz82l12zQ2NkZlZWWD1VosFgsTJkxAmzZtaHtPkUiEfv36Yfr06f9pLIuLi2l12zQ0NERtbW2DVXcMBgPjxo1D+/btaXtPkUiEXr16YdasWVrXp2oIf39/VFRU0Fo9qa+vTyZzG2LMmDHo1EkzfVZ5xGIxunXrhs8++0zrLqkN0bFjR1RXV9Na8cflcsFkMpGenl7vuYqSSiSEUdtkpIpQKMQhObfH91mdJmXciuHQ0yccIK/svKWylpqhiQHpcpmZIKsYlG6GioQiUitNirx+mvwmY3qMLAnk4qua5IKySr+mPuejFgdhxg+TyMfbFv6rkYTF6KVDYGBMSCfc2HeP1FJbtnMuOSb8YSQKMouwYItM+/DQ9ydRVlQOPS4Hts2IxHdmfDa5BpfXpIt6Wl9WpLpMtk6S/i3kY9lMxVj+F+gSajp06NChAwWZhfh72X586r4QF/66TiZQTK1MsGDLDOyN/hN9J/dARXElkt4SLRKeHZorWI6rS2p0Bu4ceghIdDGkWg6aEK5ia0N8aDIpcAuANEZgMBgIHN0ZWx9vQPO2rhAJiCqHMUuHwsxaua5DUU4xdq88hKnuC/Hyhsx2ncVmYe6mT3EgdhsGTu+t1kK+6/BO8OpAaDolvU0lNec0Rdr2yecJyB1SKcpaGxojISwZv3y6DdM8PsdpucopSBKXmx+sh19Xb/IcG7FwMK2uoVTp0L8N+Xunx2bh4vYbtMwr1f4SicSIfqa4eFQ4L2kydzjx83nSYTbos/6wc6W3KoYKrbq3QIf+rQFJ28vpzY3rS1FFQZNOiQttVFQUhEIhbQkGsViMQ4cO4dmzZ+ByNdOE1ARXV1esWrWK9sTJy5cv8ezZM6XPxcbGgsfj0ZZgEIvFOHbsGB49evSfxtLJyQmrVq2Cnp4erRV/r1+/xtOnT5U+l5CQgKqqKlp1sk6fPo27d+/SqhWoKnZ2dli5ciUMDQ1pjWVYWBiePHmi9Lnk5GSUlpZCT0+Ptvc7d+4cbt68CQMDAwqjtYO1tTVWrlwJMzMzWmMZHh6Ox4/rJ1VU3WSkwp3DwWTio1V3X3QcQF8yniqW9hZklVptNQ+7Vx1WeQ4HSZVaUXYxWY3WmPZXQ5uMaQpJINUqcoNPP0VSOLG29u7kQWqTNsXkr8dg/IrhgOQ799dpf+Hp5VcqvbcUU0sTjF5CVIvyeQLsXHEQkKyhydZYMbD5s3/g29kL/T/tCQAoL67EYUliVRrLytIqlBcRG0ItmzB5qJGrAJR2fKTHyicn/5vqZlXQJdR06NCh4/8x2cm52Dp/N6Z5fI7z266R7oP6hlxM+XosDiX8hTFLh0KPS+wAyicI6BC1FYvF2L54L0QiYqE3bsVwBettdYl6KlsAte6hvLWBz+Pj4emnWNHnO3zeeU29RZNPZ0/si/kT359dCQC4fZBI+hmZGWLsF/WTfnlp+di+eC+mui/C6c2XySSHFK6BHsYsHwo9ffVvDBgMBhbKlfnvX3cCZXKCruoiv4NY14lJPpYN6acJ+AI8Pv8cqwb8gAUdV+Hu0Udk9RyHy8HQOf2xN2orfry4BvpG3DrmEyM1Pn51YDAYWLhV5op2eP1pFOWorsFSF/mqTXViqQrJEWm4IEkEcrgcTF47WuM51WX+HzNIrZQTP59v0OVUFRR01JQ4hD18+BCJiYn1fq4uCQkJSE1NhZubG21zqouenh62bt3aYAJMHTw9PVFdXa30uUePHiEhIUHpc+qQmpqKxMTEDyaWO3bsaDBpow5eXl4NxvLx48eIi1Nu8KIOmZmZiImJ+WBiuWvXLjx4QJ8BSWPnZUhICGJjGzYlUZXc3FxERER8MLHct28frfpwDcUyKoTea09FSSX2rDlKPp7xw6T/rAp16rfjyVbBh6eeKmxcUcHJU9b2mZNEVJ0qXMefKLouRzYQS2ly0dLBQqXN5qryagXHTFUq/RgMBuZs+hRD5xDt/CKhCD9O+ANv7kdQfn95Jq0ZBStHIqn17PJr0nRgyfbPyDGht9+iOK8EszdOJg20Lv19E9nJuQottDKTBzmnTyUJNel9BwBYOUmr/YiKVWNzI1jY0WtGog10CTUdOnTo+H9IemwmNs3cjhneS3B1923SDIBroIfRS4Zgf9w2zPhxUr1FQXKErJVAWimlCfdPPMGbe8SF397NhpbqNLFYjNTIDHLOuu2jGfHZ+Hf1EUx2mY8NE//AWznBfRNLYzAkGhCpEenQ0+dAKBBi28J/yTEzfpgEEwuZPXhWYg7+mLMT070W4+KOG+DXEtVtHC4HIxYOQucgou2nqryaPC5NaBXoi35TegAAyosqFERs1UVhB7FOJZBUH8XCzqyexll2Ui72rj2GKa4LsH7s7wi7+458ztTKBFPXjcPR1H+wbNc8NPN1glBIxFKaQJ26bjzMbf47S3Tvjh4Imt0XkPx99q09rvGcreRNHhqIpaGpgYIjljqIxWL8tWgPmbj8ZM1oWDtZaTSnJri3aoYRCwldqZqqWvy7+ojGc/p1k1uIK6lQA4AWLejRAoLEZXPixIkfxM02ALRr145Ww4V+/fph3DjlhhVisZjWWNra2mLChAnv1dmzMdq2bUtrQq1Xr16YNGlSg8/T2YZsZWWFcePGvVdnz8ag+7wMDAzE1KlTlT5H93lpbm6OsWPHolWrVrTNqQnt2rXDs2fPaNOl69y5M2bMmFHv5ymR8ms3zXXj9n9znHRi7D4mgDY9XXUwNjfCrI1TyMc7lu5TSQ5D/losbft0aG5Hth9GPY1T+PvIx9JTEsuywnKU5BOyBKpWpx354TQKMok2av+g9vAf3E6l1zMYDCz++zP0nhQISPTkvh35K6Kfx6s0DySaZ3M3yUwH/lm+H3weH50GtSOr38ViMf74bCesnaxIvWORUITTv11SNCaQxNLa0ZLUi419kVBPXkPaEQIANs6WqK6sIU0RXHwd/7NErSroEmo6dOjQ8f+I5Hep+OmTLZjttxy3Dz6ESEi0MBoY62PS6lE4nPw3Fm6d2aA4fGqUbCHhKmenrQ6VpZXYJSkpB4BF22aTu12akJ9eQGpXSY+RV8vHg5NPsLL/esz0WYJTv10kFz+Q6F0s3z0fJzJ2YeTCwYBcUuDi9huyNtf27hi+gGgvSI1Kxy/TtmGmzxJc33uXbAHQN+Ri3BfDcThpBxZv/wwd+svaIJTpR6jDZ79MId2tru66hcTwFI3mc/FxJBOP8lWIxXmlZJykseTz+Ag+8xSrB/2IaZ6f48Qv51GUI7OLd/S0x5K/5+Bo6j+Yvn6iglvr9T33EPuSqChy9XPGmGWNi1G/D2b+9AmMzAwBADcP3EfMC9UXofLYNrOBjTOR2Ip5Hk+KoVeVV5OLRLeWLhovEu8cDsa7R8TOuaOH3X9W6SfPtO8nkJUCD048URBuVgcFfb9XifUcROfNmwcvr6YNPajw4MEDPH369INJWgDAoEGDMGnSJNpawsRiMf744w9kZNRP7M+ePZu2xMXjx48RHBxMayJEU/r374+pU6fS2l63detWpKTU/+6dNm0aWrduTct7PHv2DHfu3EHLlvRoLtJBr169MH36dNpiyWAwsH37dqUVkpMnT0aHDvQI3b969Qo3btxAq1atPphYBgYGYubMmbS1dzMYDOzatQvR0YpVVdIkkIGxPqlzpS5xrxNx+Z9bgKTKXF5P679i0MzepOZm8rs0lQT65SvUpEkgBoNBbjRWlVWTFVMAkCqJJUePTb5Wvt3TxYe65ldyRBrObr1KzMfl4PNts9Q6N1ksFlYf/BxdhnUEAFRX1ODrIT8pNYFqij6fdCeryjLisnFh23UAwKJtM8kxz6+FoqyoXFF3bf99mMhtYCto0knm49XwkfRW0eRLugkNAMbmxsiMyyYfq6pF91+hS6jp0KFDx/8DYl8m4LvRmzC37Zd4cDKEXAibWBhh2ncTcCTlb8z+eYpC8kMZ0gobJpMBFx/NdA0OfneKTMR0G+lPLgQ0Rb6KztLBghDGd5mHnz7ZSlbDQSLg3ntiN2y68y32RPyBIZ/1g56+Hqatn0Amlx6ceIJ9Xx8DJAusJX/PQXJEGn6YsBlzWq/A3SOPyGorQ1MDTF47BkdS/sa836eRumCe7WWVfGnRmleoAYC1kxUpBC8SibFj6T6Nbm4YDAbpxFRaUI6SfGLnOVVuJ9bayRJ71hzB5GYL8OOEPxTcX1lsFnqM64Jfbn6D/TF/Yvj8gfWSoyX5pdi3VtYisnjHZ+DocdQ+ZrowtzHD9PUTycc7luzT2BHQoz0Ry+qKGhRIzBhSo2R/e1c/zZLR5cUV2L1S1iLy+V+zNWolpgsTC2PM+mky+XjHEtUqBZThKYklnydAdpJMBD46Ohrbtm3TaG4phYWFCA4OhrGxMYXR7w82mw0zMzNs3rxZaRJMVZhMJng8HlJTUxV+npCQgM2bN9OSICktLcX9+/dhZKR56z6dsFgsWFtbY/PmzfV+f3VgMBgQCoX1EmopKSn47bffaHEVraiowJ07dz7IWNrb2+OPP/6greVaJBLVi2VGRgZ+/fVX8PmaG8ZUV1f/57ppymAymXBycsIff/xBW2tr3VhWV1QjJ5kwP3D1c9YomSitMpd+V3z67XjYutDrwKoOLBZLwfXy4LcnlBrZKMNZbi2b9E723eDZTrZ2k16/+Tw+MiQJH2cfR7DYhOakgog+RVdKaZW5dGP7k69Ga+TQzeaw8c3J5WjXh6gWLC+uxIre36nc/slgMPD5ttkyOYwfTqMwuxhdh/vDWtKSKRaJsWXOLphYGGP4AqIynV/LV5BmSG4glmlRitcy6RpB+n6KWnQfvsMndAk1HTp06PjfRSQS4cX1MKwZvAGfB3yFkIsvyefMbc0w++cpOJz8Nz79bjwlxyehUEgmhJy8HDS6gU94k4yL24ldL66BHhZundnka6iSJFetdX3PXZzefBmlBTKdMScvB8zd9CmOZ+zC18eXo33f1gq7w0RS4BPysVTfodPgdjjy42ks6LAKj848IxeUplYmmPHjJBxN+QczN3xSz6ygWQvZDpv8QkFTxiwfRpbXvwuOxsNTmrXgyDspSS3Lk97KYnnncDBObrpItnlA0hYx++cpOJ6+E9+eWoGOA9o2uNO+Z/VRlBdXAgD6Te1BmzAyHQxfMBBukgq8mBcJuC0xyVAX+UVgqiSW8slJt1aaJdT2f3OCrBzsMTYA/oPpcxPUlEGz+tBqnCEfS+l5CQBpaWm0CehzuVz06tULnTt3pmU+OjEwMICpqSnu37+v8VwMBgN9+/aFq6urws+lsaSjaofD4aBHjx7o2rWrxnPRjZ6eHiwtLXH37l1a5uvduzfc3RWlD9LS0sBgMGiJJZvNRvfu3dG9e3eN56IbFosFGxsb2mLZq1cvNG+u2IqYnp4OsVhMi7kDi8VCYGAgevXqpfFcdMNgMODg4ECbllr37t0VKnflvzfdNOwsqF9lPlSj+eikZTcfBaH8A+tOUHqde+tm4JA6wbIKdYW1m2TtmxGXTSaA5K/jig6f1Dab61WZr9K8ypxrwMX6C6tJuYSq8mqsDfoJD08rN1BpCM/27hgi0WWrrqjBXslm6PzN08kxTy6+QEVJBcYuH0rG7+HpELJ7QjGW8tfxOgk1SUJRqsGqTiz/a3QJNR06dOj4H6OyrAoX/rqOWS2W4euhG/H6Vjj5nLWTJRZunYnDSTswafUoGJkaUp43JzmP1DrQpN1TJBIRu3KSyq4p34yjxZkwNToDO784oGDjLoWjx0afTwLx+73vsT/mT4z/ckSj2l2DZ/eFo1wbAIPBwMvrYXhxLYz8mYWdGeb+Ng1HkndgytdjGzRTMLc1I5+jq0INAPS4HCzYIktE7l55mHSoUgf50vrwB5H4d9Vh7P3qWL1xbA4LvSZ0xa+3v8WBuG2YtHpUk6KxEY+jcfMAkRAwMjNU0Oj4EGBz2Fggl9Td+9VRVJZWqj2ffCzTJTcz8rormtzUxL5KxJWdsnab+X/89+028rBYLFqNM1yUJHoBwNfXF3379tXgSAni4uLw6tUr9OrVi3ZXTTpgMpkYP348/P39aZlPmXaUl5cX+vfvr/HciYmJePr0KXr37k2rwyVdMBgMjBkzBl26dKFlvpYtW9Y7Zzw9PTFw4ECNE2opKSkIDg5G7969weH895W8dWEwGBg1ahS6detGy3wtWrSolyB3d3fHoEGDNI5lWloa7t69i969e/+njrONMWLECPTs2ZOWuXx9fRU+f/LXHk3WbsV59avM2ZwP63M+++cpZAvi1d13KLU8cvQ45CZQVkIOeb1SuPbE1N8Yk680j5d7H1e/pquqtFllbmhigF9vrUPAUKJVms8T4KdJW3Bxh2pO5jM3TCLXrrcPPkTUszj0mtANlvbEek8sEuPPBf/C0t4Cg2cR1+KaylqYSzpdCjKLkC+p0JdPjMlvLItEIkBSGM3mEJ//BBVj+SHw4a0cdOjQoUOHWmTEZ2PH0n2Y7DIfO5buQ2a8TIfA3t0Wy3bOxcGE7Ri9ZIhaWmXygvqaXORu7r9Paom5+Dph3Ar1jQhqqmpx50gwvuj1LT5ruRxnt16FgCfTWXLysse836fheMYurD26DG17U9OhyYzLRnGuTBdMvhXKtpk1Pv9rNg4n7cD4FcNhYNx4CwmDwSB3OvPTC1FdodzNTB0ChnaAv8T0ID+jEMd+Oqf2XA7Nbcl/H/r+FE79fklBLNbe3RZzfp2KY+m78M2JL9ChX2tKCQihQIhti/aQj2du+IS0Rv+Q6NCvNXqMDQAAFOeW4tD39ROzVFFWlUiH/mDddptp3034INpt6tIq0Bf9psqMM/Z9rb7Zg2IsZd9BPB6vXkWLqtTW1uLChQsoLS2lMPq/w8LCAjY2Njh06FCDbohUiYiIwJEjRxS+02prazU2D+Dz+bhw4QJKSkoojP7vMDc3h6OjIw4dOoSKigqN5oqOjsahQ4cU2jtramo0jqVQKMSFCxdQVFSk0TzaxtTUFK6urjh48CDKyqi11zVEXFwcDh06BIFAdv2urq7WWCNRJBLh4sWLKCws1GgebWNsbAwPDw8cPHgQxcWauU0nJSXh4MGDqKkhNthSaUqo7VlzhKwy7/9pzw+qylyKtaMlpnxDGK+IxWJsX7KXUvu1b2fZeSYV83fysq9XNaVsY0woECJG8hobZytK5kD7vz4uqzIf14X2KnN9Qy6+P7cSg2b0AaSxWLwX+785Trm138zaFNN/kMlhbF+8F0KBEHM2yQxEgs88Q1VFNSasHEHGqihbdv5K42LnagOuAZEwlK9Ak2/L5XA5EIvFpJmTqZWJRi2w7xNdQk2HDh06PmLEYjFe3QrHN8N/xizfpbjw13VSkB8A2vdrjfUXVuFA3DYMnTsAelz1d7qTI2RCoupW2JQVlitYrS/ePltlHS0+j49nV17jl0+3YYL9Z/h12l9k2bw8Vo6W2B+zDeO+GF6vDVMZYrEYYffe4dtRv2J2y+WoLles9jK1MsG6U1/gUMJ2jFw0GFwD6klJhXZKOXFbTWEwGFjwx3RyZ+/UbxdVEtUX8AV4cT0Mm2Zsx4YJWxocZ2plgoPxf2HCypFN6uzV5cJf15H8jjh3vDq4Y9j8ASq9/n0y97dp0NMnzsfz264pPa+ooPj3JpJAUv1BEwsjcodXVa79exdxr4h2G7eWLhi99L83dWiIz36ZKjPO2H0br2+HN/kaZTh7O8i0VSQVajU1NTh27BiSk1UXXJZHKBTCw8MD/fr102ie94G+vj4yMzPx6NEjjeaxsrJCbW0teDyilV0gEODYsWNKBeFVQSQSwc3NDQMGfLifbylcLhc5OTl4+FCz1m5LS0sIBAIyySkSiXDs2DGNtbBEIhFcXFwwaNAgjeZ5H+jp6SE/P1/jlmQrKyuIRCIyySkWi3HixIl64vqqIhaL4ejoiKCgII3meR9wOBwUFRXh3r17Gs1jaUnoXEljSUd1dMTjaNw68AD4QKvM5Rm9dAhpZhP5JBbn/7zW5GtadJEl1KRJII4eh5TVyIjNIrTplCQnk9+loaayFgDg1827yfeKfZVImiboG3GxQEtV5mwOGyv2LsCkNaPJnx3beA5/zNlJWdt0+PyBZGtr/OsknNx0Ef2n9oKZDbGmFglF2DJnJ+zdbNF3MtGaLr8RK40lk8kkteoyE3JIp8/EcJnOmqGpAdJjs1BeRJy3ft28PxjzkKbQJdR06NCh4yOkuqIal/6+idktl+OrwRvw/GoouevENdDD0Dn9sfvtZmy6/S26jfBXW2soPTYTm2f/jd9n/Y17xx+TP6+t5qE4T/Wqjp1fHiTL6ft8Eoj2fak5oQmFQoTde4c/5uzERIc5WDfiF9w9+gjVFbKkl6GpAbw7eZCPbVysEB+a1OTuZE1VLa7uvo25bVZgVf8f8PTSK4Xn2XpES0NZYTlqKmtJEVpVaEw/QlNcfJzwyVdjAMni5tdpf6GmqrbB8SKRCOEPI7F1/m5MdJyLr4duxO1DDxXaRRkMBnz868YyWcE6ngrZybk4+N1Jcs7FO+bQpnulDezdbDHte2JHViwWY9P0v1BZVqXyPMbmsqRZzPN4/DF3JwoyiWoTSwcLxL5MUFmsPz+jEPvWylpwP8R2G3msHS0xe+MU8vHvs/5GebHqFUFcAy7s3YnqyfSYTIjFYlRWElUSNjbqt4rn5+fj3bt3GDt27AdnRqAMIyMjjBkzBnZ2dhrN4+HhgTlz5pCtb5WVlRCLxbC2Vr/SsbCwEKGhoRg7dixMTZvevPivMTAwwJgxY+Dg4KDRPK6urpgzZw5pGlBdXQ2hUKjReVlcXIwXL15g7NixsLD48Cp568LlcjFmzBg4OmqmdeTk5IQ5c+bAzIzYsOHxeODxeBqdl6WlpQgJCcGYMWNgZdV01dB/DYfDwZgxY+DkpJmzoZ2dHbq37o1/lx/F1nm7yIofrqEeclPyVJaG4NXw8OeCf8nHMzd80qTMw3+JHpeDZTvnko/3rj2mkAhThm+AYoWagC9ARUkluXarrebhl6nb8PYh4VzN5rBQlF2MqvJqRDyRCfG37Na4SzSfx8fWebsUqsylruDagMFgYPbGyVi4dSaZnLqx7x6+H/tbo+tEKSw2C8t3zQOTSbz20PenEB+ahNk/y67tD089RV5aPiatHlXv9dHP4yEUCFFRUkm20IqEItJNNemNTKfXwt4cUSGyzYimYvkhoUuo6dChQ8dHREJYMrYv3otPXObjr8/3KJRO2zazlrTk7cSyXfPg3qqZxu+3/5vjuLH/Pm4euK/gzPP7rL8x2WUewh9EUp4r+MxT3D5IVAQYmhhg3u/TGx0vFosR9SyObGNd1f8HXN97l2w5gCRx0V3SpldVVk1W70CSyFjkvwarB/ygtMQ96W0q/ll+AJNd5mHr/N1KF1xD5/bH2mPLyMc7luxDTkoe5d9ZinzbWjqNxgRSJn89hkyAZcRl499VhxWeF4vFiH2ZgJ1fHMDkZvPxZZ/vcXX3bQVtK0NTA5hYGsuNl8Uy8U0KPu+8Bl/0/JZyu4BQIMSv0/4ik55DPuuHFgGate+8D8atGIbWPVoAAHJS8rFz+QG15nGQ7GzzawW4vkcm3J0alYHFXdbi84CvKCcoRSIRfpu5AxUlsnabNj391Dqu98mIRYPQYUAbQKKn8tfne5p8jTKkn5/qihoUZBbB0tISixYtUjtxIRAIcPLkSY2rX943Pj4+cHV1xZkzZ8h2LlVhMBiIjo4mXQDNzMywaNEitRMiQqEQp06dQkSEak5y/zWenp7w8vLCmTNnUFWletIckljGxcWRTpdGRkZYtGgRmjVT79orFotx+vRpvH37lsLoD4fmzZvDz88Pp0+fRnm5+nqJSUlJiI8nKlq4XC4WLVqkdlu3WCzG2bNnERYW9tFUuUCSpG3bti1Onz6tUSv6mV0XEB76Flf/vYOqMqKCsraKh+U9v8W05osoO2ACwJ41R8n10YdeZS6lXZ9WGCsxTODX8vHLp9vIqihl2LnawMyGMOd6cz8CY21mYbTlDPBqeOSY+yeekNVTAr4QK3p/h6luCxB27x05RmoG0BCHvjtFaoS9zyrz0UuGYO2xpWQ3w7PLr7F64I8oK2r68+rX1YescpOu6/p+EggbFyIRKBaLsX7cZrj6uSBwtKKxT2RILMbZzsZoyxmokNtQk1aby+up2bnakMlfSEwmPhZ0CTUdOnTo+MApLSjDuT+vYl77L7Gg4ypc3HEDlaWyG4A2vfzw7ZkvcShhOyasHEnJsZMqjekzCfhCspWvKfIzCrF13i7y8ed/zYaVQ/3dd7FYjKS3qdj71VFM81iEpd2+xoW/rqMoR6bLo2/ERd/J3fHDxdU4lfMvlu+aB45ew5U68aHJZBKorKgcF7Zfx8JOqzCv3Zc49+dVhQSdtbMl+W9nbwfM2zwdPcYEYMB0whmsqrwav83cQUmTQx5l4rZ0wuawsfrQYlKj4tLfN/HyRhhSItOx/5vjmOG9GJ8HfIWzW6+iMEumb8E10EOvCV3x/bmVOJ2zB/5B7Rp9n8Q3KZQrq078cgGRT4jFkb27Leb89uG2iMjDYrGw6uDnMDQhtPFu7L+PJxdeqDyPvGCxMpLfpSno/TXG2S1XEXaXWLRbO1liwZYPy4igIZhMJlbuWwgTC6KC5/7xJwqVrlRx8XEC15wDY0cDpEal49GjR3j9+rXax8Xj8WBsbIxhw9TXb/yvYLPZSEhIwO3bt9WeIyYmBs+eEU7FISEhePHiBeVEeV0EAgEMDAwwYsQItY/nv4LFYiEpKQk3b95Ue47Y2Fg8fUo46L148QIhISEaxVJPTw8jR2ru9ve+YbPZSE1NxfXr19WeIy4uDiEhhFv169evNWpvFovFYLFYGD16NIXRHxZsNhsZGRm4cuWK2nNYeJrArq3yKrKS/DLkpRVQmuflzTc4v41omeRwOVh54PMPuspcnlkbJ5N6v4lvUpTqoorFYlzfexfLeqxDaT6RXBLyhWQSUt4hXhnlxZWIfkokgfUNufBo69rg2PCHkTi56SIgqXBbdfDz91pl3ntiIH669jW5tokKicUXPb9FXnrT58LUb8eRxg2pURnYt/Y4vpbbbI57lYiXt8JQWaJo5iQSisiNwOJcWYJYug7OSZJtUDt7O5IJNTaHBe9Ommmkvk8+3F4BHTp06Ph/jFAgxMsbb3DzwH08u/wKAr5iEkNPn4O+n3THyMVB8GznrrXjGDSzD85uvar0OXMbU/Sd0r3JOUQiETbN2E4mrnpN6Epam0vJiM/GgxNPcP/EYwUnPykcPTY6D2mP3hMDETCsIwyM9GXPWXIQOLozHpwMUfr+o5YE4fWtcNzYfx9PL74Ev04Sg8PloPfEbmgZ6IM/5xNtDSw2C18dXUq+z6KtMxF+PxJ5aQV4+zAKZ7dcxfgVw5v83aXYudmAw+WAX8tX+vvRgYuPE+b+No2sAlo34hcIBfUTf2wOC50Gt0OfiYHoOqKTgqlC89ZuuIeGEx4jPw+itACMfh6PQ+tPAQCYTAZWH1qskqPsf429my0WbJ2JzbP/BgBsmbsTfl29VWpzaapCdPj8gZR0+BLeJJPOagwGA6sOfk5r0lzbWDtZYfGOOdg4eSsA4K9Fe9C6RwuV2lyatXCCbWtzuPa1Q/DLBygXEAvz6upqZGdnY/z48ZRbwzIyMlBUVIQZMz6OpGRdjI2NMW7cOOTn56s9h4mJCWJjY3H8+HGyIqimpga5ubkYPXo07O2pCUFnZWUhNzf3o42loaEhxo8fj8xM9b+TTU1NERcXh+PHjyMujjDb4fP5yM/Px/Dhwym37+Xm5iIjI+OjjSWXy8WECRM00jU0NTVFZGSkQiwFAgGKioowePBguLo2nKyQJz8/HykpKZg+vfEq+A8VDoeD8ePHk59NdfD08MTLB8o3Hdr2bgnP9k2vG0vyS/H7zB3k4zm/TqWl8+F9oaevhzWHl2Bxl68g4AtxatMFBAxpj1bdW5Bj3j2Kxh9zdjY4RzNfJ8S/Tmrwea8O7ogPJc55n86eDa6Pyosr8Ou0v8hk+/QfJsGrw/tPGHXo1xqbH6zH2iE/oTi3lKiYD/gK35z8gqzMVwZHj4PVhxZjQcfV4Nfyce7PqwgY1hEtu/mQSbC1QRtJx05lNPN1QqKkxVPaqVGQJTNecXCzIX/u2aG5SjrF/zW6CjUdOnTo+IBIi8nEv6uPYHKz+Vg34hc8PvdcIZnmG+CFZTvn4lT2v1ixd6FWk2kA4N7aVUFbQp55m6dTurE/+8cVvLlHtAPZOFth6T+EtkVaTCZO/XYRC/1XY6bPEhz87qRCsonJYqLjwLb4ct9CnMrZg+/PrULviYEKyTQpQbOVi4qbWBjhxt57WDtkI4JPP1VIpnl38sDi7Z/hZNZuLNw6E8d+Okcudmb8MBHeHWUaYkZmRlh18HOydWT/18eQ9DYFV3bdxtqhG5sUr2exWHCRCLJmJeRAwKdWmUSVjLgsnPnjMm4dlAlD102mWTtZYtmuuTiZ/S9+vLgGfSf3qOdQKt+aWhc7VxtM/XZck8dSXVGNXz7dBpGQeP9P1o5Bq8CPRwtDyqAZvRE4yh+Q7FL/MWcnCjILsWnmdmyZu7PJv2FjsbRytMCMDZOaPIba6lr8POVP8jtg3BfDKOsOfkj0mRSIPp8EAgAqSirx+6wdKMopJvUZ5dtqlNGshTMKokohFonJZBoAhIeHo6ysjNSwaoqqqiocP36cbNH7WPH09ET79u1x7tw5tdwVhw0bBgaDoXDD/u7dO5SUlMDEhFqytqamBidOnNDopv9DwN3dHZ07d8a5c+fUcigdOnQomEwmmQCCxEm1sLCQcix5PB6OHz+usZnBf02zZs0QGBiIc+fOqeWqOWTIELBYLIVYRkVFIT8/n7I2n0AgwIkTJxAVFaXy+39IODs7o1evXjh//jzy8lSXmZg4eywyg+v/DdgcFpb8PafJNlixWIwtc3eR3QH+g9th1OIP39ihLp7t3TF9PaGLKhKJ8ev07SjOK8WeNUfw/djfwNFjNdrh0Lpnw0kmJouJ3pNkm8p+XZUbEojFYmxbtAf56cTfo00vP4z/kvqGLN14tnfHn09+Ig0XinJK8GXf73H690uNVte6+rngs1/kdFFn7sCsnz+RDWiiMLdVjxakFptUS1hedkQk9/qWDcTyQ0VXoaZDhw4d/zHlxRUIPv0UNw/cR/Sz+jcnlvbm6D+1JwbO6N1kG5k2CJrVl3TqkdKubyv0m9KjydcmhCVj39eEkDqDwcCoxUE49P0pPL8aiuykXKWvadXdF30mdUePcV0oO0q269sK9m42yElRrNooL64E5Fo6zW1M0W9qTwya0RvurWW73RunbCVbIFr3bIHxK+u3L7Xt1RLjvhiG05svg88TYEXv78lS9sKsIuwK+73RY3TydkDS21QIBULkpxfCobn64uJ8Hh/vHsXgxdXXeHY1FJnx2Q2OlVbGFWQWwdjcuNEkqLN3wyLdi7fPVprMrMvfyw6QgrO+AV6Yuq7pJNyHCIPBwLJd8xAZEoeSvFI8u/Ia7x5Fk+3Wrbq3wIBpvRp8fWOxXLh1JqWKvX9XHSGTzB7t3DBjwydNvuZDZfH2z/AuOBoFmUUIvfMOs/2Wk58f3wAvDJvXsC6Ps7cDqgt5eL0jDh0X+oAh6Tjy8vJCYGAgDAwMGnytPFVVVbCxsfkonCibgsViISUlBVeuXMHkyZNVem15eTlYLBYYDAb4fEJXyMPDA926daOcnKyuroaFhQUGDx6s1vF/SLBYLKSnp+PSpUuYNm2aSq+tqKgAg8EAl8tFbS0h8u3u7o6uXbtSTgLV1NTAzMwMQ4Z8uK69VGEymcjKysKFCxcwe/ZslV5bUVEBkUgEQ0NDUtfO1dUVXbt2pWzQUFtb+9G2c9eFwWAgJycH58+fx7x581R6ba2wFh2XeeHln7GoLZVph01cPUrBhbohrv17ByEXXwIAzKxN8OW+hR+VFp0841eOwLOrrxH5JBY5yXmY02o52cppaW+Br44tw4YJmyES1c8I+Xb2gqW9uYLsiJSxy4aiMFNWYdWQ5tfdo4/w4MQTQKL7u/rQ4v+8bdahuR22PvkJGydvxZt7ERAJRdi96jAiQ2Lw5b5FMDZXfh0YtTgIz668Rtjdd8jPKMSKXt9Tfk/P9u6wdbVBTnIesiWtntXl1eTzmQmydWxTWnQfGrqEmo6PBqFQiNSodCSEpSAjLhs5SbkoyCpGaX4ZKksrUVNZC36t5KLBYIAh/T+j/mMGGGAwpT9nAAziwsVgAAwmEwZG+jC3M4ONixWcvR3g1aE5WnX3hbkNtZt7HTqaoqywHCEXXyL4zFOE3nlXT5eKzWGhy/BOGDSjD/wHt1PLWZIuek8KxPbFe8nqLhabiSU7PmtycVVTVYsNk7aQ1TUsNhP/rj6idKxXx+boMzEQvSZ2a1S3TRnlxRV4eukV6cZZFyaLiYChHTBoRh8EDO1QryT/7tFHuH+cWOwYmRliTSOLnRkbPsGzq6+RHpNFJgMAIPltGipLK2Fk1vDNqK1ci1tBZpHKCbXivFK8uBaK59dC8fpmOKrkFiLyeLRzg6ufC+4dI/RnyO9FABGPotFrfNcG38O6gTa87mMCEDC0Y5PH+Ojcc9zYdw+QaN2tObz4g3aibApzGzOs2LMA60b8AgAK2oXvHkU3mlCzdLAAk8mot0j3H9wePcZ2afK9n18LxcUdNwBJi/dXR5dCj8vR4Lf5bzGxMMbK/YuweuCPgKRSTUrE4+hGE2qmVibQ0+dALCJ2+xlggMVioXfv3pTF9BMTEyESiT7alrq6SNvC5Kuanj9/jsrKSvTt27fR1zIYDAgEArDZxGeTyWSiR48elFvqkpOTUVtbi5kzZ2r4W3wYsFgsjB8/XsFY4fXr1ygsLMTAgQObfL1QKCSvh0wmE4GBgfDw8GjydQCQlpaGioqK/5lYMplMjBs3DmFhYeTP3rx5g+zsbAQFNV7hxGAwIBaLwePxyMddunSBjw+1m+uMjAwUFxf/z8SSwWBg3LhxpMYhg8FAZGQkkpKSMHx44xVODOJmB/qWemRCzbaZNT75qmlNufTYTOz84iD5+Is9C2Bp/+E7zjYEi8XC6oOL8VnrL8Cr5inookU8jsaSHZ9h+b8LSIkHKUwWEy6+TrBxsaqXULOwN8en343Hit7fkT9r0aV+VVV2ci7+WiQz41n6zxyV17jawsLWDL/c/AaHvjuFYxvPAQCeXHiJ5Herse70CqUdMEwmEyv3L8Jsv2Wk4RRV3Fq6wMbFCjnJeagoqURVeRV5f8DhshEp55aqS6jp0KEiKRFpuHvsEWKeJ6A4rwSVJVWoqawBr4YPAV9IiH+rp++qNiUoRXZyLqKfKX+eyWKCrceGvqEejMyMYG5LJN+a+TrCo527LvmmQymlBWV4cv4Fgs8+w5t7EUrF3Zu3ccWgGX3Qd0r3D+YcMjQxgEc7d8S8IKrU+k7pARcf5TucIpEI8aHJeHE1FBf/voHSfFk7knzrKovNQuueLRAwpAO6DO8EZ6+Gq3mUUVZUjpALLxF89hnC7rytpzEHAC4+jgj6rD/6T+3RoPZVTkoeti2S2cEv/WcubJs17ByYEJqkVKRWLBYj+nkCOg1s2+BrrZxkyar8jKbbYcRiMRLfpODZldd4fi0UsS8SlJbjM1lMtOruiy5DO6LL8I6wd7fF30v3K50z6lmc0p9LMTDSh4mFkYJRA4PJwMKtTd+gFGQWYstcmRbJoj9nwclTtb/rh4ZQIEToHeWOe9FNxJLNYcPC3lzBBILBYGDxjtlNJqOL80rx+yzZ4n7ub9Pg2sJZ5eP/kBAKhaSxQl2injYeSwaDAWsnS+Sk5Uv6ShgQiUTQ12+6YhIACgsLceLECXTp0gVeXh++0yxVXFxc4OTkhFOnTkEoFCIrKwsikQh9+vRp9BxzcnJCz5498ewZsciRVgVRoaSkBCdOnECHDh3g6/vxtXI3hKOjIxwcHHDmzBnw+XxkZ2ejtrYWAwYMaDSW9vb26N27N549ewaBQKBSLMvLy3H8+HG0bNkSfn4fvmsvVezt7REUFITz58+jtrYWOTk5qKysxKBBg8BkNqw2ZGVlhb59++LFixeoqKiAWCymXDFZWVmJ48ePw8vLC61bf3xt8Q1hY2ODoUOH4tKlS6isrER+fj5KS0sRFBREJsSVYW5ujv79++PN9t3kzz7fPrtJXSo+j4+fp25DTRVRbTl07gB0G+FP42/03/DmfoRSE6CUiHRUllVh8Mw+qCqtwj9fyFy9Ta1MoMflwNrZSsH1HADm/T4NNVU8Uj/No50bTK0Uq/+ljpjSzc/+n/ZE74mBWvoN1YPFYmHmhk/g19Ubv077C+XFlchKzMXSbl9j8fbPMHhW/c2Z8AeR4NU27JiqDENTQxiaGChop757LEug6Rvrkx06Lj6OsHa0VDrPh4ouoabjvRH1LBYPT4YgMiQW2cl5qCypouwW96EhEorAq+aBV81DWWEFspOUJ99YHBZMLIzh7OOI9n1bYdDMPrBr5GZdx/8exXmleHL+BR6dfYo39yNJXSl5bJtZo8eYAPSb2hOe7d0/yLL6pf98htUDN8DM2gRL/56j8Fx1RTVC77zDsyuv8eJaqNLSeEjaLf2HtEfAkI7oNLBNo9VcyigtKMOTCy/x6OxThN1VnpDkGnAgEIgwfP5ALNw6s9FYCoWSxU6ZbLHTZ1LDi52inGKsGbShwV256KdxjSbUbOQcROXbBOSprqxB2N13eHGVqEQraGCciaUxOg9pjy5DO6LjwLYwsTAmn9u79hiu7FLuAJj4JgW11bWNLqqtnCxRXlwJBoMBfSMuJqwa1aSAvEgkwm8zd5CW8j3GBmDQzD6NvuZj4PjP50mHs7qkRmU0WZVo7WRJJtT0jfUxeskQOLg3XpkoFovxx2f/oCSP0ArrPKQ9RiwcpNHv8SFwbstVnPj1gtLnspNyUZxX2miLt7WzFbIScxF/KRPtp/qgf//+sLSktuguLy+Hq6srevbsSWH0xwWPx0NMTAyZbKdiKMBiseDs7IwBAwbgwYMH6NmzJ2xsqK1NysvL4eTkhN69e2t87B8aAoEA0dHRpIszlZgwmUw4OTlh4MCBuHfvHrp06QIHB2obCRUVFbCzs0O/fso1QD9mhEIhIiMjIRQS12krq6ZNSKSx7NevH+7evYtOnTrBxYWazEVlZSWsra3/J9q56yISifDu3TsIBERCyMLCosl1IoPBgJOTE6Z8NxaHvj6N9n1bo+uwTk2+16HvT5Mi/C4+jpi3WbUW6A+RV7fCGzQeEIvFiH2RgA7922DMsqHITsnFhW2EU625DdGyLZ/c0TfkonXPFug3uQfuHAkmf+4/qL5Del2n88//Uq0F+n0SMLQj/n69CT9O+ANxrxLBq+Fj82f/IOJxDBbvkCViQ+++xa/T/qI0p0d7NySGESYELDaRSJePZYSc9jBXXw/lQmL92ElJLD90dAm1D4wavhA55bUorOKhqIqPGoEQYjHAZDBgqs+GlSEH1kZc2BjrgfkB3nQLhUK8uReB4DNPEfsyEbmp+agqq1aaRFAVBoNBVoZxDfRgYKIPE0tjWNqZw9rZEk6eDnD0tIcelw2BQAghXwSBQAAhXwiBQAShQACxEBAKBBAKhBAKRHX+L4RIKAK/lo+81ALkpRegJL8MVaXVqK2uJarlVPw9hHwhSvJKUZJXiohH0Ti8nrBs5nA5MLc1hXtrVwQM7YABn/asJw7+IVErECGnvAaFVXwUVfJQTZ6XgAmXDStDPVgZ6cHOmEsKTr5vxGIxiqr5yK+oRWEVH6XVfAgkrVZ6LCYsDTmwMtSDnQkXxlztfvUVZBXh6UWieurtg0iFli+OkT7sOnqgWRcfuHbzhYmDJfQMuWAxgEwuGzU55WQsWf9hLIur+civ4KGwioeSaj4EeoaY/mAj9FhMhOVWQlCQhawXcQi99BJvH0TWc86Ux39wO0z9djx8/D1U1o0oyinG00uvyKo++c8g25ALuw4ecAnwhntgC5g4WUHPQA8sJgNGemy8yymHlaEe7E2Ux/LAupOIkOyQ2bvZNLnYqa3ioVaya6uMiCfKjQmKJedlpasDBu7+HBwjfZRbmeB6TB4sDNgQFpYh+2U8Qi+9xJt7EQotmvK4t26GgKEd0WVYR/gGeDYYy7KChkXKhQIh4l4l1XNz4gtFyJVce9quHIcWAJgcNtz8nGBmyEV4VimsjYjPD1tJhcHxjecReoeoPrJytMCynfM+yMSwqpQ2EsuGqhIFQhFyKmpRWMmD35KRaC4Sg8lmwbWFE8yM9RGeVUqel2xW/Vie+eMKnl0h3NnMbUzx5d6PV7tGnsZiCUlCuttIxUoIoUhMXHsq+fCaGwSnWYPA5LDh4u2AImN9vJGLJUdJLCExLrC2tsbUqVNp/X0+BNLT05GWlka2ykFSmcLn86Gnp6cwVigSk5/xwioeEjOqYGBkAZ8hU1HOYeFNZiksjYhY6jUQy4iICJiamqqsM/YxkJGRgfT0dIWfmZubg8fjgctV3IAQisTIq6hFQSURy6SMKugbmMA7aAqqOSyEZZbCypADexN96LGVxzI6Ohr6+vr/My3I8mRlZSEjI0PhZyYmJqitra2ndyiSxrKKh8JKHpIyKqHHNYL34Cngc1gIzSiBleS85DYgfREbGws2m/0/0+opT3Z2dr1YGhsbo7a2tl4lpEgsf17ykZReAU5HX8x5+hv02Sy8zighvi9NudBXEssX18NwUrLpwWKzsObIEkq6qR86ja2JACDyaSw69G8DAFi4ZSYqS6oQERKLz/5diMiccpgN6ojBHX3A4nJg18wa1jameJ1RgojkfHAtjFFbXFEvCfTmfsRH53Ru72aLLY9+xM7lB3B55y0AwM0D9xEfloRvT68Am8PGxsl/Up5v6Jz+2LZwD8BgwLqVKyKyS2HUuy0G+7mDxeVAYMxFv7/sUBSXCV5OMSruvUVNYflHmVBjiBuzc/gfp6ysDGZmZigtLaUsHKot8ipqEZtXgZTiKijRRKyHkR4LPjbG8LI2gj7nv9FWEgqFCD7zFJd23ETy2zRUV1QrFXRsCiaLCUMTfVg5WcLayQo2TpZw9LSHa0tneLRz/yArunLT8hH1NBYJYSnIjM9GQUYhSvLKUFlWBV41DwKeQOVYMBgA15ALa2creHdsjl4TuiJgaMf/VLiysJKHmPwKJBdVQUjh9zHgMOFtbQxvG2MY6r2f4+YLRUguqkJMXgWKq6mVIDuZ6sPH1hjOZvq03KgK+AJEhsTi5fUwvLzxBklvU+uNMfd0QLtZ/eHUuw0YFPTQ9NlMeNkYw8fGCEaNOBDRiUBExDI2rwKFVdRimf08FnFnQ5ARHAGxSAw9fQ44XA6pNdVleEf8cGE15TgLBUJEPY3DyxtELBPCkuuNMWtuh3Yz+sO5X1swKOhzcdlMeFkbwcfGmEymPj7/HOvHEiYCTBYTmx+sp+RE+fJGGPavO6HURp3NYeFq9TEwmUwIRWKkFFUhJr8CBZWNOxhKyXmVgLizT5D+4B3EQhH09Dlo17cVugztiIChHRptRZWnqrwaB9adwPW9d1FTWT8BOHrpECzcQtx4lNbwEZNXgcTCSvCFTX/G9VhMeFobwdfWGCaSWL64HoZvhv1Marz8cmsdOvT732i5qamqxaHvTuLq7jtKNeuCPuuHL3bPBwCU1fARm1+BhIJK8CjEksNiwNPKCD62xjDTJ7TR3tyPwOoBP5DXjw2X11DSrvsY4NXwcHj9aVzeeUtBi05K38nd8dWRpQCA8loBYvMqkFBYiVpB0xtZHCYDHpLPuLmBTGcuNjYWJ06cwKhRo9C2bcPVox8rO3fuRG6uorkLk8lEQEAAqf1VUStAXH4F4gsqUUMhlmwmA82tDOFrYwwLQ1lSLjExEUeOHMHQoUPRqVPTlS4fG3v37kVGRoZCcpLJZKJDhw4YOnQoAKCSJ0BcfiXiCypQzW86liwmA80tDeFrawxLuVimpqbi4MGDGDhwILp0aVpP8WPj0KFDSE5OVoglg8FAmzZtMGrUKABAFU+IuIIKxOVXolqJZENdWAwG3CwN4GtrAmsjWSwzMjKwf/9+9O7dGz16NG2U9LFx/PhxxMXFKcQSAPz8/DB+/HgAQDVfiPj8SsQVVKCS13QsmQzAzZL4jNsYE8ni7KRcLPJfTco9zP55CiatHqW13+t9IhaLcXH7DZz6/SLptCmPW0sX/PvuD0BS2BJfUIm4/ApUUIilkC9AZnAkZs/tA0cLolo9L70AizqtRolE8mTqunGk0+jHwt2jj7B13i6y9dfARB+OHvZIfCOpOOOwIGzic7s97DdcvvoG+i1cYUJBN04kECIjOBLTZ/aEi7XxR7WRqEuo/ccJtRq+EM/TipFSrFxcuik4TAY6uZjDy9pI6yeeUCjEw5MhuPTPTSSGp6JGRTFCFpsJQ1ND2LnZoEUXb/Se0A0tA33+c6cTbSEUCvH6zjs8PPkEMc8TkJ9RiJrKGohVTLRxuBy4+Dph0IxeGPl50HuJF08gwsv0EiQUVlIYXR8Wk4EOTmZoYavdL8TM0ho8TS2itIBQho2RHgLdLcmbWVXISy/Aqxtv8OJGGMLuvGtQIN6lpQt6rJsIZnNqwtl1YTKA9o5m8LM30WpVanZZDUJSiigtIJQhyC+FF1OIZ8cf4fahhwAARw87bH/xi0I7ojIKMgvx8sYbvLz5BqG33yq92QYARx9H9Pp2Elhe6mlJMRlAGwdTmJWWY2mXteTfbP7m6Ri7nLojmFgsxtvgKJzZfJmsJJKyP+ZPcBysEJJShLLahqv2GkNQWAYPsQBdevpC37BxvZPGKC+uwNXdd3B+2zUUZct0vFz9nLHz7WaEZZYhKre+HhwVGAygtb0pbGuqsbjzGnIRPnPDJ5i8dozax/yhUllaiWt77uH8n1cV9O8cmtthf9xfCM8qRUROuVpynwwALe1N4CjiY4n/GnIRPuXrsZjx4yQaf4sPg6ryatzYR8RS3pXXxtkKh1P+wbucMrzNLoO6q9MWtsbo4GQGNouJ0NBQ5OXlYdCgQR/V4pwqPB4PERERMDAwwKtXr5CURCT67e3tMWfuXETmlONNVimljVpl+NgYo6OzGTgsJsLDw5GRkYEhQ4b8T8aSz+cjIiIC+vr6CAsLQ3w8oedjZWWFhYsWITq3HGGZZRCqeWJ6WRuhk4s59FhMREZGIjExEcOGDWtUU+xjRSAQICIiAhwOBxEREYiNjYVYLIaZmRmWLl2KmLwKhGaWkl0EquJhZQh/Fwtw2UzExsYiKioKI0aM+J+8n5C2zjKZTMTExCAqKorUlluxYgXiCirxKr1E7Vi6WRqinbUhVvVah6RwYjO420h/fHf2y/+5c1PAFyD49FOc3nxZYbOWrcfGtepjSCisxMv0Ekqbi8poZm6ADvbG+Kb/esS8SAAAdBrUFhuufPVRnpspken4YdzvSI/NUvp8vyk9kBGXVU9fruPAtmg7pRfQqjl4anaoOZvpo6ur5XsrztAUXULtP0yopZdU40lKEaXd16ZwNNVHD3dLStVqSe9S4Orn0uSHW90EGovDgrG5ERw97OHXzRt9PgmET0dPyr/L/zrV1bV4eDIETy+9ROKbFBTnloJXTa2CBQC4Bnpwa+WCYQsGYcCnPWn/ks4pq8Gj5CJUUdgxbApbYz30bG5Fe4WVUCTGi7RixBWol/CTh8VgoKOLGVrYmjQ6jlfLR+STGLIKLSUyvcGx3p084D+4HdqMDkASi6t2wk8eayM99GpuRXu7qkgkxrPUIsQXKk9iqTgZXv91BdFHH4BroIdtTzeieZv6rnECvgCRT2LJKjRlFX1SvDq4o9Ogdmg3uguS9fTVTvjJU56Si7tf7EVFRgF6TwrE2qNL1b5BTI3OwM4vDuD1rbcwtzPDF09+RmxBFZFx0gAGA2jnYIbWDiYa37zyeXzcPhyM3SsPobK0CtP+mAnjvu3VTvjJU5lRgLtf7EFZSt7/7CJcHgFfgPsnnuCf5QdQXlyBSRumwHp4AEpqNI9ldXYR7n6xFyWJ2R/1IpwqQgFR5b5j6X6U5pdhzDfj4DSxF+VK48Yw1mOBnRODvl39YWLS+Hf7/wq5ubm4dOkSsrKy0HtgEMrNmlGuNG4MIz0WODmx6B3QAWZmH4ZRjrbJz8/HpUuXkJGRge59+qHWxgv5FCuNG8OQw4RefgJ6dGhNWf/vY6ewsBCXL19GamoqunTvCbFTS+RWNCydQBUDNhP6hcno2saHsv7fx05JSQkuXbqE5ORkdAroCo57O2SXax5LYVUNHn51CFlPY+Ds7YDtz39WWeP2Y0IsFuPN/QhsW/gvMuKy0XFoR/TfPBuZZaoViihDVMND8DeHkREcCXs3G+x49StMLT/ea1BVeTV++XQbnl56Ve85A2N97Iv5E1kJOfhr0R6kRKajVZ9WGL5rEdJL1CsUkkePxUBXV0u4WX7YrbLQJdT+u4RaYmElniQX0WpeaabPxkBv2wazuUKhEJ84z0NxbinYemxcqTyisFgXCoW4f/wxLv9zC0nv0igl0FhsJmxdbNB1REcMWzAILt7qVeHoILSibh18gNe33iItJgNlhRVKHWnqom+sD892bhizdCh6jNWsdSCtuBoPkwrU3s1WhpEeCwO9bWGq33giKD+jEEXZxfDu5NFoAkEgEuF+QiGyaLjwydPK3gQdnMzI9xbwBYgPTUbEo2i8fRSFN/cilLbPQeIE1GlQW/gPbo+OA9vCwtYMmaXVuJ9QqPZutjIMOCwM8raBmUHjFXWF2cXITc1HiwAvpbEsL65A/OskRDyLQ2kzB5j6NaPtGAEg+vhDDOjoin6TifYLoUCIhLBkvHsUjXePovHmXkSDFX0mlsboOLAt/Ae1Q6dBbWFpb4HsshrcSyhQewdWGdWFZYjeegG/nFnRqEZIcW4JspNy4RvgpTRRVFFSifjQJESExKHE2RamrdxoO0YA8LYxQpdmTQsQUyW3vAZ3EwrU3oFVRk1JBSJ+P4tfTi5vdBFeWlCG9Ngs+HX1/p9IuuVX1OJOfIHaO7DKqC2rQvimM/j52JJGF+FlReVIi8pAi67e/xNJt8JKIpZUWhKpIhLw0dvdAu52Fo2OqyipRNLbVLTs5gMWhXb8D53iKh5ux+dTakmkikgoQKCLCbwdG2/bqSyrQuKbFLTo4gWOnuqV3x8apdU83I4voGVTTIpYKERnR0P4udg2Oq66ohpxr5PQoos39LgffyzLa/i4FZdPy6aYFLFIiA62XLRxa9wEoqaqFrEvE9AiwAt6+nqNjv0YqKjl43ZcAS2bYlJEAiFe/nwaq3+eBFe/ho0gaqtrEfM8Ab4Bnk06hn4MVPEEuB2XT8ummBSRUIRXm85i+Tej4dnevcFxvBoeop/Fw9vf44PWqvth/GY8OqvEea+OVEM1X4A7cQUoomFTTJ6AZhbwtW280+W/RpdQ+w8SaqnFVXiYWEhrMk2KuT4bg33twK0jgioUCjHRYQ5KC2TtPdPXT0DLQB8cWHcSSW9TG0wWyMNis2DbzBrdRvnjk7VjYPYRZ90/Bng8Hs5tuYo7h4ORmZBDKcFmaGoAn06eGLdyBDqrIOyYXVaDO/H5tCbTpBjrsRDka9dgsvfBySfYNH07+DwB1h5b1qDTokgsxv2EAmSU0ptMk2JXU438u+F4+ygKMc/iSe0AZfh29kTnoA7wD2oHr47NFW5qc8trcTsun9ZkmhRDDgtDWtg2WPUXcvElfvpkC3g1fKzYuxCBo/wR/zoJca+TEB+ahPjXSchOygUYDPTYOA2u/bSjK2THq0XB3Td49zgaUSGxjX6/eHV0R8CQjvAf3A4+nRXF9gsqa3EzNp/WZJoUPQYwrJUDqQVWlxfXw/DjhM2oqazF4u2foe/k7mQM40OTEPcqEVmJhH5R4PopcA/SjtaVn50x/F0aTwpQoaiKhxuxebQm06SwAQxrZd9g+3TYvXf4fvRvqCqvxtzfpmH8iuGU5uXz+MhPL0ROSj6qyqrAYrMk/zHBZDEVHtf9N5PFBIfLgaWDOe1Jp5JqPq7H5NGaTJPCghhDW9rDwkD5jV/E42isG/ErKkoqMX39RExdN47SvAK+QBLLPFSWymJJxLHhWErjzNZjw8rBgvakU1kNEUs6k2lS2EwGBvvYwspIeSyjn8dj3fCfUVpQjklrRmP2xsmU5hUKhMjPKERuSj7Kiyvk4qj8XKwbZ7YeG5b25mBT0IBUhYpaAa7F5NKaTJPCYjIw0NsGtsbKb6ITwpKxdshPKM4txZilQ7FgCzWxfaFAiILMIuSk5KG8qILS51r+MZvDgqWDBe2xrOQJcD0mj9ZkmhQmAxjgbQN7E+U30ckRaVgb9BMKMoswdO4ALNs5l9K8QoEQhVlFyEnJR1lheaOxVPYcm8OChb057cnQar4Q12JyUVGrnVj29bSBk5nyWKbHZmJt0E/IScnHgGm9sOrA55TmFQqFKMwqRm5KPkoLyhqMZUPfn2wOC+Z25rQnQ2sEQtyIyUMpjQkgErEYfb1s4GKu3CQtOykXawZvQFZCDnqO74p1J7+gNK1QKERRdglyU/JQkq88lk19f1rY0x9LnkCEG7F5tFRF10MsRi8P6warq/LS8vFV0E9Ii85El2Ed8eOlNZSmFYlEKMouRk5KPkrySuvFsqnvTxabBXNbU8rJ0OSINMxts6LRMd+fW4nOwzvhZmweLVXRyujubgkPqw+3alKXUHvPCbVKngAXI3O0ckMjpbmlIXo0l9lTC4VCTHSci9L8xl1OlKFLoH1YVFdU48SvF/DwVAhyUvKbFIQEAGMLI3Qa2BYLtsyApb3ym/IagRAXI3K0ckMjxclUH/28rOtV2pzbehX/fHGAfOw/uB02XvsakOze5KbmIyclH3mp+cjlcMFq3fBuj6aIRSLcmr8D+W/qC+Ez2UyI5OKz5dGPaBXoC7FYjJL8MuSm5CE3JR/Z6YWo7ugDphZdW5nF5WheVQlnbwc4NLcjFxln/riM3asOkzp9HH0O+DXKL24+E7rD/0vtal3dWfQPcl7G1/s5i82EUC6Wv95ahw7920AsFqO0oAy5KcTfPCetAFUdvME00V65N6O0As3Ly+Hi7QAHD3sylpf+voEdS/aR4vAcLhv8BnaDPUcGoMvX2hWcNU3KhIe9KZy9HWBhZ65yxZpQJMblqBztLMIlWBpyMNTXrp7T7/0TT7Bp+l8QSL6v3Fs3w+7wzUCdhJn0M5STSvw/NyUfBZlF0HSZwtFjw765HZy9HeDs5QBnb0c4eTvAycsBVg6qV/8JRWJcjc7VziJcgrk+G8P87Ou50z469xw/T/mTdIJ19LTHwTjCwl4+YUZ8hvKQm5pP/rsws0gt4yB52BwWHJrbwcnbAc5ejnDyciDi6u0AK0dLlWMpEotxLToPhVWat9M1hCmXjeF+dvUcVZ9ffY0NE7eQGyfWTpY4lrYTDAaDiKUkYUaem6n5ZGwLMgo1jiWLzYJDc1vifPS0h5O3oySWjrBytFC5ilMsFuNGbD7yaGinawgjPRZGtrSv56j6+nY41o/9HdWSzgYTS2Oczt0DFoulkHzMqfMZz0vNR156ocZO8EwWE/butpLPOBFHJ29HOHvZw9rZSq1Y3o7PR3aZ9mJpwGFiZEuHehvg4Q8j8d2oTaSWqIGxPs4V7gebw1ZIPuam5JOf79zUPOSk5CM/vRBCgWZJKyaTAXt3W0n8HOQ+446wcVEvlve0uBEKiYnTyJb29WRvop7FYd3wX1BWSBQTcLgcnC/aD64BVyFhRsYzJQ85kpjmpRXQEks7N1s4edkT35eSODp7O8DGxUqtjZ6HiQVq625TQY/FwMiWDvU2wONeJ+LroT+jJK8UkHzmzhXuh5GpoULCLCclv871Jw95aQXk9V9dGAwG7FytyfNSeh139nKArau1WrF8nFyIRDrkThqAzWRgZEv7elItye9S8VXQTyjMIrRtGQwGTuX8C3MbM4WEmcK5Kf2MpxWAT6G4ojEYDAZsm1mT8XPykp2Xdq42CptmeekFmOG9pEH3eQDw8ffE1FMrEZuvuQxPQ7CYDIzws4OpGprX7wNdQu09JtTEYjHuxhfQ0qPdFH08rdHM3ECSTJuD0nxqwtO6BNrHRWlROY7/dBaPz79AfkahQsJHGXoGemjV3RcLNk+HWytZm19wUiGSi7R3UZES6GYJT2tih0EkEmHP6iM4vfmywhgmiwmvju7ITytEUU4J+XNTN1sMPbwCLC23PpSl5ePqlN8hrOWDzWHBzMYU5cWV9XTuHD3tweawkJuSj1q557p8PQGeI7Xv2vX81zOIPxsCBoMBPQMO+DxBk39/KcZOVhh27EuwtVyuX5FdhKuTfwO/shYsDgtm1qaoLK1CbZ3KP/vmtuDq6yE3JV+hKrDTl6PhO0H7rl2vt15E9LGHAIPQKBTwhJQX0oZ25hh2fBX0jLVbrl+VX4orkzaBV14NQxMDOHnZKywspUmNhlouK2oFqOAJIBCKEZxcSG7q2BrrIcjXDifeZNKi59ne0QxtHGXX0zN/XMauLw/VG+fT2RNFWcW0JMw0wcBYn7xhdJJbWLr4OMLYXHks32SWIjxb9Q0qVWntYIoOTjLNqkt/38T2xXvrxcunkweKcktoSZhpgr4RVxZLT9kNj4uPY4PGJO+yyxCaWar1Y6tb5Xlj3z1smberXiLHq2NzlOaX0ZIw0wR9Qy4cPe3JGx5nuWSbqZXydVl0bjlepJcofY5OvG2M0NVVpv919+gj/DZzR73vTM8O7igvrCDWJlqo5KSKnj5H7jPuSH7WXXwcYWatfO0fl1+Bp6nFSp+jEw8rQ3R3l22AB595il+mbqt3w+zRzg2VJZW0JB81QU+fA0dPezIJTJ6XPo4wt1Gur5dYWInHyUVaPzY3CwP08pC1JD+78hobJv6hsD4DgOZtXVFVVk1L8lETOHpsSSxl56U0nhZ25kpfk1pchQeJ9V0q6cbZTB99PWUb4K9uheOHcbKEuRT3Nq6orayhJWGmCRw9Nhw87Ij4Sa7j0uSlpb3yDciMkmrcTSjQ+rE5mHAxwNuGPIbwB5H4dtSvqCpTTIq6tXIBr4aPvNT8/zSWbA4LDh72ZBLY2dsBxhZGKMkrRVV5DQoyCpGfUYishBxkxudALBZh3sElKPOiVzpGGbbGehjsY/tBmuLoEmrvMaGWVlyN+4mKH166b2akGOmxMKa1A4YaTG6yTdDa2RK9JnTTJdD+B8jPLMSRH07jxfUwFGUVN3pDwOaw4NneHZN+m44EA8UbRwYDGOxjC3N9DkJSi5BaXA0bIz10cjGHSCyud1NOFT0WE+PaOEAsEOK7UZvw6uYbyq/t++dcOHb1bfQYpWj6uQrfeR3v9t1W+XWWLZwx5KCsBL6hY7Q20kN7RzMwGIRTaaQaTou8ihqcH/4D+JWqJ+h7bpqJZr1bK/ysoWMNaGYOS0M9MAC8zixFrooCuBH77+DNP9dUPkb/sV2wbP/n9c43L2sjeFobQSQW40my+q6k8ghqeDg/4kfUlqi+uzZx32KMGBegcJzm+hyNPyvKiD7+EK+3XGx0jHvrZmjdowXa9PRDqx4tYOVggfIaPi5F5UIgEsPbxghcNhPvsolzrrcHYRpyJz6flmsQkwGMae0AAzYTv83cgTuHg9Wey9zWDPZuNrBzs4Gdqy1MLI0hEoogFAgl/4kgEgghJH8meSz3s5rKWmQl5iArIQe8Bqo1G8LVz5mIZa+WaN3DF9ZOVqioFeBcRDbpQNnQ96KmnxtI3D9Ht3aAsR4LW+fvxrV/76g8hxRzG1Mijm62sHe1gYmViUIsiX8ria1cLGurapGdlIfM+Ox6N6lN4eLrhDY9WqB1Tz+07tkCti7WqOYLceZtloLMgD6biT6e1hCJxWCAgWepxeCwGLR8nka1tIepPht/Lz+AC9tU/06SYmplAjs3G+LcdLWFmY0pREJRvXOz0VhW85CdlIus+JxGpQWU4eztgNY9iDi26ekHO1cb1AqEOPM2G2wmo178Smr4tFxz5BnuZwcLAw72fHUUpzY1/p3UGCaWxpLPuC3sXG1gbmsGsUgsFztqscxJJs5LKtIl8jh62iucl/ZuthCIxDj9Ngt8objeWkIb158gX1vYGnNx8PuTOPLjGairB2NiYUTE0c0G9tJYikE5liKhCLXVPOSm5CEjLrte8qQpHJrboXXPFmjdww9teraAQ3M7CMVinHmbXe/aomyNRsf90EBvGziY6uPEr+exb+1xtTdrjM2NFD7jFnYUYykUQSgUQiQQgVfDQ05KPjLjshvUjG0IO1cbtOnlh9aSc9PJ0x4iMXD2XTaqJcmWuvGi45ojTz9PazibG+Ds1ivYvfKw2olcQ1MD2Lvbwl7yGbe0N280lgrXImksa4lEU3psVr1EVFPYuFihTU9ZLF18HCEGcP5dNip4Qkxu70RWSL/LLgdfKKJ9/daruRXcLA1xeedN7FiyT6FDQxUMTYhYEmsiG1g5WCiNpdJrkVws89MKkB6bRVbBUsXayfL/2rvv+DbK+w/gH+0tecl778RxNoRMdkjYuxRKoYyW1UJpyyhtKYUftKWlFAqltFBGC2VvQgiQSfYe3ntvy0u2te73h2TZsmVbsuWZz/v18suydHr0+Ht3urvvPcNjH4+fEwsA+OhEf++HwfGsae8J6PFnunb9ZEJtEhNqX+Y3DJmNJdAXMwNlq0S4P/unIy4TFG7AO3X/Cujn0vRRU1yLfz34Bg5sPDLsAX3V/12PxHMXDXleJRMj3aiFqduK8tZuqGRiWOwC7F4uyv2xPCEYfz3/URQcKBlxuZCo4P6L6awESNcuHbWOfca7Xzm6enDwl68gb1eBz+/RBmmw6nfXIey0TI/nB9dRLALOTAnDlpJm2MfZAmLfn95H/ts7fF5eIhUjblEyVj57G0Reum0MrqtOIcXyhGB8WdAItUyCNckh+CK/0a86Cj0WHPn1qzi+Ndfn92gMaqz9/fehPyXDY3vLb+jCOWlh2JDXgBC1HPMiddhaEpi7tQef/QQ5r2/2eXmxRIyYefE476W7YXV1A+yrZ1FTV0D2lcEEixWFf3gHlScqUV/W4FMLmpi0KJx23+VQLUgBAKSGaqCUiXG8rgOxBiX0SiniglTYUtwcsGPQgmg93r/jH9j18b4RlxucMHNfWCcaER4fFtBBeh0OB5qqmlFVUOv6qUF1kfNxXWmDTxcL0SkRWPazy6BZmu5+ztv3YllL97j3mz7zInXYeN+r2Py/kffzwQkz94V1ohHhCcbAx7K6BVUFtagurEV1QQ2qCp2xrC2p9ymWkUnhOO2nl0B72hyP50XozydE6BRIC9PgQJUpIPvTnHAttj/6P3zx0jcjLmcI03kkJiISB2ybCWFQBbA7v8PhQHNNK6oLB2yXhc7ftSUNPrWgCY8Pw2l3XwT96myv8dtZ1hKwY06ftDANDj39IT58ZsOIyw1OmEUO2i41+sB15xcEAc21rah2xbGqoNa9j9cW1/nU6sMYG4pld52PoLOc50QDzyUEARNy/EkOUaPwpY1484kPRlxucMKsfx93bpeBnJVREAS01Jlc22PdgH28BjVFvsUyNDoYy25bj5B1Q8/dvJ2jBeJ6KD5Ihdq3t+Hfv3pzxOUGJ8zccXQlKoZrnTwWgiCgtd6E6sK6/u2y0BXXoroRu9L1CYkMwqm3nouwi5a7nxsYL7lEHLBjTp8YvRLtG/bi7z99ZcTlBifM3HF0xTTQsTQ1tju3R9fxp2+7rC70LZZB4Qac+oOzEH6Fs/fDxVmR+PhEnfv1QF3rDBSpU8Dx7XE8dcvfR1xOpVUiKjnCvR1GJnpum9ogTcBaZ/UNseKOo2u77PvblxuQhjAdll5/BqK+e6b7ucHxDOQ1D1wNEi6YEzHucgItsCN40rDaeqxDkmmxBiUaOnsRFzQxs501SEbvGtfRMv6LPJq+olOi8Ju3nYNJdnd248X7/oNt7+xyjyehCtUh/sz5Xt87eFDjgX87HMBYU/H5DZ2oLW0YcZmUBYl44dCTgGuQ3W25tajoHfqB3gZeDsR+JdYocc7PLkHelU/6/B6LICB4UcqodTRqFLA5BJyREgoxRNhfZRrzWExLblmLyi8O+HzHzm5zwLA0zWsyzVtde6x22BwCRADkUvGYxtgTKeU49/4rcHzrYz6/p9dqhzwz3n3w7dvewjRy1HX0QgDQbLaMOnOsPxbeeDYqP9+PjmbfvhMddgcMS1LRM+AEoa+egdpXBhPJZbjhX3ci3aiFpdeKutIG54mk6wKy8FApig+VeiTa6iqaIHbNgKaQiJERrsVXhc4T7YxwLTYXNQ0ZgPi8DOdg2YNvAmVF6LA0Lgg59R3YN0LXsoLGLlTkVY/4vxiMerxV8+KkzfYpFosRHm9EeLwRi8/x/M6zWvpi2X9iWXSoBIUHSz2SQ3XlTRAnec4m521dj2e/uSQrEgeqTO7xhgqbulCaWzXiezQGNf5X/eKkzVApFosRHheG8LgwLD7bs6WrzWpztxbqSxAVHS5D4YESj+RQfXkjRImRQ8oeuKvIJWK0mq0B25+KmrtQmjNyLOUqOd6o/MekzaooFothjA2FMTYUC8+c5/Ga3WZHnau1UN8+XnykDAX7iz0SGg2VzUCCM5be4hfIY06fkhYzSk6MHEupTIL/lj0f0ATkSEQiEcKiQxAWHYIFZ2R5vGa32VFf3jhgH3fFcl+xR/fKxqpmCPHOWA4+l5io409ZqxlFOSN/X4rFIrxS+OyIM/8GkkgkQmhUMEKjgrHg9EGxtNvRUN6EqsL+7bLkWDny9hR5JDSaa1rh8DKTqbdztLGetw3+vqw0dY/6fQkA/zrxF4RGjX+iH1+IRCKERAYjJDIY2as9byDY7XY0VjZ7JNNLj1Ugd3eBR0Kjpc4Ee7TR/ffgeAXiXG2w6vYe1ObVjLrcCwefRFTy5CQ4RCIRgsMNCA43YN4qz1g6HA5XLGvcycvS4xXI3VXg0aLa1NAGa1R/12CNTIJ1GUZ0WezYW2GakPO3uo5emHJH3scB4JldjyMxa/gZVgNJJBIhyGhAkNGAeSs9GwJ43DRzJS9Ljzu3y4GtgNuaOmCNDPV47+B4Bqlk4zr+DN7Hm7osaO6yDDvR0FSZ8Qm15557Dk8++STq6uqwYMECPPvsszj11FOnulpDVJmGXvCOdDFT0dqN3IZOj+dvWBqHj0/U+bwh1nda8Ln1LeR+m4c9nx9E/t4i1JbUo72pA709FgiCgBWXTr9Y0cRQaVW4+/lbcffzt8Jut+O/j72HoyVNEPt5ETb4orxPuFaO7Cg9jBoFRAA6LTaUtJiRW9/h0aWnpduKB9//Bf79s1dhamhDS23rkObPlfnV+N1Vf0JlnvME4/w374MuLgy+GGm/Ctcq8GlO/2DiMokI1y6KxbtHa4bM5BWyMAXn33oOjmw5gbamdnS2Du0OuO6ms6AP0eLIthxYgvU+je+mlksQpJLhs9x6aOQSLE8IwRf5/QnGKJ0CC6INCFHLIAhAQ1cvDlW3ocXLzDniIC0e3vArvHzPy2ipM6Gl1jSkRYNYIkbS/HjUltTD3NaN2NXzhpQzHKtDQJfFhsvmRUEiFnl0WT8vwwijRgHHgLONA1VtyG/sHFKOOjUGl9y5Dgc2HUFbUwc6WoYuc871axAaFYyj23LQpVJC5mpRM3B7i9YrPWZVHHifzt/1O5hYp8ZvvvgVXrrrX2ipaUVLXeuQu/AikQh3PnsTTnybh2Pbcj1i6W2/8PbceOtZaepGulELuUKG+MwYxGfGeLze1W5Gzq4CHNuWg2Pbc2FyiKAwqCERi3B6Sij2VrSi1+ZAcogalabuYWf1beu2IjVM45FQSw3TwOTD8afbasdP374XL9/+IpqqW9BSZxoy9EBbYzusvVafZ5qaSDK5DHEZMYjL8Ixld2e3K5a5OLo9B01mG1TDjF81cF2PtN/oFVIsjQuCUSOHWCxCt8WOouYuHK9zJnI/GnBnFwB6bQ78+L/34N+3vYDGyma01LUOmRyjq82MrnbzpF1sj0Qqk7rGAYrGsgv6n+/u6kHu7kL3dlnX0gXNMJPkGJRSrEgMgUYu8RgvyNv+NFo8B7LaBfzo33fh3z98AQ3ljWipMw1p0WDptqC9qR1hMaFD3j/ZJFIJYlKd49Hh/P7ne8y9yNtT6N4uq2pM0Mf3X2wPjp9OIR3xmAMAKxKDkRamxYfHa32auMTuEHDj32/Dqz98HnWlDWitNw1p0WCz2tFSZ0JM6uQk1EYikUoQnRKJ6JRIYH1/i/ze7l7k7S3CsW25OLY9B2UljQhOdSbNB59LKKTiYY8/8OMcaDCHAFzz1I2wdXajtrgeLfWmIWO2OhwCmqtbpsU+LpE4JyaJSo7AKQNmkrf0WJC/rxhHXft4cW41wrKGjqvk7RzN23PXLur/PpaIRRAEuM836jt78XVh05DvSwHApY9dh57GdlQV1qK1zuS1e3pDRdOkJdRGIpFIEJnobN21dG3/jOuWXisKD5Tg2LYcHN2ei4LDZYhYkup+fXC8RjrmYBzb5voHL0dnZRMqcqvQ2tDmtUt1Q0XTpCXURiIWixGR4GzZteTc/lhaLVYUHix17+O5+4oRdWp/K/P3jzu7JKeGarAoxoDdFc6xE4c7f/P1vHewNT++AM2FNSg7XonW+jb0eBmupaGiadISaiMZ7qaZzWpD0aFS97HnxM4CxKzwTGwOjmd9Z++wxx9fzocH7+NwnQczoRZAb731Fu6991688MILWLZsGZ5++mmcd955yM/PR3j40LsiU6lp0MXwaBczgdJstmD+mrmYv2buxH4QzSgSiQTff/hq7C5v9elA4H7foIvyPrEGJdYkh+JQdRt2lLag1+aAXilFdqQeKplkSJKgpLwZ2avmoL68ATUl9agrafAYr8PSY8X29/YAAOQ6lc/JtNH2K4vNgcUxBp8GIm0xW3DXszehs7UL7S2dqMitRs7OfBQfKXN1ebCh8GAJWutMaK1vw6IfX+hTHXttDjR09sLmENDWY4Nc0n9aHmdQYnVyKPZVmvBVoRliEZBu1GJdRviw01EXlTZi3spM1JU3oq6kAbUldTB39MfSYXeg+FAZAECilMOQ5PuJT7ReAYVUgveP10IlE+PsVCM+za13v36gyjQk8e9Ns9mCH/35++hs7UJHaxcq86pxYmc+ig+XoabY2Uy/7FgFDn51DK11Jsz/4XnO+g7a3iw2B4JV/UnLwavZn/XrjSYhHM/uehxwnYSVHa9E4YESFBwoQU1xHVZccgouuWMdLrljHWx2B944VA1hmP1iuH1lvPUcbTZEjV6NU85b6L7QOVTRgmMNXTg9ORR5DZ1o7HK+P0glQ6hGjvggFYJVMqxJCsWmASeOpa1mzAnXQiYRwWoXEOY6eWnq8vx8tUyClUkhCNPI0dFjQ3mrGelGLarauvHXb/8PcJ2ElZ1wxrLwQAkqC2qw7PzF0yKZNhKVVoUl5y5wn5wfrWrFobqh2/vgdT3SfnN2WhjKWszYWuIc9N6glMKgGjkRLw7R4S/bHgVcsazIrUbBgRIU7C9GZX41Fp89f9hB/6cLlUaJxWdnu0/Oc2rasK/G+8QObT02bMhrQLBKhuUJwfg8r2HY/cnfeDq0ajy15RHA1WqpIrcKBa7tsiKvGtmr5iA0OmTY908HSrUCC8+c527Rll/fjt2V/RM7DI7f4Zr2YY85cM1ElxisRo/NjrQwDfZXjTxJRF+3UotSjj9981vA1dKmMq/G9X1ZjPKcKmSemupMYE1jCpUCC07PcrfCKm7swI5yk9dziZGOP/6eAw3WI5Hij5t+A7hiWVVQ6/6+LDtRgdSFSUiYBhfaI5Er5c5xqlytsMqbu7Bl0GQE3uI63HnbG4f6W/QM19DAG7MgwhNf/ApwtbSpLqx1H8dLj1cgcW4c0pcmj/O/nVhyhQxZKzKQtSID1zxwGapazfjadXPBW7xGOuaMZdvs28fb7cBjnz4IuGJZU1zv2i6LUXy0HDGpUchamTFZYRkTmVyGuaelY+5p6fjOfZegrr0bGwv6z736jielrWakG53dU0c6f/P1vHewNqsDv/vwfsDV3bK2pB4F+4tReKAExUfLEZlgxMKzfL/hPRWkMikyT01D5qlpuOrnF6Opswef5Xk2rhgczwpT94jHn7GcD0/krOBjNaMTak899RRuvfVW/OAHPwAAvPDCC/jss8/w8ssv44EHHpjq6nloGXQRMtrFzGikYhGWxBoQa1BBIhahpq0Heypbhwyc2NxlRaRuYmefo5nLny8lkWtgzYEX5X1OjQ/G8boOj4NMe48N35Z5n9lp384CHPnHF6N+pkwuxZzzho7vNpzR9qv8xk7MCdchQqtAfefIA7a2dllwUdCNsPcMH6O+Ka8BICQz1qc6NnX1Yn6U8y6zUirGwF32FFccC5v6W8Mdr+twt8LY6GVMjAN7i3Hwmc9G/VypTILMcxdALPGnS4XIfXC02gVIxWMbu6HTYselxpthGWFgXo9YZsR63d4auyyYH62HCECwWob2QS0pRlu/o31vNndZkebK3crkMqQtTkba4mScf+vQ+rb12iAMs1+MtK/4Us+5EVpkGLVQySTosTqQU9+BPFfiu9vqgNliHzKl/XDarA4khagRoVVAJhFhToQWVaYej5kVz8swYlup51hAFpsD1W09SApRo6CxC6lhGhQ1dSFoULJiTXII2nps+KawCRq5BOekGd2xdMddJkXqwiSkLkzC+pvP9qne01GbZWg3Gu/r2vt+o5CKoVfKkN/Y5e7ObOqxwTRgO74iOwp7K02oHNCqfWAiXSqTInl+ApLnJ2DdD/rHLZlpTMMkGMQiuC8ULXaHuxuTt/3Jl3gONvCYJ5FKkJSdgKTsBJx348yNZVtvfyy9xW+kYw4AJIWoYXMIOFTdhkUxBhyobvPo5nRFdhTyGzudx1W1DJ/lNsDUbfWMpUSCxKw4JGbF4dzvnz7R//KEMbli6e1cYmtJ87DHH1/OgUb6Xh8cy4Q5sUiYE4tzvrdmkv7zwDP1Dt0PvcW12WwZ8/WQ9+/L/liKxWJ36+Ozrp34GcMnysBYeovhifqOYc/VfNk2h93HuzxjGZvmnHX4zGtWTsJ/PTFaB+y3UrEIdocAAUCkVoH2Xtuo52/DGf38sr8skUjkbjF7xndmcCy7Pfdxb/Ec7fgz2vnwaPv4dDFjE2oWiwUHDhzAgw8+6H5OLBbjnHPOwa5du7y+p7e3F729/SurvX3ip73vYx7UdWi0i5nRrEwMgUMQ8HFOHQQBWJEQjGXxwUOmpu6ewql3afobafs4PTkUoRo5rHYHwjRytJqtQy7KT9Q7kz06hRSlLb7PkKgaML26SCSC2qCG1qCGNlgDQ5gehjAd1AY1FCo5RF7G4BiujgeqRt6vem0OHKtrx+JYAzbkjTyOm0gihipEi86a4ad7F4lECIkKgjEuDKHDtPzyVseiJjPWZYRDLAL2u8ai6otjSfPQOJa0mHFuuhESkQj2QQM6DIwlRM4WStogNbRBWhjCdNAb9VDrVVCqFUDUyN2YBtf1YFUbkkPVWJcRDolYhCO1Y//OVBn1IybURCIRgiODEB4XCmNalNck0In6DhQ3d2FdZjgcgoCdZa0eZYy2fkf73hz8PT2SbldCwFs9u612r3X3tZ6dvXZszG+E2WpHpE6Bs9PC0NxtQWOnxV1PXxNqZosdjV0WlLQMP5uTt0QtXGNOLYo2oLjJjIQgFT46UYclsUHu19UyCSJ0SmwuroZdENDea0N+Yycyw7V+xXKm8PY/eVv/OfUdXvebXpsDbd1WrEwKQUFjJ5q6LKO2XIFrHc42w20foWo5Fsc6Z9QTiYB9laZhvwvGEs/ZHktv8bPYBa/HnD6pYRqUNJtR2mLGKXFBiDOoUDFomJLUMA2+KWxCR68NfWNid8/iWHo7R7fYHV6PP76eA430vT4rvy+9bB/e4jqwBdBYroeGfO4sj6XXbdPm8HrM8ef83Os+PstjqXd1j7faHXA4gJ3lLcMeb0YTyPPLmWLw/+QtnqMdf/y5LuvTbXXAIQgQB2iChkCYsQm1pqYm2O12RER4XsRGREQgLy/P63ueeOIJPPLII5NUQ0+DL4IH8nYxszjWgIXRBq/LK6RixAer8Nbhanfm+1BNOy7JisS3pS0ezdAdJ+8kruSDkWZc8TZ7lbeLcoXM2eLJlwvDPgPHbRMEAV2mLnSZulBfPnRfSL1kGU5bnT3k+eHq2Ge4JEFufSfmhGsRF6RCXcfI08JnnJYGmdUGXYgW+mAtwmJDYYwLgzE2BGGxoQiJDIJU5vwafe9oDTq9xMBbHYuau1A0KHHWF0dvB91uqx1ikQgKqXjI6x5j4Amu8ZTazKgvH9p8OvG8xVh15sIhz49U18FJ+oEGf0+9c7QGtmG2qbSlKZBmxUIXrIWuL5axIe54hkQFu2P54fFa56DXXra3gsYuFDQOf3I43Pr15XvTl1kz+/R9pw9Xz5ESWCPVE4DHxWxdRy9q2noQqVO4E2r+fK+PdOwZTW17L1YkSDA/Wo/GLsuQgY7VcglsDofHBVGXa6y02Xjs8fY/Dbf+h9tvvshvwLxIPRZGG6BXStHeY8PeylbUtg/fYnZWxnKYfa2xyzLku7vFbB12f/I3nhM9zMZUGLh9eIsfhjnmwDXeWrhWgd3lrbA5BFSYupEWphmSUMtv6ES7q5VM38fNylh6+acGxtPb8cfXc6CRvtcdgZlgeVoZ7djjbTsd7rzNH7NyuxwmlgPj5e2Y48/5ubd9fHBrotlgYCxbzFZ8mlPv8fpwx/Q+3s57JWLR6OeXgvN6J1CzdE4Hg7cPb/HECMefPv5cl/URBC8DWU6hGZtQG4sHH3wQ9957r/vv9vZ2xMVNzpgEEpEINj9Oig9WtXmdlAAAtHIpxCIRrsiOHvI+lUziccE9nbK3NP1IxtiFb6Be14w4GrkEHb2+JdUc1tEHPe5jt/i+rE/lCQIO17RjcYwBX+SN3O3zof/eA53Ct69J8Thj2RdHtUwyJDGnkkngEASvU8n7E0t/lvWFt++p4dz/77uGdBccjmQc31vDrV9fvjf92R/GU8eR6glXq6esCB20CglEEEEiFnlsE/589njrWdzchflReo/B4fuYLXZIxWIopGL3tqmRO/eX2XjsCcT/1GNzYH+VCfurnLMwzo/S48yUMLx7tNZjwPOBxrsOp6NAHHswhnhyu/SUFqZFi9niHhC6uKkL56QboR50Luntgny8x7zpaCzbpa/nQCN9rwdqf5hOpup/4j7ez5/zc2/7+Kw89ozzf/J23mtQykY9vxSLMKuSaQAgCdC/4891WZ/p9pU5YxNqYWFhkEgkqK/3zITW19cjMtL7IKgKhQIKxdQMgqyRS3yaOckXXRYbHIKAt4/WjNjCCAA0Cv9mcKSTi0Y++mC5o2nvtaGj14bEEDWO1Y7eLBoAVq1fhCvPngtBEFw/ztsNgiA47xALAqRyKWQKGbrlMuSMq4ZDFTV1IStCh5Qw9bDLiETO5JavtHLpkDG9/NHea0Nnrw1JoUPjmBSiRkNnr9c7vqedPQ+XrfqtT7HslctwfMw1HB9fuygCgEYhRYsf02oP5m39+vK9qfGrjuP/bvVWT41cglVJIfiqoBF1Hb0QAJyZMmhacj9j6c84IIPl1HeivqMXdV7GtjBb7ajv6MXiGAP2Vpiglkvcg/pq/ajjTKGVSwH4drLnC4vdgcM1bciKdF5kt5i9J9Rm43G8L/EaSL7EU8tYuolEQHKoGjKxCFcv6L8QFItESAnzPA55+8b053tophhLLH05Bxrte302xlI7Afu4b587C2Pp443dwfw5Pz9p9vExxnIkvpxfTtX+MJEC+T/5cl3WRyOXTLvk5Ixdu3K5HEuWLMHXX3+NSy+9FHDNQPL111/jrrvumurqDRGqkQcsodZjc6DS1I1l8UE4UNWGXpsDSqkY4VrFkGb6oerpNa0sTS+hajkaOsc/uOPeilasSQ6F1S6gtNmMXrsDeoUU8yJ1OFLbPiRplxgbjIz4kcfz6mO1O5AzYLanQBBc41AsTxh+2nSV4AAcDkAsgc1qw1O3voD8fUVIyIpD+uJkpC1x/vRNYx+ilqGm3bemysPZV2nCqqQQdFsdKGsxQyQCMoxaJIWo8WWB964QcVFByEp0jqR/dFsOnvvJy1BqlR51jM+MgUQqgd0h4MShKkx2DzKl4IDE9aF2ux1/ve2fOLEzD/FzYp0D/y9JRvqSZBjC9ACAULXMYwBSf3lbv758byqs/Um83D2F+OvtL0KudE1OsCQF6UuSkTA3FhKpBAalDBLXAKyBrGffYMI9NgcEADEGJaL1ShS4JqrQyCVQuhK9DocDf/vxyzi8+TjiM6PddUxbkowg19h6oWoZhpkbxCcWuwO1HcMnkbaXNmNFYgiuXhiNjh4bSprNSApVe8RyJhAEAS/c+yr2bTyMuIxoj+0yOMI5blyoRoaicQzvI5eIkBWhQ3GLGR09NojFzr97bPYRk/EKy8yKJQC89OB/8e1H+xCTFon0xSnu76LQKOe2HqqRAePs3TWWeM7EWL7227ex5e2diE6J8NguQ6NDIBKJEKr2reXvYHEGFeQSMT7OqYNlQOvnzHAt0kK1o16AKyzWGdeF6c0nPsCm17ciMincfYxMX5qCsJjxxXK0c6DRvtcV1pkXy3ef+gSf/+trRCSEuY+RGUuTYYwLc44vO8ZYjtdMjOVHz32Bj5//AsY4Zyz7juMRCcZxx9Lf8/OBlLaZF8vP//U13vvLJwiLCfE4d4tMCnft44G/Lvbl/FJps824WG56fSve+sOHCI4M8rimiE6JdG6XmsDF0pfrsj4h0zC3IRKEmTs4x1tvvYUbbrgB//jHP3Dqqafi6aefxttvv428vLwhY6t5097eDoPBgLa2Nuj1+gmta259B/YOGohvOMNND33D0jh8fKIOrd1WSMUiLIw2ID5YBYVUjB6rHWUtZhwaMA29YHdA+Hw3Vl68FGmLk2fUTkzjZ7fb8cR1f8W+DYcRGhOCmFTnjDJRKRGISgpHdFokLKFBI46R5Y9wrRzzo/QwapytQDstzovr3IaOIWNavLv+YWiUMpx2wWLMPz0L89fMQVjM8Am2D4/Xjjsh7W2/Oj8zHEatAu8erRlyUlH44W4ce/YTZK3MQFxmDN5/2vtMmmq9CsbYUNz25r04EYDGK9F6JeZH6RGilkEA0NjZi0PV7cPOavPBJY9CDgHLz1+CspxK5OwqGLKMVCaBNliLNVeehsQ7LkSLefwXlf5MY1/6xQEc/ON7mLsiA0nZ8Xj3z594XU6ukiMkMgg/efcXyLH7d2fUl/U72vfmx1f/Hnq5BNmr56KqsAbHtuUO+RyJTAJtkAbLL16KOfde7nfrL1/quTBajwyjFiKRCJWmbkjEInRb7dhXaUJ8kApnpjoTqK31Jlwd5WUKUgAyhRTBEUG4++2fI1c8eScf8yJ1iNIr8dNlD0Bpt2P+6jnIXjMX2WvmIDIxfNoeh7razbg06AavrylUcoREB+P2f9+FAqVmzJ8hFYuwLD4YETqFc7Yrh4AWsxWHatrQ5NqOvM1otfGWZyDt7Eb2mjnIXj0X89fMQVRyxLSNpdVixfnKa72+ptQoEBwRhB+9eBuK9N7HifWVL/Ec7Ku7XoBQ34r5p89FtmvbjEmNnLaxFAQB6+TXwOGl+6pSo4DBqMetf7sVZeFhfpd9dloYeqyOIbNxK6RiXDk/Cl8XNqGuo9frNgkAW372EnrL6jB/TX8s4zKip20sAeBi/fXo7hx640upUcAQpsPNf/kBKmKjxlT2aOdAI32vb//la+jKrfDYx+PnxE7rWF4VeQtMDW1DnleoFdCHanHjH76H2tSEgHzWcOcb3rbNnY+8CdPBIsx3xTJ7zRwkzI2FWOzPDOeT63tJd3gdQ1ihkkMfqsO1j1yNluw0r63IfDHatjncPr7nD++iaccJ5zF89RzMXzMXifPipnUsb5p7Dyrzht6El6vk0Ido8Z0HL0PHsqwxjbU30nnvaOeXB57+CLWbDmHe6jnuWCbNj4dEMn1bAd6+5D4UHSod8rxcKYMuRIsr7r0IljMWDTt28mh8OR/2tm0uijZgfvTE5m38NaMTagDwt7/9DU8++STq6uqwcOFCPPPMM1i2bJlP753MhFpnrw3vH6sd85fhWFRuPY6tv3gZABAeH4YVl5yCVZctw7xVmZBIp+8OTIHR3tKBK8JuGnGZ069bg8R7LhvXwOX+ajhcgi9/+Lchz0cmhSNlQQJi0qIRmx6F2HTn76BwAw7VtOPYOGaYHIuvf/Iiand7n+DEm+wz52HJkzeP+cAyFs25ldhww1/8es+juc8iv2NyW2lsve/fqNxyzOflNSFafGfTY8OOKTURTCV1+PSaP/r1nt8e+QuKeif3ELo6KQTJoc6kTndXDy7WXT/i8mKpBDft/fOQCQUCJUQtg80hoL3HhhC1DGenGrEnpwaPL/kZBjeFNMaGImVhImLS+vfv2PQod0ubqdTbY8GF6utGXEYkFuGHB58edzd5f3TVm/DhpY9BGLQvhEYHI3VREmLTohDjimVMWhTCYkKm/GLH0mvBJYYbYBth/Eu5So5bdv/JPQj2ZOhp7cT7Fz4Cx6CJXUIig5C6OAmxadGubdP5ExYbOuWxtFqsuCXrXtQU1w27THCEAd/76jH3OGiTwdLRjfcueAT2Hs/EZZBRj7QlyYP28WgY46Y+ljarDbcvvg9lJyqHXUYXosXN238/bEJ2QurV3Yv3LngE1kGJPkOYDmlLkp3bpWv/jk2PQnh82JRfhNttdvxkxUMo2F887DIqnQp37v0T6kZo4RzwellseP/CR9Br8hwAXReidcXSc7sMT5gesfz5Wb/F8R3Dn28qVHLcc+hpVI+zF4Q/HDY7PrjkMXQ3eiZNtUEapC9NHnKuHpFgnPJrS7vdjl+ufxwHvzo67DJSuRT3HX92SI+uiSQ4HPjo8sfRWeN580KtVyF9aQri0qMRmx6NmLRIxKRHIzLR6J6ka6rY7Xb89vInsfuTA8MuI5aI8av850edhCvQLsmK9HlM5skyY7t89rnrrrumZRfPwbQKKWKDlKg0Td6XYeF7O92PGyqa8OGzG/DhsxugD9Vh+UVLseKSU7DgjLnQGMZ+x52mL12wFlHJEagtGTrjSp/c7Tk483fXjTj7SqAVvPut1+frShtQVzp0ymS1ToWkZWlY+NgNEE3SKJSW5nbYahohkUlg93Gq69LDpYjbmYuQ0zInvH59hovlSN64/QUsfuIHEEkm5+LG2tYFS1kdpDIJbD7GsqulE7VbjiJ09bwJr1+f1j150AZp0GnyfV944/YXsPTJmyGepBMfoceC//30JdQX16OurBEtta2jvsdhsyPdqMXRCUpIK6USnJYQDJVUjB6bAwVNnSg/UorsVZnI21MI64CkSmNVMxqrhvaZVKoViE6LdJ6Yuy54YtKjEJsWBX2oLiD1tPRa0VDRhPqyBtSXNaKurAH15Y2oK2tEfVkDWmpHb0EuOASkh2k8WoJPNHVrO7JXZSJ3dyGsvf0Jk+aaVjTXtGLPoOUVKjli0qLc8RuY2NCH6gKSuLRa+mLZHz9nLJ2xba5pxWj3ai3dFqSFqXGgevJiqWxuw/xVmcjZVQBLT38sW+pM2Pv5IezFIY/l5UqZM5ZpUR6Jy9j0KBjC9AGLZVNVizt2fdtl3+Pm6pZRZx+et2oOMsK12F0++vdBoMibTJi/MgM5O/PR292ffDI1tmPfF4ex74vDHsvLFDLEpEa6t0vnxWOU+6ZZIGJps9rQWNU87HbZVNU8aiznLEtDplGLHV2BabnvC1lTG7KXpyNnZz56uvqTT21NHdi/8Qj2bzziubxciujUSGcSPdVzuwyOCApILO02+4BYurbNcufv+rJGNFY1e201OVD6kmRkGLWTmlCTNZkw/7Q0HN+R59ESsaOlEwc3HcXBTZ6JFplciqiUCPc+7j72pEcjJDJwsWyq7t/HPWPZgIbK0WOZPD8BGeHaSU2oSZvbkX1KMo7vyIO5vT/51GnqwsGvjuHgV543SaUyCaKSI1z7eP9NnkDeNLPb7WiubnHt3/3bZn15A+rKGtFY2Qy7beTzzIQ5scgM105qQk3S2oF5i5NwrKsHXW39ySdzezcOf3Mch7/xHN1YIpUgKjncuT2mRg7Yx6MRGh0ckJsTdrsdzTWtnnEsa0Cd6/jTUNE0aixj0qKQEa6d1IRapE4x7ZJpmA0t1MZjMluoAUBte8+w4yAFml4pxZpQBXZ/cgDffrgXh74+5vViViwWIW1JMhacMQ8Lz5qHeasyodIoJ6WOFHiCIKA8pwqHNx/Hrk/249BXx4a9sJHKpXh8w0OIPzUdn+YOn3QLJKVUhJK/fIDt7+yCtce/u+mrn7gBCWcvmLC6DbT/qQ+R979tfr/PkBSBC974BcSTkKzqae3EBxc/Cnuv/60SVvz2WiSfv3RC6jXYoec+w4lXv/b7fdqYUFz8zgMQT8IdT0tHNz64+Hewdvl/4r/sgauQdvnyCanXYEf/9SWOvviFX+8JiQrCy6V/x/vHasfUxcFfUrEIV2RHQSmToLe7F3l7i3BsWy6Obc9Bzq4CjwtGX+hCtIhOiYBCrYBEKoFEKnb99nwsloghkTj/FkslkEjEaG/p8EiYjfd0R6qQ4v32/+C9Y7XjGjvPVxKRCJdnR0Etl8DSa0XBviIc3ZaLo9tykLMz32vXtZHogjWISomEUuM9lmLJgL8HxbKjtdOvhNlo0pem4Kmdj+O9ozWwTkIsxSLgsnlR0CqksPRaUXigBMe25eDo9lyc+NbzgtEXGoMa0amRUGmVHrHsj+EwsZSK0Wnq8ithNpIrf3YRfvjH62FzCHjvaC16J6FVrwjAJfMiYVDKYLVYUXiw1L2PH9+R53HB6Au1XoWY1EiodKoBMfS+nw+OZVeb2a+E2UguvvM83PXMzXAIwLtHayasVe9gF82NQIhaDpvVhqJDzlge3Z6DEzvy0NHq381OtU7l3C51Su/xGymW7Wa/EmYjWXfzWfjpP34EQIT3j9dOWqvevu5idpsdRYfLcGxbDo5tz8XxHXlob/Zt0qw+Kq0S0amRUOtV/sVSIoa5s9uvhNlIzrp2Ne579U6IxGJ8eLwOHZPUqve8DCMidUrY7XaUHq3A0b5Ybs+FqdG/GyFKjQLRqZHQGNQ+xXLgsai7s8evhNlIVl+xDL984x5IpBJ8fKIOpgCNbT6ac9LCEGNQwW63o+x4pXsfP7Yt12u36ZEo1a5YBo0cS+c5kedrPV09fiXMRrLsgsV4+L2fQyqT4rPcejQHYCgZX5yZEor44NEnLphsTKhNYkINALaVNKN0EjK5fV+EfbraurDns4PY8eFe7NtwaNiLGolUgsxlqVjoSrDNXZ4OuXL6Df5HTg6HA+U5VTiy5YTzYLc1x6cDnS5Eiye/fhgpCxIBALvLW5HfOPpYWON1ZkoY4oNVAIDGqiY8/aMXceCroz61AlNHBOHCN++DXDuxCd+WvCps+MHTEOwO5wCm0cGISDRCrVdj3wbPFgwyhRTzVs2Bud2MqoJadLWZsejHFyLr+rMmtI4AsP2h11C+6bC7HlKZFD1dvT5d6KpCdbjwf/dDYZjYg5KppA6fX//nIV2shiMSixCXEYOW2lZ0mrow/9bzMP/W8ya0jgCw83dvouTTfYCrhU9EohERieGoKapDdWGtx7IRiUbEpUejpqQedaUNkGlVuPB/90EVoJZUw+mobMKn1z7pVwI1KTseLx75MwDgWG07Dlb7d+I2Fsvig5AZ7j0WDocDzTWtqCqoQVVBLaoLalBVWIvqwlrUljSM6+RuommD1Hi7/l+QyWTIqe/APh/HRB2PpbEGZEV6PzcRBAHNNS2oKqh1/dSguqgW1QW1qCmun7JYyuRSj1aJ3pyyfhEe/eh+SKQSFDR2YtcktKxaGK3HgmjvY7YJgoDm2lZUFzi3xSrXdllVUIva4jqfW9YGWpBRj4hEI8JiQ7Hro30eySKxWIS7X/gRzr/lbPdzxc1dARsTdSTZkTosjg3y+pogCGitN7m3y4H7eE1R3ajbxkQxhOkQkRgOY1wodn96wOOcQyQS4Y6//gCX3rXe/VxZixlbS8YxA4mP5oRrcWq890G4BUGAqaGtf/8urHXGsqAW1UV1Hi1WJ5M+VOc8RsaHYc/nh4bU44dPfh9X/ewi999Vpm58XdQ04fVKN2qwPCHE62uCIMDU2O7av/u3S2dcpy6WuhAtIhONCE8w4sDGI+gxe16b3fjoNbj2l5e7W3dNVsOMlFA1ViV5H9dYEAS0N3e4t8uqglpUFzrjWF1Y69FidTLpgjUITzAiIiEMhzefGHKT5NpfXo4bH73GHcuGjl5syB/aKybQEoJVOCNl+DEunbHsi2Nt/3ZZMHWxVOtViEwKR2RiOI5tz0VHi+f14ZX3XoRb//g9d0u55i4LPsutn/BhrWINSpyVGjblQ4R4w4TaJCfUemx2fHS8bkLvfGWGa7FsmAM0APR297qa6x7F4c3HUXZ8+PEkZAoZslakY+GZ2VhwZhYyTkmBTD79mlqeLDwSaFtP4OjWHLQ1DX/XLTw+DOaObnQOuMupC9bgj18/jNSFSe7nrHYHPj5Rh84JvIuYHKLG6mTvB+iiI6V4/u5/I2dnPuwj7BuplyzDaQ99Z8LqKDgcCCmoQGykARGJRhjjwiBXOLd3h8OBqyNvccc7JCoYj3/+S3dSsu+ErbKwFkcFGewTmIgWN7QirqsLUYlGRCQaPbofvfLw//DfR98btYzE8xZj1aPfm7A6OuwObLz5GTTnVAx5LSQqCK31bRAGXCDKlTL8fuOvkb16jvuEraKgFkftEthUigmrp7ipDXHt7Yh0JdGCjP2x3PTaVvzxxv7x/s678Uzc848fuse2sFqsqC9rRG55C2qCxzfA+kgEhwNf3vYcGg8PHRx2OLHpUXgp52n3CY9DEPB5bsOwk1sEQqROgbXpxjGd7NisNtSVNTovdNwJojpUFdSgsXJ8F7YhkUGISDRCG6RBbUk96ssbYfXjLr9Kp8Q79f+CQuncDgVBwBf5jWjonLiuTEaNHOsywyEeQyztNjvqyhr6T9BdFzxVBbVoqBjfhW1whAERieGITDTCYNSjs7ULFfnVKDlcNuJ3d59FZ2fjsU8ecN+oEwQBmwoaR5xJdrxC1DJckBkB8RiGDLDb7GioaHJf8PQl22oKa1Ff3jSulnpB4QZEJIQ545ng/P6JSDS6L7AH9hb4xdm/xeHNJwBX0v+h//0Uyy/ybGUsCAK+KWpCVdvEdQsLUkpx4dxISMYSS3tfLGv7k5eu7bK+rHFcsexLmEUkGt2x7PtOj0gIg0qrci/70IWPY+/nzptjMoUMD7z+Y6y5cmgr463FTShrnbhuYTqFFBfPjYB0DC3a7XY7Giub3fu3O+FWUIv6soZxtdTrS5hFJhoRkdC3TTp/RyQYodb1x/J3V/0J299zdjyXyiT4+ct34uzrVg8pc0dpM4qbJ64xgUYuwSVZkZCNIZYOhwNNVc0eNyf6ksB1pQ3jal3WlzBzbof9cezbxzX6/puaf7jhWXz1urNnhFgixk//8SOsu2nozdld5S0oaJy4YVpUMjEuyYqCQjrGWFa3uJOW/QmiWtSW1I8vlsGaIfu4e9tMCPMYvujpH/0Dn/3zK8CVML/r2Ztx8R1Db87uq2xFTv3ENSZQSMW4NCvSPTO7P/puQA7dx2vGfQNSG6QZso9HJBjd8dQG9cfy+Xv+jQ+e+dz994/+9H1cee9FQ8o8WN02oWNdyyUiXJLlbLE/HTGhNskJNQCo6+jBpoLGCel+E66V49w0o18H6NaGNhzdcgKHvjmOI1uOo6qgdthllRoF5q3KxMIzs7HwrHlIXZQ45QN6zmb+JtA0BjWy18zBgtOzsPCseUhZkIhXH34L/33MmWDRBWvwx68eRuqipCHvbe6yYGN+w4R0vwlWybAuIxzyUQ7QgiAgf18RXvn1/3B0W47Xi97lv74GKRedGvA6AsDyhGCkG7XDvv7vX72JNx5/H/FzYvB/n/0SkYnhXpdrNVvw6bFaOCag66dBKcW6zHAoh+kKaWpsw63z7kVbUwcu+NE5qC9vwpHNxz3GDOpzyn1XIOPKlQGvIwDs+9P7yH97B+DqOjFvVSbmn56FRWfNQ9qSZPz64j9g7+cHAdcA5U9seAjz18wdUk5bjxUb8hrQOwE3IXQKKdZnhkM1zMlOR2snbpl3L1rrTPjug5d53N0cbCJPzA7+7VPkvPbNkOdDo4Nx1nWrse3tnagv70+URCQY8Vrx34aMs9HRa8OGvHp0WwMfS41cgvWZ4dDIAz+enN1md/7YHXDY7LDbHP3PDXjssDvcf9usdmgMalQX1OC9v36GnJ35IybRxBIx0hYnob2lE7XF/V3g5UoZ3q7/JzQ6z7FGuyw2bMhrmJCuTGqZM5ZaxQTE0t4fs+Fi6Yyj3SOWar0KEQlGdLZ2YscHe/HtB3twdGuO1wv3sJgQnHnNSpga27Hpta3u5+ecloY/fPlrj+QGAJgtdmzIq5+QGzpKqRjrM8OhVwb+RuBoseyP46BY6pRDEmaj2fr2Tjx2zV8QZNTjkY/ux9zT0r0u12O1Y0New4RM9qCQiLEuM3xCxq8ZKZYD9+vBsVRplUMSZqPZ+fE+PHzpH6EL0eK37//C63EHAHptDnyR3wDTBEz2IJOIsC4jHCHqwN94GzaWo3x/KtSKIQmz0RzYdAQPnPcY1HoVfvPOz7DkXO/DcljsDmzMbwjIDOODScUirE03wqgN/I03h8MBm9XuGUv76Pu8XCkbkjAbzbHtufjZGQ9DqVHgoTfvwbILlnhdzmp3YFNBo98zjPtCIhbh3DQjInSTEMsB+/VI+7xMIRuSMBtN/r4i/GTFQ5ArZLjvtR9j9eXeJyu0O5w3dOon4OaYWASck2ZElD7wvWr6YuntGDPSPi+VSxGRYPRImI2m5Gg57jzlfojEYvz85Ttw1ndXeV3O7hDwdVEjatsDH0uRCDgrNQyxBt+/myYbE2pTkFADgOq2bmwubg7oOCxGjRznpBlHTVqMpqm6GYc3n3AOlLj5uNepnPuo9SqkLExE0rx4JM6LR1J2PBKz4vzaWalfd2c3KnKrkbun0O8E2oIzspC8IGFIgrOlrhU/P/O3sNvs+NVb9yJtcfKw5TV09OKrokZY7YHbLoNVMizRyRAd5/+gpGU5lfjPI+9gz+cH3d2URRIxVvzmu0ha7/1kY6xOjQvCnIiRu+0JgoCa4jpEJoaPOJtReW4VfnPDc1j5xI0B7VZpUEpxbrpx1KSFuaMb5nYzwmL6WwRW5lfjP4++i12f7Ed3h6sFg0iE0355FVIvOS1gdQSAY//YAHl1I+a7tsu0xUlDZizqNHXinlW/RlebGQ/85ydYcHrWsOW1mC3YVNAY0Ja9OoUUa9ONoyYturt60NHSifC44Zvsw7Vt7KkwBbzr9JEXv8Cxf30JuLrEJmXHY+0NZ+Ci29a6W/nUlNTihtSfAABCo0Pwn7LnIJV6/79M3VZ8WdAQ0KSaRi7B2vRw6JVTP89Rj7kHX72+HZ/+40uUHqsY8Y64RCbBnFPTcP3DV2LhWdkQi8UwNZpwVcStgGucyTeq/oHgMO/nB209VmwqaAxoUk0tk2BtuhGGaTTobm1JPba/txs7PtiD3N2FXpcJiwnBqsuWYdXlyzBvdSYkEgnsdjtunnMPqovqkJQdjz9veQS6YO83LDp6bfiyoAGdvYGLpVIqxtp0I4InIGkxFRoqGqEP00OpHvlit8tiw5f5jQFNqimkYpybZkSoZpbEsrIJuhDtqElNs8WOTQUNAR1rSS4R4ew0I8InIAE0FZqqm6HWq0dNxPVY7dhU0IiWACYoZWIRzkoL8xjiZiZrrm2FUi0fNXnUa3Pgq8LGgM5GKxWLcGZKGKINsyOWrfUmSOXSYY85fSx2B74ubApoi3OJSIQzUkIRGzR9E0D+MDW2QSwWjzpJlNXuwOaipoC2OBeLgDXJoUiYhuOmDcSE2hQl1ACgsbMX20tbAjLAZEqoGsvig8fU3Hk0taX1OLL5BA5vdibYmmtGH+/EGBfqTLD1JdnmxSF+Tqy7+9zJrqO1ExW51SjPqUJFTiUq8pyPR+uO40sCbTgOh8OnmWFazBZsL20JyF3ZhGAVvrjnnzjw2UGodErc+ofvYe0NZ0Axhi58taX1eOsPH2LrO7vQaTIj++ZzkX3TueMetF4uEWF5QggSQwLzZd3VbsaPlz2Iyvwa6BPDsf5vt0EW7n28GX/EGpRYmRgypqbjgzVUNOLtJz/CN29+i46WTmR9/yzM/9E6SMY7W6XVhhSJA8sXJ/o8fbqv22V7jxXbSloC0mUxRq/EyqSQYVumjZUgCMip78TBatO4WyBbOnuw/6kPULnpEOYsS8eFt6/F6VctHzZW1cW1yN9dhDO+u3LUeHb02rC9pDkgd7gjdQqsSgqZkJZpvnA4HNjz+SF8+epmHNlyAh3NIyc05UoZFp8zH9f+6gpknpLqNcmfs6sA37y5Azc/8V2oNCOfEHdZbNhR2hKQmezCtQqsTgqZkJZp/uib3GbH+3uw/f3dKDlS7nW56JQIrLr8NKy+YhnSl6Z43e6aa1txfHsuTr1gsU/Jix1lzQG5w23UyLEqKXRaJHmnQrfVjp1lLQHp/hmqlmF1cigME9DKbybotdnxbVkrKgMwK2CwSobVySEIVs2OxKS/LDYHdpW3BKQrrUEpxZrk0Alp5TcTWO0O7K5oRUkAutLqFVKsTg5BmGZ2JHn9ZbM7sLfShMKm8Xel1SokWJ0UOmsS5v6yOwTsqwzMzWWNXIJVSSEzImHOhNoUJtTg2okPVrcht2FsG55aJsHyhOBJy4ILgoCqghpnC7bNx3Hi2zyfEmxwdamJSYtCUna8q0VbHJKy4xGZFD4ru432jalVkVOFitwqlOdUoTy3ChU5VWip821Aa41Bjfmnz3Un0JLmx09KrOwOAUdq23G8rh1j+YZQSMU4LT4YiSFqXBZyIzpN/QepIKMeF9+xDhfdsRZBxrGNO9VU3YyPnt+IXVtykHXnhQhJjxlTORWbj2LfH99HSIjG3brSmQCOR0xqpM9JoT6CIOCRK/+Ebz/YC7imOn9qx6MoarfgaG37mJIscokYp8YHITlEHbCBONubO5zJ3Nwq5O8rxqFvjqFHIsHyX30HoXPjx1Rm1Y4T2Pv7dxGkU7pjmDQvHonZ8YhNi/I7lt44BAEn6jpwuKZtTLGUSUQ4JS4IqaGawMWypQMVudWoyHHu4xV5VWhq60bGLefBOH9o12pf1B8oQs/OE7j05jMxf83wLffGwyEIyK3vxKGatjG1lJaKRVgaG4R0Y+Bi6auiw6X49IUvcfCro6gra/QYi88btV6FlZeeiqt/cQkS5sYGvL6CICC/sRMHqtpgG2MsF8cYkBmunbLBdgVBQMGBEux4fw92vL972KEfkrLj3S3RkrLjJySWhU1d2F9lGlNLaYlIhIUxesyN0I1p/LnZRBAEFDebsa+yFZYxxFIsAhZEGTAvUjem8edmE0EQUNpixt5K05iGHxCJgPmRemRH6cc0/txsU9Zixp6K1jG1OhcByIrUYWG0gbEEUGHqxu7yljG1OhcBmBOhxaIYA6Q+3Nic7arburGzrBXmMU5EkxmuxeIYw4Q0bplpatt7sLOsZcxDOaSHabAkLgjyGRJLJtSmOKHWp6PXhoLGThQ2dfl0sA7TyJFp1CIxRD3lB5T2lg6UHa9E6bEKlB2vQOnxCpQdr/R56nSFSo7wBCNCIoMQHGFAULgBwRFB/X+7HgeF66fNhAg2qw0dLZ1oa+pAW1M72ps70d7UjramDjSUN7pbnPkzTbfGoEb8nBgkzIlFUnYC5p8+d9ISaMPpsthQ0NiFgsZOn058glUyZIZrkRSidh9QfnXRE9jz2cEhy8qVMqy76Sz88Mnrx9RirU9rgwnffHUCFd02BGcnQjTKSYGtx4KyjQdR8N5OtORVDbucTCFDZKIRQRHO7TE43IDgyCDn4wiDx/bZ1/LynT9/ghd/8RrgGvTzuX2/R3RKJOBqfVHY1In8xi50+3CwDlJKkRGuQ0qo2ueDs91mR3tLJ9qbO9Det202daCtqQONlU3u7XLYabpFIkQtS0f6FSsRs2ouxKN8rr3XirJNh1Dw7k6vkw/0kcmliEg0IjgiCEERBoRE9McxyB1L59++zCrcbbWjsMm5XfrS3c6glCLDqEVKqMbnLvF2u929j3c0d7j29Q60N7WjsaoZFblVqMitHjE5HnlKGtKvWInYNVmjtqR0WG2wltVjxYJYZM2JmbTESo/VjqKmLuQ3dvp04qNXSJFu1CI1TDOmQYvHoqmmBZ/9YxN2fbIfFblVPk0oYAjT4dwbTsdFt53n3gcnWq/NjqImM/IbO31qea5VSJDhiuVwYyJOJEuPBce/zceeTw9gxwd7hm0hnXFKClZdfhpWXXYqYtOjJ6duNgeKmruQ39DpU9dFjbw/loFueTrTWewOlDR3Ia+hE20+dF1UyyRIN2qQbtQyloNY7Q6UtJiR39CJVh9a8atkYqSHaZFm1ExZK97pymp3oNQVS1+6gSqlYqQZtUgP00x5K97pxuZwoKylG3kNnT614ldIxUgL0yDDqGUsB7E7BJS1OrdLX1rxKyRipIZpkG7UTMhYnTOZ3SGgwuTcLn3pUiuTiJAaqkFGuHbGtYhmQm2aJNT62B0Cms0WNHdZ0Gy2oNfmgENwDhSpV0gRqpEjVC2f9t0YBEFAY1Vzf6LtRAVKj1WgIrd6XNNT64I17gTb4OSbWq+CSCyGWCyCSCyCWCx2/RYBIpHr+ZFft/ba0N7cf+Hc1tSBtmZnUqL/+Q6PFlf+MoTpED83FglzYhE/JxYJc2MRPzcWoVHB03IqYABw9G2XZitazBY01Lchd28R7BYrIsMNOPP8hQhzbZeD/4eNr2zGn256ftiyf/DYd3HtLy8PSD0bmzqwe0c+CgrrYIYIEoUMcAiwdPWgtaAaLXlVaM6pgLUrsINmagxqaIM0aKhodLfoO+f6NchePRfaILXHdicSi9Erk6JXLkePTAq7WAxBJIIYgBwOaAQBGjigAiB2bZ82iw3tzZ1oc22T7a4kbt+22fdcR+vYt0tdsMZjuwxJikBTZy8q60zocgASpRxwCLB29aC1sAbNeVVoPlEBa1dgZ5RT61XuBNvg5JsmSAOxxDOWFpkUPXIZemSyQbEUoBEc0AgOqEQDYmm1D0g4DtrPByTGO1u7xjXr3ECKIA3CsuIRkhmHoJRISFUKSOUSaNQKxMcEY9HSJBi1yklLUHnjEAS0dlvdxx6zxe469gBqmRShGhlC1XIEq2QT/j1VerwCm9/YgUObj6EipxrmDt+6ByVkxeKCW87F6iuXeYwfONmEvliaLWjusqLLYoNDcLb40cglCFXLEaqZnFgOrldFbhUOfHkU+788jKNbc9DbPfSCQSQSYd7qTKy+/DSsvPQUhMcbJ62OgwmCAFO3Fc1mZzy7LDbYHc5YqvtiqZYjWC076VukjUYQBLT12NDcZUHToFiqZBL3+WUIYzkqdyxd5+udFjvsDsEdyxC1HKFq53fmyd66bzSCIKC91+Y+9nT09sdSKZO44xiilk95A4KZoL3HiqYu5/l6R6+tP5ZSCUJcx/FQxtInHb02Zyy7LGgfEEuFVOyOY6iGsfRFZ18szRa09zhjKXLFMsQdS9mMbSnJhNo0S6jNdnabHdVFdc6WbMcqUHaiEmXHK9BU3eIedH62CI0OdibLMp0Js4S5sYifEzPmbo7TSV1ZA65PvhMAsPrK0/Cbt3827LKV+dW4ac49w77+yAf3YcUlpwS8jt2d3dj3xWHs23AIuz7ZP+LkDoOJxCJIpBIIggD7GJt+T1fBEQYkzI1FXKZzm+z7CQo3DHtx32Puxf6Nh7H380PY/el+tNYP08LNC3csHcK4pvmejmSuO7tWiw0Y5Uiq0iqRuigJp1+1HOfeeAbUfsxKN5v1mHuw7d092P3JfhTsL0ZTdTPsPnYDEotFWHj2PJxx9UqsuOQUGIaZPOBk1t7cgYNfHcWBL4/gwKajaKxq9rqcRCrBorPnYfXlp2H5xUsRHDH+cR+JiIiIZjsm1JhQmza6u3pgqm9DS50JrfUmtNa3uf5uRWtDG1rr29Dqem2qkm+6YA30YXoYwnTQh+qgD9PBEKrzeC44MgjxmTGzeqZTq8WK85XXAgDmnJaGZ3Y+PuyygiDgCuNN6GjxHCdQLBXjvn/fhbOvWz3h9RUEAWUnKrF/4xHs++IQjm7N8Su5IxKJoAvRICIhHNGpkQiNCoLVYoepwYSWOhNKj1fC7GMX54mgDdJAH6rt3w7DdDCE6qEP1bn/Do4IQlxG9Kiz9IxGEARU5FXjwMYj2LfxEA5/cxw2P5KOIhGgDdYiItGI6OQIhMWGwmaxufd5548J5vbxD1o8FhqD2hUzPfShWhjC9LDb7KivaEJjRRNMDW2w9IzeylYqlyI+MwbLLlyMC3947pS28plOig6X4ps3duDo1hOozK/xez0HRxqw7PwlWLp2AZaet2DU2dBONjarDbm7C7F/42Ec2HQEBftLhm1pGRodjCVrF2DJuQtwyrqFo86GRkRERESemFBjQm1G6u7s9rj4bq1zJtkEQYDDIUBwCHA4HBAGPhb6HgsQXK+5HwvO2eIkUgkMA5MSYXro+5JnIdqADKw+W1wVeQtMDW0wxobijYoXRlz2oQsfx97PDw15/k/f/BYLzpiYQddH0mPuxbFtOdj3xWHs//IwKvNq/C5DLBHDYNRDH6xFea5zLDa5UoZHProfap3KnRzu7ugesl3aLDZ89NwXHknGZRcuQeLc2P7tUuhfXiIRD03kuv7WhWghHe/snOPQ292LY9vzsH+jM5blJ4Yfl244YolzOu6Y1EhknJKCJectwJzlGehq7fJIpJvbh8aybx93Pu/wvo8PiqUuVOexn/clHhVaJXJ3FeDgpqMo2FeMqqIatNa1wWEfvcWUxqBGXGY0Fp2ZjTOuWYHk+YljjOjsYLPZcGxbLg5sOor8vUWoKqxFS22rT7EcSKaQYuFZ2Vi6dgGWrF2A+MzJG19upqgprsP+jUdwYNMRHP7m+LBdZOVKGeafPhdLzl2ApectnJAJGoiIiIhOJkyoMaFGNCZ3LL0PhQdLIZaI8Zn5vyMmdd7508d48b7XAQARCUbUlzcCAMLjw/DikT9NeSuThopG7N94BPu/PIyDXx3zeUINb5QaJcLjQpE03zmxxPKLlsIY6zme038few+v/OZ/Hs9lr5mDp7b8bsyfO100VjXjwJdHsG/jYRz66ui4xnVTahQIiwlF0vx4LFgzF8svXhqwll6lxyuw9/ODOLEzHxU5VWiqaUWv2beWrxKpBMa4UGSckorlFy/FyktPgVI9/af1nijluVXOWH6bj/KcynF34U9ZmIgl5zoTaPNWZbon/SAnU2Mbju/Ic3fjrC2pH3bZpOx4dzJy3qrMcU0AQ0RERESemFBjQo1oTB79zlPY9s4uAMDLuU8jLiNm2GV7zL145VdvwmA04LJ7zsdD5z+Oo1tzAADnfv903PfKXZNW79HYbXbk7nF1mfryCPL3FY97cHqJVAxdiBah0SEIjgjCwa+PwuFlnKh/5/110mbRmwx2ux35+4pxwJWszNtTCIdjfLEUS/piGYzo5EgkZcch87Q0ZK3IhEav9ljWZrOh5HAZ8vYWIW9vEUqOlqO+vBFdJrNf61QbpEH83BgsPDMbZ127CglzYsf1P8xEDocDJUfLkbOrAAX7i1F8uAz15Y3oNHVBGOc6DY4wuLseLj4nGyGRwQGr90zncDhQmVeNEzsLcGJnHnJ25qOqoHbY5YOMeiw+d74zlufOR1h0yKTWl4iIiOhkwoQaE2pEY/Lqw2/hP4++CwD47fu/wMpLT/X5vfXljfjh/J+5uyb95p2fYfUVp01YXcejb1Dv/RuP4Oi2nBFbg4xXVHI4Vl+5HBlLU5C9Zg6Cw2fXwOAdrZ04+NUx7N94GEe35aCmqC6wHyCCc3Y6kcjdDdQfEpmzy3dMaiTSlqRg8TnZWHTWPMiV8sDWc5pqqGjEiV0FKDxQgsq8atSVNaC1vg1dbWbYLLaAfY5MLsW81XNcXQ8XICk7HuIZOrNToHV39aBgXzFO7MzHiZ15yN1VMGIrT6lMgqyVme5WaCkLExlLIiIioknChBoTakRjsvl/3+Lxa58GANz0f9fiuw9e5tf7N722FX+88W8AAH2oDi8e/TNCo6Z/y5Tm2lZsfXsnXvzFaz7PRjhWIrEICpUcKq0S2iANDEY9QqNDEB4fhuiUSMRlRCNhXhyCZujshq31Jhz/Nh8nvs3DiW/zUHiwdNJmAhVLxFBpVQiLDUHa4iQsv2QpslfNviQmAJg7u1GVV43qwjrUlNajsaIJzTWtaK03obmmFR2tnejttow6U+lYyRQypC9NRtbyDCw4cx6y18yBSnPydpEdqLGqGTk783H82zzk7CpA8eGyEfcBmVyKtCXJmLs8AwvOyMKCM+ZCxRljiYiIiKbE1I1kTUQzWvyc/i6eFXn+D0R/zvVrsOuTfdj+3h60N3fgz7f8Hf/36YPTfpDs4AgDtr69051MO//Wc3DGd1bg+I48nNiZj9xdBcMOCu4vwSGgp6sXPV29aK1vQ2X+8JMnSGQSKFRyaAxq6IK1UGmVUOlV0OjV0BjU0AZroA/RQheihcFoQHC4HoZwPUKjggM+/pfD4YC53Yy2xg60t3Sgo7UTXa1mdLR2orPNDHN7N8xtZudMvg1taG/uQGdbF2RKKYRuwe+B68dUR7sDXW1d6GrrQvmJSnz1+jb3a32xVOvV0AVroNapoNKroNapoA3SQBusgS5I45wcwmhAUJgOQZGGiY1lcwfamwbE0tSFTlOXO5amxna01pnQ3tKBTpMZPZ096O2xwO7HDKwjEUvEkEjFcNiFUZOeQeEGZK3MQNaKTGStSEfq4mSOg+bqTl5ytBwnvs3HiV35yNmZj4aKphHfE2TUY+6KDGStyMDcFRlIX5J80rSYJCIiIprumFAjojGJTY+CSCSCIAiozKv2+/0ikQh3//2HOL4jD631bdi34RA+e/ErXPijcyekvoGy8d+bkbOrAAAQlxGNO56+EQqVAovOygZc44aVHqtwJ9hO7MhDY1XzyIWKnJMZ6ILUkCnk6OnqQW/GfNoAADDCSURBVHdHD3q6e30en8putcNs7Ya5vRuNlaN8nrcqiEQQiUWux65KDf4lGvi661kRAEGA3eYYUzfLQBOJRDCE6aAJ0jgTkmZXLM1ji2XTaOtumDqMJ5YOuwMO++TGUiwRQ6lRQq1TQqFWQCwWobfbgpa6VtgsdledhiY6RSIREufFuRM+WSsyEJUcMe0T4xOt09SFkqPlKDlSjpKj5Sg9Vo7SYxXOloAjSMzqj+XcFRmISY086WNJRERENF2xyye7fBKN2fUpd6KutAFqnQofml4d04Xfns8P4lcXPgEA0BjUeKXgGQQZDRNQ2/Fra2rHDzLvRkdLJwDgya8fxsIz5436voaKRhzfkefu3lhytNynzwuLCUFSdjzCYkOh1CohEgR0tXejuaYFrfXOll3m9m70dlsCOsbVVJPIJFAo5VBqldAGqaEP0SE4MghhMcFQuyYeaGtsR+6eQpQeLfdpooPQ6GBnLGNcsQRg7jg5YilXypzdhg0a6EN1MBj1UGjkEEEEu92BjtYOVJyoHj3xC0ClVWLOaWmYu9yV9Dktbcpn6Z1KdrsdNUV17sRZ389oLc8AQKlWIHNZKrJWZGLuigzMOS0NumDtpNSbiIiIiMaPCTUm1IjG7KELH8fezw8BAN6oeAHG2NAxlfPkTc/hy1e2AADW33w27v3nbQGtZ6A8desL2PDS1wCAs65dhQf/c/eYyjn0zTHcd87vAADRqZFQqhUoz6nyafwwlVaJ5AUJSJ6fiNSFiUhZmIjEeXFQqBRob+lAeU4Vqgpq0dbQ5uwW2OrqGtjRje72bnR39aC3qxe9PVZYeyyw9tpgs9pgtzngcLhaIA04KgiefwxLJBZBLBa5ugZKIJFJIJVJIZNLIVPIIFfKIFfJoVDJodQooFQrERSuR1hcKKKTIhCTFomY9OghM3WOpqvdjKJDpSg+XIbiI2UoPlyG8hOVsPnQ1VGpUSB5fgJSFiQieYEzlknZ8VCqPWPZ3tSO9pZOdLZ2oavNjK52M7rbu9FjdnbH7e22wNprhbXXCpslALEUiSCWDIilVAKpfFAslXIo1M5YKlQKBIXrYYwPQ2RiOGLSohCX4Yxle0sHSo9WoPhIGUqPlqP4aDnKT1TC0mMdNT4ikQgxaZFIW5Ls7L65MgNJ8+IhkUpGfe9s1NHa6Wxt1hfPY+UoO145aqszuGIZlRKB9AGxTJ6fcNLGkoiIiGg2YEKNCTWiMfvHz1/Du099AgD4/cZfYcm5C8ZUTmu9CTdm/ATm9m6IRCI8u+cJZCxNCXBtxydndwHuXvEQAECtV+Hl3L+OeRKFja9sxp9ueh4A8KM/fR9X3nsRLL1WVORWORNDA5JDXW3mUcsTiUQwxoUiOjUSMSmRiE51/sSkRiIqxZmwO5lYLVZU5Faj+HAZSo70x3Kk2RIHMsaGuuMXnRo1IJYR03IwfbvNjobKJtQW16O2pB41xfUoO1GBkiPlaKpu8akMjUGN5PkJ/T8LEpA4L/6k23bsdjsaK5tRW1KP2uJ61BTXoTynCsVHynzuSq3Wq5A8PwFJ2QlIWZCApPkJSJoXx8kDiIiIiGYZjqFGRGM2cGKCyryaMSfUgiOCcP1vrsI/fv4aBEHA83e/jL9sfxRisTiAtR07u82OZ+74p/vvG393zbhmJC07Xul+nJAVBwCQK2RIXZiE1IVJ7tcEQUB9eaM7yVZy1Pm7rqzRozxBENBQ0YSGiiYc/ub4kM8LiwlxJtlS+pJEkYhJi0J0SsSsvMiXyWVIWZCIlAWJ7ucEQUBjZROKBiUs60obhry/saoZjVXNOLLlxJDXQqODByQuowYk3iKh1k1cLLs7u1HjSpj1JXpqSxtQW1yH+vImn2dH7Wt1lrwgEcnZCa7WjgkIjw87acbq6u7qQZ0r8eiOaUkdaorr0VDe6FPrRgxodZbiajHal4iMSDCeNLEkIiIiOpkxoUZEYxY/J9b9uCLX/5k+B7rkrnX4/F9fozKvGjm7CvD1f7fj3OtPD0Atx+/j5zei+HAZACBlYSIuvuO8cZVXntOfUEuaFzfsciKRCJGJ4YhMDMfKS091P9/X9az4cBmKDpeiMrca1UV17rHdBmuqbkFTdQuObs0Z8lpIZJC7RVt0ivMnJCoIIZFBCIkKhlqnmhXJAZFIhPB4I8LjjVhx8Snu57vaulBytMKVtCxFWU4Vaorq0N7c4bWc5ppWNNe04ti23CGvBUcY+lsHpkQhKjkcodEh7niq9ephYykIAlrqTKgtrhuQ5HElzkoaYGpo8/t/PllbnQmCgNZ6kzOOfa32SpxxrC2uQ2u9/7FkqzMiIiIiGoxdPtnlk2jMOk1duCzkRgBA5qmpeHb3E+Mqb/+XR/DguscAV6Ln3/nPTGirH18017bipjl3w9zeDQD467ePYe7yjHGVeW3CbWisbIbGoMYHLa8ELGHV3tKB2uJ6VBfWorqoDjXFdagpqkN1YS3amrwniEajVCsQHBmE4MgghEYFITjCmWjrS7j1/Q4y6mfVeFAdrZ3OFkyu+NUU1zljWlQ3puQWAEjlUqi0SsiVMnesbFYbes0WdHf09I+75geVVomolAhEJUcgOjkCUSmRiEqOQFxG9KxqdWa329He1IHW+jaYGtrQWt+G1nqT83eDCaaGdphcf5sa2nxuZTaQUqNAdEokopLDEZXsjGNUSgRi06MQmRg+a2JJRERERIHBFmpENGbaIA3i58SgIrcahQdL0WPuHVfrl6VrF2DFJadg50f70FJnwn8few+3/uF7Aa2zv178xWvuZNr6m88edzKtq93sHospISsuoBfp+hAd9CE6ZJySOuS1TlNXf4KtqA7VRbWocSWIRmqx02PudbeWGolYLILBqHcl3oKdSbhwA1Q6FVRaJdQ6FVQ6FdQ6JVRapeuxCkqtEmqdEnKlfFolLHTBWmQs1SJlQQJ6unrR09Xj/G3uhamhDdWFdagrrUddaQPqK5rQUmtCR0vHiIP92yy2YVsRjkShkkMXooXBqEdIZDDCYkMQkWBEdEoEwmJCodJ5xne6xbKP3WZHT1cPurt6PWPqetxpMsNUb3ImzAYkzUwN7WhvavdpNtfRhEQFIyo53Jk4S3ImzKJdCcmgcMO0jBsRERERTU9MqBHRuGStyERFbjXsNjvy9xVhwelZ4yrvtj/fgH1fHIa114r3n/4U628+C7Hp0QGrrz/y9hbimzd2AAD0oTrc8vvrxl1m4YES9+OkrOG7ewaaNkiD9CUpSF8ydLIHc0e3swVWYR0ayhvRUmdCS12r83dtK1rrTKMO6O9wCK4ESBtKjpT7XT+xRDwg8eaZdFNplVCoXEkikQjOX4Meo+8552+R6zUMeNy3nN3ucCXHetBrtgxJ7Ax8PJaWToHW221Br6vbbjHKRl1+YCz7EpYDE5uBjKXDIThjZvYev77HveZeWC22CY2TWCJGkFGPoAgDQqNDnC32XK3MolyPZ3t3VyIiIiKaPEyoEdG4ZK3MwIaXvgYAHN+RN+6EWlRyBK762UV44/H3YbPa8Y9fvIZHP3ogQLX1zyu/ecv9+MbffQf6UN24yxw40H3WqsxxlxcIap1qyIQIg1l6LGitb3Mn2QYm25rrnL9bak1oqTP5PED+QA67A11tZp9mNZ3uZAoZgiMMrp8gBIUbEBTe/7cuWAOxVAy7zYHe7l601rU54+dKZLbWmdDsiu1YEnqzMZbu+IUbEBQR5Po9MMZ66EN102YiEyIiIiKa/ZhQI6JxmTcgKXRiZ35Ayrzmwcvw5atb0FTdgt2fHEDhwRKkLU4OSNm+Or4jFwe+PAIAiEw0Yt3NZwWk3KPb+icGWHD63ICUORnkSjkiEoyISDCOuJzD4UBnaxeaa1vR3tQBc0c3uju60d3ZA3NHD7o7umHu6EZPZw/Mnd3o7uhxvdbteq0HPZ3O5yZ7iE+pTAKFWgGlRgGlRun6Peix2vXYtZxar3Ynz4IighAcYQjYRA6CIKCjpRMtdSa0NbY7Y9TZ4xEnd9w6+17r6Y9vR398JzuWEqnEe/w0SijVctdvz9f7YtmffDSMOJEDEREREdFUYkKNiMYlOiUSQeEGmBrakLMzHw6HY9ytRFQaJb774OV49q5/AQD++3/v4bfv/SJANfbNwNZp3/vNVZDJZeMu09JjQe7uQsDVEi88fuTk1EwkFouhD9WNuzWfw+FAr7nXnYizdFsgCIIzMSTA/didJxrwt3OZoY/hSlKJxSKvCTOpbHodEkUiUUBiKQgCesy97kTceGPpWsRrLPsSkoHYX4iIiIiIprPpdfVARDOOSCTCvFWZ2PH+HnS1mVF+ohJJ2QnjLnfdTWfiv//3HlpqW/HtB3tRerwCSfPiA1Ln0Rz65pi7a2ZsehTO+d6agJSbu7sQ1l7noPUzqXXaVBCLxVBpVVBpVQiJnOrazGwikQgqjRIqjZKxJCIiIiIKEA42QkTjlrWif+bL498GptunXCnH1T+/2P33G4+/H5ByRyMIAl759f/cf1//m6sgkUoCUvbA8dPmnzG+seaIiIiIiIho6jChRkTjlrVywDhq3+YFrNzzf3gODGHO7m5b39qJyvzqgJU9nH1fHEbOrgIAQMLcWJz+nRUBK3umjp9GREREREREnphQI6JxS12UCIVKDgQ4oabSKHHlvRcBrpZjb/7+g4CV7Y0gCHjlN/2t02545DuQSALTOs3SY3En6iKTwmfl+GlEREREREQnCybUiGjcZHIZMpelAQDqyhpRXVQbsLIvuuM86II1AICv/7MdtaX1ASt7sJ0f7UPhgRIAQMrCRKy87NSAlZ27Z+D4aezuSURERERENJMxoUZEAXHKukXuxzs/2h+wcjV6NS77yQUAAIfdgbd+/2HAyh5IEAT89//ec/99wyPfGfdspQMd2dw/ftoCjp9GREREREQ0ozGhRkQBsfLSU9yPd360N6BlX/qT9VDrVACAja9sRlN1c0DLh6sFWV/rtNRFSTjtwiUBLf/bATFZcCYTakRERERERDMZE2pEFBCx6dGIy4wBAOTszEdrQ1vAytYFa3HxHecBAGxWO754eXPAyu7z8fNfuB9f+uP1EIlEASu7qrAWJUfKAQCZp6YiPC4sYGUTERERERHR5GNCjYgCZuUlzlZqDoeAPZ8eCGjZF9621p3k+uLlb+BwOAJWdmu9Cdve3gUA0IfqcEYAZ/YEgG3v7HI/XnPl8oCWTURERERERJOPCTUiCpjllwzo9vnxvoCWHZFgxNLzFgAA6ssbcWDT0YCV/fm/vobVYgMArLvpLChUioCVDQBb39npfrzmKibUiIiIiIiIZjom1IgoYDJPTUVIZBAA4OCmo+gx9wa0/PW3nON+vOFfXwWkTLvNjs/+sQkAIBKJcNHtawNSbp/B3T0jEowBLZ+IiIiIiIgmHxNqRBQwYrEYyy9aCgDo7bbgwJdHAlr+8ouWIDjCALhmEm2tN427zJ0f70djlXOSg9MuWoLIxPBxlzkQu3sSERERERHNPkyoEVFATWS3T6lMirU3nAG4WpZ9+erWcZf58XMb3I8vvmPduMsbjN09iYiIiIiIZh8m1IgooBadNQ8qrRIAsPuTA7BZbQEtf/0tZ7sfb3jpawiCMOayynMqcXjzCQBAbHoUFp+THZA69mF3TyIiIiIiotmJCTUiCii5Uo5Tz18EAGhv7sDezw8FtPyY1CgsPGseAKC6sBZHt+aMuayPn9/ofnzxHesgFgf2K5HdPYmIiIiIiGYnJtSIKODW3nCm+/HnAZo8YKDzB0xOMNby7Ta7O+GlUMmx9obTA1Y/ABAEAV+93t8lld09iYiIiIiIZg8m1Igo4JasnY/w+DAAwL4Nh9yD/gfKystOhT5UBwDY8f4edHf1+F3Gka05MDW2AwBOvWAxNAZNQOt46OtjqMyvAQDMP30uu3sSERERERHNIkyoEVHASSQSrPvBWQAAh0PAFy9/E9Dy5QoZVl9xGgDA0mMd02yiA7tjnj4B3TE/eu4L9+NL7gz8ZAdEREREREQ0dZhQI6IJcd5NZ0IsFgEAvnj5G9jt9oCWv2Ics4nabXZ8+8EewNXd89QLFge0bnVlDdj9yX4AQFhMiEddiYiIiIiIaOZjQo2IJkR4XBhOWe+cnKChogkHNx0NaPkLB8wmuufTg7DbfE/YDe7uqdIoA1q3T1/4Eg6Hc/bRC3+0FlKZNKDlExERERER0dRiQo2IJozn5AFfB7RsuULmTti1N3fg+Ld5Pr93Irt7Wnos2PCSs4urVCbB+beeHdDyiYiIiIiIaOoxoUZEE2bZBYsREhUMANj18X601psCWv6Ki/u7Uu76yLdunxPd3XPLWzvR3twBuGb2DI4ICmj5RERERERENPWYUCOiCSORSnDejWcArkTWxle2BLT8U89fBIlUAgD49qN9EARh1PdMZHdPQRDw4d82uP/mZARERERERESzExNqRDSh1t/c3+Xx4+e+gNViDVjZumAt5p8+FwBQV9qAsuMVo75nIrt75u0tQuGBEgBA2uIkzDktPaDlExERERER0fTAhBoRTaio5AicdtESAEBjVTM2vbo1oOUPnEHz2w9H7vYpCAJ2uWbfnIjunu8//an78cV3rodIJApo+URERERERDQ9MKFGRBPuuoeucD9+8/cf+DUj52hWXLzU/XjnR3tHXLaqoAYtta0AgPlnZAW0u2fp8QpsfdvZ+s0QpsOZ16wIWNlEREREREQ0vTChRkQTLvPUNCxZuwBwdc385o0dASs7PN6IlIWJAIDCg6Vob+kYdtkjW3LcjxecnhWwOgDAa7992z2G23fuvwwKlSKg5RMREREREdH0wYQaEU2K7/1qQCu1J96H3R64VmoDk2M5OwuGXe7I1hP97zljbsA+v+hQKXa875w5NCQyCBfdvjZgZRMREREREdH0w4QaEU2KeavmuCcQqMyvwfZ3dwew7Ez34+M7cr0uIwgCjm5xJtRUWiXSFicH7PNfffgt9+Pv/vJyKNVsnUZERERERDSbMaFGRJPmul9d6X783/97Dw6HIyDlZq3McD8+sTPf6zJVBTVoqTMBAOatngOJVBKQz87ZXYDdnx4AABjjQnH+recEpFwiIiIiIiKavphQI6JJs+iseZhzWhoAoOx4JXZ9vD8g5YZEBiM6JQIAkL+vGJZe65Bljm6dmPHTBrZOu+6hKyBXyAJWNhEREREREU1PTKgR0aQRiUSerdQee9c9kP94Za10dvu09lpReKBkyOsTMX7ase25OLjpKAAgMikc5/3gzICUS0RERERERNMbE2pENKlOXb8IaYuTANesnFve2hmQcrNWDOj2+W2ex2uCILhn+AzU+GmCIOCV3/zP/ff3fn0lpDLpuMslIiIiIiKi6Y8JNSKaVCKRCDf87hr33y/+4jV0d/WMu9yBExMMHketurAWLbWt7uUCMX7a/o2H3d1IY9OjcM731oy7TCIiIiIiIpoZmFAjokm37PzFWHbBYgBAU3UL/vfEB+MuMy4zBrpgDeBqoTawK2nunkL34+zV4+/uaemx4G8/edn99/UPXx2wSQ6IiIiIiIho+mNCjYimxG1P3QipzJmEeudPH6OmuG5c5YnFYvc4am1NHagqqHG/Vn6i0v04ZWHiuD4HAN7640eoKXLWN3v1HJx5zcpxl0lEREREREQzBxNqRDQlYtOicMVPLwQAWC02/OPnr427zIHjqOXtLXI/Ls+pcj9OzIod12fUFNfhTVeLOrFEjB8/dwtEItG4yiQiIiIiIqKZhQk1Ipoy1z50BUKiggEAOz/ah/1fHhlXeUnZ8e7HFbnV7sdlxysAAGqdCsa4sDGXLwgC/vbjl2DttQIArrjnAiTNix/1fURERERERDS7MKFGRFNGrVPh1j98z/338/f8Gzarbczlxc/pb31Wme9MqHV3dqOurBEAkJAVO67WZDs+2It9XxwGAITFhOD6h68ac1lEREREREQ0czGhRkRT6uzrVmPu8nQAQGVeNT762xdjLis8IQxypQwY0EJtYEu1hLlxYy67u7Mbf//pv91/3/H0D6DSqsZcHhEREREREc1cTKgR0ZQSiUS485mb3C3HXnvkbTRVN4+pLIlEgtj0aABATVEdbFYbygZMSJCYNfaE2n8efQ+Nlc56LT1vAVZdvmzMZREREREREdHMxoQaEU259CUpWH/zWQAAc3s3nrzpeTgcjjGVFT8nBgBgt9lRXVSHsuP9CbWEMSbUyk5U4r2/fAoAkClkuOvZmzkRARERERER0UmMCTUimhZu/v11CIsJAQAc3HQUHz+/cUzlxGf2j6P2m4t/j02vb3X/nbenAMd35EIQBJ/Ls9vseOrWv8NuswMArrn/UsSkRo2pbkRERERERDQ7MKFGRNOCPkSHn798h/vvf973Oiryqkd8jzdxmdHuxzXF9WhrbHf//erDb+Ona36DXR/v97m8N/7vfeTuLgQARKdE4Dv3X+J3nYiIiIiIiGh2YUKNiKaNJecuwKV3rQcAWHqs+MP3n/V71s+BM30Ox9Jj8amsnF35+M9j7wIAxBIx7n/9J1CoFH7Vh4iIiIiIiGYfJtSIaFq5+ffXIS7TOQ5awf5i/Pex9/x6f2z6yN0xk+cn+DShgLmjG7+//lk47M6x3L73qysx97R0v+pCREREREREsxMTakQ0rSjVCtz/2o8hkUoAAG88/j4Ofn0Mf7zxb7g2/jbs+mTk7ppypRxRyRFeXxOJRLj7hR9CKpOOWo/n7n4ZtSX1AIC5y9Nx7UOXj+n/ISIiIiIiotmHCTUimnYylqbg+t9cBQBw2B146ILHsem1rWisasbrv3tn1PfHpEV6ff6CH57jUyuzbe/uwpevbAEAqHUqPPD6T9wJPiIiIiIiIiIm1IhoWrrmgUsRP8fZ9dNm6R9HreRIOXrMvSO+NywmdMhzGoMaNz1+7aif21jVjKd/9A/333c+c9OwLd6IiIiIiIjo5MSEGhFNS5/8/UtUFdQOed5us6Ngf/GI7zXGDk2oXfvLy6EL1o74PofDgT/e+Dd0tHYBAE6/ejnO/f7pftediIiIiIiIZjcm1Iho2ik6VIrn7n7ZPSHAYDm7CkZ8f9iAhFp4fBjOvm41rvr5xaN+7ntPfYrD3xwHXEm5u//+Q4hEIr/rT0RERERERLPb6CNzExFNMqVWCblSBkuP1evrR7eewDX3X+rxnNXuQHlrNxq7etGRlYRrtj4BqUoBQRCgkIrxZUEjQtRyROoUiDEoIR6UKDu2PRcv/fINwDV5wX2v3jVqizYiIiIiIiI6OYkEQRCmuhJTpb29HQaDAW1tbdDr9VNdHSIaoORoOd7644fY8tbOIS3VZAopPjO/AZFIhPYeK3LqO1HS3AWrw7evM41cgrQwDTLDdVBIxWiqacEdS+5Da30bAOCa+y/FzU9cNyH/FxEREREREc18TKgxoUY0rTVUNOL9v36Oz/75FXo6e9zPf9j2Kkq7bDhU3QYf82hDqGRinBKjx9OX/N7djXTR2dl4YsNDnNWTiIiIiIiIhsUx1IhoWguPN+K2P9+A/1W+gEt/vB4agxrLLj8NW6s6cKBq7Mk0AOi2OrCtzATdmQshkogRHh+GX75xN5NpRERERERENCK2UGMLNaIZxWyxY2NBA9p7bAEtt2r7CVy+Og1zlqYEtFwiIiIiIiKafTgpARHNGFa7A18VNgY8mQYAsauz0BSqhiAInNmTiIiIiIiIRsQun0Q0YxyoakNrt/eZPwOhpNmM0hbzhJVPREREREREswMTakQ0I9S29yC/sXPCP2dvhQndVvuEfw4RERERERHNXOzySUTTniAI2F9l8nhOJALWZYQjSCnDzvIWlLd2QykV48zUMDgEASKIsLu8FaYe/1q09dodOFrbjmXxwQH+L4iIiIiIiGi2YAs1Ipr2mrosaDF7JsYEAdhS3ISchg73c702BzbkNWBjfiMO1bRhXpRuTJ9X3NwFq90x7noTERERERHR7MSEGhFNe8N19ey2eia9Bk5ZLJeI0Woe23hrVrvAsdSIiIiIiIhoWDM2ofZ///d/WLFiBdRqNYKCgqa6OkQ0gWrae3xe1qCUYn1mOJbFB6G+s9f9/HkZRly/JBbBKpn7OZlEhBuWxkEjl4zrM4mIiIiIiOjkMmMTahaLBVdddRVuv/32qa4KEU0gs8U+pCXaSNp6bNiQ14CvC5twapxnst1ic2BxjMGncprNFr/rSkRERERERCeHGTspwSOPPAIAeOWVV6a6KkQ0gVr8SGyJRYDD1e/TYnfA5hA8Xs9v7MSccB0itAqP1mvedPbaYbE5IJfO2PsORERERERENEFmbEJtLHp7e9Hb238R3d7ePqX1IaLR9diGb512enIoQjVyWO0OhGnkqGjtxuJYAwTBOQvovkrPmUF7bQ4cq2vH4lgDNuQ1+PTZTKgRERERERHRYCdVQu2JJ55wt2wjoplBEIRhX9ta0jzkuY35jSOWl1vfiTnhWsQFqVDXMfI4aSN9NhEREREREZ28plXTiwceeAAikWjEn7y8vDGX/+CDD6Ktrc39U1lZGdD6E1HgScSigJZnFwQcrmnH4hgDxBi57EB/NhEREREREc0O06qF2s9+9jPceOONIy6TnJw85vIVCgUUCsWY309Ek0+vDPzXVFFTF7IidEgJUw+7jEQsgtrL7J9ERERERERE0yqhZjQaYTQap7oaRDSNBKvkEImAQPa+FAAcrG7D8oTgYZcJUckgFrGFGhEREREREQ01rRJq/qioqEBLSwsqKipgt9tx+PBhAEBqaiq0Wu1UV4+IAkQiFiFEJUOz2RrQcitM3ZgXqYNS5r0VWphGHtDPIyIiIiIiotlDJMzQUbdvvPFGvPrqq0Oe37x5M8444wyfymhvb4fBYEBbWxv0ev0E1JKIAiGnvmPIjJ0T7YI5EUyqERERERERkVczNqEWCEyoEc0MvTYH3jlaA7tjcr6uQtVyXDg3YlI+i4iIiIiIiGaeaTXLJxGRNwqpGGlhmkn7vKxI3aR9FhEREREREc08TKgR0YywKMYAzSTMuhlrUCIxWDXhn0NEREREREQzFxNqRDQjyCViLE8ImeDPEGF5QghEnN2TiIiIiIiIRsCEGhHNGDEGJZbEGiakbLEIOCMlDOpJaAVHREREREREM5t0qitAROSPeZF6CAJwsLotYGVKxSKckRKGKL0yYGUSERERERHR7MWEGhHNONlRehiUUuwqb0WPzTGusoJVMqxKCkGIWh6w+hEREREREdHsxoQaEc1I8cFqhGsV2FdpQkmL2e/3S8UiZEXqkB2ph0TMMdOIiIiIiIjIdyJBEISprsRUaW9vh8FgQFtbG/R6/VRXh4jGqLPXhoLGThQ1d6HbOnKLNYNSigyjFimhGsilHEaSiIiIiIiI/MeEGhNqRLOGIAjostjRbLbA1G2FzeH8epNLxAhRyxCqlkMp46QDREREREREND7s8klEs4ZIJIJWIYVWIUVC8FTXhoiIiIiIiGYr9nciIiIiIiIiIiLyAxNqREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+YEJNSIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFAjIiIiIiIiIiLyAxNqREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+UE61RWYSoIgAADa29unuipERERERERERDQN6HQ6iESiEZc5qRNqHR0dAIC4uLiprgoREREREREREU0DbW1t0Ov1Iy4jEvqaaZ2EHA4HampqfMo80sja29sRFxeHysrKUTc6mvm4vk8+XOcnF67vkw/X+cmH6/zkwvV98uE6P7lwfQceW6iNQiwWIzY2dqqrMavo9XruwCcRru+TD9f5yYXr++TDdX7y4To/uXB9n3y4zk8uXN+Ti5MSEBERERERERER+YEJNSIiIiIiIiIiIj8woUYBoVAo8PDDD0OhUEx1VWgScH2ffLjOTy5c3ycfrvOTD9f5yYXr++TDdX5y4fqeGif1pARERERERERERET+Ygs1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFCjcfn73/+O+fPnQ6/XQ6/XY/ny5diwYcNUV4smUHV1Nb73ve8hNDQUKpUK2dnZ2L9//1RXiyZIR0cH7rnnHiQkJEClUmHFihXYt2/fVFeLAmTbtm246KKLEB0dDZFIhA8//ND9mtVqxf3334/s7GxoNBpER0fj+9//Pmpqaqa0zjQ+I61zALjxxhshEok8ftatWzdl9aXxGW19d3Z24q677kJsbCxUKhXmzp2LF154YcrqS+PzxBNP4JRTToFOp0N4eDguvfRS5Ofneyzz4osv4owzzoBer4dIJILJZJqy+tL4+bLO+wiCgPXr13v9LqCZYbT1XVZWNuQY3vfzzjvvTGndZysm1GhcYmNj8fvf/x4HDhzA/v37cdZZZ+GSSy7BiRMnprpqNAFaW1uxcuVKyGQybNiwATk5Ofjzn/+M4ODgqa4aTZBbbrkFmzZtwuuvv45jx45h7dq1OOecc1BdXT3VVaMA6OrqwoIFC/Dcc88Nec1sNuPgwYP49a9/jYMHD+L9999Hfn4+Lr744impKwXGSOu8z7p161BbW+v+efPNNye1jhQ4o63ve++9F1988QX+85//IDc3F/fccw/uuusufPzxx5NeVxq/rVu34s4778Tu3buxadMmWK1WrF27Fl1dXe5lzGYz1q1bh1/+8pdTWlcKDF/WeZ+nn34aIpFoSupJgTHa+o6Li/M4ftfW1uKRRx6BVqvF+vXrp7r6s5JIEARhqitBs0tISAiefPJJ3HzzzVNdFQqwBx54AN9++y22b98+1VWhSdDd3Q2dToePPvoIF1xwgfv5JUuWYP369XjsscemtH4UWCKRCB988AEuvfTSYZfZt28fTj31VJSXlyM+Pn5S60eB522d33jjjTCZTGy9MAt5W9/z5s3Dd77zHfz61792P8fv+NmjsbER4eHh2Lp1K9asWePx2pYtW3DmmWeitbUVQUFBU1ZHCqzh1vnhw4dx4YUXYv/+/YiKihr1eE8zw0j7eJ9FixZh8eLFeOmllya9ficDtlCjgLHb7fjf//6Hrq4uLF++fKqrQxPg448/xtKlS3HVVVchPDwcixYtwj//+c+prhZNEJvNBrvdDqVS6fG8SqXCjh07pqxeNHXa2togEol48TXLbdmyBeHh4cjIyMDtt9+O5ubmqa4STZAVK1bg448/RnV1NQRBwObNm1FQUIC1a9dOddUoANra2gDXzW46OXhb52azGddeey2ee+45REZGTmHtKNBG28cPHDiAw4cPs6HLBGJCjcbt2LFj0Gq1UCgUuO222/DBBx9g7ty5U10tmgAlJSX4+9//jrS0NGzcuBG33347fvKTn+DVV1+d6qrRBNDpdFi+fDkeffRR1NTUwG634z//+Q927dqF2traqa4eTbKenh7cf//9+O53vwu9Xj/V1aEJsm7dOrz22mv4+uuv8Yc//AFbt27F+vXrYbfbp7pqNAGeffZZzJ07F7GxsZDL5Vi3bh2ee+65YVs60MzhcDhwzz33YOXKlZg3b95UV4cmwXDr/Kc//SlWrFiBSy65ZErrR4Hlyz7+0ksvYc6cOVixYsWk1+9kIZ3qCtDMl5GRgcOHD6OtrQ3vvvsubrjhBmzdupVJtVnI4XBg6dKlePzxxwFXE+Ljx4/jhRdewA033DDV1aMJ8Prrr+Omm25CTEwMJBIJFi9ejO9+97s4cODAVFeNJpHVasXVV18NQRDw97//faqrQxPommuucT/Ozs7G/PnzkZKSgi1btuDss8+e0rpR4D377LPYvXs3Pv74YyQkJGDbtm248847ER0djXPOOWeqq0fjcOedd+L48eNsUX4S8bbOP/74Y3zzzTc4dOjQlNaNAm+0fby7uxtvvPGGR5d+Cjy2UKNxk8vlSE1NxZIlS/DEE09gwYIF+Otf/zrV1aIJEBUVNSRROmfOHFRUVExZnWhipaSkYOvWrejs7ERlZSX27t0Lq9WK5OTkqa4aTZK+ZFp5eTk2bdrE1mknmeTkZISFhaGoqGiqq0IB1t3djV/+8pd46qmncNFFF2H+/Pm466678J3vfAd/+tOfprp6NA533XUXPv30U2zevBmxsbFTXR2aBMOt82+++QbFxcUICgqCVCqFVOpsT3PFFVfgjDPOmMIa03j4so+/++67MJvN+P73vz/p9TuZsIUaBZzD4UBvb+9UV4MmwMqVK4dMxV1QUICEhIQpqxNNDo1GA41Gg9bWVmzcuBF//OMfp7pKNAn6kmmFhYXYvHkzQkNDp7pKNMmqqqrQ3NyMqKioqa4KBZjVaoXVaoVY7Hl/XSKRwOFwTFm9aOwEQcCPf/xjfPDBB9iyZQuSkpKmuko0wUZb5w888ABuueUWj+eys7Pxl7/8BRdddNEk15bGy599/KWXXsLFF18Mo9E4qXU82TChRuPy4IMPYv369YiPj0dHRwfeeOMNbNmyBRs3bpzqqtEE6BuD4fHHH8fVV1+NvXv34sUXX8SLL7441VWjCbJx40YIgoCMjAwUFRXhF7/4BTIzM/GDH/xgqqtGAdDZ2enR8qi0tBSHDx9GSEgIoqKicOWVV+LgwYP49NNPYbfbUVdXB7gGv5XL5VNYcxqrkdZ5SEgIHnnkEVxxxRWIjIxEcXEx7rvvPqSmpuK8886b0nrT2Iy0vuPj43H66afjF7/4BVQqFRISErB161a89tpreOqpp6a03jQ2d955J9544w189NFH0Ol07u9sg8EAlUoFAKirq0NdXZ17uzh27Bh0Oh3i4+M5ecEMNNo6j4yM9DoRQXx8PBOuM5Av+zgAFBUVYdu2bfj888+nsLYnCYFoHG666SYhISFBkMvlgtFoFM4++2zhyy+/nOpq0QT65JNPhHnz5gkKhULIzMwUXnzxxamuEk2gt956S0hOThbkcrkQGRkp3HnnnYLJZJrqalGAbN68WQAw5OeGG24QSktLvb4GQNi8efNUV53GaKR1bjabhbVr1wpGo1GQyWRCQkKCcOuttwp1dXVTXW0ao5HWtyAIQm1trXDjjTcK0dHRglKpFDIyMoQ///nPgsPhmOqq0xgM953973//273Mww8/POoyNHP4ss69veeDDz6Y1HpSYPi6vh988EEhLi5OsNvtU1bXk4VIcK4YIiIiIiIiIiIi8gEnJSAiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+YEJNSIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIjoJGY1GiESiEX9+9KMfTXU1iYiIiKYl6VRXgIiIiIgml81mw1/+8hevr7W3t+PnP/85ent7cemll0563YiIiIhmApEgCMJUV4KIiIiIpl5vby/WrVuHLVu24Pnnn8ftt98+1VUiIiIimpbY5ZOIiIiIYLfbce2112LLli347W9/y2QaERER0QjYQo2IiIiI8MMf/hD//Oc/ceedd+Jvf/vbVFeHiIiIaFpjCzUiIiKik9xDDz2Ef/7zn7j66qvxzDPPTHV1iIiIiKY9tlAjIiIiOok988wzuPvuu3HOOefgs88+g1wun+oqEREREU17TKgRERERnaTefPNNXHfddViyZAk2b94MrVY71VUiIiIimhGYUCMiIiI6CW3cuBEXXXQRkpKSsGPHDhiNxqmuEhEREdGMwYQaERER0Ulmz549OPvssxEUFIRvv/0WCQkJU10lIiIiohmFCTUiIiKik0hubi5Wr14Nh8OB7du3Iysra6qrRERERDTjMKFGREREdJIwmUyYP38+Kisrcccdd2D58uVelwsPD8fatWsnvX5EREREMwUTakREREQniS+//BLnnXfeqMt9//vfx6uvvjopdSIiIiKaiZhQIyIiIiIiIiIi8oN4qitAREREREREREQ0kzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFAjIiIiIiIiIiLyAxNqREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvLD/wPAtYosKDWgkgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -475,7 +475,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAKpCAYAAAB5OgHrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ5hV1f328e9p03sBptJn6B0UFCxgwa6oSew9xhLzGPO3JDHVqOkxMVhjb1EwdkVRQJDee5sZhum9t9OeF2dmzzlMOwNDmeH+XFeurL332muvM/jqvn5rLZPb7XYjIiIiIiIiIiIinTIf7wmIiIiIiIiIiIj0BgrSRERERERERERE/KAgTURERERERERExA8K0kRERERERERERPygIE1ERERERERERMQPCtJERERERERERET8oCBNRERERERERETEDwrSRERERERERERE/HBSBmlut5uqqircbvfxnoqIiIiIiIiIiPQSJ2WQVl1dTWRkJNXV1cd7KiIiIiIiIiIi0kuclEGaiIiIiIiIiIhIdylIExERERERERER8YOCNBERERERERERET8oSBMREREREREREfGDgjQRERERERERERE/KEgTERERERERERHxg4I0ERERERERERERPyhIExERERERERER8YOCNBERERERERERET8oSBMREREREREREfGDgjQRERERERERERE/KEgTERERERERERHxg4I0ERERERERERERPyhIExERERERERER8YOCNBERERERERERET8oSBMREREREREREfGDgjQRERERERERERE/KEgTERERERERERHxg4I0ERERERERERERPyhIExERERERERER8YOCNBERERERERERET8oSBMREREREREREfGDgjQRERERERERERE/KEgTERERERERERHxg4I0ERERERERERERPyhIExERERERERER8YOCNBERERERERERET8oSBMREREREREREfGDgjQRERERERERERE/KEgTERERERERERHxg4I0ERERERERERERPyhIExERERERERER8YOCNBERERERERERET8oSBMREREREREREfGDgjQRERERERERERE/KEgTERERERERERHxg/V4T0BERERERERE5ETgdruxO9043W5MgM1ixmI2He9pyQlEQZqIiIiIiIiInLQqG+xklNZRUttEaV0TjQ6X8cxsgqhgG7EhASRGBJEaFYxZwdpJTUGaiIiIiIiIiJx0cirr2VFQTX51Y4d9XG4oq7NTVmdnb0ktwTYzaXFhjOofToBVu2WdjBSkiYiIiIiIiMhJo8HuZPXBCrLK6rr9br3dxeb8KvaW1DJ9UDTJkcFHZY5y4lJ8KiIiIiIiIiInheKaRj7YXnBYIZq3OruTxXtLWJNdjtvt7rH5yYlPQZqIiIiIiIiI9HmF1Y0s2lNMg9ceaEdqZ1ENK7LKFKadRBSkiYiIiIiIiEifVlFvZ/G+Yhyung+89pfWsS6nssfHlROTgjQRERERERER6bNcbjfLM8uwO49e1diOwmryqxqO2vhy4tBhAyIiIiIiIiLSZ20vqKa0rolrJiZRWtcEwNb8avKqGogLDWBiUiQmILeyge2F1Yf9ne+yyrhk9ABsFtUs9WUK0kRERERERESkT2pyutiSXwVATZOTL3YXG8/MJhifEMHX+0pw9sCSz5omJ3uKaxg9IOKIx5ITl2JSEREREREREemTMkprjX3RQm0Wzk+PZ+bgGAItZuJDA3G43Jw5NJZzhscTHWw74u/tLq7VwQN9nCrSRERERERERKRP2lNca7QXbs2n0eliWGwoE5MiKaxpJCrYxic7CwkNsDB9YAyf7y4C4Lz0eOJDA3F5hWLrcyrZXVzT6feqGx3kVzeSGBF0FH+VHE+9viLt8ccfx2Qy8ZOf/OR4T0VEREREREREThANdifl9XbjutHpAiCzvI6YEBuNDhdFNY04XG4qGxwEWEw+76/PqeDNjbnG/7oK0VoU6NCBPq1XV6StXbuW5557jnHjxh3vqYiIiIiIiIjICaTlYAEAq9mE0+XGDQwIC6Sq0UFJbSPjEsIBCLKa8fdQT6vZxOTkSJIjg7GYTeRVNrD6YLlxKmhpnb3LMaT36rUVaTU1NVx77bU8//zzREdHH+/piIiIiIiIiMgJpMwr0IoIsnLhyP6cnx7PqAHhbMytpMnpZl9JHeen9+PsYXGsO1jh17inDYohwGLmwx0FLNyaj9kEp6S25hJlXgGe9D29tiLt7rvv5sILL2TOnDn8/ve/77RvY2MjjY2NxnVVVdUxmKGIiIiIiIiIHC9NzUs5aQ7VPt5Z2KbPvtJa9pXWtrkPMCk5kgmJkcb1u1vysJhNpEYH886mPKMCbWNeFZeOHsCKzDLcXktIpW/qlUHa22+/zYYNG1i7dq1f/R9//HF+85vfHPV5iYiIiIiIiMiJwXWEh2duyKlkZ5HvvmiRQTbMJhPzxia06R9ss1Bnd+J2g9vtxmQytekjvV+vC9IOHjzIfffdx6JFiwgK8u8UjIcffpj777/fuK6qqiIlJeUozlJEREREREREjiebueeDrNomBy63m/9uycPZQVJnNZsUovVhvS5IW79+PUVFRUyePNm453Q6WbZsGf/6179obGzEYrH4vBMYGEhgYOBxmK2IiIiIiIiIHA8RQT0feTQ4XBysqOeU1CjW51TS6HARZDXTLyyQ7Ip6ACKPwnflxNHr/nVnz57N1q1bfe7dfPPNjBgxggcffLBNiCYiIiIiIiIiJ5/Y0ICjMu7yzDImJEZy4cj+BFrNNNidZJXVGUHa0fqunBh6XZAWHh7OmDFjfO6FhoYSGxvb5r6IiIiIiIiInJwiAq0EWsyHtfn/F7uLO3zmcLlZl1PBupz2T/mMU5DWp5mP9wRERERERERERHqayWRiSGzIMf2m1WxiYPSx/aYcW72uIq09S5YsOd5TEBEREREREZETTHq/sDYnbx5NQ2JDCLCoZqkv07+uiIiIiIiIiPRJkUE2UqKCj8m3zCYY1S/8mHxLjh8FaSIiIiIiIiLSZ52aGk2AxXTUvzM+IZLIYNtR/44cXwrSRERERERERKTPCgmwMC0l+qh+IzbExpgBqkY7GShIExEREREREZE+bWhc6FELusICLJw1LA6z+ehXvcnxpyBNRERERERERPq8SUmRjO3hMC080IprxVZWvPUtbre7R8eWE5PJfRL+S1dVVREZGUllZSURERHHezoiIiIiIiIicoxkldWxKrucRofriMYZEhtCxhvf8Pqj7wDQLzWO6x+9irOvnUlAoPZK66sUpClIExERERERETmp1NudrDtYwf7iGkyW7i3Wiwi0Urt6J6/96FlsgTYa6xp9nscMiOKSu8/n4jvPJSJW+6b1NVraKSIiIiIiIiInlWCbhQnRgXxw+WMUbVxLQ1lFp/2tZhNBTdWEZ2dydlIYb9z9HC6nq02IBlBWUMHLv3ybawf+iM9eXHwUf4UcD6pIU0WaiIiIiIiIyEln0StL+NPNTxMcG8CZV5zO4ndWEZOeRFxaEmFx4ZTnV+BqaOQPb91HkMnFE394AsyQ8UkBZTuraaxr6vIbAwbF81rGv4/J75Fjw3q8JyAiIiIiIiIicqx9u2AVsSMiCE8JIWloAk1VdRSs3QullVgH9WP319sAsDXZyS0pwGQx4Xa7GXLBAIp3VPr1jYt/dN5R/hVyrGlpp4iIiIiIiIicVGqr6li/aDMJ02KITArF3mA3nsUOiCYuKca4Ls4pw2Kx4GhwYjKZAIhJDyM4NqDTb9z2xLVc/bNLj+KvkONBQZqIiIiIiIiInFRWf7wee5OD+pJGkqJTyN1XYDwbMLgfcUmxxnVJbhlB5mDcLs/OWCazieEXJzH5njTCEoM7/MZ3H6zF6XAe5V8ix5qCNBERERERERE5qSxbsApMkLuylNmXnkVBZpHxLCktkfjk1iCtMKuIdxe+iy3EszuW2+2mtrABe52D6GFhvgObIDzac2/Hyj2888cPjtVPkmNEQZqIiIiIiIiInDTqa+pZ+9lGBkyOYfytQxl9Wjql+eXG8yHjBpKclmBcZ+/KobyyjLriBlxON/WlTex5P4fVf9rFwWXFPmPHp8Ty+48fwmz2LAF99df/Ze+GjGP46+RoU5AmIiIiIiIiIieNNZ9upKnBTnhSMMG2YCwWC1Vl1cbztMlDSB2ZZFwf3JVHrHkAW17K5Lvfb6d4SwVN1Q7jeUCQzWgXZ5dyYGcu33/ocgCcDidPXP8UjfWNx+z3ydGlIE1EREREREREThrLFqwCIPe7Ek4/dRYADTXNQZcJ4pNjiU2MISTcs/9Z9s5cYm3xOOqdmCwmUs7oR9zoCAAeePkuPql7k1lXTTfGn/+Tl7jmF/MYPmmw8f6LD795rH+mHCUK0kRERERERETkpNBQ18iaTzZgCTCTOqM/08+disPhMA4FCAj0VJeZTCajKq3wQDHn3nQm3/u/S7n+F1cRTAjWYM9+aSXZZQA8+Mo92AI99+prGnj+/17nwVfvNarV3n/qUzYs3npcfrP0LAVpIiIiIiIiInJS2LpsBw11jUQPDyNuQgR2h52sbQeN5yERIUY7xWt5Z1l+Bbc9cR3X/+oqbrzlBnKWe/ZGW7ZgJQABQQFc+8srjf4fP7OIhCH9ue2J64x7f775aeqq64/6b5SjS0GaiIiIiIiIiJwUNnzlqQozW8xEBEcRGhrKvo2ZxvPIuHCjnToi2Whn78wx2uZgE9P/bzSWIDMZmw+Quy8fgGsfmUd4jOfETqfDydP3vcSl95zPpDljASjOKeXNxxYcg18pR5OCNBERERERERE5KWz82hOkFW+r5JZbbva0c8qM5xGx3kFaa0Va9q5co22z2bAEm4hI9lSvrXh/jfHspt9+z2gvevkbHA4nP3nmh9ial4wu+NvH5OzNP0q/To4FBWkiIiIiIiIi0udVFFeyf1MWJjOc+rORlFR6lmdWl1YZfcKiQo2298md3kFadHQ040aNp67Ec0CB995nl9x1PqFRnoDNYXfy7E9fJWFIf65+4BLj3jP3v3xUf6ccXQrSRERERERERKTP2/zNdgACowKwBJkxmz2RSFVpjdEnLLo1SEsY0h9bgOcAgYM7W4M0k8nE2eeeRVxqDADbvt2JvcluPL/uF617pX32wlc4HA6+99BlxCfHArD6kw2s/mT9UfylcjQpSBMRERERERGRPm/DV1sAaKy0MzRxOCkpKQBUl7cGaRFee6RZrBaShicAkLMnD4fd0TrWhg0Muai/Z7z6Jnau2ms8u+InFxISHgyAvdHBfx5+k+DQIO740/VGn/n3v0JTY2v4Jr2HgjQRERERERER6fNalmCGRAcy/cxTsVo91Wa1FXVGn6i4CJ93Bo9LheYlmfs3H2jtFxWFOcBkXG/6epvRNpvNXP3gpcb1B09/jsvl4oyrZzB21kgAcvfm8/4/Pj0Kv1KONgVpIiIiIiIiItKn5WcUUpBZBMCYK4ay9NslxrO66nqjHdkv0ue90TNGGO3tK3YZ7XHjxnHFJa1LODd9s83nvR88dDlBoYEANDXYefnRtzGZTNz9j1swmz0B3Bu/f4+SvDKkd1GQJiIiIiIiIiJ92kavAwEiEyOIjY01rutrG4x2zIAon/dGn5ZutLd5BWlms5m9B3YzcKLnQIKdq/b4jGM2m7ny/ouN64V//wSXy8XQ8YO48Ifner5b08CLD7/Rg79SjgUFaSIiIiIiIiLSp21YvMVozz5jNueee65x3VTXZLRjE6N93hs8NtXY72z7it243W7j2bZt2xh+xkBoXvq5bfkun3ev/9VVBAYHANBY18Qbjy0E4Kbffo/wmDAAvnptGXs3ZPTob5WjS0GaiIiIiIiIiPRZLpfL2MMsNCaEvfm7cDhaDw5obGgN0uKSY33etVgsjJyeBkBZfjkFWZ7loSaTifT0dAaNTDX6eu+TRnNV2qX3zjWu3/3TB7hcLiJiw7nh11cb9994bEEP/lo52hSkiYiIiIiIiEiflbHlAJUl1QCMP28Eu3bvora21njuaGwN1SKaK8W8jZ7htbzTq+ps3rx5zL7oTON649db27x78++/jy3QBs1LOd/984cAXHDbbKP6bcX7a8jcln3Ev1OODQVpIiIiIiIiItJnbfyqNeAaOTWN5ORk4uLijHsOu9PTMHmqyA415nTvAwd2G+01a9aw8KMFDBnnWd65b0Mm1eU1Pu9arVYu+uEc4/qtx98HICAogKsfaD3Z880/LDzSnynHiII0EREREREREemzvCvFTjlnKjfccANWq9W453K6ALBY2o9IRpwyHHPzM++TO61WKwUFBYw/azQAbrebLUt3tHn/tj9ejzXA873ayjoW/uMTAC64Yw5R8REALH3nOw7uzu2R3ytHl4I0EREREREREemT7E12ti7bCc0HCRwszeKNN1pPynS5XMYBAhabtd0xgkODGDphEABZ2w8aVWcjRoxgzpw5TJo9zujrfTpoi4AAG+fffJZx/dpv3wUgKCSQec0ne7rdbt564v0e+c1ydClIExEREREREZE+aeeqvTTUNQIwac44ysrKcLlcxvOaita90mwB7QdpAGNOa13eueM7z/LOkJAQwsPDGTNzhFGxtumbbe2+/6O/3YTFavF8s7yWj5/9EoBL7jqP8OhQABa//i35GYVH9Hvl6FOQJiIiIiIiIiJ90oavthjtiWePZdKkScyaNcu4V5JTarQDggM6HGfsrFFGe/WnGwEoLS1l4cKFVNZUkDZlKAAHduRQVlDe5v2AoADmXN/63Zd/+RYAIeHBXH7fhdC8xPSdJ/932L9Vjg0FaSIiIiIiIiLSJ3kvtZw4ewwul4vY2FjjXklemdEODOk4SJt8zjijYm3lh2txu90EBwdjMplwOp1MPHuM0XfT1+1Xpd3zz1uwWD0xTGVJNYte+QaAy398ASERwQB88fI3FB0sOYJfLEebgjQRERERERER6XNqq+rYtWYfACkjkohLiuXDDz9k48aNRp+y/AqjHRQS2OFYIeHBTJg9FoCS3DL2rM8gNDSUH/3oR6SkpDDh7LFG340dBGlBIUGccfUM4/qFh98EICwqlMvumQvNJ4gu/PsnR/Cr5WhTkCYiIiIiIiIifc6WpTuMEzknNYdgTqeTiIgIo09FYaXRbqkK68hpl0412is/WAvAunXryMnJYfSMNGyBNuhknzSAH//7dmM/tfKCCr55ZwUAV/zkQuP9L19dSlOj/TB+sRwLCtJEREREREREpM/x3h9t0hzPyZo333wzEydONO5XlVYb7dDI0E7HO/XiKUb7uw89QdqOHTvIyMggMDiQ0TPSACjILCI/s/1DA0IjQjjt8mnG9XMPvApAZFwEs6481ZjTivfXdPPXyrGiIE1ERERERERE+pyWvcrMZhPjzhiF3W7n888/p76+3uhT6RWktZye2ZHYhGhGnjocgMyt2eRnFDJkyBCioqIAmHBW6/LOjvZJA7j/uR9iMpugeZloxpYsAObeNtvo8+kLX3X798qxoSBNRERERERERPqUmopasrYfBGD45CGERYVSWVnJ7t27KS1tPamzuqzGaIfHhHc57oxLWpd3fvfBWi655BLGjvUEaBO8DxzoZHlnWFSYEcjhtVfauFmjSE5L8Lz/9TZy9+X7/Xvl2FGQJiIiIiIiIiJ9SubWbKOdNnkoAGFhYfTv35/o6GjjWW1FndGOiA3rctwZl7Uuy1zxwRref/99Fi1aBED61KEEhwVBcxDmdrs7HOem337faG/8agsulwuTycTcW1ur0j57YbFfv1WOLQVpIiIiIiIiItKneAdpg8cNBCAoKIhbbrnF57CBuqrWZZ5R/SK7HDd1RJJRNbZ9+S4qyiupq/OEcVablTEzRwJQVlBBQWZRh+NMPHssoVEh0HxS50f//gKAc248E6vNAsCiV5bgsDu6+cvlaFOQJiIiIiIiIiJ9SsaWA0Z78NhUAKqqqnjyyScpKysznnkHVUGhQX6NPeNST1Way+UmpDGcSZMmGc+GTRhktFuWlnbk7O+fbrQX/OMTAKL7RTK9+XTQ8sJKVn603q85ybGjIE1ERERERERE+pTMrV5B2pgUAOrr63G5XEYFGc1VZC3sjU1+jd1yuibAuo+3+FS4DRqTarSztnUepN30+9blnfn7CynKLgbggtvmGPc/06EDJxwFaSIiIiIiIiLSZ7hcLmNp54BB8YRGek7jjIuL44wzzmDAgAFGX0uAxWg31vkXpKVNGWpUuZHQxOcff2E8GzQ6xWgf2NF5kBYRE+7T/8VHPIcOTJozlgGD4gFY98VmI2CTE4OCNBERERERERHpMwoPFFNf0wBe+6MBmM1m4uLisFhawzObV0VaU71/QZrJZDKqxlxONwd35hnPktMTMVs8UUvmtuwOx2hxzSNXGO3vPlhrzPO8m88GwO12s+y9VX7NS44NBWkiIiIiIiIi0mdkbvE6aMBrqWVhYSELFiygqKj1EABrgFeQ1uBfkAYw+7qZBATZ2PthLute3W68GxBoI2m45zCCg7vycDqcnY5z1g9OJzA4AICG2kaWvbcSgFlXTTf6fPfhWr/nJUefgjQRERERERER6TO8DxoY4lWRZrVaff4fwBrY2m5ssPv9jfDoMGZeeSpxIyMwR8C3C1YbzwY178lmb7STt7+gy7FOvXiK0X7jsQXQfDpoSnoiNJ8OWllS5ffc5OhSkCYiIiIiIiIifUaG90EDXkFaXFwcd955J7GxscY9m1dFmr0bFWk0HwoQPzaSmOHhfOp1KMCgUa37nnV14ADA7U9e2zr3LQeorfIchjD9Es/pnS6Xm1Uf6/TOE4WCNBERERERERHpM7KaDxoICLKRNKz1YAGXy8WKFSuoqmqt7rIF2ox2Uzcq0gDGzhyJqclCXXEjW5buIGePZ6+0loo0gKztXQdp/Qf2Mw4XwA2vPPo2AKddNtXo07J/mhx/CtJEREREREREpE9oqGskd28+AANHp2Cxth4s0NTUxNatWzl4sDXcCjiCIM1kMjF19CnkrS4F4LMXFhvfbeFPkAZw2Y8vMNpfvf4tACNOGU50/0gA1i/aTENdY7fmJ0eHgjQRERERERER6RMO7MjB5XIDMHhsqs+zwMBAEhMTCQsLM+4FNG/0z2EEaW63m2zTXuJGRACw6JUlNDXaSRo2wFgyesDPIO3yH19ghH7VZTVsWbYds9nMqRd59k9rrG9iw5dbujU/OToUpImIiIiIiIhIn5DpfdDA2IE+z0wmE7feeispKa0VY95LO+2N3QvSGhoaqK2tZdRpaQBUFFfx5StLsNqspIxIAiBnTz72pq7HNZvNjD9ztHH90i+0vPNEpSBNRERERERERPoE7xM7vQ8aaPHaa6+xcuVK4zogyCtIa3J061tBQUGcfvrpXHrTRca9t594H4fdwcDRyQA4HU5y9uT7Nd6tT7QeOrBj5R6amuxMnD2WoNBAAFZ9vA6n09mtOUrPU5AmIiIiIiIiIn1C5rZsoz1kXGqb501NTZSWlhrXgV5LOx2N3QvS3G43KSkpjDttNFPOGw9AQVYxX7+5nEGjW7/tz8mdAGmThhDVz7Mnmsvp4t0/fkBAUABTz58AQGVJNTtX7unWHKXnKUgTERERERERkV7P7XaTsdlTkRYzIIqo+Mg2fU4//XTGjRtnXNt8KtK6t7Rz3759vPXWWzQ0NHDtz+cZ9996fCGpzUs76cY+aQDn3XyW0f7o2UUAnHLhZOPe5iU7ujVH6XkK0kRERERERESk1ysrqKCqtBqAQWPbVqMBJCQkEBDQWoXmU5Fm715FWlNTExaLhYCAAMacPtLY4yxnTz5FB0uMflnbszsZxdd1v5yHyWwCoDS3nAM7cxg7c6TxfPt3u7o1R+l5CtJEREREREREpNfL6OSggRarV6/mww8/NK4DgwONtqOpe/uPpaenc/vtt2M2e6KVa7yq0j57cbGx/1rW9hy/xwwKCSJtylDj+sWH3iBhSH+i+3uq67Z/t1v7pB1nCtJEREREREREpNfL2uq9P1r7QVp0dDS1tbXGdcARVKTt3buX7OzWb048ewyjpntO8MzadpDYpBgA8vYV0Fjf6Pe4N/3me0Z73aJNmEwmRp82AoC6qnoOdCOYk56nIE1EREREREREer2Mrd4ndra/tHPy5MnccMMNxnVQSGuQ5rR3r9Jr48aN7Nu3z7g2mUw+VWk15Z7Azu12k70z1+9xp5w3gZDwYADsjQ7WfbmZMc1BGsD2FVreeTwpSBMRERERERGRXq9laafZYiZ1ZHK7fUwmE0uXLqWyshKAwBCvpZ2O7gVpoaGhDB061OfetLkTGT5pMADVZTXG/axuHDgAMGZma3D20b+/YPRp6cb1NgVpx5WCNBERERERERHp1dxuNzm78wBIGp5AQKCt3X4ul4sdO3awf/9+AIK8grTuVqRddNFFTJs2zefeoVVpLbK2dS9Iu+D2c4z21m93MmziYONghO0rdndrLOlZCtJEREREREREpFerq6qjqcEOQHxyTIf9rFYraWlpBAd7lk4GhnoFad2oSCsvL+eJJ56goqKizbPTLptm7JXWojsndwJMv3gyZosnsqkuq6GqtJoRpwwHoPBAMcU5pd0aT3qOgjQRERERERER6dXKCloDregBUZ32vfrqqxk2bBgAwWFBxn2nw+X39woKCnA6ndhsbSvfTCYTdz91CyaTybiXn1Hk99gAZrOZlPRE4/p/T33G6Bmtyzu1T9rxoyBNRERERERERHo1nyCtX+dB2ooVK3jttdcACD7MirSkpCTOPfdcQkJC2n2eNnkoc28927guPFDs99gtZs47tXXO/1vDmNO9DxzQ8s7jRUGaiIiIiIiIiPRqFYWVRjumi4o0m81GQUEBbrebqH6Rxv2WpaH+qKmpYejQoT5VZ4e6+bEfYDZ7njfVN7Fz9V6/xwe49N65Rjtnbz7p04YZ1/s2ZXZrLOk5CtJEREREREREpFfrztLOMWPGMGfOHEwmEwFBAZhawq6GJr+/9+mnn7J69epO+0TFR5I4PMG4/ufdL+By+b98NCougsi4cABcThebvt5GbGI0ANk7c/0eR3qWgjQRERERERER6dV8grT+kZ32DQsLIzQ0lOrqagDjNEy3y01dTb1f36urqyMuLq7LfsMmDjLaezdk8OWrS/0av8W4M0cb7U9fWEzqyGQAqkqrqSiu7ORNOVoUpImIiIiIiIhIr1ZR2BqkdbW0E+Drr79m5cqVAIRGtu5zlrn5gF/fu/HGG5k2bVqX/Q7dr+3Fh9+gtrLWr28AXHrX+UZ756o9pI5IMq5VlXZ8KEgTERERERERkV6trND/pZ0AqampVFVVARAZF2Hc37+l6yAtKyuLr776CovF0mXfyPgIn+vywkpefPjNLt9rMf7M0VgDrADUVdUTER9uPDu4S0Ha8aAgTURERERERER6tfLmpZ1mi5mI2PAu+19wwQVccsklAMQmxRj3c3Z3HU5t3bqVoqIiv+YV5RWkWW2eQOyjZxax9vONfr0PMHhMqtHev6k16FNF2vGhIE1EREREREREerWWPdKi+kViNvsXdbz00kuUlZWRMLifca8gs7jL92JjY5k8ebJf3/CuSJty/gSj/edb51NVWu3XGGd+b4bR3rt+v9HO3pXj1/vSsxSkiYiIiIiIiEiv5XK5qCjyLNP0Z380AJPJRHFxMXv37iU5PdG4X5xT2uW7aWlpfu2PxiEVaQmD+zHlvPEAlOWX8/cfPYfb7e5yjIt+dG7r/A6WGnu6qSLt+FCQJiIiIiIiIiK9VnVZDU6HE/zcHw3AarUyY8YM4uLiGDJ2IGFJwVhDLFQUV3X6XmZmJk8//TT19f6d7uldkVZVVs1PX7yL8JgwAL59bxWL3/i2yzFCwoKJSYg2rluWrhZll1Dv5ymj0nMUpImIiIiIiIhIr9WyrBMgun+k3++Fh4ezaNEidhdsZ9yNg4kfHUltRecnaubl5RESEkJQUJBf3/AO0iqLq4hLjOG++XcY9/55zwsUZXuWk+bsyaOxvrHdcSafM85o19c0GO2cPfl+zUN6jvV4T0BERERERERE5HCVewVpMf07r0irq6vjtddeY+DAgWzcuJGmpiaKioow28zUlTTSWN/U6ftjx45l4MCBmEwmv+YWFhWK2WLG5XRR2VztdsZV01n50UwWv/4tdVX1PH7dU0QPiOLb91aROjKJZzf92TiYoMVlP76AL19dCkB1eY1x/+CuXIZPGuLXXKRnqCJNRERERERERHqt8sJKo93V0s6AgACqq6tZs2YNTU2toVneylIqM2txOV00NdnbfdftdrNmzRoiIiLafd4es9lMZJxnKab3stF7nrqV+JRYALYt38W3762C5n3P9m7IbDNO2qQhBAQHAOC0O437RQe73tNNepaCNBERERERERHptbyXdnZ12IDVauXOO+/krLPOIjw83LgfFBlotLO2HWz33by8PFasWEFFRUW7zzvSsryzsrjKOFwgLCqUeT+5qN3+O1fuaff+8ImD29wr8eNwBOlZCtJEREREREREpNcqLyg32tFdLO0ECAsLY+bMmQwaNMhYohka37rnWcbmrHbfa2xsJD4+nqSkpG7NLzLOE6Q1NdhpqPXsb7b4jW95/sHX2+2/Y9Xudu/Puf6MNvdK8sq6NRc5cgrSRERERERERKTXKi/yf2mnt5kzZ2Kz2QAwNXr2JDMFweaNW9i0aRNbt27lwIEDOBwOAJKTk/nRj36ExWLp1vy8DxxoWd75/IOvGSeNHmpHBxVp5958JpjAbLUQPTyRAVOH0xQeQkF1A/X29seSnqfDBkRERERERESk1+rO0k5v8fHx3HnnnTz99NMU1+cSeSGYg02sL/iO9X/4zuhns9lISUmhrq6Om266iUmTJnVrfi0VaTQv70wY3J8zrprBwn980m7/4oOllOSWEpcUa9yrbnSwp7iWS978GaEp8VgCWuOcL3Z7Tv0MsVmICw1gSGwIKVHBmP08EEG6R0GaiIiIiIiIiPRaLad22gKshEaG+PWOw+Hg448/5tNPPzX2PDMHtx882e12MjIyAHjyySeZPHky11xzDcnJyX59KyreN0gD+NHfbuLM75/Ge3/9iOULVuFyuX3e+ebtFVz100soq2tiQ24luZWeJaERQxM6/E6d3Ul2RT3ZFfWE2CyM7B/GqP7hCtR6mII0EREREREREem1WoK06AFRxp5nncnKyuLpp5/mwIED3f6W2+1m3bp1bN68mauuuoqLL764y6We7S3tBBh5ynB++c795GcWsvDvn/Dxs1/iaPIsI60sqWZzXiVb8qs4JGPzS53dyfqcSrLK6jhtcAzRzSd+ypHTHmkiIiIiIiIi0mtVl9cCEBEb3mXfZcuW8fDDDx9WiObNbrfz5ptv8oc//IH6+vpO+3pXpFWVVLd5njC4P3f/4xbeyXuOc288g7NuPJPEG2azKe/wQjRvpXV2Pt5RSFZZ3ZENJAYFaSIiIiIiIiLSa7mcLgAs1s4jjiVLlvCvf/0Lp7PnNubfunUrjz32GA0NDR326agi7VARMeHc9/xdjPvZPIpr7T02R5cblmaUklFa22NjnswUpImIiIiIiIhIr+V2e8q2OlvWuW3bNubPn39Uvr9nzx6eeuopYx6HsgXajLbT7uhwHLfbzdKMUkrrei5E87Y8q4yimsajMvbJREGaiIiIiIiIiPRK3uGVydx+kFZfX8/8+fM7DLp6wrp161i2bJkfc+w4htlTXEteVceVbUfK7YYVmWU4miv45PDosAERERERERER6ZV8QqoOKtLeeOMNiouLefXVV9m/fz8A//vf/9i8eXO79w7Xyy+/zLhx44iOjvado8t7ju2/W9PoYF1OBddMTKK0rgmArfnV1DY5OHWgZzyr2YwJ+Hhn4WHPsarRwca8KqamRB32GCc7BWkiIiIiIiIi0iv5hFTtVKSVl5ezePFiAIqKivjNb37j87y9e4ertraWzz77jGuuucZ3jn5UpO0orMbhclPT5OSL3cU+z1quR8SHYbN2fSppV3YVVTM2IZwga+enjUr7tLRTRERERERERHol75DK3E5ItXjxYuNwgbi4OH79619z7733EhYW1uG9I/HNN99gt/vucdZVRZrd6WJf80EAoTYL56fHM3NwDIEW398zKCaEzNIjP33T5YZ9JTp44HCpIk1EREREREREeiWXV0jFISGV2+3m66+/Nq7vueceampqOOuss/jBD37A888/3+49gF/96lekpaX5nPD5+uuvs2jRok7nU1lZyfr16zn11FN95mFMsZ2wL7uiHrvT02fh1nwanS6GxYYyMSmSVdnlAIQGWDCZoKapdT79wgIYmxBBfGggJqCmyUFGWR07C6txdbEd3N7iWsYMiOi8k7Sr1wVp8+fPZ/78+WRlZQEwevRoHn30UebOnXu8pyYiIiIiIiIix1InFWmlpaWUlJQY1zU1NQCsWLGCOXPmdHivxRtvvMGnn37a7Snt2rXLJ0hzdVGRVlTdepJmY/NBAJnldaTFhxr3B8eEkFXWWo2WHBnErCGxbMytZHlmGY0OFxFBVsYOiCDYZqHWK3BrT1Wjgwa7kyCblnd2V68L0pKTk3niiScYNmwYAK+88gqXXnopGzduZPTo0cd7eiIiIiIiIiJyjHQWUmVkZBjtwMBAmpqacLvdjBo1ioKCgnbv+SMwMJBrr72WKVOmYLPZ2LRpE//5z3+or68HIDMz0/eFLpafthwuYDWbcLrcuIEBYYFUNTqMPoNiQvhqT+veadNSo9lWUM3OohrjXlWDgxVZZcZ1kNXMKanRDAgPxOFyk1FWx6bcStxe302KDPbrN0urXhekXXzxxT7Xjz32GPPnz2fVqlUK0kREREREREROIp0tm8zOzjbaiYmJ/PCHP6ShoQGHw8H8+fPbveePu+66C6fTyQMPPIDT6eTOO+/k1ltv5V//+hcABw4c8Onf1fLT8nrPnmoRQVZmDIzB4XLhdMN3zaFYVJCVRoeLBoenWi0i0Ep4oJXMss73OZs1JJZ6u5MFW/MJtJqZMzweh9PF1oJqAMrr7QrSDkOvC9K8OZ1O3n33XWpra5k+fXqH/RobG2lsbC2VrKqqOkYzFBEREREREZGjpbON/FsqxGiuEnvooYd8npeWlra55+2aa67hqquuMq7vvPNOAgICOOWUU7j11lupq/MstXznnXf461//ytNPP43b7aa+vh63242peUKdHYjgcmPsZ1ZWZ+fjnYVt5lHR4OBLr2q0QJtnjM6Wb4bYLCREBPHOplwcLjeOJidb8qsYnxhhBGkOZxcbqUm7emWQtnXrVqZPn05DQwNhYWG8//77jBo1qsP+jz/+eI8dZysiIiIiIiIiJ4bOKtJM7W1I1g1vvvlmmz3SkpOTMZvNRvVZC5fLRVRUFOXl5ZhMJp9v+4Z9vnM6nBk22j2VaaEBFqob2w/TQgIsOFytVWwA1Y0OQrUn2hHrlUFaeno6mzZtoqKiggULFnDjjTeydOnSDsO0hx9+mPvvv9+4rqqqIiUl5RjOWERERERERER6WmcVaUFBQT3+vZKSElwuFz/84Q9pampqt09wsO9ySd+w75AgzQRmE12esumtqtFBdaODQTEhbM2vbrdPXZMTq9lMkNVshGnhgVZq7a3Bm81yZEHjyartLne9QEBAAMOGDWPKlCk8/vjjjB8/nn/84x8d9g8MDCQiIsLnfyIiIiIiIiLSu3VWkZaamtrj36usrGTt2rXceuuthIeHAxAZGcnUqVM7/G6nFWkmE9HBtm7PY012OWMHRDCiXxiBFs/vjgi0MmNgNKEBFursTvKrGpiSEoXVbCI0wMLYAeHsL23dVy0qOKDb35VeWpF2KLfb7bMHmoiIiIiIiIj0fZ1VpA0ZMuSofPPpp5/m6quv5vHHHycsLIzKykq+++471q5dC8DgwYN959hJRRpAbEgApXX2bs0hp7KBr/YWMy4hgomJkQDUNDnIKK2jvrnqbFlGKaekRjNvbAJOt5uM0jq2FbRWsMWGdj/Ak14YpD3yyCPMnTuXlJQUqqurefvtt1myZAmff/758Z6aiIiIiIiIiBxDnW3kHxsbS3x8PMXFxe282bnO9llvaGjg1Vdf5dVXX233+YgRI3zn2ElFGkC/8ED2lHR+Amd7imqa+GpvScfzdLhYmlHa7rOIICtBVu2Xdjh63dLOwsJCrr/+etLT05k9ezarV6/m888/55xzzjneUxMRERERERGRY8jlvbnYIRmVyWTirLPOOqbziYyMZMqUKT73uqpIGxgVTMAx3q8sLS70mH6vL+l1FWkvvvji8Z6CiIiIiIiIiJwIOqlIA5g9ezYLFizA6Wz/dMuedvbZZ2O1+kYtri4q0qwWM8PiQtlRWHNM5mgxmRiqIO2w9bqKNBERERERERER2oRUbZ9HR0czZ86cYzKX0NBQ5s6d2+a+2+Uy2uZ2KtIARvUPx9rBs542ol+YlnUeAQVpIiIiIiIiItIrdXZqZ4trr72W+Pj4oz6Xm2++maioqDb3vabYftoHhAZYmZLS9t2eFhFoZUJSxFH/Tl+mIE1EREREREREeqXOTu1sERQUxF133dXu0s+eMm3aNGbOnNnuM38q0mjetywpIuiozA/AbILTBsdgPYp/h5OB/noiIiIiIiIi0itZA1r3I7M3OjrsN3r0aO6666529yg7Uunp6dx7770dju1dkdbZ900mE6ckhFGTWdDjczQBMwfH0i8ssMfHPtkoSBMRERERERGRXikiJsxoVxRXddp31qxZ3HvvvVgsPbc/2Lhx4/j5z39OYGDHAZXT0XrQQXundrZwu93Mv/dFPrnlKQo37O+xOZpNEFtYwj+veJIl//3OZzmsdJ+CNBERERERERHplSxWC+HNYVplF0EawOmnn84TTzzB4MGDj+i7NpuN66+/nkceeYSgoM6XY1aVVhvtiNjwDvt9NH8RX766FHttA8t/9h8GWT0h2JGICw3g4lED+Ne8P7Jl2Q4e+/7fuHPSz/jm7RU+AZ/4T0GaiIiIiIiIiPRaUfGezfP9CdIABg4cyGOPPcZ1111HTExMt75lNpuZNm0af/rTn7j44ov92netvKDCaEf3j2y3z46Vu5n//14yrn/6/J2cMSGFi0b1JzkyCLfT1e57HQkNsDA1JYq5I/oRFWzD5rUENmPzAf5wzd+5Ydg9LPjbx9RV13dr7JOdgjQRERERERER6bUim4O0uup6mhrtfr1jtVq55JJLePrppxk3bhzDhg0jNja23b5uhxtzrY0RI0Zwxx138NOf/pTExES/51dW6BWkDWh7MmdNRS2P/eDvOOyeCrEr77+YM66e4ekfHMAwRyPvX/Z7tr64iPqDxVg62GetJr8MR3YhcXlFzIoOYFT/cMzNfafOndimf1F2Cc/89BVuHH4vOXvz/f49JzurH31ERERERERERE5IkXGtyyWrSqqIS2o/EGuP2WzmoYcewmKxYDKZqKysJD8/n6amJhrrmvjF+U/iqoaAUBe2U218++23OJ1OzjnnHL+/UV5YabRj2gnS/nnPCxRllwAwduZIbnviWp/n6z7fRF1hBZuf/Zzpaf25/NKJrFm+iyULV7N95R4cDXaqDxbTWFFLdP9IygsrsVjNPLPpTwwalQrAxLPHsuzdle3Or6Koku0rdpE8PMHv33QyU5AmIiIiIiIiIr1WZFyE0a4o7l6Qtnr1arKysvj+97/vGSsyksjI1uWX4YERVFZVEZYUjMvlWV65cuVKZs2a1ekBA95alnZ67+fWYvEb3/L1m8sBCI0M4aHX7sVi9T0MYd2iTUZ7ynnjydufz6Nn/ardQwMqm/djczpc/Ozs3/L02ifolxLHqOlpHc5v1Ix0owJOuqalnSIiIiIiIiLSa7Us7aQb+6S12LZtGzabrcPnE84aA0BDWROuJs89t9vN4sWL2bNnj1/fKGsO0qL6RfjsqVaQVcRTdz9vXP/437fTLzXe592mhia2LN0BQHxKLKkjk/n7nc91ePKmy9G6l1pFUSUPnfs7KoorGTg6mZDw4Db9YxOjefLLXxIU4l8oKArSRERERERERKQXi4pvrSDrbpA2ZswYpk+f3uHzS+85HwCXw42b1pBq7dq1vPXWW+zatavT8V0uFxVFnqWd3ss6nU4nf7zxX9RVeTb6n33dTM7+welt3t+7IZOmBs++bxPOHsPKD9ex+Zvtfv++g7vzeGTuYzTUNDDilGFtnpfmlfPZ84v9Hk8UpImIiIiIiIhIL+ZdkVbRjSCtsbGR2NjYTg8OGHv6SGyBVkZdMxBLQGuEkp6ezpAhQ6itre30G1Wl1biaT9z0PmjgnSc/YOu3OwHoPzCee/95a7vvb1/RGtSlTR7Cv378ot+/r8XeDZn88pInmX3dLGjeU+72J68znr/w0Osc2JnT7XFPVgrSRERERERERKTXOtylnatXr+aDDz7ost/gsQMJirJRvq8as8PKmDFjuPjii7n++uuZPHlyp++27I8GEN3PE6TtXruPV3/9XwDMZhMPvXYvoZGh7b6/Y+Vuo713fSbFB0v9/n3etn67k8Qh/Xl13794PWs+V//sUi67dy4ATQ12nrz+KexN/p14erJTkCYiIiIiIiIivVbUYQZp5eXlJCUlddnv7GtOZ/sbB9jxVja7X8/F5XJht/sXOpV5B2kDoqivqefx657C6XAC8IOHr2DM6SPbfdftdrP9O88+bCERwXz52lI/f1lbwyYOZtCYVBKG9Df2Q7vtiWtJGeH5/Xs3ZPLG7xYc9vgnEwVpIiIiIiIiItJr+SztLPE/SDvnnHO49NJLu+x34R1zqMyqxe1yU5RTzJ49e9i5c6df3ygvrDTaMQOiePanr5K7Nx+AEdOGcd2jV3b4bt7+AmN/tZT0JNyu9g8Y6Ex8SixPr32Cp9c+QViUb9VbYHCgzymhbz2+0KcCTtqnIE1EREREREREeq3DWdpZXV3Ne++9h8Vi6bJvUEgQcUkxALidEG2LJSgoyK/veC/trK2s5ZPnv/KMGRrIg6/9GKvN2uG7O75rPRX01Isnc+dfbuT0y6dhtjRHOab235ty/gT6D4wDoKKoisFjU31OC/WWNnko1//qKgBcLjdP3vBP6mvq/fptJysFaSIiIiIiIiLSawUE2ggJD4ZuBGn79u0jMzPT729MPne80d7zYQ7Dhw/36z3vpZ2LXmldmnnLY9eQPDyh03e9DxoYc9oI5v2/i7j7qVuMwwumnjeB1zOfbvNecFiQsVzU3mgnY0t2p9/5/oOXMfJUz+/J21/Iiw+/6ddvO1kpSBMRERERERGRXi0iLhy6cWpnWFgYkyZNIjAw0K/+V9x3gdHOy8/n73//O9XV1V2+V17UGqTlZxRC835ll9x1Xpfvbm9eZmm2mEmfOhSAzG0HjecDR6XQf2A/Ipt/e4vigyWMmNYa9O1ctYfOWKwWHnz1XmPvtI/mf0Hm1gNdzu9kpSBNRERERERERHq1lgMHasprjY38OxMXF8cFF1zQZb8WQ8YNIjAkwPON4jqcTid5eXldvue9tLPFvU/fZuxL1pGailoObM8BYOj4gQSHeSruDmxvDdIGjUkBIHVkss+7FYWVRoUZwK7Ve7ucZ9KwBH7wyBXQvMTz6ftewu3u/p5sJwMFaSIiIiIiIiLSq7Xsk+Z2u6kqq+m0r91u59///jd793YdMHlLm+ypCrPXOLAVhpGSktLlO2WHBGkX3DabUaemdfle5tZsI8jyri7zCdJGNwdpI3xPHq0ur2XI+IHYAm0A7PQjSAO48v6LSBjSH4DNS7az7L1Vfr13slGQJiIiIiIiIiK9WncOHKisrMThcBAaGtppv0Odc+OZRnv38gy/9lgrPlhqtCNiw7n18Wv9+lb2zhyjPXB0a2CXtaP1fupIT4CWckiQ1lDXiC3AxvBJgwHI21dApR+nmQYEBXDnX280rp994BUa6hr9mu/JREGaiIiIiIiIiPRqUXH+B2kxMTFcccUVJCcnd9rvUOfcMAuTyXNUpjUevvjii07719XUU1tZZ1zf9sS1RMSGd/pOi4O7co12S1DmdruNirQBg+KN5Z4tgVoLp92Jy+UibcpQ417m1s4PHGgx/eIpTDnPc7BC8cFS3nnyf369dzJRkCYiIiIiIiIivZp3RVpXBw7k5+cDGKGYv6xWK/0HxwNQm19PXXVdp/uIvfnYAqMdHh3KeTef5fe3sne37r+WOiIRgKLsEuprGuCQKrVhEwe3eb+poYnktETjOm9/oV/fNZlM/OhvNxt7uL3zxw/Iz/Tv3ZOFgjQRERERERER6dV8grSiyk77rlmzhnXr1h3Wd6ZfNBmA0l3V5H1S1WEYV3SwhIV//9S4Hn/WGMxm/yOYloq0kPBgYhNjAMja1lpVNsgrSIvuH0XisAE+79fXNPjcy9uX7/e3U0ckcfmPPQcx2BvtPPez1/x+92SgIE1EREREREREerV+qXFGO3dv56GRw+EgKSmp0z4dufy+C4126CQLubm57fZ743fvYW+0G9fewVdXGusbKcwqBiBlRKIR1m1bvsvoc2gV2ujT0n2u66rrSRza37jOy+heVdl1j15JdP9IAJYvXM2Gr7Z06/2+TEGaiIiIiIiIiPRqg8akGu0DOw522vfKK69kzpw5h/WdhMH9CYnw7E0WFGNjxVdtT7bM21/A5y9943MvZkCU39/I2ZNvLBn1Pkhg89LtRnvcGaN83hkzY4TPdWNtI/0HxmO2eGKfvH0Ffn8fIDQixOdghBceer3TZawnEwVpIiIiIiIiItKrRfeLJDLOs5F/1raOg7T6+nr++c9/Ul5eftjfGjU9DYC8VaXs/GZfm+ev/+49XE6Xz71DT9bsjM9BA+me9+pr6tmzLsMYK2ZAtM87o0/3DdIaahux2qwMGOTZ0y1/f2G3g7BzbjjDqHzbuyGTNZ9t7Nb7fZWCNBERERERERHp9Vqq0soKKqgqrW63T2FhIeXl5UdUXTX31tkA5K4sYceyvT7Psnflsvj1ZQDGhv0Ag8em4q+Du7wOGmg+kXP7d3twOpwAjD+kGg0gJT0Rk7l1v7b6Ws+hBAlDPfuk1VXXd3kIw6HMZjPX/Hyecf3G799TVZqCNBERERERERHpCwaOSjbaWdvbr0qLjo5m8uTJxMTEHPZ3Tr/iFCxWCwMmRTPkkv5sXb7TePbab9/F5fKETdYAT5AWkxBNZFxEh+MdKnd/6x5vLSdvbl7Suqxz/Jmj27xjNpsJDA5oHaN5n7jEoa0HDuTv797yToDTLptq7O+2c9VeNn69rdtj9DUK0kRERERERESk1/PeJ62j5Z0BAQFMnz69WydoHspsNjPujFE01ToJjLTx0s/fAiBz6wGWvL0CgIjYcBrrmgAYMs7/ajSAiqLWyrHYRM8Szi2d7I/WIig00Gjv33QAgCSvkztzu7lPGs2/9QePXGFcv/nYgm6P0dcoSBMRERERERGRXm/wmNaTMTuqSFu+fDkLFy484m/d9vg1lGyvZPubB9j+3W6amuy88uv/Gs9Pv3ya0R4ydmC3xq4oqoTmpaFhUaHU1zawe+1+aF7Ceej+aC1CwoONdsuBC96nmZbmHd6+cGdcPZ2k4QnQXBm3zasC72SkIE1EREREREREer2Bo72DtOx2+9TV1REYGNjus+5ImzKMqPhwIgeFgsnN/J+8xIr310DzUs5+A+ONvoO6sT8aXkFaVL8ITCYTO77bbeyPNu6Mtss6W4REhhjtnN2efdbCokONe7UVtd2aRwuLxcIPHr7cuH7jJK9KU5AmIiIiIiIiIr1eeHSYsRTywPacdjfGnzlzJnPnzu2R751542mknB5PaEIwX7y0xLj/g4cv9zl5c8g4/yvS3G63sbQzql8k+LE/WouAIJvRriypJntXLmFRrUFazWEGaQCzr51pnAC67ovN7Fqzt8t3+ioFaSIiIiIiIiLSJ7RUpVWVVlNeWNHmeWZmJo2NjT3yrWv/bx7ORicuuwt7ox2A+JRYLrh9DplbPRVxFquFlBFJfo9ZU1FrVJ+1BGnrv9xiPO9ofzQAm83mc/3d/9b4BmmVdX7P41BWm5XvPdhalfbmH458eWxvpSBNRERERERERPqEwT7LO3PaPF+2bBl79uzpkW9FRkdS9nUTtQUNxr0r7rsQkwmyd3q+nTIikYBAWyej+GpZ1knz0s6CrCL2rPPsjzZs4mBiE9rfHw3AGmj1uf7uw7WERrUu9zzcpZ0tzr3pTOKSPKedrvxwHQd353b5Tl+kIE1ERERERERE+gSffdK2td0nLSAggH79+vXY94ZfmURMerhxfc6NZ5CzOw+H3VNV1p1lnRxyYmdUfCTL3l1pXM+6cnqn79oCfIO0nav20lDXWn13JEs7AQICbVxx34XG9WcvLD6i8XorBWkiIiIiIiIi0icMGtO6sf+Bdk7uvOuuuxg9uuN9xrqrtr6GsITW0zJXvL+GjC2tAd7gMYd30ADNSzuXvecVpF11aqfv2tqpfFv76UZCIjzzq6k4/KWdLc658QysNgsAX766FHuT/YjH7G0UpImIiIiIiIhInzBwVLLRzjokSKuvr+cf//gHFRVt9047HG63m+LNlVRlt1Z6vfvnj8jYcsC4HtzNirTKkmqf691rW5d1Jg1L6PRd2yFLO2le3tmyT9qRLu2kuUrutMunAVBRXMV3H6w74jF7GwVpIiIiIiIiItInhIQH03+g53TJrO0HfU7urK2tpbKykurq6k5G8N/mJdvZ8+UBnz3ScvbksXvdPuO6u0s7HU0Oo52xOctod7Wsk0Mq0gKDAwDY+NVWQsJbKtKOPEgDuOC2OUb70xe+6pExexMFaSIiIiIiIiLSZwwc7alKq6uqpzin1LgfGRnJ+PHjiY+P75HvfPjvzxl2URIDZ/f3OQRg16q9AIRHhxqb8/vL5XS1jrNmr9HualknzXuYtYhpno+9yUFT84miTQ12n2DxcE04ewwDBnv2mdvw5RbyMwuPeMzeREGaiIiIiIiIiPQZg0a37kuWta11eafNZmPatGkEBQUd8TeKDpaw4n9rMVtNBIUGcv2vrzKeNdY3eeYxNhWTydStcZ1eQVp+RhEAQycM6nJZJ4AtKMBoR8ZHGO3qshoAzGZTt+fTHrPZ7FOV9vmLXx/xmL2JgjQRERERERER6TMGeZ3c6X3gQFlZGc8//zxFRUVH/I1Pnv0Sl9NF5qICxqSNZe6ts9ts9j9kbPeWdXJIRVqLM66a4de7gUGt3w8ODzIOGWjZG81s6bkI6NybzjTG++Llb3A6nD029olOQZqIiIiIiIiI9BmDxrQGaZnbW0/QdDo9YY/L1Tas6g6n08nnL30DQHBsIFMvnoDZbGbq+RN8+nV3fzQ6CNL8WdYJYAturUhz2V2cfsUpnrbLs5yzJ4O02IRopl88GYDSvHJWf7qhx8Y+0SlIExEREREREZE+I3VkkrGE8cD2HON+XFwcV199NQMGDDii8bev2E1ZfjkA6XNTyczJAOC2J6716ZcwrH+3xz40SPPntM4W3hVpdrudubfO9nnek0EawFyv5Z2fvbi4R8c+kSlIExEREREREZE+IzA4kIShnhAre0eOUYHmdDrJy8szKtMO17J3Vxrt2P6xhIaGApCSnoQ1wGo8++6Dtd0e+9Ag7aIfnuP3u4FeFWn2RgejZ6STOjLJuNcT+6N5m3LeeOMwhfVfbKauur5Hxz9RKUgTERERERERkT5lcPPyzoa6Rg7uzgOguLiY5cuXU1xcfNjjOp1Ovl24GgBboI0bb72Bs88+23jmfSrmN2+t6Pb4dTWtYVRgSCBnXzvT73fraxqMti3Qislk8jkUwNHD+5hZLBZmXDoVmk8HXfv5ph4d/0SlIE1ERERERERE+pRR09ON9uZvtgMQHByMxWIhJCTksMf1XtY55bzxLF/5LevWrYPmUzad9tawqrK4ip2r93Rr/H0bMo321PMnEBzq/wmjFSVVRjs00lMlN+f6WcY9R6ODpkZ7t+bTlZYgDWDlh92vwOuNFKSJiIiIiIiISJ8y4ewxRnvTN1sBiIqK4qGHHiIyMvKwx/Ve1jnryunk5uZSWFgIwN71GW36/+eRt/we2+l0sm9ja5A2cfbYbs2tqqTaaIdHe4K0yLgIAkM8Sz7dbjff/W9Nt8bsyrgzRhEa6QkmV3+yAYfd0aPjn4gUpImIiIiIiIhInzJ0wiDCojxh0qZvtuNyuXA4HDz33HOHvbTz0GWd0y+ZQnp6OkOHDvV85+utbd7ZsmyHz3LNzqz5dCM1FbXGdVBIYLfm5/1ueEy40bZaLUb70xd69lAAW4CNaRdMNL6/ZdnOHh3/RKQgTURERERERET6FIvFwvizRgNQXVZDxuYDuFwuiouLjQqy7jp0WWdoRAhjx44lPd2zjHTDYk+QZguwEhkfAc2HB/zz7hf9Gv+Dpz/3ufYOxvxRW1FntFu+73Q4qa1qDfI2Lt5K3v6Cbo3blRmXeC3vPIwDFnobBWkiIiIiIiIi0udMOKt1eefGr7dhs9mYOHEi/fr1O6zxDl3W6XK5mD9/Prt27SI/o5CCzCIARp+Wzi2P/cDo+81by2lqaOp07IO7c1m/aLPPPe9gzB91XoFZZJynIq2qtLpNv0+f/6pb43Zl6tyJWG2eqrcVH6zxOXChL1KQJiIiIiIiIiJ9zsRD9kkzmUzMmjXrsPZIc7lcbZZ1NjU1YbfbsVgsbFzcuqxzwtljueC2OYTHhEFzVdjT973U6fgf/vuLNve6W5FW77WENGZAFAAVxa0HEJjMJgA+emZRt8fuTGhEiLEnXfHBUvZvyuqxsU9ECtJEREREREREpM9JHZlsBEpbl+3EYXfw7rvvsnz58m6PlbXtoLGsc/I54wiNCCEoKIh58+YxbNgwNizeYvSdNGccADf++mrj3qKXv6Gpqf0TM8sLK/j8xa+heVloi5rK7oVdDXWNRjs2MRqAiqJK497gManQXLn2v39+1q2xuzLj0mlGe0UPH2hwolGQJiIiIiIiIiJ9jslkMiql6msa2L12PxaLhbq67i2ZBNi8ZLvRbjlNs7GxkYqKCkwmE5u+3gZAaGQIaZOHAHDpPXONEy0ddifP/vTVdsd++4n/GSHY7GtnGvdru1k11tTQGtTFJcUCUFHUWpF2yoWTMFs8MdDCf3xCXbV/hyD4Y/olU4z2qo/X99i4JyIFaSIiIiIiIiLSJ3nvk7bp623MnTuX6dOnd3uczUtbg7RxZ4wCICMjg8WLF7Nr/V4qSzx7kY0/czQWr1Myr/3FPKP92Qtf4XA4fMYtyS3lo2cWARAYHODTv6abe6TZG1uDtOgBnuWr3hVpqSOTjaCuuqym3eWkhysuMYahEwYBsH9TFrXdrKbrTRSkiYiIiIiIiEifNOGQfdKcTme3T+10uVxsWboDgPDoUIaMGwiA2WwmJCSE7Ut3G31bqtVazPt/FxEcHgSAvdHBCw+94fP8zT+8bwRgl9x1Hv0H9TOWd7Z3UEBnHE2tIZ3V6hnDO0iL6hfJDx6+HJPJs1fagr9+5LMc9EiNnuE5vdTtdrNj1d4eG/dEoyBNRERERERERPqkhMH9GTDYc0rn9u/2sGXzFr755ptujZG17SDVZTUAjJ01CrPZE6WkpaVx3333sembbUbflv3RWpjNZr73s0uN64/+/YVRlVZ4oJjPXvCcoBkUGsjV/3cpJpOJ+BTPsszCrOJunYDpdLo837S0Rj2+QVoEKelJnPG9GZ5nxVV8+lzPneA55vSRRnv7il09Nu6JRkGaiIiIiIiIiPRZLcs77Y12HFXgdDq79X5LNRrA+DNGG+3Vq1ez+KvFbF22E5o3+E9JT2zz/g8euYKg0EBo3sfs1Uf/C8Abv1+Aw+6Zy+U/voCoeM9yzMRhAwCoq673OXWzK26XJ3TzXlpanFtmtKP7ew5euObhy417//3zBzQ1NPn9jc6MPi3daCtIExERERERERHphSZ6Le8s3lbO3Xff3a33ffZHO3OU0d69ezc5WbnG8shJc8YZyya9mc1mrvjJRcb1wqc+4eCeXL542VMZFxIRzJU/vdh4njBkgNHO31/g1xzraloPDvA++fPgrlzPN8KDjRNMB48dyGmXe07ZLM0r54uXuleh15F+KXH0S40DYNfqfTjsji7f6Y0UpImIiIiIiIhIn+W7T9p2nn32Wb/3SetofzSAwYMHYy9oXXo58eyx7Y4BcONvriYgOACAxromfv+9v+FqXop55f+7mIiYcKNv0rDWIC13n39BWqlX5ZktyOb5Tn0jhVnFAKSMSPQJ+a555Aqj/faT/6Oxvmf2SmupSmuoa2T/pqweGfNEoyBNRERERERERPqsmAHRDByVDMCetfsoKyvjwIEDfr17YPtBY9N/7/3RANLT09m9uDUsmjh7TLtj0FyVdund5xvXGZs93w+PCeOKn1zg0zfRK0jL8zNIK/EK0gJDPIFd7t4CY4+1lBFJPv3TJg9l2gUTASjKLuG9v3zs13e6MuY0733Sdnfat7dSkCYiIiIiIiIifVrLPmkup5tB/YYwYMCALt8B2NzB/miFhYU888wzZO3NBiB1ZBJxSbGdjnXLH36ALdDmc+/qBy4hNDLU517i0P5GOz/Dv8q5soIKox0c6jklNHtnjnEvJT2pzTu3P3m9cTDBW48vpOhgiV/f6oz3Pmnbvuub+6QpSBMRERERERGRPm3i7NZll1W7GwgLC/PrvZbKMYARpw432mVlngqwxmrPRv2dLetsYbVafeZhMsGl985t0y9hSH9jGaa/SzvLvYK0oDBPkHZwV55x79CKNIBBo1OMKrnG+iae/7/X/PpWZwaNSSEkIhiA7ct3devU0d5CQZqIiIiIiIiI9GnjzhhlhFOZeft5++23/XrvwI6DRrtleSjAkCFDiKiKx9no2eds0pxxXY5VX1PP/k2ZxrXbDZ+9sLhNv4CgAOKSY6AbSzu9T/cMjQgBIHt3rnEvdWTbIA3ghl9fTWScZ3+2Je9853OwwuGwWCyMmp4GzVVyBZlFRzTeiUhBmoiIiIiIiIj0aeHRYQybNBiAwv0llJeXd1kt5Xa7ydruCdL6pcYZARXA/v372b/Zsz+a2WxivNdpnh15/bfvUZpX7nPvtd++227flgMHqkqrqSiu7HLs6rIaox0W7Vkq2nJip9li9lku6i0sKpRb/nCtcf3v+17C6XB2+b3OjJjWWrmXuTX7iMY6ESlIExEREREREZE+b2LzPmlFmysYnTjO5xTL9pTkllFXVQ/AwNEpPs+++fobHMGeky7Tpg5rs8/ZobK2H2TB3z8BwGKzYLF64pia8lo+fvbLNv2HThhstHev2dflb/MO0iJiwnC5XOTs9iztTBzaH1uArcN3z7v5TIZPHgJAxpYDfPr8V11+rzOpI1sr97z3aesrFKSJiIiIiIiISJ83oXl/MpfDza5teygo6HzZZEs1GsAgr2WdAPXVDVQdrANg0uzO90dzu908dffzRqXXNQ9fwezrZhnPX/7lW23eGXlqmtHeuXpvF7/ME8i1iIiLID+jkMZ6z/5t7e2P5s1isXD3P24xrl/65dvGSaWHI2VEotHO3pXbad/eSEGaiIiIiIiIiPR5Y04fYZyaWeUsZ/369Z32z9rmtT/aIRVprr2BFG/xbPDf1f5oX72+jK3LdkJzddj3HryUe/91q3FiZmVJNYte+cbnnZGnDDPa/gRptVV1RjuqXwQ7Vu4xrtMmD+3y/dEz0plzvSfcqy6r4eVH3+nynY6kpCca1X6qSBMRERERERER6YWCQ4OYfK4n9CraVkGZ10mX7TngXZE2JtVob9u2jfIwTzVbYHAAI6entfs+QHV5Dc/9rPU0zLufupXA4ECCQoI483szjPvPP/iGz3vxKXHEJEQDsGv1XlwuV6dzrS5vXdoZlxTDju92G9ejZqR3+m6LWx+/luDmEz8/fmYRW7/d6dd7hwoMDqT/oHhoPjm0r53cqSBNRERERERERE4Ks+ZNB+DA14VUb2tq87y2qo61X2xi2/Kd7N2w37jvferlpnWbsNfbARgzcyQBgR3vP/bSz9+ioshzWMDMeacwbe5E49mP/327UZVWUVTJe3/9yHhmMpmMqrS6qnoONu931hHvPdLSpww1KtLMZpNPdVtn4hJjuP5XV0PzctQ/3vQv6qrr/Xr3UC1/r7rqekrzyg5rjBOVgjQREREREREROSmcevFkrDYLlgAzhWEHWPjcR/z9zudYt2gzAI9e+iSPzH2M/zfrUTK2NJ84aYI7xv2Uv9z6bxx2BzXZTWQvKwZg2vkTO/zWukWb+eiZRQAEhQZy519v8nkeGhHCOTecYVy/9Iu3aGqyG9cjTmmtdHv9t+/x6GVP8uIjb+J0tj1Vs76moXXcyBDjtMwh4wcRHBbs99/nip9cwJjTRwBQkFnE/P/3st/vektJbw0es3f2rX3SFKSJiIiIiIiIyEkhMDiAgaNTcNpduF0uPnzlEz557kuevP4pAMryy9u+5PaESp+/9A1bvt3BztV7KN/r2Yz/9HmntPudypIq/nTTv4zrWx67hn4pcW36/eTZOwgMDgCgqcHO3+94Frfbzef/WcyOVa3LM5e8s4KVH67j7SfeJ3uH775jDocDp90TrtkCbexcvc9YTjmqk2Wn7bFYLPzfK/cYSzw//8/XfPfB2m6NQZuTOxWkiYiIiIiIiIj0Kh/N/4KrBtzG/k1Z4IZ9H+dRvt+zJDJieAilpaWccdWMDt8Pjw6lvLaUmGnBWIMtjDx1eLvhmNvt5q+3P2PswTblvPFcdu/cdse0Wq3c+sS1xvWXry7lkojr+cttz7Dyg3XtvhMSEeJzfXBXntezYJ/90UafNqKTv0j7Egb35y6vUzz/dsczlBd2vp/cobyXwva1kzsVpImIiIiIiIhIn/fSL9+mrqp1z6+IgaFMuH0o428dQsqcWDIyMjjvlrM6fP+2J69n1+a91Jc14qh3MrN5v7VDffbCYqOKKzIunAf+c7dximV7Lr/3AmISoozrhtrGDvuGRATTL9U3vNu7vnUvt6j4CLZ/t8u4Hu3nQQOHOu+mMzntsqkAVBRX8dc7nsHtdnNgx0G+Xbgah93R6fupI1qDtIO7+tbJnQrSRERERERERKTPO/eGM7CFWjn9V2MYe+Mg+o+Pwmw1E54cggkTSUlJJAzuz6Q5Y9u8O/q0dM6/5Sy2f7SPLS9lQvPhAYfK2ZPns6/Y/c//iNjm0zc78u5fPqSyuMqv3zBoTGqbUC5rW+vporFJMexctReaT+88NHTzl8lk4ifP/pCofpEArPpoPY9d83fuGP8Av73yz7z3l486fT8iNpyo+AgAcvbkH9YcTlQK0kRERERERESkz7vjzzdwzjVnUJFZQ0RqKGZrayQS2RRPYmIiAHNvne3zntli5r75d5C3vwDbcBfWIAtpU4YyYFA/n34Ou4PHr3uKhjpPRdmFt89hxqVTO53Tyo/X89zPXsPpcPn1G4aMTW1zL2dva1AVFhliHDwwakZ6p5VwXYmKj+T+5+80rpe+8x0up2eeKz9qf9mpt34D46F53zmno+0BCb2VgjQRERERERER6fPMZjM/eeaHDAlPZ9trWVTnty7zdIe3npY547JpWAOsxvWFd8xh8JhUvlzwNTHDwzFbTMy8om012qu//i971nmWWSanJfDDv97Y5ZwcXqd0tufQIGxQO0FacXap0bbbWwOrsaeP7PL7XUmbMpSofhFt7u9dn0FTY+dzj0+OAcDlchv7xfUFCtJERERERERE5KRgMpm456lbOeeKs6nNb8DtcuN2uzFZWgOrgEAbp1w4CYDAkEBu/+P1AGz+egdFWyuoLWzg9Hmn+oy7ZdkO3n7ifwBYrBYefuM+gkODupzPzCtO5er/uxSTuf3KsYShvlVv/VJi2/QpL2oNqYoPlhjtKeeN7/L7nSkrKOfuqQ9SUdR22am9ycG+jZmdvh+bGNM6r5zSTvv2JgrSREREREREROSkYTKZuONP15MQmkxDRRMmk4mRo9NpsDvJraxnZ1E18/71Qx5c/gf+tOufNJgtFGQVkbklm70f5DJk/ECShycY41WWVPHkDf/E7XYDcONvvkfa5KF+z+f2J67jlb3/JDktoc2zqpJqvvfgpQAEhwUx8ZxxlNc1sb+klu0F1WwrqKL/WeNJOCWNgMgQMrccAGDA4H4kDW87Xnes/mQDpXnlHT73Ph30UA0OJ7HjBpN21emMuu4s9lc1sr+klvK6JlzNf6feyuR29/JfcBiqqqqIjIyksrKSiIi2JYoiIiIiIiIi0vetXbadPfVVBPRPoc7RSTzidFJbnMO2l5cyY8IIrvvFvObbTh6Z+xgbvtoKwNhZI/nT4l9hsVgOaz7v/uVDnn/wddwuz1wCgmx8VPsGmUVVZFQ0UljbhNPV8Tyrc0rI/Gw9g8IDuPfPNxzWHFpUllTxq8v/yPYV7Qdmk2aP5ckvHzWua5sc7C2uZX9ZLTWNHe+JZjGbGBAWSHq/MJIigzAfwT5ux4OCNAVpIiIiIiIiIieVeruTtQcryCqro7uhSLAJTh0SR2p0MC8+8iZvP/E+AFH9Ipm//kniktouv+yOqrJqbh9zPxXFVdz66n2YRw+itqmbm/W73QyJC2VqchRBtsML9TzDuNmybAfv/eUjVn283ueZLdDKp/Vv0WB3si6ngozS7v8tQwMsTEmOYlBMyGHP8VhTkKYgTUREREREROSkkVFay5rsChqd/p2U2ZGw2jr+c9kfaKqsw2wx88evHmX8GaN7ZI71diers8s5UF7vR++OBVnNnDowmoHRRx5UHdiZw7t/+ZBFLy3B7XYTHB7EP7OeZdWBchr8PHW0IwOjgzklNZrgIwj9jhUFaQrSRERERERERPo8t9vNhtxKthVU99iY1QdL+Oqe+Vz/wCXM+38X9ciYVQ12Fu0p7n4VWifGJ0QwPjGizSmgh6Mwu4SPn1nEsO/NJKvzgzu7JTTAwrlp8UQE2Xpu0KNAQZqCNBEREREREZE+ze12sz6nku2FPReitXBU1fK904YSFth+AORyuXj9t+/x+X++5nsPXsald5/f4VjVjQ4+21VEvb3nQrQW4xIimJgU2SNjbcqtZHN+29M8j1SwzcLcEf0ID7T2+Ng9RUGagjQRERERERGRPm1fSS0rssqO2vgxITYuHNEfs9m34sveZOcvt85n8RvfAhAUGsjC0pewBfiGbk6nk6KcUpYV1tFgPnrLG6f2C2FU6pHt4ZZZVseyjNIem9OhooKsXDRqABbziXkIwYkb8YmIiIiIiIiIHKHaJgdrDpYf1W+U1dnZWlDF+MTWiq+66np+M+9PxomeAA21jbz663cJCLJRmFVM4YEiCrKKKT5Yytg7zmfMTbOP6jy/3VPE72f/mvh+ESSlJZA8PJHktASShieQOGwAwaFBnb7fsnfb0VTR4GBzXiWTkqOO6ncOlyrSVJEmIiIiIiIi0md9va+YgxUNXDMxidK6JgC25leTV9UAQL+wAOaO6M/bm3JpPIJN880muHjUAKKCbZQVlPPI3MfYv/mAX+9GD09k7qv3c92UlDZzjAsNYGJSJCYgt7LhiJenZi3ayPJfvNbus/jkWJLSEhgxdRhjZ41i9Iw0QiNDjedL95eQ1XwAQnt/z1NSo4gJCcAErM+tpLC68bDmaAIuGtWfmJCAw3r/aFJFmoiIiIiIiIj0SRX1dg5WeAKzmiYnX+wubtNnVP9wSmqbjvhbLjfsLKwmsa6Ou6c+SGO9f2OGR4cy7Z6LMFvMbeZoNnkOCvh6XwlOV8/UQQ2cM4GNT39MbX7byrLinFKKc0rZ9PU23n7yf5jNJoZOGMTYmaMYcdYYshP7G30PnWt4oJXIIBuf7SoixGZh1pAYPm/n7+0PN7C9sJqZg49sGerRoCBNRERERERERPqkPcU1RjvUZuH89Hhqm5ysya6g0ekiOTKIoppGUqLMPfK9jLI6ljz1Qechmgn+75V7GDpuEP0HxmEJCeLdLXm43G3nGBVsw+Fyc+bQWMyYWJdTQXn9kR2VaTKbeHj5H4irqiFnTz65e/PJ2ZtH7p58cvbkU1XaWvHmcrnZuyGTvRsymeCAMTe2BmmHzrXB7sThcmMCAqxmGrpZ3Xfp6AGsz6kgp9ITfGaV1TE1OYog29HbM+5wKEgTERERERERkT7H7Xazv7TOuF64NZ9Gp4thsaFMTIpkVXY56f3C+GZfCSlRwT7vnpceT3xoIC6v3bDW51Sy2yuYa4/D5WbGneex/N3vaOooTHNDVFwEQ8YNBGBXUTUtxWaHzrGwppGoYBuf7CwkNMDC9IExfL67yBiqX1gAYxMiiA8NxATUNDnIKKtjZ2HrmO05UNXItHEDGTp+UJtnpfnlbFu+i63LdrD1251kbs3G7XYz5IIpPv3a+3vWNjm4fEwCFrOJb/aX+Pw9+4UF8vGOQiMItFlMXDMxmfe25FHb5OSD7QU+47vckFVex4h+4Z3+zY+1XhekPf744yxcuJBdu3YRHBzMjBkzePLJJ0lPTz/eUxMRERERERGRE0RVo4MmZ2tVVGNzO7O8jrT4UIbEhHCwor7DwGl9TgU7izoPztoTkBDDJ7VvUJJXxt71Gexdn8Ge9fvZuz6DsoIKwmPCSBmRZPQv9lpWeugcsyvqKappxOFyU9ngIMDSepJlcmQQs4bEsjG3kuWZZTQ6XEQEWRk7IIJgm4XaJmeHc6y3u6izOwkNaBsLxSZEc8ZV0znjqukAVJVVs2nlXjLjI336HTrXxIhAAq0WFm7LJ9hmZvaweD7eWWj0b3K4mJQUyeJ9JfirJ5bc9rReF6QtXbqUu+++m6lTp+JwOPj5z3/Oueeey44dOwgNDfVjBBERERERERHp60q9Qhir2YTT5cYNDAgLpKrRQVSwjdjQAFKjgokOtjFrcCxf7u16Ty+r2cTk5EiSI4OxmE3kVTaw+mA5dqfb57txiTHEJcYw/eLWSq7yokpCwoMIDA5sM8/25lhS28i4BE9FVpDVjNMr9JuWGs22gmqfsK+qwcGKrDLjOshq5pTUaAaEB+Jwuckoq2NTbiXu5u+2F6QdKiImnIEzRpC5v7TTvyeYjMMa7E43VrPJZ5zdxTWM6BdO/7BACmvaHkIwb2wCaw5WcLCi3rinIK0HfP755z7XL730Ev369WP9+vXMmjXruM1LRERERERERE4clQ0Oox0RZGXGwBgcLhdON3yXVeZTsXVeejzLMks7GMnXaYNicLndfLijALcbZgyM5pTUaJZnlrX57qGi+/lWdbndbqqa+7c3xyanm30ldZyf3g+zCdYdrPD0DbQSHmgls6y207nOGhJLvd3Jgq35BFrNzBkej8PpYmtBdafzPFTVIX3bm2tdk5MhsSGcn94Pi9nE5vwqn3caHS62FVQxKTmSz3YV4Y+qBgdutxuTyeRH72Oj1wVph6qsrAQgJiamwz6NjY00NramnVVVVR32FREREREREZHez+G1ZrOszu6zzPBQ7Z3mOSk5kgmJrcHXu1vysJhNpEYH886mPKMCbWNeFZeOHsCKzDLczd/1N/xxuT0nVHY2x32ltewr9Q3MAm2ewxE6W74ZYrOQEBHEO5tycbjcOJqcbMmvYnxiBFsLqn3+Pl05tG9Hc20JEzuys7CGkf3CSIkKpqC6ocvvupv/RpYTJ0fr3UGa2+3m/vvv5/TTT2fMmDEd9nv88cf5zW9+c0znJiIiIiIiIiLHj/kIw5cNOZVt9kiLDLJhNpmYNzahTf9gm4U6uxOTCb8rqA630KrR7llCGRpgobqx/TAtJMCCw+XyOT2zutFBaPMpmN35dk/lWE63m015VUxKiuTzXW2Xd7b77RMoRKO3B2n33HMPW7ZsYfny5Z32e/jhh7n//vuN66qqKlJSUo7BDEVERERERETkeAiwmHt8zNomBy63m/9uycPZQUVXYDe+azaZsJpN3aoOo/kghepGB4NiQtiaX91un7omJ1azmSCr2QjTwgOt1Nqd3Z5noLXn/pb7SmoZ3T+coXEhXfa1mk2YT7Akref/qzpG7r33Xj788EO++eYbkpOTO+0bGBhIRESEz/9EREREREREpO+KCbH1+JgNDhcHK+o5JTXKCJeCrGZSo4K9vhtwTOa5JrucsQMiGNEvzAjFIgKtzBgYTWiApzouv6qBKSlRWM0mQgMsjB0Qzv7mZaLe8yzIKuLtJ97ni5e/IXPrAZwO3yq36B78W7qBDbmVjB3QdTbT3b/lsdDrKtLcbjf33nsv77//PkuWLGHw4MHHe0oiIiIiIiIicoKJPUohzPLMMiYkRnLhyP4EWs002J1kldWR3Xza5Np3lrO/vJKxs0YxduZIImLDu5xnUU33T6fMqWzgq73FjEuIYGLzXm41TQ4ySuuob646W5ZRyimp0cwbm4DT7SajtI5tBZ4KNu8A78+3/JvNS7Yb14HBAQwZP5Dk9ERiE2K4+J7zuz2/zmRX1DNmQDhBzctMOxIX2vNh6JEyud3u7tUPHmd33XUXb775Jh988AHp6enG/cjISIKDgzt9t0VVVRWRkZFUVlaqOk1ERERERESkj/pwewHl9fZj+s2v7p5Pwdq9xvWg0SmMnTmS9GnDSElPJDkt0SdcO1hRz9f7So7pHONCA7hwZH/j+oGzf+0TpB0qNDKE27/7IyW13Q/8jsTZw+JIifIv6zlWel2Q1tGGfS+99BI33XSTX2MoSBMRERERERHp+3YV1bA6u/yYfa++oJwFl/4euohawqNDSUpLJDktgaS0RJg9Caf12C0aTGmox74vl8KsYgoOFLFl6Q4Ks9qeXNoiICiAf2Q/x4qszk/l7EmhARauGJtwwu2R1uuCtJ6gIE1ERERERESk77M7Xby7OQ97NzfzP1xTkqNICYBty3exddlOtn67g70bMnE5XZ2+N+bmOUz40QXHZI6NlbUsvOi3OBv9q9QLDgvitx88yJgzRvHe5nwau/gtPWViYiTjEk+8zKbX7ZEmIiIiIiIiIuIPm8XMuIQI1udWHvVvhQVaSIsPxWYxM+OSqcy4ZCoAddX17Fy1hwPbc8jZk0fO3nxy9+ZTlN26nHP3f5cz/IrphPaPPurz3PL8F+2GaCaTiUNrrVLSE3n881/Qf2A8AOMTI1hzsOKozzHEZmFEv7Cj/p3DoYo0VaSJiIiIiIiI9Fkut5vPdhUd9f29zkuPZ0B4kN/9G+oayd9fQM6efHL25FPUYCfq4ulHdY5Ve3IpW7ic/gPjGTCoH/0HxTNgUDz9BsbztzueYel/Vxp9R01P43cfPuSzn5vb7eaL3cUU1jQe1XnOGR5HUuSJtTdaCwVpCtJERERERERE+rTKejuf7CrE7jw6Ecjo/uFMSYk64nFWHShnd3FNj8zpUIEWMxeM7E9EUPuLE79+81sev+4pAKZfMoVH3vwJQSGBbfpVNzr4eEchTUdpieeIfmGcknr0K/MOl5Z2ioiIiIiIiEifFhlsw750C/aJw7GF+l815o+hsSFMTo7skbGmpUbR6HSRVVbXI+O1sFlMzB4e12GIBnDWD06nurwWs8XMBbfNxmK1tNsvPNCKe+U2mkYNJiCsZ6vGBsWEMLUHAsmjSRVpqkgTERERERER6dNWfbyeX17yBLGjUjnzz7cQHNczWcCgEAsvXfEEgUEB/Hj+7Yyenn7EY7rcbtZkl7O7uLZH5hhis3D28DhiQwJ6ZLz1X27mkbmPETkskTP/ckuP7euWHh/KtNToE+6UzkOZj/cERERERERERESOltx9+TxxvWfJYumObKJ2ZDIkJuSIxgwNsDBneDyr/7iQ3D35ZGw5wE9O+wUPnP1rVn+yHpfr8Jc9mk0mTh0Yw9nD4gi2HVlsMzgqiCnB7h4L0QoPFPOHa/6By+WmfE8uYZv2MSw29IjGDLaZmT0sjlMHxpzwIRpa2ikiIiIiIiIifVVDXSO/mfdnais9SyVnzjuF7/2/CzGZTAyJDeHdheuIHjvI7/GCbWbS48MY2T+cAIuZtClD+fLVpcbzzUu2s3nJdlJGJHHl/Rcz5/pZBATaDmvuKVHB9AtLYHtBJWt35BMUE+7HWx5JkUGkBlm4e+APAYiMj+CZjX8iLjHmsOYC0NRo5zdX/pmq0moATrlwEtc9fBlms5khsSG8s2AtUWMGYvIzDAu2mhkeH8ao/uEEWntPnVfvmamIiIiIiIiISDc897PXyNyaDUDKiCQe+M/dRtDjyC3hk1ufYusLL1H47TqSI4MIOiTQcdkdxIbYSIsPpXrrd2x4+ln2L1hOgMXT7/QrTmn3uwd35fK3O54xKuEOV6DVTEheCQsv+i3LHn6F7C/WU7rzIE67w6dfsM1McmQQI6ODKH/za8J2H+Dg8u3G88riKq5NvZNXfvXOYc/lpZ+/xd71GQAkDu3Pg6/ei9nc/PcqreSTW59iyzP/IX/JapIjg9pU05lNEBNiY3hcKLU7V7PxmefZ8/aSXhWioYo0EREREREREemLVn28no/mfwFAYHAAv1rwACHhrZvjf7tgNSazie2v7mDGHyYze3g8xQeL+csPnyM3o4jSvDLcdicf17xGVVUVi7J3EZxkYcnKrwkMCuDC288hLjGGfqlxFGWXtDuHnN15R/w71n6+CZfDSfbizdTtzqEkpxSTxcw98+/g3BvPxGI2YWsO9u459WF2r9nHJ3//mLv/ebPPOC6Xm9d/9x5fvPwNj33yCIPHpPo9hw1fbeG9v34EgC3AyqPvPUB4dJjxfPmC1WCCnW/vYuovxjN7eDwVRRU8cct80qYN47pH5mE1mzCbTVRXV/NlxnaCEkys3Pwttn9YuOK+i47473SsKEgTERERERERkT6lvLCCv9z6b+P6h3+5kYEjk336fLtgFQPP7kd4cginXzENt9vNz+b8lty9BT79KoqqKCzPN64jB4by1I9fwGTynG45anpau0FazIAofvriXUf8W9Yt2my0HU12ANxOF2njBxJk8z1ZM39/69yf/elr7Y5XfLCUO8b/lDv/ciPzftJ1gFVVWs0fb/qXcX3r49cydLzvcthlC1aROqsf0WnhzJznqdL72ZzfkbUtm/WfbmDKWaMZN3OUZ475rX/L8OQQXvj565gtFi67Z26XczkR9K76ORERERERERGRTrjdbv5867+pKK4C4NSLJ3PRD8/x6ZOzJ4+MLQeIGhJGoDmIfqnxrPjfmjYhGkBJTikD+g+gobIJAGuQhVHfS+XdV97jf//6jJGnprU7j2t/cSXpU4Ye0W+prapj16o9AKSOTKK+usF4NmT8QJ++9iY7NRV1xrWjyXf5pw83vP7b97r8vtvt5u93PktpXjkAk+aM5fL7LvDpU5RdzK7Ve4kaGobFYSU5LZG1n28ka1u20efzF7822gMGDKChvPlvGWgh/aoUPlzwEf/984ddzudEoCBNRERERERERPqMj+YvYs2nGwGI6hfJ/c//qM0G+N8uWA3Aga8LGZs2jrrqep7+8X/aHa84p5S92/cTENq6qC9qcBiD5gxg4Wv/oyCrqN33XvrFW5Tklh7Rb9m1ei8ulxuA8WeOoanBU5FmtpgJCPA9xCBndx4up/+nhU6/ZEqXfb54eYnxtwqPCeNnL9/Tui9as+UL1wCQvaSQEQNH0VDXyFN3v+DTZ+WH62isbwQgc3cW1tDWSrqoQWEMPLM/n77/KW/+YaHf8z9eFKSJiIiIiIiISJ9wYMdBnn3gFeP6Zy/dTXS/yDb9vl2wksBIGyHxgZx11Uxe/dU7lOSWtTtm/v5Clqz4GrPVjNvtxu12k7+2lMwvC2gob+L9f3zKyFPTCIkI5s6/3MgZ35sBQE1FLX+65d+4XP6HW4fa8d0eoz1kbAputydUCwoNbNM3Y0t2m3sd+dnLd/F/L9/TaZ/cffk8/eMXjev7n7+z3VM/ly1YSUC4ldCEYM6+ahZvPraAgkzfcLGmotYI3L765kusARbjb1mwsYyML/KpL23ipV+8xdovNvn9O44H7ZEmIiIiIiIiIr1eU6Odx697yqjauvTu85k2d2KbfvkZhezdkMnAs/uRODWO2oo63n/q0w7HPbDzIE0Dm8hZWYI1yExtQQMF68txO91Gn+8/dBmnXDgJi8VCVVk125fvoiS3jA1fbuHDp7/gsnsPb/+vbd/tMtq24ACj7b3Rf4vMrQf8HnfHd3s494azOnzusDt44vp/0lDrqSI7/5azOf3ytieUluSWsn3FblJmxpN8ejxul4t3O1ii+dmLi5l97UwaGhvIW1OC2WamtrCRwvVluBytf8vailq/f8fxoIo0EREREREREen1Xvnl2+zflAXAwFHJ3P7H69rt9+2CVQBYAi3EhMTy8qNvG8sn25OxOZsBTYPIWlTA/o/zSJgaS0i8pyJs7MyRPPz6j5l+8RQsFs9yxYiYcB74T+shA88/+BrZu3K7/XucTie7Vu0FICYhmrL8CuNZTEJUm/4HduR0OFZEbBhXPXCxcf3pC4spL6rosP8bv1/ArtWebycOG8Bdf7+p3X7L3/dUmVmCzETYonj1N+/isDvb7bt5yXZy9uaTYh5GxmcF7PswjwGTogkdEATAqOlp/Oyluznj6hkdzutEoCBNRERERERERHq1rd/u5N2/fASALcDKQ6//mMDgtssf8QrSMj7L54qr52FvtHc69sHduaSN9xwa4HZBQJiVmLRwAH7w8OWcfc3MNnuwTT5nvFGF1tRg54nrn8Jh72Tz/3Yc2J5DXXU9AKNPS+egVxjXf2B8m/5xSW2XXfYfFM8Hla+yoPgl7vjjDUT3j2z+HW5+d9Vf2/3urjV7efOxBdC8F9vDr/+Y4LDgdvu2/C2zvizk8isu6/JvueO73aRPGGZcB4RaiUmLAOCqBy7h3BvPbPO3PNEoSBMRERERERGRXsthd/DUXc8b+4fd/Ng1DJswuN2+xTml7Fqzj6CYAKY/NIq4lGgeefMn3P2PWxhz2gijX7/UOKwBnt2wGmobGTdrFM9t+Quv7P0nIwePpjrXE3C1bMTfntueuJaUEUkA7F2fweu/6/qUTG/bV7Qu6xw9Pd1n37GU9MQ2/X/0t5t49N2f8q/VjzNoTIrn92aXYDK3BlPe+6Jt/XYnu9bu8xnD6XTy1F3PGxV6N/zqakZMG97u/CqKK9m6bCeBkTamPziK+EGx/Oylu7nnn7cy7ozRRr/4lFii+0eSPnUoU84bzykXTuaFbX/lpd1PMWH0RKpzPCeNLl/Y8d/yRKIgTURERERERER6rff/8SlZ2w8CkD51KFf85IIO+67/cgsAUUPCsASYCQgIIDIugsvunUtcSqzR7w+fPsJFPzzHuM7emcvgMakkDh3AJd+/CKvFE7Kt+N8anI72lzIGBgfy0Gv3YrF6lny+9YeFZGzxfx+z7St3G+1RM9IpzS83rgePG9imf0BQADPnnUr61GGMOjUNAJfLzd71GUafKedNYNjE1pDxr7fN9xnj42e+ZO+GTACGjBvI9x+6rMP5bVy8DbfbTeTgUCyBZgIDA4mICefSu88nYXA/o9+vF/6M/+a/wL9WP0HMgGgABo5KIXl4AhddfQEBAZ6931Z+tI6mLiraTgR+B2m33norK1asOLqzERERERERERHxU9HBEl79zX8BMJlM/Pjftxt7lbVn09dbAajOqWN8+gSs1tYzGLO2eU69tNosJA1PILW5mgzw2eOsvLKMET9IJigmgKrSarYs29Hh99ImD+XaX8yD5lDr3z95yaic68r2FZ4gLSDIxrCJg6gprzGeeYdh7RnZHKQB7GzeZ63FI2/eZ7Qzt2azb5MnOCsrKOelX7xlPLv36duMELA9Gxd7/pY1efWMHDSawMDWpbRZ2z1/S5PJROrI5A7HqKisYNi8BEL6BVJXVc/Gr7Z0+rtOBH4HaS+99BLnnXceX3311dGdkYiIiIiIiIiIH565/2XjZMmL7jyXtMlDO+zrdruN8CcsLoQ5F802njnsDnJ25wGQnJaI1Wb1CYCyd7Zu5B8fH48JEyFxnuBo1UfrO53j9x68jMSh/aF5w/1l763q8neVFZQbSznTpw7DFmAzTiOleblkZ0ac0rocc+fqPT7PUtKTSJ/a+nf6y62eqrTn/u81ais9yyzPu+ksn6Wu7dm42BN6BUcHce4lc4z7LpfLOPhgwOB+BIW0v1cdQGxsLGaT2Ti8YWUXf8sTQbeXdl5yySUsWrSow+fbt2/n2muvPdJ5iYiIiIiIiIh0aO3nG409yqL6RXLz77/faf8DO3IoK6jAEmhm+LxEsg9mG89y9xUYp0227C+WOrL9irSgoCCuu+Z6KjNrAdj0zbZOvxsQaOPOv7aeevnsA6/QUNfY6TuZW1vnljbFE3p5n4bpXUnXntSRSYREeA4I2Llqb5squJ++2Hqq6L6NmXzx8jcsfv1bAMKjQ7ntyc5znfyMQgqyijFZTIz4XgrZOa3zLcouMcLNgaM7rkYDsNls3HjDTVRlegK8rv6WJ4JuBWn/+c9/GDBgAJdddhmfffZZu31qamp4++23e2p+IiIiIiIiIiI+mhqa+Ne9LxrXd/zpesKjwzp9Z0PzskFbiCeEio1treo60LzHGs37d9EczoVHhwJwcGeuz1hOHIy9wnP6ZMaWA1QUV3b67VMvmszU8ycAUHywlHee/F+n/Q/uyjPaLZVxLXuxmS1dRzlms5n0qZ75leWXU5xT6vN88JhUhk4YZFw/dfcLRvvWx68lKj6y0/Fb/5YWTKaO/5aDmv+WnXG47Iy70rMUNXdvPkUHS7p853jqVpA2aNAgli1bRmJiIldccQWffPLJ0ZuZiIiIiIiIiEg73nnyA/L2FwIwdtZI5lw3q8t3WpZ1NpQ3ccmcS+nfv7/x7MD21qWbA0d7wh+TyURKc4hVnFNKtdceZXl5eUSkBxvXm7/Z3um3TSYTP/rbTcaeY+/88QPyMws77O9dAddSGeduPknTYvUvyhk+aUjr79uR0+b5/S/8yGg31TcBMGLaMObeNrtN30NtaP5bNlU7OP/0C0hKaq3ey2rnb9mZ/Px8gge3Vtht+vrErkrr9tLO5ORkli5dSkpKCvPmzeOjjz46OjMTERERERERETlE3v4C3nrifQAsVgv3/us2TCZTp+847A62LPUcCpByygAq7RU+zzO3ty5NHOS1HDFtcmsY5b1p/+DBg4kIjzCuN/oR/qSkJ3HFfZ4TRe2Ndp772Wsd9j242ytIG5FEQ12DcW0N6HxZZ4uk4QlGO39/29AubdIQkr360HzAgNnceVTkcrmMsCthfCxVLt+/ZZb333JM10HaoEGDiAxvrYA70Zd3djtIA0hKSmLp0qUMGjSIq666ig8++KDnZyYiIiIiIiIicoj597+MvdGz8f68n1zI4DGpXb6ze+1+6qrrARh02gCys7N9nmduOQCALdBG4tABxv0xp4802tuW7zTaqamp3HTLTVhtngozf8Ofa395JdH9PaHR8oWrjSWSh8puXkoaGRdORGw4pbnlxrOAoAC/vtVywAFA3r78dvscemhBZFx4l+NmbD5AVWk1AENmJbf5W2Y0/y3NZpPPyacdSUpK4rY7biUw2PO7Nn29ze+TTY+HwwrSABISEli6dClDhgzh6quvZuHChT07MxERERERERERLztW7TFOyYxLiuG6R6/06z3vwGpA4gDS0tKM6/LCCnL2eIKmYRMHGcsvAUaflm60t3+322i73W7+/czTjL2ge3t7hUaEcNsT1xnXT9/3Hxx2h0+f2spayvI9wVlKcxBVkltmPG8JnLqSOKw1EMzdX9Dm+b5NmW0q6f5087+7HNfnb5k0gPT01r9RTUUtmVs8wdqgMal+hX5ut5t/z/834y71nBJanFNK7t72g78TwWEHaQD9+/dnyZIlDB8+nB/84Ae89957PTczEREREREREREvr/zqHaN93S+vJDgsuNP+LTZ+vdVon3/RuZxyyinGdcuST4DxZ47xeS8uMYYBg+IB2LV6L/YmTyWcyWTCarWSPL41rPJ3b685189ixCnDobny7Os3l/s8P7jb66CB5iCtJVgDCAoN9Os7cUkx2AJt0MHSzld//d829zYv3d7mYIJDef8tZ59/NqeddppxvfXbnUY12fgzR/s1z5a/ZeLoeK9vnLjLO/0O0uLi4tq9369fP5YsWUJaWhrXXHONTuwUERERERERkR639dudbPjSUw2VMKQ/5918ll/v1dfUs3PlHgBSxiby6n9foaioyHi+eUnrQQHthT+jT/dUSjU12Nm3Mcu4P3fuXCZOm2hc+7u802w288M/XW9cv/X4QpxOp3Gd7XVCaEtFWllh6z5kweH+hYdms5mEIf0AyNtfiMvlMp7tXruPlR+ug+bALWFI8zJQN/zltvkdjtnUaGfrMs8S135DYvnvR2+Rm9s6367+lh0577zzmHzqJOP6RN4nze8graioiClTprT7LC4ujiVLljBq1CieeuqpnpyfiIiIiIiIiJzk3G43L/3yLeP6ul9eidXm36b7W7/dhcPuCapGnTkMp9NJQEDrksPNSz3hj8VqYfSMtDbvj54xwmhvX7HLaCcnJ9N/aKyx1HLj4q1+7+015vSRRtCUsyefZe+uMp4d3NU2SKssqTLuhfgZpOG1vNPeaKc0r7Wqzbuy75qfz+PH8283rjd8uYWygnLas3PlHhqbT/gcMycdh8NBYGBrhdyW5r+lyWRi7KyR7Y7RnqSkJGJTogiLCoXm6j7v4O9E0q2lnZ2d3BAbG8vXX3/N+PHje2JeIiIiIiIiIiLQHFK1VEIlpyUw+9qZ3Xq3xcQZ47nggguIioqC5v3RWirA0qYMaXep6BivfdK2eQVp27Zt44MPP2DMTE9gVJJb1q29va79xTyj/eYfFhjBUcGBYuN+y8mbVSXVxr2w6FC/v5E4pHXpad6+AuM3rP18EwADBsVz/i1nMeWc8fQf6Fla6Xa7+evtz7Q7ns/fcvo4zj//fGMFY01FrVGxN3hsKhExXR9c0GLXrl0sWLCA8Wd6/pZVpdVkbs3u8r3j4Yj2SDtUTEwMy5cvZ9GiRT05rIiIiIiIiIicpNxuNy8/2rqN1PW/utrnQICubFjsWQ5qMpkYNmUQ0dHRmEwmOHR/tDPaX4o4cHQKoZEhAGxfsduoOouLi6OpqclnCWN39vaacNYYRk33VMBlbTvIdx+sBaCiqNLoEzPAE/hVldUY9yJiwvz+hveBA3nNBw684vW3vPYXV2IL8OyjdvdTNxv313y2kaqyag7V8rcESDtliM/f0nt/tHFnjPJ7jjQXZzmdTsZ57VHn755zx1qPBmkAISEhzJ49u6eHFREREREREZGT0JrPNrJz1V4ABo1O4czvzfD73YriSjI2H4DmEzm3797G4sWLjefee3qN62BPL7PZzKgZnqq0iqJKcpsru9LT07n77ruZNGec0dd7I/6umEwmrv1F66mjbz62ALfbbQRpAUE2gsOCAKgprzX6RcT5X+kVnxxrtMsLK9n0zTY2feP5zYnDBnDODWcYz6dfPJW45v5ul5u/3f6sz1i1lbXsXrsfgNSRSew/uI8vv/zSeH64+6MBDB061PO3nH14f8tjqVtB2pIlSzj33HMZOXIkV111FZs2bWrTZ/Xq1Vgs/ifDIiIiIiIiIiLtcbvdPvt53fDrqzvddupQ3lVNE2ePw+12ExkZadxr2R/NbDH7LOE81OgZrc9aqtgaGxv55JNPSBrR36hY2/zN9m7t7TX1/AkMnzwEgL0bMlnz2UYqijz7oUX1izSqveqq6ox3ouIjOxitrdCoEKNdU17jW9n36FVtKvt+9NcbjfaKD9ZQU9FaCbd56Q5cTs9vmzR7HC6Xi4iICON5y/5oAONmda8izW638+mnnxKbGkV0/8jm8XbgsDu6Nc6x4Pd/fRs2bODcc89l69atJCYm8tVXX3HKKacwf37HpzmIiIiIiIiIiByulR+tY+/6DACGTRzMaZdP69b7G75qrWqaNGcsc+bM4dJLLwWgvKjS2B8tferQdvdHazFx9livOXmWYNbW1rJv3z5KS0uNCqzu7u1lMpm49uete6W9/rt3qSppDdJa1Fc3GO3o5uWe/mjZvB8ga/tBtq/YDc0VZWf94LQ2/WddOZ2YBM/4bpebf/zoeePZRq+/5cQ5YznrrLO48kpPRV1NRS37N3n2RxsybiARsf5XzQHU19ezb98+CgsLmXC2Z3lnfU0De5r/7U8kfgdpv/3tb5kyZQr79u1j8eLFHDhwgKuuuop77rmHJ5988ujOUkREREREREROOu//4xOj3d1qNLyWB9oCrIw+bQRLliwhK8sT+Kz9bKPRr6sKqhHThhn7lW34cgv1tQ1ERESQlJREWFgYE89uDdq8N+T3x/RLpjBoTAoAu1bvw+Xy7DMW1a+12quhrtFoxyYcXpDWEnQB3PCrqztcTXj7k9cZ7WXvraKuph68/pZms4nxZ4zi22+/Zf9+z1LP9Ys2G/PubjUaQFhYGCkpKURERDDhrMP/Wx4Lfv8XuG7dOh544AFCQz3/CBEREbz++us88sgjPPLII/z+978/mvMUERERERERkZPIgR0Hjf28ktMSOOXCSd16Pz+jkILMIgBGn5ZOUEgg27Zto7CwEIBl7600+k6/ZGqnY5nNZqZfPAWApgY7G77cgs1m4/rrryc6OtqoogLY9E33Nsk3m80+VWktvCvSGuubjHZsQozfY4d5Le0sK6gAoF9qHKfPO6XDd+Zcd4YR4rmcLv5594uU5JVxYEcOAOnThhEaGcr27dspKPDsF7fU5285xe/5tbBYLFx33XXExcUx8Qj+lseC30FaRUUF8fHxbe7/7ne/49FHH+X/s3fW4VFcXRh/17Mbd1dIQhLc3d2dFihOsUIF2tL2o0iVFgoFCm0pUqAtFHd3d4ImSNzdk9X5/tjdyW7WJSGk9/c8POzM3Ln3zsnuzuy557znyy+/xJIlS6w9PwKBQCAQCAQCgUAgEAj/QQ7+cpJ+PXh2X5Oj0e6dqaww2UwhYu/v74+AgACUFJTi7qloAICbrwsi2oYa7K/90Mq00qsHbwEAfv/9d0RHRyMw0s8iba9OI9vC3d9VbZ+qFpqoQsWR5utsdL98ez6ts6Zk0Kw+BrXtp3w7jn59/p/LuHX8Hr2tLAjg5+eHwMBAlJdW4NZR+XFHN3uTCw0o2bRpE+7cuQPvEE94Bcn9T0+uxqpde23A6Hehv78/nj59qvXY4sWLsXjxYixbtgzLli2z5vwIBAKBQCAQCAQCgUAg/McoLSzF6W0XAAA2tjz0ntjF4DlVUa36qNQ4GzhwIEJCQnDt4G1IxFJAoQtmjJOuafeGdBXNm0fuQSqRQiqVIj8/HwwGQ13b684rk+bKYrHQd3J3tX2qEWkSUaVjzkZgY3S/TCYTto6V2m8cHgf9pnbXew4A9JvSHfYudgAAqUSGPSuP0MeUtuzbty/q16+PW0fv0RFzHYe10ShgYCwymQz5+fkAgKbd5LYUC8V4ci3WrP6qC6Mdae3bt8fu3bt1Hl+8eDGWLl2K48ePW2tuBAKBQCAQCAQCgUAgEP6DnN52CRWlcl2wnuM7w9bR1uA5qlAURVfstHUUIKxFCEpKSrBy5UpkZmaqpXV2HtXOqD65PA5a9WsGKIoKPL4ag969eyMqSh6Bpabtdc70lMS+U7qpbdu7VF6zVCKvlslgMjTOMwRTxbHV9a32cHRz0NteydufDaNfp8SmAQB4fC4i2oWhvLwcP/30E9LS0tTSOo21pTZ69OiBxo3l0W5NVTTnHphhy+rEaEfa+PHj4eLigpycHJ1tFi1ahB9//BGdO3e21vwIBAKBQCAQCAQCgUAg/IegKAqH1p+gtwfP6WtyH1lJOSjMKQYU+mgsNgsVFRXyqKecApPTOpW0V9FSu37wNhwdHenUSUu1vTwC3BEQ4UdvJ8ek0a9lUrkjzdRoL4qiaIckAAyZbbwtR3w4ECwOi+4HACLahoLL40AkEkEqlaKooMgqaZ0A1GxpieZcdWO0I61bt274999/4ebmprfd/Pnzcf78eWvMjUAgEAgEAoFAIBAIBMJ/jPtnHyFZEQHVpGsUghsGmNxH3MNE+nVI4yAAgKurK3r16oWE26kmp3Uqad2/Ge3MunboDs6cOYOrV68CgFW0vRq0qU+/jr4oL7QgkVSmdbI5bJP6e3ItFiKVQgXhrerrba8Kk8mkUyyVKG3p4OCA3r17I/1RjlXSOgHgwoULuHTpEgDA1dsZARG+AICYWy9RVlxudr/WxjSlPgKBQCAQCAQCgUAgEAiEauTgL5XRaEPMiEaDhiMtkH7N5/NxZe8NetvUVER7Zzs07hIJKKqCiisk4HA49PGGnSIAhbaXssqlKfiH+9KvX9yJQ35mAfIzCul9HJ5pjjRVW1YtOmAMU74dq7YdEFk5Pz6fj8v7btLbnUe3N7l/VdhsNrhcLr3dqKPcljKpTO3v+bohjjQCgUAgEAgEAoFAIBAItYLMxGzcOHwHUKRdth/SyuA52oh/pOpIk0e05eTk4NChQ4h59Jzu35S0TiWq6Z2yRA569OhBb6tGzyU8STZr7nTfMhlO/XlRbZ8pvrDc9Hxc3lPpNGSxTXcBhTUPAdem0lH44l48AKCgoAAHDx7Es+gYQJnWqXAwmsuAAQPQu3dvejuoUaUtEy20pTUhjjQCgUAgEAgEAoFAIBAItYIz2y9BJpPrcQ14t5fZqYLxj5IAABwuG35hPoAi4gkARGXyVElT0zqVdBndjp7X/Xv3ERtbWVUySNWR9th0549SC03J8U1nYWNbGaUlrXJcH+f+vgKpREpvm2tL1UIP1w/fBlRsWVEs11+zNK0TAB49eqRmy2ALbVldEEcagUAgEAgEAoFAIBAIhFrBxd3X6Ne9J3Yxqw9RhYiuMhkY5U87eJycnJBzrhzlOXLnT9e3OpjVv7OnE9oNbgkAEPhycOvSHfpYUFRlsYDEp5Y70lJfpOPlvQSdx/VxScWWAMBkme4CkkqkKCkopbfz0gqQ8CQZ9vb2KL4uRWlGBQCg29sdTe67KrGxsXj16hW9HahiywQzbFldWOxIe/jwIQoKCqwzGwKBQCAQCAQCgUAgEAj/SZJjU+lIsoi2ofAIcDern8SnKXRUW7BKeuDDq0/B9BODxWMitHkwGrQ2Xni/Kv2nydM5i9PKkfwgnd7v7u8GgT0fsFJEGgDcOHJX5ThlVD+ZidmIufUSUNFVM8eRlvIiHWKhWG3fps/+Quy9lxC7lIItYCEgwpfWjbMEHx8feHl50dtO7o5w8nAE6lpEWrNmzbBv3z7rzIZAIBAIBAKBQCAQCATCf5JLu1WKAIw0rQiAKqrC9MGNKgsNHPvzFFzCHGDjzMXg2X3NEt9X0rxXY3gEuCHhdCZubX+ErOQcQCHor4ykykzMNrnapKojTZl2eu3QbXofJTMuIu2Sijaaja2NvD8zHGnxWkT+75yKxqGNx+ES7gC+K89iWyrp1q0b2rdXL1gQ1NAfAFCQVYiC7EIdZ9YsFjvSKMo4byiBQCAQCAQCgUAgEAgEgi5U0zo7j2xrdj/xDzULDeRnFeL63rsoySgHh8lFt7fNS+tUwmKx0HdKd0SM9odfZ3ec3HyePhYUpSKSb2LlTlUfS0gTeT8Z8Vn0PmWknSFU0zp5Aq5izqa7gFSdkly+vB+JSIKLf19HSXo5mGImek0wLwW3Kvv27cPp06fV9gVF+tOvE5+YXgW1OiAaaQQCgUAgEAgEAoFAIBBeK9ZK6wSA+MdJ9OuQxvKItON/nEV5gRAPN8ej99iu4PF5Fs+575Tu4NpzwLFl4/jms5BK5cL+QVGqzh/TUhIFDgL6df3mIRrHKSMcaappnSFNAuloMbMi0lRs2W5QS/q1sFiMh1vi0XVERzqV1VJKSkpQVlamtk8ZkQYrVEG1FsSRRiAQCAQCgUAgEAgEAuG1Yq20TgCIeyh3/ji5O8DZ0wlSiRRHfjsFJoeBNh83QKuRTSyeLwC4+7nCptwOWffzkZ2cizsno4Gqzh8VR5Qx2DlVOtL8w300jhuT2qma1tl5ZDuUF8sLAtjYmu48jFfYUmDPx+yfJ9H7GUwGWs8PR8uRjUzuUxdt27ZF8+bN1fYFRplvy+qCONIIBAKBQCAQCAQCgUAgvFasldaZn1mAgiy5llawIhrt+uE7yE7OBSiAxWGCaWOFCSto1as5yhRVQI//cQao6vwxMbXTzsmWfs1kyosiqGKMupZqWmf7oa3oqptOnk4mzaW0sBSZidkAgKBGAXDxdIa7v6t8HjIKLC4TXHu2SX3qg8vlwt1dPRJRLbrPRFtWF8SRRiAQCAQCgUAgEAgEAuG1Yc20TlVNrxBFxc6Dv5wAAMgkFCKDGiE4OFjn+aYglUrxIP4O/FvLK01eP3wXWUnZcPFygr2LHWBGFJWtiiOtpKAU7Qa3UjtuSKe+alqnvbMdfczJ3cGkuSj/JlCxpb1z5fwSTmUiJEQz/dQcKIrCP//8g5iYGLX9dk62cPN1kY/3OKlW6PQTRxqBQCAQCAQCgUAgEAiE18blvTfp15amdao6f4IbByLhSTIenHsMAPAN9UbLzs1oLTNLkUgkAIDmXRoDioqb//54CAwGg46kyk3LR3F+idF9qqZ2lhaUocPQ1ibN6co+dVsqo/NgqSOtcSDSXmXQabMAUJRahrtnHpjUpy6kUikoioKtra3GMWWqbHF+KXLT860yniUQRxqBQCAQCAQCgUAgEAiE18b9sw/p1x2GmeY4qkrcI9WKnYH46+s99PbgWX1w8uRJ3LhxQ8fZpsHj8TBjxgy8PXckrT927I+zyE3PN7vggGpqZ0lhKYIbBcAryPgIvXsqtuw4rDUKsorobScPR6P7QZXovuDGgfjrm71qx4N7eeHU0TMm9akLNpuNGTNmICwsTONYYKT5xRuqA+JIIxAIBAKBQCAQCAQCgfBaEFWI8PT6cwCAV5A7vIM9LepPKY7PZDIgk8pwYZdcL8zJ3QH9pnWHnZ0dZEYI9htDUVERrly5AnsXOwya2RsAIBaKsWflYTWdtPjHxjt/qqZ2MhgMjfROkUis9VypRIrHl+Wpkc6ejgiI8FOPSDPVkaYSkca14eDMtosAAIGdvEqnuESC4vwSlJWUm9SvNkpLS3Hx4kWt0YJBDQPo1wkm2LK6II40AoFAIBAIBAKBQCAQCK+FmFsvIaqQO4Yad42yqC+pREoL0vuG+eCf7/fTx8Z8OhR8Oz6GDh2Kbt26WThrOcnJyXj8+DHEYjFGzh8Erg0HAHDk11Nw93eh25kSRWXrqJ7aCQAt+zRVayMqE2o99+X9eJQVy51aTbpGgcFgmO1IoygKCQpHmmegO/auOgKZTK5PNvrTIfAIcMPLI6mIP52BbUv+NbpfXaSkpODp06coL9d0ygWrVkGtCxFp58+fR//+/a0zGwKBQCAQCAQCgUAgEAj/GR5efEq/btLFMkdayot0iIVyp5y7vyuu7r8FAHDxdsagWfKIseTkZNy5c8eicZTY2dnBz88PPB4PLl7O6D+tJwCgokyI6AuV12WK84fL44DH5wIACrLlaZmR7dTTHctLtDvSVG3ZuHOkvA81R5rxGmmZidm0U84r2APn/7kKAHBwtcewef0xeHYf2Pny4dPalY5UswQ7Ozt4e3tr1UgLiPClX9cJR1qXLl3g5eVlndkQCAQCgUAgEAgEAoFA+M8QffEJ/bpxl0iL+opX0fTKSsymX7/92TDw+HINs5SUFNy7d8+icZT4+flh8uTJYDAYAIBRHw8Gm8MCAJzYdA6OCnF/U3W9PBWaaBnxWZDJZLBzsgWTVem+UXWOqaJmS0V0n7kaaar6aHkZBXS1zDGfDIHAno8RHw2Eg58tvFo6ozCnGM9uPjfpGqvi7e2NadOmgcnUdFPx7fjwCvYAFLZ83ZU7SWongUAgEAgEAoFAIBAIhBpHJBTj6bVYQKGP5hXkYVF/qs6flOfpgCIyrf/0nvT+evXqwcXFRev5pnL27Fns2VNZzMDD3w19JsnTRsuKy8G3swEUkWX5Opxf2vCpLw9WEgvFyE2TV6nk8Dj08ZibLzTOkUqkeHT5GaBwmAU0kEdxZSZVOhRdvZ2NnkO8SnXO5JhUQKG7NnhOX0BRHMDVwR3luSIAwJ+LLUvvvHDhAnbu3KnzuLJ4Q3lJBbKSciway1KII41AIBAIBAKBQCAQCARCjROroo/WyMJoNACIVxHHVzL+fyPBVXFChYSEYPTo0RaPBQCpqalgs9lq+8Z8OpSOHlM6wWBiVJpvvcqsv7SXGQAAHl/FkXbrpcY5Lx8koKxIqY8WSUfJKZ1gjm72cHC1N3oOqtVPlbz92XDYCHj09rgPR+Lp3/J2z65bFpGmzZaqqFZBfd3pncSRRiAQCAQCgUAgEAgEAqHGib5QmYpoqT4aqkSkAYB3iCd6T+qqtk8sFmPFihVITNR0FJlKq1at0KZNG40xe4zvJB9LWFld05Rqkz71venXqQpHmo0iug0AXj1M0DjnoYotG3eW27K0sJR25vk38NU4Rx/xVWzp7ueKAe/2VNvXsGMEWs9vAKd6digrLkfqi3STxlClZcuWaNeunc7jqlVQX3flTuJIIxAIBAKBQCAQCAQCgVDjqGp6NbG0YqdUipyUXLV973w5CmyOepQTm80Gg8FAerr5Th8oqlrKZDJ4e3trHBv72XA1TTOYGEXlXc+Tfp3+ShGRZsOl9yU9TYFUIlU7R92W8ui+5Ng0ep9/uPGONIqikKmiMQcAY78YAa7KHACAyWSCAQbsvOROvn1rjhk9RtXxJBIJfHx8dLYJUqncmfi0DjrSXrzQzNclEAgEAoFAIBAIBAKBQIDC8aVMB/QIcLNYH60wuwgyWaUIvX+4D7qP66jRjsFgYNCgQQgNDbVovJSUFOzfvx95eXkax/zCfDBEoSWmJOlZitF9+9avTO1MVTjSWIoiBgAgFkrU0lgpisLjKzEAACd3BwRE+AEAkmNUHGkmRKSVFZXRKbdQ6Nf1mdxVa9sAhxDkxhYDAG4dM6+IQ2ZmJvbt24esrCydbQIa+ILJlKerJj413pbVgUWOtIqKCty+fRsbN27EnDlz0KFDBzg4OKBBgwbWmyGBQCAQCAQCgUAgEAiEOkX6q0wIy+VC9eGt61vcX9qrTLXt6T+8AxaLpbWtj48PCguNF//XRllZGdhsNhwdtVfCnLBkNBzdKjXJ0uMytbbThmegO1hs+dyVGmlVI+seX42hX2en5KK0sAwAENaqHq2PlqTQRwOAgAjjHWnp8eoOranfjQOHy9Hatu+4nuA5yo9lJmRDJBJrbaePsrIysFgsODvrLobAteHSVUfzMwpMHsOaGO1Iy87OxunTp/Hjjz9i3LhxiIqKgr29Pdq2bYsZM2bg119/RWxsLFq1aoX333+/emdNIBAIBAKBQCAQCAQC4Y0lXkXnKijSX29bY9iz8jD92jfMG+0GtdTZ9uHDhzh06JBF49WvXx9z5swBh6PdwWTnZIsp346jt/PSCzTSMXXBYrPgGegGKByOFEWBzVV3Cj69Hku/TtBhy+SYysitABMi0navqLSlR6Abuoxur7NtXPwrNBghH5OiKJzZdtHoceg5BwXhvffeg42Njd52ju4OgKIKKkVRettWJ7pLIlTBy6sytJDJZCI0NBQjRoxA48aNERwcjHHjxmHfvn3o3Llzdc2VQCAQCAQCgUAgEAgEQh1AtYqlqv6VObyKTsC1g7fo7R5jO+lt7+7ujoqKClAURUdvmcr169chEAjQvHlznW36TO6KDR9uQUWpEDKZDIc3nMTQuf2N6t831BtprzJRVlyO7OQcOHs4qR1XdZ6p2zKAfp2kSO3k8DjwUDjmDJEUk4oLu67Q211Hd9BrI3d3d7B5LIABgAJO/3kR/af11NleG7du3QKTyUTr1q31tlM60sRCMcpLKiCw55s0jrUw2pHGZDIhk8kwYMAA/Pnnn2ohd5aGRBIIBAKBQCAQCAQCgUD476AqGK9akdFUZDIZ1sz5A6oBSoGRfnrPiYqKQkBAgNlONACIjo5GSEiI3jYsFgv1mgbhyVV59NjWxbvQfWwnOLja6z0PAMJa1MPtEw8AAM9uvoR3iLqGXMrzdEilUrBYLCSo2VJ+7RKxhE4L9Q/30ZnmqgpFUVj73h+QSSuNacjJGR4ejqF9R+DKV48BAC/uxRkcpyrR0dFaizZUxUnhSINCE+91OdKMTu188OABunbtiiNHjqB58+bYs2dP9c6MQCAQCAQCgUAgEAgEQp1EWcWSzWGpieubyqmtF/D0WqzaPhcvJ53toSg4cPr0abx8+dLscb28vBAWFmawnX9YZSXK0oIybPnfP0b1H9G2shhCzM0X8G+g7hwUC8XIUGiZKSPSGAyGSqGBVDqV1L+B7mqYqpzfeRUPzj1W22eMLROyXsGzkTzYSlguwssH8UaNp8TT0xPh4eEG26k6IAuyi0waw5oY7UiLiorC2bNn8e+//4KiKIwZMwY9evTAkydPjDibQCAQCAQCgUAgEAgEAkEeLZUSK0879Av30RDSN5ai3GJs/HSHxn5nA84fAMjNzcXjx48NttOGTCZDr169UK9ePYNtHVWiqADg6O9n8PK+YUeTagGGZzefI6RxgEab5Jg0yGQyJD6Ra6F5BXvARsADADy59ryyr1aGK5SWFpbit/l/auw35EgDgLy8PAS2r4wo27/mmMFzlFAUhW7duhnlSHNyryzsUPgmONKUjBw5EjExMVi0aBFu3LiBZs2a4cMPP7QoJJJAIBAIBAKBQCAQCATCf4PUF+mQiOXRUqqaXqay6bO/UJRbDAB0RUcAcPY07Pxp0aIFPDw8DLbTxu3bt7Flyxaj2jq6q1f1pCgKP075BSKh/uqWTu6O8KnnCQB4cTcOAZGaxQKSnqUgMzEbFWVCoEoa5pNrlVU9ozoYdlJt/XIX8hTVMJ08K+fsZIQtmzdvjuCwIHr77qlog+couXfvHjZu3GhUW1WnZGHOG+RIAwAbGxssWbIEMTExGDx4MLZu3QoAuHz5srXnRyAQCAQCgUAgEAgEAuENh6IonNlxCbt+OIhD60/R+z383SCVGlfNUpUn12JxfNM5AIDAng9bRwEAwEbAA99Of/VHKBxp9evXN6v6Y0pKCpycDDuYUEXXy8Vbfk5cdCK2L/nX4LkRbeWpo6IKMdJeZoLBVA9guvDvNRxYc5ze9ghwp9M5lemuHB4H9ZsF6x3n+d1XOPTLCQAAj8+l58xkMeHgamdwnk2aNEG/0b3pAKvctHyUlZQbPA8m2tKxikba68IsR5oSf39/7NmzB2fPnkVkZCS+/PJLdO7cGc+ePbPeDAkEAoFAIBAIBAKBQCC80Vz89xqWT1iLPxbuwKH1J+j9//54EEOdJuLk1vNG91VaVIbv31lDO8EmLhtDR6Y5ezkZlTFXXl6ODRs2ID7eND0vAGjbti369u1rVFsHt0pdr7YDW4LNkYv+7/rhIB5f0e87adC6MiVz7ZxNGk6/F3fjsO/no/T2wXXHMcRxAnb9cABprzIBAOGt6oHL4+gco6JMiO/Hr4FMJu97/KKRKMkvBRRRfsYUKRCLxfjjjz8Q3LEyau7ob6cNngcArVu3xoABA4xqW7XYwOvCIkeakm7duiE6OhqrVq3CkydP0LRpU2t0SyAQCAQCgUAgEAgEAqEOwGLrdshUlApx9i/jM9x+eX8zLbQf2T4c/ab1QHFeCWCkPhoUmXYCgQDp6elGjwsAQqEQMTExcHd3N6q9qvOHxWJi4tIxgCJCb/mEtSgtKtMco1yI/WuO4cyOi/S+mFsvACOC54TlIpzcUumUjGynP63zt/l/IlmhVxfaIgTDPuiP/MxCwEh9NADgcDhwcHBAvTaVabrnd141eJ5IJMLTp0+NTrFVjUgreNNSO7V2xGRi3rx5iI2NxeTJk63VLYFAIBAIBAKBQCAQCIQ3nDYDmsPe2Vbn8e5jOxnVz8Xd13H6T7mDSWDPx8Ltc2knGgA4ezrqObsSBoOBsWPHIiAgABUVFTh9+jSSk5MNnhcbG4srV65AJBIZNU5V58+ojwfTmmUZCdn49cOtGuesmLIe6z/Ygtjbr4waoypufq7066j2uh1p1w/fwRFF5JiNgIfPdsxDRYmQTg811pYAMGbMGPQc3g0sGyYCunkgtzDH4DkvX77ElStXUF5uXBponUjt1Iabmxt+/fVXa3dLIBAIBAKBQCAQCAQC4Q2Fa8NFj/GdtR5r1CkCfSZ1NdhHVnIOVs/4jd5+b91UeAd70hFUAOBihDh+aWkpKIrC0aNHsXnzZvz666+4du0asrKyDJ4rFArh7+8PGxvDOmzQ4vxhsVj49M+5tI7biS3nce3gbWQl52Drop24ezoaUqnMqL61Ed6qHl18AAAi24dpbZeXkY+fpm2gt2f+NBH+4b5qtjQmuq+0VJ4GeuLECRw+eRAtZoXCv6M7eC5sPLz0RO+5QqEQXl5esLMzrMMGAA6udnTa7ut0pJlXY5ZAIBAIBAKBQCAQCAQCwQT6Te2BA2uPq+1jc1h4f8N0g7pmMpkMP05ah5ICueOm65j26KlwzOUrqk3CCOdPUVERVq1aBTs7O5SUyCPZCgsLwefzERysX5QfAFq2bIkWLVoYbKeEb2sDHp8LYbmIdv54h3hi9urJWKlwZP04aR0YLCaK80rA+4mLdbe+w8t78UiPyzR6HABgMhmY8/MUzO+6GADgG+oNJ3fNqDKKorBiynoUKObTfkgr9J/eEwDoyp0wwilZVlaGFStWwNbWlnaocR04EJdJUBhfioO/nETjzlE6z2/atCmaNGli9PWxWCzYu9ihKLeYnvvrwOoRaQQCgUAgEAgEAoFAIBAIVQlpHIiQJoFq+0YtGIzASH+D5+5ZeRgPzssjnNz9XTFvfaXzTdX542zA+WNvb482bdqgrExdm6xv375wcXHRe65QKMSqVauQlpZmcL6qKKPSVKOo+kzuhnaDWwIASgrL6PRUYbkIGfHZWH5qEVy8nU0aZ9i8/pBKpBCLJABAp5BW5eAvJ3D7xANAoYP24e8zaFvmm2BLgUCAjh07atgy4UwGyrKFiL6gOyJNLBbj559/RlJSkglXqN2WNQ1xpBEIBAKBQCAQCAQCgUCoEdoPaUW/FjjwMfaLEQbPeXEvDlv+9w+g0Db79M+5sHeuTAdUdf4YEshnMBjo06cP5s+fj5CQEHr/zZs3Dc4jMTERxcXFEAgEBtuqonT+FOUWQyaTp21KxBLYOmnXjHt6PRbeIZ5YfmoR7F2MS3u0seVhwtIxuHMqmt7XqFOkRruEJ8n4/ePt9PaCzbPVotbyTIjuA4AePXpgwYIFCAurTCH1aesGKJxduooCpKSkoLCw0HRbKqqglpdUQFRhnE6dtSGONAKBQCAQCAQCgUAgEAg1wsj5gyBw4IOhSEO0EfD0tq8oE+K78WsgEcsF8Ed/PBhNuqqnC+Znmub8YTAYEAgE8PLyovfZ2uouhKDE3d0dPXr0MBi5VhVl5U6ZjKIjz1ZMWY8z2y5qbf/sxnMAQFCUP747/gVYbN2uGxaHBQaDgek/vAOBPR93Tj6gj7Xso542KRKK8d24nyEWigEAQ+f2Q6u+zdTaFGQa75RUIhAI4O3tTW8zqcoKrYfWHdd6jouLC7p162Z09VMlasUbXlNUGtFIIxAIBMIbBUVRKBVJkVsmQm6ZGGUiCWQUwGIwYMtjwU3AhastF3yO7hLrNYFURiGvTITcMhEKysUQSymAAXCYTLgIOHAVcOHE54DF1K8HQpDbMr9chJxSscKWMtqWznwOXG05cOZziS2NQCqjUFAuRk6ZCPllYohlMoACOCwGnPjy96WLgNjSGCQSCZKSkhAXF4ekpCSUlZWBoijY2NjA398fISEhCAoKApfLfd1TrfVIJBKkpKQgLi4OCQkJtC15PJ6aLXk8/T+2CYBUKlWzpVJQncfjwc/Pj7alsSLp/2VkMpmaLUtKSiCTyWBjYwMfHx+EhIQgJCSE2NIIZBSFogoJcktFyCsXQSiRYf69VWAxACc+BxnFFXAVcMFhaTqLKIrCL3M3ITkmFQAQ2jwYE5eN0WiXZ4bzBwC6d++OnJwcPH/+HH5+fnj06BHi4uKQnp4OkUgEFosFBwcHBAcHIzg4GHl5eSbpoylRKziQUwxHNwc8uvRMZ/tnN19CKpGCxWYhvFV9fLxlDlbN+B2egW4orJDAJdwPzuG+4DkKYO9ij/aDWsCRz8HL5DzEP5OnnYY0DoSbj7rD77f5fyLuYSKgcNJN+36cxth5JjollXTu3BnZ2dl4+vQp3JzcwHaPBcsZOHn1OArWZMr1zeztERQUhJCQEBQUFKBFixYGtfGq4uRWacuinGJ4+LuZdL41II40AoFAILwRiKUyxOWVITarBPnlYoPtPey4CHe3Q6CzoEadAnllIsRklSA+rwwSGaW3LYfFQH1XW4S728GRz6mxOb4p5JeJEJtdgle5RtiSyUCIqy3CPezgTGypQUG5WGHLUrlTVw9sJgMhrgKEu9vBRUCcQFVJS0vDqVOncPHiRVpYWRc8Hg8dOnRA79691dKHCHIyMjJw+vRpnD9/nhb81gWHw6FtWb9+/Rqb45tCVlYWzpw5g3PnzqGoSH+EBpvNRrt27dCnTx+Ehoaa/CO2rpOTk4MzZ87g7NmzKCws1NuWxWKhTZs26NOnDxo0aEBsWYUykRTPc0rwPLsU5YpoMl0wGECAEx/h7nbwsufRtjy28QxObDkPAODxuVi4431wuJr3eXVdL01xfd3jMhAeHo5Hjx7hl19+AUUZeN7gcNCjRw+MHDkSDg4Oetuq4uimXrkTDXzx8dY5WDvnDyTHauqtCcuEePkgHuEt5d937Ud3gFu3JniRU4pSkaYtX+ZWapSNPLUMKVeewptBgaIo2pant1/EofUn5dfBZeOzv94Hj6+5QJFnpi0BIDw8HNHR0bgTdwP2XeTjilGGK1euaLTlcDjo0qULRo8eDScn4x12tSEijUEZeqfUQYqKiuDo6IjCwkKT3vwEAoFAqHkoisLLnFLcSSmAyIADQBt8DgttA50R4MSvlvkpKRVJcCMxHymFFWadH+wiQOsAJ9iwX28kXW2gXCzFjcR8JBWUm3V+oDMfbQKcX3tUYm2gQizFzaR8JOSbZ0t/Jz7aBjhDwCW2LCkpwdatW3Hp0iWzzm/WrBmmT58ON7eaXzmvbZSWlmLbtm24cOGCwR+t2mjUqBFmzJgBDw+Papnfm0R5eTl27NiBM2fOmGXLiIgIzJw5Uy0l679KRUUFdu7ciePHj5tly7CwMMycORN+fn7VMr83CYlMhgepRXiaVQxzvA2uAg46BLkg41Ei5nf5khbOX7h9HnqM66T1nEnh85D6Ih22jgIcyP/TqHFevnyJDRs2IDk52eQ5cjgcDB06FMOGDQObbTg+aef3+7Hp878BAF/uWYBOw9sAisjHW8fuY/fKQ3h48anaOcPe748ZKychOq0QTzKLYWBNUSsufA7aB7kg/3kq3u/wBUQV8sXojzbORL+pPbSeM6PpAsQ9TASHy8bR8r+NchDHxcXh119/RUJCgslzZLFYGDx4MEaOHAkOx/Bi6L6fj2LDh1sBA++J6oREpBEIBAKh1lImkuJqQh7SisxzTkHhlDn/MgchLgK0CXAGV4/GhLm8yi3FzaR8g5E++ojPK0N6UQXaBblUu9OvNhOfV4abifkQSmVm95GYX46MYiHaBjgjyMU0Adu6RGJ+GW4k5qNCYr4tkwvKkVlcgTYBzghxNawdU1e5d+8efv31VxQUFBjRWjv379/H/PnzMWnSJHTr1s2q83uTePjwIdavX4+8vDyz+3j06BHmz5+PCRMmoGfPnv/ZKKAnT55g/fr1yM7ONruPZ8+e4eOPP8bYsWPRr1+//6wtY2NjsW7dOmRmZprdx/Pnz/Hpp59izJgxGDRo0H/WljmlQlyOz0NRhcTsPnLLxDj8NBOxO69DrIhkGzq3n16HiTIizZi0TolEgn///RcHDx40y2kKRcXJ3bt34/bt23jvvfcQEBCgt71aaqdKFBWTyUTbgS3QdmALxN55hc1f/I17px8CAOp3aYgjzzJRYEQmhi7yysU4+iwTr3bfoG3Zf1oPnU40qESkOXs5GXwfS6VS7N27F/v27aOLKJiKVCrF/v37cefOHcydOxdBQUF62zvpsGVNQhxpBAKBQKiVFFWIcep5ttbwdXOIyytDQbkYPcPcrRapRFEUotOKEJ1unZt4hUSG8y9z0CbACQ087K3S55vEo/Qi3EvVn0ZjLEKJDBfjclEqkiDK678Xff40sxi3k813+qgiklK4HJ+HEqEUjX3+e7Y8c+YMNm7caPaPLVXKy8uxYcMGZGZmYsyYMf+5H9oXL17E+vXrrWJLoVCIjRs3Ij09He+8885/zpbXrl3D2rVrIZVafo8UiUTYunUr0tLSMGXKFDCZ/616dLdu3cLq1ashkZjv+FEiFouxY8cOpKamYsaMGf85W6YUluPCy1xIrfAZpwCEjesGjqsDis7ex4wVE/S2Ly+RR17b2OnXrBOJRPjpp59w7949i+cIAAkJCVi0aBEWLlyIiIgIne10OdJUCW9ZD8tPLkJ6fCayKyR4VE5BYoETTQkFIGRUR7BdHZB98BrmrJ2qt31FqXwBm2/AlhKJBD///LNR1U6NITk5GYsWLcInn3yCRo0a6WynntppnedGU/lvfbIJBAKB8EZQKpJY1YmmJK9cjNPPsyGyIEJHlUfpxVZzoqlyM6kAz7P16wXVNZ5kFFvNiabKnZRCPMsstnq/tZmYrBKrOdFUuZ9WiMfV8H6vzVy4cAG///67VRw/quzbtw979uyxap+1natXr1rNiabKkSNH8Pfff1u1z9rOrVu38PPPP1vFiabKqVOn8Oeff1r9b1SbuX//PlatWmUVJ5oq58+ft5oD/k0hvagC51/mWMWJpkpw3xbo/8tMsPRIX1w7dJtOIZWIdf8tpVIpVq1aZTUnmpLy8nJ89913ePnypc42Di529OvifP3PeEw3Jzwspwzqw5pKQPfGGPDrbLC5BuKpFMMy9GgMy2QyrFmzxmpONCVCoRDLly9HTEyMzjb2KrYsydevVVpdEEcagUAgEGoVMorCxVe5VneiKckvF+N6ovkpRUrSCitwP636VsFuJOYjt1RUbf3XJjKLhbiTYn3Hj5JbyQXIKhFWW/+1iewSIW4l5Vdb/3dTC5FuQar1m0RCQgJ+++23aut/9+7duH//frX1X5tITU2tFieakoMHD1r9x1xtJTMzE2vXrq02Wx4/fhxXr16tlr5rGzk5OVi9erXVHZJKzp49i3PnzlVL37WNcrEUF1/lmqXhZQypZRLEZGl3Ph39/TSWDv+R3i7KVW8nlUqRlZSNh5ee4sfFP+Hu3bvVMseKigp8+9W3eHonFsJyzWcOhpHRiRUSKS68yoG0moyZIZThaYb+BUZliqa+iMrDhw/jxo0bVp8fFFGDK1euRHGx9nnWhkhPktpJIBAIhFrFs8xiZFezAykhvxxB+WUIdDZPP0skleGaFZxx+qAAXE3Iw4AIzxqtOlrTiKUyXE2oXlsCwNX4PAyK8gS7Fjx8VRdSGYWrCXmo7viHawl5GBzlBQ6r7tpSIpFg/fr11fYDW8lvv/2GlStXwta27urPyWQyrF+/HmKx5elJ+vjjjz8QERFRpwuJyWQybNiwAUJh9S4MbN68GQ0bNjSpit6bBkVR+O2331Bebl4hFmPZtm0bmjRpUqeLjFAUhesWapsaw73UQvg68uFgw6bH3bbkX+z4Sj26tzC7CCumrEdmYhYyErKRnZwLqUQKliNg30N/lJWllJSX4LNZ/0P5PQY8AtzgG+oF31Af+IV5Q6oSKacvFf1WUoFF2qbGcD+tEH5OfDjpqHJOGYhIS0lJwb///ludU0RhYSG2bNmCefPmaRxT02J7TWn9xJFGIBAIhFpDuVgCDzse+oS7QyKlcCk+FxIZhb7hHnCy4eBaYh4Szaw+WJUbifnwdbAB2wxnwMucEnQOcYWMouh5shgMdKvvBhlFgQEGbiTmo6DCsh+O+eViPM0sRiPvuvvD8FF6EYqF8odLd1suWvo7qdlVoKi6CgBsJhMMAEeemS4GXSSU4HF6MZr6mlbG/U3icUYRCquIO9uwmRrvy0Kh2KLPVIlIiui0IrT0r7s/so8fP05XHnN0dMSCBQsglUrBZDKxceNGJCcnY9u2bXj16hUA4MCBA4iOjjZ5nLy8POzatQtTpkyx+jXUFk6fPo0XL17Q29rsmZKSgpkzZ8LT0xOlpaVYv349SktNS9cpLCzE33//jZkzZ1bDVdQOLl68iKdP5VX9wsPD8dVXX2Hq1KlgMpla36PmUlJSgm3btmn9AVtXuHbtmtbPrKpdHRwcMG3aNACAjY0NGAwGFi5caNI45eXl2Lp1KxYsWGC1udc2kgsr0CnYBbll8kXQR+nFSC+usPqzm0RG4VZSPnqGuUMqkeLHyb/g7F+XNduJJDi59bzGfkELuWOo6nd3QkKCVT8/vGAGRIkUMhOzkZmYjXtnHmm0Ob3tAoTlIjTuHIFGnSPh6i1/zkkrrEB8XhnGNvNVs2daUYXWfeYio+TPwX0baK98TCkcVbocfhs3bqQXR6raMycnx+LPjZIrV66gS5cuaNKkifr8VFYMma9psZk40ggEAoFQa3iZU4bo9CJIZRTC3G3RwMMOj9KLceFVDsLc7YzowXgqJDLE55ch1M20fsVSGWKzSnBPrD7Px+nFOB6TBQDwtOehobc9rsRbHmkVk1WCKC97MOugkLZEJsPz7MofyyUKbbyqf/+TsfKKdA3c7cBhm2+H2OwSNPJ2qJMRflIZhVgtunpCiUzr+9LSz9TznBI08XGok1FpMpkMx48fp7eLiorw5ZdfgqIoREZGYujQoVi7di2ysrKwdOlSi8c7f/483nrrLQgEda/CrEwmw7Fjx9T2abPnzZs3UVpaiiVLlqBFixYYMmSIWbpnly5dwtixY+tkVBpFUWq2HDhwIK3HpOs9agnXrl3D+PHj4eLiYvHcayNV35dKVO2amppKf8b79Olj9mf09u3byMrKgoeHdqfFm86zzGLY89j0vVpJdTy7pRZVoKBcjE/bfYa4h4kG29s6CuAZ5A6HYAES2XLNrarf3QwGw+qfH7fWdii5RqGkQPuCQGFOMQ5vOInDG04CAHzqe6Fxpwj4ju8O2NuiRCTVsKe2fZaQWSJEbpkIrgKuxjF9EWlxcXF49uwZva3tXmiNz42SY8eOaTrSVCLSXlehmbr39EMgEAiENxKpjMLTzGJaE4KiKm/k5eLqCXGPySoxWWfmVW4ZioRSjXmq9sJlMZFfZp00pjKxFMkF1Zt68rpIyCtXSwUpF8u0/v2VBLkIEJ9bZtIYIxp5w9+JDyicp4n5pp3/ppBUUK71c6LrfWnpZ0ospRCfVzdtee/ePeTk5NDbFEXR3xO2trZ0pJqbmxuWLFmCuXPnws7OtB+L69atQ6tWrQCFsPLFixeteg21hcePHyM9PV1tnzZ7ent7Iy4uDgAQHx+vt/KdPiQSCc6f14xEqQvExsYiMVHuOGjRogViYmLoFE9d71FLkMlkOHv2rMX91Ebi4uLUoiSVVLWrKh06dDBbO46iKJw+fdqsc2s7BeViZBQLYcthoW+4OzoFu4CnWGCprme32KwSxD9K0tum4/A22J+3FQfy/8Rv91fAv2tlam3V7+7q+PyI7crxx4uV2JO1CauvfI0Fm2ej+9iO9PGqvp+0lxm4cjIaFbby5xVt9tS2z1JidejO6YtIO3XqlNq2vnuhOZ+blStXonnz5vT2gwcPkJmpnomg+nxYnam6+ngjHWmXLl3CoEGD4OPjAwaDgQMHDrzuKREIBALBQjKLhbQmBI/FRLi7HV7k6E/t6RPujnda+MFZReOBw2JgYkt/2HJ1V3dSklcmptMKjSVBxXlQdZ6ONmz0a+CBNgFOyFQRt7d0ngl11GGh67q0/f1tuSwwGPIV2aq0D3LGxJb+cLQxHGhfV50/+t4jut6X2ugT7o7xzf0wtpkv3mrqiz7h7lpXqw2N+SZz7do1jX2+vr746quvMHnyZDq17r333sOSJUvw+PFjvP3222rtw8PD8dlnn2Hz5s3YsmULfvjhBwwePBgslvbPu7Yx6wK6rquqPZOSkuiIg8aNG6v9GFu8eDH69+9Pb3t6emLt2rWYNGmSSWO+6Sivi8FgoFevXho/ZrW9RwHA29sbn376Kf744w9s3boVq1atwpAhQ0was66h7bp02RUKRwGTyURWljy697PPPtOajs3n87F9+3ZERUUZNWZdQHkf2PcoHSdis5FeJEQzAxIKfcLdMbGlP7zteWr7ozztMbGlP1oZkA1IyC/D0Hn9IXDg65THyssogJ2TXHtSIpHg1q1b9DFt3926Pj+LFy/GX3/9hW3bttH/evfubcgskMlkuHnzJhzdHBDVPhx9JnVD3ynd6ePDPxiIb49/gbc/G4aGHRuAw2UjoGdTuiCBNnvqs7GHHRc9Qt3wVlNfvN3UF4MiPRXZDPrnmZBfpnVBWbmratqkTCbTKDCg615Y9XOzePFi7Ny5EwEBAXQbgUCAf//9F+7u7vS++fPnq1VVpSgK169fV58fiUgzj9LSUjRp0gTr1q173VMhEAgEgpVQ6j6wmAx0qeeKm0n5EBohtiqSyNDcAt2rHBMKG1AUpXeehRUSHI/JwtkXOWhd5UHQknnmlNW96p0URWm9Ll1//2AXgVbHDZvJQJCzABUSKULdDAu259ZBW8LAdel7X2rjbkoB/r6fin+jU5FXJkb3+q46x6yuyoGvE6XWiyqpqalYtGgRli9fTv+ALimRr+RfvXoVQUFBdNvmzZvj888/R3R0NN5//31MnjwZq1evhp+fH5ydnbWOGR8fX+2FDV4H2mwJLfa8f/8+cnNzsXjxYnh5eSEvT3tafEBAAJYtW4ZLly5h69atWtskJSVBJKp7n3OlLTt27Ii7d+9qFG/Q9h6FwumTkJCA2bNnY/LkyVi5cqVGdIcu0tLSql2M/3Wg7X2py67QElVz7tw5dOzYEWw2W6Ndfn4+njx5otFHdnY2ioqKrHYNtQXlfVwZXR6fXwYXgXYBe1UKy8WoX+WeXd/NFgXlhqP5KyQyTFw+HgcLtuFQ8Q78fPVrzFg5gT7O5rDQZ2JXejslJUXtO0Hbd7euzw8A/PXXX5gwYQL9T5uzVRvKKFslqrdLHp+LVn2aYso3Y7Hq0lfYn78V3Wb2oY9rs6cuG/s52qBnqDvSCiuw/3E6/nmQiotxuXCy4YDP0b9YK5ZSKNKyoEzf26s4qTIyMlBWpv4sputeqC0araSkBGPHjtU7J23osyWJSDOBfv364euvv8bw4cNf91QIBAKBYCVyy0RgAOgS4oqYrBKjK3fGZpfA3Y4HTzue1uNsJgNtApwwopE3RjfxQccgF3BYlTfdXBNSMIsqJJDIKK3zVL2Pi6QySKqULTc0z0hPOwxr6IWxzXwxvKE3GqjoipQIpUY5Fd8kSkWa16Tv7x/kItAaTRbsIoBERuFeSiFCXG0NFm8qF8tQpiWq7U2mQixFqY5rMvS+1IeMAl5kl0LAZWtNIxFJKRQL65Yty8rKNFIRVX8sl5aWQigUgsfj0avgkZGRyMjIoNtMnjwZBw8exLFjx1BcXAwoHBLr169XSxlVRSQSITU1tZqu6vUgEomQkpKisV+bPQFg586dWLp0KVJSUnD79m2N88LCwrB48WLs378fu3fv1jmuVCpFUpL+tK83DalUSqd1BgQEoE2bNvj8888RGBiIefPm6bSpvb09vLy8cObMGYhEcsd3SkqKWkQJn8/HlClTsH79emzduhXffvstXF3lznOKohAfH1/j11ud6LombXZV0r59e7WIsjt37kAqldLp2Uq6du2qN7W4qjPgTYeiKOSWisBmMqC81XjZ8bQ6ZqoSn18GX0cb+nnMzVYe+Vx1cXNEI29EedmjfwMPjG0mj5IWcFjIVbSzEfAQ2S4cA2dURok17BSB/tN70tuqdtf23a3r82MIHo9Hf3Y2btyIOXPmgM/nax0XBqKoeHwepAIbQPHcWtWe+mzcOsAZjzOK8SyrhH6uKqqQ4GpCHv1sYMNmokuIK8Y08cGIRt5o5utI95dbxeaqC2RVI9KqXpO+e2HVzw0UaaFhYWF60/dVpQ90jVsbItJIsQECgUAg1AqKhRIEuwjgaccDh8VAhKcdUgoq8CSzGF1CXOFqy4VYKoObLRd3Uwrp84QSGR5nFKG5nyMtqq5KhyAXyCgKh55mgKKA9oHOaBPgTBcCKDEhtbNYJG+rbZ5ZJUI093MERckX8G4nF6ida2ieJUK5iGyZWAovex56hLoht1yE7BIRPU8eW3uK3ZuINrvr+vs72bAhlMi0loOv72aLuNwyxOeVoZW/E/wd+UgyoClXIpRAYERK7ZuCvvRkVwFX6/tS32dKCYvJQKi7LUqEEjUtO1VKRBI4GJFS+6aQna0p5BwcHIxx48ZBJpOBwZBXfPPx8cGMGTNQUVEBiUSCDRs2AIo0Ok9PT7O0lLKystRSXt50cnNztUbZabOnvb09PvroI0ilUqSmpmLbtm1q5zRs2BCjR4/Gpk2bcPmyZpW+qmRlZaF+/fpWvZ7XSUFBAR1R89dff9H7Fy9ejDVr1mi1KQAUFxcjJSUFs2bNwtmzZ/HixQsNZ+7s2bPB4/HwxRdfoKCgAIGBgWrRO1lZWYiMjKyxa61uSkpKNCJqoMOuAODn54fi4mIUFlZ+R0qlUly6dAndunWjU858fX1Rr149rFy5UufYyhS3uoKUolAhkcFFwEH7QBdIZDJIKeBagvz5St99RiSRIbWwAsEuAjzPLkV9N1u8zCmFE18zmq2eqy3OvZA/H3Wr74Zmvo4aizj6HCuqEZjavrt1fX4MMXv2bEilUrri58yZMzF16lQ6a84UXS+KomjpCgcbtoY9te0DAAceG/Y8NuLz9EuhdA5xRblYir2P0sFjM9Ez1B0SqQyPMopRUsWWMhVbVl2drHpNuu6F2j43UHz+Dh06hLFjx2LRokV656xKVlYWZDIZmIrUV1K1s4YQCoVqnuW6GFZLIBAIbzpSGYW4vDLEaYk6uhiXq/fcZ5kliPCwg78THxnFleXAeWwmApz52PUgDWKp/K57P60IQ6K8cDU+D5RiXGORKdrqmqehakq65gmFWLySjGIh0gor4GXPox1p0jqWQqftenTZtaBCgtPPNW3raMOGhx0PNxLzIZFRSCooR6ibrUFH2n/BlkqyS0Va35f6PlPN/RzR1McRUopCXpkI515qj6KCiZ+fNwFtaV0vXrzAkiVLNPYvXLhQY5+yWqSu1ER91LV0RG22hB576quAGhkZicLCQty/f9+osf8rtlTarLi4WKtNlW0GDx6MkSNHwtfXF2lpadiyZQsePXoER0dHtGnTBrNmzUJ+fj4AaAit/1dsqYrqezElJQVff/21Rptz585h5cqVcHV1RW5uLrp3747o6Gjajtqoa7ZU+lvyysQ48kwzXdjQs9vL3FI083HEq5wyBDrxcfBJBlr4acoPxGQV006muNwyNPKyR3Kh+jOUPieV6t88Pj5e47s7NzdX5+cHAMaOHYtRo0bR2zNnzgSXy0WbNm0wdepU2jG7a9cu/PTTT/jll19AURTEYjEoiqIde/qcfaq3Um32LBVJtdqYx2HSx3Uh4LDg7WCDXQ9SIZFRkIikeJhehCY+DniUUaz5DKHHSVX186PNntDzuQGAo0ePom/fvmjVqpXWNGhdSCQScLnyBWV9zr6a4j/hSPvuu++sUp6cQCAQCNUH04IboZSi8CCtCM19HXEipnLhxI7LBpPBwIhG3hrn8DkslImlJq1kWTJHffOEIhorytMedjw2GIpoIFVhfUvHrm1Y43pC3eyQVyZCvkJT5VVOKXqGydM+ysS6HyqJLfVzL6UQz3RU8qrusV83VTWPTEW5WOvi4mK0DpW1xq5tWPN69u3bh4iICHz55Zf46quv6JTZmhi7NmDJ9RQWFmL79u3Yvn07bG1tMXz4cHz88ceYNWsW3NzcIBKJkJur2+FBbKmd1NRUvHz5El26dMGBAwfQqVMn/PHHHzUydm3B0q//9CIh2gey0NjHAdmlIq1R56hS/VMio8BhMTVE9PU5qSy1+99//41jx46p7fPz8wOTydTQbJfJZHByckJ+fj7YbLbaXPQ5+8y1pVBhG1suS6fUgoDLgkSmHtVfLJTAVqGfVtWWsmq0JRTOuN27d+Ptt9/Gl19+afR5amOTiLSa4bPPPsNHH31EbxcVFcHf3/+1zolAIBAI6vA5LNohYg4vc0oR5WmPem4Cel+pSAIZReHfh2k6I2f4bOPlQm04lkuLapunLZeFjsEuOPM8GxnFQlAAutVTF3jnW2Hs2oSltmQwgBBXAThMBkY38aH3MxkM1HMT4FG67h/a1vg71iYMiQlX79h1y5aOjuYXLgGA9PR0ZGVloX379ti/f79J5zo5GS4E8SahjM6zBhKJBCtWrMBHH32ExYsXY+nSpXqdaXXNlvb29mAwGBYX9ygtLcXu3bsxaNAgeHh4ICcnB1wul46q0kZds6VAIACbzYZEYlrFbm2cO3cOQ4cORXJyMhgMBu7evau3fV2zJZvJAJvJMEl7syqvckvR2NsBF17pj16rStX7nr5UP0u/17WRk5MDmUyGGTNm6Iw0rDquPmcfk8EAj800WQ+3SChBsVCCIBfdzz1lIinYTCZs2EzamWbPY6NUseCoz5ZVHX7WsuW5c+cwcOBAdOnSxaj29vb2dFonaklEWt16+tEBj8eDg4OD2j8CgUAg1C6MqfKkDwrAvdRCNPKq/I6vkMiQXFCONgFO4CkcZjZsJgKcKsVgXW2N1x1z5nMtvl9rmydb8aBSIZGBAuDraAMfBxv6OI/NhOA1OkuqA0cbDlgWrCL6O/LBZTFx+FkmDj3JoP9FpxUi1NVO53kcJgMOvLq1jmjHZYHLqvkHSSZD/nesSzg7O1v8Y3fz5s0YOnQo+vbtCzs7+XvR29sbM2fOhJubm9ZzGAwGAgMDLRq3tmFnZwdPT0+r9SeVSvHTTz8hPT0dixcv1vs8r1o5ri7A4/Hg5+dn8nm2trYYM2YMfHx8wGAwwOVyMXDgQBQXFyMtLQ2FhYW4ffs2pk+fDicnJzAYDAQFBdHvWyg07eoSbDbbap+1q1evwsnJCRMnTsSlS5cMVt6ta7ZkMBhwEVim3fo0swSnn2cjudC06rBVx9XnWAkJCbFojtpQfnamTp0Ke3t7QOFkUhXJVx1XIpbgxJbKQhSZiVkoLVTXNXM105a3kvLRyMsBDTzs6MJADjw22gc6w5Yrj9BPL6pAS38nsJkM2HJZaORlj1e58vGr2lKfw89atqQoCjt37sSwYcOMal91XKKRZiYlJSV4+fIlvR0fH48HDx7AxcWlTom0EggEwn8Jcx8gVEkqKEdDL3vYqDidrsTnoamPIwZEeILHZqJCLEVCXhmto2XKuCwmA842HORZEDmnbZ6FFRI8Si9C7zB3MBgMJBeUq+l/uAq4r60qUXXBZDDgwucYXZ21KqHutojPK0NRhXpUwbOsEkR52cPLnoeMYs3KWy510JbKHzParrc6ceZzLXKG1lZCQkJw7949s8+/d+8evv32W4wYMQJjxowBFNELly5d0qmf5OfnBx5Pe0XfN5ng4GCTU1z1IZVKsXr1arz//vtYsmQJli5dqiFm7enpqeYIqisEBwcjOTnZpHMkEglcXFzw2WefwdHRESKRCPHx8fj2229p/eh169Zh/Pjx+P7772FjY4PU1FRaMN/Z2RnOzs7Vcj2vk+DgYLx69crifoRCIa5fv45u3brh3Llzetva2trCw8PD4jFrG64CDrJKzL/3iKQypJt476IoCh82W4BGHRugcedINOocAb5d5eJjVcdKcHCwVSI6q/LLL79g9OjR+O6772BnZ4fCwkJcu3aNrjqs6vy5dew+ruy7SW+f2HweJzafh0eAG5w8HNGgTSjafzIcaWZIuacUVuDMi2w09nZAMx95xFiJSIK43DKUK6LOLsXlok2AM0Y08oaUohCXW4bHGcVgMgDnKgUe9EWkBQQEgMViGXQaG8PNmzcxaNAgo4KcNBxptaBqJ4Oy9juqBrhw4QK6deumsX/ixInYunWrwfOLiorg6OiIwsJCEp1GIBAItQShRIrd0ek1KgTP57AwsrG3STpP91IK8ChDvz6PtWnt74QIT/saHbMmiE4rxANznhotoLmvIxp51717/5OMItzRUnmzOmni7YCmvtZPmXndnDp1yqDWkbUZPHgwxo8fX6Nj1gQXLlzA+vXra3TMvn37YsqUKTU6Zk1w7do1rF69ukbH7N69O2bOnFmjY9YEd+7cwQ8//FCjY3bs2BHz5s2r0TFrgrTCCpx+ob/QkrVJOv8Qlz5V/83v6uOM3DT5QkVo8xAs2DwbPvW9YCOQL1AsWbIET58+rdF5fv/997QD6Mm1WHzQ8X9627/1wwSwuzatodnJ8XWwQc8wd7V95SXlGOwwAQDQrEcj/HBaXcfs22+/xYMHD2p0nsuWLUODBg3o7dsnH+Dzft8AAMYvGomJS8fU6Hzwpkakde3a1eoeZQKBQCC8XnhsFoJc+HiVq1m1sboIc7c1WSw9zN0OjzOKUVN3ITaTgXqutjU0Ws0S5m6Hh+lFqKnCj0wGEOpWN21Z380W91OLaswRzVBEBdZFOnXqhB07dqCiosKI1pbDYDDQu3fvGhmrpmnfvj3+/PNPlJaWGtHaOtRVW7Zu3ZoOBKgp6qotmzdvDjc3N+Tk6K5IbG369OlTY2PVJN4OPDjw2CgSWq45ZyyimGRwuGyIRZVjKp1oAPDiXhxmNF0AAHD3d4VfmA94/jUrj+Hu5Imr2+9ib+JxZCVmIz0+y+A5no58yPgci/SCTSXcQzN6V19EGhTfCzXpSAsMDER4eLj6TpVJvq6ItP+ERhqBQCAQ3gwaeNRc1BWTAYS5mZ7+Y8djw09FY626CXERgGtCQYQ3CT6HhUBngREtrUOQi0At7bcuwWOzEOxac7YMcObDlvtGrscahM/nGy2AbA2aNWtWJ1O+AIDL5aJ79+41Nl5UVJRZWmJvAmw2Gz179qyx8UJDQ6tFW6o2wGQy0atXrxobLygoCGFhYTU2Xk3CYDC0OmOqCwcbNpb9MQP787dixfklmLh0DJr3bAQeX7tMR3ZyLu6ffYQbfz6ErLzmAnESTmVg29J/cWrrBTw4/wSZCbqj9hhMBqZ+NxYDp/dEgxq0pR2XBV9HG439htImmzdvDnd3d4391UXv3r015iFTWYHV5uyrCermkzmBQCAQ3kjcbLmoV0POgEZeDhBwzXOqtPBzBKsGVsB4LGadTJ1TpbmvI11soTrhMBloXsdt2dTHAZwaKDrAZjLQ3LduVZ+rysiRI2kB6eqEw+HUyZROVYYNG1YjOlssFgsTJ06s9nFeJ4MGDdJZsMKaMBgMTJ48udrHeZ3079/fqsUw9DFp0qQ6p82pSri7HRxtamZhpbW/MxgMBnh8Hpp0icL4RSOx/NSX2PysMu05IMIPvSZ0QUTbUNi7KBxTFFAWXSNThCSXgihJfZ+9s23lXFSwseXhmyOf4a1P5aL79V1t4cKvmSI+rQKctWZlGBLyZzKZNfb9EBwcrFXSi0SkEQgEAoFQhVb+zuBzqvf25MznWKST5WjDQbMacMq0DnDSKEte17DjsdHCr/qdMi39nepsBJUSWy4brf2r32HR3NcRDjX0o+l14ejoiKlTp1b7OKNHj66zEVRK7OzsMH369GofZ/jw4XWuWmdVBAJBjWiWDR48GPXr16/2cV4nPB4Ps2fPrvYf4f369UNkZGS1jvG6YTEZ6BDkgup2Z4S62WqNoAIAJqvyuTEgwhefbH0Pa659i305W7A3ezN+vvYNPvhqDjztfKp1jgyKgQ6RXTB79WQsPfAJfnuwAgfyt2Jf7lZMWDxara2TuwNWnFuCVn2bVV4Hk4EOwS4WV4g3RIiLQK2CvSr6KqAqadmyJTp27Fhd0wMUiyOzZ88Gm635vEEi0ggEAoFAqAKPzUSnYFcwqkmFjMtioFOIi8XVBiM87XQ+0FmDeq4CBLvUXKpeTVJaWIrbJx9gw0db8bb/DPzQ9Qv42FbfCmyQM7/OaqOVFZfj7ulo/P7JdowNnImv2y+En6D6bOnvxK/R1JPXSbt27dCjR49q679p06YYNGhQtfVfm2jZsiX69etXbf1HRUVh2LBh1dZ/baJx48YYMmRItfUfHh6OUaNGVVv/tYmIiAiMHDmy2vqvV68e3n777Wrrvzbhbser1qhvZz4HLf11L7qp6XpVebxzcLVHZNsw9J7YFd+sXlatkYjvznwX89e+h2Hz+qP94FYIaRwIW0f584eTR+UCrr2LHVZf/RrhrTQd1i4CLlpV4wKjow0brQP09K/HlqpMmTIFvr6+1p2cChMnTkRgYKDWY1QtiEir28uJBAKBQHgjsZWI8eDHfWj4wRCwONa7VXFYDPQIdYezDi0NY6EoCjeP3MGFTedg17slvFtbV/sk0JmP9kEudSoV5PaJ+7h28DaeXItFwuNkjaJB/4xejvpT+8K3o3VX7v2dbNAx2LVO2fLemYe4sv8WnlyLQcKjJLWVWQA4//mf4HVoiIBuja06ro+DDbqE1C1b6oPBYGD69OlIT0+3erW3qKgozJ8/H0zmf2dNe+LEiUhLS0N0tHXzq8LDw/HJJ59ojVqoq4wdOxZpaWm4ffu2VfutV68eFi5cCC7Xsnvkm8TIkSORlpaGq1evWrXfwMBAfPbZZ7Cxqb4Ft9oGJzUbT/68jKiJ1l2AcLRho1eYO7gs3d+XAvtKO5cW6i5a5eDggEWLFmHp0qXIzrZutdF33nlH7+KL6r169MdD4FvfW2dbm+x8PP7jFBpOs26RCnue3JY8tu5sBxs742xpZ2eH//3vf1i6dCkyMjKsOs+33noLffv21XmcUrGltvTTmuC/c/cmEAgEwhuBTCbD9++sxaPdV3H+g40QF1mniqc9jw3hmfuY4DIRE8PmIvrCE5MqQFMUhVfRCfhj4Q6M8ZmOL4f8gJuH7uD8R3/g1ZFbVpkjAIS68LGh6+cYKBiHNe/9gaLcYqv1/bq4feI+Pu//LY78dhrxj5K02j35SQoufrIFL/Zft9q4oa4CbOq9GINsx+Knd39FQXbNVburLqIvPsGnvb/C4Q0nERedqOFEA4D7p6Jx+fNtiPn3stXGreciwPZBX2GgYCx+mLQOeRn5Rpz15sNkMjFgwAA0b97can127NgRfn5+WL16Nc6ePaueRlOHUdqyRYsWVnPGtm3bFvXq1cPPP/+MU6dOQSqVWqXf2g6DwUDfvn3RqlUrqzljW7ZsiYiICKxZswYnTpyARFJzVRhfJ8qqua1btwaLZR0phSZNmqBZs2ZYt24djh49CrG45qowvi6Kcovx1aiVuP/LUdxeuR+U1Drfa172PNz8fBuG2Y7Dxz2XIjk2VWs7gYMAbIUURkF2kd4+PTw88NVXXyE0NNQqc+TxeJg1a5bBCGNRReX7wNZBd9GqkoJSLBn+Ix78fhI3v98NSmKd7zUPOy6iv9mJEXbj8VGXL5H4NFlrOy6PA4G9fH6FBmzp6uqKZcuWISIiwipz5HA4mD59OoYPH663naot2a9JtoM40ggEAoFQq9i+dDduH78PACiPz0DfEGeLUxwjPOwwKNITJ1YfhlQiRdrLDCzovgRzWi/E+Z1XIdXzkFKUV4wdX+3BtIYfYmazj7Hrh4PIz6x0yMhEEvgUl6BbfTeLtN3suCz0CXMH40kC8lLzIRaKcXj9SbwdMBNr3/sDaa+su9pXk3BtjItukEmk8MgvRM9QNwgs0Iaz5bLQM9QddimZyErIhlgowfE/zmJs4Cysnvm7zgfxNwFDtuTxuRBViEFJZXDJyUevUDfYmllUA4rKqj3qu8G7pBjpL9IhEUlwettFjAuajZXTNuh8EK8LFBcXY+/evYiMjMTChQuxZMkSi1KCHB0dsWDBAkyaNAkpKSmoqKjA9evXce/ePTx58gSZmZlWnX9toqysDPv27UNISAg+/fRTfPXVV/DxMV+ryN7eHh988AFmzpyJxMRECIVC3Lp1C7dv38azZ8+Qnp5u1fnXJioqKrBv3z74+/vj448/xjfffAN/f3+z+7O1tcV7772HDz74APHx8RCJRLh9+zZu3LiB2NhYpKa+ud+XhhAKhdi/fz88PDywYMECfPfddxbp7PH5fMycORMLFy7EixcvIBaLce/ePVy9ehXPnz9HcnLd/L6USqX4ZuxqZCbKI7yYiRkYEOEOV4H5kY1sJgNtApzRO8wdd4/ehVQixYNzjzEl4gN8OXQ5Hl1+ppHe5+AmT50syjG8AOni4oJly5Zh/Pjx4HDMl0OIjIzEihUrtAviV6Egs4B+7eShPQ1WJpNh+cS1SHupeOZLyMCABu5wtzXfliwmA638ndA33AM39t6AVCLFo8vPMK3hR/hi4Ld4cP6xxgKno7vcloYcaQDg5OSExYsXY9KkSRZFs4aHh+PHH380qqJuvhG2rG4YlCnL8XWEoqIiODo6orCwEA4O5otNEwgEAsG63Dp+H18M+BZQhGp/f2oRmnVvBADIKK5AbFYJEgvKYcydi8VkIMRFgAYednBRPMwtGvw9bhy5q9HWI8ANIz4YiCFz+2qsSM9t9zlibr7QOU5I40Csv7McLDYLIokML3JKEZtdgmKhcav5znwOwtztUM9VAA6LiZKCUgxzmaTRjsFgoMOw1piweBSCG2nXjKitUBSFHyatw5ntl/S28wvzxu8PV4LD5UAsleFlTilisktQVGGcLR1t2Aj3sEN9V1twWExUlAkxyH48qsrtMRgMtB3UAhMWj0b9ZsGWXNprYfWs33H0t9N624Q2D8aqy1+Bx+dBLJXhVW4pYrNKUGCkLR14lbbkspmQiCUYwB+rNQKudf9meOfLUWjQ2jqr+7WFHTt2IDMzE3PmzKHTs4RCIS5duoRTp04hMTHRqH48PT3Rq1cvdO/eHXZ2dqAoCt9//z1EIhHdhsViQSqVYsCAAWjZsmW1XdPrYteuXUhKSsKcOXMgEMgXRkQiEa5cuYKTJ08iPj7eqH7c3d3Rq1cv9OjRA/b29qAoCitWrEBZWWXkstKWvXv3Rrt27artml4Xe/fuxcuXLzFnzhzY2cn1CiUSCa5cuYJTp07h5cuXRvXj6uqKXr16oWfPnvTvoVWrVqGoqPKHs9KW3bt3R6dOnarpil4fBw8exNOnTzF79mw4Osp/jEskEly7dg2nT59GbGysUf04OzujZ8+e6NWrF5yc5NpTa9euRV5eHt1GactOnTqhe/fu1XRFr4eti3bir2/2Agqnxoa7y+Hm6woZRSExvxyxWSXILBEa1ZcNm4kwdzuEudvSBYJG+0xHfkaBRtvwVvUw9osRaD+4FQBgRtMFiHuYCA6XjaPlfxsd+ZqVlYVTp07h+PHjRkcPNmrUCH369EHLli2Njgpd/8EW7F9zDACw6vJXaNihgUabf77bj81f/A0odNTW31kOryAPyCgKSfnliM0uQUax8bas72aLcHc72PHkthwXNAtZSTkabes3C8bYz4ej04i2QJVn3+PCf8A2UmYlJycHp06dwrFjx9TucfqIiopCnz590Lp1a6Ntuemzv7Bz+QEAwPJTi9C8p3WlLIzhvyMmQCAQCIRaTX5WIX6c/Au9PfW7cbQTDQC87G3gZW+DMpEUqUXlyC0VI69MhKJSIQpyiiEVScADhSbNAuEq4MLXkQ8eW/2G3O3tjlodaVlJOdjw0VZUlAkx9nP1cHKpWLfjgcFk4Ntjn4Ol0JrgspmI8rJHpKcdMkuEyCoRIbdUhIJyMfJyiiEsE0JcWoEGDXzg62EPTzse3Gy5ag97dk628Av3QUpsmtpYFEXhyr6buHsqGjtTf6fD7t8Ent95hftnH+lvxAC+OfYFOFz5yjCHxUSEpz0aeNghq0SErBIhcstEyC8XIz+nGBWlQkjKhKhf3xP+Xo7wtOPB3U7dljYCHuo1DsKr6AS1oSiKwvVDd3D/zCPsSFgPR7c3Z1Ht5YN4OmJTF/YudvhyzwLw+DxAYcsGHvYId7dDdqkIWcUqtswtQUWpEOKyCgQHuSPI1xnudlx42vHUbMnmsBHeOhTPbjzXGO/Wsfu4f/Yxtr1aBzcfl2q46teDn58funfvrqZxxOPxaOfDy5cv8ezZM8TFxSExMRHl5eUoKSkBn89HeHg4QkJCEBYWhsjISLUfBwwGA++88w42b95MRwHw+Xy0atUKwcFvnmPXGHx8fNChQwfaiQYAXC4X3bt3R7du3RAXF4enT5/StiwrK0NJSQlsbGwQFhZG27Jhw4Yathw/fjw2bdpEp3Xa2NigdevWdbbqpLe3N1q2bEk70QCAzWaja9eu6Nq1KxISEvD48WMNW3K5XA1bVl04GjduHDZv3gyhUP5DncPhoFOnTggLs64OaG3B09MTjRs3pp1oUNiyc+fO6Ny5M5KSkmhbJiQkoLS0FCUlJeBwOLQtQ0ND0ahRIw2Nvrfeegtbt26lnbwcDgcdO3ZEgwaazpM3mYeXnuLvb/cBisqZ/9v1Idx8XeXbDAaCXeSFkwrKxUgvqkBumQh5ZWIUFJShrLgckgoRXB34aBDuDTdbLnwcbDSKQXUc1hqHN5zSGDv29issHvoDVpxbgiZdo+goKrFIgrLictg6GJfN4OHhgfHjx8Pd3R1SqRQFBQWIj49Heno6RCIRWCwWHBwcEBwcjODgYNy5cweenp4a3+2GyM+qzGZw8dIU+4+59QJbv9wJKL7bPv/7A3gFedC2DHIRIMhFgMIKhS0Vz8EFhWUoKSyDVChGUVI28mJS0LZjOIa91V7Dlp1GtsXen45ojP3yfjyWjVqJb45+jtb9msHJvfK5qDivBM6exhU/cHNzw9ixY+Hp6YmKigoUFxcjLi6OtiWTyUTWq1xI8inIChloP7kZXFxcEBUVZZotVTJDnLXYsiYgjjQCgUAgvHYoisLKqetRoHjIaDuwBUYtGKy1rYDLQqibHULdgB1f7cH+dcdQlC0P42/RuwmmnfifznEi2+n/MaBt9fLT7fPwYadFKM4r0TjWum8zuGpxHDAYDNrxV1JQgg86foO8jAK6j+4Xl6FhY92Vjhp1jNBwpClhsVmg3hBNJYqicPyPs1g3bzPEQv2rvE27NYRPiGbaHIPBgKc9D572PJSVlOODjouQk5JL2/K7E/9Do2a605oadYrQcKTRfb8mgVpzOb3tIn6e9TuE5fJVXiaLCZkWHZpPtr5HP3yrwmAw4GHHg4cdDxXlQnzYaREyE7JpWy7Z9zEatdQd7dioU4RWRxpeo9hvdZCSkoLr169j5MiROiMaGAwGQkNDERoaCqlUikOHDiE/Px8tW7aEp6enwRRQGxsb8Pl8+ke2QCBA586dq+V6Xifp6em4dOkSRo0apfNHEoPBQL169VCvXj3IZDIcOXIE2dnZaN26NVxdXQ2mgCptWVJSQm/XRVtmZWXh3LlzGDlypN7CCkFBQQgKCgJFUTh27BjS0tLQtm1bODs7w8/PT+8YNjY24HK5tCONx+OhS5cuVr+W101ubi5Onz6N4cOH601FCwgIQEBAACiKwsmTJ5GUlIR27drB0dERAQEBescQCARqKYNKZ2ddoqSgFMsnrKUXBCYtewtNukRpbevE58CJzwFFUVgy/Ec8uvyMvvdMXDoGzbrrdjBGtW+g1ZGmRHkvd1Rx/hRmFxntSIMi/bxx48bw9tZdAAAAMjMzcePGDaSmpmL79u2YMWOG0Q4g1ag6Z0/1dMTyknJ8N34NfU8f+8VwtOzdRGs/jjYcONrI31tfj1mFe2cfajyjiqJfYeTYDhrnRrVvoNWRpoSpKOigusBYkF1ktCMNAMrLy9GgQQOdFT0H2o2DsEwEGxcORCIRMjIysHXrVsyePdtoncK8TN22rCmIRhqBQCAQXjuHN5zCzaP3AEVawEd/zDIYkp/2KgN/LtlFO9EAICclV+85noHuWlcBAWDgjF4YOX+gxv7MhGxUlFRoPWfQbMPVlL4esxqJT1PUHnKyDcxTl8PP0d0BXx/5jC6lXpspLynH8glrsWrGb7QTLaihPzg6RGEHzzJsy+XvrEX8w0Q1Wxr6m0fosKW9ix2+OrzwjYhGqygTYuXU9fhh0jraidagdX38cOZLCKoIFg+a1QdtB7Yw2Oeq6b/i5b14q7wvbR0FWHrgkzoRjUZRFPbu3YuSkhKj04KuX7+Ohw8fIjk5Ga9evaIdOvooLCxEWVkZfH194e/vj6go7T8+33T27duHoqIio215+/Zt3L9/HykpKYiNjUVpaanBc4qKilBSUgJvb2/4+/sjMtK6lX9rC/v370d+fr7RPzTv37+PO3fuIC0tDU+ePDHKliUlJSguLoanp2edtuXBgweRk5NjtC0fPXqEmzdvIj09HQ8fPjTKlmVlZSgsLIS7u3udteXa9/6g0wQbdY7A6E+0L4CqcmzjaVw7eNuk+7iuew+TxcT7G95F485y2zpVcf6YwunTp3H8+HGD7XJzK+daVFRk1HtBSZ7CkWZjywPfTv3evf6DrbQuWoM2oXjny1EG+zv3z2Vc3H1N60Lvq/va0+V12pLJwOzVk2nnXVWnpCmcP38eR48e1Xlc6eDku1Y6sUtLS1FcbHxxLaVTksliwsHV3qT5WQviSCMQCATCayXxWQp+W/Anvb1g82w4GxAOpSgKa2Zv1NC+yknN03UKoIh80OZYYTAY6Du1B51WqOTi7utYPHQ5xCLN9E6+nQ2a9WiksV+VmFsvcPd0tMZ+c50/wY0CDEbV1QbiHydhTuvPcPavyqqRrfs1Q+qLDK225PDYaNm3qd4+X0Un4PrhOxr7zXX++DfwRaNO1qkyVZ0kx6ZibtvPcGLLeXpf3yndsfLCUjTpEoVOw9vS+/0b+OLdH98x2GdSTCou7LqmsT/XwOdHly2963miafeGBsd9E6AoChERERg2bJjR52RlZdGv4+LicOSI7tV+JX5+fnB3d8eQIUMwZcoUNG/eHOfOnatTlRIpikJYWBhGjBhhtCNNteBCQkICDh06ZPAcHx8feHp6YtCgQZgyZQratm2Ls2fP1rlKifXr18eoUaPMsmVSUhL2799v8BxPT094eXmhf//+mDJlCjp37oyzZ8/SEWp1heDgYIwePdpoR5rqZzw5ORl79+41WPXbzc0NPj4+6Nu3L6ZMmYIePXrg7NmzKC8vt3j+tYGzf13Gub+vAIrFlIXb5hq0Z2lRGTZ/sVNjf3aq/vu4V7CHVkF5e2dbdBldqYNoifMnIyPDqKId9erVozUFKyoqsHnzZuzevduoisHKYgNVF3Qv77uJE5vPAQon28Ltc2nJEF2Ul1bgt/nbNPYro8NFFWLE3NbUS3T1doZnoLvGfr6DAN3eroxgc7LAlunp6XqjXx3c5I6vwoRS8FiV+qN//vkndu7cadR3t7LYgLOno9UqF5sKcaQRCAQC4bUhEorx3bif6TLWQ+b0RZv+zQ2ed/Hfa7h7+qHG/tJCueaGPlTFXXkCuYYURVFYPmEtKsoqfyyc2HwO3769ChKx+sOR8kfMgHd7gcvTXelJKpFi9czftR7LTtb/0Ogf7qO2wsZRjPPg3GMc/+Os3nNfNye3nsfcNp8hOUZe6U1gz8fQ9/rhzqlojfRO5e/BvlN6gG9ro607QFHF6udZv4PSInRvyJaege5w862MlOLy5SugT6/F4uC6E6ZdXA1z7u/LmN3yUyQ8lld6sxHw8Mmf72H+H7PAteEi+sITnPrzAgCAzWHh87/eh43iPa0LiqLw86zftaaEGnJKOns6wae+F73NUxTxeHkvHrtXHDbrGmsTL168wPHjx9G7d29aMFwfFEXh7t27SEpKove5uLgY5Qzj8XiYPXs23N3lP2iUAucXLlyw8CpqB3FxcTh8+DB69eoFFxfjIhXv37+PhITKNGylLQ05LDgcDmbOnEmnZEmlUty4cQNnzpyx8CpqB4mJiThw4AB69OgBNzc3o855+PChWgEHFxcXSKVSyAzIArBYLMyYMYNOW5TJZLh16xZOndKdVvcmkZKSgr1796Jbt27w8NBMf9fG48eP1Qo4uLrK9b8Mfc4ZDAamT5+OkJAQQPF9cefOHZw4UbvvO8aQkZCFNXM20tvvb3gXHgGazpmqbP3fThTlakYdGbqPMxgMRHUIp7f59vLnhcKcYqybu4neb4kjbcSIEUalMUdHR6sV5CgoKMDTp09x6ZL+YkoioRjF+fLoNVVNr5zUXKx691d6e86aqfCtrz+9FAB2LNtDR7ipwlKJ+j+4VnuEXcOOlc/BfDu5LUsLSrF6xm/0962qLU2N7hs2bBh69Oih87hSEsUtyhFCSWXGR0FBAWJjY3H+/Hmd50LxvaTUSNOVZVITEEcagUAgEF4bfy7aiVcP5D+cAiP9MP2H8QbPKS0sxYYPt+o8nvoiXe/5/ab1QOv+zdBhaCv89uBHhLWsBwBIjknFpoV/AQD2/XwUK6dtoCsUclQcZnN/mYb1d5Zj2vfj9I5zcN0J+to05vhS/xyZTCbmrJmC8Fb1MOfnKVj070f0sQ0fbTV4/uugokyIH6f8ghVT1tPphyFNAjFywWAc/OUE7bjh2lTacuZPE7H+znLM+Xmy3r6PbTyLZze0V041ZAsGQ56uEN6qHt79cQKWHfiEPvbHwh1IfJps0nXWBKIKEVbP+A3fjV+DilK5czcw0g/rbn2HXu/IH/SL80vUtGkmf/22URVIz2y/hIcXn2o9ZuizAwCzfpqE8Fb1MPXbsfj22Oe0Y/nPL3fi5QPjKi/WRioqKrBv3z6TIm+ePXuGI0eOoLCwUvQ4OTnZaGeHKk5OThgwYIBRUQ21HZFIhL1796KiQntKvDaeP39O68wpSU5Ohqurq9ERWErs7e0xaNAgg06jNwGJRIK9e/ealD4WFxeH/fv3Izs7m96XmpoKV1dXkyM3BAIBhgwZYtCZ+SYgk8mwZ88eo1KvlSQlJWHv3r1q0X1paWlwcnLSq1OnDR6Ph6FDh5r8fq5tSKVSLJ+wFmVF8kXLHuM7odtbmlpcVYm98wqH1mt3Iqa9zDD4eX3ny1GIbBeGIXP6Yv2dH2DnJJe4OPf3FZzfeRWoEkVlivMnLS0NV69e1auXp0S52KH8O/bo0QNTpkwxmJ5foKbpJXf+yGQy/Dj5Fzo1s9OINugzybCOXvyjROxdpT3yWaIS9X/vjOaCMwC8/flwRHUIx4B3e2HDvR/gqIgQu3rgNr04Z65TMjMzExcuXACPp3tRzytI7nQN7OoJMCpt2aVLF0ydOhWNG+uvwFmUW0w/UzqZoN1mbUixAQKBQCC8Fh6cf4zdK+VRLGwOCwt3zKOrDOpj8xf/aF2FU5L0LBWhzUN0Hrd1EOCbI5/T259um4tZzT+GqEKMA+uOo6SwDGe2X6SPe/i7IStZrgHSYVhrDJzRy+CDcHZKLl15SRsJTww7b7q/3RHd3+5Ibw+Y3hNHN55BRakQP0xch58uLjMY+l9TJD5Lwdejf1K7rgHTe8Ij0A1b/ldpB48AN1pPpVW/Zhg2b4BBW+ZnFmDTZ3/pHvtJisH5dRrRli7pDgDD5vXH/jXHIKoQY/mEtfj52jcaab2vi9SX6fhq9E9qTtheE7tg7rppdNSeMrVZGUHWtFsURs4fZLDvotxitTTqqiQ+TQFFUXr/Jm0HtlDTYBvzyRDsXH4AErEUy99Zi19ufw+ujeEfI7WRJk2amCSsnpqaioCAABQVFaGgoAA8Hg8CgQAJCQlITExEYKDuwg3aaNasGUQiEc6fP4927dqpVQt902jUqBE6depkdPu0tDT4+fmhvLwcubm54HA4cHBwQGpqKl68eIHQ0FCTxm/cuDEiIyNx/vx5tGnTRq1a6JtGZGQkOnQw7KhQkpaWBm9vb0ilUmRlZYHNZsPFxQWZmZl48uSJyXp8kZGRCA8Px4ULFzSqhb5JKNO227Zta0RrOenp6fD09ASTyUR6ejpYLBbc3d2RkZGB+/fvo3lzwxH0qoSHhyM0NBQXLlxA8+bN6RTBN4md3x/A4ysxgCLie+7aqQbPkUql8khoLVHlACAsFyErKUdrkRwl9ZoE4eer39Dbc3+Zhu/G/QwAWDN7Ixp1amC28+fhw4dq0bC6oCgKHA4Hffv2RUVFBVxcXFCvXj2jnKNqVSYVzp99q4/i3hl5RXNXH2d88OsMg33JZDKsnrURUon2RRdKJr+HUxSFvIwClBaVaRRdCIzww+rLX9PbH/w2A0tHrAAArH9/Cxp3iTTbKfno0SPEx8frfZbwC5MXkJFJZCh8IMLbnw+Fk5MT6tevb7ItXV6jI41EpBEIBAKhxinKK1aLppny7TjUb2o4mqakoFRv5SYASHpm2LGiSkADX0z/oVJXStWJ1qJ3E9qJ5urjjI9+n2nUTf7guuMo11GgAIo0BtU0UmOYsXICfOrJKwE+vf4cO5cfMOn86uLMjkt4r/VC2omm1PdwdHdQc6K16NWEdqI5uTtgwSbDBSUA4Mivp1FSoDsaozCnCEV5xgvUAsDU78YiIEJeTerFvXjsWLbHpPOri4u7r2N2i09pJxrXhoP5m2bjky3vqaW+ntlxidY4s3e2xcdb3zMq0uT4pnMozNFtq/KSCuSm5+s8ro0JS0cjpIncYZTwJBmbv/jHpPNrA9HR0bh58yb69u0LPp9vxBlyevbsicmTJ2PChAlwdXXFW2+9hVmzZoHFYiElxbTvISUymQw3b958Y9O/Hj9+jMuXL6Nv376wtTW+KEqXLl0wZcoU2pajR4/GzJkzweFwkJqaatZcKIrC7du39Ype12aePXuGc+fOoW/fvrC3N15Mu0OHDpg+fTomTJgANzc3jBw5EjNmzICNjQ3S0rRXgzaGO3fu4PDhNzOF+/nz5zh16hT69OkDR0fjK/y1adMGM2bMwDvvvAN3d3cMGzYM7777LgQCATIyMsyaC4PBwP3793HgQO24h5tCzK0X2L50N6DQ4lq4fa5RxY/unX6IF3fj9LZRykEYS/e3O6KrIhKupKAUP05ZD3uXSidvYY7xzh97e3s0a9bMYDsGg4EPPvgAjRs3RvPmzbFz5061FGp9qC4Au3g54VV0AjZ//je975M/5xolmv/o8jM8vRart42TR6UT7PD6kwb77DisDfpM6gYAKCsux4+TfoGdc+Xf1RRb2tnZoVmzZnqf74IayVPH7657gcz7eWjZsiV2796N58+1VwWvilr1U5LaSSAQCIT/Ehs+3EoXBmjWoxFGfDjAqPPYXDZcvPXfNI2J9qrKgBk91XS0AGD0J0Px8MITevvjLXOMrgykTci1Kimxpv2g4dvx8em2ubSQ7Palu/H87iuT+rAmwnIhVr37q1xbTpF+GNTQH2tvfoeYmy/x97f76LYj5w/C4yvP6O35m2bDxcvZqHE8Ag2nySXHmGZLHp+Hhdvn0RF9O7/fjycGHkyrE5FQjHVzN+HrMT/RGn/+4T5Yd/M79J3cTa1tTloe1r1XqQnz/q8z4OFvXCqhpxG2THpm2o8ZDpeDhdvn0dVY9646ggfnH5vUx+skLy8Phw4dMkvkX/lDwd7eHtOmTUNQUBA4HA5atGhB6yiZio2NDYYMGfJGpiUWFhbi4MGDZon8MxgMMBgM2NraYtq0aahfvz7YbDZatWplVqosFNppQ4cOfSPTEktKSnDgwAGIRCKTz1Xaks/nY8qUKQgPDweTyUSrVq2M1gWrCovFwvDhw80693VTXl5uctq2KgwGAzweD5MmTUJUVBQYDAbatGkDT09Ps/sbPnw4mEzmG/XeFAnF+GHiOjoS6u3PhqNhR+MK9rj6uIDJ0u92MPXeAwBz102Fq4/8WeLe6Ye4oVKQyBTnT6NGjdC5c2ej2iq/91ksFvh8PhITE406T9X54+TugB8mrqOLL438aBCaGyhepcTV2xlsjv5sBO+QSi3Ti/9eN6rfWasn0SmXjy4/w/l/rtLHTInui4yMRLdu3fS2UZWhKCkoBYPBgJ2dndG2rOqUfF0QRxqBQCAQapToi09wZrtclNXOyRYfb5ljtG6LjYCHTU9X46tDC+ERUPnjqsPQ1vTDjTE6T6pIxBL8MPEXjYqft47dpR9yhr8/AC16NTG6z0Gz+uDX+z9izKdD6X3BjQLgF+5Db5saOQcAke3C8dZCeTVBqUSuUyIsr/lqainP0zCv/Rc4plL4oM+kblh95WvsXnEIB9ZVCtzO+XkKUl+k07ppA97tpZYaaIg+k7rh94crMf7LkfS+gAg/BEZWVoQyx5ahzUPwzmJ5eXmZjMIPE9eivKTmq6mlx2Xiw06LcPCXygik7mM7Yt2t7xHcSDM18LcF22hnW68JXdBlVDuNNrroOqYD/nj8EyZ//Ta9zy/MB8GK1WGYacvghgGY8u1YevuHSev0RhHWJlgsFlq3bm1SSmdVLl68iF27dtHbvXr1gq+vr9n9RUREYOjQobh8+TLKysrM7qemYTKZaNGihV6RaUNcvXoVO3bsoLe7d+9OC9+bQ1hYGEaPHo0rV66YpI31umEwGGjatCl69epldh83btzAn39WpnJ36dIFwcGGI791ERISgrfffhvXrl1TE1t/E2jSpAn69Olj9vl3797Fpk2VCxgdO3ZE/fr1ze4vMDAQ48ePx82bN1FQoFuqojaxZ+VhJCsWAMNb1VO7JxsipHEgtsf9gs/+ep/e5+ThgMadKx1x5tx7HFzs8fGWOfT29mW76WdBY50/qampWLVqlcnfDwwGA4MHD0ZEhHHORFXnT8ydl4h7KHcahTQOxORv3tZzpjp+YT7YHvcL/vfvh2AoFlbtXezUKmc7eVZGpCU8SdLaT1VsHQT4eOt7tP12fLUbHJ58gcxYW2ZmZmLVqlVquqHacHJzABQBa0JFdsaAAQPQsKFx1b/VItI8jY8wtTbEkUYgEAiEGkMsEmPtnD/o7Wnfj4O7n2mRG7YOArTu34y+sfuFeWPJvo8RGCV3rKS+SNepHVGVijIhlo5YgQsKoVrlQwkAulKiR4AbJn39lklzhELPw1Elgm3U/MGYvryymII5q68AMP7LkQhtHkz3sWv5QbP6MZcLu65idstPERctfwjk8bn4eMsczFs/DSunrseprXKhWiaTgY+3zIFnkDuuH5KvErt4OxtVUKIqwQ0D4ORe+bA0bF5/zFo1id4215ZvfToUke3CAABprzKx46u9ZvVjLlf238SsFp/g+R15ZCGHx8EHv76LhdvnQWCvmWJ478xD+r3q6GaPmSsnmjxmYKS/2gruoJm9Me+XafS2ubYc/sEANO0m117KTs7Fn1/uMnjO6+bVq1eIiYlBnz59TBYOVyU9PV0tJTQ6OhobN260ONrk+vXrb0y1xISEBDx69Ah9+/YFh2O+3mBVWz5+/Bi//vqrxba8desWjh/XXsGutpGcnIx79+6hX79+egW7DVHVlrGxsfjll18sLmhx586dNyZdNjU1FTdv3kS/fv1MStuuSlVbvnr1CuvWrTMrYlCV+/fv49ChQxb1UROkx2fir6/lEghMJgMf/j4TbI5p35ke/m7wDa2sRtmmfwssO/gpvZ1kYmqnkha9mmDoe/0AAGKhBEy23L1hrPMnOTkZHA7HLB1Ff39/JCYmGvX9lK9SbIB+5mQw8MFvM/RWgNeGm68rAiP86UrmLXo3wTdHPqMzFrKTc2HrKL8eiViKe2e1Fx2oSuPOkRi1YDAAQCqRQXlZxmqkpaSkgMViGaWjqLxmqUQGiUQCf39/JCUlGRWNrWpLktpJIBAIhP8E+1YfQ+JT+apjg9b10W+aeZELGfFZdIRTYJQ/oIhSguKhIe2VYe2S/MwCLOi2GDeO3AUUToxlBz5F+6Gt1drN+XmKmj6VKSSoVIQMjPJDQIPKKJWkGPM0lDhcDj7dNpdOS9z1wwFkJGSZ1ZcpiCpEWDN7I755ezWt/xYQ4Yt1t75HmwHN8UmvZbi89yagKB7xv10fofOodlj//ma6jxkrJmiI3hpLokrKblCUH/33hgW2ZLFZ+OTP9+iqrPtWH0HKc/M1hIxFLBJjw4dbsXTECpQWyiOOfOp7Yc31bzDgXe3FLERCMda+p+qEHm90qnFVVNOfA6vYMtlMWzKZTHy8ZQ5sBPIf/oc2nET8I+PSNF4HQqEQ+/btM1vnSJX27durpQUJBAIUFxebVLWyKkwmE/369XsjoqjEYjH27duH9HTLqwm3adNGLS3I1tYW5eXlFtuhX79+JlW+fF1IJBLs27fPIi0zJa1atVKLDhQIBBCJRAajRQzxpthSJpNh//79ZusVqtKiRQv07t2b3hYIBJBIJGpVZs2hT58+KC+v+UhoU1n/wRaIKuQp20Pn9ke9JkFm9ZOodu/xh62jLVy85amZ5i7iAMDU78fRGrJSsdxRbKzzp0GDBhgzZozJFW0BICcnBydOnFCr6qoLVeePsEz+/Np/Wg9EtDGtkIoStWeiSH9wbbjwCpanbifHpCKibRh9/PB64xdkJi4bQ0f8KyuAFuUWG+XgCg0NxZgxY4xamOKrLBYmx6QhLy8PJ0+eNEoTMy+TpHYSCAQC4T9EVnIOdiyrFKmd+8s0sx5coBItBsUDBBRFA5QY0sxKfJaCee0+R+xteSSQwJ6Pb499jrYDW9BlwJV4hZinKaM6TwaDgYAIP3iHeNJaUqbqeqkSGOmPYfP6AwBEFWL8/vE2s/syhvjHSZjb7nMc/rXyYaznO52x7uZ3YHPZmNf+Czy5KtcYsxHwsOzgp+g0oi3++XYfMhKyAQBNuzdEt7eMrzxXlYQqD+Buvi7g28kdnJbY0re+N0YrVmAlYik2fLTV7L6MISkmFR90XIR9P1dGdHQe1Q7r7yzXW3Bjz8rDSHkud1REtg9H70ldzZ5DVVs6uNrTFbqSLLClR4A73v5crqMkk8qw/oMttVYDSCQSwcfHB927d7eoH5lMhqysLDUdr7CwMAwdOtTiqpuNGjXCW2+9hZiYmFqtmSYWi+Hp6YmePXta1A9FUcjMzIS7e6XGZEhICIYMGWJxpciIiAi88847td6WUqkUbm5uFqV0QmHLjIwMNVsGBgZiyJAhcHKy7IdnaGgopkyZgpiYGIuj26oTqVQKZ2dni1I6obBlenq6mi19fHwwdOhQs/X7lISEhODdd99FbGysWTqNNcG1Q7dx47B8wdHF2xkTlo42u6+Ex5VphkGKLAJl4Z+i3GKTdM1UsRHwMGvVZLV9FaVCg9IXFEXhyZMnZv8dPT09YWNjg+JiwwWPqlabd3SzV5NEMJV4FVsG0raU/19RKkTH4ZWLwg8vPdHSg3a4PA5mr1a3pUwqQ0m+Yef506dPjbalasbGqwfxcHd3h0AgMGrRRD21kzjSCAQCgVDH2fDhVrpS5cCZvRHWop7ZfVV1BACAv2q0lx6tjQfnH+ODDv+jHTzufq5YdfkrNO3WEHEPE3Fyy3mNeZvjDJDJZEhSRN95BXvARsADi82iUxtSnqcZnYKqjfFfjqS1IS7vvYl7Zx+Z3ZcupFIpdq84hDkqqZxcGw4+/H0mPtn6Hl5FJ+L99l8g7aU8qsfFywkrLy5Fq77NkBybit0r5CkrbA4Lc9dNM6pKpzYoiqL/5i7ezrB3tgODwaD/5vIIRfO14sYsHEqnGN86dh83j941uy9dyGQy7F9zDLOaf1yZysllY+66afjfzg/1RupVTauZZ4ETGior2XZOtnBVRAMobZmXno/SQvOjTUZ+NBDeIfLIgAfnn+Dy3htm91Vd5OfnIy4uDuPGjTOpGqI2UlJScPLkSbXIFBaLBYqikJ2dbfFcS0tLsWvXLty7d8/ivqqDwsJCPH/+HOPGjTOpGqI20tPTceLECTW7MZlMsFgsoyI+DFFRUYF///0Xt27dsriv6qC4uBhPnjzBuHHj4OLiYsQZusnJycHx48fV7MZgMMDhcKwSOSgSibB7925cu3bN4r6qg5KSEkRHR2PcuHFqDjBzKCgowNGjR9WiBJUFCKwROSiVSrF7925cunTJ4r6sTUWZEOvf30Jvz1w50eyocgBIeFr5bEZnE6g9u5kfldZmQHO06qdeedNQemdZWRnOnDlj9t+Rw+Hgww8/NEovr6ojzZKocgB0dgcABCmfg1V0eN393egCD0W5JcjPMl6Lr3nPxug4vI3aPkMRfkKhECdPnkRysnEFv5SRiACQ9DQVLBYL77//Pho0aGDw3PxMeVQth8ehU1hfB8SRRiAQCIRq59bx+7iyT5725+ThqCZ2bg6JKimTQQ2VqZ2qaZPaH8ZOb7+Iz/p+TQuh12sahDU3vkVI40DIZDKsmbMRMqk8WsHOSV76+8G5x/TcTSEzMZt2HCrnCAD+DeQPOhKxFOlx5v84tHUQYOp34+jtDR9sgURsvRXt9PhMfNx9KX7/ZDtddCEoyh9rb3yH/tN64NLu6/ik5zIU5RarHPsWYS3qgaIorJu7qbIi1fzBag/LppKfWYDiPPkqpaotlX9ziqLoaC1z4Nva4N0f36G313+4FSKh6ZUHdZGVnIOFfb5WS4/xD/fB6qtfY/DsPgYdjNZKq4GiQpaysEZQQ396bNW/T6IFP2a4NlzM/KlSu+23Bdvoz0FtgKIo7N27F3fvWsdZWlFRARsbGzg7q1ehvX79Ou7cuaPzPGNxdHRE8+bNERv7+qrK6oKiKOzfvx83b5r+/agNoVAILperUfH05s2bVhnD1tYWrVu3RkxMjMV9VQeHDh2ymmOqoqICbDZbIzrk9u3buHHDcue2jY0N2rdvXyvflwBw9OhRXLlyxSp9CYVCsFgsjYqnd+/etcrfi81mo1OnTrXSln9/sxeZiXLHdrMejdB1THuL+lMu4ggc+PTilbGLoIZgMBiY9dNENa3blw8S9J4jkUjAZrPh5eWlt50+Hj9+jAMHDhhsl52cS7+2NKocKrbk8DjwVqS1qso0pMSmwS+sUpNu/5pjJvU/Y8UEtUqrygVAXUgkErBYLPj4+Ohtp0S1InuqQo4lJiYGe/bsMXiuMiLNxcvJ7AVaa0AcaQQCgUCoVoTlQqybW1ntasaKCbSTylyU0UksNot+UPAP96GFVl9VeXiiKArbl+3GDxPXQaLQz2jdvxl+urgMbj7ylf/T2y7S6Ym+od748PcZ9Pm/zv/TZGdA4hOVlddIVedP5YNO1XmaSq8JXdCgtXwlNOFJMg5vsFyYnKIoHN90FjOaLMCjy88AxQPqqPmD8Mvt7xHcKAC7fjiIr99aBbHC2dS8ZyOsvvIVPALkK/8X/72Ge2fkEXKege4Y978RFs0pQcWWQSq2DLSiLbuMbo9GigpiaS8zsG+15WLaFEXh9PaLeLfxfNxXiRgcOrcf1t/9waioTGum1aDKKrba+zLSerZsN6glWvaRV7nNSsrBvz/UbEEMfYhEIpSWllqchqgkNDQU77//voYmLhCTNAABAABJREFUjK+vL8Ri6zhjBw4ciNGjR1usx2RtpFIpCgsL1bSjLCEoKAgffvihhsC+r6+v1dLe+vTpg3HjxtU6W1IUhdzcXIvTEJX4+fnho48+0hBQt+b7snv37pg4cSLy8vKMaF2z5Obmom/fvlbpy9PTE/Pnz9eIXvX19bW42ICSLl26YNq0abXKlppR5VMtclqUFpUhKykHUCy8KfsKtOK9xz/cFxGtKzXHdv2g38Hl6OiIhQsXaiyEmEJZWRliY2P1Zi7EP06i9cYA4P310y2KKhdViJCqyAQIiPAFiyXXzFW7j0cnoOPwtvT21f2mReJ6BXmgcedIenvPT4f0XqOtrS0+++wzo1M7fepXOi9zUuVOxrKyMjx//lzvOBKxBIU58gXc11loAMSRRiAQCITqZtfyg3TkVeMukegxrpNF/UklUiQrImZ8Q73A4cqF4nl8HoIbBwIKHQ5leppYJMaPU37BtiX/0n0MnNELyw58SldGLMorxsZPttPH31s7FZ1GtEWL3pXOgN0/mlZZS10LpNJhoSos++SaZSvQTCYTc9ZMobf/XLwLBdnmC0nnZxbgy6HL8dP0X+mCAl5B7lhxfgne/XECWGwWfp61EX8s3EGf02dSN3xz9HPYOsqdo6VFZdjw0Z/08dmrJ9MC9OaSoKYFUmnLBiq2fGqhLRkMBub8PIV2xv719R7kpJn/o6YwpwjLRq3EDxPX0QUF3P1csfz0l5jz8xSjbGLttBroeV+q2fK65bactWpyjRfEMIRYLEZaWhrmzZuHgIAAq/R59OhRPHmiqT8zYMAADBo0yCpjMBgMJCcnY+3atVZJy7MGEokESUlJmDdvHoKDdWv7mcLJkycRHR2tsb93794YNmyYVcZgMBjIyMjAmjVrjE5Bqm4kEgni4uIwd+5chIaaJzxelbNnz2pNB+7RowdGj7bMGa+EwWAgJycHa9euRXx8vFX6tBSpVIpXr15h1qxZRqWIGcPFixe1RkR27twZY8ear3FVlcLCQqxduxYvXrywWp/mQlEU1r63iV54HLVgMPzDzY8qh55FnLCW9ej77hML7z0A0H5oK/r102vPcfe05neKkps3b+LgQcsWesLDwxEVFaW3zfoPKu/jfmHeCFE8q5pLcmwanT2heh+v3zSI1uF9ei0WQ+dWOpNTnqebrA+pmt756kEiXZxLG/fu3cPevcZXPrdXWVAXV8idjGFhYWjYsKHe8wqyi2hHm1Le5HVBHGkEAoFAqDayknOwc7l8RZDFtkwnS0lSTCqdMqjqVAGAqPbhAACZjMLTGy9QUlCKz/t/i9N/XqTbvPvDO5i3fjr9Ix8AdizbQ69wdRndDi17N1E4AybR7XYu30+nOBjDq+jKlVWlECwUIf1KHl+1PMWoQetQ9Jkkr3JXWliGLV/8Y1Y/l/fdxPRGH9HRTwDQd0p3/PpgBRp3jkRZcTkWDf4eR38/TR+ftOwtzN80C2xOZTTOzu8PIC9dHu3RdmALtBvc0oKrk6NqyyAVW4a3rk+nHljDlvWaBGHADHl0TUWpUM1haAo3jtzF9EYfqaUE9xjfCb8/XInmPRoZ3c+elYetmlaDKiv+qu/L0ObB4NrIndKPr1huy4AGvjVaEMMYTp48ib1791otFUQqlSI6OlprVIpUKsXPP/+MrCzrOBADAwPh5uaG27dvW6U/Szl79ix27dplNVvKZDI8ePAAQqFm5C9FUVizZo3VnIi+vr7w9vauNba8ePEi/vnnH6sV5qAoCvfv39dqSwBYt26d1ZyIXl5e8Pf3rzW6c1evXsXff/9tVeF+Xe9LBoOBDRs2WM2J6OrqiuDg4Fphy2sHb9NR1J6B7hj7hWVR5ahy71F1/tg6COhF0PiHSRZpdEJR9EaV9XpkL+Li4iyumuru7o6WLVvq/PzeORWNB+ce09tNu+l3FBmD2n1cxSnJteEitEUIoHCcAQxah00mleHqAdPeW8r0WyUbPtwKUYX2KMy4uDiUlZUZ3beNbeViovLv4+LigjZt2uh1+BVkVi4Wu7zGQgMgjjQCgUAgVCd/f7OPTv8bNq+/2sOTuTy8+JR+HdUuXO1Yw44R9Otbx+7hg47/ox9guDYcLPr3I4xaMFjtx192Si6OKKpR2gh4mLmyUt8pMMIPQ+f2AxTOgN+MdAZQFEXPk29ng+CGldEv9s52tB1ePUhAeYllD3EAMPW7sRA4yKPrjm86hxf34ow+t7SwFD9MWodlI1fQzkQnD0csPfAJ5v8xC7YOAmSn5OLDzotw+8QDQCGSv3D7PIz73wg1W+ZnFeKAQoeDw2Vj9urJVvmhrbQlh8dB/WaV0S98WxuENpdvJz5NQVGe4cpZhpi0bAzsXeQVAs/uuGxS1GBZcTl+mv4rFg3+nhbDdXC1x6J/P8LCbfNMSmkuzi/Bnp8OAwCYLCbeW2tZWo2Sh5ee0n2Gt6oUSOZwOQhXpAlnxGdZFI2npGpBjPvnrF8QwxSePXuGTp0si4hVhcFgoEGDBoiMjNQ4xmKxUF5ebrXoEhaLhcmTJ6N79+61oupkddgyPDwcjRppOppZLBaEQiGeP39ulbGYTCYmTJiAXr161RpbduzY0aJUL1UYDAbCwsLQuHFjrcfEYrHV9LgYDAbGjRuHfv361Rpbtm3bFhwOx2p91q9fH02bNtXYz2AwIJPJrGrLt956CwMHDnyttpTJZNj65U56e9aqSRZHlUPl3gMAke3D1I4pF0EpSr4IagmqumBQFDA49MtJrW1DQ0PRvHlzi8ajKAqbNm3SGplMURS2LlJf3PQMtKz4Bao8B1e1ZcMOlZGYT6/FqqVnHvvjrEnj+FaxZXpcJvau0i57Ub9+fbRsafzCKY9f+Z6SKiIfKYrCli1btEYmK1Et2kBSOwkEAoFQJ0mPz8SJzecAAAJ7Pt7+zDqpOdEXKx9WGndR/wEb1aHSsXbk11N0KoGjmz1+PLsYnUe20+jv72/20hFug+f0hZuv+grcO6rOgD03EPcw0eAcU56n0Tf7hh0bqEW/QTVyTirDs5svjbhq/Th7OmH8olGAih6cMdw/9wjTG8/H6W2VEXsdhrXGxkcr0X6wPD3iybVYvNfmM7pqp72zLb47+T+tKbq7lh+gteT6T+9JV2+0hMzEbGTEy6N6ItqGgmvDVTse1V71odHyH9oOrvaYtOwtenvb0n/1tlfy6PIzzGi6AMc3VT6othnQHBsfrdT6vjPEnpWH6ZTQ3hO7WlSsQUl+ViH9mQhrEUKnNitRtaVSL9ASqhbE+HPxLqtF3ZiKSCTC3Llz0aZNGyNaG0dJSQm6d++utVoli8VCjx494Ofnp/Vcc+Dz+Xj27Bn++OOP1/pDWyQSYebMmejQoYPV+iwpKUHnzp21ahUxGAz06NED/v6WL8QosbGxwcuXL/Hbb79BKjW/erKliEQiTJs2DV26dLFan6WlpejQoYNWrSIGg4Fu3bohMNCy1DJVeDweEhMTsX79eqtGgpmKSCTCxIkTraZ/CIVmU+vWreHpqf1e1qVLFwQFmV/8pSpcLhfp6elYu3at1fTXTOXS7utIeCyPWGzQJhTth7QyeI4hKIrCwwvyZze+nQ1Cm4eoHY9Scf48sTAiOiDCV2PR6Z/v92ut7O3p6Ynw8HCN/abAYDBga2uLggLNqpg3jtxF7G11kX5XX8sq8kLlOZjD46jJhaCKLR9ficGg2ZUalqZKYPjW96JTRZXsXnEQZcWaC8Bubm6IiIjQ2K8LropzVqKoYM9gMGBvb6/VlkpUi3S5WcGWlkAcaQQCgUCoFnZ8tQdSxc1x2Pv9LSrzrUT1YczWUYCQJuo/Btz9XOmoH6W2h2+oN9Zc/xaR7TQfljISsmhnH9/OBqM/HqzRxtbRFm9/Npze/vtbwxoQ0RcqVwsbd9HUzojqqOqwsE4FuSHv9aUfKq4fuqOWDlkVYbkQ6z/Ygk96LqMrSQkc+Phk63tYvGcBnNwdQVEUDv96Cgu6LaZTNb2CPbD66jdoouWactLycHiDfNWXa8PB258P12hjDqorr9rGVXWeWsuWA97tCa9geYW2e6cf4tlN3SvkIqEYGz/ZjvldF9MOP76dDT78fSa+OrQQLl6mixgXZBdi38/yVV82h4Xxi0aafS2qqNpS2/uyYTXYsteELnR11SdXY9XmUFPk5ubixx9/RG5urhGtjefw4cM4d+6czuMtWrSw+o9hb29vpKen49Ur/RXUqouCggKsWLECmZmZVq2Wdvz4cZw+fVrn8WbNmkEikVjVEevt7Y2srCyrRbqZSnFxMX766SekpKRY1ZYnT57EiRMndB5v2rQpZDKZ1W2Zm5uLp09r/vMNhcNr9erVSEhIsKotz5w5g6NHdReeady4MRgMhlVt6eXlhaKiIjx+/NiI1tZFKpVi29LKhbiJS8dYxZ6GFhcbqj4TXbPs3sPj8+gqlkrph4KsQhzbqB6NlZeXh82bNyMjI8Oi8QBgzJgxGlGLVSP7lKhmKJhDVpL+xUXVCLUn12LQvEdjsDlye5cVlSM93vhq8WwOG37h8iqcyvdBcX4pDq1Xj/ArKirCpk2bkJJifNVVG0HlvJURaQAwYsQItGjRQud58SqL2UEW2tJSiCONQCAQCFYn5XkaziiinOycbDHyI+uIbic+TaHTDxt1jqArFUEhzL58wlqUFFTqa4S3ro81176BTz3tpc3/+moP7XAb/v4AOLo5aG3Xb1oPOHnIo04u7b6BpJhUvfNUjZpr0lWbw0L1odE6aSFcHgejPx5Cb//97T6t7WLvvMKsFp+qlUJv2i0KGx+uRK8JXcBgMCCqEOGnaRuwZvZG2j6Nu0RizfVvdUZG/fPtPogq5Gm8g2f3hau3+VWwVHlowJZR1WBLFpuFtxdWRlD+/Y125+mr6ATMafUp/l1RWc2qYccG+O3BCvSf1sPsHyD//nAQFaXy1fN+03paJRUERthSVb/PWrZkMpkY+3mlvs5fOmxZndy5cwd8Pl9nVIm5ZGRkwMtL+3eL8vjff/9tNZ00KKoxDhs2zOrXYix3794Fh8OBt7e3Ea2NJz09Xa8tc3Jy8M8//1i12IKXlxdGjBhh9Wsxlvv374PBYFg1ahFGvC/z8/Oxc+dOJCUl6WxjKm5ubhg5cqTVr8VYHjx4AKlUarUiIkoyMzP12rK4uBg7d+5EXJzxcgqGcHJywqhRo6x+LcZw7u8rSFY83zTs2AAtemmmB5uDocVFD383uPvLswFibr7UqWlmLMEN5dGrSkF+APj3x4MQCSsr1iqjnqpWYzUHiqLw7NkztX1X9t2kI/l5fLnTiMli0gtL5hJtYHHRyd0R/grn14u7cRCWC9UcTtuXGpexoCRIYUtVZ/Henw6rVbIvLFRIWThof4bWhqpGmnLRHQqHnT6HfLxqwaSG1otSNgfiSCMQCASC1dm+bDdkMvlNd+T8QSZpQ+kj+oKKI0DlASIjIQsfdPwfzv51Wa1919HtdUbCpbxIxylVZ9983c4+GwEPoxTHKYrCP99pd1JBawqDZkU7r2APuCgcTc+uP7daalH/6T3U0lATn1WuDgrLhdjyv3/wfvsv6Adlrg0Hs1ZNwvLTX9ICvVnJOfioy5c4seU8fe7w9wdg+alFcPbQXiEpKykbxxXaGza2PIz5dIjWduYQraKPFtFWs6Kdq7cznUIac+ul2oOyJfSa2IV+sL9x5C5e3q8UlBYJxdi+bDfea72QToHhcNmYvnw8VpxfYlFKa15GPr3ay+FxMPZz66REQyUijcliqkXyKVHV73t5P94q+n0A0HVMe7rU/f2zjyyuCmoqTZs2xdixY8Fms41obTxvvfWW3lRRDw8PsNls5OTkWHXcxo0b4+bNm1Z1hJgy9rhx48Dlco1obTyjRo3Smyrq5uYGLpdrdVs2bNgQ9+7ds6ojxFiioqIwbtw42NjYWLXf4cOHo3PnzjqPOzs7g8/nW92WUVFRePTo0WupOhkREYFx48ZBILCsqnFVBg8ejG7duuk8bm9vDzs7O6vbskGDBoiJiUFMjHUig41BIpaoOVkmffWW1aL7DC0uQiUqraJMqCambw6qAvxK7c+c1Dyc2nqB3h8QEIDJkydbxZGWkJCAs2fP0s4mqVSqVile6Rj0D/fRiCAzlYcXDNtSKR8iEUsRe/sVhrxXWb1TtQiSMajaMqKdPNqtILsIx34/Q+/38fHBxIkTtabm68LGtvJ7T6ri8ExKSsLZs2e1yhfIZDLEP5Lf97yCPSyuYm4pxJFGIBAIBKuS8CQZ5/+5Cij0ppSV+6yBtoexu6ejMbvlp/SDl7LyIAA8vaE7ZWfHst30auXIjww7+wbO7E2L0J/7+wrSXmlPB6iawqBa0VIJg8GgHRllxeX0g4Gl8Pg8jJovT09VdfjdO/MQ7zZZgL+/3Uev/IW2CMH6uz9g+PsDaJHr6ItPMKflp7SmB4/PxcLt8zBr1SSt16Hkr68rdeaGzu0PJ3frlCTPSsqm9TC0pTAoUdpSLBTjpQmFFvTB4XIw5pOh9LYykurhpaeY2exjbFvyLx2tF9I4EOtufY/RHw9Ri5I0h3++2w9huTwdcNDM3hqafeaSn1WIhCdyp19YixCdD6Cq+n0xtyzX74OWCL8dX9dcVNrZs2eRkpKiN6rEHF6+fIkXL17odc5xuVzMmjULYWFhOtuYS1ZWFo4dO2ZES+tx8eJFxMXFwcfHx6r9xsfH49mzZ3oF4lksFmbMmGGSBo+xZGdn49ixYzWq33f16lXExMRYPYIrKSkJ0dHReh2dTCYT06dP11rYwVJyc3Nx9OjRGtXwu3nzJh4+fGj1CK60tDTcvXtXr6OTwWBg6tSpaNasmVXHhiL18OjRozWmO3fqz4v0/bZZj0Zao53MwZjFRVhZo1M1AiusRT369a7l+2mnVmpqqlXSOqGoBMzlcunvkIu7rtF6pPWaBEEqkX8elNVJLcHQ4iKqRupfjUXviV3BUTwbl5dU4PqRu1rP04ZqKmqIyutdPx6kK3imp6ebbEvViDSZSkSar68veDye1u+QzIRslJdUyOdiBVtaCnGkEQgEAsGqbFtSKSg+5pMhGoLm5kJRFB4pHiBsHeXl0nf9cBCf9/sGxXklgEIPbe2N7+gxn1yJ0frjKPFpMs79fQVQOvveN+zsE9jzMeKDgYDCybDz+wNa2xnSoVLSsIogrLUYOLMXHYV37u8r+HLYcnza+yukvZQ/5LA5LLzz5SisufYNAiPkP+IoisK+n4/ik57LUJBdBADwCnLH6qtfay0qoEraqww6ek3gwMeoBdZJ44URKQxKqsuWfad0g4uiKtSVfTexZPiPmN91MR3Rx2Qx8dbCYVh78zurPNRlJefg6G9ynSgbAQ9vLRxq8BxjeXTJuPelqn6fNW3Z853O8AiQi5/fPn4fz+9Wv8ZXbm4urly5Ui19375926iIsJKSEhw5csTq43fv3h1OTjVXsaywsBAXL16sFmfTnTt3kJhouIhLRUUFDh48aPU5dOvWDS4uNSdaXVJSgvPnz1eLs+nevXtISDAczSMSiXDgwAGrz6Fz585wd3evMadkeXk5zpw5U222jI+PN9hOIpFg3759Vi9a0alTJ3h5edWIU1IkFOOvr/fQ25OWjbFa36kv0g0uLqKKTtrjq8+0tjGWoKhKB3VpYSla9mkCAMhIyKaf/R49eoT79+9bNA49XlAQPvroIzCZTEgl6jpzrQdUVgW1WB8tOceoxcWqtmQymWjdt9LZu93IIkoAEKhiy4LsQnQYKi8+kZeej5OKZ78nT57g7l3jnXOomtqpEpHm6+uLBQsWaF2kUi32ZaktrQFxpBEIBALBarx8EI/Le+Vh486ejhg8p6/Bc4wl6VkK7eSJah+O78b9jD8W7qBTSNsMaI51CoeGMvw8L6NAq57ZtqW76Qf90R8b7+wb8l5fCBzkbU9vu4CspGyNNsakMKDKiuGD89YTFebb8TH8gwEAAEpG4frBO/Sxhh0b4Nf7P2LCktH0w6xSW27Dh1vpCL3mvRrjl9vLUb+p9pVjVXZ8tacysu/DQXBwsTxNQolaoYHXYEsen4eRCyoLUFw9cIt+3aBNKDbc/QFTvx0LLk93JI0p/P3NPjqyb8h7feHsaT1HibG2bFhNtmRz2Hjr00rHoC7dOWvCYrHQokULDRFoayAQCNCkSROD7UpLSxEdHa23Cpk5eHt7Y/jw4Xj69GmNOC0YDAaaNWumVwTaXIy1ZVlZGZ48eWL1NDoPDw+MGjWqRm3ZpEkTtG7d2up98/l8o97vFRUVePbsGTIzjRceNwY3NzeMGTMGMTExNRaV1qhRI7RrZ3plZEMYa0uhUIjY2FikpurXTjUVZ2dnvPXWW3jx4kW1V5Y9sekcspLkn6tW/ZppLc5kLqqSHPoWcYIa+tPPVw8vPrXomv3CfeiCBgmPkzHuf5UFe/75Tu705PP5VotULikpwapVq1BUVITT2y8h9YVcy7FJ16j/s3fW4U2d7xu/43V3oa5YkdLiLsUdBgwdsjHmg7n7xsYYbMBwd3enSKFoqbu7e6Pn98dJTpI2bSMnrHx/+VzXrpHknDcnT09y3vO8z3PfIBSSRLouuLVnviTD1c8ZVvakXlncnSQIBUIs/Xke9Xrak0w0qCnd4OTlQGm8ZcXnYc6ncs3Tgz+fhFAghJGRkcaxNDaTV3oqatk1Njbijz/+QEVFRYt9lBJphoo0AwYMGDDwv8Teb+UrmrM/mgIjBXtrXVEUq019koHII1HU41e/mIFvTq2h2jN7j5LflEWdfqQ0TnZCLrWvlYMlJq4crfYxmFmZYvKbEYBUe+LQL6eUXicIgjpOI1Neqy0MAODbwxOWdmTS6fHlGJXW7NqQk5SP6AtPlJ4zsTDGu1tWYO3Nr5X0LlRpy81aPQk/nP9ELZfVgvQiXNsbCQAwtzbF1Hfoa+OFgjg+h8tGYJhvq9t5BLtRjqXPrseptGbXhvy0Qjw4p7zKamTKw6oNr2HdnW9pbS0oyS2jHGRNzI2VjCPoQJbgZTIZKvXRZDh5OVB6ZnF3klBTXkvbMYxeNJTSBrx78iEyY9uvQtKWmpoapKWlYfz48Tq32zZHIpFg2LBhaiV/vL294ePj0+522lBZWYkjR47oXZOqrq4OSUlJmDBhQpvtl9ogkUgwaNAgtRJ0Hh4e8PX1pVrR6aS2thZHjx7Vu+tkfX09YmNjMWHCBPB49F0fIb3+9O3bt03dPhlubm7w9/en/bsBacLz6NGjeP78Oe1jK9LY2IinT59iwoQJtOvMEQSB0NDQNnX7ZDg7OyMwMJD27wakSbqjR4/SVjmlCpFQpKT7uuBr+qrR0Gxxsdvg4Fa3Y7FY6DmCNDeoLqtFYpT2brocLgeufuR1LDcpH0FhftQCUl5KISKP3Mfw4cMxaRI911mBQIDa2lqUlpYqLRIt/GaWkji+dzfdqqiUk5Ktx5LBYKCXdB7cUNOI57cS4OrnTOm+EgSBvWqaDrBYLMogoSCtCB7BbgiNIKvbSnLKcG3vbQwePBjTpk1rZyRlFKvpFBNpIpEItbW1KhdM6IwlHRgSaQYMGDBggBaKs0sRdeohAMDG2Rrjl4+kdfz7Z+UJscpi0iHIxMIYX59cjflfzVS6ueo3KZT6971T0UrjnNpwkfr3rNWTYGyq2QR86jvjqJL0C9uuo7ywknot9UkGKqSPuw4MalNXjMViIXx8bwBAUz0fT6/pVv0jaBJg91eHsSLkAyTcU56ADpgahrGvDVeK0e1j9/F6z9WUtpyRKQ+fHXoPr/00T+2bq9N/X6IqAqe9NwGmlvSYSkCa8CxIl7Yw9PUHz7j1m04Gg4G+E8m/uVAgwsOLz3R6b6FAiH3fH8PSru8j5ka80mth43pi4hujab8BPbf5CqVfN3lVhFqJTHUpzCymTBH8e/u0KdDLYDDQTxpLiViCB+eetLqtpnCNuJilhrMsHVy/fh3379/Xy9i3bt3Cvn371NqWx+Nh1qxZEArpMcFQxMHBAV5eXkhP12+b7K1bt3D37l29jH3v3j3s3LlTrW05HA5mzZqll+ocGxsb+Pv76z2Wd+7cwe3bt9XYUnMePHiAbdu2qbUti8XCzJkz9VKBZ2Fhgc6dO+vdwCEqKkpv7cZPnjzBpk2b1NqWyWRixowZeknwyqo19Xle3j0RjbJ8svonfEIvBPSmL/EvFAjxSHo9NjYzgn8v7za3l117IF1s0QWZTppQIEJ+WhHmfiZP9Oz//hj27duHhw91ew8ZlpaW6NmzJ3JjiqjWy54juqLLgCCqisrU0gT27nZav4dYLEb0efJ63JY+moy+KmI58XX5wvHlXTdV7qcKWSwJgkBuUgHmKcTywI/HcejQIURFRbUxQksUvy+KiTRTU1P07t1bpTN1pjSWXCMOteD3X2JIpBkwYMCAAVo4u+kylVQZv3ykzs5EipTklOLRpRil5zoFuWLDgx+VJl4yXHycKFvspAdpqCgik1v11fW4sod06jQy5SFiyTCNj8XSzgITVowCpOL2MrdKALh1WD6R6D+5/bYd5YSf9hO6ZzfisDzkA+z55gjVGujoYU8ZL0QeiaKqtJoa+Fi3fDO+mbEWdVX1AAAXXyesj/oBg2eo3x7TWN9E6WNweBzaE6eRR+RJEHViKdPtAICo09rHMu5OIl7vuRo7Pz8IodQB1M7Nhkqe3jv5kNYqLUj1ac7/SzpgsdgsTHhD/SpJddAllvd0iKUqxi4bQbWcRB69r5SIppPy8nK1KnO0ISUlRSPB/fT0dGzatAkNDQ20HgeDwcCcOXMwYsQIvbYklpWVITw8XC9jp6SkwNXVVe3ts7OzsWnTJtTU1NB+LDNnzkRERIReWxL1eV6mpqZqdF7m5eVh06ZNqKyk/zs4depUjB8/Xq+xLCsrQ1hYmF4SWJqel0VFRdi0aRNKS1vKPejKxIkTMWXKFL21d57aKF9cnPr2OFrHfnotDrWV5DwjfEKvNhcXIV2oYrLIv+e90w91+l2TOVADQHZ8LkKGdkGwVPYjKz4XOdm5aGykp3qdxWKhT58+uLj1OvXc1LfHobayDqW55QAAr66ddHJBjbuTRGnN9YkIaXNxEQBCx4SAwyXjff/MIxAEgekfTKDiW11Wi8QH6lX9KcYyMy4HwX0DEDKsCwCgIL0YWRnZOl3fZPcOkCbYQkNDW1SZNjXwkZ9Kav16dHbXSzWtphgSaQYMGDBgQGcETQKclyaU2BwWxi0bQdvYKY/TsbLPx0oTquHzBuKv+z/CPaD1ia4swUYQBO6fIdvzLu+6haZ6soVy5KuDta6gmvRmBDUhurj9OiQSCQiCQORRMpHGZDHRf0r7CYueI7tR2hNRZx5pPFGuLqvBr4s34sPhXyMvhdTkYLFZmP3RFGyN/wMj5w8BpBVvNw7cQcbzbKwMXYNz/8ptywfN6IuN0T9pLNx6Y/8dKhE39JX+sLSz0Gj/9pDFEgAGTmv/Jr7b4GBKX+XBuSeUM5e61FbWYd3yzXh30BeU2xaTxcT09yZge8I6jFtKntNCgQhX90Rq+GnaJvJIFKX/N3BaGOxc6BU+V4zlIDWSpUF9/alk16NLz2hrO4bURCHiteGAdBX68k71V8XVhc/nY+HChQgNbZlkp4ORI0di+PDham/v5uZGruTn5tJ+LGw2GydOnMDFixfV2Fpz+Hw+5s6dqxcNKkhNE0aOVD8J7+LiAgaDoZbRg6awWCycOXNGL+YQkLZ/zZw5EwMHtm3goi2DBw/GmDHq65I6OzuDzWarZfSgKUwmExcvXsTJk6pNeXRFIBBgypQpGDp0qF7GHzhwIMaOVV+qwMHBAVwuVy2jB01hMpm4du0ajh49qsbWmpHxPBuxt0lh/05BrggZ2oXW8RUlOAZNb/83xMLWHF0Hks68BWlFyEnM0/q9FZM/WXG5YDAYmLxK/jcVFQEBAfRpwe3etQeFlaROnrO3I3qPCVFyZPfqqpsUhKaxNDE3Rshw0pm3NK8cqU8ywGazqfgCwPZPDqj13h7NkpIAMOUteSwbsoRaOSrL5tGERDlheujQIURHK3eTZMfnUvcB3jrGki4MiTQDBgwYMKAztw5HUVU6A6eHw8bJWucxJRIJjv5+Bm/3+xRVJdXU8/O+mI6Pdr/VrkFAP4XKm7unoiGRSHD6b/nNpi5GCI4e9pQLVHF2KR5feY7UJxkoyiwBAIQM7Qwre8t2xzEy4VE6FlUl1Uh6kKbW+xMEgSu7b2Fx0DtKiYjgvv745/HPWPLDHBiZ8DB2qfxmf/8Px/Fm2MfISSQnejxjLt77dwU+O/gupS2nLgRB4JRiLN+gz1QC0rbOLOlkLbhfAOzdbNvdh8PlIEzqjlVXVY/nkeq5fhEEgesH7mBx0DtKCUb/3j7YGP0Tlv82H8ZmxohYKk8On996ldYKoNN6jGVhZjFSHpFtQb49vODi0347BNl2TGpW0dF23JyIJfLz8sK2a7RWrRAEga1bt+LevXu0jalIYmIiqqqqYGqq/nfGzMwMS5YsgZdX++Yd2uDo6IinT5/SXv1DEAR27tyJyEh6E8cyUlJSUFJSAnNz9duYjY2NsWTJEvj5td3WpC1OTk54/vw57a24BEFgz549uH79uk5VKa2Rnp6O/Px8WFq2f92RweVysXjxYlqTCYo4OzsjLi4OTU1NtI998OBBXL58WS+xzM7ORlZWFqyt1Z/HsNlsLF68GJ07ty4ArwtOTk5ISkpCfX09reOe3qh87aEznkKBkJLWMDYzQugY9Uxf6GrvlHUlAEBWAjmf6D+lDyWbEHc+BUYselzlAYBfxwfbmKySmrBiFFgsllIiTRdNVbFYjDvHSSMvDo+D8Am91dqvv2LXgzSWi79/hXou9nYCRKL2Fx29FGMpnZuFje0JWxfyOxJ/ORUcQgvNR+np1nw+xeVyW/xu0BVLOjEk0gwYMGDAgM6c2niB+veklRE6j1dZXIXPxv+IzR/shkgor9KydbHG/C9nqjWGfy9vSoD+6bU43D/zmKra6j6ks9JqpTZEvCZPrFzYelWprVOd1UIZijoW6rR35iTlY/XIb/DLwg1U8tLU0gRv/b0Uf9z+VmnV07+XDzXhKMkpo1oVvbt7YOOjnxGxZLhWE+f4u0nIiCGrGALD/GjVVEGzVkRN2k0VJ+BRasQyP60Qn4z9Hj/O/ZNK1hqbGWHln4uxPup7+PaQJz48gtwokf7shDwk6CCErEjyo3Qk3ifF4r27eSjZ1tOBtrHsS1PbsSqcvR3RcwS5Ul6YUYxnzXTodCE/Px9lZWV6S1pdv35dq8oyc3NznDp1CgKBgPZjCg8Px8iRI2lvcSsuLkZRUZHeYnnz5k2tKsssLCxw6tQpvSRoevfujdGjR4PNbrsFTVMqKiqQl5cHT09PWseVcevWLa2qoaysrHD69Gna244BICQkBBEREeBy6ZN5AIDq6mpkZmbq7byMjIxEZmamxvtZW1vjzJkzqKuro/2YunbtirFjx9JqUFFbWUcZDZmYG2Pk/MG0jQ0VbZ3ttSLK6DtJniTSRabBxceJam3MkorUc3kcjJw/GDxLDoJf9cCZnRfaGUU9GusaEXcgE4WPKsA14mD0YrJSMlPBZVIXcfzmbZ3qOs0rJtxkMg3BfQOoZKJYJMGx39uvwLV3t6PeU1aRxmKzMHrhUHBMWei60AundpzT+HNRFWnNEmmTJ09u0QKv7Nj53xsNwJBIM2DAgAEDupIUnYrkh2TFi0+IJ6VBoS2PLsdgecgHKgXjh84eoHbih8FgoK90EiHkk+LxMibpUI0mo++EXrB2JFf/7516hBuHSDFudds6ZYSP7wkmkyEdJ7rV7WrKa7Hxre1Y1u19PLsurxAaPLMvtiWsw4QVo1rcSMfcjEdxjrJmy+RVEfgr6gd4BLmpfYzNUdRUoSOWzdG0rVNGaEQPsDnkivDdU9GtVo3VVdVj0/u78Frnd5W09/pP6YNtCesweVWESv2Nsa8pV6XRgWI12qSV9FYEQIu2Thk9R+jWdtweY5slounC3t4es2bN0kjfSF0IggCHw0GPHj003lcsFiMhIQFpaepVnWoCj8eDp6cnbty4QWulpI2NDWbOnKm35A+bzVbLrbM5BEEgMTERycnJtB8Tl8uFj48Prl+/TmssLSwsMGPGDL1V0rHZbPTurV6ViiIEQSA5ORmJiepV8GoCh8OBv78/rl2jt+rUzMwM06dPR2AgvYsOMphMptaxTElJQVwcvRW8kP59AwMDcf36ddp+iy/vvImmBqnUxfzBaidn1EXTVkQZzl6O1AJgUnQaygoqtHp/FpsFd6nbZH5qEQTShcSI14ZTlVD3Tummwybj6t7bYPAImDoaYdicgbCwIRNVGQrO1J4aymcoom0sbZ2tERhG/uZkxuZQRggjF8iTpqf/vtTuOAwGAx6dyTljUVYpGutIbbkxS4YB0jnLg/NPNP6eM5iqE2mVlZUoLCxUek7R5durqyGRZsCAAQMG/gdQvAjrkggQCoTY8uFufDzmO8qV09rREv4K1U6aJALQrL0z5TGZ7LN3s1US+dcWNoeNUQtIDTKxSIzSHNKqW922ThlW9pbo3J+8IchLKUROUr7S60KBEMfXncNC/1U4ueEC5ezo6GGP785+jM8OvgdbZ+UWFLFIjJ2fH8SHw79GfZW80sDIlIclP87VyQiivLASt489kB67hcZ/k/bQpq1ThqmFCSWAW5pbTjmSyhCLxDi18SIW+K3CsT/OUtWO9m62+PrEanx17MM232/QjL4wtSQdL28duof6at3abGrKa3HjAJmANbMyxdA5A3QarznatHXKMDLhUe3LmrQdq0vfSaGwtCNvNu6eiEZ1me7i8bW1tThz5gx8fHz00vLV2NiIhQsXolMnzSfx1tbW6NatGzgcDu3HBelnj4yMRH5+vhpbt099fT1Onz4Nb29vvcVy3rx5WlUVmZubo0ePHrRXOsmoq6vDnTt3aNO7amxsxOnTp+Hp6amXWDY1NWHWrFlaJelMTEzQu3dvWiudFGloaMC9e/doc53k8/k4efIkPDw89GIywOfzMW3aNK30nng8Hvr06dNCJJ0umpqaEBUVRUsCWSKR4PQ/8rmbLlIXqtC2rVNG34mKVWmP2ty2LWSdB2KRGPkpBYC0utyviw9id2ci9W62ztXlBEHg9N8X4dTbBg7drKjFRYlEQrUjOnk5aJ2o1LatU0Z/FdXl87+aSf0WleSUIT+1sNX9ZXgEK+ikSXVknb0c0bVvMGJ3ZyLrQb7SIq86yBaR0SyX+fjxYzx7Jl9MJwgCGc/JWNo4WWk0x9YnhkSaAQMGDBjQmqrSatw8SCYCzK1NMfQV7RIB2Qm5eGfA5ziy9gz1XOiYEKy9+TWVDHHoZIfAPr4ajdt9iFyAXnahHrdsJFhsetx+ZKLpimiyWihDqb3zJDn5JAgC904/xNKu7+Of93ZSLRJGJjzM/2omtsb/gbCxPVuMlZdSgPcGf4F93x+jVvlsnK0Aqd6V4sqmNpzfcpVK5kW8NhxcHr2JAaVWRC1iqayvIq/wi77wFMu6v48Nq7ZRLbFcIw7mfjoN2xL+UCu5amTCw7A5pFA4v1GA6/vvaHx8ilzYdp1qtx29cAiMTem9AVOMJV3nJV2QLTZkIlooEOHK7ls6jxkdHa2Xii8Ze/fu1UkvbPLkybCwoNeUQ4anpyc8PT1pc6F79OgRUlLoaV9WxYEDB3D9+nU1tlTNxIkTYWNjoxe3Und3d/j4+NDWOvr06VO9VHzJOHLkCC5fvqz1/mPHjoW9vb1eYunk5AR/f3/aYvn8+XPEx8frzaX2xIkTuHBB+3a/0aNHw8XFRS/HZ29vj+DgYPD5upu/PL4cg4I00gGxx/Cu6BRIbwWvtm2dMpQdzbW/9nh2li96ZMXLjQvGLBkGG39zMDkMnavLn0cmICsuF4I6EcwtzClJiKLMEsrcShdNL8W2ztAx6rd1ylCUabgrjaWJmTF8QuSVxls/2tfuOIqGVFlxcnkDWSxZXKbGsWwtGW5mZqaknVleWEnN27w6iD4aDIk0AwYMGDCgCxe2XodQQAqVjlk8DEYmmk2WxCIx9v9wHK/3XE1VzrA5LKxYuwDfnf0Y8XeTqaTNoOl9NV7N53A56DVavhLKYjOVBPh1xdXXGd2HysWFGUyGRm2dMvpPlk90ru27jbRnmVg98ht8OfkXpZXCkQsGY0fyn3j1ixktYi0Wi3Fk7RksD/mAWmFlsphY8sMcfHboPWo7RUF9TREJRTi75Qo5NpOB8StGaT1Wayi1dU5Xv61ThuJK9vX9t5ERm42PI77Dp+N+oIwWAGDYnAHYkfQnFn47G8Zm6k9MFc8fmVOtNojFYpxRqAiY8MZorcdqDeW2Ts1jGT6+F5gscqp44+Bd2ts7FRPR57de0/nm08jICEOGDNFL1VddXR0KCwt1ahmtr6/Hpk2b9JLsYzKZWLBgAaytrWm5iefxeBg0aJBeKpWampqQm5sLFxcXrcfg8/nYtGkTkpKSaD02SNuY5s2bBwcHB1piyeVyMWDAAJiYmNByfIoIhUJkZmbqdF6KRCJs2rRJLy2JDAYDr7zyClxcXGhp7+RwOOjfv79GBhXqIpFIkJaWptN5KZFIsHnzZjx9+pTWY5MxY8YMeHh46PxbrHd5Bi1bEWX49fSGvTtZHf7kaizKCyu1Og5ZOyIUdNIAIHiIL1zD7WDqYIRbh+5RDuTaIItlyvE8JQdiZcdOeto6NdE5ldEp0BVu/s4AgLjbSSjKIk2x5n0xg9rmwYX22zKVYhkvT6QFDyJjaeZsjLsnolFVWt3KCC1hKCTSFN9/0qRJiIiQ6y0rGQ10kLZOGBJpBgwYMGBAF67tk1dnTHhds0RAxvNsrAr/GDs+O0Al49wDXLA+6gdMe3c8afm+/za1vbYthJ0C5JNiKwdLWDtaaTVOa4QMkSfSrBwstCo5d/FxQnA/Usg+Kz4Xr/dcrVQi33VgEDY+/Amrd7wJO9eWrYfZiXl4d+Dn2PLhbgiayAonZ29H/HH7W8z+aAq69A+kWhwS7iUrTYI04en1OFRIJ7R9J4XCwd1Oq3FaIz0mS+u2Thl2rraUkH1BejFW9PhQSQctKNwPf977Hh/vfRsOnew1Ht83xAsBoWS7cdrTTKplWFPi7yajOJvUrwsdEwJXX2etxmmNvJQCpbZObca3tLNAn7GkHlhpXjkeqdAt1IVOga7oOohsocpNykf8Xe2TInV1dfD390d4uOYJQ3UwMTHBjBkzdHI4NDU1hZOTk96qkwiCwObNm/HokfatUJC243l5eWHAAHpbjWXweDzMmDEDXbp00WkMNzc3vSTSZGzbtg1RUbpV8DY1NcHV1RVDhgyh7bgU4XA4mD59Orp37671GGw2G15eXnqN5e7du3Hnjm4VvHw+Hw4ODhg+nL7FMEWYTCamTZumlW6f4hg+Pj56jeW+fftw8+ZNNbZUTVVpNaVBa+9uSzk000VTA5+qBtemrRPSBOyIeYMAABKxRMmdXBOUqqgU5j1WNlYAwYCgTqRTdXl9dT3uS1tPg6Z7guMqT7xnKBkNaFdFJRQIEXmUrCzXpq0Tsli+SmqiEQSBi9vJSuD+k0JhbEZWwQubhLi6p+2qcM9WYmluYQ4GwQC/RgiRUIwru9Wv2may5IvjMr0+ALh48SJu3ZIfT6aS0YChIs2AAQMGDLzkZMXnUjoJnfsHwNnbUa39REIR9nxzBCtD1yD1CemMxWQyMPPDSfjnyS/w6+kNSJNDsmSSi4+jxm2dMvLT5BVdFYWVKMkt02qc1lDUNKspq0NDreatVYImQQudM0h1Nb448j7W3vwa/r1aOmOKRWIc/OkEXu+5mnJ+ZDAYmPLWWGyO+Q3B4f7Uc4rVP9q20UUevkf9e/jcQVqN0RZnFPT2hmnZJizgC5WSpYSEnNg6dLLDJ/vfwZ93v6fioi2KQvlXdmkZS4VVZn3E8jQNsUQLgwXtK/DUGf+ylrEEgHPnzuHKlSs0HZUyYrEYp0+fhpOTk066TAwGA7Nnz8bAgQNpPT7F8f38/HS+ib948SIuXryoxpaaI5FIcPr0adjb2+uscTVjxgwMHkyv06Aivr6+Osfy8uXLOH/+PG3HpAhBEDhz5gxsbGxUmqNowtSpUzFs2DDajq05dCSXrl+/jtOnT9N2TIoQBIHz58/DwsJCZ8fWSZMmKVUm0Y2u5+XdE9GQiMnqn6GzB9AmdSHjxoE7VIXXgKlhGrd1yohYIp+zXNimnWGFo6c9Vb2vlPwxN8e8KfPBryYXHq/s1i5Rd+/0I2oh2NHfBpVV8so5OsTxbx97QDmKh0/opbXO2uhFQ6nq8ks7blCdHgOmyp0xD/1yqs0xbJysYG5tCig4d0K6yLR4zmtoqiAdqTWJpeK511Qnb/8uKSlBWZl8rp7RAY0GYEikGTBgwIABbdGmdD/tWSZW9vkIu786TAm9ewS7Yd3d77H053lKEy7FpMrEN7QzMeA38vHg7BPqMUEAl7bf0Hic1qgsrsIdqfA+pImtR5fUr9ohCAI3D93F4qB3cPvYfaXXFnw9E9sS1mHgtHCVnz0zLgdv9fsU2z7ZT+lsufo54/dbX+ONdYta6G0NnzuQEna9e7J1R8vWEAlFuCsVqjUy5aFPhOarzG1RW1mHa/vICkQTc2OMnK/ZDTJBELh9/AGWdnmXGkfGKx9PxfbEdRg6uz8tYt+DZ/VTyx20NcRiMfX3JleZ6a0IaKxrxKWd5HnONeJg9OKhWo/VJ6IHbF3IJO/9s4+1brFpjYHTwqgbHV3cQbOzs7USrleHxMRExMTE0NLaamlpiQcPHigJKdPJuHHjMGqUbi3X+oxlamoqnj17BpFIpPNYFhYWePbsmc4VeK0RERGh1F6kDTk5OXqLZUZGBp48eQKBQKDzWGZmZoiPj8f9+/fV2FpzRo0ahfHjx+s0hj7Py9zcXDx8+JAW/TFTU1OkpKToXIHXGsOHD8ekSZO03l9bJ2d1IAiCtrZRZ29Hqrq8MKMYz27EazwGk8lEp2CyJbEwvZiqeqqtrcXp6yfgG0rqhCVFp6Esv1zj8RVj2Tm4M/z95Yt0MnF8rhEHLr7qG/0oQlcs7VxsEDaO1NQty6+gKhIX/zCH2iYnMR+VJVWtjsFgMKiqtLL8CtRW1gHSCuYj5w6h8xC5O2hBepFax6U4H+M3yn/HOnfurOTKmymNJZPFRCcdHOfpxpBIM2DAgAEDWqE0GWtHy0ooEGLnFwfxZp+PkRFDriwxWUy88vEU/P34FwSFKbuN1dc04PIuclXLyISHUQu1a4t5dCkGjXXKIscXtl+jTevp/NZr1GqkDJkrUnskRafinYGf4/tX1lEtfopY2luqFPIXCUXY990xvNFLrivHZDIw4/0J2PzsV3QZoNptzNLOAp0HkBOT/NSW7qDt8fR6HGoryIlT+ITeWq8yt8blnTepSe7I+YM1WnlNfZKBD4Z9hW+m/4aC9OIWr1vamdN6vKYWJugxnJzgl+aWI+1ppkb7x99NVhIPNrWgVzvp6t7baKghKyOHzRkICxvt9YRYbBbGLCIrVSRiCS7toC8RDQA8Yx56KbiDyiorNWXBggUICwtTY0vNYbFY6NWrF+ztNW8FVgWfz8eNGzf0IkhuamqK+Ph4pKZqF0cAmDNnDvr370/rcclgMBgICQmBszM9rcx8Ph83b96kRX+rOcbGxkhJSdGpFXfmzJkYNIj+ilNIY9m1a1e4u7ursXX7CAQC3Lp1i5YkZ3OMjIyQmZmJ2NhYrceYPn263qrmCIJAcHAwbYk6oVCI27dv05LkbA6Xy0VeXp5Wyfiq0moqIeXk5QD/Xt60Hlv8vWTKICqwjy8CQrXrJJChWLF8QUtTAJmmFkEQSI4m9Slra2tRU1ODHmPk7eWauoPWV9fjsVQ2wsbZGoMjBsLDg2w7bGrgU2YOnl06aVUxmvokAwn3kqVjuKPboGCNx1BEubqcjKWdiw1c/eS/xTs+PdjmGIrVYLJrdX19PWpqatBtpFzmRN15sFAgpP5t7SiXRfHz86O+iyKhCDmJZPdLp0BX2g2udMGQSDNgwIABAxqTnaDc1qlKt0tG8qN0vNF7DfZ9d4wqJ/fq2gl/3f8Bi7+fo/KieHVPJJUAGz53IMytzbQ6zltH5K2I/r3JCWNpbjkeX36u1XiKiEVinNssbyWTaU08OPcEImHrNyJ5KQX4Ye46rAr/hJokAUCvUd3x+WG5KYCqSWN6TBZWhX+CnV8cpCr63ANd8ced77Ds1/ntJosUHS2j1JzoyFBs69RGPLgtJBIJTv8tX3mdqObKa2FGMX5ZuAErQz/C81sJ1PMhQzvjy2MfUI/Pb71Ke9JCydFS01jqKMTcFgRB4DTNQtJjlgyjVo61bbFpC13OSwC4ceMG8vLydG4VVIVAIIC5ubnO1TSK9O/fH56enmpsqR1FRUW4e/euVvtGRkYiKytL51ZBVQiFQhgbG+tUTdOcvn37wtvbm5ZKU1UUFxdrXVl07949pKam6twqqAqRSAQ2m42pU6fS9tn79OkDX19fvcWypKRE61hGR0cjPj5eL0YisoW1GTNm0PbZe/fuDX9/f73FsrS0FJGRkRpf1xTbOrUxcGoPba7jbdFvciis7Emn47snolFdVqPxGN0UdGyfXicTuba2tujWrRsGjJMvAt87rdm1R7Gtc9C0cJw6dYpydc6Oz6X+NtqK4ytfxyN0/luFjgmBnasNIJ2nlhVUAABmfDCB2kZxzqyK7gqxfCaNpZWVFbp3746B4+RzGXVjKVJYiDYykXdRnDlzhnJ1zk0uoOa7Xt06TlsnDIk0AwYMGDCgDZFH5O0frSUCGusa8e/qPXir7yeUVTaLzcK8z6dj48OfVGp+QZYIoGEyxm/k4/6ZxwAAMytTzPxwMvWarnbnkE6iSvPIVoDwCb0QJhXsrauqR+ztlhUMBelF+GXRBiwJfgc3Dshvct0DXfHd2Y/x44VPMWh6X/j3JuOS+iQTqU8yAOnq5o7PDmBl6EdU9ROTycDsNZOx6ckvamt+KVnKazBp1Hdb56NLMVQlWc8RXdEpsG0HuqKsEvy+dBMWBryFK7tvURNWF18nfH1iNX65+iUGTAlD14FkdV5OYj7iFZKWdKDoDqpJLMViMW4fJ9uB9dHW+fxWAqUF07l/AHx76F5h4eTpgJ4juwEAijJLlIww6CBsXE952/GphxrdHAqFQkRFRaGhoYHWY5Jx5coVnDrVtnaMptja2mLkyJHIyMigdVwZffr00crVUCwW4969e3qL5Y0bN3D8+HFax7SyssKYMWP04oQKaSwtLTU3kJFIJLh37x7q67V3A2yLyMhIHD58mNYxLSwsMHbsWKSna2eg0h69e/fWKpYEQeDu3buoq6vTy3Hdu3cPBw4coHVMMzMzjB8/HhkZGXqpPO3VqxesrVvqqraHPts6ywsrqbmhpZ25Vg6TzeFwOZTMg1Ag0krftccwedXZsxvktYvH4yEsLAyBvf0od9Bn1+NQX6P+b1/zWIpEIiopqzjf8O6u+aJJTXktrh8gk86mliYYPld34xcWm4XRi0iZB8Xq8oglw8Hmksn+hppGRF980uoYSok0aSw5HA7CwsLg08WTcgeNv5OkVtJTLCKTugymcpJQJBJRC3aKC87e3fS3AKUNhkSaAQMGDBjQGMVVq+ZtnQRB4Nbhe1gc9A4O/3aaWv30CfHEhugfseDrWeBwW19VfnYjDjmJZNth10FBWrsdKbZ19p/cB/0nh8LGiRShv3/mMSqKdNN6Or3xAvXvSSsj0F8xSXVSnlgpyirB2tf+waLAt3Fl1y1IpOL3FrbmWLl+MbbE/IawsT2p1caxCqYA5/+9ijsnHmBJ8DvY/8NxqqLPs4s71t//EUt+nAuuEVftY3bxcYJnF7INKPF+qtp6V/pu61RMnE5a2bomUUluGf58fQsWBbxFVkZJzy1za1OsWLsAW+N+R79JoVQsFQ0W6EieKmLnYkMZYGTEZKMws2VLqSri7yZTzqf6aOs8pWYsNWWsHmNpaWeBLtKkp6ZtxwwGA97e3jq5FrZFWloaOnfurMaWmpGVlYV9+/ahurqa9rF9fX0xatQoNDZqZnzCYDDg5eWFHj160H5MkOqjBQfr1p6kitzcXOzfvx8VFRW0j+3p6YmxY8dqnFxkMBjo1KmTTg6QbaGv87KgoAAHDhxASUkJ7WO7u7tj0qRJWiUX3d3dERoaqsaWmqOv87K4uBgHDx5EYWGhGltrhouLC6ZNm6ZRLPXd1nn+36vUHCXitREazU3aQvk6fk3jxKSdqy3cpe7tSQ/S0FjXCD6fj3///ReZmZlURbRIKMbDC0/VGrN5W2fn/gGIiIigWuKfXpO3MIcM1fx7emnHDcqBffTCoTA2085koDkRS4ZT86OL269DIpGAyWSi9yj59XPze7tb3d/SzgI+IWQyK+1pFmoqaiESifDvv/8iJSUF/Sb1AQBIJATun33c7vHI5nDNDS9GjRpFmfI80TGW+sSQSDNgwIABAxrRVltndmIeVo/8Bt/N/gNl+eRNDYfHwYKvZ2HDgx/hG9J+dcypjfQkApSSfTP6gs1hY9RCcjVOLBJrbacOaQxkE1I3f2f0HNEVoRE9KAH6e6cfojinlEr6XNx+XSnps/j7OdiTsRGT34wAm6Pc9jP0lQEwMiUTVee3XsPX035DSQ7pXsTmsDD3s2nY+PBnBPRWXdHXHv2lEx0AuH9GPU0QfbZ1FqQXIfo8OXl16GSHsPE9W2xTVlCBDau2YaHfKpzdfIUq8ze1NMH8r2ZiT8ZGTHt3fIsE7aDp4TCzMpV+hijKSYwuFNs71dVX0WdbZ2leOe6eiAakDlsDpvZpdx916Tuxt1KLTVUpvQkgbds7y8rKMHHiRFhYWNB6PDLmz5+vF40rPz8/8Hg85ObmqrG15ly8eFFjh8OysjKMHz8eVlZWamytOXPnztWLxpW3tzdMTU2RnZ2txtaac/XqVY0r6crKyhAREQFb29ZlD3Rh1qxZOptKqMLT0xMWFhZ6i+WNGzc0rqQrLy/HqFGj4ODgoJdjmjZtGsaOHUv7uG5ubrC2tkZWVhbtYwPA7du3Naqk02dbp0gowrktpNQFk8nAhBX0uZa6B7ii6yByoSU3KR/xdzV3LA0ZSlaliUVixN5OApvNBoPBQENDA/pNll8n1a0ub97WyWQykZ2dDQaDAZFQRElNWDlYUgL96iIWi3H6H7nZ1oQ3Rmu0f1s4etij1yh5dbks4ffGn4uobXKS8pH4IKXVMWSxJAgCMTcTwGKxwGQy0djYqNT1ENVOLAUK+miyuTN1DDmkuYBEIqEq4E0tTeBHc/JXVwyJNAMGDBgwoBGq2jobahux5cPdWN79A6W2rz5je+Df2LWY9/n0FgkjVZTklFI30bYu1ug/WbsV6OZtnT2Gkxf+iCXym7gzmy63qWXWFqc2KjuKMplMmFqYIETaQlCSU4aFvi2TPgu+noU9GRvxysdTWhXTZzAZlMOTbNILAD1HdsOW52ux8JvZOomt9lWY6NxVI2Gh77bOM/9cplaYJ6wYpaTNVFFUiX/e3YkFvm/i1MaL1MTVxNwYcz+bhj0ZG/HqFzNgammqcmyeMQ/D55KrmvxGAS5su07rsSuen+ropOm7rfPc5ivUOTN26Yg2Kz81hcPlYNQC0vRDJBTj3GZ6q9L6aXheQtr+sXPnTsTHa+7m1h4EQWDPnj16017j8Xh466239FIJA+lNvCZtZWKxGDt37kRMTIxejufAgQPIyMjQi/Yah8PBypUr0a1bN9rHhjSWWVlZamsDys6dJ09ab5HShSNHjiA5OVkvsWSxWFixYgV69my5oEEHbm5uyMnJUdvQgCAI7N+/Hw8faq6dqA4nTpxAfHy8XnTsmEwmli1bpjcTFDc3NxQUFKCpqUmNrfXb1nn35EOUF5CV1n0nhcKhEz3GLDIUhfJP/HWhzW1VEaLY3nk9FiwWC6+++ir8/f3RbVAQteD24NwTJQH81mgeS6FQiCtXriA7OxvJD9PRUEtWA/cY3kXjhOXDC89QlElWhPYe3R1ufvQYs8hQjOVJaSydvRwR3E8uEfLHss2t7t+jWSwZDAbmzZuHoKAgBIb5UqYBjy7FUAZSqqgqkjuEchTmtBKJBJcuXUJmZiYyYrJRU14LSKvR9PGbpwuGRJoBAwYMGNCIOyceUP8eOC0cNw7exeKgt3Fk7RmqrN/J0x5fn1yN7858DFdf9ScBpzZeolofxy0bqVbyTRVPrsYqtXXKEgouPk4IjSDblkpyynB1722Nx66trMPVPaROh5EpD6MWkPodFUWVEAnkbqAiaSwUkz7zPp/eatKHIAjcPk62ccqcTSF1N/30wDv46eJncA9oWztMHfx7eVOCs8+uxVITvtZ4fitBb22dDbWNuLSDTG5xeByMkSY6q0qrseXD3Zjv8yaO/3mOanEwMuVh9prJ2JOxEQu/ma2WCcWE1+VVG0fXnoagiT4XtU5BblTSM/Z2IjXha42kB2l6a+vkN/Jx7l8yucViszBuOX0VATLGLR9JaZkd//McGus0ax1sC2dvR8oRLOmBem3HxcXF4PP5tDntKZKXl4eMjAyYmqr+vtKBsbEx/vzzTyQkJKixtWaEhoZi9uzZat/ElZeXo7GxUS+xLCoqQkpKit5j+ffff+P5c92NZJrTo0cPzJkzR+2EamVlJWpra+HtTX/1RFlZGRISEvQeyy1btuglEditWzfMmzdP7cRVXV0dKisr9XJeVlVV4fnz5zAxobe9XhEjIyPs2LED0dHRtI8dHByMefPmgcdr/5pcW1mnt7ZOgiBwYv056vHEN3Q3GWjOwGlhsHIgEzS3j97X2HVclbZXVVUVSktLweawETaOTBw31DQqGReporG+qUVbJ0EQ4HA4sLW1xZOr8t+gnsM1T+4rxpJOeQYZfSf2hr0bWSl7/+xjpD0jdXc/2PYGtU1mbA71fHO6DgoGk0X+FspiWVNTg5KSErBYLISPJ/Vj+Y0CpVg0R9a1AgA8Y3kbsCyWdnZ2Svv30CKW+saQSDNgwIABA2pTXVaDjOdkksejszt+WfAXfpizjlqJ5PA4mPf5dGyN/wP9JoZqtBJXVVpNaWVxuGyMXTqi3X1aI+aGvCpOURQeAOZ+Oo3694Efj1PisOpydO0ZKkk3Yt4gCAUiKunzTOF9GUwGZn80Ra2kT15KAT6O+B7fTP8NpbmkgYEsdBKxBE31fNraMBgMBtWSKBSI8PDisza3V/xMfSf0bnNbTTmx/jxqK8l2yyGz+4HJZGLbJ/vxqvdKHFl7BvxGMunFM+ZixvsTsDt9I5b8OBcWtuoLqXsEu2PgNLIioKKoitaqNAaDQbUkSsQSPDjX9o2nPmN55p/LqCoh2y0HTO0DOxcbWseHNBE9dA4pelxTXouzm660u48m9NOwVdbZ2Rmvv/467OzsaD0OSMXCBw8erJcbeEWcnJy0djJsCzabjfr6ekRFRamxNWBnZ4cVK1bA2Zne6gcAMDExwaBBg+Dn50f72Io4Ozvj9m3NF0fag8ViQSAQqP13sra2xooVK+Du7k77sRgZGWHAgAEIDAykfWxF9BVLJpMJiUSCW7fUE403MzPD8uXL9ZKU5HK5GDBgALp06aLG1trj5OREuTnSCYPBAIPBwI0bN9rdNvZ2IlWt3HdCb1rbOp9ei0X8XVIQvlOQq1LFEl3wjHmY8T7pLkkQBA78qFmrtSptrwcPHlCJd0WZhrsn265+TLiXTFXH9x3fC0wmE1wuF2vWrIGrqyvlDAqpeZImxN1NwpOr5P7O3o4IpbkDAADYHDZmrpY7J+//gYyle4ArZXYFAGuX/KNyfxNzY0ofNicxH2UFFYiOjsbTp6RER79W9IKbo7hYJpMzgfT3dvXq1fDw8NApli8CQyLNgAEDBgyozfNIuRtlTkIetcIJAOHje2Fr3O9Y8PUsraqWDv18Ck31ZBn42KUjYOusuSOVjBjpiiKDwaC0NWR07hdACZYWpBXh1qG27b4VqS6rwYn15wGppgODwWiR9JFNUAkJgcmrItpM+jTWNWLbJ/uxtOt7eHxZ3lLVa1R3fLL/HerxgZ9OUNV+dKA40Xl0sW1x3RiF1VnFVV1dqauqx9G1ZwBp1Z2RCQ+veq/EwZ9OUOcBh8fB1LfHYXf6Biz7dT6sHTR3fAOAOZ/Ik6eHfjmpVuuGuijG8uGltmP5/Jb8+9KdRtHcxrpGHPr5JCA9/xSTxXTzysdTqXP8yNrT4De23rqhKYptx4/aiSUAnD59Wi8OkyUlJUhISMCQIUNoveFUxdixYxEeHq7GlppTVlaGyMhItdo7z507pxdXxPLycsTExGDo0KF6aZFVZPTo0ZTYN93IYqnOwsvFixf1YiJRWVmJR48eYfjw4XpvcRoxYgQl9k03FRUViIyMhFDY/u/wlStX9GIiUV1djfv372P48OF6aetUZNiwYRgyZIhexq6srMSdO3fabe98flN+7ZFpXNEBQRDY+cVB6vG8z2fo7Tdz/IpRMLchFySv77+DgvQijfZvru1lZ2cHDofsVggdEwKO1Lny0aW2Fxdjbipex8kxS0tLsXnzZtRU1iAxitQXc/F10rjFdZdCLOd8Ok1v3/OIJcOoFsw7xx4gO4HU6vxgu7wqLe1pJuUA3hzFcyjmRjzs7OzA5ZJVZT2Gd6ESYw8vPWv1+lOp0NppZGokf76yEv/88w9qa+oQK73nsHO1gZu/i06fWR8YEmkGDBgwYEAthAIhTvwpLzmXXRydvBzwzak1+Pb0R3DxcdJq7PLCSqoajWvEwSufTNX6OGsr65D+jBT39e7uAQublomsuZ9Np/69/4fjamvfHP7lFFWNBqnOWvOkz8SVcmFYRdtuRURCEc78cwkL/Fbh4E8nKB01h052+OLoB/jxwqcYMqs/petRkFaEmxok/Nqj68BAStw1vpVjhLSFITk6DQDgHuCiU3KzOcf+OEuJ/zOZDJz55zLVZsrhsjFp5RjsTt+A1/9YCBsn3d7Xt4cXwseTemSlueW4spu+6oCgcD8YmZCTRtmqvCqEAiH1ukMnOzh50iecfWrDRVSVklbzg2f1g1dX7Zxu1cEjyA0DpU69lcXVuLCVvgo/v55elFZN/N3kNhNANTU1iImJ0Usi7dy5c0hObv1vSSeWlpZwdHTEuXPnNHaja4/g4GDY2Ni0+/vW0NCAJ0+eaOWm2B4XLlzQS+uqKszNzeHm5oYzZ86o/ZuuLkFBQbCzs2v3b8Tn8/Hw4UPU1rbd5q0Nly5dQlxcnBpb6o6ZmRm8vLxw6tQptfXM1CUgIACOjo7t/o1EIhGio6NRU1ND6/tDaiChjzZgVZiYmMDPzw+nTp1SK3moCX5+fnBycmr3vFRcXOwykL5qxugLT5F4PxWQuokPnkmv9poiJubGmPr2OEBaAX7wp5Ma7d9c22vq1KkYMWIENXaAtMqqMKO4TWkBxcXFboNJjcuioiKUlpYi7m4yNZ/rOVyzCqqn12OpxWlXP2eMfJV+kxsZPGMeZnxAVqWRFX4nAABeXTpRlXsA8NuSv1Xu30Phsz27HouJEydizJgx1Nid+5PnWEVhJYqyVDsAyyroASjJXBQVFaG8vByJ91OoBeoeI7rqfVFLGwyJNAMGDBgw0CYSiQTXD9zB4qB3EHtbXpHG4bEx/8uZ2Br3u85tagd+OE7pYE14fbROCZvY24nUpLL7YNVVP92HdEZwvwAAQHZCHuV02BZPrj3H0T/OUo9lk6XmSZ/eo+Sl+HF3lN2lCIJA5NEovNblPaxfuRWVxdXUGHM+mYptCeswcGoYNWGYp5TwO0bbzSHPmEe5H+UmF7TqwJhwL5mqhOvWSiy1Ie5uEg78dIJ6LIslm8PC+OUjsTP1L7z51xJa2xPnKFRpHaSxwo/NYSMwjJyAl+SUoSS3TOV2yQ/TqUlh9yGdaZsU1lfX4/CvpwBpQnL+lzNoGbct5igkug//egoCPj03h0wmkxI8riqtQX5qYZvbenl56aXlSywWY+jQobSP29b7PXr0CImJiWpsrT4ODg6YP39+u1VUDAYDXl5e8PHRzgm4LYRCIYYPH077uK0hkUjw5MkTxMbGqrG1+tja2mLBggXt/gYzGAx4eHjA39+/ze20QSgUUjf+LwKCIPDs2TPaDSisrKywcOFCtbZ1d3fXSxurQCDAyJH060i2RUxMDB4/fkzrmBYWFli0aFGb1xN1Fhe1gSAIpQqq+V/N0nvV6eRVETCxII2aruy+iZKcUrX3VdT2eno9Dg8fPlRyNu7SX36eteYM2trioqOjI3r27InnN+VJtp4j1Nf0Iiv7DlGPX/1iBlhs/Vadjl8+guqYuHHgDvLTyOvte1uWU9skR6epvA4H9/WnDAKeXo/D06dPlZyNO0vn11AxD5ZRXS6vgDa1kifSHBwcEBISgvjb8sUsbbTmXgSGRJoBAwYMGGiVx1disDL0I/w490/KRQgAzG3MsC1hHV79cobO4vMlOaU4LxVJNzLlYdaayTqNp9jCIFstbA6DwcC8z+SJlX3fH1O5oksQBB5djsGa0d9izchvlVw0OVw2xi1rmfRRdD6KvyefQMTcjMdbfT/BtzN/V5qYDJweji2xv2PRd69QlU2Kx9+5PzkhyUnMx53jD0AXnfvJJ40J91RbnceoEUt1IQgCT6/H4pNxP+DdgZ9DLJTf3LM5LIxZPAw7ktfj7X+WwcGdfs2roDA/9BxJTsYKM4px/QB9ulSKsWytKk0ploPoc2o8vk6uMzd83iBaDCnaw6e7J6U9WJpXjiu7btI2tmIs49qo8CMIArNmzYKRkVGr22gKQRDIzs7GokWL9K6NpoiLiwv69OmjlxX3U6dO4cKFtl3uxGIxZs6cSbuAfU5ODl599VX4+vrSOm5bODg4oG/fvnq5oT9//jzOnDnT5jZCoRAzZ86EuTk9yQoZubm5mD17tt610RSxsbHBwIED9RLLS5cu4cSJE21uIxAIMGPGDFhZWdH63nl5eZg2bRo6d6Zvcag9LC0tMWTIEL20kV69ehVHjx5t9XXFxUU6rz13T0Yj9QkpSO/bwwsDpvShbezWMLMyxeQ3SQF+kVCMQ7+cUntfRW2v3KR8lBWXIz09nXq9c//2r+NKi4sKsZRpaj69RibwGQyGRvINjy49ozoYPILdMGR2P7X31RZjM2NMe3c8AEAiIXBQWpXm39sXnp3l+o6/LW5ZlcY14lJz0+LsUhTnlSAtLY16XZ1Y1iqYM8ladiGt4BwyZAgVSzRzXe1IGBJpBgwYMGCgBalPMrBm9Lf4aPR3SHva0rlnzKKhcPZypOW99n9/nBJunfxmhNY6WDLa0kdTpPfoEEpYNf1ZFqLPy4XihQIhLu+6ieUhH+DjMd/hyRXlFpCpb4/D3qy/8c6mlkkfCxtzeAS7AVJR28QHKfhk3A/4YNhXSIqWTzS6DgrC+qgf8MXh91u1N2cwGEptqK0l/LRBNglCG6uvqloYNEUkFOHavtt4o/carB7xDR5eUNa+mvD6KOzJ/Bvvb32d1nZHVSgbTZzQ2GiiNToPaH8lW0kfjSatuZqKWhz9Q64zN+/z6e3uQxdzm1X4iYT0tH91USOWALB3717cu0dfuzMApKenY+fOnSgrU11VqE8iIiJgZmZGux6UlZUVcnJy2tzm4MGDtAvLZ2dnY8eOHSguLqZ1XHUYNWoUbGxsaP87WlpaIjs7u81tjh49qpb4uybk5+dj+/btyM/XzKmQDoYNGwYnJyeUlKhuz9IWdc7LEydO4OrVq7S+b3FxMbZt29bu31EfDBo0CO7u7igq0kzbqz2sra2RnZ3d6txAcXGRrmuPRCLBri/lFVQLvp71wlrvpr4zjtLgurDtuloOzzIUtb1EZVBKpra2CKqI0oKYQiyvXLmCE8dPUo7rvj291K78a1GN9uVMvWsgypi0cjQlp3BlTySKs8kKv3cVqtLi7iahOLvl97/HMHl7Z2OBCF27yh8HhflS1X+txbK2Si4loKglfP36dRw/dpyq/PMIdtOLeRIdGBJpBgwYMGCAojCjGD/MXYc3eq9RSh759vBCv8lyIXC6JmOFGcW4uIO86TAxN8aMDybqNF5dVT3VwuDVrVObE5nmoux7vzuG2so6HPz5JF71XolfF21EZmzLif7Ud8a1q9slK2sXi8R4q++nSskjzy7u+O7sx1h742sEhbXvYtd7VHcq4ZcRk437Z+lpDVFcMYxTkbBorG9CykNyIuPm76zxRKa+pgFH1p7BfJ838dOr61UmZMctH4m3Ni59YZOkboOCqeRqblI+7hyjp8IvONyPuolQFUuhQEhV/dm728LJi56E4dG1Z9BQQ+rKjV44VGuNQm0ICPVF79HdAQBFWaW4vp+eCr+AUB+5fl8riTSBQICSkhLY22sm5NweCQkJcHd3h4ODfhO6rfHgwQMcOXKEVq20fv36tdkOKBaLUVBQQLvzaXx8PJydneHi8t8IRD98+BCHDh2iVSstPDwco0ePbvV1giCQl5enl/PS3t4enTp1onVcdXn8+DEOHDhA28IDAISGhmLs2LFtbpOXl0f7eZmYmAgbGxu9tISrw7Nnz7B//35aded69OiBCRMmtJrIeh6p3uKiJkQeiUJWHClEHxjmh7BxPWkZVx0s7SwwYcUoAICQL8SR3063u48MxcqmtLtZ6NKlC/V7q7gImvokE431LQ0cZLFEs8XFiooKNFXJjXcUk0ztEXXmEVIekZVx3t08KJfxF4GppSkmryIr/MQiMWVaFNw3QEnc/9dFLavSFGOZfCcd3bt3p35vjc2MKa21rLhc1Fa2NLKpr5brm1rayefqFRUVENSJIJGQfxdNYvmiMSTSDBgwYMAAKkuqsfHt7Vgc9DZuHLhLPe/kaY+P976FjQ9/QlEGuSLFZDKUqkZ0Ye93R6ky+anvjGvT4VId1NFHUyR8Qi94dSVvTpIepGK26zJs+3gfygvkK5w+IZ5gssnLpbGZkZI+lCqqy2pQmlfe4nl7d1t8uGMlNj39FWFje6q9ektWpckTfjs/P0iLvpe1gyVcpZVwqY8zIGgSKL2eGJVCaZepE0sZJbll2PLhbszptAJbPtytFAvvbh5UkoRrxMGrX+hfz6s5isnTXV8eosXB09TSFF7dyPMo83k2ZZogI+VRBpoayEk2XfpoVaXVSg6yiufIi0Ixlnu+OdLiHNKG5vp91WUthca5XC5mzZqF4GD62pQkEglGjRqFuXPn/meixqGhoSgtLaXVPdPMzAz19fWtVmexWCzMnDkT3brRp0EjkUgwfPhwLFiw4D+NZWVlJa3umSYmJuDz+a1W2TEYDEyfPh09evSg7T0lEgkGDx6MxYsX611/qjVCQ0NRV1dHa7WkkZERlcRtjalTp6J3b930VxUhCAL9+vXDa6+99sIqfprTq1cvNDY20lrhx+PxwGQykZvb0mGxrqoeaU/VW1xUF7FYjN1fH6Eev8hqNBnT358ArhGp0XV202W1tdI69wugtL2e3YrD1q1blYxlZIugErGEqoiSoaiP1nxxcdSoUahNkl//eo5QL/mjqrLvRX/Pp7w9FsZmpETCxe3XKa20dzYto7aJuRXfYl4b0NsHJuakXt2zG3HYvn27krGMouZcQlRL+ZDGGvk8SeYgCqljMD9DvpjUQ81Y/hcYEmkGDBgw8P+Ysvxy/P3ODrzq9QZO/nWBSpxY2Jrj9T8WYlvinxg2ZyDqKuuR8VxWsu4NU0vdtXSyE/NwdfctQKp7IdNq0IUYDVsYUp9kUsK1ACjDAwaDgf5T+mDdne/g3d0DEhG5yjb17XGwtLNQOVZFUSW2fLgb87zewMOLcvt0FpuFZb+8ip3J6zFqwRCtJvB9J/SGX09SsynjeTalKacrsvZOoUBErYjKaK2FoTXSnmbip1fXY77PmziiUCkFacJy7c2vEdzXnzrHJr4xhlYXUHXpOaIb9blzkwtwasNFWsaVaXtJJAQS7ytPGpXOS5pMGw7+eIJyjI14bQQcPeitglGHLgOCqBuGoswSHFnbtn6UuihpzqlwlU1ISIBYLKbthoMgCOzevRv3798Hj6eb5qMueHh4YPXq1bTfSD18+BD3799X+VpycjIEAgFtiQWCILB//37cvn37P42lq6srVq9eDS6XS2uF3+PHjxEVFaXytbS0NDQ0NNCqg3XkyBFcu3aNVi1ATXF0dMSHH34IExMTWmP59OlT3L17V+VrmZmZqK6uBpfLpe39jh8/jkuXLsHY2FiNrfWDnZ0dPvzwQ1haWtIay5iYGNy507IqWNPFRXW4uicSuUlkm3GXAYHoNfLFC8HbOFlTVWn8RgG2rN6j1n6K2l5FGaXgcXmoqqqiXm9L26u1xUWhUIj4+Hg8v04mkTg8jtqLzZFHoqh2UP/ePpT26IvEwsYcU94iq0OFAhE2vb8LkM6hnX2kEi4EsPa1f5T2Y7FZVFVeZVE1jHhGbcSyZXV5k0LFn6zDQywWIy4uDrE3SeMdJouJ7jrq8+oTQyLNgAEDBv4fUphZjHUrtmC+z5s4sf485SZoZMLD3E+nYXfaX5j69jhwpSt3iokBOsRqCYLAhlXbqNLt6e9PoHQadCEhSj7x6TpQdQuDUCDErSNReH/ol3izz0ctJksBfXyxPelPfHXsQwDAlV1kss/U0gTT3muZ7CvJKcWGVdswz2sljqw9QyU3ZPCMuZj67jhwjbS/IWAwGHjjz8XU4x2fH0SNglCrtiiuGDZ3VlKMZWv6aCKhCHdOPMDqkd/g9V6rcW3fbapajsPjYNzSEdiWsA7fnvoIRqa8ZqYSk3Q+fm1gMBh4Y53c5WzP10dQUaS+xkprKE6ctYmlJmTG5eCkNAHI4XEw55MpOo+pLSt+X0hpoRz88USrrqWaoKSTpsLx69atW0oi0bqSlpaG7OxseHp60jamtnC5XKxbt67VxJc2+Pr6orGxUeVrt2/fVhKJ1pXs7Gykp6d3mFhu3Lix1WSNNvj5+bUayzt37iAlRbVxizbk5+cjKSmpw8Ry8+bNuHmTPmORts7Le/fuKVUK6UpxcTHi4uI6TCy3b99Oq/5ba7FMuEfvtaeuqh5bP9pHPV74zez/rOp03hczqJbAW4ejlBas2kJRJ83bMlBJ20vpOn5X2UU5vpVY5uXlISoqCpUVZBKpcz9/tUy4GmobsfmD3dTj/6KyT8bsjybD1oVMZt0/8xjRUjmStza8Rm3z5MpzVJZUKe2nGEtXjhdCQuSu9Yo6vKokL2T3HQBg60pW9xUWFuLevXsoLSbnEQGhPrQs3OsLQyLNgAEDBv4fkZucj18WbcBC/7dwbssVSuSfZ8zFlLfGYkfKeiz8dnaLC1dmnLxlQFYZpQs3Dt7Fs+txgLR9lI5qNIIgkB2fR43ZvE00L7UQ/67ZiznuK/DdrN/xXEFI39zGDAwmOYHJjssF14gDsUiM9W/8S22z8JvZMLeWOwsVpBfh96WbsMBvFU5tvAghn6xm4/A4mPjGaPSJINt7GmobqePShS79AzF87kAAQG1FnZI4rbYorRg2q/yR6Z9YO1q20DArzCjGtk/2Y67H6/h62m9K7koWtuaY9/l07Mv+B+9sXo5Oga4Qi8lYyhKn8z6fASt73UwldMG/lw8ilgwDpH+f7Z8c0HnMLormDa3E0sTCGM7eupl0EASBv1ZupRKWr3w0BXautjqNqQteXTph4hukblRTAx//rtmr85jB/RQm4Coq0gAgKIgerR9IXTNnzZrVIW6yASAkJIRWI4Xhw4dj+nTVRhQEQdAaSwcHB8ycOfOFOnW2Rffu3WlNpA0ePBizZ89u9XU6241tbW0xffr0F+rU2RZ0n5f9+/fHvHnzVL5G93lpZWWFadOmoUuXjuH+FxISgvv379OmO9enTx8sXLiwxfNZ8YpzN9114XZ8dgBVJWS79ICpYbTp5WqDmZUpFv8wl3q88e3tasle9BguT5ylPE5Takd09nak2gwTolKU/j6KsfRViCVBEOAwueBXCaTjq1eht/ebIyjLJ9ulQyN6IHRMSLv76AtjM2Ms++VV6vE/7+6AUCBE79EhVLU7QRD4/bVNSvsp6aQ9SkN8vDyZaediQ+nBJkentZDRkHWAAIC9GznHlEgk4LA4aCwnF6R7qhnL/wpDIs2AAQMG/h+QGZuN71/5A0uC38WVXbcgEcsEQY0we81k7Mn8G2+sW9Sq6Ht2gnwC4aFgi60N9dX12CwtHQeAleuXwMhE9xag0twySptKdowCvhA3D93FhyO+xqKAt3D411OoKpVrLrkHuuLdLStwMG8zJr0xBlBIBpzacFHeztrDCxNeJ9sIshNy8dP89VgU8BYubLtGlfobmfAw/b0J2JOxEas2vIaeI+QTAFX6ENrw2k9zKbeqc5svIz0mS6fx3ANcqISjYtVhZUk1FSdZLIUCISKPRmHN6G8x3/dNHPzpBCqK5KuTLr5OeOvvpdiX/Q8WfD1LyX31wtbrSH5IVhB5BLth6jtti0y/CBZ9/wpMLU0AAJd23kBSdKpO4zl0soe9G5nQSnqQSonuNtQ2Uk5Ynp3ddV5xvronErG3yZVyFx/H/6yyT5H5X82kKgNuHryrJMisDUr6fY/SWziCLl++HH5+7Rt1qMPNmzcRFRXVYZIVADB69GjMnj2bttYvgiDw+++/Iy+vZUJ/yZIltCUs7ty5g8jISFoTILoyYsQIzJs3j9Y2unXr1iErq+Vv7/z585WqW3Th/v37uHr1Kjp3pkdTkQ4GDx6MBQsW0BZLBoOBDRs2qKyInDNnDnr2pEfA/tGjR7h48SK6dOnSYWLZv39/LFq0iLY2bgaDgc2bNyMxUbmKSpb8MTYzgkMn3YwbUh6n48w/lwFpVfnrf7RM3L1oRi8aQmlqZsbm4OzmK+3uo6jtVVhcgMjISOo1BoNBLTA21DQiN0mu4ZctjSWHy4arr9zYx9vbG+J4Lgipr4k6+miZcTk4tu4cOR6PgzfXL/7Pz82hrwygqsjyUgpxcv0FAMDK9YuobR6cf4KaCnk3hFfXTtS1v7CkADdu3FD6fZCNJ2gSIuO5snmXbPEZAMysyEXqTp06gZVuDolIajTQgfXRYEikGTBgwMD/NskP0/DllF+wrPsHuHnoHnWBM7c2xfwvZ2Jv1t9Y8uNcpaSHKmQVNUwmA+4Burmw7fryMJWA6TcpFOHje+k0ngzFqjkbZ2tS8N59Ob5/ZR1V/QapMPuQWf3wy9UvsDXud4x9bTi4RlzM/3omlVS6efAutn+6H5BOrN76eyky43Lwzcy1WNr1fVzbe5uqrjKxMMacT6Zib9bfWP7bfEr3y7eHvHIvJ1H3ijQAsHO1pQTeJRICG9/ertNNDYPBoJyVqstqUVVKrjRnK6y82rnaYOtHezGn0+v4dubvSm6uLDYLA6eH46dLn2FH0p+YsGJUi6RoVWk1tn8ibwVZtfE1cLgcrY+ZLqzsLbHg61nU441vbdfZ4c+nBxnLxromlEmFebMT5H97j2DdktC1lXXY8qG8FeTNv5bo1DJMF+bWZlj8/Rzq8ca31KsMaAtfaSyFAhEKM+Ti7omJiVi/fr1OY8soLy9HZGQkzMzM1Nj6xcFms2FpaYm1a9eqTH5pCpPJhEAgQHZ2ttLzaWlpWLt2LS2Jkerqaty4cQOmph2rDYfFYsHOzg5r165t8fm1gcFgQCwWt0ikZWVl4ddff6XFJbSurg5Xr17tkLF0cnLC77//TltrtUQiaRHLvLw8/PzzzxAKdTeCaWxs/M910VTBZDLh6uqK33//nbYW1uaxbKxrRFEmaWrgEeymU6JGVlUu+6149YsZcHCn11FVG1gsFlYqyF7s+uKgSoMapX3YLMq9tCSpApBA6TfQN0Q+d5Ndv4UCIfJSSBF+twAXsNhyTcnTp0+jsJbcztTShErstYasqly2oP3Kx1NeqON2azAYDLy5folc9uKbIygvrETfCaGwk7ZeEhICfyzdTO3DZDLRXdreWZ5aDSaYrcYyJ0H5WiabIyielxcuXEB+DZlw4xlzERTur6dPSw+GRJoBAwYM/I8hkUgQfeEpPhrzHd4M+xj3Tj2kXrNysMSSH+diT+bfePXLGWo5OInFYioR5OrnrNONe9qzTJzaQK5y8Yy5eGPdonb3UZcMheqsC1uv4cjaM6guk6+cufo5Y9kvr+JA3mZ8euBd9BjWVWk1mEwGvEI9luk39B4Tgr3fHsHrPVfj9tH7cqt0W3Ms/HY29mX9g0XfvdLChKBTkCv17xypMC8dTH13PFykArCxkYm4dVi3VptOgQrHmUgeZ8ZzeSyv7onEoV9OUe0ckLY/LPlxLg7kbsIXh99Hr5HdW11Z37pmH2or6wEAw+cNpE3wmA4mvD4KntKKu6ToNFyRml9oS6dAN+rf2dJYKiYlPbvolkjb8dlBqlJw4LQwhI6hzx1QV0YvHkqrIYZiLGXnJQDk5OTQJozP4/EwePBg9OnTh5bx6MTY2BgWFha4ceOGzmMxGAwMGzYMHh4eSs/LYklHJQSHw8HAgQPRt29fnceiGy6XCxsbG1y7do2W8YYMGQIvL2WJg5ycHDAYDFpiyWazMWDAAAwYMEDnseiGxWLB3t6etlgOHjwY3t7KiYfc3FwQBEGLaQOLxUL//v0xePBgnceiGwaDAWdnZ9q00gYMGKBUqav4u+mpYydBy6rycTqNRyed+wVgxKuDAAC1lfXY+fnBdvfpMYysdKrKqIcXV7kaWWnuJp375qUUUomf5tfx1ORUKukbMrRzu9enFlXlq//7qnIZvj28MHbpCEC6ILhNugi6Yu0Capu7p6JRVyV3lpbppNXkNMAdfkq/gZ2CFK/jzRJp0kSiTGMVAFKSUsBvIts6uw4KonSaOyqGRJoBAwYM/I9QX9OAk39dwOKgd/DpuB/w+HIM9Zqdqw3eWLcIezI2YvaayTC1MFF73KLMEkrLQJe2TolEQq7CSSu55n42nRanwezEPGx6b6eSHbsMDpeNoa/0x2/Xv8KOpD8x44OJbWpzjVkyDC4KJfsMBgMPLzxF9Pmn1HPWjpZY9ut87M3ciLmfTmvVJMHKwZJ6ja6KNADg8jh4/Q95AnLLh3vQqOB+pCnuCom0mJvx+Hf1Hmz7eH+L7dgcFgbP7Iufr3yBnSnrMXvNZFg7WrU5dtydRFzaSSYCTC1NlDQ4OgJsDhuvKyRzt328D/XV9VqPpxjLXOlNjKKuii43M8mP0nF2k7ytZsXv/31bjSIsFotWQwx3FQleAAgMDMSwYcN0OFKSlJQUPHr0CIMHD6bdJZMOmEwmZsyYgdDQUFrGU6UN5efnhxEjRug8dnp6OqKiojBkyBBaHSvpgsFgYOrUqQgPD6dlvM6dO7c4Z3x9fTFq1CidE2lZWVmIjIzEkCFDwOF0vJtIBoOByZMno1+/frSMFxQU1CLx4OXlhdGjR+scy5ycHFy7dg1Dhgz5Tx1k22LixIkYNGgQLWMFBgYqff8Urz26zN0qS1pWlbM5Het7vuTHuTA2I51tz225irSnmW1ur6jt9Tz/MWJi5PNlpWtPUssFseaV5cZCc5TGkguN7emjddSqckUWfTebmrte2XULCfdTMHhmP9g4kfM9QkLgz9fl+sGKmnOJJc/x+PFj6rF7oLyDRXFBWSKRANLCNTZH/v03FpmjJIbsWOno+mgwJNIMGDBg4OUnL7UQG9/ejjnuK7Dx7e3ITy2kXnPycsA7m5ZhV9oGTHlrrFZaZIpC+R7Bbm1u2xaXdtygtMLcA10x/X3tDQaaGvi4ujcS7w3+Aq91fhfH1p2DSCDXUXL1c8Ly3+bjQN5mfLLvHXQfop7OTH5KISqL5bpfiiXqDp3s8OZfS7AnYyNmvD8BxmZtt4owGAxqZbM0txyNdardybQhbFxPhErNDErzyrH/++Naj+Xs7UD9e/dXh3H4t9NKIrBOXg5Y+vM87M/djM8Ovoeew7uqlXgQi8RYv3Ir9XjRd69QFucdiZ7Du2LgtDAAQGVxNXZ/1TIhqy6qqhDp0Bds3lYz/8uZHaKtpjld+gdi+Dy5Icb2T7U3cVCOpfw3SCAQtKhg0RQ+n4+TJ0+iurpaja3/O6ytrWFvb4/du3e36m6oLnFxcdi7d6/Sbxqfz9fZFEAoFOLkyZOoqqpSY+v/DisrK7i4uGD37t2oq6tTY4/WSUxMxO7du5XaOJuamnSOpVgsxsmTJ1FRUaHTOPrGwsICHh4e2LVrF2pq2m6ja4+UlBTs3r0bIpH8+t3Y2KizBqJEIsGpU6dQXl6u0zj6xszMDD4+Pti1axcqK3Vzj87IyMCuXbvQ1EQurGXTlEjb+tFeqqp8xKuDOlRVuQw7FxvM/Yw0VCEIAhve2tZmm7VX106US2VtRT2SEuXtta5+TlSVVG5S2wtifD4f+THFqC8mY66YVFLFjk8PyKvKp4d3qKpyGZZ2FljwjVz2YsOqbRCLxFj6i9wYJPLofTRI57Suvk6UiVJNWR0SE+QOnY4e9uAZk4nCXIVEmmL7LUdadSYQCFAQW4y6AnLc9mLZETAk0gwYMGDgJYQgCDy6HIPPJvyIxYFv4+RfFyihfUgvQF+fXI2dKesxbtlIncqjM+PkAqHaVtTUlNcqWaav2rBEY50soUCI+2cf46dX12Om02v4ef5fVHm8IrYuNtiRtB7T35vQot1SFQRB4On1WHwx+Wcs6fwuGmuVq7ssbM3x+eH3sDttAyatHKOWrbkMpbZJBdFaXWEwGHj99wXUSt7hX09pJJYvEooQfeEpflm4Ad/N/KPV7SxszbEr9S/M/HBSuzp6zTn51wVkxpLnjl9PL4xfMVKj/V8ky36dD64ReT6eWH9e5XmlDsp/bzL5I9MXNLc2pVZ0NeX8v9eQ8ohsq/Hs7I4pb//3Zg2t8dpP8+SGGFuu4PGVmHb3UYWbvzOV/JZVpDU1NWH//v3IzGy72qA9xGIxfHx8MHz4cJ3GeREYGRkhPz8ft2/f1mkcW1tb8Pl8CARky7pIJML+/ftVCr1rgkQigaenJ0aO7Ljfbxk8Hg9FRUW4dUu3Fm4bGxuIRCIquSmRSLB//36dta4kEgnc3d0xevRoncZ5EXC5XJSWlurcemxrawuJREIlNwmCwMGDB1uI5msKQRBwcXFBRESETuO8CDgcDioqKnD9+nWdxrGxIXWsZLGkoxo67k4iLu+8CXTQqnJFprw9ljKpib+bjBN/nm91WyaTiQFTyAW0nJslYNbK56McLoeSz8hLLiC151pJSt65cxeEK9mKaOdq06aGcPKjdMoMwciUh9c7WFW5IhNWjKJaWFMfZ+DQL6cwYt5gWNqTc2qJWII/lpIOngwGAwOnkdW+ebdLwayRx5LJZMJNGpP8tCLKuTM9Rq5XaWJBLko/ePAAImfyN9XC1hze3ZWlCDoihkSaAQMGDLxENNY14vTfl7Ck87v4eMx3eHDuCVVhwDPmYtzSEdjyfC1+ufIF+k0M1VpLKDc5H2uX/I3fFv+N6wfuUM/zGwWoLNG8imPTB7uoNq+hr/Sn9CnaQywW4+n1WPy+dBNmOS/F5xN/wrV9t9FYJ092mVgYw7+3D/XY3t0WqU8y2hV9bmrg49yWK1jW7X2sHvENok4/UnqdzSVbF2rKa9FUz1cSl1WXtvQhdMU9wBWvfDwVkE5qfp7/F5oa+K1uL5FIEHMrHutWbMEsl2X4dNwPuLL7llJbKIPBQEBo81hmKlnAq0NhZjF2fXmIGnPVxqW06VrpAydPB8z/ilyBJQgCvyz4C/U1DRqPY2YlT5YlPUjF78s2Ufb2Ns7WSH6YprEIf2leObZ/Im+17YhtNYrYudhgyQ9zqce/Lf4btZWaVwDxjHlw8iKrJXOT8kEQBOrryaoIe3vtW8JLS0sRGxuLadOmdTiTAVWYmppi6tSpcHR01GkcHx8fLF26lGpxq6+vB0EQsLPTvrKxvLwcT548wbRp02Bh0f6ixX+NsbExpk6dCmdnZ53G8fDwwNKlSykzgMbGRojFYp3Oy8rKSkRHR2PatGmwtu54lbvN4fF4mDp1KlxcdDMfcnV1xdKlS2FpSS7UCAQCCAQCnc7L6upq3Lt3D1OnToWtra1Ox/ci4HA4mDp1KlxdXdXYunUcHR0xoOsQ/PvuPqxbvhnx98jELs+Ei+KsEo0lIARNAqUWvkXfvdKunMN/CZfHwTubllGPt32yXykB1hxZ8qcqow6J0SlK8xzZ3I3fKMBP89bj+S3SiZrNYaGisJJauE5PzFCqoGqt80EoEGLd8s1KVeUyl++OCIvNwrubl4PJJD/P7q8OI/VJBpb8KL+23zochZIc0pFcVtVfnV2PxAepShWmslZZiViCgrQiAEDGM7kOr7V0zpSWkIG6AnLeFTKsS4eUXGhOxz9CAwYMGDCAtKeZ2LBqG15xX4G/3tyqVCLt0MlO2nq3Ce9sXg6vLp10fr8dnx3AxR03cGnnDSWnnd8W/4057ssRczNe7bEij0bhyi6yAsDE3BjLf1vQ5vYEQSDhfgrVrrp6xDe4sO0a1VoAacJigPTC3VDTSFXrQJrAWBn6EdaM/EalG13G82z88+5OzHFfjnUrtqicaI1bNgKf7H+Herzxre0oyipR+zPLUGxPy6XRcEDGnE+nUomvvJRC/Lt6j9LrBEEg+WEaNr23E3M6rcAHQ7/CuS1XlLSrTCyMYW5jprC9PJbpz7LwZp+P8N6gL9R29hOLxPh5/l9UsnPsa8MRFKZbm86LYPr749F1IOnkVZRVik3v7tRqHGfpSraQL8KFrXJB7uyEPKwK/wRvhn2sdmJSIpHg10UbUVclb6vpNihYq+N6kUxcORo9R5L6JmX5Ffjrza3t7qMK2fensa4JZfkVsLGxwcqVK7VOWIhEIhw6dEjnapcXTUBAADw8PHD06FGqbUtTGAwGEhMTKVc/S0tLrFy5UutEiFgsxuHDhxEXF6fG1h0HX19f+Pn54ejRo2ho0DxZDmksU1JSKOdKU1NTrFy5Ep06aXftJQgCR44cwfPnz9XYuuPg7e2N4OBgHDlyBLW12ushZmRkIDWVrKjm8XhYuXKl1u3bBEHg2LFjePr0KS3GDy8KDw8PdO/eHUeOHNGp5fzo5pOIefIc5/69ioYaMsHDbxDg3UFfYL73ynYdLRXZ+tE+an7U0avKZYQM7YJpUiMEIV+In15dT1VBNafLwEBY2VuAZcQE3Pn4dM63mGA2D+tXblWqLr9x8C5qK8jFIJFQjPeHfIl5nq+jvLAS1c+bkHqWnNv1m9S6nuXuLw9Tum0dvapcRnDfAMz+aAqgMK8b9kp/2LuTCUCCIPD19LUAgIBQX9i724LJZoDjK8bnr36PCWbzsHbJ3yoNrRT10mRaybXxfKScJJ/v30YsOxKGRJoBAwYMdFCqy2pw/M9zWN7jA7zeazVObbyI+mr5xL/b4GB8cfQD7E7bgJkfTlLLgVNd2tJfEgnFVMtee5TmlWPdcrlV9pt/LYGtc8vVdoIgkPE8G9s+3of5Pivxdr9PcfKvC6gokuvuGJnyMGzOAHxzag0OF/2LdzcvB4fbemVO6pNMKvlTU1GLkxsu4I3eq7E85AMc//OcUmLOzs2G+rebvzOWr12AgVPDMHIB6fTVUNuIXxdtbLfKrTmqRGvphM1hY83uVZQGxem/L+HhxafIis/Fjs8OYKH/KrwZ9jGOrTuH8gK5/grPmIvBM/viq+Mf4kjRVoRGhLT5PunPstSupDr400nE3yVXwp28HLD0147bCqIIi8XC6l1vwsScbDO4uOMG7p6M1nic5kLEzcmMzVHS82uLY3+cw9NrsYC0beT1PzpuK4giTCYTH25/A+bWZMXOjQN3lSpb1cU9wBU8Kw7MXIyRnZCL27dvKwkZa4pAIICZmRnGj9den/G/gs1mIy0tDVeuXNF6jKSkJNy/TzoP37t3D9HR0WonyJsjEolgbGyMiRMnan08/xUsFgsZGRm4dOmS1mMkJycjKioKABAdHY179+7pFEsul4tJkzqOe5+6sNlsZGdn48KFC1qPkZKSgnv3SPfpx48f69TGTBAEWCwWpkyZovUY/xVsNht5eXk4e/as1mNY+5rDsbvqqrGq0hqU5JSpNc7DS89wYj3ZGsnhcfDhzjc7dFW5Iot/mEPp+aY/y1KpeyoUCHHneDR4pjyImyRoLOejKK8ITQ18XNl1U2nuporaynqkxqajSJALMV8CI1MeQseonkfF3IrHoV9OAdKKttW73uzQVeWKzPtiOuXGnZ2Qh+2fHMCnCovMKY/S8eDCY/w470/UlNVCIiJQX9SI4sJiNDXwcXn3LbgHtJwHF2XIF6bd/F1QW1uLnLpMiAUScLhshI3v9UI/p7a8HH9FAwYMGPh/glgkxsOLz3Bp5w3cP/MIIqFy8oJrxMGwVwZg0qoI+IZ46e04Ri8aimPrzql8zcreAsPmDmh3DIlEgl8WbqASVoNn9qUsymXkpRbi5sG7uHHwjpIznwwOl40+Y3tgyKz+CBvfC8amRvLXbDjoP6UPbh66p/L9J78VgceXY3Bxxw1EnXoIYbPkBYfHwZBZ/dC5fwD+XEG2L7DYLHy8723qfVauW4SYG/EoySnD81sJOPbHOcx4f0K7n12Go6c9ODwOhHyhys9HB+4Brlj263yq6ufziT9BLGqZ8GNzWOg9JgRDZ/VH34m9lcwSvLt64jpaT3RMejNCrYlf4oNU7P76MACAyWRgze5VGjnE/tc4eTrg9XWLsHbJ3wCAP5ZtQnBff43aWdqrCJ2wYpRaOntpzzIppzQGg4HVu96kNVmub+xcbbFq41L8MGcdAOCvlVvRdWCQRu0snYJc4dDVCh7DHBH58CZqRWSlRmNjIwoLCzFjxgy1W8Dy8vJQUVGBhQtfjmRkc8zMzDB9+nSUlpZqPYa5uTmSk5Nx4MABqgKoqakJxcXFmDJlCpycnNodAwAKCgpQXFz80sbSxMQEM2bMQH6+9r/JFhYWSElJwYEDB5CSQproCIVClJaWYsKECWq36RUXFyMvL++ljSWPx8PMmTN10i20sLBAfHy8UixFIhEqKiowZswYeHiop5VUWlqKrKwsLFjQdtV7R4XD4WDGjBnUd1MbfH188fCm6sWG7kM6w7dH+/PGqtJq/LZoI/V46c/zaOl0eFFwjbj4aM9bWBX+MURCMQ7/chJhY3ugy4Agapsvp/yKhxfkbuxxezNh5mICY1sugqZ2Asum7aR4ULgfCorzYe5hDAaTNIBSdV2vrazDz/P/opLsC76ZDb+eupnlvEg4XA7W7F6F13utgZAvxPE/zyFsfC907hdAtQ5/Nu4npX0SDmbDzMUYJvY8+I1zg8RCQL0m68woK5Abqnh37YTIS3dh7mEEJouBXiO7vzTzRkNFmgEDBgx0AHKS8vHvmr2Y02kFPp/4E+4cf6CURAsM88M7m5bhcOG/eH/bG3pNogGAV1cPBLbSjrd87QK1buiP/X4Wz66TbT/2brZ4+x9SuyInKR+Hfz2FN0LXYFHAW9j15SGlJBOTxUSvUd3xwfY3cLhoK746vhpDZvVXSqLJiFiiWizc3NoUF7ddxydjf0DkkSilJJp/bx+s2vAaDhVswRvrFmH/98epSc7Cb2bBv5dcI8zU0hSrd71JtYjs+HQ/Mp5n4ezmK/hk3A/titKzWCxKfLYgrQgioXqVSOqSl1KAo7+fweVdcsHn5kk0O1cbvLN5GQ4V/otvT32EYXMGtnAcVWxBbY6jhz3mfTG93WNprGvET6+uh0RMvv8rn0xFl/6BWnyq/5bRC4eg/2SyraC6rBa/L92Esvxy/LJoA/5Ytqndv2FbsbR1scbC72a3ewz8Rj5+nPsn9Rsw/b3xausKdiSGzu6Poa/0BwDUVdXjt8UbUVFUSekvCpoEbe7fKcgNZQnVICQElUQDgJiYGNTU1FAaVe3R0NCAAwcOUK14Lyu+vr7o0aMHjh8/rpVb4vjx48FgMJRu1GNjY1FVVQVzc/WStE1NTTh48KBON/sdAS8vL/Tp0wfHjx/XynF03LhxYDKZVOIHUmfU8vJytWMpEAhw4MABnU0K/ms6deqE/v374/jx41q5ZI4dOxYsFksplgkJCSgtLVVbe08kEuHgwYNISEjQ+P07Em5ubhg8eDBOnDiBkhLN5SRmLZmG/MiWfwM2h4W3/l7abrsrQRD4Y9lmqhsgdEwIJq/q+IYNzfHt4YUFX5O6pxIJgZ8XbEBlSTW2frQXX037FRkx0hZ3L1MwOQx0X+KLoBmd0H2pD0xceLBwaF0/k8li4p1Ny5H+OAvFzyohERIYOK1vi+0IgsD6lVtRmkv+PboNDsaMD9RfiO0oeAS747WfFHRPF23E4h9fabGdpScZy26LvBE00wPdlnjDrJMRzGxMKK01mVaworyIf6gPUh9koCSmCqImMQapiGVHxVCRZsCAAQP/EbWVdYg8EoVLO28g8X7LmxIbJyuMmDcIoxYOabddTB9ELB6GpAfKxxUyrAuGzx3Y7r5pTzOx/VNSIJ3BYGDyqgjs/uowHpx7gsKMYpX7dBkQiKGzB2Dg9HC1HSJDhnWBk6c9irKUqzRqK+sBhdZNK3sLDJ83CKMXDoFXV/nq9g9z11GtDl0HBWHGhy3blLoP7ozp743HkbVnIBSI8P6QryjNqvKCCmx++lubx+jq74yM59kQi8QozS2nbMK1QSgQIvZ2EqLPPcb9c0+Qn1rY6raySriy/AqYWZm1mfx0829dfHvVhiUqk5jN+fudnZSQbGCYH+Z93n7yrSPCYDDwzubliL+XgqqSatw/+xixtxOptuouA4Iwcv7gVvdvK5ZvrFuk1krrv6v3UsllnxBPLPyu5aT1ZWHVhtcQG5mIsvwKPLkaiyXB71Lfn8AwP4xf3rrujpu/MxrLBXi8MQW93ggAQ9pZ5Ofnh/79+8PY2LjVfRVpaGiAvb39S+Es2R4sFgtZWVk4e/Ys5syZo9G+tbW1YLFYYDAYEApJ3SAfHx/069dP7aRkY2MjrK2tMWbMGK2OvyPBYrGQm5uL06dPY/78+RrtW1dXBwaDAR6PBz6fNHnx8vJC37591U7+NDU1wdLSEmPHdny9pPZgMpkoKCjAyZMnsWTJEo32raurg0QigYmJCaVb5+Hhgb59+6ptvMDn81/atu3mMBgMFBUV4cSJE1i+fLlG+/LFfPR6xw8P/0wGv1quDTZrzWQlrarWOP/vVdw79RAAYGlnjg+2v/FSac0pMuPDibh/7jHi7yajKLMES7u8i+oyMoETNq4nGvmN6DrfCxIxASaL/IxsHgsMAQtBnYNg42SlJC8iY9o74+DR2Q1PTsejLLsSPGMu+qiQx7i27zZuHrwLSHV91+xe9dK0xzZn8qoI3D/7GE+vxaI0rxzvD/5K6XW2EQtdF7SMJfhMBAYFwsHDHkWZJSiUtnQ2Ss0aIDW1enImDoWppWBzWAif8HK0dcKQSDPwMiAWi5GdkIu0p1nISylEUUYxygoqUV1ag/rqejTV8yHkSy8WDAYYsv8zWj5mgAEGU/Y8A2CQFywGA2AwmTA2NYKVoyXs3W3h5u8Mv57e6DIgEFb26t3UGzDQHjXltbh36iEij0bhydXYFrpT5EWkN0YvHIrQMSFaOUXSxZDZ/bFh1TaqmovFZuKtja+1O6lqauDju9l/UNU0LDYT/67Zq3Jbv17eGDqrPwbP6temLpsqaivrEHX6EeWu2Rwmi4mwcT0xeuFQhI3r2aI18dq+27hxgJzkmFqa4KM2JjkLv3sF9889Rm5SAZUEAIDM5zmor66HqWXrN6EOCq1sZfkVGifSKkuqEX3+CR6cf4LHl2Iot6jm+IR4wiPYHdf3k/oy1O8igLjbiRg8o/VVPrtW2u0GTA1D2Lj2JzW3jz/Axe3XAamW3Ud7Vr00GiCqsLK3xPtbX8fnE8mWBUVtwtjbiW0m0mycrcFkMiCRKLeGhI7pQbmEtcWD809wauNFQNrK/fG+t8Hlcdrdr6Nibm2GD3esxJpR3wLSyjQZcXcS20ykWdiag2vEASEhV/cZYIDFYmHIkCFqi+Snp6dDIpG8tK1zzZG1fylWMT148AD19fUYNmxYm/syGAyIRCKw2eR3k8lkYuDAgWq3zmVmZoLP52PRokU6foqOAYvFwowZM5QMEx4/fozy8nKMGjWq3f3FYjF1PWQymejfvz98fHza3Q8AcnJyUFdX9z8TSyaTienTp+PpU3m73LNnz1BYWIiIiLYrmhgMBgiCgEAgoB6Hh4cjICBArffOy8tDZWXl/0wsGQwGpk+fTmkYMhgMxMfHIyMjAxMmtF3RxCBvdmBkw6USaQ6d7PDKx+1rxuUm52PTe7uox+9tfR02Th3fQbY1WCwW1uxahde6vgdBo4BKogFASU4ZPt/3Af76fBPcBtuBayqfr9hyHWBmZgZ7d9sWiTRrJyu8+uUMPL72DP5znSHcJ0DXnl1aVPkXZhbjr5Vyk523/1mq8Ry3I8FkMvHhjpVYEvwOZSSliKhJjKSjufCJcAZTIZaWDGtYWFjA3t0WRZklqKuqR0NtA3V/wOGxEX8/GZ7T7dF0uBG+fn4wt+74btoyXt5ZroGXnqy4HFzbfxtJD9JQWVKF+qoGNNU3QdAkhEgoJkW9tdNt1ZoqVKMwsxiJ91W/zmQxweayYWTChamlKawcyKRbp0AX+IR4GZJuBlRSXVaDuyeiEXnsPp5dj1Mp2u7dzQOjFw7FsLkDOsw5ZGJuDJ8QLyRFk1Vpw+YOVBINVUQikSD1SSaizz3Bqb8vorpU3nak2KLKYrPQdVAQwsb2RPiE3nDza716RxU1FbW4d/IhIo/dx9Orz1toyAGAe4ALIl4bgRHzBraqbVWUVYL1K+W27m//swwOnVp3Akx7kqE0CZNBEAQSH6Sh96jure5r6ypPUpXmtd/2QhAE0p9l4f7Zx3hw/gmSo9NUilgzWUx0GRCI8HG9ED6hF5y8HPD32ztUjplwP0Xl8zKMTY1gbm2qZMDAYDLwxrr2b0zK8svxx7JN1OOVfy6Gq69mf9eOhlgkxpOrqh30EtuJJZvDhrWTlZK5A4PBwKqNS9pNQleWVOO3xX9Tj5f9Oh8eQW4aH39HQiwWU4YJzUmIajuWDAYDdq42KMopBTkhYEAikcDIqP0KSQAoLy/HwYMHER4eDj+/ju8cqy7u7u5wdXXF4cOHIRaLUVBQAIlEgqFDh7Z5jrm6umLQoEG4f5+c5MiqgNShqqoKBw8eRM+ePREY+PK1bLeGi4sLnJ2dcfToUQiFQhQWFoLP52PkyJFtxtLJyQlDhgzB/fv3IRKJNIplbW0tDhw4gM6dOyM4uOO78KqLk5MTIiIicOLECfD5fBQVFaG+vh6jR48Gk9m6mpCtrS2GDRuG6Oho1NXVgSAItSsk6+vrceDAAfj5+aFr15ev/b017O3tMW7cOJw+fRr19fUoLS1FdXU1IiIiqES4KqysrDBixAg827CFeu7NDUva1eUUCoT4cd56NDWQ1ZXjlo1Ev4kvh3NiWzy7EafS3CcrLhdB4X547+c38dmEH+Exxh72Xcj5YgOXnOvZudkquZgDwPLf5sPYzBi3L94D05KJhtKmFgtkModL2aLniFcHYcis/nr8lC+GmJvxEPBVO6ACQFl8Ncriq+E3yRWOIWQCtsmInFMqaqPG3kmi/m1iboxbZ2+DZcxEQykfgz5qf7GxI2FIpBnQOwn3k3Hr0D3E30tGYWYJ6qsa1HZ/62hIxBIIGgUQNApQU16HwgzVSTcWhwVzazO4Bbigx7AuGL1oKBzbuEk38L9HZUk17p6Ixu1jUXh2I57SjVLEoZMdBk4Nw/B5g+Dbw6tDls+//c9rWDPqO1jamePtv5cqvdZY14gnV2Nx/+xjRJ9/orIEHtK2ytCxPRA2thd6j+rWZvWWKqrLanD35EPcPhaFp9dUJyJ5xhyIRBJMWDEKb6xb1GYsxWLpJKdGPskZOrv1SU5FUSU+Gv2dylU4AEiMSmkzkWav4Ahanl+hcpvG+iY8vRaL6HNk5VlZK9uZ25ihz9geCB/XC71GdVdaudv2yX6c3aza0S/9WRb4jfw2J9O2rjaorawHg8GAkSkPM1dPblcYXiKR4NdFGylr+IHTwjB60dA293kZOPDjCcqxrDnZCXntViHaudpQiTQjMyNMeWssnL3arkQkCAK/v/YPqkpILbA+Y3tg4hujdfocHYHjf5zDwZ9PqnytMKMYlSXVbbZy27nZoiC9GKmn89FjXgBGjBgBGxubVrdXpLa2Fh4eHhg0aJAaW79cCAQCJCUlUUl2dYwCWCwW3NzcMHLkSNy8eRODBg2Cvb16c5Pa2lq4urpiyJAhOh97R0MkEiExMZFyZVYnJkwmE66urhg1ahSuX7+O8PBwODurt4BQV1cHR0dHDB+uWuPzZUYsFiM+Ph5iMXmdtrVt31xEFsvhw4fj2rVr6N27N9zd1ZOzqK+vh52d3f9E23ZzJBIJYmNjIRKRiSBra+t254kMBgOurq6Y++U07P70CHoM64q+43u3+167vzqC1McZgHQxcvlazVqdOyKPLsfg96WbVL5GEASSo9PQc0Q3/HjxM/y2+k/YdyFfMzMmr+12LvLrjJEJD10HBWH4nIGQSCR4fCIOIq4AEJGdD4o0dy5/8y/NWp07Is8jE/Dz/L/U2rYuvwmO0k5XYx5ZqacYyzgFbWELW3M8PhGLJkYjhHVi9Jv0ciVvDYm0DkKTUIyiWj7KGwSoaBCiSSQGQQBMBgMWRmzYmnBgZ8qDvRkXzA54sy0Wi/Hsehwij0Yh+WE6irNL0VDTqDJ5oCkMBoOqBOMZc2FsbgRzGzPYOFrBzs0Grr7OcPF1ApfHhkgkhlgogUgkglgohkgkgVgkAiEGxCIRxCIxxCJJs/+LIRFLIOQLUZJdhpLcMlSV1qChuhH8Rj5ZHafh5xALxagqqUZVSTXibidiz9ek9TKHx4GVgwW8unogbFxPjHx1UIty4I4EXyRBUW0TyhuEqKgXoJE6LwFzHhu2JlzYmnLhaMajhCRfNARBoKJRiNI6PsobhKhuFEIkbanispiwMeHA1oQLR3MezHj6/ckrK6hA1CmyWur5zXil1i6OqREce/mgU3gAPPoFwtzZBlwTHlgMIJ/HRlNRLRVL1n8Yy8pGIUrrBChvEKCqUQgR1wQLbv4ALouJp8X1EJUVoCA6BU9OP8Tzm/EtnDAVCR0TgnlfzEBAqI/GuhAVRZWIOv2IquJT/A6yTXhw7OkD9zB/ePUPgrmrLbjGXLCYDJhy2YgtqoWtCRdO5qpjufPzQ4iTrog5edq3O8nhNwjAl67SqiLurmrDgUrpeVnv4YxRW94Ex9QItbbmuJBUAmtjNsTlNSh8mIonpx/i2fU4pVZMRby6dkLYuF4IH98LgWG+rcaypqx18XGxSIyURxnoOjBI6XmhWIJi6bWn+4fTEQSAyWHDM9gVliY8xBRUw86U/P6wVVQUHPjhBJ5cJauNbF2s8c6m5R0yIawp1W3EsrUqRJFYgqI6PsrrBQh+axK8JQSYbBY8glxhaWaEmIJq6rxks1rG8ujvZ3H/LOm2ZmVvgQ+2vbzaNIq0FUtIE9HNJ89iCUFee+qF8FsWAdfFo8HksOHu74wKMyM8U4glR0UsITUksLOzw7x582j9PB2B3Nxc5OTkUC1xkFaiCIVCcLlcpW3FEoL6jpc3CJCe1wBjU2sEjJ2HWg4Lz/KrYWNKxpLbSizj4uJgYWGhsY7Yy0BeXh5yc3OVnrOysoJAIACPp7zwIJYQKKnjo6yejGVGXgOMjM3hHzEXjRwWnuZXw9aEAydzI3DZqmOZmJgIIyOj/5lWY0UKCgqQl5en9Jy5uTn4fH4LPUOJLJYNApTXC5CRVw8uzxT+Y+ZCyGHhSV4VbKXnJa8ViYvk5GSw2ez/mZZORQoLC1vE0szMDHw+v0Xlo4RQPC+FyMitA6dXIJZG/QojNguP86rI30sLHoxUxDL6wlMcki52sNgsfLT3LbV0UTs6bc2JACA+Khk9R3RDl/6BWPbRYuzauBcufW3RdWB/xBfVwnJ0L4zpFQAWjwPHTnaws7fA47wq1OeUwLKbJXJv5aH3aGWHyWc34l5q5/LWUDQHaI/hY4fi7p27cOlng26DBiChuBamQ7pjTLAXWDwORGY8DP/LERUp+TASiFCSn4zyO5UIGdYFFrYvjzM5ADAIVf0i/+PU1NTA0tIS1dXVaguC6ouSOj6SS+qQVdkAiRp/CVMuCwH2ZvCzM4UR57/RThKLxYg8GoXTGy8h83kOGusaW2jBqAOTxYSJuRFsXW1g52oLe1cbuPg6waOzG3xCvDpkBVdxTikSopKR9jQL+amFKMsrR1VJDeprGiBoFEAkEGkcCwYD4JnwYOdmC/9e3hg8sy/CxvX6TwUpy+sFSCqtQ2ZFA8RqfB5jDhP+dmbwtzeDCffFHLdQLEFmRQOSSupQ2dh6qbEirhZGCHAwg5ulES03qCKhCPH3kvHwwlM8vPgMGc+zW2xj5euMkMUj4DqkGxhq6J0ZsZnwszdDgL0pTFvR/qIbkYSMZXJJHcob1Itl4YNkpBy7h7zIOBASAlwjDjg8DqUlFT6hF745uUbtOItFYiREpeDhRTKWaU8zW2xj6e2IkIUj4Da8Oxhq6G/x2Ez42ZkiwN6MSqLeOfEAX08jzQGYLCbW3vxaLWfJhxefYsfnB6kVW0XYHBbONe4Hk8mEWEIgq6IBSaV1KKtv25FQRtGjNKQcu4vcm7EgxBJwjTgIGdYF4eN6IWxczzZbThVpqG3Ezs8P4sK2a2iqb5n4m/L2WLzxB3nDUd0kRFJJHdLL6yEUt/8d57KY8LUzRaCDGcylsYy+8BSfjf+R0nD56fLn6Dn8f6O1pqmBj91fHsK5LVdVatJFvDYc721ZAQCoaRIiubQOaWX1EKgRSw6LAV9bUwQ4mMHSiNQ+e3YjDmtGfkNdP74785Fa2nQvA4ImAfZ8fQRnNl1W0pqTMWzOAHy8920AQC1fhOSSOqSV14Mvan8Bi8NkwEf6HbcyluvIJScn4+DBg5g8eTK6d2+9WvRlZdOmTSguVjZtYTKZCAsLo7S96vgipJTWIbWsHk1qxJLNZMDb1gSB9mawNpEn49LT07F3716MGzcOvXu3X9nysrFt2zbk5eUpJSWZTCZ69uyJcePGAQDqBSKklNYjtawOjcL2Y8liMuBtY4JABzPYKMQyOzsbu3btwqhRoxAe/nK1MKnD7t27kZmZqRRLBoOBbt26YfLkyQCABoEYKWV1SCmtR6MKaYbmsBgMeNoYI9DBHHam8ljm5eVhx44dGDJkCAYObN8A6WXjwIEDSElJUYolAAQHB2PGjBkAgEahGKml9Ugpq0O9oP1YMhmApw35Hbc3I5PEhRnFWBm6hpJ1WPLjXMxeM1lvn+tFQhAETm24iMO/naKcMxXx7OyOf2N/B6QFLall9UgoqkaTGk1ThESM/Ltx6O5uh/HTye9ySW4ZVvZegyqptMm8z6dTzqEvOwRB4NyWqzj084kW5l7N2fD0V4gcbRBfWI1GtWIpQeGDBATaWmDyK/1eqgVEQyLtP0qkNQnFeJBTiaxK1aLR7cFhMtDb3Qp+dqZ6P+HEYjFuHbqH0/9cQnpMNppaaW9qDRabCRMLEzh62iMo3B9DZvZD5/4BL61zSXuIxWI8vhqLW4fuIulBGkrzytFU3wRCwwQbh8eBe6ArRi8cjElvRryQeAlEEjzMrUJaeb0aW7eExWSgp6slghzM9Hpe5lc3ISq7Qq2JgyrsTbno72VD3cRqQkluGR5dfIboi0/x9Gpsq8Lv7p3dMfDzWWB6qyeI3RwmA+jhYolgJ3O9VqEW1jThXlYF6rSMpai0Gn5MMe4fuI0ru28BAFx8HLEh+qd2BUPL8svx8OIzPLz0DE+uPFd5kw0ALgEuGPzFbLD8tNOKYjKAbs4WsKyuxdvhn1B/sxVrF2Dau+o7fBEEgeeRCTi69gxVOSRjR9Kf4Djb4l5WBWr4rVfptYWovAY+hAjhgwJhZNK2nklb1FbW4dyWqzix/jwqCuU6XR7Bbtj0fC2e5tcgoVj91UVFGAygq5MFHJoasarPR9Tke9F3r2DOJ1O1PuaOSn11Pc5vvY4Tf55T0rdz9nbEjpS/EFNQjbiiWq3kPBkAOjuZw0UixFuhH1GT77mfTsPCb2fT+Ck6Bg21jbi4nYyl4kTc3s0We7L+QWxRDZ4X1kDbWWmQgxl6ulqCzWLiyZMnKCkpwejRo1+qSbm6CAQCxMXFwdjYGI8ePUJGBpngd3JywtJlyxBfVItnBdVqLdCqIsDeDL3cLMFhMRETE4O8vDyMHTv2fzKWQqEQcXFxMDIywtOnT5GaSmqC2tra4o2VK5FYXIun+TUQa3li+tmZore7FbgsJuLj45Geno7x48e3qRn2siISiRAXFwcOh4O4uDgkJyeDIAhYWlri7bffRlJJHZ7kV1NdA5riY2uCUHdr8NhMJCcnIyEhARMnTvyfvJ+QtcgymUwkJSUhISGB0o57//33kVJWj0e5VVrH0tPGBCF2Jlg9+HNkxJCLwP0mheLLYx/8z52bIqEIkUeicGTtGaVFWjaXjfON+5FWXo+HuVVqLSqqopOVMXo6meGzEV8jKToNANB7dHd8d/bj/7lzUywS487xBziy9nQL/bheo7qj+9zBQBdvCLTsSHOzNEJfD5sXVpShK4ZE2n+QSMutasTdrAq1Vlvbw8XCCAO9bNSqTsuIzYJHsHu7X2ptE2csDgtmVqZw8XFCcD9/DH2lPwJ6+ar9Wf7XaWzk49ahe4g6/RDpz7JQWVwNQaN6FSsAwDPmwrOLO8a/PhojXx1E+49zUU0TbmdWoEGNFcL2cDDjYpC3Le0VVWIJgeicSqSUaZfoU4TFYKCXuyWCHNouIxbwhYi/m0RVnWXF57a6rX9vH4SOCUG3KWHIYPG0TvQpYmfKxWBvW9rbUiUSAvezK5Barjp5peFgePzXWSTuuwmeMRfro36Ad7eWLnAioQjxd5OpqjNVFXwy/Hp6offoEIRMCUcm10jrRJ8itVnFuPbeNtTllWHI7P74ZN/bWt8YZifmYdN7O/H48nNYOVrivbs/Irmsgcw06QCDAYQ4W6Krs7nON61CgRBX9kRiy4e7UV/dgPm/L4LZsB5aJ/oUqc8rw7X3tqImq+R/dvKtiEgowo2Dd/HPuztRW1mH2d/Nhd2EMFQ16R7LxsIKXHtvG6rSC/9nJ9+KiEVkVfvGt3egurQGUz+bDtdZg9WuLG4LMy4L7KIkDOsbCnPzl6tFRFuKi4tx+vRpFBQUYMioCNRadlK7srgtTLkscIqSMSSsJywtO4YBjr4pLS3F6dOnkZeXhwFDh4Nv74dSNSuL28KEwwS3NA0De3ZVW9/vZae8vBxnzpxBdnY2wgcMAuHaGcV1rUskqIsxmwmj8kz07Ragtr7fy05VVRVOnz6NzMxM9A7rC45XCAprdY+luKEJtz7ejYKoJLj5O2PDgx811rB9mSAIAs9uxGH9G/8iL6UQvcb1woi1S5Bfo1mBiCokTQJEfrYHeZHxcPK0x8ZHP8PC5n/3GkQQBGJvJ+KvlVuRFZ+LLkO7YMLmlcit0q5ASBEui4G+HjbwtOn4LbGGRNoLTqSll9fjbmYFrWaUlkZsjPJ3aDV7KxaL8YrbclQWV4PNZeNs/V6lSbpYLMaNA3dw5p/LyIjNUStxxmIz4eBuj74Te2H866Ph7q9d1Y0BUgvq8q6beHz5OXKS8lBTXqfSYaY5RmZG8A3xxNS3x7VwjNGUnMpG3Moo03r1WhWmXBZG+TvAwqjtBFBpXjkqCivh39unzcSBSCLBjbRyFNBwwVOki5M5erpaUu8tEoqQ+iQTcbcT8fx2Ap5dj1PZJgepSGbv0d0ROqYHeo3qDmsHS+RXN+JGWrnWq9eqMOawMNrfHpbGbVfQlRdWoji7FEFhfipjWVtZh9THGYi7n4LqTs6wCO5E2zECQOKBWxjZywPD55BtFmKRGGlPMxF7OxGxtxPx7HpcqxV85jZm6DWqO0JHh6D36O6wcbJGYU0TrqeVab3iqorG8hokrjuJn46+36YGSGVxFQozihEY5qcyQVRXVY/UJxmIu5eCKjcHWHTxpO0YAcDf3hThndoXFlaX4tomXEsr03rFVRVNVXWI++0Yfjr0bpuT7+qyGuQmFyC4r///RLKttI6Pq6llWq+4qoJf04CYX47ix/1vtTn5rqmoRU5CHoL6+v9PJNvK68lYqtN6qC4SkRBDvKzh5Wjd5nZ1VfXIeJ6Nzv0CwFKj7b6jU9kgwJXUUrVaD9VFIhahv7s5/F3s2tyuvqYB6c+yEBTuBw5X80rvjkZ1owBXUstoWQyTQYjF6ONigmB3hza3a6xrRMrjDASF+4PLe/ljWdskxOWUUloWw2QQEjF6OvDQzbNtc4emBj6SH6YhKMwPXCNum9u+DNTxhbiSUkbLYpgMiUiMhz8ewZofZ8MjuHWDB34jH0kP0hAY5tuuA+jLQINAhCsppbQshsmQiCV49MsxvPvZFPj28Gp1O0GTAIn3U+Ef6vM/oUXXKBThakoZKmhYDFMkrJM1Ah3a7mz5rzEk0l5gIi27sgG30stpTaLJsDJiY0ygI3jNxE3FYjFmOS9FdZm8jWfB1zPRuX8Adn5+CBnPs1tNEijCYrPg0MkO/SaH4pVPpsLyfzjL3hEQCAQ4/sc5XN0Tify0IrUSayYWxgjo7YvpH05En9Ehar9XYU0TrqaW0ppEk2HGZSEi0LHVJO/NQ3fxy4INEApE+GT/O606J0oIAjfSypBXTW8STYZjUyNKr8Xg+e0EJN1Ppey/VRHYxxd9InoiNCIEfr28lW5mi2v5uJJSSmsSTYYJh4WxQQ6tVvndO/UQ37/yBwRNQry/7Q30nxyK1McZSHmcgdQnGUh9nIHCjGKAwcDAH+bDY7h+dIMcBXyUXXuG2DuJSLiX3Obvi18vL4SN7YXQMSEI6KMsol9Wz8el5FJak2gyuAxgfBdnSuurOdEXnuLbmWvRVM/Hqg2vYdicAVQMU59kIOVROgrSSX2i/l/PhVeEfrSsgh3NEOredjJAHSoaBLiYXEJrEk0GG8D4Lk6ttkk/vR6Lr6b8iobaRiz7dT5mvD9BrXGFAiFKc8tRlFWKhpoGsNgs6X9MMFlMpcfN/81kMcHhcWDjbEV7sqmqUYgLSSW0JtFksEBgXGcnWBurvuGLu5OIzyf+jLqqeiz4ehbmfT5drXFFQpE0liWor5bHkoxj67GUxZnNZcPW2Zr2ZFNNExlLOpNoMthMBsYEOMDWVHUsEx+k4vMJP6K6rBazP5qCJT/MUWtcsUiM0rxyFGeVorayTiGOqs/F5nFmc9mwcbICWw2NR02o44twPqmY1iSaDBaTgVH+9nAwU33znPY0E5+M/R6VxdWY+vY4vP6HeiL6YpEYZfkVKMoqQW1FnVrfa8XHbA4LNs7WtMeyXiDChaQSWpNoMpgMYKS/PZzMVd88Z8bl4JOI71GWX4Fxy0binU3L1BpXLBKjvKACRVmlqCmvbTOWql5jc1iwdrKiPQnaKBTjfFIx6vj6ieUwX3u4WqqOZW5yPj6J+B5FWaUYOX8wVu98U61xxWIxygsqUZxViuqymlZj2drvJ5vDgpWjFe1J0CaRGBeTSlBNY+KHgiAwzM8e7laqzc8KM4rx0ZjvUJBWhEEz+uLzQ++pNaxYLEZFYRWKs0pQVao6lu39flo70R9LgUiCi8kltFRBt4AgMNjHrtVqqpKcUnwc8T1yEvMRPr4Xvj39kVrDSiQSVBRWoiirFFUl1S1i2d7vJ4vNgpWDBe1JUKFYgkvJJbRUQatigJcNfGw7bpWkIZH2ghJp9QIRTsUX6eVGRoa3jQkGesttpsViMWa5LEN1aduuJaowJM46Fo11jTj480ncOnwPRVmlEKvRfmlmbYreo7rj9T8WwsZJ9c14k0iMU3FFermRkeFqYYThfnYtKmuOrzuHf97bST0OHROCH85/CkhXa4qzS1GUVYqS7FIUc3hgdW19dUdXCIkEl1dsROmzlgL3TDYTEoX4/HH7W3TpHwiCIFBVWoPirBIUZ5WiMLccjb0CwNSjCyuzshbeDfVw83eGs7cjNbk4+vsZbFm9h9Lh4xhxIGxSfVELmDkAoR/oV8vq6sp/UPQwtcXzLDYTYoVY/nz5c/Qc0Q0EQaC6rAbFWeTfvCinDA09/cE0119ZN6O6Dt61tXD3d4azjxMVy9N/X8TGt7ZTou8cHhvCVlZ/fSeFIfxT/QrJWmTkw8fJAm7+zrB2tNK4Qk0sIXAmoUg/k28pNiYcjAt0bOHce+PgXfyy4C+IpL9XXl07YUvMWqBZokz2HSrKJv9fnFWKsvwK6Do94XDZcPJ2hJu/M9z8nOHm7wJXf2e4+jnD1lnzaj+xhMC5xGL9TL6lWBmxMT7YqYXb7O3jD/Dj3D8pZ1cXXyfsSiGt6BUTZeR3qATF2aXUv8vzK7QyBFKEzWHB2dsRrv7OcPNzgaufMxlXf2fYuthoHEsJQeB8YgnKG3Rvm2sNCx4bE4IdWzikPjj3GN/N+oNaMLFztcH+nE1gMBhkLKWJMurczC6lYluWV65zLFlsFpy9Hcjz0dcJrv4u0li6wNbFWuOqTYIgcDG5FCU0tM21himXhUmdnVo4pD6+EoOvp/2GRmkng7mNGY4UbwWLxVJKOhY1+46XZJeiJLdcZ2d3JosJJy8H6XecjKOrvwvc/Jxg52arVSyvpJaisEZ/sTTmMDGps3OLhe+YW/H4cvIvlFaosZkRjpfvAJvDVko6FmeVUt/v4uwSFGWVojS3HGKRbskqJpMBJy8HafycFb7jLrB31y6W1/W4AAqpOdOkzk4t5G0S7qfg8wk/UU6DHB4HJyp2gGfMU0qUUfHMKkGRNKYlOWW0xNLR0wGufk7k76U0jm7+zrB3t9VqgedWepnWutrqwGUxMKmzc4uF75TH6fh03I+oKqkGpN+54+U7YGphopQoK8oqbXb9KUFJThl1/dcWBoMBRw876ryUXcfd/Jzh4GGnVSzvZJYjnQ5Zk1ZgMxmY1NmphSRLZmw2Po74HuUFpHYtg8HA4aJ/YWVvqZQoUzo3Zd/xnDII1SiqaAsGgwGHTnZU/Fz95Oelo4e9Votl97MrkFyqu9xOa7CYDEwMdoSFFprWLwJDIu0FJNIIgsC11DJaerDbY6ivHTpZGUuTaEtRXaqeoLQhcfZyUV1RiwPfH8OdE9EozStXSvSogmvMRZcBgXh97QJ4dpG380VmlCOzQn8XExn9PW3ga0euKEgkEmxdsxdH1p5R2obJYsKvlxdKc8pRUVRFPW/h6YBxe94HS88tDjU5pTg39zeI+UKwOSxY2lugtrK+hY6di68T2BwWirNKwVd4LfzTmfCdpH8Xrgc/H0XqsXtgMBjgGnMgFIja/fvLMHO1xfj9H4Ct57L8usIKnJvzK4T1fLA4LFjaWaC+ugH8ZpV+Tt4O4BlxUZxVqlQF2PuDKQicqX8XrsfrTiFx/y2AQWoQigRitSfQJo5WGH9gNbhm+i3LbyitxtnZv0BQ2wgTc2O4+jkpTShlyYzWWivr+CLUCUQQiQlEZpZTizkOZlxEBDri4LN8WvQ6e7hYopuL/Hp69Pcz2PzB7hbbBfTxRUVBJS2JMl0wNjOibhRdFSaU7gEuMLNSHctn+dWIKdR8YUpTujpboKerXJPq9N+XsGHVthbxCujtg4riKloSZbpgZMqTx9JXfqPjHuDSquFIbGENnuRX6/3Ymld1Xtx+HX8s39wigePXyxvVpTW0JMp0wciEBxdfJ+pGx00hyWZhq3pellhci+jcKpWv0Ym/vSn6esj1va7tu41fF21s8Zvp29MLteV15NxED5Wb6sI14ih8x12o77p7gAss7VTP/VNK6xCVXanyNTrxsTXBAC/5wnfk0Sj8NG99ixtlnxBP1FfV05J01AWuEQcuvk5U8pc6LwNcYGWvWj8vvbwedzIr9H5sntbGGOwjbz2+f/Yxvpv1u9L8DAC8u3ugoaaRlqSjLnC4bGks5eelLJ7WjlYq98mubMDN9Jauk3TjZmmEYb7yhe9Hl2PwzXR5olyGVzcP8OubaEmU6QKHy4azjyMZP+l1XJa0tHFSvfCYV9WIa2llej82Z3MeRvrbU8cQczMeX0z+GQ01yslQzy7uEDQJUZJd+p/Gks1hwdnHiUr+ys5LV//WFx4La5pwOaVtB086cDDjYkyAQ4c0uzEk0l5AIi2nshE30pW/tHTfxMgw5bIwtaszxhnPabcd0M7NBoNn9jMkzv4HKM0vx95vjiD6wlNUFFS2eSPA5rDg28MLs39dgDRj5RtGBgMYE+AAKyMO7mVXILuyEfamXPR2t4KEIFrcjKsLl8XE9G7OIERifDn5Fzy69EztfYf9uQwufQPbPEYZun6vYjZdQOz2KxrvZxPkhrG75KXurR2jnSkXPVwtwZA6j8Zr4ZwoqGvCiQnfQFiveWJ+0C+L0GlIV6XnWjvWsE5WsDHhggHgcX41ijUUto3bcRXP/jmv8TGGTgvHOzvebHG++dmZwtfOFBKCwN1M7V1GFRE1CXBi4rfgV2m+mjZr+ypMnB6mdJxWRhydvyuqSDxwC4//ONXmNl5dO6HrwCB0GxSMLgODYOtsjdomIU4nFEMkIeBvbwoem4nYQvKcG+JDmoFcTS2l5RrEZABTuzrDmM3Er4s24uqeSK3HsnKwhJOnPRw97eHo4QBzGzNIxBKIRWLpfxJIRGKIqeekjxWea6rnoyC9CAVpRRC0Up3ZGh7BbmQsB3dG14GBsHO1RR1fhONxhZSjZGu/i7p+byB185zS1RlmXBbWrdiC8/9e1XgMGVb2FmQcPR3g5GEPc1tzpViS/1YRW4VY8hv4KMwoQX5qYYub0/ZwD3RFt4FB6DooGF0HBcHB3Q6NQjGOPi9QkhMwYjMx1NcOEoIAAwzcz64Eh8Wg5fs0ubMTLIzY+PvdnTi5XvPfJBkWtuZw9LQnz00PB1jaW0AilrQ4N9uMZaMAhRnFKEgtalNCQBVu/s7oOpCMY7dBwXD0sAdfJMbR54VgMxkt4lfVJKTlmqPIhGBHWBtzsPXjfTj8S9u/SW1hbmMm/Y47wNHDHlYOliAkhELs1ItlUSZ5XqojUaKIi6+T0nnp5OkAkYTAkecFEIqJFnMJfVx/IgId4GDGw66vDmHvt0ehre6LubUpGUdPezjJYklA7VhKxBLwGwUozipBXkphi6RJezh7O6LroCB0HRiMboOC4OztCDFB4OjzwhbXFlVzNDruh0b528PZwggHfz6B7Z8c0HqRxszKVOk7bu2oZizFEojFYkhEEgiaBCjKKkV+SmGrmrCt4ehhj26Dg9FVem66+jpBQgDHYgvRKE2yNI8XHdccRYb72sHNyhjH1p3Flg/3aJ3ANbEwhpOXA5yk33EbJ6s2Y6l0LZLFkk8mmHKTC1okoNrD3t0W3QbJY+ke4AICwInYQtQJxJjTw5WqiI4trIVQLKF9/jbY2xaeNiY4s+kSNr61XakjQxNMzMlYknMie9g6W6uMpcprkUIsS3PKkJtcQFW9qoudq43Sd7xTkBsA4FS8vNuheTwLappovf501BZPQyLtBSTSLieXtHBXofsmRpGuxgys6fpum9tYOVjiSNFWWt/XQMehIL0QWz/ej8eXYlq9kA/4/lV4juzR4nljDhP+9maoahQiu7IRxhwmBGICYhU345rQ18Maf479FimPM9rczsbZWn4T3dkD7FG92z1GGbp+ryT1TXjyyU4kRaWovY+ZlSkGfDMXduGBSs83P0YmAxjqY4ebGeUQ61jx8PC340g+fEft7VlsJtx7eKP/XyvAUNGe0fxYzXls9PWwxuWUUphwWBjkbYOLyZqtOhFNAsR8vgtxtxLV3sfU0gSjfpoPi9AApfMtuaQeI/zscCGpBDYmXHRxMsetDHpWZ5/8dQYJe26ovT2TxYRrl04Yve1tCKXtfrLjTCurp+W70hxCIETqz0eQG5+L4qwStSpmXP2cEb56Koy7+wAA/OzI44krqoWbpREsjNhwtzLGzfRy2q5B3V0scPyNzYg6/bDN7Zonyqgbak97OHSyo1V8VyKRoCyvHHkphdL/CpCfRv67KLNErZsEFx9HhL0/Baa9/annVP0uZlU06vy9kdHFyRyXVu/CjYNtf8+bJ8qoG2pPezh42NMfy/wK5KUUIj+1EPkpBchLJWNZmFGsViydvBwQ/u4kmIUH/V979x3fRnn/Afxz2lte8t6O7SR2BkkgZELCCGHPQqEUymgpq3RAWzoohR9QKJQuKLRltVD2hhAChAyyp5N4770ty5aH1v3+kCwv2ZZteebzfr38siydHj3+3p3u7nvP6Pe8gN48QoReidQwLQ5WmgOyP80L12HHQ6/js39/NexyxjB9v4RERGKfbTMhDOoAdtt3uVxoqm5BVUGf7bLA/bumuN6vFjPh8WE4/UcXwbBmgc/47SptDtgxp0dqmBaHn34f7/9l07DLDUyURQ7YLrWGwHXbF0URTTUtqPLEsTK/xruP1xTV+tXKwxQbiuV3no+g9e5zor7nEqKICTn+JIdoUPDvzfjfo+8Nu9zARFnvPu7eLgM5y6IoimiuNXu2x9o++3g1qgv9i2VodDCW37YRIecNPnfzdY4WiOuh+CA1at7cjhd//b9hlxuYKPPG0ZOgGKo18liIooiWOjOqCmp7t8sCT1wLa73d9IcTEhmE0249B2EXrfA+1zdeCqkkYMecHjEGFSyb9uHZH7807HIDE2XeOHpiGuhYmhss7u3Rc/zp2S6rCvyLZVC4Ead9bz3Cr3D3drg4IxIfnqj1vh6oa52+IvVKuL45jqdueXbY5dQ6FaKSI7zbYWRi/21TF6QNWGusnqFUvHH0bJc9f/tz49EYpsey689E1LfXeZ8bGM9AXvPA0xDhgnkR4y4n0AI7QicN0tplH5REizWqUN/ejbigiZm9rF46che4tubxX9zR9BWdEoXfvvlTwDO+2vP3/Rfb39rtHS9CHapH/LqFPt87cLDivn+LIjDW1HtefTtqSuqHXSZlUSL+cfgJwDN47vacGpR3D/5AXwMqB2K/kmhVOPunlyD3yif8fo9NFBF8SsqIdTRplXC4RJyZEgoJBByoNI95rKWlt5yLis8O+n2Hzulwwbgs1WcSzVddu+xOOFwiBAAKmWRMY+gJKgXO+fkVOL7tYb/f0213QjE33nvQ7dneTFoFatu6IQJo6rCNOBPsaCy+8SxUfHoAbU3+fSe6nC4Yl85BV58Tg556BmpfGUhQyHHDv+5AmkkHW7cdtSX17hNIz4VjweESFB0u6Zdgqy1vhMQzo5lSKkG6SYctBe4T7PRwHbYWNg4aWHhDunsQ7IE3fzIi9FgWF4TsujbsH6YLWX6DFeW5VcP+L0aTAW9UPz9ps3dKJBKEx5sQHm/CkrP7f+fZbT2x7D2hLDxcjIJDJf2SQrVljZAk9Z8dzte6Hs9+c0lGJA5Wmr3jCRU0WlGSUznse7RGDV6ven7SZpyUSCQIjwtDeFwYlpzVv2Wrw+7wtg7qSQwVHilFwcHifkmhurIGCImRg8ruu6sopBK0dNgDtj8VNllRkj18LBVqBV6reG7SZkmUSCQwxYbCFBuKxesy+73mdDhR62kd1LOPFx0tRf6Bon6JjPqKJiDBHUtf8QvkMadHcXMHik8MH0uZXIpXS58JaOJxOIIgICw6BGHRIVh0Zka/15wOJ+rKGvrs455Y7i/q142yobIJYrw7lgPPJSbq+FPa0oHC7OG/LyUSAS8V/HXYmXwDSRAEhEYFIzQqGIvOGBBLpxP1ZY2oLOjdLouPlSF3b2G/REZTdQtcPmYm9XWONtbztoHflxXmzhG/LwHgXyf+hNCo8U/g4w9BEBASGYyQyGAsWNP/xoHT6URDRVO/JHrJsXLk7Mnvl8horjXDGW3y/j0wXoE4VxuoytKFmtzqEZf7x6EnEJU8OYkNQRAQHG5EcLgRmav7x9LlcnliWe1NWpYcL0fO7vx+LajN9a2wR/V2AdbKpTgv3QSrzYl95eYJOX+rbeuGOWf4fRwA/rL7ESRmDD1jaiAJgoAgkxFBJiMyV/VvANDvZpknaVly3L1d9m3129rYBntkaL/3DoxnkFo+ruPPwH280WpDk9U25ARCU2XGJtKeeeYZPPHEE6ipqUFGRgaefvpprFkz8WPqjFalefCF7nAXMeUtncipb+/3/A3L4vDhiVq/N8C6dhs+tb+BnG9ysffTQ8jbV4ia4jpYGtvQ3WWDKIpYeelp4/zPaKZQ69T40TO34kfP3Aqn04lXH34HWcWNkIzy4mvgxXiPcJ0CC6IMMGmVEAC02xwobu5ATl1bv647zZ12/PLde/HiT1+Gub4VzTUtg5o5V+RV4fdX/REVue4Ti/P/dx/0cWHwx3D7VbhOiY+zewcJl0sFXHtKLN7Oqh40M1fI4hScf+vZOPr1CbQ2WtDeMrjb33k3rYchRIej27NhCzb4NX6bRiFFkFqOT3LqoFVIsSIhBJ/l9SYWo/RKLIo2IkQjhygC9dZuHK5qRbOPmXAkQTo8sOnXeOGeF9Bca0ZzjXlQCwaJVIKkhfGoKa5DR2snYtdkDipnKHaXCKvNgcsyoyCVCP26pm9IN8GkVcLV5yzjYGUr8hraB5WjmRODS+44Dwe3HEVrYxvamgcvc/b1axEaFYys7dmwqlWQe1rQ9N3eog2qIWdJHO36HUii1+C3n/0a/77zX2iubkFzbcugu+6CIOCOv96EE9/k4tj2nH6x9LVf+HpuvPWsMHcizaSDQilH/NwYxM+N6fe61dKB7N35OLY9G8d25MDsEqA0aiCVCDgjJRR7y1vQ7XAhOUSDCnPnkLP0tnbaMSdM2y+RNidMC7Mfx59OuxM/fvMneOGHz6OxqhnNteZBQwy0Nlhg77YHfOaosZAr5IhLj0Fcev9YdrZ3emKZg6wd2WjscEA9xPhUfdf1cPuNQSnDsrggmLQKSCQCOm1OFDZZcbzWncD9oM+dXADodrhw16v34MXb/oGGiiY017YMmvTC2toBq6Vj0i6yhyOTyzzj/ERj+QW9z3dau5Czp8C7XdY2W6EdYvIbo0qGlYkh0Cqk/cYD8rU/jRTPvuxOET948U68+P1/oL6sAc215kEtGGydNlgaLQiLCR30/skmlUkRM8c93hzO732+q6MbuXsLvNtlZbUZhvjei+yB8dMrZcMecwBgZWIwUsN0eP94jV8TkjhdIm589ja8/P1nUFtSj5Y686AWDA67E821ZsTMmZxE2nCkMimiUyIRnRIJbOxtgd/d2Y3cfYU4tj0Hx3Zko7S4AcFz3MnygecSCplk2Fl6/T0HGsglAtc8dSMc7Z2oKapDc5150JisLpeIpqrmabGPS6XuCUeikiNwap+Z4W1dNuTtL0KWZx8vyqlCWEb8oPf7Okfz9dy1p/R+H0slAkQR3vONuvZufFnQOOj7UgRw6cPXoavBgsqCGrTUmn12Q68vb5y0RNpwpFIpIhPdrbmWnds7g7qt246Cg8U4tj0bWTtykH+kFBFL53hfHxiv4Y45GMe2ufGXl6O9ohHlOZVoqW/12XW6vrxx0hJpw5FIJIhIcLfkWnpObyztNjsKDpV49/Gc/UWIOq23Vfm7x2rQ7XRhTqgWp8QYsafcPTbiUOdv/p73DrT2rgvQVFCN0uMVaKlrRZePYVnqyxsnLZE2nKFuljnsDhQeLvEee07sykfMyv4JzYHxrGvvHvL448/58MB9HJ7zYCbSAuCNN97APffcg2eeeQarVq3Cc889h40bNyI7Oxvx8YO/vKdS44CL4JEuYgKlqcOGhWvnY+Ha+RP7QTSjSKVSfPeBb2FPWYtfBwDv+wZcjPeINaqwNjkUh6tasbOkGd0OFwwqGRZEGqCWSwclB4rLmrBg9TzUldWjurgOtcX1/cbjsHXZseOdvQAAhV7tdxJtpP3K5nBhSYzRrwFGmztsuPOvN6G9xQpLczvKc6qQvSsPRUdLPV0bHCg4VIyWWjNa6lpxyl0X+lXHbocL9e3dcLhEtHY5oJD2NtOOM6qwJjkU+yrMKC3ogEQA0kw6nJcePuS00oUlDchcNRe1ZQ2oLa5HTXEtOtp6Y+lyulB0uBQAIFUpYEzy/4Qn2qCEUibFu8droJZLcNYcEz7OqfO+frDSPCjh70tThw0/ePK7aG+xoq3FiorcKpzYlYeiI6WoLnI3xy89Vo5DXxxDS60ZC7+/wV3fAdubzeFCsHroZOVo1q8v2oRw/HX3I4Dn5Kv0eAUKDhYj/2AxqotqsfKSU3HJ7efhktvPg8PpwmuHqyAOsV8Mta+Mt54jzW6oNWhw6obF3gucw+XNOFZvxRnJocitb0eD1f3+ILUcoVoF4oPUCFbLsTYptN8JY0lLB+aF6yCXCrA7RYR5Tloarf0/XyOXYlVSCMK0CrR1OVDW0oE0kw6VrZ348zf/B3hOvkpPuGNZcLAYFfnVWH7+kmmRRBuOWqfG0nMWeU/KsypbcLh28PY+cF0Pt9+clRqG0uYObCt2D2ZvVMlgHGabBgBJiB5/2v4Q4IlleU4V8g8WI/9AESryqrDkrIVDDuY/Xai1Kiw5a4H3pDy7uhX7q31P2NDa5cCm3HoEq+VYkRCMT3Prh9yfRhtPl06Dp75+EPC0UirPqUS+Z7ssz63CgtXzEBodMuT7pwOVRonF6zK9Ldjy6izYU9E7YcPA+B2ptgx5zIFnZrnEYA26HE6khmlxoHL4yR96uo/aVAr88avfAZ6WNRW51Z7vyyKUZVdi7mlz3ImraUypVmLRGRneVldFDW3YWWb2eS4x3PFntOdAA3VJZXh8y28BTywr82u835elJ8oxZ3ESEqbBBfZwFCqFexwqT6ursiYrvh4wyYCvuA513vba4d4WPEM1MPClQxTw6Ge/Bjwta6oKarzH8ZLj5UicH4e0Zcnj/G8nlkIpR8bKdGSsTMc1v7gMlS0d+NJzU8FXvIY75oxl2+zZxy1O4OGPfwl4YlldVOfZLotQlFWGmDlRyFiVPllhGRO5Qo75p6dh/ulpuPq+S1Br6cTm/N5zr25PcrykpQNpJnc31OHO3/w97x2o1e7C79//OeDpVllTXIf8A0UoOFiMoqwyRCaYsHi9/ze6p4JMLsPc01Ix97RUXPWzi9HY3oVPcvs3qhgYz3Jz57DHn7GcD0/kLN9jNSMTaU899RRuvvlm3HLLLQCAp59+Gps3b8azzz6LRx99dKqr10/zgIuPkS5iRiKTCFgaa0SsUQ2pREB1axf2VrQMGhCxyWpHpH5iZ5OjmWs0X0aCZ8DMvhfjPU6LD8bx2rZ+BxdLlwPflPqeqWn/rnwcfe6zET9TrpBh3obB47cNZaT9Kq+hHXPD9YjQKVHXPvxArC1WGy4KuhHOrqFj1DN1NQCEzI31q46N1m4sjHLfVVbJJOi7y54aH4xjtRYUNva2fjte2wa9p9XFZh9jXhzcV4RDf/lkxM+VyaWYe84iSKSj6ToheE8i7E4RMsnYxmZotzlxqelm2IYZcLdfLNNjfW5vDVYbFkYbIAAI1shhGdByYqT1O9L3ZpPVjlRPzlaukCN1STJSlyTj/FsH17e12wFxiP1iuH3Fn3rOj9Ah3aSDWi5Fl92F7Lo25HoS3p12FzpszkFT0w+l1e5CUogGETol5FIB8yJ0qDR39ZspcUO6CdtL+o/1Y3O4UNXahaQQDfIbrJgTpkVhoxVBAy4k1yaHoLXLga8KGqFVSHF2qskbS2/c5TLMWZyEOYuTsPHms/yq93TUahvcGsX3uva93yhlEhhUcuQ1WL3dls1dDpj7bMdXLIjCvgozKvq0Yu+bQJfJZUhemIDkhQk473u945LMNOYhEgsSAd4LRJvT5e2u5Gt/8ieeA/U95kllUiQtSEDSggRsuHHmxrK1uzeWvuI33DEHAJJCNHC4RByuasUpMUYcrGrt153pigVRyGtodx9XNXJ8klMPc6e9fyylUiRmxCExIw7nfPeMif6XJ4zZE0tf5xLbipuGPP74cw403Pf6wFgmzItFwrxYnP2dtZP0nweeuXvwfugrrk0dtjFfD/n+vuyNpUQi8bY2Xn/t9Out5K++sfQVwxN1bUOeq/mzbQ65j1v7xzI21T2L8LprVk3Cfz0xWvrstzKJAKdLhAggUqeEpdsx4vnbUEY+v+wtSxAEbwvZM6+ewbHs7L+P+4rnSMefkc6HR9rHp4sZl0iz2Ww4ePAgfvGLX/R7/txzz8WuXbt8vqe7uxvd3b0ryWKZ+Onre3QM6CI00kXMSFYlhsAlivgwuxaiCKxMCMby+OBBU0x3TuEUujT9Dbd9nJEcilCtAnanC2FaBVo67IMuxk/UtcGglEGvlKGk2f8ZD9V9pkkXBAEaowY6owa6YC2MYQYYw/TQGDVQqhUQfIyxMVQdD1YOv191O1w4XmvBklgjNuUOP06bIJVAHaJDe/XQ07YLgoCQqCCY4sIQOkRLL191LGzswHnp4ZAIwAHPWFPeODYNnkWnpLkD56SZIBUEOAcM2NA3lhDcLZJ0QRrognQwhulhMBmgMaih0iiBqOG7Kw2s66HKViSHanBeejikEgFHa8b+nak2GYZNpAmCgODIIITHhcKUGuUz+XOirg1FTVacNzccLlHErtKWfmWMtH5H+t4c+D09nE5PIsBXPTvtTp9197ee7d1ObM5rQIfdiUi9EmelhqGp04aGdpu3nv4m0jpsTjRYbShuHnp2Jl8JWnjGlDol2oiixg4kBKnxwYlaLI0N8r6ukUsRoVdha1EVnKIIS7fDc1KkG1UsZwpf/5Ov9Z9d1+Zzv+l2uGDutGNVUgjyG9rRaLWN2FIFnnU42wy1fYRqFFgS654hTxCA/RXmIb8LxhLP2R5LX/GzOUWfx5wec8K0KG7qQElzB06NC0KcUY3yAcORzAnT4quCRrR1O9Az1nXnLI6lr3N0m9Pl8/jj7znQcN/rs/L70sf24SuufVv8jOV6aNDnzvJY+tw2HS6fx5zRnJ/73MdneSwNKhlWJoTA4XLBKQK7SpuHPN6MJJDnlzPFwP/JVzxHOv6M5rqsR6fdBZcoQhKgiRcCYcYl0hobG+F0OhER0f/iNSIiArW1g/vTAsCjjz6KBx98cJJq2N/Ai9++fF3ELIk1YnG00efySpkE8cFqvHGk2pvpPlxtwSUZkfimpLnfYLOuk28yVhqF4WZQ8TUbla+LcaXc3cLJnwvCHn3HZRNFEVazFVazFXVlg/eFOZcsx+lrFgx6fqg69hgqOZBT14554TrEBalR2zb89O7pp6dCbndAH6KDIViHsNhQmOLCYIoNQVhsKEIigyCTu78+38mqRruPGPiqY2GTFYVN/U9seuLo62DbaXdCIghQyiSDXu83xp3oGS+ptQN1ZYObSSduWILV6xYPen64ug5Mzvc18HvqraxqOIbYplKXpUCWEQt9sA76nljGhnjjGRIV7I3l+8dr3INZ+9je8husyG8Y+qRwqPXrz/emP7Ng9uj5Th+qnsMlroarJ4B+F7G1bd2obu1CpF7pTaSN5nt9uGPPSGos3ViZIMXCaAMarLZBAxhrFFI4XK5+F0JWz1hos/HY4+t/Gmr9D7XfbM6rR2akAYujjTCoZLB0ObCvogU1lqFbyM7KWA6xrzVYbYO+u5s77EPuT6ON50QPpzEV+m4fvuKHIY458IynFq5TYk9ZCxwuEeXmTqSGaQcl0vLq22HxtIrp+bhZGUsf/1TfePo6/vh7DjTc97orMBMmTysjHXt8badDnbeNxqzcLoeIZd94+TrmjOb83Nc+PrD10GzQN5bNHfZ+w5VgmGN6D1/nvVKJMPL5pei+3gnUrJvTwcDtw1c8Mczxp8dorst6iD1dQqaJGZdI6zFwgxxuI/3lL3+Jn/zkJ96/LRYL4uImZ8wBqSDAMYqT4UOVrT4nGwAAnUIGiSDgigVRg96nlkv7XWhPp2wtTT/SMXbV66vbM8ONViFFW7d/yTSXfeTBjHs4bf4v61d5oogj1RYsiTHis9zhu3f+6tV7oFf69/UoGWcse+KokUsHJeTUcilcouhzSvjRxHI0y/rD1/fUUH7+4p2DugUORTqO762h1q8/35uj2R/GU8fh6glPK6eMCD10ShkEz37ad5sYzWePt55FTVYsjDL0G/S9R4fNCZlEAqVM4t02tQr3/jIbjz2B+J+6HC4cqDTjQKV7VsWFUQasSwnD21k1Qw5kPt51OB0F4tiDMcST22V/qWE6NHfYvAM9FzVacXaaCZoB55K+LsTHe8ybjsayXfp7DjTc93qg9ofpZKr+J+7jvUZzfu5rH5+Vx55x/k++znuNKvmI55cSYXDOYqaTBujfGc11WY/p9pU54xJpYWFhkEqlg1qf1dfXD2ql1kOpVEKpnJrBjbUKqV8zIfnDanPAJYp4M6t62BZFAKBVjm5GRjq5aBUjD4I7Eku3A23dDiSGaHCsZuTmzwCweuMpuPKs+RBF0fPjvr0giqL7jrAoQqaQQa6Uo1MhR/a4ajhYYaMVGRF6pIRphlxGENxJLX/pFLJBY3aNhqXbgfZuB5JCB8cxKUSD+vZun3d4Tz8rE5et/p1fsexWyHF8zDUcH3+7IgKAVilD8yimxx7I1/r153tTO6o6jv+71Vc9tQopVieF4Iv8BtS2dUMEsC5lwPTio4zlaMb5GCi7rh11bd2o9TF2RYfdibq2biyJMWJfuRkahdQ7WK9uFHWcKXQKGQD/TvL8YXO6cKS6FRmReuiUUjR3+E6kzcbjeE/CNZD8iaeOsfQSBCA5VAO5RMC3FkV7n5cIAlLC+h+HfH1jjuZ7aKYYSyz9OQca6Xt9NsZSNwH7uH+fOwtj6ecN3YFGc35+0uzjY4zlcPw5v5yq/WEiBfJ/8ue6rIdWIZ12SckZt3YVCgWWLl2KLVu24LLLLvM+v2XLFlxyySVTWjdfQrWKgCXSuhwuVJg7sTw+CAcrW9HtcEElkyBcpxzUHD9UM72mh6XpJVSjQH37+Adt3FfegrXJobA7RZQ0daDb6YJBKUNmpB5HayyDknWJscFIjx9+vK4edqcL2X1mbwoE0TPOxIqEoac/V4suwOUCJFI47A48des/kLe/EAkZcUhbkozUpe6fnunoQzRyVFv8a5I8lP0VZqxOCkGn3YXS5g4IApBu0iEpRIPP8313eYiLCkJGonuE/Kzt2fj73S9ApVP1q2P83BhIZVI4XSJOHK7EZPcUU4kuSD0f6nQ68efb/okTu3IRPy/WPaD/0mSkLU2GMcwAAAjVyPsNLDpavtavP9+bSntv8i5nbwH+/MPnoVB5Jh1YmoK0pclImB8LqUwKo0oOqWdg1UDWs2eQ4C6HCyKAGKMK0QYV8j0TUGgVUqg8CV6Xy4W/3fUCjmw9jvi50d46pi5NRpBn7LxQjRxDzPnhF5vThZq2oZNHO0qasDIxBN9aHI22LgeKmzqQFKrpF8uZQBRF/OMnL2P/5iOIS4/ut10GR7jHhQvVylE4juF7FFIBGRF6FDV3oK3LAYnE/XeXwzlsEl5pm1mxBIB///JVfPPBfsSkRiJtSYr3uyg0yr2th2rlwDh7cY0lnjMxlq/87k18/eYuRKdE9NsuQ6NDIAgCQjX+tfQdKM6ohkIqwYfZtbD1ae08N1yH1FDdiBfeSpt9xnVV+t+j72HLf7YhMince4xMW5aCsJjxxXKkc6CRvteV9pkXy7ef+gif/utLRCSEeY+R6cuSYYoLc48fO8ZYjtdMjOUHf/8MHz7zGUxx7lj2HMcjEkzjjuVoz8/7UjlmXiw//deXeOdPHyEsJqTfuVtkUrhnHw/8dbE/55cqh2PGxXLLf7bhjT+8j+DIoH7XFNEpke7tUhu4WPpzXdYjZBrmNgRRnHmDcLzxxhu4/vrr8Y9//AMrVqzA888/j3/+8584ceIEEhISRny/xWKB0WhEa2srDAbDhNY1p64N+wYMsDeUoaZ5vmFZHD48UYuWTjtkEgGLo42ID1ZDKZOgy+5EaXMHDveZTl50uiB+ugerLl6G1CXJM2rnpfFzOp149Lo/Y/+mIwiNCUHMHPcMMVEpEYhKCkd0aiRsoUHDjoE1GuE6BRZGGWDSult9ttvcF9U59W2Dxqx4e+MD0KrkOP2CJVh4RgYWrp2HsJihE2vvH68ZdyLa1351/txwmHRKvJ1VPehkouD9PTj214+QsSodcXNj8O7TvmfG1BjUMMWG4rb//QQnAtBYJdqgwsIoA0I0cogAGtq7cbjKMuQsNe9d8hAUELHi/KUoza5A9u78QcvI5FLognVYe+XpSLz9QjR3jP9icjTT0Zd8dhCHHn8H81emI2lBPN5+8iOfyynUCoREBuHut+9FtnN0d0L9Wb8jfW9++K3HYFBIsWDNfFQWVOPY9pxBnyOVS6EL0mLFxcsw7yeXj7q1lz/1XBxtQLpJB0EQUGHuhFQioNPuxP4KM+KD1Fg3x504bakz41tRPqYUBSBXyhAcEYQfvfkz5Egm76RjQaQekQYVfrz8F1A5nVi4Zh4WrJ2PBWvnITIxfNoeh6yWDlwadIPP15RqBUKig/HDF+9Evko75s+QSQQsjw9GhF7pnr3KJaK5w45DVa3e/dvXDFWbb/kLZO2dWLB2HhasmY+Fa+chKjli2sbSbrPjfNW1Pl9TaZUIjgjCD56/DYUG3+PA+sufeA70xZ3/gFjXgoVnzMcCz7YZMydy2sZSFEWcp7gGLh/dVFVaJYwmA279260oDQ8bddlnpYahy+4aNLu2UibBlQuj8GVBI2rbun1ukwDw9U//je7SWixc2xvLuPToaRtLALjYcD062wff8FJplTCG6XHzn76H8tjB3bP8MdI50HDf6zvufwXWnPJ++3j8vNhpHcurIm+Bub510PNKjRKGUB1u/MN3UDNn5Gsxfwx1vuFr29z14P9gPlSIhZ5YLlg7DwnzYyGRjGbG8sn1naTbfY4RrFQrYAjV49oHv4XmBak+W435Y6Rtc6h9fO8f3kbjzhPuY/iaeVi4dj4SM+OmdSxvmn8PKnIH33xXqBUwhOhw9S8vQ9vyjDGNpTfcee9I55cHn/4ANVsOI3PNPG8skxbGQyqdvq3+frj0PhQeLhn0vEIlhz5Ehyt+chFsZ54y5NjII/HnfNjXtnlKtBELoyc2bzNaMzKRBgDPPPMMHn/8cdTU1CAzMxN/+tOfsHatf9NFT2Yirb3bgXeP1Yz5S3AsKrYdx7Z7XwAAhMeHYeUlp2L1ZcuRuXoupLLpu+NSYFia23BF2E3DLnPGdWuReM9l4xqQfLTqjxTj8+//bdDzkUnhSFmUgJjUaMSmRSE2zf07KNyIw9UWHBvHjJFj8eXdz6NmT67fyy9Yl4mlT9w85gPKWDTlVGDTDX8a1Xseyvkr8tomt1XGtvteRMXXx/xeXhuiw9VbHh5yzKiJYC6uxcfXPD6q9/zu6J9Q2D25h841SSFIDnUnczqtXbhYf/2wy0tkUty078lBEwUESohGDodLhKXLgRCNHGfNMWFvdjUeWfpTDGz6aIoNRcriRMSk9u7fsWlR3pY1U6m7y4YLNdcNu4wgEfD9Q0+Puzv8aFjrzHj/0ochDtgXQqODMeeUJMSmRiHGE8uY1CiExYRM+UWOrduGS4w3wDHM+JYKtQK37Pmjd3DrydDV0o53L3wQrgETtoREBmHOkiTEpkZ7tk33T1hs6JTH0m6z45aMn6C6yPckWgAQHGHEd7542DvO2WSwtXXinQsehLOrf8IyyGRA6tLkAft4NExxUx9Lh92BHy65D6UnKoZcRh+iw807HkPjOLrDj7pend1454IHYR+Q4DOG6ZG6NNm9XXr279i0KITHh035xbfT4cTdK3+F/ANFQy6j1qtxx74/onaYFs0Br5fNgXcvfBDd5v4Dm+tDdJ5Y9t8uwxOmRyx/tv53OL5z6PNNpVqBew4/japx9noYDZfDifcueRidDf2TpbogLdKWJQ86V49IME35taXT6cT9Gx/BoS+yhlxGppDhvuN/HdSDayKJLhc+uPwRtFf3v2mhMaiRtiwFcWnRiE2LRkxqJGLSohGZaPJOvjVVnE4nfnf5E9jz0cEhl5FIJfh13jMjTq4VaJdkRPo95vJkmXFdO3vcfvvtuP3226e6GiPSKWWIDVKhwjx5X4IF7+zyPq4vb8T7f92E9/+6CYZQPVZctAwrLzkVi86cD61x7HfYafrSB+sQlRyBmuLBM6j0yNmRjXW/v27Y2VQCLf/tb3w+X1tSj9qSwVMfa/RqJC1PxeKHb4AwSaNL2poscFQ3QCqXwunnlNUlR0oQtysHIafPnfD69RgqlsN57Yf/wJJHvwdBOjkXNfZWK2yltZDJpXD4GUtrcztqvs5C6JrMCa9fj5a9udAFadFu9n9feO2H/8CyJ26GZJJOeMQuG17/8b9RV1SH2tIGNNe0jPgel8OJNJMOWROUiFbJpDg9IRhqmQRdDhcKGttRdrQEC1bPRe7eAtj7JFMaKpvQUDm4b6RKo0R0aqT7hNxzoROTFoXY1CgYQvUBqaet24768kbUldajrrQBtaX1qCtrQG1pA+pK69FcM3KLcdElIi1M26/l90TTtFiwYPVc5OwpgL27N1HSVN2CpuoW7B2wvFKtQExqlDd+fRMahlB9QBKWdltPLHvj546lO7ZN1S0Y6d6srdOG1DANDlZNXixVTa1YuHousnfnw9bVG8vmWjP2fXoY+3C43/IKldwdy9SofgnL2LQoGMMMAYtlY2WzN3Y922XP46aq5hFnE85cPQ/p4TrsKRv5+yBQFI1mLFyVjuxdeeju7E06mRss2P/ZEez/7Ei/5eVKOWLmRHq3S/dFY5T3ZlkgYumwO9BQ2TTkdtlY2TRiLOctT8Vckw47rYFpqe8PeWMrFqxIQ/auPHRZe5NOrY1tOLD5KA5sPtp/eYUM0XMi3cnzOf23y+CIoIDE0ulw9omlZ9ssc/+uK21AQ2WTz1aSfaUtTUa6STepiTR5oxkLT0/F8Z25/VoetjW349CWLBza0j/BIlfIEJUS4d3HvceetGiERAYulo1Vvft4/1jWo75i5FgmL0xAerhuUhNpsiYLFpyajOM7c9Fh6U06tZutOPTFMRz6ov/NUZlciqjkCM8+3ntzJ5A3y5xOJ5qqmj37d++2WVdWj9rSBjRUNMHpGP48M2FeLOaG6yY1kSZtaUPmkiQcs3bB2tqbdOqwdOLIV8dx5Kv+oxdLZVJEJYe7t8c5kX328WiERgcH5KaE0+lEU3VL/ziW1qPWc/ypL28cMZYxqVFID9dNaiItUq+cdkk0zOQWaeMxmS3SAKDG0jXkOEeBZlDJsDZUiT0fHcQ37+/D4S+P+byIlUgEpC5NxqIzM7F4fSYyV8+FWqualDpS4ImiiLLsShzZehy7PzqAw18cG/KCRqaQ4ZFNv0L8aWk+pyueCCqZgOI/vYcdb+2GvWt0d8/XPHoDEs5aNGF16+vAU+8j9/Xto36fMSkCF7x2LySTkKTqamnHexc/BGf36FshrPzdtUg+f9mE1Gugw3//BCde/nLU79PFhOLit34BySTc4bS1deK9i38Pu3X0J/zLf3EVUi9fMSH1GijrX58j6/nPRvWekKggvFDyLN49VjOmrgyjJZO4Z65SyaXo7uxG7r5CHNueg2M7spG9O7/fhaI/9CE6RKdEQKlRQiqTQiqTeH73fyyRSiCVuv+WyKSQSiWwNLf1S5SN9zRHppThXct/8c6xmnGNjecvqSDg8gVR0CiksHXbkb+/EFnbc5C1PRvZu/J8dlEbjj5Yi6iUSKi0vmMpkfb5e0As21raR5UoG0nashQ8tesRvJNVDfskxFIiAJdlRkGnlMHWbUfBwWIc256NrB05OPFN/wtFf2iNGkTPiYRap+oXy94YDhFLmQTtZuuoEmXDufKnF+H7j18Ph0vEO1k16J6EVrwCgEsyI2FUyWG32VFwqMS7jx/fmdvvQtEfGoMaMXMiodar+8TQ934+MJbW1o5RJcqGc/EdG3DnX26GSwTezqqesFa8A100PwIhGgUcdgcKD7tjmbUjGyd25qKtZXQ3OTV6tXu71Kt8x2+4WFo6RpUoG855N6/Hj5/7AQAB7x6vmbRWvD3dwpwOJwqPlOLY9mwc25GD4ztzYWnybzKsHmqdCtFzIqExqEcXS6kEHe2do0qUDWf9tWtw38t3QJBI8P7xWrRNUiveDekmROpVcDqdKMkqR1ZPLHfkwNwwuhsgKq0S0XMioTVq/Ipl32NRZ3vXqBJlw1lzxXLc/9o9kMqk+PBELcwBGrt8JGenhiHGqIbT6UTp8QrvPn5se47P7tHDUWk8sQwaPpbuc6L+r3VZu0aVKBvO8guW4IF3fgaZXIZPcurQFIAhY/yxLiUU8cEjT0gw2ZhIm4REGgBsL25CySRkbnu+AHtYW63Y+8kh7Hx/H/ZvOjzkxYxUJsXc5XOw2JNYm78iDQrV9BvUj9xcLhfKsitx9OsT7oPctmy/DnD6EB2e+PIBpCxKBADsKWtBXsPIY12N17qUMMQHqwEADZWNePoHz+PgF1l+tfrSRAThwv/dB4VuYhO9zbmV2PS9pyE6Xe6BSaODEZFogsagwf5N/VssyJUyZK6ehw5LByrza2Bt7cApd12IjOvXT2gdAWDHr15B2ZYj3nrI5DJ0Wbv9usBVh+px4es/h9I4sQcjc3EtPr3+yUFdqYYiSATEpceguaYF7WYrFt66AQtv3TChdQSAXb//H4o/3g94WvREJJoQkRiO6sJaVBXU9Fs2ItGEuLRoVBfXobakHnKdGhe+fh/UAWo5NZS2ikZ8fO0To0qcJi2Ix/NHnwQAHKux4FDV6E7YxmJ5fBDmhvuOhcvlQlN1Cyrzq1GZX4Oq/GpUFtSgqqAGNcX14zqpm2i6IA3erPsX5HI5suvasN/PMU/HY1msERmRvs9NRFFEU3UzKvNrPD/VqCqsQVV+DaqL6qYslnKFrF8rRF9O3XgKHvrg55DKpMhvaMfuSWhJtTjagEXRvsdkE0URTTUtqMp3b4uVnu2yMr8GNUW1frekDbQgkwERiSaExYZi9wf7+yWJJBIBP/rHD3D+LWd5nytqsgZszNPhLIjUY0lskM/XRFFES53Zu1323cerC2tH3DYmijFMj4jEcJjiQrHn44P9zjkEQcDtf/4eLr1zo/e50uYObCsex8wifpoXrsNp8b4H1xZFEeb61t79u6DGHcv8GlQV1vZroTqZDKF69zEyPgx7Pz08qB7ff+K7uOqnF3n/rjR34svCxgmvV5pJixUJIT5fE0UR5gaLZ//u3S7dcZ26WOpDdIhMNCE8wYSDm4+iq6P/tdmND12Da++/3Nuaa7IaZKSEarA6yfe4xaIowtLU5t0uK/NrUFXgjmNVQU2/FqqTSR+sRXiCCREJYTiy9cSgmyPX3n85bnzoGm8s69u6sSlvcC+YQEsIVuPMlKHHsHTHsieONb3bZf7UxVJjUCMyKRyRieE4tiMHbc39rw+v/MlFuPXx73hbxjVZbfgkp27Ch6+KNaqwfk7YlA8F4gsTaZOUSOtyOPHB8doJvdM1N1yH5UMcmAGgu7Pb0yw3C0e2Hkfp8aHHi5Ar5chYmYbF6xZg0boMpJ+aArli+jWpPFn0S5xtO4GsbdlobRz6Llt4fBg62jrR3ueupj5Yi8e/fABzFid5n7M7XfjwRC3aJ/CuYXKIBmuSfR+YC4+W4JkfvYjsXXlwDrNvzLlkOU7/1dUTVkfR5UJIfjliI42ISDTBFBcGhdK9vbtcLnwr8hZvvEOigvHIp/d7k5E9J2oVBTXIEuVwTmACWlLfgjirFVGJJkQkmvp1M3rpgdfx6kPvjFhG4oYlWP3Qdyasji6nC5tv/guasssHvRYSFYSWulaIfS4MFSo5Htv8GyxYM897olaeX4MspxQOtXLC6ilpbEWcxYJIT/IsyNQbyy2vbMPjN/aO57fhxnW457nve8eusNvsqCttQE5ZM6qDxzdw+nBElwuf3/Z3NBwZPOjrUGLTovDv7Ke9JzouUcSnOfVDDsIeCJF6Jc5NM43pJMdhd6C2tMF9geNNDNWiMr8aDRXju6ANiQxCRKIJuiAtaorrUFfWAPso7uqr9Sq8VfcvKFXu7VAURXyW14D69onrsmTSKnDe3HBIxhBLp8OJ2tL63hNzz4VOZX4N6svHd0EbHGFERGI4IhNNMJoMaG+xojyvCsVHSof97u5xylkL8PBHv/DeoBNFEVvyG4adGXa8QjRyXDA3ApIxDA3gdDhRX97ovdDpSbJVF9SgrqxxXC3zgsKNiEgIc8czwf39E5Fo8l5Y9+0dcO9Zv8ORrScAT7L/V6//GCsu6t+qWBRFfFXYiMrWiev+FaSS4cL5kZCOJZbOnljW9CYtPdtlXWnDuGLZkyiLSDR5Y9nznR6REAa1Tu1d9lcXPoJ9n7pvismVcvziP3dh7ZWDWxVvK2pEacvEdf/SK2W4eH4EZGNowe50OtFQ0eTdv72Jtvwa1JXWj6tlXk+iLDLRhIiEnm3S/TsiwQSNvjeWv7/qj9jxjruDuUwuxc9euANnXbdmUJk7S5pQ1DRxjQi0CikuyYiEfAyxdLlcaKxs6ndToif5W1tSP67WZD2JMvd22BvHnn1ca+i9mfmHG/6KL/7j7gkhkUrw4+d+gPNuGnxTdndZM/IbJm44FrVcgksyoqCUjTGWVc3eZGVvYqgGNcV144tlsHbQPu7dNhPC+g1T9PQPnsMn//wC8CTK7/zrzbj49sE3ZfdXtCC7buIaEShlElyaEemdaX00em48Dt7Hq8d941EXpB20j0ckmLzx1AX1xvKZe17Ee3/51Pv3D/74XVz5k4sGlXmoqnVCx7JWSAVckuFuoT8dMZE2SYk0AKht68KW/IYJ6WYTrlPgnFTTqA7MLfWtyPr6BA5/dRxHvz6OyvyaIZdVaZXIXD0Xi9ctwOL1mZhzSuKUD9Q5m402caY1arBg7TwsOiMDi9dnImVRIl5+4A28+rA7saIP1uLxLx7AnFOSBr23yWrD5rz6CelmE6yW47z0cChGODCLooi8/YV46TevI2t7ts+L3RW/uQYpF50W8DoCwIqEYKSZdEO+/uKv/4fXHnkX8fNi8H+f3I/IxHCfy7V02PDxsRq4JqCLp1Elw3lzw6EaosujuaEVt2b+BK2NbbjgB2ejrqwRR7ce7zcmUI9T77sC6VeuCngdAWD/H99F3ps7AU8XiczVc7HwjAycsj4TqUuT8ZuL/4B9nx4CPAOPP7rpV1i4dv6gclq77NiUW4/uCbj5oFfKsHFuONRDnOS0tbTjlsyfoKXWjG//8rJ+dzMHmsgTskN/+xjZr3w16PnQ6GCsv24Ntr+5C3VlvQmSiAQTXin626BxNNq6HdiUW4dOe+BjqVVIsXFuOLSKwI8X53Q43T9OF1wOJ5wOV+9zfR67nC7v3w67E1qjBlX51Xjnz58ge1fesMkziVSC1CVJsDS3o6aot6u7QiXHm3X/hFbffyxRq82BTbn1E9JlSSN3x1KnnIBYOntjNlQs3XF09oulxqBGRIIJ7S3t2PnePnzz3l5kbcv2ecEeFhOCddesgrnBgi2vbPM+P+/0VPzh89/0S2oAQIfNiU25dRNyI0clk2Dj3HAYVIG/AThSLHvjOCCWetWgRNlItr25Cw9f8ycEmQx48IOfY/7paT6X67I7sSm3fkImcVBKJThvbviEjE8zXCz77tcDY6nWqQYlykay68P9eODSx6EP0eF3797r87gDAN0OFz7Lq4d5AiZxkEsFnJcejhBN4G+4DRnLEb4/lRrloETZSA5uOYpfbHgYGoMav33rp1h6ju/hN2xOFzbn1QdkxvCBZBIB56aZYNIF/oaby+WCw+7sH0vnyPu8QiUflCgbybEdOfjpmQ9ApVXiV/+7B8svWOpzObvThS35DaOeMdwfUomAc1JNiNBPQiz77NfD7fNypXxQomwkefsLcffKX0GhlOO+V+7CmsuX+1zO6XLfyKmbgJtiEgE4O9WEKEPge9H0xNLXMWa4fV6mkCEiwdQvUTaS4qwy3HHqzyFIJPjZC7dj/bdX+1zO6RLxZWEDaiyBj6UgAOvnhCHW6P9302RjIm0SE2kAUNXaia1FTQEdZ8WkVeDsVNOIyYqRNFY14cjWE+4BELce9zklcw+NQY2UxYlIyoxHYmY8khbEIzEjblQ7KfXqbO9EeU4VcvYWjDpxtujMDCQvShiU2GyubcHP1v0OTocTv37jJ0hdkjxkefVt3fiisAF2Z+C2y2C1HEv1ckTHjX6w0dLsCvz3wbew99ND3u7IglSClb/9NpI2+j7JGKvT4oIwL2L47nmiKKK6qBaRieHDzk5UllOJ397wd6x69MaAdp80qmQ4J800YrKio60THZYOhMX0tgCsyKvCfx96G7s/OoDONk+LBUHA6fdfhTmXnB6wOgLAsec2QVHVgIWe7TJ1SdKgGYjaze24Z/VvYG3twC/+ezcWnZExZHnNHTZsyW8IaEtevVKGc9NMIyYrOq1daGtuR3jc0E3z4dk29pabA95F+ujzn+HYvz4HPF1fkxbE49wbzsRFt53rbdVTXVyDG+bcDQAIjQ7Bf0v/DpnM9/9l7rTj8/z6gCbTtAopzk0Lh0E19fMWdXV04Yv/7MDHz32OkmPlw94Bl8qlmHdaKq5/4EosXr8AEokE5gYzroq4FfCMI/la5XMIDvN9ftDaZceW/IaAJtM0cinOTTPBOI0G060prsOOd/Zg53t7kbOnwOcyYTEhWH3Zcqy+fDky18yFVCqF0+nEzfPuQVVhLZIWxOPJrx+EPtj3jYq2bgc+z69He3fgYqmSSXBumgnBE5CsmAr15Q0whBmg0gx/kWu1OfB5XkNAk2lKmQTnpJoQqp0lsaxohD5EN2Iys8PmxJb8+oCOpaSQCjgr1YTwCUj8TIXGqiZoDJoRE3Bddie25DegOYCJSblEwPrUsH5D2cxkTTUtUGkUIyaNuh0ufFHQENDZZWUSAetSwhBtnB2xbKkzQ6aQDXnM6WFzuvBlQWNAW5hLBQFnpoQiNmj6Jn5Gw9zQColEMuLkT3anC1sLGwPawlwiAGuTQ5EwDcdF64uJtElOpAFAQ3s3dpQ0B2TgyJRQDZbHB4+pWfNIakrqcHTrCRzZ6k6sNVWPPJ6JKS7UnVjrSa5lxiF+Xqy3m9zJrq2lHeU5VSjLrkR5dgXKc92PR+p240/ibCgul8uvmV6aO2zYUdIckLuwCcFqfHbPP3Hwk0NQ61W49Q/fwbk3nAnlGLrq1ZTU4Y0/vI9tb+1Gu7kDC24+BwtuOmfcg9ErpAJWJIQgMSQwX9JWSwfuWv5LVORVw5AYjo1/uw3ycN/jyYxGrFGFVYkhY2oiPlB9eQPefOIDfPW/b9DW3I6M767Hwh+cB+l4Z5+0O5AidWHFkkS/p0H3d7u0dNmxvbg5IF0TYwwqrEoKGbIl2liJoojsunYcqjKPu8Wxrb0LB556DxVbDmPe8jRc+MNzccZVK4aMVVVRDfL2FOLMb68aMZ5t3Q7sKG4KyB3tSL0Sq5NCJqQlmj9cLhf2fnoYn7+8FUe/PoG2puETmQqVHEvOXohrf30F5p46x2dyP3t3Pr76307c/Oi3odYOfyJstTmws6Q5IDPTheuUWJMUMiEt0UajZ9Kane/uxY5396D4aJnP5aJTIrD68tOx5orlSFuW4nO7a6ppwfEdOTjtgiV+JS12ljYF5I62SavA6qTQaZHcnQqddid2lTYHpJtnqEaONcmhME5Aq76ZoNvhxDelLagIwCx/wWo51iSHIFg9OxKSo2VzuLC7rDkgXWaNKhnWJodOSKu+mcDudGFPeQuKA9Bl1qCUYU1yCMK0syO5O1oOpwv7KswoaBx/l1mdUoo1SaGzJlE+Wk6XiP0VgbmprFVIsTopZEYkyplIm4JEGjw776GqVuTUj22D08ilWJEQPGlZb1EUUZlf7W6xtvU4TnyT61diDZ6uMzGpUUhaEO9pwRaHpAXxiEwKn5XdQ3vGzCrPrkR5TiXKsitRllOJ8uxKNNf6N1C11qjBwjPmexNnSQvjJyVWTpeIozUWHK+1YCzfDEqZBKfHByMxRIPLQm5Eu7n34BRkMuDi28/DRbefiyDT2MaVaqxqwgfPbMbur7ORcceFCEmLGVM55VuzsP/xdxESovW2pnQnfuMRMyfS72RQD1EU8eCVf8Q37+0DPFOWP7XzIRRabMiqsYwpuaKQSnBafBCSQzQBG2DT0tTmTuLmVCJvfxEOf3UMXVIpVvz6aoTOjx9TmZU7T2DfY28jSK/yxjApMx6JC+IRmxo16lj64hJFnKhtw5Hq1jHFUi4VcGpcEOaEagMXy+Y2lOdUoTzbvY+X51aisbUT6bdsgGnh4C7U/qg7WIiuXSdw6c3rsHDt0C31xsMlisipa8fh6tYxtYyWSQQsiw1CmilwsfRX4ZESfPyPz3HoiyzUljb0G2vPF41BjVWXnoZv3XsJEubHBry+oigir6EdBytb4RhjLJfEGDE3XDdlg+iKooj8g8XY+e5e7Hx3z5BDPCQtiPe2PEtaED8hsSxotOJApXlMLaOlgoDFMQbMj9CPaXy52UQURRQ1dWB/RQtsY4ilRAAWRRmRGakf0/hys4koiihp7sC+CvOYhhkQBGBhpAELogxjGl9utilt7sDe8pYxtTIXAGRE6rE42shYAig3d2JPWfOYWpkLAOZF6HBKjBEyP25oznZVrZ3YVdqCjjFOMDM3XIclMcYJadQy09RYurCrtHnMQzakhWmxNC4IihkSSybSpiiR1qOt24H8hnYUNFr9OkiHaRWYa9IhMUQz5QcSS3MbSo9XoORYOUqPl6PkeDlKj1f4PQW6Uq1AeIIJIZFBCI4wIijciOCIoN6/PY+Dwg3TZqIDh92BtuZ2tDa2obXRAktTOyyNFrQ2tqG+rMHbwmw0021rjRrEz4tBwrxYJC1IwMIz5k9a4mwoVpsD+Q1W5De0+3XCE6yWY264DkkhGu+B5NcXPYq9nxwatKxCJcd5N63H95+4fkwt1Hq01Jvx1RcnUN7pQPCCRAgjnAw4umwo3XwI+e/sQnNu5ZDLyZVyRCaaEBTh3h6Dw40IjgxyP44w9ts+e1pavvXkR3j+3lcAz2Cef9//GKJTIgFPa4uCxnbkNVjR6cdBOkglQ3q4HimhGr8Pyk6HE5bmdlia2mDp2TYb29Da2IaGikbvdjnkdNuCgKjlaUi7YhViVs+HZITPdXbbUbrlMPLf3uVzUoEecoUMEYkmBEcEISjCiJCI3jgGeWPp/tufWYI77U4UNLq3S3+61RlVMqSbdEgJ1frd9d3pdHr38bamNs++3gZLowUNlU0oz6lEeU7VsEnxyFNTkXbFKsSuzRix5aTL7oC9tA4rF8UiY17MpCVUuuxOFDZakdfQ7tcJj0EpQ5pJhzlh2jENRjwWjdXN+OS5Ldj90QGU51T6NVGAMUyPc244AxfdtsG7D060bocThY0dyGto96uluU4pRbonlkONeTiRbF02HP8mD3s/Poid7+0dskV0+qkpWH356Vh92WmITYuenLo5XChssiKvvt2vLopaRW8sA93SdKazOV0obrIit74drX50UdTIpUgzaZFm0jGWA9idLhQ3dyCvvh0tfrTaV8slSAvTIdWknbJWu9OV3elCiSeW/nT3VMkkSDXpkBamnfJWu9ONw+VCaXMncuvb/Wq1r5RJkBqmRbpJx1gO4HSJKG1xb5f+tNpXSiWYE6ZFmkk7IWNxzmROl4hys3u79KfrrFwqYE6oFunhuhnXApqJtClOpPVwukQ0ddjQZLWhqcOGbocLLtE9AKRBKUOoVoFQjWLad1cQRRENlU29CbYT5Sg5Vo7ynKpxTTOtD9Z6E2sDk24agxqCRAKJRIAgESCRSDy/BUAQPM8P/7q92wFLU+8Fc2tjG1qb3MmI3ufb+rWwGi1jmB7x82ORMC8W8fNikTA/FvHzYxEaFTwtp/QFAFfPdtlhR3OHDfV1rcjZVwinzY7IcCPWnb8YYZ7tcuD/sPmlrfjjTc8MWfb3Hv42rr3/8oDUs6GxDXt25iG/oBYdECBVygGXCJu1Cy35VWjOrURTdjns1sAOhqk1aqAL0qK+vMHbgu/s69diwZr50AVp+m13gkSCbrkM3QoFuuQyOCUSiIIACQAFXNCKIrRwQQ1A4tk+HTYHLE3taPVskxZP8rZn2+x5rq1l7NulPljbb7sMSYpAY3s3KmrNsLoAqUoBuETYrV1oKahGU24lmk6Uw24N7AxxGoPam1gbmHTTBmkhkfaPpU0uQ5dCji65fEAsRWhFF7SiC2qhTyztzj6JxgH7eZ+EeHuLdVyzyPWlDNIiLCMeIXPjEJQSCZlaCZlCCq1GifiYYJyyLAkmnWrSElO+uEQRLZ1277Gnw+b0HHsAjVyGUK0coRoFgtXyCf+eKjlejq2v7cThrcdQnl2Fjjb/ugElZMTiglvOwZorl/cbH3CyiT2x7LChyWqH1eaAS3S38NEqpAjVKBCqnZxYDqxXeU4lDn6ehQOfH0HWtmx0dw6+UBAEAZlr5mLN5adj1aWnIjzeNGl1HEgURZg77WjqcMfTanPA6XLHUtMTS40CwRr5Sd8CbSSiKKK1y4Emqw2NA2Kplku955chjOWIvLH0nK+325xwukRvLEM0CoRq3N+ZJ3trvpGIoghLt8N77Gnr7o2lSi71xjFEo5jyhgMzgaXLjkar+3y9rdvRG0uZFCGe43goY+mXtm6HO5ZWGyx9YqmUSbxxDNUylv5o74llhw2WLncsBU8sQ7yxlM/YlpFMpE2TRNps53Q4UVVY6265dqwcpScqUHq8HI1Vzd7B5GeL0Ohgd5JsrjtRljA/FvHzYsbcnXE6qS2tx/XJdwAA1lx5On775k+HXLYirwo3zbtnyNcffO8+rLzk1IDXsbO9E/s/O4L9mw5j90cHhp20YSBBIkAqk0IURTjH2MR7ugqOMCJhfizi5rq3yZ6foHDjkBf1XR3dOLD5CPZ9ehh7Pj6AlrohWrT54I2lSxzXdN3TkdxzJ9ducwAjHEHVOhXmnJKEM65agXNuPBOaUcwyN5t1dXRh+9t7seejA8g/UITGqiY4/ezuI5EIWHxWJs781iqsvORUGIeYFOBkZmlqw6EvsnDw86M4uCULDZVNPpeTyqQ45axMrLn8dKy4eBmCI8Y/riMRERHRbMdEGhNpU67T2gVzXSuaa81oqTOjpa7V83cLWupb0VLXihbPa1OVdNMHa2EIM8AYpochVA9DmB7GUH2/54IjgxA/N2ZWz1xqt9lxvupaAMC801Pxl12PDLmsKIq4wnQT2pr7jwMokUlw34t34qzr1kx4fUVRROmJChzYfBT7PzuMrG3Zo0rqCIIAfYgWEQnhiJ4TidCoINhtTpjrzWiuNaPkeAU6/OzKPBF0QVoYQnW922GYHsZQAwyheu/fwRFBiEuPHnHWnZGIoojy3Coc3HwU+zcfxpGvjsMximSjIAC6YB0iEk2ITo5AWGwoHDaHd593/5jRYRn/YMRjoTVqPDEzwBCqgzHMAKfDibryRjSUN8Jc3wpb18itamUKGeLnxmD5hUtw4ffPmdJWPdNJ4ZESfPXaTmRtO4GKvOpRr+fgSCOWn78Uy85dhGUbFo04u9nJxmF3IGdPAQ5sPoKDW44i/0DxkC0rQ6ODsfTcRVh6ziKcet7iEWc3IyIiIqL+mEhjIm1G6Wzv7HfR3VLrTq6JogiXS4ToEuFyuSD2fSz2PBYhel7zPhbds79JZVIY+yYjwgww9CTNQnQBGTB9trgq8haY61thig3Fa+X/GHbZX134CPZ9enjQ83/86ndYdObEDKY+nK6Obhzbno39nx3Bgc+PoCK3etRlSKQSGE0GGIJ1KMtxj7WmUMnx4Ac/h0av9iaFO9s6B22XDpsDH/z9s37JxeUXLkXi/Nje7VLsXV4qlQxO4Hr+1ofoIBvvbJvj0N3ZjWM7cnFgszuWZSeGHnduKBKpe1rtmDmRSD81BUs3LMK8Femwtlj7JdA7LINj2bOPu593+d7HB8RSH6rvt5/3JByVOhVydufj0JYs5O8vQmVhNVpqW+FyjtxCSmvUIG5uNE5ZtwBnXrMSyQsTxxjR2cHhcODY9hwc3JKFvH2FqCyoQXNNi1+x7EuulGHx+gVYdu4iLD13EeLnTt74cTNFdVEtDmw+ioNbjuLIV8eH7AqrUMmx8Iz5WHrOIizbsHhCJl4gIiIiOpkwkcZEGtGo3L7sPhQcKoFEKsEnHa8Om8x5648f4vn7/gMAiEgwoa6sAQAQHh+G54/+ccpbldSXN+DA5qM48PkRHPrimN8TZfii0qoQHheKpIXuCSNWXLQMptj+4zW9+vA7eOm3r/d7bsHaeXjq69+P+XOni4bKJhz8/Cj2bz6Cw19kjWvcNpVWibCYUCQtjMeitfOx4uJlAWvZVXK8HPs+PYQTu/JQnl2JxuoWdHf419JVKpPCFBeK9FPnYMXFy7Dq0lOh0kz/6bknSllOpTuW3+ShLLti3F31UxYnYuk57sRZ5uq53sk8yM3c0IrjO3O93TVriuuGXDZpQbw3CZm5eu64JnYhIiIiov6YSGMijWhUHrr6KWx/azcA4IWcpxGXHjPksl0d3Xjp1/+D0WTEZfecj1+d/wiytmUDAM757hm476U7J63eI3E6nMjZ6+ka9flR5O0vGveg81KZBPoQHUKjQxAcEYRDX2bB5WMcqBdz/zxps+JNBqfTibz9RTjoSVLm7i2AyzW+WEqkPbEMRnRyJJIWxGHu6anIWDkXWoOm37IOhwPFR0qRu68QufsKUZxVhrqyBljNHaNap7ogLeLnx2DxugVYf+1qJMyLHdf/MBO5XC4UZ5Uhe3c+8g8UoehIKerKGtButkIc5zoNjjB6uxguOXsBQiKDA1bvmc7lcqEitwonduXjxK5cZO/KQ2V+zZDLB5kMWHLOQncsz1mIsOiQSa0vERER0cmEiTQm0ohG5eUH3sB/H3obAPC7d+/FqktP8/u9dWUN+P7Cn3q7IP32rZ9izRWnT1hdx6NnsO4Dm48ia3v2sK0/xisqORxrrlyB9GUpWLB2HoLDZ9eA320t7Tj0xTEc2HwEWduzUV1YG9gPEOCebU4QvN09R0Mqd3ftjpkTidSlKVhy9gKcsj4TCpUisPWcpurLG3Bidz4KDhajIrcKtaX1aKlrhbW1Aw6bI2CfI1fIkLlmnqeL4SIkLYiHZIbO1BRondYu5O8vwoldeTixKxc5u/OHbdUpk0uRsWqut9VZyuJExpKIiIhokjCRxkQa0ahsff0bPHLt0wCAm/7vWnz7l5eN6v1bXtmGx2/8GwDAEKrH81lPIjRq+rdEaappwbY3d+H5e1/xe3bBsRIkApRqBdQ6FXRBWhhNBoRGhyA8PgzRKZGIS49GQmYcgmbobIUtdWYc/yYPJ77JxYlvclFwqGTSZvaUSCVQ69QIiw1B6pIkrLhkGRasnn3JSwDoaO9EZW4VqgpqUV1Sh4byRjRVt6Clzoym6ha0tbSju9M24syjYyVXypG2LBkZK9KxaF0mFqydB7X25O0K21dDZROyd+Xh+De5yN6dj6IjpcPuA3KFDKlLkzF/RToWnZmBRWfOh5ozwBIRERFNiakbqZqIZqT4eb1dOctzRz/A/NnXr8Xuj/Zjxzt7YWlqw5O3PIv/+/iX037w6+AII7a9ucubRDv/1rNx5tUrcXxnLk7sykPO7vwhB/seLdElosvajS5rN1rqWlGRN/SkCFK5FEq1AlqjBvpgHdQ6FdQGNbQGDbRGDXTBWhhCdNCH6GA0GREcboAx3IDQqOCAj+/lcrnQYelAa0MbLM1taGtph7WlA20t7Whv7UCHpRMdrR3umXnrW2FpakN7qxVylQxipzjqAenHVEenC9ZWK6ytVpSdqMAX/9nufa0nlhqDBvpgLTR6NdQGNTR6NXRBWuiCtdAHad2TPpiMCArTIyjSOLGxbGqDpbFPLM1WtJut3liaGyxoqTXD0tyGdnMHutq70N1lg3MUM6oORyKVQCqTwOUUR0x2BoUbkbEqHRkr5yJjZRrmLEnmOGeebuPFWWU48U0eTuzOQ/auPNSXNw77niCTAfNXpiNjZTrmr0xH2tLkk6aFJBEREdF0x0QaEY1KbFoUBEGAKIqoyK0a9fsFQcCPnv0+ju/MRUtdK/ZvOoxPnv8CF/7gnAmpb6BsfnErsnfnAwDi0qNx+9M3QqlW4pT1CwDPuGAlx8q9ibUTO3PRUNk0fKGCe5ICfZAGcqUCXdYudLZ1oauz2+/xp5x2JzrsneiwdKKhYoTP81UFQYAgETyPPZUa+Evo+7rnWQGAKMLpcI2pO2WgCYIAY5ge2iCtOxHZ4Yllx9hi2TjSuhuiDuOJpcvpgss5ubGUSCVQaVXQ6FVQapSQSAR0d9rQXNsCh83pqdPgBKcgCEjMjPMmejJWpiMqOWLaJ8QnWrvZiuKsMhQfLUNxVhlKjpWh5Fi5u+XfMBIzemM5f2U6YuZEnvSxJCIiIpqu2LWTXTuJRu36lDtQW1IPjV6N980vj+mCb++nh/DrCx8FAGiNGryU/xcEmYwTUNvxa2204Htzf4S25nYAwBNfPoDF6zJHfF99eQOO78z1dmMszirz6/PCYkKQtCAeYbGhUOlUEEQRVksnmqqb0VLnbsnVYelEd6ctoGNYTTWpXAqlSgGVTgVdkAaGED2CI4MQFhMMjWdCgdYGC3L2FqAkq8yvCQxCo4PdsYzxxBJAR9vJEUuFSu7uHmzUwhCqh9FkgFKrgAABTqcLbS1tKD9RNXLCF4Bap8K801Mxf4Un2XN66pTPujuVnE4nqgtrvQmznp+RWpoBgEqjxNzlc5Cxci7mr0zHvNNToQ/WTUq9iYiIiGj8mEhjIo1o1H514SPY9+lhAMBr5f+AKTZ0TOU8cdPf8flLXwMANt58Fn7yz9sCWs9AeerWf2DTv78EAKy/djV++d8fjamcw18dw31n/x4AED0nEiqNEmXZlX6ND6bWqZC8KAHJCxMxZ3EiUhYnIjEzDkq1EpbmNpRlV6Iyvwat9a3u7n8tni6AbZ3otHSi09qFbms3urvssHfZYO92wGF3wOlwweXytDjqczQQ+/8xJEEiQCIRPF0ApZDKpZDJZZArZJAr5VCo5FCoFVCqFVBplVBpVAgKNyAsLhTRSRGISY1ETFr0oJk3R2K1dKDwcAmKjpSi6Ggpio6UouxEBRx+dGlUaZVIXpiAlEWJSF7kjmXSgnioNP1jaWm0wNLcjvYWK6ytHbBaOtBp6URXh7vbbXenDfZuO+zddjhsAYilIEAi7RNLmRQyxYBYqhRQatyxVKqVCAo3wBQfhsjEcMSkRiEu3R1LS3MbSrLKUXS0FCVZZSjKKkPZiQrYuuwjxpF0WsMAAC1rSURBVEcQBMSkRiJ1abK7m+aqdCRlxkMqk4743tmoraXd3bqsJ57HylB6vGLEVmbwxDIqJQJpfWKZvDDhpI0lERER0WzARBoTaUSj9tzPXsHbT30EAHhs86+x9JxFYyqnpc6MG9PvRoelE4Ig4K97H0X6spQA13Z8svfk40crfwUA0BjUeCHnz2OeHGHzS1vxx5ueAQD84I/fxZU/uQi2bjvKcyrdCaE+SSFra8eI5QmCAFNcKKLnRCImJRLRc9w/MXMiEZXiTtSdTOw2O8pzqlB0pBTFR3tjOdzsh32ZYkO98YueE9UnlhHTcpB8p8OJ+opG1BTVoaa4DtVFdSg9UY7io2VorGr2qwytUYPkhQm9P4sSkJgZf9JtO06nEw0VTagprkNNUR2qi2pRll2JoqOlfneZ1hjUSF6YgKQFCUhZlICkhQlIyozjpABEREREswzHSCOiUes74UBFbvWYE2nBEUG4/rdX4bmfvQJRFPHMj17An3Y8BIlEEsDajp3T4cRfbv+n9+8bf3/NuGYYLT1e4X2ckBEHAFAo5ZizOAlzFid5XxNFEXVlDd7kWnGW+3dtaUO/8kRRRH15I+rLG3Hkq+ODPi8sJsSdXEvpSQ5FIiY1CtEpEbPy4l6ukCNlUSJSFiV6nxNFEQ0VjSgckKisLakf9P6GyiY0VDbh6NcnBr0WGh3cJ2EZ1SfhFgmNfuJi2dneiWpPoqwnwVNTUo+aolrUlTX6PdtpTyuz5EWJSF6Q4GndmIDw+LCTZiyuTmsXaj0JR29Mi2tRXVSH+rIGv1ozok8rsxRPC9GeBGREgumkiSURERHRyYyJNCIatfh5sd7H5Tmjn7mzr0vuPA+f/utLVORWIXt3Pr58dQfOuf6MANRy/D58ZjOKjpQCAFIWJ+Li2zeMq7yy7N5EWlJm3JDLCYKAyMRwRCaGY9Wlp3mf7+liVnSkFIVHSlCRU4Wqwlrv2G0DNVY1o7GqGVnbsge9FhIZ5G3BFp3i/gmJCkJIZBBCooKh0atnRVJAEASEx5sQHm/CyotP9T5vbbWiOKvck6wsQWl2JaoLa2FpavNZTlN1C5qqW3Bse86g14IjjL2tAVOiEJUcjtDoEG88NQbNkLEURRHNtWbUFNX2Se54EmbF9TDXt476fz5ZW5mJooiWOrM7jj2t9IrdcawpqkVL3ehjyVZmRERERDQQu3ayayfRqLWbrbgs5EYAwNzT5uCvex4dV3kHPj+KX573MOBJ8LyY95cJbeXjj6aaFtw070fosHQCAP78zcOYvyJ9XGVem3AbGiqaoDVq8F7zSwFLVFma21BTVIeqghpUFdaiuqgW1YW1qCqoQWuj78TQSFQaJYIjgxAcGYTQqCAER7gTbD2Jtp7fQSbDrBrvqa2l3d1iyRO/6qJad0wLa8eU1AIAmUIGtU4FhUrujZXD7kB3hw2dbV2946qNglqnQlRKBKKSIxCdHIGolEhEJUcgLj16VrUyczqdsDS2oaWuFeb6VrTUtaKlzuz+XW+Gud4Cs+dvc32r363K+lJplYhOiURUcjiikt1xjEqJQGxaFCITw2dNLImIiIgoMNgijYhGTRekRfy8GJTnVKHgUAm6OrrH1dpl2bmLsPKSU7Hrg/1orjXj1Yffwa1/+E5A6zxaz9/7ijeJtvHms8adRLNaOrxjLSVkxAX04twQoochRI/0U+cMeq3dbO1NrBXWoqqwBtWexNBwLXS6Orq9raOGI5EIMJoMnoRbsDv5Fm6EWq+GWqeCRq+GWq+GRq+CWqfyPFZDpVNBo1dBoVJMq0SFPliH9GU6pCxKQJe1G13WLvfvjm6Y61tRVVCL2pI61JbUo668Ec01ZrQ1tw07iL/D5hiy1eBwlGoF9CE6GE0GhEQGIyw2BBEJJkSnRCAsJhRqff/4TrdY9nA6nOiydqHT2t0/pp7H7eYOmOvM7kRZn2SZud4CS6PFr9lZRxISFYyo5HB3wizJnSiL9iQig8KN0zJuRERERDQ9MZFGRGOSsXIuynOq4HQ4kbe/EIvOyBhXebc9eQP2f3YE9m473n36Y2y8eT1i06IDVt/RyN1XgK9e2wkAMITqcctj1427zIKDxd7HSRlDd+sMNF2QFmlLU5C2dPAkDh1tne4WVwW1qC9rQHOtGc21Le7fNS1oqTWPOFC/yyV6Eh+tKD5aNur6SaSSPgm3/sk2tU4FpdqTHBIEuH8NeIye59y/Bc9r6PO4Zzmn0+VJinWhu8M2KKHT9/FYWjYFWnenDd2e7rlFKB1x+b6x7ElU9k1oBjKWLpfojlmH7/j1PO7u6Ibd5pjQOEmkEgSZDAiKMCI0OsTdQs/TqizK83i2d2slIiIiosnDRBoRjUnGqnRs+veXAIDjO3PHnUiLSo7AVT+9CK898i4cdieeu/cVPPTBLwJU29F56bdveB/f+PurYQjVj7vMvgPYZ6yeO+7yAkGjVw+a6GAgW5cNLXWt3uRa3yRbU637d3ONGc21Zr8Hvu/L5XTB2trh1yyl051cKUdwhNHzE4SgcCOCwnv/1gdrIZFJ4HS40N3ZjZbaVnf8PAnMllozmjyxHUsibzbG0hu/cCOCIoI8v/vG2ABDqH7aTFBCRERERLMfE2lENCaZfZJBJ3blBaTMa355GT5/+Ws0VjVjz0cHUXCoGKlLkgNStr+O78zBwc+PAgAiE0047+b1ASk3a3vvgP+LzpgfkDIng0KlQESCCREJpmGXc7lcaG+xoqmmBZbGNnS0daKzrROd7V3oaOtCZ1snOto60dXehY72TnS2dXle6/S81oWudvdzkz10p0wuhVKjhEqrhEqr8vwe8FjjeexZTmPQeJNmQRFBCI4wBmyCBlEU0dbcjuZaM1obLO4YtXf1i5M3bu09r3X1xretN76THUupTOo7floVVBqF53f/13ti2Zt0NA47QQMRERER0VRiIo2IxiQ6JRJB4UaY61uRvSsPLpdr3K1C1FoVvv3Ly/HXO/8FAHj1/97B7965N0A19k/f1mjf+e1VkCvk4y7T1mVDzp4CwNPyLjx++KTUTCSRSGAI1Y+79Z7L5UJ3R7c3AWfrtEEURXdCSIT3sTc/1Odv9zKDH8OTnJJIBJ+JMpl8eh0KBUEISCxFUURXR7c3ATfeWHoW8RnLnkRkIPYXIiIiIqLpbHpdPRDRjCEIAjJXz8XOd/fC2tqBshMVSFqQMO5yz7tpHV79v3fQXNOCb97bh5Lj5UjKjA9InUdy+Ktj3i6YsWlROPs7awNSbs6eAti73YPRz6TWaFNBIpFArVNDrVMjJHKqazOzCYIAtVYFtVbFWBIRERERBQgHFSGiMctY2TuT5fFvAtO9U6FS4Fs/u9j792uPvBuQckciiiJe+s3r3r+v/+1VkMqkASm77/hoC88c31hyRERERERENHWYSCOiMctY1WectG9yA1bu+d8/G8Ywd7e2bW/sQkVeVcDKHsr+z44ge3c+ACBhfizOuHplwMqeqeOjERERERERUX9MpBHRmM05JRFKtQIIcCJNrVXhyp9cBHhaiv3vsfcCVrYvoijipd/2tka74cGrIZUGpjWarcvmTdBFJoXPyvHRiIiIiIiIThZMpBHRmMkVcsxdngoAqC1tQFVhTcDKvuj2DdAHawEAX/53B2pK6gJW9kC7PtiPgoPFAICUxYlYddlpASs7Z2/f8dHYrZOIiIiIiGgmYyKNiMbl1PNO8T7e9cGBgJWrNWhw2d0XAABcThfeeOz9gJXdlyiKePX/3vH+fcODV4979tG+jm7tHR9tEcdHIyIiIiIimtGYSCOicVl16anex7s+2BfQsi+9eyM0ejUAYPNLW9FY1RTQ8uFpMdbTGm3OKUk4/cKlAS3/mz4xWbSOiTQiIiIiIqKZjIk0IhqX2LRoxM2NAQBk78pDS31rwMrWB+tw8e0bAAAOuxOfvbA1YGX3+PCZz7yPL71rIwRBCFjZlQU1KD5aBgCYe9ochMeFBaxsIiIiIiIimnxMpBHRuK26xN0qzeUSsffjgwEt+8LbzvUmtz574Su4XK6Ald1SZ8b2N3cDAAyhepwZwJk6AWD7W7u9j9deuSKgZRMREREREdHkYyKNiMZtxSV9und+uD+gZUckmLBswyIAQF1ZAw5uyQpY2Z/+60vYbQ4AwHk3rYdSrQxY2QCw7a1d3sdrr2IijYiIiIiIaKZjIo2Ixm3uaXMQEhkEADi0JQtdHd0BLX/jLWd7H2/61xcBKdPpcOKT57YAAARBwEU/PDcg5fYY2K0zIsEU0PKJiIiIiIho8jGRRkTjJpFIsOKiZQCA7k4bDn5+NKDlr7hoKYIjjIBnZtCWOvO4y9z14QE0VLonLzj9oqWITAwfd5l9sVsnERERERHR7MNEGhEFxER275TJZTj3hjMBT0uyz1/eNu4yP/z7Ju/ji28/b9zlDcRunURERERERLMPE2lEFBCnrM+EWqcCAOz56CAcdkdAy994y1nex5v+/SVEURxzWWXZFTiy9QQAIDYtCkvOXhCQOvZgt04iIiIiIqLZiYk0IgoIhUqB084/BQBgaWrDvk8PB7T8mDlRWLw+EwBQVVCDrG3ZYy7rw2c2ex9ffPt5kEgC+1XIbp1ERERERESzExNpRBQw596wzvv40wBNCtDX+X0mHRhr+U6H05voUqoVOPeGMwJWPwAQRRFf/Ke36ym7dRIREREREc0eTKQRUcAsPXchwuPDAAD7Nx32DuYfKKsuOw2GUD0AYOe7e9Fp7Rp1GUe3ZcPcYAEAnHbBEmiN2oDW8fCXx1CRVw0AWHjGfHbrJCIiIiIimkWYSCOigJFKpTjve+sBAC6XiM9e+Cqg5SuUcqy54nQAgK3LPqbZQft2uzxjArpdfvD3z7yPL7kj8JMYEBERERER0dRhIo2IAmrDTesgkQgAgM9e+ApOpzOg5a8cx+ygTocT37y3F/B06zztgiUBrVttaT32fHQAABAWE9KvrkRERERERDTzMZFGRAEVHheGUze6Jx2oL2/EoS1ZAS1/cZ/ZQfd+fAhOh/+JuoHdOtVaVUDr9vE/PofL5Z5N9MIfnAuZXBbQ8omIiIiIiGhqMZFGRAHXf1KALwNatkIp9ybqLE1tOP5Nrt/vnchunbYuGzb9292VVSaX4vxbzwpo+URERERERDT1mEgjooBbfsEShEQFAwB2f3gALXXmgJa/8uLeLpO7P/Cve+dEd+v8+o1dsDS1AZ6ZOoMjggJaPhEREREREU09JtKIKOCkMik23Hgm4ElgbX7p64CWf9r5p0AqkwIAvvlgP0RRHPE9E9mtUxRFvP+3Td6/OckAERERERHR7MREGhFNiI0393Zt/PDvn8FuswesbH2wDgvPmA8AqC2pR+nx8hHfM5HdOnP3FaLgYDEAIHVJEuadnhbQ8omIiIiIiGh6YCKNiCZEVHIETr9oKQCgobIJW17eFtDy+86I+c37w3fvFEURuz2zaU5Et853n/7Y+/jiOzZCEISAlk9ERERERETTAxNpRDRhrvvVFd7H/3vsvVHNsDmSlRcv8z7e9cG+YZetzK9Gc00LAGDhmRkB7dZZcrwc2950t3Yzhumx7pqVASubiIiIiIiIphcm0ohowsw9LRVLz10EeLpgfvXazoCVHR5vQsriRABAwaESWJrbhlz26NfZ3seLzsgIWB0A4JXfvekdo+3qn18GpVoZ0PKJiIiIiIho+mAijYgm1Hd+3adV2qPvwukMXKu0vkmx7F35Qy53dNuJ3vecOT9gn194uAQ733XPBBoSGYSLfnhuwMomIiIiIiKi6YeJNCKaUJmr53knBqjIq8aOt/cEsOy53sfHd+b4XEYURWR97U6kqXUqpC5JDtjnv/zAG97H377/cqg0bI1GREREREQ0mzGRRkQT7rpfX+l9/Or/vQOXyxWQcjNWpXsfn9iV53OZyvxqNNeaAQCZa+ZBKpMG5LOz9+Rjz8cHAQCmuFCcf+vZASmXiIiIiIiIpi8m0ohowp2yPhPzTk8FAJQer8DuDw8EpNyQyGBEp0QAAPL2F8HWbR+0TNa2iRkfrW9rtOt+dQUUSnnAyiYiIiIiIqLpiYk0IppwgiD0b5X28NveAfrHK2OVu3unvduOgoPFg16fiPHRju3IwaEtWQCAyKRwbPjeuoCUS0RERERERNMbE2lENClO23gKUpckAZ5ZNr9+Y1dAys1Y2ad75ze5/V4TRdE7Y2egxkcTRREv/fZ179/f+c2VkMll4y6XiIiIiIiIpj8m0ohoUgiCgBt+f4337+fvfQWd1q5xl9t3woGB46RVFdSguabFu1wgxkc7sPmIt7tobFoUzv7O2nGXSURERERERDMDE2lENGmWn78Eyy9YAgBorGrG64++N+4y4+bGQB+sBTwt0vp2Gc3ZW+B9vGDN+Lt12rps+NvdL3j/vv6BbwVs8gIiIiIiIiKa/phII6JJddtTN0Imdyef3vrjh6guqh1XeRKJxDtOWmtjGyrzq72vlZ2o8D5OWZw4rs8BgDce/wDVhe76LlgzD+uuWTXuMomIiIiIiGjmYCKNiCZVbGoUrvjxhQAAu82B5372yrjL7DtOWu6+Qu/jsuxK7+PEjNhxfUZ1US3+52lBJ5FKcNffb4EgCOMqk4iIiIiIiGYWJtKIaNJd+6srEBIVDADY9cF+HPj86LjKS1oQ731cnlPlfVx6vBwAoNGrYYoLG3P5oijib3f9G/ZuOwDginsuQFJm/IjvIyIiIiIiotmFiTQimnQavRq3/uE73r+fuedFOOyOMZcXP6+3tVlFnjuR1tneidrSBgBAQkbsuFqP7XxvH/Z/dgQAEBYTgusfuGrMZREREREREdHMxUQaEU2Js65bg/kr0gAAFblV+OBvn425rPCEMChUcqBPi7S+LdMS5seNuezO9k48++MXvX/f/vT3oNapx1weERERERERzVxMpBHRlBAEAXf85SZvS7FXHnwTjVVNYypLKpUiNi0aAFBdWAuH3YHSPhMNJGaMPZH234feQUOFu17LNizC6suXj7ksIiIiIiIimtmYSCOiKZO2NAUbb14PAOiwdOKJm56By+UaU1nx82IAAE6HE1WFtSg93ptISxhjIq30RAXe+dPHAAC5Uo47/3ozJxggIiIiIiI6iTGRRkRT6ubHrkNYTAgA4NCWLHz4zOYxlRM/t3ectN9e/Bi2/Geb9+/cvfk4vjMHoij6XZ7T4cRTtz4Lp8MJALjm55ciZk7UmOpGREREREREswMTaUQ0pQwhevzshdu9f//zvv+gPLdq2Pf4Ejc32vu4uqgOrQ0W798vP/Amfrz2t9j94QG/y3vt/95Fzp4CAEB0SgSu/vklo64TERERERERzS5MpBHRlFt6ziJceudGAICty44/fPevo57Fs+/MnUOxddn8Kit7dx7++/DbAACJVIKf/+duKNXKUdWHiIiIiIiIZh8m0ohoWrj5sesQN9c9zln+gSK8+vA7o3p/bNrw3S6TFyb4NVFAR1snHrv+r3A53WO1fefXV2L+6WmjqgsRERERERHNTkykEdG0oNIo8fNX7oJUJgUAvPbIuzj05TE8fuPfcG38bdj90fDdMhUqBaKSI3y+JggCfvSP70Mml41Yj7//6AXUFNcBAOavSMO1v7p8TP8PERERERERzT5MpBHRtJG+LAXX//YqAIDL6cKvLngEW17ZhobKJvzn92+N+P6Y1Eifz1/w/bP9alW2/e3d+PylrwEAGr0av/jP3d7EHhERERERERETaUQ0rVzzi0sRP8/dxdNh6x0nrfhoGbo6uod9b1hM6KDntEYNbnrk2hE/t6GyCU//4Dnv33f85aYhW7gRERERERHRyYmJNCKaVj569nNU5tcMet7pcCL/QNGw7zXFDk6kXXv/5dAH64Z9n8vlwuM3/g1tLVYAwBnfWoFzvnvGqOtOREREREREsxsTaUQ0bRQeLsHff/SCd6D/gbJ35w/7/rA+ibTw+DCcdd0aXPWzi0f83Hee+hhHvjoOeJJxP3r2+xAEYdT1JyIiIiIiotlt5JG3iYgmiUqngkIlh63L7vP1rG0ncM3PL+33nN3pQllLJxqs3WjLSMI12x6FTK2EKIpQyiT4PL8BIRoFIvVKxBhVkAxIkB3bkYN/3/8a4JmU4L6X7xyxBRsRERERERGdnARRFMWprsRks1gsMBqNaG1thcFgmOrqEFEfxVlleOPx9/H1G7sGtUyTK2X4pOM1CIIAS5cd2XXtKG6ywu7y72tMq5AiNUyLueF6KGUSNFY34/al96GlrhUAcM3PL8XNj143If8XERERERERzXxMpDGRRjQt1Zc34N0/f4pP/vkFutq7vM+/3/oySqwOHK5qhZ/5s0HUcglOjTHg6Use83YXPeWsBXh00684SycRERERERENiWOkEdG0FB5vwm1P3oDXK/6BS+/aCK1Rg+WXn45tlW04WDn2JBoAdNpd2F5qhn7dYghSCcLjw3D/az9iEo2IiIiIiIiGxRZpbJFGNCN02JzYnF8PS5cjoOVW7jiBy9ekYt6ylICWS0RERERERLMPJxsgomnP7nThi4KGgCfRACB2TQYaQzUQRZEzdRIREREREdGw2LWTiKa9g5WtaOn0PZNnIBQ3daCkuWPCyiciIiIiIqLZgYk0IprWaixdyGton/DP2VduRqfdOeGfQ0RERERERDMXu3YS0bQliiIOVJr7PScIwHnp4QhSybGrrBllLZ1QySRYNycMLlGEAAF7ylpg7hpdC7ZupwtZNRYsjw8O8H9BREREREREswVbpBHRtNVotaG5o39CTBSBr4sakV3f5n2u2+HCptx6bM5rwOHqVmRG6cf0eUVNVtidrnHXm4iIiIiIiGYnJtKIaNoaqktnp71/sqvv1MMKqQQtHWMbT83uFDlWGhEREREREQ1pxiXS/u///g8rV66ERqNBUFDQVFeHiCZQtaXL72WNKhk2zg3H8vgg1LV3e5/fkG7C9UtjEayWe5+TSwXcsCwOWoV0XJ9JREREREREJ5cZl0iz2Wy46qqr8MMf/nCqq0JEE6jD5hzU8mw4rV0ObMqtx5cFjTgtrn+S3eZwYUmM0a9ymjpso64rERERERERnRxm3GQDDz74IADgpZdemuqqENEEah5FQksiAC5P/06b0wWHS+z3el5DO+aG6xGhU/ZrreZLe7cTNocLCtmMu89AREREREREE2zGJdLGoru7G93dvRfPFotlSutDRCPrcgzdGu2M5FCEahWwO10I0ypQ3tKJJbFGiKJ7Vs/9Ff1n+ux2uHC81oIlsUZsyq3367OZSCMiIiIiIqKBTopE2qOPPuptyUZEM4MoikO+tq24adBzm/Mahi0vp64d88J1iAtSo7Zt+HHQhvtsIiIiIiIiOnlNiyYXv/vd7yAIwrA/Bw4cGHP5v/zlL9Ha2ur9qaioCGj9iSjwpBIhoOU5RRFHqi1YEmOEBMOXHejPJiIiIiIiotlhWrRIu/POO3HNNdcMu0xiYuKYy1cqlVAqlWN+PxFNPoMq8F9PhY1WZETokRKmGXIZqUSAxsdsnkRERERERETTIpEWFhaGsLCwqa4GEU0jwWoFBAEIZC9LEcChqlasSAgecpkQtRwSgS3SiIiIiIiIaLBpkUgbjfLycjQ3N6O8vBxOpxNHjhwBAMyZMwc6nW6qq0dEASKVCAhRy9HUYQ9oueXmTmRG6qGS+251FqZVBPTziIiIiIiIaPYQxBk2qvaNN96Il19+edDzW7duxZlnnulXGRaLBUajEa2trTAYDBNQSyIKhOy6tkEzcE60C+ZFMJlGREREREREPs24RFogMJFGNDN0O1x4K6saTtfkfE2FahS4cH7EpHwWERERERERzTzTYtZOIiJflDIJUsO0k/Z5GZH6SfssIiIiIiIimnmYSCOiae2UGCO0kzCLZqxRhcRg9YR/DhEREREREc1cTKQR0bSmkEqwIiFkgj9DwIqEEAicrZOIiIiIiIiGwUQaEU17MUYVlsYaJ6RsiQCcmRIGzSS0eiMiIiIiIqKZTTbVFSAi8kdmpAGiCByqag1YmTKJgDNTwhBlUAWsTCIiIiIiIpq9mEgjohljQZQBRpUMu8ta0OVwjausYLUcq5NCEKJRBKx+RERERERENLsxkUZEM0p8sAbhOiX2V5hR3Nwx6vfLJAIyIvVYEGmAVMIx0YiIiIiIiMh/giiK4lRXYrJZLBYYjUa0trbCYDBMdXWIaIzaux3Ib2hHYZMVnfbhW6gZVTKkm3RICdVCIePwkERERERERDR6TKQxkUY044miCKvNiaYOG8yddjhc7q81hVSCEI0coRoFVHJOJkBERERERETjw66dRDTjCYIAnVIGnVKGhOCprg0RERERERHNVuzfRERERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEgjIiIiIiIiIiLyAxNpREREREREREREfmAijYiIiIiIiIiIyA9MpBEREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvIDE2lERERERERERER+YCKNiIiIiIiIiIjID0ykERERERERERER+YGJNCIiIiIiIiIiIj8wkUZEREREREREROQHJtKIiIiIiIiIiIj8wEQaERERERERERGRH5hIIyIiIiIiIiIi8gMTaURERERERERERH5gIo2IiIiIiIiIiMgPTKQRERERERERERH5gYk0IiIiIiIiIiIiPzCRRkRERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEgjIiIiIiIiIiLyAxNpREREREREREREfmAijYiIiIiIiIiIyA9MpBEREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvKDbKorMBVEUQQAWCyWqa4KERERERERERFNA3q9HoIgDLvMSZlIa2trAwDExcVNdVWIiIiIiIiIiGgaaG1thcFgGHYZQexpnnUScblcqK6u9ivTSMOzWCyIi4tDRUXFiBsbzXxc3ycfrvOTC9f3yYfr/OTDdX5y4fo++XCdn1y4vgOPLdKGIJFIEBsbO9XVmFUMBgN33JMI1/fJh+v85ML1ffLhOj/5cJ2fXLi+Tz5c5ycXru/JxckGiIiIiIiIiIiI/MBEGhERERERERERkR+YSKNxUSqVeOCBB6BUKqe6KjQJuL5PPlznJxeu75MP1/nJh+v85ML1ffLhOj+5cH1PjZNysgEiIiIiIiIiIqLRYos0IiIiIiIiIiIiPzCRRkRERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEijUXv22WexcOFCGAwGGAwGrFixAps2bZrqatEEq6qqwne+8x2EhoZCo9Fg8eLFOHjw4FRXiyZIW1sb7rnnHiQkJECtVmPlypXYv3//VFeLAmT79u246KKLEB0dDUEQ8P7773tfs9vt+PnPf44FCxZAq9UiOjoa3/3ud1FdXT2ldabxGW6dA8CNN94IQRD6/Zx++ulTVl8an5HWd3t7O+68807ExsZCrVZj3rx5ePbZZ6esvjQ+jz76KE499VTo9XqEh4fj0ksvRV5eXr9l3n33XWzYsAFhYWEQBAFHjhyZsvrS+Pmzzvv6wQ9+AEEQ8PTTT09qPSkw/FnfA4/hPT9PPPHElNV7NmMijUYtNjYWjz32GA4cOIADBw5g/fr1uOSSS3DixImprhpNkJaWFqxatQpyuRybNm1CdnY2nnzySQQFBU111WiC3HLLLdiyZQv+85//4NixYzj33HNx9tlno6qqaqqrRgFgtVqxaNEi/O1vfxv0WkdHBw4dOoTf/OY3OHToEN59913k5+fj4osvnpK6UmAMt857nHfeeaipqfH+fPrpp5NaRwqckdb3j3/8Y3z22Wf473//i5ycHPz4xz/GXXfdhQ8++GDS60rjt23bNtxxxx3Ys2cPtmzZAofDgXPPPRdWq9W7jNVqxapVq/DYY49NaV0pMPxZ5z3ef/997N27F9HR0VNSVxo/f9Z33+N3TU0NXnjhBQiCgCuuuGJK6z5bCaIoilNdCZr5QkJC8MQTT+Dmm2+e6qrQBPjFL36Bb775Bjt27JjqqtAk6OzshF6vxwcffIALLrjA+/zixYtx4YUX4uGHH57S+lFgCYKA9957D5deeumQy+zfvx+nnXYaysrKEB8fP6n1o8Dztc5vvPFGmM3mQS2XaObztb4zMzNx9dVX4ze/+Y33uaVLl+L888/HQw89NEU1pUBpaGhAeHg4tm3bhrVr1/Z7rbS0FElJSTh8+DAWL148ZXWkwBpqnVdVVWH58uXYvHkzLrjgAtxzzz245557prSuNH7D7eM9Lr30UrS1teHLL7+c9PqdDNgijcbF6XTi9ddfh9VqxYoVK6a6OjRBPvzwQyxbtgxXXXUVwsPDccopp+Cf//znVFeLJojD4YDT6YRKper3vFqtxs6dO6esXjR1WltbIQgCW6HOcl9//TXCw8ORlpaGW2+9FfX19VNdJZogq1evxocffoiqqiqIooitW7ciPz8fGzZsmOqqUQC0trYCnhvddHLwtc5dLheuv/563HvvvcjIyJjC2lGgjbSP19XV4ZNPPmEjlwnERBqNybFjx6DT6aBUKnHbbbfhvffew/z586e6WjRBiouL8eyzzyI1NRWbN2/GbbfdhrvvvhuvvPLKVFeNJoBer8eKFSvw0EMPobq6Gk6nE//973+xd+9e1NTUTHX1aJJ1dXXhF7/4Ba699loYDIaprg5NkI0bN+LVV1/FV199hSeffBL79+/H+vXr0d3dPdVVownwl7/8BfPnz0dsbCwUCgXOO+88PPPMM1i9evVUV43GSRRF/OQnP8Hq1auRmZk51dWhSTDUOv/DH/4AmUyGu+++e0rrR4Hlzz7+8ssvQ6/X4/LLL5/0+p0sZFNdAZqZ0tPTceTIEZjNZrzzzju44YYbsG3bNibTZimXy4Vly5bhkUceAQCccsopOHHiBJ599ll897vfnerq0QT4z3/+g5tuugkxMTGQSqVYsmQJrr32Whw6dGiqq0aTyG6345prroHL5cIzzzwz1dWhCXT11Vd7H2dmZmLZsmVISEjAJ598whPxWegvf/kL9uzZgw8//BAJCQnYvn07br/9dkRFReHss8+e6urRONx5553IyspiC/KTiK91fvDgQfz5z3/GoUOHIAjClNaPAsufffyFF17AddddN6h3CQUOW6TRmCgUCsyZMwfLli3Do48+ikWLFuHPf/7zVFeLJkhUVNSgJOm8efNQXl4+ZXWiiZWSkoJt27ahvb0dFRUV2LdvH+x2O5KSkqa6ajRJ7HY7vvWtb6GkpARbtmxha7STTFRUFBISElBQUDDVVaEA6+zsxP3334+nnnoKF110ERYuXIg777wTV199Nf74xz9OdfVoHO666y58+OGH2Lp1K2JjY6e6OjQJhlrnO3bsQH19PeLj4yGTySCTyVBWVoaf/vSnSExMnNI609j5s4/v2LEDeXl5uOWWWya9ficTtkijgBBFkd0/ZrFVq1YNmmI5Pz8fCQkJU1YnmhxarRZarRYtLS3YvHkzHn/88amuEk2CniRaQUEBtm7ditDQ0KmuEk2ypqYmVFRUICoqaqqrQgFmt9tht9shkfS/ny6VSuFyuaasXjR2oijirrvuwnvvvYevv/6aN71OAiOt8+uvv35Q69INGzbg+uuvx/e+971Jri2N12j28X//+99YunQpFi1aNKl1PNkwkUajdv/992Pjxo2Ii4tDW1sbXn/9dXz99df47LPPprpqNEF+/OMfY+XKlXjkkUfwrW99C/v27cPzzz+P559/fqqrRhNk8+bNEEUR6enpKCwsxL333ov09HSefM0S7e3tKCws9P5dUlKCI0eOICQkBNHR0bjyyitx6NAhfPzxx3A6naitrQU8g9oqFIoprDmN1XDrPCQkBL/73e9wxRVXICoqCqWlpbj//vsRFhaGyy67bErrTWMz3PqOj4/HGWecgXvvvRdqtRoJCQnYtm0bXnnlFTz11FNTWm8amzvuuAOvvfYaPvjgA+j1eu93ttFohFqtBgA0NzejvLwc1dXVAOC9QRoZGYnIyMgprD2NxUjrPDQ0dNBNMLlcjsjISKSnp09RrWms/NnHAcBiseCtt97Ck08+OYW1PUmIRKN00003iQkJCaJCoRBNJpN41llniZ9//vlUV4sm2EcffSRmZmaKSqVSnDt3rvj8889PdZVoAr3xxhticnKyqFAoxMjISPGOO+4QzWbzVFeLAmTr1q0igEE/N9xwg1hSUuLzNQDi1q1bp7rqNEbDrfOOjg7x3HPPFU0mkyiXy8X4+HjxhhtuEMvLy6e62jRGw61vURTFmpoa8cYbbxSjo6NFlUolpqeni08++aTocrmmuuo0BkN9Z7/44oveZV588UWfyzzwwANTWncaG3/W+UAJCQnin/70p0mtJwWGv+v7ueeeE9VqNc/ZJ4EgulcMERERERERERERDYOTDRAREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvIDE2lERERERERERER+YCKNiIiIiIiIiIjID0ykEREREZ1ETCYTBEEY9ud73/veVFeTiIiIaFqSTXUFiIiIiGhyOJ1OfPTRRz5fKysrw0033QSXy8VEGhEREdEQBFEUxamuBBERERFNnYqKCpxxxhmorq7GBx98gA0bNkx1lYiIiIimJXbtJCIiIjqJVVVVYd26daiursZ7773HJBoRERHRMNi1k4iIiOgkVV1djXXr1qGiogLvvPMONm7cONVVIiIiIprWmEgjIiIiOgnV1tZi/fr1KC0txdtvv40LL7xwqqtERERENO2xaycRERHRSaaurg7r169HcXEx3nzzTVx88cVTXSUiIiKiGYEt0oiIiIhOIg0NDTjrrLNQUFCAN954A5deeulUV4mIiIhoxmCLNCIiIqKTRGNjI9avX4+8vDy89tpruPzyy6e6SkREREQzClukEREREZ0EmpqacPbZZyMnJwevvvoqrrrqqqmuEhEREdGMI4iiKE51JYiIiIho4litVqxZswaHDx/G3XffjW9/+9s+l9PpdMjMzJz0+hERERHNFEykEREREc1yX3zxBc4555wRl7vmmmvwv//9b1LqRERERDQTMZFGRERERERERETkB042QERERERERERE5Acm0oiIiIiIiIiIiPzARBoREREREREREZEfmEgjIiIiIiIiIiLyAxNpREREREREREREfmAijYiIiIiIiIiIyA9MpBEREREREREREfmBiTQiIiIiIiIiIiI/MJFGRERERERERETkBybSiIiIiIiIiIiI/MBEGhERERERERERkR+YSCMiIiIiIiIiIvLD/wMHNIO9W2+kAQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNQAAAKrCAYAAAA57NCnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZZhd1d3+8e/RcZ9JMhrPxD2EBBIkQYI7Le5FC3/aPhSe+lMK1EuLQ3ErBIprkJAQd88kmcm4ux/7vzgz+5yTsTPJxCb357q4WHvvtddeZ+DVff3WWiaPx+NBREREREREREREgmI+3BMQERERERERERE5mihQExERERERERER6QUFaiIiIiIiIiIiIr2gQE1ERERERERERKQXFKiJiIiIiIiIiIj0ggI1ERERERERERGRXlCgJiIiIiIiIiIi0gsK1ERERERERERERHrhmA7UPB4PtbW1eDyewz0VERERERERERE5ShzTgVpdXR0xMTHU1dUd7qmIiIiIiIiIiMhR4pgO1ERERERERERERHpLgZqIiIiIiIiIiEgvKFATERERERERERHpBQVqIiIiIiIiIiIivaBATUREREREREREpBcUqImIiIiIiIiIiPSCAjUREREREREREZFeUKAmIiIiIiIiIiLSCwrUREREREREREREekGBmoiIiIiIiIiISC8oUBMREREREREREekFBWoiIiIiIiIiIiK9oEBNRERERERERESkFxSoiYiIiIiIiIiI9IICNRERERERERERkV5QoCYiIiIiIiIiItILCtRERERERERERER6QYGaiIiIiIiIiIhILyhQExERERERERER6QUFaiIiIiIiIiIiIr2gQE1ERERERERERKQXFKiJiIiIiIiIiIj0ggI1ERERERERERGRXlCgJiIiIiIiIiIi0gsK1ERERERERERERHpBgZqIiIiIiIiIiEgvKFATERERERERERHpBQVqIiIiIiIiIiIivaBATUREREREREREpBcUqImIiIiIiIiIiPSCAjUREREREREREZFeUKAmIiIiIiIiIiLSCwrUREREREREREREekGBmoiIiIiIiIiISC8oUBMREREREREREekFBWoiIiIiIiIiIiK9YD3cExAREREREREROZJ4PB4cLg8ujwcTYLOYsZhNh3tacgRRoCYiIiIiIiIix7yaZgd7Khopb2ilorGVFqfbeGY2QWyYjYRwOynRoWTEhmFWwHZMU6AmIiIiIiIiIses/JomthbXUVTX0mUftwcqGx1UNjrIKm8gzGZmVGIkYwdGYbdqN61jkQI1ERERERERETnmNDtcrMirJqeysdfvNjncbCiqJau8gVlD4kiLCTsoc5Qjl2JUERERERERETmmlNW38N6W4v0K0/w1OlwsyipnZW4VHo+nz+YnRz4FaiIiIiIiIiJyzCipa+HznWU0++2RdqC2ldazNKdSodoxRIGaiIiIiIiIiBwTqpscLNpVhtPd98HX7opGVufX9Pm4cmRSoCYiIiIiIiIi/Z7b42FJdiUO18GrIttaUkdRbfNBG1+OHDqUQERERERERET6vS3FdVQ0tnLFlFQqGlsB2FRUR2FtM4kRdqakxGAyQUFNM1tK6vb7O9/nVHLeuEHYLKph6s8UqImIiIiIiIhIv9bqcrOxqBaA+lYXn+0oM56ZTTApOZqvdpfj6oOloPWtLnaW1TNuUPQBjyVHLsWlIiIiIiIiItKv7aloMPZNi7BZODMziTlD4wmxmEmKCMHp9nDy8AROG5lEXJjtgL+3o6xBBxT0c6pQExEREREREZF+bWdZg9F+Z3MRLU43IxIimJIaQ0l9C7FhNj7aVkKE3cKswfF8uqMUgDMyk0iKCMHtF46tya9hR1l9t9+ra3FSVNdCSnToQfxVcjj1mwq1hx9+GJPJxD333HO4pyIiIiIiIiIiR4hmh4uqJodx3eJ0A5Bd1Uh8uI0Wp5vS+hacbg81zU7sFlPA+2vyq3ltXYHxT09hWrtiHU7Qr/WLCrVVq1bx1FNPMXHixMM9FRERERERERE5grQfQABgNZtwuT14gEGRIdS2OClvaGFichQAoVYzwR4CajWbmJYWQ1pMGBazicKaZlbkVRmniFY0OnocQ45eR32FWn19PVdeeSXPPPMMcXFxh3s6IiIiIiIiInIEqfQLtqJDrZw9diBnZCYxdmAU6wpqaHV52FXeyJmZAzh1RCKr86qDGveEIfHYLWbe31rMO5uKMJtgZoYvl6j0C/Kk/znqK9TuuOMOzj77bObPn8/vf//7bvu2tLTQ0tJiXNfW1h6CGYqIiIiIiIjI4dLqchvtykYHH24t6dBnV0UDuyoaOtwHmJoWw+SUGOP6rY2FWMwmMuLCeHN9gVGRtq6wlvPHDWJpdiUeoMXvu9L/HNWB2htvvMHatWtZtWpVUP0feughfvvb3x70eYmIiIiIiIjIkcF9gIdtrs2vYVtp4L5pMaE2zCYTF09I6dA/zGah0eHC4wGPx4PJZOrQR45+R22glpeXx913380XX3xBaGhwp2bcf//93HvvvcZ1bW0t6enpB3GWIiIiIiIiInI42cx9H2g1tDpxezz8Z2Mhri4SO6vZpDCtHztqA7U1a9ZQWlrK1KlTjXsul4vFixfzr3/9i5aWFiwWS8A7ISEhhISEHIbZioiIiIiIiMjhEB3a99FHs9NNXnUTMzNiWZNfQ4vTTajVzIDIEHKrmwCIOQjflSPHUftfd968eWzatCng3vXXX8/o0aO57777OoRpIiIiIiIiInLsSYiwH5Rxl2RXMjklhrPHDCTEaqbZ4SKnstEI1A7Wd+XIcNQGalFRUYwfPz7gXkREBAkJCR3ui4iIiIiIiMixKTrESojFvF+HBHy2o6zLZ063h9X51azO7/xU0EQFav2a+XBPQERERERERETkYDGZTAxLCD+k37SaTQyOO7TflEPrqK1Q68w333xzuKcgIiIiIiIiIkeYzAGRHU7qPJiGJYRjt6iGqT/Tf10RERERERER6ddiQm2kx4Ydkm+ZTTB2QNQh+ZYcPgrURERERERERKTfOz4jDrvFdNC/Myk5hpgw20H/jhxeCtREREREREREpN8Lt1s4Lj3uoH4jIdzG+EGqTjsWKFATERERERERkWPC8MSIgxZ4RdotnDIiEbP54FfByeGnQE1EREREREREjhlTU2OY0MehWlSIFffSTSx9/Ts8Hk+fji1HJpPnGP4vXVtbS0xMDDU1NURHRx/u6YiIiIiIiIjIIZJT2cjy3CpanO4DGmdYQjh7Xv2aV371JgADMhK5+leXcuqVc7CHaC+1/kqBmgI1ERERERERkWNSk8PF6rxqdpfVY7L0bhFfdIiVhhXbePm2p7CF2GhpbAl4Hj8olvPuOJNzbz2d6ATtq9bfaMmniIiIiIiIiByTwmwWJseF8N6FD1K6bhXNldXd9reaTYS21hGVm82pqZG8esfTuF3uDmEaQGVxNS/88g2uHHwbnzy36CD+CjkcVKGmCjURERERERGRY9bnL37Dn65/jLAEOydfdCKL3lxOfGYqiaNSiUyMoqqoGndzC394/W5CTW4e/sPDYIY9HxVTua2OlsbWHr8xaEgSL+95/JD8Hjk0rId7AiIiIiIiIiIih8t3C5eTMDqaqPRwUocn01rbSPGqLKiowTpkADu+2gyArdVBQXkxJosJj8fDsLMGUba1JqhvnHvbGQf5V8ihpiWfIiIiIiIiInJMaqhtZM3nG0g+Lp6Y1AgczQ7jWcKgOBJT443rsvxKLBYLzmYXJpMJgPjMSMIS7N1+46aHr+Syn51/EH+FHA4K1ERERERERETkmLTiwzU4Wp00lbeQGpdOwa5i49mgoQNITE0wrssLKgk1h+Fxe3fOMplNjDw3lWl3jiIyJazLb3z/3ipcTtdB/iVyqClQExEREREREZFj0uKFy8EEBcsqmHf+KRRnlxrPUkelkJTmC9RKckp56523sIV7d8/yeDw0lDTjaHQSNyIycGATRMV5721dtpM3//jeofpJcogoUBMRERERERGRY05TfROrPlnHoGnxTLpxOONOyKSiqMp4PmziYNJGJRvXudvzqaqppLGsGbfLQ1NFKzvfzWfFn7aTt7gsYOyk9AR+/+HPMZu9S0Nf+s1/yFq75xD+OjnYFKiJiIiIiIiIyDFn5cfraG12EJUaRpgtDIvFQm1lnfF81LRhZIxJNa7ztheSYB7Exuez+f73WyjbWE1rndN4bg+1Ge2y3Ar2bivgBz+/EACX08XDVz9KS1PLIft9cnApUBMRERERERGRY87ihcsBKPi+nBOPnwtAc31b4GWCpLQEElLiCY/y7o+Wu62ABFsSziYXJouJ9JMGkDguGoCfvnA7HzW+xtxLZxnjP3HP81zxi4sZOXWo8f5z9792qH+mHCQK1ERERERERETkmNLc2MLKj9ZisZvJmD2QWafPwOl0GocH2EO81WYmk8moUivZW8bp153M5f9zPlf/4lLCCMca5t1PrTy3EoD7XrwTW4j3XlN9M8/8zyvc99JdRvXau49+zNpFmw7Lb5a+pUBNRERERERERI4pmxZvpbmxhbiRkSROjsbhdJCzOc94Hh4dbrTT/ZZ9VhZVc9PDV3H1ry/l2huuIX+Jd++0xQuXAWAPtXPlLy8x+n/45OckDxvITQ9fZdz78/WP0VjXdNB/oxxcCtRERERERERE5Jiy9ktvlZjZYiY6LJaIiAh2rcs2nsckRhntjNFpRjt3W77RNoeZmPU/47CEmtmzYS8Fu4oAuPKBi4mK957w6XK6eOzu5zn/zjOZOn8CAGX5Fbz24MJD8CvlYFKgJiIiIiIiIiLHlHVfeQO1ss013HDD9d52fqXxPDrBP1DzVajlbi8w2jabDUuYieg0bzXb0ndXGs+u+93lRvvzF77G6XRxz5M/wta2lHTh3z4kP6voIP06ORQUqImIiIiIiIjIMaO6rIbd63MwmeH4n42hvMa7bLOuotboExkbYbT9T/r0D9Ti4uKYOHYSjeXegwz890Y77/YziYj1Bm1Oh4unfvISycMGctlPzzPuPXnvCwf1d8rBpUBNRERERERERI4ZG77eAkBIrB1LqBmz2RuN1FbUG30i43yBWvKwgdjs3oMG8rb5AjWTycSpp59CYkY8AJu/24aj1WE8v+oXvr3UPnn2S5xOJ5f//AKS0hIAWPHRWlZ8tOYg/lI5mBSoiYiIiIiIiMgxY+2XGwFoqXEwPGUk6enpANRV+QK1aL891CxWC6kjkwHI31mI0+H0jbV2LcPOGegdr6mVbcuzjGcX3XM24VFhADhanPz7/tcIiwjllj9dbfR54t4XaW3xhXBy9FCgJiIiIiIiIiLHjPalmeFxIcw6+XisVm/1WUN1o9EnNjE64J2hEzOgbanm7g17ff1iYzHbTcb1+q82G22z2cxl951vXL/32Ke43W5Oumw2E+aOAaAgq4h3//HxQfiVcrApUBMRERERERGRY0LRnhKKs0sBGH/RcL797hvjWWNdk9GOGRAT8N642aON9pal2432xIkTueg839LO9V9vDnjvhz+/kNCIEABamx288Ks3MJlM3PGPGzCbvUHcq79/m/LCSuTookBNRERERERERI4J6/wODohJiSYhIcG4bmpoNtrxg2ID3ht3QqbR3uwXqJnNZrL27mDwFO/BBduW7wwYx2w2c8m95xrX7/z9I9xuN8MnDeHsH53u/W59M8/d/2of/ko5FBSoiYiIiIiIiMgxYe2ijUZ73knzOP30043r1sZWo52QEhfw3tAJGcZ+aFuW7sDj8RjPNm/ezMiTBkPbktDNS7YHvHv1ry8lJMwOQEtjK68++A4A1/3ucqLiIwH48uXFZK3d06e/VQ4uBWoiIiIiIiIi0u+53W5jj7OI+HCyirbjdPoOGGhp9gVqiWkJAe9aLBbGzBoFQGVRFcU53mWjJpOJzMxMhozJMPr676NGW5Xa+XctMK7f+tN7uN1uohOiuOY3lxn3X31wYR/+WjnYFKiJiIiIiIiISL+3Z+NeasrrAJh0xmi279hOQ0OD8dzZ4gvXotsqx/yNm+237NOvCu3iiy9m3jknG9frvtrU4d3rf/8DbCE2aFvi+daf3wfgrJvmGdVwS99dSfbm3AP+nXJoKFATERERERERkX5v3Ze+oGvMjFGkpaWRmJho3HM6XN6GyVtVtq/xJ/ofTLDDaK9cuZJ3PljIsIneZZ+71mZTV1Uf8K7VauWcH803rl9/6F0A7KF2Lvup7yTQ1/7wzoH+TDlEFKiJiIiIiIiISL/nXzk287QZXHPNNVitVuOe2+UGwGLpPCoZPXMk5rZn/id9Wq1WiouLmXTKOAA8Hg8bv93a4f2b/ng1Vrv3ew01jbzzj48AOOuW+cQmRQPw7Zvfk7ejoE9+rxxcCtREREREREREpF9ztDrYtHgbtB04kFeRw6uv+k7WdLvdxkEDFpu10zHCIkIZPnkIADlb8owqtNGjRzN//nymzpto9PU/TbSd3W7jzOtPMa5f/t1bAISGh3Bx20mgHo+H1x9+t09+sxxcCtREREREREREpF/btjyL5sYWAKbOn0hlZSVut9t4Xl/t20vNZu88UAMYf4Jv2efW773LPsPDw4mKimL8nNFGBdv6rzd3+v5tf7sOi9Xi/WZVAx8+9QUA591+BlFxEQAseuU7ivaUHNDvlYNPgZqIiIiIiIiI9Gtrv9xotKecOoGpU6cyd+5c4155foXRtofZuxxnwtyxRnvFx+sAqKio4J133qGmvppR04cDsHdrPpXFVR3et4famX+177sv/PJ1AMKjwrjw7rOhbenpm4/8d79/qxwaCtREREREREREpF/zX4I5Zd543G43CQkJxr3ywkqjHRLedaA27bSJRgXbsvdX4fF4CAsLw2Qy4XK5mHLqeKPv+q86r1K78583YLF645ia8jo+f/FrAC788VmER4cB8NkLX1OaV34Av1gONgVqIiIiIiIiItJvNdQ2sn3lLgDSR6eSmJrA+++/z7p164w+lUXVRjs0PKTLscKjwpg8bwIA5QWV7Fyzh4iICG677TbS09OZfOoEo++6LgK10PBQTrpstnH97P2vARAZG8EFdy6AthNH3/n7Rwfwq+VgU6AmIiIiIiIiIv3Wxm+3Gid4Tm0Lw1wuF9HR0Uaf6pIao91eJdaVE86fYbSXvbcKgNWrV5Ofn8+42aOwhdigm33UAH78+M3GfmtVxdV8/eZSAC6652zj/S9e+pbWFsd+/GI5FBSoiYiIiIiIiEi/5b9/2tT53pM4r7/+eqZMmWLcr62oM9oRMRHdjnf8udON9vfvewO1rVu3smfPHkLCQhg3exQAxdmlFGV3frhARHQ4J1x4nHH99E9fAiAmMZq5lxxvzGnpuyt7+WvlUFGgJiIiIiIiIiL9VvteZmaziYknjcXhcPDpp5/S1NRk9KnxC9TaT9vsSkJyHGOOHwlA9qZcivaUMGzYMGJjYwGYfIpv2WdX+6gB3Pv0jzCZTdC2fHTPxhwAFtw0z+jz8bNf9vr3yqGhQE1ERERERERE+qX66gZytuQBMHLaMCJjI6ipqWHHjh1UVPhO9qyrrDfaUfFRPY47+zzfss/v31vFeeedx4QJ3iBtsv/BBN0s+4yMjTSCOfz2Ups4dyxpo5K973+1mYJdRUH/Xjl0FKiJiIiIiIiISL+UvSnXaI+aNhyAyMhIBg4cSFxcnPGsobrRaEcnRPY47uwLfMs1l763knfffZfPP/8cgMwZwwmLDIW2QMzj8XQ5znW/+4HRXvflRtxuNyaTiQU3+qrUPnl2UVC/VQ4tBWoiIiIiIiIi0i/5B2pDJw4GIDQ0lBtuuCHgUILGWt/yz9gBMT2OmzE61agi27JkO9VVNTQ2ekM5q83K+DljAKgsrqY4u7TLcaacOoGI2HBoO9nzg8c/A+C0a0/GarMA8PmL3+B0OHv5y+VgU6AmIiIiIiIiIv3Sno17jfbQCRkA1NbW8sgjj1BZWWk88w+sQiNCgxp79vneKjW320N4SxRTp041no2YPMRoty857cqpPzjRaC/8x0cAxA2IYVbbaaJVJTUs+2BNUHOSQ0eBmoiIiIiIiIj0S9mb/AK18ekANDU14Xa7jYoy2qrK2jlaWoMau/00ToDVH24MqHgbMj7DaOds7j5Qu+73vmWfRbtLKM0tA+Csm+Yb9z/R4QRHHAVqIiIiIiIiItLvuN1uY8nnoCFJRMR4T+9MTEzkpJNOYtCgQUZfi91itFsagwvURk0fblS9kdzKpx9+ZjwbMi7daO/d2n2gFh0fFdD/uQe8hxNMnT+BQUOSAFj92QYjaJMjgwI1EREREREREel3SvaW0VTfDH77pwGYzWYSExOxWHwhms2vQq21KbhAzWQyGVVkbpeHvG2FxrO0zBTMFm/kkr05t8sx2l3xwEVG+/v3VhnzPOP6UwHweDwsfnt5UPOSQ0OBmoiIiIiIiIj0O9kb/Q4k8FuCWVJSwsKFCykt9R0WYLX7BWrNwQVqAPOumoM91EbW+wWsfmmL8a49xEbqSO+hBXnbC3E5Xd2Oc8oPTyQkzA5Ac0MLi99eBsDcS2cZfb5/f1XQ85KDT4GaiIiIiIiIiPQ7/gcSDPOrULNarQH/BrCG+NotzY6gvxEVF8mcS44ncUw05mj4buEK49mQtj3bHC0OCncX9zjW8edON9qvPrgQ2k4TTc9MgbbTRGvKa4OemxxcCtREREREREREpN/Z438ggV+glpiYyK233kpCQoJxz+ZXoeboRYUabYcHJE2IIX5kFB/7HR4wZKxvX7SeDiYAuPmRK31z37iXhlrvoQmzzvOe9ul2e1j+oU77PFIoUBMRERERERGRfien7UACe6iN1BG+AwjcbjdLly6lttZX7WULsRnt1l5UqAFMmDMGU6uFxrIWNn67lfyd3r3U2ivUAHK29ByoDRw8wDiEAA+8+Ks3ADjhghlGn/b91eTwU6AmIiIiIiIiIv1Kc2MLBVlFAAwel47F6juAoLW1lU2bNpGX5wu57AcQqJlMJmaMm0nhigoAPnl2kfHddsEEagAX/Pgso/3lK98BMHrmSOIGxgCw5vMNNDe29Gp+cnAoUBMRERERERGRfmXv1nzcbg8AQydkBDwLCQkhJSWFyMhI45697UAA9iNQ83g85JqySBwdDcDnL35Da4uD1BGDjKWke4MM1C788VlG+FdXWc/GxVswm80cf453f7WWplbWfrGxV/OTg0OBmoiIiIiIiIj0K9n+BxJMGBzwzGQyceONN5Ke7qsg81/y6WjpXaDW3NxMQ0MDY08YBUB1WS1fvPgNVpuV9NGpAOTvLMLR2vO4ZrOZSSePM66f/4WWfR6pFKiJiIiIiIiISL/if8Kn/4EE7V5++WWWLVtmXNtD/QK1VmevvhUaGsqJJ57I+dedY9x74+F3cTqcDB6XBoDL6SJ/Z1FQ4934sO9wgq3LdtLa6mDKvAmERoQAsPzD1bhcrl7NUfqeAjURERERERER6VeyN+ca7WETMzo8b21tpaKiwrgO8Vvy6WzpXaDm8XhIT09n4gnjmH7GJACKc8r46rUlDBnn+3YwJ30CjJo6jNgB3j3T3C43b/3xPeyhdmacORmAmvI6ti3b2as5St9ToCYiIiIiIiIi/YbH42HPBm+FWvygWGKTYjr0OfHEE5k4caJxbQuoUOvdks9du3bx+uuv09zczJX/e7Fx//WH3iGjbcknvdhHDeCM608x2h889TkAM8+eZtzb8M3WXs1R+p4CNRERERERERHpNyqLq6mtqANgyISO1WkAycnJ2O2+qrSACjVH7yrUWltbsVgs2O12xp84xtgDLX9nEaV55Ua/nC253YwS6KpfXozJbAKgoqCKvdvymTBnjPF8y/fbezVH6XsK1ERERERERESk39jTzYEE7VasWMH7779vXIeEhRhtZ2vv9ifLzMzk5ptvxmz2RixX+FWpffLcImN/tpwt+UGPGRoeyqjpw43r537+KsnDBhI30Fttt+X7HdpH7TBToCYiIiIiIiIi/UbOJv/90zoP1OLi4mhoaDCu7QdQoZaVlUVuru+bU04dz9hZ3hM/czbnkZAaD0DhrmJamlqCHve6315utFd/vh6TycS4E0YD0FjbxN5eBHTS9xSoiYiIiIiIiEi/sWeT/wmfnS/5nDZtGtdcc41xHRruC9Rcjt5Vfq1bt45du3YZ1yaTKaBKrb7KG9x5PB5ytxUEPe70MyYTHhUGgKPFyeovNjC+LVAD2LJUyz4PJwVqIiIiIiIiItJvtC/5NFvMZIxJ67SPyWTi22+/paamBoCQcL8ln87eBWoREREMHz484N5xC6YwcupQAOoq6437Ob04mABg/BxfgPbB458x7oRM43qzArXDSoGaiIiIiIiIiPQLHo+H/B2FAKSOTMYeYuu0n9vtZuvWrezevRuAUL9ArbcVaueccw7HHXdcwL19q9Ta5WzuXaB21s2nGe1N321jxJShxgEKW5bu6NVY0rcUqImIiIiIiIhIv9BY20hrswOApLT4LvtZrVZGjRpFWJh3SWVIhF+g1osKtaqqKh5++GGqq6s7PDvhguOMvdTa9eakT4BZ507DbPFGN3WV9dRW1DF65kgASvaWUZZf0avxpO8oUBMRERERERGRfqGy2BdsxQ2K7bbvZZddxogRIwAIiww17ruc7qC/V1xcjMvlwmbrWAlnMpm449EbMJlMxr2iPaVBjw1gNptJz0wxrv/76CeMm+1b9ql91A4fBWoiIiIiIiIi0i8EBGoDug/Uli5dyssvvwxA2H5WqKWmpnL66acTHh7e6fNR04az4MZTjeuSvWVBj91uzsXH++b835WMP9H/YAIt+zxcFKiJiIiIiIiISL9QXVJjtON7qFCz2WwUFxfj8XiIHRBj3G9fMhqM+vp6hg8fHlCFtq/rH/whZrP3eWtTK9tWZAU9PsD5dy0w2vlZRWQeN8K43rU+u1djSd9RoCYiIiIiIiIi/UJvlnyOHz+e+fPnYzKZsIfaMbWHXs2tQX/v448/ZsWKFd32iU2KIWVksnH9zzuexe0OfllpbGI0MYlRALhdbtZ/tZmElDgAcrcVBD2O9C0FaiIiIiIiIiLSLwQEagNjuu0bGRlJREQEdXV1AMbpmR63h8b6pqC+19jYSGJiYo/9RkwZYrSz1u7hi5e+DWr8dhNPHme0P352ERlj0gCoraijuqymmzflYFGgJiIiIiIiIiL9QnWJL1DracknwFdffcWyZcsAiIjx7YOWvWFvUN+79tprOe6443rst+9+bs/d/yoNNQ1BfQPg/NvPNNrblu8kY3Sqca0qtcNDgZqIiIiIiIiI9AuVJcEv+QTIyMigtrYWgJjEaOP+7o09B2o5OTl8+eWXWCyWHvvGJEUHXFeV1PDc/a/1+F67SSePw2q3AtBY20R0UpTxLG+7ArXDQYGaiIiIiIiIiPQLVW1LPs0WM9EJUT32P+usszjvvPMASEiNN+7n7+g5pNq0aROlpaVBzSvWL1Cz2rzB2AdPfs6qT9cF9T7A0PEZRnv3el/gpwq1w0OBmoiIiIiIiIj0C+17qMUOiMFsDi7yeP7556msrCR56ADjXnF2WY/vJSQkMG3atKC+4V+hNv3MyUb7zzc+QW1FXVBjnHz5bKOdtWa30c7dnh/U+9K3FKiJiIiIiIiIyFHP7XZTXepdvhnM/mkAJpOJsrIysrKySMtMMe6X5Vf0+O6oUaOC2j+NfSrUkocOYPoZkwCoLKri77c9jcfj6XGMc2473Te/vApjzzdVqB0eCtRERERERERE5KhXV1mPy+mCIPdPA7BarcyePZvExESGTRhMZGoY1nAL1WW13b6XnZ3NY489RlNTcKeB+leo1VbW8ZPnbicqPhKA795ezqJXv+txjPDIMOKT44zr9iWtpbnlNAV5Kqn0HQVqIiIiIiIiInLUa1/uCRA3MCbo96Kiovj888/ZUbyFidcOJWlcDA3V3Z/AWVhYSHh4OKGhoUF9wz9QqymrJTElnrufuMW49887n6U017vMNH9nIS1NLZ2OM+20iUa7qb7ZaOfvLApqHtJ3rId7AiIiIiIiIiIiB6rKL1CLH9h9hVpjYyMvv/wygwcPZt26dbS2tlJaWorZZqaxvIWWptZu358wYQKDBw/GZDIFNbfI2AjMFjNul5uatuq3ky6dxbIP5rDole9orG3ioaseJW5QLN+9vZyMMak8tf7PxgEG7S748Vl88dK3ANRV1Rv387YXMHLqsKDmIn1DFWoiIiIiIiIictSrKqkx2j0t+bTb7dTV1bFy5UpaW33hWeGyCmqyG3C73LS2Ojp91+PxsHLlSqKjozt93hmz2UxMoneJpv9y0jsfvZGk9AQANi/ZzndvL4e2fdGy1mZ3GGfU1GHYw+wAuBwu435pXs97vknfUqAmIiIiIiIiIkc9/yWfPR1KYLVaufXWWznllFOIiooy7ofGhBjtnM15nb5bWFjI0qVLqa6u7vR5V9qXfdaU1RqHEETGRnDxPed02n/bsp2d3h85ZWiHe+VBHKIgfUuBmoiIiIiIiIgc9aqKq4x2XA9LPgEiIyOZM2cOQ4YMMZZuRiT59kTbsyGn0/daWlpISkoiNTW1V/OLSfQGaq3NDpobvPufLXr1O56575VO+29dvqPT+/OvPqnDvfLCyl7NRQ6cAjUREREREREROepVlQa/5NPfnDlzsNlsAJhavHuWmUJhw7qNrF+/nk2bNrF3716cTicAaWlp3HbbbVgsll7Nz/9ggvZln8/c97JxMum+tnZRoXb69SeDCcxWC3EjUxg0YyStUeEU1zXT5Oh8LOl7OpRARERERERERI56vVny6S8pKYlbb72Vxx57jLKmAmLOBnOYiTXF37PmD98b/Ww2G+np6TQ2NnLdddcxderUXs2vvUKNtmWfyUMHctKls3nnHx912r8sr4LyggoSUxOMe3UtTnaWNXDeaz8jIj0Ji90X63y2w3tKaLjNQmKEnWEJ4aTHhmEO8uAE6R0FaiIiIiIiIiJy1Gs/5dNmtxIREx7UO06nkw8//JCPP/7Y2BPNHNZ5AOVwONizZw8AjzzyCNOmTeOKK64gLS0tqG/FJgUGagC3/e06Tv7BCbz91w9YsnA5brcn4J2v31jKpT85j8rGVtYW1FBQ410qGj08ucvvNDpc5FY3kVvdRLjNwpiBkYwdGKVgrY8pUBMRERERERGRo157oBY3KNbYE607OTk5PPbYY+zdu7fX3/J4PKxevZoNGzZw6aWXcu655/a4BLSzJZ8AY2aO5Jdv3ktRdgnv/P0jPnzqC5yt3uWlNeV1bCisYWNRLftkbUFpdLhYk19DTmUjJwyNJ67thFA5cNpDTURERERERESOenVVDQBEJ0T12Hfx4sXcf//9+xWm+XM4HLz22mv84Q9/oKmpqdu+/hVqteV1HZ4nDx3IHf+4gTcLn+b0a0/ilGtPJuWaeawv3L8wzV9Fo4MPt5aQU9l4YAOJQYGaiIiIiIiIiBz13C43ABZr91HHN998w7/+9S9crr7bwH/Tpk08+OCDNDc3d9mnqwq1fUXHR3H3M7cz8WcXU9bg6LM5uj3w7Z4K9lQ09NmYxzIFaiIiIiIiIiJy1PN4vGVc3S333Lx5M0888cRB+f7OnTt59NFHjXnsyxZiM9ouh7PLcTweD9/uqaCise/CNH9LcioprW85KGMfSxSoiYiIiIiIiMhRzT/EMpk7D9Sampp44oknugy8+sLq1atZvHhxEHPsOo7ZWdZAYW3XlW4HyuOBpdmVONsq+mT/6FACERERERERETmqBYRVXVSovfrqq5SVlfHSSy+xe/duAP773/+yYcOGTu/trxdeeIGJEycSFxcXOEe3/xw7f7e+xcnq/GqumJJKRWMrAJuK6mhodXL8YO94VrMZE/DhtpL9nmNti5N1hbXMSI/d7zGOdQrUREREREREROSoFhBWdVKhVlVVxaJFiwAoLS3lt7/9bcDzzu7tr4aGBj755BOuuOKKwDkGUaG2taQOp9tDfauLz3aUBTxrv85MisRu7fkU055sL61jQnIUodbuTyeVzmnJp4iIiIiIiIgc1fzDKnMnYdWiRYuMQwgSExP5zW9+w1133UVkZGSX9w7E119/jcMRuAdaTxVqDpebXW0HBkTYLJyZmcScofGEWAJ/z9D4cLIrDvy0TrcHdpXrgIL9pQo1ERERERERETmquf3CKvYJqzweD1999ZVxfdddd1FXV8cpp5zCD3/4Q5555plO7wH8+te/ZtSoUQEngr7yyit8/vnn3c6npqaGNWvWcPzxxwfMw5hiJ6FfbnUTDpe3zzubi2hxuhmREMGU1BiW51YBEGG3YDJBfatvPgMi7UxIjiYpIgQTUN/qZE9lI9tK6nD3sF1cVlkD4wdFd99JOnXUBmpPPPEETzzxBDk5OQCMGzeOX/3qVyxYsOBwT01EREREREREDqVuKtQqKiooLy83ruvq6gBYunQp8+fP7/Jeu1dffZWPP/6411Pavn17QKDm7qFCrbTOd/Jmi9N7YEB2VSOjkiKM+0Pjw8mp9FWnpcWEMndYAusKaliSXUmL0010qJUJg6IJs1lo8AveOlPb4qTZ4SLUpmWfvXXUBmppaWk8/PDDjBw5Eo/Hw4svvsj555/PunXrGDdu3OGenoiIiIiIiIgcIt2FVXv27DHaISEhtLa24vF4GDt2LMXFxZ3eC0ZISAhXXnkl06dPx2azsX79ev7973/T1NQEQHZ2duALPSxLbT+EwGo24XJ78ACDIkOobXEafYbEh/PlTt/easdlxLG5uI5tpfXGvdpmJ0tzKo3rUKuZmRlxDIoKwen2sKeykfUFNXj8vpsaExbUbxafozZQO/fccwOuH3zwQZ544gmWL1+uQE1ERERERETkGNLdcsrc3FyjnZKSwq233kpTUxMOh4Mnn3yy03vBuP3223G5XPz0pz/F5XJx6623cuONN/Kvf/0LgL179wb072lZalWTd8+16FArs4fE43C5cbvh+73ecCw21EqL001zW/VadIiVqBAr2ZXd74M2d1gCTQ4XCzcVEWI1M39kEk6Xm03F3qq8qiaHArX9cNQGav5cLhdvvfUWDQ0NzJo1q8t+LS0ttLT4Sihra2sP0QxFRERERERE5GDpbsP/9oox2qrG7rvvvoDnFRUVHe75u+KKK7j00kuN61tvvRW73c7MmTO58cYbaWz0LsF88803+etf/8pjjz2Gx+OhqakJj8eDqW1C3R2c4PZg7HdW2ejgw60lHeZR3ezkC7/qtBCbd4zulnWG2ywkR4fy5voCnG4PzlYXG4tqmZQSbQRqTlcPG61Jp47qQG3Tpk3MmjWL5uZmIiMjeffddxk7dmyX/R966KE+OwZXRERERERERI4M3VWomTrbsKwXXnvttQ57qKWlpWE2m41qtHZut5vY2FiqqqowmUwB3w4M/QLntD8zbHF4K9Ui7BbqWjoP1cLtFpxuX1UbQF2LkwjtmXbAjupALTMzk/Xr11NTU8Pbb7/Ntddey7fffttlqHb//fdz7733Gte1tbWkp6cfwhmLiIiIiIiISF/rrkItNDS0z79XXl6O2+3mRz/6Ea2trZ32CQsLXEYZGPrtE6iZwGyix1M5/dW2OKlrcTIkPpxNRXWd9mlsdWE1mwm1mo1QLdJuocHhC+BslgMLHI9VHXfBO4rY7XZGjBjBtGnTeOihh5g0aRL/+Mc/uuwfEhJCdHR0wD8iIiIiIiIicnTrrkItIyOjz79XU1PDqlWruPHGG4mKigIgJiaGGTNmdPndbivUTCbiwmy9nsfK3ComDIpm9IBIQize3x0dYmX24Dgi7BYaHS6KapuZnh6L1Wwiwm5hYnI0uyt8+67Fhtl7/V05yivU9uV2uwP2SBMRERERERGR/q+7CrVhw4YdlG8+9thjXHbZZTz00ENERkZSU1PD999/z6pVqwAYOnRo4By7qVADSAi3U9Ho6NUc8mua+TKrjInJ0UxJiQGgvtXJnopGmtqq0BbvqWBmRhwXT0jG5fGwp6KRzcW+iraEiN4HeXIUB2r3338/CxYsICMjg7q6Ol577TW++eYbPvvss8M9NRERERERERE5hLrb8D8hIYGkpCTKyso6ebN73e3D3tzczEsvvcRLL73U6fPRo0cHzrGbCjWAAVEh7Czv/sTOzpTWt/JlVnnX83S6+XZPRafPokOthFq1n9r+OGqXfJaWlnLNNdeQmZnJvHnzWLVqFZ999hmnnXba4Z6aiIiIiIiIiBxCbv/Nx/bJqkwmE6eccsohnU9MTAzTp08PuNdThdrg2DDsh3g/s1GJEYf0e/3JUVuh9txzzx3uKYiIiIiIiIjIkaCbCjWAefPmsXDhQlyuzk/D7GunnnoqVmtg5OLuoULNajEzIjGCrSX1h2SOFpOJ4QrU9ttRW6EmIiIiIiIiIkKHsKrj87i4OObPn39I5hIREcGCBQs63Pe43Ubb3EmFGsDYgVFYu3jW10YPiNRyzwOgQE1EREREREREjmrdnfLZ7sorryQpKemgz+X6668nNja2w32/KXae+gERdivT0zu+29eiQ6xMTo0+6N/pzxSoiYiIiIiIiMhRrbtTPtuFhoZy++23d7oktK8cd9xxzJkzp9NnwVSo0bavWWp06EGZH4DZBCcMjcd6EP8OxwL99URERERERETkqGa1+/Yrc7Q4u+w3btw4br/99k73MDtQmZmZ3HXXXV2O7V+h1t33TSYTM5Mjqc8u7vM5moA5QxMYEBnS52MfaxSoiYiIiIiIiMhRLTo+0mhXl9V223fu3LncddddWCx9t3/YxIkT+d///V9CQroOqlxO34EInZ3y2c7j8fDEXc/x0Q2PUrJ2d5/N0WyChJJy/nnRI3zzn+8DlslK7ylQExEREREREZGjmsVqIaotVKvpIVADOPHEE3n44YcZOnToAX3XZrNx9dVX88ADDxAa2v0yzdqKOqMdnRDVZb8PnvicL176FkdDM0t+9m+GWL1h2IFIjLBz7thB/OviP7Jx8VYe/MHfuHXqz/j6jaUBQZ8ET4GaiIiIiIiIiBz1YpO8m+wHE6gBDB48mAcffJCrrrqK+Pj4Xn3LbDZz3HHH8ac//Ylzzz03qH3ZqoqrjXbcwJhO+2xdtoMn/t/zxvVPnrmVkyanc87YgaTFhOJxuTt9rysRdgsz0mNZMHoAsWE2bH5LY/ds2Msfrvg714y4k4V/+5DGuqZejX2sU6AmIiIiIiIiIke9mLZArbGuidYWR1DvWK1WzjvvPB577DEmTpzIiBEjSEhI6LSvx+nB3GBj9OjR3HLLLfzkJz8hJSUl6PlVlvgFaoM6nuRZX93Agz/8O06Ht2LsknvP5aTLZnv7h9kZ4Wzh3Qt+z6bnPqcprwxLF/uw1RdV4swtIbGwlLlxdsYOjMLc1nfGgikd+pfmlvPkT17k2pF3kZ9VFPTvOdZZg+gjIiIiIiIiInJEi0n0LaOsLa8lMbXzYKwzZrOZn//851gsFkwmEzU1NRQVFdHa2kpLYyu/OPMR3HVgj3BjO97Gd999h8vl4rTTTgv6G1UlNUY7vpNA7Z93PktpbjkAE+aM4aaHrwx4vvrT9TSWVLPhqU+ZNWogF54/hZVLtvPNOyvYsmwnzmYHdXlltFQ3EDcwhqqSGixWM0+u/xNDxmYAMOXUCSx+a1mn86surWHL0u2kjUwO+jcdyxSoiYiIiIiIiMhRLyYx2mhXl/UuUFuxYgU5OTn84Ac/8I4VE0NMjG9ZZlRINDW1tUSmhuF2e5ddLlu2jLlz53Z7EIG/9iWf/vu9tVv06nd89doSACJiwvn5y3dhsQYemrD68/VGe/oZkyjcXcSvTvl1p4cL1LTt1+ZyuvnZqb/jsVUPMyA9kbGzRnU5v7GzM42KOOmZlnyKiIiIiIiIyFGvfcknvdhHrd3mzZux2WxdPp98yngAmitbcbd673k8HhYtWsTOnTuD+kZlW6AWOyA6YM+14pxSHr3jGeP6x4/fzICMpIB3W5tb2fjtVgCS0hPIGJPG3299usuTOt1O315r1aU1/Pz0/6O6rIbB49IIjwrr0D8hJY5HvvgloeHBhYOiQE1ERERERERE+oHYJF9FWW8DtfHjxzNr1qwun59/55kAuJ0ePPjCqlWrVvH666+zffv2bsd3u91Ul3qXfPov93S5XPzx2n/RWOs9EGDeVXM49Ycndng/a202rc3efeEmnzqeZe+vZsPXW4L+fXk7CnlgwYM01zczeuaIDs8rCqv45JlFQY8nCtREREREREREpB/wr1Cr7kWg1tLSQkJCQrcHDEw4cQy2ECtjrxiMxe6LUjIzMxk2bBgNDQ3dfqO2og532wmd/gcSvPnIe2z6bhsAAwcncdc/b+z0/S1LfYHdqGnD+NePnwv697XLWpvNL897hHlXzYW2PedufuQq4/mzP3+Fvdvyez3usUqBmoiIiIiIiIgc9fZ3yeeKFSt47733euw3dMJgQmNtVO2qw+y0Mn78eM4991yuvvpqpk2b1u277funAcQN8AZqO1bt4qXf/AcAs9nEz1++i4iYiE7f37psh9HOWpNNWV5F0L/P36bvtpEybCAv7foXr+Q8wWU/O58L7loAQGuzg0eufhRHa3AnpB7rFKiJiIiIiIiIyFEvdj8DtaqqKlJTU3vsd+oVJ7Ll1b1sfT2XHa8U4Ha7cTiCC58q/QO1QbE01Tfx0FWP4nK6APjh/Rcx/sQxnb7r8XjY8r13n7bw6DC+ePnbIH9ZRyOmDGXI+AyShw009ku76eErSR/t/f1Za7N59f8W7vf4xxIFaiIiIiIiIiJy1AtY8lkefKB22mmncf755/fY7+xb5lOT04DH7aE0v4ydO3eybdu2oL5RVVJjtOMHxfLUT16iIKsIgNHHjeCqX13S5buFu4uN/dfSM1PxuDs/iKA7SekJPLbqYR5b9TCRsYFVcCFhIQGnir7+0DsBFXHSOQVqIiIiIiIiInLU258ln3V1dbz99ttYLJYe+4aGh5KYGg+AxwVxtgRCQ0OD+o7/ks+GmgY+euZL75gRIdz38o+x2qxdvrv1e98posefO41b/3ItJ154HGZLW6Rj6vy96WdOZuDgRACqS2sZOiEj4HRRf6OmDefqX18KgNvt4ZFr/klTfVNQv+1YpUBNRERERERERI569hAb4VFh0ItAbdeuXWRnZwf9jWmnTzLaO9/PZ+TIkUG957/k8/MXfUs2b3jwCtJGJnf7rv+BBONPGM3F/+8c7nj0BuOQgxlnTOaV7Mc6vBcWGWosI3W0ONizMbfb7/zgvgsYc7z39xTuLuG5+18L6rcdqxSoiYiIiIiIiEi/EJ0YBb045TMyMpKpU6cSEhISVP+L7j7LaBcWFfH3v/+durq6Ht+rKvUFakV7SqBtP7Pzbj+jx3e3tC2/NFvMZM4YDkD25jzj+eCx6QwcPICYtt/eriyvnNHH+QK/bct30h2L1cJ9L91l7K32wROfkb1pb4/zO1YpUBMRERERERGRfqH9YIL6qgZjw//uJCYmctZZZ/XYr92wiUMICbd7v1HWiMvlorCwsMf3/Jd8trvrsZuMfcu6Ul/dwN4t+QAMnzSYsEhvBd7eLb5Abcj4dAAyxqQFvFtdUmNUnAFsX5HV4zxTRyTzwwcugraln4/d/TweT+/3bDsWKFATERERERERkX6hfR81j8dDbWV9t30dDgePP/44WVk9B03+Rk3zVok56p3YSiJJT0/v8Z3KfQK1s26ax9jjR/X4XvamXCPQ8q82CwjUxrUFaqMDTyqtq2pg2KTB2EJsAGwLIlADuOTec0geNhCADd9sYfHby4N671ijQE1ERERERERE+oXeHExQU1OD0+kkIiKi2377Ou3ak432jiV7gtqDrSyvwmhHJ0Rx40NXBvWt3G35RnvwOF9wl7PVdz9jjDdIS98nUGtubMFmtzFy6lAACncVUxPE6af2UDu3/vVa4/qpn75Ic2NLUPM9lihQExEREREREZF+ITYx+EAtPj6eiy66iLS0tG777eu0a+ZiMnmP1rQmwWeffdZt/8b6JhpqGo3rmx6+kuiEqG7faZe3vcBotwdmHo/HqFAbNCTJWAbaHqy1czlcuN1uRk0fbtzL3tT9wQTtZp07nelneA9gKMur4M1H/hvUe8cSBWoiIiIiIiIi0i/4V6j1dDBBUVERgBGOBctqtTJwaBIADUVNNNY1drvP2GsPLjTaUXERnHH9KUF/K3eHb3+2jNEpAJTmltNU3wz7VK2NmDK0w/utza2kjUoxrgt3lwT1XZPJxG1/u97Y4+3NP75HUXZw7x4rFKiJiIiIiIiISL8QEKiV1nTbd+XKlaxevXq/vjPrnGkAVGyvo/Cj2i5DudK8ct75+8fG9aRTxmM2Bx/FtFeohUeFkZASD0DOZl+V2RC/QC1uYCwpIwYFvN9U3xxwr3BXUdDfzhidyoU/9h7Y4Ghx8PTPXg763WOBAjURERERERER6RcGZCQa7YKs7sMjp9NJampqt326cuHdZxvtiKkWCgoKOu336v+9jaPFYVz7B2A9aWlqoSSnDID00SlGaLd5yXajz75VaeNOyAy4bqxrImX4QOO6cE/vqsyu+tUlxA2MAWDJOytY++XGXr3fnylQExEREREREZF+Ycj4DKO9d2tet30vueQS5s+fv1/fSR46kPBo795lofE2ln7Z8STMwt3FfPr81wH34gfFBv2N/J1FxlJS/wMHNny7xWhPPGlswDvjZ48OuG5paGHg4CTMFm/8U7irOOjvA0REhwccoPDsz1/pdnnrsUSBmoiIiIiIiIj0C3EDYohJ9G74n7O560CtqamJf/7zn1RVVe33t8bOGgVA4fIKtn29q8PzV/7vbdwud8C9fU/i7E7AgQSZ3vea6pvYuXqPMVb8oLiAd8adGBioNTe0YLVZGTTEu+db0e6SXgdip11zklEJl7U2m5WfrOvV+/2VAjURERERERER6Tfaq9Qqi6uprajrtE9JSQlVVVUHVG214MZ5ABQsK2fr4qyAZ7nbC1j0ymIAY2N/gKETMghW3na/AwnaTvDc8v1OXE4XAJP2qU4DSM9MwWT27efW1OA9vCB5uHcftca6ph4Pa9iX2Wzmiv+92Lh+9fdvq0pNgZqIiIiIiIiI9CeDx6YZ7ZwtnVepxcXFMW3aNOLj4/f7OydeNBOL1cKgqXEMO28gm5ZsM569/Lu3cLu9oZPV7g3U4pPjiEmM7nK8fRXs9u0B135S54ZvfMs9J508rsM7ZrOZkDC7b4y2feRShvsOJija3btlnwAnXDDD2P9t2/Is1n21uddj9DcK1ERERERERESk3/DfR62rZZ92u51Zs2b16sTNfZnNZiaeNJbWBhchMTae/9/XAcjetJdv3lgKQHRCFC2NrQAMmxh8dRpAdamvkiwhxbu0c2M3+6e1C40IMdq71+8FINXvpM+CXu6jRttv/eEDFxnXrz24sNdj9DcK1ERERERERESk3xg63neSZlcVakuWLOGdd9454G/d9NAVlG+pYctre9ny/Q5aWx28+Jv/GM9PvPA4oz1swuBejV1dWgNtS0YjYyNoamhmx6rd0La0c9/909qFR4UZ7faDGfxPP60o3L994066bBapI5OhrVJus19F3rFIgZqIiIiIiIiI9BuDx/kHarmd9mlsbCQkJKTTZ70xavoIYpOiiBkSASYPT9zzPEvfXQltSzwHDE4y+g7pxf5p+AVqsQOiMZlMbP1+h7F/2sSTOi73bBceE26083d492GLjIsw7jVUN/RqHu0sFgs/vP9C4/rVY7xKTYGaiIiIiIiIiPQbUXGRxhLJvVvyO91Af86cOSxYsKBPvnfytSeQfmISEclhfPb8N8b9H95/YcBJncMmBl+h5vF4jCWfsQNiIIj909rZQ21Gu6a8jtztBUTG+gK1+v0M1ADmXTnHODF09Wcb2L4yq8d3+isFaiIiIiIiIiLSr7RXqdVW1FFVUt3heXZ2Ni0tLX3yrSv/52JcLS7cDjeOFgcASekJnHXzfLI3eSvkLFYL6aNTgx6zvrrBqEZrD9TWfLHReN7V/mkANpst4Pr7/64MDNRqGoOex76sNiuX3+erUnvtDwe+bPZopUBNRERERERERPqVoQHLPvM7PF+8eDE7d+7sk2/FxMVQ+VUrDcXNxr2L7j4bkwlyt3m/nT46BXuIrZtRArUv96RtyWdxTik7V3v3TxsxZSgJyZ3vnwZgDbEGXH///ioiYn3LQPd3yWe70687mcRU7+moy95fTd6Ogh7f6Y8UqImIiIiIiIhIvxKwj9rmjvuo2e12BgwY0GffG3lJKvGZUcb1adeeRP6OQpwOb5VZb5Z7ss8Jn7FJMSx+a5lxPfeSWd2+a7MHBmrblmfR3OirxjuQJZ8A9hAbF919tnH9ybOLDmi8o5UCNRERERERERHpV4aM9x0AsLeTkz5vv/12xo3reh+y3mpoqicy2Xe65tJ3V7Jnoy/IGzp+/w4koG3J5+K3/QK1S4/v9l1bJ5Vwqz5eR3i0d3711fu/5LPdadeehNVmAeCLl77F0eo44DGPNgrURERERERERKRfGTw2zWjn7BOoNTU18Y9//IPq6o57q+0Pj8dD2YYaanN9lV9v/fkD9mzca1wP7WWFWk15XcD1jlW+5Z6pI5K7fde2z5JP2pZ9tu+jdqBLPmmrmjvhwuMAqC6r5fv3Vh/wmEcbBWoiIiIiIiIi0q+ER4UxcLD3NMqcLXkBJ302NDRQU1NDXV1dNyMEb8M3W9j5xd6APdTydxayY/Uu47q3Sz6drU6jvWdDjtHuabkn+1SohYTZAVj35SbCo9or1A48UAM466b5RvvjZ7/skzGPJgrURERERERERKTfGTzOW6XWWNtEWX6FcT8mJoZJkyaRlJTUJ995//FPGXFOKoPnDQw4LGD78iwAouIijE38g+V2uX3jrMwy2j0t96Rtj7N28W3zcbQ6aW07gbS12REQMO6vyaeOZ9BQ7z50a7/YSFF2yQGPeTRRoCYiIiIiIiIi/c6Qcb59y3I2+5Z92mw2jjvuOEJDQw/4G6V55Sz97yrMVhOhESFc/ZtLjWctTa3eeUzIwGQy9Wpcl1+gVrSnFIDhk4f0uNwTwBZqN9oxSdFGu66yHgCz2dTr+XTGbDYHVKl9+txXBzzm0USBmoiIiIiIiIj0O0P8Tvr0P5igsrKSZ555htLS0gP+xkdPfYHb5Sb782LGj5rAghvndTgUYNiE3i33ZJ8KtXYnXTo7qHdDQn3fD4sKNQ4jaN87zWzpuyjo9OtONsb77IWvcTldfTb2kU6BmoiIiIiIiIj0O0PG+wK17C2+EzddLm/o43Z3DK16w+Vy8enzXwMQlhDCjHMnYzabmXHm5IB+vd0/jS4CtWCWewLYwnwVam6HmxMvmultu73LPPsyUEtIjmPWudMAqCisYsXHa/ts7COdAjURERERERER6XcyxqQaSxv3bsk37icmJnLZZZcxaNCgAxp/y9IdVBZVAZC5IIPs/D0A3PTwlQH9kkcM7PXY+wZqwZzu2c6/Qs3hcLDgxnkBz/syUANY4Lfs85PnFvXp2EcyBWoiIiIiIiIi0u+EhIWQPNwbZuVuzTcq0lwuF4WFhUal2v5a/NYyo50wMIGIiAgA0jNTsdqtxrPv31vV67H3DdTO+dFpQb8b4leh5mhxMm52JhljUo17fbF/mr/pZ0wyDl1Y89kGGuua+nT8I5UCNRERERERERHpl4a2Lftsbmwhb0chAGVlZSxZsoSysrL9HtflcvHdOysAsIXYuPbGazj11FONZ/6naH79+tJej99Y7wulQsJDOPXKOUG/21TfbLRtIVZMJlPA4QHOPt7nzGKxMPv8GdB2muiqT9f36fhHKgVqIiIiIiIiItIvjZ2VabQ3fL0FgLCwMCwWC+Hh4fs9rv9yz+lnTGLJsu9YvXo1tJ3K6XL4Qquaslq2rdjZq/F3rc022jPOnExYRPAnklaX1xrtiBhv1dz8q+ca95wtTlpbHL2aT0/aAzWAZe/3viLvaKRATURERERERET6pcmnjjfa67/eBEBsbCw///nPiYmJ2e9x/Zd7zr1kFgUFBZSUlACQtWZPh/7/fuD1oMd2uVzsWucL1KbMm9CrudWW1xntqDhvoBaTGE1IuHcpqMfj4fv/ruzVmD2ZeNJYImK8AeWKj9bidDj7dPwjkQI1EREREREREemXhk8eQmSsN1Ra//UW3G43TqeTp59+er+XfO673HPWedPJzMxk+PDh3u98tanDOxsXbw1YxtmdlR+vo766wbgODQ/p1fz8342KjzLaVqvFaH/8bN8eHmCz2zjurCnG9zcu3tan4x+JFKiJiIiIiIiISL9ksViYdMo4AOoq69mzYS9ut5uysjKjoqy39l3uGREdzoQJE8jM9C4vXbvIG6jZ7FZikqKh7ZCBf97xXFDjv/fYpwHX/gFZMBqqG412+/ddThcNtb5Ab92iTRTuLu7VuD2ZfZ7fss/9OIjhaKNATURERERERET6rcmn+JZ9rvtqMzabjSlTpjBgwID9Gm/f5Z5ut5snnniC7du3U7SnhOLsUgDGnZDJDQ/+0Oj79etLaG1u7XbsvB0FrPl8Q8A9/4AsGI1+wVlMordCrbairkO/j5/5slfj9mTGgilYbd4quKXvrQw4mKE/UqAmIiIiIiIiIv3WlH32UTOZTMydO3e/9lBzu90dlnu2trbicDiwWCysW+Rb7jn51AmcddN8ouIjoa1K7LG7n+92/Pcf/6zDvd5WqDX5LS2NHxQLQHWZ76ACk9kEwAdPft7rsbsTER1u7FlXllfB7vU5fTb2kUiBmoiIiIiIiIj0Wxlj0oxgadPibTgdTt566y2WLFnS67FyNucZyz2nnTaRiOhwQkNDufjiixkxYgRrF200+k6dPxGAa39zmXHv8xe+prW18xM2q0qq+fS5r6BtuWi7+prehV7NjS1GOyElDoDq0hrj3tDxGdBWyfbff37Sq7F7Mvv844z20j4++OBIo0BNRERERERERPotk8lkVE411TezY9VuLBYLjY29W0oJsOGbLUa7/fTNlpYWqqurMZlMrP9qMwARMeGMmjYMgPPvXGCcgOl0uHjqJy91OvYbD//XCMPmXTnHuN/Qyyqy1mZfYJeYmgBAdamvQm3m2VMxW7xx0Dv/+IjGuuAOSwjGrPOmG+3lH67ps3GPRArURERERERERKRf899Hbf1Xm1mwYAGzZs3q9TgbvvUFahNPGgvAnj17WLRoEdvXZFFT7t2rbNLJ47D4nap55S8uNtqfPPslTqczYNzyggo+ePJzAELC7AH963u5h5qjxReoxQ3yLmv1r1DLGJNmBHZ1lfWdLjPdX4kp8QyfPASA3etzaOhldd3RRIGaiIiIiIiIiPRrk/fZR83lcvX6lE+3283Gb7cCEBUXwbCJgwEwm82Eh4ez5dsdRt/26rV2F/+/cwiLCgXA0eLk2Z+/GvD8tT+8awRh591+BgOHDDCWfXZ2oEB3nK2+sM5q9Y7hH6jFDojhh/dfiMnk3Utt4V8/CFgmeqDGzfaedurxeNi6PKvPxj3SKFATERERERERkX4teehABg31nuq55fudbNywka+//rpXY+RszqOush6ACXPHYjZ7I5VRo0Zx9913s/7rzUbf9v3T2pnNZi7/2fnG9QePf2ZUqZXsLeOTZ70nboZGhHDZ/5yPyWQiKd27XLMkp6xXJ2a6XG7vNy2+yCcwUIsmPTOVky6f7X1WVsvHT/fdiZ/jTxxjtLcs3d5n4x5pFKiJiIiIiIiISL/XvuzT0eLAWQsul6tX77dXpwFMOmmc0V6xYgWLvlzEpsXboO0ggPTMlA7v//CBiwiNCIG2fc5e+tV/AHj19wtxOrxzufDHZxGb5F2mmTJiEACNdU0Bp3T2xOP2hm/+S07LCiqNdtxA7wENV9x/oXHvP39+j9bm1qC/0Z1xJ2QabQVqIiIiIiIiIiJHsSl+yz7LNldxxx139Or9gP3TTh5rtHfs2EF+ToGxbHLq/InGckp/ZrOZi+45x7h+59GPyNtZwGcveCvlwqPDuOQn5xrPk4cNMtpFu4uDmmNjve+AAf+TQvO2F3i/ERVmnHg6dMJgTrjQeypnRWEVnz3fu4q9rgxIT2RARiIA21fswulw9vjO0UiBmoiIiIiIiIj0e4H7qG3hqaeeCnofta72TwMYOnQojmLfkswpp07odAyAa397GfYwOwAtja38/vK/4W5bonnJ/zuX6Pgoo2/qCF+gVrAruECtwq8SzRZq836nqYWSnDIA0kenBIR9VzxwkdF+45H/0tLUN3uptVepNTe2sHt9Tp+MeaRRoCYiIiIiIiIi/V78oDgGj00DYOeqXVRWVrJ3796g3t27Jc84HMB//zSAzMxMdizyhUZT5o3vdAzaqtTOv+NM43rPBu/3o+IjueieswL6pvgFaoVBBmrlfoFaSLg3uCvIKjb2YEsfnRrQf9S04Rx31hQASnPLefsvHwb1nZ6MP8F/H7Ud3fY9WilQExEREREREZFjQvs+am6XhyEDhjFo0KAe3wHY0MX+aSUlJTz55JPkZOUCkDEmlcTUhG7HuuEPP8QWYgu4d9lPzyMiJiLgXsrwgUa7aE9wlXSVxdVGOyzCe6po7rZ84156ZmqHd25+5GrjAIPXH3qH0rzyoL7VHf991DZ/3z/3UVOgJiIiIiIiIiLHhCnzfMsxa3c0ExkZGdR77ZVkAKOPH2m0Kyu9FWEtdd4N/btb7tnOarUGzMNkgvPvWtChX/KwgcbyzGCXfFb5BWqhkd5ALW97oXFv3wo1gCHj0o2quZamVp75n5eD+lZ3hoxPJzw6DIAtS7b36pTSo4UCNRERERERERE5Jkw8aawRUmUX7uaNN94I6r29W/OMdvuyUYBhw4YRXZuEq8W7D9rU+RN7HKupvond67ONa48HPnl2UYd+9lA7iWnx0Isln/6ngUZEhwOQu6PAuJcxpmOgBnDNby4jJtG7f9s3b34fcADD/rBYLIydNQraquaKs0sPaLwjkQI1ERERERERETkmRMVFMmLqUABKdpdTVVXVY/WUx+MhZ4s3UBuQkWgEVQC7d+9m9wbv/mlms4lJfqd/duWV371NRWFVwL2Xf/dWp33bDyaoraijuqymx7HrKuuNdmScdwlp+wmfZos5YBmpv8jYCG74w5XG9eN3P4/L6erxe90ZfZyvki97U+4BjXUkUqAmIiIiIiIiIseMKW37qJVuqGZcysSAUy87U15QSWNtEwCDx6UHPPv6q69xhnlPxhw1Y0SHfdD2lbMlj4V//wgAi82CxeqNZeqrGvjwqS869B8+eajR3rFyV4+/zT9Qi46PxO12k7/Du+QzZfhAbHZbl++ecf3JjJw2DIA9G/fy8TNf9vi97mSM8VXy+e/j1l8oUBMRERERERGRY8bktv3L3E4P2zfvpLi4++WU7dVpAEP8lnsCNNU1U5vXCMDUed3vn+bxeHj0jmeMyq8r7r+IeVfNNZ6/8MvXO7wz5vhRRnvbiqwefpk3mGsXnRhN0Z4SWpq8+7t1tn+aP4vFwh3/uMG4fv6Xbxgnm+6P9NEpRjt3e0G3fY9GCtRERERERERE5Jgx/sTRximbta4q1qxZ023/nM1++6ftU6HmzgqhbKP3IICe9k/78pXFbFq8DdqqxS6/73zu+teNxgmbNeV1fP7i1wHvjJk5wmgHE6g11DYa7dgB0WxdttO4HjVteI/vj5udyfyrvSFfXWU9L/zqzR7f6Up6ZopR/acKNRERERERERGRo1hYRCjTTveGX6Wbq6n0OxmzM3v9K9TGZxjtzZs3UxXprW4LCbMzZtaoTt8HqKuq5+mf+U7PvOPRGwkJCyE0PJSTL59t3H/mvlcD3ktKTyQ+OQ6A7SuycLvd3c61rsq35DMxNZ6t3+8wrsfOzuz23XY3PnQlYW0nhH745Ods+m5bUO/tKyQshIFDkqDtpNH+dtKnAjUREREREREROabMvXgWAHu/KqFuc2uH5w21jaz6bD2bl2wja+1u477/KZnrV6/H0eQAYPycMdhDut6f7Pn/fZ3qUu+hAnMunslxC6YYz378+M1GlVp1aQ1v//UD45nJZDKq1Bprm8hr2w+tK/57qGVOH25UqJnNpoBqt+4kpsRz9a8vg7Zlqn+87l801jUF9e6+2v9ejXVNVBRW7tcYRyoFaiIiIiIiIiJyTDn+3GlYbRYsdjMlkXt55+kP+PutT7P68w0A/Or8R3hgwYP8v7m/Ys/GthMqTXDLxJ/wlxsfx+lwUp/bSu7iMgCOO3NKl99a/fkGPnjycwBCI0K49a/XBTyPiA7ntGtOMq6f/8XrtLY6jOvRM32Vb6/87m1+dcEjPPfAa7hcHU/hbKpv9o0bE26crjls0hDCIsOC/vtcdM9ZjD9xNADF2aU88f9eCPpdf+mZvgAyd1v/2kdNgZqIiIiIiIiIHFNCwuwMHpeOy+HG43bz/osf8dHTX/DI1Y8CUFlU1fEljzdc+vT5r9n43Va2rdhJVZZ30/4TL57Z6Xdqymv503X/Mq5vePAKBqQnduh3z1O3EBJmB6C12cHfb3kKj8fDp/9exNblvmWb37y5lGXvr+aNh98ld2vgvmROpxOXwxuy2UJsbFuxy1hmObab5aidsVgs/M+LdxpLPz/991d8/96qXo1Bh5M+FaiJiIiIiIiIiByVPnjiMy4ddBO71+eAB3Z9WEjVbu9SyeiR4VRUVHDSpbO7fD8qLoKqhgrijwvDGmZhzPEjOw3JPB4Pf735SWOPtulnTOKCuxZ0OqbVauXGh680rr946VvOi76av9z0JMveW93pO+HR4QHXedsL/Z6FBeyfNu6E0d38RTqXPHQgt/ud+vm3W56kqqT7/eb25b9Etr+d9KlATURERERERESOGc//8g0aa317gkUPjmDyzcOZdOMw0ucnsGfPHs644ZQu37/pkavZviGLpsoWnE0u5rTtx7avT55dZFR1xSRG8dN/32GcetmZC+86i/jkWOO6uaGly77h0WEMyAgM8bLW+PZ6i02KZsv3243rcUEeSLCvM647mRMumAFAdVktf73lSTweD3u35vHdOytwOpzdvp8x2heo5W3vXyd9KlATERERERERkWPG6dechC3Cyom/Hs+Ea4cwcFIsZquZqLRwTJhITU0leehAps6f0OHdcSdkcuYNp7Dlg11sfD4b2g4Z2Ff+zsKAfcfufeY2EtpO6+zKW395n5qy2qB+w5DxGR3CuZzNvtNIE1Lj2bY8C9pO+9w3fAuWyWTinqd+ROyAGACWf7CGB6/4O7dM+im/u+TPvP2XD7p9PzohitikaADydxbt1xyOVArUREREREREROSYccufr+G0K06iOrue6IwIzFZfNBLTmkRKSgoAC26cF/Ce2WLm7iduoXB3MbaRbqyhFkZNH86gIQMC+jkdTh666lGaG70VZmffPJ/Z58/odk7LPlzD0z97GZfTHdRvGDYho8O9/CxfYBUZE24cUDB2dma3lXE9iU2K4d5nbjWuv33ze9wu7zyXfdD5clR/AwYnQdu+dC5nx4MUjlYK1ERERERERETkmGE2m7nnyR8xLCqTzS/nUFfkW/7pifKdrjn7guOw2q3G9dm3zGfo+Ay+WPgV8SOjMFtMzLmoY3XaS7/5DztXe5dfpo1K5kd/vbbHOTn9TvXszL6B2JBOArWy3Aqj7XD4gqsJJ47p8fs9GTV9OLEDojvcz1qzh9aW7ueelBYPgNvtMfaT6w8UqImIiIiIiIjIMcVkMnHnozdy2kWn0lDUjMftwePxYLL4git7iI2ZZ08FICQ8hJv/eDUAG77aSummahpKmjnx4uMDxt24eCtvPPxfACxWC/e/ejdhEaE9zmfORcdz2f+cj8nceSVZ8vDAKrgB6Qkd+lSV+sKqsrxyoz39jEk9fr87lcVV3DHjPqpLOy5HdbQ62bUuu9v3E1LiffPKr+i279FEgZqIiIiIiIiIHHNMJhO3/OlqkiPSaK5uxWQyMWZcJs0OFwU1TWwrrePif/2I+5b8gT9t/yfNZgvFOaVkb8wl670Chk0aTNrIZGO8mvJaHrnmn3g8HgCu/e3ljJo2POj53PzwVbyY9U/SRiV3eFZbXsfl950PQFhkKFNOm0hVYyu7yxvYUlzH5uJaBp4yieSZo7DHhJO9cS8Ag4YOIHVkx/F6Y8VHa6korOryuf9povtqdrpImDiUUZeeyNirTmF3bQu7yxuoamzF3fZ3OlqZPJ6j/BccgNraWmJiYqipqSE6umPpooiIiIiIiIj0f6sWb2FnUy32gek0OruJSVwuGsry2fzCt8yePJqrfnFx220XDyx4kLVfbgJgwtwx/GnRr7FYLPs1n7f+8j7P3PcKHrd3LvZQGx80vEp2aS17qlsoaWjF5e56nnX55WR/soYhUXbu+vM1+zWHdjXltfz6wj+yZWnnwdnUeRN45ItfGdcNrU6yyhrYXdlAfUvXe6ZZzCYGRYaQOSCS1JhQzAewz9vhoEBNgZqIiIiIiIjIManJ4WJVXjU5lY30NhwJM8HxwxLJiAvjuQde442H3wUgdkAMT6x5hMTUjssye6O2so6bx99LdVktN750N+ZxQ2ho7eWm/h4PwxIjmJEWS6ht/8I97zAeNi7eytt/+YDlH64JeGYLsfJx0+s0O1yszq9mT0Xv/5YRdgvT02IZEh++33M81BSoKVATEREREREROebsqWhgZW41La7gTtbsSmRDI/++4A+01jRitpj545e/YtJJ4/pkjk0OFytyq9hb1RRE766FWs0cPziOwXEHHljt3ZbPW395n8+f/waPx0NYVCj/zHmK5XuraA7ylNKuDI4LY2ZGHGEHEP4dKgrUFKiJiIiIiIiIHDM8Hg9rC2rYXFzXZ2PW5ZXz5Z1PcPVPz+Pi/3dOn4xZ2+zg851lva9K68ak5GgmpUR3ODV0f5TklvPhk58z4vI55HR/0GevRNgtnD4qiehQW98NehAoUFOgJiIiIiIiInJM8Hg8rMmvYUtJ34Vp7Zy1DVx+wnAiQzoPgtxuN6/87m0+/fdXXH7fBZx/x5ldjlXX4uST7aU0OfouTGs3MTmaKakxfTLW+oIaNhR1PP3zQIXZLCwYPYCoEGufj91XFKgpUBMRERERERE5Juwqb2BpTuVBGz8+3MbZowdiNgdWgDlaHfzlxidY9Op3AIRGhPBOxfPY7IHhm8vlojS/gsUljTSbD96yxxkDwhmbcWB7vGVXNrJ4T0WfzWlfsaFWzhk7CIv5yDys4MiN+kRERERERERE+khDq5OVeVUH9RuVjQ42FdcyKcVXAdZY18RvL/6TcQIoQHNDCy/95i3soTZKcsoo2VtKcU4ZZXkVTLjlTMZfN++gzvO7naX8ft5vSBoQTeqoZNJGppA2KpnUkcmkjBhEWERot++37+12MFU3O9lQWMPUtNiD+p39pQo1VaiJiIiIiIiI9Htf7Sojr7qZK6akUtHYCsCmojoKa5sBGBBpZ8HogbyxvoCWA9hc32yCc8cOIjbMRmVxFQ8seJDdG/YG9W7cyBQWvHQvV01P7zDHxAg7U1JiMJmgoKb5gJet5ny+jiW/eLnTZ0lpCaSOSmb0jBFMmDuWcbNHERETYTz/dnc5OW0HJXT295yZEUt8uB0TsKaghpK6lv2aowk4Z+xA4sPt+/X+waQKNRERERERERHp16qbHORVe4Oz+lYXn+0o69Bn7MAoyhtaD/hbbg9sK6kjpbGRO2bcR0tTcGNGxUVw3J3nYLaYO8zRbPIeKPDV7nJc7r6pixo8fzLrHvuQhqKOlWZl+RWU5Vew/qvNvPHIfzGbTQyfPIQJc8Yy+pTx5KYMNPruO9eoECsxoTY+2V5KuM3C3GHxfNrJ3zsYHmBLSR1zhh7Y8tSDQYGaiIiIiIiIiPRrO8vqjXaEzcKZmUk0tLpYmVtNi8tNWkwopfUtpMea++R7eyob+ebR97oP00zwPy/eyfCJQxg4OBFLeChvbSzE7ek4x9gwG063h5OHJ2DGxOr8aqqaDuxoTZPZxP1L/kBibT35O4soyCoiP6uQgp1F5O8sorbCVwHndnvIWptN1tpsJjth/LW+QG3fuTY7XDjdHkyA3WqmuZfVfuePG8Sa/Grya7wBaE5lIzPSYgm1Hbw95faHAjURERERERER6bc8Hg+7KxqN63c2F9HidDMiIYIpqTEsz60ic0AkX+8qJz02LODdMzKTSIoIwe23W9aa/Bp2+AV0nXG6Pcy+9QyWvPU9rV2Fah6ITYxm2MTBAGwvraO9+GzfOZbUtxAbZuOjbSVE2C3MGhzPpztKjaEGRNqZkBxNUkQIJqC+1cmeyka2lfjG7Mze2haOmziY4ZOGdHhWUVTF5iXb2bR4K5u+20b2plw8Hg/Dzpoe0K+zv2dDq5MLxydjMZv4end5wN9zQGQIH24tMQJBm8XEFVPSeHtjIQ2tLt7bUhwwvtsDOVWNjB4Q1e3f/FA7agO1hx56iHfeeYft27cTFhbG7NmzeeSRR8jMzDzcUxMRERERERGRI0Rti5NWl69Kqn1/tOyqRkYlRTAsPpy86qYug6c1+dVsK+0+QOuMPTmejxpepbywkqw1e8has4eda3aTtWYPlcXVRMVHkj461ehf5rfcdN855lY3UVrfgtPtoabZid3iO/kyLSaUucMSWFdQw5LsSlqcbqJDrUwYFE2YzUJDq6vLOTY53DQ6XETYO8ZDCclxnHTpLE66dBYAtZV1rF+WRXZSTEC/feeaEh1CiNXCO5uLCLOZmTciiQ+3lRj9W51upqbGsGhXOcHqi6W4fe2oDdS+/fZb7rjjDmbMmIHT6eSBBx7g9NNPZ+vWrURERAQxgoiIiIiIiIj0dxV+YYzVbMLl9uABBkWGUNviJDbMRkKEnYzYMOLCbMwdmsAXWT3v+WU1m5iWFkNaTBgWs4nCmmZW5FXhcHkCvpuYEk9iSjyzzvVVdlWV1hAeFUpIWEiHeXY2x/KGFiYmeyu0Qq1mXH7h33EZcWwurgsI/WqbnSzNqTSuQ61mZmbEMSgqBKfbw57KRtYX1OBp+25ngdq+ouOjGDx7NNm7K7r9e4LJCNkcLg9WsylgnB1l9YwZEMXAyBBK6jseVnDxhGRW5lWTV91k3FOg1oc+/fTTgOsXXniBAQMGsGbNGubOnXvY5iUiIiIiIiIiR46aZqfRjg61MntIPA6XG7cbvt9bGVDBdUZmEouzK7oYKdAJQ+Jxezy8v7UYjwdmD45jZkYcS7IrO3x3X3EDAqu8PB4PtW39O5tjq8vDrvJGzswcgNkEq/OqvX1DrESFWMmubOh2rnOHJdDkcLFwUxEhVjPzRybhdLnZVFzX7Tz3VbtP387m2tjqYlhCOGdmDsBiNrGhqDbgnRanm03FtUxNi+GT7aUEo7bZicfjwWQyBdH70DhqA7V91dTUABAfH99ln5aWFlpafOlnbW1tl31FRERERERE5Ojn9FvLWdno4MOtJV327ez0z6lpMUxO8QVgb20sxGI2kREXxpvrC4yKtHWFtZw/bhBLsyvxtH032BDI7fGeaNndHHdVNLCrIjA4C7F5D1HobllnuM1CcnQob64vwOn24Gx1sbGolkkp0Wwqrgv4+/Rk375dzbU9VOzKtpJ6xgyIJD02jOK65h6/62n7G1mOnDytfwRqbrebe+65hxNOOIHx48d32e+hhx7it7/97SGdm4iIiIiIiIgcPuYDDGHW5td02EMtJtSG2WTi4gkpHfqH2Sw0OlyYTARdUbW/hVctDu/Sygi7hbqWzkO1cLsFp9sdcNpmXYuTiLZTM3vz7b7Ks1weD+sLa5maGsOn2zsu++z020dQmEZ/CdTuuOMONm/ezJIlS7rtd//993Pvvfca17W1taSnpx+CGYqIiIiIiIjI4WC3mPt8zIZWJ26Ph/9sLMTVRYVXSC++azaZsJpNvaoWo+3AhboWJ0Piw9lUVNdpn8ZWF1azmVCr2QjVIu0WGhyuXs8zxNp3f8td5Q2MGxjF8MTwHvtazSbMR1ii1vf/Vx1id955Jx9++CFff/01aWlp3fYNCQkhOjo64B8RERERERER6b/iw219Pmaz001edRMzM2KNkCnUaiYjNszvu/ZDMs+VuVVMGBTN6AGRRjgWHWJl9uA4Iuzearmi2mamp8diNZuIsFuYmBzN7rblo/7zLM4p5Y2H3+WzF74me9NeXM7Aqre4PvxbeoC1BTVMGNRzNtPbv+WhcNRWqHk8Hu666y7effddvvnmG4YOHXq4pyQiIiIiIiIiR5iEgxTGLMmuZHJKDGePGUiI1Uyzw0VOZSO5badTrnpzCburapgwdywT5owhOiGqx3mW1vf+NMv8mma+zCpjYnI0U9r2eqtvdbKnopGmtiq0xXsqmJkRx8UTknF5POypaGRzsbeizT/I+/MNj7Phmy3GdUiYnWGTBpOWmUJCcjzn3nlmr+fXndzqJsYPiiK0bflpVxIj+j4UPVAmj8fTu3rCI8Ttt9/Oa6+9xnvvvUdmZqZxPyYmhrCwsG7fbVdbW0tMTAw1NTWqVhMRERERERHpp97fUkxVk+OQfvPLO56geFWWcT1kXDoT5owh87gRpGemkDYqJSBky6tu4qtd5Yd0jokRds4eM9C4/umpvwkI1PYVERPOzd//kfKG3gd/B+LUEYmkxwaX9RwqR22g1tXGfs8//zzXXXddUGMoUBMRERERERHp/7aX1rMit+qQfa+puIqF5/8eeohcouIiSB2VQtqoZFJHpcC8qbish24xYXpzE45dBZTklFG8t5SN326lJKfjSaft7KF2/pH7NEtzuj/Fsy9F2C1cNCH5iNtD7agN1PqCAjURERERERGR/s/hcvPWhkIcvdz0f39NT4sl3Q6bl2xn0+JtbPpuK1lrs3G73N2+N/76+Uy+7axDMseWmgbeOed3uFqCq9wLiwzld+/dx/iTxvL2hiJaevgtfWVKSgwTU468zOao3UNNRERERERERCQYNouZicnRrCmoOejfigyxMCopApvFzOzzZjD7vBkANNY1sW35TvZuySd/ZyH5WUUUZBVRmutb5rnjP0sYedEsIgbGHfR5bnzms07DNJPJxL61V+mZKTz06S8YODgJgEkp0azMqz7ocwy3WRg9IPKgf2d/qEJNFWoiIiIiIiIi/Z7b4+GT7aUHff+vMzKTGBQVGnT/5sYWinYXk7+ziPydRZQ2O4g9d9ZBnWPtzgIq31nCwMFJDBoygIFDkhg0JIkBg5P42y1P8u1/lhl9x84axf+9//OA/d48Hg+f7SijpL7loM5z/shEUmOOrL3T2ilQU6AmIiIiIiIickyoaXLw0fYSHK6DE4WMGxjF9PTYAx5n+d4qdpTV98mc9hViMXPWmIFEh3a+aPGr177joaseBWDWedN54LV7CA0P6dCvrsXJh1tLaD1ISz9HD4hkZsbBr9TbX1ryKSIiIiIiIiLHhJgwG45vN+KYMhJbRPBVZMEYnhDOtLSYPhnruIxYWlxuciob+2S8djaLiXkjE7sM0wBO+eGJ1FU1YLaYOeumeVislk77RYVY8SzbTOvYodgj+7aKbEh8ODP6IJg8mFShpgo1ERERERERkWPC8g/X8MvzHiZhbAYn//kGwhL7JgsYEm7h+YseJiTUzo+fuJlxszIPeEy3x8PK3Cp2lDX0yRzDbRZOHZlIQri9T8Zb88UGHljwIDEjUjj5Lzf02b5vmUkRHJcRd8Sd6rkv8+GegIiIiIiIiIjIwVawq4iHr/YuZazYmkvs1myGxYcf0JgRdgvzRyax4o/vULCziD0b93LPCb/gp6f+hhUfrcHt3v/lkGaTieMHx3PqiETCbAcW3wyNDWV6mKfPwrSSvWX84Yp/4HZ7qNpZQOT6XYxIiDigMcNsZuaNSOT4wfFHfJiGlnyKiIiIiIiISH/X3NjCby/+Mw013iWUcy6eyeX/72xMJhPDEsJ5653VxE0YEvR4YTYzmUmRjBkYhd1iZtT04Xzx0rfG8w3fbGHDN1tIH53KJfeey/yr52IPse3X3NNjwxgQmcyW4hpWbS0iND4qiLe8UmNCyQi1cMfgHwEQkxTNk+v+RGJK/H7NBaC1xcFvL/kztRV1AMw8eypX3X8BZrOZYQnhvLlwFbHjB2MKMhQLs5oZmRTJ2IFRhFiPnrqvo2emIiIiIiIiIiL74emfvUz2plwA0ken8tN/32EEPs6Ccj668VE2Pfs8Jd+tJi0mlNB9gh23w0lCuI1RSRHUbfqetY89xe6FS7BbvP1OvGhmp9/N217A32550qiM218hVjPhheW8c87vWHz/i+R+toaKbXm4HM6AfmE2M2kxoYyJC6Xqta+I3LGXvCVbjOc1ZbVcmXErL/76zf2ey/P/+zpZa/YAkDJ8IPe9dBdmc9vfq6KGj258lI1P/puib1aQFhPaobrObIL4cBsjEyNo2LaCdU8+w843vjmqwjRUoSYiIiIiIiIi/dnyD9fwwROfARASZufXC39KeJRvE/3vFq7AZDax5aWtzP7DNOaNTKIsr4y//OhpCvaUUlFYicfh4sP6l6mtreXz3O2EpVr4ZtlXhITaOfvm00hMiWdARiKlueWdziF/R+EB/45Vn67H7XSRu2gDjTvyKc+vwGQxc+cTt3D6tSdjMZuwtQV8dx5/PztW7uKjv3/IHf+8PmAct9vDK//3Np+98DUPfvQAQ8dnBD2HtV9u5O2/fgCAzW7lV2//lKi4SOP5koUrwATb3tjOjF9MYt7IJKpLq3n4hicYddwIrnrgYqxmE2azibq6Or7Ys4XQZBPLNnyH7R8WLrr7nAP+Ox0qCtREREREREREpF+qKqnmLzc+blz/6C/XMnhMWkCf7xYuZ/CpA4hKC+fEi47D4/Hws/m/oyCrOKBfdWktJVVFxnXM4Age/fGzmEze0zDHzhrVaaAWPyiWnzx3+wH/ltWfbzDazlYHAB6Xm1GTBhNqCzyJs2i3b+5P/eTlTscry6vglkk/4da/XMvF9/QcZNVW1PHH6/5lXN/40JUMnxS4THbxwuVkzB1A3Kgo5lzsrdr72fz/I2dzLms+Xsv0U8Yxcc5Y7xyLfH/LqLRwnv3fVzBbLFxw54Ie53IkOLrq6UREREREREREguDxePjzjY9TXVYLwPHnTuOcH50W0Cd/ZyF7Nu4ldlgkIeZQBmQksfS/KzuEaQDl+RUMGjiI5ppWAKyhFsZensFbL77Nf//1CWOOH9XpPK78xSVkTh9+QL+lobaR7ct3ApAxJpWmumbj2bBJgwP6Olod1Fc3GtfO1sBloQE88Mrv3u7x+x6Ph7/f+hQVhVUATJ0/gQvvPiugT2luGdtXZBE7PBKL00raqBRWfbqOnM25Rp9Pn/vKaA8aNIjmqra/ZYiFzEvTeX/hB/znz+/3OJ8jgQI1EREREREREel3Pnjic1Z+vA6A2AEx3PvMbR02yv9u4QoA9n5VwoRRE2msa+KxH/+70/HK8ivI2rIbe4RvsV/s0EiGzB/EOy//l+Kc0k7fe/4Xr1NeUHFAv2X7iizcbg8Ak04eT2uzt0LNbDFjtwcedpC/oxC3K/jTRWedN73HPp+98I3xt4qKj+RnL9zp2zetzZJ3VgKQ+00JowePpbmxhUfveDagz7L3V9PS1AJA9o4crBG+yrrYIZEMPnkgH7/7Ma/94Z2g53+4KFATERERERERkX5l79Y8nvrpi8b1z56/g7gBMR36fbdwGSExNsKTQjjl0jm89Os3KS+o7HTMot0lfLP0K8xWMx6PB4/HQ9GqCrK/KKa5qpV3//ExY44fRXh0GLf+5VpOunw2APXVDfzphsdxu4MPufa19fudRnvYhHQ8Hm+4FhoR0qHvno25He515Wcv3M7/vHBnt30KdhXx2I+fM67vfebWTk8JXbxwGfYoKxHJYZx66Vxee3AhxdmBIWN9dYMRvH359RdY7Rbjb1m8rpI9nxXRVNHK8794nVWfrQ/6dxwO2kNNRERERERERPqN1hYHD131qFHFdf4dZ3Lcgikd+hXtKSFrbTaDTx1AyoxEGqobeffRj7scd++2PFoHt5K/rBxrqJmG4maK11ThcXmMPj/4+QXMPHsqFouF2so6tizZTnlBJWu/2Mj7j33GBXft3/5gm7/fbrRtYXaj7X8gQLvsTXuDHnfr9zs5/ZpTunzudDh5+Op/0tzgrSo784ZTOfHCjiealhdUsGXpDtLnJJF2YhIet5u3uli6+clzi5h35RyaW5opXFmO2WamoaSFkjWVuJ2+v2VDdUPQv+NwUIWaiIiIiIiIiPQbL/7yDXavzwFg8Ng0bv7jVZ32+27hcgAsIRbiwxN44VdvGMsqO7NnQy6DWoeQ83kxuz8sJHlGAuFJ3gqxCXPGcP8rP2bWudOxWLzLGKPjo/jpv32HETxz38vkbi/o9e9xuVxsX54FQHxyHJVF1caz+OTYDv33bs3vcqzohEgu/em5xvXHzy6iqrS6y/6v/n4h21d4v50yYhC3//26TvsteddbdWYJNRNti+Wl376F0+HqtO+Gb7aQn1VEunkEez4pZtf7hQyaGkfEoFAAxs4axc+ev4OTLpvd5byOBArURERERERERKRf2PTdNt76ywcA2OxWfv7KjwkJ67gsEr9Abc8nRVx02cU4Whzdjp23o4BRk7yHC3jcYI+0Ej8qCoAf3n8hp14xp8MebdNOm2RUpbU2O3j46kdxOro5JKATe7fk01jXBMC4EzLJ8wvlBg5O6tA/MbXjcsyBQ5J4r+YlFpY9zy1/vIa4gTFtv8PD/136106/u31lFq89uBDa9mq7/5UfExYZ1mnf9r9lzhclXHjRBT3+Lbd+v4PMySOMa3uElfhR0QBc+tPzOP3akzv8LY80CtRERERERERE5KjndDh59PZnjP3Frn/wCkZMHtpp37L8Crav3EVovJ1ZPx9LYnocD7x2D3f84wbGnzDa6DcgIxGr3btbVnNDCxPnjuXpjX/hxax/MmboOOoKvEFX+4b9nbnp4StJH50KQNaaPbzyfz2fqulvy1Lfcs9xszID9iVLz0zp0P+2v13Hr976Cf9a8RBDxqd7f29uOSazL6Dy3zdt03fb2L5qV8AYLpeLR29/xqjYu+bXlzH6uJGdzq+6rIZNi7cREmNj1n1jSRqSwM+ev4M7/3kjE08aZ/RLSk8gbmAMmTOGM/2MScw8exrPbv4rz+94lMnjplCX7z2ZdMk7Xf8tjyRBB2q33XYbn3/++cGdjYiIiIiIiIjIfnj3Hx+TsyUPgMwZw7nonrO67Lvmi40AxA6LxGI3Y7fbiUmM5oK7FpCYnmD0+8PHD3DOj04zrnO3FTB0fAYpwwdx3g/OwWrxhm1L/7sSl7PzJY4hYSH8/OW7sFi9S0Ff/8M77NkY/D5nW5btMNpjZ2dSUVRlXA+dOLhDf3uonTkXH0/mjBGMPX4UAG63h6w1e4w+08+YzIgpvrDxrzc9ETDGh09+QdbabACGTRzMD35+QZfzW7doMx6Ph5ihEVhCzISEhBAdH8X5d5xJ8tABRr/fvPMz/lP0LP9a8TDxg+IAGDw2nbSRyZxz2VnY7d694ZZ9sJrWHircjgRBB2pPPfUUZ599Nk8//fTBnZGIiIiIiIiISC+U5pXz0m//A4DJZOLHj99s7GXWmfVfbQKgLr+RSZmTsVp9ZzbmbPaekmm1WUgdmUxGW3UZELAHWlVNJaN/mEZovJ3aijo2Lt7a5fdGTRvOlb+4GNrCrcfved6opOvJlqXeQM0eamPElCHUV9Ubz/xDsc6MaQvUALa17cPW7oHX7jba2Zty2bXeG6BVFlfx/C9eN57d9dhNRhjYmXWLvH/L+sImxgwZR0iIb4ltzhbv39JkMpExJq3LMaprqhlxcTLhA0JorG1i3Zcbu/1dR4JeLfm02+3cdttt/P73v++23xdffMH1119/oHMTEREREREREenRk/e+YJxEec6tpzNq2vAu+3o8HiMEikwMZ/4584xnToeT/B2FAKSNSsFqswYEQbnbfBv+JyUlYcJEeKI3QFr+wZpu53j5fReQMnwgtG3Mv/jt5T3+rsriKmOJZ+aMEdjsNuP0UtqWUXZn9EzfMs1tK3YGPEvPTCVzhu/v9JcbvVVqT//PyzTUeJdfnnHdKQFLYDuzbpE3/AqLC+X08+Yb991ut3FAwqChAwgN73wvO4CEhATMJrNxyMOyHv6WR4JeBWp//vOfmTt3Lr/+9a+5++67u+xXWlrKSy+91BfzExERERERERHp0qpP1xl7mMUOiOH63/+g2/57t+ZTWVyNJcTMyItTyM3LNZ4V7Co2Tqds338sY0znFWqhoaFcdcXV1GQ3ALD+683dftceYuPWv/pOyXzqpy/S3NjS7TvZm3xzGzXdG375n57pX1nXmYwxqYRHew8S2LY8q0NV3E+e851CumtdNp+98DWLXvkOgKi4CG565Mpuxy/aU0JxThkmi4nRl6eTm++bb2luuRFyDh7XdXUagM1m49prrqM22xvk9fS3PBL0KlCLiYnhs88+44ILLuCf//wnV1xxBU5n706nEBERERERERHpC63NrfzrrueM61v+dDVRcZHdvrO2bTmhLdwbRiUk+Kq89rbtwUbb/l60hXRRcREA5G0rCBjLhZMJF3lPq9yzcS/VZTXdfvv4c6Yx48zJAJTlVfDmI//ttn/e9kKj3V4p175Xm9nSc6RjNpvJnOGdX2VRFWX5FQHPh47PYPjkIcb1o3c8a7RvfOhKYpNiuh3f97e0YDJ1/bcc0va37I7T7WDiJd4lqgVZRZTmlff4zuHU61M+7XY7b731FjfddBNvvPEG55xzDo2NjQdndiIiIiIiIiIiXXjzkfco3F0CwIS5Y5h/1dwe32lf7tlc1cp5889n4MCBxrO9W3xLOgeP84ZAJpOJ9LYwqyy/gjq/PcwKCwuJzgwzrjd8vaXbb5tMJm7723XGnmRv/vE9irJLuuzvXxHXXinnaTt502INLtIZOXWY7/dtze/w/N5nbzParU2tAIw+bgQLbprXoe++1rb9LVvrnJx54lmkpvqq+XI6+Vt2p6ioiLChvoq79V8d2VVqvQ7UaEs4n376ae6//34+//xzTj31VCoqKoJ4U0RERERERETkwBXuLub1h98FwGK1cNe/bsJkMnX7jtPhZOO33sMD0mcOosZRHfA8e4tvyeIQv2WKo6b5Qin/zf2HDh1KdFS0cb0uiBAoPTOVi+72nkDqaHHw9M9e7rJv3g6/QG10Ks2Nzca11d79cs92qSOTjXbR7o7h3aipw0jz60PbQQRmc/eRkdvtNkKv5EkJ1LoD/5Y5/n/L8T0HakOGDCEmylcRd6Qv+9yvQK3dgw8+yN///ndWrVrFnDlzyM/vmHSKiIiIiIiIiPS1J+59AUeLd4P+i+85m6HjM3p8Z8eq3TTWNQEw5IRB5ObmBjzP3rgXAFuIjZThg4z7408cY7Q3L9lmtDMyMrjuhuuw2rwVZ8GGQFf+8hLiBnrDoyXvrDCWTu4rt22JaUxiFNEJUVQUVBnP7KH2oL7VfhACQOGuok777Hu4QUxiVI/j7tmwl9qKOgCGzU3r8Lfc0/a3NJtNASeldiU1NZWbbrmRkDDv71r/1eagT0I9HA4oUAP48Y9/zCuvvMLu3bs54YQT2L59e9/MTERERERERESkE1uX7zRO1UxMjeeqX10S1Hv+wdWglEGMGjXKuK4qqSZ/pzdwGjFliLEsE2DcCZlGe8v3O4y2x+Ph8ScfY8JZvdv7KyI6nJsevsq4fuzuf+N0BO5R31DTQGWRN0BLbwukygsqjeftwVNPUkb4gsGC3cUdnu9an92hsu5P1z/e47gBf8vUQWRm+v5G9dUNZG/0BmxDxmcEFf55PB4ef+JxJp7vPVW0LL+CgqzOA8AjQdCBWmJiYpfPfvjDH/L+++9TWVnJiSeeyPLlPR/9KiIiIiIiIiKyP1789ZtG+6pfXkJYZFi3/dut+2qT0T7znNOZOXOmcd2+FBRg0snjA95LTIln0JAkALavyMLR6q2MM5lMWK1W0ib5Qqtg9/6af/VcRs8cCW2VaF+9tiTged4OvwMJ2gK19oANIDQiJKjvJKbGYwuxQRdLPl/6zX863Nvw7ZYOBxjsy/9vOe/MUznhhBOM603fbTOqyyadPC6oebb/LVPGJfl948hd9hl0oFZaWsrll1/e5fMzzjiDL7/8EpPJxOOP95xkioiIiIiIiIj01qbvtrH2C291VPKwgZxx/SlBvddU38S2ZTsBSJ+Qwkv/eZHS0lLj+YZvfAcKdBYCjTvRWznV2uxg17oc4/6CBQuYctwU4zrYZZ9ms5kf/elq4/r1h97B5XIZ17l+J4q2V6hVlvj2KQuLCi5ENJvNJA8bAEDh7hLcbrfxbMeqXSx7fzW0BW/Jw9qWh3rgLzc90eWYrS0ONi32Ln0dMCyB/3zwOgUFvvn29LfsyhlnnMG046ca10fyPmq9WvJpsVi6fT5z5kwWL14ccKqDiIiIiIiIiEhf8Hg8PP/L143rq355CVZbcJvzb/puO06HN7Aae/IIXC4XdrtvKeKGb70hkMVqYdzsUR3eHzd7tNHestS33VVaWhoDhycYSzDXLdoU9N5f408cYwRO+TuLWPyWb8Vf3vaOgVpNea1xLzzIQA2/ZZ+OFgcVhb4qN/9Kvyv+92J+/MTNxvXaLzZSWVxFZ7Yt20lL24mg4+dn4nQ6CQnxVcxtbPtbmkwmJswd0+kYnUlNTSUhPZbI2Ahoq/bzDwCPJAe8h9q+xowZw6ZNm/j000/7emgREREREREROYatW7TJqIxKG5XMvCvn9OrddlNmT+Kss84iNjYW2vZPa68IGzV9WKdLSMf77aO22S9Q27x5M++9/x7j53iDo/KCyl7t/XXlLy422q/9YaERIBXvLTPut5/UWVteZ9yLjIsI+hspw3xLUgt3FRu/YdWn6wEYNCSJM284hemnTWLgYO+SS4/Hw19vfrLT8QL+lrMmcuaZZxpbhdVXNxgVfEMnZBAd3/MBB+22b9/OwoULmXSy929ZW1FH9qbcHt87HPo8UAOIiYnhtNNOOxhDi4iIiIiIiMgxyOPx8MKv3jCur/71ZQEHB/Rk7SLvMlGTycSI6UOIi4vDZDLBvvunndT5EsXB49KJiAkHYMvSHUYVWmJiIq2trQFLG3uz99fkU8Yzdpa3Ii5ncx7fv7cKgOrSGqNP/CBv8FdbWW/ci46PDPob/gcTFLYdTPCi39/yyl9cgs3u3WftjkevN+6v/GQdtZV17Kv9bwkwauawgL+l//5pE08aG/QcARISEnC5XEz028Mu2D3pDrVeBWpbt27lmmuuYcaMGSxYsIAXX3yx0zLGV199tcfloSIiIiIiIiIiwVr5yTq2Lc8CYMi4dE6+fHbQ71aX1bBnw15oO8Fzy47NLFq0yHjuv+fXxC72/DKbzYyd7a1Sqy6toaCt0iszM5M77riDqfMnGn39N+zviclk4spf+E4pfe3BhXg8HiNQs4faCIsMBaC+qsHoF50YfOVXUlqC0a4qqWH915tZ/7X3N6eMGMRp15xkPJ917gwS2/p73B7+dvNTAWM11DSwY9VuADLGpLI7bxdffPGF8Xx/908DGD58uPdvOW///paHUtCBWlZWFjNnzuStt97C4/GwefNmrr/+eubOnUtxccdjV0VERERERERE+oLH4wnY7+ua31yG2Rx8jZB/ldOUeRPxeDzExMQY99r3TzNbzAFLO/c1brbvWXtVW0tLCx999BGpowcaFWwbvt7Sq72/Zpw5mZHThgGQtTablZ+so7rUu19a7IAYo/qrsbbReCc2KaaL0TqKiA032vVV9YGVfr+6tEOl321/vdZoL31vJfXVvsq4Dd9uxe3y/rap8ybidruJjo42nrfvnwYwcW7vKtQcDgcff/wxCRmxxA2MaRtvK06Hs1fjHApB/9/3i1/8gsjISDZt2sTq1avJy8vjpZdeYtOmTcyaNYsdO3Yc3JmKiIiIiIiIyDFp2QeryVqzB4ARU4ZywoXH9er9tV/6qpymzp/A/PnzOf/88wGoKq0x9k/LnDG80/3T2k2ZN8FvTt6lmQ0NDezatYuKigqjIqu3e3+ZTCau/F/fXmqv/N9b1Jb7ArV2TXXNRjuubRloMNo3+QfI2ZLHlqXeDCdjTCqn/PCEDv3nXjKL+GTv+B63h3/c9ozxbJ3f33LK/AmccsopXHKJt8KuvrqB3eu9+6cNmziY6ITgq+gAmpqa2LVrFyUlJUw+1bvss6m+mZ1t/+2PJEEHasuXL+euu+5ixIgRxr2rrrqK5cuXYzabOfHEE1m5cuXBmqeIiIiIiIiIHKPe/cdHRru31Wn4LRu02a2MO2E033zzDTk53uBn1SfrjH49VVSNPm6EsZ/Z2i820tTQTHR0NKmpqURGRjLlVF/g5r9xfzBmnTedIePTAdi+Yhdut3eLrdgBvuqv5sYWo52QvH+BWnvgBXDNry/rcsuumx+5ymgvfns5jfVN4Pe3NJtNTDppLN999x27d3uXgK75fIMx795WpwFERkaSnp5OdHQ0k0/Z/7/loRD0/4EVFRUMGjSow/3Ro0fz/fffk5aWxrx58/jss8/6eo4iIiIiIiIicozauzXP2O8rbVQyM8+e2qv3i/aUUJxdCsC4EzIJDQ9h8+bNlJSUALD47WVG31nnzeh2LLPZzKxzpwPQ2uxg7RcbsdlsXH311cTFxRlVVQDrv+7dZvpmszmgSq2df4VaS1Or0U5Ijg967Ei/JZ+VxdUADMhI5MSLZ3b5zvyrTjLCPLfLzT/veI7ywkr2bs3//+yddXgUVxfG3/Xsxt0VkpDg7u7FKVagOMUKFWih/dpSqNJCoWgNKVAKpXhxp7gHTSDE3XWT1fn+2N3JbtYlIaT39zw87MzcuffOye7O7LnnvAcAENmuIeyd7fH48WNaCuyihi3bmDw/FSwWCxMnToSHhwdaWmHL2sBkh1pISAgePHig85i3tzcuXryIli1bYujQodi7d68t50ggEAgEAoFAIBAIBALhP8qhDVWBO0PnDjA7Ou3umSpfRkul2H1gYCCCgoJQVlSOO6diAAAe/m6I6hButL9Ow6vSTa8cUmTq/fLLL4iJiUFwdIBV2l9dR3WAZ6C7xj51rTRxpZpDzd/V5H75jnxah03FkDn9jRaUnPb1BPr1+T//xc3jd+ltVeGAgIAABAcHo6K8EjePKo47eziaXZBAxebNm3H79m34hnnDJ8QTUFZVVb/2uoDJ78IePXpg7969kEp1vxmcnJxw+vRpDBgwAIcPH7blHAkEAoFAIBAIBAKBQCD8BykvLsfp7RcAAHb2PPSb3N3oOdVRrxKp0kAbPHgwwsLCcPXQLUglMkCpG2aKs65FryZ01c0b/9yFTCqDTCZDYWEhGAyGpvbX7RdmzZXFYmHA1F4a+9Qj1KTiKp+MncDO5H6ZTCbsnau04Tg8DgZO72XwHAAYOK0XHN0cAAAyqRx/r/qHPqay5YABA9CwYUPcPHqXjqDrMqK9VqEDU5HL5SgsLAQAtOipsKVEJMHjq3VLu99kh9qUKVPQqVMn3L59W28bHo+HAwcOYMGCBejWrZut5kggEAgEAoFAIBAIBALhP8jp7ZdQWa7QDeszsRvsne2NnqMORVF0hU97ZwEiWoehrKwMq1atQnZ2tka6Z7fRHU3qk8vjoO3AloCy+MCjK7Ho168fGjdWRGRpaH+dMz9VccC0nhrbjm5V1yyTKqprMpgMrfOMwVRzcPUY1wnOHk4G26t446MR9Ou0uAwAAI/PRVTHCFRUVOCHH35ARkaGRrqnqbbURe/evdGsmSL6rYWaJt19C2xZk5jsUGvTpg327t2LDh06GO6QycSaNWtw/vx5W8yPQCAQCAQCgUAgEAgEwn8QiqJweOMJenvovAFm95GTkofivFJAqZ/GYrNQWVmpiILKKzI73VNFJzWttWuHbsHZ2ZlOqbRW+8sryBNBUQH0dmpsBv1aLlM41MyN/qIoinZMAsCwuabb8vX3BoPFYdH9AEBUh3BweRyIxWLIZDKUFJXYJN0TgIYtrdGkq2nMSzwmEAgEAoFAIBAIBAKBQKgF7p19iFRlRFTzHo0R2iTI7D4SHiTTr8OahQAA3N3d0bdvXyTdSjc73VNFu9da0k6tq4dv48yZM7hy5QoA2ET7q1H7hvTrmIuKggzqElxsDtus/h5fjYNYraBBZNuGBturw2Qy6dRLFSpbOjk5oV+/fsh8mGeTdE8AuHDhAi5dugQAcPd1RVCUPwAg9mY8hKUVFvdra4hDjUAgEAgEAoFAIBAIBEKd49CGqui0YRZEp0HLoRZMv+bz+bi87zq9bW6KoqOrA5p1jwaUVUQllVJwOBz6eJOuUYBS+0tVFdMcAiP96dfPbyegMLsIhVnF9D4OzzyHmrotqxcnMIVpX4/X2A6Krpofn8/Hv/tv0NvdxnQyu3912Gw2uFwuvd20i8KWcplc4+/5siEONQKBQCAQCAQCgUAgEAh1iuzkXFw/otBw9/B3Q6dhbY2eo4vEh+oONUWEW15eHg4fPozYh8/o/s1J91ShnvYpT+agd+/e9LZ6NF3S41SL5k73LZfj1O8XNfaZ4xPLzyzEv39XOQ9ZbPNdQRGtwsC1q3IYPr+bCAAoKirCoUOH8DQmFlCleyodjZYyaNAg9OvXj94OaVply2QrbWlLiEONQCAQCAQCgUAgEAgEQp3izI5LkMsVel2D3uprcQph4sMUAACHy0ZAhB+gjIACALFQkUJpbrqniu5jOtLzunf3HuLiqqpQhqg71B6Z7wRSaaWpOL75LOzsq6K2ZNWOG+LcrsuQSWX0tqW2VC8Ice3ILUDNlpWlCn02a9M9AeDhw4catgy10pY1hU0cas+ePUNpaaktuiIQCAQCgUAgEAgEAoHwH+fi3qv0636Tu1vUh7hSTFelDG4cSDt6XFxckHeuAhV5CidQj3GdLerf1dsFHYe2AQAI/Dm4eek2fSykcVVRgeQn1jvU0p9nIv5ukt7jhrikZksAYLLMdwXJpDKUFZXT2wUZRUh6nApHR0eUXpOhPKsSANDzjS5m912duLg4vHjxgt4OVrNlkgW2rCmsdqiJRCJERUXhwIEDtpkRgUAgEAgEAoFAIBAIhP8sqXHpdGRZVIdweAV5WtRP8pM0OsotVC1t8MGVJ2AGSMDiMRHeKhSN2pku0F+d12Yo0jxLMyqQej+T3u8Z6AGBIx+wUYQaAFz/547accqkfrKTcxF7Mx5Q012zxKGW9jwTEpFEY9/mj/5A3N14SNzKwRawEBTlT+vKWYOfnx98fHzobRdPZ7h4OQP1MUJNVTaVQCAQCAQCgUAgEAgEAsEaLu1VKxYwyrxiAeqoC9iHNq0qSHDs91Nwi3CCnSsXQ+cOsEikX0Wrvs3gFeSBpNPZuLnjIXJS8wCl8L8qsio7Odfs6pTqDjVVOurVw7fofZTctAi1S2raaXb2dor+LHCoJeooBnD7VAwO/3ocbpFO4LvzrLalip49e6JTJ83CBiFNAgEARTnFKMot1nNm7UI01AgEAoFAIBAIBAKBQCDUGdTTPbuN6mBxP4kPtAsSFOYU49q+OyjLqgCHyUXPNyxL91TBYrEwYFovRI0JREA3T5zccp4+FtJYTUzfzEqf6oFLYc0V/WQl5tD7VJF3xlBP9+QJuMo5m+8KUndOcvmKfqRiKS7uuoayzAowJUz0nWRZam519u/fj9OnT2vsC4kOpF8nPza/ampNQBxqBAKBQCAQCAQCgUAgEOoEtkr3BIDERyn067Bmigi147+dRUWRCA+2JKLf+B7g8XlWz3nAtF7gOnLAsWfj+JazkMkUBQBCGqs7gcxLVRQ4CejXDVuFaR2nTHCoqad7hjUPpqPHLIpQU7NlxyFt6NeiUgkebE1Ej9e70Cmu1lJWVgahUKixTxWhBhtUTbUVxKFGIBAIBAKBQCAQCAQCoU5gq3RPAEh4oHACuXg6wdXbBTKpDP/8fApMDgPtP2iEtqOaWz1fAPAMcIddhQNy7hUiNzUft0/GANWdQGoOKVNwcKlyqAVG+mkdNyXlUz3ds9uojqgoVRQOsLM334mYqLSlwJGPuT9OofczmAy0WxiJNqOamt2nPjp06IBWrVpp7AtubLktawriUCMQCAQCgUAgEAgEAoFQJ7BVumdhdhGKchRaW6HK6LRrR24jNzUfoAAWhwmmnQ0mrKRt31YQKquGHv/tDFDdCWRmyqeDiz39mslUFE9QxxQpe/V0z07D29JVOl28XcyaS3lxObKTcwEAIU2D4ObtCs9Ad8U85BRYXCa4jmyz+jQEl8uFp6dmZKJGtJ+ZtqwpiEONQCAQCAQCgUAgEAgEwkvHlume6ppfYcoKn4c2nAAAyKUUokOaIjQ0VO/55iCTyXA/8TYC2ykqU147cgc5Kblw83GBo5sDYEFUlb2aQ62sqBwdh7bVOG6sOGT1dE9HVwf6mIunk1lzUf1NoGZLR9eq+SWdykZYmHZaqiVQFIU///wTsbGxGvsdXOzh4e+mGO9RSp0ojkkcagQCgUAgEAgEAoFAIBBeOv/uu0G/tjbdU90JFNosGEmPU3H/3CMAgH+4L9p0a0lrnVmLVCoFALTq3gxQVuj86/vDYDAYdGRVfkYhSgvLTO5TPeWzvEiIzsPbmTWny/s1bamK1oO1DrVmwch4kUWn0wJASboQd87cN6tPfchkMlAUBXt7e61jqhTa0sJy5GcW2mQ8ayAONQKBQCAQCAQCgUAgEAgvnXtnH9CvO48wz4FUnYSH6hU+g/HHl3/T20Pn9MfJkydx/fp1PWebB4/Hw6xZs/DG/FG0Ptmx384iP7PQ4sIE6imfZcXlCG0aBJ8Q0yP27qrZssuIdijKKaG3XbycTe4H1aL9QpsF44+v9mkcD+3rg1NHz5jVpz7YbDZmzZqFiIgIrWPB0ZYXeagJiEONQCAQCAQCgUAgEAgEwktFXCnGk2vPAAA+IZ7wDfW2qj+ViD6TyYBcJseFPQo9MRdPJwyc0QsODg6QmyDsbwolJSW4fPkyHN0cMGR2PwCARCTB36uOaOioJT4y3QlUPeWTwWBopX2KxRKd58qkMjz6V5Ey6ertjKCoAM0INXMdamoRalw7Ds5svwgAEDgoqnpKyqQoLSyDsKzCrH51UV5ejosXL+qMHgxpEkS/TjLDljWF1Q41LpeL8+fPo3///raZEYFAIBAIBAKBQCAQCIT/FLE34yGuVDiImvVobFVfMqmMFq73j/DDn98eoI+NXTwcfAc+hg8fjp49e1o5awWpqal49OgRJBIJRi0cAq4dBwDwz0+n4BnoRrczJ6rK3lkz5RMA2vRvodFGLBTpPDf+XiKEpQrnVvMejcFgMCx2qFEUhSSlQ8072BP7Vv8DuVyhXzZm8TB4BXkg/p90JJ7OwvbP/zK5X32kpaXhyZMnqKjQds6FqldNrQ8RagwGA927d4e3t3XeYwKBQCAQCAQCgUAgEAj/TR5cfEK/bt7dOoda2vNMSEQK55xnoDuuHLgJAHDzdcWQOYoIstTUVNy+fduqcVQ4ODggICAAPB4Pbj6ueG1GHwBApVCEmAtV12WOE4jL44DH5wIAinIV6ZrRHTXTICvKdDvU1G3ZrFu0og8Nh5rpGmrZybm0c84n1Avn/7wCAHByd8SIBa9h6Nz+cPDnw6+dOx25Zg0ODg7w9fXVqaEWFOVPv64XDjUCgUAgEAgEAoFAIBAIBGuIufiYft2se7RVfSWqaX7lJOfSr9/4aAR4fIXGWVpaGu7evWvVOCoCAgIwdepUMBgMAMDoD4aCzWEBAE5sPgdnZREAc3W/vJWaaVmJOZDL5XBwsQeTVeXGUXeSqaNhS2W0n6Uaaur6aQVZRXR1zbEfDoPAkY/X3x8MpwB7+LRxRXFeKZ7eeGbWNVbH19cXM2bMAJOp7a7iO/DhE+oFKG35sit9EocagUAgEAgEAoFAIBAIhJeGWCTBk6txgFI/zSfEy6r+1J1Aac8yAWWk2msz+9D7GzRoADc3N53nm8vZs2fx999VRQ+8Aj3Qf4oinVRYWgG+gx2gjDQr1OME04VfQx9AqceWn6GoasnhcejjsTeea50jk8rw8N+ngNJxFtRIEdWVnVLlWHT3dTV5Dolq1TxTY9MBpS7b0HkDAGURAXcnT1TkiwEAvy+1Lu3zwoUL2L17t97jqiIPFWWVyEnJs2osayEONQKBQCAQCAQCgUAgEAgvjTg1/bSmVkanAUCimoi+iomfjAJXzRkVFhaGMWPGWD0WAKSnp4PNZmvsG7t4OB1NpnKGwcwoNf8GPvTrjPgsAACPr+ZQuxmvdU78/SQIS1T6adF01JzKGebs4Qgnd0eT56BeLVXFGx+NhJ2AR29PeG8UnuxStHt6zboINV22VEe9aurLTvskDjUCgUAgEAgEAoFAIBAIL42YC1Upitbqp6FahBoA+IZ5o9+UHhr7JBIJVq5cieRkbYeRubRt2xbt27fXGrP3xK6KsURV1TjNqU7p19CXfp2udKjZKaPdAODFgyStcx6o2bJZN4Uty4vLaadeYCN/rXMMkVjNlp4B7hj0Vh+NfU26RKHdwkZwaeAAYWkF0p9nmjWGOm3atEHHjh31HlevmvqyK33WmEPtxYsXNdU1gUAgEAgEAoFAIBAIhHqCuuZXc2srfMpkyEvL19j35mejweZoRj2x2WwwGAxkZlru/IGyCqZcLoevr6/WsfEfjdTQPIOZUVW+DaqKP2a+UEao2XHpfSlP0iCTyjTO0bSlItovNS6D3hcYabpDjaIoZKtp0AHA+P+9Dq7aHACAyWSCAQYcfBTOvv1rj5k8RvXxpFIp/Pz89LYJUav0mfzkFXeoZWZm4tSpU/jhhx8wbdo0tG3bFg4ODoiIiDDhbAKBQCAQCAQCgUAgEAj/VWQyGZ0m6BXkYbV+WnFuCeTyKrH6wEg/9JrQRasdg8HAkCFDEB4ebtV4aWlpOHDgAAoKCrSOBUT4YZhSa0xFytM0k/v2b1iV8pmudKixlMUOAEAikmqkt1IUhUeXYwEALp5OCIoKAACkxqo51MyIUBOWCOlUXCj17fpP7aGzbZBTGPLjSgEAN49ZVuwhOzsb+/fvR05Ojt42QY38wWQq0liTn5huy5pAf2JqNYqKivDo0SP638OHD/H48WMUFlblAvP5fISFhaFv375o0KBBTc2ZQCAQCAQCgUAgEAgEQj0g80U2RBUKQfvIdg2t7i/jRbbG9szv3gSLxdLZ1s/PD8XFxXB3d7d4PKFQCDabDWdn3ZUzJ30+Bud2/YviPIWzKTMhW2c7XXgHe4LFZkEmldEaatUj7R5diUXDlqEAgNy0fJQXCwEAEW0b0PppKUr9NAAIijLdoZaZqOnYmv7NBHC4HJ1tB0zogxO/nUdFngjZSbkQiyXg6mmrD6FQCBaLBVdX/UUTuHZcuHg5oyCrCIVZRWb1b2tMjlBzd3dH9+7dMXfuXPzxxx+QSCQYNmwYVqxYgY0bN4KiKGzfvh0PHjzAgQMHsHLlypqdOYFAIBAIBAKBQCAQCIRXmkQ1HayQ6ECDbU3h71VH6Nf+Eb7oOKSN3rYPHjzA4cOHrRqvYcOGmDdvHjgc3c4jBxd7TPt6Ar1dkFmklaapDxabBe9gD0DpeKQoCmyupnPwybU4+nWSHlumxlZFcgWZEaG2d2WVLb2CPdB9TCe9bRMSX6DR64oxKYrCme0XTR6HnnNICN5++23Y2dkZbOfs6QQoq6ZSFGWwbU1iskONwWAgJCQEFy5cQGFhIa5evYrNmzdj0aJF6NOnjwk9EAgEAoFAIBAIBAKBQCBUoV71Ul0fyxJexCTh6qGb9Hbv8V0Ntvf09ERlZaVVTplr164hISHBYJv+U3vAzl5RFVMul+PIppMm9+8frtBmE5ZWIDc1D65eLhrH1Z1omrYMol+nKFM+OTwOvJQOOmOkxKbjwp7L9HaPMZ3piDddeHp6gs1jAcomp38336F28+ZNPHtmvEqoyqEmEUlQUVZp9ji2wmSH2qNHj9C0aVP07dsXs2fPtlq4j0AgEAgEAoFAIBAIBMJ/G3VhefUKjuYil8uxdt5vUPeNBUcHGDyncePGmDt3rkFHkTFiYmKQnW04jZPFYqFBixB6e9vSPSjJLzWp/4jWVXJaT2/EwzdMU2Mu7VkmZDJFxFuShi0V1y6VSOl00cBIP73pr+pQFIV1b/8GuazKmMacnZGRkRg+4HVAecrzu4adjLqIiYlBVlaW0XYuSocalJp5LwuTHWqNGjXCwYMHcf78eTx58gQNGzbEhx9+qFN4j0AgEAgEAoFAIBAIBALBGKqql2wOS0OE31xObbuAJ1fjNPa5+bjobQ9lJt7p06cRHx9v8bg+Pj4mFWUMjKiqXFleJMTWT/40qf+oDlVFE2JvPEdgI00noUQkQZZS60wVocZgMNQKEqTTKaaBjfRXz1Tn/O4ruH/ukcY+U2yZlPMC3k0V+meiCjHi7yeaNJ4Kb29vREZGGm3n5O5Ivy56FRxqKjp16oRLly7hzz//xPHjxxEWFobvv//eKo8ugUAgEAgEAoFAIBAIhP8WUokUaXGKdMSASD8twX1TKckvxa+Ld2rtdzXiBAKA/Px8PHr0yGg7XcjlcpOLMjqrRVUBwNFfziD+nnGHk3qhhqc3niGsWZBWm9TYDMjlciQ/Vmil+YR6wU6gSDF9fLUqhTKyrfGKpuXF5fh54e9a+4051ACgoKAAwZ186e0Da48ZPUcFRVHo2bOnSQ41F8+qAhCvRIRadYYOHYqYmBj88MMPOHbsmEJ07swZlJS8vIshEAgEAoFAIBAIBAKB8GqQ/jwTUokiekpd88tcNn/0B51C6eJV5Wxx9TbuBGrdujW8vLyMttPFrVu3sHXrVpPaOntqVgGlKArfT9sAsUhi8DwXT2f4NfAGADy/k4CgaO2iAilP05CdnItKoQiolp75+Gos/bpxZ+POqm2f7UGBsnqmi3fVnF1MsGWrVq0QGlGV2nrnVIzRc1TcvXsXv/76q0lt1Z2TxXmvoEMNAJhMJqZNm4bnz5/jm2++we7duxEUFIQlS5aYlPdKIBAIBAKBQCAQCAQC4b8DRVE4s/MS9nx3CIc3nqL3ewV60Fpg5vD4ahyObz4HABA48mHvLAAA2Al44DsYrhYJpUOtYcOGFhUmSEtLg4uLcUcTqul+ufkqzkmIScaOz/8yem5UB0VKqbhSgoz4bDCYmhmCF/66ioNrj9PbXkGedJqnKg2Ww+OgYctQg+M8u/MChzecAADw+Fx6zkwWE07uDkbn2bx5cwwc04/OYMzPKISwrMLoeTDTls6vmoaaIXg8HhYvXoyEhATMnDkTa9euRVhYmC26JhAIBAKBQCAQCAQCgVBPuPjXVayYtA6/LdmJwxtP0Pv/+v4QhrtMxslt503uq7xEiG/fXEs7wyYvH0tHqrn6uJgkTVVRUYFNmzYhMdE8vS8A6NChAwYMGGBSWyePKt2vDoPbgM1RFAfY890hPLr81OC5jdpVpWqum7dZy/n3/E4C9v94lN4+tP44hjlPwp7vDiLjhaJgQmTbBuDyOHrHqBSK8O3EtZDLFX1P/HQUygrLAWXUnynFDCQSCX777TeEdqmKojv682mj5wFAu3btMGjQIJPavnJFCUzBxcUF33//PeLi4jBu3Dhbdk0gEAgEAoFAIBAIBALhFYfF1u+YqSwX4ewf/5rc14Z3ttCC/NGdIjFwRm+UFpQBJuqnAYCdnR0EAgEyMzNNHhcARCIRYmNj4enpaVJ7dScQi8XE5GVjAWXE3opJ61BeItQeo0KEA2uP4czOi/S+2JvP6UqaBudXIcbJrVXOyeiOhtM9f174O1KVenbhrcMw4t3XUJhdDJionwYAHA4HTk5OaNC+Kn33/O4rRs8Ti8V48uSJyam36hFqRa9qyqc+AgMDsWXLlpromkAgEAgEAoFAIBAIBMIrSvtBreDoaq/3eK/xXU3q5+Leazj9u8LRJHDkY8mO+bQzDQBcvZ0NnF0Fg8HA+PHjERQUhMrKSpw+fRqpqalGz4uLi8Ply5chFotNGqe6E2j0B0NpTbOspFz89N42rXNWTtuIje9uRdytFyaNUR2PAHf6deNO+h1q147cxj/KSDI7AQ8f7VyAyjIRnTZqqi0BYOzYsegzsidYdkwE9fRCfnGe0XPi4+Nx+fJlVFSYlh5ar1I+CQQCgUAgEAgEAoFAIBCMwbXjovfEbjqPNe0ahf5TehjtIyc1D2tm/Uxvv71+OnxDvemIKgBwM0FEv7y8HBRF4ejRo9iyZQt++uknXL16FTk5OUbPFYlECAwMhJ2dcZ026HACsVgsLP59Pq3zdmLreVw9dAs5qXnY9ulu3DkdA5lMblLfuohs24AuUgAA0Z0idLYryCrEDzM20duzf5iMwEh/DVuaEu1XXq5IDz1x4gSOnDyE1nPCEdjFEzw3Nh5cemzwXJFIBB8fHzg4GNdpAwAndwc6nfdlOtQsq0lLIBAIBAKBQCAQCAQCgWABA6f3xsF1xzX2sTksvLNpplHdM7lcju+nrEdZkcKB02NsJ/RROugKldUpYYITqKSkBKtXr4aDgwPKyhSRbcXFxeDz+QgNNSzeDwBt2rRB69atjbZTwbe3A4/PhahCTDuBfMO8MXfNVKxSOrS+n7IeDBYTpQVl4P3Axfqb3yD+biIyE7JNHgcAmEwG5v04DQt7LAUA+If7wsVTO8qMoiisnLYRRcr5dBrWFq/N7AMAdKVPmOCcFAqFWLlyJezt7WnHGteJA4lQiuLEchzacBLNujXWe36LFi3QvHlzk6+PxWLB0c0BJfml9NxfBiRCjUAgEAgEAoFAIBAIBEKtEdYsGGHNgzX2jV40FMHRgUbP/XvVEdw/r4h48gx0x4KNVU44dSeQqxEnkKOjI9q3bw+hUFO7bMCAAXBzczN4rkgkwurVq5GRkWF0vuqootTUo6r6T+2JjkPbAADKioV02qqoQoysxFysOPUp3HxdzRpnxILXIJPKIBFLAYBOLa3OoQ0ncOvEfUCpk/beL7NoWxaaYUuBQIAuXbpo2TLpTBaEuSLEXNAfoSaRSPDjjz8iJSXFjCvUbcvahjjUCAQCgUAgEAgEAoFAINQqnYa1pV8LnPgY/7/XjZ7z/G4Ctn7yJ6DUPlv8+3w4ulalCao7gYwJ6TMYDPTv3x8LFy5EWFgYvf/GjRtG55GcnIzS0lIIBAKjbdVROYFK8kshlyvSOaUSKexddGvKPbkWB98wb6w49Skc3UxLh7Sz52HSsrG4fSqG3te0a7RWu6THqfjlgx309qItczWi2ArMiPYDgN69e2PRokWIiKhKLfXr4AEonV76igekpaWhuLjYfFsqq6ZWlFVCXGmajp2tIQ41AoFAIBAIBAKBQCAQCLXKqIVDIHDig6FMT7QT8Ay2rxSK8M3EtZBKFEL5Yz4YiuY9NNMIC7PNcwIxGAwIBAL4+PjQ++zt9RdMUOHp6YnevXsbjWSrjqrSp1xO0ZFoK6dtxJntF3W2f3r9GQAgpHEgvjn+P7DY+l04LA4LDAYDM797EwJHPm6fvE8fa9NfM51SLJLgmwk/QiKSAACGzx+ItgNaarQpyjbdOalCIBDA19eX3mZSVRVdD68/rvMcNzc39OzZ0+RqqSo0ijy8pCg1oqFGIBAIhFcSiqJQLpYhXyhGvlACoVgKOQWwGAzY81jwEHDhbs8Fn6O/NHttIJNTKBCKkS8Uo6hCAomMAhgAh8mEm4ADdwEXLnwOWEzDeiEEhS0LK8TIK5cobSmnbenK58DdngNXPpfY0gRkcgpFFRLkCcUoFEogkcsBCuCwGHDhK96XbgJiS1OQSqVISUlBQkICUlJSIBQKQVEU7OzsEBgYiLCwMISEhIDL5b7sqdZ5pFIp0tLSkJCQgKSkJNqWPB5Pw5Y8nuEf3QRAJpNp2FIlvM7j8RAQEEDb0lQx9f8ycrlcw5ZlZWWQy+Wws7ODn58fwsLCEBYWRmxpAnKKQkmlFPnlYhRUiCGSyrHw7mqwGIALn4Os0kq4C7jgsLSdRhRFYcP8zUiNTQcAhLcKxeTlY7XaFVjgBAKAXr16IS8vD8+ePUNAQAAePnyIhIQEZGZmQiwWg8ViwcnJCaGhoQgNDUVBQYFZ+mkqNAoT5JXC2cMJDy891dv+6Y14yKQysNgsRLZtiA+2zsPqWb/AO9gDxZVSuEUGwDXSHzxnARzdHNFpSGs48zmITy1A4lNFOmpYs2B4+Gk6/n5e+DsSHiQDSmfdjG8naI1dYKZzUkW3bt2Qm5uLJ0+ewMPFA2zPOLBcgZNXjqNobbZC/8zRESEhIQgLC0NRURFat25tVDuvOi4eVbYsySuFV6CHWefbAuJQIxAIBMIrhUQmR0KBEHE5ZSiskBht7+XARaSnA4JdBbXqHCgQihGbU4bEAiGkcspgWw6LgYbu9oj0dIAzn1Nrc3xVKBSKEZdbhhf5JtiSyUCYuz0ivRzgSmypRVGFRGnLcoVz1wBsJgNh7gJEejrATUCcQdXJyMjAqVOncPHiRVqAWR88Hg+dO3dGv379NNKKCAqysrJw+vRpnD9/nhYG1weHw6Ft2bBhw1qb46tCTk4Ozpw5g3PnzqGkxHDEBpvNRseOHdG/f3+Eh4eb/WO2vpOXl4czZ87g7NmzKC4uNtiWxWKhffv26N+/Pxo1akRsWQ2hWIZneWV4lluOCmV0mT4YDCDIhY9ITwf4OPJoWx779QxObD0PAODxuViy8x1wuNr3eU3dL20Rfv3jMhAZGYmHDx9iw4YNoCgjzxscDnr37o1Ro0bBycnJYFt1nD00K32ikT8+2DYP6+b9htQ4bT02kVCE+PuJiGyj+L7rNKYzPHo2x/O8cpSLtW0Zn1+lYTbq1HKkXX4CXwYFiqJoW57ecRGHN55UXAeXjY/+eAc8vvZCRYGFtgSAyMhIxMTE4HbCdTh2V4wrgRCXL1/WasvhcNC9e3eMGTMGLi6mO+7qQoQagzL2TqnHlJSUwNnZGcXFxWZ9CAgEAoFQ+1AUhfi8ctxOK4LYiCNAF3wOCx2CXRHkwq+R+akoF0txPbkQacWVFp0f6iZAuyAX2LFfbmRdXaBCIsP15EKkFFVYdH6wKx/tg1xfepRiXaBSIsONlEIkFVpmy0AXPjoEuULAJbYsKyvDtm3bcOnSJYvOb9myJWbOnAkPj9pfSa9rlJeXY/v27bhw4YLRH6+6aNq0KWbNmgUvL68amd+rREVFBXbu3IkzZ85YZMuoqCjMnj1bI1Xrv0plZSV2796N48ePW2TLiIgIzJ49GwEBATUyv1cJqVyO++kleJJTCku8Du4CDjqHuCHrYTIWdv+MFthfsmMBek/oqvOcKZELkP48E/bOAhws/N2kceLj47Fp0yakpqaaPUcOh4Phw4djxIgRYLONxyvt/vYANn+8CwDw2d+L0HVke0AZCXnz2D3sXXUYDy4+0ThnxDuvYdaqKYjJKMbj7FIYWVvUiRufg04hbih8lo53Ov8P4krFovT7v87GwOm9dZ4zq8UiJDxIBofLxtGKXSY5ihMSEvDTTz8hKSnJ7DmyWCwMHToUo0aNAodjfFF0/49Hsem9bYCR90RNQiLUCAQCgVDnEYpluJJUgIwSy5xUUDpnzsfnIcxNgPZBruAa0KCwlBf55biRUmg08scQiQVCZJZUomOIW407/+oyiQVC3EguhEgmt7iP5MIKZJWK0CHIFSFu5gnd1ieSC4W4nlyISqnltkwtqkB2aSXaB7kizN24tkx95e7du/jpp59QVFRkQmvd3Lt3DwsXLsSUKVPQs2dPm87vVeLBgwfYuHEjCgoKLO7j4cOHWLhwISZNmoQ+ffr8Z6OCHj9+jI0bNyI3N9fiPp4+fYoPPvgA48ePx8CBA/+ztoyLi8P69euRnZ1tcR/Pnj3D4sWLMXbsWAwZMuQ/a8u8chH+TSxASaXU4j7yhRIceZKNuN3XIFFGtg2fP9Cg40QVoWZKuqdUKsVff/2FQ4cOWeQ8hbJC5d69e3Hr1i28/fbbCAoKMtheI+VTLaqKyWSiw+DW6DC4NeJuv8CW/+3C3dMPAAANuzfBP0+zUWRCZoY+CiokOPo0Gy/2Xqdt+dqM3nqdaVCLUHP1cTH6PpbJZNi3bx/2799PF1swF5lMhgMHDuD27duYP38+QkJCDLZ30WPL2oQ41AgEAoFQpymplODUs1ydYe2WkFAgRFGFBH0iPG0WuURRFGIyShCTaZubeaVUjvPxeWgf5IJGXo426fNV4mFmCe6mG06vMRWRVI6LCfkoF0vR2Oe/F43+JLsUt1Itd/6oI5ZR+DexAGUiGZr5/fdseebMGfz6668W/+hSp6KiAps2bUJ2djbGjh37n/vBffHiRWzcuNEmthSJRPj111+RmZmJN9988z9ny6tXr2LdunWQyay/R4rFYmzbtg0ZGRmYNm0amMz/Vv26mzdvYs2aNZBKLXcAqZBIJNi5cyfS09Mxa9as/5wt04orcCE+HzIbfMYpABETeoLj7oSSs/cwa+Ukg+0ryhSR2HYOhjXtxGIxfvjhB9y9e9fqOQJAUlISPv30UyxZsgRRUVF62+lzqKkT2aYBVpz8FJmJ2citlOJhBQWpFc40FRSAsNFdwHZ3Qu6hq5i3brrB9pXlioVsvhFbSqVS/PjjjyZVRzWF1NRUfPrpp/jwww/RtGlTve00Uz5t89xoLv+tTzaBQCAQXinKxVKbOtNUFFRIcPpZLsRWROyo8zCz1GbONHVupBThWa5hPaH6xuOsUps509S5nVaMp9mlNu+3LhObU2YzZ5o69zKK8agG3u91mQsXLuCXX36xiQNInf379+Pvv/+2aZ91nStXrtjMmabOP//8g127dtm0z7rOzZs38eOPP9rEmabOqVOn8Pvvv9v8b1SXuXfvHlavXm0TZ5o658+ft5kj/lUhs6QS5+PzbOJMUyd0QGu8tmE2WAYkMa4evkWnlkol+v+WMpkMq1evtpkzTUVFRQW++eYbxMfH623j5OZAvy4tNPyMx/RwwYMKyqh+rLkE9WqGQT/NBZtrJL5KOSzDgAaxXC7H2rVrbeZMUyESibBixQrExsbqbeOoZsuyQsNapjUFcagRCAQCoU4ipyhcfJFvc2eaisIKCa4lW55qpCKjuBL3MmpuVex6ciHyy8U11n9dIrtUhNtptncAqbiZWoScMlGN9V+XyC0T4WZKYY31fye9GJlWpGC/SiQlJeHnn3+usf737t2Le/fu1Vj/dYn09PQacaapOHTokM1/1NVVsrOzsW7duhqz5fHjx3HlypUa6buukZeXhzVr1tjcMani7NmzOHfuXI30XdeokMhw8UW+RRpfppAulCI2R7cT6ugvp7Fs5Pf0dkm+ZjuZTIaclFw8uPQE3y/9AXfu3KmROVZWVuLrL77Gk9txEFVoP3MwTIxWrJTKcOFFHmQ1ZMwskRxPsgwvNKpSNw1FWB45cgTXr1+3+fygjCJctWoVSkt1z7MuRH6SlE8CgUAg1EmeZpcit4YdSUmFFQgpFCLY1TJ9LbFMjqs2cMoZggJwJakAg6K8a7VKaW0jkclxJalmbQkAVxILMKSxN9h14CGsppDJKVxJKkBNx0NcTSrA0MY+4LDqry2lUik2btxYYz+0Vfz8889YtWoV7O3rrz6dXC7Hxo0bIZFYn7ZkiN9++w1RUVH1uuCYXC7Hpk2bIBLV7ALBli1b0KRJE7Oq7r1qUBSFn3/+GRUVlhVsMZXt27ejefPm9boYCUVRuGal9qkp3E0vhr8zH052bHrc7Z//hZ1faEb7FueWYOW0jchOzkFWUi5yU/Mhk8rAcgYcexuOurKWsooyfDTnE1TcZcAryAP+4T7wD/dDQIQvZGqRc4ZS1G+mFFmlfWoK9zKKEeDCh4uequiUkQi1tLQ0/PXXXzU5RRQXF2Pr1q1YsGCB1jENrbaXlO5PHGoEAoFAqHNUSKTwcuChf6QnpDIKlxLzIZVTGBDpBRc7Dq4mFyDZwmqF1bmeXAh/JzuwLXAKxOeVoVuYO+QURc+TxWCgZ0MPyCkKDDBwPbkQRZXW/YAsrJDgSXYpmvrW3x+IDzNLUCpSPGR62nPRJtBFw64CZZVWAGAzmWAA+Oep+aLRJSIpHmWWooW/eeXfXyUeZZWguJoItB2bqfW+LBZJrPpMlYlliMkoQZvA+vtj+/jx43SlMmdnZyxatAgymQxMJhO//vorUlNTsX37drx48QIAcPDgQcTExJg9TkFBAfbs2YNp06bZ/BrqCqdPn8bz58/pbV32TEtLw+zZs+Ht7Q2hUIgNGzagvNy8NJ7i4mLs2rULs2fProGrqBtcvHgRT54oqgBGRkbiiy++wPTp08FkMnW+Ry2lrKwM27dv1/lDtr5w9epVnZ9Zdbs6OTlhxowZAAA7OzswGAwsWbLErHEqKiqwbds2LFq0yGZzr2ukFleia6gb8oWKxdCHmaXILK20+bObVE7hZkoh+kR4QiaV4fupG3D2j3+124mlOLntvNZ+QWuFg6j6d3dSUpJNPz+8UAbEyRSyk3ORnZyLu2cearU5vf0CRBViNOsWhabdouHuq3jOySiuRGKBEONb+mvYM6OkUuc+S5FTiufgAY10V0qmlA4rfY6/X3/9lV4kqW7PvLw8qz83Ki5fvozu3bujefPmmvNTWzlkvqRFZ+JQIxAIBEKdIz5PiJjMEsjkFCI87dHIywEPM0tx4UUeIjwdTOjBdCqlciQWChHuYV6/EpkccTlluCvRnOejzFIcj80BAHg78tDE1xGXE62PvIrNKUNjH0cw66HgtlQux7Pcqh/NZUrtvOp//5Nxigp2kZ4O4LItt0Ncbhma+jrVy4g/mZxCnA7dPZFUrvN9ae1n6lleGZr7OdXLKDW5XI7jx4/T2yUlJfjss89AURSio6MxfPhwrFu3Djk5OVi2bJnV450/fx7jxo2DQFD/KtLK5XIcO3ZMY58ue964cQPl5eX4/PPP0bp1awwbNswiXbRLly5h/Pjx9TJKjaIoDVsOHjyY1mvS9x61hqtXr2LixIlwc3Ozeu51kervSxXqdk1PT6c/4/3797f4M3rr1i3k5OTAy0u38+JV52l2KRx5bPperaImnt3SSypRVCHB4o4fIeFBstH29s4CeId4wilUgGS2QpOr+nc3g8Gw+efHo50Dyq5SKCvSvTBQnFeKI5tO4simkwAAv4Y+aNY1Cv4TewGO9igTy7TsqWufNWSXiZAvFMNdwNU6ZihCLSEhAU+fPqW3dd0LbfG5UXHs2DFth5pahNrLKkhT/55+CAQCgfBKI5NTeJJdSmtGyOVVN/QKSc2EvsfmlJmtQ/MiX4gSkUxrnuq9cFlMFAptk94klMiQWlSzKSkvi6SCCo0UkQqJXOffX0WomwCJ+UKzxni9qS8CXfiA0omaXGje+a8KKUUVOj8n+t6X1n6mJDIKiQX105Z3795FXl4evU1RFP09YW9vT0eueXh44PPPP8f8+fPh4GDej8b169ejbdu2gFKA+eLFiza9hrrCo0ePkJmZqbFPlz19fX2RkJAAAEhMTER0dLRF40mlUpw/rx2ZUh+Ii4tDcrLCgdCqVSvExsbSqZ/63qPWIJfLcfbsWav7qYskJCRoRE2qqG5XdTp37myxthxFUTh9+rRF59Z1iiokyCoVwZ7DwoBIT3QNdQNPudBSU89ucTllSHyYYrBNl5HtcaBgGw4W/o6f761EYI+qlNvq39018fmROFTgt+er8HfOZqy5/CUWbZmLXuO70Mer+4Ay4rNw+WQMKu0Vzyu67Klrn7XE6dGlMxShdurUKY1tQ/dCSz43q1atQqtWrejt+/fvIztbMzNB/fmwJlN4DfFKO9QuXbqEIUOGwM/PDwwGAwcPHnzZUyIQCASClWSXimjNCB6LiUgvBzzPM5zy0z/SE2+2DoCrmgYEh8XA5DaBsOfqrwalokAoodMNTSVJzYlQfZ7OdmwMbOSF9kEuyFYTwbd2nkn11HGh77p0/f3tuSwwGIoV2up0CnHF5DaBcLYzHoBfX51Aht4j+t6Xuugf6YmJrQIwvqU/xrXwQ/9IT7gJdGus1Nf35dWrV7X2+fv744svvsDUqVPplLv58+fj888/x6NHj/DGG29otI+MjMRHH32ELVu2YOvWrfjuu+8wdOhQsFi6P++6xqwP6Luu6vZMSUmhIxCaNWumoSm3dOlSvPbaa/S2t7c31q1bh8mTJ5s15quO6roYDAb69eun9aNW13sUAHx9fbF48WL89ttv2LZtG1avXo1hw4aZNWZ9Q9d16bMrAHh6eoLJZCInRxHtu2TJEp1p2nw+Hzt27EDjxo1NGrM+oLoP7H+UiRNxucgsEaGlEWmF/pGemNwmEL6OPI39jb0dMblNINoakRNIKhRi+ILXIHDi65XPKsgqgoOL4ntEKpXi5s2b9DFd3936Pj9Lly7FH3/8ge3bt9P/+vXrZ8wskMvluHHjBpw9nNC4UyT6T+mJAdN60cdHvjsYXx//H974aASadGkEDpeNoD4t6MIFuuxpyMZeDlz0DvfAuBb+eKOFP4ZEeyuzGwzPM6lQqHNhWbWrejqlXC7XKkSg715Y/XOzdOlS7N69G0FBQXQbgUCAv/76C56envS+hQsXalRhpSgK165d05wfiVCzjvLycjRv3hwbNmx42VMhEAgEgo1Q6UKwmAx0b+COmymFEJkgyiqWytHKCl2sPDMKIFAUZXCexZVSHI/NwdnneWhX7YHQmnnmCetftU+KonRel76/f6ibQKcDh81kIMRVgEqpDOEexoXd8+uhLWHkugy9L3VxJ60Iu+6l46+YDBQIJejVULeYdr5QXGOVBl8mKi0YddLT0/Hpp59ixYoV9A9pVfWxK1euICQkhG7bqlUrfPzxx4iJicE777yDqVOnYs2aNQgICICrq6vOMRMTE2u8AMLLQJctocOe9+7dQ35+PpYuXQofHx8UFOhOlw8KCsLy5ctx8eJF/P777zrbpKSkQCyuf59zlS27dOmCO3fuaBV50PUeBYCPPvoISUlJmDt3LqZOnYpVq1ZpRXvoIyMjo8ZF+18Gut6X+uwKAJ06ddKIsjl//jy6dOkCNltzEadz584oLCzE48ePtfrIzc1FSUmJza6hrqC6j6vu14mFQr2LMOoUV0jQsNo9u6GHPYoqjEf3V0rlmLxiIg4Vbcfh0p348cqXmLVqEn2czWGh/+Qe9HZaWprGd4Ku7259nx8A+OOPPzBp0iT6ny6nqy5UUbcq1G+XPD4Xbfu3wLSvxmP1pS9woHAbes7uTx/XZU99Ng5wtkOfcE9kFFfiwKNM/Hk/HRcT8uFixwGfY3jRViKjUKJjYZm+t1dzVmVlZUEo1HwW03cvrP65gVKfcfz48QbnpAtDtiQRahYwcOBAfPnllxgxYsTLngqBQCAQbES+UAwGgO5h7ojNKTO50mdcbhm8HHjwduDpPM5mMtA+yAWvN/XFmOZ+6BLiBg6r6uabb0ZqZkmlFFI5pXOe6vdzsUwOabVy58bmGe3tgBFNfDC+pT9GNvFFIzXdkTKRzCTn4qtEuVj7mgz9/UPcBDqjy0LdBJDKKdxNK0aYu73RYk8VEjmEOqLcXmUqJTKU67kmY+9LQ8gp4HluOey5bJ3pJWIZhVJR/bKlUCjUSlFU/9FcXl4OkUgEHo9Hr4pHR0cjKyuLbjN16lQcOnQIx44do39oZGRkYOPGjRqppOqIxWKkp6fX0FW9HMRiMdLS0rT267InAOzevRvLli1DWloabt26pXVeZGQkli5digMHDuDvv//WOq5CJpMhJcVwOtirhkwmo9M9g4KC0L59e3z88ccIDg7GggUL9NrU0dERPj4+OHPmDMRihQM8LS1NI8KEz+dj2rRp2LBhA7Zt24avv/4a7u7ugPJHdWJiYq1fb02i75p02VVFp06dNCLMbt++DZlMRqdtq+jRo4fBlOPqToFXHYqikF8uBpvJgOpW4+PA0+mgqU5ioRD+znb085iHvULHq/oi5+tNfdHYxxGvNfLC+Jb+6B/pCQGHhXxlOzsBD9EdIzF4VlXUWJOuUXhtZh96W93uur679X1+jMHj8TBt2jRs3LgRv/76K+bNmwc+n69zXBiJquLxeZAJ7ADlc2t1exqycbsgVzzKKsXTnDL6uaqkUoorSQX0s4Edm4nuYe4Y29wPrzf1RUt/Z7q//Go2V18oqx6hVv2aDN0Lq39uoEwXjYyMRFRUlE6bopokgr5x60KEGilKQCAQCIQ6RalIilA3AbwdeOCwGIjydkBaUSUeZ5eie5g73O25kMjk8LDn4k5aMX2eSCrHw6wStApwpsXX1ekc4gY5ReHwkyxQFNAp2BXtg1zpggFlZqR8looVbXXNM6dMhFYBzqAoxYLerdQijXONzbNMpBCbFUpk8HHkoXe4B/IrxMgtE9Pz5LG1hWNfVXTZXd/f38WODZFUrrOMfEMPeyTkC5FYIETbQBcEOvORYkRzrkwkhcCEVNtXBUNpy+4Crs73paHPlAoWk4FwT3uUiaQaWnfqlImlcDIh1fZVITdXW/A5NDQUEyZMgFwuB4OhqBDn5+eH2bNno6KiAhKJBD/99BOgTK/z9va2SGspJydHIxXmVSc/P19n1J0uezo6OuL999+HTCZDeno6tm/frnFOkyZNMGbMGGzevBn//qtd1a86OTk5aNiwoU2v52VSVFRER9j88ccf9P6lS5di7dq1Om0KZeRIeno65syZg7Nnz+L58+daTt25c+eCx+Phk08+QVFREYKDgzWieXJycizWtKuLlJWVaUXYQI9dASAgIAClpaUoLq76jpTJZLh06RJ69uxJp6L5+/ujQYMGWLVqld6xValv9QUZRaFSKoebgINOIW6QyOSQy4GryYrnK0P3GbFUjvTiSoS6CfAstxwNPewRn1cOF752dFuYmwDn4/MglMjQs6EHWvo7ay3mGHKwqEdk6vru1vf5McbcuXMhk8noCqGzZ8/G9OnTsX79eq1xYSSqiqIoWtLCyY6tZU9d+wDAiceGI4+NxALDEindwtxRIZFh38NM8NhM9An3hFQmx8OsUpRVs6VczZbVVymrX5O+e6Guzw2Un79Dhw5h/Pjx+PTTTw3OWZ2cnBzI5XIwlSmxpMpnLSMSiTQ8zfUx3JZAIBBedWRyCgkFQiToiEK6mJBv8Nyn2WWI8nJAoAsfWaVVZcR5bCaCXPnYcz8dEpni7nsvowTDGvvgSmIBKOW4piJXttU3T2PVl/TNE0pReRVZpSJkFFfCx5FHO9Rk9Sy1Ttf16LNrUaUUp59p29bZjg0vBx6uJxdCKqeQUlSBcA97ow61/4ItVeSWi3W+Lw19ploFOKOFnzNkFIUCoRjn4nVHVcHMz8+rgK50r+fPn+Pzzz/X2r948WKtfarqkvpSFg1R39IUddkSBuxpqGJqdHQ0iouLce/ePZPG/q/YUmWz0tJSnTYFgM8//xxDhw7FqFGj4O/vj4yMDGzduhUPHz6Es7Mz2rdvjzlz5qCwsBAAtATZ/yu2VEf9vZiWloYvv/xSq825c+ewatUquLu7Iz8/H7169UJMTAxtR13UN1uq/C4FQgn+eaKdRmzs2S0+vxwt/ZzxIk+IYBc+Dj3OQusAbVmCuNwy2tmUkC9EUx9HpBZrPkMZclap/80TExO1vrvz8/P1fn4AYPz48Rg9ejS9PXv2bHC5XLRv3x7Tp0+nHbR79uzBDz/8gA0bNoCiKEgkElAURTv4DDn91G+luuxZLpbptDGPw6SP60PAYcHXyQ577qdDKqcgFcvwILMEzf2c8DCrVPsZwoCzqvrnR5c9YeBzAwBHjx7FgAED0LZtW53p0fqQSqXgchULy4acfrXFf8qh9s0339ikrDmBQCAQag6mFTdEGUXhfkYJWvk740Rs1QKKA5cNJoOB15v6aZ3D57AglMjMWtmyZo6G5glldFZjb0c48FhggAEWk6EhwG/t2HUNW1xPuIcDCoRiFCo1V17klaNPhCIdRCjR/3BJbGmYu2nFeKqn8ldNj/2yqa6JZC6qRVs3NzeTdapsNXZdw5bXc+DAATRq1AifffYZvvjiCzqVtjbGrgtYcz3FxcXYsWMHduzYAXt7e4wcORIffPAB5syZAw8PD4jFYuTn63d8EFvqJj09HfHx8ejevTsOHjyIrl274rfffquVsesK1n79Z5aI0CmYhWZ+TsgtF+uMQke1aqFSOQUOi6kltm/IWWWt3Xft2oVjx45p7AsICACTyaSj0VTI5XK4uLigsLAQbDZbYy6GnH6W2lKktI09l6VXgkHAZUEq14zyLxVJYa/UV6tuS3kN2hJKp9zevXvxxhtv4LPPPjP5PI2xSYRa7fLRRx/h/fffp7dLSkoQGBj4UudEIBAIBE34HBbtGLGE+LxyNPZ2RAMPAb2vXCyFnKLw14MMvZE0fLbpsqJ2HOslSHXN057LQpdQN5x5lousUhEoAD0buGvO0wZj1yWstSWDAYS5C8BhMjCmeZXDlMlgoIGHAA8z9f/gtsXfsS5hTHS4ZseuX7Z0dra8wAkAZGZmIicnB506dcKBAwfMOtfFxXjBiFcJVbSeLZBIJFi5ciXef/99LF26FMuWLTPoVKtvtnR0dASDwbC6CEh5eTn27t2LIUOGwMvLC3l5eeByuXSUlS7qmy0FAgHYbDakUvMqfOvi3LlzGD58OFJTU8FgMHDnzh2D7eubLdlMBthMhlnanNV5kV+OZr5OuPDCcDRbdarf9wylAFr7va6LvLw8yOVyzJo1S2/kYfVxDTn9mAwGeGym2Xq5JSIpSkVShLjpf+4RimVgM5mwYzNpp5oDl4Vy5cKjIVtWd/zZypbnzp3D4MGD0b17d5PaOzo60umeqCMRavXr6ccIPB4PTk5OGv8IBAKBULcwpSqUISgAd9OL0dSn6ju+UipHalEF2ge5gKd0nNmxmQhyqRKNdbc3XZfMlc+1+r6ta55s5QNLpVQOCoC/sx38nOzo4zw2E4KX6DSpCZztOGBZsaoY6MwHl8XEkafZOPw4i/4Xk1GMcHcHvedxmAw48erXuqIDlwUuq/YfKJkMxd+xPuHq6mr1j94tW7Zg+PDhGDBgABwcFO9FX19fzJ49Gx4euiumMhgMBAcHWzVuXcPBwQHe3t42608mk+GHH35AVlYWli5davB5Xr3SXH2Ax+MhICDA7PPs7e0xduxY+Pn5gcFggMvlYvDgwSgtLUVGRgaKi4tx69YtzJw5Ey4uLmAwGAgJCaHft1Bq3tUn2Gy2zT5rV69ehYuLCyZPnoxLly4ZrdRb32zJYDDgJrBO2/VJdhlOP8tFarF51WSrj2vIwRIWFmbVHHWh+uxMnz4djo6OgNLZpC6mrz6uVCLFia1VBSuyk3NQXqype+ZuoS1vphSiqY8TGnk50AWEnHhsdAp2hT1XEbGfWVKJNoEuYDMZsOey0MzXCS/yFeNXt6Uhx5+tbElRFHbv3m1ykcnq4xINNSspKytDfHw8vZ2YmIj79+/Dzc2tXom5EggEwn8JSx8k1EkpqkATH0fYqTmfLicWoIWfMwZFeYPHZqJSIkNSgZDW2TJnXBaTAVc7DgqsiKTTNc/iSikeZpagX4QnGAwGUosqNPRB3AXcl1bFqKZgMhhw43NMruZanXBPeyQWCFFSqRll8DSnDI19HOHjyENWqXalLrd6aEvVjxpd11uTuPK5VjlF6yphYWG4e/euxeffvXsXX3/9NV5//XWMHTsWUEYzXLp0Sa++UkBAAHg83RWAX2VCQ0PNTn01hEwmw+rVq/HOO+/g888/x7Jly7REr729vTUcQvWF0NBQpKammnWOVCqFm5sbPvroIzg7O0MsFiMxMRFff/01rS+9fv16TJw4Ed9++y3s7OyQnp5OC+u7urrC1dW1Rq7nZRIaGooXL15Y3U9lZSWuXbuGnj174ty5cwbb2tvbw8vLy+ox6xruAg5yyiy/94hlcmSaee+iKArvtVyEpl0aoVm3aDTtFgW+Q9UiZHUHS2hoqE0iPKuzYcMGjBkzBt988w0cHBxQXFyMq1ev0lWK1Z1AN4/dw+X9N+jtE1vO48SW8/AK8oCLlzMatQ9Hpw9HIsMCqfe04kqceZ6LZr5OaOmniCArE0uRkC9EhTIK7VJCPtoHueL1pr6QURQS8oV4lFUKJgNwrVYIwlCEWlBQEFgsllHnsSncuHEDQ4YMMSnYScuhVgeqfDIoW7+japELFy6gZ8+eWvsnT56Mbdu2GT2/pKQEzs7OKC4uJtFqBAKBUEcQSWXYG5NZq4LxfA4Lo5r5mqUDdTetCA+zDOv32Jp2gS6I8nas1TFrg5iMYty35OnRClr5O6Opb/279z/OKsFtHZU6a5Lmvk5o4W/7VJqXzalTp4xqIdmaoUOHYuLEibU6Zm1w4cIFbNy4sVbHHDBgAKZNm1arY9YGV69exZo1a2p1zF69emH27Nm1OmZtcPv2bXz33Xe1OmaXLl2wYMGCWh2zNsgorsTp54YLMtmalPMPcGmx5m9+dz9X5GcoFizCW4Vh0Za58GvoAzuBYqHi888/x5MnT2p1nt9++y3tCHp8NQ7vdvnEYPtx300Cu0eLWpqdAn8nO/SJ8NTYV1FWgaFOkwAALXs3xXenNXXOvv76a9y/f79W57l8+XI0atSI3r518j4+HvgVAGDip6MwednYWp0PXvUItR49etjcw0wgEAiElwuPzUKIGx8v8rWrPNYUEZ72ZouqR3g64FFWKWrrLsRmMtDA3b6WRqtdIjwd8CCzBLVVKJLJAMI96qctG3rY4156Sa05pBnKKMH6SNeuXbFz505UVlaa0Np6GAwG+vXrVytj1TadOnXC77//jvLychNa24b6ast27drRAQG1RX21ZatWreDh4YG8PP0VjG1N//79a22s2sTXiQcnHhslIus16UxFHJsKDpcNibhqTJUzDQCe303ArBaLAACege4IiPADL7B2ZTM8XbxxZccd7Es+jpzkXGQm5hg9x9uZDzmfY5WesLlEemlH8xqKUIPye6E2HWrBwcGIjIzU3Kk2yZcVofaf0lAjEAgEwqtBI6/ai8JiMoAID/PTghx4bASoabDVNGFuAnDNKJzwKsHnsBDsKjChpW0IcRNopAPXJ3hsFkLda8+WQa582HNf6fVZvfD5fJOFkm1By5Yt62UqGABwuVz06tWr1sZr3LixRVpjrwJsNht9+vSptfHCw8NrRHuqLsBkMtG3b99aGy8kJAQRERG1Nl5twmAwdDplagonOzaW/zYLBwq3YeX5zzF52Vi06tMUPL5u+Y7c1HzcO/sQ139/AHlF7QXkJJ3KwvZlf+HUtgu4f/4xspP0R/ExmAxM/2Y8Bs/sg0a1aEsHLgv+znZa+42lU7Zq1Qqenp5a+2uKfv36ac1DrrYSq8vpVxvUzydzAoFAILzSeNhz0aCWnAJNfZwg4FrmXGkd4AxWLayI8VjMeplSp04rf2e6KENNwmEy0Kqe27KFnxM4tVCcgM1koJV//apWV51Ro0bRQtM1CYfDqZepnuqMGDGiVnS4WCwWJk+eXOPjvEyGDBmit7CFLWEwGJg6dWqNj/Myee2112xaNMMQU6ZMqXfanepEejrA2a52FljaBbqCwWCAx+eheffGmPjpKKw49Rm2PK1Khw6KCkDfSd0R1SEcjm5KBxUFCGNqZYqQ5lMQp2juc3S1r5qLGnb2PHz1z0cYt1ghzt/Q3R5u/Nop9tM2yFVnloYxwX8mk1lr3w+hoaE6pb5IhBqBQCAQCHpoG+gKPqdmb1OufI5VOlrOdhy0rAXnTLsgF61y5vUNBx4brQNq3jnTJtCl3kZUqbDnstEusOYdF638neFUSz+eXhbOzs6YPn16jY8zZsyYehtRpcLBwQEzZ86s8XFGjhxZ76p7VkcgENSKptnQoUPRsGHDGh/nZcLj8TB37twa/zE+cOBAREdH1+gYLxsWk4HOIW6oabdGuIe9zogqAGCyqp4bg6L88eG2t7H26tfYn7cV+3K34MerX+HdL+bB28GvRufIoBjoHN0dc9dMxbKDH+Ln+ytxsHAb9udvw6SlYzTaung6YeW5z9F2QMuq62Ay0DnUzeqK8sYIcxNoVLxXx1DFVBVt2rRBly5damp6gHKRZO7cuWCztZ83SIQagUAgEAh64LGZ6BrqDkYNqZRxWQx0DXOzujphlLeD3gc7W9DAXYBQt9pL4atNyovLcevkfWx6fxveCJyF73r8D372NbciG+LKr7faacLSCtw5HYNfPtyB8cGz8WWnJQgQ1JwtA134tZqS8jLp2LEjevfuXWP9t2jRAkOGDKmx/usSbdq0wcCBA2us/8aNG2PEiBE11n9dolmzZhg2bFiN9R8ZGYnRo0fXWP91iaioKIwaNarG+m/QoAHeeOONGuu/LuHpwKvRKHBXPgdtAvUvvmnoflV7vHNyd0R0hwj0m9wDX61ZXqORiW/NfgsL172NEQteQ6ehbRHWLBj2zornDxevqoVcRzcHrLnyJSLbajuu3QRctK3BhUZnOzbaBRno34At1Zk2bRr8/f1tOzk1Jk+ejODgYJ3HqDoQoVa/lxUJBAKB8EpjL5Xg/vf70eTdYWBxbHfL4rAY6B3uCVc9WhumQlEUbvxzGxc2n4NDvzbwbWdbbZRgVz46hbjVqxSRWyfu4eqhW3h8NQ5Jj1K1igv9OWYFGk4fAP8utl3JD3SxQ5dQ93ply7tnHuDygZt4fDUWSQ9TNFZqAeD8x7+D17kJgno2s+m4fk526B5Wv2xpCAaDgZkzZyIzM9Pm1eEaN26MhQsXgsn876xxT548GRkZGYiJsW3eVWRkJD788EOdUQz1lfHjxyMjIwO3bt2yab8NGjTAkiVLwOVad498lRg1ahQyMjJw5coVm/YbHByMjz76CHZ2NbfwVtfgpOfi8e//ovFk2y5EONux0TfCE1yW/u9LgWOVncuL9Re3cnJywqeffoply5YhN9e21UnffPNNg4sw6vfqMR8Mg39DX71t7XIL8ei3U2gyw7bFLBx5Clvy2PqzH+wcTLOlg4MDPvnkEyxbtgxZWVk2nee4ceMwYMAAvccpNVvqSkutDf47d28CgUAgvFLI5XJ8++Y6PNx7Beff/RWSEttU/XTksSE6cw+T3CZjcsR8xFx4bFbFaIqi8CImCb8t2YmxfjPx2bDvcOPwbZx//ze8+OemTeYIAOFufGzq8TEGCyZg7du/oSS/1GZ9vyxunbiHj1/7Gv/8fBqJD1N02j31cRoufrgVzw9cs9m44e4CbO63FEPsx+OHt35CUW7tVcerKWIuPsbifl/gyKaTSIhJ1nKmAcC9UzH49+PtiP3rX5uN28BNgB1DvsBgwXh8N2U9CrIKTTjr1YfJZGLQoEFo1aqVzfrs0qULAgICsGbNGpw9e1YzvaYeo7Jl69atbeaU7dChAxo0aIAff/wRp06dgkwms0m/dR0Gg4EBAwagbdu2NnPKtmnTBlFRUVi7di1OnDgBqbT2qja+TFRVdtu1awcWyzYSC82bN0fLli2xfv16HD16FBJJ7VVtfFmU5Jfii9GrcG/DUdxadQCUzDbfaz6OPNz4eDtG2E/AB32WITUuXWc7gZMAbKVERlFuicE+vby88MUXXyA8PNwmc+TxeJgzZ47RiGNxZdX7wN5Jf3GrsqJyfD7ye9z/5SRufLsXlNQ232teDlzEfLUbrztMxPvdP0Pyk1Sd7bg8DgSOivkVG7Glu7s7li9fjqioKJvMkcPhYObMmRg5cqTBduq2ZL8kOQ/iUCMQCARCnWTHsr24dfweAKAiMQsDwlytTn2M8nLAkGhvnFhzBDKpDBnxWVjU63PMa7cE53dfgczAw0pJQSl2fvE3ZjR5D7NbfoA93x1CYXaVY0YulsKvtAw9G3pYpf3mwGWhf4QnGI+TUJBeCIlIgiMbT+KNoNlY9/ZvyHhh29W/2oRrZ1q0g1wqg1dhMfqEe0BghXacPZeFPuGecEjLRk5SLiQiKY7/dhbjg+dgzexf9D6QvwoYsyWPz4W4UgJKJodbXiH6hnvA3sLiG1BWYu3d0AO+ZaXIfJ4JqViK09svYkLIXKyasUnvA3l9oLS0FPv27UN0dDSWLFmCzz//3KpUIWdnZyxatAhTpkxBWloaKisrce3aNdy9exePHz9Gdna2TedflxAKhdi/fz/CwsKwePFifPHFF/Dzs1zLyNHREe+++y5mz56N5ORkiEQi3Lx5E7du3cLTp0+RmZlp0/nXJSorK7F//34EBgbigw8+wFdffYXAwECL+7O3t8fbb7+Nd999F4mJiRCLxbh16xauX7+OuLg4pKe/ut+XxhCJRDhw4AC8vLywaNEifPPNN1bp8PH5fMyePRtLlizB8+fPIZFIcPfuXVy5cgXPnj1Damr9/L6UyWT4avwaZCcrIr6YyVkYFOUJd4HlkY5sJgPtg1zRL8ITd47egUwqw/1zjzAt6l18NnwFHv77VCvtz8lDkVJZkmd8IdLNzQ3Lly/HxIkTweFYLpMQHR2NlStX6hbOr0ZRdhH92sVLd3qsXC7HisnrkBGvfOZLysKgRp7wtLfcliwmA20DXTAg0gvX912HTCrDw3+fYkaT9/G/wV/j/vlHWgudzp4KWxpzqAGAi4sLli5diilTplgV3RoZGYnvv//epAq8hSbYsqZhUOYsy9czSkpK4OzsjOLiYjg5WS5KTSAQCATbcvP4Pfxv0NeAMoT721OfomWvpgCArNJKxOWUIbmoAqbcwVhMBsLcBGjk5QA35UPdp0O/xfV/7mi19QrywOvvDsaw+QO0Vqjnd/wYsTee6x0nrFkwNt5eARabBbFUjud55YjLLUOpyLTVfVc+BxGeDmjgLgCHxURZUTlGuE3RasdgMNB5RDtMWjoaoU11a0rUVSiKwndT1uPMjksG2wVE+OKXB6vA4XIgkckRn1eO2NwylFSaZktnOzYivRzQ0N0eHBYTlUIRhjhORHU5PgaDgQ5DWmPS0jFo2DLUmkt7KayZ8wuO/nzaYJvwVqFY/e8X4PF5kMjkeJFfjricMhSZaEsnXpUtuWwmpBIpBvHH64yIa/daS7z52Wg0ameb1f66ws6dO5GdnY158+bRaVsikQiXLl3CqVOnkJycbFI/3t7e6Nu3L3r16gUHBwdQFIVvv/0WYrGYbsNisSCTyTBo0CC0adOmxq7pZbFnzx6kpKRg3rx5EAgUCyRisRiXL1/GyZMnkZiYaFI/np6e6Nu3L3r37g1HR0dQFIWVK1dCKKyKZFbZsl+/fujYsWONXdPLYt++fYiPj8e8efPg4KDQM5RKpbh8+TJOnTqF+Ph4k/pxd3dH37590adPH/r30OrVq1FSUvUDWmXLXr16oWvXrjV0RS+PQ4cO4cmTJ5g7dy6cnRU/yqVSKa5evYrTp08jLi7OpH5cXV3Rp08f9O3bFy4uCm2qdevWoaCggG6jsmXXrl3Rq1evGrqil8O2T3fjj6/2AUrnxqY7K+Dh7w45RSG5sAJxOWXILhOZ1Jcdm4kITwdEeNrThYTG+M1EYVaRVtvItg0w/n+vo9PQtgCAWS0WIeFBMjhcNo5W7DI5EjYnJwenTp3C8ePHTY4mbNq0Kfr37482bdqYHCW68d2tOLD2GABg9b9foEnnRlpt/vzmALb8bxeg1FnbeHsFfEK8IKcopBRWIC63DFmlptuyoYc9Ij0d4MBT2HJCyBzkpORptW3YMhTjPx6Jrq93AKo9+x4X/Qm2ifIreXl5OHXqFI4dO6ZxjzNE48aN0b9/f7Rr185kW27+6A/sXnEQALDi1Kdo1ce2Ehem8N8RGSAQCATCK0FhTjG+n7qB3p7+zQTamQYAPo528HG0g1AsQ3pJBfLLJSgQilFSLkJRXilkYil4oNC8ZTDcBVz4O/PBY2vemHu+0UWnQy0nJQ+b3t+GSqEI4z/WDDOXSfQ7IBhMBr4+9jFYSi0KLpuJxj6OiPZ2QHaZCDllYuSXi1FUIUFBXilEQhEk5ZVo1MgP/l6O8HbgwcOeq/HQ5+Bij4BIP6TFZWiMRVEULu+/gTunYrA7/Rc6HP9V4NntF7h39qHhRgzgq2P/A4erWCnmsJiI8nZEIy8H5JSJkVMmQr5QjMIKCQrzSlFZLoJUKELDht4I9HGGtwMPng6atrQT8NCgWQhexCRpDEVRFK4dvo17Zx5iZ9JGOHu8Ootr8fcT6QhOfTi6OeCzvxeBx+cBSls28nJEpKcDcsvFyClVs2V+GSrLRZAIKxEa4okQf1d4OnDh7cDTsCWbw0Zku3A8vf5Ma7ybx+7h3tlH2P5iPTz83Grgql8OAQEB6NWrl4YGEo/Ho50Q8fHxePr0KRISEpCcnIyKigqUlZWBz+cjMjISYWFhiIiIQHR0tMaPBAaDgTfffBNbtmyhowL4fD7atm2L0NBXz8FrCn5+fujcuTPtTAMALpeLXr16oWfPnkhISMCTJ09oWwqFQpSVlcHOzg4RERG0LZs0aaJly4kTJ2Lz5s10uqednR3atWtXb6tU+vr6ok2bNrQzDQDYbDZ69OiBHj16ICkpCY8ePdKyJZfL1bJl9QWkCRMmYMuWLRCJFD/YORwOunbtiogI2+qE1hW8vb3RrFkz2pkGpS27deuGbt26ISUlhbZlUlISysvLUVZWBg6HQ9syPDwcTZs21dLwGzduHLZt20Y7ezkcDrp06YJGjbSdKK8yDy49wa6v9wPKSpuf7HkPHv7uim0GA6FuigJLRRUSZJZUIl8oRoFQgqIiIYSlFZBWiuHuxEejSF942HPh52SnVTSqy4h2OLLplNbYcbdeYOnw77Dy3Odo3qMxHVUlEUshLK2AvZNp2Q1eXl6YOHEiPD09IZPJUFRUhMTERGRmZkIsFoPFYsHJyQmhoaEIDQ3F7du34e3trfXdbozCnKrsBjcf7aIAsTefY9tnuwHld9vHu96FT4gXbcsQNwFC3AQorlTaUvkcXFQsRFmxEDKRBCUpuSiITUOHLpEYMa6Tli27juqAfT/8ozV2/L1ELB+9Cl8d/RjtBraEi2fVc1FpQRlcvU0rkuDh4YHx48fD29sblZWVKC0tRUJCAm1LJpOJnBf5kBZSkBcz0GlqS7i5uaFx48bm2VItU8RVhy1rA+JQIxAIBEKdgaIorJq+EUXKh40Og1tj9KKhOtsKuCyEezgg3APY+cXfOLD+GEpyFeH9rfs1x4wTn+gdJ7qj4R8FulYzF+9YgPe6forSgjKtY+0GtIS7DgcCg8GgHYBlRWV4t8tXKMgqovvodXE5mjTTXxmpaZcoLYeaChabBeoV0VyiKArHfzuL9Qu2QCIyvOrbomcT+IVpp9MxGAx4O/Lg7ciDsKwC73b5FHlp+bQtvznxCZq21J/u1LRrlJZDje77JQnZWsrp7Rfx45xfIKpQrPoyWUzIdejUfLjtbfohXB0GgwEvBx68HHiorBDhva6fIjspl7bl5/s/QNM2+qMfm3aN0ulQw0sUBa4J0tLScO3aNYwaNUpvhAODwUB4eDjCw8Mhk8lw+PBhFBYWok2bNvD29jaaGmpnZwc+n0//2BYIBOjWrVuNXM/LJDMzE5cuXcLo0aP1/lhiMBho0KABGjRoALlcjn/++Qe5ublo164d3N3djaaGqmxZVlZGb9dHW+bk5ODcuXMYNWqUwQIMISEhCAkJAUVROHbsGDIyMtChQwe4uroiICDA4Bh2dnbgcrm0Q43H46F79+42v5aXTX5+Pk6fPo2RI0caTFELCgpCUFAQKIrCyZMnkZKSgo4dO8LZ2RlBQUEGxxAIBBqphCqnZ32irKgcKyatoxcGpiwfh+bdG+ts68LnwIXPAUVR+Hzk93j471P63jN52Vi07KXf0di4UyOdDjUVqnu5s5oTqDi3xGSHGpRp6c2aNYOvr/5CAQCQnZ2N69evIz09HTt27MCsWbNMdgSpR9m5emumKVaUVeCbiWvpe/r4/41Em37NdfbjbMeBs53ivfXl2NW4e/aB1jOqOOYFRo3vrHVu406NdDrUVDCVhR/UFxqLcktMdqgBQEVFBRo1aqS3AuhghwkQCcWwc+NALBYjKysL27Ztw9y5c03WMSzI1m/L2oJoqBEIBAKhznBk0yncOHoXUKYLvP/bHKOh+hkvsvD753toZxoA5KXlGzzHO9hT56ogAAye1RejFg7W2p+dlIvKskqd5wyZa7z60pdj1yD5SZrGw06ukXnqc/w5ezrhy38+okuw12UqyiqwYtI6rJ71M+1MC2kSCI4e8dihc4zbcsWb65D4IFnDlsb+5lF6bOno5oAvjix5JaLTKoUirJq+Ed9NWU870xq1a4jvznwGQTVh4yFz+qPD4NZG+1w98yfE3020yfvS3lmAZQc/rBfRaRRFYd++fSgrKzM5XejatWt48OABUlNT8eLFC9qxY4ji4mIIhUL4+/sjMDAQjRvr/hH6qrN//36UlJSYbMtbt27h3r17SEtLQ1xcHMrLy42eU1JSgrKyMvj6+iIwMBDR0batFFxXOHDgAAoLC03+wXnv3j3cvn0bGRkZePz4sUm2LCsrQ2lpKby9veu1LQ8dOoS8vDyTbfnw4UPcuHEDmZmZePDggUm2FAqFKC4uhqenZ7215bq3f6PTB5t2i8KYD3UvhKpz7NfTuHrolln3cX33HiaLiXc2vYVm3RS2danmBDKH06dP4/jx40bb5edXzbWkpMSk94KKAqVDzc6eB76D5r1747vbaN20Ru3D8eZno432d+7Pf3Fx71WdC74v7ulOo9drSyYDc9dMpZ141Z2T5nD+/HkcPXpU73GVo5PvXuXMLi8vR2mp6UW4VM5JJosJJ3dHs+ZnK4hDjUAgEAh1guSnafh50e/09qItc+FqRGCUoiisnfurljZWXnqBvlMAZSSELgcLg8HAgOm96XRDFRf3XsPS4SsgEWunffId7NCyd1Ot/erE3nyOO6djtPZb6gQKbRpkNMquLpD4KAXz2n2Es39UVZlsN7Al0p9n6bQlh8dGmwEtDPb5IiYJ147c1tpvqRMosJE/mna1TVWqmiQ1Lh3zO3yEE1vP0/sGTOuFVReWoXn3xug6sgO9P7CRP976/k2jfabEpuPCnqta+/ONfH702dK3gTda9GpidNxXAYqiEBUVhREjRph8Tk5ODv06ISEB//yjf/VfRUBAADw9PTFs2DBMmzYNrVq1wrlz5+pVZUWKohAREYHXX3/dZIeaemGGpKQkHD582Og5fn5+8Pb2xpAhQzBt2jR06NABZ8+erXeVFRs2bIjRo0dbZMuUlBQcOHDA6Dne3t7w8fHBa6+9hmnTpqFbt244e/YsHbFWXwgNDcWYMWNMdqipf8ZTU1Oxb98+o1XCPTw84OfnhwEDBmDatGno3bs3zp49i4qKCqvnXxc4+8e/OLfrMqBcVFmyfb5Re5aXCLHlf7u19uemG76P+4R66RSed3S1R/cxVTqJ1jiBsrKyTCru0aBBA1pzsLKyElu2bMHevXtNqjCsKkpQfWH33/03cGLLOUDpbFuyYz4tJaKPivJK/Lxwu9Z+VbS4uFKC2Fvaeoruvq7wDvbU2s93EqDnG1URbS5W2DIzM9NgNKyTh8IBVpxUDh6rSp/0999/x+7du0367lYVJXD1drZZpWNzIQ41AoFAILx0xCIJvpnwI13+eti8AWj/Wiuj51386yrunH6gtb+8WKHJYQh1EVieQKExRVEUVkxah0ph1Y+GE1vO4es3VkMq0XxIUv2YGfRWX3B5+itDyaQyrJn9i85juamGHx4DI/00Vtw4ynHun3uE47+dNXjuy+bktvOY3/4jpMYqKsMJHPkY/vZA3D4Vo5X2qfpdOGBab/Dt7XR1ByirXv045xdQOgTxjdnSO9gTHv5VkVNcvmJF9MnVOBxaf8K8i6tlzu36F3PbLEbSI0VlODsBDx/+/jYW/jYHXDsuYi48xqnfLwAA2BwWPv7jHdgp39P6oCgKP875RWeqqDHnpKu3C/wa+tDbPGWxj/i7idi78ohF11iXeP78OY4fP45+/frRwuKGoCgKd+7cQUpKCr3Pzc3NJKcYj8fD3Llz4emp+GGjEkK/cOGClVdRN0hISMCRI0fQt29fuLmZFrl47949JCVVpWerbGnMccHhcDB79mw6VUsmk+H69es4c+aMlVdRN0hOTsbBgwfRu3dveHh4mHTOgwcPNAo9uLm5QSaTQW5ELoDFYmHWrFl0OqNcLsfNmzdx6pT+dLtXibS0NOzbtw89e/aEl5d2WrwuHj16pFHowd1doQ9m7HPOYDAwc+ZMhIWFAcrvi9u3b+PEibp93zGFrKQcrJ33K739zqa34BWk7aSpzrZPdqMkXzsKydh9nMFgoHHnSHqb76h4XijOK8X6+Zvp/dY41F5//XWT0ptjYmI0CncUFRXhyZMnuHTJcNElsUiC0kJFNJu65ldeej5Wv/UTvT1v7XT4NzScdgoAO5f/TUe8qcNSywI4tE53xF2TLlXPwXwHhS3Li8qxZtbP9Petui3NjfYbMWIEevfurfe4SirFo7EzRNKqDJCioiLExcXh/Pnzes+F8ntJpaGmL+ukNiAONQKBQCC8dH7/dDde3Ff8gAqODsDM7yYaPae8uByb3tum93j680yD5w+c0RvtXmuJzsPb4uf73yOiTQMAQGpsOjYv+QMAsP/Ho1g1YxNd0ZCj5jibv2EGNt5egRnfTjA4zqH1J+hr05pjvOE5MplMzFs7DZFtG2Dej9Pw6V/v08c2vb/N6Pkvg0qhCN9P24CV0zbSaYlhzYMxatFQHNpwgnbgcO2qbDn7h8nYeHsF5v041WDfx349i6fXdVdaNWYLBkORxhDZtgHe+n4Slh/8kD7225KdSH6SatZ11gbiSjHWzPoZ30xci8pyhZM3ODoA629+g75vKh74SwvLNLRrpn75hkkVS8/suIQHF5/oPGbsswMAc36Ygsi2DTD96/H4+tjHtIP59892I/6+aZUa6yKVlZXYv3+/WZE4T58+xT///IPi4ipx5NTUVJOdHuq4uLhg0KBBJkU51HXEYjH27duHykrdqfK6ePbsGa1DpyI1NRXu7u4mR2SpcHR0xJAhQ4w6j14FpFIp9u3bZ1ZaWUJCAg4cOIDc3Fx6X3p6Otzd3c2O5BAIBBg2bJhRp+argFwux99//21SSraKlJQU7Nu3TyPaLyMjAy4uLgZ17HTB4/EwfPhws9/PdQ2ZTIYVk9ZBWKJYvOw9sSt6jtPW6qpO3O0XOLxRtzMxIz7L6Of1zc9GI7pjBIbNG4CNt7+Dg4tC+uLcrss4v/sKUC2qyhwnUEZGBq5cuWJQT0+FatFD9Xfs3bs3pk2bZjRtv0hD80vhBJLL5fh+6gY6ZbPr6+3Rf4pxnb3Eh8nYt1p3JLRULQvg7hnthWcAeOPjkWjcORKD3uqLTXe/g7MyYuzKwVv0Ip2lzsns7GxcuHABPJ7+xT2fEIXzNbiHN8CosmX37t0xffp0NGtmuGJnSX4p/UzpYoa2m60hRQkIBAKB8FK5f/4R9q5SRLWwOSws2bmArkpoiC3/+1PnqpyKlKfpCG8Vpve4vZMAX/3zMb29ePt8zGn1AcSVEhxcfxxlxUKc2XGRPu4V6IGcVIVGSOcR7TB4Vl+jD8S5afl0pSZdJD027sTp9UYX9HqjC709aGYfHP31DCrLRfhu8nr8cHG50ZSA2iL5aRq+HPODxnUNmtkHXsEe2PpJlR28gjxovZW2A1tixIJBRm1ZmF2EzR/9oX/sx2lG59f19Q50KXgAGLHgNRxYewziSglWTFqHH69+pZXu+7JIj8/EF2N+0HDG9p3cHfPXz6Cj+FQpz6qIshY9G2PUwiFG+y7JL9VIr65O8pM0UBRl8G/SYXBrDY22sR8Ow+4VByGVyLDizXXYcOtbcO2M/yipizRv3twsAfb09HQEBQWhpKQERUVF4PF4EAgESEpKQnJyMoKD9Rd40EXLli0hFotx/vx5dOzYUaO66KtG06ZN0bVrV5PbZ2RkICAgABUVFcjPzweHw4GTkxPS09Px/PlzhIeHmzV+s2bNEB0djfPnz6N9+/Ya1UVfNaKjo9G5s3GHhYqMjAz4+vpCJpMhJycHbDYbbm5uyM7OxuPHj83W64uOjkZkZCQuXLigVV30VUKVzt2hQwcTWivIzMyEt7c3mEwmMjMzwWKx4OnpiaysLNy7dw+tWhmPqFcnMjIS4eHhuHDhAlq1akWnDr5K7P72IB5djgWUEeDz1003eo5MJlNERuuIMgcAUYUYOSl5OovpqGjQPAQ/XvmK3p6/YQa+mfAjAGDt3F/RtGsji51ADx480IiO1QdFUeBwOBgwYAAqKyvh5uaGBg0amOQk1ahKqXQC7V9zFHfPKCqgu/u54t2fZhntSy6XY82cXyGT6l58oeSKezhFUSjIKkJ5iVCrOENwVADW/Pslvf3uz7Ow7PWVAICN72xFs+7RFjsnHz58iMTERIPPEgERikIzcqkcxffFeOPj4XBxcUHDhg3NtqXbS3SokQg1AoFAILw0SgpKNaJrpn09AQ1bGI+uKSsqN1jpCQBSnhp3sKgT1MgfM7+r0p1Sd6a17tecdqa5+7ni/V9mm3SzP7T+OCr0FDKAMr1BPb3UFGatmgS/BorKgU+uPcPuFQfNOr+mOLPzEt5ut4R2pqn0P5w9nTScaa37NqedaS6eTli02XjhCQD456fTKCvSH51RnFeCkgLThWwBYPo34xEUpag+9fxuInYu/9us82uKi3uvYW7rxbQzjWvHwcLNc/Hh1rc1UmLP7LxEa6A5utrjg21vmxR5cnzzORTn6bdVRVkl8jML9R7XxaRlYxDWXOE4Snqcii3/+9Os8+sCMTExuHHjBgYMGAA+n2/CGQr69OmDqVOnYtKkSXB3d8e4ceMwZ84csFgspKWZ9z2kQi6X48aNG69sWtijR4/w77//YsCAAbC3N714Svfu3TFt2jTalmPGjMHs2bPB4XCQnp5u0VwoisKtW7cMimPXZZ4+fYpz585hwIABcHQ0XXS7c+fOmDlzJiZNmgQPDw+MGjUKs2bNgp2dHTIydFePNoXbt2/jyJFXM7X72bNnOHXqFPr37w9nZ9MrArZv3x6zZs3Cm2++CU9PT4wYMQJvvfUWBAIBsrKyLJoLg8HAvXv3cPBg3biHm0PszefYsWwvoNTqWrJjvklFku6efoDndxIMtlHJRJhKrze6oIcyMq6sqBzfT9sIR7cqZ29xnulOIEdHR7Rs2dJoOwaDgXfffRfNmjVDq1atsHv3bo3UakOoLwS7+bjgRUwStny8i9734e/zTRLXf/jvUzy5GmewjYtXlTPsyMaTRvvsMqI9+k/pCQAQllbg+ykb4OBa9Xc1x5YODg5o2bKlwee7kKaKlPI7658j+14B2rRpg7179+LZM91VxKujUS2VpHwSCAQC4b/Ipve20QUEWvZuitffG2TSeWwuG26+hm+epkR/VWfQrD4aOlsAMObD4Xhw4TG9/cHWeSZXEtIl+FqdtDjzftjwHfhYvH0+LTi7Y9lePLvzwqw+bImoQoTVb/2k0J5TpiWGNAnEuhvfIPZGPHZ9vZ9uO2rhEDy6/JTeXrh5Ltx8XE0axyvYePpcaqx5tuTxeViyYwEd4bf72wN4bOQBtSYRiyRYP38zvhz7A60BGBjph/U3vsGAqT012uZlFGD921WaMe/8NAtegaalGHqbYMuUp+b9qOFwOViyYwFdvXXf6n9w//wjs/p4mRQUFODw4cMWFQNQ/WBwdHTEjBkzEBISAg6Hg9atW9M6S+ZiZ2eHYcOGvZLpisXFxTh06JBFxQAYDAYYDAbs7e0xY8YMNGzYEGw2G23btrUohRZKbbXhw4e/kumKZWVlOHjwIMRisdnnqmzJ5/Mxbdo0REZGgslkom3btibrhlWHxWJh5MiRFp37sqmoqDA7nVsdBoMBHo+HKVOmoHHjxmAwGGjfvj28vb0t7m/kyJFgMpmv1HtTLJLgu8nr6cioNz4aiSZdTCvs4+7nBibLsPvB3HsPAMxfPx3ufopnibunH+C6WuEic5xATZs2Rbdu3Uxqq/reZ7FY4PP5SE5ONuk8dSeQi6cTvpu8ni7SNOr9IWhlpMiVCndfV7A5hrMTfMOqtE4v/nXNpH7nrJlCp2I+/Pcpzv95hT5mTrRfdHQ0evbsabCNujxFWVE5GAwGHBwcTLZldefky4I41AgEAoHwUoi5+BhndijEWx1c7PHB1nkm67rYCXjY/GQNvji8BF5BVT+yOg9vRz/kmKIDpY5UIsV3kzdoVQi9eewO/bAz8p1BaN23ucl9DpnTHz/d+x5jFw+n94U2DUJApB+9bW4kHQBEd4zEuCWK6oMyqULHRFRR+9XX0p5lYEGn/+GYWoGE/lN6Ys3lL7F35WEcXF8lhDvvx2lIf55J66oNequvRsqgMfpP6YlfHqzCxM9G0fuCogIQHF1VQcoSW4a3CsObSxVl6eVyCt9NXoeKstqvvpaZkI33un6KQxuqIpJ6je+C9Te/RWhT7ZTBnxdtp51ufSd1R/fRHbXa6KPH2M747dEPmPrlG/S+gAg/hCpXi2GhLUObBGHa1+Pp7e+mrDcYVViXYLFYaNeunVmpntW5ePEi9uzZQ2/37dsX/v7+FvcXFRWF4cOH499//4VQKLS4n9qGyWSidevWBsWojXHlyhXs3LmT3u7VqxctkG8JERERGDNmDC5fvmyWdtbLhsFgoEWLFujbt6/FfVy/fh2//16V4t29e3eEhhqPBNdHWFgY3njjDVy9elVDlP1VoHnz5ujfv7/F59+5cwebN1ctZHTp0gUNGza0uL/g4GBMnDgRN27cQFGRfgmLusTfq44gVbkQGNm2gcY92RhhzYKxI2EDPvrjHXqfi5cTmnWrcshZcu9xcnPEB1vn0ds7lu+lnwVNdQKlp6dj9erVZn8/MBgMDB06FFFRpjkV1Z1AsbfjkfBA4TwKaxaMqV+9YeBMTQIi/LAjYQM++es9MJQLrI5uDhqVtl28qyLUkh6n6OynOvZOAnyw7W3afju/2AsOT7FQZqots7OzsXr1ag1dUV24eDgBygA2kTJbY9CgQWjSxLRq4RoRat6mR5zaGuJQIxAIBEKtIxFLsG7eb/T2jG8nwDPAvEgOeycB2r3Wkr7BB0T44vP9HyC4scLBkv48U6+2RHUqhSIse30lLigFbVUPJwDoyopeQR6Y8uU4s+YIpd6Hs1pE2+iFQzFzRVXRBUtWYwFg4mejEN4qlO5jz4pDFvVjKRf2XMHcNouREKN4GOTxufhg6zws2DgDq6ZvxKltCkFbJpOBD7bOg3eIJ64dVqwau/m6mlR4ojqhTYLg4ln10DRiwWuYs3oKvW2pLcctHo7ojhEAgIwX2dj5xT6L+rGUywduYE7rD/HstiLSkMPj4N2f3sKSHQsgcNROPbx75gH9XnX2cMTsVZPNHjM4OlBjRXfI7H5YsGEGvW2pLUe+Owgteiq0mXJT8/H7Z3uMnvOyefHiBWJjY9G/f3+zBcbVyczM1EgVjYmJwa+//mp19Mm1a9demeqKSUlJePjwIQYMGAAOx3I9wuq2fPToEX766SerbXnz5k0cP6674l1dIzU1FXfv3sXAgQMNCnsbo7ot4+LisGHDBqsLX9y+ffuVSaNNT0/HjRs3MHDgQLPSuatT3ZYvXrzA+vXrLYogVOfevXs4fPiwVX3UBpmJ2fjjS4U0ApPJwHu/zAabY953plegB/zDq6pXtn+tNZYfWkxvp5iZ8qmidd/mGP72QACARCQFk61wc5jqBEpNTQWHw7FIZzEwMBDJyckmfT8VqhUloJ85GQy8+/MsgxXjdeHh747gqEC68nnrfs3x1T8f0RkMuan5sHdWXI9UIsPds7qLE1SnWbdojF40FAAgk8qhuixTNdTS0tLAYrFM0llUXbNMKodUKkVgYCBSUlJMis5WtyVJ+SQQCATCf4r9a44h+YliFbJRu4YYOMOySIasxBw64im4cSCgjFqC8uEh44VxbZPC7CIs6rkU1/+5AyidGcsPLkan4e002s37cZqGfpU5JKlVkAxuHICgRlVRKymxlmkscbgcLN4+n05X3PPdQWQl5VjUlzmIK8VYO/dXfPXGGlofLijKH+tvfov2g1rhw77L8e++G4CyyMQne95Ht9EdsfGdLXQfs1ZO0hLHNZVktVTekMYB9N8bVtiSxWbhw9/fpqu47l/zD9KeWa4xZCoSsQSb3tuGZa+vRHmxIgLJr6EP1l77CoPe0l30QiySYN3b6s7oiSanIFdHPS06uJotUy20JZPJxAdb58FOoHAAHN50EokPTUvfeBmIRCLs37/fYh0kdTp16qSRLiQQCFBaWmpWlcvqMJlMDBw48JWIqpJIJNi/fz8yM62vPty+fXuNdCF7e3tUVFRYbYeBAweaVSnzZSGVSrF//36rtM5UtG3bViNaUCAQQCwWG40eMcarYku5XI4DBw5YrGeoTuvWrdGvXz96WyAQQCqValSltYT+/fujoqL2I6PNZeO7WyGuVKRyD5//Gho0D7Gon2SNe08g7J3t4earSNm0dDEHAKZ/O4HWmJVJFA5jU51AjRo1wtixY82ugAsAeXl5OHHihEYVWH2oO4FEQsXz62szeiOqvXkFV1RoPBNFB4Jrx4VPqCKlOzU2HVEdIujjRzaavjAzeflYOgNAVTG0JL/UJEdXeHg4xo4da9ICFV9t0TA1NgMFBQU4efKkSZqZBdkk5ZNAIBAI/0FyUvOwc3mVmO38DTMseoCBWvQYlA8SUBYXUGFMUyv5aRoWdPwYcbcUkUECRz6+PvYxOgxuTZcPV+ETZpnmjPo8GQwGgqIC4BvmTWtNmav7pU5wdCBGLHgNACCulOCXD7Zb3JcpJD5KwfyOH+PIT1UPZX3e7Ib1N74Bm8vGgk7/w+MrCg0yOwEPyw8tRtfXO+DPr/cjKykXANCiVxP0HGd6pbrqJFV7EPfwdwPfQeHotMaW/g19MUa5IiuVyLDp/W0W92UKKbHpeLfLp9j/Y1WER7fRHbHx9gqDhTn+XnUEac8UDovoTpHoN6WHxXOobksnd0e6oleKFbb0CvLEGx8rdJbkMjk2vru1zmoEicVi+Pn5oVevXlb1I5fLkZOTo6HzFRERgeHDh1tdpbNp06YYN24cYmNj67SmmkQigbe3N/r06WNVPxRFITs7G56eVRqUYWFhGDZsmNWVJaOiovDmm2/WeVvKZDJ4eHhYleoJpS2zsrI0bBkcHIxhw4bBxcW6H6Dh4eGYNm0aYmNjrY52q0lkMhlcXV2tSvWE0paZmZkatvTz88Pw4cMt1vdTERYWhrfeegtxcXEW6TjWBlcP38L1I4qFRzdfV0xaNsbivpIeVaUfhiizClQFgkryS83SPVPHTsDDnNVTNfZVlouMSmJQFIXHjx9b/Hf09vaGnZ0dSkuNF0aqXp3e2cNRQyrBXBLVbBlM21Lxf2W5CF1GVi0OP7j0WEcPuuHyOJi7RtOWcpkcZYXGnehPnjwx2ZbqGRwv7ifC09MTAoHApMUTzZRP4lAjEAgEwn+ETe9toytbDp7dDxGtG1jcV3WHAAAEqkd/GdDiuH/+Ed7t/Ant6PEMcMfqf79Ai55NkPAgGSe3nteatyVOAblcjhRlNJ5PqBfsBDyw2Cw65SHtWYbJqam6mPjZKFo74t99N3D37EOL+9KHTCbD3pWHMU8txZNrx8F7v8zGh9vexouYZLzT6X/IiFdE+bj5uGDVxWVoO6AlUuPSsXelIpWFzWFh/voZJlX11AVFUfTf3M3XFY6uDmAwGPTfXBGxaLmW3Nglw+nU45vH7uHG0TsW96UPuVyOA2uPYU6rD6pSPLlszF8/A5/sfs9g5F71dJsFVjijobay7eBiD3dldIDKlgWZhSgvtjz6ZNT7g+EbpogUuH/+Mf7dd93ivmqKwsJCJCQkYMKECWZVT9RFWloaTp48qRGpwmKxQFEUcnNzrZ5reXk59uzZg7t371rdV01QXFyMZ8+eYcKECWZVT9RFZmYmTpw4oWE3JpMJFotlUgSIMSorK/HXX3/h5s2bVvdVE5SWluLx48eYMGEC3NzcTDhDP3l5eTh+/LiG3RgMBjgcjk0iCcViMfbu3YurV69a3VdNUFZWhpiYGEyYMEHDEWYJRUVFOHr0qEbUoKpQgS0iCWUyGfbu3YtLly5Z3ZetqRSKsPGdrfT27FWTLY4yB4CkJ1XPZnR2gcazm+VRau0HtULbgZqVOo2lfQqFQpw5c8bivyOHw8F7771nkp5edYeaNVHmAOhsDwAIUT0Hq+n0egZ60IUgSvLLUJhjulZfqz7N0GVke419xiL+RCIRTp48idRU0wqDqSITASDlSTpYLBbeeecdNGrUyOi5hdmKKFsOj0Ontr4MiEONQCAQCLXGzeP3cHm/Ih3QxctZQxTdEpLVUilDmqhSPtXTKXU/lJ3ecREfDfiSFkxv0CIEa69/jbBmwZDL5Vg771fIZYroBQcXRcnw++ce0XM3h+zkXNqBqJojAAQ2UjzwSCUyZCZY/iPR3kmA6d9MoLc3vbsVUontVrgzE7PxQa9l+OXDHXRxhpDGgVh3/Ru8NqM3Lu29hg/7LEdJfqnasa8R0boBKIrC+vmbqypYLRyq8dBsLoXZRSgtUKxaqttS9TenKIqO3rIEvr0d3vr+TXp743vbIBaZX6lQHzmpeVjS/0uNtJnASD+sufIlhs7tb9TRaKt0GygraqkKcIQ0CaTHVv/7JFvxo4Zrx8XsH6q03X5etJ3+HNQFKIrCvn37cOeObZymlZWVsLOzg6urZtXaa9eu4fbt23rPMxVnZ2e0atUKcXEvrwqtPiiKwoEDB3Djhvnfj7oQiUTgcrlaFVJv3LhhkzHs7e3Rrl07xMbGWt1XTXD48GGbOagqKyvBZrO1okVu3bqF69etd3Lb2dmhU6dOdfJ9CQBHjx7F5cuXbdKXSCQCi8XSqpB6584dm/y92Gw2unbtWidtueurfchOVji4W/Zuih5jO1nVn2oxR+DEpxexTF0MNQaDwcCcHyZraOHG308yeI5UKgWbzYaPj4/BdoZ49OgRDh48aLRdbmo+/draKHOo2ZLD48BXme6qLt+QFpeBgIgqzboDa4+Z1f+slZM0KrOqFgL1IZVKwWKx4OfnZ7CdCvUK7ulKmZbY2Fj8/fffRs9VRai5+bhYvFBrC4hDjUAgEAi1gqhChPXzq6pjzVo5iXZWWYoqWonFZtEPDIGRfrQg64tqD1EURWHH8r34bvJ6SJX6Gu1ea4kfLi6Hh58iEuD09ot02qJ/uC/e+2UWff5PC3832ymQ/FhtJTZa3QlU9cBTfZ7m0ndSdzRqp1gZTXqciiObrBcwpygKxzefxazmi/Dw36eA8kF19MIh2HDrW4Q2DcKe7w7hy3GrIVE6nVr1aYo1l7+AV5AiEuDiX1dx94wiYs472BMTPnndqjklqdkyRM2WwTa0ZfcxndBUWXEsIz4L+9dYL7pNURRO77iIt5otxD21CMLh8wdi453vMvh0eAABAABJREFUTIrStGW6Daqtamu8L6NtZ8uOQ9qgTX9FVdyclDz89V3tFs4whFgsRnl5udXpiSrCw8PxzjvvaGnG+Pv7QyKxjVN28ODBGDNmjNV6TbZGJpOhuLhYQ1vKGkJCQvDee+9pCfH7+/vbLB2uf//+mDBhQp2zJUVRyM/Ptzo9UUVAQADef/99LaF1W74ve/XqhcmTJ6OgoMCE1rVLfn4+BgwYYJO+vL29sXDhQq1oVn9/f6uLEqjo3r07ZsyYUadsqR1lPt0q50V5iRA5KXmAcgFO1VewDe89gZH+iGpXpUm25zvDji5nZ2csWbJEa0HEHIRCIeLi4gxmMiQ+SqH1yADgnY0zrYoyF1eKka7MDAiK8geLpdDU1biPxyShy8gO9PaVA+ZF5vqEeKFZt2h6++8fDhu8Rnt7e3z00Ucmp3z6NaxyYualK5yNQqEQz549MziOVCJFcZ5iIfdlFiQAcagRCAQCobbYs+IQHYnVrHs0ek/oalV/MqkMqcoIGv9wH3C4CkF5Hp+H0GbBgFKnQ5W2JhFL8P20Ddj++V90H4Nn9cXyg4vpSoolBaX49cMd9PG3101H19c7oHW/KqfA3u/Nq8SlqRVS5bhQF6B9fNW6FWkmk4l5a6fR278v3YOiXMsFpwuzi/DZ8BX4YeZPdOEBnxBPrDz/Od76fhJYbBZ+nPMrfluykz6n/5Se+Orox7B3VjhJy0uE2PT+7/TxuWum0kL1lpKkoRVSZctGarZ8YqUtGQwG5v04jXbK/vHl38jLsPzHTXFeCZaPXoXvJq+nCw94BrhjxenPMO/HaSbZxNbpNjDwvtSw5TXrbTln9dRaL5xhDIlEgoyMDCxYsABBQUE26fPo0aN4/Fhbn2bQoEEYMmSITcZgMBhITU3FunXrbJKuZwukUilSUlKwYMEChIbq1/4zh5MnTyImJkZrf79+/TBixAibjMFgMJCVlYW1a9eanJpU00ilUiQkJGD+/PkID7dMoLw6Z8+e1Zkm3Lt3b4wZY51TXgWDwUBeXh7WrVuHxMREm/RpLTKZDC9evMCcOXNMSh0zhYsXL+qMkOzWrRvGj7dcA6s6xcXFWLduHZ4/f26zPi2Foiise3szvQA5etFQBEZaHmUOA4s5EW0a0Pfdx1beewCg0/C29OsnV5/hzmnt7xQVN27cwKFD1i34REZGonHjxgbbbHy36j4eEOGLMOWzqqWkxmXQ2RTq9/GGLUJond4nV+MwfH6VUzntWabZ+pHqaZ8v7ifTRbx0cffuXezbZ3qldEe1hXVJpcLZGBERgSZNmhg8ryi3hHa4qWRPXhbEoUYgEAiEGicnNQ+7VyhWCFls63S0VKTEptOphOrOFQBo3CkSACCXU3hy/TnKisrx8Wtf4/TvF+k2b333JhZsnEn/2AeAncv/ple8uo/piDb9miudAlPodrtXHKBTH0zhRUzVSqtKMBbKUH8Vj65Yn3rUqF04+k9RVMUrLxZi6//+tKiff/ffwMym79PRUAAwYFov/HR/JZp1i4awtAKfDv0WR385TR+fsnwcFm6eAzanKjpn97cHUZCpiP7oMLg1Og5tY8XVKVC3ZYiaLSPbNaRTEmxhywbNQzBoliLaprJcpOE4NIfr/9zBzKbva6QK957YFb88WIVWvZua3M/fq47YNN0G1SIA1N+X4a1CwbVTOKcfXbbelkGN/Gu1cIYpnDx5Evv27bNZiohMJkNMTIzOKBWZTIYff/wROTm2cSQGBwfDw8MDt27dskl/1nL27Fns2bPHZraUy+W4f/8+RCLtSGCKorB27VqbORP9/f3h6+tbZ2x58eJF/PnnnzYr4EFRFO7du6fTlgCwfv16mzkTfXx8EBgYWGd06a5cuYJdu3bZVOBf3/uSwWBg06ZNNnMmuru7IzQ0tE7Y8uqhW3RUtXewJ8b/z7ooc1S796g7geydBPRiaOKDFKs0PKEsjqPORgNyGAkJCVZXWfX09ESbNm30fn5vn4rB/XOP6O0WPQ07jExB4z6u5pzk2nER3joMUDrQAAat0yaXyXHloHnvLVVaropN722DuFJ3VGZCQgKEQqHJfdvZVy0qqv4+bm5uaN++vUHHX1F21aKx20ssSADiUCMQCARCbbDrq/10WuCIBa9pPERZyoOLT+jXjTtGahxr0iWKfn3z2F282+UT+kGGa8fBp3+9j9GLhmr8CMxNy8c/yuqVdgIeZq+q0n8KjgrA8PkDAaVT4GcTnQIURdHz5DvYIbRJVTSMo6sDbYcX95NQUWbdwxwATP9mPAROimi745vP4fndBJPPLS8ux3dT1mP5qJW0U9HFyxnLDn6Ihb/Ngb2TALlp+Xiv26e4deI+oBTTX7JjASZ88rqGLQtzinFQqdPB4bIxd81Um/zgVtmSw+OgYcuqaBi+vR3CWym2k5+koaTAeKUtY0xZPhaOboqKgmd3/mtWFKGwtAI/zPwJnw79lhbNdXJ3xKd/vY8l2xeYlepcWliGv384AgBgsph4e5116TYqHlx6QvcZ2bZKSJnD5SBSmT6clZhjVXSeiuqFM+6ds33hDHN4+vQpuna1LkJWHQaDgUaNGiE6OlrrGIvFQkVFhc2iTVgsFqZOnYpevXrViSqVNWHLyMhING2q7XBmsVgQiUR49uyZTcZiMpmYNGkS+vbtW2ds2aVLF6tSwNRhMBiIiIhAs2bNdB6TSCQ20+tiMBiYMGECBg4cWGds2aFDB3A4HJv12bBhQ7Ro0UJrP4PBgFwut6ktx40bh8GDB79UW8rlcmz7bDe9PWf1FKujzKF27wGA6E4RGsdUi6EUpVgMtQZ13TAoCx0c3nBSZ9vw8HC0atXKqvEoisLmzZt1RipTFIVtn2oucnoHW1ckA9Weg6vbsknnqsjMJ1fjNNI2j/121qxx/KvZMjMhG/tW65bDaNiwIdq0MX0Blcevek/JlJGQFEVh69atOiOVVagXdyApnwQCgUCo12QmZuPElnMAAIEjH298ZJuUnZiLVQ8tzbpr/pBt3LnKwfbPT6foFANnD0d8f3Ypuo3qqNXfrq/20RFvQ+cNgIe/5orcm+pOgb+vI+FBstE5pj3LoG/6Tbo00oiGg3oknUyOpzfiTbhqw7h6u2Dip6MBNb04U7h37iFmNluI09urIvg6j2iHXx+uQqehirSJx1fj8Hb7j+gqn46u9vjm5Cc6U3f3rDhIa829NrMPXe3RGrKTc5GVqIjyieoQDq4dV+N4407qD4/W/+B2cnfElOXj6O3ty/4y2F7Fw3+fYlaLRTi+ueqBtf2gVvj14Sqd7ztj/L3qCJ0q2m9yD6uKOqgozCmmPxMRrcPolGcV6rZU6QlaQ/XCGb8v3WOzKBxzEYvFmD9/Ptq3b29Ca9MoKytDr169dFa3ZLFY6N27NwICAnSeawl8Ph9Pnz7Fb7/99lJ/cIvFYsyePRudO3e2WZ9lZWXo1q2bTi0jBoOB3r17IzDQ+gUZFXZ2doiPj8fPP/8MmczyasvWIhaLMWPGDHTv3t1mfZaXl6Nz5846tYwYDAZ69uyJ4GDrUs7U4fF4SE5OxsaNG20aGWYuYrEYkydPtpk+IpSaTu3atYO3t+57Wffu3RESYnmRmOpwuVxkZmZi3bp1NtNnM5dLe68h6ZEigrFR+3B0GtbW6DnGoCgKDy4ont34DnYIbxWmcbyxmhPosZUR0kFR/lqLT39+e0BnJXBvb29ERkZq7TcHBoMBe3t7FBVpV9G8/s8dxN3SFPN397eugi/UnoM5PI6GjAiq2fLR5VgMmVulcWmuNIZ/Qx86hVTF3pWHICzVXgj28PBAVFSU1n59cNWctFJlxXsGgwFHR0edtlShXszLwwa2tAbiUCMQCARCjbLzi78hU94kR7zzmlXlwVWoP5TZOwsQ1lzzR4FngDsdBaTS/vAP98Xaa18juqP2Q1NWUg7t9OM72GHMB0O12tg72+ONj0bS27u+Nq4REXOhavWwWXdtbY3GXdQdF7apODfs7QH0w8W1w7c10iSrI6oQYeO7W/Fhn+V05SmBEx8fbnsbS/9eBBdPZ1AUhSM/ncKinkvpFE6fUC+sufIVmuu4pryMAhzZpFgF5tpx8MbHI7XaWIL6SqyucdWdqLay5aC3+sAnVFHR7e7pB3h6Q/+KuVgkwa8f7sDCHktpxx/fwQ7v/TIbXxxeAjcf88WOi3KLsf9HxSowm8PCxE9HWXwt6qjbUtf7skkN2LLvpO50NdbHV+I05lBb5Ofn4/vvv0d+fr4JrU3nyJEjOHfunN7jrVu3tvmPYl9fX2RmZuLFC8MV12qKoqIirFy5EtnZ2Tatrnb8+HGcPn1a7/GWLVtCKpXa1CHr6+uLnJwcm0W+mUtpaSl++OEHpKWl2dSWJ0+exIkTJ/Qeb9GiBeRyuc1tmZ+fjydPav/zDaXja82aNUhKSrKpLc+cOYOjR/UXqGnWrBkYDIZNbenj44OSkhI8evTIhNa2RSaTYfuyqgW5ycvG2sSexhYZm6g/E1217t7D4/PoqpcqSYiinGIc+1UzOqugoABbtmxBVlaWVeMBwNixY7WiGKtH+qlQz1iwhJwUw4uM6hFrj6/GolXvZmBzFPYWllQgM9H06vJsDhsBkYqqnar3QWlhOQ5v1Iz4KykpwebNm5GWZnqVVjtB1bxVEWoA8Prrr6N169Z6z0tUW9QOsdKW1kIcagQCgUCoMdKeZeCMMurJwcUeo963jTh38pM0Oi2xabcourIRlALuKyatQ1lRlf5GZLuGWHv1K/g10F0S/Y8v/qYdbyPfGQRnDyed7QbO6A0XL0UUyqW915ESm25wnupRdM176HJcqD882iZdhMvjYMwHw+jtXV/v19ku7vYLzGm9WKOEeouejfHrg1XoO6k7GAwGxJVi/DBjE9bO/ZW2T7Pu0Vh77Wu9kVJ/fr0f4kpFeu/QuQPg7mt51Sx1HhixZeMasCWLzcIbS6oiKnd9pduJ+iImCfPaLsZfK6uqXzXp0gg/31+J12b0tviHyF/fHUJluWI1feCMPjZJEYEJtlTX97OVLZlMJsZ/XKW/84ceW9Ykt2/fBp/P1xtlYilZWVnw8dH93aI6vmvXLpvpqEFZvXHEiBE2vxZTuXPnDjgcDnx9fU1obTqZmZkGbZmXl4c///zTpkUZfHx88Prrr9v8Wkzl3r17YDAYNo1ihAnvy8LCQuzevRspKSl625iLh4cHRo0aZfNrMZX79+9DJpPZrNiIiuzsbIO2LC0txe7du5GQYLrMgjFcXFwwevRom1+LKZzbdRmpyuebJl0aoXVf7bRhSzC2yOgV6AHPQEV2QOyNeL2aZ6YS2kQRzaoS7geAv74/BLGoqsKtKgqqevVWS6AoCk+fPtXYd3n/DTqyn8dXOI+YLCa9wGQpMUYWGV08nRGodII9v5MAUYVIw/G0Y5lpGQwqQpS2VHca7/vhCJ2NAGVBDQBwctL9DK0LdQ011eI7lI47Q475RPXCSk1sF7VsCcShRiAQCIQaY8fyvZDLFTffUQuHmKUdZYiYC2oOAbUHiaykHLzb5ROc/eNfjfY9xnTSGxmX9jwTp9Sdfgv1O/3sBDyMVh6nKAp/fqPbWQWdqQ3aFfB8Qr3gpnQ4Pb32zGYpR6/N7K2Rnpr8tGq1UFQhwtZP/sQ7nf5HPzBz7TiYs3oKVpz+jBbyzUnNw/vdP8OJrefpc0e+MwgrTn0KVy/dFZVyUnJxXKnNYWfPw9jFw3S2s4QYNf20qA7aFfDcfV3p1NLYm/EaD8zW0Hdyd/oB//o/dxB/r0p4WiySYMfyvXi73RI6NYbDZWPmiolYef5zq1JdC7IK6dVfDo+D8R/bJlUaahFqTBZTI7JPhbq+X/y9RJvo+wFAj7Gd4NdQ8aP03tmHVlcRNZcWLVpg/PjxYLPZJrQ2nXHjxhlMIfXy8gKbzUZeXp5Nx23WrBlu3LhhU4eIOWNPmDABXC7XhNamM3r0aIMppB4eHuByuTa3ZZMmTXD37l2bOkRMpXHjxpgwYQLs7Oxs2u/IkSPRrVs3vcddXV3B5/NtbsvGjRvj4cOHL6VKZVRUFCZMmACBwLoqyNUZOnQoevbsqfe4o6MjHBwcbG7LRo0aITY2FrGxtokUNgWpRKrhbJnyxTibRfsZW2SEWpRapVCkIbpvCepC/Spt0Lz0ApzadoHeHxQUhKlTp9rEoZaUlISzZ8/STieZTKZRWV7lIAyM9NOKKDOXBxeM21IlKyKVyBB36wWGvV1V7VO9WJIpqNsyqqMi+q0otwTHfjlD7/fz88PkyZN1puzrw86+6ntPpub4TElJwdmzZ3XKGsjlciQ+VNz3fEK9rK56bi3EoUYgEAiEGiHpcSrO/3kFUOpRqSr92QJdD2V3TsdgbpvF9AOYqlIhADy5rj+VZ+fyvfTq5aj3jTv9Bs/uR4vVn9t1GRkvdKcJVE9tUK+AqYLBYNAODWFpBf2AYC08Pg+jFyrSVtUdf3fPPMBbzRdh19f76ZXA8NZh2HjnO4x8ZxAthh1z8THmtVlMa37w+Fws2bEAc1ZP0XkdKv74skqHbvj81+DiaZtS5jkpubRehq7UBhUqW0pEEsSbUZDBEBwuB2M/HE5vqyKrHlx6gtktP8D2z/+io/fCmgVj/c1vMeaDYRpRk5bw5zcHIKpQpAkOmd1PS9PPUgpzipH0WOH8i2gdpvdBVF3fL/am9fp+0BHxt/PL2otSO3v2LNLS0gxGmVhCfHw8nj9/btBJx+VyMWfOHEREROhtYyk5OTk4duyYCS1tx8WLF5GQkAA/Pz+b9puYmIinT58aFJJnsViYNWuWWRo9ppKbm4tjx47Vqr7flStXEBsba/OIrpSUFMTExBh0eDKZTMycOVNnAQhryc/Px9GjR2tV4+/GjRt48OCBzSO6MjIycOfOHYMOTwaDgenTp6Nly5Y2HRvKlMSjR4/Wmi7dqd8v0vfblr2b6ox+sgRTFhlhYw1P9YisiNYN6Nd7VhygnVvp6ek2SfeEsnIwl8ulv0Mu7rlK65U2aB4CmVTxeVBVM7UGY4uMqB65fyUO/Sb3AEf5bFxRVolr/9zReZ4u1FNUw9Re7/n+EF3xMzMz02xbqkeoydUi1Pz9/cHj8XR+h2Qn5aKirFIxFxvY0lqIQ41AIBAINcL2z6uEx8d+OExL+NxSKIrCQ+WDhL2zosz6nu8O4eOBX6G0oAxQ6qWtu/4NPebjy7E6fyQlP0nFuV2XAZXT7x3jTj+BIx+vvzsYUDobdn97UGc7YzpVKppUE461FYNn96Wj8s7tuozPRqzA4n5fICNe8bDD5rDw5mejsfbqVwiOUvyYoygK+388ig/7LEdRbgkAwCfEE2uufKmz+IA6GS+y6Gg2gRMfoxfZJr0XJqQ2qKgpWw6Y1hNuyipSl/ffwOcjv8fCHkvpCD8mi4lxS0Zg3Y1vbPJwl5Oah6M/K3Sk7AQ8jFsy3Og5pvLwkmnvS3V9P1vass+b3eAVpBBJv3X8Hp7dqXkNsPz8fFy+fLlG+r5165ZJEWJlZWX4559/bD5+r1694OJSexXOiouLcfHixRpxOt2+fRvJycaLvVRWVuLQoUM2n0PPnj3h5lZ74tZlZWU4f/58jTid7t69i6Qk49E9YrEYBw8etPkcunXrBk9Pz1pzTlZUVODMmTM1ZsvExESj7aRSKfbv32/z4hZdu3aFj49PrTgnxSIJ/vjyb3p7yvKxNus7/Xmm0UVGVNNRe3Tlqc42phLSuMpRXV5cjjb9mwMAspJy6We/hw8f4t69e1aNQ48XEoL3338fTCYTMqmmDl27QVVVRK3WT0vNM2mRsbotmUwm2g2ocvruMLHYEgAEq9myKLcYnYcrilQUZBbipPLZ7/Hjx7hzx3QnHaqnfKpFqPn7+2PRokU6F6vUi4JZa0tbQBxqBAKBQLA58fcT8e8+RTi5q7czhs4bYPQcU0l5mkY7exp3isQ3E37Eb0t20qml7Qe1wnqlY0MVll6QVaRT72z7sr30A/+YD0x3+g17ewAEToq2p7dfQE5KrlYbU1IbUG0F8f5524kP8x34GPnuIAAAJadw7dBt+liTLo3w073vMenzMfRDrUp7btN72+iIvVZ9m2HDrRVo2EL3SrI6O7/4uyrS770hcHKzPn1ChUZBgpdgSx6fh1GLqgpVXDl4k37dqH04Nt35DtO/Hg8uT39kjTns+mo/Hek37O0BcPW2ncPEVFs2qSFbsjlsjFtc5SDUp0tnS1gsFlq3bq0lFm0LBAIBmjdvbrRdeXk5YmJiDFYtswRfX1+MHDkST548qRXnBYPBQMuWLQ2KRVuKqbYUCoV4/PixzdPrvLy8MHr06Fq1ZfPmzdGuXTub983n8016v1dWVuLp06fIzjZdoNwUPDw8MHbsWMTGxtZalFrTpk3RsaP5lZSNYaotRSIR4uLikJ5uWFvVXFxdXTFu3Dg8f/68xivRnth8Djkpis9V24EtdRZxshR1qQ5DizkhTQLp56sH/2fvrMObOt83fsfr7kJdKFaktLhLcYcBQ4dsjPlgbt/5xmAMNmC4u7tTpFCklLq7uzd6fn+c5CRp0zZyspX98rmuXSPJOW9Onp7kvOd5n+e+7yTo9JndAlwo44OsuFzM+0xu7HPoBzL5aWxsTFvlcl1dHdavX4+amhpc2xeB/FRS67HH0C4gFJJFui68tWfSJMPVzxlW9qSeWdy9JAgFQiz7aT71etqzTDSoKeng5OVAacBlxedh7qdyTdTDP52GUCCEkZGRxrE0NpNXfipq3TU2NmL9+vWoqKhosY9SQs1QoWbAgAEDBv6L7P+ffIVzzkdTYaRgi60riqK2qc8yEHEsknr86hcz8c2ZtVTbZp/R8puzyLNPlMbJTsil9rVysMSkVWPUPgYzK1NMeTMckGpTHPn5jNLrBEFQx2lkymu1tQEAfHt6wtKOTD49vRqj0tJdG3KS8hF16ZnScyYWxnh320qsu/21kh6GKu252Wsm4/uLn6jlylqQXoQb+yMAAObWppj2Dn3tvVAQ0edw2QgM9W11O48gN8rh9PnNOJWW7tqQn1aIRxeUV12NTHlYvek1bLj3P1pbDkpyyyjHWRNzYyWDCTqQJXqZTIZK/TQZTl4OlN5Z3L0k1JTX0nYMYxYPo7QD759+jMzY9quStKWmpgZpaWmYMGGCzm24zZFIJBg+fLhaSSBvb2/4+Pi0u502VFZW4tixY3rXrKqrq0NSUhImTpzYZlumNkgkEgwePFitRJ2Hhwd8fX2pFnU6qa2txfHjx/XuUllfX4/Y2FhMnDgRPB5910dIrz/9+vVrU9dPhpubG/z9/Wn/bkCa+Dx+/DhevHhB+9iKNDY2Ijo6GhMnTqRdh44gCISEhLSp6yfD2dkZgYGBtH83IE3WHT9+nLZKKlWIhCIlXdiFX9NXnYZmi4zdhwS1uh2LxUKvkaQJQnVZLRIjtXff5XA5cPUjr2O5SfnoHOpHLSTlpRQi4thDjBgxApMn03OdFQgEqK2tRWlpqdJi0aJvZiuJ6Ht3162qSjk52XosGQwGekvnwQ01jXhxJwGufs6ULixBENivpjkBi8WijBQK0orgEeSGkHCy2q0kpww39t/FkCFDMH369HZGUkaxuk4xoSYSiVBbW6ty4YTOWNKBIaFmwIABAwZopTi7FJFnHgMAbJytMWHFKFrHf3henhirLCYdhUwsjPH16TVY8NUspZus/pNDqH8/OBOlNM6ZTZepf89eMxnGpppNxKe9M54qVb+04ybKCyup11KfZaBC+rjboM5t6o6xWCyETegDAGiq5yP6hm7VQIImAfZ+dRQrgz9AwgPliejAaaEY99oIpRjdPfEQr/daQ2nPGZny8NmR9/Daj/PVvsk6++cVqkJw+nsTYWpJj/kEpInPgnRpa0M/f/CMW7/5ZDAY6DeJ/JsLBSI8vvxcp/cWCoQ48N0JLOv2PmJuxSu9Fjq+Fya9MYb2G9ELW69R+nZTVoerldBUl8LMYso8wb+PT5tCvgwGA/2lsZSIJXh04Vmr22oK14iL2Wo40dLBzZs38fDhQ72MfefOHRw4cECtbXk8HmbPng2hkB6zDEUcHBzg5eWF9HT9ts/euXMH9+/f18vYDx48wO7du9XalsPhYPbs2Xqp1rGxsYG/v7/eY3nv3j3cvXtXjS0159GjR9ixY4da27JYLMyaNUsvFXkWFhbo0qWL3o0eIiMj9daG/OzZM2zZskWtbZlMJmbOnKmXRK+selOf5+X9U1EoyyergcIm9kZAH/oWAIQCIZ5Ir8fGZkbw7+3d5vayaw+kiy66INNREwpEyE8rwrzP5Amfg9+dwIEDB/D4sW7vIcPS0hK9evVCbkwR1ZLZa2Q3dB3YmaqqMrU0gb27ndbvIRaLEXWRvB63pZ8mo5+KWE56Xb6AfHXPbZX7qUIWS4IgkJtUgPkKsTz0w0kcOXIEkZGRbYzQEsXvi2JCzdTUFH369FHpZJ0pjSXXiEMt/P2bGBJqBgwYMGCAVs5vuUolVyasGKWzk5EiJTmleHIlRum5Tp1dsenRD0oTMBkuPk6UnXbSozRUFJFJrvrqelzbRzp7GpnyEL50uMbHYmlngYkrRwNSEXyZuyUA3Dkqn1AMmNJ+O49y4k/7id3zW3FYEfwB9n1zjGoZdPSwpwwaIo5FUlVbTQ18bFixFd/MXIe6qnoAgIuvEzZGfo8hM9Vvm2msb6L0Mzg8Du0J1Ihj8mSIOrGU6XoAQORZ7WMZdy8Rr/dag92fH4ZQ6hhq52ZDJVEfnH5Ma9UWpPo1F/8mHbNYbBYmvqF+1aQ66BLLBzrEUhXjlo+kWlEijj9USkjTSXl5uVqVOtqQkpKikTB/eno6tmzZgoaGBlqPg8FgYO7cuRg5cqReWxXLysoQFhaml7FTUlLg6uqq9vbZ2dnYsmULampqaD+WWbNmITw8XK+tivo8L1NTUzU6L/Py8rBlyxZUVtL/HZw2bRomTJig11iWlZUhNDRUL4ksTc/LoqIibNmyBaWlLWUgdGXSpEmYOnWq3to+z2yWLzJOe3s8rWNH34hDbSU5zwib2LvNRUZIF6yYLPLv+eDsY51+12SO1QCQHZ+L4GFdESSVA8mKz0VOdi4aG+mpZmexWOjbty8ub79JPTft7fGoraxDaW45AMCrWyedXFPj7iVRWnR9w4PbXGQEgJCxweBwyXg/PPcEBEFgxgcTqfhWl9Ui8ZF6VYCKscyMy0FQvwAED+8KAChIL0ZWRrZO1zfZvQOkibaQkJAWVadNDXzkp5JawB5d3PVSXasphoSaAQMGDBigDUGTABeliSU2h4Xxy0fSNnbK03Ss6vux0sRqxPxB+OPhD3APaH3CK0u0EQSBh+fItr2re+6gqZ5srRz16hCtK6omvxlOTYwu77wJiUQCgiAQcZxMqDFZTAyY2n7ioteo7pQ2ReS5JxpPmKvLavDLks34cMTXyEshNTtYbBbmfDQV2+PXY9SCoYC0Au7WoXvIeJGNVSFrceFvud354Jn9sDnqR40FXm8dvEcl5Ia9MgCWdhYa7d8eslgCwKDp7d/Mdx8SROmvPLrwjHLyUpfayjpsWLEV7w7+gnLnYrKYmPHeROxM2IDxy8hzWigQ4fq+CA0/TdtEHIuk9AEHTQ+FnQu9AumKsRysRtK0cz9/Kun15Mpz2tqRITVbCH9tBCBdlb66W/1VcnXh8/lYtGgRQkJaJtvpYNSoURgxYoTa27u5uZEr+7m5tB8Lm83GqVOncPnyZTW21hw+n4958+bpRaMKUnOFUaPUT8a7uLiAwWCoZQihKSwWC+fOndOLiQSkbWGzZs3CoEFtG71oy5AhQzB2rPq6pc7OzmCz2WoZQmgKk8nE5cuXcfq0avMeXREIBJg6dSqGDRuml/EHDRqEcePUlzBwcHAAl8tVyxBCU5hMJm7cuIHjx4+rsbVmZLzIRuxd0gCgU2dXBA/rSuv4itIcg2e0/xtiYWuOboNIJ9+CtCLkJOZp/d6KSaCsuFwwGAxMWS3/m4qKgIAA+rTi9u7Zh8JKUkfP2dsRfcYGKzm4e3XTTSJC01iamBsjeATp5FuaV47UZxlgs9lUfAFg5yeH1Hpvj2bJSQCY+pY8lg1ZQq0cmGXzaEKinDg9cuQIoqKUu0uy43Op+wBvHWNJF4aEmgEDBgwYoI07RyOpqp1BM8Jg42St85gSiQTHfzuHt/t/iqqSaur5+V/MwEd732rXSKC/QiXO/TNRkEgkOPun/KZTF8MERw97yjWqOLsUT6+9QOqzDBRllgAAgod1gZW9ZbvjGJnwKJ2LqpJqJD1KU+v9CYLAtb13sKTzO0oJiaB+/vjr6U9Y+v1cGJnwMG6Z/Kb/4Pcn8Wbox8hJJCd8PGMu3vt7JT47/C6lPacuBEHgjGIs36DPfALSds8s6aQtqH8A7N1s292Hw+UgVOqmVVdVjxcR6rmEEQSBm4fuYUnnd5QSjf59fLA56kes+HUBjM2MEb5MniS+uP06rRVBZ/UYy8LMYqQ8IduFfHt6wcWn/TYJsh2Z1LSiox25OeFL5eflpR03aK1iIQgC27dvx4MHD2gbU5HExERUVVXB1FT974yZmRmWLl0KL6/2TT60wdHREdHR0bRXAxEEgd27dyMigt4EsoyUlBSUlJTA3Fz99mZjY2MsXboUfn5ttztpi5OTE168eEF7iy5BENi3bx9u3rypU5VKa6SnpyM/Px+Wlu1fd2RwuVwsWbKE1qSCIs7OzoiLi0NTUxPtYx8+fBhXr17VSyyzs7ORlZUFa2v15zFsNhtLlixBly6tC8XrgpOTE5KSklBfX0/ruGc3K1976IynUCCkJDeMzYwQMlY9cxi62j5lXQoAkJVAzicGTO1LySnEXUyBEYseF3oA4NfxwTYmq6YmrhwNFoullFDTRXNVLBbj3knS8IvD4yBsYh+19hug2AUhjeWS716hnou9mwCRqP3FRy/FWErnZqHjesHWhfyOxF9NBYfQQhNSero1n09xudwWvxt0xZJODAk1AwYMGDBAG2c2X6L+PXlVuM7jVRZX4bMJP2DrB3shEsqrtmxdrLHgy1lqjeHf25sSqo++EYeH555SVVw9hnZRWr3UhvDX5AmWS9uvK7V7qrN6KENR50Kdts+cpHysGfUNfl60iUpimlqa4K0/l2H93f8prYL69/ahJh4lOWVUC6N3Dw9sfvITwpeO0GoCHX8/CRkxZFVDYKgfrZoraNaiqEkbquJEPFKNWOanFeKTcd/hh3m/U0lbYzMjrPp9CTZGfgffnvIEiEdnN0rMPzshDwk6CCYrkvwkHYkPSVF57+4eSnb3dKBtLPvR1I6sCmdvR/QaSa6cF2YU43kznTpdyM/PR1lZmd6SVzdv3tSq0szc3BxnzpyBQCCg/ZjCwsIwatQo2lvfiouLUVRUpLdY3r59W6tKMwsLC5w5c0YviZo+ffpgzJgxYLPbbk3TlIqKCuTl5cHT05PWcWXcuXNHq+ooKysrnD17lvZ2ZAAIDg5GeHg4uFz65B8AoLq6GpmZmXo7LyMiIpCZmanxftbW1jh37hzq6upoP6Zu3bph3LhxtBpZ1FbWUYZEJubGGLVgCG1jQ0W7Z3stijL6TZYni3SRb3DxcaJaHrOkYvZcHgejFgwBz5KDoFc9cG73pXZGUY/GukbEHcpE4ZMKcI04GLOErJzMVHCl1EVEv3m7p7rO9IqJN5l8Q1C/ACqpKBZJcOK39ity7d3tqPeUVaix2CyMWTQMHFMWui3ywpldFzT+XFSFWrOE2pQpU1q0xis7fP77hgQwJNQMGDBgwABdJEWlIvkxWQHjE+xJaVRoy5OrMVgR/IFKYflhcwaqnQBiMBjoJ51MCPmkyLyMyTpUp8noN7E3rB3JaoAHZ57g1hFStFvddk8ZYRN6gclkSMeJanW7mvJabH5rJ5Z3fx/Pb8orhobM6ocdCRswceXoFjfUMbfjUZyjrOkyZXU4/oj8Hh6d3dQ+xuYoaq7QEcvmaNruKSMkvCfYHHKF+P6ZqFaryOqq6rHl/T14rcu7Stp8A6b2xY6EDZiyOlylPse415Sr1OhAsTpt8ip6KwSgRbunjF4jdWtHbo9xzRLSdGFvb4/Zs2drpH+kLgRBgMPhoGfPnhrvKxaLkZCQgLQ09apQNYHH48HT0xO3bt2itXLSxsYGs2bN0lsSiM1mq+Xu2RyCIJCYmIjk5GTaj4nL5cLHxwc3b96kNZYWFhaYOXOm3irr2Gw2+vRRr2pFEYIgkJycjMRE9Sp6NYHD4cDf3x83btBbhWpmZoYZM2YgMJDexQcZTCZT61impKQgLo7eil5I/76BgYG4efMmbb/FV3ffRlODVAJjwRC1kzTqommLogxnL0dqITApKg1lBRVavT+LzYK71J0yP7UIAumCYvhrI6jKqAdndNNpk3F9/10weARMHY0wfO4gWNiQCasMBSdrTw1lNRTRNpa2ztYIDCV/czJjcyjDhFEL5cnTs39eaXccBoMBjy7knLEoqxSNdaT23NilwwHpnOXRxWcaf88ZTNUJtcrKShQWFio9p+gK7tXNkFAzYMCAAQP/IRQvxrokBIQCIbZ9uBcfj/2WcvG0drSEv0L1kyYJATRr+0x5Sib97N1slcwAtIXNYWP0QlKjTCwSozSHtPhWt91ThpW9JboMIG8M8lIKkZOUr/S6UCDEyQ0XsMh/NU5vukQ5QTp62OPb8x/js8PvwdZZuTVFLBJj9+eH8eGIr1FfJa88MDLlYekP83QyjCgvrMTdE4+kx26h8d+kPbRp95RhamFCCeWW5pZTDqYyxCIxzmy+jIV+q3Fi/Xmq+tHezRZfn1qDr0582Ob7DZ7ZD6aWpEPmnSMPUF+tW/tNTXktbh0iE7FmVqYYNnegTuM1R5t2TxlGJjyqrVmTdmR16Tc5BJZ25E3H/VNRqC7TXWS+trYW586dg4+Pj15awRobG7Fo0SJ06qT5ZN7a2hrdu3cHh8Oh/bgg/ewRERHIz89XY+v2qa+vx9mzZ+Ht7a23WM6fP1+rKiNzc3P07NmT9sonGXV1dbh37x5teliNjY04e/YsPD099RLLpqYmzJ49W6tknYmJCfr06UNr5ZMiDQ0NePDgAW0ulXw+H6dPn4aHh4dezAj4fD6mT5+ulR4Uj8dD3759W4ip00VTUxMiIyNpSSRLJBKc/Us+d9NFAkMV2rZ7yug3SbFK7Umb27aFrBNBLBIjP6UAkFab+3X1QezeTKTez9a52pwgCJz98zKc+tjAobsVtcgokUioNkUnLwetE5batnvKGKCi2nzBV7Oo36KSnDLkpxa2ur8MjyAFHTWpzqyzlyO69QtC7N5MZD3KV1rsVQfZYjKa5TSfPn2K58/li+oEQSDjBRlLGycrjebY+sSQUDNgwIABAzpTVVqN24fJhIC5tSmGvaJdQiA7IRfvDPwcx9ado54LGRuMdbe/ppIiDp3sENjXV6NxewyVC9XLLtjjl48Ci02PO5BMXF0RTVYPZSi1fZ4mJ6EEQeDB2cdY1u19/PXebqp1wsiEhwVfzcL2+PUIHderxVh5KQV4b8gXOPDdCWrVz8bZCpDqYSmudGrDxW3XqaRe+GsjwOXRmyBQalHUIpbK+ivyir+oS9FY3uN9bFq9g2qV5RpxMO/T6diRsF6tJKuRCQ/D55KC4vxGAW4evKfx8SlyacdNqg13zKKhMDal90ZMMZZ0nZd0QbbekAlpoUCEa3vv6DxmVFSUXirAZOzfv18nPbEpU6bAwoJe8w4Znp6e8PT0pM217smTJ0hJoaetWRWHDh3CzZs31dhSNZMmTYKNjY1e3E3d3d3h4+NDW0tpdHS0XirAZBw7dgxXr17Vev9x48bB3t5eL7F0cnKCv78/bbF88eIF4uPj9eZqe+rUKVy6pH0b4JgxY+Di4qKX47O3t0dQUBD4fN1NYp5ejUFBGumY2HNEN3QKpLeiV9t2TxnKDujaX3s8u8gXP7Li5QYHY5cOh42/OZgchs7V5i8iEpAVlwtBnQjmFuaUVERRZgllgqWL5pdiu2fIWPXbPWUoyjfcl8bSxMwYPsHyyuPtHx1odxxF46qsOLnsgSyWLC5T41i2lhQ3MzNT0tYsL6yk5m1eHUQ/DYaEmgEDBgwYoINL229CKCAFTccuGQ4jE80mTWKRGAe/P4nXe62hKmnYHBZWrluIb89/jPj7yVTyZvCMfhqv7nO4HPQeI18ZZbGZSkL9uuLq64wew+QixAwmQ6N2TxkDpsgnPDcO3EXa80ysGfUNvpzys9LK4aiFQ7Ar+Xe8+sXMFrEWi8U4tu4cVgR/QK24MllMLP1+Lj478h61naLwvqaIhCKc33aNHJvJwISVo7UeqzWU2j1nqN/uKUNxZfvmwbvIiM3Gx+Hf4tPx31OGDAAwfO5A7Er6HYv+NwfGZupPUBXPH5mzrTaIxWKcU6gQmPjGGK3Hag3ldk/NYxk2oTeYLHLKeOvwfdrbPhUT0he339D5JtTIyAhDhw7VSxVYXV0dCgsLdWolra+vx5YtW/SS9GMymVi4cCGsra1puZnn8XgYPHiwXiqXmpqakJubCxcXF63H4PP52LJlC5KSkmg9Nkjbm+bPnw8HBwdaYsnlcjFw4ECYmJjQcnyKCIVCZGZm6nReikQibNmyRS+tigwGA6+88gpcXFxoafvkcDgYMGCARkYW6iKRSJCWlqbTeSmRSLB161ZER0fTemwyZs6cCQ8PD51/i/Uu26Bli6IMv17esHcnq8WfXY9FeWGlVscha1OEgo4aAAQN9YVrmB1MHYxw58gDyrFcG2SxTDmZp+RYrOzwSU+7pyY6qDI6BbrCzd8ZABB3NwlFWaR51vwvZlLbPLrUfrumUizj5Qm1oMFkLM2cjXH/VBSqSqtbGaElDIWEmuL7T548GeHhcj1mJUOCDtLuCUNCzYABAwYM0MGNA/JqjYmva5YQyHiRjdVhH2PXZ4eopJx7gAs2Rn6P6e9OIK3iD96ltte2tbBTgHxybOVgCWtHK63GaY3gofKEmpWDhVal6C4+TgjqTwreZ8Xn4vVea5RK57sN6ozNj3/Eml1vws61ZUtidmIe3h30ObZ9uBeCJrLiydnbEevv/g9zPpqKrgMCqdaHhAfJSpMhTYi+GYcK6cS23+QQOLjbaTVOa6THZGnd7inDztWWErwvSC/Gyp4fKumkdQ7zw+8PvsPH+9+GQyd7jcf3DfZCQAjZhpwWnUm1EmtK/P1kFGeT+nYhY4Ph6uus1TitkZdSoNTuqc34lnYW6DuO1AsrzSvHExW6hrrQKdAV3QaTrVW5SfmIv699cqSurg7+/v4IC9M8cagOJiYmmDlzpk6OiKampnByctJbtRJBENi6dSuePNG+RQrSNj0vLy8MHEhvC7IMHo+HmTNnomvXrjqN4ebmppeEmowdO3YgMlK3it6mpia4urpi6NChtB2XIhwOBzNmzECPHj20HoPNZsPLy0uvsdy7dy/u3dOtopfP58PBwQEjRtC3KKYIk8nE9OnTtdL1UxzDx8dHr7E8cOAAbt++rcaWqqkqraY0au3dbSlHZ7poauBT1eHatHtCmogdOX8wAEAilii5mWuCUlWVwrzHysYKIBgQ1Il0qjavr67HQ2lLaucZnuC4yhPwGUqGBNpVVQkFQkQcJyvNtWn3hCyWr5KaaQRB4PJOsjJ4wOQQGJuRVfHCJiGu72u7StyzlViaW5iDQTDArxFCJBTj2l71q7iZLPkiuUzPDwAuX76MO3fkx5OpZEhgqFAzYMCAAQP/EbLicykdhS4DAuDs7ajWfiKhCPu+OYZVIWuR+ox00mIyGZj14WT89exn+PXyBqRJIllSycXHUeN2Txn5afIKr4rCSpTklmk1Tmsoap7VlNWhoVbzlitBk6CFDhqkuhtfHHsf625/Df/eLZ00xSIxDv94Cq/3WkM5RTIYDEx9axy2xvyKoDB/6jnFaiBt2+sijj6g/j1i3mCtxmiLcwp6fMO1bB8W8IVKSVNCQk5wHTrZ4ZOD7+D3+99RcdEWRUH9a3u0jKXCqrM+YnmWhliihRGD9hV56ox/VctYAsCFCxdw7do1mo5KGbFYjLNnz8LJyUkn3SYGg4E5c+Zg0KBBtB6f4vh+fn4638xfvnwZly9fVmNLzZFIJDh79izs7e111sCaOXMmhgyh15lQEV9fX51jefXqVVy8eJG2Y1KEIAicO3cONjY2Kk1UNGHatGkYPnw4bcfWHDqSTDdv3sTZs2dpOyZFCILAxYsXYWFhobPD6+TJk5UqlehG1/Py/qkoSMRkNdCwOQNpk8CQcevQParia+C0UI3bPWWEL5XPWS7t0M7YwtHTnqrmV0oCmZtj/tQF4FeTC5DX9mqXsHtw9gm1IOzob4PKKnklHR0i+ndPPKIcyMMm9tZah23M4mFUtfmVXbeozo+B0+ROmkd+PtPmGDZOVjC3NgUUnD4hXWxaMvc1NFWQDtaaxFLx3Guqk7eFl5SUoKxMPlfP6ICGBDAk1AwYMGDAgK5oU9Kf9jwTq/p+hL1fHaUE4T2C3LDh/ndY9tN8pYmXYnJl0hvamR3wG/l4dP4Z9ZgggCs7b2k8TmtUFlfhnlSgH9IE15Mr6lfxEASB20fuY0nnd3D3xEOl1xZ+PQs7EjZg0PQwlZ89My4Hb/X/FDs+OUjpcLn6OeO3O1/jjQ2LW+hxjZg3iBKAvX+6dQfM1hAJRbgvFbQ1MuWhb7jmq85tUVtZhxsHyIpEE3NjjFqg2Y0yQRC4e/IRlnV9lxpHxisfT8POxA0YNmcALaLgQ2b3V8tNtDXEYjH19yZXnemtEGisa8SV3eR5zjXiYMySYVqP1Te8J2xdyGTvw/NPtW69aY1B00OpGx5d3ESzs7O1ErhXh8TERMTExNDS8mppaYlHjx4pCS7Tyfjx4zF6tG6t2PqMZWpqKp4/fw6RSKTzWBYWFnj+/LnOFXmtER4ertR2pA05OTl6i2VGRgaePXsGgUCg81hmZmaIj4/Hw4cP1dhac0aPHo0JEyboNIY+z8vc3Fw8fvyYFn0yU1NTpKSk6FyR1xojRozA5MmTtd5fW+dndSAIgrZ2UmdvR6ravDCjGM9vxWs8BpPJRKcgslWxML2YqoKqra3F2Zun4BtC6oglRaWhLL9c4/EVY9klqAv8/eWLdTIRfa4RBy6+6hsCKUJXLO1cbBA6ntTcLcuvoCoUl3w/l9omJzEflSVVrY7BYDCoKrWy/ArUVtYB0ormYxeOoMtQuZtoQXqRWselOB/jN8p/x7p06aLk4pspjSWTxUQnHRzq6caQUDNgwIABAzqhNClrR+tKKBBi9xeH8Wbfj5ERQ640MVlMvPLxVPz59Gd0DlV2J6uvacDVPeQql5EJD6MXadcu8+RKDBrrlMWQL+28QZsW1MXtN6jVSRkyF6X2SIpKxTuDPsd3r2ygWv8UsbS3VCn4LxKKcODbE3ijt1x3jslkYOb7E7H1+S/oOlC1O5mlnQW6DCQnKPmpLd1E2yP6ZhxqK8gJVNjEPlqvOrfG1d23qcnuqAVDNFqJTX2WgQ+Gf4VvZvyKgvTiFq9b2pnTerymFiboOYKc6JfmliMtOlOj/ePvJyuJDJta0KutdH3/XTTUkJWSw+cOgoWN9npDLDYLYxeTlSsSsQRXdtGXkAYAnjEPvRXcRGWVlpqycOFChIaGqrGl5rBYLPTu3Rv29pq3CKuCz+fj1q1behEuNzU1RXx8PFJTtYsjAMydOxcDBgyg9bhkMBgMBAcHw9mZnhZnPp+P27dv06LP1RxjY2OkpKTo1KI7a9YsDB5MfwUqpLHs1q0b3N3d1di6fQQCAe7cuUNLsrM5RkZGyMzMRGxsrNZjzJgxQ29VdARBICgoiLaEnVAoxN27d2lJdjaHy+UiLy9Pq6R8VWk1lZhy8nKAf29vWo8t/kEyZSQV2NcXASHadRbIUKxgvqSleYBMc4sgCCRHkfqVtbW1qKmpQc+x8rZzTd1E66vr8VQqJ2HjbI0h4YPg4UG2IzY18CnTB8+unbSqIE19loGEB8nSMdzRfXCQxmMoolxtTsbSzsUGrn7y3+Jdnx5ucwzF6jDZtbq+vh41NTXoPkouf6LuPFgoEFL/tnaUy6X4+flR30WRUIScRLIbplOgK+1GWLpgSKgZMGDAgAGtyU5QbvdUpeslI/lJOt7osxYHvj1BlZl7deuEPx5+jyXfzVV5cby+L4JKhI2YNwjm1mZaHeedY/IWRf8+5MSxNLccT6++0Go8RcQiMS5slbeYybQoHl14BpGw9RuSvJQCfD9vA1aHfUJNlgCg9+ge+Pyo3DxA1eQxPSYLq8M+we4vDlMVfu6Brlh/71ss/2VBu0kjRQfMSDUnPDIU2z21ERluC4lEgrN/yldiJ6m5EluYUYyfF23CqpCP8OJOAvV88LAu+PLEB9Tji9uv0568UHLA1DSWOgo2twVBEDhLs+D02KXDqZVkbVtv2kKX8xIAbt26hby8PJ1bCFUhEAhgbm6uc3WNIgMGDICnp6caW2pHUVER7t+/r9W+ERERyMrK0rmFUBVCoRDGxsY6Vdc0p1+/fvD29qal8lQVxcXFWlcaPXjwAKmpqTq3EKpCJBKBzWZj2rRptH32vn37wtfXV2+xLCkp0TqWUVFRiI+P14vhiGyBbebMmbR99j59+sDf319vsSwtLUVERITG1zXFdk9tjJ7aQ5vreFv0nxICK3vSGfn+qShUl9VoPEZ3BZ3b6JtkQtfW1hbdu3fHwPHyxeAHZzW79ii2ew6eHoYzZ85QLtDZ8bnU30ZbEX3l63i4zn+rkLHBsHO1AaTz1LKCCgDAzA8mUtsozplV0UMhls+lsbSyskKPHj0waLx8LqNuLEUKC9JGJvKuinPnzlEu0LnJBdR816t7x2n3hCGhZsCAAQMGdCHimLwtpLWEQGNdI/5esw9v9fuEsthmsVmY//kMbH78o0pNMMgSAjRMyviNfDw89xQAYGZlilkfTqFe09UmHdLJVGke2SIQNrE3QqXCvnVV9Yi927KioSC9CD8v3oSlQe/g1iH5za57oCu+Pf8xfrj0KQbP6Af/PmRcUp9lIvVZBiBd7dz12SGsCvmIqoZiMhmYs3YKtjz7WW1NMCUreg0mj/pu93xyJYaqLOs1shs6BbbtWFeUVYLflm3BooC3cG3vHWri6uLrhK9PrcHP17/EwKmh6DaIrNbLScxHvELykg4U3UQ1iaVYLMbdk2SbsD7aPV/cSaC0YroMCIBvT90rLpw8HdBrVHcAQFFmiZJhBh2Eju8lb0c+81ijm0ShUIjIyEg0NDTQekwyrl27hjNn2taW0RRbW1uMGjUKGRkZtI4ro2/fvlq5IIrFYjx48EBvsbx16xZOnjxJ65hWVlYYO3asXpxTIY2lpaXmRjMSiQQPHjxAfb327oFtERERgaNHj9I6poWFBcaNG4f0dO2MVtqjT58+WsWSIAjcv38fdXV1ejmuBw8e4NChQ7SOaWZmhgkTJiAjI0Mvlai9e/eGtXVL3dX20Ge7Z3lhJTU3tLQz18qRsjkcLoeSfxAKRFrpv/YcLq9Ce36LvHbxeDyEhoYisI8f5Sb6/GYc6mvU/+1rHkuRSEQlZxXnG949NF88qSmvxc1DZPLZ1NIEI+bpbhDDYrMwZjEp/6BYbR6+dATYXDLp31DTiKjLz1odQymhJo0lh8NBaGgofLp6Um6i8feS1Ep+ikVkcpfBVE4WikQiauFOceHZu7v+FqK0wZBQM2DAgAEDWqO4itW83ZMgCNw5+gBLOr+Do7+epVZDfYI9sSnqByz8ejY43NZXmZ/fikNOItmO2G1wZ63dkRTbPQdM6YsBU0Jg40SK1T889xQVRbppQZ3dfIn69+RV4RigmKw6LU+wFGWVYN1rf2Fx4Nu4tucOJFKRfAtbc6zauATbYn5F6Lhe1OrjOAXzgIt/X8e9U4+wNOgdHPz+JFXh59nVHRsf/oClP8wD14ir9jG7+DjBsyvZHpT4MFVtPSx9t3sqJlAnr2pds6gktwy/v74NiwPeIiulpOeWubUpVq5biO1xv6H/5BAqlopGDHQkURWxc7GhjDIyYrJRmNmy1VQV8feTKadUfbR7nlEzlpoyTo+xtLSzQFdp8lPTdmQGgwFvb2+dXA7bIi0tDV26dFFjS83IysrCgQMHUF1dTfvYvr6+GD16NBobNTNIYTAY8PLyQs+ePWk/Jkj104KCdGtbUkVubi4OHjyIiooK2sf29PTEuHHjNE4yMhgMdOrUSSfHyLbQ13lZUFCAQ4cOoaSkhPax3d3dMXnyZK2SjO7u7ggJCVFjS83R13lZXFyMw4cPo7CwUI2tNcPFxQXTp0/XKJb6bve8+Pd1ao4S/tpIjeYmbaF8Hb+hcYLSztUW7lK396RHaWisawSfz8fff/+NzMxMqkJaJBTj8aVotcZs3u7ZZUAAwsPDqVb56Bvy1ubgYZp/T6/sukU5to9ZNAzGZtqZETQnfOkIan50eedNSCQSMJlM9Bktv35ufW9vq/tb2lnAJ5hMaqVFZ6GmohYikQh///03UlJS0H9yXwCARELg4fmn7R6PbA7X3Bhj9OjRlHnPMx1jqU8MCTUDBgwYMKAVbbV7ZifmYc2ob/DtnPUoyydvbjg8DhZ+PRubHv0A3+D2q2XObKYnIaCU9JvZD2wOG6MXkatzYpFYaxt2SGMgm5i6+Tuj18huCAnvSQnVPzj7GMU5pVTy5/LOm0rJnyXfzcW+jM2Y8mY42BzldqBhrwyEkSmZsLq4/Qa+nv4rSnJItyM2h4V5n03H5sc/IaCP6gq/9hggnfAAwMNz6mmG6LPdsyC9CFEXyUmsQyc7hE7o1WKbsoIKbFq9A4v8VuP81mtU+b+ppQkWfDUL+zI2Y/q7E1okagfPCIOZlan0M0RSzmN0odj2qa7+ij7bPUvzynH/VBQgdeQaOK1vu/uoS79JfZRab6pK6U0Eadv2WVZWhkmTJsHCwoLW45GxYMECvWhg+fn5gcfjITc3V42tNefy5csaOyKWlZVhwoQJsLKyUmNrzZk3b55eNLC8vb1hamqK7OxsNbbWnOvXr2tcWVdWVobw8HDY2rYuh6ALs2fP1tl8QhWenp6wsLDQWyxv3bqlcWVdeXk5Ro8eDQcHB70c0/Tp0zFu3Djax3Vzc4O1tTWysrJoHxsA7t69q1FlnT7bPUVCES5sIyUwmEwGJq6kz+XUPcAV3QaTCy65SfmIv6+5w2nwMLJKTSwSI/ZuEthsNhgMBhoaGtB/ivw6qW61efN2TyaTiezsbDAYDIiEIkqCwsrBkhLyVxexWIyzf8lNuSa+MUaj/dvC0cMevUfLq81lib83fl9MbZOTlI/ERymtjiGLJUEQiLmdABaLBSaTicbGRqUuiMh2YilQ0E+TzZ2pY8ghTQgkEglVEW9qaQI/mpPAumJIqBkwYMCAAa1Q1e7ZUNuIbR/uxYoeHyi1g/Ud1xN/x67D/M9ntEgcqaIkp5S6mbZ1scaAKdqtSDdv9+w5gpwAhC+V38yd23K1Ta2ztjizWdmBlMlkwtTCBMHS1oKSnDIs8m2Z/Fn49Wzsy9iMVz6e2qroPoPJoByhZJNfAOg1qju2vViHRd/M0UmUtZ/ChOe+GokLfbd7nvvrKrXiPHHlaCXtpoqiSvz17m4s9H0TZzZfpiawJubGmPfZdOzL2IxXv5gJU0tTlWPzjHkYMY9c5eQ3CnBpx01aj13x/FRHR03f7Z4Xtl6jzplxy0a2WQmqKRwuB6MXkuYgIqEYF7bSW6XWX8PzEtK2kN27dyM+XnP3t/YgCAL79u3TmzYbj8fDW2+9pZfKGEhv5jVpNxOLxdi9ezdiYmL0cjyHDh1CRkaGXrTZOBwOVq1ahe7du9M+NqSxzMrKUls7UHbuPHvWeuuULhw7dgzJycl6iSWLxcLKlSvRq1fLhQ06cHNzQ05OjtrGBwRB4ODBg3j8WHNtRXU4deoU4uPj9aJzx2QysXz5cr2Zpbi5uaGgoABNTU1qbK3fds/7px+jvICsvO43OQQOnegxcJGhKKh/6o9LbW6rimDFts+bsWCxWHj11Vfh7++P7oM7Uwtvjy48UxLKb43msRQKhbh27Rqys7OR/DgdDbVkdXDPEV01Tlw+vvQcRZlkhWifMT3g5kePgYsMxVielsbS2csRQf3l0iHrl29tdf+ezWLJYDAwf/58dO7cGYGhvpS5wJMrMZTRlCqqiuSOohyFOa1EIsGVK1eQmZmJjJhs1JTXAtLqNH385umCIaFmwIABAwa04t6pR9S/B00Pw63D97Gk89s4tu4cVe7v5GmPr0+vwbfnPoarr/qTgTObr1AtkeOXj1IrCaeKZ9djldo9ZYkFFx8nhIST7UwlOWW4vv+uxmPXVtbh+j5Sx8PIlIfRC0l9j4qiSogEcvdQkTQWismf+Z/PaDX5QxAE7p4k2ztlTqiQuqF+eugd/Hj5M7gHtK0tpg7+vb0pYdrnN2KpiV9rvLiToLd2z4baRlzZRSa5ODwOxkoTnlWl1dj24V4s8HkTJ3+/QLU+GJnyMGftFOzL2IxF38xRy6xi4uvyKo7j685C0ESf61qnzm5U8jP2biI18WuNpEdpemv35DfyceFvMsnFYrMwfgV9FQIyxq8YRWmdnfz9AhrrNGspbAtnb0fKQSzpkXrtyMXFxeDz+bQ58ymSl5eHjIwMmJqq/r7SgbGxMX7//XckJCSosbVmhISEYM6cOWrfzJWXl6OxsVEvsSwqKkJKSoreY/nnn3/ixQvdDWea07NnT8ydO1ftxGplZSVqa2vh7U1/NUVZWRkSEhL0Hstt27bpJSHYvXt3zJ8/X+0EVl1dHSorK/VyXlZVVeHFixcwMaG37V4RIyMj7Nq1C1FRUbSPHRQUhPnz54PHa/+aXFtZp7d2T4IgcGrjBerxpDd0NyNozqDpobByIBM1d48/1NilXJX2V1VVFUpLS8HmsBE6nkwgN9Q0KhkcqaKxvqlFuydBEOBwOLC1tcWz6/LfoF4jNE/yK8aSTtkGGf0m9YG9G1k5+/D8U6Q9J3V5P9jxBrVNZmwO9Xxzug0OApNF/hbKYllTU4OSkhKwWCyETSD1ZfmNAqVYNEfWxQIAPGN5e7AslnZ2dkr799QilvrGkFAzYMCAAQMaU11Wg4wXZLLHo4s7fl74B76fu4FameTwOJj/+Qxsj1+P/pNCNFqZqyqtprS0OFw2xi0b2e4+rRFzS14lpygeDwDzPp1O/fvQDycpEVl1Ob7uHJWsGzl/MIQCEZX8ea7wvgwmA3M+mqpW8icvpQAfh3+Hb2b8itJc0uhAFjqJWIKmej5t7RkMBoNqVRQKRHh8+Xmb2yt+pn4T+7S5raac2ngRtZVkG+bQOf3BZDKx45ODeNV7FY6tOwd+I5n84hlzMfP9idibvhlLf5gHC1v1Bdc9gtwxaDpZIVBRVEVrlRqDwaBaFSViCR5daPsGVJ+xPPfXVVSVkG2YA6f1hZ2LDa3jQ5qQHjaXFEeuKa/F+S3X2t1HE/pr2ELr7OyM119/HXZ2drQeB6Si4kOGDNHLjbwiTk5OWjsftgWbzUZ9fT0iIyPV2Bqws7PDypUr4exMbzUEAJiYmGDw4MHw8/OjfWxFnJ2dcfeu5osk7cFisSAQCNT+O1lbW2PlypVwd3en/ViMjIwwcOBABAYG0j62IvqKJZPJhEQiwZ076onLm5mZYcWKFXpJTnK5XAwcOBBdu3ZVY2vtcXJyotwf6YTBYIDBYODWrVvtbht7N5GqXu43sQ+t7Z7RN2IRf58Uju/U2VWpgokueMY8zHyfdKMkCAKHftCsBVuV9tejR4+oBLyifMP9021XQyY8SKaq5ftN6A0mkwkul4u1a9fC1dWVchKF1GRJE+LuJ+HZdXJ/Z29HhNDcEQAAbA4bs9bInZYPfk/G0j3AlTLFAoB1S/9Sub+JuTGlH5uTmI+yggpERUUhOpqU7ujfip5wcxQXzWQyJ5D+3q5ZswYeHh46xfKfwJBQM2DAgAEDGvMiQu5emZOQR614AkDYhN7YHvcbFn49W6sqpiM/nUFTPVkePm7ZSNg6a+5gJSNGusLIYDAo7Q0ZXfoHUMKmBWlFuHOkbZtwRarLanBq40VAqvnAYDBaJH9kE1VCQmDK6vA2kz+NdY3Y8clBLOv2Hp5elbda9R7dA58cfId6fOjHU1T1Hx0oTnieXG5bhDdGYbVWcZVXV+qq6nF83TlAWoVnZMLDq96rcPjHU9R5wOFxMO3t8dibvgnLf1kAawfNHeIAYO4n8iTqkZ9Pq9XSoS6KsXx8pe1Yvrgj/770oFFct7GuEUd+Og1Izz/FpDHdvPLxNOocP7buLPiNrbd0aIpiO/KTdmIJAGfPntWLI2VJSQkSEhIwdOhQWm88VTFu3DiEhYWpsaXmlJWVISIiQq22zwsXLujFRbG8vBwxMTEYNmyYXlpnFRkzZgwlCk43sliqswBz+fJlvZhNVFZW4smTJxgxYoTeW59GjhxJiYLTTUVFBSIiIiAUtv87fO3aNb2YTVRXV+Phw4cYMWKEXto9FRk+fDiGDh2ql7ErKytx7969dts+X9yWX3tkGlh0QBAEdn9xmHo8//OZevvNnLByNMxtyIXJmwfvoSC9SKP9m2t/2dnZgcMhuxdCxgaDI3W6fHKl7UXGmNuK13FyzNLSUmzduhU1lTVIjCT1x1x8nTRufd2jEMu5n07X2/c8fOlwqjXz3olHyE4gtTw/2CmvUkuLzqQcw5ujeA7F3IqHnZ0duFyyyqzniK5UguzxleetXn8qFVo+jUyN5M9XVuKvv/5CbU0dYqX3HHauNnDzd9HpM+sDQ0LNgAEDBgxohFAgxKnf5aXosoukk5cDvjmzFv87+xFcfJy0Gru8sJKqTuMacfDKJ9O0Ps7ayjqkPydFgL17eMDCpmVCa95nM6h/H/z+pNraOEd/PkNVp0Gqw9Y8+TNplVxAVtHuWxGRUIRzf13BQr/VOPzjKUpnzaGTHb44/gF+uPQphs4eQOl+FKQV4bYGib/26DYokBKBjW/lGCFtbUiOSgMAuAe46JTkbM6J9ecpkwAmk4Fzf12l2k85XDYmrxqLvemb8Pr6RbBx0u19fXt6IWwCqVdWmluOa3vpqxboHOYHIxNy8ihbpVeFUCCkXnfoZAcnT/oEts9suoyqUtKifsjs/vDqpp0zrjp4dHbDIKmzb2VxNS5tp6/iz6+XF6VlE38/uc1EUE1NDWJiYvSSULtw4QKSk1v/W9KJpaUlHB0dceHCBY3d69ojKCgINjY27f6+NTQ04NmzZ1q5L7bHpUuX9NLSqgpzc3O4ubnh3Llzav+mq0vnzp1hZ2fX7t+Iz+fj8ePHqK1tu/1bG65cuYK4uDg1ttQdMzMzeHl54cyZM2rrnalLQEAAHB0d2/0biUQiREVFoaamhtb3h9RoQh/twaowMTGBn58fzpw5o1YSURP8/Pzg5OTU7nmpuMjYdRB91Y1Rl6KR+DAVkLqPD5lFrzabIibmxpj29nhAWhF++MfTGu3fXPtr2rRpGDlyJDV2gLTqqjCjuE3JAcVFxu5DSA3MoqIilJaWIu5+MjWf6zVCs4qq6Jux1CK1q58zRr1KvxmODJ4xDzM/IKvUyIq/UwAAr66dqEo+APh16Z8q9++p8Nme34zFpEmTMHbsWGrsLgPIc6yisBJFWaodg2UV9QCU5C+KiopQXl6OxIcp1EJ1z5Hd9L64pQ2GhJoBAwYMGFALiUSCm4fuYUnndxB7V16hxuGxseDLWdge95vO7WuHvj9J6WRNfH2MTomb2LuJ1OSyxxDVVUA9hnZBUP8AAEB2Qh7ljNgWz268wPH156nHsklT8+RPn9HyEv24e8puVARBIOJ4JF7r+h42rtqOyuJqaoy5n0zDjoQNGDQtlJo4zFdK/J2g7SaRZ8yj3JJykwtadWxMeJBMVcZ1byWW2hB3PwmHfjxFPZbFks1hYcKKUdid+gfe/GMprW2LcxWqtg7TWPHH5rARGEpOxEtyylCSW6Zyu+TH6dTksMfQLrRNDuur63H0lzOANDG54MuZtIzbFnMVEt5HfzkDAZ+em0Qmk0kJI1eV1iA/tbDNbb28vPTSCiYWizFs2DDax23r/Z48eYLExEQ1tlYfBwcHLFiwoN2qKgaDAS8vL/j4aOcc3BZCoRAjRoygfdzWkEgkePbsGWJjY9XYWn1sbW2xcOHCdn+DGQwGPDw84O/v3+Z22iAUCqkEwD8BQRB4/vw57UYVVlZWWLRokVrburu766W9VSAQYNQo+nUm2yImJgZPnz6ldUwLCwssXry4zeuJOouM2kAQhFJF1YKvZuu9CnXK6nCYWJCGTtf23kZJTqna+ypqf0XfjMPjx4+VnJC7DpCfZ605iba2yOjo6IhevXrhxW15sq3XSPU1v8hKvyPU41e/mAkWW79VqBNWjKQ6KG4duof8NPJ6+962FdQ2yVFpKq/DQf38KSOB6JtxiI6OVnJC7iKdX0PFPFhGdbm8ItrUSp5Qc3BwQHBwMOLvyhe1tNGi+ycwJNQMGDBgwEC7PL0Wg1UhH+GHeb9TrkMAYG5jhh0JG/DqlzN1FqkvySnFRamYupEpD7PXTtFpPMXWBtnqYXMYDAbmfyZPsBz47oTKFV6CIPDkagzWjvkf1o76n5LrJofLxvjlLZM/ik5J8Q/kE4mY2/F4q98n+N+s35QmKINmhGFb7G9Y/O0rVKWT4vF3GUBOTHIS83Hv5CPQRZf+8sljwgPVFukxasRSXQiCQPTNWHwy/nu8O+hziIXym3w2h4WxS4ZjV/JGvP3Xcji406+J1TnUD71GkZOywoxi3DxEn26VYixbq1JTiuVg+pwdT26Q69CNmD+YFuOK9vDp4UlpE5bmlePantu0ja0Yy7g2Kv4IgsDs2bNhZGTU6jaaQhAEsrOzsXjxYr1rpyni4uKCvn376mUF/syZM7h0qW1XPLFYjFmzZtEudJ+Tk4NXX30Vvr6+tI7bFg4ODujXr59ebuwvXryIc+fOtbmNUCjErFmzYG5OT9JCRm5uLubMmaN37TRFbGxsMGjQIL3E8sqVKzh16lSb2wgEAsycORNWVla0vndeXh6mT5+OLl3oWyRqD0tLSwwdOlQv7aXXr1/H8ePHW31dcZGRzmvP/dNRSH1GCtf79vTCwKl9aRu7NcysTDHlTVKoXyQU48jPZ9TeV1H7KzcpH2XF5UhPT6de7zKg/eu40iKjQixlmpvRN8hEPoPB0EjW4cmV51RHg0eQG4bO6a/2vtpibGaM6e9OAABIJAQOS6vU/Pv4wrOLXP/x1yUtq9S4RlxqblqcXYrivBKkpaVRr6sTy1oFEydZKy+kFZ1Dhw6lYolmLq0dCUNCzYABAwYMtErqswysHfM/fDTmW6RFt3T6Gbt4GJy9HGl5r4PfnaQEXqe8Ga61TpaMtvTTFOkzJpgSYE1/noWoi3JBeaFAiKt7bmNF8Af4eOy3eHZNuTVk2tvjsT/rT7yzpWXyx8LGHB5BboBU/DbxUQo+Gf89Phj+FZKi5BOOboM7Y2Pk9/ji6Put2qIzGAyl9tTWEn/aIJsMoY3VWFWtDZoiEopw48BdvNFnLdaM/AaPLylrY018fTT2Zf6J97e/TmsbpCqUDSlOaWxI0RpdBra/sq2kn0aTFl1NRS2Or5fr0M3/fEa7+9DFvGYVfyIhPW1hXdWIJQDs378fDx7Q1wYNAOnp6di9ezfKylRXGeqT8PBwmJmZ0a4XZWVlhZycnDa3OXz4MO0C9NnZ2di1axeKi4tpHVcdRo8eDRsbG9r/jpaWlsjOzm5zm+PHj6slEq8J+fn52LlzJ/LzNXM2pIPhw4fDyckJJSWq27a0RZ3z8tSpU7h+/Tqt71tcXIwdO3a0+3fUB4MHD4a7uzuKijTT/moPa2trZGdntzo3UFxkpOvaI5FIsOdLeUXVwq9n/2MtedPeGU9pdF3acVMtR2gZitpfojIoJVVbWwxVRGlhTCGW165dw6mTpymHdt9eXmpXAraoTvtylt41EmVMXjWGklm4ti8Cxdlkxd+7ClVqcfeTUJzd8vvfc7i87bOxQIRu3eSPO4f6UtWArcWytkouMaCoNXzz5k2cPHGSqgT0CHLTi8kSHRgSagYMGDBgoAWFGcX4ft4GvNFnrVISybenF/pPkQuG0zUpK8woxuVd5M2HibkxZn4wSafx6qrqqdYGr+6d2pzQNBdv3//tCdRW1uHwT6fxqvcq/LJ4MzJjW074p70zvl1dL1m5u1gkxlv9PlVKInl2dce35z/Gultfo3No+653fUb3oBJ/GTHZeHienpYRxRXEOBWJi8b6JqQ8Jic0bv7OGk9o6msacGzdOSzweRM/vrpRZWJ2/IpReGvzsn9sstR9cBCVZM1Nyse9E/RU/AWF+VE3E6piKRQIqSpAe3dbOHnRkzg8vu4cGmpI3bkxi4ZprWGoDQEhvugzpgcAoCirFDcP0lPxFxDiI9f3ayWhJhAIUFJSAnt7zQSf2yMhIQHu7u5wcNBvYrc1Hj16hGPHjtGqpda/f/822wTFYjEKCgpod0qNj4+Hs7MzXFz+HSHpx48f48iRI7RqqYWFhWHMmDGtvk4QBPLy8vRyXtrb26NTp060jqsuT58+xaFDh2hbgACAkJAQjBs3rs1t8vLyaD8vExMTYWNjo5dWcXV4/vw5Dh48SKsuXc+ePTFx4sRWE1ovItRbZNSEiGORyIojBesDQ/0QOr4XLeOqg6WdBSauHA0AEPKFOPbr2Xb3kaFY6ZR2Pwtdu3alfm8VF0NTn2Wisb6l0YMslmi2yFhRUYGmKrlBj2KyqT0izz1ByhOyUs67uwflSv5PYGppiimryYo/sUhMmRsF9QtQMgH4ZXHLKjXFWCbfS0ePHj2o31tjM2NKiy0rLhe1lS0Nb+qr5fqnlnbyuXpFRQUEdSJIJOTfRZNY/tMYEmoGDBgwYICisqQam9/eiSWd38atQ/ep55087fHx/rew+fGPKMogV6iYTIZSFYku7P/2OFU+P+2d8W06YqqDOvppioRN7A2vbuRNStKjVMxxXY4dHx9AeYF8xdMn2BNMNnnZNDYzUtKPUkV1WQ1K88pbPG/vbosPd63CluhfEDqul9qruWSVmjzxt/vzw7Tof1k7WMJVWhmX+jQDgiaB0uuJkSmUtpk6sZRRkluGbR/uxdxOK7Htw71KsfDu7kElS7hGHLz6hf71vpqjmETd8+URWhw/TS1N4dWdPI8yX2RT5goyUp5koKmBnGzTpZ9WVVqt5DireI78UyjGct83x1qcQ9rQXN+vuqylIDmXy8Xs2bMRFERf+5JEIsHo0aMxb968f038OCQkBKWlpbS6bZqZmaG+vr7Vai0Wi4VZs2ahe3f6NGokEglGjBiBhQsX/quxrKyspNVt08TEBHw+v9WqOwaDgRkzZqBnz560vadEIsGQIUOwZMkSvetTtUZISAjq6uporZ40MjKikrmtMW3aNPTpo5s+qyIEQaB///547bXX/rEKoOb07t0bjY2NtFb88Xg8MJlM5Oa2dGSsq6pHWrR6i4zqIhaLsffrY9Tjf7I6TcaM9yeCa0RqeJ3fclVtLbUu/QMo7a/nd+Kwfft2JQMa2WKoRCyhKqRkKOqnNV9kHD16NGqT5Ne/XiPVSwKpqvT7p7/nU98eB2MzUjrh8s6blJbaO1uWU9vE3IlvMa8N6OMDE3NSz+75rTjs3LlTyYBGUZMuIbKlrEhjjXyeJHMchdRhmJ8hX1TqqWYs/w0MCTUDBgwYMICy/HL8+c4uvOr1Bk7/cYlKoFjYmuP19YuwI/F3DJ87CHWV9ch4IStl94appe5aO9mJebi+9w4g1cWQaTnoQoyGrQ2pzzIpgVsAlDECg8HAgKl9seHet/Du4QGJiFx1m/b2eFjaWagcq6KoEts+3Iv5Xm/g8WW57TqLzcLyn1/F7uSNGL1wqFYT+X4T+8CvF6nplPEim9Kc0xVZ26dQIKJWSGW01trQGmnRmfjx1Y1Y4PMmjilUTkGauFx3+2sE9fOnzrFJb4yl1TVUXXqN7E597tzkApzZdJmWcWXaXxIJgcSHypNHpfOSJnOHwz+cohxmw18bCUcPeqti1KHrwM7UjUNRZgmOrWtbX0pdlDTpVLjQJiQkQCwW03bjQRAE9u7di4cPH4LH000TUhc8PDywZs0a2m+oHj9+jIcPH6p8LTk5GQKBgLYEA0EQOHjwIO7evfuvxtLV1RVr1qwBl8ulteLv6dOniIyMVPlaWloaGhoaaNXJOnbsGG7cuEGrVqCmODo64sMPP4SJiQmtsYyOjsb9+/dVvpaZmYnq6mpwuVza3u/kyZO4cuUKjI2N1dhaP9jZ2eHDDz+EpaUlrbGMiYnBvXstq4Q1XWRUh+v7IpCbRLYfdx0YiN6j/nnBeBsna6pKjd8owLY1+9TaT1H7qyijFDwuD1VVVdTrbWl/tbbIKBQKER8fjxc3yWQSh8dRe9E54lgk1Sbq38eH0ib9J7GwMcfUt8hqUaFAhC3v7wGkc2hnH6m0CwGse+0vpf1YbBZVpVdZVA0jnlEbsWxZbd6kUAEo6/gQi8WIi4tD7G3SoIfJYqKHjvq9+sSQUDNgwICB/8cUZhZjw8ptWODzJk5tvEi5DxqZ8DDv0+nYm/YHpr09HlzpSp5igoAOUVuCILBp9Q6qpHvG+xMpHQddSIiUT4C6DVLd2iAUCHHnWCTeH/Yl3uz7UYtJU0BfX+xM+h1fnfgQAHBtD5n0M7U0wfT3Wib9SnJKsWn1Dsz3WoVj685RSQ4ZPGMupr07Hlwj7W8MGAwG3vh9CfV41+eHUaMg6KotiiuIzZ2YFGPZmn6aSCjCvVOPsGbUN3i99xrcOHCXqp7j8DgYv2wkdiRswP/OfAQjU14z84nJOh+/NjAYDLyxQe6Ktu/rY6goUl+DpTUUJ9DaxFITMuNycFqaCOTwOJj7yVSdx9SWlb8torRSDv9wqlWXU01Q0lFT4RB2584dJTFpXUlLS0N2djY8PT1pG1NbuFwuNmzY0GoCTBt8fX3R2Nio8rW7d+8qiUnrSnZ2NtLT0ztMLDdv3txq0kYb/Pz8Wo3lvXv3kJKi2uBFG/Lz85GUlNRhYrl161bcvk2fAUlb5+WDBw+UKod0pbi4GHFxcR0mljt37qRVH661WCY8oPfaU1dVj+0fHaAeL/pmzr9WhTr/i5lUq+Cdo5FKC1dtoaij5m0ZqKT9pXQdv6/suhzfSizz8vIQGRmJygoymdSlv79aZl0NtY3Y+sFe6vG/UeknY85HU2DrQia1Hp57iiipTMlbm16jtnl27QUqS6qU9lOMpSvHC8HBcpd7RZ1eVVIYsvsOALB1Jav9CgsL8eDBA5QWk/OIgBAfWhbw9YUhoWbAgAED/w/JTc7Hz4s3YZH/W7iw7RplBsAz5mLqW+OwK2UjFv1vTosLWGacvJVAVimlC7cO38fzm3GAtK2Ujuo0giCQHZ9Hjdm8fTQvtRB/r92Pue4r8e3s3/BCQXDf3MYMDCY5kcmOywXXiAOxSIyNb/xNbbPomzkwt5Y7ERWkF+G3ZVuw0G81zmy+DCGfrG7j8DiY9MYY9A0n234aahup49KFrgMCMWLeIABAbUWdkoittiitIDarBJLpo1g7WrbQOCvMKMaOTw5insfr+Hr6r0puTBa25pj/+QwcyP4L72xdgU6BrhCLyVjKEqjzP58JK3vdzCd0wb+3D8KXDgekf5+dnxzSecyuiiYPrcTSxMIYzt66mXkQBIE/Vm2nEpevfDQVdq62Oo2pC15dO2HSG6SuVFMDH3+v3a/zmEH9FSbiKirUAKBzZ3q0gCB12Zw9e3aHuNkGgODgYFoNF0aMGIEZM1QbVhAEQWssHRwcMGvWrH/U2bMtevToQWtCbciQIZgzZ06rr9PZhmxra4sZM2b8o86ebUH3eTlgwADMnz9f5Wt0n5dWVlaYPn06unbtGG6BwcHBePjwIW26dH379sWiRYtaPJ8Vrzh30103btdnh1BVQrZRD5wWSpuerjaYWZliyffzqMeb396plhxGzxHyBFrK0zSlNkVnb0eq/TAhMkXp76MYS1+FWBIEAQ6TC36VQDq+ehV7+785hrJ8so06JLwnQsYGt7uPvjA2M8byn1+lHv/17i4IBUL0GRNMVb8TBIHfXtuitJ+SjtqTNMTHy5Oadi42lF5sclRaC3kNWUcIANi7kXNMiUQCDouDxnJyYbqXmrH8tzAk1AwYMGDg/xGZsdn47pX1WBr0Lq7tuQOJWCYcaoQ5a6dgX+afeGPD4lbF4bMT5BMJDwU7bW2or67HVmlJOQCs2rgURia6twaV5pZR2lWyYxTwhbh95D4+HPk1Fge8haO/nEFVqVyTyT3QFe9uW4nDeVsx+Y2xgEJS4Mymy/I2155emPg62V6QnZCLHxdsxOKAt3Bpxw2qBcDIhIcZ703EvozNWL3pNfQaKZ8IqNKP0IbXfpxHuVtd2HoV6TFZOo3nHuBCJR4VqxArS6qpOMliKRQIEXE8EmvH/A8LfN/E4R9PoaJIvlrp4uuEt/5chgPZf2Hh17OV3Fovbb+J5MdkRZFHkBumvdO2GPU/weLvXoGppQkA4MruW0iKStVpPIdO9rB3IxNbSY9SKXHehtpGyjnLs4u7zivQ1/dFIPYuuXLu4uP4r1X6KbLgq1lUpcDtw/eVhJu1QUnf70l6CwfRFStWwM+vfUMPdbh9+zYiIyM7TNICAMaMGYM5c+bQ1hJGEAR+++035OW1TOwvXbqUtsTFvXv3EBERQWsiRFdGjhyJ+fPn09pet2HDBmRltfztXbBggVK1iy48fPgQ169fR5cu9Ggu0sGQIUOwcOFC2mLJYDCwadMmlRWSc+fORa9e9AjdP3nyBJcvX0bXrl07TCwHDBiAxYsX09bezWAwsHXrViQmKldVyZJAxmZGcOikm8FDytN0nPvrKiCtMn99fcsE3j/NmMVDKc3NzNgcnN96rd19FLW/CosLEBERQb3GYDCohcaGmkbkJsk1/rKlseRw2XD1lRsAeXt7QxzPBSH1P1FHPy0zLgcnNlwgx+Nx8ObGJf/6uTnslYFUVVleSiFOb7wEAFi1cTG1zaOLz1BTIe+O8OrWibr2F5YU4NatW0q/D7LxBE1CZLxQNvmSLUIDgJkVuVjdqVMnsNLNIRFJDQk6sH4aDAk1AwYMGPj/QfLjNHw59Wcs7/EBbh95QF3ozK1NseDLWdif9SeW/jBPKfmhClmFDZPJgHuAbq5te748SiVi+k8OQdiE3jqNJ0Oxis7G2ZoUxndfge9e2UBVw0Eq4D50dn/8fP0LbI/7DeNeGwGuERcLvp5FJZduH76PnZ8eBKQTrLf+XIbMuBx8M2sdlnV7Hzf236WqrUwsjDH3k2nYn/UnVvy6gNIF8+0pr+TLSdS9Qg0A7FxtKSF4iYTA5rd36nRzw2AwKCem6rJaVJWSK8/ZCiuxdq422P7Rfszt9Dr+N+s3JfdXFpuFQTPC8OOVz7Ar6XdMXDm6RXK0qrQaOz+Rt4is3vwaOFyO1sdMF1b2llj49Wzq8ea3dursCOjTk4xlY10TyqQCvtkJ8r+9R5Buyejayjps+1DeIvLmH0t1aiWmC3NrMyz5bi71ePNb6lUKtIWvNJZCgQiFGXIR+MTERGzcuFGnsWWUl5cjIiICZmZmamz9z8Fms2FpaYl169apTIJpCpPJhEAgQHZ2ttLzaWlpWLduHS0Jkurqaty6dQumph2rPYfFYsHOzg7r1q1r8fm1gcFgQCwWt0ioZWVl4ZdffqHFVbSurg7Xr1/vkLF0cnLCb7/9RlvLtUQiaRHLvLw8/PTTTxAKdTeMaWxs/Nd101TBZDLh6uqK3377jbbW1uaxbKxrRFEmaX7gEeSmU8JGVmUu+6149YuZcHCn14FVG1gsFlYpyGHs+eKwSiMbpX3YLMrttCSpApBA6TfQN1g+d5Ndv4UCIfJSSLF+twAXsNhyzcmzZ8+isJbcztTShErwtYasyly2sP3Kx1P/UYfu1mAwGHhz41K5HMY3x1BeWIl+E0NgJ23JJCQE1i/bSu3DZDLRQ9r2WZ5aDSaYrcYyJ0H5WiabIyiel5cuXUJ+DZl44xlz0TnMX0+flh4MCTUDBgwY+I8ikUgQdSkaH439Fm+GfowHZx5Tr1k5WGLpD/OwL/NPvPrlTLUcn8RiMZUQcvVz1ukGPu15Js5sIle9eMZcvLFhcbv7qEuGQrXWpe03cGzdOVSXyVfSXP2csfznV3Eobys+PfQueg7vprQ6TCYFXqEey/Qd+owNxv7/HcPrvdbg7vGHcot1W3Ms+t8cHMj6C4u/faWFWUGnzq7Uv3OkAr50MO3dCXCRCsXGRiTizlHdWnA6BSocZyJ5nBkv5LG8vi8CR34+Q7V5QNoWsfSHeTiUuwVfHH0fvUf1aHWlffvaA6itrAcAjJg/iDZhZDqY+PpoeEor8JKi0nBNapKhLZ0C3ah/Z0tjqZic9OyqW0Jt12eHqcrBQdNDETKWPjdBXRmzZBitxhmKsZSdlwCQk5NDm4A+j8fDkCFD0LdvX1rGoxNjY2NYWFjg1q1bOo/FYDAwfPhweHh4KD0viyUdlREcDgeDBg1Cv379dB6LbrhcLmxsbHDjxg1axhs6dCi8vJSlD3JycsBgMGiJJZvNxsCBAzFw4ECdx6IbFosFe3t72mI5ZMgQeHsrJyByc3NBEAQt5g4sFgsDBgzAkCFDdB6LbhgMBpydnWnTUhs4cKBS5a7i76anjp0FLavMx+s0Hp106R+Aka8OBgDUVtZj9+eH292n53Cy8qkqox5eXOXqZKW5m3Tum5dSSCWAml/HU5NTqeRv8LAu7V6fWlSZr/n3q8xl+Pb0wrhlIwHpwuAO6WLoynULqW3un4lCXZXciVqmo1aT0wB3+Cn9BnbqrHgdb5ZQkyYUZRqsAJCSlAJ+E9nu2W1wZ0rHuaNiSKgZMGDAwH+M+poGnP7jEpZ0fgefjv8eT6/GUK/ZudrgjQ2LsS9jM+asnQJTCxO1xy3KLKG0DnRp95RIJOSqnLSya95nM2hxJsxOzMOW93Yr2bjL4HDZGPbKAPx68yvsSvodMz+Y1KZ219ilw+GiUMrPYDDw+FI0oi5GU89ZO1pi+S8LsD9zM+Z9Or1VMwUrB0vqNboq1ACAy+Pg9fXyROS2D/ehUcEtSVPcFRJqMbfj8feafdjx8cEW27E5LAyZ1Q8/XfsCu1M2Ys7aKbB2tGpz7Lh7ibiym0wImFqaKGl0dATYHDZeV0jq7vj4AOqr67UeTzGWudKbGUXdFV1uapKfpOP8Fnm7zcrf/v12G0VYLBatxhnuKhK9ABAYGIjhw4frcKQkKSkpePLkCYYMGUK7qyYdMJlMzJw5EyEhIbSMp0o7ys/PDyNHjtR57PT0dERGRmLo0KG0OlzSBYPBwLRp0xAWFkbLeF26dGlxzvj6+mL06NE6J9SysrIQERGBoUOHgsPpeDeTDAYDU6ZMQf/+/WkZr3Pnzi0SEF5eXhgzZozOsczJycGNGzcwdOjQf9Vxti0mTZqEwYMH0zJWYGCg0vdP8dqjy9ytsqRllTmb07G+50t/mAdjM9IJ98K260iLzmxze0Xtrxf5TxETI58vK117kloujDWvNDcWmqM0llxwbE8/raNWmSuy+Ns51Nz12p47SHiYgiGz+sPGiZzvERICv78u1xdW1KRLLHmBp0+fUo/dA+UdLYoLyxKJBJAWsrE58u+/scgcJTFkB0tH10+DIaFmwIABA/8d8lILsfntnZjrvhKb396J/NRC6jUnLwe8s2U59qRtwtS3xmmlVaYoqO8R5Nbmtm1xZdctSkvMPdAVM97X3oigqYGP6/sj8N6QL/Bal3dxYsMFiARynSVXPyes+HUBDuVtxScH3kGPoerp0OSnFKKyWK4Lpli67tDJDm/+sRT7MjZj5vsTYWzWdgsJg8GgVjpLc8vRWKfazUwbQsf3QojU9KA0rxwHvzup9VjO3g7Uv/d+dRRHfz2rJBbr5OWAZT/Nx8Hcrfjs8HvoNaKbWgkIsUiMjau2U48Xf/sKZY3ekeg1ohsGTQ8FAFQWV2PvVy0Ts+qiqiqRDv3B5u02C76c1SHabZrTdUAgRsyXG2fs/FR7swflWMp/gwQCQYuKFk3h8/k4ffo0qqur1dj638Pa2hr29vbYu3dvq26I6hIXF4f9+/cr/abx+XydzQOEQiFOnz6NqqoqNbb+97CysoKLiwv27t2Luro6NfZoncTEROzdu1epvbOpqUnnWIrFYpw+fRoVFRU6jaNvLCws4OHhgT179qCmpu32uvZISUnB3r17IRLJr9+NjY06ayRKJBKcOXMG5eXlOo2jb8zMzODj44M9e/agslI3t+mMjAzs2bMHTU3kAls2TQm17R/tp6rMR746uENVmcuwc7HBvM9I4xWCILDprR1ttl97detEuVrWVtQjKVHeduvq50RVTeUmtb0wxufzkR9TjPpiMuaKySVV7Pr0kLzKfEZYh6oyl2FpZ4GF38jlMDat3gGxSIxlP8sNRCKOP0SDdE7r6utEmS3VlNUhMUHu6OnoYQ+eMZkwzFVIqCm25XKkVWgCgQAFscWoKyDHbS+WHQFDQs2AAQMGXmIIgsCTqzH4bOIPWBL4Nk7/cYkS5If0QvT16TXYnbIR45eP0qlsOjNOLiSqbYVNTXmtktX66k1LNdbREgqEeHj+KX58dSNmOb2Gnxb8QZXNK2LrYoNdSRsx472JLdowVUEQBKJvxuKLKT9haZd30VirXO1lYWuOz4++h71pmzB51Vi17NBlKLVTKojb6gqDwcDrvy2kVvaO/nJGI1F9kVCEqEvR+HnRJnw7a32r21nYmmNP6h+Y9eHkdnX2mnP6j0vIjCXPHb9eXpiwcpRG+/+TLP9lAbhG5Pl4auNFleeVOij/vckkkEx/0NzalFrh1ZSLf99AyhOy3cazizumvv3vmzq0xms/zpcbZ2y7hqfXYtrdRxVu/s5UElxWodbU1ISDBw8iM7Pt6oP2EIvF8PHxwYgRI3Qa55/AyMgI+fn5uHv3rk7j2Nrags/nQyAgW9lFIhEOHjyoUhBeEyQSCTw9PTFqVMf9fsvg8XgoKirCnTu6tXbb2NhAJBJRSU6JRIKDBw/qrIUlkUjg7u6OMWPG6DTOPwGXy0VpaanOLcm2traQSCRUkpMgCBw+fLiFuL6mEAQBFxcXhIeH6zTOPwGHw0FFRQVu3ryp0zg2NqTOlSyWdFRHx91LxNXdt4EOWmWuyNS3x1FmNvH3k3Hq94utbstkMjFwKrmQlnO7BMxa+XyUw+VQshp5yQWkNl0rycl79+6DcCVbFO1cbdrUGE5+kk6ZJhiZ8vB6B6syV2TiytFUa2vq0wwc+fkMRs4fAkt7ck4tEUuwfhnp+MlgMDBoOln9m3e3FMwaeSyZTCbcpDHJTyuinD7TY+R6liYW5OL0o0ePIHImf1MtbM3h3UNZoqAjYkioGTBgwMBLSGNdI87+eQVLu7yLj8d+i0cXnlEVBzxjLsYvG4ltL9bh52tfoP+kEK21hnKT87Fu6Z/4dcmfuHnoHvU8v1GAyhLNqzq2fLCHav8a9soASr+iPcRiMaJvxuK3ZVsw23kZPp/0I24cuIvGOnnSy8TCGP59fKjH9u62SH2W0a44dFMDHxe2XcPy7u9jzchvEHn2idLrbC7Z0lBTXoumer6SCK26tKUfoSvuAa545eNpgHRy89OCP9DUwG91e4lEgpg78diwchtmuyzHp+O/x7W9d5TaRRkMBgJCmscyU8k6Xh0KM4ux58sj1JirNy+jTfdKHzh5OmDBV+SKLEEQ+HnhH6ivadB4HDMredIs6VEqflu+BWX5ZLWJjbM1kh+naSzWX5pXjp2fyFtwO2K7jSJ2LjZY+v086vGvS/5EbaXmFUE8Yx6cvMjqydykfBAEgfp6skrC3l77VvHS0lLExsZi+vTpHc6MQBWmpqaYNm0aHB0ddRrHx8cHy5Yto1rf6uvrQRAE7Oy0r3QsLy/Hs2fPMH36dFhYtL948W9jbGyMadOmwdnZWadxPDw8sGzZMso0oLGxEWKxWKfzsrKyElFRUZg+fTqsrTteJW9zeDwepk2bBhcX3UyKXF1dsWzZMlhakgs2AoEAAoFAp/OyuroaDx48wLRp02Bra6vT8f0TcDgcTJs2Da6urmps3TqOjo4Y2G0o/n73ADas2Ir4B2SCl2fCRXFWicbSEIImgVJr3+JvX2lX5uHfhMvj4J0ty6nHOz45qJQIa44sCVSVUYfEqBSleY5s7sZvFODH+Rvx4g7pXM3msFBRWEktYKcnZihVVLXWCSEUCLFhxValKnOZK3hHhMVm4d2tK8Bkkp9n71dHkfosA0t/kF/b7xyNREkO6WAuq/Kvzq5H4qNUpYpTWQutRCxBQVoRACDjuVyn11o6Z0pLyEBdATnvCh7etUNKMTSn4x+hAQMGDBigSIvOxKbVO/CK+0r88eZ2pdJph0520pa8LXhn6wp4de2k8/vt+uwQLu+6hSu7byk58/y65E/MdV+BmNvxao8VcTwS1/aQFQEm5sZY8evCNrcnCAIJD1OoNtY1I7/BpR03qJYDSBMXA6UX8IaaRqp6B9JExqqQj7B21Dcq3esyXmTjr3d3Y677CmxYuU3lhGv88pH45OA71OPNb+1EUVaJ2p9ZhmLbWi6NxgQy5n46jUqA5aUU4u81+5ReJwgCyY/TsOW93ZjbaSU+GPYVLmy7pqRtZWJhDHMbM4Xt5bFMf56FN/t+hPcGf6G2E6BYJMZPC/6gkp7jXhuBzqG6te/8E8x4fwK6DSKdv4qySrHl3d1ajeMsXdkW8kW4tF0u3J2dkIfVYZ/gzdCP1U5QSiQS/LJ4M+qq5O023QcHaXVc/ySTVo1Br1Gk/klZfgX+eHN7u/uoQvb9aaxrQll+BWxsbLBq1SqtExcikQhHjhzRufrlnyYgIAAeHh44fvw41c6lKQwGA4mJiZQLoKWlJVatWqV1QkQsFuPo0aOIi4tTY+uOg6+vL/z8/HD8+HE0NGieNIc0likpKZTTpampKVatWoVOnbS79hIEgWPHjuHFixdqbN1x8Pb2RlBQEI4dO4baWu31EjMyMpCaSlZY83g8rFq1Suu2boIgcOLECURHR9NiEPFP4eHhgR49euDYsWM6taIf33oaMc9e4MLf19FQQyZ6+A0CvDv4CyzwXtWuA6Yi2z86QM2POnqVuYzgYV0xXWqYIOQL8eOrG6mqqOZ0HRQIK3sLsIyYgDsfn879HyaazcfGVduVqs1vHb6P2gpyUUgkFOP9oV9ivufrKC+sRPWLJqSeJ+d2/Se3rne598ujlK5bR68ylxHULwBzPpoKKMzrhr8yAPbuZCKQIAh8PWMdACAgxBf27rZgshng+Irx+avfYaLZfKxb+qdK4ytFPTWZlnJtPB8pp8nnB7QRy46EIaFmwIABAx2c6rIanPz9Alb0/ACv916DM5svo75afgPQfUgQvjj+AfambcKsDyer5dipLm3pM4mEYqqVrz1K88qxYYXcYvvNP5bC1rnl6jtBEMh4kY0dHx/AAp9VeLv/pzj9xyVUFMl1eYxMeRg+dyC+ObMWR4v+xrtbV4DDbb1SJ/VZJpUEqqmoxelNl/BGnzVYEfwBTv5+QSlBZ+dmQ/3bzd8ZK9YtxKBpoRi1kHQGa6htxC+LN7db9dYcVeK2dMLmsLF272pKo+Lsn1fw+HI0suJzseuzQ1jkvxpvhn6MExsuoLxArs/CM+ZiyKx++OrkhzhWtB0h4cFtvk/68yy1K6sO/3ga8ffJlXEnLwcs+6XjtogowmKxsGbPmzAxJ9sPLu+6hfunozQep7lgcXMyY3OU9P7a4sT6C4i+EQtI20leX99xW0QUYTKZ+HDnGzC3Jit4bh26r1Tpqi7uAa7gWXFg5mKM7IRc3L17V0nwWFMEAgHMzMwwYYL2+o3/Fmw2G2lpabh27ZrWYyQlJeHhQ9Kp+MGDB4iKilI7Ud4ckUgEY2NjTJo0Sevj+bdgsVjIyMjAlStXtB4jOTkZkZGRAICoqCg8ePBAp1hyuVxMntxx3P7Uhc1mIzs7G5cuXdJ6jJSUFDx4QLpVP336VKf2ZoIgwGKxMHXqVK3H+Ldgs9nIy8vD+fPntR7D2tccjj1UV5FVldagJKdMrXEeX3mOUxvJlkkOj4MPd7/ZoavMFVny/VxK7zf9eZZKXVShQIh7J6PAM+VB3CRBYzkfRXlFaGrg49qe20pzN1XUVtYjNTYdRYJciPkSGJnyEDJW9Twq5k48jvx8BpBWuK3Z82aHrjJXZP4XMyj37uyEPOz85BA+VVhsTnmSjkeXnuKH+b+jpqwWEhGB+qJGFBcWo6mBj6t778A9oOU8uChDvkDt5u+C2tpa5NRlQiyQgMNlI3RC73/0c2rLy/FXNGDAgIH/Z4hFYjy+/BxXdt/Cw3NPIBIqJzG4RhwMf2UgJq8Oh2+wl96OY8ziYTix4YLK16zsLTB83sB2x5BIJPh50SYqcTVkVj/K2lxGXmohbh++j1uH7yk5+cngcNnoO64nhs4egNAJvWFsaiR/zYaDAVP74vaRByrff8pb4Xh6NQaXd91C5JnHEDZLYnB4HAyd3R9dBgTg95VkWwOLzcLHB96m3mfVhsWIuRWPkpwyvLiTgBPrL2Dm+xPb/ewyHD3tweFxIOQLVX4+OnAPcMXyXxZQVUCfT/oRYlHLxB+bw0KfscEYNnsA+k3qo2Sq4N3NEzfResJj8pvhak0AEx+lYu/XRwEATCYDa/eu1shR9t/GydMBr29YjHVL/wQArF++BUH9/DVqc2mvQnTiytFq6fClPc+knNUYDAbW7HmT1qS5vrFztcXqzcvw/dwNAIA/Vm1Ht0GdNWpz6dTZFQ7drOAx3BERj2+jVkRWbjQ2NqKwsBAzZ85UuzUsLy8PFRUVWLTo5UhKNsfMzAwzZsxAaWmp1mOYm5sjOTkZhw4doiqCmpqaUFxcjKlTp8LJyandMQCgoKAAxcXFL20sTUxMMHPmTOTna/+bbGFhgZSUFBw6dAgpKaTZjlAoRGlpKSZOnKh2+15xcTHy8vJe2ljyeDzMmjVLJ11DCwsLxMfHK8VSJBKhoqICY8eOhYeHelpKpaWlyMrKwsKFbVfBd1Q4HA5mzpxJfTe1wdfHF49vq1506DG0C3x7tj9vrCqtxq+LN1OPl/00n5bOh38KrhEXH+17C6vDPoZIKMbRn08jdFxPdB3Ymdrmy6m/4PEluXt73P5MmLmYwNiWi87TOoFl03ZyvHOYHwqK82HuYQwGkzSKUnVdr62sw08L/qCS7Qu/mQO/XrqZ6vyTcLgcrN27Gq/3XgshX4iTv19A6ITe6NI/gGop/mz8j0r7JBzOhpmLMUzsefAb7waJhYB6TdapUVYgN17x7tYJEVfuw9zDCEwWA71H9Xhp5o2GCjUDBgwY6EDkJOXj77X7MbfTSnw+6UfcO/lIKZkWGOqHd7Ysx9HCv/H+jjf0mkwDAK9uHghspU1vxbqFat3Yn/jtPJ7fJNuB7N1s8fZfpLZFTlI+jv5yBm+ErMXigLew58sjSskmJouJ3qN74IOdb+Bo0XZ8dXINhs4eoJRMkxG+VLWouLm1KS7vuIlPxn2PiGORSsk0/z4+WL3pNRwp2IY3NizGwe9OUpOdRd/Mhn9vuYaYqaUp1ux5k2od2fXpQWS8yML5rdfwyfjv2xWvZ7FYlEhtQVoRREL1KpPUJS+lAMd/O4ere+TC0M2TaXauNnhn63IcKfwb/zvzEYbPHdTCoVSxNbU5jh72mP/FjHaPpbGuET++uhESMfn+r3wyDV0HBGrxqf5dxiwaigFTyHaD6rJa/LZsC8ryy/Hz4k1Yv3xLu3/DtmJp62KNRd/OafcY+I18/DDvd+o3YMZ7E9TWHexIDJszAMNeGQAAqKuqx69LNqOiqJLSZxQ0Cdrcv1NnN5QlVIOQEFQyDQBiYmJQU1NDaVi1R0NDAw4dOkS16L2s+Pr6omfPnjh58qRW7ooTJkwAg8FQumGPjY1FVVUVzM3VS9Y2NTXh8OHDOt30dwS8vLzQt29fnDx5UiuH0vHjx4PJZFIJIEidVMvLy9WOpUAgwKFDh3Q2M/i36dSpEwYMGICTJ09q5ao5btw4sFgspVgmJCSgtLRUbW0+kUiEw4cPIyEhQeP370i4ublhyJAhOHXqFEpKNJeZmL10OvIjWv4N2BwW3vpzWbttsARBYP3yrVR3QMjYYExZ3fGNHZrj29MLC78mdVElEgI/LdyEypJqbP9oP76a/gsyYqSt716mYHIY6LHUF51ndkKPZT4wceHBwqF1fU0mi4l3tqxA+tMsFD+vhERIYND0fi22IwgCG1dtR2ku+ffoPiQIMz9Qf0G2o+AR5I7XflTQRV28GUt+eKXFdpaeZCy7L/ZG51ke6L7UG2adjGBmY0Jpscm0hBVlR/xDfJD6KAMlMVUQNYkxWEUsOyqGCjUDBgwY+JepraxDxLFIXNl9C4kPW96c2DhZYeT8wRi9aGi7bWT6IHzJcCQ9Uj6u4OFdMWLeoHb3TYvOxM5PSSF1BoOBKavDsfero3h04RkKM4pV7tN1YCCGzRmIQTPC1HaUDB7eFU6e9ijKUq7aqK2sBxRaOq3sLTBi/mCMWTQUXt3kq93fz9tAtUB0G9wZMz9s2b7UY0gXzHhvAo6tOwehQIT3h35FaVqVF1Rga/SvbR6jq78zMl5kQywSozS3nLIX1wahQIjYu0mIuvAUDy88Q35qYavbyirjyvIrYGZl1mYS1M2/dZHu1ZuWqkxmNufPd3ZTgrOBoX6Y/3n7SbiOCIPBwDtbVyD+QQqqSqrx8PxTxN5NpNqtuw7sjFELhrS6f1uxfGPDYrVWXv9es59KMvsEe2LRty0nry8Lqze9htiIRJTlV+DZ9VgsDXqX+v4EhvphworWdXnc/J3RWC7A080p6P1GABjSjiM/Pz8MGDAAxsbGre6rSENDA+zt7V8KJ8r2YLFYyMrKwvnz5zF37lyN9q2trQWLxQKDwYBQSOoK+fj4oH///monJxsbG2FtbY2xY8dqdfwdCRaLhdzcXJw9exYLFizQaN+6ujowGAzweDzw+aQZjJeXF/r166d2EqipqQmWlpYYN67j6ym1B5PJREFBAU6fPo2lS5dqtG9dXR0kEglMTEwoXTsPDw/069dPbYMGPp//0rZzN4fBYKCoqAinTp3CihUrNNqXL+aj9zt+ePx7MvjVcu2w2WunKGlZtcbFv6/jwZnHAABLO3N8sPONl0qLTpGZH07CwwtPEX8/GUWZJVjW9V1Ul5GJnNDxvdDIb0S3BV6QiAkwWeRnZPNYYAhY6NylM2ycrJRkR2RMf2c8PLq44dnZeJRlV4JnzEVfFbIZNw7cxe3D9wGp7u/avatfmrbZ5kxZHY6H558i+kYsSvPK8f6Qr5ReZxux0G1hy1iCz0Rg50A4eNijKLMEhdJWz0apqQOk5lfPzsWhMLUUbA4LYRNfjnZPGBJqBl4mxGIxshNykRadhbyUQhRlFKOsoBLVpTWor65HUz0fQr70osFggCH7P6PlYwYYYDBlzzMABnnhYjAABpMJY1MjWDlawt7dFm7+zvDr5Y2uAwNhZa/ezb0BA+1RU16LB2ceI+J4JJ5dj22hS0VeTPpgzKJhCBkbrJWzJF0MnTMAm1bvoKq7WGwm3tr8WruTq6YGPr6ds56qrmGxmfh77X6V2/r19saw2QMwZHb/NnXbVFFbWYfIs08oN87mMFlMhI7vhTGLhiF0fK8WLYs3DtzFrUPkZMfU0gQftTHZWfTtK3h44SlykwqoZAAAZL7IQX11PUwtW78ZdVBocSvLr9A4oVZZUo2oi8/w6OIzPL0SQ7lLNccn2BMeQe64eZDUn6F+FwHE3U3EkJmtr/rZtdKGN3BaKELHtz+5uXvyES7vvAlIte4+2rf6pdEIUYWVvSXe3/46Pp9EtjIoahfG3k1sM6Fm42wNJpMBiUS5ZSRkbE/KVawtHl18hjObLwPSFu+PD7wNLo/T7n4dFXNrM3y4axXWjv4fIK1UkxF3L7HNhJqFrTm4RhwQEnK1nwEGWCwWhg4dqraYfnp6OiQSyUvbUtccWVuYYlXTo0ePUF9fj+HDh7e5L4PBgEgkAptNfjeZTCYGDRqkdktdZmYm+Hw+Fi9erOOn6BiwWCzMnDlTyVjh6dOnKC8vx+jRo9vdXywWU9dDJpOJAQMGwMfHp939ACAnJwd1dXX/mVgymUzMmDED0dHyNrrnz5+jsLAQ4eFtVzgxGAwQBAGBQEA9DgsLQ0BAgFrvnZeXh8rKyv9MLBkMBmbMmEFpHDIYDMTHxyMjIwMTJ7Zd4cQgb3ZgZMOlEmoOnezwysfta8rlJudjy3t7qMfvbX8dNk4d33G2NVgsFtbuWY3Xur0HQaOASqYBQElOGT4/8AH++HwL3IbYgWsqn6/Ych1gZmYGe3fbFgk1aycrvPrlTDy98Rz+85whPCBAt15dW1T9F2YW449VcjOet/9apvEctyPBZDLx4a5VWBr0DmU4pYioSYyk47nwCXcGUyGWlgxrWFhYwN7dFkWZJairqkdDbQN1f8DhsRH/MBmeM+zRdLQRvn5+MLfu+O7bMl7eWa6B/wxZcTm4cfAukh6lobKkCvVVDWiqb4KgSQiRUEyKf2un76o1VahGYWYxEh+qfp3JYoLNZcPIhAtTS1NYOZDJt06BLvAJ9jIk3wyopLqsBvdPRSHixEM8vxmnUtzdu7sHxiwahuHzBnaYc8jE3Bg+wV5IiiKr1IbPG6QkLqqIRCJB6rNMRF14hjN/XkZ1qbwdSbF1lcVmodvgzggd1wthE/vAza/1ah5V1FTU4sHpx4g48RDR11+00JgDAPcAF4S/NhIj5w9qVfuqKKsEG1fJ7eDf/ms5HDq17hyY9ixDaTImgyAIJD5KQ5/RPVrd19ZVnqwqzWu/HYYgCKQ/z8LD80/x6OIzJEelqRS7ZrKY6DowEGHjeyNsYm84eTngz7d3qRwz4WGKyudlGJsawdzaVMmogcFk4I0N7d+glOWXY/3yLdTjVb8vgauvZn/XjoZYJMaz66od9xLbiSWbw4a1k5WSCQSDwcDqzUvbTUZXllTj1yV/Uo+X/7IAHp3dND7+joRYLKaMFZqTENl2LBkMBuxcbVCUUwpyQsCARCKBkVH7FZMAUF5ejsOHDyMsLAx+fh3faVZd3N3d4erqiqNHj0IsFqOgoAASiQTDhg1r8xxzdXXF4MGD8fAhOcmRVQWpQ1VVFQ4fPoxevXohMPDla+VuDRcXFzg7O+P48eMQCoUoLCwEn8/HqFGj2oylk5MThg4diocPH0IkEmkUy9raWhw6dAhdunRBUFDHd+1VFycnJ4SHh+PUqVPg8/koKipCfX09xowZAyazdbUhW1tbDB8+HFFRUairqwNBEGpXTNbX1+PQoUPw8/NDt24vX1t8a9jb22P8+PE4e/Ys6uvrUVpaiurqaoSHh1MJcVVYWVlh5MiReL5pG/Xcm5uWtqvbKRQI8cP8jWhqIKstxy8fhf6TXg6nxbZ4fitOpQlQVlwuOof54b2f3sRnE3+Ax1h72Hcl54sNXHKuZ+dmq+R6DgArfl0AYzNj3L38AExLJhpKm1oslMkcMWWLnyNfHYyhswfo8VP+M8TcjoeAr9oxFQDK4qtRFl8Nv8mucAwmE7FNRuScUlE7NfZeEvVvE3Nj3Dl/FyxjJhpK+Rj8UfuLjh0JQ0LNwD9GwsNk3DnyAPEPklGYWYL6qga13eI6GhKxBIJGAQSNAtSU16EwQ3XyjcVhwdzaDG4BLug5vCvGLB4GxzZu1g3896gsqcb9U1G4eyISz2/FU7pSijh0ssOgaaEYMX8wfHt6dciy+rf/eg1rR38LSztzvP3nMqXXGusa8ex6LB6ef4qoi89UlsZD2m4ZMq4nQsf1Rp/R3dus5lJFdVkN7p9+jLsnIhF9Q3VCkmfMgUgkwcSVo/HGhsVtxlIslk52auSTnWFzWp/sVBRV4qMx36pclQOAxMiUNhNq9goOouX5FSq3aaxvQvSNWERdICvRylrZztzGDH3H9UTY+N7oPbqH0krejk8O4vxW1Q6A6c+zwG/ktzmptnW1QW1lPRgMBoxMeZi1Zkq7AvISiQS/LN5MWcoPmh6KMYuHtbnPy8ChH05RDmfNyU7Ia7cq0c7VhkqoGZkZYepb4+Ds1XZlIkEQ+O21v1BVQmqF9R3XE5PeGKPT5+gInFx/AYd/Oq3ytcKMYlSWVLfZ4m3nZouC9GKkns1Hz/kBGDlyJGxsbFrdXpHa2lp4eHhg8ODBamz9ciEQCJCUlEQl29UxFGCxWHBzc8OoUaNw+/ZtDB48GPb26s1Namtr4erqiqFDh+p87B0NkUiExMREysVZnZgwmUy4urpi9OjRuHnzJsLCwuDsrN5CQl1dHRwdHTFihGoN0JcZsViM+Ph4iMXkddrWtn0TElksR4wYgRs3bqBPnz5wd1dP5qK+vh52dnb/iXbu5kgkEsTGxkIkIhNC1tbW7c4TGQwGXF1dMe/L6dj76TH0HN4N/Sb0afe99n51DKlPMwDpouSKdZq1QHdEnlyNwW/Ltqh8jSAIJEelodfI7vjh8mf4dc3vsO9KvmZmTF7b7Vzk1xkjEx66De6MEXMHQSKR4OmpOIi4AkBEdkIo0tzp/M0/NGuB7oi8iEjATwv+UGvbuvwmOEo7YI15ZOWeYizjFLSHLWzN8fRULJoYjRDWidF/8suVxDUk1DoYTUIximr5KG8QoKJBiCaRGAQBMBkMWBixYWvCgZ0pD/ZmXDA74E23WCzG85txiDgeieTH6SjOLkVDTaPKJIKmMBgMqjKMZ8yFsbkRzG3MYONoBTs3G7j6OsPF1wlcHhsikRhioQQikQhioRgikQRikQiEGBCLRBCLxBCLJM3+L4ZELIGQL0RJdhlKcstQVVqDhupG8Bv5ZLWchp9DLBSjqqQaVSXViLubiH1fk5bNHB4HVg4W8OrmgdDxvTDq1cEtyoQ7EnyRBEW1TShvEKKiXoBG6rwEzHls2JpwYWvKhaMZjxKc/KchCAIVjUKU1vFR3iBEdaMQImmrFZfFhI0JB7YmXDia82DG0+9PX1lBBSLPkNVTL27HK7V8cUyN4NjbB53CAuDRPxDmzjbgmvDAYgD5PDaaimqpWLL+xVhWNgpRWidAeYMAVY1CiLgmWHj7e3BZTEQX10NUVoCCqBQ8O/sYL27Ht3DOVCRkbDDmfzETASE+GutGVBRVIvLsE6qqT/E7yDbhwbGXD9xD/eE1oDPMXW3BNeaCxWTAlMtGbFEtbE24cDJXHcvdnx9BnHSFzMnTvt3JDr9BAL501VYVcfdVGxNUSs/Leg9njN72JjimRqi1NcelpBJYG7MhLq9B4eNUPDv7GM9vxim1aCri1a0TQsf3RtiE3ggM9W01ljVlrYuUi0VipDzJQLdBnZWeF4olKJZee3p8OAOdATA5bHgGucLShIeYgmrYmZLfH7aKCoND35/Cs+tk9ZGtizXe2bKiQyaGNaW6jVi2VpUoEktQVMdHeb0AQW9NhreEAJPNgkdnV1iaGSGmoJo6L9mslrE8/tt5PDxPurNZ2Vvggx0vr3aNIm3FEtKEdPNJtFhCkNeeeiH8lofDdckYMDlsuPs7o8LMCM8VYslREUtIjQvs7Owwf/58Wj9PRyA3Nxc5OTlUqxyklSlCoRBcLldpW7GEoL7j5Q0CpOc1wNjUGgHj5qOWw8Lz/GrYmJKx5LYSy7i4OFhYWGisM/YykJeXh9zcXKXnrKysIBAIwOMpL0CIJQRK6vgoqydjmZHXACNjc/iHz0Mjh4Xo/GrYmnDgZG4ELlt1LBMTE2FkZPSfaUFWpKCgAHl5eUrPmZubg8/nt9A7lMhi2SBAeb0AGXn14PJM4T92HoQcFp7lVcFWel7yWpG+SE5OBpvN/s+0eipSWFjYIpZmZmbg8/ktKiElhOJ5KURGbh04vQOxLPIXGLFZeJpXRf5eWvBgpCKWUZeicUS66MFis/DR/rfU0k3t6LQ1JwKA+Mhk9BrZHV0HBGL5R0uwZ/N+uPSzRbdBAxBfVAvLMb0xtncAWDwOHDvZwc7eAk/zqlCfUwLL7pbIvZOHPmOUHSmf34p7qZ3OW0PRRKA9Rowbhvv37sOlvw26Dx6IhOJamA7tgbFBXmDxOBCZ8TDiD0dUpOTDSCBCSX4yyu9VInh4V1jYvjxO5gDAIFT1j/w/oaamBpaWlqiurlZbOFRflNTxkVxSh6zKBkjU+IuYclkIsDeDn50pjDj/jraSWCxGxPFInN18BZkvctBY19hCK0YdmCwmTMyNYOtqAztXW9i72sDF1wkeXdzgE+zVISu6inNKkRCZjLToLOSnFqIsrxxVJTWor2mAoFEAkUCkcSwYDIBnwoOdmy38e3tjyKx+CB3f+18VriyvFyCptA6ZFQ0Qq/F5jDlM+NuZwd/eDCbcf+a4hWIJMisakFRSh8rG1kuQFXG1MEKAgxncLI1ouVEVCUWIf5CMx5ei8fjyc2S8yG6xjZWvM4KXjITr0O5gqKGHZsRmws/eDAH2pjBtRRuMbkQSMpbJJXUob1AvloWPkpFy4gHyIuJASAhwjTjg8DiU1lTYxN745vRateMsFomREJmCx5fJWKZFZ7bYxtLbEcGLRsJtRA8w1NDn4rGZ8LMzRYC9GZVMvXfqEb6eTpoIMFlMrLv9tVpOlI8vR2PX54epFVxF2BwWLjQeBJPJhFhCIKuiAUmldSirb9vBUEbRkzSknLiP3NuxIMQScI04CB7eFWHjeyN0fK82W1EVaahtxO7PD+PSjhtoqm+ZAJz69ji8sZ688ahuEiKppA7p5fUQitv/jnNZTPjamSLQwQzm0lhGXYrGZxN+oDRefrz6OXqN+G+03DQ18LH3yyO4sO26Ss268NdG4L1tKwEANU1CJJfWIa2sHgI1YslhMeBra4oABzNYGpHaaM9vxWHtqG+o68e35z5SS7vuZUDQJMC+r4/h3JarSlp0MobPHYiP978NAKjli5BcUoe08nrwRe0vZHGYDPhIv+NWxnKdueTkZBw+fBhTpkxBjx6tV4++rGzZsgXFxcrmLkwmE6GhoZT2Vx1fhJTSOqSW1aNJjViymQx425og0N4M1ibypFx6ejr279+P8ePHo0+f9itdXjZ27NiBvLw8peQkk8lEr169MH78eABAvUCElNJ6pJbVoVHYfixZTAa8bUwQ6GAGG4VYZmdnY8+ePRg9ejTCwl6u1iZ12Lt3LzIzM5ViyWAw0L17d0yZMgUA0CAQI6WsDiml9WhUIdnQHBaDAU8bYwQ6mMPOVB7LvLw87Nq1C0OHDsWgQe0bJb1sHDp0CCkpKUqxBICgoCDMnDkTANAoFCO1tB4pZXWoF7QfSyYD8LQhv+P2ZmSyuDCjGKtC1lJyD0t/mIc5a6fo7XP9kxAEgTObLuPor2cop01FPLu44+/Y3wBpYUtqWT0SiqrRpEYTFSERI/9+HHq422HCDPK7XJJbhlV91qJKKnky//MZlNPoyw5BELiw7TqO/HSqhQlYczZF/wKRow3iC6vRqFYsJSh8lIBAWwtMeaX/S7WQaEio/csJtSahGI9yKpFVqVpcuj04TAb6uFvBz85U7yeeWCzGnSMPcPavK0iPyUZTK21PrcFiM2FiYQJHT3t0DvPH0Fn90WVAwEvrdNIeYrEYT6/H4s6R+0h6lIbSvHI01TeB0DDRxuFx4B7oijGLhmDym+H/SLwEIgke51Yhrbxeja1bwmIy0MvVEp0dzPR6XuZXNyEyu0KtCYQq7E25GOBlQ93MakJJbhmeXH6OqMvRiL4e26pAvHsXdwz6fDaY3uoJZzeHyQB6ulgiyMlcr1WphTVNeJBVgTotYykqrYYfU4yHh+7i2t47AAAXH0dsivqxXWHRsvxyPL78HI+vPMezay9U3mwDgEuAC4Z8MQcsP+20pJgMoLuzBSyra/F22CfU32zluoWY/q76jmAEQeBFRAKOrztHVRLJ2JX0OzjOtniQVYEafutVe20hKq+BDyFC2OBAGJm0rXfSFrWVdbiw7TpObbyIikK5jpdHkBu2vFiH6PwaJBSrv9qoCIMBdHOygENTI1b3/YiahC/+9hXM/WSa1sfcUamvrsfF7Tdx6vcLSvp3zt6O2JXyB2IKqhFXVKuV3CcDQBcnc7hIhHgr5CNqEj7v0+lY9L85NH6KjkFDbSMu7yRjqTght3ezxb6svxBbVIMXhTXQdnba2cEMvVwtwWYx8ezZM5SUlGDMmDEv1eRcXQQCAeLi4mBsbIwnT54gI4NM9Ds5OWHZ8uWIL6rF84JqtRZqVRFgb4bebpbgsJiIiYlBXl4exo0b95+MpVAoRFxcHIyMjBAdHY3UVFIz1NbWFm+sWoXE4lpE59dArOWJ6Wdnij7uVuCymIiPj0d6ejomTJjQpqbYy4pIJEJcXBw4HA7i4uKQnJwMgiBgaWmJt99+G0kldXiWX011EWiKj60JQtytwWMzkZycjISEBEyaNOk/eT8ha51lMplISkpCQkICpS33/vvvI6WsHk9yq7SOpaeNCYLtTLBmyOfIiCEXg/tPDsGXJz74z52bIqEIEccicWzdOaXFWjaXjYuNB5FWXo/HuVVqLS6qopOVMXo5meGzkV8jKSoNANBnTA98e/7j/9y5KRaJce/kIxxbd7aFvlzv0T3QY94QoKs3BFp2qLlZGqGfh80/VpyhK4aE2r+YUMutasT9rAq1Vl/bw8XCCIO8bNSqVsuIzYJHkHu7X25tE2gsDgtmVqZw8XFCUH9/DHtlAAJ6+6r9Wf7rNDbycefIA0SefYz051moLK6GoFG9ChYA4Blz4dnVHRNeH4NRrw6m/Ue6qKYJdzMr0KDGimF7OJhxMdjblvYKK7GEQFROJVLKtEv4KcJiMNDb3RKdHdouLxbwhYi/n0RVoWXF57a6rX8fH4SMDUb3qaHIYPG0TvgpYmfKxRBvW9rbVSUSAg+zK5BarjqJpeFgePrHeSQeuA2eMRcbI7+Hd/eWrnEioQjx95OpKjRVFX0y/Hp5oc+YYARPDUMm10jrhJ8itVnFuPHeDtTllWHonAH45MDbWt8gZifmYct7u/H06gtYOVrivfs/ILmsgcw46QCDAQQ7W6Kbs7nON69CgRDX9kVg24d7UV/dgAW/LYbZ8J5aJ/wUqc8rw433tqMmq+Q/OwlXRCQU4dbh+/jr3d2orazDnG/nwW5iKKqadI9lY2EFbry3A1Xphf/ZSbgiYhFZ5b757V2oLq3BtM9mwHX2ELUrjdvCjMsCuygJw/uFwNz85Wod0Zbi4mKcPXsWBQUFGDo6HLWWndSuNG4LUy4LnKJkDA3tBUvLjmGUo29KS0tx9uxZ5OXlYeCwEeDb+6FUzUrjtjDhMMEtTcOgXt3U1v972SkvL8e5c+eQnZ2NsIGDQbh2QXFd69IJ6mLMZsKoPBP9ugeorf/3slNVVYWzZ88iMzMTfUL7geMVjMJa3WMpbmjCnY/3oiAyCW7+ztj06AeNNW5fJgiCwPNbcdj4xt/ISylE7/G9MXLdUuTXaFYoogpJkwARn+1DXkQ8nDztsfnJT7Cw+e9egwiCQOzdRPyxajuy4nPRdVhXTNy6CrlV2hUKKcJlMdDPwwaeNh2/VdaQUPuXEmrp5fW4n1lBq3mlpREbo/0dWs3misVivOK2ApXF1WBz2Thfv19psi4Wi3Hr0D2c++sqMmJz1EqgsdhMOLjbo9+k3pjw+hi4+2tXhWOA1Iq6uuc2nl59gZykPNSU16l0pGmOkZkRfIM9Me3t8S0cZjQlp7IRdzLKtF7NVoUpl4XR/g6wMGo7EVSaV46Kwkr49/FpM4EgkkhwK60cBTRc+BTp6mSOXq6W1HuLhCKkPstE3N1EvLibgOc341S2z0EqptlnTA+EjO2J3qN7wNrBEvnVjbiVVq71arYqjDksjPG3h6Vx2xV15YWVKM4uRedQP5WxrK2sQ+rTDMQ9TEF1J2dYBHWi7RgBIPHQHYzq7YERc8n2C7FIjLToTMTeTUTs3UQ8vxnXakWfuY0Zeo/ugZAxwegzpgdsnKxRWNOEm2llWq/AqqKxvAaJG07jx+Pvt6kRUllchcKMYgSG+qlMFNVV1SP1WQbiHqSgys0BFl09aTtGAPC3N0VYp/YFiNWluLYJN9LKtF6BVUVTVR3ifj2BH4+82+YkvLqsBrnJBQjq5/+fSLqV1vFxPbVM6xVYVfBrGhDz83H8cPCtNifhNRW1yEnIQ+d+/v+JpFt5PRlLdVoS1UUiEmKolzW8HK3b3K6uqh4ZL7LRpX8AWGq043d0KhsEuJZaqlZLorpIxCIMcDeHv4tdm9vV1zQg/XkWOof5gcPVvPK7o1HdKMC11DJaFsVkEGIx+rqYIMjdoc3tGusakfI0A53D/MHlvfyxrG0S4mpKKS2LYjIIiRi9HHjo7tm2CURTAx/Jj9PQOdQPXCNum9u+DNTxhbiWUkbLopgMiUiMxz8cw9of5sAjqHUjCH4jH0mP0hAY6tuuY+jLQINAhGsppbQsismQiCV48vMJvPvZVPj29Gp1O0GTAIkPU+Ef4vOf0KprFIpwPaUMFTQsiikS2skagQ5td7r82xgSav9CQi27sgF30stpTabJsDJiY2ygI3jNRFDFYjFmOy9DdZm8vWfh17PQZUAAdn9+BBkvsltNFijCYrPg0MkO/aeE4JVPpsHyP5x17wgIBAKcXH8B1/dFID+tSK0Em4mFMQL6+GLGh5PQd0yw2u9VWNOE66mltCbTZJhxWQgPdGw12Xv7yH38vHAThAIRPjn4TqtOixKCwK20MuRV05tMk+HY1IjSGzF4cTcBSQ9TKdtwVQT29UXf8F4ICQ+GX29vpZva4lo+rqWU0ppMk2HCYWFcZ4dWq/4enHmM715ZD0GTEO/veAMDpoQg9WkGUp5mIPVZBlKfZqAwoxhgMDDo+wXwGKEfXSFHAR9lN54j9l4iEh4kt/n74tfbC6HjeiNkbDAC+iqL7ZfV83EluZTWZJoMLgOY0NWZ0gJrTtSlaPxv1jo01fOxetNrGD53IBXD1GcZSHmSjoJ0Ur9owNfz4BWuH62rIEczhLi3nRRQh4oGAS4nl9CaTJPBBjChq1Or7dPRN2Px1dRf0FDbiOW/LMDM9yeqNa5QIERpbjmKskrRUNMAFpsl/Y8JJoup9Lj5v5ksJjg8DmycrWhPOlU1CnEpqYTWZJoMFgiM7+IEa2PVN35x9xLx+aSfUFdVj4Vfz8b8z2eoNa5IKJLGsgT11fJYknFsPZayOLO5bNg6W9OedKppImNJZzJNBpvJwNgAB9iaqo5l4qNUfD7xB1SX1WLOR1Ox9Pu5ao0rFolRmleO4qxS1FbWKcRR9bnYPM5sLhs2TlZgq6EBqQl1fBEuJhXTmkyTwWIyMNrfHg5mqm+i06Iz8cm471BZXI1pb4/H6+vVE9sXi8Qoy69AUVYJaivq1PpeKz5mc1iwcbamPZb1AhEuJZXQmkyTwWQAo/zt4WSu+iY6My4Hn4R/h7L8CoxfPgrvbFmu1rhikRjlBRUoyipFTXltm7FU9Rqbw4K1kxXtydBGoRgXk4pRx9dPLIf72sPVUnUsc5Pz8Un4dyjKKsWoBUOwZvebao0rFotRXlCJ4qxSVJfVtBrL1n4/2RwWrBytaE+GNonEuJxUgmoaE0AUBIHhfvZwt1JtklaYUYyPxn6LgrQiDJ7ZD58feU+tYcViMSoKq1CcVYKqUtWxbO/309qJ/lgKRBJcTi6hpSq6BQSBIT52rVZXleSU4uPw75CTmI+wCb3xv7MfqTWsRCJBRWElirJKUVVS3SKW7f1+stgsWDlY0J4MFYoluJJcQktVtCoGetnAx7bjVk0aEmr/cEKtXiDCmfgivdzQyPC2McEgb7k9tVgsxmyX5agubdvlRBWGBFrHorGuEYd/Oo07Rx+gKKsUYjXaMs2sTdFndA+8vn4RbJxU35Q3icQ4E1eklxsaGa4WRhjhZ9ei0ubkhgv4673d1OOQscH4/uKngHT1pji7FEVZpSjJLkUxhwdWt9ZXe3SFkEhwdeVmlD5vKYTPZDMhUYjP+rv/Q9cBgSAIAlWlNSjOKkFxVikKc8vR2DsATD26tjIra+HdUA83f2c4eztSk4zjv53DtjX7KJ0+jhEHwibVF7eAWQMR8oF+ta6ur/oLRY9TWzzPYjMhVojlT1c/R6+R3UEQBKrLalCcRf7Ni3LK0NDLH0xz/ZV7M6rr4F1bC3d/Zzj7OFGxPPvnZWx+ayclDs/hsSFsZTXYd3Iowj7Vr+CsRUY+fJws4ObvDGtHK40r1sQSAucSivQzCZdiY8LB+EDHFk6/tw7fx88L/4BI+nvl1a0TtsWsA5olzGTfoaJs8v/FWaUoy6+ArtMUDpcNJ29HuPk7w83PGW7+LnD1d4arnzNsnTWv/hNLCFxILNbPJFyKlREbE4KcWrjT3j35CD/M+51ygnXxdcKeFNLCXjFhRn6HSlCcXUr9uzy/QivjIEXYHBacvR3h6u8MNz8XuPo5k3H1d4ati43GsZQQBC4mlqC8Qfd2utaw4LExMcixhaPqowtP8e3s9dTCiZ2rDQ7mbAGDwSBjKU2YUedmdikV27K8cp1jyWKz4OztQJ6Pvk5w9XeRxtIFti7WGldxEgSBy8mlKKGhna41TLksTO7i1MJR9em1GHw9/Vc0SjsbzG3McKx4O1gsllLysajZd7wkuxQlueU6O8EzWUw4eTlIv+NkHF39XeDm5wQ7N1utYnkttRSFNfqLpTGHicldnFssgMfciceXU36mtESNzYxwsnwX2By2UvKxOKuU+n4XZ5egKKsUpbnlEIt0S1oxmQw4eTlI4+es8B13gb27drG8qceFUEhNnCZ3cWohe5PwMAWfT/yRcibk8Dg4VbELPGOeUsKMimdWCYqkMS3JKaMllo6eDnD1cyJ/L6VxdPN3hr27rVYLPXfSy7TW3VYHLouByV2cWyyApzxNx6fjf0BVSTUg/c6dLN8FUwsTpYRZUVZps+tPCUpyyqjrv7YwGAw4ethR56XsOu7m5wwHDzutYnkvsxzpdMidtAKbycDkLk4tpFoyY7Pxcfh3KC8gtW0ZDAaOFv0NK3tLpYSZ0rkp+47nlEGoRnFFWzAYDDh0sqPi5+onPy8dPey1WjR7mF2B5FLdZXhag8VkYFKQIyy00Lz+JzAk1P7BhBpBELiRWkZLj3Z7DPO1QycrY2kybRmqS9UTnjYk0F4uqitqcei7E7h3KgqleeVKCR9VcI256DowEK+vWwjPrvI2v4iMcmRW6O+iImOApw187cgVBolEgu1r9+PYunNK2zBZTPj19kJpTjkqiqqo5y08HTB+3/tg6bn1oSanFBfm/QoxXwg2hwVLewvUVta30Llz8XUCm8NCcVYp+AqvhX06C76T9e/a9ein40g98QAMBgNcYw6EAlG7f38ZZq62mHDwA7D1XK5fV1iBC3N/gbCeDxaHBUs7C9RXN4DfrPLPydsBPCMuirNKlaoC+3wwFYGz9O/a9XTDGSQevAMwSI1CkUCs9kTaxNEKEw6tAddMv+X6DaXVOD/nZwhqG2FibgxXPyeliaUsqdFay2UdX4Q6gQgiMYGIzHJqUcfBjIvwQEccfp5Pi55nTxdLdHeRX0+P/3YOWz/Y22K7gL6+qCiopCVhpgvGZkbUDaOrwsTSPcAFZlaqY/k8vxoxhZovUGlKN2cL9HKVa1ad/fMKNq3e0SJeAX18UFFcRUvCTBeMTHnyWPrKb3jcA1xaNSaJLazBs/xqvR9b8yrPyztvYv2KrS0SOX69vVFdWkNLwkwXjEx4cPF1om543BSSbRa2qudlicW1iMqtUvkanfjbm6Kfh1z/68aBu/hl8eYWv5m+vbxQW15Hzk30UMmpLlwjjsJ33IX6rrsHuMDSTvXcP6W0DpHZlSpfoxMfWxMM9JIvgEccj8SP8ze2uGH2CfZEfVU9LclHXeAaceDi60QlganzMsAFVvaq9fXSy+txL7NC78fmaW2MIT7yluSH55/i29m/Kc3PAMC7hwcaahppST7qAofLlsZSfl7K4mntaKVyn+zKBtxOb+lSSTdulkYY7itfAH9yNQbfzJAnzGV4dfcAv76JloSZLnC4bDj7OJLxk17HZclLGyfVC5B5VY24kVam92NzNudhlL89dQwxt+PxxZSf0FCjnBT17OoOQZMQJdml/2os2RwWnH2cqCSw7Lx09W99AbKwpglXU9p2/KQDBzMuxgY4dEhTHENC7R9MqOVUNuJWuvKXl+6bGRmmXBamdXPGeOO57bYJ2rnZYMis/oYE2n+A0vxy7P/mGKIuRaOioLLNGwI2hwXfnl6Y88tCpBkr3zgyGMDYAAdYGXHwILsC2ZWNsDfloo+7FSQE0eKmXF24LCZmdHcGIRLjyyk/48mV52rvO/z35XDpF9jmMcrQ9XsVs+USYnde03g/m85uGLdHXgLf2jHamXLR08USDAbpVBqvhdOioK4JpyZ+A2G95gn6wT8vRqeh3ZSea+1YQztZwcaECwaAp/nVKNZQADdu13U8/+uixscYMj0M7+x6s8X55mdnCl87U0gIAvcztXclVUTUJMCpSf8Dv0rz1bXZO1dj0oxQpeO0MuLo/F1RReKhO3i6/kyb23h164Rugzqj++AgdB3UGbbO1qhtEuJsQjFEEgL+9qbgsZmILSTPuaE+pGnI9dRSWq5BTAYwrZszjNlM/LJ4M67vi9B6LCsHSzh52sPR0x6OHg4wtzGDRCyBWCSW/ieBRCSGmHpO+ljhuaZ6PgrSi1CQVgRBK9WareER5EbGckgXdBsUCDtXW9TxRTgZV0g5ULb2u6jr9wZS98+p3ZxhxmVhw8ptuPj3dY3HkGFlb0HG0dMBTh72MLc1V4ol+W8VsVWIJb+Bj8KMEuSnFra4SW0P90BXdB/UGd0GB6Hb4M5wcLdDo1CM4y8KlGQGjNhMDPO1g4QgwAADD7MrwWExaPk+TeniBAsjNv58dzdOb9T8N0mGha05HD3tyXPTwwGW9haQiCUtzs02Y9koQGFGMQpSi9qUFlCFm78zug0i49h9cBAcPezBF4lx/EUh2ExGi/hVNQlpueYoMjHIEdbGHGz/+ACO/tz2b1JbmNuYSb/jDnD0sIeVgyUICaEQO/ViWZRJnpfqSJco4uLrpHReOnk6QCQhcOxFAYRiosVcQh/Xn/BABziY8bDnqyPY/7/j0FYPxtzalIyjpz2cZLEkoHYsJWIJ+I0CFGeVIC+lsEXypD2cvR3RbXBndBsUhO6DO8PZ2xFigsDxF4Utri2q5mh03A+N9reHs4URDv90Cjs/OaT1Yo2ZlanSd9zaUc1YiiUQi8WQiCQQNAlQlFWK/JTCVjVjW8PRwx7dhwShm/TcdPV1goQATsQWolGabGkeLzquOYqM8LWDm5UxTmw4j20f7tM6kWtiYQwnLwc4Sb/jNk5WbcZS6VokiyWfTDTlJhe0SES1h727LboPlsfSPcAFBIBTsYWoE4gxt6crVSEdW1gLoVhC+/xtiLctPG1McG7LFWx+a6dSh4YmmJiTsSTnRPawdbZWGUuV1yKFWJbmlCE3uYCqglUXO1cbpe94p85uAIAz8fLuh+bxLKhpovX601FbPw0JtX8woXY1uaSFGwvdNzOKdDNmYG23d9vcxsrBEseKttP6vgY6DgXphdj+8UE8vRLT6gV94HevwnNUzxbPG3OY8Lc3Q1WjENmVjTDmMCEQExCruCnXhH4e1vh93P+Q8jSjze1snK3lN9NdPMAe3afdY5Sh6/dKUt+EZ5/sRlJkitr7mFmZYuA382AXFqj0fPNjZDKAYT52uJ1RDrGOFRCPfz2J5KP31N6exWbCvac3BvyxEgwVbRvNj9Wcx0Y/D2tcTSmFCYeFwd42uJys2SoU0SRAzOd7EHcnUe19TC1NMPrHBbAICVA635JL6jHSzw6XkkpgY8JFVydz3MmgZ7X22R/nkLDvltrbM1lMuHbthDE73oZQ2gYoO860snpavivNIQRCpP50DLnxuSjOKlGrgsbVzxlha6bBuIcPAMDX1hRGHCbiimrhZmkECyM23K2McTu9nLZrUA8XC5x8Yysizz5uc7vmCTPqxtrTHg6d7GgV6ZVIJCjLK0deSqH0vwLkp5H/LsosUetmwcXHEaHvT4VpH3/qOVW/i1kVjTp/b2T8X3v3Hd9Gef8B/KO9JS95753hJCSBkMkOCbusUloKZbRltKW0ZZS2lMIP2tJSCoVSWijQFgplrxACZJI9ncR7721ZtmVb635/SJaXbEu2bNnO5/16+WVZOj16/L073d33nrEwWofN976Crf8dez8fnjDzXFgnGxGZZAx8LGvbUFNUj9rietQW1aGm2BXL+rJGn2IZnRKJM398ObRnzhvyvAgD+YQonQIZERocqjEFZH+aF6nFzkf+i09f/HLM5QwRuiGJiajkQdtmUgRUAezO73Q60VrXjtriQdtlset3fVmTTy1oIhMjcOaPLoV+bY7X+O2uaAvYMadfRoQGR556D+89vWnM5YYnzKKHbZcafeC68wuCgNb6dtS641hTVO/Zx+tLG3xq9WGMD8eKuy5CyLmuc6LB5xKCgCk5/qSGqVH84ma8/vi7Yy43PGE2sI+7tstAzsooCALaGkzu7bFh0D5eh7oS32IZHhuKFd/fiLANI8/dvJ2jBeJ6KDFEhfo3d+Cfv3h9zOWGJ8w8cXQnKkZrnTwRgiCgvdGE2uKGge2y2B3XkgZP9/2xhEWH4IzbLkDEpSs9zw2Ol1wiDtgxp1+cXgnzpv34649fHnO54QkzTxzdMQ10LE3NZtf26D7+9G+XtcW+xTIk0oAzvnMuIq9y9X64bEE0PjjZ4Hk9UNc6g0XrFHB+dQJP3vrXMZdTaZWISY3ybIfRyUO3TW2IJmCts/qHWPHE0b1d9v/tyw1IQ4QOy284GzHfOMfz3PB4BvKaB+4GCRfPi5p0OYEW2BE8aVQdvbYRybR4gxJNXX1ICJma2c6aJON3jetsm/xFHs1csWkx+NWbPwHc46+9cO+/seN/ezzjSajCdUg8Z5HX9w4f1Hjw304nMNFUfGFTF+rLm8ZcJm1xMp4/8gTgHmR3R349qvpGfqC3gZcDsV+JNUqc/5PLUXD1Ez6/xyoICD0tbdw6GjUK2J0Czk4LhxgiHKwxTXgspmW3rkf1p4d8vmPnsDthWJ7hNZnmra69NgfsTgEiAHKpeEJj7ImUclxw31U4sf1Rn9/TZ3NAnp3oOfj2b28RGjkaOvsgAGi1WMedOdYfS246D9WfHERnq2/fiU6HE4Zl6egddILQX89A7SvDieQy3PiPO5Fp1MLaZ0NDeZPrRNJ9AVl8pBylR8qHJNoaqlogds+AppCIkRWpxefFrhPtrEgttpa0jBiA+MIs12DZw28CLYjSYXlCCPIaO3FgjK5lRc3dqCqoHfN/MRj1eKPuhWmb7VMsFiMy0YjIRCOWnj/0O89m7Y/lwIllyZEyFB8uH5IcaqhsgThl6Gxy3tb1ZPabyxdE41CNyTPeUHFLN8rza8Z8j8agxn9rX5i2GSrFYjEiEyIQmRCBpecNbelqt9k9rYX6E0QlRytQfKhsSHKosbIZouToEWUP3lXkEjHaLbaA7U8lrd0ozxs7lnKVHK9V/23aZlUUi8UwxofDGB+OJecsHPKaw+5Ag7u1UP8+XnqsAkUHS4ckNJqqW4EkVyy9xS+Qx5x+ZW0WlJ0cO5ZSmQT/qXguoAnIsYhEIkTEhiEiNgyLz14w5DWH3YHGyuZB+7g7lgdKh3SvbK5phZDoiuXwc4mpOv5UtFtQkjf296VYLMLLxc+MOfNvIIlEIoTHhCI8JhSLzxoWS4cDTZUtqCke2C7LjleiYF/JkIRGa107nF5mMvV2jjbR87bh35fVpp5xvy8B4B8n/4TwmMlP9OMLkUiEsOhQhEWHImft0BsIDocDzdWtQ5Lp5cerkL+3aEhCo63BBEes0fP38HgF4lxtuFpzL+oL6sZd7vnDTyAmdXoSHCKRCKGRBoRGGrBwzdBYOp1OdyzrPMnL8hNVyN9TNKRFtampA7aYga7BGpkEG7KM6LY6sL/KNCXnbw2dfTDlj72PA8DTex5D8oLRZ1gNJJFIhBCjASFGAxauHtoQYMhNM3fysvyEa7sc3Aq4o6UTtujwIe8dHs8QlWxSx5/h+3hLtxWt3dZRJxoKllmfUHv22WfxxBNPoKGhAYsXL8YzzzyDM844I9jVGqHGNPKCd6yLmar2HuQ3dQ15/sblCfjgZIPPG2JjlxWf2N5A/lcF2PfJYRTuL0F9WSPMLZ3o67VCEASsumLmxYqmhkqrwo+euw0/eu42OBwO/OfRt5Fb1gKxnxdhwy/K+0Vq5ciJ0cOoUUAEoMtqR1mbBfmNnUO69LT12PDAOz/DP3/yCkxNHWirbx/R/Lm6sBa/ueYPqC5wnWBc9Pq90CVEwBdj7VeRWgU+yhsYTFwmEeH60+LxVm7diJm8wpak4aLbzsexbSfR0WJGV/vI7oAbbj4X+jAtju3IgzVU79P4bmq5BCEqGT7Ob4RGLsHKpDB8WjiQYIzRKbA41oAwtQyCADR19+FIbQfavMycIw7R4qFNv8BLd7+EtgYT2upNI1o0iCVipCxKRH1ZIywdPYhfu3BEOaOxOQV0W+342sIYSMSiIV3WL8wywqhRwDnobONQTQcKm7tGlKNOj8Pld27AoS3H0NHSic62kcucf8M6hMeEIndHHrpVSsjcLWoGb2+xeuWQWRUH36fzd/0OJ9ap8atPf4EX7/oH2ura0dbQPuIuvEgkwp3P3IyTXxXg+I78IbH0tl94e26y9aw29SDTqIVcIUNidhwSs+OGvN5ttiBvTxGO78jD8Z35MDlFUBjUkIhFOCstHPur2tFndyI1TI1qU8+os/p29NiQHqEZklBLj9DA5MPxp8fmwI/fvAcv3f4CWmrb0NZgGjH0QEezGbY+W8BnmpoImVyGhKw4JGQNjWVPV487lvnI3ZmHFosdqlHGrxq8rsfab/QKKZYnhMCokUMsFqHH6kBJazdONLgSue8PurMLAH12J37wn7vxz+8/j+bqVrQ1tI+YHKO7w4Jus2XaLrbHIpVJ3eMAxWLFxQPP93T3In9vsWe7bGjrhmaUSXIMSilWJYdBI5cMGS/I2/40XjwHszkEfO+fd+Gf330eTZXNaGswjWjRYO2xwtxiRkRc+Ij3TzeJVIK4dNd4dLho4PleSx8K9hV7tsuaOhP0iQMX28Pjp1NIxzzmAMCq5FBkRGjx3ol6nyYucTgF3PTX7+OV7z6HhvImtDeaRrRosNscaGswIS59ehJqY5FIJYhNi0ZsWjSwcaBFfl9PHwr2l+D4jnwc35mHirJmhKa7kubDzyUUUvGoxx/4cQ40nFMArnvyJti7elBf2oi2RtOIMVudTgGttW0zYh+XSFwTk8SkRuH0QTPJW3utKDxQilz3Pl6aX4uIBYkj3u/tHM3bc9efNvB9LBGLIAjwnG80dvXhi+KWEd+XAoArHv0mepvNqCmuR3uDyWv39KaqlmlLqI1FIpEgOtnVumv5+oEZ1619NhQfKsPxHXnI3ZmPoqMViFqW7nl9eLzGOuZgEtvmxgeuRFd1C6rya9De1OG1S3VTVcu0JdTGIhaLEZXkatm17IKBWNqsNhQfLvfs4/kHShFzxkAr83dOuLokp4drcFqcAXurXGMnjnb+5ut573DrfnAxWovrUHGiGu2NHej1MlxLU1XLtCXUxjLaTTO7zY6SI+WeY8/J3UWIWzU0sTk8no1dfaMef3w5Hx6+j8N9HsyEWgC98cYbuOeee/D8889jxYoVeOqpp3DhhReisLAQkZEj74oEU8uwi+HxLmYCpdVixaJ187Fo3fyp/SCaVSQSCb790LXYW9nu04HA875hF+X94g1KrEsNx5HaDuwqb0Of3Qm9UoqcaD1UMsmIJEFZZSty1sxDY2UT6soa0VDWNGS8DmuvDTvf3gcAkOtUPifTxtuvrHYnlsYZfBqItM1ixV3P3Iyu9m6Y27pQlV+LvN2FKD1W4e7yYEfx4TK0N5jQ3tiB035wiU917LM70dTVB7tTQEevHXLJwGl5gkGJtanhOFBtwufFFohFQKZRiw1ZkaNOR11S3oyFq7PRUNmMhrIm1Jc1wNI5EEunw4nSIxUAAIlSDkOK7yc+sXoFFFIJ3jlRD5VMjPPSjfgov9Hz+qEa04jEvzetFiu+98dvo6u9G53t3aguqMXJ3YUoPVqBulJXM/2K41U4/PlxtDeYsOi7F7rqO2x7s9qdCFUNJC2Hr2Z/1q83mqRIPLPnMcB9ElZxohrFh8pQdKgMdaUNWHX56bj8jg24/I4NsDuceO1ILYRR9ovR9pXJ1nO82RA1ejVOv3CJ50LnSFUbjjd146zUcBQ0daG52/X+EJUM4Ro5EkNUCFXJsC4lHFsGnTiWt1swL1ILmUQEm0NAhPvkpaV76OerZRKsTglDhEaOzl47KtstyDRqUdPRgz9/9X+A+ySs4qQrlsWHylBdVIcVFy2dEcm0sai0Kiy7YLHn5Dy3ph1HGkZu78PX9Vj7zXkZEahos2B7mWvQe4NSCoNq7ES8OEyHP+14BHDHsiq/FkWHylB0sBTVhbVYet6iUQf9nylUGiWWnpfjOTnPq+vAgTrvEzt09NqxqaAJoSoZViaF4pOCplH3J3/j6dSq8eS2hwF3q6Wq/BoUubfLqoJa5KyZh/DYsFHfPxMo1QosOWehp0VbYaMZe6sHJnYYHr+jdeZRjzlwz0SXHKpGr92BjAgNDtaMPUlEf7dSq1KOP3z5a8Dd0qa6oM79fVmKyrwaZJ+R7kpgzWAKlQKLz1rgaYVV2tyJXZUmr+cSYx1//D0HGq5XIsXvt/wKcMeypqje831ZcbIK6UtSkDQDLrTHIlfKXeNUuVthVbZ2Y9uwyQi8xXW087bXjgy06BmtoYE3FkGExz/9BeBuaVNbXO85jpefqELy/ARkLk+d5H87teQKGRasysKCVVm47v6voabdgi/cNxe8xWusY85Ets3+fdzsAB796AHAHcu60kb3dlmK0txKxKXHYMHqrOkKy4TI5DLMPzMT88/MxNfvvRwN5h5sLho49+o/npS3W5BpdHVPHev8zdfz3uE6bE785r37AHd3y/qyRhQdLEXxoTKU5lYiOsmIJef6fsM7GKQyKbLPyED2GRm45qeXoaWrFx8XDG1cMTyeVaaeMY8/EzkfnspZwSdqVifUnnzySdx22234zne+AwB4/vnn8fHHH+Oll17C/fffH+zqDdE27CJkvIuZ8UjFIiyLNyDeoIJELEJdRy/2VbePGDixtduGaN3Uzj5Hs5c/X0oi98Cagy/K+52RGIoTDZ1DDjLmXju+qvA+s9OB3UU49rdPx/1MmVyKeReOHN9tNOPtV4XNXZgXqUOUVoHGrrEHbG3vtuLSkJvg6B09Rv1TXgNAWHa8T3Vs6e7DohjXXWalVIzBu+zp7jgWtwy0hjvR0OlphbHZy5gYh/aX4vDTH4/7uVKZBNkXLIZY4k+XCpHn4GhzCJCKJzZ2Q5fVgSuMt8A6xsC8Q2KZFe91e2vutmJRrB4iAKFqGczDWlKMt37H+95s7bYhw527lcllyFiaioylqbjotpH17eizQxhlvxhrX/GlnvOjtMgyaqGSSdBrcyKvsRMF7sR3j80Ji9UxYkr70XTYnEgJUyNKq4BMIsK8KC1qTL1DZla8MMuIHeVDxwKy2p2o7ehFSpgaRc3dSI/QoKSlGyHDkhXrUsPQ0WvHl8Ut0MglOD/D6ImlJ+4yKdKXpCB9SQo23nKeT/WeiTqsI7vReF/X3vcbhVQMvVKGwuZuT3dmU68dpkHb8VU5MdhfbUL1oFbtgxPpUpkUqYuSkLooCRu+MzBuyWxjGiXBIBbBc6FodTg93Zi87U++xHO4wcc8iVSClJwkpOQk4cKbZm8sO/oGYuktfmMdcwAgJUwNu1PAkdoOnBZnwKHajiHdnK7KiUFhc5fruKqW4eP8Jph6bENjKZEgeUECkhck4IJvnzXV//KUMblj6e1cYntZ66jHH1/Ogcb6Xh8ey6R58UiaF4/zv7Vumv7zwDP1jdwPvcW11WKd8PWQ9+/LgViKxWJP6+Nzr5/6GcOnyuBYeovhycbOUc/VfNk2R93Hu4fGMj7DNevwOdetnob/emq0D9pvpWIRHE4BAoBorQLmPvu452+jGf/8cqAskUjkaTF79tdncSx7hu7j3uI53vFnvPPh8fbxmWLWJtSsVisOHTqEBx54wPOcWCzG+eefjz179nh9T19fH/r6BlaW2Tz10973swzrOjTexcx4VieHwSkI+CCvAYIArEoKxYrE0BFTU/cEcepdmvnG2j7OSg1HuEYOm8OJCI0c7RbbiIvyk42uZI9OIUV5m+8zJKoGTa8uEomgNqihNaihDdXAEKGHIUIHtUENhUoOkZcxOEar46GasferPrsTxxvMWBpvwKaCscdxE0nEUIVp0VU3+nTvIpEIYTEhMCZEIHyUll/e6ljSYsGGrEiIRcBB91hU/XEsax0Zx7I2Cy7INEIiEsExbECHwbGEyNVCSRuihjZEC0OEDnqjHmq9Ckq1AogZuxvT8LoerulAargaG7IiIRGLcKx+4t+ZKqN+zISaSCRCaHQIIhPCYcyI8ZoEOtnYidLWbmzIjoRTELC7on1IGeOt3/G+N4d/T4+lx50Q8FbPHpvDa919rWdXnwObC5thsTkQrVPgvIwItPZY0dxl9dTT14SaxepAc7cVZW2jz+bkLVEL95hTp8UaUNpiQVKICu+fbMCy+BDP62qZBFE6JbaW1sIhCDD32VHY3IXsSK1fsZwtvP1P3tZ/XmOn1/2mz+5ER48Nq1PCUNTchZZu67gtV+Beh3PNaNtHuFqOpfGuGfVEIuBAtWnU74KJxHOux9Jb/KwOwesxp196hAZlrRaUt1lwekIIEgwqVA0bpiQ9QoMvi1vQ2WdH/5jYPXM4lt7O0a0Op9fjj6/nQGN9r8/J70sv24e3uA5uATSR66ERnzvHY+l127Q7vR5z/Dk/97qPz/FY6t3d420OJ5xOYHdl26jHm/EE8vxythj+P3mL53jHH3+uy/r12JxwCgLEAZqgIRBmbUKtpaUFDocDUVFDL2KjoqJQUFDg9T2PP/44Hn744Wmq4VDDL4IH83YxszTegCWxBq/LK6RiJIaq8MbRWk/m+0idGZcviMZX5W1DmqE7T91JXMkHY8244m32Km8X5QqZq8WTLxeG/QaP2yYIArpN3eg2daOxcuS+kH75Cpy5NmfE86PVsd9oSYL8xi7Mi9QiIUSFhs6xp4XPOjMDMpsdujAt9KFaRMSHw5gQAWN8GCLiwxEWHQKpzPU1+nZuHbq8xMBbHUtau1EyLHHWH0dvB90emwNikQgKqXjE60PGwBPc4yl1WNBYObL5dPKFS7HmnCUjnh+rrsOT9IMN/576X24d7KNsUxnL0yBdEA9dqBa6/ljGh3niGRYT6onleyfqXYNee9neipq7UdQ8+snhaOvXl+9NX2bN7Nf/nT5aPcdKYI1VTwBDLmYbOvtQ19GLaJ3Ck1Dz53t9rGPPeOrNfViVJMGiWD2au60jBjpWyyWwO51DLoi63WOlzcVjj7f/abT1P9p+82lhExZG67Ek1gC9Ugpzrx37q9tRbx69xeycjOUo+1pzt3XEd3ebxTbq/uRvPKd6mI1gGLx9eIsfRjnmwD3eWqRWgb2V7bA7BVSZepARoRmRUCts6oLZ3Uqm/+PmZCy9/FOD4+nt+OPrOdBY3+vOwEywPKOMd+zxtp2Odt7mjzm5XY4Sy8Hx8nbM8ef83Ns+Prw10VwwOJZtFhs+ymsc8vpox/R+3s57JWLR+OeXgut6J1CzdM4Ew7cPb/HEGMeffv5cl/UTBC8DWQbRrE2oTcQDDzyAe+65x/O32WxGQsL0jEkgEYlg9+Ok+HBNh9dJCQBAK5dCLBLhqpzYEe9TySRDLrhnUvaWZh7JBLvwDdbnnhFHI5egs8+3pJrTNv6gx/0cVt+X9ak8QcDROjOWxhnwacHY3T4f/M/d0Cl8+5oUTzKW/XFUyyQjEnMqmQROQfA6lbw/sfRnWV94+54azX3/vGtEd8HRSCbxvTXa+vXle9Of/WEydRyrnnC3eloQpYNWIYEIIkjEoiHbhD+fPdl6lrZ2Y1GMfsjg8P0sVgekYjEUUrFn29TIXfvLXDz2BOJ/6rU7cbDGhIM1rlkYF8XocU5aBN7KrR8y4Plgk12HM1Egjj2YQDy5XQ6VEaFFm8XqGRC6tKUb52caoR52Luntgnyyx7yZaCLbpa/nQGN9rwdqf5hJgvU/cR8f4M/5ubd9fE4eeyb5P3k77zUoZeOeX4pFmFPJNACQBOjf8ee6rN9M+8qctQm1iIgISCQSNDYOzYQ2NjYiOtr7IKgKhQIKRXAGQdbIJT7NnOSLbqsdTkHAm7l1Y7YwAgCNwr8ZHOnUopGPP1jueMx9dnT22ZEcpsbx+vGbRQPAmo2n4erz5kMQBPeP63aDIAiuO8SCAKlcCplChh65DHmTquFIJS3dWBClQ1qEetRlRCJXcstXWrl0xJhe/jD32dHVZ0dK+Mg4poSp0dTV5/WO75nnLcTX1vzap1j2yWU4MeEaTo6vXRQBQKOQos2PabWH87Z+ffne1PhVx8l/t3qrp0YuwZqUMHxe1IyGzj4IAM5JGzYtuZ+x9GcckOHyGrvQ2NmHBi9jW1hsDjR29mFpnAH7q0xQyyWeQX21ftRxttDKpQB8O9nzhdXhxNG6DiyIdl1kt1m8J9Tm4nG8P/EaSL7EU8tYeohEQGq4GjKxCNcuHrgQFItESIsYehzy9o3pz/fQbDGRWPpyDjTe9/pcjKV2CvZx3z53DsbSxxu7w/lzfn7K7OMTjOVYfDm/DNb+MJUC+T/5cl3WTyOXzLjk5Kxdu3K5HMuWLcMXX3yBK664AnDPQPLFF1/grrvuCnb1RgjXyAOWUOu1O1Ft6sGKxBAcqulAn90JpVSMSK1iRDP9cPXMmlaWZpZwtRxNXZMf3HF/VTvWpYbD5hBQ3mpBn8MJvUKKhdE6HKs3j0jaJceHIitx7PG8+tkcTuQNmu0pEAT3OBQrk0afNl0lOAGnExBLYLfZ8eRtz6PwQAmSFiQgc2kqMpa5fvqnsQ9Ty1Bn9q2p8mgOVJuwJiUMPTYnKtosEImALKMWKWFqfFbkvStEQkwIFiS7RtLP3ZGHZ3/4EpRa5ZA6JmbHQSKVwOEUcPJIDaa7B5lScELi/lCHw4E/f//vOLm7AInz4l0D/y9LReayVBgi9ACAcLVsyACk/vK2fn353lTYBpJ4+fuK8efbX4Bc6Z6cYFkaMpelIml+PCRSCQxKGSTuAVgDWc/+wYR77U4IAOIMSsTqlShyT1ShkUugdCd6nU4n/vKDl3B06wkkZsd66pixLBUh7rH1wtUyjDI3iE+sDifqO0dPIu0sb8Wq5DBcuyQWnb12lLVakBKuHhLL2UAQBDx/zys4sPkoErJih2yXoVGucePCNTKUTGJ4H7lEhAVROpS2WdDZa4dY7Pq71+4YMxmvsM6uWALAiw/8B1+9fwBxGdHIXJrm+S4Kj3Ft6+EaGTDJ3l0TiedsjOWrv34T297cjdi0qCHbZXhsGEQiEcLVvrX8HS7BoIJcIsYHeQ2wDmr9nB2pRUa4dtwLcIXVNuu6ML3++LvY8q/tiE6J9BwjM5enISJucrEc7xxovO91hW32xfKtJz/EJ//4AlFJEZ5jZNbyVBgTIlzjy04wlpM1G2P5/rOf4oPnPoUxwRXL/uN4VJJx0rH09/x8MKV99sXyk398gbf/9CEi4sKGnLtFp0S69/HAXxf7cn6ptNtnXSy3/Gs73vjdewiNDhlyTRGbFu3aLjWBi6Uv12X9wmZgbkMkCLN3cI433ngDN954I/72t7/hjDPOwFNPPYU333wTBQUFI8ZW88ZsNsNgMKCjowN6vX5K65rf2In9wwbiG81o00PfuDwBH5xsQHuPDVKxCEtiDUgMVUEhFaPX5kBFmwVHBk1DLzicED7Zi9WXLUfG0tRZtRPT5DkcDjz+zT/jwKajCI8LQ1y6a0aZmLQoxKREIjYjGtbwkDHHyPJHpFaORTF6GDWuVqBdVtfFdX5T54gxLd7a+BA0ShnOvHgpFp21AIvWzUNE3OgJtvdO1E86Ie1tv7ooOxJGrQJv5daNOKkofm8vjj/zIRaszkJCdhzeecr7TJpqvQrG+HB8//V7cDIAjVdi9UositEjTC2DAKC5qw9Has2jzmrz7uWPQA4BKy9ahoq8auTtKRqxjFQmgTZUi3VXn4nkOy5Bm2XyF5X+TGNf/ukhHP7925i/KgspOYl4648fel1OrpIjLDoEP3zrZ8hz+Hdn1Jf1O9735gfX/hZ6uQQ5a+ejprgOx3fkj/gciUwCbYgGKy9bjnn3XOl36y9f6rkkVo8soxYikQjVph5IxCL02Bw4UG1CYogK56S7EqjtjSZcG+NlClIAMoUUoVEh+NGbP0W+ePpOPhZG6xCjV+LHK+6H0uHAorXzkLNuPnLWzUN0cuSMPQ51my24IuRGr68pVHKExYbi9n/ehSKlZsKfIRWLsCIxFFE6hWu2K6eANosNR+o60OLejrzNaLX51qch7epBzrp5yFk7H4vWzUNMatSMjaXNasNFyuu9vqbUKBAaFYLvvfB9lOi9jxPrK1/iOdzndz0PobEdi86ajxz3thmXHj1jYykIAjbIr4PTS/dVpUYBg1GP2/5yGyoiI/wu+7yMCPTanCNm41ZIxbh6UQy+KG5BQ2ef120SALb95EX0VTRg0bqBWCZkxc7YWALAZfob0NM18saXUqOAIUKHW/70HVTFx0yo7PHOgcb6Xt/581fRnV81ZB9PnBc/o2N5TfStMDV1jHheoVZAH67FTb/7FurTkwLyWaOdb3jbNnc//DpMh0uwyB3LnHXzkDQ/HmKxPzOcT69vpdzhdQxhhUoOfbgO1z98LdpyMry2IvPFeNvmaPv4vt+9hZZdJ13H8LXzsGjdfCQvTJjRsbx5/t2oLhh5E16ukkMfpsXXH/gaOlcsmNBYe2Od9453fnnoqfdRv+UIFq6d54llyqJESCQztxXg7cvuRcmR8hHPy5Uy6MK0uOqeS2E9+7RRx04ejy/nw962zdNiDVgUO7V5G3/N6oQaAPzlL3/BE088gYaGBixZsgRPP/00VqxY4dN7pzOh1tVnxzvH6yf8ZTgR1dtPYPvPXgIARCZGYNXlp2PN11Zg4ZpsSKQzdwemwDC3deKqiJvHXOasb65D8t1fm9TA5f5qOlqGz777lxHPR6dEIm1xEuIyYhGfGYP4TNfvkEgDjtSZcXwSM0xOxBc/fAH1e71PcOJNzjkLseyJWyZ8YJmI1vxqbLrxT36955H8Z1DYOb2tNLbf+09Ubzvu8/KaMC2+vuXRUceUmgqmsgZ8dN3v/XrPr4/9CSV903sIXZsShtRwV1Knp7sXl+luGHN5sVSCm/f/ccSEAoESppbB7hRg7rUjTC3DeelG7Murw2PLfoLhTSGN8eFIW5KMuIyB/Ts+M8bT0iaY+nqtuET9zTGXEYlF+O7hpybdTd4f3Y0mvHfFoxCG7QvhsaFIPy0F8RkxiHPHMi4jBhFxYUG/2LH2WXG54UbYxxj/Uq6S49a9f/AMgj0detu78M4lD8M5bGKXsOgQpC9NQXxGrHvbdP1ExIcHPZY2qw23LrgHdaUNoy4TGmXAtz5/1DMO2nSwdvbg7YsfhqN3aOIyxKhHxrLUYft4LIwJwY+l3WbH7UvvRcXJ6lGX0YVpccvO346akJ2SevX04e2LH4ZtWKLPEKFDxrJU13bp3r/jM2MQmRgR9Itwh92BH656EEUHS0ddRqVT4c79f0DDGC2cA14vqx3vXPIw+kxDB0DXhWndsRy6XUYmzYxY/vTcX+PErtHPNxUqOe4+8hRqJ9kLwh9OuwPvXv4oepqHJk21IRpkLk8dca4elWQM+rWlw+HAzzc+hsOf5466jFQuxb0nnhnRo2sqCU4n3r/yMXTVDb15odarkLk8DQmZsYjPjEVcRjTiMmMRnWz0TNIVLA6HA7++8gns/fDQqMuIJWL8ovC5cSfhCrTLF0T7PCbzdJm1XT773XXXXTOyi+dwWoUU8SFKVJum78uw+O3dnsdNVS1475lNeO+ZTdCH67Dy0uVYdfnpWHz2fGgME7/jTjOXLlSLmNQo1JeNnHGlX/7OPJzzm2+OOftKoBW99ZXX5xvKm9BQPnLKZLVOhZQVGVjy6I0QTdMolNZWM+x1zZDIJHD4ONV1+dFyJOzOR9iZ2VNev36jxXIsr93+PJY+/h2IJNNzcWPr6Ia1ogFSmQR2H2PZ3daF+m25CF+7cMrr1699XwG0IRp0mXzfF167/Xksf+IWiKfpxEfoteK/P34RjaWNaKhoRlt9+7jvcdodyDRqkTtFCWmlVIIzk0KhkorRa3eiqKULlcfKkbMmGwX7imEblFRprmlFc83IPpNKtQKxGdGuE3P3BU9cZgziM2KgD9cFpJ7WPhuaqlrQWNGExopmNFQ0obGyGQ0VzWisaEJb/fgtyAWngMwIzZCW4FNN3W5Gzpps5O8thq1vIGHSWteO1rp27Bu2vEIlR1xGjCd+gxMb+nBdQBKXNmt/LAfi54qlK7atde0Y716ttceKjAg1DtVOXyyVrR1YtCYbeXuKYO0diGVbgwn7PzmC/TgyZHm5UuaKZUbMkMRlfGYMDBH6gMWypabNE7v+7bL/cWtt27izDy9cMw9ZkVrsrRz/+yBQ5C0mLFqdhbzdhejrGUg+mZrNOPDpURz49OiQ5WUKGeLSoz3bpeviMcZz0ywQsbTb7GiuaR11u2ypaR03lvNWZCDbqMWu7sC03PeFrKUDOSszkbe7EL3dA8mnjpZOHNx8DAc3Hxu6vFyK2PRoVxI9feh2GRoVEpBYOuyOQbF0b5uVrt+NFc1ormn12mpysMxlqcgyaqc1oSZrMWHRmRk4satgSEvEzrYuHN6Si8NbhiZaZHIpYtKiPPu459iTGYuw6MDFsqV2YB8fGssmNFWPH8vURUnIitROa0JN2mpGzumpOLGrABbzQPKpy9SNw58fx+HPh94klcokiEmNcu/jAzd5AnnTzOFwoLW2zb1/D2ybjZVNaKhoRnN1Kxz2sc8zk+bFIztSO60JNUl7JxYuTcHx7l50dwwknyzmHhz98gSOfjl0dGOJVIKY1EjX9pgePWgfj0V4bGhAbk44HA601rUPjWNFExrcx5+mqpZxYxmXEYOsSO20JtSidYoZl0zDXGihNhnT2UINAOrNvaOOgxRoeqUU68IV2PvhIXz13n4c+eK414tZsViEjGWpWHz2Qiw5dyEWrsmGSqOcljpS4AmCgMq8GhzdegJ7PjyII58fH/XCRiqX4rFNDyLxjEx8lD960i2QlFIRyv70Lnb+bw9svf7dTV/7+I1IOm/xlNVtsINPvoeC/+7w+32GlChc/NrPIJ6GZFVvexfevewROPr8b5Ww6tfXI/Wi5VNSr+GOPPsxTr7yhd/v08aF47L/3Q/xNNzxtHb24N3LfgNbt/8n/ivuvwYZV66cknoNl/uPz5D7wqd+vScsJgQvlf8V7xyvn1AXB39JxSJclRMDpUyCvp4+FOwvwfEd+Ti+Mw95e4qGXDD6QhemRWxaFBRqBSRSCSRSsfv30MdiiRgSietvsVQCiUQMc1vnkITZZE93pAop3jH/G28fr5/U2Hm+kohEuDInBmq5BNY+G4oOlCB3Rz5yd+Qhb3eh165rY9GFahCTFg2lxnssxZJBfw+LZWd7l18Js/FkLk/Dk7sfw9u5dbBNQyzFIuBrC2OgVUhh7bOh+FAZju/IQ+7OfJz8augFoy80BjVi06Oh0iqHxHIghqPEUipGl6nbr4TZWK7+yaX47u9vgN0p4O3cevRNQ6teEYDLF0bDoJTBZrWh+HC5Zx8/satgyAWjL9R6FeLSo6HSqQbF0Pt+PjyW3R0WvxJmY7nszgtx19O3wCkAb+XWTVmr3uEunR+FMLUcdpsdJUdcsczdmYeTuwrQ2e7fzU61TuXaLnVK7/EbK5Zmi18Js7FsuOVc/Phv3wMgwjsn6qetVW9/dzGH3YGSoxU4viMPx3fm48SuAphbfZs0q59Kq0RsejTUepV/sZSIYenq8SthNpZzr1+Le1+5EyKxGO+daEDnNLXqvTDLiGidEg6HA+W5Vcjtj+XOfJia/bsRotQoEJseDY1B7VMsBx+Lerp6/UqYjWXtVSvw89fuhkQqwQcnG2AK0Njm4zk/IwJxBhUcDgcqTlR79vHjO/K9dpsei1LtjmXI2LF0nRMNfa23u9evhNlYVly8FA+9/VNIZVJ8nN+I1gAMJeOLc9LCkRg6/sQF040JtWlMqAHAjrJWlE9DJrf/i7Bfd0c39n18GLve248Dm46MelEjkUqQvSIdS9wJtvkrMyFXzrzB/8jF6XSiMq8Gx7addB3stuf5dKDThWnxxBcPIW1xMgBgb2U7CpvHHwtrss5Ji0BiqAoA0FzTgqe+9wIOfZ7rUyswdVQILnn9Xsi1U5vwbSuowabvPAXB4XQNYBobiqhkI9R6NQ5sGtqCQaaQYuGaebCYLagpqkd3hwWn/eASLLjh3CmtIwDsfPBVVG456qmHVCZFb3efTxe6qnAdLvnvfVAYpvagZCprwCc3/HFEF6vRiMQiJGTFoa2+HV2mbiy67UIsuu3CKa0jAOz+zeso++gA4G7hE5VsRFRyJOpKGlBbXD9k2ahkIxIyY1FX1oiG8ibItCpc8t97oQpQS6rRdFa34KPrn/ArgZqSk4gXjv0RAHC83ozDtf6duE3EisQQZEd6j4XT6URrXTtqiupQU1SP2qI61BTXo7a4HvVlTZM6uZtq2hA13mz8B2QyGfIaO3HAxzFRJ2N5vAELor2fmwiCgNa6NtQU1bt/6lBbUo/aonrUlTYGLZYyuXRIq0RvTt94Gh55/z5IpBIUNXdhzzS0rFoSq8fiWO9jtgmCgNb6dtQWubbFGvd2WVNUj/rSBp9b1gZaiFGPqGQjIuLDsef9A0OSRWKxCD96/nu46NbzPM+VtnYHbEzUseRE67A0PsTra4IgoL3R5NkuB+/jdSUN424bU8UQoUNUciSMCeHY+9GhIeccIpEId/z5O7jiro2e5yraLNheNokZSHw0L1KLMxK9D8ItCAJMTR0D+3dxvSuWRfWoLWkY0mJ1OunDda5jZGIE9n1yZEQ9vvvEt3HNTy71/F1j6sEXJS1TXq9MowYrk8K8viYIAkzNZvf+PbBduuIavFjqwrSITjYiMsmIQ5uPodcy9Nrspkeuw/U/v9LTumu6GmakhauxJsX7uMaCIMDc2unZLmuK6lFb7IpjbXH9kBar00kXqkFkkhFRSRE4uvXkiJsk1//8Stz0yHWeWDZ19mFT4cheMYGWFKrC2Wmjj3HpimV/HOsHtsui4MVSrVchOiUS0cmROL4zH51tQ68Pr77nUtz2+295Wsq1dlvxcX7jlA9rFW9Q4tz0iKAPEeINE2rTnFDrtTvw/omGKb3zlR2pxYpRDtAA0NfT526um4ujW0+g4sTo40nIFDIsWJWJJefkYPE5C5B1ehpk8pnX1PJUMSSBtv0kcrfnoaNl9LtukYkRsHT2oGvQXU5dqAa//+IhpC9J8TxnczjxwckGdE3hXcTUMDXWpno/QJccK8dzP/on8nYXwjHGvpF++Qqc+eDXp6yOgtOJsKIqxEcbEJVshDEhAnKFa3t3Op24NvpWT7zDYkLx2Cc/9yQl+0/YqovrkSvI4JjCRLS4qR0J3d2ISTYiKtk4pPvRyw/9F/955O1xy0i+cCnWPPKtKauj0+HE5lueRmte1YjXwmJC0N7YAWHQBaJcKcNvN/8SOWvneU7YqorqkeuQwK5STFk9xS0dSDCbEe1OooUYB2K55dXt+P1NA+P9XXjTObj7b9/1jG1hs9rQWNGM/Mo21IVOboD1sQhOJz77/rNoPjpycNjRxGfG4MW8pzwnPE5BwCf5TaNObhEI0ToF1mcaJ3SyY7fZ0VDR7LrQ8SSIGlBTVIfm6sld2IZFhyAq2QhtiAb1ZY1orGyGzY+7/CqdEv9r/AcUStd2KAgCPi1sRlPX1HVlMmrk2JAdCfEEYumwO9BQ0TRwgu6+4KkpqkdT1eQubEOjDIhKjkR0shEGox5d7d2oKqxF2dGKMb+7+512Xg4e/fB+z406QRCwpah5zJlkJytMLcPF2VEQT2DIAIfdgaaqFs8FT3+yra64Ho2VLZNqqRcSaUBUUoQrnkmu75+oZKPnAntwb4GfnfdrHN16EnAn/R/874+x8tKhrYwFQcCXJS2o6Zi6bmEhSikumR8NyURi6eiPZf1A8tK9XTZWNE8qlv0Js6hkoyeW/d/pUUkRUGlVnmUfvOQx7P/EdXNMppDh/n/9AOuuHtnKeHtpCyrap65bmE4hxWXzoyCdQIt2h8OB5upWz/7tSbgV1aOxomlSLfX6E2bRyUZEJfVvk67fUUlGqHUDsfzNNX/AzrddHc+lMgl++tKdOO+ba0eUuau8FaWtU9eYQCOX4PIF0ZBNIJZOpxMtNa1Dbk70J4Ebypsm1bqsP2Hm2g4H4ti/j2v0Azc1f3fjM/j8X66eEWKJGD/+2/ew4eaRN2f3VLahqHnqhmlRycS4fEEMFNIJxrK2zZO0HEgQ1aO+rHFysQzVjNjHPdtmUsSQ4Yue+t7f8PHfPwfcCfO7nrkFl90x8ubsgep25DVOXWMChVSMKxZEe2Zm90f/DciR+3jdpG9AakM0I/bxqCSjJ57akIFYPnf3P/Hu0594/v7eH76Nq++5dESZh2s7pnSsa7lEhMsXuFrsz0RMqE1zQg0AGjp7saWoeUq630Rq5bggw+jXAbq9qQO5207iyJcncGzbCdQU1Y+6rFKjwMI12VhyTg6WnLsQ6aclB31Az7nM3wSaxqBGzrp5WHzWAiw5dyHSFifjlYfewH8edSVYdKEa/P7zh5B+WsqI97Z2W7G5sGlKut+EqmTYkBUJ+TgHaEEQUHigBC//8r/I3ZHn9aJ35S+vQ9qlZwS8jgCwMikUmUbtqK//8xev47XH3kHivDj838c/R3RypNfl2i1WfHS8Hs4p6PppUEqxITsSylG6QpqaO3DbwnvQ0dKJi793PhorW3Bs64khYwb1O/3eq5B19eqA1xEADvzhHRS+uQtwd51YuCYbi85agNPOXYiMZan45WW/w/5PDgPuAcof3/QgFq2bP6Kcjl4bNhU0oW8KbkLoFFJszI6EapSTnc72Lty68B60N5jwjQe+NuTu5nBTeWJ2+C8fIe/VL0c8Hx4binO/uRY73tyNxsqBRElUkhGvlv5lxDgbnX12bCpoRI8t8LHUyCXYmB0JjTzw48k57A7Xj8MJp90Bh9058Nygx06H0/O33eaAxqBGbVEd3v7zx8jbXThmEk0sESNjaQrMbV2oLx3oAi9XyvBm49+h0Q0da7TbasemgqYp6cqklrliqVVMQSwdAzEbLZauODqGxFKtVyEqyYiu9i7senc/vnp3H3K353m9cI+IC8M5162GqdmMLa9u9zw/78wM/O6zXw5JbgCAxerApoLGKbmho5SKsTE7Enpl4G8EjhfLgTgOi6VOOSJhNp7tb+7Go9f9CSFGPR5+/z7MPzPT63K9Ngc2FTRNyWQPCokYG7Ijp2T8mrFiOXi/Hh5LlVY5ImE2nt0fHMBDV/weujAtfv3Oz7wedwCgz+7Ep4VNME3BZA8yiQgbsiIRpg78jbdRYznO96dCrRiRMBvPoS3HcP+Fj0KtV+FX//sJll3gfVgOq8OJzYVNAZlhfDipWIT1mUYYtYG/8eZ0OmG3OYbG0jH+Pi9XykYkzMZzfGc+fnL2Q1BqFHjw9bux4uJlXpezOZzYUtTs9wzjvpCIRbggw4go3TTEctB+PdY+L1PIRiTMxlN4oAQ/XPUg5AoZ7n31B1h7pffJCh1O1w2dxim4OSYWAednGBGjD3yvmv5YejvGjLXPS+VSRCUZhyTMxlOWW4k7T78PIrEYP33pDpz7jTVel3M4BXxR0ox6c+BjKRIB56ZHIN7g+3fTdGNCLQgJNQCo7ejB1tLWgI7DYtTIcX6GcdykxXhaaltxdOtJ10CJW094ncq5n1qvQtqSZKQsTETywkSk5CQieUGCXzsrDejp6kFVfi3y9xX7nUBbfPYCpC5OGpHgbGtox0/P+TUcdgd+8cY9yFiaOmp5TZ19+LykGTZH4LbLUJUMy3QyxCb4PyhpRV41/v3w/7Dvk8OebsoiiRirfvUNpGz0frIxUWckhGBe1Njd9gRBQF1pA6KTI8eczagyvwa/uvFZrH78poB2qzQopbgg0zhu0sLS2QOL2YKIuIEWgdWFtfj3I29hz4cH0dPpbsEgEuHMn1+D9MvPDFgdAeD43zZBXtuMRe7tMmNpyogZi7pMXbh7zS/R3WHB/f/+IRaftWDU8tosVmwpag5oy16dQor1mcZxkxY93b3obOtCZMLoTfbh3jb2VZkC3nX62Auf4vg/PgPcXWJTchKx/sazcen313ta+dSV1ePG9B8CAMJjw/DvimchlXr/v0w9NnxW1BTQpJpGLsH6zEjolcGf56jX0ovP/7UTH/3tM5QfrxrzjrhEJsG8MzJww0NXY8m5ORCLxTA1m3BN1G2Ae5zJ12r+htAI7+cHHb02bClqDmhSTS2TYH2mEYYZNOhufVkjdr69F7ve3Yf8vcVel4mIC8Oar63AmitXYOHabEgkEjgcDtwy727UljQgJScRf9z2MHSh3m9YdPbZ8VlRE7r6AhdLpVSM9ZlGhE5B0iIYmqqaoY/QQ6ke+2K322rHZ4XNAU2qKaRiXJBhRLhmjsSyugW6MO24SU2L1YEtRU0BHWtJLhHhvAwjIqcgARQMLbWtUOvV4ybiem0ObClqRlsAE5QysQjnZkQMGeJmNmutb4dSLR83edRnd+Lz4uaAzkYrFYtwTloEYg1zI5btjSZI5dJRjzn9rA4nvihuCWiLc4lIhLPTwhEfMnMTQP4wNXdALBaPO0mUzeHE1pKWgLY4F4uAdanhSJqB46YNxoRakBJqANDc1Yed5W0BGWAyLVyNFYmhE2ruPJ768kYc23oSR7e6EmytdeOPd2JMCHcl2PqTbAsTkDgv3tN97lTX2d6FqvxaVObVoCqvGlUFrsfjdcfxJYE2GqfT6dPMMG0WK3aWtwXkrmxSqAqf3v13HPr4MFQ6JW773bew/sazoZhAF7768ka88bv3sP1/e9BlsiDnlguQc/MFkx60Xi4RYWVSGJLDAvNl3W224AcrHkB1YR30yZHY+JfvQxbpfbwZf8QblFidHDahpuPDNVU1480n3seXr3+FzrYuLPj2uVj0vQ2QTHa2SpsdaRInVi5N9nn6dF+3S3OvDTvK2gLSZTFOr8TqlLBRW6ZNlCAIyGvswuFa06RbIFu7enHwyXdRveUI5q3IxCW3r8dZ16wcNVa1pfUo3FuCs7+xetx4dvbZsbOsNSB3uKN1CqxJCZuSlmm+cDqd2PfJEXz2ylYc23YSna1jJzTlShmWnr8I1//iKmSfnu41yZ+3pwhfvr4Ltzz+Dag0Y58Qd1vt2FXeFpCZ7CK1CqxNCZuSlmn+6J/cZtc7+7Dznb0oO1bpdbnYtCisufJMrL1qBTKXp3nd7lrr23FiZz7OuHipT8mLXRWtAbnDbdTIsSYlfEYkeYOhx+bA7oq2gHT/DFfLsDY1HIYpaOU3G/TZHfiqoh3VAZgVMFQlw9rUMISq5kZi0l9WuxN7KtsC0pXWoJRiXWr4lLTymw1sDif2VrWjLABdafUKKdamhiFCMzeSvP6yO5zYX21Cccvku9JqFRKsTQmfMwlzfzmcAg5UB+bmskYuwZqUsFmRMGdCLYgJNbh34sO1HchvmtiGp5ZJsDIpdNqy4IIgoKaoztWCbesJnPyqwKcEG9xdauIyYpCSk+hu0ZaAlJxERKdEzsluo/1jalXl1aAqvwaVeTWozK9BVV4N2hp8G9BaY1Bj0VnzPQm0lEWJ0xIrh1PAsXozTjSYMZFvCIVUjDMTQ5EcpsbXwm5Cl2ngIBVi1OOyOzbg0jvWI8Q4sXGnWmpb8f5zm7FnWx4W3HkJwjLjJlRO1dZcHPj9OwgL03haV7oSwImIS4/2OSnUTxAEPHz1H/DVu/sB91TnT+56BCVmK3LrzRNKssglYpyRGILUMHXABuI0t3a6krn5NSg8UIojXx5Hr0SClb/4OsLnJ06ozJpdJ7H/t28hRKf0xDBlYSKScxIRnxHjdyy9cQoCTjZ04mhdx4RiKZOIcHpCCNLDNYGLZVsnqvJrUZXn2serCmrQ0tGDrFsvhHHRyK7Vvmg8VILe3SdxxS3nYNG60VvuTYZTEJDf2IUjdR0TaiktFYuwPD4EmcbAxdJXJUfL8dHzn+Hw57loqGgeMhafN2q9CquvOAPX/uxyJM2PD3h9BUFAYXMXDtV0wD7BWC6NMyA7Uhu0wXYFQUDRoTLsemcfdr2zd9ShH1JyEj0t0VJyEqcklsUt3ThYY5pQS2mJSIQlcXrMj9JNaPy5uUQQBJS2WnCguh3WCcRSLAIWxxiwMFo3ofHn5hJBEFDeZsH+atOEhh8QiYBF0XrkxOgnNP7cXFPRZsG+qvYJtToXAVgQrcOSWANjCaDK1IO9lW0TanUuAjAvSovT4gyQ+nBjc66r7ejB7op2WCY4EU12pBZL4wxT0rhltqk392J3RduEh3LIjNBgWUII5LMklkyoBTmh1q+zz46i5i4Ut3T7dLCO0MiRbdQiOUwd9AOKua0TFSeqUX68ChUnqlB+ogoVJ6p9njpdoZIjMsmIsOgQhEYZEBJpQGhUyMDf7schkfoZMyGC3WZHZ1sXOlo60dFihrm1C+YWMzpaOtFU2expcebPNN0agxqJ8+KQNC8eKTlJWHTW/GlLoI2m22pHUXM3ipq7fDrxCVXJkB2pRUqY2nNA+cWlj2Pfx4dHLCtXyrDh5nPx3SdumFCLtX7tTSZ8+flJVPXYEZqTDNE4JwX2XisqNh9G0du70VZQM+pyMoUM0clGhES5tsfQSANCo0Ncj6MMQ7bP/paX//vjh3jhZ68C7kE/nz3wW8SmRQPu1hfFLV0obO5Gjw8H6xClFFmROqSFq30+ODvsDpjbumBu7YS5f9ts6URHSyeaq1s82+Wo03SLRIhZkYnMq1Yjbs18iMf5XEefDRVbjqDord1eJx/oJ5NLEZVsRGhUCEKiDAiLGohjiCeWrr99mVW4x+ZAcYtru/Slu51BKUWWUYu0cI3PXeIdDodnH+9s7XTv650wt5jRXNOKqvwaVOXXjpkcjz49A5lXrUb8ugXjtqR02uywVTRi1eJ4LJgXN22JlV6bAyUt3Shs7vLpxEevkCLTqEV6hGZCgxZPREtdGz7+2xbs+fAgqvJrfJpQwBChwwU3noVLv3+hZx+can12B0paLChs7vKp5blWIUGWO5ajjYk4lay9Vpz4qhD7PjqEXe/uG7WFdNbpaVhz5ZlY87UzEJ8ZOz11sztR0tqNwqYun7ouauQDsQx0y9PZzupwoqy1GwVNXejwoeuiWiZBplGDTKOWsRzG5nCirM2CwqYutPvQil8lEyMzQosMoyZorXhnKpvDiXJ3LH3pBqqUipFh1CIzQhP0Vrwzjd3pREVbDwqaunxqxa+QipERoUGWUctYDuNwCqhod22XvrTiV0jESI/QINOomZKxOmczh1NAlcm1XfrSpVYmESE9XIOsSO2saxHNhNoMSaj1czgFtFqsaO22otViRZ/dCafgGihSr5AiXCNHuFo+47sxCIKA5prWgUTbySqUH69CVX7tpKan1oVqPAm24ck3tV4FkVgMsVgEkVgEsVjs/i0CRCL382O/buuzw9w6cOHc0dKJjlZXUmLg+c4hLa78ZYjQIXF+PJLmxSNxXjyS5scjcX48wmNCZ+RUwADg7N8uLTa0WaxoauxA/v4SOKw2REcacM5FSxDh3i6H/w+bX96KP9z83Khlf+fRb+D6n18ZkHo2t3Ri765CFBU3wAIRJAoZ4BRg7e5Fe1Et2gpq0JpXBVt3YAfN1BjU0IZo0FTV7GnRd/4N65Czdj60Ieoh251ILEafTIo+uRy9MikcYjEEkQhiAHI4oREEaOCECoDYvX3arXaYW7vQ4d4mze4kbv+22f9cZ/vEt0tdqGbIdhmWEoWWrj5UN5jQ7QQkSjngFGDr7kV7cR1aC2rQerIKtu7Aziin1qs8CbbhyTdNiAZiydBYWmVS9Mpl6JXJhsVSgEZwQiM4oRINiqXNMSjhOGw/H5QY72rvntSsc4MpQjSIWJCIsOwEhKRFQ6pSQCqXQKNWIDEuFKctT4FRq5y2BJU3TkFAe4/Nc+yxWB3uYw+glkkRrpEhXC1HqEo25d9T5SeqsPW1XTiy9Tiq8mph6fSte1DSgnhcfOsFWHv1iiHjB043oT+WFitau23ottrhFFwtfjRyCcLVcoRrpieWw+tVlV+DQ5/l4uBnR5G7PQ99PSMvGEQiERauzcbaK8/E6itOR2SicdrqOJwgCDD12NBqccWz22qHw+mKpbo/lmo5QtWyU75F2ngEQUBHrx2t3Va0DIulSibxnF+GMZbj8sTSfb7eZXXA4RQ8sQxTyxGudn1nnuqt+8YjCALMfXbPsaezbyCWSpnEE8cwtTzoDQhmA3OvDS3drvP1zj77QCylEoS5j+PhjKVPOvvsrlh2W2EeFEuFVOyJY7iGsfRFV38sLVaYe12xFLljGeaJpWzWtpRkQm2GJdTmOofdgdqSBldLtuNVqDhZjYoTVWipbfMMOj9XhMeGupJl2a6EWdL8eCTOi5twN8eZpKGiCTek3gkAWHv1mfjVmz8ZddnqwlrcPO/uUV9/+N17sery0wNex56uHhz49CgObDqCPR8eHHNyh+FEYhEkUgkEQYBjgk2/Z6rQKAOS5scjIdu1Tfb/hEQaRr2477X04eDmo9j/yRHs/egg2htHaeHmhSeWTmFS03zPRDL3nV2b1Q6McyRVaZVIPy0FZ12zEhfcdDbUfsxKN5f1Wnqx46192PvhQRQdLEVLbSscPnYDEotFWHLeQpx97Wqsuvx0GEaZPOBUZm7txOHPc3Hos2M4tCUXzTWtXpeTSCU47byFWHvlmVh52XKERk1+3EciIiKiuY4JNSbUZoye7l6YGjvQ1mBCe6MJ7Y0d7r/b0d7UgfbGDrS7XwtW8k0XqoE+Qg9DhA76cB30EToYwnVDnguNDkFidtycnunUZrXhIuX1AIB5Z2bg6d2PjbqsIAi4yngzOtuGjhMolopx7z/vwnnfXDvl9RUEARUnq3Fw8zEc+PQIcrfn+ZXcEYlE0IVpEJUUidj0aITHhMBmdcDUZEJbgwnlJ6ph8bGL81TQhmigD9cObIcROhjC9dCH6zx/h0aFICErdtxZesYjCAKqCmpxaPMxHNh8BEe/PAG7H0lHkQjQhmoRlWxEbGoUIuLDYbfaPfu868cEi3nygxZPhMagdsdMD324FoYIPRx2BxqrWtBc1QJTUwesveO3spXKpUjMjsOKS5biku9eENRWPjNJydFyfPnaLuRuP4nqwjq/13NotAErLlqG5esXY/mFi8edDe1UY7fZkb+3GAc3H8WhLcdQdLBs1JaW4bGhWLZ+MZZdsBinb1gy7mxoRERERDQUE2pMqM1KPV09Qy6+2xtcSTZBEOB0ChCcApxOJ4TBj4X+xwIE92uex4JrtjiJVALD4KREhB76/uRZmDYgA6vPFddE3wpTUweM8eF4rer5MZd98JLHsP+TIyOe/8OXv8bis6dm0PWx9Fr6cHxHHg58ehQHPzuK6oI6v8sQS8QwGPXQh2pRme8ai02ulOHh9++DWqfyJId7OntGbJd2qx3vP/vpkCTjikuWIXl+/MB2KQwsL5GIRyZy3X/rwrSQTnZ2zkno6+nD8Z0FOLjZFcvKk6OPSzcascQ1HXdcejSyTk/DsgsXY97KLHS3dw9JpFvMI2PZv4+7nnd638eHxVIXrhuyn/cnHhVaJfL3FOHwllwUHShFTUkd2hs64HSM32JKY1AjITsWp52Tg7OvW4XURckTjOjcYLfbcXxHPg5tyUXh/hLUFNejrb7dp1gOJlNIseTcHCxfvxjL1i9GYvb0jS83W9SVNuDg5mM4tOUYjn55YtQusnKlDIvOmo9lFyzG8guXTMkEDURERESnEibUmFAjmpA7lt+L4sPlEEvE+NjynzGTOv/7wwd44d5/AQCikoxorGwGAEQmRuCFY38IeiuTpqpmHNx8DAc/O4rDnx/3eUINb5QaJSITwpGyyDWxxMpLl8MYP3Q8p/88+jZe/tV/hzyXs24entz2mwl/7kzRXNOKQ58dw4HNR3Hk89xJjeum1CgQEReOlEWJWLxuPlZetjxgLb3KT1Rh/yeHcXJ3IaryatBS144+i28tXyVSCYwJ4cg6PR0rL1uO1VecDqV65k/rPVUq82tcsfyqEJV51ZPuwp+2JBnLLnAl0BauyfZM+kEupuYOnNhV4OnGWV/WOOqyKTmJnmTkwjXZk5oAhoiIiIiGYkKNCTWiCXnk609ix//2AABeyn8KCVlxoy7ba+nDy794HQajAV+7+yI8eNFjyN2eBwC44Ntn4d6X75q2eo/HYXcgf5+7y9Rnx1B4oHTSg9NLpGLowrQIjw1DaFQIDn+RC6eXcaL+WfDnaZtFbzo4HA4UHijFIXeysmBfMZzOycVSLOmPZShiU6ORkpOA7DMzsGBVNjR69ZBl7XY7yo5WoGB/CQr2l6AstxKNlc3oNln8WqfaEA0S58dhyTk5OPf6NUiaFz+p/2E2cjqdKMutRN6eIhQdLEXp0Qo0Vjajy9QNYZLrNDTK4Ol6uPT8HIRFhwas3rOd0+lEdUEtTu4uwsndBcjbXYiaovpRlw8x6rH0gkWuWF6wCBGxYdNaXyIiIqJTCRNqTKgRTcgrD72Bfz/yFgDg1+/8DKuvOMPn9zZWNuO7i37i6Zr0q//9BGuvOnPK6joZ/YN6H9x8DLk78sZsDTJZMamRWHv1SmQtT0POunkIjZxbA4N3tnfh8OfHcXDzUeTuyENdSUNgP0AE1+x0IpGnG6g/JDJXl++49GhkLEvD0vNzcNq5CyFXygNbzxmqqaoZJ/cUofhQGaoLatFQ0YT2xg50d1hgt9oD9jkyuRQL185zdz1cjJScRIhn6cxOgdbT3YuiA6U4ubsQJ3cXIH9P0ZitPKUyCRaszva0QktbksxYEhEREU0TJtSYUCOakK3//QqPXf8UAODm/7se33jga369f8ur2/H7m/4CANCH6/BC7h8RHjPzW6a01rdj+5u78cLPXvV5NsKJEolFUKjkUGmV0IZoYDDqER4bhsjECMSmRSMhKxZJCxMQMktnN2xvNOHEV4U4+VUBTn5VgOLD5dM2E6hYIoZKq0JEfBgylqZg5eXLkbNm7iUxAcDS1YOaglrUFjegrrwRzVUtaK1rR3ujCa117ehs70Jfj3XcmUonSqaQIXN5KhaszMLicxYiZ908qDSnbhfZwZprWpG3uxAnvipA3p4ilB6tGHMfkMmlyFiWivkrs7D47AVYfPZ8qDhjLBEREVFQBG8kayKa1RLnDXTxrCrwfyD6829Yhz0fHsDOt/fB3NqJP976V/zfRw/M+EGyQ6MM2P7mbk8y7aLbzsfZX1+FE7sKcHJ3IfL3FI06KLi/BKeA3u4+9Hb3ob2xA9WFo0+eIJFJoFDJoTGooQvVQqVVQqVXQaNXQ2NQQxuqgT5MC12YFgajAaGRehgi9QiPCQ34+F9OpxMWswUdzZ0wt3Wis70L3e0WdLZ3oavDAou5B5YOi2sm36YOmFs70dXRDZlSCqFH8Hvg+gnV0eFEd0c3uju6UXmyGp//a4fntf5YqvVq6EI1UOtUUOlVUOtU0IZooA3VQBeicU0OYTQgJEKHkGjD1MaytRPmlkGxNHWjy9TtiaWp2Yz2BhPMbZ3oMlnQ29WLvl4rHH7MwDoWsUQMiVQMp0MYN+kZEmnAgtVZWLAqGwtWZSJ9aSrHQXN3Jy/LrcTJrwpxck8h8nYXoqmqZcz3hBj1mL8qCwtWZWH+qixkLks9ZVpMEhEREc10TKgR0YTEZ8ZAJBJBEARUF9T6/X6RSIQf/fW7OLGrAO2NHTiw6Qg+fuFzXPK9C6akvoGy+Z9bkbenCACQkBWLO566CQqVAqedmwO4xw0rP17lSbCd3FWA5prWsQsVuSYz0IWoIVPI0dvdi57OXvT29Pk8PpXD5oDF1gOLuQfN1eN8nrcqiEQQiUXux+5KDf8lGvy6+1kRAEGAw+6cUDfLQBOJRDBE6KAJ0bgSkhZ3LC0Ti2XLeOtulDpMJpZOhxNOx/TGUiwRQ6lRQq1TQqFWQCwWoa/HiraGdtitDnedRiY6RSIRkhcmeBI+C1ZlISY1asYnxqdal6kbZbmVKDtWibLcSpQfr0T58SpXS8AxJC8YiOX8VVmIS48+5WNJRERENFOxyye7fBJN2A1pd6KhvAlqnQrvmV6Z0IXfvk8O4xeXPA4A0BjUeLnoaYQYDVNQ28nraDHjO9k/QmdbFwDgiS8ewpJzFo77vqaqZpzYVeDp3liWW+nT50XEhSElJxER8eFQapUQCQK6zT1orWtDe6OrZZfF3IO+HmtAx7gKNolMAoVSDqVWCW2IGvowHUKjQxARFwq1e+KBjmYz8vcVozy30qeJDsJjQ12xjHPHEoCl89SIpVwpc3UbNmigD9fBYNRDoZFDBBEcDic62ztRdbJ2/MQvAJVWiXlnZmD+SnfS58yMoM/SG0wOhwN1JQ2exFn/z3gtzwBAqVYge0U6FqzKxvxVWZh3ZgZ0odppqTcRERERTR4TakyoEU3Yg5c8hv2fHAEAvFb1PIzx4RMq54mbn8VnL28DAGy85Tzc8/fvB7SegfLkbc9j04tfAADOvX4NHvj3jyZUzpEvj+Pe838DAIhNj4ZSrUBlXo1P44eptEqkLk5C6qJkpC9JRtqSZCQvTIBCpYC5rROVeTWoKapHR1OHq1tgu7trYGcPesw96OnuRV93H/p6bbD1WmHrs8Nus8Nhd8LpdLdAGnRUEIb+MSqRWASxWOTuGiiBRCaBVCaFTC6FTCGDXCmDXCWHQiWHUqOAUq1ESKQeEQnhiE2JQlxGNOIyY0fM1DmebrMFJUfKUXq0AqXHKlB6tAKVJ6th96Gro1KjQOqiJKQtTkbqYlcsU3ISoVQPjaW5xQxzWxe62rvR3WFBt9mCHnMPei2u7kEygN8AAC2/SURBVLh9PVbY+myw9dlgtwYgliIRxJJBsZRKIJUPi6VSDoXaFUuFSoGQSD2MiRGITo5EXEYMErJcsTS3daI8twqlxypQnluJ0txKVJ6shrXXNm58RCIR4jKikbEs1dV9c3UWUhYmQiKVjPveuaizvcvV2qw/nscrUXGietxWZ3DHMiYtCpmDYpm6KOmUjSURERHRXMCEGhNqRBP2t5++iree/BAA8NvNv8CyCxZPqJz2RhNuyvohLOYeiEQiPLPvcWQtTwtwbScnb28RfrTqQQCAWq/CS/l/nvAkCptf3oo/3PwcAOB7f/g2rr7nUlj7bKjKr3ElhgYlh7o7LOOWJxKJYEwIR2x6NOLSohGb7vqJS49GTJorYXcqsVltqMqvRenRCpQdG4jlWLMlDmaMD/fELzY9ZlAso2bkYPoOuwNN1S2oL21EfVkj6kobUXGyCmXHKtFS2+ZTGRqDGqmLkgZ+FicheWHiKbftOBwONFe3or6sEfWljagrbUBlXg1Kj1X43JVarVchdVESUnKSkLY4CSmLkpCyMIGTBxARERHNMRxDjYgmbPDEBNUFdRNOqIVGheCGX12Dv/30VQiCgOd+9BL+tPMRiMXiANZ24hx2B56+4++ev2/6zXWTmpG04kS153HSggQAgFwhQ/qSFKQvSfG8JggCGiubPUm2slzX74aK5iHlCYKApqoWNFW14OiXJ0Z8XkRcmCvJltafJIpGXEYMYtOi5uRFvkwuQ9riZKQtTvY8JwgCmqtbUDIsYdlQ3jTi/c01rWiuacWxbSdHvBYeGzoocRkzKPEWDbVu6mLZ09WDOnfCrD/RU1/ehPrSBjRWtvg8O2p/q7PUxclIzUlyt3ZMQmRixCkzVldPdy8a3IlHT0zLGlBX2oimymafWjdiUKuzNHeL0f5EZFSS8ZSJJREREdGpjAk1IpqwxHnxnsdV+f7P9DnY5XdtwCf/+ALVBbXI21OEL/6zExfccFYAajl5Hzy3GaVHKwAAaUuScdkdF06qvMq8gYRaysKEUZcTiUSITo5EdHIkVl9xhuf5/q5npUcrUHK0HNX5tagtafCM7TZcS20bWmrbkLs9b8RrYdEhnhZtsWmun7CYEIRFhyAsJhRqnWpOJAdEIhEiE42ITDRi1WWne57v7uhGWW6VO2lZjoq8GtSVNMDc2um1nNa6drTWteP4jvwRr4VGGQZaB6bFICY1EuGxYZ54qvXqUWMpCALaGkyoL20YlORxJ87KmmBq6vD7fz5VW50JgoD2RpMrjv2t9spccawvbUB7o/+xZKszIiIiIhqOXT7Z5ZNowrpM3fha2E0AgOwz0vHM3scnVd7Bz47hgQ2PAu5Ezz8Ln57SVj++aK1vx83zfgSLuQcA8OevHsX8lVmTKvP6pO+juboVGoMa77a9HLCElbmtE/WljagtrkdtSQPqShtQV9KA2uJ6dLR4TxCNR6lWIDQ6BKHRIQiPCUFolCvR1p9w6/8dYtTPqfGgOtu7XC2Y3PGrK21wxbSkYULJLQCQyqVQaZWQK2WeWNltdvRZrOjp7B0Yd80PKq0SMWlRiEmNQmxqFGLSohGTGoWErNg51erM4XDA3NKJ9sYOmJo60N7YgfZGk+t3kwmmJjNM7r9NTR0+tzIbTKlRIDYtGjGpkYhJdcUxJi0K8ZkxiE6OnDOxJCIiIqLAYAs1IpowbYgGifPiUJVfi+LD5ei19E2q9cvy9Yux6vLTsfv9A2hrMOE/j76N2373rYDW2V8v/OxVTzJt4y3nTTqZ1m22eMZiSlqQENCLdH2YDvowHbJOTx/xWpepeyDBVtKA2pJ61LkTRGO12Om19HlaS41FLBbBYNS7E2+hriRcpAEqnQoqrRJqnQoqnQpqnRIqrdL9WAWlVgm1Tgm5Uj6jEha6UC2ylmuRtjgJvd196O3udf229MHU1IHa4gY0lDeiobwJjVUtaKs3obOtc8zB/u1W+6itCMeiUMmhC9PCYNQjLDoUEfFhiEoyIjYtChFx4VDphsZ3psWyn8PuQG93L3q6+4bG1P24y2SBqdHkSpgNSpqZmswwt5h9ms11PGExoYhJjXQlzlJcCbNYd0IyJNIwI+NGRERERDMTE2pENCkLVmWjKr8WDrsDhQdKsPisBZMq7/t/vBEHPj0KW58N7zz1ETbeci7iM2MDVl9/FOwvxpev7QIA6MN1uPW335x0mcWHyjyPUxaM3t0z0LQhGmQuS0PmspGTPVg6e1wtsIob0FTZjLYGE9oa2l2/69vR3mAad0B/p1NwJ0A6UHas0u/6iSXiQYm3oUk3lVYJhcqdJBKJ4Po17DH6n3P9Frlfw6DH/cs5HE53cqwXfRbriMTO4McTaekUaH09VvS5u+2WomLc5QfHsj9hOTixGchYOp2CK2YW7/Hrf9xn6YPNap/SOIklYoQY9QiJMiA8NszVYs/dyizG/Xiud3clIiIiounDhBoRTcqC1VnY9OIXAIATuwomnVCLSY3CNT+5FK899g7sNgf+9rNX8cj79weotv55+VdveB7f9JuvQx+um3SZgwe6X7Ame9LlBYJapxoxIcJw1l4r2hs7PEm2wcm21gbX77Z6E9oaTD4PkD+Y0+FEd4fFp1lNZzqZQobQKIP7JwQhkQaERA78rQvVQCwVw2F3oq+nD+0NHa74uROZ7Q0mtLpjO5GE3lyMpSd+kQaERIW4fw+OsR76cN2MmciEiIiIiOY+JtSIaFIWDkoKndxdGJAyr3vga/jslW1oqW3D3g8PofhwGTKWpgakbF+d2JWPQ58dAwBEJxux4ZZzA1Ju7o6BiQEWnzU/IGVOB7lSjqgkI6KSjGMu53Q60dXejdb6dphbOmHp7EFPZw96unph6exFT2cPLJ096O3qhaWrBz2dve7Xetyv9aK3y/XcdA/xKZVJoFAroNQooNQo3b+HPVa7H7uXU+vVnuRZSFQIQqMMAZvIQRAEdLZ1oa3BhI5msytGXb1D4uSJW1f/a70D8e0ciO90x1IilXiPn0YJpVru/j309f5YDiQfDWNO5EBEREREFExMqBHRpMSmRSMk0gBTUwfydhfC6XROupWISqPENx64Es/c9Q8AwH/+7238+u2fBajGvhncOu1bv7oGMrls0mVae63I31sMuFviRSaOnZyajcRiMfThukm35nM6neiz9HkScdYeKwRBcCWGBHgee/JEg/52LTPyMdxJKrFY5DVhJpXNrEOiSCQKSCwFQUCvpc+TiJtsLN2LeI1lf0IyEPsLEREREdFMNrOuHoho1hGJRFi4Jhu73tmH7g4LKk9WIyUnadLlbrj5HPzn/95GW307vnp3P8pPVCFlYWJA6jyeI18e93TNjM+MwfnfWheQcvP3FsPW5xq0fja1TgsGsVgMlVYFlVaFsOhg12Z2E4lEUGmUUGmUjCURERERUYBwsBEimrQFqwZmvjzxVWC6fcqVclz708s8f7/22DsBKXc8giDg5V/+1/P3Db+6BhKpJCBlDx4/bdHZkxtrjoiIiIiIiIKHCTUimrQFqweNo/ZVQcDKvei758MQ4erutv2N3agurA1Y2aM58OlR5O0pAgAkzY/HWV9fFbCyZ+v4aURERERERDQUE2pENGnppyVDoZIDAU6oqTRKXH3PpYC75djrv303YGV7IwgCXv7VQOu0Gx/+OiSSwLROs/ZaPYm66JTIOTl+GhERERER0amCCTUimjSZXIbsFRkAgIaKZtSW1Aes7EvvuBC6UA0A4It/70R9eWPAyh5u9/sHUHyoDACQtiQZq792RsDKzt83ePw0dvckIiIiIiKazZhQI6KAOH3DaZ7Hu98/GLByNXo1vvbDiwEATocTb/z2vYCVPZggCPjP/73t+fvGh78+6dlKBzu2dWD8tMUcP42IiIiIiGhWY0KNiAJi9RWnex7vfn9/QMu+4ocbodapAACbX96KltrWgJYPdwuy/tZp6ael4MxLlgW0/K8GxWTxOUyoERERERERzWZMqBFRQMRnxiIhOw4AkLe7EO1NHQErWxeqxWV3XAgAsNsc+PSlrQEru98Hz33qeXzFDzZCJBIFrOya4nqUHasEAGSfkY7IhIiAlU1ERERERETTjwk1IgqY1Ze7Wqk5nQL2fXQooGVf8v31niTXpy99CafTGbCy2xtN2PHmHgCAPlyHswM4sycA7PjfHs/jdVevDGjZRERERERENP2YUCOigFl5+aBunx8cCGjZUUlGLL9wMQCgsbIZh7bkBqzsT/7xBWxWOwBgw83nQqFSBKxsANj+v92ex+uuYUKNiIiIiIhotmNCjYgCJvuMdIRFhwAADm/JRa+lL6Dlb7z1fM/jTf/4PCBlOuwOfPy3LQAAkUiES29fH5By+w3v7hmVZAxo+URERERERDT9mFAjooARi8VYeelyAEBfjxWHPjsW0PJXXroMoVEGwD2TaHujadJl7v7gIJprXJMcnHnpMkQnR066zMHY3ZOIiIiIiGjuYUKNiAJqKrt9SmVSrL/xbMDdsuyzV7ZPuswPnt3keXzZHRsmXd5w7O5JREREREQ09zChRkQBddq5C6HSKgEAez88BLvNHtDyN956nufxphe/gCAIEy6rMq8aR7eeBADEZ8Zg6fk5AaljP3b3JCIiIiIimpuYUCOigJIr5TjjotMAAObWTuz/5EhAy49Lj8GScxcCAGqL65G7PW/CZX3w3GbP48vu2ACxOLBfiezuSURERERENDcxoUZEAbf+xnM8jz8J0OQBg100aHKCiZbvsDs8CS+FSo71N54VsPoBgCAI+PxfA11S2d2TiIiIiIho7mBCjYgCbtn6RYhMjAAAHNh0xDPof6Cs/toZ0IfrAAC73tmHnu5ev8s4tj0PpmYzAOCMi5dCY9AEtI5HvjiO6sI6AMCis+azuycREREREdEcwoQaEQWcRCLBhu+cCwBwOgV8+tKXAS1frpBh7VVnAgCsvbYJzSY6uDvmWVPQHfP9Zz/1PL78zsBPdkBERERERETBw4QaEU2JC28+B2KxCADw6UtfwuFwBLT8VZOYTdRhd+Crd/cB7u6eZ1y8NKB1a6howt4PDwIAIuLChtSViIiIiIiIZj8m1IhoSkQmROD0ja7JCZqqWnB4S25Ay18yaDbRfR8dhsPue8JueHdPlUYZ0Lp99PxncDpds49e8r31kMqkAS2fiIiIiIiIgosJNSKaMkMnD/gioGXLFTJPws7c2okTXxX4/N6p7O5p7bVi04uuLq5SmQQX3XZeQMsnIiIiIiKi4GNCjYimzIqLlyIsJhQAsOeDg2hvNAW0/FWXDXSl3PO+b90+p7q757Y3dsPc2gm4Z/YMjQoJaPlEREREREQUfEyoEdGUkUgluPCmswF3Imvzy9sCWv4ZF50GiVQCAPjq/QMQBGHc90xld09BEPDeXzZ5/uZkBERERERERHMTE2pENKU23jLQ5fGDZz+FzWoLWNm6UC0WnTUfANBQ3oSKE1Xjvmcqu3sW7C9B8aEyAEDG0hTMOzMzoOUTERERERHRzMCEGhFNqZjUKJx56TIAQHNNK7a8sj2g5Q+eQfOr98bu9ikIAva4Z9+ciu6e7zz1kefxZXduhEgkCmj5RERERERENDMwoUZEU+6bD17lefz6b9/1a0bO8ay6bLnn8e7394+5bE1RHdrq2wEAi85eENDunuUnqrD9TVfrN0OEDudctypgZRMREREREdHMwoQaEU257DMysGz9YsDdNfPL13YFrOzIRCPSliQDAIoPl8Pc1jnqsse25XkeLz5rQcDqAACv/vpNzxhuX7/va1CoFAEtn4iIiIiIiGYOJtSIaFp86xeDWqk9/g4cjsC1UhucHMvbXTTqcse2nxx4z9nzA/b5JUfKsesd18yhYdEhuPT29QErm4iIiIiIiGYeJtSIaFosXDPPM4FAdWEddr61N4BlZ3sen9iV73UZQRCQu82VUFNplchYmhqwz3/loTc8j7/x8yuhVLN1GhERERER0VzGhBoRTZtv/uJqz+P//N/bcDqdASl3weosz+OTuwu9LlNTVIe2BhMAYOHaeZBIJQH57Ly9Rdj70SEAgDEhHBfddn5AyiUiIiIiIqKZiwk1Ipo2p527EPPOzAAAVJyoxp4PDgak3LDoUMSmRQEACg+UwtpnG7FM7vapGT9tcOu0bz54FeQKWcDKJiIiIiIiopmJCTUimjYikWhoK7VH3/IM5D9ZC1a7un3a+mwoPlQ24vWpGD/t+M58HN6SCwCITonEhd85JyDlEhERERER0czGhBoRTaszNp6GjKUpgHtWzm1v7A5IuQtWDer2+VXBkNcEQfDM8Bmo8dMEQcDLv/qv5+9v/fJqSGXSSZdLREREREREMx8TakQ0rUQiEW78zXWev1/42avo6e6ddLmDJyYYPo5abXE92urbPcsFYvy0g5uPerqRxmfG4PxvrZt0mURERERERDQ7MKFGRNNuxUVLseLipQCAlto2/PfxdyddZkJ2HHShGsDdQm1wV9L8fcWexzlrJ9/d09prxV9++JLn7xseujZgkxwQERERERHRzMeEGhEFxfefvAlSmSsJ9b8/fIC60oZJlScWiz3jqHW0dKKmqM7zWuXJas/jtCXJk/ocAHjj9++jrsRV35y183DOdasnXSYRERERERHNHkyoEVFQxGfE4KofXwIAsFnt+NtPX510mYPHUSvYX+J5XJlX43mcvCB+Up9RV9qA190t6sQSMX7w7K0QiUSTKpOIiIiIiIhmFybUiChorn/wKoTFhAIAdr9/AAc/Ozap8lJyEj2Pq/JrPY8rTlQBANQ6FYwJERMuXxAE/OUHL8LWZwMAXHX3xUhZmDju+4iIiIiIiGhuYUKNiIJGrVPhtt99y/P3c3f/E3abfcLlJc4baH1WXehKqPV09aChohkAkLQgflKtyXa9ux8HPj0KAIiIC8MND10z4bKIiIiIiIho9mJCjYiC6rxvrsX8lZkAgOqCWrz/l08nXFZkUgTkShkwqIXa4JZqSfMTJlx2T1cP/vrjf3r+vuOp70ClVU24PCIiIiIiIpq9mFAjoqASiUS48+mbPS3HXn34TbTUtk6oLIlEgvjMWABAXUkD7DY7KgZNSJC8YOIJtX8/8jaaq131Wn7hYqy5csWEyyIiIiIiIqLZjQk1Igq6zGVp2HjLuQAAi7kHT9z8HJxO54TKSpwXBwBw2B2oLWlAxYmBhFrSBBNqFSer8fafPgIAyBQy3PXMLZyIgIiIiIiI6BTGhBoRzQi3/PabiIgLAwAc3pKLD57bPKFyErMHxlH71WW/xZZ/bff8XbCvCCd25UMQBJ/Lc9gdePK2v8JhdwAArrvvCsSlx0yobkRERERERDQ3MKFGRDOCPkyHn750h+fvv9/7L1QV1I75Hm8SsmM9j+tKG9HRbPb8/cpDb+LH636FPR8c9Lm81/7vHeTvLQYAxKZF4ev3Xe53nYiIiIiIiGhuYUKNiGaMZRcsxhV3bQQAWHtt+N23n/F71s/BM32Oxtpr9amsvD2F+PejbwEAxBIx7vvXD6FQKfyqDxEREREREc09TKgR0Yxyy2+/iYRs1zhoRQdL8Z9H3/br/fGZY3fHTF2U5NOEApbOHvz2hmfgdLjGcvvWL67G/DMz/aoLERERERERzU1MqBHRjKJUK3Dfqz+ARCoBALz22Ds4/MVx/P6mv+D6xO9jz4djd9eUK+WISY3y+ppIJMKPnv8upDLpuPV49kcvob6sEQAwf2Umrn/wygn9P0RERERERDT3MKFGRDNO1vI03PCrawAATocTD178GLa8uh3NNa3412/+N+774zKivT5/8XfP96mV2Y639uCzl7cBANQ6Fe7/1w89CT4iIiIiIiIiJtSIaEa67v4rkDjP1fXTbh0YR63sWCV6LX1jvjciLnzEcxqDGjc/dv24n9tc04qnvvc3z993Pn3zqC3eiIiIiIiI6NTEhBoRzUgf/vUz1BTVj3jeYXeg6GDpmO81xo9MqF3/8yuhC9WO+T6n04nf3/QXdLZ3AwDOunYlLvj2WX7XnYiIiIiIiOY2JtSIaMYpOVKOZ3/0kmdCgOHy9hSN+f6IQQm1yMQInPfNtbjmp5eN+7lvP/kRjn55AnAn5X701+9CJBL5XX8iIiIiIiKa28YfmZuIaJoptUrIlTJYe21eX8/dfhLX3XfFkOdsDicq23vQ3N2HzgUpuG7745CqFBAEAQqpGJ8VNSNMLUe0ToE4gxLiYYmy4zvz8eLPXwPckxfc+8pd47ZoIyIiIiIiolOTSBAEIdiVCBaz2QyDwYCOjg7o9fpgV4eIBinLrcQbv38P297YPaKlmkwhxceW1yASiWDutSGvsQtlrd2wOX37OtPIJciI0CA7UgeFVIyWujbcsexetDd2AACuu+8K3PL4N6fk/yIiIiIiIqLZjwk1JtSIZrSmqma88+dP8PHfP0dvV6/n+fc6XkF5tx1HajvgYx5tBJVMjNPj9Hjq8t96upGedl4OHt/0IGf1JCIiIiIiolFxDDUimtEiE434/h9vxH+rn8cVP9gIjUGNFVeeie01nThUM/FkGgD02JzYUWGC7pwlEEnEiEyMwM9f+xGTaURERERERDQmtlBjCzWiWcVidWBzURPMvfaAlluz8ySuXJuBecvTAlouERERERERzT2clICIZg2bw4nPi5sDnkwDgPi1C9ASroYgCJzZk4iIiIiIiMbELp9ENGscqulAe4/3mT8DoazVgvI2y5SVT0RERERERHMDE2pENCvUm3tR2Nw15Z+zv8qEHptjyj+HiIiIiIiIZi92+SSiGU8QBBysMQ15TiQCNmRFIkQpw+7KNlS290ApFeOc9Ag4BQEiiLC3sh2mXv9atPU5nMitN2NFYmiA/wsiIiIiIiKaK9hCjYhmvJZuK9osQxNjggBsK21BXlOn57k+uxObCpqwubAZR+o6sDBGN6HPK23ths3hnHS9iYiIiIiIaG5iQo2IZrzRunr22IYmvQZPWSyXiNFumdh4azaHwLHUiIiIiIiIaFSzNqH2f//3f1i1ahXUajVCQkKCXR0imkJ15l6flzUopdiYHYkViSFo7OrzPH9hlhE3LItHqErmeU4mEeHG5QnQyCWT+kwiIiIiIiI6tczahJrVasU111yD22+/PdhVIaIpZLE6RrREG0tHrx2bCprwRXELzkgYmmy32p1YGmfwqZxWi9XvuhIREREREdGpYdZOSvDwww8DAF5++eVgV4WIplCbH4ktsQhwuvt9Wh1O2J3CkNcLm7swL1KHKK1iSOs1b7r6HLDanZBLZ+19ByIiIiIiIpoiszahNhF9fX3o6xu4iDabzUGtDxGNr9c+euu0s1LDEa6Rw+ZwIkIjR1V7D5bGGyAIrllAD1QPnRm0z+7E8QYzlsYbsKmgyafPZkKNiIiIiIiIhjulEmqPP/64p2UbEc0OgiCM+tr2stYRz20ubB6zvPzGLsyL1CIhRIWGzrHHSRvrs4mIiIiIiOjUNaOaXtx///0QiURj/hQUFEy4/AceeAAdHR2en+rq6oDWn4gCTyIWBbQ8hyDgaJ0ZS+MMEGPssgP92URERERERDQ3zKgWaj/5yU9w0003jblMamrqhMtXKBRQKBQTfj8RTT+9MvBfUyUt3VgQpUNahHrUZSRiEdReZv8kIiIiIiIimlEJNaPRCKPRGOxqENEMEqqSQyQCAtn7UgBwuLYDK5NCR10mTCWDWMQWakRERERERDTSjEqo+aOqqgptbW2oqqqCw+HA0aNHAQDp6enQarXBrh4RBYhELEKYSoZWiy2g5VaZerAwWgelzHsrtAiNPKCfR0RERERERHOHSJilo27fdNNNeOWVV0Y8v3XrVpx99tk+lWE2m2EwGNDR0QG9Xj8FtSSiQMhr7BwxY+dUu3heFJNqRERERERE5NWsTagFAhNqRLNDn92J/+XWweGcnq+rcLUcl8yPmpbPIiIiIiIiotlnRs3ySUTkjUIqRkaEZto+b0G0bto+i4iIiIiIiGYfJtSIaFY4Lc4AzTTMuhlvUCI5VDXln0NERERERESzFxNqRDQryCVirEwKm+LPEGFlUhhEnN2TiIiIiIiIxsCEGhHNGnEGJZbFG6akbLEIODstAuppaAVHREREREREs5s02BUgIvLHwmg9BAE4XNsRsDKlYhHOTotAjF4ZsDKJiIiIiIho7mJCjYhmnZwYPQxKKfZUtqPX7pxUWaEqGdakhCFMLQ9Y/YiIiIiIiGhuY0KNiGalxFA1IrUKHKg2oazN4vf7pWIRFkTrkBOth0TMMdOIiIiIiIjIdyJBEIRgVyJYzGYzDAYDOjo6oNfrg10dIpqgrj47ipq7UNLajR7b2C3WDEopsoxapIVrIJdyGEkiIiIiIiLyHxNqTKgRzRmCIKDb6kCrxQpTjw12p+vrTS4RI0wtQ7haDqWMkw4QERERERHR5LDLJxHNGSKRCFqFFFqFFEmhwa4NERERERERzVXs70REREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFAjIiIiIiIiIiLyAxNqREREREREREREfmBCjYiIiIiIiIiIyA9MqBEREREREREREfmBCTUiIiIiIiIiIiI/MKFGRERERERERETkBybUiIiIiIiIiIiI/MCEGhERERERERERkR+YUCMiIiIiIiIiIvIDE2pERERERERERER+YEKNiIiIiIiIiIjID0yoERERERERERER+YEJNSIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEfmFAjIiIiIiIiIiLygzTYFQgmQRAAAGazOdhVISIiIiIiIiKiGUCn00EkEo25zCmdUOvs7AQAJCQkBLsqREREREREREQ0A3R0dECv14+5jEjob6Z1CnI6nairq/Mp80hjM5vNSEhIQHV19bgbHc1+XN+nHq7zUwvX96mH6/zUw3V+auH6PvVwnZ9auL4Djy3UxiEWixEfHx/saswper2eO/AphOv71MN1fmrh+j71cJ2ferjOTy1c36cervNTC9f39OKkBERERERERERERH5gQo2IiIiIiIiIiMgPTKhRQCgUCjz00ENQKBTBrgpNA67vUw/X+amF6/vUw3V+6uE6P7VwfZ96uM5PLVzfwXFKT0pARERERERERETkL7ZQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1mpS//vWvWLRoEfR6PfR6PVauXIlNmzYFu1o0hWpra/Gtb30L4eHhUKlUyMnJwcGDB4NdLZoinZ2duPvuu5GUlASVSoVVq1bhwIEDwa4WBciOHTtw6aWXIjY2FiKRCO+9957nNZvNhvvuuw85OTnQaDSIjY3Ft7/9bdTV1QW1zjQ5Y61zALjpppsgEomG/GzYsCFo9aXJGW99d3V14a677kJ8fDxUKhXmz5+P559/Pmj1pcl5/PHHcfrpp0On0yEyMhJXXHEFCgsLhyzzwgsv4Oyzz4Zer4dIJILJZApafWnyfFnn/QRBwMaNG71+F9DsMN76rqioGHEM7//53//+F9S6z1VMqNGkxMfH47e//S0OHTqEgwcP4txzz8Xll1+OkydPBrtqNAXa29uxevVqyGQybNq0CXl5efjjH/+I0NDQYFeNpsitt96KLVu24F//+heOHz+O9evX4/zzz0dtbW2wq0YB0N3djcWLF+PZZ58d8ZrFYsHhw4fxy1/+EocPH8Y777yDwsJCXHbZZUGpKwXGWOu834YNG1BfX+/5ef3116e1jhQ4463ve+65B59++in+/e9/Iz8/H3fffTfuuusufPDBB9NeV5q87du3484778TevXuxZcsW2Gw2rF+/Ht3d3Z5lLBYLNmzYgJ///OdBrSsFhi/rvN9TTz0FkUgUlHpSYIy3vhMSEoYcv+vr6/Hwww9Dq9Vi48aNwa7+nCQSBEEIdiVobgkLC8MTTzyBW265JdhVoQC7//778dVXX2Hnzp3BrgpNg56eHuh0Orz//vu4+OKLPc8vW7YMGzduxKOPPhrU+lFgiUQivPvuu7jiiitGXebAgQM444wzUFlZicTExGmtHwWet3V+0003wWQysfXCHORtfS9cuBBf//rX8ctf/tLzHL/j547m5mZERkZi+/btWLdu3ZDXtm3bhnPOOQft7e0ICQkJWh0psEZb50ePHsUll1yCgwcPIiYmZtzjPc0OY+3j/U477TQsXboUL7744rTX71TAFmoUMA6HA//973/R3d2NlStXBrs6NAU++OADLF++HNdccw0iIyNx2mmn4e9//3uwq0VTxG63w+FwQKlUDnlepVJh165dQasXBU9HRwdEIhEvvua4bdu2ITIyEllZWbj99tvR2toa7CrRFFm1ahU++OAD1NbWQhAEbN26FUVFRVi/fn2wq0YB0NHRAbhvdtOpwds6t1gsuP766/Hss88iOjo6iLWjQBtvHz906BCOHj3Khi5TiAk1mrTjx49Dq9VCoVDg+9//Pt59913Mnz8/2NWiKVBWVoa//vWvyMjIwObNm3H77bfjhz/8IV555ZVgV42mgE6nw8qVK/HII4+grq4ODocD//73v7Fnzx7U19cHu3o0zXp7e3HffffhG9/4BvR6fbCrQ1Nkw4YNePXVV/HFF1/gd7/7HbZv346NGzfC4XAEu2o0BZ555hnMnz8f8fHxkMvl2LBhA5599tlRWzrQ7OF0OnH33Xdj9erVWLhwYbCrQ9NgtHX+4x//GKtWrcLll18e1PpRYPmyj7/44ouYN28eVq1aNe31O1VIg10Bmv2ysrJw9OhRdHR04K233sKNN96I7du3M6k2BzmdTixfvhyPPfYY4G5CfOLECTz//PO48cYbg109mgL/+te/cPPNNyMuLg4SiQRLly7FN77xDRw6dCjYVaNpZLPZcO2110IQBPz1r38NdnVoCl133XWexzk5OVi0aBHS0tKwbds2nHfeeUGtGwXeM888g7179+KDDz5AUlISduzYgTvvvBOxsbE4//zzg109moQ777wTJ06cYIvyU4i3df7BBx/gyy+/xJEjR4JaNwq88fbxnp4evPbaa0O69FPgsYUaTZpcLkd6ejqWLVuGxx9/HIsXL8af//znYFeLpkBMTMyIROm8efNQVVUVtDrR1EpLS8P27dvR1dWF6upq7N+/HzabDampqcGuGk2T/mRaZWUltmzZwtZpp5jU1FRERESgpKQk2FWhAOvp6cHPf/5zPPnkk7j00kuxaNEi3HXXXfj617+OP/zhD8GuHk3CXXfdhY8++ghbt25FfHx8sKtD02C0df7ll1+itLQUISEhkEqlkEpd7WmuuuoqnH322UGsMU2GL/v4W2+9BYvFgm9/+9vTXr9TCVuoUcA5nU709fUFuxo0BVavXj1iKu6ioiIkJSUFrU40PTQaDTQaDdrb27F582b8/ve/D3aVaBr0J9OKi4uxdetWhIeHB7tKNM1qamrQ2tqKmJiYYFeFAsxms8Fms0EsHnp/XSKRwOl0Bq1eNHGCIOAHP/gB3n33XWzbtg0pKSnBrhJNsfHW+f33349bb711yHM5OTn405/+hEsvvXSaa0uT5c8+/uKLL+Kyyy6D0Wic1jqeaphQo0l54IEHsHHjRiQmJqKzsxOvvfYatm3bhs2bNwe7ajQF+sdgeOyxx3Dttddi//79eOGFF/DCCy8Eu2o0RTZv3gxBEJCVlYWSkhL87Gc/Q3Z2Nr7zne8Eu2oUAF1dXUNaHpWXl+Po0aMICwtDTEwMrr76ahw+fBgfffQRHA4HGhoaAPfgt3K5PIg1p4kaa52HhYXh4YcfxlVXXYXo6GiUlpbi3nvvRXp6Oi688MKg1psmZqz1nZiYiLPOOgs/+9nPoFKpkJSUhO3bt+PVV1/Fk08+GdR608TceeedeO211/D+++9Dp9N5vrMNBgNUKhUAoKGhAQ0NDZ7t4vjx49DpdEhMTOTkBbPQeOs8Ojra60QEiYmJTLjOQr7s4wBQUlKCHTt24JNPPglibU8RAtEk3HzzzUJSUpIgl8sFo9EonHfeecJnn30W7GrRFPrwww+FhQsXCgqFQsjOzhZeeOGFYFeJptAbb7whpKamCnK5XIiOjhbuvPNOwWQyBbtaFCBbt24VAIz4ufHGG4Xy8nKvrwEQtm7dGuyq0wSNtc4tFouwfv16wWg0CjKZTEhKShJuu+02oaGhIdjVpgkaa30LgiDU19cLN910kxAbGysolUohKytL+OMf/yg4nc5gV50mYLTv7H/+85+eZR566KFxl6HZw5d17u0977777rTWkwLD1/X9wAMPCAkJCYLD4QhaXU8VIsG1YoiIiIiIiIiIiMgHnJSAiIiIiIiIiIjID0yoERERERERERER+YEJNSIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIjoFGQ0GiESicb8+d73vhfsahIRERHNSNJgV4CIiIiIppfdbsef/vQnr6+ZzWb89Kc/RV9fH6644opprxsRERHRbCASBEEIdiWIiIiIKPj6+vqwYcMGbNu2Dc899xxuv/32YFeJiIiIaEZil08iIiIigsPhwPXXX49t27bh17/+NZNpRERERGNgCzUiIiIiwne/+138/e9/x5133om//OUvwa4OERER0YzGFmpEREREp7gHH3wQf//733Httdfi6aefDnZ1iIiIiGY8tlAjIiIiOoU9/fTT+NGPfoTzzz8fH3/8MeRyebCrRERERDTjMaFGREREdIp6/fXX8c1vfhPLli3D1q1bodVqg10lIiIiolmBCTUiIiKiU9DmzZtx6aWXIiUlBbt27YLRaAx2lYiIiIhmDSbUiIiIiE4x+/btw3nnnYeQkBB89dVXSEpKCnaViIiIiGYVJtSIiIiITiH5+flYu3YtnE4ndu7ciQULFgS7SkRERESzDhNqRERERKcIk8mERYsWobq6GnfccQdWrlzpdbnIyEisX79+2utHRERENFswoUZERER0ivjss89w4YUXjrvct7/9bbzyyivTUiciIiKi2YgJNSIiIiIiIiIiIj+Ig10BIiIiIiIiIiKi2YQJNSIiIiIiIiIiIj8woUZEREREREREROQHJtSIiIiIiIiIiIj8wIQaERERERERERGRH5hQIyIiIiIiIiIi8gMTakRERERERERERH5gQo2IiIiIiIiIiMgPTKgRERERERERERH5gQk1IiIiIiIiIiIiPzChRkRERERERERE5Acm1IiIiIiIiIiIiPzAhBoREREREREREZEf/h8neu0e0cwhrAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -508,7 +508,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 19, "id": "42587393-219a-429e-8774-c84872304c1d", "metadata": {}, "outputs": [ @@ -523,7 +523,7 @@ " p + e⁻ ⟶ n + 𝜈]" ] }, - "execution_count": 20, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -535,7 +535,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 20, "id": "e227dc53-80a8-4967-98e6-6d174acc06ec", "metadata": {}, "outputs": [ @@ -543,11 +543,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "/raid/zingale/development/pynucastro/pynucastro/rates/derived_rate.py:85: UserWarning: C12 partition function is not supported by tables: set pf = 1.0 by default\n", + "/home/zingale/development/pynucastro/pynucastro/rates/derived_rate.py:85: UserWarning: C12 partition function is not supported by tables: set pf = 1.0 by default\n", " warnings.warn(UserWarning(f'{nuc} partition function is not supported by tables: set pf = 1.0 by default'))\n", - "/raid/zingale/development/pynucastro/pynucastro/rates/derived_rate.py:85: UserWarning: N13 partition function is not supported by tables: set pf = 1.0 by default\n", + "/home/zingale/development/pynucastro/pynucastro/rates/derived_rate.py:85: UserWarning: N13 partition function is not supported by tables: set pf = 1.0 by default\n", " warnings.warn(UserWarning(f'{nuc} partition function is not supported by tables: set pf = 1.0 by default'))\n", - "/raid/zingale/development/pynucastro/pynucastro/rates/derived_rate.py:85: UserWarning: N14 partition function is not supported by tables: set pf = 1.0 by default\n", + "/home/zingale/development/pynucastro/pynucastro/rates/derived_rate.py:85: UserWarning: N14 partition function is not supported by tables: set pf = 1.0 by default\n", " warnings.warn(UserWarning(f'{nuc} partition function is not supported by tables: set pf = 1.0 by default'))\n" ] } @@ -555,66 +555,6 @@ "source": [ "net.write_network()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2dcf2c8b-2dc7-4aa9-bb80-ec6f91244f5c", - "metadata": {}, - "outputs": [], - "source": [ - "ni56_cap = weak_lib.get_rate_by_name(\"ni56(,)co56\")\n", - "ni56_cap_r = weak_lib.get_rate_by_name(\"fe56(,)co56\")\n", - "ni56_cap, ni56_cap_r" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "391a9630-9efa-4842-8f36-fb88d0e26b5f", - "metadata": {}, - "outputs": [], - "source": [ - "ni56_cap.modify_products(\"fe56\")\n", - "ni56_cap_r.modify_prducts(\"ni56\")\n", - "ni56_cap, ni56_cap_r" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6d0c5f46-f3f9-4d1f-92cb-0d2b51658e52", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8447e10c-3280-4bc3-a5cd-b4548cfad99a", - "metadata": {}, - "outputs": [], - "source": [ - "len(net.get_rates())" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e7a88fb1-332f-42ad-95b6-283fb024e7ef", - "metadata": {}, - "outputs": [], - "source": [ - "len(net.unique_nuclei)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a38f8c7c-d76e-49f5-af6a-1595d274edd4", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/networks/He-C-Fe-group-simple/newnet.png b/networks/He-C-Fe-group-simple/newnet.png index ea52d9f8f1d40b43ca48b832980091a05b0b471f..8302b8143b2fb1c42673611495a4e8f9ec2190c1 100644 GIT binary patch literal 146951 zcmeFZi9giq|30pqQVFM1C~IXXgeWA2N@%Rvv!AkM9s4#0os!B{gX~Mz7))Ud##Rop z?9d>?rt&95zE?{~s@v2VVMcJ1^gd9<~fx553%+;a<)TkIwtpdU!g( zU9XAX5Wjxq{9`XKH_w|A5-taC5Qlr%OYjQ{c!P@^ce`ie$-uz&aR2Y2_eyyV42KvP zV0UjD_@&H`+WVOgRIV)|l2mJaM@qyvE4dk)Se{De;vg%Qr;q*e`9kQe6BmwOfc_dV z^NZ&B71sim;tJn3i?;&^!sFqMtG$C?90d^Os=Ir|;S>u**RT_&2k|)!!Ix&c6i{Oc zZuHkz2;(C~BKJQp7&4U3yD|Oq;{35=#DCv)?C@dVf8X;*NImaA--n$4zqkM2%=}*v z{NMKYUnFqv{}E7AP*fC0pg@Uc|G-E$+o=ljdtGDWyo!n&0|NuR)S`cYWG3wYu;%}F zuu7R2`)B#wF3XMb#r4Y>jD5{)ZQ_tFub5m^w~IOBf)f#z(uBQvs2={Y?U4*Gb>Z-_ z3%^kR{?rW-16jE^Gb0S|B#TEtwMA$CV=oa*0StAyj+^kX6_#k1r^O?1uiE5_ev;E%f}6%6^+| zWaK(tVbjh&RAKCCsbWaC3fn&!bVU?>!qICi;ksd2d60>fLEh(KJ3+Nj2R*wKO`-gZ zToZ1MxwS1`TNbfl1HC-=*^jr0av}HC###RwX-H63RZD(H&MMcN--`SzZJUs#u%v`j zXbIogHs0)3y7Un&SK65zw`9S~ltagmWwC!x-L1NhIc1ipGq$BO?I~wEc#7_pPk4bPq*1+Az^J< z6ENMR>*uuvS6Lg?zOGD6{iYIXa^1x(Q?W%X4wCvNCNuUjA}noQls+m7MR5q9b^Sny_Fx{Xw#*L12c-#;)AB5>C|Rk?G}N0K#O4ONCN(0%zv zM$VisZczUFlAmGUyk0_%^{rYDICiR7{Oay;h;w}Qa}HcVQVP?=2*WWIg9?G~SFCEy zb)c)ULYfI~6}ZEHjX&xyyUXfi4kq=Xi>djgx@UAcz8}EJ=aTcamF>u8<#Dxfc z8^wJ#?}_`Vk_0W0LWjYUZ4tR0j`xor>+0Ej{j{OSaOVUVxA5xfYSmJ!=;}(Jj_8F8 z6K?Ro=@QRv5iaBtgmZ=AbOfyLoSZOM3`f?$5ot$v1h%GH*M2J7aqWjq(H9Ksj%Qfjms1Dud=+Jzj{jhZzx7it)8h05P)b-|71dUndGc}}(W@bCTzLHs1rO4y z{-WE-=|seO|edpj7TBGa77ws@xNd!Ly2`*-N1 z;BNZg+al^DpH2w!QPl@WIM{PO^CNtmt}#P4y`ki5@*UA1Od>)^3qv%*;Tij5#8ba5 zEibQ<`S%{ABi9l?H#9H?Or;^HJr=&Bw&sMvLC5Zl+f459e+_@!O)6RIQ2PmUapXJl9F7quI6C~U0q#ub@e$f{=b(e6_vFn zv7Q!hHn?Cf9&IeTX5`d3Hs?AGQ5jmJ)G%!Fo3{S-MurTld(p>bP3w3>K28`lhMlfp z{PFHH?**sb?Ts)5^WT$o?2%;hbp>H{fD5cc@@hGE+iXry9~Lp(;bi{@N@rv}^s>C) zFTs-=vme5A!=`K*?i_w1|Mx96BhTUuPxo50wcw-p&tg6(6F(oVe-jxj@b3uDrJq7S zd+~I{7ZY;fh+E#GtpRYp0*$-5D-~)$^*c{8PO| zxjJ!7&nZcWbtj10w{o2tr3B(ziWV7vlU9&3oqldHOg2Y%WDXg3_809{YwNo6?+V3YzY<+ZPbaR2!Q4vuael)w!VeS{knP_m97Bp4GeKT%nC0_e)Hg zTWR&|njNV=$`Z*pL>U&(GfS_%Y9)ERr)rW$;6u?E$G<2a%wZR0b&et%FY@qigrl$Y zmpD`O0_{rQn(y1W*f#qav@s_PC6uC|iW|G3kskORAJy^7fSMbLg6T0JFP5mXDSWj$ zQhzE!S^saW@1{+PlZs1f*tz^a-HMd6t`K=u5YhEKqD{}hJR6cgWx zWPh>2w;Sn4Q<61%UG}PO+mGJZIv;$RK~3u4f^P*us{Uv&=oa4oP>9!a`>x@}5o&`F ztL_p5=}F!sLiGD;K-}-J*p_+bp{(AE*Ec$OB5wrW!ch=4dP^a96E&es%M6>c2Ul}) zS+FtJaz$8z0scdG* znW;Pj6Z3(EX@*UupO+djrs*vf>#@j*X*F9&n|_2zI=Z^uLum@d{H8~aOH8$ECzS<+ z^NiWaaa*7uxQ3!hHh52~8m=I~7#W7e1dmH~tW%GpvXho>?vS^1S}80UL-HX(FApXX zgWPG-gXt|L++b;MH_!;z=fkO?&TzQKtjW!n1?t2R4SNghal%r9=B{C8#j4Tfkz%#S zgP7j$(sgJvp+(V;`@WeQ#`QlQ3PZ2-^rcf$_)~no)LjZ`h(7Tz88EZN7?Y}JnTc(( zgO58aOR=6VX^Z|N5A#j3Mz%`hUD5XkdcpXKQX`s4etlO>1g?~Xj(BZ)m#(M|T`PIM zG4~*OE@_p-MC#Q^+jzIQ9i!y0dt@Y>bprQ`TlT-z`K>xEqJfXySrjEr%zXC3hJ_!h zIbysZr5LRf8MAhrxa`TiGAiF`H1*+nWYP^ip;FkJ79Y9f)T*gkjWh9Q^F)LE-%0L` zHcvUMl)X_kM0h?`4z66&t+b#jZ(1DU2|8d%IF35}9n|%i>@$K|Ylfw?u>^Qvn$#EH z2abAnnHQ}uLSP6P&c|!)*H*uktF7V*v>t}G`vdGUFqE!X@G3?^&si@5(n4OF(J@xa zOy2XsN`>WVpk%~`3ift4Qvdg6M#zuas55VD2pONALSUituOhpc%8q^)ih(^a0t$ zzqmmz{3C(fs_XCXF6_`KS4Yjsme0s@TAqg$h!;stW!vYSBbPtbud&1|c``?CX={WZ zP46|Wti548d4wI6eU4Mp$kC`|v0bTdFSbdOH=lWrW=`^C%}d*y)d(9;K72#(*8^@f z{J||eMNE9i+ND+Tn*PMZ1S)%K)6QD^k!iJLC)dDOGqP*yu(g86_j{ox3sP94V$5b> z&EilI8|n9m_@D|sY@B!15`j}#aui3+#MKS7b`A2C(T-NrdZE@tB1=D#b~&9ju&&&rGXQG~6$ zMT5%F&Ic+psBs-^c6sSZ>~L*BJVaPh2o`VUUb&dqH*viQc5Z>4dTz*}WXJ`Ty@2-d zdC+B7Dr{Ydu|oLY&N)%eel9)LWA>zAS^4Wlzv@jwkxrYl45d5_{<`J6lk)O6xRrjK z70r)f=k!6wOO>{Ax!%OsrP+@X)QE7h*FYfRKm53A?flX7`rI?HJfC?53$7GPDJIK# z<{q`T;U=K#9>YZi@|BqrH!xyGp4O!vLTrR{g!GFr$3mB0PkJZIxBa-fco0{8gLM`t z^FfZG1t0P-*+T>6eypJGW1nZlVv|Z`(+w!p;%Spj8D?+bIcryHP)ExvjhCxMw6&Qx z{7_L?)kL)MWhoi3&1f5#SbQMjel359z<jyI$Hwoe9OPfy zRnCQ-5&h>v!eU|_722KrwOuS-7 z!NSJ`0bgzXEMm>WH{?C8Nd2>?>FeHj|L4zl;tV)NFNkS7vUFN#8|O_+)J@}?)}Q7n z#-?dD5&=zGVrm&-d;VjrP)~tnC{0n7R7Jgq}myLgqxNa zy5h`G*ByExTB$b;W9*`3r#9)~aBG=l@5L_htHmVb{Aqs$K9fQYi?#4I5qhOTCF2h3 zL42|7)y~Ce^X6Spe*XB&>kCaaTy^!(n~DW((jdDxrQT3S^*O$ zI!+N{IIFA&fpK%fHjP;C;X|Vw#c4Q$oN1V&@ z?1CDDjnrIL9_M~DWw^r6Dc;GPj&IwiBM@oX8!L1CBorjoo9rxT2e}7wooC{b3=KL? zV;%o;>mbq}u5tz~*w{rITUewj@acrfu}CjGK?JHh-)OgbFv(w$ ze$z5PKmR7BurxL;&6Nl*aFS_qVaoEc-`t3aT>R!6k1i`S;1B%q1W+7g^zLo!gTTDwR!!FjOLjKL7^1HHo8*r9Cv!}tE zcd{z-$0sJcO1mF*C4)7c;_%H2JpdGZ@tthD z9&ws>R`;z;%!^VfJ^=M<9ik+sv+QeU$g)TOlOVo~e3a=r8=ZDj4`qWJVdvu;duXXq z+IRL6+l-uBeD-XSAr;WZaFW?O|K+KCFpVfLO$H=UQ22_1Cdi>zi_>=-MN!%Am!f(z zbQvKqr)hXUSkyy-`u`#J&#EmbBaHO<<4*-)4sBb&m%j4Z2{)fRU`|$2twdTOTK6|5S8|$eg*D()&;~TuMdQ( z*EpvgJ{YReu_r?}5tY5Y9f;hV&EuW&H?J+fCgp9JB`OfjpPQ{|g`vl#7aI>|T*=AK zzE_0&$`sZ98nQ4}VeE>-k9Z4p@L^`wFT+r6vx8gFT``bUpAJ~b@D)_Hj#Y|;eR%1J zGy~7Zzw+^~y(wba3q$7TK}?9~mtReW1NimKeaBM+{9v(RxBJkV4 z0CmT7_wAiZi`u!Ravv!a2=L;GhA`g*r(dW@w2z%pslgw0kU#@f(zH4930wPQz z-z4l(^|DH8AKSlFr^mv0(oU?19>kV|JON9G^WUt6y7Axidfy496InewwoX+cN0=r#5;n$Kk{hR+A~FbxylM%DEe%H(ysJ+ zK7Z;VAdFec%$8Ol&K6ToN63Yfc4Wqphi;Vo%LLA6W3jO>VK4MRCE*@C|MlZda>TWp z?brvy8qFYQL*V}m+cu0m-V~k$If=` zkj+rpr1hCD5%Y`TiOX}4JLi&j4wHGg5u!`A0 zTAV+gB~Lw%8lct4k%vu|Dr!7%ek&hI6S*!(;;1+dFiv_^Cw(t4M{=xEQD=2vRVuk7 zDQMRQhU%N>f93DARVMr2WhrFc8QEdgjLYVg_nC>59edq3Wa;g?=p@|N|Epgp9-^h- zU;S!&pdi5h>0ofF38MVWJ=F6E2c=`)^yg4$;dqS9je#2wL(ADvQnffN$>)=eb>}zw zTe<^yoRdEvXZOig_i&K2wJMo}vblu#!Z`b)wwSZ@iNQR{+-@0P-UIOiQBvpt^$&)*9m zwzjsjYa?)DKfelhjPm$c^9gzlf?m*RD1a!_LanrTS``4U|Fn4x>b6JawQuVU`09u> zd^(7%(S7KXtbGH4g5(#s8mq9KFFROxn*~!EGf_)OKWy9#MRdg}?yg%83=VS9w;AcV zifeAsFJI~!8NJos9P@(dA-$iDA)M2sO7z(|sLT_~hffm0j*pVF1)AtKW>*x^Xp}qfkZ;q6>ne9ceb*3}LzM%c0&(v$PBCO*zOytyR? zr-S&#&F^0}cpk#Oa0O5XPFH(cAE*Q_Uc7kS@5k?rjg9B%g)(SKSA@)cW=`>bVx_0F z+ui4O7Bb2x1AWUpw)D;R88UUzFS5Y^ac$|Vvtahd+LSwDWjLK=XkZ?@uMwdPP{z4` zEHomA1wtCa|7}ZLaEK4yTU$(J^aUJ6w7B99NR>@cjfCJ(1nDrnwN)KZF<9>;JrJbx zy1JUYLjqEfl=6bDTPglK&eq!#bxMF--taGUhm$kK{^!yyd-eSn$fZ>&%e@*B4nrlj zP1p|1=bD^oc4~}}R`1J8X)_4Y*V{?{6K7z0w(eLFX3_6oiqBL|sI z+yC~~g&YTEy{gpsl$0wlM_1RktmoZGH3%GsxcTLnmj2mNCt6+E@^&PWnK*4O*LPN8 z&j#Dn@kO#&R$R!9>A%-9ghfhfYev(2EIm9*sMX8bfjUE5o+;Zl2@ z`1Hucn|gT`o*rR{BO|X4TbiLds~`H9sd2?k8ebL>*Gp{Z6NH(?(`J?rVHjB14%RiL z;G3g0QGZ+ql$+&UOMA5{BIiw;mGs)~xra7iQKt)P?)v4Zq~d;L?c zb#v4}%cXSU!Zcu)n`5cdTm(>IgDlD7hlC{sPDwVcw^foJ6Ia$0sg)#GTA%6vJL2AY z)7JOWS9G*M>Sp1QtFNH(57Ymg^q95U+l()V)8tlaSE#hJEjTIok7*PFkTmxe11P&fmxPh!9ISvQj)Z z=ZGyU`{IhD-;fXyy0i9Ttz1fHZ(GT+fUWvf(2toXC!&`O$K`por3YoW(kG`mj#jgV zGyoO-Z$1A)UWqiQyr~mnBOK2!2?@>3mv#+i+$_DJy7sYK6ZQq5nSm7pbM@nUbpQL$s?zSI>R^X#6n&T zFtoBDQI_}nS2E6Df9)RoMn6tW6%*f?99H}8QFS;VXwdeWjZ`uOW+*5PphH@5q*U(5 zIA8t5?SBib*Lt&rx*8m#{s;sDc|2O>jmmz%eviCcZio*+mcM&O)#&nSpTB@`!g3|hJt>GcaPXFPwdfRN8TK5)eav~t??Ci74T}sBv z%1^)P52p`dgLE)mWA4qoT-WS0Z_yUv!k#T%owCD(>ZSVR;c92ITTYtLJwNMed;OrT zgcH8wFMjfKJ;QID6?vCdZs4>)`UFX+pGYkH{^X^U8PdgUZHi-Uoe27Ht5eDFqt&u| zZ>4~~UNyJhi%@Wl-VN*!aCCf3^^T;Cx|d6ew}{F%ZB+h3t$!1Bu%NcVrmcVe`RB}M zW{LhJX{R&kr*rb_&Srghko?Lg9$fsbnA!J5zr$n6APae$6p7c-@m$`Y-C%m3$}d89 zO7~W(R2_|8^{h3K*S?Gmd!~WWfB8B3-gh~g5>F7ewmEMltcnNF#+1o;tHIBq%!ZsM z7fKuV<^ETHwDP6%%XwtyY9{{nV+_!R;ia1?($-gNYuU?oCh7 z#T@bOb+}i73}KuH*sg9CiXU>;bN0~0Eaz#b7I3>(+&+GMfvGSzV)@9bScllCqOpNN z_U)%fTbx-H?ofWMh{rNftvW5<^E&x>Z?xwMn#qq|OYUgplFsPc0WGIPv?KNJ{Gb30*AJjZYOY{z(sAL*7@)<$ph5g(V z20bgyMa0F80CFyxtEhx_DsDORdbUd*szZypVT#_zG?R7jm{#*`t?2|TbkSzQjcebO z=2+)!4YJEmI=i=W*y)4jd9ubFuov8B#i?b9Ck{Cv^G49U0b%MC-eGf7j2qfSKtEGj zMB4OJdA-Q)A)cT0%{kD8g9u*``%qs4)B_#GjcfpT-P80UlTuZu!NQ*Ye0^_nq%0U< zF~RsA5UCvloMyVtwovzcp^Q z=meEmJ;c}LXvEJI&rbR}$)AG(&5GhqjkgNQ591Gdz#1lS znO2NO_dR7(d>!io&D#kFbgI)Bzx$bavSg|lEXsakKU{2V-X3I))j6J?BCwQC8-`df!;G=z4^BLIY zkEuRsBjf?jkv4;#nUiyTg83Dl?>6K`|JdC*v=VWEoDE91WB^wzFF>PLzsKnCm3
!JoZ2MWq+Co{meCmfToIfc6!MQj<@4m?d?ery_6__guOIMz=qYz9dh%pHr0QS6;l$!`k0sD$-A7Bf8XVf zDx96VJk=2c5xjJXf~(spa;@9(QBhO#MbJXlzOBxcb}3T61#MNJPtb?$@=iD*7anIi zbEGE5WF{(~w#9ix%sm%Ubu?BXAEI5u6zFONg>@Xh;rIUEHqDor{LeMHxvF6I#z01c zwidv0^aO+c*WBpv$b2)zAtYCCVg;Wy%KfXC5k&MeU|j)0b{FKP!1VB zc<^A0Z%2fP-_$*iEBth}4*TvNa5pu?WL|f;mGYLFkAeX6l#SGe$oNRMYM4WyYN1}{ zycDbe?(Sf3nH4-B(*#>4SgGPyK~{{m?Byf+M@Di;J~UWsiF<0$n?A1mR-oKgo_<=}|+D=^&9c zJ`2M+DJdyy(9KYi1-3@Gz(vV$nR4=*}`9${(PJ_?}BP~ynnri!q8I_y+=UurA_G{g3ZDP`5MJwXy64|U1%{JamoxOz#QH+Xxo zWXRdH)GiWOisYoFrM>;&Vf8g(Cw$|Zv*v{IAT5qEEengSqQcPOV$-m;1X+lrUOL=` zwh(m3=nt7Q1P4!t8h1?jP>u>-G?D_4QNQH3SU&6cHu6Act7?((`!~jVDp@qVuc15J zdB1%(Q>Q$wnw7w&@FOJ6@7r-Pi>lbaw`WM!i@dNCbihSnD5-1LyxYWZ?}6^Dou?0A z)Fz&O*qu^@YhCc6>nY%_0auQl* z*9tl(jGS+{pLe^uSaLRce@cm86F;1E>r$1BHX&y zbB4C~?hOx0*%68@sa0QfFSk0N!1Dw zPq0L2?X5Q}t$ekPJ~yzoWycCNtiWMkzsYV@%~Skp(CZ*E&>@bTG9GosZLsPuXn_5sI7c7V+Y%=)Snq7ECds%YB_$`b^YRvf zBxz>d6fx_wyN}6Rw7R|5)KhDJn~ zZeU<_K|w)PARJ6E-)d^ZEJ8%2J@cj-fg~x_elb3;M#K^|$0M#XbY+1?o%r35;nVH$ zsMl{|VzQ*22H%5i4zFH(UR<+gD)!(*#z^*0#3E zML)0Q4p}td6eIpV_?iYR2o7IL(8_%b@EA_JIox}c4RG39F7IQb7<#DC4Lx*hG^^o? zqgy%C%Ah!_+mT<*ry6PwoxlI^;X^LPz=|k&>J8}n_|v2t?wNc+>l3ciBMUx_O-(-Q ze;W;-m8S(%U|Jhk=~}(0+W6<6_fX%yeY@_z^qr4HS@qh>y44=Ec7M-D zC$1^4+0nqUY@Wj^o6`yBxH&_LW|AHtf3(yQisjP ze_xu5h(On3r)YKxCaE>FZ$Y|(Vf_UZk-}XoQDk{ndxV1PW zEDM2?(AN*{iy-0_w7e2j9&(hL5|K{grMO&^bhv2Wvxo;;tr0Ph0bE5{X{N4Lk>NZ@ z*xj*(zgXN*RCdJ}%ZqYh-(iCh5u*iHMX|X0PpV*<+`6FjnZnXeJy593&COl+rJ8r7 zD_H^XmnWM210=6;U|Rweo<>N5rXC`IS|;8y047nhqKETbL+*zKXjHW5J`^c*p)Mb7SyMw6e=(5QFoZm_$KwN|2+~D zPtiW0q#@Ua8fyMFR=WKHa?2>_sFn3;_W_xYZ72v3{0MFO&H0bvPu0U9cOCtMusp@J z*tj99o`)PPFPN1ew8K$8*IobiwBFiJP8KM;uC$^rUzGJbQUSFU*3b2-A^}F<=-m6h zf97dzos4zwqbed($hg2kPW!QPA5W$(uVbEucV1JLT(Y82Bt2+lp*@ zeV4br$`d$}B_X{w?=xsRC{2`htG1r`-RTp73`}eXTuasY5dsklbT-#%km)Iex?Sv1 zHa?zydNi-RkuM2}`~3NHRcfCZ8(jtvZ}|55Ik6owWhvkf-;jb92ur*MUeQcU=U2j! zZv0cy{aaa=P4PT6&!tu9y~qwZYD&d<8+6pgdOn65WLg@cvc1e2H}Ppwey>FJS5MnpBX z3za@+|50k8ZvFGj`zXf&h^DIM6Dt@p!^psjdAcilp`P-rnBWxVW6^ zYJ~-2rM{t|p+}{;>GH-=7n2Hos)(@t(yuD2sxyF|^>@EhX6Gb$=WN!3@=(N#5fts~ z+UW=dzMa+0W&?dHMM-Hg#oBukBR+rCzC#UNwi^d8+fCG29sh$Q>`nYV&Op|2s2bZk zk|1H6rEEBI!m!d7(|hgP>dJHI&Dn3Wn*+gnIw%`p2?E{?)8&EZ+BDzm*qO#H%RXTI z$&7shLvC&zn&CZ&+vhDddgdMxBH`#Q9qW&-VH3Wzmx@8yJP`pBr5yaO6QX;`RKqx&@YXHfHwb(eHUr)-S8NB z@o{6dG%6c3Xn3!AKilsV)hR5{EsSz#jxMK4$5$I$6BRT$_r3?hdJ`N3@F#&)qJ4!& z(9Ua&JA_e9NlTeCW70=p4_U4m;UbaH#PCqt- z*xj<<>uK%^x_~`OwMca9J-g#DhOznhplX|^{>g!2e$Rm!NVa)EtYZx7ob=dt^<=3= z&iQn{KMjP9)Skf8=)=qKr9y_yz($Y1w$N#`OS4!jr8rm(V6YhF|y(*6P*X zr+lP?sP)GO`?($1{NIhp0b{Hg2i}B?;U1m{dh{ss)vH$q_wRR;BRvLD%)^Q{bxwgOm8Glarw0W z3YsFiSiX&(Ql#nWTjMhm|D5x9{f+cIr>f8hnA;9P>0=05iz9aK4`%ThpU#$eZGtsj zQNXD}C32EgMQ8*pQ!WKlXK94S5{#|@qT~W48V6Px!J*slKpOxzn`RtT_~FL~?JjWg z)5ZKdGf}`=VBe97{#Y)YL7VED^rFCJ72kz%>{@D!nZ0wE=9e%_FjPwTaeBZ|`tfcs zr^B#+v(wt-r8R#S258pjf5l)yS0z!RFKw&{c=7qB6FTfbx)k0^mMRJeOg`#Rk*kvq zLY(hDX}JIu#STIXyGikm=Ayf9_Qi4C6i2t&Yb>=Im>3AcxUOE@@BZ@q@EtMMQ>~VI zo;!ONZ4=Yye0#hGyJf5d~|r6T4mf3JwM}{J~9kk<)9XRmk$9Dht$=w>#kr z&m*|A_YiY-I}7M7d87=b_goS(6jM-BTXj1aKjH4LkhT-R_TSsi>x3eJYy(8C%&aU# z>K3ri$~58QX>mZe*3#0tMay47yOF9Mg>lrB5^>Yt&+e>Lj@Zcf@;AGf6ZtB-DyM8% zc+&;LvGjt?S(3}%sfRP`S5kL&Kg8Drs?@ z9v9oQ^RNh2mcLqWP&$+?XPlZHjM>2lEvAn|c6C)y&!qY{%xia9YzI$^ULgv>hO52I zqG>N+F9y5P>VQRNEzLMKePsFe2ZqBxGs(UT>;F4Dm4$_c>!#P^dfHi8>sZO%Z=;x% z-7Ol^in-xS8WRKP{%{ajvOESKsI^KLtJkH~79o+}S7D6|sIaQ8Sk> zeYC_m8KkipsE=usyAr(5(ptgB{4H?R&#cU+b%b(3ZSRI*13Vk}G53L|7veCP=Y;*f z!(OAvnBn_#JwC#ER6{JxED4lt6zVtV?m8J+@GT8=e@Y%8drW!?JXl(|hMgW;8knGaK8jpoCdx{T z4pX*3zp`orPB=@@8C%T+9?bwG>#eQ>%~9_PNBE=PkYVXYO!p_!;^XrGPv&F0G8#YR zY&7`TisYkKq>trJ8tCoyJa1uQK00yJ)2~W=XXD7Bny$L&fVF3zP}y&%IM|&f-a=To zq;GMA=Xj?KO$;s7#Bo8f&}`Du!dl3f-16uAn^UnLQQ4WPg5dN9|1T>%A=HE2_`Qrb zh3lS1Vtc!0s^7Pl$P*yZOsVumxCix#BSAwI+6iZF9wF||XaOmXdBy@Evt`1XGd$DXd*M!%tiES0vnU z?Ii*+_+=00E;tC{up z2B$dCl4m`}uKDh%Em6LGBOT6_-7p*8!r4!j(e3H9#<4+y1?Ui7yE~!lL#|rL7(CPf zd|{cqPnf9t=T&yu;<*XYV~d4Ag)d6ECVukzGYT7bf zULSQP(b4$9TLTM=QHRbXjLhQ>V{Un3xDKPz= zfbV7HMqDk1x?1(7OJ3=yAjAWE`b|pi&|i77w-f8Xxe~g84B!j-SrByoUUy9X~_yRYsRwp8Z;Yzh zq6)oZjp`O{U8`(Fq?qlX_*WZZvft8I?XC#$6KL%T`pWzc2H5--uc=YK%8_#h>v!9X zIoJGI#vlL0-P6fuvi|fUUC0GO%!soLXzhd8)W&bxz`WY+HByZ+nvwqE#0Xa8*C>AsqaiFpL;)L-dC-_$FiW}Xx zQ9|N+6Gm}eriS=L@xZ)(k4vi4c+wKsQ3`sK#HTfrWwbagym}7ROsAM>$22;=X|#I_ z9V+m)+WP!MkcR07{fg{CMT*PwD1PFC=@xKS6o?d4KRhpObTH`1JE^X>+1;<*rP8SC zQ{npF;q~@#t3h1<`;W!>T_o>sE!NUOQ;+kp10A1b<5%}*K=q*0dfiWxh9ph{;aX7R zEl)QBG<5e3FpX#t!`hFkU3+tNz@-|nSWAeI%hG;~xzUyOtKaz8{l3fbea0$$>2qk; zE{ocR8Iq#=;8*RPk&%S<1-h)*kO)k@%av_fgC0wtFe_iicmz*Akp(i(niKE%LE%Aq=^?~4u6eyUYXmeO~@86}Cy z*b8nBxIySB2p<>zYD58 zbef6V36p@ct0Nqa5;{P)eN%bU?JR%pWqHGg#>U1JrM->l6DLmmu~f@Vt5xOREyXv~ z>>p2BlA%f$mu|WJUa(f=rW4r*taby$8K)Bj?L5qqAb8pmnivtC%_i@1CD?)@=#4!+#^n4@2u zSC5RY-NOr|`$zZ`w_Te$xuCq~<9(_kct>^X5ayah(lEKyPNVrTd=b$`&vzs30T-qA z_ShMg)|OaE(Oy6)@MSNop8M}^miBT+@Y6@P%Hm*JS_423!2mfaqZ(aOqSwG> z$FGw&$@aB3GFC&f4jt4tgTL?9BbA%$YpScw&2X+P!+7VZt8(0<9`ZyKBzhz(I(_F3 zUS?i$YMuW(*Nbw?AE+|>WlQNnX&5Ru*uKR1VL4wqc3yvi>QRMtLL%0KGuWx9>(g^F zHq52!C`E+B6I0V*8-{M_g9y5^7a|W&KS2kMSV!OxyNw`Z%D#0PvXVvTXEs*Qn@A*C z)7ESN2AX%g(m{|oS~*SHgR?;}PA$r+$+9B2e%Zqw4r}6l&+#V+bB{v1K=><2etD*L zIB8=ogz(GePa;?dEP0VnRea$@fV~wJ6&cu=MPTQmE$Vm?qg5}vx*^h6YRtm>A5hTh zwEeE22ObJGf`ZjJ-#zfEWO$g7{^GG!a^V9YC26ZVy*LHgm*2E5Fx<)jJwU=Q zC!)(l0b2u`(H*0Zw#I!{=U64m(9#bBx$TrhAT8gyff_idK#4;@h116GB`6H(tX3Yk}a=6VNU zGEL^@6=@N@MuihAbiqk?gZpEPRO|FFl(mB29V)fu;JM@4v}~5ysqubb>jB~l?~hI3A5f)v zsJ&6kGrz8%XC<#u{v*n8W~)!HsqV7{^6@1B7zf}i<1bEzstwBrx|aVUu_?b(Wuh9g zH_L3*GU;{1#U(@OXKBC8M%-c3=9O_y0F_}-JtcU#NzY%wGVzL#ZSW;SybldERQDAr&JoALkL ziCe0;Caw(-Dk#to1k|Dw##ifttY1RFiHh$8j-6qWMejq)@P?sjES-heRW;G?I!$fk z8nm1kBaU|u$#%^C@W0CFyWr_Jw@u(U;_Z@A_tTcaoe<;jtWBOUd5&(3u`B{qZ#864 zT%xf5d8io##`xTRt^i%!`{I-U1mtas&=ZfXd{rYw~6EDLk3-(z;g7}dREtNOmQy^m4g4P!McOW>gm)l)#$q*D!RBZrSH`^iQ(JHxf|K(S%oLyD8A|U{3YHsRRSH^bV?``iC_p<& z@mcx6S=Fi;3jq-siO>$yU?#D;UJlwmciOgei`Cm=Y4?P`0&?V9H|ZeezelFanR1|M zzxGI5Z5-bBE6*jvYv1%$0?W?MNK1-Wk3nc?=qwda8w@$b2#mN+1{G{)hsI=)JD)p5 zBns!fT|o1Vo}NGe(Ce*?TgLbH5_fA*OzVf~b0x#9o{B+J%Zf!q$uDM(@ygp*L-I2} zsE-&?PtI-LdVip9uQZszA4C^@~9C z`Ovgh<@?IPVIe8h_2(kux)Ix*;M14ttmC zjMq+~BZu)t?{z3^cAG~ooh7RPljqHYn6A4z8w-4ZPPN1DS5~}swx^YhLFYQ1FpNuW zfBo?(Fx_Sr6o`PRE7}aS*g{Neb}vMaJvPUr;EW7&2B5`z0D`=#2;I#md~tnZFkV*E zBJrYy>$HyGYEqsz;@UzrIl@=mAFgtraP-cBD7twB9QtvpC7us!00*D~?g8^SRFM!j z$&aCSYd6_Qfzx{0Gz z!w=93_LWBs@?Ft(9kW`74x0R0N|4cK69$^I5qhE-1lpjV5rQ@%#E)*&<|V6|GMj9%TcEhC*OV0BiXt0z%QYx^Q<6DWK_Sn;4@dM+vnrpgv!jS zNig8@lqooBKdhyf)}3L!1gqd8-!XqRAP~XZQ@!T=tQGz`vilmG*(DDs%kJU(hJn<` z?eYM{1aX}6Z{|*4&B@WUbw{*uC67wDNjR|)>wKq&RO7b7_I5Q51);dg+3@^nUi%0_ zC#jokKK}UU31afuIz2^8% zd0N$`a4=x1p&4~j*(1Of*M1$K3h+Z6WEF0&&Iy|hL6C?Y5cpzDGG`7En{HL6AvF4H z9t$Z`q!b6=`u~VyPW-(X4~F%u`)F-zlR*LOz&xaUXL7PbhTlAxD-l?7<$y9HwFw3s zvI1>ntD9>NV|x@t-D-iYd<&z861H})0GUMoXOwD06fgfv(;0rP5BYD)Pa{IUOUe4>sI|?}52Gh%#q;d)gX6^R3(qwuFFF02 zt^y86C}T!DmEKDnusA;u6x0Mg+B)H--Uct+cMaek45f#bnRe<9M~zY^Y2?Mo^`g%_ z)mtFOR$ol(f|;H0`+syxf#P~J?Xf>WxMQh3c1OX$`Q=Y&#o7s zR%a!t2#ol)uw8?1*yZlZk$qT1nSFoE*L-5%|L6_0;8J}GpNZq+{dww!5G4TXhkVsv$pj!VlDedwf4fUrJO2gR$v8C5@E;78u`C1d`8?C ziMO8yWUiK3%Ed4Nj|3Z6^XNfc5!pLLh+g4-1tS%pObjVwi4UFzloS1q#UB$c1iV8r z{(iORu}p!EEPm<`yant?&;F!OUJK|pkIsR0%{sU8T3y>`y|=KeJV&Uoy;byva}AK| zm7A)3;(`x+*_tkRdvY$8c7anDFW!4%QDE<}XUnmnKrN#0QayBZ?zy3k(lcD%LtE@H z13e@2nV)@T#8{yRV)%uZzva>)t!2V)&pk#UKc2ZN!aHfER%-v+Mq%Xq{~SaVr#>=# z1v7b|vz=WpTy#znx@#*^Rfh})%6Xkrc$ z_Fw=AkcvGe9}}PA``0l4hWoz4tJHk$W-BEtoz@=%120uJ)z#qFY58o1 zl)_H6K;cPpp!jWTr_qzW$`PK1y0o1-9LJ}YfnqG;*XI7WIx`7L@O|W3kWCqqd!U_q zf7P|tJ;xnWJ=S;e@2NHqWy;R3*XW(uk$Q$*=^k5Iw>Dm0ApJMye@)^7&9<=#)r^cH z-KE~6f;Vs85V|?9ex#3J()v8SjOLK6fn!y5WRdpMIzZltt~;^v^P3D_9s5buU2A5M z>54xYIS1n}Ppz5-3TX@=RERKuo)z$neD@|HU(p7l_WP|DXSO2r8 zwl##|h<0X12hybx93%!HK*B zRB!EA|NF)54PgjtV8C?lHq`j5;P*RNB022A;_Vk zGT1V9Fn?*oqkK^4lwkvGQ$dfJ=wBBD&dd#Jpq^(xwhI22YHRr08Bm5sTTlK##vdH3 z5!4kzi$8FQHyk1@;j~^Nvu6L9&`rN>I;LOU^_z#*Kj>@!Bv2`cpdib zl}Jo5OR~$dpH*F;u%{M3z?r4e1x`t%Fv!fRT7ZF72D9~T$m1-nL^^J9ODcl;0sigj zshfwMe97?)W&6xK{C`LNK-ze{zL1cxOegOnRb5@(upJOa8$I74Km$&yAxBNjzO>6E z65N?47X)pOPtK*zyMxd!h|5sgtAqCP3VQ($v15({BP_j+^5|Fkq}z!NhXf)we(bxM zwZ;g(tM9T8!UIp_Ri(Kf_*ilP8s?c-D_e(}T9F%Be%I>Kdy5cGH~nW*aw6^anc~<@ zc+^ns>zi36B_(aYL8NGEvOe1XBobY=ZDnt&{2k&({6jOdG)j+AUCq z)A}xx(gNJHvA88QFgq6FxAIAQL*kz_QQ-oXrtJkh-qnEX3Ah0PRdvWJmy*QpcG+2o zik&&3my7@|;%1a^9hxZ1Im-@Rf@-UJ=Jlr>==qRCU_>osBU%+!CHpDyGshBGz~$Vi zEIUN;kY=%Uv3hWCEQe0cXM%eCdR=*>>-?#1I4F83R|hw#d3R>|)li2&@eyU>3GVG3x6Fre*t)`XOJ{RXBUyB) z9-3P23o|`dH1*fX2pY7BXj@p_($&()WWi%ESnE`YMGPq~DE!W#ksPqklwaG|(d#)8 z4?^p3NJ`0sjXE{dlr=B$3Ay++X--y_fj0b{7T((Z7K6E(vnAVSP@^kfOI2~h=`m*O zBVK17tj+Yz;F&@FM5}({8_a768sR0?UZ|F>k!b*pCF4#lPs zBj<9m^M-T0mU5isQ|FZyfMVdaPJJd&=aZq2%Ir^?y>v&j2c|%G*Pn=kuRsKpPks=4 zSld{zVQxlVvv%Lleakqs02eMqYi};eVJGS>GPy#fKY)^QRqNho;q##MVn3p;bLh1s z6#+mpCo34Q?3TH;J@5)F))!{fN7Fv0otBx;HMmYOys2 z1qE^Izo-VOqBG9j${}yYbx$Xxa%?o!y%jFE+-H#yGPypIROtF5q`bZlKg4EgF_QkY zT6?Dn+N+{y@*ZG9wlI84ry7)*=qzF-n?9i3hsUEUG8%*$nst;eGFuKtfWF35aDmsg z<&HhCN*UlXCH*j6#VgM_eV~~%+Ww=1yA@%^=95bGZ<*={2{QD(*=RC0cvT^La7{~U z&bkxLZ{)il!fawR{dv{Zf=K(5htmc2o#?{hjanfA3wH`Miw<{rr)%NKZ=L*8lhPqK zsugfk8C#e+L;V=mS`W*q#Ev*a;me14atBv55#7>?0D6=vB?6cmD`HB}ZmcZG!9hzD zYE=H)Q^w__5KE2D%udz-SJt|MPs5s^$cEqrp(9lH&$kIDADF*MeIxnvyX!PgTenFP zkr|DpgE#rOr2usZ+!<0+oqmy&hA{lX%T>F?pVg?fL}pTtFQkJWU%zi;n`3+|=n3f_ zt*`!dP}JyE*Nuuv(^}9N^TIt%)%-(O=_+Fv)u;f6;sMVPw^aVRQS}kWJ1SoLzye%d z;dBVlck2~+yuiZnA2=i%B-MI zJhz>AiHu3)^;hy#f@j$~;92mP_Z*V;inqR44gd@^Y2jnl3iVQ&PP%x{Mk5XD5z?J_ zn)toUT!xs*#TX{Q?!a0cclErc0TD!x*GdaMnd z;ZW_!+4m8GafCe~GNl?dMY~u8EESwKFG}^u45eHMiguEUH^NjSyOiK{S)jJZBnfkLsGN1=rJmuI3DCNnsRrM0UmWe45KhuhJ17 zynlzi$E6_U>ym}bSCRj&g*+JF>qp%?B5GSHGy)bLbz`z7kr<>?>lbrMnV1&LsvZMq zs_fXnbiguUozTkrF{Syk?d1xnWeDcgEF*3A<_43bBbrjzj#@fJHk1j_(Mdu(Vtx{S zaGdMpyBup!-RLuylP<*~KC_$TaJRk2aa*}!0qnW^#F{&RaKEpOvp z4MvHI3v*T{nV=pJco4vkh>W|7qOZ2O3`BD(}k4h@rJTOx1cVZXjt zo#W{$>x|08qN(w33Rcdnkq#>6gg5wr`c{S?TtasN9`OXr@<8=bZvj8K++S zXHiRVW=^K=wKz?vsur54%|?%gFssD#+K0EAwgNoviXIA<3d%?U%C zzw<%rLj_|W!@Dz@ODN4hM=6~S=wOfB9I?=OZ4D_!EZJ9;&tq*ZR}+HvB27KBp4xt< zk8)b2^hf)vK5-g#l5`)Dpq4!bqYD6->MQ8=D| zCTqN$AMnLFy<$8Ypn-8i@yyryor8LQND@meb4UV;Z<+8b5$(f-DC*41aX-12MgGT@ zR%FeZE%LyihUujoeZEd~2yj1*uRI0U#Q+;msU)G(=pjuCuO%fuc$HjGXKHUn%mo<0 z*}4U2C0Vl#3ZyELRq7qZ3>^88R{(BW6U|G14Q?R;%-1|JI*UJnM-8BFHB}Tm6wt-o zg;M7I`=k^eeRP>f#VP_j?Np2`a1&Xe#PH$9&; zbc$3WJ6SN)sQ6_$+b%;w^(mR)-qWa0$c)D|>|c2-5|En32eWwghH0hrU81gyvtAQ9+H}+U`i4P<$kZn8hfn41M=C1}=7lgj5tT_4 zwxzoA!BVzKTw7rvfiAm~O~e004Aj@n`mzXUp!Xzz)UIPqjRd>rwkK(mEw$=_sC_fw zEr&x!P!xV|e;mh@|0wIVB+{^9KkmBaC}12LJ)s{nDEv0p+AIFI;&GV|@M4ww$5M`N zp?)pKI32mmXa@hF)qKBOU=q#8uUu2AE)wSidc`z^p3d{^rcM*7<4m$$fy1%TAB+3v zGsQ=YcrBaAdWK@*LdH`&F13J(mI9P9ngu+qCjdxthBRpHrOV%933)xVdG(%E?2vf_ zuy)KhSs%GbXWzBHg^WUG$yXmH5T#^|BuBUf3>Y>Y;A#jZ{)`parL9V@uU~)78`RS! z`C2SU3%!vY)4bmQtzq!T3-SvDDk9+jou1?+No`Dt`pY%F+j*)@(i=1*zm*YVV! z9^FQjB?5C&*q?i(D6%;{WhCalt@VS5=EeTav@*D}))IZ=@``Gpm+mJ04K0+xE( zC0|QL=`b|(bp8#EJ`hubtMIZuWl?IWk*Yxs0@hao-aY-%Exm?=mKwJ7ZGSn$qipyC z;ie2SzSsxA=wa@211thub#}i24dB@Vw6#nGMoW7_V?3*y*$I<>Ti6_9hO|FBwpaIZ za?&&bSfJc`Q7&JvQe(AYCN17Uk2oRlr+T_P{jfnu0X_q`-8|sh{*O!|>nC2%%-P1% zSdS7VNCh*JSlx;&_{^bO?BSKM%cTmx$Gy4i^#!XtQ z!s_*l7rvm~RRB8Iy+1lS1pYNFNL)I_&sm?0!&P`JjHIGUZrqF3n;x=$Tn7Nxys`TX zMcB^uJxplTY34LBuNf%f{Fp3L18oCkP*5tTM^as{D`m^odF9gfU8Ucf|kh%dsv&Czp@HW7==JZ0%hg*Sz^XitDuB zZMvnG_{YeJ1VWNQAN`I&lKs0k787%%`pw6A zYN@16n3}HSO26~4p!UbGqK6MzWi+;~O9d9Kq$NupS!rQUTK|9X+|%nF9x9R2VAjfW z@VBvYR2iKHe94yBiZ>w%pA6|PPRws-fn32MY>|Xiwmt9@lb=@iHo{M?U8>K2zM53z z$`Ef&nHfCYo*p3QrBvS!7_K?E)}E~yo(nwNQaKimKNj|WOf@H`0oj>P+tqn-gfRAvTJG|oZSWlKZw~z$$P$KLWc4p<28!|8wACE3;EW^y!ShOxgqOC2-!90Xkmw z0z*PI+AwG`cYQHL@F|OmNo3jGh6%n=8x>%y(TRpJ{%})tj)?zaQ&(00$~jl#t$12H zKK5JQu`Y;xJ8`I*)mEf}B-y@*#EWb&X>S`yVe_ z7cNufO*yv@jq~{nG(58u? z%HDhFq|;+=W#4JR%Qj`fD|)c}IEd!UI>AZfj48Y#me0&eGuWS5Vqb7{BmhPzarZ6c zt@pjwGce2<$nFSW1i0;HzcDOL{2#;FuHL(S7BXdEh3a&okqhvYci!41`W@w=FUO3oW;($8Dw$_%AX4->i=JpSvf2uyPOP>aD=&dR@wnV zV4Zr-&tB4nX(|_ZXp&|Syf@ZPMb4A*umaN*NC?kNy>%!1lkp;6^}v?mR*5?Q*VhvI z_`@fI2sdH%vcg*%IYV4=_JXF4@oTE3;2>Tvuo_Cl?0=rn>Kn zflG;7LqM}4*+n4ALG}F3k7rw@U@#sXqfX@pvbeLhb#o|nO4eA9wem0Q12tV0&^#sT zY>#>%OZ(-4Bw%X~`gQQ_@}GVrDhU5wwm{auF>&Uy>vy*ByKypQrrF|4pHX_4 zR{x;UBpqjX`ew~{{gSIPma?ity>E(oD*D|*(jmWE|X@_dC+<@NvEc}(3 z+ZSx3Zsq7(egd8ysPOWh#R9RO8HSTnU>OmW#&e2ink|9>2{psNl6VG#lRQKOqj# z+ygWDFImTa;Y_g=q9pZmGU*J^wXYjbu{%7PxC0c>@4W=Y8Bh*Z0VJlV&kTiUMwcni z0MsuTh75FrR~SH^2P4v*NIkx2xhWi&ML6~>b2GoR*Jl+4#+LuCSg@F1Dy*oyxv%+N zAa;lJ@)x-$7mQ~g@ZRcl3Lg+iNGtVcVZ8%DtG!;lOP=|^9ekL~x8vHDM+?#Efy+HA zzdCnv%d^vPo>(FaQSm%r?jqK|Z};;l;|9s!-!P<+7dXANFDw!nug`V7rio>E`)&2R z@1!H9{icRY#@DsZr0zEZ)Tx8jB$Lc58AOFcKm_B|(aX_?ovEwo1O_`Whl54FvGF(O zMPSdze3rR#um3+DFj`|1?dNtf&|uc9w)(z$K;?BC!$!*!0R-S`~)T& zq{tA>5fRPW0m48i%|DYLhM_b}pooWsm4cW31hJD{v73DT%l2tI~4NHUVB70kc6X#hQdaTc7Qa%J3?l_!L7t z$&9pLf26aETyVsH<~DvY{&Uaes4TIA$(ThP^S+pxCgvt{q#pB`RLE_1JHT;0aB}aL zh=_ur&Y&k2$~%?w)IsrVLdO0{``6UCDvu>CENh;uRVy!`RVjz?Mq8bNTw&ED`av7dI+W_5L(;8)m^ptdIRvbuN@# zav*S_#0h7}2fF1Cd8h8L#;+eO=ZNH*-~_93Yedcu0bKJG>*$Pi$s_IbhjCmVuL3bf zlJi~%@>lH7=#`G7+AKDrQw5-noxz>}LS=|l$m{PVvhk;-OJ(pm@$%hk^ON}|B*CR@ z5^^4JDe3; z0(`Yjnn7W&g2zE+IICv4cHMS`V~S(2i9+xWjMZ%T;M=Fb)78Jdh|d}}$EAsP_fBJ8 zodIGU(X=AbuqGRKe0PGhN_m~kj*X{=m-~Sl%~NylD^ixbdjYxSo9niVHumO+SyxZi z=2pu+R#o$LcgkxS3T*_oh+({^y&nTZ`+PMFYdpLFu&~}`krrfby96F#;AHKexjN$Dq_|B!)&n zZeqDmEvslb>^iXZ>8OR;tB(;>sLtXuFr4+=Qp<#WXA)nnWlXexhHf689|AfG;A~e~ z0Cj_VrUvQpQn@^Lc`}-(z@Z6XaIYeqZO86qztwXxEmiVr*t%SYTV`={>1VuoYi8$p zPK0v2UO|A@A?UKCO4ts0&r!EJ1vO_gWApopN}vAB+cP^eC~`@PK=(~^9_1*yTYSN* z9S3uHEmVipzmt?g-pWnt{*A;RuM|>5UaJ%Fx;q;v{>LrJ4XQc7gC5v#c^ted*MFu} zeY`XoHrl@K#OCy-R-7)D9Tb=kk`BwnfQNVSLUaUEVKZe#Lf8HA1uIrt*1@`^Q{7PU z0Pr79o0E+^&c*-U!$!djHVHgpWu+@<(1uf8uf_ctHq>-xOb+~y846FV_3EU7A8kt) zjdiZsi?w7_0n2A-0_D-8!s7I~6jSPCVPl~>k#?R0YEoonz}pRUPb#-mBqM+yxC~e_ z4eLh@B5ET#tQ6IQWy=#;Pv)o4*%`GJqbHE$KQg2{)*I(+%?Bg$Bhr8rwR&%E725s# zS2y!^Wi2aOJvA<~SHaaFJ+TIElj$1$a@avY$0FOjP#^VDljr!$)fPF_3Z?0(9LP)t zRs__7q#1?w#tFP)NzhhYtq;#d1l!9fE?I0MSGSMK_PwuD*Y&tAU>VKU-Su9&{rJi> z4UB3~dYhxY1Zi-vsnl1g4w}j;IcbC>*5ek>q;&hlhEs~G+@uNR{#x8?Ygd`OKlb(Z z*6RU}w8s(Y|MJH`&q=%PIDn5y(j-U&e!4^o_JQN)LC|UhdeM$s#wx#a++-7Xv^V~nYxrBE1w{q4S{RO;u>Y#p(c!oAz zh|o5ix}_+ssOTn|SyeNFy=*26&X-)Tx1S2?P6rs4thLIOIFFB17UIr&I!cq2ra?;5 zGdg#)(p1vXBW6eAEX!yBkH@gCLc4JD(Y8O$9I~paG-$6(oZe>$Q=_OV-{yz0ay}fL z&OFt%iG_Z}68I9j{ezUh%>?Q+D_~B>-LT1flGT_|O7pIvPsm?D*(BagLK;$M5vVv2 zS$-6>r@46)VKdsT(;)jqQe|@WX7u&sANfubTL#IsHhNyMM@@vl^@wKWg6aA=Tr}%z zCvaP9>y?baJ2x*J9aJ}9)w~?S+ETmoqmQ<-?Q=M+ZL1=LxyuLL_0apzT%2a|VFxj` zHjc}UY>Y9TE5r?)zsG;ayErVJdo$`@^&C`XX*|qh6fZKF?+jQUt+iZ0{sK)bOafo5 z`R>DJfYO7mQXp>?fZpB&{&}(x2O3?%>lG%o(;3ah&HfEbNH_im$n)y#!LotyjOk2( zrDKmhsQ!Z5%r^#%J>?qz#jC^jMBFMmU9Bvu!liC)59nCMH^gJ zoX^x@JDPNI?5?(cOy&mx#)7Ur9pbOhNLa!ZBl9BZh`Z$LH2n8o&V4ZWC>J=uhDhvV z7ODB#><+ZuNicZsbvv&;%w3P)m?mMbOxYkHkPAi%OHs6_v^wp74-F`GtDE7_DwY8Q z1IRqL+3NI8OE%&V0rp<&??Wa^+!3)@o&7nfy3?PT5llcR=DD>UW=ve_6u;zLRSx=D z%#u)%2P4!=$N~^sr#+LLhjfok`aUN49FvzdWcTvLbjp}VRN@vV< zvj2%3QU384VQvUS^wF8om3mwU#iX$}E(liiLtZvT!ydYf;70T6g)OY*v1BT^@?f{) z>Z<&zSJ8Yxj?d9g##s4WH^8VkPDO9{Yknu(`L_%hM?{cn%}}*Y9lf5vJa{lsRC)4k zh->hzvReNPrN?*s<}>7VclFXD<7yYJ$tq|L@@`19yu=(1vitxb4j?OCxBIqwF7~8! z5Sjp5oQ0DUxkI*iT=^N>uJa^cr%1A#!s%mAaNk&Iz(Z^Ok9aH^Wj3Ez{4tOe%Przz zmIH(!)h8hOcH46H=abDm5RiGIA#0HXHv<|*4)nRRkMFn=Aab01#)xXJ`#WFumeZ}p zI;q@Jla9zhde#2Y_5iq&h7*@^riUkEFJ7AXOGfn6EIOVT;;}a)msd*}C@8aI;jn_k zA%00kPn%@Li_B-AWn@j-)S`7+!{X7~SNYL<(*lbn)PjrK)DdamntifE1cn>!T|BPi zW#8YkMfqv)%#S5o*qFhFhMAa6?>onfoV@Qi>Ub(L1jL8!Sq11?N6P>>{>Te1nSbFY zD8Yh+#+ZKOGcJHnr8-kP!g1}(mf*p!!Rl$W!-8#`{xN%Rtw9BTf6+ENY6UvP^JpsL zbj@8xKJO?fQTLQ={NCDGqjtEVN@$cL|{jqwJ*cp#q!|d{t4q(9RGn9_t(JP2$s?rh?blxs*JprpIdJ)Ik7XaMb zWsMJiB!)9f=H%w7IcebDrT=n7wdyV8-qbrBc>?rdr>5BY=7gLE5$}f5n!!4_v@{Xz zBZRzh*6ozrv=`3b)LvG*;I;AY!R-{Qn{-*1SW6CO6vUGqv9Q4mje`S;_{p^HH5*vr z(wwWqLH8ZWNHC9q(WgzT)`mmdW2j@RlgMWFSWm6XO}E9BxjnF#5aPH@O;{gJmM-c+ zmz-sTptRQJpqvZyC4_u*kP45CXye$qyd|1c3>#mujkPgk%$$;K-ca!(7?#Ahtp1`2 zS#*+pl&icvkon)t5~|_X?53lapGfHBd+qm1E3mFs zwA@K!PxXazy?Su-4Jg0@E)Q970sL^&pevpycf2R)n&_oFzGwfO%CbgZvAkvDE0ta_ zn|QR(;sD!s9=x*)|Qww z%%^sj@VlP$6Bii-3-r-(&VBh3gK_8fv?r0hvP#pWkk=kf3SYFE@K^;TD_OVq6ji@ISNGOGM(?a;$nH4xP*PI1y@}0huLj*0Dr+Byq>>Qn*g}v4pTX71im_3v?wcGhl|FwGb z=&7x+f#WG(==4R%n5$N^M-)3N8{4??!-?YHZNBQH%}u*Qfs3LV=>;84pal%X`|`LMocTaA}pA5mq>{7XN7LyEjUowdv2<+@3__3X8rtTeSHlr43V(Ay^nRx1XkyMN$Q!dxA} zVAg|e#4O&Z>M{{Pb`iCdZei;N4yU6zH#Qc{6@~W4)WJ+2=Q!s)ner$CZ(4Zay<;vX z=Hoizt*oJ|q|&dT&o0B?kjHkmfPtD}d}#L@0i^UzfJ^gQLH{`C(cc>ptj<@4RfstP z{IvT`h`yn12xa|e1BZmDnw1A#92X&ubX0_ldW^`$4%D#Z8zM>se{~Q6M2;cUZd*a5 z-b>)Qshu((A7AAmlmL>$YFr6#bi{70u(61(S&%{a@q-%Q6YDeKuyn-_yF?h@8h94V zA))ZcG5|Xr(@GG!1v&K3<)i}N%GgrD`Y=1OV}_q9;UjfxH|_eo?{r2ii-ZuteKP-~ z1{;c+`!T8&cPnu<@l#2;xolr*=?EZFe&i^U?|$JGfnY0IF?t@}sXxN7Y1g|`pSyVV znVVZRwbu1NFLNkKG5dSGAMN-`99I5aP;6w!IybulyevoG~PENJn zrdt1&pYFxp>Lo~cl=5;Jk{ag5?e=2#O(qYlJERz1(!55NWSlw5K7KV_QNy%uYRJ7k z4fE0U6vK)es8w{XLZ;?-7!r8Hi&${{I|k0kMH|n8q7kW?Nq%)&dPh|;Xv{v+FEAuO zt|02wxRJYl6hN5{uC!jiCw@Ca+SYmE3s|D6V2P?5bwn^9ZnZIf3J>@8JUO}paH#3> zAO0Mp>th{yJ$L5BpFnP>S>B$^Xo<3vu)MfnROuZMKm_$T(3W*_dlmZ(xt?<5Um9kc zl-+@N#YAqDJJ2|n9l7&spMjAFaY@jTj4(&5ZVl~H)+3mG@MNsblYV%3A^pPQnh=x) zS{k}YuNi6A+ZSmkf?Hx%jv2n{tocRjV`V3q?1maNMw>u_CFX$Rd+EBRMcY6)K>4Ss zGQI0mYa39OcNd)?m#Vx`r>#SR#_x1J?bS!udjPiIi&OlG{allu35@U0>pA9oKq0l} zV#@~w?w`TNg`HrV)bWjx4>b^o1e`18kw)<5X8enz?i)PA8%Uy;7%ST8hI_cfo+{kh z!uB>mEN9*>N~q@PK3o2e3Vk06F^~~ABzDW$dL1kY!a4`%Eyy?U^ust#wj9YyXysUf z5Ggn(OUWH?Y=BrasRp#43Bx2KKjtXp{1EA8$8zs=YpD){?A_{Wb|(lXM& ziitSA$Iq2BMcs;tD`&rxPtQE{K^IILaRH-cNH`dIEN+I<2@sM7`0TBY@~u|=S$;no z=GwzD!>=b@P-b~sLlVMkS%ZsZOi8JZsOe0l-vV27_3CH0)ghgI`=xi)lJk8w&#!3^ zztg1HNK8z;boJ_s7ln_X4I++%UEz3%gVn%Br6aKZw>vj`;Q>xDmMl{|=TK4~*~VN+ z3rtii1BR3nO-H0ElO{Y8*UK5e{AOg53)=-UTPEr$)A{_HQ9pAd=X6?M=%e*;jxnp> z2fBP~5)x?NzklCX93U8TwRv`=qvk&9UK;z?vv7_mGxq>0d^^n0!^6WvDxI)DEAYGG zl`29Y+oFZSc1|;vnYu%&oYOMeDkaLEmXumX^hS_hX3&*BpL3(PJh$yPp>Px9>{aHuqu@5?<5i<*eGl}iOGbb&=AdWi=s<6xz^pq-_sq{is$S@Wk zCB8x{wVi^W+;ABCEtS53B-{~3fNsqB(m}l*9_>X>9k!Smo$2tnxDGjKww!BlE(XZ# zU?XvXFoy{;^V#ihKRY7(^An4i(s)3MVjd1$4c}W^=K;cz-GlYtNPWp%g471qL)toS zXhi8qbIoACVl-@+>BGHh|5RX9UfW%NYOjzz1ZyKvF_JhKv|xK%k&)j8D3PHKuajpM zK9gTt2_U#(2!Z&Gw;aNExSZomyp>EjS;hp%AQ0A0%ZVO-*LVh|TM*y71XCx&*6*Lr zmyXR~+MJOFxyw+Jz-M9Ckz1Hw7uKA&M#(=paOz-%o!*SI(*ee+DX05X%_hVlju6t< z(uHvj0XD(A@}DknglR4D`<5AlC{1$zRuI>l?}0JGB!9M5*^Lrb0cX!c=-CUpimJ=c zSG?OYjhR`Uxx=u0YmfrqFAZZ?_ie)lYQi4m`_?#5Qhj>mJFu;I9{w6-%DeqC6vPotb#~Tc%X63+BT`4$WQw+WSKYbDPYX{ymUK}FGiD{jP&owvRy%l|C2oXUK{wFMxk=Jk}5K`LXC~n1NrV~*hty^72doXQqt0mi#baA z6DN~Cg1^PqFkj(}&Y=~Tg7?osn5JI&rzyj{v!kOae*E~+XRR)awO?O|6RY`gvLwI% z^>%4Sj@Fv$TjA}Tc;A}jouRhIDiiPFh}r>7k4+~->XD~62|m@Y?NXNKOgX&~Q09vP zzokwLHuuX?_tcpLtecXOCyv83mqrIb0Hb-`gk0VOvv`_&dPo89vC?7j3gG7z8Mcvv zjh7;yBwXorT2GDmlZad@?n2X&CO@vBg7lqsQ29C&mzd!!hb6VZX<8tbvI)?y#jvSz z9170WPnf>*%&Db9s%7>^V*(8G}A(6$LI&6A*raWJx@_Y#ws<>ZpX--U&17npEk{dM=}3KX*-5TQil6(}^{7dH;$siGBwUpY%>(2s4MkAlY0gb=25 ziolxPYmiySxpS1Zrar}MZ|=q%1-85aDdnXXgfI4#^e(l_^@yn|hPL4Drtu{ELi=;S zeuaQwUiuT`sB3;^v01A6$dtkV3(y-N8LZPhTo%#`x9GK{)VlNkC8m^QgW9 zNMYlgU7xj?tX3Rt+oRmB4er~7$Q)doB`T_4uF|r#e_@NAman&`-`^vTI=CFSDR&7= z{l+dKmQM(5Li>5%?We@{t3P$JqA+O<8OW}8=ZL}+6G_3&I)Xbrs?sK{Cc_%pq5XaR z{pZtTbqT}T23Hn5PaddLMOK86Z@eh{_U+kJwUadV2^ksL7a>=2Fi@lUaBJc0-cYyt z=Og>7zd`ezmV`0taktK|7t&{U7(3F=P}7kTfj@7Gsq85i#^0&ege_kMx7B+H!tOxRm_fMzpp_qr%cSNmudS^8C6qIn|5>^w zJ-GG!jpDT@{8w}v88DYGs`HrE$vvteQ$u~5v*WjObbQg&ZRG4d+~ae1?&q9YzX0Jg z6%`84-;0zW>vJ3oU9`t6$W8E`Wn=(Z8VrJpShB*h&c^I4n6E-+xVzjxh5}~hB*s5m zaw7I8)V%VwPVxrruk@#nv#Sc!)Z&SK-CrDFFHurb)&k82__g1&rU!+t%Dp4MmRM_ zOw{^FlP|%;9rW+CVR>?uZ>#7W8E#$%z9E1&py1%(*!yT~4Tg`rl9m>;vEgV!_%*fa zdhj)d7^228o}v?X&pwq&&zBGN9=LfhHRR&x^$#z`N=?Z?=J+1GcHY(hS)m@|2i*kw zTZewB>@*Kniz;!E3t!R}hJ;Li7geTet_U~q!AiyQTOmTUch zd>i|HuW=#HMtY}xd1LJY#NQzNRxAPJ(kjIjsDzf0k~^;K_msJ0uE)eoPKSREbIFR%zjV*^YKaTuL63+&qvge|t{*={fr+hU-H6+Y-fC=w z%hmkCtD1xlEJ^O<&d!*1C$})Iu{Qc=NMERYI}zmOuc)G(JS%qT%AIn}KD$b~;JBwl z%SRLUIq0=abw@GkCZ?wMxVWx=Kq=Bp$z6mTx(hRS9oq-CU~)Xy)ioz>B!!Rol5hNZ zv^!}p>1XV(C`wX5^uNFL(Pt}|448^a8&lr5R}a&Nc%x8!ckkV!9U^>LlixL77hB}K zt|{d5Rc?c??4UBCkoda|>6#c@-IRS^l`#B-e>R*@#c*TGt!2^(O_o;C*U)XoE*O4+(d81(g^E;8HJLiY3O}gxttmq=j*+RIFfwc7%(tQ6`H%IBrp|7H0fjy#NpvPuP>Ef6jo7w*fkNBCl&e@ z!MWO%E8hf5S4}~9IgyKSGu>Q~*dE4N`#L|l+N|H32(uD#hg|BbcX=K5&pTC515XYB z2H{l3s05jlRJ(yXATx1#tay1?JL(kfj5i=f+jlO&)ze>u;eV z`|TVkQ+s`N^{JjcRJ*e!-n~VbT28)!QX*Mve4H+ddJlVghiI{d+*z|=Shw|aZh%cn ziZUu))`NUwqWHY``>wl8XvyaElTig-O#;X=?(iOo4GYLTlCRzU6o@3X&<6<(3D_2o zS|0~fTmBd1sNfC<0{dIvGBM~BrWMs`0wrqy#_W5h*S53x`n(&}c^HsTy5NY$;c_y& zl~~#}cVy05O$_RJwhp)*tdKn!Z*z!q1q}V-p)By7y=IG{Nr*WOTsTb>T^_@zbI=)Y zd0H;m@vE1aU2ke`9(SE6mMJ((uFjt2-?w;8G+rnD#Ybse;kjYpLc97g@1UOCu$--D z`0_!eG}))f&t!heA4p;EuU{Wbe!ev6;lko_vFgq)m+e$NUBH(pA&7TS?2R?#(77ZF zGIa|MSu!{&DkHXP-!tmTAZ*H5#o-GYegUFyZQI?m#3KqcVcG(YH_Q*7B!{!kG0vUk zq3koZ*5KuW5=MJxr{U5#biA=;@^V%v0fk4zSt07b9gsH8qY9;tmTIYB+`6*wE$h_e zisd`KyQF#D##-__h(1mim-5IsVuP+fC2ACyBH-P)OE>0lHLGA~MA>A?^d_dvhby36 z6ZVWX_06@Br=O?8{6%f5n{;ZBGN@#p4m)YKDQbTMwkc%Y7k#!00?30!sh`uVts&SO zkLOyrNWiXnaP!LdmXt8J4Vs(<+k} z13XkhLc-a(x#XuJub?q|m4@EoG2)lue=e`r2J&dik->7O&U@b3I6itm?F{ee(rfej z3F4jJu7@?v8SR&&FFg5adUJl8z=;!%6yAurKSggzzR`aoIHIA8P#B&lo9r0-Xgy0m z-@$RCMnK(>W1?=;2YNw&B%rrwP*qMe(8sFLZgu}l;n|Dmh-4X+tR&)|oxgA=pMZJl z@}K?rs?;LS`3WT4F*jq$1sv6&SarNJZ2<9RlD@)8X1n=2M#YUb;?pOB=V}5jcb%lx zld!{Wmvc5~!`zgOCqIBk+UMBcB;6a*uwk7mn3l`H`szO5EYOb?s19NmjD3->e$jb5 zz^9b{kZ|ubgsFyHMu6z?|5LlGdi*2+w2*ynVWmCySd%&uiKjO{d`)jl~wDF|NI zuL*X**`>)R1t*Han3*Y-`I2LM9F#5}C`}Z986s+_VqPmtzkHCUSzPP3e1CF4Ts7lc zJ|p>^YnL8PWZsEaAK4&cyryxZ^Cq#O1Z~mWGXB8#IT)!yZdJn2)H(%9h951QiKXR$wGJTwD6?~LXiDuR3m6+_ zfY@!vzJ28t{^1*j^=X~PSaa~D7y?=iJfS9*hsZqvlbmB^TobC4|MtDZ+jWQ3^}Zef{I zl6;7y3c<_p%V5V=hpu(?D7D|bh#C$xUc#tbkZ%?hHNj3i?@tP!^*JVIPU3WUcTOJa zD_>hFgt7OyA#)tmyF%$2!9Xz@N4gMD;nzPt+=4)~ zh-ih1e{w;*rLsk*76aDY9>Tk@3md;yn}mC0yU#%!X>K<5C_UUeursB)h?2`OG+)pU z2`|8~ddfCUH@5VoIKw`GP5Jg01J32>M`q)q1J_(j|0OC6L6R^B|8}z^c=C48>)HB# zLw;H37FB+a6>uMdrMgMySvqbS`-2ntFo-O?eQA_CGN0t(X7-5}j4CEYFE z(*4bO-uHd3@8=(0dN`c8@4ffTthHth_-=0OFUYkuv}p^iEH8Q$l? zixI{&^(1!|r zgyq*??)FR1HBYH>Ed~P)vt_R%l5%C@!D)p_i^<4Wp1rGte6E6;8k*hRU6@Q``Fj^Y-Mb12 zcmM&!pM+ZJ3m!IMBM_ZMgv=^7yMGfy{Ec1nc$@Y3~FDIT=LgwlW?dz#} zI0K&tQHbD@Y+WZjXfJl`Ok4qw2dB&*B0B^e2#RjD4K#2n!0_hx)z#IF4)&PxW%R&A zBiBNZp^?!XEbQaIog5F`4lVZAhHxDn9kFq7%~zHFW!z<0qU~A80gOh7W{5@LZ_Q|b z(aPnT0#N_SQCMb4LRc6fTzYyk9BTU-7PWj`n6Ty=BXl+#S?E+e^ws3)wr%2zybo>; zf8%nZZ0fagnuIpte5)7w;U(>8Ggw-Q=Xg_&WJ|J4f6P=A9WW$K6CrDBYh~lkq;O^w zgxknX&NHfUtI0}l=(Ffq;YS(2=7fY^h&<&I5vK8hK|!{F>>lb^Sg>wQR;3PPbd8VS zXl!hxdZ3RkE-wCh-~HdjqyL9cO+=S)=o;zt?1kyQ7!=(@|K1g?Uibyld-5Md>EHa` zg+>lt7(?px75HQ0x+}b4_VJdU&gb1cZZp%buQ@$0RLGwix+6Or%%{EF1g z-spVjP~a#$rutAy2KS=&QHAsaJT$;)fJ}Mzg%btpn!<{T_V*aLNR(Ibj%Y_n^@Q*!(JtY3Vq;@B6zVmvdDPGfxr(yKP-|X} z?ll*gbbE5Ucx=z3l^ktq35niE7~WYzlz}jPcB|@a<>>g9DCAC(XC+~eDH*;YGvVR9 zN}i>ao`H=8t7d+NA3D-L>p1+GM4W?YPq9iO6oryZH^sD{ua1|oG&P6l*b`Ut6@~@v zQ4bS*3}1S}X7o`T)}FVwH?QqHI_LpxwkG*3rfaSj)SWW>5z!C@dXb~%W4;B`dKg)4Cw)qOMIO8uj$DQ42mpr&b;zR3WKmOGZ zcy)G&la;kJe7hTiaVpS#Guv@WJ)1-OGsWj*UWNEC<==l?Ed3OasflU=H@Q>v)O7*g z@#g6POhl6MecQ#~_$6U!dd$(8Q8pYuk!+U0Klro988^QJ7)3ykxjaAV`1Q+dRf+L` zmtTfD+D=+1DWf)$?VHfe^;){G%6<+(JnLP1xLgUkwEXt>Vc4bGwt=d$@+^Rn;;&W~qpX9tct0*RJ)me7I^cUepIG)V}E9bmU~_O#>208Zbw^^FoC=8AlEXF zzF75WDg(ZT9P(?djTYUyJl|8G5%Hvf$sUq#-rU#rx^N()peWzZ`nMYW9uo0cCR}aG zUx5Bsff!o)<=-)FN8OjoYS9yX*R2!h*VY0*d_ccX7U+6Y>29QV^IXH!)YOVANT3LM z9KmtNnt=W!)CJ8G4o(CjTt6u}^w=aioKeg|z_FldX4T=KptJuurysD;uJTiW**kBmP~(g^aMHm9Dpc ziQ+aGz;P-Rb~!y0QrrqfgzS{^s4RO&wnG;h;E6 z+^rbkb=;upNffaj{t-G|~q=p7?7L;O)mMHQ8Z+SqMzrazEc~KR#JboZH?G zg8_241Oz66h5p6g{?xzMqxwG8D{7{RNvrwXaM>L5q;&ABP>hY~l|vH$gWRkeJolb< z&Dj*%%!%8>k*?hy8WQ5G$uZQK@oQgPc2N-t&?dLP zG87aqe3aordFzFcRnoJ&T;^Jv>J&;E*ZZZAx{+tMN#2>mpNtS0Rm`zZ~dm0`KOk!;8jdS=KZ`D6Rwf#mO)LFJ7d50LBBIu zzhBtHZ>}@>L8LA}>+Z~Xz1Fe*p{wTU5x)ROu|j3v9t#_5^V%{`;XtHLVuP^bUrvr_ zQ&ZFX6eiwE@vpj^zZf}o#uOHE+HZ~zqT&6O4Zub!Z_k-phe5KrV#)=7B!{aAKAnu{kQRvP%#Hr9Nu zPC-H5l$!b@4=+{U#;#(O`vFvtEB$Ffuh7!PbJFlKo8n6u0G7dDT3+^t!L_CPrvEO$ z@8qijbHu5g&2C?}xCjtl9&Xr_S5=q@8+%HFu{I1qb&O*K-1xti(TRwN2>$K3RajC2 z^2SQr1;1A+WB260H2^Kr#g7SWOAfQ4v&RHu`ONw7)uwp=rgHoNz7YS+J*I;>SVN6ZtEAHLjub8VC~e2H7h!qJqL`(elADWne*bz(1{UMSHJ#h{zQ<0ogNl=umiF$* z!0*sIkS1$1TCbA+n{Qvfe|5Nc(^xk^HEvL#wNDuQ|12yy0(1blUVPHyO=96F7qC{?CF)M zjKD)+f81}a=}j-{d~`91(lGYq)9BC;IY|II)Cv4(={?{0NCjzoSIWV>n)mGzUT$9A z^MnGw)CBJP;w%i)qeWEi-lxvep1iGxFGVgUFrK;W*+NnLvLr0|fyd%Nhir#lMk*fO zmmhmRGsOSMd2X%+`08{U#*i<5p_4N)F@X&`9ALCT`11u5)%kAOCG7#?g`(nnuxxG` z9v<#8QCpvv6jrH>EcgCDfZ0=Y2b_1+i7Wz}@Ph5yR91G?>+SkQZbLcd8c?U4&DkM(rR#aVQjTVK|%VObJjh@_uv{~%w9 zT2%Z#-Q94`VWJCn%9yUbyB9-&^}3I_v~|&53f7asSKFXh8$FoYMj+V3f)+(sz00(^ zG0>+xkJ}7ZS5`j409;}iKkF?@ue+?lcMav;W?4aRo<;=`C8de#jQgSUU~_z_*#E(9 zpGye@)clF7x|{P0h?bqPU;6h3fvXuoQI61=dgN`@EM;fwc}h6r6t=mYdPNYR9xdKpPKEQ*_@+tU zINu8H^=vX`PQ(QRFB8k52%PBgp8 znymQXe)O-G%qs1l&>CbLd`dzPs_uJUnZ%;4gEj2r*=y>5a}1c0)L)BdDFeBP_UhHE z%l?S|L<4wC**uXJ(no%!bCs@ME8lG{`34;klJJHBFyZ`deVwGO1z~8KjWq z<>gSUyelbrE0?Gpm!g;z9v>gFzi-bS&CShi!OHgZ$K}WaJfC7_j6fFhm3l+gNmu{o zzA=iM)fnD-R6a$3XXPYbg<4hs-1z7&JGF+1&~ugYl8jWzD~^S>kYunaOuX_)1p5Y!Jp?pH<{a@^U@nN_$5`qkcMdIoOMEkT;81dCu3&U9g znc1IF5U!yc*`&CBddTD*6d-7bCkMFgpc#L;JQ}MW2+WzRUl=tH0Z3-in>k-Z*&t{e z-lEr?8FKx=3q?=t^$!Zdg^R{O5U8@R|)6a1Him zpBg*EsHZQPM!e3L5<9(f@`xDN%dzdsQNku_MEr8dm~WHGge$9iH{o1Y4!%6tcp`Yr ztA1;8ib8(4$ylhpTs-{+L-LFF-{0eqQ3a)iV_6rGH%)EKT1XTPO6Myx6eXbs_>z#x z{CV;4)W?+NPveBxO*u-9z%*gFjWDCF5uz3-YY{Mp%}EHb4EwdgYqz9=MWN!jv$P-n z(~#HgkX1gO-xp9zu%DORc9oZxw_t5g5!B zG}rtFFhoSVx)vLpJ0-82 zkC!p_X{J<6;%jGU8v5chP!QaQ!_Efn`a5RiY@B$_(`>q?tPKETo+miRFez6?zkKhHL2@78 z$Pa&~kTf|X@s=i2<2B`b{sktV>4kMreSM4UOUP5;@yX36#<^3MKcko@yI5Oc@pZ5T zr@^8Va&O%!tuQOzGnX@bc-`~r!U@^y07xB$B{dCAaF$X=ic*IBb4O3h08RGx1R=K_ zP<)CrMyQusii#rA<>LeMwW?!_9M3Xd+%L4A5k7|!?>-Al$r}x1HU_%qm9Y|&$ao!% z6lG?l(su!Voja%OBR3r#oglPgt$-5epC9W}wJb(2I67uEqF$5OkaV{{a1;$M!Oy3w z4&jlm?JXBMsjsz8>aF}yFmfJ@D!9NyhxqLz&QVjb>`)R41(h#|re*;Eb&cHc10mP` z>HyY2`g5+c{D_#-`jG17!P=Q4IVUlCvUhq^ll(4})oPmq6YK6yhj(FR*oYL+6umOa z3}@*UmPQoLz3uBBA!cCbu6)Z)P(a{8DC_G=XMI(S=aaCeWD?ik^zfN|JU(LOK{2i{ z-wsUj{?*;x3ik5IaxO^!=b{}kDXGtLf*V18e!j5HC(%)(Jh0^?5Xg zJbaaZ7?|%WS&Er9e0kW{Frx2NlvdP7ybAoBBD;@kZ&e&Pwf{->n*w|Bv46OfybJl^ zOs80BhR_e^ptxG*`o}+6qvkd37;YDzwmwu~Z1%3yeBwHqniGb0Jb7icp0M$dspl?b zN=>$BQCCcd&5kE6BFz!7J37(9Xnp*VE zUZudc*9V=ZjDkYJ$RQIG(=jA!oQ54l&k}`iLI?=)47CId;~{bi3224}&Cg0pAGsfn znIN^K#@(?P0s_@iBJJgjY;5@JBL&ic?A4a{c62nv=y(P|T5AA>;?-(OK1mjhNhD6h zy*{s_FeW1voNw~XEf>N1=an|M;w%zR51-WjbR4AR9BQ^#DF=DV<;B_VfP#n^dqwUS zv>{43$M}5Uon4h78VS@n5y}=a-8*yoCq6U)Gj2 znWGk(E(HI4UavoE|BT~{V-kr=oT&0Xamm^+a#Nx9p}ckR&DXU%dTsBrGD8=kMlXE3 zEbrsQ^mQC?r9G%BFpayucr!@&eF;vh9B#;hgd}gu>xlXv2IqCWViu~`OlQ7Rv6jZm zG@7#oyKv>v9S>6jDoh?OIh#kq_0vBc9d!`;C7p0f*t5x^ReZ`Qor>jbkHxfWBR6m0 zy%XRw;w6f~HATD98PBeqd`MH1sJ3lbUG7%3c+A628FkgCPAlMuw_UR*55F)@Kqnjw zW@oq<7#JaTR+incV|RK4wg&~q@;5;fDr(>9S3{7LrQgC_$%vSrmna?D&8l+a{tq+T>Z zWA}5TLuZhA-OQK(b-m5)$e)E~L(ChaMXB2GWJrV8hx3}-La37!uU~E5bsTz5GD1N# z7i2_DsSBQ?!3jcSL0&ExCV$fo~O{Xd;q$#F2? z*7`t2ILI=VpI2N=0;B#K0IW+^zHwDImq{*ngEy)a<3CBEOwJ3{w1&pBs*q2tgD)O5 zWVN8)rcfWQYxolPDy=eNtWsxx@Ag9)&v4wYf9s>{>*G}dSyrQ`nyh8Td}*-g{v^xp z&d8F@bTT!!4(f9aKhl94h_!Wf^l1ypVu9L|^@q^(=ip$xT+J#H5UGZg_mGwi4Zx9D!qtEec$02#WxWz+8nh4Kk?)@r5;O*i+YQ{qB?&5G%fWg$56}H zY=nHbZ?+|;95@x^3j)i8d_nruCxHfpdu&!1Cc$MvXi^^a*tpyrkNBOJFFJQO3=$%$ ziy*S9=DqgqjN#xJ=M!JI_AUBeU8(9@&0tlR|K)U%^)u$#>q(p*DwcZ!!RqxyxD^~( z0~K1-sRuNbQuW=9sM^X~a<`NHVoVef|htCv;N2cL273>REbj1=ftpGTtG%(q;Saf93zEP*BSS#| zKGM21RgDh?GB7d}|6O%K)e$cPNlXXsBvWDX#%aFUZAc$yHvA=3K%dVBH`6~vJ!Izf z(?wZL8PjpunT=xR$=-o0v>GAg!Ovc0YVh@5#GIAQ zZ^5y}Fn`TMLyU9`wiezi6Pu;;)w=@H2ml6kIBPpm&#gD4j~!RJ&kr`mGzD%1O_sXH z_limcSO5gdT}5PPG|;M;{bEi(du|(tKXC}tHLJa~bq;K;OaliDU`|!LZrr_1k?wC- zJC)MkH(YEWzG%h-%-S{ zGLBBFE?8|$+OLYy@YB1g3193`(1nJ;??d*oZ9}8)XGStP>O+Z3yVnogX>#>$J#t^S z)^K9Vqf+$6u__ne-+wz8kQMUIe;P#|fe?5PGt=+}zxZ200e; zEUKjVPT<^;MwpZ{8$PwsrZv|TL&AP2H4jq2#D&lASSDGuaa!%v-^XMeE!PHij=_7 zaAtJ@6@n;E#V_}vX{whs+Pe?$anSiE8q_TCp)@|=uxzb6z*^6xbXsMYXBQfb|A|H; zg(~29p0qa>|Lxmk=Jrhj%KJ{8?P(V$mFQEluC(>(Z3oa{OJ7RD2$K8{s^X5G?se!A z5?U``ByV}s!8>&+G9_#-DVb_2Nrhle#T%%rDEs@)N5Od(d*xqH*+7JQ)kfD^fqgMc*EiL?J2Xx zZ@ynqcw5U+sc~VIVrQm#zp}|TM9UW+Vh{**Ut37fOxM zxnM6YbtL(UO1S4h`dI}hYI?*_Vn%@(vocPpM;p)78X8b+fe$#`t=_JKGLq=}^#G^^ zXv|0QB|*0hrARF%ogDD=5MY~{d~vDgx-{qlp1k+Lav;?|)py;UmjtmoG8n*I(S{G# zNDHB=2?}lH#5>%a@Q2K)Dk4#Gojyv|fmya4)I$D*Lr*0o3IknW66d$1R-w*kwab@2#@L05GPgy&28>QN& zR-UP~KUh;iLbX3|yDZ!!WX#3bjF9+szy9rq7$i8iEpjNMvX`R!WL*|27{ha@Zc`|$ z*Gyg1*eU-~ap+MxThd_&3rY!Wt9pJRrtRW0K2vH;SUO&_5|mX=Z$f?h)$!HiqDabf zn!K@9{}Yn?v4we(a)G^(NryQtzs-vuOe@9UR#A}zFq3tM znjlJ!l*&re36HYRTqZq*7Y!g%4~6y|?s7lv418ONUXB7(n{X{ao?G!)b+gh8mOEWf zf{;eR0yJ01-4h#2_#UO)^tz#W#fAqD+s-fZ$H!!*x(XCgt13L{Bdy0@Exg=!scMdv z*N?Z_C`Xkl$&4@oA>*5(|z5rbT|3KR%?eMZk38ZrN+tcy!`5t`~ z#^tpP|Mb9^k|N;%+l98qi3w^Nf@P7uvrk0gm$)Rj%%kYZAKN7>t8dQlg;bDHk#G4e zyB;_F{E=Sf`>wq)IKi{dmy_dA7b4WKw;iE30N5jN=68*Jb$w9CDvOjGY|nWf<*YbR%C6cXu0+Mb4`d z<2eZ8h<7l)%m7ldN=Qu-T$ZlKAHbo!3kR}32qH#*IIswxZEywCiPZJ5?cT7fqJdh& zw8>=9PW~HjvXkfLm-O`X6uB67#Jiq&f#%`iXf3DKKyv5(KIt)2=$Anv_*}+anI$@K zszL$%_~%gkbJNDYL@`3@TN=&rHmTvYXI3wFiKhE2TU zwGknFm8NocyMr2T!*!vHStE}AuXKxgVes#+AGqE84-t&i$$bvr1Zn!5+&R#l2t++? zg+G1zgg{H2@|zZ5QO#|DuT%sghQpbTh+EGS=nyT_0g|F>bb^QH*fl$?_BHiRd~IDf z+t?G&Ptk+F@liob&PGl6?i#a|$L=Ev11A9nKL?xE&-ud6={baLlCJc>256VaJlD^* z8mLT1K7IWfaCWr4-o>?lRCsu14A-jheO##z?+aPJoex z#Z-_Npz`BXvXznCVvG?*~Fuo?0r8!OBO$J zE!Skq4cAcK)zoA%!7A=|N`P$QGNiM$@7P^X5&8-wdbkwy1z(O+M5!>*=N(*`uUrXt zjA8!tb%?BXXUFoE=MHE7yfSO1VNxaRa`#h@^Hs{k@}g9@Wzh;|8pYc6<}Js=Tf)D_sxFpd3D^l}DNF=9zf{ zI-Cmz@iOoPK+z|m{W3q}AI$KSyR;%e#37a`B%o!aM zhNl7_ggLgGYiNT>(t06_1KRZD3CX#u6MFVUW3s9se(R{3h40+W$?#WJ9^a;h9y5;il3ro+zcpq#9-7%U_bl-b;IF1H z4-BB6_RD{Ig+p?a#0d!Ai8Zo+gajfXVM6nuDp4&I+sVy&G+M!MYUOEH*Zypg*Z$baBKvnM8DJdDNujpa$}#b4FJL`!PQ9cR7iVZPh%io7P&HeZz(}LHWJkY zq!XxyS%5G`i;Zw64xhfAgola;#uNR=RmQC9*jKo+2>Y#!-}f$xX6f6{XIUq--MW;o zjMwsWt9tBY5iLs&#o*h%{=i$d6b z7jhw#dr>FmAQ1b&ppBl95fzSy0qO~d^Hf^i@vl@}(Q5KNE-pjxXRdt7a*&%!Gr516F z`U~&xO*s31-+o9Oy^+-#Q{4=5Kwz|@*)%XA@B&r?kd%Z;+{((EX9BBU1RezHq>xkh z*Pk3&owg=_3TqeXBjKi0p7hLo!EOL6LCj~fzw)xBy?w;A8>w#rd0-8=Vc%zGmjd)V z?i&Xalh~_Q*P&rCcC(86u|$EKhb;y|M@Q##R8;c!?@MnL2Y$Ti2xqWpngaHlfq?<` zL)7$z8i*|l3yJdc{kCtInaeUS+7!;GS|@S+ktJ7Vp4ALIt&S?H=PF)PbrI{~b`HNM zmYKr_T*>SktqOkO(J{<+x}{X{{Fd++YW91?3l??^P`(gp4CNMhSoZd59UWw!h>RSK zS+3L?{DLwAblSV%FAmI~K0ugXxJ(F!^EA|!D{nC81x1raf(S3vrnjWzT8jFo+X_;K)sSkqs*dGo4>-J9j9h9l36o4Oh04>!567nS}NF zk1rB{lA(Qj+>V-UGXL!iAJ2o?#ql{qX=!O}uEJ2p+5gPRF(tue3D3-M==j-!nmPf9 zoAih3n~<(YXsHgQYP2jj&HTJkKiQ$H(Wu$W+WO(X0-zY^XrjrF>eogFU1)1`DsU#g z?V%?{-tS@05jPGXOE_fw6V=Je-(H^L$U-OafGwKYMqR<7dNh#GNr0IBJDFIre)wz6 z0D}DTyQEux9eELX$;+SbMXY)}zu_k0a73P(Q$Z!`C#L6%*G_wb_R-7M%=X8#<*93G zS;|Kq*XiiOpd=W6wGEJICYM6w=SPDCtyF$`^pQVxEiEnE#w{ga=}`r)LWO5yqZ1Jk zai58)5m1|Men$|xRLfRU2d3RMh7rrI1~>>f>{A@jSZaJ&yg~ zQmlPyG~#==-oHon*}jQz1}uLU$gHA)z2#nipsc}|0Z<5^K%9f4Xpp~Q zASG}}^uPS{hkRL$>fP$Y#OK{N-<-}fMKB$-so$P0?!+%5-kDw0_0_R56iwDo3TLuq z$syCKxk(h4XN94Zh}^79!8O*1Stv>ySNc->a@06#H)Hm*JpTXn1HN0MD>2T%jk5*$ z_<3lkKE$&!j83Tzqr#du^PC;Mb~0&S$nh_@#ICwQE36 z-fFkYM!CGw@41Z)3&$`E%groHX@d#qspfaw_~gMw8Z0i-pMrDSAO@}cD!6!$}zfO{vT6K+Wo^Fg9T`ry7XT51~E zXF0CHO8u9;lQ~a(20_d3CIB?#fEy(>Liv~Z5{oh(x}XD|d3|e$iV@GBJzYqO`PrIY zXw`Nv+Bsy8y_`~;?Ca~Bm83Kv-#U1ya+4bBCL@*8`lC^7mlv7#+a#U{n%qB=)Z~sJ`yl=Z==p= zJ!I*%U3-LgcZ!cjzB=1V`c|7FV}vezPbwZO8jwXoFFs-Niw;%Ob*L~>ojf&$z7%wV zjBgG=XK6s%K-3TY4QBQihZJ&hbt0>gFX+WgIIzCSaBAaQ_Y@(oyW`~E-X3T@cA9WG z3jec8+c6dJC%i$k2l6e&}LstUE_Bd zc5jm-hpJbNv2BK!vFtrQQdLO zd`iXl$_98k3H{Z3<$mGqtvW|`h1>GnXWPcc*Z3<(uZvg-1gDiablx_Lw;b1DMMFis zQF;NfbLV&=3~7l_SfW%2>LzS{rw9aWSD4r7dCbDh}+#kW3zIj$HMkrr9GG zYwK-Cr`?pgqSCUmR!9=@p(ntGmj>HcJou&n1)O{xU0qL}KE1}SQy1*Ax766zNBkeD z`G)yOcX!^@odD`R2N%$r^YZiS!%Prfhcz;R!aQMM!}W_Q`$DH~JleNznEGZ1{Ea_Y z&E(CRk?!yolCFh1>E$w47l{Nt+K%IUyVNkPJv9$9+f=mzZT@u(Ow8i2#fN~YM{41_CU99So3^sLj4d342Ky(zmL~i~($-ne zg3YY1%KBM_Dyuo6%(yyIz=E{QOK_gQRx&&iYIHzQ+Ee6lv3Yxw6y#Ri$%wBhuKp)t(kX5?t0>@+4c-LX}C%uL|_s^m&yergt7+Fl$*%sQtyp z4>rQ$(YQ^nnxve4<_Zvb=zRq@NYlc#RMVU$4yoi!CZeCZS3hdP$Q-`Q$w@>*Ae|wS zdk2VnzcArbY*1OZAn%y6nnVJ>!>>2i%d@kyu8D8W7nhf@Xv0h%T{C5ZWNIi!Z2^2j zn!sRU7og0c>z@mR+WG+tVvNYNQg}lOwA8owcqD=%&PpM1H|>rYkdaHq4kA1a6t=o+WUt2y&7Tdo<}$LR*%TOJdM| zxa4rGeC{NZVa*gZI=Jct60zl2Ku`Z3$NlS=0T|?!T2u8?Kc!xn&`@mR9F3(VID^DmSKK<6&Vyi5Vz@UMebz z4?!zyzbxn;=Jd^MOK1l=wLe76Z5bCp%aCVvl*%?;%)w*kF8l<7%^XS8X3o*K0@aO_ zuUH?m4wBb}Zkp)IhSWM0zto)St*gQ#uoZi!be8QY>A=$T;ll@Gp`{ebAWoPmV=QF+ zRvj{10KG%Ygbx${ZMOplcOjDefw1+FJ83O8?t0L_4S9d*7 z5MPc~A3gK5M6J$+3>lY#HSlXE`51zg{a#00hX8i|^!%a2ocOJ-A&Qv(*zNaGW$$oxY|pA~P!J$? zvL60W4ca(Y2rU-v=JNl2q^#^Qux}&(JmQCM4$pz+q!>zX=>1-LR=MXah({|}ITkwd zttoq(*PK0A*4N*Sqj&&39KjyPVR)?2Lf|l80FlUPef+_-iKmMiMOaMcr;J(o-o|tq z);z}@1_3@wzMn2K!OtK3s8dXSe@~gSPIUqIZH_>?cTqKRu`{9h(U=Gv6fK?gtaE39Vk+ z5Tu|3>eKsdmI*FXL4x zB`GNyDA~D&E!+e*p4gPmr>c(&I^~=QOz18whS{F&3r+Gn5Ef-@GahLB_3-1N8Q%Rv z5B-+0m>j6q4f)o47v22lt1dM6`K_ma(adJ4wcV=mxko$QDJCYlH<`DzNdMkPWh&Yp zE(Tgd=F8OB$8*AVe>(X0N^v>)kaAL#eP&QuiOU47{aI`vpdTOn;T*7zhiODW%|JLu zq1rYQlNX**ahh3MNU}q;syD;h4(HMDqOX@TuiuCFN-9G>g_LB~UbOWC;FdE*!0 z9Nnx_$|Fb5XHkiBeiWn7q(@us??4?9#k9>b}f!9$R}2998v4-tN8i zE{lhS`1hIU%TYnf??zwoKKuD^{DuaK*;=83g_GU{^Fwtr*SZnoT%La@ldBkob7^FO|bzY||WvrjO*`G;M~pO#@`fAH#g%k-z4$9xNJx%|7d(Vil7 zkvccSIM3dQs+jCawRWH=_=;dY3vT>ww6HTDJLc>)W9RN=PA>ifb1m0=+rqy$G*@(H zw|3N}PTw4|)Qi#k5wwRkB?B}0zmrKXbKH3ktGT&(SE7iHb$=o=$l)al6p_t7 zrIn#pjyra5ek3f4(^3MaLOqx+*|3n}m4q8xOjVy+eY0kKOf+j;7Pr&pe3{GHtDll+ zTEVnm-O;AZG6pTp>@%gD&059YvF=~y*(Hgc*uqH`sO`ObHm#Ee$6=iSSc}b)lkP?+ z3{2T(xpX-$$T=U!}rk>2}l+He^gA*bVZotizjsk&OH6<6n3`$AA#67&{e2Oj!Y*Rxb7l*FVq zHVV`2zI`8GxT?SUh7G8KJ%g+;K&jIetjE=R0FDG9oNG)Lvd!bc|L`lYJ6X|hm)`Zk z;~Fjxe%IN!Ly%uc`nV=#oK`k7U-+GDvc>1O0~9NUA=;iWBEei$pMbzZD3oK_vf*21 z%!57$ZeiC$^KTb>B&s51IB!zaPXqIQPt<#;5P{Lp{O?23<2B!H&Vqr5f~ya4w-qi) zOfD-wmJQTlUJXm!Hwu|i7@26q@j#2G_NdQ`0y{S(2)c6;;)Nvz5>;@{>bGh)$?OKF zA`sg6i~c@#(*5A;tGC*pcJ)>L$B!TLc@@)UpVs7pEQxC0EmPH)fKnBI{Y^Z-A*0vb*M}olVt5fNq+EwZnDVbu z#g6I>Pm$Liai((gjGE>v?EnLj_(r*lOaE*0*N<&4F~7OK6(Cb=7Lj3HG-+u4lm4fORwYEU?K#TtQ!K?!3)P2^!Qp+Kb_PM)Y5d3JI5BNb4SWX!->Ig)ij!zTykN?*Si*4&{ z#8Y%*)h%2u+h#9v>Z2Xm<4Q@Xq{zo@Qk8Sa4zk?59|K3*#pB3tL}#ktRU{ zK9q9{raHGSU+eoEPW5kTIVZhkaj*nKx%+=)4Ru2O=YNws^Axg0ylWSm5xv)vcST)v zZ)^6nPrYlc5}oeZ3CR(Mhy}b|HMnR_g6pYu%`PTV`3FqGqc>iF(|!?fVn@an0MBM2 zY#>2-C^#VK-q@_sNCgvQ5WZkR*4hdZU{K!OJwt6TvJO>?=7P)|8P}+DM&V`tvxz`Nln1(-fKX z4GbPYEsRvmIZNhUheH~=@7_b%ISY1;m5!S?xGl%gvy{j44VYqn?s_TYA?;#imG;8x zc6B~*7ZURMquKA;y<6}h`*yy2drL>Yp;&Btekhs6*7mB5Uy@XRB$ivQ_3oz@sEt8x z^k~{;IUY0YY!nFN-_N6!j1U5IfHHfh85+B z+juh%2c0zcO|kQ#Cp8b|uL|vF1$ZmAi~H20|HOqZk}3##1DXjoQ>kLhs{pKnDtjhZ zfT*-r&I0K)aQC^$YjWht@sYUQlix?k9NbgU#f7IY4#=N;_>t#uXLPsB2K6MJoBt%T|rG&%Nctwk-k} z=YhosL1(8O{TS#=F{tjD9nI%j;eT`k%w8l4`m`n{^E%+4%|%)!&>+xPt%)>(0{>%g zm+j}6VZ9RidKg>AG0DH1)G_%cl7cGGEPUN3`vUIR{2kfjJy~}_KJ{rqu*7ze(6}aR z$jkd=qh;olRDNQHhPS^#Ksa45SODcP*h|upkapMG+#zHeAT)eC5x1ICa0vJLchirzPER2Xz-4htb)M12Pr}WU^y9>6{J&v z97pX3U(tSf?X|dTM@5iGL|c0h>#Jd*SC2As=a9WJQZe2RLTl*l zy8(#tti`P-`pH|fwLA)wjoqY9L`17W0dnp7qk||!udmHzszhnM))jo3+n1$u&waO* z68Txci~N1R;$FFggL%fwRH?Z>X}ZVNDyn*p;5@@I3x+vY%jZixPV-CG4$OPUISijU{`wFC8*QW{!(dABlV09 zJEBacqG{?$lNPeU1%Pb6%hPoZ8ew-T=sGb@%zz#+sZg2#2uiV2%yOi1(6(y*!N(Nf5SYrXb;k8}My&Qvx{XrOma zEjEyPAAXECjioOIft8O~Oyf%cH`05!!9ZlRZl3bI%28xk>l7V^m24EB2aBivbWAQI zvc9Sbe*Va>YAo3&ht2L+cDTB_H);T$q#~agW!V^xi%k)6leC2|$fvNK9|!zO?mcV= zpQ^04xnQ9;zm^>5{5P$=Q1{^3Tk&zT%+Ji&dA?GlTkZ^W+nX*Sn@-eFIucP*|B3Dl zSHCY-_XIYeOFS+_Oig!uBh?Ug6Y!G2c*aQSp8S?R*;MWj;+x5i@qNb*%omuZw`LAFTp#JI= z%<>RResey3#s&jipd|`NL2wsc0Q!1nBcy2?Z-oiI2f7;RlMCn{Xf5pG)dO4g!Svu3 zKmQFddFp?fa&~gU@DI70rSTjrIYn=ih|v=bjw!f7e4&q!Su5255(Ep{61_ivCi})~ ziweD@GV=0%&(htnVtjniKpjd% zYCyGp;k8Zak=y`;F9pPh;2YZvh3L*~BiikI_foTEd0v@XTZcjB`sB$IT`0tC>~l?t z=eM>(*|mPmEAC~LC{WxSo z9St2tQ+zSd^YI!nra%4Yjz$xF^Uh+kbf{EvMczDM9J1`9lXwJ0! z!-s>l(;#?an-T-MlPFl>_q-$Yi!gRr54E<55DN++G;e)8RQA%la+~;nRK0ar)!i1Z z4WfWj0!m6sh@_;1q==+QOLvEKhti^;bVw@Q-5@O>Al)F{-F?Q|dtc{#AAh~?b+K5o zn7=v4e8w~G$M*Zx3JIQdhA35(-g3g5fBpUeHXB=fG+>(4`a#o(X?DWlh_~%ECy2O} zZO%FH#?Glfu{ofyjUYgK0bRVP@k`Azj60ZG~0d z%y<3c{N>i_7BY|3F z+ljj3=&ft^?b*g!Qk(*MDpqESk^!mB&hwdnII4uK^pJ5xMKA6x^vgiOE^ToZN??-;eq6BOz!fF{qmuge;s@p#ZUh*l^zey`Bxz7Z?%nZj|io1G-FHge#ozwqbgIV?A3me1U7_ z!E1xUUvJuD>34*lU79o|?r z9pQRJmS_KPrm7!=4Y{wubwmE!54o2(hg#UR#g3CHj>M0GBN~%N-9tMo2j#Vuuub03 zKd%}~rD@F5E-ou6X_lby{K*r&W=pKbYt5B{)LOr#2b#ao^(l%}I-XXo6PLveW=qNw ziL3hF@z<;#qU!knrJVf~-#lN%sbH;9EkYy6Pc$g8>WUKMDKhS@ zL~jr^r6Z`-lXa>sOwcf?{> zIi0E`8o~Ie+UYP;M297op|YK&#}?XU^|p>vl4=n@0tu#ciSlbfnw+b;k0&56Z?LZ+ zujmmr%lU;f+{j)Y-)*U`kJ(@+gl~)84>&Ai!Bl*xN0#n^f zxWXpL^DK=O8&r9`yCO*t^yI6nua~v9zq$4VhCUoUsc_o#_V!{4o{VIG1qMFM$AIv< zPp-{l`?C+88r$nSK4MO|vz(rv$6sos1gC=_{ZqlL)?)O-ItDJhiC;_%AvHDipNVBy z63;!)Igxa`A{k(in~k^|9Ln%EV`F2&PotWLhj&**G-x9_ccCTJ1gx63Z{HeQ*#piW zakL>JYE9@a#9q}5wU*S^vnW4(2pbBP6voiPn?v_`+|P0Re-@oKbS6GE<}l840Rs+q zVt7})D`-Z~4SyR3<1tkF3^6DkO+WeyIpeC~F5tk10|*6SHbjD_x1ay3HJr&BSDx@h zmf~-xpBZhQGD5}_RGr=S;;99F(8 zYORaNYl|VTcosa6_I~zMK`NA&#|;k>QcOqNK1Iy0_L+%QZrIQ_2&@V?8YxTvt~%+x z5CgLG`kxc5llF~Cg5fn0PvbuEJdaDo`p)BB3DLP_i%YaaU}bO6Od_XHww$`YIv(-X z)9tURHl|h7P*+jFj>htkpdX)cm8ZGK9&$*BNUdn0AIjan#jJ`wJ;d)~nG_ttgo~=r z>pd*vK&C%~vlJbf5FMr(kT)b*ffGyQTfQRHyfLZc7p7u!6f{G|c4Rg9FcK=DVabXg zHU8nx0<>dF1wByVGvjcbsz|A-BErVTCgT3%F#j4vYEt2&J4vuzmPpDO04A?#lVFB;Zm&$uV%<{U-wD@Yo`ELqh|g2ca(_Rgf{d{ z7hVmWA@^O^?wqRjk@+4mM-%Z`QIhL$1|*J@MKLfx2~^1D+;B~)xy8@LrJUIoP6fA- z&3~1USab?b@NY>;)^_{`FFHI6l5j)=DyILF8OQ76k_*jZ)L(8i>1;2xMAiD z@fUcnU?Xs3-ZRYySoR!1bh~^Ce12CwC)voa5fse-Yc_CXWpv*-?kP$Zk7*~rI zc=b(%DN!KHo8OESoE4xMe>GNqs}lSsBVP}H0up}=*|IaOpey!UCM!X{Q@Wd{CNb&@ zdXv_zF|(eXxWkJ$fD=9D+aRB@#X|^~c5&B9T`if|oNjqt`%-xtnkQ*UNQ)W6I~_~W zl};iG>Z#7}ED(|p)8-y3hzm$L?lqxt9GK3%Gl4QWjm}$a_{DiSdCe1qJnLG~s(otK zI(r--Pk*+a9ALR}C&Q>|423~yq3>t6$PsCDJD2D8^0xA9=L&Ow2dUDxz<(EA2GY8* zJ~4~vUOY9wc6N&y=83KqJS7uHoj5L|m6Vi3@lo@%*b32++0r%+-*iE5b_;(H8S_Xz~5{gP`qRIFi zeudLY1M3jhHq2PP0GM6%wB|2_7eP;t3Iujjr#4sZq;0Ji0Ix8vf8+b{BO=ML3EcH? z8wL~hFObkD#Rpz6aNkLY-Z9M7nLJNx;_oTT2l^QQ`+9CgZ+D1e@afJ^@DXg-zyv^+ zZYGzcet@35ikkJl2PdNQ1I0+GTS-jRu!jw-e|Rcd;D^3dGrjy+?gT(<1YZ%gL96CV zqLrvMwbzm|!=)4_lB^v(~+)VNQy6&Ta#{vq+^DwqH3weXdg%MK6P z?)V?aO@E|MJbP{~TEmm}=n!mjYJ7{sQ#kvmSbW8%;Cl%WS4)limu6HC~;>h2i z|B>u$Igi=E)*L5!vUtzZ#fV=;V2_wTCDSIC7PciXYPzVFRXhF=jUPQTX&``Z znp@Muh^J59Q0(-(f4F1Z$_|l5h_p7?j~7SjQrw{w0hoKmtNcLL4B@`Dr+xe8&J8*y42zsg@h<-owi_f{UfnOu2!83E-8<-pOQLCCk^f*!45&Kixynb?t_O4tSH~KOt-78Dh9iK2oq92B(HTpVHqjZDYP$6gGpEj<1n@=B`Mzq_^rM@=4vAbi47bYB2XZwC=A!*E0|~iD-6O7HR(D! z21kmv-nKWe-STWd;&g2o4Q-!amAi6QcsDs(#yF&k%zFRc?%2Wlvv6|PGSVbZ>8pB; zbp746!}2U9)iB&2FET=Dt&B=aO8#wZV1Ui*J()%^*6j)bKS7m2uP-fgx_?td0Cmbi zEG>R(wzPZ12K9ZpT_AQg@5e9D8KlD`^eNsMW@LE_zyuflp7>#)B}e zh1`zi5e3Q^@5Dzi&|I5SUte#tA)=%l&fz1S#QzVwdA5HVxvhGgf;6m$G}JX&j>9$d zE>FbXh3XBFW|CXq=~f5Oo47S^zLTLdK}R0$n-3ovMLjRux()f1!N_mgV+F#N!xQ2I zaWeAS>oK_QRv<^X{SZ5$v~=B|cS?!~jLnxJxtkqrV|_b z5-tsc>mF(5Q(&x4m)BwOhtT!&z_ z!5EYXf?iZ{`!5|{Fv6<}oPD^jw+s#*wndCQg=Yp-O-oio`|teD*x=p*7651xu$zJh z3_-#Ihbz;kbZCA9CAUQ2?&~@-~_FN-8}&qKXA80hI@@A6ZjBq zk2l}JKdMr0gVO-=RhD}bF#weY_sG(AdeeM3LMRDBm`T2?;deuj(C;NXC}`oIJqN`u z0!ZQR9Ks8tB=8Qgsx?DFU;y9k&_P^To@}=>qH!WWjct7_(HB3Jp+L>$(m{drGxn4p z8>ySSw`1x}W^>axIS^-fLOZCh)$s=A*^A81P&9w__4Tc~ zf%<}wnqZh0PA@>=e1Nfm_@lF*T2c9ucspu)jPr$bw~#KI>-U;-i0MuqM|2e#r(W}4 zBMGN)?ViCsWAAdsvC*U+e!f8EJj3(nlVaKO^X+?+RqofwC3yBlkoC)S<>gh+s*O+? z;oN$~y31P=Ol9;GXvb6e^|~uYUw|7}DztH=RY&=={Kvijkm)%?0E+K%Br2;B0=xDv z#<7+~r^>#mmT{pCY@h5Vw$C$3YvllrF4kF3zR~Ba6C3W#hg1p2@GU@Mj~Uk5#1d+s z4jhJ2A&p%w%hh|%a)s;5o@6cVxoisSg4U>Z>e!>3ty8~CcCS=JVj~zVL2Z}Yg{7TN zfEDxC=@ZqBOqMHo0o(Y6?;ywT=}lzm%1ax<2X-y>YDY(ogjf_;A(GP?o1r%~{Fc~ClC0v1g1`<3XGMD<>97b}vY$D%7sAgZm ziQcrZ$7VIbiAl!y0M`52S#+b&nTH@A9$t~{!mHAA#>!WB@7^tf=@`VKx3E}Ph&N4O zH@b&tJ;Cz$2=Pg98$*EB;L=vF-U0wjkv-U^{=Y zhmMp2kXM~vi*W+PQ%*X2ifa>g;kOmFPP`g0Y$7NuXGiYkQkW5bUhLX3F2Yx>iH*Sb zRbVgEzL05SKeLW+TM;~6^CCLWt2tLuQ24-VT*$N0;iU+?%(3I`J{SALz)c(t9vwmt z*Zmg)M_tboM~wkJ2|74S$~nO%d<+AU?W6`zqs?rI2^urb$pj+_nSIxPKv- z`*49o3^0Kz`mwy+vEG1~h$sk~jIRjgcI87O@ugFbWj-gjnasia54LPZD%yD4J8)n; zS@zhrkePA-$6hGAdSN$Ye1obayIR*=ve^?RR#qp$1#=czEG!CG~NZDDaFFL$9BjU0^=MQ6D^er4FoRar87lTUldgA?S`u^3`ZJ#kk zXA3XP`V-D(H^12WzMHGM2X7h$kw3iUs-&NMKBV-7U?o~qJ++ZJlnO*t=!1~Uk+0|c zfUUCydiXNdqYt2X-Ch41b$WDAzgg!McG5f{oveFvBC&h1-Z*~N=Y9QXzL387;Z0xN z5lz}f9C@sa!C7cq?0)+K`nIOxvve|PN!vSJpZ-uhk~IK?;rjz+oOtIe)4Un&%pORa zMDLbp2uq~6>}{Aq6lGA^Jo@I@>^P#Ft#sMWAJxuv-oOIGQyhm0 z#Jb}C?(Ho&;Vt+3{{7MI+qYw7G>Pp`cl9d5>R;0|GZxm}^7cN!`&n)ayI}%17GNaJ z?2G^O^!Nj?6|9K zzPDPtr}NK@ZTPpQGuc*tm_V~yw$PbT12^SpxNkuJE>difDQ681cu@cJJ!u6P-4KV(7$8Ij-yAAsp`qQHceJcQ~7Oeq~D@LtjnVV!NdRw z^8B;!j{=p2@oeW0&;AeUU0*9c{%@%&K;|%aT}fi1*V?43rTaa5gs9EuOw`W$sI8au zcoWI;^Hq4FT)mA~vz7{N$Hg1(V0fE>I2{PJj;vj$@FuH4)7#%z=$WBMI(6D@o_dqf zlqn`lv20W56)-nA6m^N&QiM{b-rO(y84*LDiQp!?u0<>Ra}6z_j25R{SX9}oya=KI z_TooYNLx;ho=<2?K!Ava9ToJ(+s}$haOavHIvVLg@OMT%M`zlC>m7I9-VR0F`^pC> z`?(wx|N3E{T`POuZL?JgapSofI)<4%%(LU0Tk-`IA#In|g>&t;jtZZ<7xdv}d)Ez1 zmj3Y-5LH`ZdxCw``sXB5%|XD~o9EB@KVm}r?2@j2(cR_U;k!K2{xFZEoA?OU_p zT;llnVIyTZ`GuJ^?2|!3LBBxpw0f&!0SQ->+}s39OI(DWV3!OS%sj#|HNhqi3j~S6 za;ykBE-uE$_2sS`vXB&sFxJIk5;l8}Z~ySTEl0MHOIsE+GT2ERjp1EQhyY-_V7 zpr!6RFcAN90VqV^=KkQe11-mttSt0d@0%Co0xt49SDY~rr#-*3gN-uWISq&{waAnT z`?9vkr8ob+J)0hL#b}K8HzKuA4^MA710kPpa$-mL1>e8#C=dzyrr_IhBa|od>k8>7d-ivgv&s-+9~P zPr(v{f<}1YE%slsIzk(xE8m*d8KWQrT(W;`hue^aP&{%i5+!994)6u;qYnoMb8;|F zNn>;sc`RN$uU)}I5~f@<*sJ0Fhhc$-2+fcl=__6B_}c3_^Ok-~d_)w|&o(a6OUm$c z9xoS@yEqiM=}Kk)yaz{os`f>3q(W+I^vzbYMwnOY^{L&7b6ZU2HO^xb?Dk0mq4r>% zUgTlP(@Lj$znKL${q7s{^D5SBW0up8=d@oHa^OC7@Q-wP_(}1mU>?3kI(=dILal0L z!c@kyCs9(Dr`I-Wg8QDwSO4a>{8&TtTO)bMM-z&e0QsH4<7JphSeRg;vZLu4zB8hP zcP?>CNtrfR{CRs6_f36H16%r6#^URxeCCP$-;rr))QH&U{0wWvF-pnA^f@v5H4U_` zd1}5ez(DEl?yf1m6+O%p6kAPlLpQj#>Ea%!w;iEe&c9yMgrm~az}U_l*nFT7%yoJh zAODiN32-vD0BA$qVSN5vjXoMKS+Ig((*jLn;w9)5j9^y?edUS+OgSoc_VC042x+~# zI3X>2HtF=K{;O?*`|s=tbv>U>z4gpooOg8W z@MGxZDSTQ>8|HQ^fic64}WMoGwrr_XZdit?r1)$G_NR(G1bdmQKUi{?1 zFWFOQyrDWid~xg{czPlGS?BpLV`N4oWF#cXmm*5>WWo=JQ4|7B?&Xj2swk^a9i*O* zxZj{tK;3=1LBqWv^mX?8n~ai&f1ya|77WWkT>eJ`8UvFBXIgqUAdb7C{+L*^?t78L zFaAx+BvD4>naKkZRH11cScb?;ZR^@sk27!()?3stz0V4%hKz-td@iDt4>;ACOd5pz zw~*bA`?{;_vdr8~AQtam{xb^wi%&W!3fcHXFJ3t{RgMZuWFq6DR!*KbCXZ<>q6rS8 zy(qWtsRTmp=0yj`U#tN{AM)DZ6`OImWJln%nUi8XE+S3 zTEHO$j5}1qnE2aDAnM;IQE%+SLY%+|U<4xnbNk`6Cg|OI(6UF|X^SiLfMyDC?-8?( z!D@Sx#1P^mL>3ctR6mn&K|*D8`M$YzXJ;qetXvkqNsyFLL`nI>eX3=$Hp5X2T%B-^ zeX%yV2gfkDG4>$hy8K)%BR&0tUMy;PxX6)-F<6u4R#YSYehv*Csg8Y10nfN%hD;N* z9yA=8PQ1NeuCQ=z@uxARC(>XC9s0vSoYPyZYDV+l99R90re(bX_7f>=m?(f6O$=d( z25*&!wsum}2T86)c3%FGFLhEc-d98Dk&IVQNiBUj?P!h59O-h~jN?}~RC}f(C(p8_|~5;UAs?(LQyHo~`hJaWj8HlbjGyXq;Soki848RvTDhJ`PNV$hKq( ztq-urLIQK`^E$0*lp*LV!#5fqsm6adtAYzH?P|9)KAG<9lOzOO}`K@j|xPnl;a9@}XCs=kkkhl?U=X`Q0X zlIbxC{hFT9<7NzBWZ|) zgL|pL)ws*Mo@s-u;wae|C zM%BzVBVAbG=!}jpPo__p;1+Q5q~wu@qRz+2Ip}iKS_?k+VV;cxkEm(l{{yFEU6E4 zJ$=?Ga@dokdlhu-&$D>|7kdj4vGlK!^@h7z)*dV%hz=ESuZB~u$4KC| z>xkzDIwp*4EB-jd#KFMuReIX?g*2L0CLXfhT45x^7Jw6|M;#--`}zv;f%W!DHi4T< zs&Dt}*ZUxpYSybahGfY~rYq<{zQc2m)Av7G6%J~Kwo92~x{J*QGf*o!9!L@>9Sxsjb4n2o344840bFT7h6vL#KcGoyM+09eF#Dvy>M(^ z*n_t1C#Y_JY&eZiL@Y|6LZ<#V5`#ob(u;w+ zzB(dNd%s5$-S6lIR}(s-Q$rpp=f}pfq9V1-uLi89DTE+p_Jr_a_j-|)Dk8^bWefbe zI*DgK`DL?LXM%>Uxw$hx&i#KJP#!V2zYFF)^(;TDTreN9cK2PsUYN+YF&wTW7)1-~ zXi4KL9be10x$zqiJwUBsUz%#@jvZZlSkd?*N2A%YuKXUPrOx*`-smskCyS`3Hed-t z&RHJs300lg(3Z<_-dT+7X220<6GUC|yr(%>o#D$5r3KfN&XIWZ=1)zfXbr*DI8+!F z3eo8^){*9)xlmq_&=S)Wd{1`3SKoYGiRRO!c&=x#`P6|7&&ojq>2#&`aZqE995?E# zi@9K00}=@(pdd zWE0NWFGf?Y)(#(ylK8e28uS=!?YXWSoOgBp+aEGxj#COHrT-kph_LJ;1}F%ykTfQH z5_n`o@$b9mEH`87{I>b4WzP0~?h(>uxqjRkTcFh*Dk}6UV#PaLj=k~6Z{enE24i@W z+Tap`D-v{qcrt0U(fE+uyOl$;<2KVZM*APLj@vL+P#@UcADH@|aQLbc)cXqOrN1T@ z2~mcebmF;7A;*+&;o@5ywxg9rOeB{rufG+NuzR(^WkqqFTwjW9L%lU|N|sw&E6bBHVDzh(OAX5%J_ZJvr}`d9{xul z?zW0h3SWcfG5@oNhm z5sbS_GyZ=E2AfBW+>2fJtOv-mR!&*eT(8gu6dNc@(J#E|LVcTbb@!Ivne&vJvqWzr zzx>bHmqeR;L{3ho)$i^01SzGa4z-rHYgIWlBZpvP#j2yy_xhzR_P2inJR@zDfid&7 zEz){m#qSZ3)Mjw`}G;@jhI!l_NByA(h73_6BCy zBoJUlX#T%;Ey%qGu0EK&I6OT3nPgI|7R%?DGvPH(4IwGGWMp4p9^HfOE-&~`p-IZ5 zUWOhWox^oyA)pN}ad31@PcmU6iUsxD!^3093tU5GWiLHE1iD0T?azumV zu2_raht9#l0Z|zGP=My^<76_i=MF87B{7ID7@ts2`JcQ*x}UjRE-|ZyUenF5s)N5HKBe*TVdEdBVUCW!sV2x(s8c+11H58?FWu?dWB+3nk z%+qSX3A@?6&&~RP`Ws03>3Ki`*nTM9O5Nz|D;9DRLK}Y9nbE+1HY{M-Q;dGf%=ABB zPiW`f;brIaKl|HmawGHB{m;-U=l*OsJ{G?-=>WmwZCh$+keNTV*j)&Usw&#ztDYXx zY1eBjI8%6fk>7n1-gWXV1T9roqk~SeB~gb$Y5TbWdRu680Ugt$KfhNzMO(j&XunWs zEb~6@lKffT)n+yNjT)E2D5!xVuzE}N-+B`NqJ5JXpRW5Mi392I-ST0_)2#@u=gj>c z7R@}5_j;Pz6a;@xHjaf&JQanlT23b_p;wCf6Kz7v$NZOy8p$j}?RM?S$)X)TPXZfi zR(TsCot9Mt&^dzrl^PyM(m%9o|H1y?HwJJ zYSuRei2fs}k`nKjAU47lbU_H#<93ymmc{_9M+z7%^z=S}hqKNrU)wJ1DIymb5vSAI z>KDF;K)XU6`ryF>PFGn83AB@)+06gG05;Lqj>g%Y${@sS((YVKWE(WG@gOJXC0M8; z0FHL}9-Mq#cwl2*2A;kIkaTDlvRkTURT=UXP<)2e#!svTwOTPE3d!lSt^~t-L2+SqX) z6NZpZHMpLstet$*4C?cW2rMN{sGM}){f9i$pnUmaj6{D=IC1xyAM|^O;`myd{IfZ+ zA~N+XHU)p1^S@t_C15#PY|OmkBhMIFr#I232&Oj-Hz!B+6`|8*l*+jeu%u|m8{9q? z{PYG(Yz&=kjUY*(&)=T9esSL?(OU^tc&A8eAamx*bQW(ouzNfg8049yra&e19)-nt492TrtpEz;W=?wFP>Mu3;}+3MPJ)zA;G9~%T88B$&CkM9G)^a2BI80 zInUGY82!G_y>B_#D=9U{oJgZ06x~h`5PN>`e1C75);&^6X4rnC_@cH&ZDb40kRJao z2{V~2(~JOyxAwIhgR+L3D1r56BL>o6uA#TJ-zl2!1w=m47u{U7LWA$y=UQvSI5IdZ zAh~!d1$HlJ^F2{a6kBDrHZ?`Ju-Kq0d`L*R07_sam#BlieG9Zj7~U@DO555Z@J>&{ z(i<8CH#axq>!4fok^W6mN>&hw1vT_%5aB5V1O$sxoMM+etdk4Xv5JeW3MY{X?VeCh6e0kY1iuAqFwB2q3s|QfD>se2*@-eh%3in;+`pQq|1ru@f7zQXmz*XQQ_= z#7m-S>Ya{%VEEo*1NTO$TKp9w{hAv2<dC%<51@2%osop{RcT5^X$rT8#RzBxIu|9%nopDf(BjgU8gS6STp*Y#?MT#@oV z<@z=wl21kjs=&ve!-EZYk}WzNc~lQyxV@@5y_mpR<*$~Acy@9{Q=u1kxj_H7pODAH z{5$8=(UzWn_;~+Gt5;$gYB=?yI!j5$1l2G+hPPIs+T29kEYXYZja3 zx#SA!g~QA6c`{TqlP`+*}{l z_W$J>u_*ac(mF-RYFB3SK$_76!>;)u#c_PN-*(ZRtIl?VyKf?PPrvKSA}bmU7C$-F zfIkMNS>?jR&4B!GH@d5J*HZ4S}-bhjp48#K|Vf6 zbrAAUpBs#YiOFU?^&H^jZ@B@r#EhWjVPSotD;%GkY?+$+K5!=i6v73#*#>=y+S!|$ zSY2P&hkH%ry9i;^gi?<)ySN?3tuSCCQmb<*o){6k^#KXwN_N8Atk$(6>RrL|Jd&E~ z@~_mpsvJ!p8}-}@ZabJ*=c@~r@|8$A-O02RbLsTQ{TlMjB;K+^mkj|jDv2wheytMs z>A^PqEC`Na&$WN~!0=PXPe6vlfpX`-V%NY^B%i1V-fPc8_lVn%ky-_UBwD|i>hqgm476y3e<*ePc6V$n z@NQ7Fsn_tMG;!qLuPxc*WLyHPP>>+{yYp54dP-{ghd6Ip8VZWbtH`OBf`uOfTfCFn z)8uBq;`4-}k|yWJfA+S%xou%Wz2|nZi^6pGEL5o>VKPpC+IRN;SfN(LGyG)wh^Sk} z6?8=GnS~R{7+>_qE8a2%2lMUm6c%JrZ7B?W=%JdYoZqEjZVm5f2_9Z4rrc$;`w-Y> ztarYHU$lK~Q)F+E<7FK@H0Hq0Yh`HdgByaHb@+}1pLwOuuk|EQL!;2i8yUU+&q^M_ z-Z$tyXr&^INGA33wvnwkza~n8> zXEn+Z+Y!`hw*ZhVWpD-!3@Sc8_2rHD`1n{J8*-y#E^08j*#fgiicma~3K)$LQ{xBh z0!1y(9GEe0?J;7SG1N%@U>O3i=3+%w<5P*PM5`N7yH^&&I7^`WRQN=~^N#eth|KGNE_gkg@Z^;jdwOnp*HeYpCy>)JjsHm8(PuI>}8CjTU za98Mab$03qC=!}m9UjUM?iWWU2oYDWK>C$B`=;FGd;dvLE1iTdR-tYsUEzfjZmwna zZa1n=!4JM~7$~-3`004V;fAy;x~^dq#c<%8X3>W`SxxZjAB04m8n&?&sWI)6xQtbJ zuwKWPAv-oJ=$r@>TB2W|SWR@XG)Ct=I6a(vtI)8$exLR;%nE!h`HD+LEdA7D3YpSW z9%)T0{=v6TCaTm%)-e(Bfvj#fAGdVKg4l`;Rk&w!8j{GaxkiQbd1WTACy=5<8p8`s{b#Tp7sM~KvqW>(H@a10b1ut3yT`lkR(H?^!Ra=_5t z%8GelaBwLp25@_b5%l!p&7o|3O-;?2ZdX_HXJsW$ ztjaTI$~$^nP-O^g$%Aq>p*XiSzB0<*VrOSJ+%9CYb0to;!Y-eOoMq^GA)!=z3C;QW9i3c+KP&Lt6yj#t zC7V8HrG<7HHUn>LT>P(_^$T`9bPRg;HyR940$4qP*#CEHdrJyi+Y6x}{BcDu@=Uw= z;%EIQMvM+2c2c|IJ38-OFR-$=8ei1iZjUaJmV0c|5uU@y?`&}xH&j18r{&v-wERg76Y89GHby?;1s{*c)hW}i@~Z+*dfpYT|{3I_$h zfjC(9&CSQsBFtJCZ__!tz{hn) zk^j=qTeDm#W^0`4sdFTL5$$gpBQyzRefinOohBZ-N*dWo;X*wI ztSn)v4o)^UVemIDPT&#|5doVsLSeYDxcHgi*&;sJkQ!qa5eFuarew^*)!w|pffW>E zA(2v87zQ^FDdk2~R8%5W zhYMw1WPM>$5;=I`0}+R)!ZQRR4N|8R=DAqFbAtkJ5SVE)=&y}?etr(*0x{d-dC5P~ zfBXBJU|{H5csTVSVO{wX)`DNz-mJHppXPT8$^WpHz{maQ9x z)Xoq2MJ0I|X#p|~$ zzge4I())t_B2ONey}A?;J4hA%zjxZ9Gpn2UVW~kjy<3jYEBV2< zySTgiwwPV>jJ37hf!w!!%cx!FLnqFomR)71)m1p;z;4L<93X?R&TWl4r_a2y$aGlk<(LAI=! zsog(@y3B6L&WQ0?MdFt;3rAC^ewZ8R=vJtGHq~<0EpzXmTwD{AkffEAgnM|vPO0<& zKkNlx&DXx%1R54bCVFONO_T}YQTfVFZaCky6NAOS%zwvQ%vd&mwuDnQEJZZ!xc2g53jMe10^w`&*6fx%MUh&QMx*%80Eu$E$v0 zUqRGY@G|_Vjf4&VAraxg{KZMq(3is*4<}x{!WJX?gC#DRhpE~5l5~_Dc%^UE<>~DC zjr5A&#qJ)x-rxJ6^G0`N6b-S+TZJU4lPTCUSu4b^A1@ubI`)wK{haVEtY*+>>_gv0wB34CNeg9G5U;F7&{AX`je?JlRdX@TTE7HHyP`|ly zUOd{jG3nO~MW}wk4PlTgr8fF1Y_~V!`O$0XIZU>1v?DrA?cEhI!)>?y7&=CT#I7GSUwS5a9e)f@CZSAfiL7*5yd5!YTr0#IO)$y|EUhsH!Rs<~Qme7!ZXCf*CU=4tDnUka|=7 z1zC9s7#YmmtVYFZ0H?^jkS)^N zm@Xn1V3p1U-7xI;eOg$p;63M9?CI4i!O7bP;xExn=NAf+?l*O6)IAw1h+$n5@-m;k zGo*xzu>?N$RLj(SKnD?Vn%+lBN&AUMKZ+O4C_@nOKm^IhUgL?yUV@DH_iK`G(n z&KJLM>8dQATHrc~?DcIu!Ie(FkE8J2&UnG7L^b>=hE@E;y#K0Of!f>*Q18G8th6kc zjd%Bi+q^wIU|H+`sdq#3b8#lGLuo7-HLnu;9S!dr8A#J%de*w=Z{_8Wv3aAdiOp05 z@^Ck*1$!yFhflT%m`?nar@a3C;gs3%vprzrfz{Q zy3(glvn3OlNG|@pxi({>?XeXvTbyNSmSB%Q$u3?+_JO^)r8n`3Y?$l)Ffs4%)O|dp zgwlC+*C;BRNvwnGuO8Cmve0?))JQ7oItE4W+t_%ev8)AC$m%ii<6!ueQalrpbBX>O zl(3JVrzEeYh7QNg*f`hLTnaW=q=1b5-of&n9wEde!4aWwevQNilT4VT+?$D9*-T7K zFB7<}o~Rn~aB`;9)oG^M{zyxEzcs-nHA{hnibdiFPJ@(+is=1fqqp#*(a_MU!SnlT z<>0Nldd^>0Vu;`bK~5fiDgw6xNiNrk?Fe~TTU*v$Ay+WhRI*9VD3Y z`XGISJL0R!qH0};Vg!K`^n^8X1=T(|?9JynvqMQggOEjQ2_5BM`uV&n{#;Fg11nYz z1?Be&_NAS|+=)YUkddS|F+)xkOJNfzg2;MIj*baATT4yfvQQ(Hs(=(vO)cv5P*dtN zXmzkdd1(H<>rC?BuPDSpcvJfP+l#GH+eo*;PacfO|7LRbJXrh#GKZ+1z7-~ti^DRpg2B(>X!s_G zKfbdVDHmc&xGsHtu_k`@ln;Kp9G?%>4MX;iu(&fWISD4Ur5KCFXHEz!K1HaBtsJ+k zPYN|Do$@Z>+H%AzrSZCqQ#*(fN(o6wLwz_Q-MZh|Mi@yZCT>fM*^{1s3l467#ap2D3-gY(FSu%AWA!%Lo6 znl57e_0o*pfu3U)Q1rnd)E-9hW^Ly_5=cz*V6sJ*w}A%s0vUfTzsg zUeZ=nM1jjEIOc=*)k?-KnRFT+0h*54dSiJx0BrwV_z9S(C~#&%9*;(@d-dqZNE$S7 zW4WzJmWmD8_^=*dfz5QqA}cir=aoZ=;(+b>j1!q!7BRR+zMiP z6$WcHrbggY1*sv@8;2MZb$))n2wJ@=TECw3GE?m!bCx|Lo)_FVGvSeZ{S>QshaC0RmCmW)m|-VaP*S(oJDF!1;od=N|G51&8Id!TEt2AiJg z&sX>-&p-uWW9zrkqdEJ}qs%y#SZ3+!#_-5PkfQWD>2*WWqqtA&Qf&lwBpr58jyX(g@OzsCUY$!qUKt?xzz*O<_V~h|(NBREWdWUgtRYGjf=^PYwy4pEZ#)@-XrH zd5B#!4~aSnQLR4F+3Bv1$xm%>TUpJnS(VUFL`awJXQI+EuYU_wpNejE@+J3mq;K)C z4Z0JDYyW&*f7}wh6ni;HukdN@_vAB$nG;x!g0s9hA(ekr#(cF(z&HaJ`ZB#~jNnFR z>EgqUs(v-=(npXPOy#LSS=JLu7|JvW3Ml6$Mw7)o;!52Wuo^I ziXV{r@LS{APw!d*M}8!55jMAeGUa^a_2Ls#W9G+#AN)--zPk#rC$g3Yz2bs;2jQP& zcw>I+7od>T%OY@rnjQ%8Qk9?lLu+gKKZS%qou2k=`)se<KJD zhpwtQBMLfms;0$SZ%bwu!>MnFQL0u`-_{b-D%+6MOtw=z=)B{sT;y1OOJeNbft4ld zqx!9WD+hWcVOwhkmYo`Z;Ap%Z`3GwBy?}s#s=5P$@kyg!pS5*MVt;OZDviJ1f=2ew z!0M33Qcc{C(V=v=&hb9_%ugxM2uKIyCvg4Q3T{8~6JD+o-LaU{MYVdtEKDR#O33Kv zHSzHNCp;F*`T%$b1}&>}hV1u+g!EI)%*=X*hC_?-?^M*}CL}7%HpZULx|76@{C_I8 zKh-^|o!;JX0W=@pI?+yjqEQnZ{a;;<9~6`k!;7!D^L`f#2l|CwpmCMdjnA~8Hi<>5 z@?f3k;e3V|$%_sOY1e>RA>vopwTc)97N%w?3qHp_MSpm=i`RpbDht_*>N>(sowuFr z>@u?-C;buNdmJhv=859u=}x3`bS2w$;RS*mo9-)C|5*-3UbMc#`?93WWIg>>GDTe- ztQehY6^G9H#qZEbWSDl9REJ(i6){S`(kD=XmPW3LrHJd>JAZ#$9PaV1ConE&68_s8 zH$g(ew=g)wlQYg1jZ*{J(1Dx;9qHf5$m4lb#}QU00%@ri4ExpT@c<|?G%{lNd8iyc zF`*7BuR`{0B_iS(Moc3qLekS|0aGXHimxbXZf*`m7%C3V*)ha*>gdd-NjMpRZR-8{ zgQH_Y;}bEnPNTN+OTzkNfb&giOjvAXu z?<37AI_oaJ<%86Lqy=;J6oKco)=ngO!c6IY^v!D638Tp#+soJP_v%?AI{kj|=ygXY z#D~S_sLPxhKRDB{x9#JCj|R`*zw4;4|7%sD`PZVzV(>!%Cp$h!kA_g!l%F_04EO(v za6j-|&F;9^eUJ}N7>}nkbm@SiGV;&QN0-m$bh20Yun#+yR~Y9ew4Ll)(-ZO649Fen z36zbR+vV^=ZnZ4q$eXFW*gT_o&rHkM}Sv)0V?Sv9X)*=78L`6>&@ z(Y$y+@NTKRKI;gOTm7hIyP<3PD)OTc-vK5FEK*^tfbgD1N`7{JnRgneq5=V(N9p@6^*d_-A9Krg*q9-0~kEn#^BaThjwn<9lbDnFe8H zkOx5LM1$~m|C9cakylXl=Z-~zkcODW1XEO|hb4N#Cj=5!P;i~+jx{Fyso?mYsI)2E z73AaN181|%!yPy1{KKAx%gZ~&iD8YI(9;fQYJY(ie^-YwdmJJqt+BDO`2sRcDW5&V z9UdNzqzD5O3@{}Ez?I+C5wLpzBu;$r{pGVaR903h7;M0|($d~pS{l*@coDc>E3K!~ z>h#$BMoZ^4)3P0Y2T`hxCA{TpSk$)(d&5^*RliujuwdUci!VvNZ@a>^`}K?utzat= z_iy0obgyi0U_}PDj7(NBEdwKC%dB_)OUY+c`m4|XQdAU-dBQ-YeO5|6^ zOZyt&W`=XpcymokOFKZF5NRrT<8-7iDRvkQ7fmOuW@kH^IQ zV9RgrMLE8Km~c{G;Vt*;?s%f}nrT({li@KtQZOQLo@6dF;VSjsC-U^A*F{&C?AYl) ziE$Zd&f4Ew2zEp?{0`qXTQ>?(e(K&D=SkwduNGz$Po#w zZ;PL-uN~X)|1^{b#N5nz`{t{@(a(>GRNGmbqk`}Z0-Q(Xo6za^QO+w-#Eie}pIq2x z)CHt%{cN5(VlBFkTl_)d6rlcGW3I1fc41OjQg_w(bG@R!Q5}E=Q*v@-nW$4WPMYJN zFmSJ=@3@Zml@#BYYb$3`QpJ6jul4#CbM&v{?PbZ>aKUO^nXlSPje4bzbY583?|gF6 zj9O_Ex()l)F-UcR)C!G^CBDax31Icp4_rIP`(Qj~2jUB5Hbw+BtRi%EbpIr&iGe2zu;_viS1V-$}GOOzrVZkhqk*Tzp$_afaxZ^Vt6HRsJ!4b z-qaufT;@AqZ2&XK>6k4uv$3@T8-?k99Ekd^uPy<{$;a;jO*F9V8#_DS%)9dO@%6*% z!`Q?`-i;3-2SI#5ZdDX0Ffd%$xsAefkM~^qVdMja8wksL6OAAGfX51N?)>K<37h*2$_g=k5Erp3yO*;iv*sKRvGW84k?ySMf zbK~IKe>lviBrwl>IEf_6b}{d#Ch*dUP1+${qRD&ncMWwNArmh=+Y&^;+*@#|x#cwYqvi==WOf_j@z z3SaAp{ZhB1q*e*SPNEkmkZfv_{0>vl0+KtRA7X=#fXA8?Bc1FPi+FVvs2 zvcu}Fv9VF*G&C(n@04MUUGF~rtRO&M&^B5S1*IoT9dib1ISZxa2OB7;4{86{-wA!h zJ?NL6C6JRB$ds#+`!G*bMU5tB&rEl^J+cggkVneURxQ0PgoW?fVRYR;IfhsoF1_cA zVQ5RX#W;&ZIdwMCcs&4(w)`5o_4=XHT&-#fwW7Er8Jghrod8i+6ciMAK*_)ySYa}& z9lzM%5vf9lu<(Ad(0_2{=)YUV9qFU?$FeV4#uR=Uh+YiR{lYlGuf!2F--pT8Uj|4+iueSBi37LtRw(kwmyXa&Rvw;tt;O#_iP6WyJOnl|h3P4(WEI#vtT zxZ9TVvcdA**pUrSCNO2l)d$c}KMM)v)QcXRm9bX5&hva9p4i+m=J;zwsV!TNkv28R zlb9dt5bIg#JXdBlM|1g4J)d&bB8m#%!q#663{On9{?3_5vb1pFm+Y)X*aS5HHSSf* zfnR)Onp)sF9l@8E#MbF+S)G0AUq>W7J_cNGq?@H-x2X8u-X1lu>lPML59;BIgUKO! zqBp{D9=sDl_yC5l@-GTtgMs}1%WUNF&@nJzHSt}6Eh;L?dT&X*o198wVRaP^${moK zchKIA4zI=_0^aLhUYDH|#-_8f1pT{L6L`I=YbPSJ(aX>5glf8i$fDZ?4h(|J>0r%Z_SC%WN~~l zY3@>LJt^2$ei$1W%N2?4zz~HdD=VAL!ax-!#&Bk#ng2b1@w2{?#cXG5+Be z&Zbbiz{W)oLm}{M_^L@m`zG8%*(Hy^r+U8$ULiHs2eRkM@%*;U&zBUrQ^WMTZ4?6w zS<<{>Cw3_nUsB}U}PU2m1DVxj!jPL zgY!L0cGvXuv^477Xs0u@AM-6%`dTj_qx2 zkx-k7iAgTyBt*#}^U=HYKph#dwq|;;l2Q}$h40s|UqztGRa37pAOAxN3;ai4q`DKt zo-lxr9H#5cyugf_8gk&>1LT}xP}fdMPOdjzVpvpOuIw}mj@ur+MvC=2^bf$~9TH5x z8~iB%G`A8P599d7*~AKeHt%gQrq@L9E&O)FF0#QtnyaP|QyF9qiYdK4zM~nP=d<(T zU8Lsc1LxCdrQBhqk-4+awL6Jxn39472j67I`V8p|KKIf7c77kYVF08dqLL^)-G4?{ zcR3a`Lvfr#BKa1cmi7_uT171JyV%C7Q$*b)&Q|-q5mGY5l0N;r18REo*;lhw3AJwS zl6>9|a~?`AI?daP;D)`jiUUby}jtU`9b1qsWZ_i7N%^0 zn+QoU+cFa|x=-2-j$WQpy9WHvxrkVuE`zmS7cy+>lVaYvBZbpeaB@ictki)(GJatS z-$n3%!~ERkKDl=ejc>oz)nU-n^!(7Aq}d14jU;Ezoy_BBlKmcGqUCg?rtq{Wywx#dcCH@cYKo-WEB5&Glssg25mT4?{ z(=^!*Lk{}^>_$*CigMP{8m{oM;lBRsZF2^rFB3bHqVq2RaLWR(pLkRK3oF6Ru?s0t{hpM%*!a5W63Qws# z>c+U2UzNim&(6+S|}l%eQR zA!wtv z5M9aAQl^q5UK{K359j09rpkB{(ffy5;+)3Z+(rM}S;i%p(t+{i_qmmX$fTrTFcc`~ ztAbip?0WuDf`47~885FsRF~+tt7S%P@b4p%lk-)Oo2nv62~a6sDF%eM#IT1+gVLlI zDOaR<{8*7)a39_W=`N?t<^(kMV)JpX_{2m-u6JhbT%i4i@@LAk#133XSoF)QX3aEL zuz@`R(u<&+MC`<+KDuqD|8z}bgXgs})Tzh{E{D);w@tk4rc;+2T==aRo10>ejm~@# zRX@uXGrJd|)+f!n5Zx5O{mFQnHVd0xJ1wUxE9WEE13C-CEp+|tv@9%D_xF3JK=3xT zrtIqOhX=LGy^>-J?OT8d8^^X1U+jd_!mPU+tp9rn06=Fpc+#_J5I{GFKLmF}(|79B|a z*ZuHN;`|eY@_=OzR0Bmjy8%)PiZn=Wee^`-XLkPQ&o^vrZ6hKFY=pJJ9x|sHX-=r9 zm^ShZe0xB$C9Fej9~2ddt5j93C_)RoVCn+=lYLhhnLZ zG|Kx}O&T7U)}SFCZYFoS&kExC2I3Fb{{yaR*BVD(y-bk}!F6UvtN(0Yb-roNhNsjp zv|f&Ob~M*_@Sf_2M@d|4GG250PW@et@h2wn%;4Ll=un_8+v7c^q(2Q*&NY#k+TS5> z-Dbx{#f3m!z%0LPkG^hG8|bgITJh$EZ8H3XH1k#OcuJ8TQI6hDm3&R_<+94{jrCkK zYBDfVVn_+U7h!);&bi+wi@g61PDGx6a}`gzq?{iQF#ZvTALE;jIvkl5S-c^b>?Eky zrFNt=kRaxrUC!z0XNN!#8ph3y$8-YFcn8!RFj)N<DYI3$n-V68t$x8yBJZX*s44?98X)!=qHL_XWvdJE)-N?j=L z@a*jDfH@fg=@U6Tzri112fXT40t|toG*j;ybakmwK^)}=PXTbFFoEzZ5hm*$8j5Xd zW`;+WeP*@$a}j^^tI3eI^F#R$o4|b_eUyCib9w)yszQuMl0husmVJUZySh$?Q2ZzX z2G-PsQ^|zXTai=(20t`*F=8&R*6j!usVa*2wU#0Ea-RvwNvm*-Kl~jzBeGt=b7;ie zEni(Q0REDf;TYGnsXFw{2*4nCZWhCv;Hj?FhV^3!w6vtR_fYOYwOmuo&CF*>(($o zTRka$n4cZO>DI8rQ$JN3eo!w$Tbqz#d)`G^NIz5GE%efNjQ7czCFR~Ah7!3X@vdxC zcp?iG$JVadhxKUIo-ho_)`jrx@KbfoEzCQQ%-!5KBq#hid;GeU7(wU1P)p;kdl<}~ z9#<9NL*vF*eRKBS+dH(j#mkuU=MTSr;OD!P8V?Ihisqy9A?Px!M7$rXQCL4cM~>xG zttbfC+4NV`Ru1UX0i$V|-z}PD`Hn|Z>ABAKIu_~m;TvP)Y|Ee2dLAO47xSxG65E9` z1l*#XZ+^WxvDf1Sjv@Vv1GB6>wSit~<-$2^- zNF!k3=_8bfk+IThwnCk)rKQChxF8aFI^b=+^S76RS(#ZG*13A{$`2pprqNSj2mpuK zeBvHh3P4uqSA5oZq$dVH|2;#)wc`w9Bu)&zLJ%U5-Z&x+wbIei_au3^e<2(rM@e2o z%P+S!!26+CRN6@M1rly)i^;9E$~9br`&EK*Lv( z^3miaS)k8NocDrvV~7K)><_ETlB@o5y_LdD$~g11x?WA;${nr=T@$giH6MOnt^bUN zpa*uzV|KV4E-d7d;|L->6=LfV! zrL5lSy<-Eo^;*l$7D0T%@6XxAme`B+J~ST4Z3Jui$#`Wjx|-~MS^5Z!HWo%qdJ2b^ zOJog+HGl2@(G%aM4wf96Rz=@Tj8pLt6u2ajtZ@nR&KjsdB~PG~x^}&Z*^8O5!3eUV zPyg6|9cjp%C8G#!2TT{O55KUBiWd?eFiaoo*azZ1`n@!|;~`_uOw`C?%1i^4KS;CH zq#8U7ulm;;!X`1?0C$zmcC?H|))>XmwD3lD9G@iZ6-S$Uj<^P|nV$a*-}|Thoh*;< z=G`*C>SSib+;|2mp%GDeRT$SToK>L-KK>WSni=U8P%+MqHgj$8bLd6t|0rD~gLn;G zZ9G61BWGhCf`*DJWNBH@Ev^P%#lh;}-GYMdNp|K}U`~o$8ANI+>5E8oc7!Q!OVWhF zy_^Q2p}@uXoS&GQpC2ONdInTAuRVQWiUZfp^t4hEpO|>WG{goeT7d5;hF}87=U~=Y z8D01|1{8nIkY_tFF~p7IdbB~dHLcjd;llSVw(~nq1g(A2WXkIoy9~sE1!CW-qGc+yvqoQ$;X zHf9Ufs2w)4(^c>9X|6vCm0G5h#CgdChlvv)8q!lCg_z0p&0tzg_d`qkXrT~99~`sloQVt z1Lgz0WNhR3mm=Bdk|=r3SZ?n7H~-t)(a>!g)P$nPCh`GP8pLsa5g3BukXjKKZ=N`r zxX{NsJHM~BpYncah~+ic=?j-DL=1s%WW~Ky&GBLWN@jW0*rk|AG*^p&fw3ZD{Gyl) z<+00Y-CsNE4~G2*{!C&w2?wCzRaQ_Tp|%pMcj`ClsdjirTr04Kms<@cTPH{xzMi9N z-&ey#QM_b0_Xol+qpRfqj;YJ|Ss?$26cZJvANNoKnT;!hgQ{@@5K}jm@DiI!GOVj$HC3QTQ^ioq(A#H1vrTZ!PJ%NTRO>}|^H}ge6;;va^CvK?m1qu;Z?khy%T44f70d7Q2sDKjfAXh;}M+aSt zIu-P3AWl>mN2dpCzL}XBozii1^L!*50~t66z%J34Iwur7_02lCimF^rxsc2Lfh$f< z&YitIh1?VqTUfASl5-=&zf#SAjqq_mON3l>z3+=IREjE#N^zRkg#P7%IKa8`Hp(!S zVomc}?7;bBQp^)Onp-q&)ft^{=vdG~f`fI8jC{j&@7n@hQd5k+hxP9p&i|ZZ)XM71kGoNl94s@>PWpTiasLD)DM`xB7p-*9o zP4;n(g-@)Rjtx68jau>IvcDhSy$~Fvo|umbsduM~HsX7es$_4%7#RfXwfMz}TwlJ9 zh<2#U(VY2&0gE3*Bb4tZyeGI=wL7njR&A9(@nBzl#E(k)x7exuzVq+*JDF!{b)Sf@ zoU6$P-R^O4)A}jc5~eZ5ICc zGgbCnguou*=pwVLR#B1sE8pw5t1bTBw~tXJCJHe(9@9ylTR}1$2ad8n8Ui#4RZfR2 zfW^Ys{|RX_2AOTEhviC8`xV-UM!`tENLvoKgdwLX|X2AwZv)<)xhAYuL5HPE( z7w=?X(DFMSAX9DC>0^Nf3+xbBuc|uDLV_N0bvizdJZOBtoa}(KHzqC8)roRem_D;g zQnjgI*aw?PCMLO=fqcl8K+-FrqAqvbMj+G0fW^WTVu;K_g0u$-HdAuiz>E@LDo=LR zIVJf&<(R$MT+d1M`Jrjp_$M{$>>M|jBQgn$=*rbylB3%sfIFD@Rrp4oW^hgTgj z$)7TsFt+HG;y(L+59B@K6e*+gR-G2g@>PtY>C_K5c&ZyfVVBWi9IRA6v5cx<$7xjU z_(w(|{Xx(XmmVZG_yB2{)}ZQHtS)+M36o^fhtVNo)m2zj0{OfRmt`WB>YQe)fUuMJA(M=(!w_4Hn-R%3|#>rEhDMkvdqpw3+nK$3z zZ9Od!B4f(flJ5&j7;S6;&GU`)`tNfj>+3FF_GFPasZ$;jH_lMlOx{qv`_78dsRWby>Ux-5uwMl1c~<)xxM zO2^oO)wpq;qn_vuMKms1&mAQ84YCwEs0zvEl9MClts}H`YxzpYxKLY z#WW54q5OP_rja#OdE38A+`@JMH(-A+0>9Y1Ul2Ava_sIaf0z*-b3CxkRjWv2$XCV|Egm2sh@psefzKF2Bn%ODK|qZ3Yv4kAvc17l3e zA9V_qAhm&5)DPD3f~#ZkKtmA`69Yji0=!5Wuek+|PeHY*QU=&&rkz7bR-Lr$`MU+W-5y?%Wm(7!xw<^oc69jYSC3|mb9f<<-pua^H{6Bud2{m!CG1{- znFmuLb<`hd@eK@9xRR{WEwdH`KDX&b^eP6J@-)A*?%$Y6|K?=>DMX1#M4wKdj5*j4 z9*dCzt)M5H_jFB#57bZ_@In$KPGiN|suxVj*|n@=m=b$mLs%H)Jv1KYC5s2KKt|(x zQ4u;!_Wv6o$~vQh=6ff)qL*UyhRdXpvg48|LTYjk%dmG|9y4w>9mJ@&Lb{EWWl1G+ zc4|Ymyk)#@c6JGk`FtQ;{_*a`^~sbiA^Pz1CSl&j?yl4biR0&{x$7T592q}l1X>J6 z8SKZh{IOk~WG`)1N)bBYvoAr~Qv?hK^h>iH-Fg7>MPMkMZd> z`oB?#il%}vz~-qH->j+0VXv>WlLA46u+DcqWxZ}7n|pv-f{;jl^7v-+qJZNLb!sYM z;fPtU&wgqWKHoF(gN#R9Pla&M3oR7%0<D3NZ>=T(eh}RI<>lo_9gnLp zzsa(y;@hCON}|#QQ??ZkIi5n$5tUU*5&pxU{Z_$WXZYl2oEXr;Ebr5>-L}WF?>EzX znsF4@;X#%nP5uY?U;~hRRpDA+IDUDL&q7yEdP=NgDohwSX+ZPp{CYFhwCAkGsjiA@ zdgB>FEc?xWGG?(}0XiTv%}nv7p4LGaeU zV2YvK;?21GvEw?Z&!N|^yfouiajiSP)Wo0xol#VjB%`)-UiCRf>~=hcmhdn>4(1)N zBsHF){Z5J7pUU921^Qp7`_m(r<&ojVjZD_~g&I_ixNZ93PjJ(v5Y*_1ZM<+Px5C?) zGGOJ0r%ObpZ2KFk@LS#LUz^5Q#r`Oi>KD+76OphbbV z1p4tG77SV{Dk{>)MwkZ&goQ~8cVPM6`KIk>Np5a#u~9Gi07aq%OiGqhRX2cB-%Z{p zu>kfez=&_`mpg1v*+bGxPU^s%-O(}Ojen(Y@~`E4Pn*oBofa|U$0^9whuQ{z_mXcq z;rH5rBt<-?CKV)~Wd!OeO3_O5y*-tnAs2zF2K<2pe|q)Q;$*2fyqCZUXanazfPvVD zr+B_QXk>&EHH%br+7w-v$r-OJR2sjZ*9mRB(fUdY`u(rkH1$D}m9BU0L_w(BFP8Q+ zqXoEQ<~Wq9M^%Pt=HGHbeA%C3eK8=A(HMA-RTO1(Hw@g|wbvMx(>zRwi1-Zj8YJ$(>{qL1Onu)R3sHz9o&_oV|9*C1LVqtOd#&_jNFOZ}nC18LiFx{tUrVCF_z6Tt*L6)mU*Ruop zZckcZ%JESZ!Yhl5iyhAnOmbah5IS66kahvkVQI8It_3yq2L}gL$8#`2fgy*Kj7;8* z4cxXJfhPd3M%7=1d`3uSNXdMCx~?w??zhc@rP)|ow#Zn?%*;Cw(-VDP(#D1h7^UjV zwyzvFK@8XgdTlx73^krFT#)i8JinGW=9mATQL!(-qwU%f@k+O;zq)(!ZF%clU#mXV z>3Z-OTIfdS9T%BQgU zoH#t7>C4X|Y3ULreH%@p9DY3#_v3(2*)^L&5=tS~e~6&8ajX{UnWQ;KN+w}o=6v$l&=4fS!&2nV#9rr!b)8? z-f;45Z-mtE>Y3=3Gq^m=@$C376`kuX)yG)sja)|kMqbXdl$tl4!~RCKfP;zJV_S?^ zZx_FGf2HhEZhLOd4=Nl*&xe?VfwB^jv;97fR<1AR+pQpDhFGN!OMQZ?wag@dpkEkdD zU!40hEE3ue<1pOauT{ho0^!R9?q|pTzrf>6IYMwl0di-!^o2TDFjD=`ySMSj_4okQ z4)$iu_cd-sb%_9)2--v-)_2d(%^|=qBs!YOXw}HfEJ(M-x4b)59pu_|b#>}(7}~dh zECuJ1N-%adSb@mg!a~=`C{s>3(4h3NfHwQ*k>;droF?HmETD<8hrT6Fcid`e_xXVy zTu0P z!oOZpje+bfX>*rqHA}^$AJv0n_CIRRirj0Ba*u~-9F6Y+zwX8>-nt*P-W~?0zpK+x zsRi?K`wCunPBj!Wx&giqSQZF^4UB;fV@;j%y^tyU)i19TqcCBEQdGoQ=EAx;@cNON z6Tq^g-XoUp{ciRHA8mc#&U1;g5188g4fm=I;Q3?w(ij~ z{Pz8ON2f%ME2;%CN44U4Ka|}s&0(M5A%G?O8U?yF9r&6=Pl|4Wboj2_iX?Y-9$R*^ zPyQ&8KzpoC@!J(THpaq-g)e`3{Y?xQv0WF(AhhLG98-99+9TE76oTS?8U8imp&h3E zqZTvfk>4}Eb!9hgYUfh!6)m?(T)3=Zl$qq#wT1iqBpbKOuSvc0{^>gt>-(a*Twl`P zGgnr;E4XG2>k$6ss<&rioC$dCT7t{p45IK5k8(R6P8S*;taWmIa})2ErDz<-HRKOv z@-qtbJeqXESsVbAm>*r9OaWdeHH5`6m*=Gtl906Y^k6_7O{$BzI3^Yr9yvMmom_|y z|9;;Clc|QbO~@pGwiM=Xxa^V1-9@@BO!qbLkx(U=5e(~n0^cW~;AgdM!d(r>4#_w{Ai`t(3s=`QPASU8MC&7<)iw zCIbX}jhYr?Vqml!uCveH7nvrQtrcgG8uroXY12i+0|sJ@*-{P@+Y?DsbMbkv2i!+g zejZhS{aHk7FiBLs%MEZy*zqJI)?R?761Wp@T(0g66N$8moWHBr;UbbP<{5fA*I3Bd z*^y5K5~~2&2BK?U%Ck#4MB`X9>b&CBQ zlp`Hqn8JAvi`VPU;N4m{%6LFA?NA<|YV{0~8raA8XK*Wm=6f@F(sxbDTB ziTLYnJ98{;pHJ5^1RR)o)!&Djg(U4ZI4mnjSj9dcoQa~ZdAt9s;Qz^7F7*6l9Zeyk zSBJC6x=Cg!-Jd^<7ij$bG-%WDvk@y`}o@(U!^`$C=^ zn!}~%IbPvcsX(wB`|RMHc`xaHwPUyh#=AhSqafWmW85I!e^0bUKNahtn~JW0qV!Yu zGgJ#+Xz5;7E2BUw2wS?{gH=U|4vSFB>6)g20erx8qQf>fHuAzFpFtUdG)7f5tU@Lj zDnRTZqNWDYj9l4&zmuUHdi)O$UWGdryzQ$XhHP0{3~)mj#Dn3baxW}xZ{5D#G(1cM z|M`F3GI(Jj)>#OGoEF!HbI~nwF@dWFGMqMuhlH`q6@=wTOI+C0CbX@jZgiKmf{l=6@^^v)Cl)l8)Bx><7wLM&oH)k)wyQ`QZ2rEbEBX00nol;icol_VZj6RbJyell%k6GM zbD*_F*_#C<6%_|ZY)Kjz^b<0^e;57!+eXqoWW$rJaSQt;vYOuC_~mCYuP(puZ^hpN znVjct__>peE|1X@CUSBK)995>ESx)!_`aP?8}H3_s3xOS78qL1$2sWj?vy=4V|*<>HKDt9!;2jo5_g&d{izB+$3qMldQ1*D#TNGdY z**@7HsEn4L$)8k9J#MvZb&gS*zlb%14v|TKW`XK# zrP|dk?D`kNj#W&vA}q6*r)#N5Ozagi{g+>%u1qpU@9F=|9q*bI7Y#l&7*s}l zSnt0B&MJW%#}B;&V#+#-hngD&1KBZ|JmDENDJLK~su^!ri7YlBRlKCL-kNkV*Qy}t zskug=rfZvx4&Ftw!D2?;WrS>5?_5_fJ;aRy#Cp`_F9ohkM40D&BR=7l*c z#x9A^oISqHjp>Jc9iqYKrnlbCxEi$>GG`>bSRr4FRN-Zow^~+t0Cfi`7mBVcq=W1- zWQY+cy_xRUK8Hvmc@2%+aFS9km_;dH*rCD)Y*V>^eB1$dD09Bf4TP<&Et^IKCj4G> zC~H__qY(1C78KM5YXZMEy?OA3hp79g+T_AQ4q`SnA(Pt}2q5X`L!j-458rRv-W~8Hj?l$X#o<=@NQpv{d-Y{Ch)$iz#X-X6$@5qryVZZr=P4gCrNJD;h zXxF<0#FG{WPGqrKZ>y-b#4yKtP~yD;YDIsRs`j41czavqhIlHfs>3t`Me#?R8`6i{45)7qb7p`}( z4hPl-su&A**BNs;r}a61ThyZqe3Pvou~%XQmncOeo3YBElil17G^Q@rHs9O4oS@y^ zx<{hHI##8&aGusvw7ROjv&k}lo>P1 zNaXwS#ge?;Yk%0O6X9#uHQgr|(ao8Bko3+St?rIBo0s3m#+thgx`&(J=0`)E3g6)! zQB|yPRy;rK^|y*-;c zr^B4_QDBo*SWNl?aZqCRDR?|zU+l}~a%0E%fj=Z1Lu{~L9FPcMVPR#(qnLE*!vNOm zJ>HLUmN>BY@K(-MDVGq|_ykju4w4I9TI&3-SV_eDI~z|7&$Eg>OzOIC@q4!GPV+(i z{R53-LAcixu zn!P#W-c#}Aynu4fyri~3*&GH7`QvvquT}<)r`z!_GY^%__)M-po_4H|E%{=yLJy|I~KE|SQE59d^jlfD@egcP{VY~P|MZ` z5AGYHYT(omTP6i07mlQKjD-`&ghyhabf`ShB9$ZR>dHvR*Y;LgwZmDyoP=%WS53^0 ze<^~xy8WY7&KsPc1OnoBHkmFyZkZ`y4Ntszg3eoirdeugXBfeErA8LjGqhqikTqM# zYk#!~qDz^t-}DK166+W|8m5*nSgL^hAGoYM7r6DietWA{ zV5L+b{ogTAcq1ZyI1YQHA6F$8(4HL;9b-fiO15^tsgexD{berQxddP*KNzNE3?1EY zB|N5VsM@>}Sb}!{>LKlmX4-zydDr2L>jSxx?fymEKJneQK>qzM3kcZUJrh-osbPwB zsYfsrwKjf6=^9NhSnM4m9+6ZsPe2WWT)IVIyuAtPqt;HloHV&o{f{W}T6P{F;Dd&^ zM{V|ap%?bPN?(DFsy|`1Sj?kG^mc1)&JaUi^6;k{bi+rNOe&SKSGxp7&)1|q(_#*~ zz8?I1_T_SxFr`%4S&=-JGMkFVF%I9Jdr_l}UfFW_iW9Z5ze_D|4ZaDOB~|9{s0O*)j5Psptrz`t-D%Ih zs%hoEr;|YiY4Mx3YpuDBfBx{H+(ZPHNPY--5K~*0AnC@Iz1J)oBHjXY=o`8%#q$_< z<+ut`$Ex3^fvq>fqof%VACAkQ3A_Bo0xqkC#Mx4CYA;mCAe zf&h}Z+`Prt0*Y4*sxbesbhU-yv{r`QXhNE@^;O}A9>wG4x9;3oIMizP^=;C5bK2IE z2L9wA%>jGP)6?l6lcIo?q;HuVU)xY3bk_B-`eX{0_RWl}piUXEeVfJT09|s|4B3bU zo36R|m~_2U(wlZQ{6C-2bTMgywE(u7;lov}fHiW$HPQd$qxN1uUNc?$V7ad>WvlHC z?%Anz{&H-^&)I_2xk%4v&6``dU(?dFgeWm8#ykqHA`6MX>)q@7(+|r@dL!p3{?Bn+ zmzJo~NyXNaBEl!#EUZjoA4|q^M}QvFTf*VUK~u)~MTe zqCV^HpX zHwCkCgt1r{T%tOZ*OD3Y8+h7 zbin_C<)d)mK&6#-H^CK{2LWHga>ThVFAo#$*fgnmnDjq@5e7KbD$G!-A>%4J^;%JH zS13^eGzFJiXIV^urOylv0PU|tVM9FNY~wKI%&nc>ua22K`;Aa|O5mbsyluSwM3OFG zRwOeOlpyrJ3UqLQHPn`f{(b31b3hBzKLsrdw@VMKnzLvv7dXWVo9P7l_N zfddy@2%)gzDHVHiTmm2I!`}t|?m|p!_v*}bjr0c$w81Cz zKNbc1*WMubPg1kJ0UKJq!Bj1#PTZ&K>-@zO9~tvHz;*>h{!)AT>G-~DvJ>QM6h-#q z@Ah_=zP0D@7ylg@j>;GW7NLQn+}k?Wn9oSHML_6&_;H2M8V@Y*PWJaI0g@)Jxihhp z>H$uqs~YU$NOD49gLifTMzPz>$E8dOXBr2Jd%>cKM%l_lbCYcZ(}H;CVfRm#y}R`T z0P)*FXE3*hnid|%5DJ(EZOjDt(-c{o%tSumr@^2g-e?u+_%wDr$Z4~OI-lBM^{=7* zx9Yl%o<;Bu#UBJxz6AR!$<4m+=v((R`yC{3gjNLW|DC6qhB2=OXv=E`1h<;+@qqNw z%^g$faGt5yBaH#QxlV>#zq9Fl!Oco>FM>?R#t?-9ug8`q~9&>pFRW8mu8rQ zA<`KmH7#w{nGMz#x_Ww^aEqno`Xs@c698|Ba!rUl_AJV3?1|%G zrjS*JSqFyH0Qe2X5iid+y(U0-{(fSvalav|;sH(-&#wBOFSw4gNnOoP=S+%%N?K>4 zaIvdHBX%P;JJm86hBoF@|AypX?5le^#>Q{zAFk2dBpWv6#4+GV5_CNyeBYN$d!Kb} z_FcSIFzqWGCx)ocU4lO;?q9SUuNv#Me=g&9C(Y18pU{Mm_JG>cf5wRF9l_$r%&|nXUd&@4gapOY&cC)2E{;&p}E>r%~)$ z_?P$)r-$=a4|}wKR@7iWJ(~TW9L5H?%6P0wJ!KK$4nB+$?C8HP%uhK$*x{lb9sn(MvL#5bW*%Fa^RzGnEvpzUKA_Mm!MV9ID; zZGSjc_JQ%#5x%wW+4!GAPZ%-%nWcafnRJ%XjXdL6!@Y!0M~MZa7L_ zK$?)Zlutv4o0tjA1mNT_lZ62#9&A^3_RZ8|wISKZ*Y{4h{&<7CdpEnO(n~Pwqo=2@ za=#X!Uj)}wsjqxwaHy>I)S>EvB|ru-le)S(sEZ3VajqPEfW!|7&WGcNJh4WIN7f4> za0@^AR1aKir0vGnICw2mmN}LBdRRXjbT7%g4onob;BvGwlpQr>3ov4K^KHq;8U)}m zBsyMVhw~}_{)@tI>b*n5hCANmdA*`R@o2($0~#lxDI_daB}}=)R4{JiQWntrw_X8_K3#4 zWZN!_$Y#ZGVvc+zk~W1#0*|-9BLXwRC}l4uOm{z;W9_=y!{7DCF=^P-OKxbYjbEJ6bJz*re z1+Z<~G>jBe*<4xw6m|d6$a^3Ity`vO?W38a$KYxp-u+DrsI1>y1PC=~RU)nyMvrHZ za&*d*8QJFr$+iGrC zB}03wu&Y7@wK4cSkVzE0Ns0_tzZzXy5s8)*D^KZLYo_Znf4!9nUZm?KKS`~g-gTFq z@rXayJ4}L<4_M>{yNXlnPDdE-tS}v2^PP>7EupibP57Nr+j*WHyMKIf5iQ`Q3)+${%>1tqS_i$ z(9kC`hWz@9va(jNbksGKklt^AJbIWrQo)x1!VMk*O$^Cw$iNbNPKj+fQ#Zb}t!HW) z2oOulKx9Jt_+XYStmj7Pc8}}9ild$Jo6Aixu{CpYZXO&)RfR)rN%h;u zwn0N~k;N`waGA@g|E+CH1&YvZbKLmOBxx?lXu?j4kMDV~?$fNVCuh_o_W$MCUUh)6 zT+e4ToCmAfUs)my;tnRu>`U82P>zf8&T-ZX%v1Ab2)? zdSriOixBf#iRrI;MF%o;ur#$Wl3fNDj%HZFF_(6IM+coc@FEwxV^~c&Zruz{semVXFHG1w}>c!?j_C?cI9oj~{&@i~+nR(~n-^de1CyXxEGA>ZT0s zBl#GY>X&QS2vA-%LNph+ynupb8(U0F495QXW*-dnafdPys8~?(6V+0{i5gTl1>={| zH2-UkYPEOlG&?pv-UQ2XzyqvG=DwptqwOCM@bY8D*l)Iw=C&D#MaX6;2i=>{=+5O~ zE$*KJKOCn}TH=gubk-v6)Jk#Nvdwwvcey>bIq7U!Wp>>2OOl#dj|obfh*VxmXm!x* zfx*{@%RMZ@W!weKZCo7V)y~3aW||pK*0%%Do$D(Z-X%}R7;kt4y<^-Th=_keRJkr<+sxuO z+}*mTCFpM(?CZ-ib3Oe6DGY=kdZc0fVsmo*QXPVEM3Z{+&BxWJfyIm8|uC2ufFUI7?~Wy9MHB|sdIZ)xyr)8+t=|Y=6#nqN>rQ3Y&L%p ztL43V-jY1=Qr5cxdpcdDIbN9+41e>!NC?cpg9Ia^5|!+z90~NG(xJQg-derwKD9-r zYYf?YrlAaXVMo?cbKU?1^cTVJp4>WXcam;L3jC@*Fq#}bHahJ;R)4~dCg$b!X}xu= z>K<6uQvjIA(rl!Wd`Wzo3 zyMi%IiB*6!IlsJoTU%Qj-uGBULdME7O7)AIlDbQVxmZ_(BV5s>a~kd*H3RzMo0q>=7U zY3c6nZUN~A5eZ4@M!Gw`eeQeT8{>{~?{IhyoOAcy|Fzee^EYd#0|Eetk%1}aD#iFwxRHTN&g}V)-uW^d?l8q|MO;M^ zQBdHAJQI6m8pXBa-0aL(%~}DdwV8iv&X#11T-kvoEgQ5{V%}Bs$riQMMeqBofqaR@ zm@>~;Ob|8q$i(7#=>J+uWNhF;xXzP*+E?2Jy4?uB?OLTh6P-Bu@H;<4T~piipOZKl z9#~eLwy4oNA6V|!eu>kfxLOcNFs1pD1cYjEny$;e7Zn>J7EMVTZ=Hd3Myv4)ZnT-r z(6{A_b&^A7Rl{Z8FK?jI`3ZR&o-x7wN|J`3kI)+Vxsv6&bH$(KhB2rk)EWtTvJeGo zis(+iTw*RxY^#v@#s(UoW=m(?^EVk;%0=}(DXNb;0&6dfw!Nc*7)C&s;o>DLx3lwyfBf zg-t1(>)hhYV~iOWk(s~4^RHFjpT5!ky_yQSz3L+u!EW>3R(MAFNYz=F?ovENwbbQ< z6K-jFc}DP)c$|%$T?_`5v^P2qUX+8qy(nlk&DheQg#iXs2Bl@#yhqSlnzp0?ve}WUfr|j zh9Gl}%PKi>^+o5~@iK7O3J)`IVc=eyrJjz_K|$pVX%5>eZ3+FhLtpDnLnvX>$0=JivfoPE@N%I;n_KJynaqcq&GcN*7$@ z6e1AXI!s^2D4N3oLizFX)j1o%duFl}X8kyo*7pcX0Fh69w^7b+WB8Q}3jgYZnh66g z7#qe!q3ve;Zv;{SE0=l`B*@L|j=68{$!`cK$+t`--fLn(YDst%ZsYaAv|9U*opB`U z2sg&>#wlon>2R(Nj)R30rY}?#KoG*c$0FN`D=JXbNHa5wYT*h3NTs#+IW5492ZBCR z0_o8?a1=mCFm+OwSL}#$+WncH?JlJbta}-wVO+k}P8h6@ij!}l{a8R5Z2y(#W%Zwl z>MWSJCZ|8rMHIgJl02?bnOz6#GGj!hg~Eh-58#D_`yxOB^ivFE=2mQOM`}}@TcDmCmjC_5A!jEx(iDKkfTu{?!*JU=?|iqWs=6foK#l=r=KTEp8i1Q4S~KMUBR}NXtTGP35GY_Y zqh_@Ppf+G~85WNiH(RJ$qG<2vC@v`(^w(Ig%a_FbcNkt2wVxk}dSfDl+}vm}2d`a3 zGeY|=Bp$~M1iqY}UaGb(y6w%OLUnJjDr=?1OshF;I)ABq?Qj%VdGBX|xO+w9k%|nTwT13WF!?WNg?TMIe*6oz!<#H)@3EvBlLe9mRWg*X=_E89QKPE` zk=`V2MX0ICZWrOK&6hi+5}m?AKp}uM8G9c58fsk8mN&hFB^qc!gG^14^Jv zIE=m;soN^{`i_hB&rsv);O5#Q6QtJrWsPGsYhnFGlID(s?n8^jtsCV0h03iCflQ-R z{~ol0h)Ylx0M7*8mJ{Ux1qJ{a*mGJ5bS^cZ3saEFKaE|#cxPI(&wjCo5)Y|J5&gns ztyjh7xquE4>q1+Z+o>)bEUc*hD5ntVK<7$o@=tgDAoDC3)y`?i=f`3Y6n&C^u2mHt z9LP85CxnU4eGQ6F!nnYn;mv%mh)jQZis%{$hI@pT9(3PWLPa;? zS#0R3o~uB^(yN6?8y^ZPnoJm)%1=CTZE*~VFnwPWK+3#j|G%j#9gP?qrVz2sMX7q~ z&i6O8bNaF8^4AAD!DLF_(J*%0#*dm*YPS7}Ks8PDaI!wR03iFa&`^MY1?X{-MaC;2 z@1snVtizc#GwBqI35=x|6f|oK4{lPo1j!()j)!FcOBKXz**x}dx)4k%Q(V;mZWU0N zKk~bxfXQKho%-%agSkeJwCp@)X(kdzt`U{jaDmWXO5)U#Z}n&1TXUKH95q_`g-QAIq6FI^GFu zvte^r2UUqZCcGtndZ?7&94lMxW+LhI=0FzU9Tr>CD2!TP>|a0a8Jqv@EL!Ft<4Ktzm}hXh!P zlcS5ie}9FT4Jt!$ZbIBU6SEpjeD};}XJ-N66#iR>jEpQfS8XI>&tRmjt_}Wq3n zusuEZ7iXKefve&4^z@@ZGDti+b-o^K>Tt97S=CcZ!MY(vT`AX2Q%_QtQ!iuE64?x_ zRKdbvZ>Qo%eOvzFo0I(MN&C?lA_ka7i-%xP`p@^-#pRGc`!qQ;QD&463V-OX>O=d; z&?x$ac=XrdhiOgpo2c{0MUdH0SU$Z|opvtgXbpd3l~7%od| zEzm>xKAE6E`Hz?YB%M(Y*RwnSxqkQwJrnU*Zl08G4Yib5YuSeM2<5i-CqiXv7}mkkyeFrvwyhlNYKc%Vq*D-7gdy}-tlv{+vC&K|fsL|JH<+nRrq6Nv_oM!*)) z1*A$4nS`@xBhm+2Ef_aif9tz{pePILj@yXJf8f7+JU)s3T)rqS*hSN})B#$Zpb+kD zM>Q}4Azx=}TUe(aQ{Q&L5V8B+JPK6o6Aj*?=Aq{8g*@dpY`UyMfeZ%lL1@)kk>0sK z;622}&8x{7fKPSsaJ-Qb&}E!CW|ab$dp99*oWQBZIgPd2tfYaQpc3g5W?^ZyQSlTp95etTQpnE+GH`FKBD301?rzYp zM1fCX2x!gJ_3c3bz##BLp91v{+D{%$Qjn$v8c2Xp9j8{-S+Di!Q+{V>cIAq_i^~Ay z1=nFUAUOxT0EDtW#n3>kvtTC#gJj_N_;~Dj32v~+*UsFxTqYJ42p}Fr4~nqSZ6m<3 z0IBQ8GFT8@tXu+3&+p%gOac_Ds`*Bhc>%JGeEj@Ix2Nk2Ed0}RbH=NkKEU_51O7H> zd_Y{}z{qR4fH0Hn=x{rys`ap-0qUh-@8^LTI&ULBED+YAYS|95IpWnVL9}iz}P)a_1s`etiG*D3qJQO8JVoqf&|(@ArFm9T$^g zorPi}w1D*wz`U1)&(TGqwZiK(8fwjEHNa(t0uPtGaXa;T(f!b;1A4QIklu+H+Q9#i z$AhuanS zH}Sp5mqShpNP>0HEc?3>Ye|Ty4j3*^ZjB!W@5#K4xQJdptVV*Pz7QAWVcD>4@7B%Z zG@}y!t;doA*F^y8QOwW>@~;=J?(iCSULj3e1yWbyBC# zpAoui@tIQXTbjHSbA|%OJ|oFk_ta-fDheX-!@<<4wo%RJYzMTez)~g)9+NbNG@@=# z4Y#&RXN`fWiWqc>XcMmY2hV}wthAy+0^qRKNH=}rva_SXqA#@$1uqB$yv9xN9#F7# zAkI??^bLNvY1Y(?Jb+v@ET9KfUqB5W-QEDVIiTc(p$jvWmWBh)-bo<+Od4`G06|e} zU{f;OB$w`Tcblf7{PNDw*i6Dr+yuer*x$3;T=t-C$$Z~HQg(ZKqc}wNellQ~annH3 zYR=CFg9S2<9E{D(UwwxoTB`SCo$pQx236HN>Kxmj&Z ziSf;R03UN}wc%MWHeGx7H2K9olxDHL5TBtYSg5{&mGAF$`P&^3@1(Q3AYtp|X z1WTjLOg{>NU>4)Qya_} zX2%y%p|k|7-hp_PfV?!Zh#bA3L_CXjPyOaGHm{ktAiqy~=YaUFuwUR^fB^*$SI#AB zN z0~u&!!B29=KragM2!jenOGoEjZ73)B%fLhgNh|}zmQ$dd|KHeJSw%%@3yacTxm;jn zhtT~1$&}2L5sbWIZg1T|a6->-MUM(vFzyAqPzXAKfPml)5>nvz@7!P%ATy|`%=CH+o7L%~{9CA8$_i+? z-G+|_Gf*@c&;h1Qx+KIH4pcuDZr+e$`V(o|c2`&MeZyp!uyHm|Tf{NLGd?=B+1i9i zKWEkNR!?rEz~B;Junmp*s3rVwIe%qlJ;o}T_BS~jT+wd4T)MW`FikYMV(w)6IhrwZ zyX?w38fb74(8YQ%hrjx7j{co#+h5iv{1D-4<`_6jqW!$OOdRZBy2pLrcVZ|eQGnR^ zzx3}NA&6p|2>#emswRhRz?1^WR#X@ks_pVa0ej>#nEzJ#-3oX{A52+}xI*ExHfT1~ zFs-ob2fJ{B)H#Y3Oc9Mo5&kEmMh)5(#H@HoPOpba{p)!gMq#r># z9FX=L$OyODc(DCk9>ZL~FNXWwcDBXol7fbhr5n^C;I9MYD4Vmb2xP?OD||t1OVX~? z$$hf=uht1mDFn`M7G5kcC_A^c=+=#S9pV1*?|VQYiC~PeL6r*@m;v14iI1!P0C%s# zO;yJBPbGoC2TLeYix>TX>?s=BN@Fv;uK);ZuD60#3sZeP ze{ho)xF)#&^j6$ziS7|~x}E6v_xICzGY$+4%y;?-=y!VGDbs9_8-@Zzcz%2^JaE_n zRTRikh3qBKJr@9I(1&E!WLmR;%mZLh1GRrd40kdJW5c3V3<5C=^0*MPNEW|~xQh!{ zZ||Fk()4t~!{s(S42*A@;_4b2Mnlmgzcy-3d&x;-4_fkjpqNXS5A1zHdM=T1n<*U5W%(>Bh3yp(|s*RR+{ zT#7Ak=NKIFUGj${DL*D|Ynhf%2A#A|{Ngk26s1Oq}U~+qNo&`XaEtINaF!@JfU6AjH0$IQthRU6w(rMKFA7^Z)X9^h zf9`uEp&Nc1PXj^J{@Rt8zLh*dgICh|rO!o>fp-E2^~m)F1`z&ZGt$vOCK0iB8!Q~n z7>}##Y2&~GQ%a8shvAHv;1?ct_TE~QNiBo=^^XN=MWJgqgBG}oD~)pmOrur4JM9cVC#m?sM7jI z3DT*(g5CD`No3W-t(ZG}^7|m-*pRvqhiPD_Uu&?Jt- z`2?uJU=UFpFY{uUYhD-uJR<$z>Iw~Y__%{^OX4f4ao&0>kk_8~nzZ0hS??o~jj>Uj z^r9pdaWb5)PsWQ)*8M2&n_KVpc~Ug!m{Q9Ir{*v9%V29^I3%=aa)JWC{$M zo*Kyrx(h;EFIR3Oidt9*oBh{_9Fq~#_k`BY&(6w>c>G1FmZBcmWAb$bxHwIKPaIs| z!9QPnjQj_TzJfm)FoHscOJ$@1|7i8T06>a`g~R7vTNn^#-2&e#uJf>|Hay`y{{|Q? zr3%-2Mrd37*pV0P&eN@pcWtAd|A?#>}YdEY-BPh|6bL zS=&Sc8xDW@NM^axUhXnoPjy6 z(dge{$h$XPikwbdb=-sJM^2`SAs;Fu>n^+aZe4y^LXjsNL7g627A^$|L=1dQ%c6Hw zIscfdU3qG5^~k4cJau-d@;X}=QKmOxPNnmj5?I55UMS!^UtSby8sQxrpq!rZ3&M8l z31;}9A;EK`jiY6VK#>M8(Oxm1w1n4QNE)k4aQJ|G*GoaB);Ii%J9I%1evk@(X7Yy@ zsuVbld;h$Befeeauybs{5l~|sU*IThN!w%EhDc%Z3wt_)8F;=wqT_RSiDc`(#r+GR zs%m^hg(?MxG7xOLC)ju=?Y)C)wl;I7jBkKi0fpr+rd7bGRV%uly0yDY1;ocdX2-zO z^cV|z_g_;|@PI^oBATI@g>id3uxW3Vn1oL=6n*!-8-J55*Kqmzd z2NGarnRmksf+Yd|52OjT#c0Gag#$DCjhpeFE8J1)&TmD zPynj>3&aWW^VdHZaux#*8vwbTo}Jz0gcSkG0_fhxW@jtXEP z43Ev}lI(8~UHjI??;CGB0ZO;-Wp~rxzU~P;r-5O+;(FJ^0HmA`?3qf~TP{m++7lI8 zUwnmk6Fp3LJ)LZy_l53BXSPJO%Z$lc_pg9qe|`Y(`3Zev)(RX;b64D#fOt@J1DOyd znP00L1@eas1KsC|Gla8lU`pKpmn>-LiCff0P7wAU>@s1AJz8z!1+sd+dh4cYN6umT z!Ao$!ED1Wm`*QTxJ*J+Je6iRP`!70Ug%6lW+&y?uztl{{ft>~hg8*EVm*0X3{=Bqe zJwIR+1`Nr{8ddc0k^M)E0tyBKzE{&+MqL5rCh|L4Ctml(o`QmROZ-13Mmz{x!3Jyh zJ%hVZ3R-_Iqh;^t2imC#W9v6?zxH5Hejk(dqnHEcE+kv6esU*Lgr<8w{|g5*2CyH6 z0Zp~d=yg8p`%GPCS(e1VimQ@nfME1rUl0Y=zZi3s40MLKhSk`U7e-nYzE4h10tqe! zB;(e1x!q)toths7TrgyXpB+zLwI)y;aN|x)%~(%;NS5`z*k&LcJNyuv5Fh$;ieXx9 zMqHW<>xyN)p7*>} z>xjNnTQQOVph~4)KiuNRa8a=#0qhtxnICYgf^Ds{bRq#1>)k~i2_IOlTWaSVv5w8y zjmq){dMcB!bi7x=_0jrMON4j3^P+ieZA#AV!-OF#KByTbnQi4TL3FxruO9yUXl5cx z0RGj>>P6fD%Fn}<4kAzq1%RrnoNPT19Dbj{OtiGDOiWVpHDLAHAIvggQOqVJ{dI8`aKpv9A<{%0X zVjJ#F8h{3%8O9f7zwvA5iSSB)KQ3bx{RyVYoD7`R*@>q0y{TkreK3dwH;;E*z{ zA1y7Pw`3PkenW8TkRE~w*5VKT0U|~`9GrEa@t3I4?|7zVfR#ih=0yh#u&}T&e{gH6 zHt0eX5D!_c9Ow7>&1*?b7kz59rlcldk(2NgPyS^?0Jf5u*qkUlcv@I2 z{(*lgz78r#IY()=5cUN%4rVs>CYauXtQ<+R3ss=za?R`96KIA15q(_vk@8wEzp5lE zH{jXbk&PG^)eN7#xh%#FV0g;fqkmw%=a#jJ1QG81D98RFnq&>N$w3yXYmeBMfq3NjhG`_%rm zj`14{jGsSA>fi2Mu|RA^YoIjf1HoQj+G1k@5)-j?TkHeWDk9?d&H=e002Eyi2sV(` z0xyE7;b=5?mH>GRoekbO8#vsfk?@#fyL^B*ndx|QZ!c`JKxPxLJL%}?L_w<;M?+Ia zTDo_B9^Yos_ff885ZLJ757YyZ%771;x15g9=BxoW=%Gw^|$~V4w`r9!?o72p`uWy`yL>%SQG%%AY13Q+zAQ_v=T$i?(I(-C58fy zCha`wkac7`z3HZ>FFvXbNXaP(wFnA(=o4Bxd@iqm7K*y@(?7p`l{h*cDviV|2V zCe(dxYYT+eCql{I%8V7QrKOvO^E-TdFK$ec3eL(O)zO4-V==S80-(?7rQ>VROUob` zomoW)G`kX;$n`fHb;^(+M<+jPb?>3Psk;0cT%5=JtNm!5tD8*mC<_QBpcNEQ85OQ3 zx(y}BX_FU|Px==9Z&%^{^d}=v) z!{|%J)5KsuxbU%l=7`0N`?jk|33=?Ps@$p~ z1S&lRY)vP_LMD;q*49?A!{LD$M3H1(qd(8!FhXHIfQ zru>7`guj)CUBu6PU_2r5i+tA>_LG-MPr=*ebDheyFBt=xqR^M?CU7|iQorus%Wz$p z4~P*GT_M_TH1nSrTRhw;yXsN1H{1G(^Kn0*A_baVe{D*__*UNHZoflMXz5PptsWvL za+yrXbJ&ZNx$F*$uJPT+$$muOsB8L@An%h}-qCAsXodohwbvJr9p5*K1e@eyPxJ?t zW+3Tv-NFRtY;Z;h+_y~*n&#U-}3Sa6|wy7*Lb|ODt#uG8_o5^}nB(_Ws&DizQ5m2E~^9 z0|QJey$3+JN_#j^TQXRxDgK7(Ee`oa2*7F~6JB=5T~I6lbv~?-MvdC!VVi=LP~LA%Xo{q{hg5;s~wK=?vIxd4|72geqLd_nZqKT2lAB`*hLZK5dLd7jA?XjP&g6`t>bn z`UVyQx8LL4zb=!Dia}=rf}k8FA2DI($_+}2u2)~ExhyQ!n<-vQ5%qICBY{~ zPyAlO#^Jw}x;j(?6BOmZ6ZC}8?9a_ax;xYj?5wpOXSRvB!x}%1!?a;&$u`={cF*EI z=|;`LCef8Alf6fc2;ipacU#h;Oa|J+Atfpe=-!_xO*ejlO2aQ93=crwp(SD`u<)^& zjVR|Cc09To${$Xc%r3$zR_kMUZ}|>hE0lkqN%w*zJSnax>ttM~E$~)t06#)1hdC;E zFw;G9p5#nTsZ<(tb%rZ^1^p7U-+BUTop@87`YNX76SNVK9#qdb8ciZ{GWV`V_WWPP#iqdW^2O82g-|$} z$Rm35k|Pq(kJIio^9zBY#_6=G(p}Vc6wk_DRmu^79PY8_iO<2?*sVFz3Ze#1Td+CK zV0@H=6-Foo?C17}!Snlrnj2dIX1s_&+Z*AP6)fIl z-4HSPM*IdN%3M;+Q4rhr2;yc3xaM>NLE19H;}}iOvh7gL^CfLpUHkohMaN=vgz4n8 zjdbuV$*8C~5iy)>TtplZR>1t5Jf7q$YK7ag_=k?|^JA|&RO|MuLntN%GIbftvl6Qu zsf%2UnZT#p0Ud|QtYdav#S|p?n3;kV%it(74Ax}kP%Ii7s%znM98%9aRFmJXt6~$n zGa+qw&xAAu56n$%IbE=Ls~qRVB7fwT%cKQ8uM8$wEqedNSv#}`_R$i4G-mIk2}34+ zUxJ0J$8jz6ouJEiM|z9pH)<^>#UCQ-rIAQB9L!_a5+oTNNqsrD#A<&L$D!-KC zm424$A8>nCN)QDaT~ow?h~cMCFfU+ZtOK-{L71GRjvQ+jdp)f)rE-@e-<4G z^*uT{78^N6v><9^B^dLi&cGw_2!s@u|ZK>RK@4!DJhxQqN6$QKQ*WX2u z{gI1aBgJo{-w{;dE8YteU2{7}r!Sq$^zIrde{+fBOdQ=7AFJ~uzTKxowH5wW z@1wp#xEpvT^(ymeg6m@y^Q*6wJc3$3#J@_7IELL~5sfM)pga)%kX9JJHJ&1vcpiW@ z8IW4vidG?B-dB_@!J*l_>+mCNl0+S?FXhvZk;sTy@7^h(TUO<()Te>6hZW3xT2l|> z^I}HtbTWR*L^J)CX{UvQY zM6cH1=^(;kG^bjs^*i3sCzM*gA=1%)I*jB(>4G-pU8lI`K9LtF&Bu-W+9y)gfH9*! zx0mJMo9t)oDAP{U1@7ezXg3i*BnB5B-oHlvGvhb^EHjt( zW$i0c@3p`O9LCX&{%|Z_&r7;Qd1}RML4>yDr!3dse7m2)$gp(wW?i-c8h2>kn1G0) zf2z@9Sdb*?<@u%y11R8uz#}WJ08I%rUx5WrBJblG@Hf{kEDiNGSe+5d0m%H^JNsf)+kwUP)t!7Vi<|*QpcXJ9etXUtyYx5^TRO*LpIH*{c_H>1|{4tMgp@-8_C#%0Fd)=_kb; zyx8-xf19E)5fZq!o>wmk?ZNELLJSOZCuUSoC6^Mu4_m5pY}F#R;@D8ja9G-Y`IA4O zl}SjVw(GCFx=A|Fc}It8!^gcLtB|MV&u5NfG~!aRHmnp%5tQJTa}C}_E?hdDvhjC- zs4inff{k>h1((s`m)8cwHashLJsh>JSK>OeYtMg`z#569{`4 za_BPSvi-AsG@IMxowdYwg5Uor$BvO)%rNMKmjL-Tlu*}K(H_whvOQ>hpVnCnM-@=Y zoJ?7TLwmxz{KETcykRo)@cspYy6W)Zk@fkhd$Ckxn>p|D50CGwL z4@8GvXYbdLJ7mdzZ9A^7?HIcs-Pje}TaZAlMR&cRV_2ER@c(t;1kay*ErkAJMbLrG zcA%z_KL1yevjIwBDF2F@E(`@l`cIL`4oxGb_}ByT6x=Q#tOrGKWw;Im=unuYWZG_@j&9aq1JleGY2XYhK4X-wEQ)} z&n1^el*>WYP9xx;Ne0c_zMEA)G^ly^9;sT%lHBS)oYmX}P+4v7PiI&R0!P;+cQQEz zn;+uX6pTcc6Uj<@{YZVu;5!9hL1{TH%UAl|@=xy#;k}32<5LSC_q}Fmu|_T2pt$5ikv1DfY7QNYT|68PCc8G>x}sU+ zpEUcLnHxh*J@fe;L{lh6g$U{ImRoTfiX~XhzwQbC?sK;6{l041t!YNpp-Fr#U@$D< z?aAnfXKpw^9RXJNow;t-bojK@-oPx6o6!rN%tya+gk^r1L$Sy=pLvnD*w}yRXht58 zwjhsCedy-JRaiE&uK9=WR&QSmE9Z#aAEjU7Tli^Mf-jTVx@Iy)AdXclF*el6ak@`_ zeV&mUeEh+)BWm83J30nbwHWsjaYx%%xVEVg!9=_H?&_q@8hGF5oFhNUn=tOs41dgI zy?09*-G0@_3e6(=5J{7{q!++W)GenLY(wIeE>L@wopO4R;u}Vd_v@z9w&Aa`M=jw{ zbIQhAazXa}+_P~)DoIQ*(az`fkXAbVtQcGPh?8;wal&w+_=Fl?n1e}6!H%aqe;2O6 za8s{9Tr$B2YRPwqJ@2m!G=;ELpz(IMN;{}N3>{1)8?z$aStO7A_tGhz=AP515oMOC z!0>Hnhs(BvJqPG22G~l9NK#U{fws2Xr+ujGRjgaerw`w@&q%2E>gV&q)k8Tkz1}8Y z^Dp^6|5Sb-nk82^{m*&N2@1Z6J5?M%TnO{MmyoT19bZcUae?-%5Sb#K+x7=8Kq209 zs^u+h3gz^4e`}@yW2@JN{iw`;H(sc@J%e`Lgf<%G&T39+; zt`78mBx44msXR4h3qob4e$)`lJYOeKThZBw-e{H#E$kpBMW@zWFDE z;Kpv8Ssmo1SAwuQw;!nGc&JfGA6piW>b3mOdE@8pqT%75LsvJ{D(@;Jzn#`^InwUs zLMWZ#Q(*dhBFh#9#XD4UgEmaOm%~Q_Axj@hF7@vlT`|7?RIAydDTAz*KJKWY0hAPk z5!}BAuF&+MUGg12}FP+y(4obQ#>AywPegWCqJTFz8pnr_sNp?>eie zU@K|K${Fd=MlT*?y5aq)bd)yAG7N%vRf4(>A4MeTDGiUg3U;)F7|>?&&%*?g$C7Nc zt|we%1>9`s=ahf#8f{jl)=r@}<(AlhgNFy9x2^J?kwo(FG_WSP2egmir!-Q8Ho zdI{Z|@4moC-mVpBPq1|KDDnHc1By2thDO7qmc5jI_}>hQglBGyiw40%HGZgyp-AJ$ z_adc(w|XMH$;8aNjRuEq8AtQFc_>yxQeD59+OWWD zAWI?PuXT%w++bKjxh0W{`__I}Zfiacn%{i}Tgs12%eqG1%z2e+sT1k(|N6>8ZB!hyp2oM zs}as%^^7MHSJxvF*>3g)MSQZ`cd(xE2j{Xy<=pyfs@DPmv>{GZEp)@*VBLn_v@+G$ z^l>zIZB@O?Zlgn@2}A&E5Z}`x$7e_yd)e`KP?hme8Juw)z>+GsY|i6fsvGsHKuo?rL2u#lpNBsV7o73XN8_C1AtJv$s z%nvWLbKZh37c4vcO+v+0Fy0X}HW4eP|Il5Mo=QUT?_w6Sx5^ahta6P6)B7mt@1D0L zRu94=kuueua2gG5#1mItUBo=X&Pn6!+!Z80icyt_m(QGrrbu*rtmbO9Q2QtS82NNj zB~>Ue8#ZE7v;4t3zuj(m8BtTF7@AslUT=UbiI{sP`8X;TGw^BF?V>mHMzg=R&MgOc zZL=`<9{D{7jI+CDko=%|5+y!xv9OyEUz`ZI_GG$b$`W?lXGPv@ctVMwPJuyx#Ylng1(qq@<)3vgZyAJV`?H)$bNdvNdFPuDLpNpq zLsTWkWru0bJ@42=5V%SHJ{s~__{qC z@6G-geW~g&|<0G{GHyOkuTfE!QPrrkoh&G@WzyJ?A8MF z!)93|Su2b^C%8o&$S=2y+QP=;VFgIh_t6&A2u=F0X5Y|VRvn-Fjk4&6iTK{W%Q4MV zqy^t-_R0I@TpzuNYflnq1<#y254a)6y}BjZWN|k}ETPqu@P*?e)g)d=_%#cyb3{MW&laO%#KF>o(yI04CVkk4{+~Cl((81noXhX%A@S9gFKE~acaNs9?&LLGiVjfyl@(zk$#@Ra} z?9j-5s}c!Iw6k`+Ya2poyJnJZs_m^>Cb9TByBkI{$UhjR0Prihtsl{k7vhuyb_AVVzCoj zhHrysUV^9I$E@Fw&PtuNsOvLv>s>cF^T{H09UneSeFM$?``f_c(5FG6UajHn&#H#R z{ed*MPg?_H?q{?$_ix=3%&9+v1J?(0{|WCbftvl(e#gXzpQJ7RO249!=J^nyyomUf z%ZU7ZrbKUb;W7|6$Z?RZH4QrIamH89lybI|yv-PA^_v7gi~HnD4HvCQns3BLM@?GJ zky;#zr+s%5pNknXv^Vt4bfZ*O7=Eh~thLLp8R{yRgEMcQ9n=k94s~j)#_bdi(s;;r@8P>vIej5uLEvzWCdf zc18%HATJ9GO97MqdXVLdENz?`ce}BD?Pe7mu@x7bu30-iTnjnNtiT;D)Zx=1I%&r} z%L*zNRG5nNTCczyI8E7%cKao8U}_KX$$ zo^>U@8{-1ArWJ8?L}8{Q*@%zNy+acmdq1Lvb~pA748BI=K7}D%h0|ao2|l=GHeb|> zWEY@(OdS@uf!E0>N{{vEd6QB5a9edb7X59F$W{%#;RPQ>3Q zk^fK-8cmK5Y^-BcYrYUP(3IGQFAt>-4aE$DrPF0YaufEUB6g5JtR|D4W=F22;DK|* zAoC*RpPVoa`NYuu)r3!%QGn5q2luWHLo1aSrKB&s#O^_$)5BQiT?dAE^D^{zyhhPr(vp6DOZ3}sMGSSFwGa|b?)g_|A9#echT z+g!^Ld1Ev}fe*Lab>}2$PK)fbaPos$F;0R4!ynqdWdLdnpWiH#8(z5W+~M*&+#Ck$ zd^uTG1euUWU#$(Z4z*OWJR;txk(-{mmaTHl-67QV^Xei+$4#*kSvQ}R*=S zGkfajdjIa6FoJQ%?8&%#IAS4QQLeod={L=73UkBcW^Ny^7}!+}m+pT?aRtfZ!<%a+ z8D1GW31vZQ-F={lt|bnf0?mx9vR9+^?%U7Jr@wPV2;4Hh@$wm|%%ID?w&&Ni=g-Xc zgNe~oOj*rIi`-!|Xk@_3kJCu~nvdf__bDkoBu8mipNN)Gk7Hiu)pRx*~Zaig~H`epN^0Fca z)~wD)LzbcLreLuY10{M&afliXfhwb(BHpi#x=X#Ct%1}rX0f_tlgiN{BGvIjY_Jyu4QcaTF zLxU1AWjo*9MHn%8{M;2)`%ux_y&Odon^x4$(ako?`XFHWAL2u6hFbRkb@17mBmUv@ zEfi_T&H~#DvjjLR!xU7h*ujJ>`T2JQqfc_~jyci2$4CR_$J$>{KH4ot$<0o~JND~+ zsx~V=*MD2Xh1qPlKJ~gjVqEaG6tZT^kH&t9!8|q@O#Kzq7GZj}KJwkLIX6^bVN$7o z^Ye|6pTt7;PybQ9yNU?=hfR?;Ey!uvuD-QE{e1%q?pm(}TYs!|bp;8IHb*z5j*CU} zzXI)M!XLlTFZgQtw7U@6>ed|ab@>FKMHt%g6mY5vn8#U>6A>ndh5ew}?G{-NcO~W; zR^4wZ_TAi!R#nMhI|M`f$mMaun^=|*zNFistmPdH8~Qh;F<95k#8fc1_8AR@;t9Ua zn8d#H3c`f0|D6@l+ST#%WIVLmsxUURsBH4~hYCDGPJ}uEqILB|)EA)x;f2uUm`G2*C*z9VXJAJp$J!_c3-V~5kt=!0t7Dt4amvW-mX-;2+e#XZ; zvl93=?Ts=eY5cYk=<9@TW9alWE3{>+$3%tl+OthtWlc?NWOfEeR*j zop=WVW1B1HaBVHDs4;qvuTlMc1WUIIj7^Vui_0($!c8-2zq8RZguUI2C@L1)jW$gJ zcVqSA7E2<5ukt_6Z*{kre~M53^rri*^QK_<<~K6jsUi&-5xwMh`EPw=%Z3X%%)ep= zoaRJAg~-U>SbBIw{=yRAGExn(PAS`0K4C!U|K|(}y7dOVAI1xa3KI5pTjwpq+OYxo zNp~L&YTv-s&D%X*PrHR|r*h1DG#H(pqrF7i*qxwSdZaNplKV=0ADvg5DRoPFz2VHC zXEjyO>i1G@eQ~^*?rHOpss~&S9CyrfElf#`ShON-%N}gM_UvLZMj-G#SB|T1R(ZWd zjn(+#O`ks@xPVbvm%@*i7zOnhPfa;;=9E#aQH@5mrU&bkBNws3_&##0Y=LA1JVtTN zt9l%F9zP{y*s(dCrYJl&3ys9*C(3=%j%fGOe!w(zQml&&c!ZA z{rF|^piwNUeAgb|Ow{#;QAT`n<4NB(_!qDB_HFU?_{QmdFz0U*hhQm2?cCPhV z->n%qU_s9IG8CH6xW8c9?p(q>*6Z}drRh+5D1GA&`CdSEz|uky>fAqSYiY&faGNm8U?TW)$}BprBChw#z{ z6q-NdEXjx$Wu3+`&`jTK8`LdTQ%H;Xw`^peRcbtDa^qf82K~{}h`wV&j3Oc0TsW3F zu97b8dsYCg&?nYwpqOuvS8ZlLydNE0H)>Op!B+Tt^I7)K2lSAL&J;yPegnILI!ayf zzFZC>m5%N#+LG>4<^VWZd5VoH8;te{3=rc+U_ENohJbg-Pp8z8qQZf|Q1oDht^yZ@*)G^QpR>zX00$_0MWYwECEawcU|43{j;gX)YPv>+^au z-e6Q%>)#!m=eTv!H4iSwWv{A5bMu}WF;qO$idI*`#o@hbDM^2#TDVL7X1dvCRATP@ z(s@<6ASM{LO3(R<2JB;6W4Uff;)%b!*$*K2mk}r@{R)dZ00<*XYXe+kAF5YYFq1ML zQacwH-Gy)Z^1ks?eLaw=GF)mXRiBIi@*etSGtg$2qRqcjxJr2Q=+Ka2{IoxK7sYq2 zjAv6dHKd(QKE);yR=?593yE{VX&_{5c%`a4^G$(WCp=TS1Qq@gi49Gc$#d#F|EVtf zxvvlZ5|`ry$w~(4S82s?D;hb!fUakc0~ORY}!fL8)UZk<*cM)H{CH^>8iBY;CL||ZLF0M zqw=M>X;HB%t$lE@+W5l&!LXE9+QZYLhtwMm^{PIT7c{6u7O@Z%! zdS|+Oe%4eL)=KRU4EG`i=K|3MKZOBZzxzMb6lHd4zp+1N?ssl{`irW=#KMf&;(O6- z&pajzUAFtBtS*tBL&aNH06lo?*))(INIT{}tuwvzo+8#%YmDl*?0y)kji4tDeHJ1M zBm%q6>QR3lni4VG{JK7)=XDfgi^N8ln%5;sduR1{e;ioIAF~LGq!`W0j$Zo;)V}vV z6fjdTrR2eGrsj8Mrc`sS#3wDyz@Gj!vLk8ylJun8`Ifvs=97iz_ma3^od!s3p&yva zwcU?8NsrdzRkE6zsH@BeyYwHfKe1|8Z#k7saQsP!?lz&yyYRUD3>kmZWG~Jo`q~or z`t6^k4d*3Sr&Zt{+0CSH?en&Mt-8_q-mmqZY^O{r58pY9pv89+6y~j)jP$+VQSy3N z(95w+7Rz%9X4<>%ltNb}qJ0ATH0s;3e*YO|!d@N`=vT&xDJ`OsKFOYpaD3TIFryhg zY|0L4E_|CX6M1^?<~_7aX3-KJhPQH}9_32A;z+I|#D@WgSe$L+Rq^Z8o_@DJ+RIfz zVI8ajMq+`;0)lRp=$58Diq5}IFE6z`f3PMR`4Chi^+Y%q*Npk!uh_%3O25B@;n}ZI zTjFc_8ZvO)87nrdOzux1=95?v4S z8|+5{t%rzvmd%h~IyEnT=FP_>y*sk{KwEUAT(CKqb+VC_nM0m}NNaKKjAuf+c*3IyeF2Kjo<`_P&iTO8}W8@9Rk@ zp&MnNi%DUQD8>cr52AT-DqkxhrN^;)?`jPpjX~$~!s(n|fX{yHFH@Wxy_ARA%aMrS z?#d>;i1@{%<+Y1k{)#HBlJR{xT|P7_u^KMidm*$L^Q=H&R=GsU*TjBMLxaBpY9(+e zi^}}I3To8T-A}*ymW!=F8Qsh_$WpnRZEcD77LQUY_{;fKe>2G;evW(d6S$q=RI{3% zcp-&ho$27Qs&Lt~i?>WGhFU2|z!93YMkQdnKhGaF64V5i$F8kj01!z-90QNh=e3d5 zPvRsZCEU=Zkbr^5@W$7T^-q*w+ML$GJX>n-=h*6cyhd?CH{2-woLJIBP?HljlJ&hL zytO-j#sJ-DWc*s0d*ESM;PMu(AERlNRn;^LKj-)fCLnO#+j}MFevh=d?S*a?U@S;l zaua-7lU&-SBJ*IQTeFuDzBh>66c2dgl3KCNOnJ1-4S{k>2qZ-(D(8^q1(F1EEMs2E z4Je)7G|dmsguNGn*|k^2OhT+A+T(OW*Pyal*Fv%<7c+kx(L_UFhOL!{8MYQ4B~#kt zoO?o5(*|w1U^avcA1{ZR3OOlV8!leOgKf9_jxjUBp@{3A4gC0EmDx2h^T32*g~UWW zizeB?)uIuJ+7)l*@AQOm=lX?yFdywDJk+(vYUhs}ySzY2j|vTBGs8>J(=Fd4X~OS) z1FDghV=+z93XjzDTJDa!T-C}1^**HpL;dWARf`j2UauTW=2dY1R zMK%#aY`GK3xAbpL)pxxcc7}RcSf78(vNPg~yuyGuwIBi?>P`2KnteG%zDrW}wH!51 zl;Dfi?C-Jom}-IOpi_jtR>rlWF2NxMDmxTOS zvDwkB!ED&bc#f+?^gam&|jx++q$kY-Fh8n{yyRcso1h|K*K` zCSvh`YL?C{X8NY)b5d~Z*wa{gQU>k5?jk3~W^yNctw~b}Jw+5C+qp1f{`jzTciZ;d zi!Cw#)vvgxL&o;MGGT#K&L{&9@WE#*_P@UDydqoYm@FBA7)4f z-&%FF)j@V6ke_||hit}_=M+w50TB@T9CWQr=rUH%ESwPL78~U-Y++w(HwbfGnJimG z)~%xX5n?5LQ!kV#FM)krR;L%M zQdC#c`V9U>enrRFfr&i~)VnojzeA^foqlk4V;9AjIIq2$5M!zsPGPQ}-!(m1f`Z^= zSzl37jUCWH8r%if{B7T1j3b=8Fp|Ys&Y$*A<6`ZpnAuhYVOTZR#H!=I--% zho%?Sr`gcXkHB!l+GN+(fkLPF0pn?Lot40Z&U$ldZvnjRoDfJ;jJYkf(M}8Ji`lOi zx*4#gjyKb2_5CP)T?Oi^gT-faZ!WW~M~t_n-wP#%*IE=e8?k8UR}di>?CrH(bf*q4 zo^7$~`9}+7+N9p)7HZ5n@RruWk(_q13Ix^p4%6LhNoKlmSm&$l7Nqhe7raq#3t&2RX1LsSPs0Neva#Zd}C z`c)tGaStv5G^)FwZxIW@Z96yVu#;4OY5bFZr>)OP>S&XP9!ZGf6h^;APxSC1Kh_3w zPwaET0GQ#BRk?xh`=r4&Hj)rbrUpWFfB4t_b%zRzf3N#YHtg#)$-brWhaAP1@7BCv zq{yG~^ir0HA_*CkDh{aAT&kJ8eKJ4(Mcn(Z5mq*~>}=Ufr>1`qVNy1Mcqt35g!22- z8sU?A*GNse-do!{k~I@c+{aprGeI%;*ThRd$DDn-4js7eoldpXsNkhgmKA#rH_^PH z3{4GZteh<6KNoJY_Fu`>OxCXB)NZkCCykvHKAu2}yviHX8-1x|+MnD&W-HD-QfFPxC$$>*2CNQ(;S`F_9 zX0*K;y=|rQ`1%2+UZUx;6Mx%DGeh}KvGS>6KJoT<`VJZNwoR^o5m9d)Yo5qzqsCe7I*wm957dxU^e;<9 zw0(05LitfI3f3Gz`Ji<9UiDHEF`&~QUL^R8*sg-@^S+)+JoY=TiW*_@hbQnMO=Z#| zlqavZlw=0^CAHy`$yscrF|NKr9lB-JK1>}uf{1;+atCC{EU z+jt#stHjSdPSE!V)2R>958NpZX#`mIff;bwE}|_zq1{ya2=JrzF~12!n_rA(&Dw-4 zm;|W5^m{3e`0-miGs|ANP@XR9x)r(9kp`JC16N3f!d}66jN2{7hVYA}i~646WH~w_ z`(aJ5doKu1&o&wCh3WH-u$NBQEKj!BOYdgYUQ9~fH*=qP^FEgf!=q+^W<@!A%j_t_ zG+)xwz0;6{Us2z6mP?ItuheOC%x;96@=q}j&%7C$vqGMZ0r$i^7z(s&LkiP%lU#L?sikoP&&Y`h(Ke_D)M+cI+}0(N8>8e;!&cj2kOYR9ix^OYLJB|Nn!zZB4j zk@{vc3dvLnD(V5yu~#g!nh~Tb0B30lr}*z#(1PKMGahqTE|+d0s`XDcOU6^rLh6}7k+6`8_pFR z^^)3B1eXtOp{y8(RQWF@C;PkLvfe*F+Ehz;$7+=g^aYEu#o(FfZyOQ1SX2@I#1UCPo5R;%wZmFCFZdmICnD$nm+*M&uO$g9U336UN_o=C)@TTSM z3-^yOt;k<+y`8i0T^w%ai_$<_xh*DyazNRFuj60ePmJ2QUh7^MOjb?qbR<5dR&-%r zp%3C0`uwD68dbLpTV!GwCUWY?ugfv3Td>cQ`PXsHK~z%6;riq54F{iia0(8g`nnOY z$D^-6Eo$R;mpUCX;pHWHPm~jbhIifum68ISd#+n#`jGdo(?QU#Vy}Ga=4Lj@%H#Hc zTO$M$wTc=xN?b5@mX$roYxOhRM^Y&9T4_=f$6d){K43%?k;sON0GxOR%lZ884QQj0?)P1Sp*$^n^$D~9GS zei>ap_M9V!3Dhro-(p3YK3r%da}4_0hvO| zRrcw}79)V+Q%RhmrVEa7Z*(l~ob~jn9uHM|Vn3xjx$T&0&2NUnY@YXac0GD#nN;|m zz(u0DA;Z2rEZawT`S3F$5bUd?sE2r6mWWW#mw))yBNp!7E`DErG?NmfSVvFk*_n_) zx18||R_U0D+0~N${vq_=7CLZERhb)@DZ<}rNUW3770Ro>EeLNX9lw`7z4_d2C4++~#E)y?#^KvTB@jhLx~{Q=M@*cDg^gU@ZN+?OUxJom10awHRhl>r`O%Q|fTI zX`v1gvy}LxIVCTCs#I$bbp7~U@~OKOUW}kvEU%jWpDtA9S}q*}db*G=Q?9Q0J)$f3JQK+oma~k(x61b`A^6b(hhv^G zVR%ORlB85@BvJEbCckr_1P8=3dbYEZJK9eD<8TJz}7j$b>ksn zv+F~PJ^G6HOP8bUQ@fQu<|{7m%t*kFgnPm`MkF|d#=~MnEQwIUyMdt}Z2j|)fN_t8 z16``j3N(Zhp45qA)TxT5_F*kg@fN$dW+}Z~%Ic=@8kv97zUJ$bL~V!!Qx(u6>DG=) zPI>{|IQ~wk%h@CEWqHMZ`E7U?CE9fCNbcI0W!Z69Xl+HVZ?nC#61wxwD6+x?N~Pet z`2POixSDwPh;TcKR~yAPoU-p?L(}Rz7c{RAbI_xm+oAp$F9E&;8yN?%Z{WO~iFb+I z1I{RZU>FKt&Gup{+cU2eXj`>=wr1ZrYxY3>kxqj)rLtWue`3Y%kweFMgABC0&LcI= z)WY@~<{2+0W2*b<)%z`$kRxt1$roJ|qugH_0yl-)h>ebgJ`?*Z$M*{*DJaR(POKNu zkvp($vm3gabvf+8|JS*%f7Zr8O7~Y4=h!6YMY|lLMUBso>>DQ+1ybj_oACd=kLKUfhL>N@ zYBGQ>@oI$l@~?WxIn66g1Z(aebR`Tiu*)$g9O=S5(iECkGk0SXJk#kzr<$DXYQe}+ z^Rei)3t`=X@7<2eRPD&zm}9ZgQb&V~OHheA>Im)9^S)mw4wI88bUD@x3<)uHy-NPC zrwA`%ND5g7v~j!*R!0I<_m3*HIBBY2@x0y({x#d*VuZ%zy)NW^?n7IPyXI!B-5wXl zwW1e_3@i3{y&}`b0*_{Iv?(NP}dFj43wY?lz4DXWLD1!MWYG9nB6x4>t(0ly^nwlq z1;6tzn4NmIIq$3RqImmj%@6afpcH2si8ym4<;ld7KuG~R5g03egWQxDaF z#Dtzrq)TY$W9#}e^?#HXau)$g^P1mF{iY8jyz?=zkk^VBVoPI}cI6*xwDq041s2pg z89iT?ug;5vDny8%-(s2cD+TaN?CJh39SwvdCoKPb5iVW<)LS=r;o#8hd`NNK_M_tz z*vD_nT1SP-#YsEw!}I|wv8Bb9V=*;gvg-CN@!vaJzOf#871mL@D2iG#nCz!>oD$cZ{+vhqd)X(EuRqHpRtm#O~H6dI*;#sLKBxZTWx z!s%afdU)Cuxm>RjLXyy7dRYSckP+40#L-)cutIggJEN;Bv1W0FkCa^D?;rmIOBF#I zwbShfIh3tGKau~gs#GdsAtnW=D9jpCCYWRp6Z+ejb`)ULZ~xUrYW-AZBQ5!ka3oy) zd&4ti7Wa2hBTMv5(L;+(apNmJ2pd2!(28Ov=$c+UnLgo;O@XYvkI-hp|20Z- zM;Z$Gz+i-P%)bgDkjpt1sI3YXt=9MhR8meGh(aE2Lx1!q-y1Qf>Mi^vnuv~K{^us0 zbadP#VEGEHf)|WlJd|BYcDB5lhhKi+fZ;cJxA4o9wIlPwE#ryj=d;?2fz68Btjm`<6Rj%a&LS&On%*y2pR{6w$C%<<87%2n|*p7@9^Q|m&4jOebxw1lPm&>*+ z$hXoA$WTE`0;_Gw^x}?nTpiBRGtBWM74L6NX58T#8_-|eOXG`olbf6Lg?OMrWGa3z z=(#${)Zug0!ElW{yudzfvfSldT|S|a9_|$;D(UU6a=k_V@&?&el@lufH1&?$Lhwf` zy=ZKdlh;wz8K@D+%(IdFe6rZVhC?7#7;m`r&FnC!YXJ9rS--`7G+!iB%5P08OqKEF zBOqQdsL!(z==n>qUQ(##+D6%nyMViZgN>lcOemvy4}*w(P;$8FKa6Ah@@F`Xmpc*r z-K{fZ5>TKc5$ez0%NibN1<5r#x&Om(CB>9O5e6Q;WXCF?XND~+jjcb*whp)@LBqP) zJg|Zk93R<|Col)Pu(X*9;p=&p#>>%9-g<-pS$!oJEG!e;{-Y|^dw<5Bc}_BHn~+q@ zzg=1@Lv!Qp%lK$(Y9{UN1$klLNtkFEMki7ZalP@+8XmMDzEVmJM-j4VE0!HWC8!{C zZ*|j)&aGM~n~b_UM#yBK5u!R~96t3c z$$@W*eK*S%8k9wE$DtA2?q{ptjd`W5cf#`c8y78IH!w$AN~ozyKY??dn* z?CJB(=Sy??`UDe$RQvVC5OsOLUN&*EdZG?|lN``wZ#+cG@H&21T~lK`kS5@Ef3;cR zcC_+q!J3DHE*_kZOom7Nrh?g|`!hEGgrGot^|{a)+}3^%u20X%jt_9t!1W|nFqTA? zk7Y5wUyOFWSo;3^VdcUcD?~hj9_hm81h0tM9YK9O#Ixez=)!9v*FcNyY0{tsxVc9< zIhlI1Y00UARg`~t!1jRH|~9kBaX;@L$+Bar%@$6Kz{U@zx@-wY@w#S4GQm z|Hrz438-l{mrI<})Tr>wPOEdFE2_@Mp3s2w?Q2RVa9_V_N(gE7Z?{^DAqXQ+OE$H?QZa(cN)%L`u~?jZNR2E(e^@euMGa zH7BQ~`bns;-qa{KACHCQcA9kNhNl|TM0rJj_Hx1B5cPrODF5o;kp-%+k>S=>+rXx%^sz{4yT-u_vLCd2G=JIhU4E>Nl{!EsvlG69 z79eY+EW9$wj!?-2SB@GWJmc8KGWHns|I{pV-IU~?-r-$z93Wz>-8^XUZQG5Sw+5(v?e=Epj zE?3xv#ArIdi|b!Tv+kP&I0kcSCn^|$_Rj<@cAUW_e_0M?UH{u!)pl(@ee?8y-&S3y z_|&u4E2BY&74Tudj#Z-ucR>&t^v$`&pIS#5aAj8slPnqg*vm*G030%JT9o>iI3DIs>z|BnvHp=!PCd>BdF?+1YXB6foY9^ z4uI8jN0gN@vMdbDImS>!*SC|!w0~o2Cav369hcGVA~!T`Q{YEmL>#W$@vy+o8^5#b|nXWIJkg>4e@aVfr0;KIZmQjG{AdL;bSv zCNFXmY?w!BqW)ujqwUcA_TNxjY*E~NX~|SQB2R7>37@Bh%Wh}Lw~$(cHwma#HMZFPG!I;uOPh8!*5S3DQ zf@lP0=zZvq@3m`HXl*}pOwL`!JjqKW&*q3ZpPw0g{sS@aHQw@#sQ^M!Z5BVGOnO_DZsKwWxK6qSR&pPWd};LY z*Cb$m9R~Rr^{o4Go6MeqAZCq9r4opcH2<+y+#QDR?P{z{+TN0lUyJS);@-hINxaws zUWF45{f4&{>aH(%H*RR&CHtTO!Zs{J`ETtQ8M>5L%gwP|#hTrnELhG61`X@;H5F`cg_r(@m}5=vu~?$n27sxnZH(8ttD+PmI4X0ITJ3Wxd;n`5R5= za$Y_kn+0*A8mDMWk?Yrjwlp;NYo9DQXMpT!+y}>f5`xIauI$&;y%v^xb5pq^N3Aok z#M~YgnOHCM%5g=cg6J|v>zAfg6cm_aX5MlYX*H$jF=9Yy1;>G-lXKXscczbpt1L`T-1lA(9D|1$1b1_>PpV8Y?dc02c9bKWW45SR2p zSM?ugba_d6KUs9&-mB`Wli`+*hsTNhSkTmz4xIYsZMXIv64{d z{Ufq(+b(NI?sc>+dnd@j^8cyA+E{4KHpt<^$e1~oHR*pR3+eY)k)JViRlfc701^eE zVR%`8{!$OlUAuy;Ce3Ns!k!Rc*4Bn2lNa^u`6q+jn1|&P3ZPBOqm-XsMUNTrW4U?J z>}g#5lQ48bVe{JjgxAAtwzgofICsWpf%6d!w1S|TVrZJs0OpM#cCLsRv$d`r{XiQX6TaZSK7MjhSyg@ORu1EUWyUb7&bxreus_1dUtNn5o6dnl&v>TX* zM(Go)CW)59%6xIbxpKwT-s&=S>`GBG(H@r<4l1A6A19)^ktW^xnnCdKKXi=UOy8cX zW4(`o8-Oj1-Ni|b!RY)!95n#I*n4@ls5a+F+cXncW%c$B@yDCyy_+kFT>wg>OsOtm zPA`|$!9gB^>vgpp&$ko~Y1lPs&?Et&$)Pi)+ZPw^VO&I=xGncv+$oI}Hb-9iyny2^ z(coS;b{~Dvjk5OjEW8+qd`(;*yV*<@F%34A@%*=5ZDYpgRWUVLB^p9`Ye!NPEQynM z2V8TPhaVR-zn1KfU4R>U5gOI;ZEcy6pufrNk%Iu7fAVNcOwD+842!$)_gim$q*h|F z7Q7k}dl7yr91vJKr|_0@)Q=o5PDW={CKtso=roZA9fs#)HO@@;=V5J;A4V+S3e7Li z|85^(*PcwLHWFs~>i?FVe?G?(83~hZ3 zs)EW8O=TZlPq9<6IOmRy87hVbF}${$pEe$@ep2zL?V`&&*1St)N>K1M z@7BWw^;kII`3vz=NdjtlE&{V3lk4}`F>Xmey8j*i+q_^f_dz`^NzaI=__Hq;0TA{;>r z8%r`ZVEPnpUPtUO@2ZOr1pxMLm48d6Tl)k)LZqy<-|9HfrH-yr!EAmsdqUHh`5HOb zY@pudiO_>@-R)`=mcFwa>gjZ90WxiSjoK&((|? z^RGxzBwU&Q=5-4$XRpSs(--%Dh}urJ1^}qWZ_qCq_%ixG0%F{Ta`K;#FOj_i_{QkM z;#$XyWjsrm3R)(=omCwTb+-h!I)+4*PKE>OG(Dw;xHbk1X>?O`w~mDXQ0e z0VITU9l<(h$wrnnXWf-whC~k*MA1}^sd0|UeqJP#r3&J81K8b2{X_ZZ{aPLG-!;bJ zAdi&v&`fEr+c1((9WWgY#46_MfhzfzkC~~ZNV-Iv2IPHbZQE{D-%V3MLpt>@Q~zLp zFYRGW%4gCLspRZCs9)4Lol3Q4Cs2Ct8Vea? z31}VoN%NlmDncMr4N0>KaYhm?gD0P9bxn**X~Td|UDOaKRU7rhcbpxj!={y^pxW+yS>Xj+d% z?jw_c_7;JFYxVY?reRk|EgOU;eX;q8x{x1T&~7AqwxBQ=X3CRLt=;;H=eIPg5B{@`1=c+>cRlj6Q>2F}zJsO7xr zw)0>cdtxL?vv}(Xpi@e4f@bgl#w&Ls#7 zuKhsWT57Ky$q$VU)>FGWG-yDp1ryW6<{4N_H0qsA8t!_O7h>k7EMRDLqk|$Bo1GFJ zxcbxiqLQ>Jzh^{d%LzeVgDoFZIRtj&wPk!UI1dBCr)M!gmM^0Ln|b(*N2%WLolBS^ zQhb|h3vu`pH~ovJQUr^Y;bPNZscHN+^_!F4p(bNXoGaB`8+fu*rWj{0L zDaIrZwq3bb#6E53qYW(V-U~A|SDjrMf?z)nn#XWf!|Seslz1V41r#0#p)afW>|Znx z5DFJa{&Vc+QYUNHO!4donUj!a(=|=hnN8E87Z8)#p)W9qKIDcY+RKw5PLA{baG9MG zzDM5z`(f=_(PD4ZdkUgK1F6KAT4V|gnu;3L8a0xWW6OMc+50CThy@9(=MQxZShV$^ zx)Bw^0zquFg(lpH!PHIHx-hD-woQ&Hj#phmKi&8r|8~4uayBPq^Z?7Mh30lDorp%R zK!IL1W}V@aSO7Kr;EDdfZrg{O_rit>{uca&eeyaHgcU)t6gqT! zF8ut_u$fhC{_}Yjs#%|>%q_TSQ%WFff7B~%(x)uxq4xAYNmNOXYVboQ)0BA`TPx7a z<$B*8lDi)s#6yA}@-twaQyBIEvX7?QHOhD!k|?LmRm z$j)K3Qw%}9F$;bqsM!V$v%NnN0i$=as|!B3=vAiG?ItdK9zEYfYIH^<;p9-x!`p%h;@;ke>d-bs3T{7IQw%^$1f2$ zZH;Mn)kJD^PT|_;Q@?_ka8QVV@Pd%Yt?FL-&<*O#o(K?+=2v@!I`2d(u*~Vd3JYor z9f5dd*Le*XizxY7Xuz5z<#*CD8m?a078&`$;$`SXDQbpa$itsoLWlK3?{rhGJ=;AA z>13gR4lkUE&91jhDS~h0L8}7m^tMvm3*$j%w7cj;AfE-jGBfN15Zy+RscMI`@$Tov z)g#(lVuV-$W^5Jj3)zz!zAbJPlpAtH2rz#!fXChPQ=U@A@KKqT`wz|?LT6?yO zK0HY>w9`m@icz^u3(F|gv$q{-bec8h2h(sq4F>-RwCA1=bXuaE$l6TrA;W?2 zg_*EMMgb_QHTK8faA;}$KsnPqIjUy*a?1xgx>4fC8h-Zm1P2I9cJ<{|rQ9}Wt00D2 z+^ZVwyzw<;-oF?6=K$sQ?|V?4?;yVTgjrA{7zmCz#I=NnmO(whNy4!j8&+H`7XpzM zaX@ZUz~&w(P@fo)9;{ z><^Tz|119SM$nWa(G=t+5JAgB#PM+^N)&zdLE2LDu0shgBr^cO+vU$0DYS})Wj#=! zLxvr?m_FFL3d|(;$Lec3^{lM>MY%}D{pwMkW7gj9818TKaVy|eP>u`jU;h-^cf=O4 zEcXs6;*C26)A0EI8msxVm!sU2n`%AQyTOkymU7xVRF?$IAxTI|y;>f&ii9!?{!%gP z$JXcwRi_l2DUEsm1&%R!*BNU5<6H9rH*@B-3NBVrTbk0#PHDM*1&Y7Lu=RF0y9bg) z1wxDaE;AmwjPe9%L=3M{)2!g+7lKHB5`En>|6MW6tZM48-`B-p_j3c7!YDM}FU`Pu z11)SCy{UQU|Ii%MIim2VE8p5&A#ZUfAFjFj`f>TJsf&Xe5SqX7ncEZQ5+dCAUwsx~ z6lAj@p~UfZL=qC43-N}~NT^I6Mn7STiFmB526Fxtw<|$D7ppND4+LNSQ0QE=nj#9V zX(e{{oYPQQa|W&(iOBzhYE2ihjN5bml%I*>pEE*NaQ}%;M`~_bI1maRKEc}4uDno) zb=@=viEYBH@E6vq#ol&~`ew8BGpdS&!#d6QLSY6$HVL(CICLSHjUS4q2;#_Ze!lFG z8R*lTa7`(1Xy#@$jR_RS(J+5uzGt!5#m4P2z6<5Llxkf!Fbzg}SGm1tFaFQqzYP1f zVlC9sUuzar=j-}9CBZ5U;AzcdR@p>#!R52@FB(F<=O0%t{}NEmx;!<#c?qg51sRfc zn0Gt_Lj88o!E-M#5))Ldwyi?$JKCkHKr#x16q&|AMT_AN6W=y^Cw{H)O`v%4gIG;@ zP3EgL4=+${4eSLw9Cd5yH+bQ@D{}a3m&*dRm&}_%I&lScMW7n#8OyniX!z~tL1_?2 zle9uZsP9cRxIKSCu)4m`z!T>{*oqrljs*giD>am~o!@O$kPwcOHkKAt4!ZqG82adx zzjc_B^(jS4=-I3#TQx;@eXUxZa%H?+njTd1sU?wiwUL_0V-#;36_fmkS>G%g*`fK< zQ=eU4{J2=kwq(Q3;*EBBelz!4kC*_~BLwuV_ONTj(DhetJ#|!We?gf=5T}fPsK8IU znn|sN$f8dzU31buYj2w|@u&%FCFzOwMM(Ba;ZkL9s)4JmN<|x#Ra?M0?tzU4K#_pd z7(-Y~4bZ{3AlF$woM6>Q#dg)>{zz?qtB>+v1*H96>24rrN7x5)gvXL5>CaM6HF3;# zI9HcG$yV%U-%UMq;(W^Ul0w9>JJfS+#0uNB7p0_ z%Cq|o%a=s;@SvV!a{a++iwa{`@5$PO4h{79eX1(US6u+Z)EV%;RQku*7w<+ znsEfw6C)m@YCwun@T>lzu`Do>nXFe&;4OlnSL*Y+mJ^nnzpgZZO=;TK^V z;9#d;vK$-HLq+AeH9-jQ52%FdTZ!+SPod^pgb$)!hFj=g*PiRQN`hCDL(C-kqd>~3 z7z^yA*D4&~t8&s(t!kC;{XrZR(uN`_i;E@5plv-DR?~G%!jr(8U6My#`b<{Iu9oV# zStp(2*Xtansk;in>l&D7@;612lR7LA4q5A#p_lj<0LByd73-!y^*8qJI)FJRf81Zl zu`6P@Q-k=8*V(qA1sTm4W@Q`3v4jRNlZfH_GEhF*5T&u+b^GtYN&%%-3*r+%Czf$4 z?lZrMRG0CCQ8zC(T{k?e_{MmnxE-8d&So4H3_i4{uCH zmkQ#Lk2lpiC0FFw@dO%OR+Gl+{-GtSHQ2t+mJ43(Om8PUpUHz7VMxsXBFduQV;9^S z@a^!@A`0b*;3Ng)q`Bn~=RIT6S`UL@4Ock4Sed(VPk1?E%PMQ+>S0v4kL~eXAO`yE zJ&U-WjfotCo>pQ|&(?IekO$ZzAJx6e%`Ku<4uRJfJbll(yYo>_;5Yx4<~grLX1R8` z<*2Y+4xw09_kmNU`eXg|C|dM`h362p39A6sTt#Gx!9H*>OQAK7HUgKJs~sJOBvN`u@L z2pc+~{B$!HeplN#70R6zs90MLaP=*Z%zbRp#CHz(pkCz}HmQU6mui=NNj2bK0XWXBKcDUtlc`sW2P6Xq_5H z2Jxl4Mkso~=9_FE19D$NFVuF@!`NiPn6caEIU9@&z))tndMDQxjk_DVWM@~ws*Oc5 z=wd0E)PoZ-pN>)isPYJRIpDT4N%)!6xlL`A=$Ck+%eDxu*L(pxlq3}qZY!l3gKD1L zip{sLDQ2;ky8qEdz4v2Yfm%AYj!YwayK@7xVyLo;NcUsO>NP8ai8P?69xOac;Tef=^+eOm z?TV~F-QfeGl&6x$EL4rU;mqD2GC|08y7?v5{WU+1w>K7u1ues?#nkcrO-WyOge#C5 zFVxecOT|Mv%(O^m^eDBXNVb%CFI=|m+B)kM{G~BK$k&(E{JNn1EqKP#!C;L5fK#_s zn2@&Za20Fv+U;L3VLVuL zGhGGI;jh@Izv2$R6TJROV7ipY1@ta3YkM~ARkiWFNL2T~nachzfEB{i8XCJD{9j=X zD~yZp<*Y*cp6nYr;m=gva2^ebo280T3ahKr|rR?KxgkjBY(c1 z8C~at7njdUuz%ttf*Q6iJIpOoX5Xf8ITL|3j=?G$^s={s}V!6FCF~5uJBZ;vamiaSWyuOG+HliLRaR(- z5xFRl0$03Jf0ea_SvmKzU&pc?9t1z)GE$RumPgfb*6dGqiAF%_`Bx`Ptc-{G7@;@w zTj#?BZ+{&;`&IGm4F|rE-juHE(L-dJI@)_G3T-;jNgyH7cC@t z>Kr$6qq#UjZa00KE8wHQdCY%#gjo|LGL3_v7A{xZV)=Svv6=+f)w!Op>@8sSdk-rd zz>`Mxf)6ziyCKn-6v+XS2cMcb1h)Q7d~$VO1Nt4^T-RnQt`+PU)QaRT{uYJ@DiUM- z4{C`V2xWn)GXRO{Zu%+rHe7oB0>pE5-q4TxG>2wIr)C|V$ac2(VkW`XskL@}2EIAhdHLXw zEUaJqvc-irzUzGvWIMvu8?OUbsl@E$uAwoXzJGaZvTciqKnk`^Vm`}%@sswsQ|#WI zDnVrg@=0@-;Ij9^dDrvHL%G{s%eKl(LzCTh;O&q(b#XR949TRV6aY~ekmgQqSFba5 z+w1C=Pq-1TuY=MszI?zsLSaxd6Y|9syj3uYHDOo=BaTG8Z{vs@Jl}Pw00siE>teBY z#cGBQO!7Dfdbx=NoEN>uR;L#pk9Y!Z^`*DB`Nw_u7KPt z<$ynf-@Xp|EVK-|T4R@M*(_+{?9G-M-tcR>Ou33b3_hXvXAYzBe_@)Sa(lgMJ#_KQ z$d|Ym_rqhgXu;X~Zz&<-FO!}zvST<7zHGm$fkY(}o$+URnia5Hwzu`m0{Ms>Afe)m zGjBEsbiRknu?pJa0NDZUWP(^6pH#$fSBM(KeL?>7EZT^D{sKT)!hC?h1JG(?m= zGm|0>BYTHr?^(92Qba~5lCA8SEpbBjCM)CE2gi8chi|^W=lA^cT-S45&mYhAxXyLX z;W+o_bKm#-e((3|O@>sqy`UN%3H4yG++b|kDRM9nP^?@IAuC_anXz2W;*9g=SwoFm zC#*T*1Ma@Bq&A~u<9wjifE-h3fW&+i`$>*?pL5h4;*Xx~wqj8O8;Y(wp%$)M*bXzy za15OcNAtCg9CjQyDgW16O}b(O6{iN4&J79C*NfI4ezP%osBuJSU1g-LHPO|cjI38j7a|7-Z=iP87u?A>_t$Pr&s&eDT#zD_Qrj@o_`w{!YC2+@b3`k)s~egj^^=J@8|>`- zxJ4481OM}d2v{9hq8I|4?MeXESVX}981Bt)BE#_K4LE!F@jfd4PbyK+;f!Xh_88e5*XZ^_J(qwhRnf6r{f` zX&9hTNGNsT={NxKAF)sz?e3)fB>dn-XRkett^PYg9_B}Zze-sF`r13MD_z|B>1d&Q z{PcGtoOQ}(^}8?pld!5+#2rPT2Gv# zgM^~_SJc{!)vXyUiv2Xiah^xzJ`gge5(3a2C}vOds{75Jee4oUt|>0~amSRDd*XxM zqSJEr@5CeIgzLKML#cqmo{%Bq^-5&?lYnw)U7+&g8M`Ss_1w|bys5SjQh|f8cHUS2 z)k9qq%x#@NTuH7Tr*5r1cyFM11pE+H2J}uI0b%l7m{|#j##o!c6OmNcQvW$LgtQDe z2ipxI2MGzx!W%{XNh}sYb~!xA!1H&bqRS|6to{WWhdhE*j$<_a8Aa@>y)(@C`De*~ z(OZZ&W?Ii~%$^OgxEz&@8eJ+3lL|=i4`&fnCVL1K{Hdm_M)iAYvr|C(Q@oaMF=T9} zir0rBTkZAi#d=5}f$+qgO=m)H*9+k%!DzhkEms3rz@WdOXUoZCt!vRu>Ob#wgh0mN zuShUUWxOCGX2pK>n^BHp!z8hkD}YT^ZQ0Fpb3sD+dAA+kRDVM?$a251%GxCl^PiWJ ztQ5e9`VVVrBfY_%+P4+%yw=nPA*t2jdk2D?djscBC%sijNm1N&#+A-OWa$txoDk~n zWB86LWO^GcX-iDiP~}q_PhA?}qSfPX%aV1Tck;SIrwVs|EcN4zr$-T7g)+#^*R!eO zlAy<9xalz;K8;jfC3VE(@TOp5HlUEY!~&}#8T-LoPOZ*m?epH%Bi>E$ zsI3~eK1A6ci?XBvO$0OKbtJ}K){?RycOl?o^2kbk8=TUoU#g$l)wfMsR!!S}8@Ijl zn7v5Yfi2`FGoo1O)jls3*@;B94;&h`pqsFy`9PhLsH2vN9a>TY7&a#lOw@OyoP>n0 zfEz(~*CFxHLs>IG%Lhzj^BN4m1FkS*7^pXz`eRRl^aXd)KEJ;00F20+ocr_Z(r0ok zbWQ3KrenD-sQMjFvM~seK)U0?cZ*%W_)2{bcM^P zt*#msz_wcGl}&hKcasB^Eo5tNLY~j>D~&SWa@88NBVLrA>$yKVPqfd|Z#pW;(SmLu zM=K#=%%x_f^!s>aE;L>+8ui%@_4^e9z%zZsXrGTLVu*$gg$f5iDq?mP+7YBX4!an% zelnzRDe|2qma;1}6~L%`;F?>L2^d^ik*9H$qAYn*wv#Kzy`^xR!m9SA{UyAZNH=Cj z%{{(gB5~jFa<3WBPu@SR89bG3#y+(M&pMuXHIJU*np+5ZZ7-myd)b_l)VJCb?4l-k zi~)N5bI#!#6z6VykO-Wj5r7)yyD6V=Hbc!1Rn}%=jg&ZWqNwC28aNyQ4Ju*6QN%Qq z?=TPTWn5yt7Beod*~b1f?gi>?0KN;lG(ApzENzxSg<}aO#k$jZReHHqrukJyIn}y0 zg}Zk?s>%eONDcDTxUyWw%_Ks#sAlDVM@gdZ7eo|SKLLvKBSneAlr+vys34U8YQ*)6 z8gVaPZ+)Ou_ZR@$F8@FTUPvXE(lfv`@46(Oka1JIiw*_2dQe6bo!)AI8xqy6O0l;e z+~J_5{h$HzHgI(hv!d>uu>-KrMJvn4iHkUrxGRGd&FxOg7~y6P{gNZ=w?3k#dY$_|u1H@w#~`O*u}W71}JC2Tob zp}myBkY;m?pU7CO+|v&#Dj;4fErUZ{y8lus2CwK5)q|}TR)AuOc6MN&QQ!?R`6Wo; z5C(o5fM()0E*Ya`xVEe(x2M4nCV<=c28gzX^{urnu@P{9A3}D`oQXb58Qz?OMj-uK zwv3O=t|OjD2g|9`vNWhV?HG>RWYHE(49(o>7hT`s%m(BRrUFd3VTCk!Nsvl5U%st~ zu_?&1b1D7CX4S7cNbw-|c$`vyj)|!Qo~X@Prj=glysqX+r#S8E9+6&IaU5}8X=edMF5dwi?tJbDl2QVkn^CXu`KrFylOI(dyNMD zl}M~tiv`bmlT*BYtrjro?V_(H55+%#G$j;QM0EVAGaj-Ks$Kp}dJ^TODpsnLx9di7Yy~t24cIOFCyfC|^zF$vDc4vA>0}-1Wk{u7<<0$Q9-<{KufM0`R_kZredk3UphTie7;vvG)VvH!afI6Pw$0Tl*L^XT%%bgj-dU4h<3}k2eHt{w0{V|c4R(Pa ztUROXorXoKsigd!5=;?z{?Zu$P|qcn3KFj9&%6@%HBM9lhY1wKN!2$d1c9Q+(YqYo zkNt8}`Y=De!c8mwfy2y)awiSXx@h@gc))wsGdLHbZzuF9t?%cf_K=86kQ;3G1nh6% z7@#SQG!(G;ZEH}R^M!1qDOCYT%#JUL+(`C}4S?zbdgjyQrRQDsQ!B$yrYk&MZJjJ2q>YO3%)yV zWW60*IF@oTXTJWHVxm@Z;B$V7!&V;%A-P8C1hYSD)kT%~3dZWIck5&&X&HkP-#Cei z>8nu<2qqQWPb&I+s`=Dj=B!I>r$s#h@;1l_9w1+WEe81K?Op&BhbRkKV-XRcn2Ad$ z(~n-$16?#IZM(g3+P2Cx_uD7*A}gw-ta0UOvp7YW`iw$4;Kzl`EN`N3`J;j)C1lt~ zx%FN`e}lt{em)P*AL~QQ?6WE+2yroahv|HTC>88u<71h|d24V_W*V4UKV|0Fo_2CX zPou!Yu^6gd`b^Ayp(#6aSrwO_0PuDM$jyeJ+J_Z`*XMc7LONU+Q>cQ(M$QmcU-b{M z3(e%v;1YiJWa=u}>E?kDFw$(VI{>a5U97n#%lVgBfxV^)HxzFXE9Txm$@HARD%P7? zHqh55qszU+^~&MLB1B1^P`TXn2)~=dK?P7z&_Y29N*++?2GW_IH1vFO zHN)$HOaUu3_bQj`nD4S<#aQmLGw{~?=bS#>^h_1Y!FM9(q@2(EVP_-u(e?qN)g2*3 z@4jsO;mCcZ@UChVX!9hBFSdAP!>Z z1^|I~zLQ|@_>?8o6mK;Y*As;}#q)H3r4E`Z+Br`*- zchOE~7%qDW*KIEo7TJCul)JG{AyG~s$q1QPANw>dTRwhKLbeWuBNVyHC$SdJEzT_d zZsx>8cDAtvVBjXoDaM(*nWYqbxCN#^v~YCjHy313h*@Io2MlA#bE0v0M=3|oB%>EW z1A4)sNNDSLbt=f~)zZ9ytAz?^s8q14;N{Q-y%+5A)Ox%xY)Vh2^A5-Ah-&iF6M)^$ zoceQF@o<6^^6~+ot{zU*7bY5h`;AD)VaXw#a#t``fkw#rJ;v5(rT!N~)6RO)u0#D# zJbARZYl<^Ft?y#M*l_)c)_WH0N7+zVeZhz4mCpaenR62Nj>7v>?2I%Fnz<$PlY@mu z{pOk2ZhWLNe#l?E`ujtOwFA_vFYgXwL@TC8(yCuAWQjhSywc9?a_1ZE zH9%GvmpDOvOj_gmRpTdU$R7bi<1Y6gsZFTiU5TFUeq9Go!+|C*!?Mr;)KL)v*SO=` z0!?_Xhfo$(1-m(SnY|rK zYSss0{}2LBo$F7y+wL+9X^pyRlop?5H&<|gHk_;{Bv?-{Z>}_ly2yZEQX+>O9<5xt z?PY@dt3@s$%%9?N1W4pIqh2bZnoT=`1RGwtYQN_Fao|lP=MC%3lHcEPczyz();6Sa z)#e+TgT*FQTV>T+!Fe)mpPSQKEL!q9aeEH~KEV{IaDbWOsW#z&*E zoU5W9aMx9B^N-72H`GDcBA&IAD9N2yG1*^dGKc2N@y`k>Pt4s0g=1eFG(-jeGZqNj z?O&M-!BW~T&DNmyAP4|z(?dsts?K~d{VDiIHW4!Ix%`;Cg94a2PD4r*;t3V@KV4pRj%3gKcHCvVcnEY_00=3>GifMpMS=V@8Bh=P)|3X~*;K37l-5_($&0+6%aZ6g z;gA{~b0q3*-i6EQb7)74EX?Ac%aJ~L=6~nwecOEB3O6FH)|vJpK@j_Q_~0`qF~iPS zsF9G>i*RqHsT6=yz&B$KI#{Lzl9KSMhyicCMplMp_dwD(-=H&9#S6wrc!mTQOAp+gq;4AqsWrJl$mMFfvj}hY3uS#VQo3$ z5JMNSI{P2vkV}B~kdTQ9M-i}rjD7{_q@k$l&39dRaRwV*S>}u?E-s=1{(w)2RK6ma zWZ}4So_(e#^n2q!=LK$PkH#hPACJ*5tk2ghg<#ga%hG?;siW3JcmBM|04Qmug4O9E zg7fkN&_>BBtMBdu1>b|O@9hu;ck1oHkJMKXfL|o-#%zpa=QD!6>@*XIAQ?QT>4&r^ z?g{nEFoc-fRPaHEB^wk6@r?5t?VbN+ByLeUxAS}hr`OhwD#jI$=b1C*EpB76rJ-G# z6{qPH9FKbpm6lhlD;RZ*%csVW{@oOAN$5TXafrenVktCGScg<5G}pg3|K*dn{qY?Y zv;##Dz{zI)kjvxMRF)2GQ?(0%4_tNUyh_Xr2k3_k;B;IuHQp(V zf`LF3bkACIvnNC#hexL;*(a&o?_i$B9Q$pRB9b)QF=$%cB0qT@rU&jyn;z{!;M|%l+M_g6!|3U^OB-Xk)(wiy2}wEWrCM zi4JZrK6^iS?d7-uBq5eNk3)aeP*kl`LA=Nxm%n3>TN~{&q3q$M!fwkiE=vz0+kGG@ z=ZE+g-zKs7*+je|!+q|3W`dSG5W<fA8Gz*%FT5+E$L9CNKRP|)^T1H#*F9%}Vy9I`rsrkDO*4AVa>WP*uU1dH zd;ihJ;1sVwcTHGF%F*5-vLI`ZNfaZvfc-uWJikGNxnI(>&2g>J9Xrc2B3CHHpa8Bw zoNgiF$`kw)T(C%E#XLyZ z$t#UyO_NXE%-EtY_aR7a+A=7!3wLS`s66Z%{vKuBemmpt5QSM(4|PS-dIaZri-b9h zuGq7++TC$}OlK!5*2Qb*UFKd=JzoipZc*46nSb?w8pi$mxw;{5!?oMrgCJ0O4{4)n zs=bh?GvnrJdXoV|NqM)zZ5hmMt&}6k51|wqK<}t(gLvT(k- zxi8e?`V%SV3&bj&O8r%9g@=I zt|8(Ojd^gMp=d|FN9ZZ9!{^FSu0Jf%@_`FGqe|BU-0Odi*Yd|A|EF(s>N+A<`q zdA4X8LBP9lU-~j4KGf+0D7T2X>5aC+UMQ`1+{uhALs_`4Ujh?;%=Djd6U^9nUv5X8 z#DSMTQ4EMI4i8@6VjK!eD+4dTx3j()3G#mDK{zJw*Vb>VyxpFm3K{4OkBHaJKCn=u z-zO|!TVXHv+4zTH>!Lzzk$Ndg+hf5TBA`qKk;0c-v4uH5G-Z+#499&r+xA5y%zBMRbRaWug z_V%zhmjBlGt>s9IN(0+2pCQX8@UlnKS*sr`R+PZraW=R&u-R=#F6)mV+FQ$X^c!nZ zH|L;i@Ei5gvu`Z@@<$_I6I~f`hsM3@^A#ls0iT#ETE<(07{N^}dv0z( z|0x>}r@$~OE#y~1(#LC`^4C0^4#)49lOW<}N5`nM29J>Wk%b>DAki5^3K%$s3bK0K zw?@qeCs9MI+=7o*^i5ful=Uj(QE(g~K$Mi<{*h-mRefi|Z3hTe%2aDAJoDge{het0 zM7o)>4%FWqLZIZ>aVetWTfgx)U<$`^@JQY4`JQOSMmm9!7V4$NaB2&D={{c5KhYsrGS*qiaJ;{+%r-j1I*rp1>S`tl_E|Q)3OmuTk?7GFI}pToTOxAUKDq zRik1H-D25xc=D#r0GdNmud_i6joFab*5Adc!`5~u-FLEtWbd>cm;m1Ek}NpGF-94Z zl(t4YN=i}K@HxcN6`SgbJ{9N_mdfl`78iEP@3Om7>!hgD+y~7Ue5s!86bo9!wrElmZNE;!FFvKrcdGmpOt+#A<{lsAj_exBUxxKLcfK7Jv zfT0;jsf`F#yqL$28SpdwvmI^F#R}dkq=7d6t-WBIfun1o#u*$cYtH7Cm^4t&1T@H~ z;`xq4)02?RqO9#5h6jup_`=~?I}44B-d}ePwv}o7lP^x;Z~vU|6^Nl}O&MCEbWVbI zQ#YIcC!_~188$IJ5;{sRdVE7ZH$hn%(9`ihN+BPmh8=!yJA<^oHA#dz>_-;}rA=(2Rci#K~M}RvDWekA{3Zs3JaxR8H6?DC5$6IRS?r z5mycKWkuxaotRFHxY)v~HNE z5CQI=u1#@WKW{ZsYo*i>L1Hx&cod=thmdS2`*2*?*7mGUAU69uAwpWQ?^i*9Mo}c{ z8x#UNAI|N8$XQV8D_rN! z+{!HFaT)aR#MDj#K7F&fnr9sE3S4jVs|KH+-Dx&+T+b_k6d3w^`vVPG;;||t zY}ducKel^`b5$3JI?F7NGPmn_sYV}YXsnL=OllkybGKufx{CQ28!P^9r6j-VQ;z~p zAFLX=$39p5o{Hv9N@x;Jh}ZopX!*7FYC`-!{w=sxl+XUTBBcERO=`vUBT;6g_<%e7 zOrxeg&R5~OZ4}d}RW`5u5$dMrhrHl&Q~BNXD{3F3wE#`qpNgbvOa0)+49+K>z)^1U zYk*p3CmXuQ2~hD_)8eW5_1Nf+kt&t(N6>L#|pT(C^Gwr_B zwTT@%MC}$hm*(C~!lHs8S@ltN&y&K@z{{4Cu?}(b55d=SwycpidHfg^u79G(RVgA@fj_5B`%(-oVUFJJ)v@%g8oHI zei}axogV(hqh|8>S6hO@j}e6yRpqo($}^Rpl#^N=A9eYWa|^OHg{*&J$lKJ-GEe<^ z6AO$^~sFC#Qxvv9)gfuttMH zkH*GET}=;(o9k9I=hNp7KxgrfvJ^1P|2s;<4=KoLG+ADb-=*gpu)SYt$j!|y@pN|w zi>`slQhZn zzPj1Mnuk(#^v-jSbCW6?USJw-)eSp1*dvlr1i)7Azk)8GMFM}a*#-cd)a=V^|JdOZ zD+lEAkGI_5dmzPP4s=H~O+Cv#CwD|6=3SCZ;%)kfwZGSeS&hZ+PY(|~@!7h{q|juE zzgN#Y+)&b#P4-Idb5?U-36^Ov;HDuZkdl^;o$mmbq*qg|M7xdC)#44K=L!vFj8bgg{K)?lbzg_Ike0sX zqO}}Vby?7_wE;#-imHsNEVuC(6q^8%z~ninSALk7-_xOI&K~jt4+Q+M>Oc`U{CFNF zoyWZ*VV>U@_TErjEyTyY5yvBN*!#oH%3-p-H$*i3hj4HHpB>~UCmQ*w0tKo5{u$~8 z6AVXSvYx1Cfq{V+P7*uSzxSuHmIS*cg`wtMb1$L-Y$oqUy^qgLL35LJ1MOiU0Q(_lH{8 zm^}D8+yBm{PQ7$mo~Z54(ND_F<-T%gqd_35w8_9)%IPdPq5&Sm=RljGK6y-icoOQ(fzN5`79cdQ>gcpwEg zaXVI!M>$KYtcwSLrb9_MORvIYlI~upnP`58`~Mla$r1=y1qTOX-8hG*EI*a+ZlgWW z%e3X##gd_Ij;>iaCQ}KpMeD7h?kAffIYSMbB5GC2m);bvw8@X5J$79NTc^&w<24Tq zpk%AFs%N0)EL*v^HO9E>55Vph6!=HHOOsmVGb?sBRdWsGgjavv&oS-z{3$Cdv@x8m zzSwSNDMSWO$bQ!U8cO)uL`!T5%8Y@5AxEz^uy8WY1zt`q_S>Lp|8%5{y^`l>Ja^fI zK7D!M^y$-j)xO7E&Y*;sZ^s+4#!9Yk!<~!mtfYw5wkwJ;pi7q(eneekGeX5NG&eW9 z#l2za8XP=x=gytQIy#G*SLfstzkIp&XJ$sfK7_#~b9!pZ9~QW9CbPu4`PONXY1e}I z-K|Nb3n#4`=1JTh-S8q9 zk9hf&?AONkHRh4_$AuQ`e8SSS?Y z$E&HRsB8hv2QUcP*Q_s&Er&>Qnmm0PV$&kP#!<1g^eHnlnFb8($Mz(lY z3QbK-DwJ%1s^^6`d4y?|N z-b9p%MMVODiB1hEOJ-(frP%orC2j3^hwBvGxrXvJDM$4#9K+6(CMB_CmT&%fE9CH$ zl$M*d-u8q2Cl}X^rSTl=@mqc)!!}jJWGmgDAExOIS3Ya4@Yr2%aVV#Rwr3$qNiw)| zyp-j!eHqRHbxN%Lqpx4T)_{I9n*8o*Ae?Jv^y8K1zz1o>++DYZkBa$2n>1Ni1L5tJ z_QlAGt#iCjy2BiVH@iJ{u|tL1Ykgy%(=r3UfB#-O_ER2ca}-t}NNjflwFn1+zqhY1 z33j=-xEN@i({VPZUhmf@CEW1^Hro30C%MgJi^#B?T*w(m>;^n%Wa2%`B{ zp5fcMFE{hm!@7(D18U}BG+F(9M!V2bH^!=tmP@zFTNHJ4Hcfl*kY`eT!%G(Z@$YYP z;EX!1^%(2d1JhkP#2LoHR2u#-C9~UNHoc2(1#m*IsE!H!J(q1$A%@C@!@aw)} zZC;lao%Yr!^;oxlXfQN~6Ur?9^I5gr)d`NcWNd6KmwE5khFo@7vq%Se=hinWT1As6 zxJW>betq4=lo$%wQ!bOX4;o)y4nk)KDvQ!Znd^LfvOo#!n#I?Fi|BP{>vB0Q{VpA| zIt;&#&J_%;iM8Eo*b%et?r@T#ugJ!@->yq@ zaiRKn{p*YO^=7+sxLnp|aTe03u^3iuaFHJm8gzzGYdJDKQddt(PCmcCUpwC~XVti% z%c#8wjs?1JZ%S9V?}}+V^%zFh`cP}V)z=G=Qk-7|@N-^4=ry^yGVK<3yjzT||5v_q|8i?g4-*>hwuq%JP+aPwI|`0+~hJURPU&I>hMj3s5{a>A(b@}Ffdaa4lt(~1zSFT)f zl1+-7-C+njF1#Rq`yKC5Xk_n-wHS0_dP`4=KQ4rf+ zDV&Hl!wHAJ0*j%U-%D6@1>xN9%tkNRG{D?>eWe<}hnHj`&Rd`4bpS$0y^u zIj#XjB5;1vk|BK=_n+ICA;w5edo>)77=%qJoXhVU1!50=!CB7V)lVPiwW_JEPDia_ zd7~c~E>3EL+{AHDMbQld;jM-0qKS!x>pVQQiPA4dHzwmlfh~xjd$iZ9s1r*|g_)Uo zpZ3$x@jdNdM(cHaeu!i6z;VkpRxj9oYVjkb%^l*rm64ILiXWA97q;EspU14TrtPEr zSg6OAeu&94Hv>e(axSmS2rjDzKgtguzPS^9{i4gpc;s@3G$*#2aVIPon8D0Yg@^s- zbc!*Ea+DB7*;GNrwmGj}jemN2Iy)V=!OhNJzh0XUmI{Ej(bn4=EnOpuJKY9okXP>7 zFZ|Q<@_5iw^vPa!gRQMEJG#1zA3l880}?wD#DyVWzolfp)mUArzRg>*PKOA?9^Yeh zxlz}QjX=ycg^2B}Kl$D8vPbf`$ZI>G9ER9x%lDXBXinSZl39cqbUE&HOg1#mw!EU^ z3y_j%v)pNsIc$p%`iJjv#yFVTc*Lo06(;O%Fey%pL+B4_M-%V8`#;yRr87T&z62`L z4aOnh9?Ky_2qIhN?u66#ol!VR6e_&b;I7?QY-iSQ-E<|#tSj@apq**FF+Sp{cOM9^ zN$4VtIEnRMTF+V@=xZ0sICa=ADZ*PE4djk;SD5@@mfeuzJ810TJ z;d0+v-_}wA(Y?C53Y-h>^d;_21AjJgR?t&xyDl0j7h?LMnP?SiQ zl0;eph8`0-q4T?}EAIFG2fuSZ4jw_1_rCAkxzEfz^GyD}ucO9vit`j59UT)y{f<5z z-O*7xI))1;j)8xXN4{1%_{-<+10Mr-dmrdSFFQKzhdv%I?mjM#k1qJxd3ig!yWJ3% z6PLPr;jxd8hqr=+gzMo8#NE9dB=`g_`+|#{^iVhTrlVtic<_h5NVU+Bj-HMVa_4tL z|IBY=4*nL{`t_xt^m{01d!-nAJ=dSHTp!O5nEw`tIQcAvTmMAfudrYH8Qw&EK0)1&`zZ{&L~OiP0agI&tI(^v7$ShPUwi`*ZmJz5M?y^M6i2_kT|C zzn#Eya4`^7Qd*jbCo7L?{tF}5=+4%WiuA0l5p{KPSUjGOn*T45oDcs$toi>AR>>1q z|8Aeh75OpVWSpX5-(X2efw45QVQNXkKJlDut%$Is79`=JMs!8zBN-m*)R7Yxf1!SV zmz>C;lwz_q;WdRd)+?}SEUwta%L(dR#VFaoJ<|^Vmi}w~2kH@7BI@>s+1Z_V!1qYUO88$J@9(|(t{l&-1I@*l8iF(C>k z=_@Pr=ly@U=CyG{nVR_(IIGv%=hBccWS!EMt!BXITfuY;jE9S!OC8DGR22D>x2D$F zGhlTsP9vb{xI-x2n`qvDpZolMV>aA;({;xZ7w6r|@;a-#zG512rv~!Mt3Ai5~xT{_rOL09Hd5m;HWOKWEJ|wBB>f1tw_!VLsZG)$4fi za)|H4tmi^^g-7jAb_CPi;uEv`Zj5VxxQIKy;J-U`RpExjU7<7DNn?+UHIgjF<4vlb z3(QrY71sFcEze@(s1>5dSnAkAEZwnFBL9Z}YZv6kcqv7zN5|dEMN?WSeT#Wlv^$~< z9RIw%bXF$hZLy)=LpE)`%%b?^PJW2PWd0R_4nnceb`%QPA>lr|lC?R-#F@c+xvJgg zSM=$dMX%rUT%3D%oG+=}wx2m{qqP-v?w_0Vcy^^2`e_I!-ZrtW4)ZgX6~5jt7}=Ry zc`VX`7vW@XajMGa%qNp?@V-%_h&I(H&nU3LFZ0H}RVx>QnZobiiBP=NQ)$<^iU`}) zWD(So`++-ZFFNiK1&fWVAa3y{R*<f6aAAuny`}e%)l@M$JFf+5iTUWa$8#`zB_KS%85$LlR6RUu`q9)~oz-&i2_s9Qap5NPEP@N@zKW}Qs z;)PmNu8%#auQkr-P@uWSGuF1dNY1@q;;?K}`*QVO3lS&IOLt=QEa$0Hr&j;u+qsz? zy!`k3)>ekV=~qG2K1=ABT_zrjb^QGL_v4<)|CnmrLo!2~KIW8#O{pd?!UO>qgEgjJ zBiBZFJE-_ z|G8fH6H$e$b;x{x2B)0TrKN?e{7NP6G1jIhv+(sfS{S|{GG6dma%Xt<%s^M!h>U}i zeJERG1inZw*M~L+?R-?hU4#6`s^OP!Kg!b%a!UVGVdiO;k%Hh2otYS#u1=mEH; zk#-g#@f-)+AoR!y%U`G`PF}x$om1A$qR?4SPftTbW8Uj~R?M9R%Uze)*povyVS>Q% z>ZIWwZxYgZG2rm6lTmcXc+EQgxpBHbZmP$hlr=+hi&RV)e~e_QV_19xj)pU#DIhZF z&PJ-#hh<6V(GVGZf_KHz=(ePwe~H&hb@VC;`<$(zu)HYLFD4s@pYr#7$*E*wk0F< zKKI7Yd^arp$44@AlMf-MRMoLFeSXn8=hM{}{OBxytz-D-1%I^s%~(5Eogn->^H?s0 zOl)>5#IQ1t8R=WJM`K`vSjDc6VET{!ntu}9y_{*ed!nG2J@f^_5e?~l{c=em{? zygL)I$>}}ycjdi1GX!Z18S%vE7mI?=QuK=iKI{j z6sDHbww9+NV0kBn;``vTJ^gC?D_NN7J0fAEW9|IH;VNh4bE}xw3+d#ZRyc}$H~F!q z9lH_3=34#B5}$A{Z#*xptQ)SAwY7-L`FcqJ!Wv-&%Ugz>3Q)F6(-OQZIAT|m9+*Y6 zg}H5Gm=wruL&rBY>A2euW6gNT?$&RntzwdqX+B+(f0wK?jz(&8=S*HDJ}+bq5}jHL zO#TCs)c%ceD7XKT)Kp{ur)Q{f{7Mi?-^(~htAOxl038F@p)Xdi`$?AD*EVl@H|sQR zoWmMPpQowm^cZ>h!T5`jAB#I+B5)$AW`Nti)YLKYw{zJeEB2+#V>@{z8YMwZ%zunu z{Lh==I`Cqk-)Gb)mo?*DZpyt#{&rhQ;fvB%Y4wh68?mJ_ofEDJRqX;0 zFU3)_^+kKQzfZK2pNvoX_SSLnfi8DG2}lXN2v2O@)(t?>O9dUjcHyTTs}WY#mmnIv zEQQ~?w2(ClQ=UQmkcSg8j@jKhqU(m8mSXT=`_fAW@2C9grks{PVF%~A#%rIH1gsMKVs_wkMWtkGC-(NDX(=N1@)kLJKiaEbT#3AdO?;?~o z3PM*`X|Xf=o4GSab?}W}Lj}Sw|0fHwB-4sKoGZ#E*aYtIJ8#TB9Io*y^i)-m))^M^ zkoY7qSi7KPp4Qqg<@8lOt?R%mrd&Md)3?R-EFNW+Z)`@iZ9sXqALJIsOO*_pbMkBr zAmckIUVQ!TM?E&q9%6ynYL6GB|8=5%lGI0&?q=uPPdruaUbt5c=5^h<+jd7Cw(cS_ z_)S!2aK)St>u%MkW}5P*M8YYBKi6z;-r6efOWt`13`6PTD-XRRyFcY*cSbjr-_@e& zE@Eeia(fF-cSiLG2XXp=sH(LnBuc%~`SbYiu)G|KK-+FvP57v-q~qrzEr|YHxtDx8 zPuojRp-JJDjXRKjyt}w`IdKYq&wf*_6x%=fc}!yTV$~2oBybMuUgYmE_xs*0I%^rN|c-ePiKZ_jHGclN`8anZ7u<(C3CU1>VrgLZ>ri?2X zy>Ww;mscF(A z*?mhRRQb--T@5W-cjF@5z545b^l=IoJ-6xM`Mm(&>cZ;?hCZmaIC~~Qi5H@;X`t5l z@t;DzO!|`O@BneDuccKm93P0I??A?xr#IP zJd&?ZFY&1er4IPMX#TAw;n@!kh@rnk0;dVH&~{_uld%BN8aDaZNxF^SL4XrH#IDHb z?hz=&3~7`0ylWYmY`Xg~@N#f!UdFx`+_P!1JKw3yxxd&XtEg|_-p2H>VG)#Xd*edz z#qi5ahp>@39HroDjx>NJolnf`MAVJe&G^X0lJa8WPSIjUrG~!AK>BNv6&1Q2s)mxT zGf>-2iX}NP4 z?;O@rfoZ?pU_tsXJtB<`4fhcQt}1oO)jSa6^xg4*==ZJb8zmcZ(R7rS?lARylI}4H zA@mvF(=TL`T(PpuODSNR(&i|?QLcIyHfV@1b6CjY`XKR(2mhtRGe1B;Tf!`G#zPc8 z(kRJG6IOAu1YL1sIflfUs?ezk9(t{u=!nQ?*N4X4Y07Fgm^f)_fKu}wnXNRx)7!=& zPBIQJ@x_IkosG?DX+A>Z{3Ih5A6)HG!bueWql-fNxVhs+TDo>yEXx82>e z9PXn#FL&s@ugkWYa>qKyS^C!|BKbIHk|T`TD!K{M9`V{SedE`MV0o^ke#P|_cVXxF z_z;QXvH0N%UE@utqv1f4z6dCo`-MslPh{&4d@# zsY76;*!;qCVYrSR>nyvue3wF*&HbrR6L1&MS8=%!2A>v4wc* zRW{8+vV`(t8+|Z9chWrcBOYg#ShW;?e4IiE`4NOWgq)0 za9%hUV3~2)5Hh}z-*R(h;S&K@S%9oJ>Lt?B`RA&gb@V%4^F#V!G?T|8C0WN;|Hl*k znhDo|XDp1wNL|1DJ4mRcLE**3qcC{hzy$jTx0;X-U!7+Ek^_%3w?wEz+8~avxuD?Q z+-?1275=-h>W6)7AktXAlFjJe>S6Ac=^+Nsh5)1;dhgP(T1b>E@7+~4qPE<;bqF#K z2Vig~$K?njriTO3)^<;M_492JVd3j-QiD>Qn2Pr6%01F+qa<6&G=2!<$PwCgo3`0e z@7`okEMIqZwaYwHD06kVpTdpbotBJ<7~zMA#hyX!Y|9Ej9LD6#|K>Oe%R>+!l#FGp z^Dfph$VndB_2z@MdTYhBA(D}`wM0B-z){P_Rc)L%`?nF2#mQpNw&~)d8H`A%W&)_+ zKxzWMrQ6Z)F7~n7FfzuZgvJZnqUFr+Mz3Bl-6!b{c{ zrg7q(sBM*bEEK&&qk-qK2#eC&-5ZLwE=J}fv#lA&)eo`y1^xj(uUoTL19mL7Ltn!W zmY$ITLa1Byb3JqCR6mNVWuWBl)3}z93B}HHtgLoj$w>*X-`P|OKsGyTN-N5XN94&rfAjsdy-ZT;&hrU6^#WNRo&j!K)OY#yX!f zajk+n8Ok|>e&?uf{|Mo2AOGpvtu^iF+E3U?9CPR*L++!!mo*~L_>o)y3iFoH<#qyQ^ZkW{8=Fb+%{eNulAaUg-AMkc)d?_uQ0Fc#F6xlX%ro0O zy^I&0H1c;pF7=`XqRdvQULiY67;pd+`FU7w@<3AR>(w)^NZ*JM0vpt{MTa%LJ$ZO4C6MZ{4l5&%h z&K1L%gVsNthV+*+1x@)i24y<*e_M)*iwChH(+x%2z`*hb%H<)(8Fyi;?JFyjF23t> z$HOo4{Q$#T=~dWb<&0ATkU#I)b+Fkd^0TtBiKwcg2fnOZ%`YF5sU32`#W2RvP?!nB zN<{+>4vx0ni=<;5w5ZzDbp<>~POrrg{bv~<`oS8R_Ms!PVcG#%Z0JU%w-NMmmku8; zkJUvSHZoNz?(Qyh83HhsQzh8Hu;Si0f!V=Aw$tBl^VP@U3Y$nz_r;gLw=I=39Yytc zQ$PkPLXL(emAL5Ef0!k*TnZ^`@l$wo^Q3- z+Fhg_X(@4kgnX*wCi&yH2n@6@AI>vzjGXb+o5?7D(oeNzm}OU^Dg@^#ck<4=r# zy7>cgUf@8|v29p~FhgqSs_yy}R@i&1apO4uK>H-N=T*670x&y+n;uOX6xB^qzNFQ2FLfH#q#kEatTMeU8KbScUE-0NXCR&>9CYU; ze|z8L=N&v71ZE#f_P6QEfi|D?xBO4oIpIhVvwQSgPEu0ZV+%e-zp@@VQjCs`SW28+ zS^dSu7G(t$4IwK@qg?Th1hJvKe@eH?;j)gN&Ln=;N%nS*o7kP|6+teHci4UbzvBnb zdW{aP7yR%Ym#lQIbOtM~@XN;!y~x=0Zk9-Ni2&rb(CL)+!MNu!j>pvp$wY+V{S*b9orO73c z%{m=vMNTA@tUX*+e;+1gtA)8&)QDS{vpbeu{jRu8uy|Qxe-G;n%bR1@y54p*5Ne9X z9sBR@Pw~|;XML9Ui2wU41OSGC&vCXs| zZ+^3&LWQlu6?-J(RKw;(A^jgrZCE*2E<((<_DWdVS|FB($Y>?! zWoB}Zd181@F*D1S`<@!zHl1jOE?8k3o$TUkATX7{bw+8NwBzEJz2j73^NNe zc;jiF;SRbt&ky~#o#N+=543K{x_(vrtlmTxRgwFQ>sW))-Me?&q)T1*%{y#uZD;38 z5x6N@u-bG@jimd|t}?PlF8PLnIn1yceg`fFr|*V>?EG4stT-VDWSj-Bl-nPWa-b>g z32K6meL|E#7LEq!<+y-Ty2RqYl%6 zrj~k`L(sSr8ocppFrQ6j z;`Q=C*+L~Q3l5`EsE6xtxj`n}L;@+jdi2C>iRu2Eav&FuqhL2txqxl$ZO z7)z0WENIKR)=`Ik_%QT;E#O212gK_j3p2mUmYkBpIfJ`~Zc%QrB2$!jbqk#~MX4x& zQLAp4V}*@dXX_%>o{PG7TqEtI1zG76k|x@w%gMza$8ViFJm392zJSV^Nbs|pEbvvd z$Ca6;OF60)t;n#q~S%#ZE4CVi64@D7h5?L@-Q?E)Uyri zvZ)-HQnUqPQN8gVx1u4;@NNBlP~+^TGq+6KJ_O!@(a&W$l;)1LizIJb87QB3eqmwh zn>X*|YB!DQ6u0#zs9yDh!^0&>Nl7|*1fW_%9h!011Qa_5M?Z5fjwb466uqtCJ7UJk zGmLz5)5c*7RM2qcB; z#zMC#9o^j&pODqTvkL3gCjlbm+BA=G(T*wA@-t;f4a$X*`S!`@>JZj9|L64$&-uCN zr_1o?V?5j2+hKVrDQt6eM`)Ifeva>+9+gbfvZPuD?dMx!+-I%FRc1O^Vo7#<@cz2A zfVR!&cYmSYEc&4+x%sJB94;NlGC&IAPR-0LsO;?MPsUN2T(=$!7(Ksxlk za$AT^lhH4<^!6%r24y_MD|1*+(?h=?HO^#qLlF^i{j}Br0f>2u>jLcXF$cSpIsucrE{o zhD?vD|NMr&^5Di&Xi z)yBl}lqTw`)MK_G948Md0O=l3WnV$yxfXX|Qd3E)CT zBY;;)=MiV&+?uyaAX|ok8|$p2@(t74ro86(_BSGHT*=C-&8t**4vcRy)7Elw1bsJ= zI-)9vks~w*);`xc?~=JNG>Cq+_+K+{@25yE6<46*vLx-I+G4qcAe^CEYJXXp>+yYV zbaHY64kyw$Mj+P}y*x2=Sz)+CX>DM?2!v6Qt#`Rqth`gDEl`C_rxIsLDu|s&m6*d@ zf5!U45;0JIMZrZeEatykiWg!Y`O3m^9+owEG#U(>q8FCpyd-1->rTv zPV`i%6piM7bT!T|z~DItCR<5W7n0Vz35d{J42P#O3Qv|68D;7Jy2Z`M!g4wKW6t~c zw?M}yO{`hHYv}9g*$_o2)lfqts%yGAx4JH=2fOaRLs6y-ac>+eaUgg^c{a_j_;N~h z;Exp6g;YBbf=KMy0F1t5A$32kd|QRw=ni;YdLm$x@Vpst0N+W0FOxx26= zv`gc(%A)E?#}%k&q+P)!bqh`2b;Av>f1l#L$? zeUz%a$6l#qqgHwprR}?3h7(9c{b^Wsrh7FaVD5=*wc{KveEOx|o-N70x9w@1jmYSe z%e;pM*YGX29)I=fGx>|3yu5tWUw_@#)QpBzvDnpY4cC0@mY83wXB9P`jg=*w@ORw< z=~v<-AFPBpj6YzMcXugWZE*BU{|q;=e#M1U=L3!Kw0NOAeujJQ(6{y13-h(Kv|_}Y z7H`3=P-aU3dg<#`*H1+wi~UVZ5xuU2CR5&cp>gDGi1qx=7|jqeX>91l=-QP#zT(5m`m=@9HizZ@U$e zgQip4DT_rlIpr9KF}K>^SXiW8zPt^`v!Qh(8u{(wy9Q}{!LgpZvh4dt?y6gFI%vl8 zM09ZeNI(y2Q;JlV-}jI^l~O$Grxbqq=aJCRHidhRnrNnhXPA$<(R1I=ug0_6RU7 z@>j_(o`4&STM^FIgdK10dDd>6fSm2WONo!;H^vj zCNhv+9%QH!Svuk%Bi6I9zV$b|ABD$SCqmKVP8Bcp==XjX-4k$y67jX8)DYK~4T!2< z6?4Hv2qU|=p|gKgP5~t4m$?S6@>C2d1?yzwqr8YX6xGnx$xGDHu;#1RfL(NTr$FL#`Ecp8zpe?~ z9Zq7iG4Zo_cGcbhjX!x|k%#MR|E2{L3pV^}(sGiIbmx8BWCV*5QqCous8J7sagNLspKXwlKA8o0`_0 zL&Np`A)U)SUNs7Kj8(-I*nI7LreWj0E0H6)da0RT>_Q7iN`Y9SgOhvM5ck@n)bz4J zj3mzIZ(d!bfl)dFXh;s+lL@FR^V?Cugq znqEyQ?1P`?=7tFcvIhbkHoP#p?03w}2j|C+^0Wj+2v1s{{7}N2;E)dGN@&}5y+53I zH=1ouO?9g;G=j31a@91ak=men(5&|^+ixr0BPZv5SpCIvzp-=8>s?|4U`9nj$!DX( z2@lqM$+l2Vg?^#-POQ(8vy8T!)bcHOdqaB}{@6dnP}{nZ;dXWX2mTKbHt3D7jLJKU ztzL56zXw1=LQuTHi@(DkROH}2m)d!r1W{C;1U3Fu+#kCm^0AKwqNxr)2XJzim$jnX#w zF1PztvMH36I_7$M9`qSk2Xx6x7(VSX>TsOmH(SgH zvdV*YWUo@D)#xE+6}84zh{4bEILzi$){LtnU-EBa8OYRTd3uk4CNoRJ(nPPsGmm-c zp1jFF{oPKt?pd=^`NDQ8_=V-=P0@R62ww~j^ooK)1IGDyH5lr%#7);p}p!1RkhKuoP)X1Bd`pAd9FU<9V|hEzw-0tFoEbyB54T zmD;e{uL&3^T*W=~DH=8O+$RZlsW_sA$yIP(Cm?$1NvwqeL4aofYM?Z&=2IJf#eEMs zv(J_$U1`*Uahh2U>tXY>^VgPF`^yQWr{H@o*+ho%mS5{G^D8ZVU%NSTR=X}I3IaCv!I0XNGY3dOG%)Ro&*8AXn;_bimT^?ypbLfZNa%v3U8*LR8e_E3y<6{Koay@WmVN$r0UM^t&t$8 zEAQ{DG>kuGtaieR#PTSvdq^<lbATveaO9A5za4~Ph`N`W6 zO2cx8sC2-x?U0MiK^D=gvRwwKUPV-`!8k!PqOp^tr(IWuMU``=p{wFT5+%ZlYsYQ$G`PAxg986_IC<2pov zo6{&`MxzWTc!4tN8Az%S1Dg!YO0R`p`QOq^xq9(?4{!X+*SY-nAu~N$u)MA=tpny1 zFkT6rQ~fNuN_`aM&Cx(I+^cbHYbieLYV8Qz+^znuEWtmQH)OR>e8ClO9uef5Xh5m8 zX@#d>m(vrES93#D7l|pwGuL)ZEEj#8Vx-zoj6Z&X51V3(2$@M4dG>|o?q#AWV@|lt zv%+5W%4R0|5&-A}Bh4!&K0Il8_hJA2uU?~WwR_vd{gR3by@5jA1<%a?h{pQ<6^;E) zO0{2TyyyrZZ;&l~|C@s<*#}WsS=lKaW@6zPA>O?4h_sVp?xy$P!OH@jtdfHWpsn4! zE{ zHoFhc$yjWJS3r{&vH@9Br^9l?23elhOc`_gdUN~&DeU114gl~2t8)VY)pBNMAEVZA z=A1X|wc<&90FlSS_ID$FV*l}y@$qGZ2VUi2&3-}Qt~8W7Dy}?QRaIptlc8u-wT&Cs z3l44qV&ldTcXw7Q?^<^2T#$%JS5BZBjd-5JKB03!k5vM)b|y8)B_$3@tE>hb5-x9cALb0fd{pbYCG zBO;Ej8L_gmF8eDr0MG|+J4})TCDq*M0B}iP)xaV=5Ew%1r1-DvlcUIuJOhLCDOeZd zI;_hx>UF0U)Wh)O2$zXA`$LKS)zv|6Aw|p_H-}P&dlGA8`yR4In07h&(h&7sgkiRj8l(k_@(?vbucWME!)iCa^Kgd@8}{>2I#gb%3Qn0YWNpB7!}TyJ{gQsMJF?O$(@O4fHHE z(Rfqb=aSwU6NeVj(n3;41U#C=Zh*6z+ zmtd?$tja9eSyoW2V8oa1gvud9a#~jc@XF`7xJsQ7sPz|RQy^nW>9!|(jSZ-QLIwDN zk;TS4ca?_7%sON$a&hV0+EC$2+Kk|&svHu(sL^vUWTLMZyt)?ya+jno1KRTZoRjh z%BkeU%UXGK1oU80dw&)pCuxXw@=3z662U|%3vtShPqNbQ znd~=-XF_wYd^hF=^{@JmVoAfx4OW;o42BFkdw5XVxdR_t2q!p8ruk6oXXg7gB`DG^ zsd;Vbpp||}p$X%O*jwTe3l2)-Z#N+34TUx7h#h|!j~Rw@I`a_`98%i z-Fppm=N3Z7=+1EeP;H*z$T~ucA}~N9Q86)t@LEDi5Vc;dxVU(Gtq0KPy8vymSQG0p zhcDs~Y`%1x=PfgfTAP%x%6t2JQ=R(eFT+TdGxH-Xl~R)OPUx)$VD*>PkF#V2wM*tV z8V8fG^9!=7#iEg;CG26_fj7f$&~5)L%PtcnJP>oa@5hLMqg{;;+qn%T1Qh1v=Gw{7 zc%##_?Lq(BkVXhX?19R_dGb>NJ-W2v1CTchU_LpKhyTc_tTPL%n|}!8CAb?VL}*2v zsx$0;nY}h2tY{G4h@7_OE3T++=!M=j>jqg)X|#~7Q^)IHOvUVD6+)kt$!HdOO4}g= z_nJ+7r^Xk^ABoL`VhU6E_^LTZiB1za4D zqM@awSZZfJHXDwgKB_obp0ZqUTF=(@Su;rQ5ANU7bIhbmJB57$B zD2WS(Pg(D87SC{(iiUYUEWBR2U#m~H+A<@*+PlNtvmdLEVKR2qPD}}Hy4NUs4m5P{ zui-8kxe`iOWBiqoq47Em{?9{~I`$zjaEE}lHUm5`acVbi+E_V^SgJtUGDw1D4I7gx-zS{8R#ob{cff&A$OkiLX%Com(wCQ8HdKE(X8J6S)XU^Eh>#4EP%kK`AY z6ugDe;(Ft2?cU$3yX{(QG^aRX_Mt1xH38UW;G?R7HB8EW>ysPsI?fxHb^qqD#2*`P z>C^vLu6r>b6(8h!Hw0~#3u>1Gh_$n`8zb-~rP{f84HKvzfi26+bwFFhOCc+yIk%x2 zC#N$iIjfv%Mm#&BYu!P!yW&GcN}eg}ZBQLPxfG!geQBw-(cS z^J`jAiYz*uxvIfCjHXvp+!h$*t{on6Vak)nfeAzJ+nO!Cpho_P!8i{V=_$u?`0kv5 z=x+|k#p*gcJFkHr>0JHHEAkDWf10pM#XPQ$&CJc#wnh0;1}1{`6jkNa5_Pk`Ol^Yx zyJTE^)(t&ArOh*FA?RCs;+id*`nQ= zH|+)Z`B&wp%eWjmAIUoJ_}*5u)YZ}g-c!h)8pm-7QX*2`cez$| z03lEROWa{;EWGFXz^Q|rl#s#p*&Eatd#V>;zFn1it1IWu|crx~RM01O>q|B`Y zRjM>r`uM8ro`p{Bo)?KF@bNo$YJw=_mWjq4VMk(w11fNlmN5fCyB-r=XrHaCo!`aQZ|Ucc?vsQkKl2AiKH zI_fMszdA$al`bD!jTDvk0gLvgP{mD*Jb~vr-+4ZbuDLSqK4PMOuSxQG!Q8bZ|h(nZ}+EGciMY z#1aC@Vp#0a^;h#Dfpz=4LHklA1flHfdc+1&8E>{L!Y!3Q+HU_*BM<@1?Z0X=4clDa z6Q|i*Di~BD7LAaygHrPnvP$Cdm@4Z9`p?RTu`p@3*aJ~k1_oI4eSCbfZO|bzL!i-b z7i3rQ04UeFJ_nWTh>X@=C6-6HORT`<tUI=28Ps(Dr3n5qVKPST&%u1Hp-B*b=9E@^1k`cT;_iyY4vK zGYJ49(QHR?IRXNTkiL_8pf_VysKc#jJ~T8$uRLNk;U<}}`W|6@qnx<80ZmToTd{}3 zsw-Su4XcLo!F(kl?3tWj&o8-AXrL0ugf3<_S-IaN9{&$xB3#kF>n`lQ^pV}U zCsQ8C4o1y&WaFY~NluhuB&fzvDx@X4I3L{;Wn%nTz2~#a?Uk*PWA&CLW%Hftm! z^J$ySK&&52>Kjnw#59hGjJCda?f9f^1jHwRY*$b=Z_2%syK{u5ty#0W*$g_3ZhM{5 zZJVkKfmWd59HR0+48RtB_xj(>-MY?4iady*4+t7Pfn#rdtU>=}a?DDV`>EhR zaUEZsq_MJ^u5g=S$}*U)h#{XC#dLiluLcLPHiaQJLP{w?-rc*Y=R+pY!2xe@At>Q- zhyTpzyhuz+_=7u@DgsJ=(81Eyjs?Rr>tto1dC-APx~)BKf0_@<)UmjrE$Y5{sHMe@ zdCO}4AKpN3l-U%w_iYdLWn{ZSvwzX%`4y!Ox6E4i!F1`S%N`O0UjK1kpot@gLF+yD zX0v)fQT%9Ir^Bg-InCs0-hn>MDEhZxYe2alR7{}RSZlo?zh84h0FqGb7cr#{I?HP_%k$td2D%AY^YFDflGblwK2#hm6(09o|9z%EB? ze~dFg+0?u$w{-YJ%;^Mv%7ZHN?42Mh^sD3JKU?fKz960k}1?hKJHO{2sxhs zgrhXl$N{uY_2OQ5hlnxZ7>vAOJ0o|JAtLUiMZ$5+vBUd(&$v`DwWDw$w zM*Dtkw~^la(5G)+nsL49HPRw+!8?KT>6*o-k(W@<7;7Z%l%pOudB{iIq<+;9{24b~{*cXZ`DSabIX z4NQS(!XB~M#5gla$I>HOiJpbppNmM5nlQiekz9cV_!mS#c<$N57NmX`5 z=xcH+2d>hiohK(JIF)W#+8{VD0m-Ql2$7x(!`l+ra^L1t+kee^-qwX9r-nU^j*^}muu%M6-aVm!U)8v;V%TV zvLXa%!YkYp8ny0v%Y!W(jo&??2Hb6J`605!A4X7X9wT*VFTA_&E^lB`JiB?|G z7j>K5zA>&-4TcZ#gM+iG`9(lj2bO0$D8v4f1{fl$v%(_jhA;o;+ z6=xw(+v#a0B98V{cnhw60W%j}DLphG<+RXS;>jqcx@&SEjq0uEOs4jh`3S=c;CW9T zS{OH8(Oe@Li_|W;Qa0~{KtY4<+_`g~z{ozX0ygO*Cje0d{<7!tvLxgP4U8a& zg+l8GanZY94nlHxH*)UjS9!$d?B`_~*)5 z)Q=xO9))KCZ3nh7J}i&q#`mV~9ZyI<%}v;MFu#I>0$nrlc79`LESXEjG9o3OH_#MNHtp`9NkmHvTw9{d?}@L7fWGH-f~1Axp`}-V6*skMQsdPae31-{w*3($W&( zSSIOv_p#(?0f=BCKe}cXzc&p7vU;AL&|Z}Lcqopka9z&N8uu0`=D-+fPqU*=;r6@J zqsZRrVldZrez5+@lc$H9Af_lWa3U32Hs<=zWRO+p<`hGEV@{CafwCo`;*!wEbG*iY(68#Y@2_I1VsIBI6Fbt$~R{dDjQjfZ9?mIb>U~?48%Q z%#%?NFc}rHf;QS-V_>-U`7qbYix_gfx4&vhW;8T0m4E=v1Nc5JMSCin!s(sq-)Bf6 zpv=X@nlFr~j;7}6zRJcgY?f*&1a^gy*Q>xNNg&SxqQ3d^eZYey0?B@RsH>fZUkd2{ zp(-ATr3X?yVR;2x_VBdYi$yC84D^SYAGt zFtBb380WC|Ubk!8G>9Rs$J)~S{8Za1g83wpKgf^;AZH?PXUMt}7DS-?ev&}aFAN?1 z1I*2VGYx^^x)#hPb_aE>Py6pNXK&^V3@eH2B1p8U$J7&}iIOY=2Lex0`oKj0)7qz8 zQMxKNIWB(0f^v|Oh{qR(IUhTwa2RBomW1L`KF*Ka@mWi4ZV6c+ptisV1Wfr*tr4DJ zWg$x`?S~H^Hf&QHlarJ4!8Bs-du3-^HR7r-qfBv5QAuw-(EJdBzLIqCK=U2MP0Yfj z#4Tv_EFYyxPx)rG1#hf6?50;qob5ZS;Me01(YMn>)|7uaJGlAe{?EdNorC2~(?Qq= z)kp~#CIy^65Kt=&Eo;2(F>YbC%(lM&>s)Xh0wAI90! zClYn$9*b6Obuww_>f&|7whSU7BG!V+Lq^(9b113<<`po1DF8-0dU1YD(4Jq$mS$ty zHlyP4MGa*I_)TKKw_I^NCs2G-{Tc*{2kw`1- zH;aB`u`S`_L`=vUJ9)}O4h%st7dJIE;b$7EzO@=<4Yvcv6fEo5kt7V_{f(^;Bk#*N zq3^HogiTj~5!;ku8Mj?9Wc$sN>RJkQnksB=Q4zd8Tt^_LNb=Sq!WxE#&n{sP#^BaZ z5Sf|yRB8Dlr$o1jXSibcr z3p7>d=jYc&J!r&VeLK<;`61w=9@2qM3ixobzgqD^78u-&)o>5lI7UkQK9L(z>y2I{ z<6}r9os2)YX@&VQ`}X<98Cbb>=1~X0D>*qUuMB4snf$3YH)@kjSI-zxZyxqoPM-i} zF{h$;5`VFaZbV76lP?(Y5xsmlx7T4e0A&Tws?~#?<8{P;YOe=FUd>w?2SN_xkmjEA zigSZYZA)E@1y_Vc-^oT|N+aF&Oj7GtQeAHhzXh|nPQw9-u|WX04UGExD%_;5mno^&3}LpnE)z6KpiQ7{f+ z?R{?HiqWQ(HDk*48!NVqD@NV2va+4_RgPHpvEx*j&x&=qbR2s#(lFLHs}#4tTWS(R z5~c3OeKmL#yRtR^JRJW(?|~h6WCV1z2(eC{Pyw97fff#OKy@SbrTtN(-uLV{oQZF* zp$$GNdr19snhD@E*i`ZwIHS&eId^x{ZMvJ{{Qe(VXB`#Q_W%7s6bukiLPAh!B$SpE zB?P1yIus;_u7QC86bxEP1qlg(p}PkZ0cq*(ju}K?h+*K_-0*&X>sjkw?;qC%`<%1) zr{AwF04mBLVDOp?7ANfVhhN-!Um1$^o6o^c6f_A)sxO{$4#u3?GRp~ct1q$Zj ztXvMxpzP&Rado`KF6Bx+KN#_Daq)_o6mxXqx^{z^&FF(FEn(kxbOX&yHiewC7=(IG zFMVlv!XDky`6GG^(E|k9*MW!r?-UcUIQ_mW-?9&YEB?i%y}iAlPm9^U?|%%U?rwS* zqti6n#7ATk>L6e5(qmrk?tT14#@Ldv$H(KnVS*v6QV$+lX|~%D`utKUmy~E%m2Oo& z>x{52zC0%Q?dA9}!`U*kNLa44diRrokD{G%tiZPJEIndAdlZ2VgTba*lo)6nFOStd z;Qa4(Jp*a=>~k|H0!$OKlgTJ>B)Mxf_TcxNDiwpcoI(m;PJ*@w2qb#j<#WS}Ta(2< zkKb2oSb7fH75m9*a?kX75t&OM)cRt%Q~9Hn(vw9U8qUPdGmTBOuBv zPZ~80jPsXB%&JoE=dt`~0HvktGGukTKTZaIMw)Kb(@6;Sh?#;B(Z~PB8rN-(@KsKx zC91i)`BB5`A2ba{x)sHP-(*l*e5eW zZm0yb#hP3_e$4Nt4a(`VO;S1ajruX56J=F8mnbn-L)P9Q5YbPPb)Cpx+oW{LZ=oq* zsyBYNb%`EhC&JT7(f;XwEzw-V`__BHD#*uF6e zWb6bGSGLo|4q_Oi+`HlG+U_s;&%aPOaM4DytZf6vF4zFfX9h!%$CO zb-WL-=XAra3UJeLOBsAzCy=GBmdiAxgUZj1?7Ow9=@HC)z-ig5;x-8Y{KybUMnD?0aNpXY2YnDk4eH6y$5e)dfK4Y*IK059W#MMotU90b^v% z<0{04)<_Sa?u=f+4@o8B=!Z!#+ZGRoevu`4^fUgY|4pu5&J399k1rMkBj7(Hf8>V50xYAcOcrtWs9Q zy60v8*yh3C2yyQ9M7zX=Ew7re?Luepdv#7sH!s+3MSHXq+4=74f{;&Z z{-{?X1>-42xQ94=JpUnFo9N#dfb79Ba$+5|2G!8`xh&{YN!5XIRdH~zJu-OSdr0An z93cfNQ&(NBlx?Yl`Q=66T9^5xlf~lXf3Mi7gkRAndujQ1ZB6crr`;@GOdi({48OX`+l!!zQWTGU+ zrQ7w_0SRHzbMJh-s(s!GDWseJ-&2VH91#Z^?jymel9^DLH}98IolWcR60 zdT@Kvr9yo7hl4u9^0fa7Vw43Fl`-^JBNS$mOegG7H88|&)$`>W-yVp}Y=tADOQR8! zcRkEb%aa@?k|t3)+NN126DQNs)5D334SVNGJfGhD&vpsfR`6e^h@|N6+YK%A*~6N) z;z_ZAAPN5dT`m?mn%WXY^RbIv^^SI$ojq07zinajIEs5;BtGRVOXe)0p_ z7nD4byUt?8YW@oj#E&@=HeD!#vC{|F{dE>{)#Zb4YVw(=uwVXg0rx5E>b5qXEuT8pm66FS5(F+0U?nBdF7`Y9*8f6L~MCeGsz-c|CszD zwWDqwr6}G$)ZP?QeOz~Q02E2u7Tt3)+deaQ9#waf)jpxknq-Y^9iFc*K$)r^O*fQV zHhTh#mH&vE0q7}OlcbAV;mCV?FkXc9M^>(TQl>x&->0_czhNf$y6x}sfdpU1rtHfelvEbnpV?~nGw*qDv zpG3+y8J|sKQ2yYUStbkvm4<=c`s|cmq3{3hOX2PDR+T7wOeGXGP!9DlJSg-X#Mo;2+I<2UAZmOs2Fo|xR4Hxw z$^T??*ds@%5-3t;Uvz|TtDAi&47qKVm{`+}Xl9jT*z{I7ULH2sp2AB zX{l)|bM5)m;3qBRl3 z2fW1U+-d@7G&meMM_yct=Mv#k0LsdKOXK6;7{u℘8ox53qi-5z?Z(4tWkyqZ7MH zlXT(*uo+WR4O>8?kjp8qP_lz@^iNivH6QtYs|H(%_7nxA7XKO?Wj%ghv4)kvZt~tO zwD<4}2cTJm&A;r@shVH;&$4p>XGn3hX*$ZX@fY3dW1GN7RfU^U&sJE$jBO@`(qP8@ zc?l^7kdAJi5X5XcM1t zy8#H=t#M9G14siN8sy36_2(7t;bfwGZJW4{o)>IgTHIn^)$2786Vv?(O!72aBYzeq z<8zd0hT1ik*PB6eePAX}wB<>|(-0nAvyss*`22=%u5O;3JhasA2_y=CA{KJXL zUOO-X^_!hyeVb6vHD;PNZM>uBJ(0|}H-`Vd_uahsI*fl>WhNq>_RkW_W}{!PIc;P0 zwzSNy*b5{I`3CWSa`f;XSa|Pu(8lkv#%sN@slxQG*}OLduw6Q8eaaW}>l6IGf?*H) z7GG+4=;1j0#P-wl;m_T6ruV&FiM8~S;zmw7(z)08H~ff)z{phAFV5NlU127xN}y{- zeVx_v(9XqCLGRoaR*Rydanwe7q_eJ$^s`@=q2DN^#rmrPEo)7^o~cGo$hUUK&2p6+ zabHHh=4jbxaN8v=Zm?I8l88rx*gx+X)s;DrYoCs>j*S^Mx3n-}7yla13wXrif8g1L zoP)A;b`IX-=+T5mYwupxi+6FE)uk>RFIbyXO@QxZ9d;SPVPn;;N>PC4LfDTnW1yZE zY(UmweF&}ia)Z^D=7Yn*%Hxc&-{SLQALv*-rv3dh_DqelXO~qqlR8m$cCoOOcKBVEK821ybTq?%0#^p=NES+3c4{Tb`db{$?9Cf{H2}Ec=hHS_Hq!;5ODRa_ zLdm8QsLt@!eMZN~J{E_BsKmU5>>`3`D64}(u}R?xMyku-!6kl3Ai76Pfx>U!4ZwLF zIP-_&ev=4G5T6(+jPbOq1P^`Ku`%cpnmPqwMWmDbvyBw9=4xnoC!m=vx_f>-l+4ef zJqVYj+z+PNltgM(DR}qu6`0^pk^SS~XXcL>r62unAtX1k+S((+BHF^Dn|+_gE`ahh zm{Vq60rEQYoiJtrKE(!;{Qw#a3X5wXJFjD31?3=9(orrW1Pq;L3_d^MGVo9CF|#ta zizu(jR)dAEpSeCM8rhM*=#Nw}n$pi;mLedNyqh*sJB>D-SNnMvNvX{7DsPKyyWdjD zzrLZb4*yI2e>xjsq>KG&sXkqB=EnXfJG{$G)rMEN>h#HpI7IB~DS!G85VC1~*Y047 z-hs#A{NaSEipVOyGG%JLR>t?x&B3T%<#e#|>X^uVjG9TPHb4XK<_fFaOvBJ5#m3Xb z`~<)unjt%rcYamBM8Qn+HGwwUyUzL)d;gG%1D=lSk2!06^Hd7?Bw{F$n;;}~ucSk& zvLpYEqn{SD)L!O*F7-(hhZEK_84Mw(IC4=Sz^EtrPxyxyy zy1$2iyfC}sD_bqyPfwyQ!i>s3mmLQTt?YX3Y^g?On-d)86GrW|#@^`wC8Y+)Vae%Z zGm8bcg+MjE({Jz>@P6R)0EI_o3y>>$7;FxF@?ukX-NtGw|14j5{RY0gJ50Y;jp6<6 z=+#CMpL3T*{Y3u$OpO7W8vS|gfLL8t17OPD@py|qbDiE1`V4q^c3SV}nj36~y?OWn zjmhi3O0PNH&+VY^Vz)I{$U~3l-m2sf6E0ydHMoX`e?eDmE6pdg&O^5%v`$B31oA}+ z6k8SlqVRwYHobq}b$RlhyI?z*3^7<#a`R1m0fcF;KC51(>fpod#0Kx1A?u9X4$hoX z?7j^R)M8ivRro(`{K3Dy>kwID03gC4^hT41R_fv4;FrvQgAUF7Ox-75x1Bmbh953h z9uL4ql0hV*T_~w!`$#KBniWbJ7*#%Ii!Eu{Kc5H~%2wnmQ3mY1(?;oQR?9?%_uLGV z{f^d5xFy1Lo;3~xzE2(mG(AE7_uM-q_z5QRs)ipef62fnaa=9&CpFc*gJGj&= z{`RtrqOuas%}hCIZainvUvBOcjvG2WUJpDfApznU$v<)Cc_6w788=L*t1i<&dU; zohHO}M@Iqe%4mTOnADhwe4N_&c=Z5NhknbnuSW7>O@YYUm5|U=o<iV?)X(8dUf<4e}k)a>qVK=$QWmH(mt7VaEv}w<| zDs+NPuqqduyjW>)Hi-LFJw(dvtKoz`_#)yomG}1T`O`^A|D$>4*!Xz(zZ!ywE60SU z8;)k>yWMN-;ZK6K9L+NTz}ScE%PHadO9`472Y$2ZvbT4`8w$1+L z6q!J6trmwA831TDmf+O?v%0bd3^1A_US93LCIoirDZb!6sPThlZ#gbkbxharPHE=0 z|AnGWgrEhc#E2K+hAh5qZVnkFw3dr-ttAMtBj|ULe!{%GULqbBtCp!K{2rCBQ$ffeFqJh-5E~+mb zgL12)Vt%HrrSrjcjwR;Gvwo#V(L1X{XneR)7yFI)8(AAw=fNkT9;~pjl`a2-jaWd} zjAnkMWh?~$IvK+pZH91zwPkQva7$OGpa`*phqunAvqx=9h{78HiGLjRE#K;({$cAf zs|`{KnZXte zkz;?`S z<@qWV*Ok{6aR}(}9DerJ6#%?$$f?~GDX)o5q{lUFT>xdfTkK?W>^AtUi>z`hgM;!4@_1C5xXE1+lS^>joO(z-q5iA>d_}v0 zL+%D+-navLh_AjpJh;pthLWK`PmdP7srJFOp|Lq})y}ZNnhNDzf`N5y^3eK8(<8V@ ztcZ=fT^UKUVs-{Pvu95n4?tajBNy>*eiz{}Yyw{elZrp9T;>ssd;jv!Ghl!3&d;`s zQ)57CHvi2*An{3!v#&xt0N#ftd~zW2VrGbA;(XIj`%v+ffzIZNw0k63>5s*&?B+pA z{b32?kl)h*J2wkUB^(R&aznwp()}boHc_76iLQI|Ed0S;$|{zH2|#5rto6*N;nDxO zUUjPffKPhFyO`?fWyuDT+;~a-my-%;dN$28M~W&QWQ!cm9Uh`-o9uVYjmnE_oUWCD z<+)XX4Q~6`JY$G@7%uT8XOK5{G|xGA^!%g+sMLr{oH-1v?@qSQwHX*GyH2hWvEi1N z&kQ>oA-4o+fhdNZig8Y-%h5-_RV=No_r!<(kK*j<%*8Sp?^Hu$Ch7qpn4MbPhOSu{ zjic}#>l9U~`6goj&EtZtM5#gg6sBCwoZb>6Us!Otk+6mH%d~I4gSh`+WmbU``cfgi zfdP%u)4C3reT3uDPmg)){|cvk5!0hjicU_hhz(?e(*mv#sR0=HogpJ9TL49;7k6Ko zHNE;*S|Ij~RpGVL8q%Wo*s!Qnx%GL=>Ze{?u#@dvYRYp_NQ1o@WE|+np2^wCvGCLUcv`vv@<&7s`}&YU`B=MHhDfDP@f4boyy0*EU~Tt#=Wag z{g~!x#;yZle4fR=BmpUl%x%gsVkgLf2-i~JBjB|>Vu|P&d~1O`A(QdU29)zdLgiXl za)MR3N~C60{$7K6(ex!oJNCl(?#E)kCxJ2)$h``tyq9k*E-umy&(F6{+iBCTB`=dDt$;P6H4M0Lry*|C%BU%m)f@e7F@7f*Dh= zoWfni6kyRMM^EWKUd>z$1PyQx=x)v3gV(05W?PNa0x2Q~SMm#*Ud;&G%Q#q-O0Bxq+zCKU(SLd#KIs09R)}D|Kq4Te(;!LVoiaiGm=gWUhcT&AT1QW1 zmv4)rN;m`H;0(@m`A|p4x^u>5k2y3S&Y&88^mnur9@{_DCEy4tT+jNPk@cl(sfC4; zdC!#SKmFWmK{dV)O9}g1>UH<&0=t5pgG&;<5q_8j>CY-Z=H9s?q)IRIczM#b28;rO zc*7Q>$58H~iN07tmE){Zj8e7}ms#1hYif`gE=w_U{W;93lzXzP+4#(7>6g3I{%j8z z*f9Y&OTa?bbe5fO>c?-+U3yDEtrcduBz$csNbHB8GVY{z0{`I=w&U zN+WwpxQ8nDgkfI2Q3$kZaIa@7U!LB#>7%lg=ZLJyGPXw-)@3#gVqYpynb91Z(E*cu zn&yZ)KmWxhSG>bi0w{C%;isgOABPJT#12aAJo6isHAz?MyAOUmRrBkd^GHy`w)-cV zbl%Y~sZ~B$3@3FswkVwwlAdq;{pye=Yid&C_OPt-vVBxHeR6itezxQ0$@6Z4A)qxY z^?^C|UVgJ$70ONsGKv0-IxCP|WQ%LFPX^j;|t?8ZV7sQIlF? zXWKOC+y&pj~&bIo6v~b|VDvL*(I^R#Hsp{JC zB9o|yj)>^2Uo%Iv#E-7AcsyZ$_5Od5z%!lxmM=_echtwW7spb&B{(PY3jKG}(1)Am z=h9u|5KpR>!XC$UG1mQ@bQE6Sd7p!Xrq*0$jiy&(Lr*eH zmoG4T!kS|hkxgC3A~fx($Q(~}&=KxAS7w(xGK z5(pz!UR=YTqQF^gLBp=*_cHC;_e)uA=H-k(6V^d!QI@NmNghF*065OZAVlTl&Rd4m z%i!$!1~9EBPrAr?quMeU%xYAy??+v4G*0(f-LqBptOGX^P*zwpg3BQO-nPUFNRL2l z!>=B6kx3ujaCe{lw7A-Gq>{EmjH+p5mf7~lC#TUP-}S`L;06eR18CZ&p;;;^pa0|G zh^j{bR)++3c5|-=XwJn!D532(XE_~7CO+oao4TYxu-$Q}xqGOLJZOJOFjc7q%`3v8 zgg@>TCJG2)9>trALzg2}^*qB&OyM#oaZ#^8zaBxee0-?gq<@<|m0f9TR<|1G7;E`eS+y%n^ZAFu zmxQuhb*uo|9bSD5K=!A?Kp5erD!$$i{0z;Udm;KjiRAY?563r>I%N9Lw{|dZL#+1q z!a!x~m-Sbh(tL%jcPcy5r_HvCu+oG|J6pTa&0R@Et04D?F=sh+dwO?(7tqQ=ijAnz zw((Q-3q*tVCcJtc`G}D2@sl`gnu7qZe!+Zy`b%9T1!M4jgX7=tp6q-I`mUK70S+h= z?6;Kn>W?iz<+OzW7`tg}4vUBTOSHRqxZme{(Iq=(AinJaw>c zS!!gd9s)foBAdidGq;)F>#(|a=hn9`*>^(=7=I%H3C#|mKrT5JkR~|(L3b|$t2iN4~UNP)7_*n$6T|(`)@w$0T-;o*2P%_{y z$R6(F7qQt1laz0j;}qyj`+h$0B5q@7`_8fo)9O&Pbbq?pkrL?iI4xZa68JZ@3#tRu zeZ)?Lb=Wquw0CJAXtXbPk#`*~`QH(qJL0*YD@hNZ<5V&w*vv)h==Ex1m^6oPg3yE< zCaUZJT~>-_*)0|H%bNDzcRTgZptJlbzkm<+Rw--pFf$M9P;LMEtqXtgXuM`Osc5F~3aBU@U5(G6 zWEbP&hff#fhIzeqnObwU+p6sl-q;|!zb=^oJ<8{lQ>C-u<0Vt zz|BV1Otr{C^`#>P|D%O?FqSu!B17pcm;Q%6k}$qF#9Zk8eMQ)>#UpDaBlHWLe!J^U z?jo)xR{WkRH~_Jr(CVY^+s6eeI3eG-m7<1cFO92OMQ^x>K!xJhr?&m?fG!~Titr*pz_ScC5lK>)zD*T_w}D z=OSD@Enmdd%l$mDPC7=K!^?;OjsFA{B6}}H%U!l;l(d$LgeDJv?V7as5?ai?jZLBU z*@MAZJv#E5vB~vt$9NZLvoM(Pw9Ch2KdqEE6h8Vy*4$mRYHfX@09MeqcwaA91>nn9 ziTpbb3q=`PxeSzAT%KqR+x@x$gYUtxd6aa>2ya5+Cag=+OdbIk-IGA5R%`EgILHvX zxa$Qi&QTMzQq@!S&QGqvH>+8k4kpi6m3Q0Pi@?Y$ZAM1vloO~wrz9gAP%5y)UGm2F ze;T5KlD-Pw$oTbo7+iLKME?H)U8h|uvN<>mWHizV`g zP@HPM)hA@#@hNx@jr!bQ)nj&O7-99s(9p09T{Q1Bx8()>XvPuQpB~b8aT0mxwCGt) ze0cdL)z7AXT*9rK9JGOd)gdLIu_^UI8|of|e({EY<3TI9-eTqFNbYM+HYtN#X|t?@ zLSC%P)RBh~TeMDnzNsc1C2CBo5W`H>wvO9{+j4Rbn4yo#ulCOibMmVMDp;)+GfUo4 z0+WD|>t?W%8Z$zh6jP)~IdrWxt0m`4UizZ);m-lSc_1kxo*neA#7!BYLGzZh&{v-? zi~k6{z_ARQYcmmjYXX7?;Q=ALoy_~nZOVOL*o<~px3_DDC$p=q0w3sT-U7y5(qM=N3e#}rpR%OTFg1|Ri)xve;UZkGwsh|Wr zrCqM841i#28By$mdlhPi4}40jwLkYtAUDF^b5BC8CKzJkM{R*v7E_-2M88V4cT3a3 zB9oL4nLP|YS#RafKGo3(&5e8p9MDO2o#&y*sl~5 z!`%gu`-v03%Lu#{SJOQvo%pm5-xbKPLq7kxg5cKjx@g==w0}=DE7+qe)__hII@o7v z3~~)HF&WQ_IZQR?=(#_7eiba!;xkV;=!VOsnT!f*Qzc*jvJ%8uU$%U~}sDtr9ubS0Hm?nxRN2J@0!*eQZaDCTvJj8M?uNd(w-E5`) zHLXX_ghco{Y{}{8lI3^}aub}9)AIdor4q%URcrp^2NidX;$1+)@6z|p|CTdEDVU^mHpRo;9MJkbA|F!jQW(W<5 zto2HWqXwM(7ZfZPJg1|cFJ{4jz94Vp)8p{_ZXX0lvR1oW8*;Ze!gal3>c_2dOSG#6 z{*!qyY^~h1{|t%uji_cT-A5kj6+Gj;7{N9JG`YgKlOE|A zxB*=gJ=rx}3~OKWM1uFC17@1j1X+Y|8_$$G)Ot?{>oj2OM3=I6)}$qiLKO;j30%@M z`g9npX7?)t+Z!eJT%|7Z%MSVD{3DB(1Oq0lI*u69-km34*z{19@e-n7rK0TK!UfDNRAe9xd(a zM|Qb+n{8b2T?1V4Ju$4{$gOQo%?^Z=MpLEs0@qcu;FUa zl%e^Quw$_w1!GAOazozAT6fKhk!*?(up2XTVxz<~(9U)vGIwXRsYt(xo{e0qPCb^m>HVBNdA)$eG?Ghq9!dbP#$Mj~I z`vBbEKEJiIk3Q9yf^FgKJF1uqkmZX+$Wu3Rv6ALQ#%J%wl+I)`(NW@{dlpbB-_ZEN zGsT9aZ%2^y1wM_S}O-NlYH0^3>1BXwSH=LOcGbJV@EC%NOknSfpu6glgjO%fgFwD zi?+3}di-$bt6#f&NEn$&t8EY7)+T4~eejH^_^`LgOM0iAp^%bTQ*#4y+vnA1 z&a4kf6-6a?Ymi=%8aS7YOtE~+(8_MhYpeIUysLay#IL{pdU#+oD*Y>Z`Z{UKUH%pA z7^ATLL?sABHkkS~8S^(jm0(rt6ZIn&BzbaH{g2BPrg1YDsyW+vdl6GXW#?j?IoRnW zJb5lNOXtB4CTrpMfTEXOisRp>3_7YjswJGon(44bBgcI#=AwE@h8tX-K;JuTT9dyy zKJ(+bfTuy9NqCS?460<3zpe)EZD&t{7ZVV;YFdGQN`=b!9iCoE&a}6cg-GpB<%B%2 zdMM&Ym`m+l#;quLT$QP_zW!V2u)#>5zQCC@07riT?h!V?XuQ$u;Uy$d|Lj=g)BYBZ zV^ZBEon1r!rF;%@?8(v=03;ak->D+6l$Do1SIc7{828?fWUs%#L}Fk3>;ugl)Kr5b zYg|y72zWjPK!qe{Vq&^3<0pB1u*{sa9uph;42Td^{T%=LlBa(hIB|C0`MM_uHRnRY->`W}GVS|H*YX@Va^pv2v_PwmwxIUgWMALa-bjyt%yd-WQA@A{ zNo2>Y^WDu3gPGqtIhD+MCywrr!I+V?`2)qn+cKr^l4#a!y0oHoU*Q+43_IfOKX%|; zd!GDgL4?a%n;ooqpU)>_euUim*3xv9@iHk5xN&b!iN2WZ?M`pC6y7-Kq5JCK1>J5G z#)&?d?N&ZH+eEM?5fPCX@=yrO^#2;rR-Y|wIJU!T-~RWBe)x9|RpL_1Qpq59e|?l* zk<1SKx=Z)^Yj`?})y2Dp%AzH#cTGLnU0qNq&n|Fo99@&CT+-qSsUpm`X9+LSXBBafgtFWgZCl zC+gtDm}Cv;x9NuKZ!Yf66a|$Loo-AZE&7_Hoi($*9tt2)Gd(gV_W$Pzzt@LSZ1oIT zKp-%QJ9S3~Wa;Cq(<+Z-btxgK$cCq0crO^QdQH0W)p4-6uc~Ju&hGGl^xCzpz&l%p zf$23hHQz>iC?OgKx0(r|Ek2RzX7}iB(@H=ZgPD77Ep;N3*14!IW=QFY^43A zncdqoIo932QVeO#N?LpQBBL$}iA{)eOw1K_c*fN@QC@17ucr+*c*#|8?L3B=;$>lq zCv~lOT%5?ms)Oq5lPRI0ml&l$h4t`C_2562#^KY$&y6+SiKD9@bH6l>_V=!MuF-Hpo(@I?0#r{)Kij!X&TPBUt5+5~ zbkS~NjB+?z3dj}OcvyK7-97WOHLu~;S%XqtTN$L6vtN0w&7|-%8=fA22yyF0_W0_o@dx$f;4%W`M$2QqEbL?B`?8>2P1BHll=># z<{{6s=q;l6=o#1WEQU9iZ-g-QN{!lTn=3tr$pWiMqpq(0N!;V2tgP$@NpAta6T;q- zG}|AmQuZv%PdxI}P6f=U5!olwSQIelGKEFYp21?V8$0#egM+JIdx;Fk<#CR!(r7o4 zI3%FOyw7|>{3c7eJ8{g%cYm9ha*XXtw%zXUy(NqCA*Je+ZfTrDA&QB=jo)H3{ljd_UY<(Q}5^Q4GF~y7sU*V>-_IUIGAY*#vSVD=-kYd zq%=lz$F(5luJt8od`tS!H92{MLp@o}#)dQ5dx`D{NFutB%Kx6R^R|IhuID`Sk6tDD zt(LCNY#42wXA8Y43456#qW~5`4*^FK|vXr#cd2e5#qif@9aJU(F7!x1Q!X`}j z8L4yOP;vO0rj~|XUqw)vJ2+e<)m1ClS^x}w9nGPBn}>%CfFF5q*vavQWrcq{T+q7; z%nC);d#3mcI&5wd6d?k(wWNAXpX*Rj5(ph1MoBLXSmVHW)@E^}1g>B0>KpgVK|kBi zWCQB{?Cgtx07wv=f_R|5RXC2}>R^@>$&*!L2(YrvX46c)h6Nv;^(ZE|`M9l@M{7Um z&oUXCcqePJ%=#V1U$QUUO$F$LqoDCNFLy!BP3dcn9O+`}v1E}eSf)`d<(Wwr@ihDvUa3Yhb;_pnThL3w#=3#C>1Vc?wwpuW3xt+}8B zBL50EN}}D~$0vj1b@A2dzD~n?JRKI!+S@NXQGLpM^80}3F`JgBxcr^j0+ciVaCS00 zkA7hA`W{5oxf*rd^1F5EHuXh}#5vQWo%=za0M`m!o|bIYmX$)%%qHo~sN8 zJRE<)^KN%R6Bw>=s%jetLbN2-%bNq2lO*6)S(~52Uuos6-7hG-ErE(uF#6~==wJz& zWTG(_F1a(cUOzc+wv+Ue7^3kG8suNWWF4PFD(3OqJt(|h7?PTnSAz*lf3qcPPSp62 zGaxYqWh9F*W*;{q>?fDnQzPG?XII3_SmGR$Ivi=?QbcWg{q9)pJ8?+7`qs|VPVbRe-#Uvq03vF=i}p3 zw3Yq1ruJel7m%^*PK3l5FTWHgDe57H40TTF!_4}W>CDxpt$RMJ6soNZ7c$pQ#OSZF zP+ip2H-3wQ!mnjas4MzeeKx?~%wS6klCZrpG&FP_K=j;FNdDV<0S%(e@{TA}tV&O> zN$+v7Ms#Jp+miHxz&S|j_DsY`sWnA+icAk*gNJgde=Qbu@YeL1J@ww?_TYs*G!mZ% zbWSUh8iOiR6I1iIlFppESI7fLJL!lG@$kNv0u^&pU%Qe`^bBuVFxMW6t&Su*Vvh?p z<|oR08Am-r9Qgaaok`_jtS#~O$xYH|U<5JoW>TBCSfRlue2>KEfI`0cqoDQ3VnWa4 zz%j-SdARd6fQa~~?Nbl4VR(N+Q+UV;YuB<`T-C*z>ESIG`JZPTn3~+kOw# zS$sIPLE=1`<+y>Bz``3HMUJRV(Z(l@lBb~`2 z3-zMI1Ih9GJ5IFkqoYV6E7B!`w-M#J<;Q7GW>(D8_ZdPr78pGZ@pJN23Srk@6qrD% z55ZCBf^iT-0Ic)-F#%6GB}jGVGbH;F&js6H@Xg2&z!&%C8;MFHcFu#_H6FRT3IO0_ z(82cdJW#3GV*CH+Nz>ll`Gt@7CxTwsUcJMfSdP?myf^2>P6Po@-8eOR8HiYm%F50{ zjAaay9$>{9oujITM;tfiFOe2NAab`U!P&{f+Duq1#jq zVL|7>8dvjH?ly3h=Y!73;WSOo|4?q1w=%C7#ox|g`y3>3Zv`M{^=sU@?Co`!hj2LD zKDgZS7jE2X9#c8p0tSbEPGmj)HW5+|mYqF9O6l(!T zN4|{GzSqG$W*XeFV%vCm2*j-MQPv9u?g_kNR^ zTJFr2mmzY(i7}lU-dCgfE$KRlVb1F54I6Ij(lG%7-de51i87n%Mg*%l8%0xTU<`k2C!tr&w-M(lC|w@yGnEJt~dd^`LOQ-hzG2a zffLYcWJOjug?xQax-`2NO|#B3Gcy7EMoJry+#BFU_D+7yb2}T*-mZKEFzQ!An^*Ga zI<5`0CY3p!Mk)t~hjUX>lj#opW@yHac>Y%WWsvjonaxK0&w*KQfS3WS z;zx3YMTlLdP4PUIi6i5(rJOqxZv7WWylLW=*d`octP_(2lhI40uREuIN#gg%X2+{M z1XxZNAaU`Mx@h8gJWS8lLaTNyiCxmT4NDJWNf+i>q(#X|zpHg0<+BW859O%Cwl_>s0IqT94SV8!$ePg%Xr zVC?pPqVy36#BBkA64|k~Y=?=e_YRhMqYvL6Rz(kmUB&+ElFr}C7zI(y#_)9>kBvJl zYh@`xAD-h}o|4Ky0xBy-!S!dxS)KxR^(~$j%qcR?=d^ODVq;OE#F&~lMbs+^)VL+* zEmw19X2PrxB$cx=D9PHvDc?=P1XP#I5+h6cu|$qmNtfa~25a6zK&a~F^%QtX@;)^M z)!Xljipe%+NF_K10q(}dCE=pIjG(h1 zS9zUVxTZ!hs&stTFFHMxlN6Q^S}8c@K|umxop_=!%|xK2p&@~Qtm^z*Ew+r(C|6BQ z-Df!O@%vD{ZL@=Al8Yr5Z^gHdc)vu62!5&Z;iFN4YmM6aaBL^vfpi|*poYp+pk{jj z|NL}*n1LZ9DQpZ(q5VW7eNwqcnFo5Av)ATLKk1o2hdnf8|G#TaH+U~q5HW}WnKf_? zY=eQ~hk;GA5GeIPl{P5koNqVz(|%>n~sbwr;Ass(s>@< z5pUOz-xiRzEmt8`lH1z;Q=gL!`x|^~z%Df~2yR#Al4w9>;3f#s4iqU_Ds37ObFUZe*=1GmfJRf-dWRn6NK+2aA zcstZs(pO{hx15BM@tdI9hdIIoP#G!ud3|5UluOiB21Kphn+<8gg?tzG7U+Yq4Y^VK zx4zzbERm2k=0sc;{p>mk9*42O&k_eTEH#IUe+MxU$fPpV9H-IYX=%5w4YB^&ZM~S^ zX2Y5WpHT_e?dKG~_9fHDSJFT}SII^c06c$M+7syPl)tOf>A}5U6Z{iq48Kd3`i|?p zbLpWMktT5V5?lyeYRba`lds8?Dd8oz?@93X+wfcbC~vCNFio56`@(kt-lc!$fuF*y zDD0QH-_ygIx>}bZD^kbBh{|Xp$fZk{&cAx-DPELZ%$mWL8YGbu-JK*c51fJ%w*Th8 z3w?aYb1i;*W8N=%Z7Pj*%M(MS4Ju%(>DH8z?U%A!pXS-6n_fSo@O5VF@J-cGzp5u% z7mAbG9#0*}1Et8aH*^~o9|y`Vf|Z~K*=CbdDOJjOJNz1h{nc2WyF+=F$whq{gk8iK zJ5yws0S41z*|tR>=kmWRy7v0n6aCOXA5^aLukVQ_(kYJ)#xiRzBiX*&=zhw*iY<<3 zz9n&s!ZrBJXOqAyQ!Hhs%j1@hNxjb2++MiAKT&-Z1bN1gfYL0M4Mr$&irr;>J8lmO z_~pu)`06D;Dy?~`iOg65V=-rH$Wu$}=I&+T2VmOESjzWO&Ys}Sc+MGGY`7Y6dgqjr zDp}LaX2Xesqa&Y0Pj@d(w`s%!C>iI8oFU8qIRNa#8kpxX%539)-vxi%7=m6{CYYTB zZmhqms^=vFF6k%zr&2zEFn-;=L6PN&EAqTH_p@UD0W`CsMnHnU{z2}IFs>k76pTn1`41(KC^9LH2wKwuuXWeB|S3ShlBtLGb-|Z|@L6WN$zR zF|S7D#R%Ky^lL9rO7}7oCl}z4g~?OyU18%gk6C`~Y%}gsaZ-b8%vpj~kLyBPi64M~ z3I-_GVR}`tmXiL)$GGCgmrg^~3)VDgpmdrYVtLY5KWZ7L_Ap3&rztfjGO=782`a)z z1i~y9TOcf>AsFXTWfAah2_)u!jNX;L4EnO9Fx?Z+!GIipr~4!ybuO!LTzdO5kAa7H z3A;?P{!me8LFIkCX~3N~I`tFfhgFG*&hTutD#cw}GnjXmEELvf&tU;fq+Ste?UMyN zup}GYH;T2HNCRf+CN(2*!v|D0#IKENmwio~tBs!|OIGWCn`~gBH&2c=qxCH7@+>CF^6MM5CoKVJ2!@p;iBTG(flva{oUUc9aG8cNH~ADJbt z_7pnpHSn2xTvsQ_xzep7Q19)VAy*4$V7`IYSFpLR*p(8j0tRACJ}!r3O&VJ)ua{2;q8?O$S_xCZbF3yRekQYzu=@<~n~l51#0*Ft)#9mH*vTnw(Tsp8GTqklz%T0vmnvo&q$Mx2z;U z@tp+DuP)L={b(6aP!Jub(-Wqw>Sclc+($r{5D)%N-{vO(Bh``<1T1Q+?*Lc-=~51MUbmB)z+} zz1@_pnf}z$GE;bZtotHJ-5)@C=w92to2Ts4`M;m{2}qMG&M9ZfYVO)`Xy1yvIj>0r zxp}jlHvR-1@kVd{1?nOO9R5@tZcSrj`{(Lka`N(m($iTK>V?k!RqM`4>1M$^BRPXY zO@z9JXvV+}w}h@?E#()_Z&H)^C>nVtf4;aEgSQ1OBO-|V1~bv6&kyd*VppsX6!4Ea zufhL;K&Ek~RX!p#_p&yLA$j(^UpXOsDWMiJDI(q}uTS4Ln6vX~ec)|-4g_%Y3tmA& z)c@DqxUDZp;auELejqS+4jetsxj%?u_T)PWHW9H{>@O-Q`S#(S#g!{pGz#alP3pWT zLDm`=8_veg#{^1M+;m6#TheFcboZFl(TP^Sr5(zyV$DH%=uSWMK8Yi~eb+IUt|J0k ztiv($%<7fTSRh#i^2t;13+gK4O+?%VsqQM1P@Ft&YPuGDB|e5>B-)nG3?0Uz7_nmf zg|35D5R|l49$bKHad4=8Y6PDp0Wb9Dc=feUNPEO18KqMFFwccZ51wBqxlpMi^`oig zTslaEL6^$N2;9Uzv@T``x`j9#3bl1_`*l;dW-O1)A;DG*Ay%}`Hl@^C8<}7)jHm*- zHzKh2bJ16B3C1`NQ>u8pl6cefqP{e#ZTT~u3R)uoPdgugk|1s2zkWefhW2sC!i=GF zF|3)NeN&IQOMi&!%4&zSn!vw@&7-fu-`~s2>q8OyAFKH`1auQH{V0?@sh-dNEBy7z zmUqB91o}>iySzb4ZWFRbb=ednnVJ_n;@3SG%fW@&<{Kl$5D0@0OtSjd1xSF_XSt17 z#SKIoTy=9EyEfk`-L2Gi4&uJT+}*9s?Y`%1eVwFIJ;&VE!RghE8j9P`+7QHJ!~xHFXn~Io2K1jhXk(Zz1*Hu*}z}mhOaeank$*_owHtO zE8ThYe=IBORY$f`!nnlcw*#XMH0!I z1PMjDQ9(LXN=h)0?rsoKx;v#CBt=RAk?!tBDd}#c8xbVGxqROE-us{1A8`)XIeX8Z zS!>N2T#7{ePkr=b{J(K9B07CUKR@+&b6YMRMUl%OTPPy3&)ezzdnW=R%j$CNL!HDP zixb0l_K}(nFzit9^dr4^IEz9om*3O~xv>G0~W;Pg243sXJH3 z`khK8Y76b~?mIC$b;mMtfaJ7|;Wf2udRD@H2OXATvepuUw{?%t{uOm(xl~xbVCVk#) z>)vVQsB+jQ!@|O{W2-D9YI%et>1^0>BrQZ0E)^XDP&Fqp?rE451Hk-Rg5D~WVrF_=w zUHwmw5A3{JxE2(R>9)FGq5c#S61stfHCP*76X9y)M*s)Cy$}(tblCr?dj^1_YfDl& zx^5YGxxH?!UcS=ncD1f?_~XZqTg1cxA3l6=p^Ru<&^uWEZsp)Gnz%d9)N+R%4;{hr zVDoSUIUW@>A(aR*=0FSQv&9^v7CNBYPLxLAL^lWSe)w16I zlLoRXEp8J8hIFGKC{M+PYdu{>RH8=h#`FgQT?FbzU4RKhR_%U%FY3b`k2aLerYfXY zON{3{upGjL$$Rb>fv>77-I3C^ZaQgCr`Cu?^m`MT%SLoR*H?Z|iCE+^ zApLw>vR7x;RRxSP=XT-l)3#DPzVp1&Mw(c?7 z+2}df>zCIji1SiUwn)~gR??bn_?`{XX zJ`3L#Y8BcMs6zd6y2hSE;LEfi+(j95^@g_Ez(@bAWZwElqjwKOtSCV%c@X zT;$s04{i3=zve!@8v3@9Qesxue8kGi8WnHs(q7G`uC9LL=FOqnq|ViacG)cbzbCRN z26Ol*qYrzRwdq?py1?qD;&#aUdxllPe+hNpZ$w zb66YTlQ&tZ9)?NHN86NJdaL?42)Qo8Dwh*_D)NE$d2TKkYC=lEK?v)!y&ASaK1O*A z?e*+JIUyLR*Y*8-GhkmuFt)z#;?EQbmx+>XD%JmflAz_<92CKA3iJ8p1-aD=VAIUh zij+-LEE5*c4&iY4nI)V0gt`Wg@8#Bvq3F)UG z0ABnasq({wZbOk;sq&|IPH-l0lT_Y0-eQW6&nhb)<$Km@(RZGzR=n+f#GPP%b$OxB zdb@ZCqmj>Guy{B_f$`7oTtr63eV}s)$@2Z z?Y+&yM($(A|7GD~Zxe?^X^sR;2@h84pnkplz3$MH3GFM%#ah(ly~V< ze#h8G)SWuvK3N@4bH3%c^~?Mi$w?TibF$uTfyPFl2-J8kP`h%>HR@1597v>Xu%RI6 z%TJ5T%l$rmBA>pN%PzE~d0aWLJseIg91b#pgtCHX$}F)G*E7+L=&5}oSDph5`A||) zGEc4e8q9tn0fm;s);J1+*LEdz!2JLFBrP1+3e*|*=(s8I3h9atA&pDi+-m5qIzPrq zW8%y!AmgDE?*V0!<*a}mWN|W`;lOQ4(Ld7foy2rRj2Brk1EY;&K|J1!M--Q{aRB+{ zJhcue8o}b}mLqFQGH#&KktTZ|vxvzEO$p!=diwA5_tfIAs=XgIYAYlch6sWLLT|DC zCc(G6Uz$Tu!JBPLppdrJu4vQ(e=C_L^4m$pQFJP z6T#n`V|d5ApTLyt@q$u zpZcWHTQ+Ajr7g`jU|XN*p~b> zzW&`Z)DZ6SiKu&cScxF$VRQBmmaoD;9#{X8R8u2)V!!cvu;y-uasYGP9~Y0450@9+&)N%B6{-+sZ@ zj_^t`tT8!a<0)tQ)VW0a-~ooSvon2up^Ch`x5Z3NGZ;r_9C78A1oV^L;1O14{{zB@ zh01cz_34+Nspaz3ho22z#~#swJ-Oo^)K>kEsE@1;L+fBgT7 zq|2M9p}V*chLXEMw&D|haW{15-d_*02JM>YWStswDvFus3_XLd@IQ@ThxYsQj0`m3 zj$uvn7kOTJ5D*fQ&agpRVqsxHPl?JknMUv{js~bOdKNMqM5Oqylap$DIGp5kG`uw* z?0(5e!#?g4=5W5^I--~%B;5ybYCnx*Ju%H7wUNP6?$r4Di@9F!koY@T8@D9=M7;+G z7546B1}0K@6+Li|BuF)|s|CGFRc$S~wygA{IOLg&4hk}_|9LUKWr9R;L?jRMssH4k zX__{Kb&=UNCg|I_zRSd>mc9r!FMSB5*cxZfO~l&=L1ASv&L?}cNT%A!)pcp1H2{)v zV90LWK)V$b`XE6pj0_z{gr#q0zf(2Jot*DE)x#>FY6!~U&xWHaw4B|%rFY3O63{LE zM;Lk=SM&y}2dR*DCT51+x~EGL8iG-Xg1Gxzsj}P1#_fFCMJWd4s=!P6Hpm`A=0zq5HSh= ze>OxuG)eH=Xx*x?+h_(i2mjnm$UjXiNPg>1)*m~3tV!iZ@REw-*H%?MWg)u9#wG(w zCJ;Ql?_46Cu1HHm826|6ff@C{p|b7If$QxpgV!u~G!P9>?d#I#Qs10?OZ|Iv_iG&& zl`I>D(E;c1*Fq<y2T?@$vD5lPwdix~_ECXis3H{qM_r9NdI^X?19?p9M0+ zy|(UWp%#uyPS_smhYt{5?DP5)csFUwatcDZvsz}pf5$AWJHP@lKr{U~jA(?iFEphy zU$b&=-rIRwr!1$0>qDD2<@v4IQU`RG7a!3Wj|VwdLr6)uZN0vCS|8bWMBfx!JT0Eu zs{7WkP(E7gdWrJK?SvfR)xBgeaePzXNYfofq?Wp2LG1}I?|iJPPIFh(J=$A0#{b5J z17`MTa_kofrUS#mxUwyUTm?2@lhOX467yyH$LBgHM>k*Q{*c6y*k2FDF+)Fs5+Wp0 z##>|a+f12(i$EL&7Qs~&3J3eM< z>7A}fwo>~+^)Wqdo!Gb0CmSKeT5K49$W{v?fUm5v-~2lArgKmv7Ebo>eo9P3)yXiC zw#H%GEMp(!C~n*D%RKq~y6 zEL!w?+BZ@EK?yzrY*e-YR7oLXnNgx!2ic>|6cThkcZ0C$@ReEk5G?2dyy`dgzVloJ zkfFp#9c?NU*GZPRIiL%A}^sfSiiVpZFL=I#Lv$ee) zwxfDSw<#ds2j@p{n^}wCx(pK=MOBXDCs$%>z2Du>nwJjucKRjv+)i@4WPbRi2cTk= z2J3BZV+ZKr-N<9TJt{~dDE2(vFrH>w$elQrPyz9@Qa`!OpqT@Ew6O$TUA!9M)g`pO z*P|&r`lRAX++9`I(hmzDc5dF8sf8bkX{YeQ*rV{W6rK%UL%9tUFrWf2pFTzSiqgV7 ztKM)rB;FPxi1qMhc1v;@*?$o0S0U{j*fu{hoDwwsdlWF4Ue{O(|FY$?DlUFnREl#g zIj?z%dplx5q8fkyufctynDjI)EV^`8K}}k`**_|8SKpwDF^A9#c8-cNsorgP8rpVl zvrHbGiH@gpSF+5u+%KA|U4i(cXprx@&3%HvDE2s!<~7`}VetJwIciU)Sxo*loC=0#a2~g^VDUS+xbYpS-0&t!;Ug`)_hf+*V(+m{HT{_KCnBa?)1C!g&p~TxM}i*E_F-sj4=W+ z>Y(CeJ9cf)gn*R;yLFaT&w|Cr$A=R{*XJ+}T5mFF;no+4$kb|E3gaCLCIy#nyFU@NtTk+Tx`$xvTZ(Tc8qRqfzVr2Awbzc-FR!*oYL2mxIe)tR4 z^egt4`hGi_3P-mOs&6=!zK98MPk%6*X+u|#MZ6^6K!WA|QD1P{+;44V6G1FtbxryE z0{MD-VE3J87H?Rz%~^i-j-gmoh~62sID3snXJHgGuWv#6`c21Rd&f0x_vd>>rDkP^ zrqWQTB83^}pow8%XXi1UN=u`WN`68}`NZxm^82qJl0rNVfNB}Tpm;pb{NmyQ2_x8T z41f16pAxFp3P;7jormI0^xeB`^{G?P+I%!l5vjD8A=^IJxC7aS4+h@ie6tUIInlr} zY+xw;$>6>HyLk+@&v??q>F-Pfnlzsyk|QHzbpG71E9nSZa@-r;Q#Lz`K0a;?(lIn? z)HxhH+z;KQKs?>Go+-AOBd4cie)Q;0t;2T9(dL*v{lwA2zSG)BF7a1s!0@&26$)Jn zPxBXUTwGSZ#sdiwEDB_r8_$Jd_vgtKo#{;wQ8-0v`X}@##B>wTr`|)T9agVxEqUn~ zn@$T7hh+Mwh|;QVFL?^HzPu8zH!)XKkPF6S0}*EpZb(OGz@_nEv5k#Qk?9y4vck(# z1F+@y+5jrdC8yBR(vlj#=47~bR%I<^FR~c%CAlcudfz)T&Y$TY{W$nV=|^nU2aUiJ zx5E#biBoeu3?erA=%;ABTpH~b8rJA+_X!g(p1oqN&BOPc>wg&&K>4NqxwK9!G~&g) zvJ%Qh7`&S?_{bc$C})OycY6Eh_bDp39nVU8S(R+G)el&5D(aPLD?ynj$0BSkGiC!5 znrJAyjpW?{c+`u4HN1TD=1p>i?5kHzIm)>lc58A{pSZ)eNzZlR1Kcy4uDT85O6@0w zKq8c@TG#<~2&en09V8f!PxvZ`#Kpx=K*b)Fl%$olt*EHDzn+zfRFfufnG%_qo0FeY zXof(MgS-s1U%+Jq1u1pi_R(GbYy}bPI4uZk4=b}oEod2_*tFN|UUGgdQwV<)gzgln z<4e6_{w8``@rp;pxP+1mL&}~Pi9-KeGci@YZfrnm@Iy7nB+xbbgpG_oVv za+Q~y;qAXh_$K;xZa$S#VZ3yY^pU7`9?>&zpUK0ga8A%%eO*h2I&a~?h}*vMRH6SW zew2wji{MJAE8n(6d*~wR;rX3UKEYRSSt6j;cbs#t?ECH@Ef!AE3;=A{`T6;EzRJ;+ z-|It8$1{$bNoHeqi*1;7N28j6l)a0zH8p3`sS5^2`A06}a zKWHTmhtM&ar|zQ-JqnBy1>!73hOPcM<8{uDVkBDUW}dT6iZ3Rfx4IWO9cpdKOa|WW z$7^|?8aHp2l7akN_+qhstDoIXYHV^n_Z@A@QN7bnVLB%QYt6~aI0HPzMY z%J0FS?s+@Tep+q77%tG`t+YQUQ8V|QrFrD>p~V6ZeWRAYC-uq~h08e!g1LUS_RJU% zsXW%!_rngLIzRrfgXFN_#yvHHvk5?OBcT+KtKwAjkIuv6Ms9*IdWD`S(1Zcgb&s9B zu=&pfnHDS;)3E|SEjG&{_m!0ugZ5y;uD(8tBKL~xs)ai3tErwkyKT8&-@m_xydWq; zkr$+?S9`w{anNIdZX6g}D(LUYLv35x_lVbN)rZ-7%P_^ews_fw5Bac}RSO=E^NB85 z`hCu*{r1wYR;WOTE#b7CB?j$p!VFg5ElDv=>=|CXLkG6JkxK15>H8E_*A24e81{a} z>n@)EJ;ZScM_56@U^ZUVysQ>S5(oq~`hPvjtz`*1SgoVA23o15;^4dLHvRtLX16tKy?*qz$qT}VNugJ}Z4dLSuEi^ob59hgz+Pxe7ht%$ zS6pYiiVOaF(+p=IpzL^%>Nc2$ITW|m?1M30Wo?*Vhj(~*xIZ99&GojWj7}255hTuJ zbaC*I)#_dB>zS1`Lteo?=QBXPVZ&0J)wu2rK=CULcwvBiid`Z(P&1Fab`65ilsAG9uqN zKB`A+|Ii^R%86~omff`FEzK1xNrwRzfl|aOcXLz2{ zJaN;QY?}f_Z+AA8L(qk7mb9L1j%CtYxbZLXSVTL`11{OkM{>G%Kk1VsNium!4LB9Y zbj4Q1e7UN9KWbc_qO$>D;|UxwWJ|x*04W)oS`j~#eY7epuygyJ;M<={NFwEN?iVb^ zbISbrB|XgQ_s#2VZe6k1FUxFwd@>QM(KjQt)UHg54T2~t9|jM!cb@3U)lBy@w$IBE zGm!cV%2EaRc+=)MQ&?GXR^NK@;q)T1@q-4Mr7N?V=33)XWqECq23n97rYiYOyF>e* z!P(_r0V$W^2!v4lOY=+zil7Sn#32u!=OA|iEqWZAHkO|#3RH+NdHo(27a=4c26s?A&-XC^R#VPe zItPt75;SsicPBp~EknwjOI0kbv^k|EC0mpDZ0C1&aEsMK;f;y1aPPif0&)F7sj(~? zIyzTN>Dzy47Mz?2==s_%G8tj&Nf9L1VpCn+EGs~^o&MgLA%`hfI8J|9yI~7OMMlb* zHoVc=-rnACxyg<|u&}ZM6;Nb0@vt=9_V=1R^5jR;vdn4h2?jRTz4iMmHaBdTxaW-SYZA6D_45FBI@f~lSlQV#*PXK3O)^v zyjp2JTzK(UeXT}sRR<4GMz{(dcnI9QDS5MOlL{OD=is50LgFK;6{%aW;Y}T_9vq5~ znXcQX(RAs zNJdWON9+^b=p%PwIBIkpNL@KI@&Vau9!M9P=tPR;N&H0smF|e3j)1iE9$>E!u=9?K zp#Vq1VLhLC3Q_v%e%%gfKRMRj_Dv{A(5bP*1OYj-O5W440&Px)j<@bJ}r{QTfSxXseQJ!J*?Iam}RuBG-o_x^Wo_tj@cNo1Y?8Dq~j6lw}; z>oXy0AvfN1gSD60yAyeRzoIK*s&GeyWjfdEok2EiowP|=@^-zbdb$=9-pj!Rtt+x0mR-qw{S+cQl4T5203WLinaP(GSMc zpdeQIQzPI-&%^U~TKQ;PHflLmKsoEO$qGUVoT*C7PKZOnz-x}y(CJ9iM=!u;3_A%; z?1v6Y`@TZbAxKC-69583hplh1W$F!Xd@sYu+GT2MYYi_>j}rK7-{fB~5nv?=x!1_2 zNZKlPegN&r+RxABA9QMTvJms@>p?toZg(^*%$kv4zr(ghC^=8x+CGW@z}eN<0)q>@7?(B7c$`+;h!sKU2a0(x?BEHUS8hb#qr!d(DIL#B&IT(x2FqmdPID0`;1ZD z#ghHlMQnD@p&((PmpH{iH2-hZjsyIAETi^k-raNB;loPt-hmku=vfhy6Z2dq{6!0F z*U!U={N4Iex4$-9v-RZ2wln9Vo8!Q*dFud} ztk$BBsPm-DeSJ5na&s0(31y#gI+T_-!2vC`z8q!@FGI?g|E}Pcp2R|B!7gs7w*xDr zxlRBej|#YZ;+ZyB#<7}))}C-i_DVq9%rzvvqjJyA0}WF0K*~P+1Z)bnknlYQ`%+NfxW}gEo8rDtGrv=;wDbarE-& zS~oTflyWDGm?0&2f-8{7XaQ_Mhojo&A-A@^WmgX}65) zH&^0D3PMe{B_t(HmA`z=f-McaF{HXJ^b^B`>#Kdq&j1^&wLr4`$PTj6d`+jL5mipp zQ5LtqzvB1y_r258FNp-8*UqeLby({@J|+wnwr9&F9fCuVMp&2{`jr9#0x&>*Rk?Hk zx=v*85^_rdSM+4;T}W}v_t$0-%Mjox;P}Yp8qX>iW6b%`3T1i%k0ljy-E*0a((q4} z6?4Ggd9ss_kA*W8vJaitLzwN9)~SR&C?MtJJ#q8MKY}ri*2g9e&wVzt>O=I|>2ic@{VCe{J-4#a zfuzxMsh>y4rG<(BgMkjHmL@!F*t*t$Y@SLCOwO{dG>DMb-aD;OE!rHoz9l~4Tj|h< zHJ7rD^3+)1sC``Qbr9|6f-Z(Qy}4wmbEij?S@;JFdW>GNO->6z1&vGo*YA%U{mt3k z{amo|r=;Yez}Z&m%l_Q2iJh51eoV^YISw*~Qt;t}2Gi`HoPV(CpxbC3u|~Zd3V74< zMpdtJJVv$A+ub)9j+&qQuylmteF}u`o&@GKE!jlMvovQ8i*^xUlOX(lJ*=9@BL{mcYGfb7TNixkh#WA>EEq{N0M2UlI*L#c!n#Ov|P@ ze|u8TzYa^sGd*U*u`BV{`ab{Ch4YDPh!tynl?rp>WT&}LF~O#c0*R|M*_YQ!<|csU z&@5X|P@icazon!qlC%HUt)f0ujpe105gkCxP;yTl@-Q=pXnR66I1W9~mzQUj4myC~ zb6ZTm9krf%5Ab<~vJW_*qkF*~yQUl@t8K2|($ccG^2u^BUe}`;1ew37Dp@-oLJEuJ zxA7%0HI*8~K}fmN$=R9VLW|!CC@AeZhWq+(!S;j~q>vd3BWGN!tT+G+Z8hXWAnJM4 zp9YOLMHLk<;nv8)6j~jje(};z;O1h`fBDkCFOIWj@f12IuOVEHcfv+;RZBN@>Rkxg z>-MhIIPM}<3q^+**d%F{9|UP>QGim=vY5)YWr=3Wx&BLqkivBwOJ0GIr$*aApARrB z+IedlMGmWCdF9+OGs}l?&>Prx&+qD?V=$u}bZ7EL%Xzifkn(D=!4h1cUI?KbI$hXm zkW}MauthXw&>0RGyV>_!+Sf8^r_P)TMTFjl{`)8POi*!NhyHkAkPQHCFq?XCWL;~& z*&$=SIxa;!*uR3fYhN4K4zdYfTmiUMa2`PVniNuJP+OLP`0$aW$ z6dUi)u^4T-GZ;QRmJ&XR%XmZgsUTstm(9+x^!&9q@il2WIAOH4HShD83VP7tyo~Z@kp84ar#GqFQP%5?!XDfbI zVnS9f0Hr!PJ1+oE;s5-uw-#F`9F(X^X+dhKV(RaFxFW(pu$b&PDr-`PP5FmZ7^61hz6b{fBYxrUC8 zZe?x#Zr*swzkFEQk`)PfG*mSJRRM`$rPVYe>RmbJPS5UHRoJA6Oe!MXF0v~ z!Av;@f`muLxNrJX^6iN|ddCtKmcH<0b@&k<%_(Z{4-*@@(o#DBM0OLqQg@4ZITY*T zwZ`_>qFt*7uf8!aW6>FuNHiK9QO+CyVv)wEohi5H7oK)1?&|RbomLMk@$NnF(HY3Ow&qSF2n4v>|ddv8?G&cnGrAw35F#A z5m8%GQX)+^eblZ%SqjpMWKQM6M-E$RQc1kGVKsDhbu|Hla{JC5)Tmd!z?|vrOjk3o zu%PAaNPTnOssNonv7~fjVS8EGW4FC#jPg-Fk8@rKsi?-r#>=a#hCkCps_Zw3$UAGO zYPq5qNeN=Qt@b>&iC%OxR0{qePA`qWvG4qA&#|cGvQ~XtTvk@v2H9VkzjEv~pm;T2p5DCoGW02A7xoppgPAMVq^QU?H>ABq zsnF@#Js;ggB=N|KiB{7Y{`(`JnL)@EPal=6yV{5?4~#e^dm zOE$NDl>8uvsqWs)wjT4ckD{`E4=(;By{FXhuDD;#_?I-T;Fg@6q7wm5f8XksnvJV+ z>+s2kT+6mKDJpsPrY?$9wdIP$c0g%=oW7^2sA)1a@Dp5y9DM@!rodqV`Co9DT3#nFwuyGUYVSr3sUfq-pugD}~z+nWsBZ5j$6y%`$ zkd&nXGcsOc6w+)ysll>&$kxr0{oK-%>In?uRAm`)CMHKHb>*yf$6})iC}W#8wBsln zjjbN)!OV6I))qPC`rcnQreTa(N=ys$^J&LlLZFqV=38EH7*M;Ju{DjyYMOgAswQ)E zY8s3IVQ)N->4P)D^SfBv~`( zwY@#3v^(KKJug(=(UBlfeR45!%>tJy9upm%2(Mas(HNWFsG^Vx|6{Of%SQp%x<{|* z`LKYs1FCRg`{q@fNiBn+j*hZsNBi$RJ0RS+jX$93$kdd@a zHASlDB_9#HPAGuvhQEHqxnS~! z5VgfQS!|LNlVd{Qe`$K6mp z8rpn_b=|ysdZbu%8?<(hoq^)ucHI9`P+V4A+&m;JjKj{(ZpDiX9(uqWGO)5D4Tz9> zq+dS>>rNI!tgNgM;AsK{(AlKDy}h}u_@cj?b_%~EF8l|okLxn2LcO?Vxgp>&@an!v zkzpm;(FM5`do8vY)ym!SaVzGkL^J_hGuE=sS`OsfNqw<#+zS=CzHyd`^*#KcpOCWV zAA#%Hc;~}x>}k>ljfg{Ik(j$_L(wNZ-5vd;$JIk3UYDg?<{fL78_y&N^n)=blr zUwjI5Vj0Q|%*?InViDu(Fy?l;&iM`)5A7WunvU9n^@)OG-zf5^-Yk!Z`GWP_dAwO+ zNoArm2z_mtuI0|c&aH#$$S#6cOblWY^5{-lxX<65cUfDcp&9lbvcz@Wj#huKuU`Ob z^%ZN*Qxg~qDq;MoB33|D(2#V)#Ha1OP0Xt@UG`(!AGg-^G4S|lOC*@>EvASJ*Iy3_ z1X-?LuR@FrqM@NdWBA*n0Ip7`ri)#UOpu)w(4X*FP8r7;&CJbZ23A;J<&DcGi#roDv-Ls? zIyMFGEx_P-sx0K>yl`CG}+O6D_b;3O3*VGhtVxEJo&8ei(%sp-(xK3)XQwf zI__|y^aRm1GQC3{7~_+ZU#hA|R{K*sA#b*$ay-UpT!3E9t=}aJxj!4k7(}0-w@gf7 zUeF)CPmZ+wb39*WfEnKL>q~l;;1kzuwzU}XU$45@#a@hDb+7xn{ob=}gA+!M1Bp6X zXXSX-rkAIU^0Fin?r=%&lRu1u0v_2!D8=NT=d6|KU5kF>T@bI7cB4A}pf6I!4$0AI zqOf5HHi)EKGu(l!dU_xKb5&JB&I~4PhF@SWBk+q~=mo!KCEseDto~Rh1f0x~!<%GJ zt{h6F^IUXabB@j5B0k|QOZH|Q`7_rmDz7Yj_VppnIO%1$dG0Bp za{i5_rKL~56AoAV#r_#$BuMK6VFd++M>N%8X1q>IB<-`r-|*F=jgczn!#B}Xwktg! zk?j)ERHck=Kqyo}77RZ-VVv52vX8u$^a7GQwa0dvO|Y=MB(CJSy7|vMVVevsDuj~l z!k!Yr;kb=0aJ2E(;R2d-S=5Ts#QWuGZs{Ga^lnk!CD)w_ci+4mtrd#sZ!h8BjMVzl z_(Iw+(5~_skM4G}N&mSA=C15H1!8aU!4SvaBkQdaU_pD5`78T~GdDpwxd4pz$d4&A zjgmW!`GPkPCkI;?fm<^L-}?e0YmoY3CTN;S6BnLGrV3#+56HD7nfm%_T`SqhI3$r0e`Bsn5Yq%6+n(|=7zOQ?3zS-iZkr0Bz zmc>1T&diKLEcB(qap4-mADeVA1Je*1_z{0}4YCMr&_T-iF2D5MzRcE~)s0zw zoju%rFWCg*^Lo^%q?Ga3s}poJ%!_Of?lLoCOo&&%3KZwAY7i~(#fagkQ)#_vn=km) z`*SUNQc}{-OiAMOCBnxUkVFnMeRw>Km-^3l>K{$QP2|P~LbBWO4=g?`sbiM8R)1pZ zX(y_DB>7Wm%%fGyd}`W!&4iYXyDCaP^lMEA{)&m_=IDCG-SLU*V?&>I-Yb6#VRf3W zAng`%Kb;4ZNzB=K=zi37Y?7ZVF5$UHTN8JnNPR9YKBSegHC4%;mp8fMmxk1ngJcwn z9BG?6_{F07>8ZrEwYQ)pzQ@mBD;_?UE{4a;%bQU2W^>7c*%!*j7azV>YxeekC;L?B z=F4xqv-D^EERfF@kMVe@d{m!=2Kp*V_b23doNhazRMdaku^f$(Wt*2xmxJ(Ef4J%697NnqAbu7bij_gmDc>)9s0Ii_`HG?+|2y;lCasMgET@OaE?tf9 z72O$Sj+$xLMAM}0_vPBmlJ&ZSR#$OBm>(T~<8F6H<3LGe<2{xWbN)C=f$fF29W+h$ zBSZc2rh1DNZ{e`NfrQVDXL8kZUpJ+?H~o*n5#@pLcz!5~`fA zb<~dqR4CQ_cP$D2DhN1W{Qw37o3-> z0VLH)pZf?cXMTLPD{E4x|DM->ubHvg5u%hoVPmD!?>k?lBC=e{-`(D;auR4F4O0)D zo9!h^F*i$7k_MX>-r{2x73p&dBD@deTydY-xXo?Sl*+-FMCQr`g<47nb=n0@=U$vE zI-mNzrtEE;7>zp-ovmQDsrPQeX}7tP$~CX|PuFN0EEC5aEznxc&O8CjMT=K!NDz{m?k&BVnq*VZ4O~?xDoYjpY5R1bPN|T408|<+y^8|eZS7s5qjPVL8Eycov8B}Vk3-~0zJFk|P=BbM%V{@0 z)9LTwI*G97eV6c^;3fuPu$?X1GygV zdAEA$o96cR7po8H{tL7J7n2+yAP-cy5eQ20=$juxNq~)M@10+CNjTyl_tbftHpb?K zPtvEa2r*{6V{^?5okw>{tlyqty6rF0_k_FQ+|f$u+%Rrz0rOSE?F_D`_u2;m8BXyq z&wbAe!7{)xr7fP_GlZC*r9-i=w8-RunD^|AE-&>D;YlU62(9^vM~%*(xHZc8;rTQ3 zY&SQzy$*6quYSuDeh$#17K6PxH^0y`X}~zuD$GdH-upMA-UB1k5F*yo{{ORS{-@gmJJacFfV->sC6-o*A=2f+@#YNP8 zb~Rsr@0^!Y^;z=2;X9Jb3M%9JO+jd01e*stACMYKr3z63Hal87-IrZMI5j2A_FmW3 zGI>*dulhy~gV+n5Ry-z4=4Ji2-kHtJ&XBZko*gKYGh)m5RJPSj|a zPUe4}v&~0}RDnafOLu3~hlK)WMHd>7WF|L+Rk}9%HC9sjDZIOMZznV&^kzt#;{!wjEuk)y!aK35F-pP14pi83fUC{-1R=RLfM`+~V6SL8=6VpTa z`!mubHRWU!daFs&yv1)HWf&3SIA~dF-aLP_YFfwTMmV_ikld`1Ra;4k07l0lJ{K+Q z)WDOz39zg`EM~3=L;|Y_@KSK{#b2*CrFrs%44zvDlrB-JbKFAg(zhunLP4y<^Y#nU zFdP`TRLLw1He*kb&?lulBE0}Tr6S8eJxL&xnB~{~ntirDpxmWx?xq; zvSy`vUi6y(!%l|5cF5e~-@UQD~uob%7CIJ^WmWbJ)=` zl50>yB#-C6W)XkQ_H|=B#o${y|3Q7*l@mAqvLXDP_aU;I?NwE>R-rpjQbrM7$&Qj>gW(Ts zlEJ{27ix_jf-WF&f!~7K6Y^T8jqEHds5(K4iw@K(G$=j;HL`drPrfo3>A}3qBE9Bo zpm;+8AJXixOSEe!Anfx8Yw*P%vCLI2M@$uF6W6kpCRYp@qh8&*bH@kH0zD8j`ZJqI zH!baR82unXs&SA-0J5Mm>Lz-1{{uIrB>0ycKgbu6m*JF9u!*YpOYJ*cipLj#`rLK0 zbwU53%!L&eUO}6o_0@5a-A^p7(=(U+FPKr1_MbBE-V-+fvq$8**ljqosPA;&gPt}p zodTt@*{USU@-5 z`+3(;zR?lPZwP&gS^6GPbwk~X4~i16+FIB8z9Hz}&sE8PxQ>g~dx*ad{_m{fOA#tB zAS=3M(6mq8Z!lNWh=RCwQ)u?g8MEct^ev{S1&5cIAF#UhX~xt-a>LNSKn?(!C~%J; z-lHuvDF;jEpmGSk+q*mMRjM!bdZzVnRlhwh%VWrGI;XN+&+Agz1QW!sY%bT}2(WfG znC@nKQQY?1f$AC+MspuGoJx4iD0nH&Bd8;cgc9I}hb88aEDA0L$b-BFcYAz8f%2YJq#oavkknG1d(KiRyCtA4glk*1#6wx4^s}mKRFapgj z*a`DCtg<}832td?H~i`TJWIuq`2hZD<<_qrLl|Vw7LPQ1qCE9qYLAVEj*&N6 z^a3xOS*Il&r0^31m*T1D`*mUqSYW5W*L@%swe&sOrpgPLIQKhWeo0&W5EHO*Srz+E=Mh(Wq@oB*&5^U@%i0m zpz(qZ4s3XzJTZXPUsO3ZmsQ23z!ZD(cQsXBO)U_Y@<|i0cZCh7OjMrd)?f%v4Z=M7 z-H^_u&(N8cz-xWCuD(7hMd!j%hAGwnG%As=?t|eYRJbpp!8l%@1nE@X1=t)!X81!n zq5T)BCxbt#6I!aIXNe(sfd))}u+?ws@0ZQZ(PoQZ$}Mbo56n$+G9_fkD8|OCFI`l6 z4Pholm8blXki(&EbIEq$(`ADQ8e{Ud*KstZWrNG^)`*iQYP6HxRM6G*is2_!-SO!6 z+A8}4B$3CVKkybiWs(?r53PQF`@!~|C+WV*=FiWlLRaUu$PWdW^$YQ!cT=Bp%7^wA zS~*RI8KO0f2$9yhC)cR9DC|A^EZt3cERvP#|0D@e?*BQy3BCYe< zt~x3hu}Ae8fr!dPxcejxXs>vQ{WW+Ut8}+f3oA&gmMI|p^}N9Y-;gkLQ7yCi*D#|g zxpe{A`ibmZDVK&w1HML>o_SZ~rsn<@j}}`{HTrz&+?@}K_g^fRX6IT~G`EAf1u70IE_Zgm zokm?YrV@Fx%emJB*Ci4e%>`V|{pDN(^>6p$fKgA%N8c-{d=C9lEGHwyTl~eu4IcKc z`G)OD)e#AgjydgIJnM=LJ)Q}TyrClsp^fh@pTvbiAGu7CIRe0Q$VR5N_I6r2I`oGh z|FmOcU|@jO66kN-HJFf~f-lIyaSPG{rxQ8*EGalAkP6DBeVTY4x7~{s`lwe(r$vaQ z9{?S++8Z~FSSaqKdL}A*O(yw?AFMoDM#gLvmKS$#zkmP!79pV@$T>~v2Hf4p#{)430u_Af zDJ_=%3u{sg?n@Ywa;bAUrBLD2JT!}+@+XcVt_#_(1xhrmADNM3CrkI{ZRQOOQ5^Yc zVS(xy$|omcg&z1oL-69FO}_bu-OPm$VxEP5>44(PMU(vd#l={T(kdz{2@j2sO{Lx- zHX(tM@s+Hsn2Ji=s0$nqz>xuX`V3frud=D(K$U$W%x%fJUz}d+)7KKjd^OwlpGiCi zyB8&BGE_M?wRapuvCC~=h=-~DFlj3($)NDV8{#yxBlfMCGzn8*CSAjYj`3idGS}8D z!Jal%+s0P!uz;e4ga60Wdk0b-e}BNYk`WQILy^5@l%0(1?7d0$CcEqsvR5c8d#~&* zWMyyJ*<{b>-0%1MJio`^*ER0@bKd8?&TDiQJC?%G1ch5dyZcRPd3hU*pzKgIkb5^k zt3?36=6q5yHNb&&%ap+YgY3lls12U?5U8i|o)6x%{hpl&yDWSGHu^P#1bQ3~F}Li7V#;azo2yqfVJF%QpJg)QPe-GOxfQOh>yuF> zMx?9r2v%dL4xa~t^IlaluS7jNF?juDIVOGABfkwn8U=3f&!ISq-OaXGR{X5&Uy$eB zdC3(1>WeZ~Lu9jp6xm@)x{p6j{#F54Ue;c_{L;J>l+{iHTLp*-XyDPB5jx9!RI$wt zNP}G!eoK9ByR4!iNhR|&2~Hth+QW1N7%zGEpUB&`H%fj@>Z6RaaMjXeX1j1BpcJl> z-+_qjY8~v^OE->lYTeM*KTW-AKP!b8nQ#|tkG-2)$v*s)>-8(oxOvXmICS1RGBJb; zHgiAaM`sj9U)j!#(o$33T3%j$yBwo_P>7F*=L??GUl|izkXq%*$pzrw5d%LJu=@j> zp4ERy@(Ir$Yy?~`o#4`fq$xE5#E2Bae=>db>K;5|2n4KQktrvz+_AsD@|J_brjd!9WFby!Z+qd(tFJt-mPkQ4%xQfUC=C5VOJY+OfV)RQ( z1UuM$vKjEN#_KD7SR(w#&f~k? zjStLmILlX5gK3IO2WPaCdY03?!e8kKJJgPH@=KEaI(LX2G_FJeyIP*cE5WPrT^#=Y zCqM6k`Bw$w)eVD-7Db8U)0HNIin9rD%WIy6=t+5K#33F51}W(R)6pZf_(tzabA_yg zE>j094-XveQ&hxNgb@0t{m!n`KJxs@l}THM`Qq$0eyUs#l)gYX)ag+0twd+y7dyijy9q`tt)M*wMlEMeFQ_At0&Dmv zL7ENQ=#lej?Zl5C?;!Q0z>g8Db*aFYtU*TM5V2-QJ_ipZiKI zm5#FYClM;yj13q|?3t;G*J*i6+z{pa+xU`X_KB=nOLEV$!S-Z=)gM2@> zn#-=AYp~hYZBj73$aLHt*P$lTY&mRm=u1pk;~FTZ?Cxct+`6ave z)k_zx8MUm(jaYXAS~6C_rgRgy*#(3$XD6qpC4O@&OH1>hItG)1CpF36QWkw|g+79} zbZ&}Y2ss39nQ_H}*YAn(rLcS4oZzv@>V=(P$tG_J9W6^iLy|bT%!g{c7=o^rixfOZ9vDEghUd%>9pln3B>biu701v0>Z8jmhQM|EqFQjBEu>okOD~ z7+dDoN!h$P-_2pfj=Qmm&h;ptNzc=rA?q@sO2a>_>hk67*Sd_QD5r;g+hPu4Es@ zr`lBt5yrupT9@Jo4K+0tqf4eFXV#tqV`f*@xsXU-CBG@2s-ElVrfF8&`B}FS9J7XZ zL2mkeEw#dI?_&xGSg+jf{2YHB}n*LQ}*8k(93TpBvSOh#hZU^B6M>WSQr15s2Q`s`Z* zQ7dtgk$|&&1bC&XPyU#kJ`waXYHEZYgWw;op{<>CzXzICq#ZWg>7GKA92^|Lp26Jz zcegP`I|K+)$mBifhPAv}?sj!`8REOFv~hBA-3Kx$SRUSnoW1S2#&Fm!R3=~&1L>Te zp1ujLaoNJB{k6$g<~e0whFb|&GQbHbYB%VpM?aCElij@Bdb+3VKj*#B{$rN(2e}e zNZHKH9GN2nVGa@{a^6t8f1kL)pdi6+EZvI?~TJn3GRkC^>%@@`=)|uNmVp^6$ z-x=ji#f_FSh8w6^G8_>oEt7tADVLXc+bKozzb&yvE&IrC5fT!Dy;^Z|tt8lD@5L}% zRrDjdXX6cC9tFoba_cUf+3P_HFD=1m_CI}TPH2&h)5j*t-FTe@c6j2rZk?!GPg1_}Jrc0rBZixrke1oKWxm1Z;!SEFCNuk^ zSls%Sdl1T|LqQa!PZ`9jYVEiGyksq|0YZuIVXO2tgz9Qwa1rLOs?zZ;5*S)|kwjy=2&R&-ZieC-?s(L1c7&xjMXg zHS^7a2#kG9m7G}-R-VpekBw%ks$SErK3CGikg@zWyCo?gjP8}^LNQSkWUXj$Jq?)x;a=Xps$ z=53ytlTYO6%&=u*lVlTz1_FEM=?8d=Z#&9@pHd{1yQI3>(UeCQuG-g8wC6quBBKPS zX0IZWSJzmLn4$s&#&Fntgl5(nl#Pb=hUk3O^dU~v^9Ch=HlOw*?~L<}KV%c6WOLT> z{VmFYL>NJs)A`lxJn=-9Odmpg)P&DzjO5kn0^CEl0yC#pnrEd{pJ#6;YiniK6c4%@ zDPSdWG_5tj!fdZKSO0)j;RE*r8H(_r3Ny9mIy%^pymNo${$eI}h+?$1FI;;_dwt?( zQwM6yEKcS18l!Duhel9z}{SJXx3ov8>gde0?QeIr#B*RvZ z0uCTRA$#jiYNI|9NpSyu6YvF)^fJiW|0atMLr0unYlK!$L>W)friEU|-4;4!!yOYe zi1SOLGrH$0hzrRzr*@KI9&Nrwj@3B~izi7#MB?bv=Qt}B?G&rkJXvK1v5IteR%xWBRTw_y0@F5!8|f*4Ea$H&gxc(DAZv zVzoB)cH>v3sDT~plhZQ2v35*RExz3UIOD&JLiR~*}W0m-F-^ zM7#x7>)K|5UQ}{A%X#KiX8-qACb5|5kD&NvnxGiu|0Gv=?(ep+%=YP;_~yF;+pW=w zV_g=Gjel}!i*wz z28}Sadq9csQ^A`vvJ}NmQ~Vwe?pc&n9moz)Mf#VCI3#1aF8-v1@)gEnwYt&d%+iX#Ax1)FKg>hDg~TfH)#RRsz6$ z4frd-Q&iNk@(v*vN)1QDp+It&3My@nT7z%^gx>{4wFv#N&!4g^7>JBO6}mQ@gAch4 z$hFaPKh)>o`Nr0NaZH!mF9}wxU~*ukfp;MXUW1hV-7%E z8ayAe37ofq2K`QqDo5Fp7#`Q9B@?UJIua0Ty|$ghdrV7HWxEsoz)$q@c=G3129lBKQ4+;X=mPN6K*jCX_ zSZTqM6GLB7Lm3VABQl2{+m*rV8v7>#btR5M%+@NMR~|haIw$`aA8;9&%LmjllsFx^ zh-tpQZDZw*Vp@X$FkMVX=S!E@F{TA1#~?E}|FhY4f_2Wn)x12%bA|1INBtz*e+sfR zA7zA>d|XY;w_@H~={v2!i%nm}YQ4nFeasnNbjD#~YMf)nwvudS^l7i{wOs3KED@Ml zZy}YB~hmPx~w|c4^T8gyIbWcW; zxHWVgW#r{MfTXGNJtM!Y>I`N*jiI;^94X_BR6$ znKesMU>yar)?1)TU4PJn%xVn`EWL$NMVJ|2dSbPL>T=eukoAbYyFbG^r1Wk$<-@#a zlC4F(C?9_|y_4#*u-5+6IrMMNhqsj-@wS1Q`24$k@~6Vi#l89MLPl)RvLib(x8jYP zp~M=KS_?xYWaEuhPi9kn2UwreZhaqk$=v*I>w7;v$(L!5zBQrx7Xlo|AqkrYL~J%U z=hDu$?>ZWt!bAKOM8BwGd+1JR#9sxz<7s}F_}pdk^5skRQ_-?QB#HCy|EN(Ct_z)I z)!r(q$s6m7pVS*U3iyZ+?%_LO;GEgKt9fg}%@b4Tgw(6~@bLSnB!r*xycnJaFJxAB9URC%@vm6b(>ub8_T-e>5zYCrIT4o7e50Pn$! zs;Xohz`~H>$z7vsjI7zepEK?LGdrJf^XhQzJnNxc+}R0RsH#AlIA!xXdaz*gxRl_! zzwYvW+8HrrysY&^;qCbSmA5F)`GxVnKV?>DKgbNo!U@ab@wv3BKFdb!t+i*CFe@6$ zf+W^p(^fS@pvRUJRdq@@cVv;JK1x&PFK~v)--g6l|4lq_)$! zg6*_bLwF}pGI`bP~&7S^G5J6)e&Tsk>?2W_W20!+;R#3zws*D)Ip82iXt1im^eKI zc*TJdCCQU6d_^41g5iZ0=6_8vGZa6Bw2zmY(D7fc^Rkt0F(8{B_Vs{fBwdi-cDKx{ zog{CEv#c|@VoQw+ItzdqE##>&UQp-x zh0i)3*d;u7|X=sHUbPL|#Y-?I&hVIB(4Ez=aGDlGS86 z1_{ZEk33fpNDlq|{SDTKa}L8YR}50YJH7*U`s<#0zypGC!4r^lMj z4daEp_)acraLQa(`^XD4QiOfV@ z42g_f&sYS7i#^m-z8%P$_*z_iZ_ewOoI=P`WA&0N26D6i%vVXi%U#-rjYvlno)r`dPVL!5 zDz}uS+hWEqR*vD#e?U)NSzm@`8?M!Rb>aa01ETM9o#0-u+c-%1XGsA-!^am>9(v;a z95cmR$?HPfm<`@HJfF|tz3fsgS=w{k#rS9S88Szw-xvIjQtjT|`kgFMWsVMtQ{ntG zf}X$vqd6RiKttMZ$htY!_4%7hJ!hz_JH5qUZ_tWKd)PNZ^HTVw7NG_mPJRb}d0#(2 zZBJ(K%pI*S4Y(9YZSdsuaE<>Fxntqu`Y$}Y0kfEuU^}};*`Yab(zxaRa)MfnZYsYN z(nF5Y`=r^QJ1?pY@%=2Uu_}er{DMk1lFNt$AW{g*zNd0n6&FlHdsjLn*L$tV>)fH> zw4Ju&H}p5KQe&^tv-`e&L$$p<7v&Q4;;@dxjtWy&Ijrw$mQz{XS@q}Q{@+0w6sU;^ zzNMeX*uq>85MS#OJ7|3%HG1~#&n=2nw4GN92$9KFEc&HDkC$d`W`9P6c96E_N1j4Y zPY65u$eOXge$2hWFy)MsGxQ9gQmVy>^-+&TJLFY#Vot-eA@q4}GyHog!2oz1bqa-d zL`Fr1j0NSlg;Q=BuOcnB=X5*=)Ljra5C|!;=PK9t`%=O*hL3e!?kW72mQ8*uW!taU z);qkEO10?f+t7JBXj$qz*~K2I7srgvextajflkUC`$S#N(Boao`6Ad~+f2_+xcxnS z>#-Cx{^NoUa!61lfDd)Da%Q$Rz^k+40-TD7dhv$248651d&`Dr#DRu$!W1_Oi%Tn@ z2bcG-#nbUp{Sc4jakQkWZ`2ia5K>a&z@6;0Jw4%Haj47~gG^}nlAMSC3T)ZYF> z14+S*9mXVfaOdDV{%FI9fq?;WS)zbX$!chWQN)KEw@}|yEdCuY0VL{E%{&mMVVVlW zp$zMm{-@=}T>(@Bbd;L{N8`qali?to17|X9wxadXyCB7WGgg?~y!Gji-BYC0J_UlU z2`P~V`0QB9MQWVcXTP8crStU4!%u`4YY{zJ_XV#MptwR>fmKM@^4uKxNR5o#zc6}7 zbJ`D=)SmNW4K=zdUfUl@Pkt?~anVa#rZ8B)0*P)_Rn=(weaEN#{M5X>>N`yt7MwYs z$TuX^a!9ME`G@hN^m%u-rR1czSz#CHR_aO)5$j_$QPy+nJ_&VmovEAeDHPsR-F}iO zh||gra&yTb?2f5v%_*(-%FdEHrUC0aNnq;?=G)+gjAfIj!Z;DjIV>MoPWwN+KOJ@$ zCl<4>d77WXZg75kM{D)c96Ori75AGs+v@e8B%LhwanhyP05py94Qqf|59OWr?V1vm znFdW?N+N?68AwMOf0&(4s+aCp`{%priCD#r^mc*^0V>^@YxoFwo zm<;_$VzV(xk41%H@*#BKJ zXj~po**W3=o!M@Vkv!SpS7kznoZXfD1jSXypHf{f#1q!hSjc*I1Et(Gv@rMfS4UPW zLF@98hJ{U&nJ@&GgyaLL)0dXwjwoE*|8x*- zc*c>ovTwTHh8VT+aqZU8=D_-S-PDkJxTgL!d}*h(hjn0j)0zudyR=nWPpx|@KB1zz z34j2{x$7dZ z8j_%8Or3z&rN6=z z(r`88ZmB_ip~cV|cw5`j`d@DvxwAB>g}Ory<6@n!;5a2mR%OGW*%GGT_>=>_4b9?C zZ|8bNW8z1LkP?T5RV4YFo=x$P*BQ*<6Qh`r?F8UN&dlV+U+U#1;c?tx&6f}>asfYQ zjq7eg7yW*p6RZa_8&|C_H^KsQHEPakvQc&OB+2eq026?!&W!%m;S1;Mz?$Qgk<5&* z_bG+S2=h`e@iGH)Kl;!qNP0Rf3Cdp1q4)_F!KKxZsGj^ZsbS$S-&`LKIYA)ep+kw; zdF3c?ETnde!QKKP@>-O~`*Pvypmky-Xr;lD#~!xv?uVUfJ-xjJF#}92EbV}*kY<>@ z)zBb@b-B$f7n|Yl`#^1|w4Dos75-SBaHSR`L=tfeM*p%${4kNt(NOZ+*()B;n)dYDf|lr`O~iw>w7s zO3$mg>S@vN(kM+0io~hmG!yms-~6@*=~KX-Y3}aM?JL5E&K7`OuxB9FDH1VmQbDW< z|JZiT`IbwQRzsd#sG$}uRerX-nz52_C^$+t48%uOABBDy-V{4FMn+#qy>y#bCOcmb z`3MQgP!|*-RtJ=yepBYy@$2)2jjxc_#{WZX?AqOE#`i~U;2{}f6ERRcrfgo$B!EhB zE7!(WjqX0zl+oka!K*#^kIL}J9w%(;$f2N zvNo>o9Ac0Bz_cyTwyG_-r)IzAURS@~ATu8+Xm>`=K0Y)5HV=-jFM}g*4xv_Zu3Wrl zdRx+pSJ^0-tJPxFP>-tUHMtmm_u8O6Dpgdeu;#AN`reU->(z_5xAP|VAV&u$Y5eX6 z;U`75yMvC8hu+Nb6?{aRxZ941$HKo+B|1TPEdhB?0$AJM5bIKKp}8Tc>!tI|=@y%d zM$1tZ+PfRdX9kYHNS#QDP3^Q1CmU1g!L?b^Jg8!)3ta)!8_q)99&5QdbHcY10uJ5D zA@H|ue}vfuF+!<+J-c-4oD`4fzd>_V!ipPkCBjXKQQ!tV34n6w>Df~<*gF6wFMHi9 z3SfB1#s^AD%5X6LUn!s`kR#=C#jWIC>0Be(Md!3PtWZgG>2hm)yl{q~_88lF??!lMsTzq4i) z#bdE5#EeEtn^e2~-mS(1C-El7enGQQL^1bFjdRc1(;FP$^VojvvYZ^&$lP^j{c`JF zss!^B3ez%{*(O9#B{}Z~aeu>;_bm4m!9exxfL%!S&z~;=Bp6!Kn5HXgww&1WyqYoo&^ zJK&&h=ui0W%x2r1vscNU*8vhmb=aX zs@d6dXNK8v4$9cd*pt_T*q-%vWK$GxnxchHmUe5c6i#7pxv911bJWLI_o3W!(KUa2 zTXg1KtdjKL!gdI=O$h(Sb`NXm(-82Ndr?xUl0EQS$@REgszI1G;jwk1MApyq-kq8w zt;k;j318$n|9x2%I(`)9*KA<0x1wpmTVcT(yM059`S#5lcque_hZGd#x`RIM^oXxD zb*Qy8-D|4fvT_MGR;@dE{jNmpu_NYx^NzOj2E{E*waOS8{4VW%E~Urd;=`oa*Qj~u z;EfwfR`9{@Fz)2aKW9v1aH1dg#p)p%Vpy%QwxfXsc&_v7>mP4p625dR%)0~7xRn+2 z!NEaBidl&Ubbz^&-V;=@79iy-Le=#cktY-}#~rKNx#e2bH_b7qPe zJ28?n3W(*fHx2?RDF>WA?7_4B=k3T74jL`rf`WpZ9_6xDR{65pi7=L@Sx;3)*98F& zV7AW94|r9%)&-&jRFr>_5NdPt`$!J`dUu*9v9LH-u0``lfAZuBtRjteX6p-#aK1Bh z<_#~6r!a^vzCNa!4mcJ=-21*#Avvdk0dy zxc28F@$d4xlKm#6-nOTL1(^k-J#~wO)5(RWl93C2Wcb|#}8!>1;LKw#Q25a0gdbYe;vQu7SD+5;`AbSsBq3&D4 z!5wt~`^V`~tYZgvSjW zcrkG(1imsqw=pzC$|&l*3-lbq8Ci9z-$l_Ww6wMPNA4kYNl;Yo-@ni0CMPM0cDyt9 z{lDJ;uuxlPESklf z)*o`}3y3Ptvc4(XYGzEmKkzK3oHClH7sT50-?-o%_4 zZb@xD{5BD)35WqlonWmUG(--^f`&AVF4FCsxYR@;WYZ09r)qzXBXolMy`zH4$dan2 zJa*@A%r>ZA2#%8)?TIAsUhxAf23Ad&up;5#?;@`4wjk=k6?5Q_1Gsh zT>YS=sZ3@pduq;nnrQNS_vlYhuvfN*(j(#Ydv4}prL8PqL!-~6I7_73mwx{my`Sp+ zgcQ-VidpQ|Ws`}gJgvogrTv4F>4lHzw)R4N#bJ4|XQ$4E!?sMk21)wkqWh`GXBgpq zc;5B0g!ny`{q3LTgk#REy4aMZHtxT8;w5|SCHiD1_bEi({k+GsZ#C2>CH;pb`LUXC zYzJXr{Mpdc{k;_$k7#M|{og1#pK8?@-SRM@!^a?HA(sPu64OWLN{vBP+g+5zio;!2(j_=JJlj6OWGp+RVKb2G6{O-ad@P9f!Mb}*?W z6&N~UQ3^c(=0o(S@7S>S2Bv=oS1dO-_rTDQUwyq-)ELCh?ru&zSz4{yv@Q4#j}LY^ zG^*I^O1iqC;C7)*A)~9S3&I~Bw*t@-vFX)`xVZ4p?3h|xhr*_?wWCAgeSvoP`bW|S zr~kM_3}Z+Ub?z^9)Sr@CJw5FvlF9aqDLXiJ-#M0irT2J>7M=^4l{qyMWR!)?3}1ru zX-y*EgNwtAVaL}N2L`y0YUT_%Nle%%5yf`wbk-(#DUX}`W)kn4*jaAiUaR~Nmtdm% zt3h$GjPlVjiIp7_<>ng;ixwaic3Ji|58j{a85z4*!UQZVu>Mt49;y@n`m>h8X-Fk8 z9Ev%?4{Pj_M`LxChF|+qT#m-Q0|NQNdJ&2seO|T;q6*SmW=E)g%}q(! zRT|T$WWP(rCH2V~_0LfKULV?U&R(U4MO|MVfKe3hsAXwrY1=drn?t$neHkV*OotW% z%A>?c|Lx-2mt7sk7z$ClCtr-@ZYUcMmC&D%!H0omUbRTD8CVc;ZLn5%CGF8hak7l^ ztgo6)B3ri)2T_89|C56(H7;wkquA!fmlq%Uqej-*9;VqF&w1bp9qo`B8ykaFEViEB zx;jR%os&~rB#n#-kG`{$lYdSQ!}`WZczQ7G;lSK(zdrB7T`Vki@R9~Dq#{pNK>-U4 zG^ls)hSC;IOii^;Pk;G+I|uzw-V3OW)0upXSZ0wO9 z*?G#$+W;%(IY&=)8dZx^l7OGyQD}%=EEm75%C{v|B^shL9W#+U^l2R7*N%lt{L*+&!u1JO1OjGBo$np(FJ#SWaEjp5#wkp?L5 z;?eekt8wM5R;`}9zm?&%Q)A=2L3Yl5V-T;mDDg!(J%Z!|I0s|w+;c^Um_L6uk*!M3 zRnEo!um8i+qF-ZjWYW)7?p?c+@F9)izm^UQ9fJmoWsP);sZ+u&lL;^DW`!;gGNKJM zF`%){(m0-1M>(<_Gx^oF+GUdYE};M;@YmnGqgBy#jY{kLGDd0g7rl8*7B6e>I~zC# zKMj6*;eiRzwVlzS8#DSvq|UryiDvxO6iR;WHPhyFVs5H76=Xci%9ACK8MLL{VDyUZ z5bJry_Gs_&&**60j6On??ccM!b{?gm>!+7`btw=5W(R>Hz%0)ld7yv?UYSVqdsg|Q zo%fZMJcP^|h!-y`WM-j^AOjPQ)mT15ge&aknp#`^ersGobPE{w#-7$>Wzhl^Su(*Z zG#G@7It`u)zr}G)fA;jW0`3gEB*%UZdJhDR4Os5 zf0h#ey?Z4ncp9WYPoggEKk%ZXf=;aEj(G1KCaGG|z+#;KQC#=-=8kgk(h;&5gcEwXrO3etf)TAto5gx>G%o zk#hkiqDVjIOq9n~7y@fPdhM@jLnIp@IK=y%Jq2Aa+nP zShWeA#jjQ5v>Ddj%P6pRwapn@|8ZDdxsx*NIGa3E@@Nz1sXKQC!z(AnckMTg077Q-8M#T#*5M$UpKPlms&)o7sYbKDjsWgJ=2(7MB6;w zMkihWkfEF85;lHeL?ER342zi%vksM_l4UMLn9f=xxp;U?aNsssi??J_Wob_l4byF* z%h%D-MYVil7{*;DoEgj}VlO))?@+oT&`Ix$xX00oXDm#_yiAx{&RF^LZ&uj&oCxhz zzcs=?>QYYOy6yYir<)-KS|nGas zkws**n=T9{m_>ie!vgF%Qai2i4os-@tgNvUvWjg$$|(V7Bk8#+7+D!gpv7{TNu zG&h$~x)bzk;^1j0D_$84`#B@97>sVP1utZ9%-fwca)S;K7GJL_?QR&B^6>L(Z@ZCz zJa22NN_mot=ka3{U`*^-KUxF2B^a1xa!u%IYllGE%a2u4CnqkDg^QXq^E4 zJLsioxndB|v>n$TFKrhef6e+(G~D8bvqM`XqrH{mx>fS8_(qiY7qm3S+Qe?HFPc7@ z7PYWLOgLx4OzMS@I1zlA1jnSp$lg_PxQuO!bJ4roIFIaay31`!Ty;b*#ip^>YWz7a zwK2YNmqm0u&G_X-7F@LU4!yT?w!}(QR;px`*r{`~jX4u`kB@C#aLZG)!#|<4v~!Z07ja79!Z-6I;k@PC!-R1@X&w;Vl(*6_|*OBG5~ zSF|4SiLSfhyZ+V1>6N_rsVm2}fO^91)+YZVNu!}5;XlmGt*l*at#Oy$?KwW}y^7}w znC&&^ja(bguh#9UQuJvyQJBelISgL2Ned}!8a~Tua=rUTi!W5|O*QJDjJ+XS8X`@3 zX&M!nbKvp%@N7#h5>p1Qh}3-IkG=iZkrrH8%u=`vZ{H@qQc2VxQ#NWx`R3!HgfeJ1 z)YVBLu_6~UrgBX5j-3_1F-C|jM^>J}7j((MNO<`-9u*Z8Nm10{hxOMj7y*@X&$xMb zkO4KmVCi}sIbB{+(GJ=H206Tqzkk2MnRD1eKR7&$h>MfVSs!a^Lck3u4gmn9q@?s@ z>WVPaa+v(QCvBWlP!NiAMCvX0D_VpOZw?6Dx4OD7rN<*fL#@^Ji=V%IxzJ-o1=0*M zc1yahLmb9EBu8cUz^Z0|NmO5-5}au0S=9tSOyKeH@gZ}YA%Mf=%(segxt-wY;f}b7 zMke>EhsE&L8!Ayd+x;3#5i&b}jPdcHbzKiGu4lyrYOy0K!=Jm3%gBnp=E~M-tZi?H z4Gd(dhUVHqWt{#&ZSz!LRZnhmJXqxjF~9jeMPI<*CG<13sNIp{!vb7=L1~nbcHjE% z)oe}Mw%AM;dQd2^MVqBnHMu9&4lYJ5l^RZ1Sy|UcWPY3rg^9J)H>h1C*+ZiFbd9sj ziVz9L#5^~8099|W@S8V6Dr^4ycmMMhIw?^5;JyEMsduk>hm5Vvx;w%M8K=3+pJw=Y zAO}M1~076%kHGSC$#3nC7Gvdxnk> z;H!Dp3$YHm+;NWuI|G_JM(%(v!G-ymi?kDItji^K65*DpHFv~CnSDvyf$k6L%zU@=w8;Zavb8 zWH5qRF5D;5|L2tdn4^{ss#@Tczq8}j3prDkhdL%Ft4HA{o2d*IOy^KFX*~s%a!Ydf z>fEEzg~DIS^0?|%O8DGBtUdiII5B_H+f(({oxwNKUR(6xy?HPcLlO&@L($8C53sSp z#M`{Oyd2P1fcoJ>k=IY;ok5`(2tqJfHcyZn zQ>={@rRr3aFv12CN#E^HWg5+U&jhR+D;;CEywTM1VNbnA-ps!q{orj zvOg--vH)Uu>;sViS*KEDG!i;dVb&WMsFV4>)2MZihh@S450pklwT0w!9!fWJ|F~+` zU^Ez%bjDrCncS~l@?>&WJ!#);q>DJ`G7H(;lzyDE?{ZN2BHaEFOM}mj)XdABUb8sr zJw6>5PJO*r72L$hM3bAG)Es0mn{rku6A~r`VCaWFrlf>U-^JVc-oIOoVi!@5_fH== zo*8K`2`lNPsvl1`m)gvwKlFQZVQOURKjP|bQ}SoEhri@4gRI0v; zJ-XnSAU`htq3zO<|>A~2%yrM_KEAeOx0q?GcMECTEEfVx{ zyYY^fxD!6{RPnZdo$!Lu%D=ARCY4rtBf=zSnoJd|9GU2cv_Jv$gJ4|C9;Bs6eY<** z$rR5ATCRAAaT zz@H9YX-;bcf08>mK?e-N!ssdDSE_xf!gEIdln6s^dw6(s3qJu0HHd}g%$Xe>9PEHg z4jdUpp(F76(X!I(HsORDT;$a3HD>}y*S*b3nBhK|xa+@sN766!!(6D1J*Bv!nEyLk zq3v}H+%I+QA--Ggr;%5S-$!*tDNkEWaHCVo({t+Il$O^*v??aqetsOlT$j7 zmBXSJT)6s?U>o8q+hF21-Hu|6u(M5n&20W=mfNW%Iq*MU5-b!cZh=cLTPj;d=16oU zQ5AVAOHDwkCqMX^$v*_X{WF$sx4GkJf>Br>bXRTe z6ho%cTjI=j3?L7~X8HVtAGZ%hDdl$V;aFi@Yg_!L4e1a%iSl_MBju=r%W_&3vK#Sf z*~^029r3kuysy}iPI}0gqHS?t=ljopy&dg%d4)dVF}15b3^UtQF>}UKG8tR3t3lt^-z}i}7X2@M!eT+X3pn(30&R* zaq2@U_t#;zd!?h3Kj20J`xTJ(C^iHWlahXfTBkhgBTCq*mQ0g3huXV+3lnWUahb)H3qf4vt1Up@CAfgG>=70P6A40Tk%+!Vm379%`1r$bEvVP6|RNSx* zpCE(LyMb+S^82`tzA7>sZ+H52nWPOhA@+aV5>8b)5lp5r(u`D>_{f;sV`*nIq$)xz zqdSvj;o)ZYIQIq(!8XX+gM&Zo-j2hg&awLrC>k(6Cxv5-`GPoptu<4SLrVVROY!HgBZi+E66rl;5V(DBGQvsG zNYS9_)2nz5vRep>WVgU!V)F{q=dW=~qa1HM%N(Mb3^6L`zJiA{f^jd_EuSBaiH5b(QyQ0Z@Z z@DW~#r^DWD)6Q3lIv6h;&GQgY0Tmia0=5P%?+tusG2J2f_mBdY*BF9yt(gaX__$|F z5wCO={l;1xXQ6HDAe6hD5--OjNTpQii0m@qQTkCe?WsYYo0kXoSP;N%%4hs2h{VK1 zFsKa>?Rv_~TcxHL@Prsk!0YTjNa1ar*^UzvNnz)201k}Nosqq-jbSVWF@UwbHZLzP z*s{I?%T0D-BpDEv@>(-J^_7)`)|2JU<>o{5;WSZQNLXdbJuC#iM_f~rWI6O12^K04 zu8V=ipmt1Il$QrUogi$@q|D1y(1kmJb^sUm)IufnMA`ZI85bTu4cI{$79^L%Q?Y(i z0$6cwIA6cDN91m%-3$;%*AP*wDMFQ?6nujEW%-C~^`l7yjd zK3_im{1_xGpqiv-%WWbt%tR!$wm^SE&7D{s&QZqw{{07UOzN)hG}kV;dd=GzraeP4 ze}Kpxe>f(#f4KBhMMa&l^7GKsSo{VGhC0my$evkBk0myVw1I{#EJ= z_xq<$f$4uQHpAQ5fMcZ~i8eEz(9Pwh$hh0zjBgn`OT(!#Wp#rCznjKmT7Py1T?6h=>>&9`oRpD^3=`G86s{KXWQJC`VhBa~z% zXTu`)8&=;Gml&-IFwb&o8{)Whb>u>0=>I#=neFk_EKB?Eq9me&P)NTn>xlq)!dN*h zIp-&5`Q!iA=S!KN$DI=yo!R1>@U%jku+d)fRX2uL%!gU^&U zXm@f*UwV;przUJ0#RI2BMsVeM-7ppD$O9oy;wsy@EP)&h1QDywn?ZRAe+W$h#{4uR zA>a1)HVmo~($XJqYUlL-au0(rDmwlE(h}qH%sKB9 z+X5tCR68t7=e6xaWqiB05Flz?`{TzS$Z)fbSwtQ`XJ_t(#hkp)5&uc$-dku_JH>L{ znQe!K#eLE#&>|sobu-6=apC+v*VRpKY2?kd``ef_e5BeS}0gAjz+Vw!&X zfapQNT-fi^HnEMn@x=Xomr-OTQ=i3I713*g2#OWft3C&DbS=I_^fejun;#uzB6gWc zDs4vDtLRAQ@NXt8-l;DN@FOWdEJqkJTkGWCJ2O`op_i^MJ|u;okl|DjlaWt=9CklGtBecF@K|l|NlFNt33KN*Oy%%zYXV3?bM4ZRyyIcFwr?) zoUid7qyPqT^oY6*SA4e!6h| zPS`Oz@LQzw#?}qP1jlLP5qv>geNzLsaLV1C>8+(Dd1Xm~1UDy%2Y!KPsGDai>e*@!;54C!A#MWk=CB46b{^X%X~MT}|1UehlQ-R~R2W(wbT3Y@K88$z(eg zm^zLZb1SVfU4t)ihj?TBOwMypajd-lu_(&?+K<))*Ze|`M+J7v*A>#M+1 z8XFhVd=chMf4UY8?4+?&&+U~fk302jQC-}7?fba_|Hcal z=sxTp{9IjR@wqsxvmMSqw>uG%Rlk8=a7eDRnF}Bmoy5)9nd@anvu5A?j^y4a3 zhN0wKe(Qa5$;MY>k(2T{{wreD<&mEt(JtKU<&f>qWbM^8bA>2 zlN&$KD%GM!E69rf|4{XoVNrK&zwjUif+!7=0@5HMp&%jM(%mJEpn$Xp(jlGF-Q6uA zAcAx$-Hk{{z2`j7-uJyQ3_7#^YpwH_VR}yMoW5Ak@l2zIWJE~J%=*6YY2jpi z_H(s(aDuExp`jV3N{Tj@x_0_&Bqj1k;J^F?qrLr%qkYF4c|qxIHn<7`W9eUi#iW?X zn$r2>^iui4^T3KIo_p_8uL0YT3lY1fZ5~+iW8(6di#rBTPf!rku3GDS)&6}w+y>(G z8-^~XCoEt@d?9e2Y%M?SA^ZAMlV@wvQ}S@D>waycKL0KC^|zC1$I9+G zFv=0S5p?wR-e?x28NCK6z+{a(1#-~*A1nu7V5?N>^v|ZV1AnurqOxkRmD}D8;lT;- zr}*mKOdV0d*d~E)6N>HVG=EUfYf&Z46aJiDyv=S3%-n76m_24Hzg}C)BXkYadagYm z-aj{=BqC$DVeZ|c9AMV;clP$Ig2KZbwAlt%ohcU#tShRl% zGc-P~_MQUtbs&zeS7oL{JYr>i0Jkl4>wHqEsz4?(0#~lZ5(}fAO2JeLtY2Q|T>uyw z#2BQYhVNkgCv{&>acOA}q`tKqmBTAR+T;VP@rE`ovKI8eCZ>z~w@~TH z_|D~?L{cfCAZ*E|+ZsYmgU?|dx3he}QhF?wC9R6Z7#tO@aqG)*P#GU7XK-DM0~2vu zs1d`j^~&dUI#1qT+%|uRJx8O+Oq1kZV^P?^*vM8GfT#M*bw-M&E$QoI2i9-O&WyLN z?gSkAuYF*OFHNdz-!CbBz;tva-?C`z#T2qKKjndf_&fGOMPPy9?+mI?Uu?KKYfBHH zmx#E28zqlNsw`>Z$T9f;8C@*us&#Y-Xzxvt62OpEd>juu+^N;!?F)Vz+|7cn(20u% zH$#w<;3t~+b1H4<%{dcRkNGlI3@(!oaSbV+oq|{eo4(42;Tyg1>0k3%zJqvoUF^Tu z2$*#;ZJdn`qb_N~lfQk-gbWxjxv3AV=a)g-JT4zZ-SG(tQ9ST}P%=C^V zzXFx6bvT2vGuE>GVsE>6#u2K{k1ch=!QzMV)GcCep|H_TdAg3Bkr7=}Q*&rEYuuQk z`*=gBe%p{jz1UN+fY4AFqs0q5D_UB}{qK{3 zljx(;Ip8hrb94F|t=<`6p4ZM7EzAJ($N~@?#W=`B0N_rTcK#Hnr+a_+@Ifuu)ZCoj z6x~P)2NyRYF>#s^;}*oMAY(M&RXM0>fp!_Wp&pV+Fm)ZujcRuaJZ|v{`|V^t5jD+7 zAjOxkYmC=;{6SdzVQ*Gd9)!d!kQtiiJWzh+p`wYes8+0|s}WpOCakhD(a{h}V?ju7 z8Q-^BCK*hk`u@!(gUevLEVGD7r$hH1E)yKY;L7O-Z!XMXbx1A(zL4SIkJegIW z$d& zAf)MqQX-*8AA*B}htFwgX_1qIC67cb1c5yOfgEfYq8oL{FrHtHwZna4V)V?+q9P(b z(&e&XC#9)c9oV!N2XCuYi%Y{ z2P4~*AaxIXL-b_oKuUn~5vi-oUb-O!Ihh3o1@o&p7k}B|nhDw#Q2=>XdRDf#L!Rh1 zJmTSrt6(4GX*gEUWl1YSek|0Fw--jsIB_-m5N$KhsHBS0dtbKZ^QT+np@iK}s<5mM zp0Q1%Pba;RfYH${fkYR>>VIS-D0`F=%9lc=EWbpN{=|h^R;tD zRq@lEO_D96v#@#%k2Shyu2Wo7YoiUpNO=h$)KN;ne;$l^cUk728&lAJ)=Pv1^JXv2 zy+f8<$%%uSkHPdS_KPaihv#K~SQDF`V4>|V8$A=SYP_KxyZch?ZUhlhBDgqExxe>y zZrRm`TdlrOW-*v2tLqgoz55%&Hc!Risr`&i7L&N|OiU^?O~x;9{gFegHQ*&)4~{T} zE|3cI29_kJL1neIJ;T{Ds!CCyHO+*vLG?un$~>%|XHMHhre3+g+K-Nnr2~u>9Wp@# zlOeNi171!}j`ZHv>gsKHo8jSMwdXa!P%J?`!T;*x;MTVOQ^b+vsY`r90y09stP0ff znd~JcB?cS`(OluyvQU<7g%Cz34yxo!QiGMp+wE_8!isW~ z2|$@su~1L1iLv0=^tk@U#>pXMwif0Wwf{wRUf>yf80$&9F8HM^6&}hPsS?R2Kk%k{ zpS_=AG@+yJ_%T3yU$3*Cl;W6}#--EFER|t#j;hz~bd{}|oAws7QhD+eiD|y7WaF1` z*wY#Q@=pxMlto*ZXgklhp}>Qk%;S<*NLiq3ft)$;|2uQw-5reF|JOx=_)ysTwCSU& zm6Arhs&DC?3qM_b3M#uM2uvz-Uwff~9+g4%uhyp|-Jw8LDyAgB5aV{iyO2=Bx0CBU zq47t-w5ke99ybxOVXNjNVUmX}o(H#YB`o&3I+!r39sj#47!D*~4;#_Fd-3E!x(8eA zZ_M^+W7)duX-;j|QzvVTD2ROvDE)@)uKvP;DGn=0o}>EpKGrg8+oao%zPdCphW!N} zHsfGzDaYp+W?RpA;wZn;f7d~K{+D9YJUL3S6?ZHHhkCkW3SZOC9WYO-3<^4 zIMfBnxvx;#3}oss{|)^+RO8Qsctj`0-bih_{(>1xeAUfDwZ=Nbaos<)nKRsOCO>DsZ!x zaR6z+Y=hXq4P9d-$htF=>wszmO=v|LT zw&d;~5)X;dZhioU>7Fdw-#V43SNdZ~?$Xn}^loJSogQV9Zx9G&Phy$hc6cUu5g(&h z4cLgX`kEhAqN$p8I(85LByIV^ub86uX}0!OKwbX(>cpCq)8wUtMA}W7J^#EQ8q9%n z-~XP9V#bb*6?aA8xh!+Q>rbabH~~oE z(8Ed?ASDhm4i)=-__(<60U^#Et<>{{bPdqMi6_L!Tm4T9^3>FnWfzjD0_%+pelR(( zQ;?4sQqdJL9%8DcMa=Q^>Db}Z!QS3>KCdt02+6z>rHzuTO~}E? z00rA+?Oj-qaErT}_7OgI5VlX&1;`}KIGx-MF0K=kl9{a2h*)Vr%#ZczLQ&%2!Qvzt zoTHyj@Ej{1WNSMHIO+U|?jyj`9;=`1=f77EvS*`?K(iDB$MriB zT-oV9of)@Wsj1oqSduzZ*?Ja&kZTVFHH@E&?roeHN&H@3E@pFPv~-&caWG}_jnkRE~$Nw}>QX5^7IQqxry>(epQ zT~gQ$4Gn1M=t?r_wgv`p)GEOppP{VU5^R$%SuoP#&kwR}^o8bX-t4RV7LXuMkb2Gt zx7z)k&AZAZi?zp7E0TC-g~u*5JL;lxJSc71&A4ZK$eBekWBTO9feVM`<;v8=T{YXq zxvFTQgY)OLs&X;9pYt2ws}2u)vOM=_(d?dsQef-lGDXklnHSACKNp3|qUk)BG|+w3 zJl9en8@Ak%OD@ojT+ipU8T=-TOG|+3QU1A{&Lff`PCUT`;U&!7@JBJ8j!^IO-LEN2 z4MNJ=?9~~t(zADX*k+uc>*)kjrS9=%->H!(eR-}R9C!}5ouCRC1i~A2n#l&f`5dJp zPNqHvMT?MCn4g^fBA7czP-ZMl6Zv;X}^X2o+flYfAO~6tM3Cuz$LW` z%4GPi@4&q*%F+z6{`|>JKBMt8V=t<+bpZcg3ku`oT|W-AcFksvB%ry>`Kw}a&qe2A z@Alaq`BF6N7r!#fTyqC)MWw(*>5PYIVJ+NdR|gDEU6;Y+sq|}=tbvuO)Nop2{#D8t z{*0Hdb*RD-dzq`eC&B!%KSf&WPXOE*#P>hnM|^NNRW+fc%0WrFUg`sl|sfKjDo6GAoMtX zL?z5c;vWmXY}n;qrV4oAO*Xhd3F=U**R@(@%+HY#5izk((`%!kvOEA?dEZV3A`Qkz z$i_rUMzoe-$}pI3^Ja8uWBM2tb|09w1Aum`yPw0Y4>0;s#&T&Zx>B@mhs7 z3T_tXm=2T;YZ_z!EZ7oc@5NKLIO+a!BtZVHH&inmb$!*E&N{8$>)&p^OBWpt7gGDy-Y9(rnrQpbQD#@ths{I({k;zGSAso8v z3?eS%pHC5t56KHP60CM-+})@4)Gzp)`SM%1s@c2k2wOS`-3TLp$C;a`KYeE_n6Omc zIivoN{u`ECkN8}uh^MQ!v~e%hl?9H2a@SH9zbB^c7YEZbd&58t(nA&w{owvD?Fhet zy>JgH5_YpQg@n!Jix6RVzU5a%DdnGzaCj=%Iv>!fFV0Z+8<;$)Nv3q4>%uMZ&rM}G zSB!{?^v`-jRliLze@|Q8lHY4iv{~%C&wIp&%v!Q(rxP{T5Tu}~spo-G_AG+!y%WW@ zM>EP&EAd@Sma$?&(R-gIKMTINRN1&3v-p^U_ApQrtyP}c43zew{+>H3J2*a3Hbn9{CH6?9~J+Ak0B7G6UGd`}fZvB|J3i%FWFzlD%xf z3pK2qLbf3pgM+`Qk^tIe+>%W8+#`N74>Fw6Va_Qd7DRKGb5-5g(wuIw&5+i)R znvFky^6I)P^2r?KLVgv?N6=i2cqJi3p8C+9L$8C*Zx@Wp%h)K-HN=pc5zn@3_5ELu zX%#@t#&CS#?tWD-+(X~X&y|?Q@X>_XpJ7U<3a*-kIkuf0X{A`_3R*M+fTQlz97|U+vJ@Afw z=6)6agI}E?-v$mW*t`moeJ$@s*m2@}(fx1Y9&)yfCe=2E3IHhVDs;e6d-du8^fP%E z79Kju1bzPBfT=WMzr2_||~-97I4YD_gQO5ZbeUeC$`l%{3qbdH#NGC!>2Z zlo&8UfJiv6%AD~05ef`@!a_aXSJ6B&%^s(e3~*Wqh*~b_YZfIlV-3}^ARh5>>2Lm4 zRQ$d(0PKx>ch)}M;Xfd8Ngn6YMObdEyV*<6^gVtdBksvdxo%Fe$u!2sqdE-PZq=W1 z{Bu*%RLlp59aZS!rxFV|@0+L;^5b)7d^zaJUFP06(4_CRYf-F}?a35Eugd5&u1D(O~v3 z$^5uN`>JAYc`;a^)nKXPOI|S*?abmKIO z=RYR-yt!_bIk>!wzN42CVMqJV;SoAj!t)w zT5&3-=Mwps+D~K0@VV+*_MRZ%CV_gHTlo4C#DbFeys4~h)%?y3&*icIb-S9+_~e;E zSw&o;4ik9Ug#beU_q3MSSvR=HK@xGam8%saXAHC!=z$fLgo~SF(4NEv!_7V4nh6&l z|CYYKzBJBaD6pVV;KvC&plI)VkRn6*gyorLzYjz<0&v2poh~XN@pWc~#F|^%yEw*Y zaLxF1e}M?h{Wr9k#G&c9@Jk#VMRBb9-QaUknHGcuD##G9Keb4T)l4lprk(WeU$aA77y@g zn)HYWY@m0sIEttrHNE<5&0UHX`7x{{lg|*S2_TPeAhN^@_ntq|TzT%^j)>|0EXon9 z?pw}T$?jd8RHtP>SSzs-Mu{__60Jf>6O{KDudAZ6Y%mf&v3TDu!?$=QL9Gl#rB3h&KP*yl-JHaPz;qN@02W&I@+c}5zI5#;l-+MJk7d9(@n^;3^aCKSxg=l(w$>F zVyE?LJ4845hX}rv?WAd)#tONU-a)5?G2cTHLd#2w(w%yr24Z2cX*6Xlp{UJ!9UaAMV=jrhE4#v`>E=YhhI>6|(Gs$96XDonaOr^T^KT!p_JpqjsngJ3Bjr zmqMomEFmgzGr&SygN#tnk)UT|P$NzLpfXocJL(4yc-zPb?yXyW+6^$PEWnGP&MWJp z4lxf}l)5(yH?qsOL3&Ipmna$tEzRIAIBv4G;Y&~t$30kG(H5HI>82hM+hON>fbm#$ zEPPNv#KQZKoByh#MF=4o(*%SVvaRPcHqHb&4deCW9TN>}f*W_LL;xSQpg!Wgz^pH3 zL_f(2zyo6d?a9g3YW5LPXheZpBk9YaC*911tkY6KDkeYm#F?9$n%LZqt$pti_Hf90 zYY>>iwJmXak&*0wQ!DJ5_45c}gm`f4KM>joRnTN_r+{?ZMVP+PRz-7OF)eMfn*6GU z7w|D_~-McJOT@yJ7JV5cOH#Cvn>4&T`;kc&7r}YNL?mqxD|a~gTUs=w~;5Nvey$(qKd`( z*8^ADf|UoqNMTx#l$QQj%~gGg4(>RB=zT|WUx7O+0Ak?Mfnbo{Q&&>D;o;#?5uGXx z&^~C_CK$_`KoJZvIN}?1RN~>}q28!5>YK5#vBK)=gioGq(vguUgHHyEp8KHg3~bPy zkfP5(L5M&mL&55%Z`QZ4V5q99(&}2xgK>jZzr{L+HW$1(Ux6=W(BHoG0R|G|4^*kU6Q1=Y#LG@!V=|E%%DkZV0;WO}4lNn=s3K++zdxa)J1VnuWg5&CE{uxB z;*(7G6MrQgDVIJejVSnN9%8~w{iz(b%udiV{LE>lmbD2W$5`OWP*i4^JIs5gt|OP3 z%~XP8S~&%?_s2}?bhGd#xz5PUc0Y-p@p9hG|95~$Bye$HZ_?yTfI}0>aK<{Gr!e!} z3b>tyw7I9%rp}h%y74lTLu(AzFOu=XHj^)XBn{!ff#pO=3TY8>KLiC%NIwZX%I^=| z2PVioYuF=fdXty*dX1E}R`bKJxuB@8V2DP|@i%hraQ&{ypWXYhqfOJ}n^$RK6G||j z7gJ0d#j{Etr_Q36LqcBJ;WMCE0gDX^LebesQ8h=SvVFWt$iPL_n!M^liN?nXy^NQ={ZDo`>`UpmVf(*_a-*|8kBy`pzrKP2dlDm@ z3(^Oq5Al_M1Mro(*A+4F-M!&G9Jh{vBi_YCG8lK>*8RinNyJO}cyX_5Y!m$P8cpx* z3pLV^4%4Bum-~lG`nr=u5)u-RA3sj3sfj%-pR(qzvHcYU_nccb1WQ09fdsrJ$i^Qo zZpe8GUnDtvowIIdZy7+<}lk^$Z z&P;y^j`AJ&Em_&w=~Y#x56nzqct8^Si;IiV(}R6|=m0(YmXufq@3D|6w|ZV;5#?#b z#B)Gf`6E6)5;3vS3vw@DBnB!&VNT(d*4dcK_~MF9S5X}?2Ja)4fi1v%Sf1c^)pwrc z+B~pJklR~P)Kl@EkwBAqsVhQulsGAuf4RbLAZ{KdUL{K#Rpo>7!G`IWtFaZxL)oIh z^Y!?1d-FUyAvrnBDPBdd}eTO^$}~ zIebAvG7`$!gK{E&D24um{b?irTx(`(SJL)@#AB3*xz!J|QhqMbF)tFOUgbs;?izgBeWZ=&bnRLEa^gnZ z&+FeER`(<}3K|1bHpHdEa?obL_AO9Vgg?AU<+FsUH%`o4Iddw zg3BDw^pw8zfZUch9mA=!#54B>K&8iE+t*w2RjI38AXfhw|HjCTd$aP!%E_dWfc{%uddGRqT`g$oj(m>Tms-* zy!!e#fD0ky{KScgqjXrXi%weCDD~C>3Ny$it_%U0s9JO-4RG^t5r7(3KGV?GH1?2b4k0`S=6SA53NE0%pm*0h1ToJGxyPN_U*%U1 z!;de;7EGC9SK76mH!uRscd`A5M745TK%`M}vn( zt`mpl=cIg2f54-xoE#%awa+UliM8A%9%?LB>OnW8(lL2H>7_+q<(RKsRr!WZVjf|X z{)Dv{F<6Q<*OfgZfa)VP+e%=Dzohuo9#G{Z!2OzyXh2Kpm1l;`RxWB*fk5I4p6S7{>TSK> zlrJ`RW{ahm9s+Bi#IF~r%@{+v3-mn_7u4U@Mbn;GwLvVVG<6d;d(kqX0jSd3-BdkN z#&uy=wX<7%bikbxyzDE9qMdL)&>4wd5&3ps=e>aDv-tFp&j^GNh!_cLbbB~!#U`8H z^90cpU^jRTKZN}rDPuA%SfByP3B{Ml!5I$z%Us-*b)c2xO9WnRoKi}6;~)S`MM+bQ^nut$&}lx0qn)0D zq~kGIt;s+GH^O+e1aq@u-$!at%Do^jg;zqv@_T5%EOeJg0Mm-xIsv88?t0n?cTxyA zRDXXC87N>DgOVIYPi9Dce1Ets1+PXk-dJAteY^G}JxBa(%UA|dy*oxK^D%YbKBl9~ z%*nY8GJ|Le8HkmFC_XLFe7@gtwzqEw5vqb}wgy)M#}N>|3!6!k{>889ln0A@x~^>z z!iMcb^?fs%)t&Q$oyO#6e?o@OWn9Bso5(PrP93b}AKMMmL|UCpMt-ci?n_3V>P*Xb z!~GtFTdk=SIsdF}6nImr*|^u`6%uQ|R1q z3tx@;3MMg)r*AQ0ecgkz0#x!RI2}3JAxxm``6#`}WrIsZ!5)~)6b55bZw8yw#;Uwo z4u5KL!*zYu6KnrgUBwnbjvI5k-x=Sx96iL4sR`DVTRrg{g?33ahx^eXC4>R|*`LiR z%%e~L;neZ;8$PX?s1ggP_ALvRXM8xF^_1Fww*L4yNR4yL$LvJ0Aw(BjoaLb?H&5f~ z9A*shBp2Ag!*HA=N)us7DNMnz($F5*)$gejWFT7DuR7`Ih{{XH*xC{Pfl-7R|hv5Zav{Ygce3_vA?D?}6bdsZh2Vp26?))rw zq16Fe&Hs7#E`F$}gURCizyJe<)Mc(;rrB;iDn<$ZS(7?s(ylM5^A6dryI0D)Sj0c{8sw&=|yOA z1e%uvc7{eneLa$t`G5#$kkYxMnKa`vM>3+<6$G1g#-__x{Cayn07ga8vo7C@MrI}F)BN(Vnm+U)Hk)Zq*y$e~5-1L&S>>Ug+_xFMSO$Xz;eXdI;m^?LzI|&+cXp$~ zf89tfzdG1M0y`n!W7MT~ucc;>cBAmWs>riVs7+8FXmUJKNlThZkZu-O*os)rTI}3> zn^&l)!w^rL6z0|w5LlUBj}p%u`+b=WQFo_d{@l2KVg1*IFH}b_T*O*|HtMGOC(I&5 z+teV`V&lj$GRYLYG2C+e6kbjPBOveH{@%iVE37|hXJ#3HXI+PHbj|+2tHG1M;)rs1 zvxG1d%zB-LK_)`>eP1i6y0Vs%wfMvA6Zp80oU-7Tf220kjCSlMhIZoIx`icq?Ng!Z zTC)<0z^-p-_7xY$ZC&>*9bmmpjdv$b-1s^b-awlQ5^fV}0~TGmd-{@cUmLoKw22Le ztULOfOZb@MyI_Qoc&k3s=k(R}`pu40^tG7`O^g2T|K#k=t*n^~c%*4g|z>@vumGM#c?5 z(UCsy6=Ru<{QN-h{#I)-f9>dabLrZDa!2u`^TamtuCn98xP!fhurJ#c(+Y7tBYN;a zB(b*AX&PE+a}VXClII!H5l_B$;Ty6{eHD}GRLW}j0elcLxG1&trQH>$=;)q>mE2Y0D-(3V-4V$pPr_oHT9ENG(EbM6pzx*^V0^E|( z^!OK0S%XXiM43~+1)8c_aGlwSJhkuO=iwm)=t443o?3N($MxTbuAJY~p?<5n|7DjG z#U5cvp7Ak1IUcKfc)Bbwh-Q<-UNO*f(N5RrCjfVG_kY^@1CR51ulIoUYN9)^} zl;6=>X{3-{l>g1FjA*jXfX+dwGo^>@&OhU&D8c=$`qFuVw3G^q3w7#t6YSasuqji~ zb*el%6cNLK9uIj5)raiu)-zwV^8??@kpA1jbNLaj^FlKF7OU99^E0+LoB>^BZ<9(h znl#vNRa3o-4#<9CO6m*ohJfwN7C`qLQVtBqG(+|hw*-jQk$tXEdfV3nk&9}QQpt&l zL6C9FROF|Q2a5|d#8k}8vfjmGxo|!s+ltN1XjhDxi2EU~0_mAN%*ljx<^O=98!0y? zt9=eBCdfcO_}~BYmg4sI{rrz04$}Vbrs}5}RitPOTCx`*`U1u#0TdJzfX2Il>Vv&E z;!j06TKo5I--?sgrX>OfZZz^?6c9W{hyIEeh-&=W(S8rHzwPiik_yib{nw=13ob@f zSmks!wU0}e*dHXd9*@4=!aj*NPqVgtElryO#bsF7*gwCu>ORMa-a6lnI1##PzBKvW zsw4((>Z}ioD__(DJVeo0)wUBKpxOO#P&&kN;S*oIqS8)qwMB*4DMKhj+24P(O^te9 zOFwd{!dD|3e+F;5R(_JtNtq)X3g6!@17FE`tKsd?)D|6Y1fFe^n-0F zjc^Fy^X@Wh|Ji^4SNBa+EbCvS;=x zijTugfx|}*Ul;ZpBz?4dNS7p#H;c{E1#dk2t3gDJmx^T{{&BKrAg*3Q>Py^c7YB&L zOLl0YYk6-^6IB|~n;Q3bKx)GZ;UryKIa7*2xsMsgp(XFam$1TSS{XHTDf`vSmB*emxqW1*1onZq&~ z$jY;qj<=_9!E$S7-xw5xPDDi1_WgUv@CgLQ3IlV^`!20!D*FY@+HaP>VGk=OFg7^t zAg#Bxb-Dl%f}7mXf}yd!t^gVM%*S^QMsc{j!r~QobgTx%R2~AN4Na-;NMYZ=_b?D0 zRhwA&mYUn!qwGa4F*R8+|9>3P#-^&fumeJrV?=<0bPf@4L^_u0KTZ9Y% z4R$_=q`C=ybPX*nX_v4&M~Y3obhRZZDv79VRr*>yvCOgWx<2Gd!)m{|;}*13Wq5Tz z;ao=ZXf_NANeJrAtqlqu++pnyW`BNYQ>o@wjWbB19azc_E>z2|NWWE)PybO}Nk*i6 z{*)?y?L(v6BH})2b?9O&BVvtqj@s}1T~%9-gfKP$u5>5}U|)!y71nAkNyW1r}SOFXH+l*PA>Gfv_f>2qpxp~bv? z#5MH}A2G{Y)!uO4Iv?DOVQ56NW6xa8wjXYUff{76U?8rw1L&)5O?iw7^UPlrL8)X2 zI?#^W>8jYBL%p#v0oUX9X}4B`vFg1T%c?^9NHyWyalJ=$1Di(H7NU$@k$O!iwQ5co z;hP#k&rY|bDwGVqSERGCS?~|qV=uLkzKnHFoqD4wou6~R!LK1}OkR3ayFLcl${o*T zML@I16c`$c8T&*R9gN<6J+@(OZ9=2t!$t1dJpaE$+`rN%JZ* zEbsml4y0$0!iV>VMxl-*p2Ow}(DaqRKQO8$_+y%$o9hp}cBWjC^V;2CpzG|+5J&Wsm=F`E?#D(u~ zi5u@70GmTaD_)dwydgc?I5zgiG>GPrgfB8(<7i_nuIW{cefeXzNcxU3-P&I9A~;!U z`}h@%|H*EOlP~=#WQ{oecq&jb%O5^V`^WLV9=|1HpE(8N)iClxO*v7(|8$us>0 z54KWo2{m=joEmBO2WFNmEhjtBS$_Kg@kfpHU+MXw?A!dme{uQx| zwJ|A%9WmrdLANmXgz<~oC(ttNpZhu@gx;Lrwb7SVJ3#d;<&!5RQxgE;m7Dex^x=-eZm0q0HeYx)P;Y7_I(L;vR=v(u zvq557s@H6J>{xgBq}|E=WdmA-NP zJBX=b%X0J0>4S2u)@r6(qGivmL(Y|S*dHm?Yx8Qg)fPS@*jl}qFww_lGOlpB+*<1` ztEsx}Pu=1iSCHZU*o|G%L>&!bR%4Wu34v_$(^Fen^i*lDwEGBszyx&X|LW^kub-=$ zs!m?+7|OoY_61>MWS=Ikm9fV2VEj}Sx#^7EW?|o<+@IhT`6suPKmL9g{Mg|?p{||G zS1+nQ|E%uqGB&99$-j8`W&djV8u{7oV1872|7nieTK`YUn~+{PRYVZNke!$tk|-FEsZfUN=AyN1ucJggS_v& z_RpF7i+Z9k{B%Jh!y)xLw{3P8fx!6v0s0HqT_z>Wv1v(ebiS5aG@R3?D(p=olGk~76bHY3 z6H-)+7`>T_4uw9a^7x&R0ALqs*WQQq79EN-?`6vnLLo6%qa57oV83JtUxB;XZ!2cF zECzt6o~f*Q5e#GBRJYcamw{Z=XAG3M1u7lC=H^Q`DPG7Fx1Om9b)dMKpEsDCp5{Jx zg+mxpJ?YhJ1wAi_AY4BBIuy?vqV=E~Ci;Be8EW2~oGJ+IW3Vad0sU21P?J1z2c^T! zA1!;kjRNbH0$FP(&Boyo5qa;&K4hKLeJP>-cZ`365s4?$*(X^CuJZ5Ja^IGLIN~23 z8Oa_!M)ANqA#JVOxgAt-m*VOPHE#zHhzlNL+1E!36?;QVZwI9gy88J4^x6zBavb~< zQ;un%k9BWB(3W+!d877DWR)xpOcIRCs8}bWg?mG?7r)b>C&Zgu0^|w*|GM1g6`N&w@dJ1Y@fd@vQ346P=mLl zNjD{!Hlp}9`0P2(TL({!{U($yI5#QsMN?Y>HB`-4ti8)qAH?y|mU`b&PS?tj*A__1It(~sQp-p5Mh2scb|lZm7s02>JYux7E0**l^cQ6%3k0a_SUMtu4#$Z z?CeR;$=564BmVLRwL!^bEbdCKh@k667?`nj#oygT;F-qF{ zE#>-Lt6;VrR;^06wu6-ZCuN74Ag-TT!8iU_lkW=vfxX8jW zmKPExP{6t|&^-)UW?y(6KUPI93>d7VRn-*2woS^_i$R?iyO%5xJ8+{dYp;j1k-n|C z5DA7Fz^cpY38cfgM~nJ(^`z%&SuXx?L}PuONxx6vfX{yEEB_oB<=F7%P);#5GB_c< zqxoQ2i6eH$wT84Gg0Uc+_c1N+Ku^Q-Yf9>uMZA?KW$hK$t8JN?8ufoScrw${v(t~) z6k=b|Fy21Cen$%4Z_98CkjJ7bcknKaEr~LmQ|4jGh)tf1*dNZpB@V@=+1V-ru`s8Q zwtIyGRt)yfSIAOvFxVj zWgLLj7D5HMt%3}GbsndN zmBE#v2XT@(t%0&)Fo#G>2W%05KfQKnxQMg$o@VcGGsfdCR2Uclwj`7wd@M+fvs-c{ zzkDeqlRWbdKl{uS@qyf!FH=ri;?r?vw&ewGEQp19Z1Wp!M%d_}34-@6N)xq20!wyeV^2?zR?a6sN&>uu=r_rltPRbK zhfVZ}|DTA0Ki9rs_)pe&ivl#7(MX0as7`sdw)o3Qoal;rnjA;KoM zL|e${DP3#r_@TaKU}O`rPx2Fikdb(MFMdj9XD|(YmrQ2}re~pb!IrhgOv`YFjX-@x zoxqSz>q9PYAt6t%d$NBQ=*vH3GGap_&2Mx_&LH9qpMG4N0a&Z?(6#{L1H^7_|NHlO z+L(jrUInSHnwNJ&1Ml`+D+Pp{S+>RnydF%Uq@?sd6p!o6C@#hXmFo6vJ?_}pC}+ml z#DsrMP0jc2I2bu5TfJIm{et@r7rQV(3bEPjwhJAC?XX=UHQJ`8G&IJW>+3=Q0|Ejj zr?>Ry?Ae?74?5w_rY>iPG*F*0=f({5g`ttrM>xeYi;85u`L)DFL{P!N%P}Ye$O~YB z)V#cjktZL^a@#=o!$9&%6)fjS3=k&mqLoNKk6-u;w1zSicF1pP(%#FG!aN)h;c2VF2q@!@FyA?o! zQJPY(YAFcxSsl9mE7v1}tDPHJ1wY)i^Dc1FcJ@UvCs7`~ctM&gA4t-EhkoJH|1W~{ zswbbZup@o$m0{$c8`jtEf{+l?JMr=MnX%RB-05bUkp`a(&o|jXY`W$b4Cb+}|K?;Q zaSPh`c^f_tFpp6_WheQo(=n$L+v*By5}AB}yaQUduGCd6(QZ&OBn*|=R}1%`T;=5# z#c1KhpRI}J2flO^!-NwfxcA4Oa(EQ*%mV2K0cnyPleY}9HqEbaKRz)rx5N$Fhk=HQ z=6h#N_^}N#`Rg=BSgR3)rW-NGWLdBT*H0=y+#>pby&!; zW_HSpCIpA!_CN7cctY9mQS3z~X zSzqvFbY*z1#MIyY_A=Ir52i=fK4Mg!EjT+6B%mr6mLO9 zJUHU!L2DBo0{l3e%b`gX?5n+20O^2N0ANoD8$gPG9QaS?@F9~U4;boSjiVZgC~cjA zxY$HQlgnqDo0iBNWmi2|`IMZT(GJ1Hs^QrM1?Yfxr(1tV%7>J5<&_3OY@CHo$UI;z zw;Y6pXWBo^zg+FP-sEY?rK}#;p8A&(e?ba6zph52{H?Od$#C0>k8bg&X)XI}?0iq= z&=UTPE`9JGF<=YBeoS1@+3P9BqJV4&0BtAY1EdbM|J=I#l60AK{D=t)qz7%EiYHJI z{mwsVYNgO$z0_)|QqskfL3xERdoIBkE8y_rz^brorktzuWDNPQm8tSc-!U=2iu>>V zF%wh)#*l!|{?kI>*wZVzDh%ZV=y42@tMYP@2W(Zb_17~RRP}|$xwkOxJgp9+5zPFo zVh%ZD5I~iLW4fUo=%*U?+X&y@QkIyTW%|=WP3pp)MN-zq6xdM@AfjlJ_<(1F)zf27 zw^LBA!#nlWXQ`vKmsjf?RA>kVaFIYVT-)PZm&w0>DWeGjSfqsgoI7)Jy%zUK1lx2c zPZ_BxWf*@K7;Tt`+3VwEBkAB8=3gU4*Tor<+%-XN%wfUrn7g9ds_O1p>(&r1?X1q1 z_L5+|)h|jJ86NA*qwy(+`)Uh+#XWMeuB%ju>lZ#chBRQQp#Y25oPZ>mY;h?2hFeFD z1Y`vNiToAaeW)5Q%B&wqD4yIjma34d^VVBs$j#YF;(8<9GCcpjpV{qr#&pivruWXc zGGwL^ysTfd#wI`z7BA=}AS;(|aYaZ#a9dkj8?Kh#kq4tQ zee8L#cU^aPRv~BuBz-+}$>%dCdQj5ti`+G>)2^f403@Qdk&_teWfX4U9Yq z3<>d#jU{Msw$n;K7MOqY?0T*!>+F4whHig=Fl2}FxS+lQI>N69r=&lP zJ39N&Mm$|=J(og}!Rf7@yl3xEc>M7yW};*l{aRh0jCGDve~ZCWlhkvAJjvef9C?9Z z%n+zS4dWqvi$IWK){Oowd`@NCHNX2);zQY?&1x#H_G~VfAxDBnnIY}j`?>HQ1ucc! z6URT4xOu>17cu>cBbF7HDw|+g=kkkGM8NVT4U7nZJ8O@NZ;1#CfA(xvcrSaekNFhh zbpIo?9k?a}Bk$zZnWwBnO1MaCs<7%qL*+ITj{nj62WSRU$QN02|GaOgOcx;+lv(>_ zdSz!Oc8`YS6=uTBgI%(`gm==k+{L=g_Kt&O%=gc3r&enR!j>4BN`^>w-(kO=+jy4T zf}eW%^wyJ|WHwc!!#by9wd8*%R7j0P`^Ude;U5tOe&vqGxo4Btf9xHo!2bY+C1^+* zS}^tOqb#S}&4zC;xE+ar3en)j>H8Uw#J;?&uKJjNOqnKfJJK@=lEUij=gFaJguK!{ zZV4pAdGrL@oZ!DU+D*)d-;eocT+SyZ>eHy3Ny`sfnIT9LA+SyS`Uki()7|pJ^ZvX!Rx=KeM@k?RN_n!h?c@9ULmAmr#W)Eg4Jnnx~iffAjqK@q>+vs|)07qk3o`hqNyM zq5dxv1X!=?-fiH3-w$u{->-%Bbu_py>(sq@NqHU?3n7>i(A)UAZg0JrYp5P0q|LA^($rR3#lcXaIxy_Jd$1AzQI-Qd?V> zPBohwjBo42Ev=q}RMUU=Uk=)LW~gWy-a3{!;5<-WjCA$qQtQC@f@W_^(3?N6jv|6b%PY#ybn6NC2w2i?(xo zjJ|UmyMt9YyOjEva!c<1*(6waCrORGGdL?rRaF;nJ>d4oBwU!KI*8hy5H<=sIuJ{y*Npbl;+7Qfr+$+^A&2c}U{O;zxtr!?uLx zay~=;7Tz+A0!s6@Sv|o?`ivFLFH&>^JAIU2p&-Pe_vLEl6dB&d87Q7@WoFZ!n4pby zExP@uD8JYn!f=tC_#}DtZEC^?kqrqHytNe1f4Y(+z5FKwL3t0>xOKZs*3OQ?@Z=W?(KmGNlaJnOW)E4@n%QobX_ld zOH5heRNWiGtCR+*f~Lewu;PI`e)o!X@?qos%s5Q%mU6wQ1F%JMKbe)%x(v}2IBJfS zlj-<5Z}6M9oY%GoqVttCshuf6)n(Dvm!M(&P4XL6lv~Co7UIpJ>Z@vI%^!m93qo}@ zx$-sz_rY9;F+TW+V(*_8dvQfN})Co9=Fr6cGfZq+1$kB@W#oozf*B z-3`(uB_$x;E#2MS(*3XV-FttAV;FfHc)T$Q&IVL3gFr zooQ)l$z&eJ3q@Q)Vht#cETW7I4dK9fv0`q$;5Zh2XJ6Mt=r;qWj45~3f~CwV)t(@Q zBh!m^zj4*qSi0f~XqhY`YIrf)-V1U};HfxcU?Z9@5RcWtMUTfW`zRlq;^T=%?v(?3 zzm;AWO%MY&68Y;>7>1>3aPwk~bImH@Ar_3QGaq64JhE)W&g$D=H~rE$dX}NIq@|X7 zc$FnZMeT#h(z_6xD0nCc?wRfXd<#QT;lSo_6G87Oe8>XI-QUi&e#KC1k;!9$nvXBA z?Nx$^qS*#bMgeA3v?UOcW2O08P1@^f#5hGp)1(OSBocJ$P9KW@P-|M}^Pnz)vpbP> zYGAI$LZ!pCrz>*fpbCUrffUZSAQEY~v^8MjfF&kGArk4Ozwkj=b2;~Fm>{~r3H5@g z2*($A-wVl>r2SE6V;tV1K`$*|fSN7l%-H1_3}c8+(hUZHEvmyN2(KPZ_D6?{+Rg`` z!VU9jpBsmjS2tfTV@uRpeO_Vw$5k}fCRXpFNVA45v0r2@(5sQHU6Rf8kT_ZhZrkDF} zecm)Sr6A!44aC!PMkOj4FDxt=fkQZ@c(;TR85!AVvxiGfnv9q^H?*O%dmvjv9}y7& z;yuO=y+dOY6OjO?5a=lH{KNA>hX>?c=f}nrLsxWO$8CmmcD&{8%L)&O@^ zF2kC))fDe$9!`Fa_fqqyS**KvF$h9{2;1`aEDX2L&n@(IBccp`L;kxP7@_#oR@>*p zYUS-So~uIvECu?N-F4#5Q`*7X)~WNP|5xGy5>Cr;NG;nZ)N2F_l{_4UQ=p(ow;FKY z9GUnOM`;qHLN)YHBXsJ0ZPqW%L->;H?hh+Pf>7p61#tFAGE*SH$0ZJCf*hI(;7r>) z1Vd6xOI>zr!|L7kuk?@eNk6n5VL{*W-SGrjY^7Y(2(V#MF|w5Yc&GC8042&*8DrnN z4)4GHkNd@=h2G!OV#ZxGGh1iRB!NM~3Ip{?k(+^VEi7_A@s#wBmbj#(Xh5$6j^-ba zDitz?B3^RaNDI!?+3KYXsU&2VmSRA=i-v|da9XXx4K62GphFB|fqx241F53j?LU*E z9WeUVPEN|F{{a3nkJBy=5Lpt=-aUeCCLA!h0*vG*zp^dIy>VLT+Pq(Hv(%6cnlly= zS|Er^EC@^a6ZLqi6R4tt0FmI}U?q=Ipw-y;`{FF8a`U7-H#CtQh%rC{!5vk}(E3O@V0G=1+qRck z`2sD=BLDB0`xYQ=gsn^bqfXvpN2NWlJW=TTQId%i29zO1cALEqM&WOq&H~EPAU~@$ zMYotkY2${(W#p-W#a6844PzpVk|veHpRi+-St~9)EaU87r4-=PKiw~V>fi&8L4^Nv z4BiGq36wsJ*BhVj>t|Vgf+mMb>zm)2KJnrPE#pyafov*=-dHJ%_X89reIJM0$5hQ= zvtvDDLeYwve#4R7-;-@4c}Cv)>8-E(aOZha!?sn&y^J)q?F~&o2aMf<(fiFpV*MR; zWVUW+SXaz(p;jc*yX30_S2E8=MCe{GrOa@MG~!)E-)kQv-~~r{#_A--fPtBuva7Ti z_W9@`NNh~B2KEIgji=u{6^sR6cL0(>q^Wf;6j4amC05ir2aTJN?*VWokv_XiJo>W0 zvJy^c85-v24wwGXp*4et;DX0Tbx!b3ascaHX(Dp3kFqc(=?&A)$yV6tnT`rY31_7p zYwu0DBwR;N3)oB~RQW3-dA!Kq1*|oo%#Kho5>W+as({K$HegeXkgEYI>#8-Wu+L!<~d?lr5&5b5>2S-PHz@-N{feaPS=NyqHy1Eo< z<+>4}XqTx*ptU0c^0k1C8qMm_yMJV)7mU{Elp@{BMBpG+VFCu`3inG3aJ27RDyIc> zt~S$Z;pBqqe_)T<6^Kqec`OeUn0>85;PE0n2Gf6@d~lWLuByc=XaJQun5HJymmJcj z>W+>P!I9gJ@ugC#HmdZZkW5Kch-+x+8t^sf8{0^?c$=>nBqQP`qyjuu|M!wASI;Nj z3~j2?WT7qwPTYW{WsZMmwOby_vFf3;T4r%063ZdfffRsU#ahWFDfSLq;%o~?TKixA zJCm+fLc|w_*e*2a@Gxy>pbxXD7>wuH==MSE^CJT((BPu}pN{d|4`d;p{!?J`CcWe? zsDIbdUqhVN6bqEFYeD#ocB@0C;m-~M0};vp-lN$YJqrr(-DC9QzJ-Ayhqne++MiB; z!PEANa5pyz>w7hxcMibI@HFnBB|1G~#r@bZ0;BG1JKxoCU`#(ZBGa`A^rsl|o(NG8 zg57YU^m=}^8z%+wTwU`{&Tv}m7MT4EQ#I3-lv5cNwut%wv*tRMGz z1pGhK>f(cbaDnSM+pad(}B6UG@#l<2(S@AE|!N^ z559n=8syA2e=7t#LsL^zVBcZ;U85=+*&+*QbF1s?IbWFo-sB5(yoL>mO4P+gsBZPEq%=vix*^%WF@h&;Q4Q}}qa zcS@wa?C<&UFA2N6as{5RK!v=Bp{Cxlz&jd@bv~?9sTt+2%bd~*I7>5Iv3n&wNFA=) zS2SNeAq{w_9)6eo8^kU`I3u!2ecj_Dy3~7fbKDtA8D%A#;y=n&(!808k}7DvSGI+> zl>cAc!kGn+2K#9Ahh1{jY$Y=l|M zJBgtoUjjV02%Z_gbKGt^U{BG$!owK1_IF<;+!H=E#Y(&Rz4o3kDkZcG zN(aWTxm3s1!T;*6rSZmn)t1EU`~?@&Y)CS4)jJ@og#DB=0l@9vf`R?a=y@uq@05X8 zOf`->mhJH(ZERg;9yzo&gR5n>E?Um`Qr@6)*b4h zkl5qp=KHZOAdEEx`2iKx)t?6y`X=Lll31Ek;aNvUMv@45{uv0vy1cxct+S;Bm8x6t z-N1$aaC2rpQ4pc|RkS8wo9t!U6rjPZ#kF0Bl7n%)T~mI zkGes!270fUfi@Y^V#ItQA1slGOqU6TX${$|SYs&5819?+HnP|nE)00xm>iNC({8nO z#8l`p_0f0e#c@U7i?4+BnxDVmxnW%E)Fu7wzldU(oi~xS%~$|Rg|cczx7SxrQW%5jPJ)Mpmf)aVbBJ>X679aeE0UG(|nP%m!ulmP%U4 z@f`+Sam?BN8&y*D90_}!S`aEuVRGi&=ce%bz<;v~x_jN)`15KEcr!*vAA~`(o@QMQ z;|YAaMrCG3k4;C$8jLW>^CU(9yKl$i#i(|ifvxUiHn7}SSrZ%#g@f__L)o(rO^7M% zHd}8^xbN$gtsVYen{gQ81a`tUly1S4lBFGx5)H_EOU73=J<;gsIP(s2_s#-WEz7=u z!Wz#T>B}N=l_v0G#Ua5n61)MB7Yg-V_Gpas00x0f(WXSp1kCE#7^35hTsQGO(FfTe zC2L)P^vTdwTQ;iUeg0Uy%hN^)MNS4xvzHWDiHmu`LlGh;H%1Q}ca)xnoG+i{R>FyA za`K3X4h5}&)~0fnunvoKz6xIgZ0>+Qg{SeX>hFw6<#~yi@mmkzn7G+IH?Z&-cKOgq zAw*KGZT0SaW;0^-;{~D;f|rrtF6n?;87P;7y~p~6d-v4&y*JPIJd_Tt>E#KcOz(Sx z#B=T*{#kPT7V6a5Gg4OwrwPrzh4FI%M-Zsh05fOXxc(~;x&U4rw4Ew`t9YGlUmnbW zn0U&-A#tNmpFi8*oEmIy{+u?-0vaSB8=;H4+VA-X>aRZmPzXqsR46vQVlpx!K|#DtQ_G>HkYI*f@p0WqAF!hv>+ zhy3ommEq{{lIF+$1u}rEe&DqioTIXseR$gC_#+l)t*h-7!rx1=)_+UgtMQ%?1h*r@l&04Z0>@d~=-;gF5oXZ=bPip?@`df>$LrVP%b}9n2V}2> zeEh+l{1rE6<^@(#7a$3Ow6v_98)myNJK_p=WX(r01R3Lp9!?Ym$8zX6toYddOj&TJA*D7a1B+0{M;z^L{Jd}16~XWfPegmw}mOn&W6Pb@&}IL ztgI|3PU;(IRDdgkfaN0#G?mfR4S+ zDIC4h59&=10;ZV2@s0qaV$4ak=Sj3*LfU5ho~oiWu*9F{m5n&}Jw>}1oZZF%=BzWP zl(HydL&PzYVo1HYNuL`*CUbKYKehjjH*KPWPNf@dg3#=Xfia`&ce$v>(@*7dPvaRFZN!6}lF;vT6yf}{K8PxgE`EC8PdY{L@;;(vK53Fj?Bxmq z>FE}-FJPdK>yC-nZ_{EXlbwqC!&^cqB$>#9FQdFW{o;o}>dxywwJwRNuKf3$Cq*aI z*_hvl4`$XY4hPD%GXWV6^?CF%uioGvhj$#Aa!)}w0!nd+Z1x4b&HE1H>2GxZObHmv*uzZaHE|RrAa?ugY4YwnSfvKj<2&T?K7x2GIu$(k?q+BMA zDXsVdugUuORhn@XIfjT>6lSB1>F)1w^rv&}_V>m9`IhJC7$6}bxz2{~pCh{RRpM^; zq_xw8hceJ4`4m`-O0Z>bAM+LC19YTyI`(2Hm~|1km;>B}nGZPu)0N6uAvpF(AI6HD z=&&I*cLGfj;jatg-+hB+$;JD(f~tZ1MM4b`SdzOp%%?}& zMbX99tACgOcw8vQ?NrA)L?^ti)ddqN%I*TuV_{&<2d>>+tFjTvC~Wf)AFx%&uxDCT?=d$zk9VPSj}=3%S_ z-)$Cbi)ksMBd^%_`N^C|q>~F++kYK2VV#qMIO8bJM}&v7S|zWmNr2uOP@74JwDq2# zr-2d=KAi$ISIiDPI~IEX)AM)*c;}wOv$G`r$aPI9uU~;aA25dO&MH@ajKEG=T+}8L z_9g=^nIQ1>=|0pjC5g`F$qdMXfHs4%)FujSs({Va?zFdj_b;gT^v4C1*ML~hPxq-Q zDgEIlfaus}%9xk~;&;HO^Gtt~L;4wjg21x@)Ss}RW2tVTH^Urh_tG$^tNO*Kk&y?- zSK;p>G#8&|iye&v6Z3OhrTxE9*i~B7n}ykWt=#9|N+9@=98fGyws@%JOl99J{tr5I zlIWU|iaE0w^Mi1A^L)Mps1F#^p5esoD4F{hg~@#W1Z^5mH27M58}Kk;y2oI67O zs=hfiVJZ6A5|5a!05hK4_Bn_n@|Dsblxc>_j}8UKAXB4ql#DK5%+Mvi>M14pR+!X* zdrp;MMT!hVNUJLCni}9MWSzEDR}aDZF{gFBBGNVFe{Fv~Ya|lSF{K)0j%l(+5jvJXF`qZB|Y$SaIFN7EVg4b@d=@A3>pyX!?B`R#sfzVJz3ntgC_zq zGR^DP;#&oYlz3n-2TZo2?(Tdkc0QoB2<+4FfZknypBNvX1=K`xZ}0);!rk3HncwAC zhy7c6dJ$kS=lgnyf*G+*d@4i)PW90Azu&((*w+BK6cx~!lT-SiD8iuqc%T^qogQ$Q z2VHY0MG6Q)-d-$&>~Ls^2Eh7Uk1;I&Baf66^fu9!k(srrMvxI>rO1!Wgc2s5k9#n>-$x=S{u=DfQ z^>d~2k?yi_A%KOeqdYC?FQh=c&;XQo`+EV>gUW^7c&P_YvmsSJwI2_#6tyLCQ_@j^ zpA_o)0ZC!z2em(lSFARC0OXdg32|Rlg{3>z)9tJ7JC}g`)N1zEZFsvnC z8;0%ij(g71X2!`t3Xo$bykD-YSDL;yH2~bP%?-lF?ar=&Ki!W)#sD{=J@>dhh~0k>p{3NDtI1B2rSw;5;vCU_gz8 z5v`{RjF#U(H&jIhM^zBGnb7nsL4~-&aYq3fw|X>Rle<~nWDD*f89^EdB(cytXla3_ z*`jY!67hE|at4v@0O>Zc3}m%YPznLy1ITU# z$*u{Z`C(z`l9BOCtJ+YWx^AntJXd8|$>*ka2Pi}5{zUj^@m$bp^^yLlxPC`dt2MiNeSa?t{lt%;d!b|=@ z?81XDH0s#KcXV{*$)A4w$v9-;0QlYdYYa+s>v?{zd(!gAsHBAzkzQ?l-3{`rq7m3k zI+4IEf`;#Wn~#nLrnt*3cq~XM3u&+RO$a!`=Ky$PS7_U3hhI)?g5h&ZY4sQy#Z(g*`j7Vx9>FDACbBwG;yJe~fAVMwi@ z*Ql+9B9HsqmFTeT4Iss%TGL=Z&P3@1q84K=VH5Tj=EVD9EpZ-M2fGSrw1z9R^X~H~ zq`Of-t!A*M|DD<~?ap;4pD=ph;3t2jvHxTb&pmI}#46S<2M-LGl0Lru3YI9{pu*_N zzcODm38`{M;wd1%?F+OAv2ETF`zYWkewSn+56ALKQ>4lV57C#T6D9Rd>wlUOGKB1U zJJN1HxqJSqmGZqCU`W(($ACdhkpSW4aEdH}AfhJx?=?J(lr6s#=^`vp!?rb6^Fyp& zB|@_TYMNb)kMXZJovVA1*K&MO#x|Yi%ki@;sq_pWfC-Zc%9p)-#tM4%sFP8F!05Ws zF>T4NXZbd9I~HUhQmvw&?$zaPX%@nC)ocS@W4}d2%V&2GR2;QJ0a8_v?HrB}Q_8y; zNd|Ln*iVsX{faO#NI9g}x=dYNdB71qp%(p?L|R6s9kj%xYZ~Z7n6Zh8iIbC)S6AEp z0k^ov7Z#qN_AnSo1i?Zv{*{^%9-P;qOvKv-bzR-%bs=b_7Z994w>bb1{ek*G-N4xy zRGWeGW~}z8H#5Le?(5fD6)5UKbFp`L7%S8BA8I6pU?`|mfMG9d;Oyb##Bp(X`Am11 zLmHQvS?9Z-6l1f1d`WM_Gmuj10aK_B362~#+3L+jxD$vR)3-1Rf4C53O~E+5g>yPwp#b)L z`oGLQ3p;cAUs%_6t!Iog>Y#Z$|;VU~{x!mHIbwQ@`D33_(d@X&^_ zTNDZcoXX6(l8S0nEGaYT4IByrOi;IP3>UI#1L^2mg%HYAiNL>cbi4aecu6E@(dL9>ptiRIH$Kb zD8WaFaO<}qhjUV8`kR&(wk|w2+>1oae>f;Gx`NnS5`-WlSEQrbnC$tU492&t{d;zb z5ShTysJ*_&MH&TKCs8a5B^u|Y0D-E#@~6+(%u$LNN#8ZelJ_k{6gM6-lLT5|@@p>X zi`R2v2jMeWVB%oS9U-h^W4<9+$Yg2<*GM}c|I#&8ytw>jNi1i?rT+F2%n9t1oy87< zmJ6`Ld})^s^LHnDsR`Ha5k;#xOmrtcq@guS1|RB^HI47f`r5w}m3m zOy)P4d|}$_aOu*KrQrn))t&pd2<6#Jdot@*^m#Eh>w|D4^!K(Nu9&AmpFPaL4`1YS z9K7sjK@PiFoW78)+O7LjE;XJP76-vEd^{PhAwUXe#dV9B{ZU=5Bb@~&tF(Y3QO9$1 zScH-Z6Uz{-Sjkig_OlKa#wY9{b{Q^}lUx9#sV!V+*o=NC~7SR5E+_1kbIHn#GLCVpA)nAIOn zO?($5ghT=GAfAwORZM40fl2c(9cB(Jb{M}6tiA+i7>Vhd6bDtMx|5i5QVs(7v&f=R z&WnPCYD6NdEigIO6ph*Qqknn|Xy3_=4IuJo88-tj)+5PBlsl z;k2KJPfQdPuu_zslHa)*w{M&&si`4>#Z)Nsr$}s4(-yc=dq~1m`2~fbSETQgQC5Bt zESQtyC+!S=c7I_@1l$&+u158QQUMn~&4 zin-;N4rz7#?kR1OFN0AgApF7oV%JZ%+5K^(=hG);rgGApj9w{wXF&&9M*9rKX-_=6yKWn+Ljhg|{eIP@qWrSZ)xK?7h_NcAdf`UwZ5eie>& z?ISxaUF)Oe`qSyCwM6JP6d8TxrT#lN#}!3C5#u^LvQnD$txW=Q7?>%3xP^Wvr9jh5 zFc`mX&hNo&JcTpk)`bm7um&)ye+u_3HAL77!m8%{uzJ1&<`g{b0u|1X)6;*VA56#> zdz}1a>;c+`izC8$tsvWP{YGxm{^h7rub6@Mi=JO(SIavh92{k+Vy8k6q@bPw55-1s zaEJrn76t~!@M*hq|dL{q`X_VjENU(J|N7I4OWy4$~^%Xx}sI z`#A7H!ao0xY&|<`uyHJi&x;Y@p7aAeBH%RD-!q0qR(uJ{Y@mdE|khO z{weB~{?J;&6@;q(S?5pM!3V|jrKK#;_1si&@R~Q`K>5YT^NwZip_ola5^1gQb7ou=ddVN@zH$*w8B9{m8|yxwly5VI6f}=t z32rXeA*qm;xd23pfV~IvyxcN6ZK+$yvfkt8G239p!Vt=6($exg^oCtSZ)Afe|0ih( zVgh|pOe=kHJ6`X&k`~#2Bem}A0LH**5!1j2lqu!IdT-h6u4ieibemr0BUUB+0zn&X z{Xsmo`);0jMCu#PA8131w|Zkc4YMLp&&atGgSUY8@N6Tv71m&DaQ?ovgKpDDEa7qY z@O^1!UAooJh2#ju=KwP)br=!&%&59J7ZY z8@^MH8ULbRPE0_sY6r-9f0NnZ0lcv6qG%Z#lt-abp1%-K^-Q=J+&)8;W-O94{6P4R zacd#HA_aqo)UvZv8yhTppHTBazX4kF`CK69SAG7R7+VcWoh52zu`dQ?;@-sUU;&A% z``a_}k+Nt?St5T}WFu==&E57UWu~~;r>N%pNZVYYXP776BLj`9@7Eb;f0xr>WFQ73 zRoN!aB6RQa+py7oAF^v|(kq$IdAvrD7DbvHtlVfWG@eVevXs5P7pnphYfOVxM!h5V zmjjHko_G5XHwrG-o~_rOjAtv)PsHjv&V+yhM0d)a=J~ae+~?^$^RegO0Au-u4L@_D zgi+m#Eln3D_;hPK5-JU9Nd+ea!&d>zkm&@D^+MU>%f!LPoynvv_I}s&;i~8$rjCcPZ9G8EHr|fzeUFOtpM`X0vM*d&+B0F5+ZHd7`qX6E zgq7Le=6+?PZ-2Tx;2(ud3mDD?$FO3+XG45{LJ&Wp$5xnc2$a@4ynVHai(fk&H?-%J zW9-6P+uDds+c=nAHq&9uai6}(iu1iwgdvH__6ydphU=WHH*@I3g<;*5MDQOMJmB9{ zJQ~2{mAr;T=lS-Hn0MQaU(cP2dF}k{f9LbslbMK?F&d9>@n}E{xLQ>x%Q~ORBUjtD zX?W`E#Vd zN|{={4t0rN@2fiwaI*M-mvO%~lAG9Ppg}a%yKiTAu6(%SiIDHX@O^3!0p^!)kn^>k z->$QxA5P2pr<^Xx53;~*e9W8Mf5NV} z8*#_nqt>+>L3h8D@!6k}F9ppXJt^5aa3Su?p2mM=FdGzV6#2b~th~ICgtwciH#QM5W!267d`od6 zd^uNve#PkHL2Yw)K1DxqwQe2;%e6CWl!EiNBQ~DiiF?1IGTzm@Cou@S*4Nh;1FT8jbjeWb>t{^?) zD3u(XXby@}TdmKJwm{ErFi{|1xV75}iomO**CpB){2?68+md9#7x5+A)&&*zR$?Sv;7y z-colWbY$peH^|m>y;;a}w}hIRDMN@i`}$xtpM z{YR-I{Vz!&-`euDQTuU&!i8q9w?3sD!>XZMF`j+QnlLLMK6~DEfbp~8!I6NRsc*)E zA^wS4KB3d>&e8}=2idC`gn zM){E8>?@fAa~~yUQPQj%gq`t( zktxvnf|)pMmjlzg?tqQVnk~E@-ub6^J&Nq-_>GpZ{yitd5jy0vll!M2$&n`f*2mMC zimkkW$$EB@%+A#tS-tg9MlHXIi&tK(0HoQRN!ihQ;_=d%ZjmAK7O(z=v)6Rgt z0G5B1k8SrdaSMXNMA${UHZw7J$DuP%H(bS$lW;IL9(%pPkoO*wW506O>`4fEq^Y=^ zUvYA7{bpoii&YeUB#??EgN4z)%{>^~jnA1gf1#eH{r!VMIDz43WB^5O--ysg+jIK2 zm87>0YCkZ(vcLYIY3dS?Hue(BV!;!1iHnREin+VbhlgxUmuXd+jZna}-4g4-<#G^R z>TKKB^s|b1|0akPB4>X;ZYIZ6XT9(pz;GyFD$bhF^+P^NS{HuNwq}Rnb4gk)(Q8FY z>I@0zEpq*O-D#BC<=yahK`-Q4;6mui$BhK0Vmmbf@;J)*b2^G85oXk}0xt7$UC(Zg zOuApT%Tf4&cU4<-LT77@wCVQre)hcb{@!6PFs$;dC{1Z>jQhCOOhQWE`x{x445^BA zpK*2oe+rv|Nk_BfN{~)XxkR1|&Z(7mBae8Zj)lUVetMWu#ST(-bfJwcf`7N}(Hyl7(vID=nE2L4^!f6uje0>pmT|>G2*rZ(H|8+% zBeqoNwO!+CVOk?PycT;E6K@mw(y_d-R(+?DKBLf7N*R7B>3p}tgzOS;#4*^g(}}wE z>qk*RZZ5nR77_CAt7u8=sIEobsI(atM4xztCvd%cGldry9oAQ#(f7k2B>hurBL1xX z4a7l(qoe_^3_y)Jy@tI8&5U_toitzOw7z%xcoUBtdAoMq8r&gzvP6zGS zkm$&y8&+1aAo9|dYWQTNpUJ*w4l7~=0@gB@VIscR}8L(7y!EdQ0 z3zh%I4x)cIus$$;sajwB2AQPz*%6XXr`&Y@df-Yu;^uMON2=|=A>K*WWri`SIei5= zbIxbh7ra$6`RE48IPgIbf+2gVB~e_wf$L(&%~-zm304`{SW4dG|L%May&=&=3^G&viNbA4!N^&8w- zPf33c`kCBzPJ*#j!QT{T;ow&2{cT$z4pVEO#^C7BZc-oeF#SieGZ%sSa=fU=T@4;` zW`XL1=PZg1m&a9z!=E3Yy(?F&YmFT1xk|~2AFC!mG0BIJvL&iYS)BE$Dt3;Wb%UP` zheghppG8Enx!sZF1Hb>f@vnG&iByL!$koi%(cWP<{(__;2j-R&&sqh4fgF=Z8J4GN zLEzhfD!N>m5IiH*28*uYte$_S0-oIyyH-aXdM)*oUjpA6S+oi#k}>y^k9;N@6iS0n z8~jb3uumeNqa9H5Vjq`I)w;;0vlHydulUHH9;PUxtEr6Sj=<2HEyJ>N`%IH)+K3OX zF_5plj+?joV=i+S99L}d(#iE^pm0oO`CE|C<5IG$jzSGYlT5+t?L>~p50{HOnkr5E z{&A;M$s2NhO}?|8l8g^SXYLPs{(1(-FO2w!Gc78A^J>q2%9b!gp%s$KO+>T%T5CE! zu!F}w_CHTVjNJ+Q!l~Pr`+(Q$tMx*f&buFb9 z34V$wxAnlyMN|i~c$zbdC_U-y2qaNL-GiHS--%}!rCnh)WNi_J`QLk^Hga}Rn?cKk z)5$WQ>uJIfjd;|!_JD#=H4MSuBQ4f6XtsQo9n+N?;)1n{cia`ZlLnDW(r2v&tzxfV z%yNO7)=m5N@R3LQVb35evwfyt%c5sQ5@@j%y>EO5AFiz{1(sqJt>p*4QZF@*#2Sn+ zllBNR!{MVHxmmtY4dP*isBfZ#clHDOc5895)6x6b$d)FlczeZbtkh9*q-$iXZ1Y`1YNDn!Hu+8^>rhvOd`f zIz1&+Y`6HD1b;V1$uD^V{;{*ms_s(> zy4``^uS<;{n`*I{pOnEy=~&j6pfAWjs#X}-Qa`byK>pppv$oZsa?_!0&7L|I1vd$I zqfy7SS1cPxSzx>!PBz)PGj^8!4s|{%RA_pv}}mZ*e^5@l5>)x&~Nl3=Q5tx<)7S>m19bC0h#67zTBxuH}b*_3p z6LLEsubP8H)C^&RebN%zYi>Tcu-G6)Nj=9VidNwr++D53t>;9&KRDQ)H!m|yekjmg z45eqB$S!4h>4epScN_uUu^Upa!*1mwU81N96TZMo5~{}W(dTs5|Gjlx0{(m7LcK)I zP?MqogYub7tBw@rTt$Uy?<1;OL6o%}EcItX+Qt5GwmDQ6 z;=%R7xFc%$QywB^L!sfJ2-u{~wmqlyfq+a`MK1pjs8@SyUB~QAk2g~Eb2^dBzs4-L zWQ+}&W?7M4ggj{CE8*!Tm)uR6*v*nHBb3zYBA3j4Pw;8M zdTTbEGV086;BmSYmEp_&5v~3Wo+m8jJ5K9SP9zuN*jF@IFIWD&)PA~=%0hN{$kbB0 zZ$I`!zy1)?aPxOonXZ6S^N@8e-Hu1YQ?Ddw={-9?pQvv{wc+X2*tUHXE0F{5tO^eL zSr)3du$#eq-J7`*A=KqOjWaOi8fFH#KTA9q$4JOD6Q_n~z!RUMYE;7V)4{F=-6^Q- z_UL7D;0PtP7d$|u5#bl6)XP1?%xpa7=x*_oaQ$o4nXr?UGR<+(inzy8So4gGe$Ut3 zzihDkw7{Qz(7VCPBg`_*AHx9Sc|Wc2aM?rbiAOXhWAVdz$s)7MM9Og|ujdoq+p8WH zwi4mBy~unH_ER#7ptJ_%#p(CpdIR6{bHi*L?D*50r$@@u*{F>3`j<=$YJQG38aoQb z9(a;s{B&zKIPt0saf>jty({Gw{Jk)j@LM7e z965yW)hHHpzumKVF760G=!sUV^mJf!a=p6(?!@tB0)kJ3zk2Y6+|>t0HvPgM{6YLEB3iOKSI~0J$ z4w;MB&pf`e6?B&%dN{Pj|Lk{zRhnvN6=m(pXO zUwOskyCg%~x7Uc;O#Dm++(d3{xR7K5#KO)HI$JkXt(95a$$Jtk|MTT1%*`VBy8C;r z5$}z;ax$WqLd_S-$vvYoQ!KZC=OC9m2U0pxH7dUKs1B?!shC9ZzoP_YK0Q6zklhR- ze_-N8=v-ao_6hk}dXvp^uQSu#k48@m#|neR`Epd~d*qA4A-@r3AB^UA?al}owfl5t z8+1O+HnUtw`H8PSzY7dAscfu$&s6tQ-KUmP_+e#%y7~IM;z_55rRi;Hp=cNO;1hfD z;9A#?`ZHkiFeBh&W z6p~glQ^L2|^nMqw=SFKrhj$Rx(`zS$X@s#;pDqrKFB^4lJ6x~m=bdz)9lrOc9gu(| z<--nE-HeExtO;Yc5P#zLm+0=pjmz4w_}#sZuzAd-KmX$Z>h9&0}R}-Z*O=8t`sk zghk@$iz#rBd~cT;@$ySL_V!v#$8)H`7<)@9P1Ai$!mDG47`);NaJh*zv@B!zgW8+# zhOWN;e!=wBQ*#`NnEyfh)nYGYLYJV(cLNg7r+;b!F1^B1?E+9X zGjN(|=NvXlm3!egtAd&5(4TC$=g^>kT!Wxm;8+3f-d~UEZQ9BXx zxLicYOs*w)XTbjyd`qUSf+Ll0()U{m)rH+i&a`8xyXvOmkMr!i-8F@;7x-s9vtBb{ zJoSaIRvnU_x8WA=W@})Rs3#_dv9H!U&00me+xLCx)OQ}QXOxWZrYnigdHbftvlgtR zypmoR3L$gR9dLuk8q}x;&3ZTJ5M97I)?{+)#dkjjAvBF0W|5wEFTX!}?z&&SJn>e& zJXSdLTF=c&0w-AUViU;y!%=j>-82kELnIjzBrUt=iuCc%ek?!u*j<V}T>HgX3V_x-wu-kVGR-MLSN{l|S2 zf16_D+1&O(jTg^**$8k3Q~HQNADmzyMIt%HbA;vT)c)L_gYBJ06pSdX_t_V$sy4GN z%2Q*+iH{~fzYhhSK0db7qTPxLfiazJXTog!k~ll*M4`p3Xz9Q)rwlp70r!=J!0WeN zv$|#2gKWXDcJ>Bj$9m5=p{>F%COzUS(Yo?1aNMr( z@PUb<`P825?hc|fDAnD!WG^>G)q_6>QMAg9o5GRlAs)PPPv=ieIEHYkHf$7I@1ij5 z4Qx2ZRMX=JGM;A%m{EtnTH$|B(#D_S87>#hR6`Jy+R#}goSsSSZ{~BsbmiG3{Bw(N z%t7&xBUpx_N~geFvbp3nPT>TqwOG)|*S$y+^!Wq-FxsSEiK}l;1i$|JZ#PM>26uaJ z)D`}E&(!;)eK>_M!sqFR*2=@fMQLzws><&MbB@{Q(`4?lDqir!UcfKqsDh`*#+<3f zsJfXi{-mhGYYx$Z!sLOBj<}A?hEB3eF8CNiN%|UceP?D~kw~^nkG59cmyKD8CyGBC zug{*W#~*#A9YiB@ev+Apc%o?pqFxeBykW$VUE5n6taT|;~WsPq6rOMWzG`rfWhBS=Z3gfz;byAIMI z(v5To(%m7_ozmS%NJ)1JDBa!N-Mow6e>`8_F*sxR!L#G+z1Op;3N4WdgWM? zU>4Mc?8++T-LAsXdz7vXJE5h~jYU#{-i${>dGm12!U(+p{U|6OA~?Bdk3|Xx@jhE2 zF9?+3>lq_XnR!~4YW};5y&ILI#AFMtRD;-D?ImLsYAkYmpa< z(p3|~vQ=Cqd8}XYs=#lg2K2CNP4Pd(=Zlih$<+%8=f?&&(0VtY~Ldu6lFRfZQM!OMvEcIuT2OT1>e!rWSrNu$CxSYKb6g>6&=M*l1q3Ml@A zk$}?!$8`j3aUaq|Wz#EfsDn0x6D=_#J{k;cB+jU)2M+<0$kAdf_obz+{6M1?{n~;8)xO)w0kEH8B3VA0-RNR@sF3`HU~^1c^OqO zt=Bhh+h)Jv3DVQM6qQ_GhWYZM?W^)d9MOr%sPHj1>G3STyNSsOZkzmgu`2+R!-}JhJqaB%$i1=zw3cUas2M3 z&%tPHq4`hKi+5kQ%J~#38;Mo&{?%RI=Mid-n;n;dF?`s#GSJfd{nUlQ(pDfGBb$jO z?4jG^7g5^c-XHR0=-_o=TAFB}zg=$AY&`=3Tb)dHl7pM6vUIB%D7*Ag=OvL%o&OxX z8$+Yz@u+w#9;90r!Q=a5&#huF#}hW8PdDCI_kN9bO|~#HU|@rSljC(o(TKXurA0=@ zOo>zVWOZZgu`h3Ma{uSy8O~#pO}hs9npRYmZuGkAd1|a{o`l50HMyi3=kbWpeMF+` ziDKt4zAWf#jKH>bZT>;t33kghkJ$?gFaBf$r>8J&vCdQ){c?q0A0U zr_K@hyRLJ?M}Ju@j|!b-^YLib7P-7R5B+XULEun!?0Ar@qTwR%5(*26Q*WkvjmxF& zmD9`!zl}sD*w(2H!_SC`wd^W_OmEA;9(v*}Gm#(W?iDvbtl=4B6Gx&yuI}?TZz7)!ykILe$)tixZ=Tcuopkem)&+j{wBvjB%%l|>3>+#C_ zVNZ8tb~Xe6{QPHs*?^?EQKVC zB}OQ(ZP(yX_9&)hBIy2+a8JY6s(=Zm7niNWGw2S>X(7&?XzoAl{t2oGla36akqVD>r(c1KYO48jK14D>ayX<^?3lbcSy9U9WD({`h}e|P#iNQ8fYI+FIF62sUA}T} z%*n%{bxQBD9fImOXTLg;wtK6HMi#t#MEq~bTy2QtnwT*VcA&$(Wn|I3yY>f3XA4^j z8ot*3-pk{`PO=E~n&+P6Wt!lOi${6^)QKNv$-Z~6hVclh1H=ySG-EZs#lim9hR`Uo zhPPeki>?l9ZmY`3k$qb;(xYg2PAf7S6Acq^%Y!pITS`fQ-;n) zVn|kQ|296^&Xwbk7mNjqEa6h}3I&fVdBDlhWN-_IWwg4`dp)j}8t%3|4qxGNgbR07RM z7BhX{GoqgCuwaP=4J%FrBxYA?l6q2xsQ7>z2Tt=LZ7|)F(-i9b@v4I zMIm^)=hp(=z;cZPZo6_M<8%~;hl4ki2TW_)LlMw7tje7df-GojBz?^*`D`#SvppCV z#gm<=dX5dK#zZv-xg2t(8UXceQqj}?}Kj9HD83S#HMp^NwO&NlT zenZ`-?9}6mux=2Hap$C{(%`oGrw2q)evE2#l0t6qLx@bIKba5DO@wxDMU+-qvp(t}y_k;brq$29l@w!O;n!aa6gd5jRa&H(CrIoZdn6s-phr8=Z0X?VY zM~#8aRmbo(i6u*f%U_>@@y}*)2>5|G8fNb>B3Rq0;oJHu>rSJ|Rt8P1ge9a4uI?&N zZGfmbky-WIyuVj5wy=Xpt+Wk%U|<~f(5Ahz5d&TgQp1sW_qdU=6Ar+o95&ZE52yt6JG7LQ*DIe!35e)DC_F_bL2RQlMF;<#yYs%*%pv$+bdL9#x$tLV6}0 zG??v!!_F&-*TdfVh8GT*6Hed)+h(XC@;bk~Or6R=O!(E7SDS{O)6(nCsO&mTG5}nLfw9<4GpZ?VDM!TG0d>MCJk)A7v;g; zFtFi4(?rAHH{U-^n(tnwr0MF&@ zW(Yhd$c83NXuLT?rVC(5^SHlPTimK53qNc8w{vSj7ZQm8|Mp`?pzR;Yzax(=IiA)| z$reH3xUR9K#f*-+$CZ$m1)V7ACZc5@{si*VlbUW{Hm3VrCg@GFG10*BB)7Y<*LD=~pRBA*;m~!7+S@|4u$#);TZ4Z_rgzHI9uhNQ+s>q>=e&8X(w@lq*Q*_qsQGDl1 zB?aHS<$O-i8FQKbYG~s745!3=@12FDVo=ubp9-4?;*3+ZF_!pOsP8Bgv$OWteR}nm z9V+x-yTo7USM!PsIKPo%o>~VJU(rVt3Kdoew|kA;P4Nz)G@vRf#|f*^8+1+x#zrCp zbJ8&H7J6kkjSN=%53yKB@~0MMzd%y{1%O=373bEww4ptd3{Ot*f=B!Q$$<<~K?3g_ zYCiEQeialTm5q&ZmP5)R)Tp7cIpxKZTzy}wxdW)@QDDD8Qw+PJmy5?#z)x1rr!6my zxXn5fNWK4Y)*b8Jx)9BJ)}<?gt~OWPKE8px`=w#|E-g7nONth?+1F0iv4zZMi}o zW$9K{e%sxTiIol@g=|vypQt2F%7wxc3qwCTB_Lni1x-XRhsy`fF7c{5CO%68#7NxR zMg9ljd0yAnpXa`I0H(->2x*X9jG8i*y%YP8m=XEsHC7FG*YP!X{RPYiA-h zzJ65Rb{iQndGq_PLTeU@^h3Tm1h$P^*yPtoinbkAtj8G!{QVItv@LLP`^Fg1UpgNz4LqDo&f>9eSm!&1FIqRt~;^k$7| zhJ{HXg6G7m5-(jryHCNO$-cUK&fP1wJ4oiHVp@A{hwZB>_ZI}(f`Sio8xhGX1pJTK zPQopX>9*y;IbQrL$Dd)fWeGrGGR*0)jDQqVMgQbMqBwZ&EfLUqvCpN5ePZO!WS2u3 zm5Y^AYH}@F@=%xVh%4nEB_{TvEZC2xPhdpeAqLfK=!KMHHny-MRZHQiVD=KYS$FQ_ z^RAj{x47!uxclTDN+tX!?p2U7K(rKvVl%(fNTEAskK#zwS*6U{t3po+lA&1cSh2gI`gF_B5!73mKIStpbi_8gh|C$|Hzt_~`Nh;FkLDdj~Oy*$|Gid=s>v!uEn1bd- zD}(s$1uQ0UKs&X+ZRaBGroAV&U6u!D5>ZEmrTW34C=gY|A~~*e8_oUtp6(gn=*3jZ zb8FyBd=5)Yc-y;K8I7YoBK6+m>kZTO_mMq>2;=b+$y>vBEA}IN>#LG~w>r8jJ9niF z!YYh9iKV@ll%8cUq25vc4g`<(*E>gV{$6dWn?r zokBR^H9)k*3-F{>iUBtd+vj8uF81u03#k?=>%B5m=~^c4@)UBByDs8h^FTKGS4huk3uj z^49{LN@S4wfqGwdNIl{~pgkQK@m5EWcT|-V7?a$WA3S( z+WnAh<^mau!!~s<^^(A4gcf7HJX@0prCSacTq*iQ`H#6jOnXWcHDpZ3_fKQ6zI*dLA%jx2;NKvNLx}WeMD(r9yY?x( zN9*4$t2I?kIU&-QafZE(?pP_W!%J><{-ma$+WJj5T38mKEFsf%vMI#*8tjzw9WUZ! zWYsoeCfScgHNPb}A*xtZx8p%uH-I)gd@3Y_{O`ge|1z0*{Ah8vWCftWboG3p*E}}l znQ5B7lvWrD@g z6HpQd2*s(xG{3v>FWZ|`mveRE!jY7y{Fv)~K`_W}bVv+& zp?FHuvTo**n|twMSFJTw7!e|Utk4_piE{I@1TyfOATf!(86!k)_`gT6hd%}{L%PeWt??^2X96KQ}$h)LL13e^M$Fot_; z%dh;CnK*@Z&iQH1|MWpcvQJL<^4=kLo%R+@5h$s{mjO=1m>a~N$6K;oORZ1vpw^@0 z;evhMj%E~^&oEcK&*0ad_u#GCJ9XNJK+cY^WD){GxY3ZDgr-7>HKZGk-6`^jdyy$| zuhI+D$$n_!K%%ysw;vLyyPP$z&})Z-XgASlv z%3LtdiCt>Sn>EsCL+9+Wv2}YJ6Le40A`2l!S>b7D!Y4AP6p~+$kKWs+la!ncNGM4a zK|^6;9^zW-jfLO7zFGg8jqQxS@CERBZ&&Z+?!8a{AWt9IWtysx0=los>1hrsm>?z< zotl79uNhzr!kf*+R_bsL!B;GPP3F)sVu!}y0`F73=di@@YKIS}4w8$5-g*&0qIe*0StLg;x5taLf8T*=ir)ODEue(-8#-d3=Ew zC~?SB7uwu-CWM(kh-=FEcKfWVQVtGIe$yue&FB$R!n#Z%kF1I_-{$M7qs8;DazKUu zstPxb@)4pXh@5Os5YDqgS{QLSJopQmg7X>K5ecuSf7rZYtuK^JV&wFBpJI!n78wy4 zMW#;)6317%Er(|SeiGHxXI)R0{40#f|CWJqtgIQrja)@jM# zi$?$fEAeXWq7Xgn06bAz5IC=2g62`9B+*|o&tksyNYsqZyhqo{WpRt6 zB`R|Ko=UX)eH05Vp7as#Rb0v3*_2@5{yz7S(>pbZ^q7kms_xAgkveB3L*^c^nD1_+ zNmfm6ldxAWQ)qj&!n2VlPd z=u^0w9hI68#OCFwKP||WXnv}8=tA@rMd2AF0*XyghysGeneran`AU{_#&J?>z`z;> z57Vn%1nQW|HQP&TCe-O3^>8QcNjd5~(9u~Wj2A#RX(ulz{ZD(k8PFXD+7pP|;D0zD zQ~zzIB7em3Iy`D%gP9O5C@ggvr}96lE-6(?^DgcBii`VpG(mDurtS14f&PtHXtaQ! z0OYr6-+1lXg1|F+{_q&K!W^V5zI<4UnQaz>{8q*58vat?GJU9FooPU*{ZvD8P+HW$ zi64M-%>=28@!iP1pC5n|SV2AEC7JH|i(Adc?_NU!DMx{-JoU809J-`!>Bx@+=ciyT zsdYI4zfB_2{9to^J}RMa@xqI>+Fa)rCGmy_r$JU^!rL8}@5qyKdt>7@k=OYFC3$!N zaU>uKn{o!z8_zPX_w#G_+encU|Ab6S64V&i|>6rA|Vo4*QV92el z5iM{)2#k_|^6?-4ZuCr1v+!ZqIj+a?ka}M4Z@KIoPQf!)onBr@*4sYhmg2xvlNPqs zI%80w@I12%qY8B$Bm;gBX9(WN={uYO$|bxtE)yuOP12c{HwrERV@9)Ya_tcS-6C47|^+_Qkx z9-<+ck+vIb%&&Z+u-KR&`rb?CuyI@l6}@3dwEc^e>%PV15ss7O>Ek-GAR1tZfYa zCGpcp5}@P4PQk7_OAvkM8|(z-lcw&Er#9O-s00hiaUgv^e5b@60JpA0QTI$ z^h1wR_0-o9onIm|kNpZuRS(v>%aeOUspS~-uOdUK-zi|Zn~|wGov+R%c=Ew&$r1o7 zPL_rDkD)!q`Y!jZ9a-W=zB%m5RgeBFzu12UB48Apf@LN>6*jbYa8_p(jmw?6KOzVF*X!voHK*@n(LDR4V(DG~=bjH$(Pb z1CeZD+?rF8_U-GH^>P%w`Kj1{U`7$W7rMJ{dlZOH+m#Kpmxmxf0}Fi@QWluq)BBPU zF_~p!xR)2NgS~WlmX9CqIOA(GE1J5uIDCR4um7rFwH(~EKB<=te*%ncGGDVTv4>7q z7%ShqH3xE;cS1i}nD+NLVjOPh_j>JX;9xdHw{+pzV33)c(^KgK0d zez)dHx1h9gWgr8tBtYN)YJC1SV}1r6d{$$(NvUmst$}++|4QQSc%@3Wji&?gRp3B- z6)+{MRb%5d^zmr0a_t`Xsd)QSw)K?@8vH;b@N^R7j*a{Kcu4RhIuNz~iFtFW8KquL zW^lW1u#(2ZbwNo8vLj8Gu(~>QgsjHR!(r%rf62ja#RuKI`d9xzj63hL=~pr)A293W z;nclm=tZXczNRmLS0l1$_n+pz zwQXD(5T9VU{pNFk{_xD~hD^-`ZRj~e`w}esI551~ESL*+wge16ks6Y(+uCR-@Q3mG znl$qNM+dk!k?XO#)A`ekHfs0enzj+#22&@%4@Oyz(Z*XYK>KPgc}dP0v<)>Qy`Ifc zOD!i#$~$-E1&rsdz3RvHXaFab_|<|;>-59*>SQ;^(eRdJ-HZsEKh2`z-3V6Dwb#`~ zv_ap>d9U5unMs`j5ea(}$qFso6NCGc1$X%+%cSahSr=kw$iIc=MRn38SL_K1Gk7O7 zG-@Sr7d|FKrG<*~S|;QWW3|S1+N{O@%s2L*_C~Bnc+QT8XA2Bs zzAEtV3(&|x7M2oz1e&kdAql=JgM8dQEcqL8)}^>C_{GPdhy!D;moNF8yxVRu$=~Jr z%sq>P??lG<*cmkf8Gbn?o4f870t_673yk!b6Ky*$S~_`z$uFFYfWJkA4j+l+*;T}t z;A@p;I}I%}AC26xp8W+tP13vD$nDDd@_H@4&8xuO?C;z*rK)lJMaMmrs~=R_WaG1t zoPYM_b$_5kp@{d56w|^$BM}fWDDtmisa7A(qord!?(Q2#8o=xdzTJ*J3iL2FbRohr7WBXr=C-9r`n|DlAIO_7WJnRU1 z=ok_r2?xW(Lzkj8(E?#3hkO@yNj2!gLfUSQ?vW_EyTaz*SnQE7Wk2YtU`b=B*^DJ6 z+RyRm>lS2HOPC*D$mtMru0jamk_fk&AKpmPWPK@Y#lX)}hbeZwrjzgq!b~yNqxyO{ zQOxp0@JPFhQ4kS>1j-PejJZY$KuraDCkP;?0H>JrESzivKBGCSvSjdUC~xy;6MzuE zW>>4pF3Ls(AtGRTCg$!bA=y{aM-zdyvUWJNV&DUoue}1gBFw6}@1nC_L$hZKkA!a8 z&7QwipN%K;gW;K#bx*U>?6SK|_TYcKAcMs~&iGLy(@%E=^x!{}XiqwaJG;+Q5xYuV zt@PF9Ovoj#CD=*u+vs5Z-4l|Mc4o9gk3$-ZhB58R&JBYTz`i>~*dK=KK|U(J<@$0R zw7Yl+T~b%AH=F?s=({YoS5(mkiD8|{E%(>IrdBF-8}^JE)$xIIa`-~#p6&|p2e>`x zt&iJm$xRg&mma#DD%IJ)^F8}}PXnGBvDKa)4UW=?KKDD44|%fSSFKU7(CS~`d@t(V zHzBhYG7oq9)VCJQt_b;c(@9%9b6#R5owuK0rdpC^lIRW@Zgx9hcNCVnj5k3h3w z^+i@wuruii<&eA=`ROZj|HW@ynphpn`aODvlm3pi>HY9O;}*&ju`tc+|8rQu&^=p0 z@`Fi6IJkr&C50uDbP~T`|NDhX@Uhl#y=AJ@1*_Euot(*vGazEOFm5;Cf>8 zOcGb>Ws_Lpyl*zWKsv-(i|WJ(mj!E=%|K|hepUv~^=R{k%VWW>%w0*6=?}GTXZ74$ z;qIA#f>O#I9W*V5pN{xU<5>R>omRf`%XxOMFQQ|*C#Z-HoE&dmQMh~Yo-?GSht{iB zYZ7BYm=en!5nwufP;EZ$HSH0^{uHt>W7jmBJ4tcG?AYHzaAgh{Xb({H#!#^u^()Qk zH0az?6ZBckUly-L5%u7&*?@K#cQwQY;W3yVRQa@4ns!XSf(euO>0_u8BolsllL8*& z>j$35<>h!EMK%+yX1G?j3yiu{M!@E}GcDhtjW^Vu!`#05!GTx z+U+J3BWJB%w#uc9Lc*IiXV;J~!&h$X*|8JbY>76;9g)ogXZ{}Zcbh}yr!myf1BYab z>w6=2x`z}YVCew7sI1D@VmiK$HwmUQ5PPmN}2tzlv7StWSx z8}g4M`V)$c7pJ>1o+0x2r89zJt8*G;9xaSRuNzK_x)JBWDAHp1jQDC9)13}F7P76) zo^N~~QNr5)huEjfqA$r(ScG5BcFAZd24 ztRdzon3jXSJ=?y8t($7Y8orahU`}<~a(H^-Ki!C~6^8G9Rvmb=N{^0vto6vOQSM+6 zHR2qmp@$2cO5<1qU3C%Klp0emLz*4i6R%F5MYQ+A$+!eg%>0z)sbogoZjpb!{@8gj6j>t<7d)|Ypb@)y zMjCH?0!9Z%9OY9F;8Iv*Gqk{aKfT=Uc)Ktw448z*`2bgo1KLxS%llV>+4yt zPCC^ti-v{+^ZPl0M&>uR;y1AKeQf0vN_IQ_V1H$&z+y*du+CkRgWwM3|8^;^-A2_Y z%IMR#+_(gs!%e^35h;SLXEHngA>r1_eo7)OqK#j*=@~T@mR5NKN;%(EZhkMyZl3o& zX?jysMWA5xf6yiFDT}D%#Lxx%dSecLQC82A*7g&L%#;PptTt$)y2S=g^eI!MF%z7#hrFA z3h6lcdcEO0oB*bHfchpE&t_Va^2GaGy4Lf8B@L&;-04=WiJ)KS60QgZ&YB$ARx5Kjk zu#W{u)kF6yQV7%}eQATnP98aeL~{YjGKW;Qk*)B-?by&+(dBIx zV{|y_K;SPARFG~33le!+pN@tqRn_29cGyzWqf$xp=o7*Mx;BkPaeAV<9ig6Q z#9i5<&CZds^{=CEotuPX74!PeAT`Xz0AQuQNlP0ubGkiSPt&Lv3BJ0IdrqmI53gGX zINtod1{1X~?+_1~&6jv2+vr%OmguP9=jOFxYKR{n%yb%~htdqJWukS3vNR$${bzWg zpx9vUG}&?D;@*)X+2!p^9J)uSjR6;w4POjcL!f+kU;X=loiIR4z}1#t+do+^qnVei zYHA&{j}}eV+Z(+f5T5Q2QliA9POc~KqB)orp0*m)Es766RFOBO38B8i1eT=UxFACf z{5(PB<#6Ohv6Df?Y2+W)K^jrPzvULu(z%k(uzbw zjwccHTxKvf-+>*hMa>%?FMOY{0;%G+|p$Hp7rwUmtZ>LN3Q0{XM_agGX%TQ&+fz zgf#8q%|P$;u{A4F8Heh?y6WHv`ag4x!|Lew>PPy~SG2Xc1 zSJul7{X;bDGamH}9Q1nA-Elg{X_Du3o<`_=pg;!kF`s6-KH+m`7mt9cCz(E82*5+u zOShzv+IL(qA9_-i`A-($y=X~{HSm#B8afw=s8(%loFaNY>sa%SaqLvwtv!H27dZ6A zk+qyCczqGHFhJM+1745ld{MUbK?iW%8I1JQd-454=9@Hlad%JP!RT96$v*7I^2+(A z!&mg_lS5KK3ULCZ37+xu=$Ec`<{|KkLS|q96)&;4rCklXB?aayuFaBv5+8Mz8!-o} z1@tqXz7H^SQ!0hK+?+=m%c(KdJXmv~stpQj>VIrArss3(ggzk#!UC&KbZ%lIEJJM3 zkZFgr^?~SN%)Y+w?|`2pSNdv}ChD<=Xz(SnSGqr=qIN=nTHM2}g5nHg!>v87F-KH$ zYYQxKs(Hm7y!N%7habALUOU5i&7s8YGoDFJ-r(R-N`U6S;@JYq_4s!xAS5Aj?3(7= zPLr4xSxEqb`?YMt6G-35Dr)MsKG^okp`H!|IY)GJy8d1Jb>E~6Tw)Fd#{;b$oJu|g z9eLfL_B$u6?7x{@zD54^!pxyx4>FJqZf$GmJuHTYBSJise%!xE{oxuND=^D9a6tb# z8Z2pdM8XZBb6CHNj7wZ4MReL2EiIk?Dpfxy(4E3EwYSW(2cUL7C#O{1;i zn{>Za!0!+x?S3O6$O0;TdFfC1X8pn+ht+&G*Y!j4kAt#c+EDix$!fl}e z62Js?j=B8|V7;!u%i^)ZQcJ-015?nsM<&@0L4li>82S6ZE#mz9QlY=+?X)~s>y)*s zhgXu{_B%o4L}A)xFKODL*NraV@2h18-jmRctE?ft4&Bx}9A#U|1k~pV{BsyLY5sb? za91ahM)JE6Tm7nO8`C}8{d*gxOD{Jp0qssc{5pQd=V&!N0)`&Y^1NM$6m&b32F{+f z&tZ97LNw6iQ;GuKhvifh#G`w+1<##vdJO)@B00z>cHoZ!zD#T3=0_u(*K(XWMcLGa*Wn!Pq!?fx zxtCwUvlD=V`KSqjXSI$|3*R&J%CX{;-)Lyv^bb&3JZ2Oyr!KlC+EFIo8U zbV)_kq50OMME?no4lkPA1NuH+gqPZP%=8;#<3KZcmpO4GD^2V!z6UmC&K&Ua3CW=7 z#;c1CBdUKNk0;GA0`YSY-FJCK((hwCVeD5o{zRf%Lr9#E!PGx2KkL_UicgsHBPcQU zm7RNc3yUgRG`TGrkdyh+yUCyf>Zi{3X6T`8kYL=#A!lSzP|40~X=9FR}61pz%mmB#nE# zy&Uf>^FN08ON9{W4$YWW7&>cD)g30vs(mb{(|{#sYJ$hgPXRV@@LxwJaoiwEAbT^0 z7;kdaZA>BKpAXq?Lk~y0b&PNr=r!mwluGnP3;^g0&a#P+h{BJ*PKz;>vSs#jaU)qmZ#S5!Rzj9^f~vo- zM@=crWp=7%kP7p4`hF3@=N8iWvl}s$ec!xLxa4LuEm{h?qEb93k_?jHX%zemr|Cdv z)3atsQU#%Ie&ueV*!!C4@oHP*+m=-%0VWi~@jEJK;LD8$owz+WUs+%eM`L~d2_)XK z`Y9xXF&PLN3QM3z_sWvvU=brDAoibWnFWa|tu7lMdR3WLaPEZvGJ@;Lgl#q{9@)P5 z!DgpkV0AAr1%sXv(9i(MEN~J_31DF35_iE!<$?PiJ1VCF+W6VUOo^B?ZZuY9?Dd{M z!mm&IDNg(6wZIXqP!=R zZu_zX?;SkprY^E+{}{1Eb^=O8NGA*}gn5#TRAypC)8izvl>7W2$fGoamn}zwK??-7 zE>y<52}JdpuPc5_#v3;E@;kxC<$VT>YZ1m)pG4L7FeClJ2|uSff_r;qIo`1Rb095l z_bUnr)EcU)RZSSmIf(MJ=FEj#8}gp-R=(^&$T_NFo!O?BRnti`P5=cY)jp4g#^4Nb zj);*YgJa%u@f!3*kY4t7HyCP^9ia1`3^IQJ*v<+r<_tSJ3Xfp&Rr|`afd=~0oP0>)>#y8@dpP#7%9|~@{!N2JZD10H-~;pHDcK0kFKjl3g)9oIrUPJ z0(a)a!(U(oHDSM&VDrBslTCq-A0*u#NFLUh4BAY~+x}@mG-YDTjRqJ7AmU?f?7X#8 zCz*a+B>m?2bf50M5FoboHxOiQSS3KAmIf}O2i#vAJ&{zmI6?c}mL^qhUD@*%tm2T64m|`J2M_twhs{`n3x_^WdAeuSu~O;=tJ7eR2L6% zk(WXk2I2y?INl`juTH=Xg^PTS$a*x2T@pQ(_aMi#pTaX3OMAnz74}`}R2w|5v+gCP zI~CbgLr4$9>Zr)p39C|MD%<6JHg?w37@nSJ$gR+j5MPdC=UFBtalIMDmldn4-HFa$ z$Pu#pdbf{Z4SjcOm@IO4L6pUx{RMvks(odO)gth~$dRd(n z&4_|j8N21`E=C+LBFtFB;e2M;qWZ%T&!alAtTlwvPpdEwu8`_bJ^iN;%b0)5PymfD zky|XuEp)D2{U;S%A^)8VH?1I)#4*{zbeD9x_n(t9ga-|4<)*~}9J!Jvk`*s-+;&yw zSW7|>`RTyMs6D78r1C|H>WcpA)#PN&?JqLkSumrArg!WC^P zpXAbiY|EB!QByDqAkBaExZ4aI@_G(fL5Dd`nL6swm?|T+odNNxq>C=g+O2{>BzS^& z*^Q%Q_w-NC_&&=OX=I0;E7lR6(EfRNU)wt3az-_Evn8a^73SrWI(QOM5#BI}XMAQq zCSoYlI_1~+#zD6yrzAj@`2C&MH%@nJygTkRL9W;nxq6|VLVZ2gwoqa8KyyyhG3@DK z3ISXLD8=_{h6hy8x@`zSaNpHc4_#}%7EW+e-VFCy!-Tr+O7=VNt3e|Y_fO4V_HXr= zyspo&p2H-8HM8vP(Pc z2s(#>gqsZl#*Pr_c)(*F#xdMD@uuR);NcD&XQ>BZcC&iW#jl7|kdy2Yz`zK6l@b+F zMk5QMPU_3woZ%p6o8Gbcuxi5{BpnF~LbQ0x*M;?#RkP1gUBI;C@cRw_QzMykjdRZ2 zSzYl0^PyNmDhg{z0RGaAcMC`%ubJrUsN_%rn^F0(9aFa!U zTvfExvn^M;N>@F!3~tySk8N3_xPzCeQv6^oY1L<#Tq?&0xZ3mb9n2ZiSKZ{}_*@7c zN5hSHE^wqk$Wyje2ntbY+pufT+&i%xV&t@t(gV@xlE42pTmCeTDh7WPSs&%y z_&k8=TqwadSYFb0@^|s`r#Z(E(~2j=QOB9*}%LN3>_MMeIBP9D(9v2moJ=hNJ_>Haa%dTHyK9m=hj$;Xu-+vq|(M zOydO9qOodjzmQvfO-7OpElM>G?m4SaHzCv?G!o@0zIn(O$UZskcaw*`6Q?!Cfu5QBu-$jmI>I6s=A zKSE!9aH6|7`CzjnNp>v9TF~K6R$1<==OAJbms-fH_|j8)DpA^|FOC&lLJa)W|JU7n z$79{bf5Tr?C|gKYvKn?aAw&{N!zNqV^UORIWsg$SWmQ(PW$$cR$8wpVJ0vhb^n+{vF(qpa1tpzMz4@}KA2F!doNMO53T%DHV(@ch(|mXd$}~j zzQEA3MD(u0LY-~2#{?an>q>0b(6>PyA$+shn1(T_rc7trZr9V8V}}^#NMWcHDV=ZR z^LH22#7`+S>w2`i?#FJ#lHTi3pwls}2#*E<%-}pt0Lp^tjiPS1Sp#g2*HjK^H1p|(@G80K|wK#|y(fe0s{ zB?~_g>XNs9FnqPNJIBIBx-YV1Up|I%%O>XP-#rWGPm|24>E|LSh8p5 zo*;J@S_)jV?<#F4JT1-1Kgi0+zkC(p<77gqKX?Cf$m>wWSXI!ChN>YrFf&sH$~{xR(DgiTd8M-BGqs4jr^o%)+~`0#kG5=3i0iGE~2`l8esg zISl}JWbg3KC*i>h_J#_}oXS44r}14P2~~x8jfywsg_Y)0p%Q6%kL*K;{(K=esy^zAAJoEMO`1_S*exD49VQnGZl;vf#`iI0{fTWC zEM%Y41p^m)t*py9XC%>o0YlY#@Y5I3tCq1q0h&Dt!nn=#3<#{jQVmB#ye_9CWg4X`>De>>xO zxqc#hbK~+2*}W`U5CH=|MjlF336L`Yd=IUj7l2LN{zd?E22mE;lXKIaP5Ln*EfhYR zb?UEuw@eBfstlWyV^+6l63&MiVG7fd*a~#A5@~a4XK&B!`(Y{6T+9EFEfh+NwFw8I zIg^J5IF&8(?A%`l{F+N6J!P2m3i1#dmCva*+=f567O#jk*kIik`tb!$CHD}1KFLil zpAdy}cR~N%mkj;%j8%Ouir^l!gYn8f{UlWV`o@o5bH`Q3^^clnl6LoLpmfYMx$Q%I z7GY}6yb2d&O`ug&F-4e@pqy&)+-p3>z}M$gSfuZz00`sf8+H7=7e0>NHa-6#!2cPa z3a`_QAhvfUmVq2`Va^H28OP=%VCvfJ`A{E{Q)y(~h@A;p)tospG|Wdhx3OCU2p+c2 zsZlUI-x>Q7QpSh7)nJF|5!j)&4VOFzMP(qu?-V9tv#r1WV6VLODM}F#1ee1nFtbjU z!&{`r`|kO%U=9(FvF+B7)F;ds!|cTz|3T9K)=yl+6+xPAOmU5D9(Ic4?r9t$`>Pg;z|$p%chh#L^e0E>C5v& zw-%Y#w!;_DQCL?N-&T6)Aw^AC5j{i^9Vfgyu;6uKKfZS*emMLCEjfnGnlBmywkZCS z`7+#7LUTbwtd>T<$Q#yw-(^rJ>L4m=A}Z>jgOmk+V%zcXHvSKpqsx6!Lg#%EU}ShW zZ4DePB^0htnZ?^mJy5{Upp<+b-C)8fqCU6VZ*mDjd=Of}FwNYO^F8{cYt>I5t2O14 z4pwp#{5aW<0wh8^)B_0Ew`{7B9grt)KZF{ANI$)@!(|OLzhFj`6sRySP6cYj3u<~W zUH6yE_8HvQD>(GD8Wta?J+AHzMiV?C3*FdRag0#`SY>KxsAo`Ujv#(=bK)NT=dZwW zLYdpl&_fZM_@yiF4yE;zR~1Apc%yjFPvfiGfchUg<@7L$z0r;GjHvVXwhmmoU}^z> zj_f-_?0xc@iKiURNa`o=`eHp1<2-gA%S(mv*m?0YFP?&tacA&KN`m-|zFuCpUah3} z^Lw1vq#n?oKTWoH9Xo@QlG2LZMQ@s?(m2=qL4>PFH5n4#^87Zl#|0_8B(0P3ac6$q z;K_HTrxn1>4x}?pee79p`mEmcY$hH23QXC4rnK;}hn>UhHw+W^=6&xzH&UO}6e;mt zn;x0pr)khErlVjYmGcP!g4${@X0%c#0yI5E-y*g{DaZKhI*U>lJp8C?!|LN% zX3!^QOKCi`D#TDgt#dfhKE>4ai+Z|)OAyM&pcjLUM1WXtr3?P* ztVQ!B2mqMd*#^zU7~H|iAk+pDjW0oWEudn2sQ^$Y7 zYCe)5dFNgWhIBRfDeSDLQjBTLDK~r`d7H##H%y(>d=&AJoAv~>Bx}JxC>a!|g4)4X zH}DN_Ui|ox;&!#%wa^q<@E6E<^+SX%TSqyAsJqwt4D1!Kp!}x|9H2avq1`YAJ`3Wu z?ro@FKu;3pM|Opw(5w;sQMqe%sal2g z#Vrb~=d$yGMy>$f#cMzsn({0+lbpYH`Zm}s{Lx<4%Bs4zW2nRFM>rm-WQgI`JNaJ8 z-7AD*5p8*<$3cSc$JOW_`_F)dgC*;xe0w1nsu;i+QFeMu8%N39)cuFDLk}jwfH`95 znx0)g=&Il#(*0#Q=_nQ2Rp- zEAUsa$jgsS#@^S=WK=b&3bSQFBwA;(59tFkX-3)}87sRQW%R`En4Vfj^cctz!*6&p z7ve%LGM!VElS+6k#Z3DAbj)o)iGWz$)yx#>HJ*+ALRPoi3y@gHK&W~Vpa{sbhQ%`5 z^BeY#4F$$`dRSTrHr9MM=wXn9dZm}J-e;q0)jy1LVpAXZhkX`M)-NIAuci5})k#uhM=Aj%$^2$VwhLR7gM_8D+}*`Ys0}NQIz6w(%Jk?#MZh18#LQhN za?Xo{>@{>P4S2a!){lpf&ttzt0P_xKesEO?8Dapnz|5k^#0?(abKN(!{GfJbc|nk(zT@TFyfhLpKb&<}luU)6@a<%ZK)s&< zpuZN^s|~$vX~BH5{;{%&Y@}e&d{CgN53_-PeA_SkE|m@WW5mqeyQ#Y8Km#Ui`9fR8 zHQ76te)zqDVrlGx->VCTj(~X1Ki#U*A0(iBz9i>?{{v<3>sBah7Kh(U$HkZ-VpDRV zdOKJ)mHg1=d4{p|@EEVjH!H4+rwQvUgwoO{!w?tDC>ZO9D|aT(u05Gp3bv_~R(29H37dnIjw9< z3bH7gIxGez#&sGp905(mB1Z#w#m4joHg&YG?3>J!7e+pkP$YW*S~f)eTg*-_v;dP? z3q^(uTYtuv!8UACkn1eAUoeCC@t4$Iy4ueI+4piVl+px{qrYdmtqat$JEj1ZAL2=V z-n&|47hga`=F^$u=TEEnFv$#^+8VN^&WOghOEta>VWaO*gN&&JCC~rX!3!mL5W+eO zs7TSatQVnSf*~jSyZuOpDB!ca*94j1A_%ijCLasJe@KRR?iK@&u8U~jzyvW!!s+LN zOf>jZmivqxU)c^nY8N>)fS8%>S+3zRGG7org-ccjhPutv)d}xD%1ZA1-6RIr>ewA@M3@;G|IAGQONYZ)l4?FJ7~& zHYVTR(D9N)&IjBvC`)DZBe}**s#NfMXBSj8KvjLtzW|u3Yg^O}S(BaAB~fQFg|C;a zuHU_W3M^1}Q2_*ei%LU2NJBcf&eYhXYufvrwVBFp1I&BfdV z$Lc{SAxzC;a~haaOhDxkGq)Dy%vU)pn=Isur|+kEx#_#2XtYP}cWV(;+P?-#zIw71Q7 z(|G|t)try9N#vODllk0P9^bx}DQhVJ0d!VTdGadiBOYlL={$3>8tc0JH-DxoPj}Yk zom&K@Aq!hkePvXY+~x0U2}btx_SXeBo%UUZoXqn?0D>PJzULi=&*RhgV~&qw)VhC* znJ0s$qJY|O_6+q|#$83JYG^j(Lwy8{CYZk`R>pKCMcTl+kD1hS24iNNdc z)z;Cn@6|-igGded`ND8A*R?Ir>tB3zvLAmn;7nC~0r~VU3aN?<5Xa{{q&P1xa_y%e z?eR|n(kA3^F&2vU+zCvS%jMW6Kf3tzVDZ*fpyck|R(HVs+|0k(;q?uO5K4B|#LGr{ zBF>TE*YwXXMX{9x15kHhQORu{0-WcvM9*b|isOad!+AFTY3=C@gpi~%St$)TUi16C z{qkFw5TzNRb-}ZUhd;*jOJYmcCQq(d@vr&BNy$`S06*y5OMk}G_+QDbzjD(;hzzPw z)tviTj0zoO?ekE$bPA9W05h=tinRVkQYlgO0 zXMpDY$y6Cz$k`gZJ8Fk+rm7710a9p_SEHzRc^qo9B;4os`+2g$BuvyjxQ4bAH`gU7Z+ejs zI|p)&D*qhxYZ!BGKmsWmvNF`oD@FKz$86Mg>Cs#b+no#K50mn>R=cHqpZ(7UK4XG! zULo(t*uNbMuXP9>7|^B+6A-2)O55A5elq&m1VOB>E`N<CheOF+4{4$h#%j zaB>O6nfJUJ3z85INcwU+u6xDzzX|8OrV>;%`fZ6W{sR5IZP)Vv8VjS`$|u)n7z%mK zEf{)vLabv-UXacID~6=%Zb=>}Mgx@$*RTznsc659?D{cVn~oAHmzc7(I$XU+C_df2 z6&g^Ghz9^UNe{f5&B&ff8=No2fr!Wa+%2#;4xg=VD)3<88fNtEiruQT#XuQd7^wpN zBsd5r;bgRZxw11?0*vo{msO^Pl^KTO^X3++bg7<6wFC%^OOta*`S(n{La3h|u4TAb zl~n8a`bDZXeT;XqJL=`emQ1kiKD3NNr1dzW1`Rf#If*rUYjHcQViebU|E}P9xPlB6 zkwHlmBDuA9Y4WQ4j5Q`L0?@Mv;vymH^*J_2&&-7z>>CvQ{+Y#F;!gcI;odpBU)Os5 zKe@xb9&V1;04z)JO5bu6J!C{YjMSn0@?rN+3cRiS9l?m=mVMD{v3+?ZCAj?}Ovu9y zBZZI$A+))<&?^~aVaL`791i^{B)PeNo{oe!=g`fC1+8ChEJZ65d*#dp3dTSp9vjKn zj@|t(;OLd(2DQRdr*xfSbZs}b^eoW(;of>Y>R1Q>-%0*=t6qm&Wrx~*Xd*|-Ut0N< zkbAxGyv<(aBq2aYQ{?Fc(dMwa`*a)WP2B4hv)LY!|DZTiYVel9a z&X_FgI?aSfEs8A+Rh-8*Yh)xaP~5z|nXFn00h*Hqsmi*vZ`mCnw_8(UDSbzn`p=Pi z9gyUWx;Wd5VLBNI^1Z{de4vH+dCqSB>X}B-FC@r!u#X{TBK24fic(rF<~LZ4YxU*} zD>BkdVp?U!43BmKz7woE@}XXQ zovd@su0U&Z^m%%5OG}x7n_4dr+To_^RuAp;k&0i|83!nvFiB`7`9q)-gRf*A=C-gg zw`IMv9ctiQmV3=R%k2%~vHI~e^BA+2!)}nPW&l)_A>|OTgup71+4i4>@!p9as2RgP z%>95yL%Mes7NCx=^5@>c{p~N-KjkSwSqs0rAI?cQ@F_Lpbf4uwGe zBeMHy_RV652jJ~P#tKgSInBhgT2$Bd!QFcI40f7T7q+a(TbfanKuUNB3|`7KZ>zX7 zctkoOZBz%^-K)Arv(t$Iy_RlO@iUiC<(aU_X(ZaqeXX_d{XmzFMCO>G`2Kd6bwOYK z{))S;fMVFqKX=w>eMmf%{w?ot@4KExhP+#dt_}XA=v)uC&=_?qhGN)jB_`(^>M>J- z*S^8vBPi9jv(y%xcKNdgiLEn)f`KbDhL-cYtz%u5?}fKL=i1BUPnqK?dH56~mpqe4 z_I9_)Rh5jlMO_}YZy?A6-BN-(JboFu%74}gnesjmKo!O#95dy=3W+%w_U9BO9F+)ub91pH1@b;InK-5- zpCx6EnDg>VWg;#Pr;B|r{=&%D*pW(1VcQ+2d`biZ+*08GrQ*MGg6)tulR;yUf}@En z?%j>~+Gm2V+1nt%u_`{W-|^C;fqqbD*iCFBpdusH6ToI>(9X5nJO4;%K^C#1^FKm| z>)*v-bX!WPJ~dJfE$Ljkd#r$`Gs+@GJrVtOZIqb8S|o~z)5TowA_69bUgvOQMr!3e z^cqapf&Tp(h5RMOoB)7;%bv->Bfns~!@ zz9Fh$(CD{Z9!~je$ClpqEZxGMN8u}3L~{NWJNr)|L34|L-DEJwejicFwhsE-amZ-u#pzT{efL^3# zALMc@KlcO9;LgN$Ms|cS8^!sgBAHwDc=#KjV!;M~K4w?uX2u3{I};JsU)j_f?8av<<9y-d0|Mq^@31$*nPx*y zt<%Le=rE{ILl1699GE!zeHMp-ZIE!It1<_Imi!XG1U}5hLy(MrES_u$?t{HsppaGm zD_^1T_3RSeFCEn%LvE2*CEWUA*1nZkef_k6g+P71@N$@8aFODX0*H)06lxXP8|7nA zpMZE^ZWbhdO-D2clkAVD5lM)W1SS-4EiAE00nqrx_iH64;LvC9M z^$;LX#5w84!NT=OYYx5sqYLn+aS;dz4s-Y)$xRYovIAaxcN&7xFl{b$V{2xkj8NK} zXLS9QG0PJM!ASe?mq}dIH}VrHnZ5gROLIu5?5xBbmS%kdLOgWyuKSgKN6)ed!zQ3#mmN8%^+SIp6juo+)O9@ ztC?zf=?j%5RwXx9FZB2-5A2+WSQAnXa=>4awjd9MB7enxQ$T-08nUnkVMZ~b z%iKJA=NLAl#Lza>w$qo4tE)B5XYo%AmeTvTL`jT09NAxZQ!vO1ZYHrEGCV`|nmW%K z_{A~@IxHnMqXdSw`GM3SR|6J@x3JkM+1);vl1>B=XV}s8s_30AGieR<(Y1!S->bxU zOc(F#{ye=n!G``MsihIn0^v=-hJPR1@*++lOgh_{M;>VH2O)Z$o86(Y1`eIA)FYn%x{`WbJ%1RM!nEwca5xP^?^&|$jeu+og ztldOBnx>=zF?GH=fVhl!a7$45MjI7j*`rpS1}~4>g`@^ahRL2xDtD_hgNeSeU1BpF z_w7b1RT=Fpe=_eR{E-rP!u>q6rqwq1!ir}CW$VUl&k&rDk(G^}?qKvHXa$1&LX|hv zMkQGJy>-OxstQNt_FVe=gf_2T!u||lZ3D{)J&%vwHw-U&<(pKyL9&V%QFH$#)wjQw zUjFO$bN-{_3Sclg1MGDR|4yr|7D)3a$$Kn2tIsvh1(9GO%U!33iary~ex4(^2&gFR zr)bUihtY$oQiBFq2!wZjb*1-TuRrp&yu1i8wOl9Qo1wFwI%O(HRQI6KN?0&HZgQ(v zf0+v*afu_Y%JQp<&c6x{k8lQ#mzPC7DlLPp7fbTY#jo#L22ZFzzD1(&mt>CxAE@I5 zTIlD>E4@4m1Ft!Wa790_S?5b#zVla3|IxX^4%)^5a?iGUCEx*W5FZWe>XpAj@wpAh{44X?Pc>loCX3$wJhxP8?2x~B{~aZu1ql7nm%J9q9@lcY zZ9T{(>PUJ>9jb!6id%U2)?eIikhy<1fc_WGwr<(HjpWvdhjuC)7`{0Ca{&xcJ(9gx z#}xdqC(9`02J`I;rxTqW@EFPCx~4tc34HAee7pm{e9RP5f4Z)dys@?>d{#?Tg7l7l z=>|W{?p!Kui&+fVC!wd^zOdcO((EKI^13gY_KDS-&WaBW9w%d*||yCs*rLh$1R zdup4Jp`g7jtmE@5xxeKpQ~I%ggI&qorRta#+Z_ckg_Be1tlZByu9_k|>?eJ2lF~-U*kc#xPW|Ps`Ee*HjGtMjWKZ=q2LxbR&PTWgJ z;1+q+3U8hi4}S;$SL)w4 zZL)k7y%aXJ*dybr{yJ60(DMLd<((}|t%PwHanF3;)xB=uR(q57%tOxm+TTA$Y;+bL z?UuX>7O{zmSw*z{1dR7-y2ohzOz!)UTrwR0mudk^yY@w-scGD^jBGXvYa7Sh6Zp0^ zYCn%O2Of0*>a(f`NF98DkFI>7-U^eJJeitgh13P&9JBaU*l*nPXo)X1K6-*%1cy($ zECl{p_l>wqET7ufK75R&GA=S}-&hhN0BG7#)AR3NdzrizJ34{78)w1@Z9bi2Yzt^L z_0r<>{`yeT&~OwJ$gLB~*MjQ&)bATT?*)6lo7q)N>3`Kjcw$b0`isBk0nh{3XImjA ze#qA$@=^z8!Yxs#(#XF-I(+_mqVxSfza^0>Htl9O`m>m~$xa*?l1CdLk*e@GklKGg zbK}fGB;)TJc=$L6yZp~WdWSOcuW(@|IPf<9zTxGCbzpVuprHv})5y&mYsclZA4M<6 zIj>Hs3CpOT_?IHio7a4k91om2J@Mk)W8)f@_l#%BM#!ifE{Qaqr*7a|NxMs0%qyT^ zq;M~rEbwf3UHqdZUbZ}Ed5gi_O!*qg*~xUboQV~ACG3eviRjV#UYwS#D0&3G$hh-y zFh3=+Pe5n`zHXEc5gok1KhuYWd2tTQQ}o~s=7-j}m=_+$2<8vo2=Vwzcktr>Q;R$m zcf$3Eh6(~18T0-^{)G#eEw~cBe)Hz~hud|cCrW(2Mt#f#0pa6wM#SE9;11^Zo3!0o zMhdUP!zbuGb>c$YY-g#Q3xa}zOdma3YBs_KtmD8B(%!On?}k#vpMSqF9J@07@qd0_ zot23j_Y%Es5aYJ)`}yQo|G(VM&fxF0 z87fsRo9nAHU0e$nRuMNUhA1kk|M|UgB8E%xIOgLX$0GmVT;2P-l!&SbS&TG?A(JSAjiK{o4Mn=kU zhyy_DBtJ;~#=)iC^{#opw*|eoa^dvJrHH|u1Ub7`vL?Ux2D_G&EkVy|TNXS;U&+Ub zQn`PhqD#w8QEY!_Woc)nMNV5=JJRvzqa{#;qjZ6m%L6V8)swBUu~q&K-7gnXKYwcQDKO9`9x5?R}pXi(a%zjim zw^Ylp&>9f8rXJPu?h0G9>vDbmO0(!lPM40qu-$l7NnVR}cwI$ZV zbQ|)9Fb@AIer8{^ELrP>Gqb6oHW~eg&gX)mde|5p_NM+>?uU|EsD1~Vy{(A}y62YG zJx1ZxgZq0MYMJ`i2kuN_F}N;X!`#krwf{(5sM1fHeIHV$;n7g#Al=<*)q-)RRJa{~ zN)A6?ayIvAy9a4n)PuY8D1*uuggoZm8T3tZ8bvcMKoyxzE92Tq*V;s9(^h`|{P~ve zkqYLxMCV1PKgAAvOYG=rIgPy$W?^{)Gs4(T5Yy8V5)v-$E}+qgwVmm@3>a+w;>}@y z9{nnxKHgWIi4FsOeYA26ZuWrW%%>zW75Db4i(_N-Rne{#`~K*(CFNU@LOi(^y_A?) zhAv_Z8CTf)p6+Y9xVZFz1q8zl&&J9IeiJ3?H>`if!ecvHCj^5I4Hk#K+EkIsRV|?R zw}F2Y#rHNxOs%Yfch`HZ61RcUN377>nwAB1Enys*A8%jSyr;mG>$q^96 zz$va`?g97hxnic)z?uMRa)mH<-|_Kr80k1YGh+b83y=HGW^wGxa`^oDJ-c%+hBJzq zMMXsPmq+V)Q1g94vl*4Px8xqjI0Tlhb!skk8w3jz;Kq=jK)r9%fddm7^1%71Tjp-l zdY!8J<8}XG;FKm&%Kp(n!2uuOt17|Lr9ibp`$t;#t=DgY(NPU2{~EKGDg)*3DV83i{`te=zvJ<^#pT^sb9v-|`yW}J9knF3JM;_*={(!<5!FueZqB|>)C$z)y<2be?6xfPKdDdtEs60&ii+pc>~U7 zJFAHj{bOyPCB;F!i=@WIF_-SGrPtQIWEz=HP7nH3>0PTR*#8>EUMPS4dNrq20(bKF=7XhI;c$ivCZhdwb903@hdkkui65Dn`G08^x!jqmNd*$a zuCT=C-o1M=u#*(+B7ubq_MXJzo9D)xBB%uWtfeDuzg@K1{N;@i&-y>&x+ds? zIo}G~8MCWrF$2ZMg4A9RTJ=z#ajo{FSOPAn&Csj-s2n5Sny4JpouMbKWn0g(^d{Yv zrK@qa1a9*3gA|{RWYyZ^R9fFhwmkanD(Je+)WfzWowx*?S0~jHMO4lybC~Q@C<+0E2`$ zt8z5$L=;MgI59qXFUD+#7`-V?>(G9O$8~d&z6sAdS9#g*|Ue|&P*s_!494SI7e zY!*s3YL>?uM(WvO8b#0c8#YG@+stOx*4$UsrZ9Q6d!rYF_3S1k|q#oY!ki z9K@}M%C!gB7kcxoFuwqw()MQ4z;q)&J!z)HOy_1>%-(6xq%Axg8U6(C$$jqq`G(Tp z9qGoHkA*NwXMq|ti4e4E7NzuU@9Huk&1|sv_WEK^p~H;hwwjFL+S;0voC()#(!$0d zT7pKaT@=1sx97%qV3;G?Lkf5QHyPsZ!)f?TZ=XK-{OUln=t6O^0X9-j zr4v((`9uAQB_&tsokm~wi|6W9zIZEOp@9V4k24ZQ**>+a9iiViU7s9S+DG#)jL6FU5<4}Q?qwu3pORli`f*{YIxZWi~FJ{ zgX{Q8v-tKbW=f4SGdY5+Iv)93|4%kP#%f3Y|LTGLALvjna*fzAV_AmcA2_t~*Og?_ Iq#i!|Uui*9w*UYD diff --git a/networks/He-C-Fe-group-simple/partition_functions.H b/networks/He-C-Fe-group-simple/partition_functions.H index b0e1b55ba..4e5619f08 100644 --- a/networks/He-C-Fe-group-simple/partition_functions.H +++ b/networks/He-C-Fe-group-simple/partition_functions.H @@ -44,10 +44,10 @@ namespace part_fun { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.012837224705172217, - 0.03742649794062367, 0.07188200730612536, 0.1205739312058499, 0.1846914308175988, 0.26245108973042947, + 0.037426497940623665, 0.07188200730612536, 0.12057393120584989, 0.1846914308175988, 0.26245108973042947, 0.3463529744506387, 0.437750562820388, 0.534026106056135, 0.6344772701607315, 0.8981764834976765, 1.1760912590556813, 1.4668676203541096, 1.7641761323903307, 2.0644579892269186, 2.367355921026019, - 2.667452952889954, 2.9656719712201065, 3.2624510897304293, 3.555094448578319, 3.845098040014257, + 2.667452952889954, 2.9656719712201065, 3.2624510897304293, 3.5550944485783194, 3.845098040014257, 4.133538908370218, 4.419955748489758, 4.704150516839799, 4.986771734266245, 5.267171728403014, 5.547774705387822, 5.8267225201689925, 6.103803720955957, 6.380211241711606, 6.6551384348113825, 6.929929560084588, 7.204119982655925, 7.477121254719663, 7.748962861256161, 8.021189299069938, @@ -61,14 +61,14 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real F18_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.008600171761917567, 0.02530586526477026, 0.04921802267018165, - 0.08635983067474821, 0.12385164096708583, 0.16731733474817606, 0.20682587603184974, 0.28330122870354957, + 0.0, 0.0, 0.00860017176191757, 0.02530586526477026, 0.04921802267018165, + 0.08635983067474821, 0.12385164096708581, 0.1673173347481761, 0.20682587603184974, 0.28330122870354957, 0.35024801833416286, 0.4065401804339551, 0.45331834004703764, 0.4941545940184428, 0.6646419755561255, 0.756636108245848, 0.8419848045901139, 0.9232440186302765, 1.0043213737826426, 1.08278537031645, 1.1643528557844371, 1.250420002308894, 1.3384564936046048, 1.429752280002408, 1.6748611407378116, - 1.9405164849325671, 2.220108088040055, 2.505149978319906, 2.79309160017658, 3.0827853703164503, + 1.9405164849325673, 2.220108088040055, 2.505149978319906, 2.79309160017658, 3.0827853703164503, 3.369215857410143, 3.6570558528571038, 3.9434945159061026, 4.230448921378274, 4.514547752660286, - 4.800029359244134, 5.086359830674748, 5.371067862271737, 5.657055852857104, 5.94299959336604, + 4.800029359244134, 5.086359830674748, 5.371067862271736, 5.657055852857104, 5.94299959336604, 6.230448921378274, 6.515873843711679, 6.803457115648414, 7.089905111439398, 7.378397900948138, 7.6674529528899535, 7.956168430475364, 8.24551266781415, 8.534026106056135, 8.823474229170301, 9.113943352306837, 9.403120521175818, 9.69460519893357, 9.984977126415494, 10.568201724066995, @@ -81,15 +81,15 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ne20_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 6.948656121358244e-06, 0.00016586881316040883, 0.0011034421778731533, 0.003892457497077877, - 0.00954097493969645, 0.01859524021829981, 0.03107544483336982, 0.04661767038571622, 0.0846241727916796, + 0.0, 6.9486561213582446e-06, 0.00016586881316040883, 0.0011034421778731533, 0.003892457497077877, + 0.00954097493969645, 0.01859524021829981, 0.031075444833369822, 0.04661767038571622, 0.0846241727916796, 0.12822183093465686, 0.174311933665943, 0.22124805254602342, 0.2683385291343481, 0.36172783601759284, 0.456366033129043, 0.5514499979728752, 0.6483600109809317, 0.7466341989375788, 0.8481891169913987, - 0.9532763366673044, 1.0644579892269186, 1.1789769472931695, 1.3031960574204888, 1.6434526764861874, + 0.9532763366673044, 1.0644579892269184, 1.1789769472931695, 1.3031960574204888, 1.6434526764861874, 2.0170333392987803, 2.4099331233312946, 2.8068580295188172, 3.2013971243204513, 3.5899496013257077, 3.9731278535996988, 4.352182518111363, 4.725911632295048, 5.096910013008056, 5.465382851448418, - 5.830588668685144, 6.193124598354461, 6.556302500767288, 6.916980047320382, 7.276461804173244, - 7.6344772701607315, 7.991669007379948, 8.34830486304816, 8.703291378118662, 9.056904851336473, + 5.830588668685144, 6.193124598354461, 6.556302500767287, 6.916980047320382, 7.276461804173244, + 7.6344772701607315, 7.991669007379948, 8.348304863048162, 8.703291378118662, 9.056904851336473, 9.411619705963231, 9.763427993562937, 10.117271295655764, 10.46686762035411, 10.818225893613956, 11.170261715394957, 11.519827993775719, 11.869231719730976, 12.217483944213907, 12.916453948549925, 13.613841821876068, 14.3096301674259, 15.004321373782643, 15.702430536445526, 16.399673721481037, @@ -99,12 +99,12 @@ namespace part_fun { // this is log10(partition function) MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ne21_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 8.685880952436747e-07, 2.4754079983896385e-05, - 0.0001901793368385613, 0.0007372402163824667, 0.0019404293040471109, 0.0040039218205739505, 0.007021925578680666, + 0.0, 0.0, 0.0, 8.685880952436748e-07, 2.4754079983896385e-05, + 0.0001901793368385613, 0.0007372402163824667, 0.0019404293040471109, 0.004003921820573951, 0.007021925578680665, 0.010986057727319889, 0.04118891376750491, 0.0777722105539352, 0.11230632139519969, 0.14260436993417835, - 0.16888829052162926, 0.19197861038694294, 0.2126999294489824, 0.23172922294680384, 0.2666728249346414, - 0.2996105757244402, 0.3321030146619489, 0.3650139334448046, 0.3988146649899236, 0.46982201597816303, - 0.546542663478131, 0.6283889300503115, 0.7176705030022621, 0.8142475957319202, 0.9180303367848801, + 0.16888829052162926, 0.19197861038694294, 0.2126999294489824, 0.23172922294680387, 0.26667282493464145, + 0.2996105757244402, 0.3321030146619489, 0.3650139334448046, 0.3988146649899235, 0.46982201597816303, + 0.5465426634781311, 0.6283889300503115, 0.7176705030022621, 0.8142475957319202, 0.9180303367848801, 1.0293837776852097, 1.14921911265538, 1.276461804173244, 1.4082399653118496, 1.760422483423212, 2.1271047983648077, 2.499687082618404, 2.870403905279027, 3.2380461031287955, 3.603144372620182, 3.9656719712201065, 4.326335860928752, 4.683947130751513, 5.041392685158225, 5.396199347095736, @@ -120,18 +120,18 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Na22_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, - 4.342942647204277e-07, 2.605759074128604e-06, 1.3028639028478182e-05, 4.559852671908958e-05, 0.00011984873864003521, - 0.0002626687122755098, 0.0029928105843703536, 0.010836979076306525, 0.02428653620880802, 0.04242704733870039, - 0.06402310268617777, 0.08796765614200239, 0.11338308526345184, 0.13961150376071624, 0.19275584832811385, + 4.3429426472042774e-07, 2.605759074128604e-06, 1.3028639028478182e-05, 4.559852671908958e-05, 0.00011984873864003523, + 0.0002626687122755098, 0.0029928105843703536, 0.010836979076306525, 0.02428653620880802, 0.0424270473387004, + 0.06402310268617777, 0.08796765614200239, 0.11338308526345185, 0.13961150376071624, 0.19275584832811385, 0.2451455832343637, 0.2958922043442712, 0.3448263511644293, 0.39212883410565064, 0.48287358360875376, - 0.5717088318086876, 0.6627578316815741, 0.756636108245848, 0.8561244442423004, 0.9633155113861113, + 0.5717088318086876, 0.6627578316815741, 0.756636108245848, 0.8561244442423003, 0.9633155113861113, 1.0791812460476249, 1.2013971243204515, 1.3283796034387378, 1.4638929889859074, 1.8215135284047732, 2.1931245983544616, 2.5705429398818973, 2.9474337218870508, 3.322219294733919, 3.6954816764901977, 4.068185861746161, 4.4361626470407565, 4.804820678721162, 5.173186268412274, 5.540329474790874, 5.907411360774586, 6.27415784926368, 6.642464520242122, 7.008600171761918, 7.378397900948138, 7.746634198937579, 8.113943352306837, 8.482873583608754, 8.851258348719075, 9.220108088040055, 9.588831725594208, 9.957607287060096, 10.32633586092875, 10.695481676490198, 11.064457989226918, - 11.4345689040342, 11.80413943233535, 12.173186268412273, 12.544068044350276, 13.285557309007773, + 11.4345689040342, 11.80413943233535, 12.173186268412275, 12.544068044350276, 13.285557309007773, 14.02938377768521, 14.773054693364262, 15.518513939877888, 16.264817823009537, 17.012837224705173, 17.76492298464989, 19.64933485871214, }; @@ -139,13 +139,13 @@ namespace part_fun { // this is log10(partition function) MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Na23_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 1.7371744532199383e-06, - 2.3885539658322847e-05, 0.00013113713282427166, 0.0004423207528904243, 0.0010999766245234136, 0.002232173197636284, - 0.003929471989446119, 0.021128907257497758, 0.0479649055541949, 0.07726249885377771, 0.10525805048344757, + 0.0, 0.0, 0.0, 0.0, 1.737174453219938e-06, + 2.3885539658322847e-05, 0.00013113713282427166, 0.0004423207528904243, 0.0010999766245234138, 0.0022321731976362837, + 0.003929471989446119, 0.021128907257497758, 0.0479649055541949, 0.07726249885377773, 0.10525805048344758, 0.13079227003361296, 0.15390201926318714, 0.17503899265296466, 0.19472325248715508, 0.23147162936712465, 0.26668504599022796, 0.3016913566252569, 0.33713446730536967, 0.37335950050705796, 0.4487063199050799, 0.5314789170422551, 0.6211762817750351, 0.7218106152125465, 0.8344207036815325, 0.9590413923210935, - 1.0934216851622351, 1.2405492482825997, 1.3926969532596658, 1.5514499979728753, 1.9628426812012425, + 1.0934216851622351, 1.2405492482825997, 1.3926969532596658, 1.551449997972875, 1.9628426812012425, 2.383815365980431, 2.803457115648414, 3.220108088040055, 3.6344772701607315, 4.045322978786658, 4.453318340047038, 4.857935264719429, 5.26245108973043, 5.664641975556125, 6.064457989226918, 6.466867620354109, 6.867467487859051, 7.267171728403014, 7.666517980554881, 8.064457989226918, @@ -161,14 +161,14 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Mg24_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, - 4.342942647204277e-07, 5.471765757979972e-05, 0.0007714899373308071, 0.0037633124724497633, 0.010764115210255056, + 4.3429426472042774e-07, 5.471765757979972e-05, 0.0007714899373308072, 0.0037633124724497638, 0.010764115210255056, 0.022625058328435317, 0.039160607597355665, 0.05951911533271758, 0.08262238957783377, 0.13324118689139802, 0.185518640557017, 0.2370005304649223, 0.2870228837145503, 0.3357157930198095, 0.43136376415898736, - 0.5263392773898441, 0.6253124509616739, 0.7307822756663892, 0.8463371121298052, 0.9749719942980689, + 0.526339277389844, 0.6253124509616739, 0.7307822756663892, 0.8463371121298052, 0.9749719942980689, 1.1172712956557642, 1.2741578492636798, 1.4424797690644486, 1.6232492903979006, 2.103803720955957, - 2.598790506763115, 3.089905111439398, 3.577491799837225, 4.05307844348342, 4.52244423350632, + 2.598790506763115, 3.089905111439398, 3.5774917998372255, 4.05307844348342, 4.52244423350632, 4.984527313343793, 5.440909082065217, 5.894869656745253, 6.344392273685111, 6.791690649020118, - 7.235528446907549, 7.6785183790401135, 8.12057393120585, 8.558708570533165, 8.99563519459755, + 7.235528446907549, 7.678518379040114, 8.12057393120585, 8.558708570533165, 8.99563519459755, 9.431363764158988, 9.866287339084195, 10.301029995663981, 10.732393759822969, 11.164352855784436, 11.594392550375426, 12.02530586526477, 12.453318340047037, 12.881384656770573, 13.3096301674259, 13.736396502276643, 14.161368002234974, 14.588831725594208, 15.012837224705173, 15.86569605991607, @@ -180,10 +180,10 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Al27_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 8.685880952436747e-07, 3.4743419578801875e-06, - 1.0422942490878872e-05, 0.00032429686817590634, 0.0018833542475028369, 0.005477808032249925, 0.011239204769804155, - 0.01890428637893266, 0.028126564553716336, 0.03862016194970278, 0.05018673657450416, 0.07608019569340022, - 0.10530099179798431, 0.13774106877747655, 0.1734986149135784, 0.21278880583973628, 0.30319605742048883, + 0.0, 0.0, 0.0, 8.685880952436748e-07, 3.4743419578801875e-06, + 1.0422942490878872e-05, 0.00032429686817590634, 0.0018833542475028369, 0.005477808032249926, 0.011239204769804155, + 0.018904286378932662, 0.028126564553716336, 0.03862016194970278, 0.05018673657450416, 0.07608019569340022, + 0.10530099179798433, 0.13774106877747655, 0.1734986149135784, 0.2127888058397363, 0.30319605742048883, 0.4099331233312945, 0.5352941200427705, 0.6794278966121189, 0.8394780473741984, 1.0128372247051722, 1.1958996524092338, 1.3873898263387294, 1.5843312243675307, 1.783903579272735, 2.287801729930226, 2.7944880466591697, 3.296665190261531, 3.7944880466591697, 4.2878017299302265, 4.779596491257824, @@ -201,10 +201,10 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Si28_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 2.1714669808675565e-06, 7.12184552784347e-05, 0.0005624812393818785, 0.002223099674110693, - 0.0059171580771474625, 0.012282407118825528, 0.02157709561709228, 0.03370716078346824, 0.06502557053071237, - 0.1027522772573885, 0.14387160800291654, 0.1866035043986153, 0.2302807913268337, 0.3222192947339193, - 0.42324587393680785, 0.541579243946581, 0.6839471307515121, 0.8518696007297664, 1.041392685158225, + 0.0, 2.1714669808675565e-06, 7.121845527843468e-05, 0.0005624812393818786, 0.002223099674110693, + 0.0059171580771474625, 0.01228240711882553, 0.021577095617092278, 0.03370716078346824, 0.06502557053071237, + 0.10275227725738852, 0.14387160800291654, 0.18660350439861528, 0.23028079132683374, 0.3222192947339193, + 0.42324587393680785, 0.541579243946581, 0.6839471307515121, 0.8518696007297664, 1.0413926851582251, 1.250420002308894, 1.4727564493172123, 1.7024305364455252, 1.9375178920173466, 2.531478917042255, 3.12057393120585, 3.7024305364455254, 4.271841606536499, 4.834420703681532, 5.389166084364533, 5.937517892017347, 6.481442628502305, 7.021189299069938, 7.557507201905658, 8.089905111439398, @@ -221,9 +221,9 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real P31_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, - 4.342942647204277e-07, 4.820401221806151e-05, 0.0005624812393818785, 0.002468018295084159, 0.006670091319158333, - 0.013688955408210905, 0.023674199668938998, 0.03655105068012579, 0.05215275629691826, 0.09085986215557586, - 0.13887811232360858, 0.19608052467040618, 0.26289299085539924, 0.33982852740425823, 0.5237464668115644, + 4.3429426472042774e-07, 4.820401221806151e-05, 0.0005624812393818786, 0.002468018295084159, 0.006670091319158333, + 0.013688955408210905, 0.023674199668938998, 0.0365510506801258, 0.05215275629691827, 0.09085986215557586, + 0.13887811232360858, 0.19608052467040618, 0.2628929908553992, 0.33982852740425823, 0.5237464668115644, 0.7419390777291989, 0.9827233876685453, 1.235528446907549, 1.4899584794248346, 1.7442929831226763, 1.9960736544852753, 2.24551266781415, 2.4913616938342726, 2.733999286538387, 3.330413773349191, 3.9132839017604186, 4.48572142648158, 5.049218022670182, 5.608526033577194, 6.164352855784437, @@ -242,8 +242,8 @@ namespace part_fun { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.211502513843472e-06, 6.948155872801059e-05, 0.0003893875360542875, - 0.001336870159627728, 0.003378232401258555, 0.006963377556787149, 0.012456734172197398, 0.03011415790845077, - 0.057484285853877215, 0.0950053699501746, 0.14295136988131382, 0.20165707691270435, 0.3521825181113625, + 0.001336870159627728, 0.0033782324012585556, 0.00696337755678715, 0.012456734172197396, 0.030114157908450765, + 0.05748428585387722, 0.09500536995017458, 0.14295136988131382, 0.20165707691270435, 0.3521825181113625, 0.5502283530550941, 0.787460474518415, 1.0569048513364727, 1.3404441148401183, 1.631443769013172, 1.92272545799326, 2.2121876044039577, 2.4955443375464483, 2.7737864449811935, 3.44870631990508, 4.096910013008056, 4.726727209026572, 5.3404441148401185, 5.944975908412048, 6.541579243946581, @@ -263,8 +263,8 @@ namespace part_fun { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.8239985202970884e-05, 0.00020710907627919203, 0.0009431313908907785, 0.002698987769012708, 0.005906875936599731, 0.010907713111778477, 0.017957319425972694, 0.027253766962590423, 0.0532486689285615, - 0.09021853774459236, 0.13964204799692437, 0.20296975189964023, 0.28111453407611076, 0.48000694295715063, - 0.7234556720351858, 0.9934362304976116, 1.2741578492636798, 1.5587085705331658, 1.841984804590114, + 0.09021853774459236, 0.13964204799692437, 0.20296975189964025, 0.28111453407611076, 0.48000694295715063, + 0.7234556720351858, 0.9934362304976118, 1.2741578492636798, 1.5587085705331658, 1.841984804590114, 2.123851640967086, 2.401400540781544, 2.678518379040114, 2.951823035315912, 3.6263403673750423, 4.2878017299302265, 4.942008053022313, 5.588831725594207, 6.230448921378274, 6.870988813760575, 7.509202522331103, 8.146128035678238, 8.781036938621131, 9.414973347970818, 10.049218022670182, @@ -281,14 +281,14 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ar36_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 4.342942647204277e-07, 2.3451268844214655e-05, 0.00023141729162330258, 0.0010622869460975197, + 0.0, 4.3429426472042774e-07, 2.3451268844214655e-05, 0.00023141729162330258, 0.0010622869460975197, 0.0031540913067783544, 0.007135153007315866, 0.013474284663478431, 0.02245187936733961, 0.048771089883939175, 0.08643600351808534, 0.13560900039779808, 0.1965840257248699, 0.2696980636423851, 0.45331834004703764, 0.6848453616444125, 0.9585638832219674, 1.2624510897304295, 1.5809249756756194, 1.9057958803678685, 2.230448921378274, 2.550228353055094, 2.8662873390841948, 3.1760912590556813, 3.929418925714293, 4.657055852857104, 5.365487984890899, 6.060697840353612, 6.746634198937579, 7.426511261364575, 8.100370545117563, 8.773054693364262, 9.442479769064448, 10.11058971029925, 10.77451696572855, - 11.437750562820387, 12.100370545117563, 12.758911892397974, 13.41664050733828, 14.071882007306126, + 11.437750562820389, 12.100370545117563, 12.758911892397974, 13.41664050733828, 14.071882007306126, 14.727541257028557, 15.38201704257487, 16.03342375548695, 16.684845361644413, 17.33445375115093, 17.983626287124533, 18.63144376901317, 19.27875360095283, 19.92582757462474, 20.57170883180869, 21.217483944213907, 21.863322860120455, 22.50785587169583, 23.152288344383056, 24.440909082065218, @@ -302,8 +302,8 @@ namespace part_fun { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.908632748276029e-06, 3.4307908925770636e-05, - 0.00016282990201490303, 0.0005394928156396339, 0.0014074368520356395, 0.0031075244141559894, 0.010846721573671135, - 0.028297088943748088, 0.06095682921468604, 0.11414775667614005, 0.1912997955319451, 0.4132997640812518, + 0.00016282990201490303, 0.000539492815639634, 0.0014074368520356397, 0.0031075244141559894, 0.010846721573671133, + 0.028297088943748088, 0.060956829214686044, 0.11414775667614005, 0.1912997955319451, 0.4132997640812518, 0.7015679850559274, 1.0170333392987803, 1.3384564936046048, 1.6599162000698502, 1.9772662124272926, 2.292256071356476, 2.6020599913279625, 2.910090545594068, 3.214843848047698, 3.9684829485539352, 4.710963118995275, 5.444044795918076, 6.173186268412274, 6.897627091290442, 7.619093330626742, @@ -322,8 +322,8 @@ namespace part_fun { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4743419578801875e-06, - 2.6056887215373325e-05, 0.00012419046343446514, 0.0004254001802063995, 0.0011532564515138494, 0.005324252203746658, - 0.016451245325404363, 0.03938040551055626, 0.07909980819723089, 0.13972800117379408, 0.33041377334919086, + 2.6056887215373325e-05, 0.00012419046343446514, 0.0004254001802063995, 0.0011532564515138496, 0.005324252203746658, + 0.016451245325404363, 0.039380405510556264, 0.07909980819723089, 0.1397280011737941, 0.33041377334919086, 0.6063813651106049, 0.9385197251764918, 1.2988530764097066, 1.6693168805661123, 2.037426497940624, 2.403120521175818, 2.761927838420529, 3.113943352306837, 3.459392487759231, 4.301029995663981, 5.117271295655764, 5.9148718175400505, 6.701567985055927, 7.478566495593843, 8.250420002308894, @@ -339,11 +339,11 @@ namespace part_fun { // this is log10(partition function) MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Sc43_pf_array[npts_1] = { - 0.0, 1.7371744532199383e-06, 3.2136602621167924e-05, 0.0006088881229004689, 0.0026394223512168323, - 0.006348788305828209, 0.011375876688411647, 0.017242084547645732, 0.02355944464942603, 0.03006796257543875, - 0.03661053325876141, 0.06810122175372875, 0.09804672309111766, 0.12848424511267922, 0.16058766813472455, - 0.1946644458530261, 0.23055748142930874, 0.26792627543589265, 0.3064134462100847, 0.3856843680943845, - 0.4672642331672854, 0.5514418243762168, 0.6393550853495756, 0.732465412501299, 0.9380190974762103, + 0.0, 1.737174453219938e-06, 3.213660262116793e-05, 0.0006088881229004689, 0.0026394223512168323, + 0.006348788305828209, 0.011375876688411649, 0.017242084547645732, 0.02355944464942603, 0.030067962575438752, + 0.03661053325876141, 0.06810122175372875, 0.09804672309111767, 0.12848424511267922, 0.16058766813472455, + 0.1946644458530261, 0.23055748142930874, 0.2679262754358927, 0.3064134462100847, 0.3856843680943845, + 0.4672642331672854, 0.5514418243762168, 0.6393550853495756, 0.7324654125012992, 0.9380190974762103, 1.1760912590556813, 1.4456042032735976, 1.7371926427047373, 2.0453229787866576, 2.359835482339888, 2.678518379040114, 3.0, 3.322219294733919, 3.6424645202421213, 4.439332693830263, 5.230448921378274, 6.017033339298781, 6.8020892578817325, 7.585460729508501, 8.36735592102602, @@ -360,9 +360,9 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ti44_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 4.342942647204277e-07, 1.7371744532199383e-06, - 7.382943437485089e-06, 0.0004987179011085028, 0.004043078170724821, 0.01413521502778782, 0.032426549056877405, - 0.05856115101668825, 0.09131586357749837, 0.1294359425571275, 0.17190802974603506, 0.2667731684215763, + 0.0, 0.0, 0.0, 4.3429426472042774e-07, 1.737174453219938e-06, + 7.382943437485088e-06, 0.0004987179011085027, 0.004043078170724821, 0.01413521502778782, 0.032426549056877405, + 0.058561151016688254, 0.09131586357749837, 0.1294359425571275, 0.17190802974603506, 0.2667731684215763, 0.37035022176288673, 0.47788465213962983, 0.5860935485551829, 0.693748838923791, 0.9116901587538612, 1.1522883443830565, 1.4409090820652177, 1.7788744720027396, 2.1522883443830563, 2.5415792439465807, 2.9334872878487053, 3.322219294733919, 3.7041505168397992, 4.079181246047625, 4.996073654485276, @@ -379,8 +379,8 @@ namespace part_fun { // this is log10(partition function) MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real V47_pf_array[npts_1] = { - 2.518834949526704e-05, 0.0007584840322833457, 0.004226764680268442, 0.024475815916759104, 0.05998274311239668, - 0.10280266491559079, 0.14672973694476377, 0.1885209834473098, 0.22688178294786615, 0.2615226538586488, + 2.518834949526704e-05, 0.0007584840322833457, 0.004226764680268442, 0.024475815916759108, 0.05998274311239668, + 0.1028026649155908, 0.14672973694476377, 0.18852098344730983, 0.22688178294786618, 0.2615226538586488, 0.29260868165003595, 0.4071409645052156, 0.48021742410342627, 0.5329079468954852, 0.5750746363992424, 0.6115960803783954, 0.6450760714077263, 0.6770396273057074, 0.708482088001612, 0.7725618227871047, 0.8417322779915452, 0.9194240819892174, 1.0083997539725875, 1.110602503281611, 1.3560258571931227, @@ -400,11 +400,11 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Cr48_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 8.685880952436747e-07, 8.251516766996927e-06, 3.951899976600419e-05, 0.00013330794422173613, - 0.00035120219371925, 0.006401856055765157, 0.02685304570895992, 0.06215311825135839, 0.10696594975266842, - 0.15598699109465686, 0.205815844445829, 0.25471214514215257, 0.30198352738731143, 0.39152612205819926, + 0.0, 8.685880952436748e-07, 8.251516766996927e-06, 3.951899976600419e-05, 0.00013330794422173613, + 0.00035120219371925006, 0.006401856055765157, 0.02685304570895992, 0.0621531182513584, 0.10696594975266842, + 0.15598699109465686, 0.20581584444582904, 0.25471214514215257, 0.30198352738731143, 0.39152612205819926, 0.47640596203905256, 0.5602400543128645, 0.6474755901642433, 0.7433846322638775, 0.983175072037813, - 1.3096301674258988, 1.7067177823367587, 2.1398790864012365, 2.577491799837225, 3.012837224705172, + 1.3096301674258988, 1.7067177823367587, 2.1398790864012365, 2.5774917998372255, 3.012837224705172, 3.437750562820388, 3.8549130223078554, 4.264817823009537, 4.666517980554881, 5.648360010980932, 6.606381365110605, 7.550228353055094, 8.484299839346786, 9.414973347970818, 10.340444114840118, 11.264817823009537, 12.1846914308176, 13.103803720955957, 14.021189299069938, 14.935003151453655, @@ -419,11 +419,11 @@ namespace part_fun { // this is log10(partition function) MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Mn51_pf_array[npts_1] = { - 0.0, 0.0, 4.342942647204277e-07, 6.0362737871404116e-05, 0.0005954436481690331, - 0.002352703452491265, 0.0058636025937444025, 0.011219737158250306, 0.018191443590229183, 0.026405776501228783, - 0.035473365577059296, 0.08393991903492294, 0.12694077261184436, 0.16267998396542166, 0.19356340377635362, - 0.22185561141496238, 0.2491212785730439, 0.27638918590325057, 0.30436276263857276, 0.36442247019537943, - 0.4326074417788097, 0.5117005179251304, 0.6041057952026397, 0.7115562776994953, 0.9717395908877782, + 0.0, 0.0, 4.3429426472042774e-07, 6.0362737871404116e-05, 0.0005954436481690332, + 0.0023527034524912656, 0.0058636025937444025, 0.011219737158250307, 0.018191443590229183, 0.026405776501228783, + 0.035473365577059296, 0.08393991903492294, 0.12694077261184436, 0.1626799839654217, 0.19356340377635364, + 0.22185561141496238, 0.24912127857304392, 0.27638918590325057, 0.30436276263857276, 0.36442247019537943, + 0.4326074417788098, 0.5117005179251304, 0.6041057952026397, 0.7115562776994953, 0.9717395908877783, 1.287801729930226, 1.640481436970422, 2.0170333392987803, 2.403120521175818, 2.7944880466591697, 3.1903316981702914, 3.5854607295085006, 3.9827233876685453, 4.380211241711606, 5.372912002970106, 6.363611979892144, 7.354108439147401, 8.342422680822207, 9.328379603438737, 10.311753861055754, @@ -440,13 +440,13 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe52_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 1.7371744532199383e-06, 9.554373504133797e-06, 3.778197643341552e-05, - 0.00011333607006293108, 0.0030242952161453874, 0.015422212189991184, 0.040215337130588114, 0.07478865660777631, - 0.11488541698288196, 0.15714990338033966, 0.19960737134331175, 0.24132628928072955, 0.3217032118192907, + 0.0, 0.0, 1.737174453219938e-06, 9.554373504133797e-06, 3.778197643341552e-05, + 0.00011333607006293108, 0.0030242952161453874, 0.015422212189991185, 0.040215337130588114, 0.07478865660777631, + 0.11488541698288197, 0.15714990338033966, 0.19960737134331175, 0.24132628928072955, 0.3217032118192907, 0.3993396534463543, 0.4778337814344742, 0.5623989859221217, 0.6594581913549248, 0.9153998352122699, 1.2695129442179163, 1.6910814921229684, 2.143014800254095, 2.6009728956867484, 3.0569048513364727, 3.503790683057181, 3.946452265013073, 4.383815365980431, 4.818225893613955, 5.888740960682893, - 6.944482672150168, 7.989894563718773, 9.02938377768521, 10.060697840353612, 11.086359830674748, + 6.944482672150168, 7.9898945637187735, 9.02938377768521, 10.060697840353612, 11.086359830674748, 12.11058971029925, 13.127104798364808, 14.139879086401237, 15.14921911265538, 16.152288344383056, 17.152288344383056, 18.14921911265538, 19.143014800254097, 20.133538908370216, 21.12057393120585, 22.103803720955955, 23.08635983067475, 24.06445798922692, 25.041392685158225, 26.01703333929878, @@ -460,10 +460,10 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe53_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 1.3028814913777444e-06, 6.080080186165502e-06, 2.0411360986187104e-05, + 0.0, 0.0, 1.3028814913777444e-06, 6.080080186165502e-06, 2.0411360986187108e-05, 5.384917717601842e-05, 0.00099773035779373, 0.004491618246634796, 0.011583129716232713, 0.02260939259680282, 0.037536053829818145, 0.056184239286028684, 0.07836255359576534, 0.10393433162264984, 0.16508072986206487, - 0.2398955676994077, 0.3292351155694239, 0.43390673907557786, 0.5541592859186848, 0.8375884382355113, + 0.2398955676994077, 0.3292351155694239, 0.4339067390755778, 0.5541592859186848, 0.8375884382355113, 1.1702617153949575, 1.5314789170422551, 1.9148718175400503, 2.3096301674258988, 2.710963118995276, 3.1172712956557644, 3.5276299008713385, 3.940516484932567, 4.3560258571931225, 5.396199347095736, 6.440909082065217, 7.48572142648158, 8.52762990087134, 9.564666064252089, 10.597695185925513, @@ -481,10 +481,10 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe54_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 4.038750882690593e-05, 0.0006153933644858295, 0.0031795285189803882, 0.009608097244673557, - 0.021489478918632662, 0.039963481298721557, 0.06578505049986659, 0.09933285917375559, 0.18904568529064877, + 0.0, 4.038750882690593e-05, 0.0006153933644858296, 0.0031795285189803882, 0.009608097244673555, + 0.021489478918632662, 0.039963481298721557, 0.06578505049986659, 0.09933285917375559, 0.1890456852906488, 0.30450216050560097, 0.4386136969546961, 0.5858349639065905, 0.7435112541834851, 1.089905111439398, - 1.4727564493172123, 1.8864907251724818, 2.320146286111054, 2.760422483423212, 3.204119982655925, + 1.4727564493172123, 1.8864907251724818, 2.3201462861110542, 2.760422483423212, 3.2041199826559246, 3.6503075231319366, 4.093421685162235, 4.539076098792776, 4.982271233039568, 6.089905111439398, 7.190331698170292, 8.287801729930226, 9.378397900948137, 10.462397997898956, 11.539076098792776, 12.61066016308988, 13.675778341674086, 14.734799829588846, 15.789580712164426, 16.838219221907625, @@ -500,8 +500,8 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe55_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 1.3028814913777444e-06, - 1.5634319932414176e-05, 7.599488497457784e-05, 0.0002370600756061832, 0.0005564089438241259, 0.0010813488014597976, - 0.0018431377713960377, 0.009434322601068017, 0.022947317188587973, 0.04207202183227031, 0.06669370834774807, + 1.563431993241418e-05, 7.599488497457784e-05, 0.00023706007560618322, 0.0005564089438241259, 0.0010813488014597978, + 0.0018431377713960377, 0.009434322601068017, 0.022947317188587977, 0.04207202183227031, 0.06669370834774807, 0.09644559083435453, 0.13073538555922604, 0.1689268514992448, 0.210470482925873, 0.30216484315823844, 0.40437472924396634, 0.5173772341350337, 0.6421575367181118, 0.7795497407641858, 1.089905111439398, 1.4471580313422192, 1.8312296938670634, 2.2355284469075487, 2.649334858712142, 3.0718820073061255, @@ -520,13 +520,13 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe56_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 1.7371744532199383e-06, 9.988658214691801e-06, 3.951899976600419e-05, - 0.00011724368292883856, 0.0030902761496993327, 0.0156878675130911, 0.04089651650139037, 0.07635858866725904, - 0.11828391003740016, 0.16392102383975418, 0.21196213905930564, 0.2621108778253895, 0.36964919324674056, + 0.0, 0.0, 1.737174453219938e-06, 9.988658214691803e-06, 3.951899976600419e-05, + 0.00011724368292883856, 0.0030902761496993327, 0.0156878675130911, 0.04089651650139036, 0.07635858866725904, + 0.11828391003740014, 0.16392102383975418, 0.21196213905930564, 0.2621108778253895, 0.36964919324674056, 0.4887648498436591, 0.6206486780522652, 0.76578080127876, 0.924731337394998, 1.2855573090077739, 1.6972293427597176, 2.143014800254095, 2.606381365110605, 3.0718820073061255, 3.5403294747908736, 4.004321373782642, 4.468347330412158, 4.928395852256714, 5.38738982633873, 6.5276299008713385, - 7.660865478003869, 8.788168371141168, 9.909556029241175, 11.02530586526477, 12.136720567156408, + 7.66086547800387, 8.788168371141168, 9.909556029241175, 11.02530586526477, 12.136720567156408, 13.2405492482826, 14.340444114840118, 15.432969290874405, 16.52244423350632, 17.606381365110604, 18.686636269262294, 19.76192783842053, 20.833147111912787, 21.90036712865647, 22.96473092105363, 24.02530586526477, 25.08278537031645, 26.139879086401237, 27.193124598354462, 28.243038048686294, @@ -541,11 +541,11 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Co55_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 8.685880952436747e-07, 1.4331481434642371e-05, 9.336327741651445e-05, - 0.00038114325769492564, 0.001151090732337307, 0.0028275866787247843, 0.0059861278100218065, 0.019727612600003865, + 0.0, 0.0, 8.685880952436748e-07, 1.433148143464237e-05, 9.336327741651445e-05, + 0.00038114325769492564, 0.0011510907323373071, 0.0028275866787247843, 0.005986127810021806, 0.019727612600003868, 0.049238961363648255, 0.10167663281566902, 0.18228879723157643, 0.29243817096179087, 0.5865873046717549, - 0.9449759084120479, 1.3324384599156054, 1.7363965022766423, 2.1492191126553797, 2.56702636615906, - 2.991226075692495, 3.419955748489758, 3.851869600729766, 4.2878017299302265, 5.382017042574868, + 0.9449759084120479, 1.3324384599156054, 1.7363965022766426, 2.1492191126553797, 2.56702636615906, + 2.9912260756924947, 3.419955748489758, 3.851869600729766, 4.2878017299302265, 5.382017042574868, 6.482873583608754, 7.5820633629117085, 8.677606952720494, 9.767155866082181, 10.85003325768977, 11.927370363039023, 12.998695158311655, 14.064457989226918, 15.127104798364808, 16.181843587944773, 17.232996110392154, 18.281033367247726, 19.32428245529769, 20.3654879848909, 21.401400540781545, @@ -559,10 +559,10 @@ namespace part_fun { // this is log10(partition function) MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Co56_pf_array[npts_1] = { - 0.0, 1.7371744532199383e-06, 3.4307908925770636e-05, 0.0007363730997827178, 0.003397192878964486, - 0.008467734331585224, 0.01550645173957485, 0.0238164702394971, 0.03279759856010612, 0.04203693696495622, - 0.05128645751287552, 0.09519865223967466, 0.13622861655702886, 0.176714169466867, 0.21729965897649603, - 0.2578772011708393, 0.2983265845453606, 0.3387098245578885, 0.3792523836931725, 0.46216521358362883, + 0.0, 1.737174453219938e-06, 3.4307908925770636e-05, 0.0007363730997827178, 0.003397192878964486, + 0.008467734331585224, 0.015506451739574849, 0.0238164702394971, 0.03279759856010612, 0.04203693696495622, + 0.05128645751287553, 0.09519865223967468, 0.13622861655702886, 0.17671416946686702, 0.21729965897649603, + 0.2578772011708393, 0.2983265845453606, 0.3387098245578885, 0.3792523836931725, 0.4621652135836289, 0.5500314690476197, 0.6456769741905006, 0.7513340033440492, 0.8684365267163909, 1.1367205671564067, 1.4517864355242902, 1.7986506454452689, 2.1702617153949575, 2.5599066250361124, 2.9614210940664485, 3.3729120029701067, 3.7902851640332416, 4.214843848047698, 4.6414741105041, 5.723455672035186, @@ -581,9 +581,9 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Co57_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, - 4.342942647204277e-07, 4.994099386680048e-05, 0.0005963110461953748, 0.0027783956198411766, 0.008035647971175024, - 0.017613403025029208, 0.03234391616743567, 0.05264970241280307, 0.07864673504318612, 0.14731854080928636, - 0.23700682147881122, 0.34629017327562855, 0.47392017252998775, 0.6185154181425263, 0.9503648543761231, + 4.3429426472042774e-07, 4.994099386680048e-05, 0.0005963110461953748, 0.0027783956198411766, 0.008035647971175024, + 0.017613403025029208, 0.03234391616743566, 0.05264970241280307, 0.07864673504318612, 0.14731854080928636, + 0.23700682147881122, 0.34629017327562855, 0.4739201725299878, 0.6185154181425263, 0.9503648543761231, 1.3263358609287514, 1.7299742856995557, 2.1492191126553797, 2.57978359661681, 3.0170333392987803, 3.456366033129043, 3.900913067737669, 4.348304863048161, 4.795880017344075, 5.922206277439017, 7.05307844348342, 8.178976947293169, 9.30319605742049, 10.423245873936807, 11.537819095073274, @@ -601,11 +601,11 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ni56_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 4.342942647204277e-07, 7.817230319428646e-06, 6.42708273977769e-05, - 0.0002904458650804842, 0.0009123622824012837, 0.0022498876258026487, 0.0046944487518873, 0.014735532704563181, - 0.03529042138996706, 0.07190703372466718, 0.13162956968664008, 0.22190042758492473, 0.5092025223311029, - 0.9132839017604184, 1.374748346010104, 1.8555191556678001, 2.3404441148401185, 2.8221680793680175, - 3.3031960574204886, 3.783903579272735, 4.26245108973043, 4.7419390777291985, 5.9344984512435675, + 0.0, 0.0, 4.3429426472042774e-07, 7.817230319428648e-06, 6.42708273977769e-05, + 0.0002904458650804842, 0.0009123622824012838, 0.0022498876258026487, 0.004694448751887299, 0.014735532704563181, + 0.03529042138996706, 0.07190703372466718, 0.13162956968664008, 0.2219004275849247, 0.5092025223311029, + 0.9132839017604184, 1.3747483460101038, 1.8555191556678001, 2.3404441148401185, 2.8221680793680175, + 3.303196057420489, 3.783903579272735, 4.26245108973043, 4.7419390777291985, 5.9344984512435675, 7.117271295655764, 8.292256071356476, 9.456366033129044, 10.608526033577194, 11.750508394851346, 12.88309335857569, 14.008600171761918, 15.123851640967086, 16.232996110392154, 17.33645973384853, 18.432969290874407, 19.525044807036846, 20.612783856719737, 21.695481676490196, 22.773786444981194, @@ -620,11 +620,11 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ni57_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 4.342942647204277e-07, 1.7371744532199383e-06, 9.554373504133797e-06, 3.257086475060328e-05, - 8.771862606148251e-05, 0.0017410663385697559, 0.007809206274475302, 0.01921477477459369, 0.03493231633712192, - 0.05345799700199783, 0.07364137994668778, 0.0948950837519807, 0.11713833477999397, 0.16608656859343765, - 0.22565890312281184, 0.3025878355093501, 0.4025382106894563, 0.5279492540555757, 0.8463371121298052, - 1.2253092817258628, 1.631443769013172, 2.05307844348342, 2.484299839346786, 2.9237619608287004, + 0.0, 4.3429426472042774e-07, 1.737174453219938e-06, 9.554373504133797e-06, 3.257086475060328e-05, + 8.771862606148251e-05, 0.0017410663385697559, 0.007809206274475302, 0.019214774774593695, 0.03493231633712191, + 0.05345799700199784, 0.07364137994668778, 0.0948950837519807, 0.11713833477999397, 0.16608656859343762, + 0.22565890312281187, 0.3025878355093501, 0.4025382106894563, 0.5279492540555756, 0.8463371121298052, + 1.2253092817258628, 1.631443769013172, 2.0530784434834195, 2.484299839346786, 2.9237619608287004, 3.369215857410143, 3.8188854145940097, 4.27415784926368, 4.731588765186738, 5.884795363948981, 7.041392685158225, 8.195899652409233, 9.344392273685111, 10.482873583608754, 11.613841821876068, 12.736396502276643, 13.851258348719075, 14.959041392321094, 16.060697840353612, 17.15836249209525, @@ -641,8 +641,8 @@ namespace part_fun { MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ni58_pf_array[npts_1] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 2.822822391636452e-05, 0.0004722555358597003, 0.0025858928325085315, 0.008151594991554035, - 0.018820703394680185, 0.03585661791649524, 0.060127596252288286, 0.09212527438468374, 0.17939292292561174, + 0.0, 2.822822391636452e-05, 0.00047225553585970024, 0.0025858928325085315, 0.008151594991554035, + 0.018820703394680185, 0.03585661791649524, 0.0601275962522883, 0.09212527438468374, 0.17939292292561174, 0.29475734836761314, 0.43276876399762537, 0.5886922364625494, 0.7597527315231631, 1.1398790864012365, 1.5670263661590604, 2.0211892990699383, 2.4913616938342726, 2.968015713993642, 3.4471580313422194, 3.9253120914996495, 4.4048337166199385, 4.884795363948981, 5.363611979892144, 6.561101383649056, From 1ee4568980f9b80d530f55998eddad59ae415f3c Mon Sep 17 00:00:00 2001 From: Michael Zingale Date: Thu, 21 Nov 2024 10:31:17 -0500 Subject: [PATCH 6/8] add script --- networks/He-C-Fe-group-simple/he-simple.py | 121 +++++++++++++++++++++ 1 file changed, 121 insertions(+) create mode 100644 networks/He-C-Fe-group-simple/he-simple.py diff --git a/networks/He-C-Fe-group-simple/he-simple.py b/networks/He-C-Fe-group-simple/he-simple.py new file mode 100644 index 000000000..e759cf637 --- /dev/null +++ b/networks/He-C-Fe-group-simple/he-simple.py @@ -0,0 +1,121 @@ +import pynucastro as pyna +from pynucastro.rates import ReacLibRate, TabularRate + +DO_DERIVED_RATES = True + +reaclib_lib = pyna.ReacLibLibrary() +weak_lib = pyna.TabularLibrary() + +# these are the nuclei we have in subch_simple +all_reactants = ["p", + "he4", "c12", "o16", "ne20", "mg24", "si28", "s32", + "ar36", "ca40", "ti44", "cr48", "fe52", "ni56", + "al27", "p31", "cl35", "k39", "sc43", "v47", "mn51", "co55", + "n13", "n14", "f18", "ne21", "na22", "na23"] + +# create a library of ReacLib rates +core_lib = reaclib_lib.linking_nuclei(all_reactants) + +# in this list, we have the reactants, the actual reactants, +# and modified products that we will use instead + +other_rates = [("c12(c12,n)mg23", "mg24"), + ("o16(o16,n)s31", "s32"), + ("o16(c12,n)si27", "si28")] + +for r, mp in other_rates: + _r = reaclib_lib.get_rate_by_name(r) + _r.modify_products(mp) + core_lib.add_rate(_r) + +# finally, the aprox nets don't include the reverse rates for +# C12+C12, C12+O16, and O16+O16, so remove those + +for r in core_lib.get_rates(): + if sorted(r.products) in [[pyna.Nucleus("c12"), pyna.Nucleus("c12")], + [pyna.Nucleus("c12"), pyna.Nucleus("o16")], + [pyna.Nucleus("o16"), pyna.Nucleus("o16")]]: + core_lib.remove_rate(r) + +# C12+Ne20 and reverse +# (a,g) links between Na23 and Al27 +# (a,g) links between Al27 and P31 + +rates_to_remove = ["p31(p,c12)ne20", + "si28(a,c12)ne20", + "ne20(c12,p)p31", + "ne20(c12,a)si28", + "na23(a,g)al27", + "al27(g,a)na23", + "al27(a,g)p31", + "p31(g,a)al27"] + +for r in rates_to_remove: + print("removing: ", r) + _r = core_lib.get_rate_by_name(r) + core_lib.remove_rate(_r) + +# now create a list of iron group nuclei and find both the +# ReacLib and weak / tabular rates linking these. + +iron_peak = ["n", "p", "he4", + "mn51", + "fe52", "fe53", "fe54", "fe55", "fe56", + "co55", "co56", "co57", + "ni56", "ni57", "ni58"] + +iron_reaclib = reaclib_lib.linking_nuclei(iron_peak) +iron_weak_lib = weak_lib.linking_nuclei(iron_peak) + +# add the libraries + +all_lib = core_lib + iron_reaclib + iron_weak_lib + +if DO_DERIVED_RATES: + rates_to_derive = [] + for r in all_lib.get_rates(): + if r.reverse: + # this rate was computed using detailed balance, regardless + # of whether Q < 0 or not. We want to remove it and then + # recompute it + rates_to_derive.append(r) + + # now for each of those derived rates, look to see if the pair exists + + for r in rates_to_derive: + fr = all_lib.get_rate_by_nuclei(r.products, r.reactants) + if fr: + print(f"modifying {r} from {fr}") + all_lib.remove_rate(r) + d = pyna.DerivedRate(rate=fr, compute_Q=False, use_pf=True) + all_lib.add_rate(d) + +# we will have duplicate rates -- we want to remove any ReacLib rates +# that we have tabular rates for + +dupes = all_lib.find_duplicate_links() + +rates_to_remove = [] +for d in dupes: + for r in d: + if isinstance(r, ReacLibRate): + rates_to_remove.append(r) + +for r in rates_to_remove: + all_lib.remove_rate(r) + +# combine all three libraries into a single network + +net = pyna.AmrexAstroCxxNetwork(libraries=[all_lib], + symmetric_screening=False) + +# now we approximate some (alpha, p)(p, gamma) links + +net.make_ap_pg_approx(intermediate_nuclei=["cl35", "k39", "sc43", "v47"]) +net.remove_nuclei(["cl35", "k39", "sc43", "v47"]) + +net.make_nn_g_approx(intermediate_nuclei=["fe53", "fe55", "ni57"]) +net.remove_nuclei(["fe53", "fe55", "ni57"]) + +fig = net.plot(rotated=True, curved_edges=True, size=(1500, 800), hide_xalpha=True, node_size=400, node_font_size=9) +fig.savefig("newnet.png") From a1c6b3321c1fd56aa3a55ce9659836f27151ee44 Mon Sep 17 00:00:00 2001 From: Michael Zingale Date: Fri, 22 Nov 2024 08:00:09 -0500 Subject: [PATCH 7/8] add write --- networks/He-C-Fe-group-simple/he-simple.py | 2 ++ networks/He-C-Fe-group-simple/newnet.png | Bin 146951 -> 146964 bytes 2 files changed, 2 insertions(+) diff --git a/networks/He-C-Fe-group-simple/he-simple.py b/networks/He-C-Fe-group-simple/he-simple.py index e759cf637..3d02bd09f 100644 --- a/networks/He-C-Fe-group-simple/he-simple.py +++ b/networks/He-C-Fe-group-simple/he-simple.py @@ -119,3 +119,5 @@ fig = net.plot(rotated=True, curved_edges=True, size=(1500, 800), hide_xalpha=True, node_size=400, node_font_size=9) fig.savefig("newnet.png") + +net.write_network() diff --git a/networks/He-C-Fe-group-simple/newnet.png b/networks/He-C-Fe-group-simple/newnet.png index 8302b8143b2fb1c42673611495a4e8f9ec2190c1..ea52d9f8f1d40b43ca48b832980091a05b0b471f 100644 GIT binary patch literal 146964 zcmeEuhgXwX&_2jo5m^@j=@yEBfFixRHV9R^^i`VlPUxU3vP+fFq>0j7h?LMnP?SiQ zl0;eph8`0-q4T?}EAIFG2fuSZ4jw_1_rCAkxzEfz^GyD}ucO9vit`j59UT)y{f<5z z-O*7xI))1;j)8xXN4{1%_{-<+10Mr-dmrdSFFQKzhdv%I?mjM#k1qJxd3ig!yWJ3% z6PLPr;jxd8hqr=+gzMo8#NE9dB=`g_`+|#{^iVhTrlVtic<_h5NVU+Bj-HMVa_4tL z|IBY=4*nL{`t_xt^m{01d!-nAJ=dSHTp!O5nEw`tIQcAvTmMAfudrYH8Qw&EK0)1&`zZ{&L~OiP0agI&tI(^v7$ShPUwi`*ZmJz5M?y^M6i2_kT|C zzn#Eya4`^7Qd*jbCo7L?{tF}5=+4%WiuA0l5p{KPSUjGOn*T45oDcs$toi>AR>>1q z|8Aeh75OpVWSpX5-(X2efw45QVQNXkKJlDut%$Is79`=JMs!8zBN-m*)R7Yxf1!SV zmz>C;lwz_q;WdRd)+?}SEUwta%L(dR#VFaoJ<|^Vmi}w~2kH@7BI@>s+1Z_V!1qYUO88$J@9(|(t{l&-1I@*l8iF(C>k z=_@Pr=ly@U=CyG{nVR_(IIGv%=hBccWS!EMt!BXITfuY;jE9S!OC8DGR22D>x2D$F zGhlTsP9vb{xI-x2n`qvDpZolMV>aA;({;xZ7w6r|@;a-#zG512rv~!Mt3Ai5~xT{_rOL09Hd5m;HWOKWEJ|wBB>f1tw_!VLsZG)$4fi za)|H4tmi^^g-7jAb_CPi;uEv`Zj5VxxQIKy;J-U`RpExjU7<7DNn?+UHIgjF<4vlb z3(QrY71sFcEze@(s1>5dSnAkAEZwnFBL9Z}YZv6kcqv7zN5|dEMN?WSeT#Wlv^$~< z9RIw%bXF$hZLy)=LpE)`%%b?^PJW2PWd0R_4nnceb`%QPA>lr|lC?R-#F@c+xvJgg zSM=$dMX%rUT%3D%oG+=}wx2m{qqP-v?w_0Vcy^^2`e_I!-ZrtW4)ZgX6~5jt7}=Ry zc`VX`7vW@XajMGa%qNp?@V-%_h&I(H&nU3LFZ0H}RVx>QnZobiiBP=NQ)$<^iU`}) zWD(So`++-ZFFNiK1&fWVAa3y{R*<f6aAAuny`}e%)l@M$JFf+5iTUWa$8#`zB_KS%85$LlR6RUu`q9)~oz-&i2_s9Qap5NPEP@N@zKW}Qs z;)PmNu8%#auQkr-P@uWSGuF1dNY1@q;;?K}`*QVO3lS&IOLt=QEa$0Hr&j;u+qsz? zy!`k3)>ekV=~qG2K1=ABT_zrjb^QGL_v4<)|CnmrLo!2~KIW8#O{pd?!UO>qgEgjJ zBiBZFJE-_ z|G8fH6H$e$b;x{x2B)0TrKN?e{7NP6G1jIhv+(sfS{S|{GG6dma%Xt<%s^M!h>U}i zeJERG1inZw*M~L+?R-?hU4#6`s^OP!Kg!b%a!UVGVdiO;k%Hh2otYS#u1=mEH; zk#-g#@f-)+AoR!y%U`G`PF}x$om1A$qR?4SPftTbW8Uj~R?M9R%Uze)*povyVS>Q% z>ZIWwZxYgZG2rm6lTmcXc+EQgxpBHbZmP$hlr=+hi&RV)e~e_QV_19xj)pU#DIhZF z&PJ-#hh<6V(GVGZf_KHz=(ePwe~H&hb@VC;`<$(zu)HYLFD4s@pYr#7$*E*wk0F< zKKI7Yd^arp$44@AlMf-MRMoLFeSXn8=hM{}{OBxytz-D-1%I^s%~(5Eogn->^H?s0 zOl)>5#IQ1t8R=WJM`K`vSjDc6VET{!ntu}9y_{*ed!nG2J@f^_5e?~l{c=em{? zygL)I$>}}ycjdi1GX!Z18S%vE7mI?=QuK=iKI{j z6sDHbww9+NV0kBn;``vTJ^gC?D_NN7J0fAEW9|IH;VNh4bE}xw3+d#ZRyc}$H~F!q z9lH_3=34#B5}$A{Z#*xptQ)SAwY7-L`FcqJ!Wv-&%Ugz>3Q)F6(-OQZIAT|m9+*Y6 zg}H5Gm=wruL&rBY>A2euW6gNT?$&RntzwdqX+B+(f0wK?jz(&8=S*HDJ}+bq5}jHL zO#TCs)c%ceD7XKT)Kp{ur)Q{f{7Mi?-^(~htAOxl038F@p)Xdi`$?AD*EVl@H|sQR zoWmMPpQowm^cZ>h!T5`jAB#I+B5)$AW`Nti)YLKYw{zJeEB2+#V>@{z8YMwZ%zunu z{Lh==I`Cqk-)Gb)mo?*DZpyt#{&rhQ;fvB%Y4wh68?mJ_ofEDJRqX;0 zFU3)_^+kKQzfZK2pNvoX_SSLnfi8DG2}lXN2v2O@)(t?>O9dUjcHyTTs}WY#mmnIv zEQQ~?w2(ClQ=UQmkcSg8j@jKhqU(m8mSXT=`_fAW@2C9grks{PVF%~A#%rIH1gsMKVs_wkMWtkGC-(NDX(=N1@)kLJKiaEbT#3AdO?;?~o z3PM*`X|Xf=o4GSab?}W}Lj}Sw|0fHwB-4sKoGZ#E*aYtIJ8#TB9Io*y^i)-m))^M^ zkoY7qSi7KPp4Qqg<@8lOt?R%mrd&Md)3?R-EFNW+Z)`@iZ9sXqALJIsOO*_pbMkBr zAmckIUVQ!TM?E&q9%6ynYL6GB|8=5%lGI0&?q=uPPdruaUbt5c=5^h<+jd7Cw(cS_ z_)S!2aK)St>u%MkW}5P*M8YYBKi6z;-r6efOWt`13`6PTD-XRRyFcY*cSbjr-_@e& zE@Eeia(fF-cSiLG2XXp=sH(LnBuc%~`SbYiu)G|KK-+FvP57v-q~qrzEr|YHxtDx8 zPuojRp-JJDjXRKjyt}w`IdKYq&wf*_6x%=fc}!yTV$~2oBybMuUgYmE_xs*0I%^rN|c-ePiKZ_jHGclN`8anZ7u<(C3CU1>VrgLZ>ri?2X zy>Ww;mscF(A z*?mhRRQb--T@5W-cjF@5z545b^l=IoJ-6xM`Mm(&>cZ;?hCZmaIC~~Qi5H@;X`t5l z@t;DzO!|`O@BneDuccKm93P0I??A?xr#IP zJd&?ZFY&1er4IPMX#TAw;n@!kh@rnk0;dVH&~{_uld%BN8aDaZNxF^SL4XrH#IDHb z?hz=&3~7`0ylWYmY`Xg~@N#f!UdFx`+_P!1JKw3yxxd&XtEg|_-p2H>VG)#Xd*edz z#qi5ahp>@39HroDjx>NJolnf`MAVJe&G^X0lJa8WPSIjUrG~!AK>BNv6&1Q2s)mxT zGf>-2iX}NP4 z?;O@rfoZ?pU_tsXJtB<`4fhcQt}1oO)jSa6^xg4*==ZJb8zmcZ(R7rS?lARylI}4H zA@mvF(=TL`T(PpuODSNR(&i|?QLcIyHfV@1b6CjY`XKR(2mhtRGe1B;Tf!`G#zPc8 z(kRJG6IOAu1YL1sIflfUs?ezk9(t{u=!nQ?*N4X4Y07Fgm^f)_fKu}wnXNRx)7!=& zPBIQJ@x_IkosG?DX+A>Z{3Ih5A6)HG!bueWql-fNxVhs+TDo>yEXx82>e z9PXn#FL&s@ugkWYa>qKyS^C!|BKbIHk|T`TD!K{M9`V{SedE`MV0o^ke#P|_cVXxF z_z;QXvH0N%UE@utqv1f4z6dCo`-MslPh{&4d@# zsY76;*!;qCVYrSR>nyvue3wF*&HbrR6L1&MS8=%!2A>v4wc* zRW{8+vV`(t8+|Z9chWrcBOYg#ShW;?e4IiE`4NOWgq)0 za9%hUV3~2)5Hh}z-*R(h;S&K@S%9oJ>Lt?B`RA&gb@V%4^F#V!G?T|8C0WN;|Hl*k znhDo|XDp1wNL|1DJ4mRcLE**3qcC{hzy$jTx0;X-U!7+Ek^_%3w?wEz+8~avxuD?Q z+-?1275=-h>W6)7AktXAlFjJe>S6Ac=^+Nsh5)1;dhgP(T1b>E@7+~4qPE<;bqF#K z2Vig~$K?njriTO3)^<;M_492JVd3j-QiD>Qn2Pr6%01F+qa<6&G=2!<$PwCgo3`0e z@7`okEMIqZwaYwHD06kVpTdpbotBJ<7~zMA#hyX!Y|9Ej9LD6#|K>Oe%R>+!l#FGp z^Dfph$VndB_2z@MdTYhBA(D}`wM0B-z){P_Rc)L%`?nF2#mQpNw&~)d8H`A%W&)_+ zKxzWMrQ6Z)F7~n7FfzuZgvJZnqUFr+Mz3Bl-6!b{c{ zrg7q(sBM*bEEK&&qk-qK2#eC&-5ZLwE=J}fv#lA&)eo`y1^xj(uUoTL19mL7Ltn!W zmY$ITLa1Byb3JqCR6mNVWuWBl)3}z93B}HHtgLoj$w>*X-`P|OKsGyTN-N5XN94&rfAjsdy-ZT;&hrU6^#WNRo&j!K)OY#yX!f zajk+n8Ok|>e&?uf{|Mo2AOGpvtu^iF+E3U?9CPR*L++!!mo*~L_>o)y3iFoH<#qyQ^ZkW{8=Fb+%{eNulAaUg-AMkc)d?_uQ0Fc#F6xlX%ro0O zy^I&0H1c;pF7=`XqRdvQULiY67;pd+`FU7w@<3AR>(w)^NZ*JM0vpt{MTa%LJ$ZO4C6MZ{4l5&%h z&K1L%gVsNthV+*+1x@)i24y<*e_M)*iwChH(+x%2z`*hb%H<)(8Fyi;?JFyjF23t> z$HOo4{Q$#T=~dWb<&0ATkU#I)b+Fkd^0TtBiKwcg2fnOZ%`YF5sU32`#W2RvP?!nB zN<{+>4vx0ni=<;5w5ZzDbp<>~POrrg{bv~<`oS8R_Ms!PVcG#%Z0JU%w-NMmmku8; zkJUvSHZoNz?(Qyh83HhsQzh8Hu;Si0f!V=Aw$tBl^VP@U3Y$nz_r;gLw=I=39Yytc zQ$PkPLXL(emAL5Ef0!k*TnZ^`@l$wo^Q3- z+Fhg_X(@4kgnX*wCi&yH2n@6@AI>vzjGXb+o5?7D(oeNzm}OU^Dg@^#ck<4=r# zy7>cgUf@8|v29p~FhgqSs_yy}R@i&1apO4uK>H-N=T*670x&y+n;uOX6xB^qzNFQ2FLfH#q#kEatTMeU8KbScUE-0NXCR&>9CYU; ze|z8L=N&v71ZE#f_P6QEfi|D?xBO4oIpIhVvwQSgPEu0ZV+%e-zp@@VQjCs`SW28+ zS^dSu7G(t$4IwK@qg?Th1hJvKe@eH?;j)gN&Ln=;N%nS*o7kP|6+teHci4UbzvBnb zdW{aP7yR%Ym#lQIbOtM~@XN;!y~x=0Zk9-Ni2&rb(CL)+!MNu!j>pvp$wY+V{S*b9orO73c z%{m=vMNTA@tUX*+e;+1gtA)8&)QDS{vpbeu{jRu8uy|Qxe-G;n%bR1@y54p*5Ne9X z9sBR@Pw~|;XML9Ui2wU41OSGC&vCXs| zZ+^3&LWQlu6?-J(RKw;(A^jgrZCE*2E<((<_DWdVS|FB($Y>?! zWoB}Zd181@F*D1S`<@!zHl1jOE?8k3o$TUkATX7{bw+8NwBzEJz2j73^NNe zc;jiF;SRbt&ky~#o#N+=543K{x_(vrtlmTxRgwFQ>sW))-Me?&q)T1*%{y#uZD;38 z5x6N@u-bG@jimd|t}?PlF8PLnIn1yceg`fFr|*V>?EG4stT-VDWSj-Bl-nPWa-b>g z32K6meL|E#7LEq!<+y-Ty2RqYl%6 zrj~k`L(sSr8ocppFrQ6j z;`Q=C*+L~Q3l5`EsE6xtxj`n}L;@+jdi2C>iRu2Eav&FuqhL2txqxl$ZO z7)z0WENIKR)=`Ik_%QT;E#O212gK_j3p2mUmYkBpIfJ`~Zc%QrB2$!jbqk#~MX4x& zQLAp4V}*@dXX_%>o{PG7TqEtI1zG76k|x@w%gMza$8ViFJm392zJSV^Nbs|pEbvvd z$Ca6;OF60)t;n#q~S%#ZE4CVi64@D7h5?L@-Q?E)Uyri zvZ)-HQnUqPQN8gVx1u4;@NNBlP~+^TGq+6KJ_O!@(a&W$l;)1LizIJb87QB3eqmwh zn>X*|YB!DQ6u0#zs9yDh!^0&>Nl7|*1fW_%9h!011Qa_5M?Z5fjwb466uqtCJ7UJk zGmLz5)5c*7RM2qcB; z#zMC#9o^j&pODqTvkL3gCjlbm+BA=G(T*wA@-t;f4a$X*`S!`@>JZj9|L64$&-uCN zr_1o?V?5j2+hKVrDQt6eM`)Ifeva>+9+gbfvZPuD?dMx!+-I%FRc1O^Vo7#<@cz2A zfVR!&cYmSYEc&4+x%sJB94;NlGC&IAPR-0LsO;?MPsUN2T(=$!7(Ksxlk za$AT^lhH4<^!6%r24y_MD|1*+(?h=?HO^#qLlF^i{j}Br0f>2u>jLcXF$cSpIsucrE{o zhD?vD|NMr&^5Di&Xi z)yBl}lqTw`)MK_G948Md0O=l3WnV$yxfXX|Qd3E)CT zBY;;)=MiV&+?uyaAX|ok8|$p2@(t74ro86(_BSGHT*=C-&8t**4vcRy)7Elw1bsJ= zI-)9vks~w*);`xc?~=JNG>Cq+_+K+{@25yE6<46*vLx-I+G4qcAe^CEYJXXp>+yYV zbaHY64kyw$Mj+P}y*x2=Sz)+CX>DM?2!v6Qt#`Rqth`gDEl`C_rxIsLDu|s&m6*d@ zf5!U45;0JIMZrZeEatykiWg!Y`O3m^9+owEG#U(>q8FCpyd-1->rTv zPV`i%6piM7bT!T|z~DItCR<5W7n0Vz35d{J42P#O3Qv|68D;7Jy2Z`M!g4wKW6t~c zw?M}yO{`hHYv}9g*$_o2)lfqts%yGAx4JH=2fOaRLs6y-ac>+eaUgg^c{a_j_;N~h z;Exp6g;YBbf=KMy0F1t5A$32kd|QRw=ni;YdLm$x@Vpst0N+W0FOxx26= zv`gc(%A)E?#}%k&q+P)!bqh`2b;Av>f1l#L$? zeUz%a$6l#qqgHwprR}?3h7(9c{b^Wsrh7FaVD5=*wc{KveEOx|o-N70x9w@1jmYSe z%e;pM*YGX29)I=fGx>|3yu5tWUw_@#)QpBzvDnpY4cC0@mY83wXB9P`jg=*w@ORw< z=~v<-AFPBpj6YzMcXugWZE*BU{|q;=e#M1U=L3!Kw0NOAeujJQ(6{y13-h(Kv|_}Y z7H`3=P-aU3dg<#`*H1+wi~UVZ5xuU2CR5&cp>gDGi1qx=7|jqeX>91l=-QP#zT(5m`m=@9HizZ@U$e zgQip4DT_rlIpr9KF}K>^SXiW8zPt^`v!Qh(8u{(wy9Q}{!LgpZvh4dt?y6gFI%vl8 zM09ZeNI(y2Q;JlV-}jI^l~O$Grxbqq=aJCRHidhRnrNnhXPA$<(R1I=ug0_6RU7 z@>j_(o`4&STM^FIgdK10dDd>6fSm2WONo!;H^vj zCNhv+9%QH!Svuk%Bi6I9zV$b|ABD$SCqmKVP8Bcp==XjX-4k$y67jX8)DYK~4T!2< z6?4Hv2qU|=p|gKgP5~t4m$?S6@>C2d1?yzwqr8YX6xGnx$xGDHu;#1RfL(NTr$FL#`Ecp8zpe?~ z9Zq7iG4Zo_cGcbhjX!x|k%#MR|E2{L3pV^}(sGiIbmx8BWCV*5QqCous8J7sagNLspKXwlKA8o0`_0 zL&Np`A)U)SUNs7Kj8(-I*nI7LreWj0E0H6)da0RT>_Q7iN`Y9SgOhvM5ck@n)bz4J zj3mzIZ(d!bfl)dFXh;s+lL@FR^V?Cugq znqEyQ?1P`?=7tFcvIhbkHoP#p?03w}2j|C+^0Wj+2v1s{{7}N2;E)dGN@&}5y+53I zH=1ouO?9g;G=j31a@91ak=men(5&|^+ixr0BPZv5SpCIvzp-=8>s?|4U`9nj$!DX( z2@lqM$+l2Vg?^#-POQ(8vy8T!)bcHOdqaB}{@6dnP}{nZ;dXWX2mTKbHt3D7jLJKU ztzL56zXw1=LQuTHi@(DkROH}2m)d!r1W{C;1U3Fu+#kCm^0AKwqNxr)2XJzim$jnX#w zF1PztvMH36I_7$M9`qSk2Xx6x7(VSX>TsOmH(SgH zvdV*YWUo@D)#xE+6}84zh{4bEILzi$){LtnU-EBa8OYRTd3uk4CNoRJ(nPPsGmm-c zp1jFF{oPKt?pd=^`NDQ8_=V-=P0@R62ww~j^ooK)1IGDyH5lr%#7);p}p!1RkhKuoP)X1Bd`pAd9FU<9V|hEzw-0tFoEbyB54T zmD;e{uL&3^T*W=~DH=8O+$RZlsW_sA$yIP(Cm?$1NvwqeL4aofYM?Z&=2IJf#eEMs zv(J_$U1`*Uahh2U>tXY>^VgPF`^yQWr{H@o*+ho%mS5{G^D8ZVU%NSTR=X}I3IaCv!I0XNGY3dOG%)Ro&*8AXn;_bimT^?ypbLfZNa%v3U8*LR8e_E3y<6{Koay@WmVN$r0UM^t&t$8 zEAQ{DG>kuGtaieR#PTSvdq^<lbATveaO9A5za4~Ph`N`W6 zO2cx8sC2-x?U0MiK^D=gvRwwKUPV-`!8k!PqOp^tr(IWuMU``=p{wFT5+%ZlYsYQ$G`PAxg986_IC<2pov zo6{&`MxzWTc!4tN8Az%S1Dg!YO0R`p`QOq^xq9(?4{!X+*SY-nAu~N$u)MA=tpny1 zFkT6rQ~fNuN_`aM&Cx(I+^cbHYbieLYV8Qz+^znuEWtmQH)OR>e8ClO9uef5Xh5m8 zX@#d>m(vrES93#D7l|pwGuL)ZEEj#8Vx-zoj6Z&X51V3(2$@M4dG>|o?q#AWV@|lt zv%+5W%4R0|5&-A}Bh4!&K0Il8_hJA2uU?~WwR_vd{gR3by@5jA1<%a?h{pQ<6^;E) zO0{2TyyyrZZ;&l~|C@s<*#}WsS=lKaW@6zPA>O?4h_sVp?xy$P!OH@jtdfHWpsn4! zE{ zHoFhc$yjWJS3r{&vH@9Br^9l?23elhOc`_gdUN~&DeU114gl~2t8)VY)pBNMAEVZA z=A1X|wc<&90FlSS_ID$FV*l}y@$qGZ2VUi2&3-}Qt~8W7Dy}?QRaIptlc8u-wT&Cs z3l44qV&ldTcXw7Q?^<^2T#$%JS5BZBjd-5JKB03!k5vM)b|y8)B_$3@tE>hb5-x9cALb0fd{pbYCG zBO;Ej8L_gmF8eDr0MG|+J4})TCDq*M0B}iP)xaV=5Ew%1r1-DvlcUIuJOhLCDOeZd zI;_hx>UF0U)Wh)O2$zXA`$LKS)zv|6Aw|p_H-}P&dlGA8`yR4In07h&(h&7sgkiRj8l(k_@(?vbucWME!)iCa^Kgd@8}{>2I#gb%3Qn0YWNpB7!}TyJ{gQsMJF?O$(@O4fHHE z(Rfqb=aSwU6NeVj(n3;41U#C=Zh*6z+ zmtd?$tja9eSyoW2V8oa1gvud9a#~jc@XF`7xJsQ7sPz|RQy^nW>9!|(jSZ-QLIwDN zk;TS4ca?_7%sON$a&hV0+EC$2+Kk|&svHu(sL^vUWTLMZyt)?ya+jno1KRTZoRjh z%BkeU%UXGK1oU80dw&)pCuxXw@=3z662U|%3vtShPqNbQ znd~=-XF_wYd^hF=^{@JmVoAfx4OW;o42BFkdw5XVxdR_t2q!p8ruk6oXXg7gB`DG^ zsd;Vbpp||}p$X%O*jwTe3l2)-Z#N+34TUx7h#h|!j~Rw@I`a_`98%i z-Fppm=N3Z7=+1EeP;H*z$T~ucA}~N9Q86)t@LEDi5Vc;dxVU(Gtq0KPy8vymSQG0p zhcDs~Y`%1x=PfgfTAP%x%6t2JQ=R(eFT+TdGxH-Xl~R)OPUx)$VD*>PkF#V2wM*tV z8V8fG^9!=7#iEg;CG26_fj7f$&~5)L%PtcnJP>oa@5hLMqg{;;+qn%T1Qh1v=Gw{7 zc%##_?Lq(BkVXhX?19R_dGb>NJ-W2v1CTchU_LpKhyTc_tTPL%n|}!8CAb?VL}*2v zsx$0;nY}h2tY{G4h@7_OE3T++=!M=j>jqg)X|#~7Q^)IHOvUVD6+)kt$!HdOO4}g= z_nJ+7r^Xk^ABoL`VhU6E_^LTZiB1za4D zqM@awSZZfJHXDwgKB_obp0ZqUTF=(@Su;rQ5ANU7bIhbmJB57$B zD2WS(Pg(D87SC{(iiUYUEWBR2U#m~H+A<@*+PlNtvmdLEVKR2qPD}}Hy4NUs4m5P{ zui-8kxe`iOWBiqoq47Em{?9{~I`$zjaEE}lHUm5`acVbi+E_V^SgJtUGDw1D4I7gx-zS{8R#ob{cff&A$OkiLX%Com(wCQ8HdKE(X8J6S)XU^Eh>#4EP%kK`AY z6ugDe;(Ft2?cU$3yX{(QG^aRX_Mt1xH38UW;G?R7HB8EW>ysPsI?fxHb^qqD#2*`P z>C^vLu6r>b6(8h!Hw0~#3u>1Gh_$n`8zb-~rP{f84HKvzfi26+bwFFhOCc+yIk%x2 zC#N$iIjfv%Mm#&BYu!P!yW&GcN}eg}ZBQLPxfG!geQBw-(cS z^J`jAiYz*uxvIfCjHXvp+!h$*t{on6Vak)nfeAzJ+nO!Cpho_P!8i{V=_$u?`0kv5 z=x+|k#p*gcJFkHr>0JHHEAkDWf10pM#XPQ$&CJc#wnh0;1}1{`6jkNa5_Pk`Ol^Yx zyJTE^)(t&ArOh*FA?RCs;+id*`nQ= zH|+)Z`B&wp%eWjmAIUoJ_}*5u)YZ}g-c!h)8pm-7QX*2`cez$| z03lEROWa{;EWGFXz^Q|rl#s#p*&Eatd#V>;zFn1it1IWu|crx~RM01O>q|B`Y zRjM>r`uM8ro`p{Bo)?KF@bNo$YJw=_mWjq4VMk(w11fNlmN5fCyB-r=XrHaCo!`aQZ|Ucc?vsQkKl2AiKH zI_fMszdA$al`bD!jTDvk0gLvgP{mD*Jb~vr-+4ZbuDLSqK4PMOuSxQG!Q8bZ|h(nZ}+EGciMY z#1aC@Vp#0a^;h#Dfpz=4LHklA1flHfdc+1&8E>{L!Y!3Q+HU_*BM<@1?Z0X=4clDa z6Q|i*Di~BD7LAaygHrPnvP$Cdm@4Z9`p?RTu`p@3*aJ~k1_oI4eSCbfZO|bzL!i-b z7i3rQ04UeFJ_nWTh>X@=C6-6HORT`<tUI=28Ps(Dr3n5qVKPST&%u1Hp-B*b=9E@^1k`cT;_iyY4vK zGYJ49(QHR?IRXNTkiL_8pf_VysKc#jJ~T8$uRLNk;U<}}`W|6@qnx<80ZmToTd{}3 zsw-Su4XcLo!F(kl?3tWj&o8-AXrL0ugf3<_S-IaN9{&$xB3#kF>n`lQ^pV}U zCsQ8C4o1y&WaFY~NluhuB&fzvDx@X4I3L{;Wn%nTz2~#a?Uk*PWA&CLW%Hftm! z^J$ySK&&52>Kjnw#59hGjJCda?f9f^1jHwRY*$b=Z_2%syK{u5ty#0W*$g_3ZhM{5 zZJVkKfmWd59HR0+48RtB_xj(>-MY?4iady*4+t7Pfn#rdtU>=}a?DDV`>EhR zaUEZsq_MJ^u5g=S$}*U)h#{XC#dLiluLcLPHiaQJLP{w?-rc*Y=R+pY!2xe@At>Q- zhyTpzyhuz+_=7u@DgsJ=(81Eyjs?Rr>tto1dC-APx~)BKf0_@<)UmjrE$Y5{sHMe@ zdCO}4AKpN3l-U%w_iYdLWn{ZSvwzX%`4y!Ox6E4i!F1`S%N`O0UjK1kpot@gLF+yD zX0v)fQT%9Ir^Bg-InCs0-hn>MDEhZxYe2alR7{}RSZlo?zh84h0FqGb7cr#{I?HP_%k$td2D%AY^YFDflGblwK2#hm6(09o|9z%EB? ze~dFg+0?u$w{-YJ%;^Mv%7ZHN?42Mh^sD3JKU?fKz960k}1?hKJHO{2sxhs zgrhXl$N{uY_2OQ5hlnxZ7>vAOJ0o|JAtLUiMZ$5+vBUd(&$v`DwWDw$w zM*Dtkw~^la(5G)+nsL49HPRw+!8?KT>6*o-k(W@<7;7Z%l%pOudB{iIq<+;9{24b~{*cXZ`DSabIX z4NQS(!XB~M#5gla$I>HOiJpbppNmM5nlQiekz9cV_!mS#c<$N57NmX`5 z=xcH+2d>hiohK(JIF)W#+8{VD0m-Ql2$7x(!`l+ra^L1t+kee^-qwX9r-nU^j*^}muu%M6-aVm!U)8v;V%TV zvLXa%!YkYp8ny0v%Y!W(jo&??2Hb6J`605!A4X7X9wT*VFTA_&E^lB`JiB?|G z7j>K5zA>&-4TcZ#gM+iG`9(lj2bO0$D8v4f1{fl$v%(_jhA;o;+ z6=xw(+v#a0B98V{cnhw60W%j}DLphG<+RXS;>jqcx@&SEjq0uEOs4jh`3S=c;CW9T zS{OH8(Oe@Li_|W;Qa0~{KtY4<+_`g~z{ozX0ygO*Cje0d{<7!tvLxgP4U8a& zg+l8GanZY94nlHxH*)UjS9!$d?B`_~*)5 z)Q=xO9))KCZ3nh7J}i&q#`mV~9ZyI<%}v;MFu#I>0$nrlc79`LESXEjG9o3OH_#MNHtp`9NkmHvTw9{d?}@L7fWGH-f~1Axp`}-V6*skMQsdPae31-{w*3($W&( zSSIOv_p#(?0f=BCKe}cXzc&p7vU;AL&|Z}Lcqopka9z&N8uu0`=D-+fPqU*=;r6@J zqsZRrVldZrez5+@lc$H9Af_lWa3U32Hs<=zWRO+p<`hGEV@{CafwCo`;*!wEbG*iY(68#Y@2_I1VsIBI6Fbt$~R{dDjQjfZ9?mIb>U~?48%Q z%#%?NFc}rHf;QS-V_>-U`7qbYix_gfx4&vhW;8T0m4E=v1Nc5JMSCin!s(sq-)Bf6 zpv=X@nlFr~j;7}6zRJcgY?f*&1a^gy*Q>xNNg&SxqQ3d^eZYey0?B@RsH>fZUkd2{ zp(-ATr3X?yVR;2x_VBdYi$yC84D^SYAGt zFtBb380WC|Ubk!8G>9Rs$J)~S{8Za1g83wpKgf^;AZH?PXUMt}7DS-?ev&}aFAN?1 z1I*2VGYx^^x)#hPb_aE>Py6pNXK&^V3@eH2B1p8U$J7&}iIOY=2Lex0`oKj0)7qz8 zQMxKNIWB(0f^v|Oh{qR(IUhTwa2RBomW1L`KF*Ka@mWi4ZV6c+ptisV1Wfr*tr4DJ zWg$x`?S~H^Hf&QHlarJ4!8Bs-du3-^HR7r-qfBv5QAuw-(EJdBzLIqCK=U2MP0Yfj z#4Tv_EFYyxPx)rG1#hf6?50;qob5ZS;Me01(YMn>)|7uaJGlAe{?EdNorC2~(?Qq= z)kp~#CIy^65Kt=&Eo;2(F>YbC%(lM&>s)Xh0wAI90! zClYn$9*b6Obuww_>f&|7whSU7BG!V+Lq^(9b113<<`po1DF8-0dU1YD(4Jq$mS$ty zHlyP4MGa*I_)TKKw_I^NCs2G-{Tc*{2kw`1- zH;aB`u`S`_L`=vUJ9)}O4h%st7dJIE;b$7EzO@=<4Yvcv6fEo5kt7V_{f(^;Bk#*N zq3^HogiTj~5!;ku8Mj?9Wc$sN>RJkQnksB=Q4zd8Tt^_LNb=Sq!WxE#&n{sP#^BaZ z5Sf|yRB8Dlr$o1jXSibcr z3p7>d=jYc&J!r&VeLK<;`61w=9@2qM3ixobzgqD^78u-&)o>5lI7UkQK9L(z>y2I{ z<6}r9os2)YX@&VQ`}X<98Cbb>=1~X0D>*qUuMB4snf$3YH)@kjSI-zxZyxqoPM-i} zF{h$;5`VFaZbV76lP?(Y5xsmlx7T4e0A&Tws?~#?<8{P;YOe=FUd>w?2SN_xkmjEA zigSZYZA)E@1y_Vc-^oT|N+aF&Oj7GtQeAHhzXh|nPQw9-u|WX04UGExD%_;5mno^&3}LpnE)z6KpiQ7{f+ z?R{?HiqWQ(HDk*48!NVqD@NV2va+4_RgPHpvEx*j&x&=qbR2s#(lFLHs}#4tTWS(R z5~c3OeKmL#yRtR^JRJW(?|~h6WCV1z2(eC{Pyw97fff#OKy@SbrTtN(-uLV{oQZF* zp$$GNdr19snhD@E*i`ZwIHS&eId^x{ZMvJ{{Qe(VXB`#Q_W%7s6bukiLPAh!B$SpE zB?P1yIus;_u7QC86bxEP1qlg(p}PkZ0cq*(ju}K?h+*K_-0*&X>sjkw?;qC%`<%1) zr{AwF04mBLVDOp?7ANfVhhN-!Um1$^o6o^c6f_A)sxO{$4#u3?GRp~ct1q$Zj ztXvMxpzP&Rado`KF6Bx+KN#_Daq)_o6mxXqx^{z^&FF(FEn(kxbOX&yHiewC7=(IG zFMVlv!XDky`6GG^(E|k9*MW!r?-UcUIQ_mW-?9&YEB?i%y}iAlPm9^U?|%%U?rwS* zqti6n#7ATk>L6e5(qmrk?tT14#@Ldv$H(KnVS*v6QV$+lX|~%D`utKUmy~E%m2Oo& z>x{52zC0%Q?dA9}!`U*kNLa44diRrokD{G%tiZPJEIndAdlZ2VgTba*lo)6nFOStd z;Qa4(Jp*a=>~k|H0!$OKlgTJ>B)Mxf_TcxNDiwpcoI(m;PJ*@w2qb#j<#WS}Ta(2< zkKb2oSb7fH75m9*a?kX75t&OM)cRt%Q~9Hn(vw9U8qUPdGmTBOuBv zPZ~80jPsXB%&JoE=dt`~0HvktGGukTKTZaIMw)Kb(@6;Sh?#;B(Z~PB8rN-(@KsKx zC91i)`BB5`A2ba{x)sHP-(*l*e5eW zZm0yb#hP3_e$4Nt4a(`VO;S1ajruX56J=F8mnbn-L)P9Q5YbPPb)Cpx+oW{LZ=oq* zsyBYNb%`EhC&JT7(f;XwEzw-V`__BHD#*uF6e zWb6bGSGLo|4q_Oi+`HlG+U_s;&%aPOaM4DytZf6vF4zFfX9h!%$CO zb-WL-=XAra3UJeLOBsAzCy=GBmdiAxgUZj1?7Ow9=@HC)z-ig5;x-8Y{KybUMnD?0aNpXY2YnDk4eH6y$5e)dfK4Y*IK059W#MMotU90b^v% z<0{04)<_Sa?u=f+4@o8B=!Z!#+ZGRoevu`4^fUgY|4pu5&J399k1rMkBj7(Hf8>V50xYAcOcrtWs9Q zy60v8*yh3C2yyQ9M7zX=Ew7re?Luepdv#7sH!s+3MSHXq+4=74f{;&Z z{-{?X1>-42xQ94=JpUnFo9N#dfb79Ba$+5|2G!8`xh&{YN!5XIRdH~zJu-OSdr0An z93cfNQ&(NBlx?Yl`Q=66T9^5xlf~lXf3Mi7gkRAndujQ1ZB6crr`;@GOdi({48OX`+l!!zQWTGU+ zrQ7w_0SRHzbMJh-s(s!GDWseJ-&2VH91#Z^?jymel9^DLH}98IolWcR60 zdT@Kvr9yo7hl4u9^0fa7Vw43Fl`-^JBNS$mOegG7H88|&)$`>W-yVp}Y=tADOQR8! zcRkEb%aa@?k|t3)+NN126DQNs)5D334SVNGJfGhD&vpsfR`6e^h@|N6+YK%A*~6N) z;z_ZAAPN5dT`m?mn%WXY^RbIv^^SI$ojq07zinajIEs5;BtGRVOXe)0p_ z7nD4byUt?8YW@oj#E&@=HeD!#vC{|F{dE>{)#Zb4YVw(=uwVXg0rx5E>b5qXEuT8pm66FS5(F+0U?nBdF7`Y9*8f6L~MCeGsz-c|CszD zwWDqwr6}G$)ZP?QeOz~Q02E2u7Tt3)+deaQ9#waf)jpxknq-Y^9iFc*K$)r^O*fQV zHhTh#mH&vE0q7}OlcbAV;mCV?FkXc9M^>(TQl>x&->0_czhNf$y6x}sfdpU1rtHfelvEbnpV?~nGw*qDv zpG3+y8J|sKQ2yYUStbkvm4<=c`s|cmq3{3hOX2PDR+T7wOeGXGP!9DlJSg-X#Mo;2+I<2UAZmOs2Fo|xR4Hxw z$^T??*ds@%5-3t;Uvz|TtDAi&47qKVm{`+}Xl9jT*z{I7ULH2sp2AB zX{l)|bM5)m;3qBRl3 z2fW1U+-d@7G&meMM_yct=Mv#k0LsdKOXK6;7{u℘8ox53qi-5z?Z(4tWkyqZ7MH zlXT(*uo+WR4O>8?kjp8qP_lz@^iNivH6QtYs|H(%_7nxA7XKO?Wj%ghv4)kvZt~tO zwD<4}2cTJm&A;r@shVH;&$4p>XGn3hX*$ZX@fY3dW1GN7RfU^U&sJE$jBO@`(qP8@ zc?l^7kdAJi5X5XcM1t zy8#H=t#M9G14siN8sy36_2(7t;bfwGZJW4{o)>IgTHIn^)$2786Vv?(O!72aBYzeq z<8zd0hT1ik*PB6eePAX}wB<>|(-0nAvyss*`22=%u5O;3JhasA2_y=CA{KJXL zUOO-X^_!hyeVb6vHD;PNZM>uBJ(0|}H-`Vd_uahsI*fl>WhNq>_RkW_W}{!PIc;P0 zwzSNy*b5{I`3CWSa`f;XSa|Pu(8lkv#%sN@slxQG*}OLduw6Q8eaaW}>l6IGf?*H) z7GG+4=;1j0#P-wl;m_T6ruV&FiM8~S;zmw7(z)08H~ff)z{phAFV5NlU127xN}y{- zeVx_v(9XqCLGRoaR*Rydanwe7q_eJ$^s`@=q2DN^#rmrPEo)7^o~cGo$hUUK&2p6+ zabHHh=4jbxaN8v=Zm?I8l88rx*gx+X)s;DrYoCs>j*S^Mx3n-}7yla13wXrif8g1L zoP)A;b`IX-=+T5mYwupxi+6FE)uk>RFIbyXO@QxZ9d;SPVPn;;N>PC4LfDTnW1yZE zY(UmweF&}ia)Z^D=7Yn*%Hxc&-{SLQALv*-rv3dh_DqelXO~qqlR8m$cCoOOcKBVEK821ybTq?%0#^p=NES+3c4{Tb`db{$?9Cf{H2}Ec=hHS_Hq!;5ODRa_ zLdm8QsLt@!eMZN~J{E_BsKmU5>>`3`D64}(u}R?xMyku-!6kl3Ai76Pfx>U!4ZwLF zIP-_&ev=4G5T6(+jPbOq1P^`Ku`%cpnmPqwMWmDbvyBw9=4xnoC!m=vx_f>-l+4ef zJqVYj+z+PNltgM(DR}qu6`0^pk^SS~XXcL>r62unAtX1k+S((+BHF^Dn|+_gE`ahh zm{Vq60rEQYoiJtrKE(!;{Qw#a3X5wXJFjD31?3=9(orrW1Pq;L3_d^MGVo9CF|#ta zizu(jR)dAEpSeCM8rhM*=#Nw}n$pi;mLedNyqh*sJB>D-SNnMvNvX{7DsPKyyWdjD zzrLZb4*yI2e>xjsq>KG&sXkqB=EnXfJG{$G)rMEN>h#HpI7IB~DS!G85VC1~*Y047 z-hs#A{NaSEipVOyGG%JLR>t?x&B3T%<#e#|>X^uVjG9TPHb4XK<_fFaOvBJ5#m3Xb z`~<)unjt%rcYamBM8Qn+HGwwUyUzL)d;gG%1D=lSk2!06^Hd7?Bw{F$n;;}~ucSk& zvLpYEqn{SD)L!O*F7-(hhZEK_84Mw(IC4=Sz^EtrPxyxyy zy1$2iyfC}sD_bqyPfwyQ!i>s3mmLQTt?YX3Y^g?On-d)86GrW|#@^`wC8Y+)Vae%Z zGm8bcg+MjE({Jz>@P6R)0EI_o3y>>$7;FxF@?ukX-NtGw|14j5{RY0gJ50Y;jp6<6 z=+#CMpL3T*{Y3u$OpO7W8vS|gfLL8t17OPD@py|qbDiE1`V4q^c3SV}nj36~y?OWn zjmhi3O0PNH&+VY^Vz)I{$U~3l-m2sf6E0ydHMoX`e?eDmE6pdg&O^5%v`$B31oA}+ z6k8SlqVRwYHobq}b$RlhyI?z*3^7<#a`R1m0fcF;KC51(>fpod#0Kx1A?u9X4$hoX z?7j^R)M8ivRro(`{K3Dy>kwID03gC4^hT41R_fv4;FrvQgAUF7Ox-75x1Bmbh953h z9uL4ql0hV*T_~w!`$#KBniWbJ7*#%Ii!Eu{Kc5H~%2wnmQ3mY1(?;oQR?9?%_uLGV z{f^d5xFy1Lo;3~xzE2(mG(AE7_uM-q_z5QRs)ipef62fnaa=9&CpFc*gJGj&= z{`RtrqOuas%}hCIZainvUvBOcjvG2WUJpDfApznU$v<)Cc_6w788=L*t1i<&dU; zohHO}M@Iqe%4mTOnADhwe4N_&c=Z5NhknbnuSW7>O@YYUm5|U=o<iV?)X(8dUf<4e}k)a>qVK=$QWmH(mt7VaEv}w<| zDs+NPuqqduyjW>)Hi-LFJw(dvtKoz`_#)yomG}1T`O`^A|D$>4*!Xz(zZ!ywE60SU z8;)k>yWMN-;ZK6K9L+NTz}ScE%PHadO9`472Y$2ZvbT4`8w$1+L z6q!J6trmwA831TDmf+O?v%0bd3^1A_US93LCIoirDZb!6sPThlZ#gbkbxharPHE=0 z|AnGWgrEhc#E2K+hAh5qZVnkFw3dr-ttAMtBj|ULe!{%GULqbBtCp!K{2rCBQ$ffeFqJh-5E~+mb zgL12)Vt%HrrSrjcjwR;Gvwo#V(L1X{XneR)7yFI)8(AAw=fNkT9;~pjl`a2-jaWd} zjAnkMWh?~$IvK+pZH91zwPkQva7$OGpa`*phqunAvqx=9h{78HiGLjRE#K;({$cAf zs|`{KnZXte zkz;?`S z<@qWV*Ok{6aR}(}9DerJ6#%?$$f?~GDX)o5q{lUFT>xdfTkK?W>^AtUi>z`hgM;!4@_1C5xXE1+lS^>joO(z-q5iA>d_}v0 zL+%D+-navLh_AjpJh;pthLWK`PmdP7srJFOp|Lq})y}ZNnhNDzf`N5y^3eK8(<8V@ ztcZ=fT^UKUVs-{Pvu95n4?tajBNy>*eiz{}Yyw{elZrp9T;>ssd;jv!Ghl!3&d;`s zQ)57CHvi2*An{3!v#&xt0N#ftd~zW2VrGbA;(XIj`%v+ffzIZNw0k63>5s*&?B+pA z{b32?kl)h*J2wkUB^(R&aznwp()}boHc_76iLQI|Ed0S;$|{zH2|#5rto6*N;nDxO zUUjPffKPhFyO`?fWyuDT+;~a-my-%;dN$28M~W&QWQ!cm9Uh`-o9uVYjmnE_oUWCD z<+)XX4Q~6`JY$G@7%uT8XOK5{G|xGA^!%g+sMLr{oH-1v?@qSQwHX*GyH2hWvEi1N z&kQ>oA-4o+fhdNZig8Y-%h5-_RV=No_r!<(kK*j<%*8Sp?^Hu$Ch7qpn4MbPhOSu{ zjic}#>l9U~`6goj&EtZtM5#gg6sBCwoZb>6Us!Otk+6mH%d~I4gSh`+WmbU``cfgi zfdP%u)4C3reT3uDPmg)){|cvk5!0hjicU_hhz(?e(*mv#sR0=HogpJ9TL49;7k6Ko zHNE;*S|Ij~RpGVL8q%Wo*s!Qnx%GL=>Ze{?u#@dvYRYp_NQ1o@WE|+np2^wCvGCLUcv`vv@<&7s`}&YU`B=MHhDfDP@f4boyy0*EU~Tt#=Wag z{g~!x#;yZle4fR=BmpUl%x%gsVkgLf2-i~JBjB|>Vu|P&d~1O`A(QdU29)zdLgiXl za)MR3N~C60{$7K6(ex!oJNCl(?#E)kCxJ2)$h``tyq9k*E-umy&(F6{+iBCTB`=dDt$;P6H4M0Lry*|C%BU%m)f@e7F@7f*Dh= zoWfni6kyRMM^EWKUd>z$1PyQx=x)v3gV(05W?PNa0x2Q~SMm#*Ud;&G%Q#q-O0Bxq+zCKU(SLd#KIs09R)}D|Kq4Te(;!LVoiaiGm=gWUhcT&AT1QW1 zmv4)rN;m`H;0(@m`A|p4x^u>5k2y3S&Y&88^mnur9@{_DCEy4tT+jNPk@cl(sfC4; zdC!#SKmFWmK{dV)O9}g1>UH<&0=t5pgG&;<5q_8j>CY-Z=H9s?q)IRIczM#b28;rO zc*7Q>$58H~iN07tmE){Zj8e7}ms#1hYif`gE=w_U{W;93lzXzP+4#(7>6g3I{%j8z z*f9Y&OTa?bbe5fO>c?-+U3yDEtrcduBz$csNbHB8GVY{z0{`I=w&U zN+WwpxQ8nDgkfI2Q3$kZaIa@7U!LB#>7%lg=ZLJyGPXw-)@3#gVqYpynb91Z(E*cu zn&yZ)KmWxhSG>bi0w{C%;isgOABPJT#12aAJo6isHAz?MyAOUmRrBkd^GHy`w)-cV zbl%Y~sZ~B$3@3FswkVwwlAdq;{pye=Yid&C_OPt-vVBxHeR6itezxQ0$@6Z4A)qxY z^?^C|UVgJ$70ONsGKv0-IxCP|WQ%LFPX^j;|t?8ZV7sQIlF? zXWKOC+y&pj~&bIo6v~b|VDvL*(I^R#Hsp{JC zB9o|yj)>^2Uo%Iv#E-7AcsyZ$_5Od5z%!lxmM=_echtwW7spb&B{(PY3jKG}(1)Am z=h9u|5KpR>!XC$UG1mQ@bQE6Sd7p!Xrq*0$jiy&(Lr*eH zmoG4T!kS|hkxgC3A~fx($Q(~}&=KxAS7w(xGK z5(pz!UR=YTqQF^gLBp=*_cHC;_e)uA=H-k(6V^d!QI@NmNghF*065OZAVlTl&Rd4m z%i!$!1~9EBPrAr?quMeU%xYAy??+v4G*0(f-LqBptOGX^P*zwpg3BQO-nPUFNRL2l z!>=B6kx3ujaCe{lw7A-Gq>{EmjH+p5mf7~lC#TUP-}S`L;06eR18CZ&p;;;^pa0|G zh^j{bR)++3c5|-=XwJn!D532(XE_~7CO+oao4TYxu-$Q}xqGOLJZOJOFjc7q%`3v8 zgg@>TCJG2)9>trALzg2}^*qB&OyM#oaZ#^8zaBxee0-?gq<@<|m0f9TR<|1G7;E`eS+y%n^ZAFu zmxQuhb*uo|9bSD5K=!A?Kp5erD!$$i{0z;Udm;KjiRAY?563r>I%N9Lw{|dZL#+1q z!a!x~m-Sbh(tL%jcPcy5r_HvCu+oG|J6pTa&0R@Et04D?F=sh+dwO?(7tqQ=ijAnz zw((Q-3q*tVCcJtc`G}D2@sl`gnu7qZe!+Zy`b%9T1!M4jgX7=tp6q-I`mUK70S+h= z?6;Kn>W?iz<+OzW7`tg}4vUBTOSHRqxZme{(Iq=(AinJaw>c zS!!gd9s)foBAdidGq;)F>#(|a=hn9`*>^(=7=I%H3C#|mKrT5JkR~|(L3b|$t2iN4~UNP)7_*n$6T|(`)@w$0T-;o*2P%_{y z$R6(F7qQt1laz0j;}qyj`+h$0B5q@7`_8fo)9O&Pbbq?pkrL?iI4xZa68JZ@3#tRu zeZ)?Lb=Wquw0CJAXtXbPk#`*~`QH(qJL0*YD@hNZ<5V&w*vv)h==Ex1m^6oPg3yE< zCaUZJT~>-_*)0|H%bNDzcRTgZptJlbzkm<+Rw--pFf$M9P;LMEtqXtgXuM`Osc5F~3aBU@U5(G6 zWEbP&hff#fhIzeqnObwU+p6sl-q;|!zb=^oJ<8{lQ>C-u<0Vt zz|BV1Otr{C^`#>P|D%O?FqSu!B17pcm;Q%6k}$qF#9Zk8eMQ)>#UpDaBlHWLe!J^U z?jo)xR{WkRH~_Jr(CVY^+s6eeI3eG-m7<1cFO92OMQ^x>K!xJhr?&m?fG!~Titr*pz_ScC5lK>)zD*T_w}D z=OSD@Enmdd%l$mDPC7=K!^?;OjsFA{B6}}H%U!l;l(d$LgeDJv?V7as5?ai?jZLBU z*@MAZJv#E5vB~vt$9NZLvoM(Pw9Ch2KdqEE6h8Vy*4$mRYHfX@09MeqcwaA91>nn9 ziTpbb3q=`PxeSzAT%KqR+x@x$gYUtxd6aa>2ya5+Cag=+OdbIk-IGA5R%`EgILHvX zxa$Qi&QTMzQq@!S&QGqvH>+8k4kpi6m3Q0Pi@?Y$ZAM1vloO~wrz9gAP%5y)UGm2F ze;T5KlD-Pw$oTbo7+iLKME?H)U8h|uvN<>mWHizV`g zP@HPM)hA@#@hNx@jr!bQ)nj&O7-99s(9p09T{Q1Bx8()>XvPuQpB~b8aT0mxwCGt) ze0cdL)z7AXT*9rK9JGOd)gdLIu_^UI8|of|e({EY<3TI9-eTqFNbYM+HYtN#X|t?@ zLSC%P)RBh~TeMDnzNsc1C2CBo5W`H>wvO9{+j4Rbn4yo#ulCOibMmVMDp;)+GfUo4 z0+WD|>t?W%8Z$zh6jP)~IdrWxt0m`4UizZ);m-lSc_1kxo*neA#7!BYLGzZh&{v-? zi~k6{z_ARQYcmmjYXX7?;Q=ALoy_~nZOVOL*o<~px3_DDC$p=q0w3sT-U7y5(qM=N3e#}rpR%OTFg1|Ri)xve;UZkGwsh|Wr zrCqM841i#28By$mdlhPi4}40jwLkYtAUDF^b5BC8CKzJkM{R*v7E_-2M88V4cT3a3 zB9oL4nLP|YS#RafKGo3(&5e8p9MDO2o#&y*sl~5 z!`%gu`-v03%Lu#{SJOQvo%pm5-xbKPLq7kxg5cKjx@g==w0}=DE7+qe)__hII@o7v z3~~)HF&WQ_IZQR?=(#_7eiba!;xkV;=!VOsnT!f*Qzc*jvJ%8uU$%U~}sDtr9ubS0Hm?nxRN2J@0!*eQZaDCTvJj8M?uNd(w-E5`) zHLXX_ghco{Y{}{8lI3^}aub}9)AIdor4q%URcrp^2NidX;$1+)@6z|p|CTdEDVU^mHpRo;9MJkbA|F!jQW(W<5 zto2HWqXwM(7ZfZPJg1|cFJ{4jz94Vp)8p{_ZXX0lvR1oW8*;Ze!gal3>c_2dOSG#6 z{*!qyY^~h1{|t%uji_cT-A5kj6+Gj;7{N9JG`YgKlOE|A zxB*=gJ=rx}3~OKWM1uFC17@1j1X+Y|8_$$G)Ot?{>oj2OM3=I6)}$qiLKO;j30%@M z`g9npX7?)t+Z!eJT%|7Z%MSVD{3DB(1Oq0lI*u69-km34*z{19@e-n7rK0TK!UfDNRAe9xd(a zM|Qb+n{8b2T?1V4Ju$4{$gOQo%?^Z=MpLEs0@qcu;FUa zl%e^Quw$_w1!GAOazozAT6fKhk!*?(up2XTVxz<~(9U)vGIwXRsYt(xo{e0qPCb^m>HVBNdA)$eG?Ghq9!dbP#$Mj~I z`vBbEKEJiIk3Q9yf^FgKJF1uqkmZX+$Wu3Rv6ALQ#%J%wl+I)`(NW@{dlpbB-_ZEN zGsT9aZ%2^y1wM_S}O-NlYH0^3>1BXwSH=LOcGbJV@EC%NOknSfpu6glgjO%fgFwD zi?+3}di-$bt6#f&NEn$&t8EY7)+T4~eejH^_^`LgOM0iAp^%bTQ*#4y+vnA1 z&a4kf6-6a?Ymi=%8aS7YOtE~+(8_MhYpeIUysLay#IL{pdU#+oD*Y>Z`Z{UKUH%pA z7^ATLL?sABHkkS~8S^(jm0(rt6ZIn&BzbaH{g2BPrg1YDsyW+vdl6GXW#?j?IoRnW zJb5lNOXtB4CTrpMfTEXOisRp>3_7YjswJGon(44bBgcI#=AwE@h8tX-K;JuTT9dyy zKJ(+bfTuy9NqCS?460<3zpe)EZD&t{7ZVV;YFdGQN`=b!9iCoE&a}6cg-GpB<%B%2 zdMM&Ym`m+l#;quLT$QP_zW!V2u)#>5zQCC@07riT?h!V?XuQ$u;Uy$d|Lj=g)BYBZ zV^ZBEon1r!rF;%@?8(v=03;ak->D+6l$Do1SIc7{828?fWUs%#L}Fk3>;ugl)Kr5b zYg|y72zWjPK!qe{Vq&^3<0pB1u*{sa9uph;42Td^{T%=LlBa(hIB|C0`MM_uHRnRY->`W}GVS|H*YX@Va^pv2v_PwmwxIUgWMALa-bjyt%yd-WQA@A{ zNo2>Y^WDu3gPGqtIhD+MCywrr!I+V?`2)qn+cKr^l4#a!y0oHoU*Q+43_IfOKX%|; zd!GDgL4?a%n;ooqpU)>_euUim*3xv9@iHk5xN&b!iN2WZ?M`pC6y7-Kq5JCK1>J5G z#)&?d?N&ZH+eEM?5fPCX@=yrO^#2;rR-Y|wIJU!T-~RWBe)x9|RpL_1Qpq59e|?l* zk<1SKx=Z)^Yj`?})y2Dp%AzH#cTGLnU0qNq&n|Fo99@&CT+-qSsUpm`X9+LSXBBafgtFWgZCl zC+gtDm}Cv;x9NuKZ!Yf66a|$Loo-AZE&7_Hoi($*9tt2)Gd(gV_W$Pzzt@LSZ1oIT zKp-%QJ9S3~Wa;Cq(<+Z-btxgK$cCq0crO^QdQH0W)p4-6uc~Ju&hGGl^xCzpz&l%p zf$23hHQz>iC?OgKx0(r|Ek2RzX7}iB(@H=ZgPD77Ep;N3*14!IW=QFY^43A zncdqoIo932QVeO#N?LpQBBL$}iA{)eOw1K_c*fN@QC@17ucr+*c*#|8?L3B=;$>lq zCv~lOT%5?ms)Oq5lPRI0ml&l$h4t`C_2562#^KY$&y6+SiKD9@bH6l>_V=!MuF-Hpo(@I?0#r{)Kij!X&TPBUt5+5~ zbkS~NjB+?z3dj}OcvyK7-97WOHLu~;S%XqtTN$L6vtN0w&7|-%8=fA22yyF0_W0_o@dx$f;4%W`M$2QqEbL?B`?8>2P1BHll=># z<{{6s=q;l6=o#1WEQU9iZ-g-QN{!lTn=3tr$pWiMqpq(0N!;V2tgP$@NpAta6T;q- zG}|AmQuZv%PdxI}P6f=U5!olwSQIelGKEFYp21?V8$0#egM+JIdx;Fk<#CR!(r7o4 zI3%FOyw7|>{3c7eJ8{g%cYm9ha*XXtw%zXUy(NqCA*Je+ZfTrDA&QB=jo)H3{ljd_UY<(Q}5^Q4GF~y7sU*V>-_IUIGAY*#vSVD=-kYd zq%=lz$F(5luJt8od`tS!H92{MLp@o}#)dQ5dx`D{NFutB%Kx6R^R|IhuID`Sk6tDD zt(LCNY#42wXA8Y43456#qW~5`4*^FK|vXr#cd2e5#qif@9aJU(F7!x1Q!X`}j z8L4yOP;vO0rj~|XUqw)vJ2+e<)m1ClS^x}w9nGPBn}>%CfFF5q*vavQWrcq{T+q7; z%nC);d#3mcI&5wd6d?k(wWNAXpX*Rj5(ph1MoBLXSmVHW)@E^}1g>B0>KpgVK|kBi zWCQB{?Cgtx07wv=f_R|5RXC2}>R^@>$&*!L2(YrvX46c)h6Nv;^(ZE|`M9l@M{7Um z&oUXCcqePJ%=#V1U$QUUO$F$LqoDCNFLy!BP3dcn9O+`}v1E}eSf)`d<(Wwr@ihDvUa3Yhb;_pnThL3w#=3#C>1Vc?wwpuW3xt+}8B zBL50EN}}D~$0vj1b@A2dzD~n?JRKI!+S@NXQGLpM^80}3F`JgBxcr^j0+ciVaCS00 zkA7hA`W{5oxf*rd^1F5EHuXh}#5vQWo%=za0M`m!o|bIYmX$)%%qHo~sN8 zJRE<)^KN%R6Bw>=s%jetLbN2-%bNq2lO*6)S(~52Uuos6-7hG-ErE(uF#6~==wJz& zWTG(_F1a(cUOzc+wv+Ue7^3kG8suNWWF4PFD(3OqJt(|h7?PTnSAz*lf3qcPPSp62 zGaxYqWh9F*W*;{q>?fDnQzPG?XII3_SmGR$Ivi=?QbcWg{q9)pJ8?+7`qs|VPVbRe-#Uvq03vF=i}p3 zw3Yq1ruJel7m%^*PK3l5FTWHgDe57H40TTF!_4}W>CDxpt$RMJ6soNZ7c$pQ#OSZF zP+ip2H-3wQ!mnjas4MzeeKx?~%wS6klCZrpG&FP_K=j;FNdDV<0S%(e@{TA}tV&O> zN$+v7Ms#Jp+miHxz&S|j_DsY`sWnA+icAk*gNJgde=Qbu@YeL1J@ww?_TYs*G!mZ% zbWSUh8iOiR6I1iIlFppESI7fLJL!lG@$kNv0u^&pU%Qe`^bBuVFxMW6t&Su*Vvh?p z<|oR08Am-r9Qgaaok`_jtS#~O$xYH|U<5JoW>TBCSfRlue2>KEfI`0cqoDQ3VnWa4 zz%j-SdARd6fQa~~?Nbl4VR(N+Q+UV;YuB<`T-C*z>ESIG`JZPTn3~+kOw# zS$sIPLE=1`<+y>Bz``3HMUJRV(Z(l@lBb~`2 z3-zMI1Ih9GJ5IFkqoYV6E7B!`w-M#J<;Q7GW>(D8_ZdPr78pGZ@pJN23Srk@6qrD% z55ZCBf^iT-0Ic)-F#%6GB}jGVGbH;F&js6H@Xg2&z!&%C8;MFHcFu#_H6FRT3IO0_ z(82cdJW#3GV*CH+Nz>ll`Gt@7CxTwsUcJMfSdP?myf^2>P6Po@-8eOR8HiYm%F50{ zjAaay9$>{9oujITM;tfiFOe2NAab`U!P&{f+Duq1#jq zVL|7>8dvjH?ly3h=Y!73;WSOo|4?q1w=%C7#ox|g`y3>3Zv`M{^=sU@?Co`!hj2LD zKDgZS7jE2X9#c8p0tSbEPGmj)HW5+|mYqF9O6l(!T zN4|{GzSqG$W*XeFV%vCm2*j-MQPv9u?g_kNR^ zTJFr2mmzY(i7}lU-dCgfE$KRlVb1F54I6Ij(lG%7-de51i87n%Mg*%l8%0xTU<`k2C!tr&w-M(lC|w@yGnEJt~dd^`LOQ-hzG2a zffLYcWJOjug?xQax-`2NO|#B3Gcy7EMoJry+#BFU_D+7yb2}T*-mZKEFzQ!An^*Ga zI<5`0CY3p!Mk)t~hjUX>lj#opW@yHac>Y%WWsvjonaxK0&w*KQfS3WS z;zx3YMTlLdP4PUIi6i5(rJOqxZv7WWylLW=*d`octP_(2lhI40uREuIN#gg%X2+{M z1XxZNAaU`Mx@h8gJWS8lLaTNyiCxmT4NDJWNf+i>q(#X|zpHg0<+BW859O%Cwl_>s0IqT94SV8!$ePg%Xr zVC?pPqVy36#BBkA64|k~Y=?=e_YRhMqYvL6Rz(kmUB&+ElFr}C7zI(y#_)9>kBvJl zYh@`xAD-h}o|4Ky0xBy-!S!dxS)KxR^(~$j%qcR?=d^ODVq;OE#F&~lMbs+^)VL+* zEmw19X2PrxB$cx=D9PHvDc?=P1XP#I5+h6cu|$qmNtfa~25a6zK&a~F^%QtX@;)^M z)!Xljipe%+NF_K10q(}dCE=pIjG(h1 zS9zUVxTZ!hs&stTFFHMxlN6Q^S}8c@K|umxop_=!%|xK2p&@~Qtm^z*Ew+r(C|6BQ z-Df!O@%vD{ZL@=Al8Yr5Z^gHdc)vu62!5&Z;iFN4YmM6aaBL^vfpi|*poYp+pk{jj z|NL}*n1LZ9DQpZ(q5VW7eNwqcnFo5Av)ATLKk1o2hdnf8|G#TaH+U~q5HW}WnKf_? zY=eQ~hk;GA5GeIPl{P5koNqVz(|%>n~sbwr;Ass(s>@< z5pUOz-xiRzEmt8`lH1z;Q=gL!`x|^~z%Df~2yR#Al4w9>;3f#s4iqU_Ds37ObFUZe*=1GmfJRf-dWRn6NK+2aA zcstZs(pO{hx15BM@tdI9hdIIoP#G!ud3|5UluOiB21Kphn+<8gg?tzG7U+Yq4Y^VK zx4zzbERm2k=0sc;{p>mk9*42O&k_eTEH#IUe+MxU$fPpV9H-IYX=%5w4YB^&ZM~S^ zX2Y5WpHT_e?dKG~_9fHDSJFT}SII^c06c$M+7syPl)tOf>A}5U6Z{iq48Kd3`i|?p zbLpWMktT5V5?lyeYRba`lds8?Dd8oz?@93X+wfcbC~vCNFio56`@(kt-lc!$fuF*y zDD0QH-_ygIx>}bZD^kbBh{|Xp$fZk{&cAx-DPELZ%$mWL8YGbu-JK*c51fJ%w*Th8 z3w?aYb1i;*W8N=%Z7Pj*%M(MS4Ju%(>DH8z?U%A!pXS-6n_fSo@O5VF@J-cGzp5u% z7mAbG9#0*}1Et8aH*^~o9|y`Vf|Z~K*=CbdDOJjOJNz1h{nc2WyF+=F$whq{gk8iK zJ5yws0S41z*|tR>=kmWRy7v0n6aCOXA5^aLukVQ_(kYJ)#xiRzBiX*&=zhw*iY<<3 zz9n&s!ZrBJXOqAyQ!Hhs%j1@hNxjb2++MiAKT&-Z1bN1gfYL0M4Mr$&irr;>J8lmO z_~pu)`06D;Dy?~`iOg65V=-rH$Wu$}=I&+T2VmOESjzWO&Ys}Sc+MGGY`7Y6dgqjr zDp}LaX2Xesqa&Y0Pj@d(w`s%!C>iI8oFU8qIRNa#8kpxX%539)-vxi%7=m6{CYYTB zZmhqms^=vFF6k%zr&2zEFn-;=L6PN&EAqTH_p@UD0W`CsMnHnU{z2}IFs>k76pTn1`41(KC^9LH2wKwuuXWeB|S3ShlBtLGb-|Z|@L6WN$zR zF|S7D#R%Ky^lL9rO7}7oCl}z4g~?OyU18%gk6C`~Y%}gsaZ-b8%vpj~kLyBPi64M~ z3I-_GVR}`tmXiL)$GGCgmrg^~3)VDgpmdrYVtLY5KWZ7L_Ap3&rztfjGO=782`a)z z1i~y9TOcf>AsFXTWfAah2_)u!jNX;L4EnO9Fx?Z+!GIipr~4!ybuO!LTzdO5kAa7H z3A;?P{!me8LFIkCX~3N~I`tFfhgFG*&hTutD#cw}GnjXmEELvf&tU;fq+Ste?UMyN zup}GYH;T2HNCRf+CN(2*!v|D0#IKENmwio~tBs!|OIGWCn`~gBH&2c=qxCH7@+>CF^6MM5CoKVJ2!@p;iBTG(flva{oUUc9aG8cNH~ADJbt z_7pnpHSn2xTvsQ_xzep7Q19)VAy*4$V7`IYSFpLR*p(8j0tRACJ}!r3O&VJ)ua{2;q8?O$S_xCZbF3yRekQYzu=@<~n~l51#0*Ft)#9mH*vTnw(Tsp8GTqklz%T0vmnvo&q$Mx2z;U z@tp+DuP)L={b(6aP!Jub(-Wqw>Sclc+($r{5D)%N-{vO(Bh``<1T1Q+?*Lc-=~51MUbmB)z+} zz1@_pnf}z$GE;bZtotHJ-5)@C=w92to2Ts4`M;m{2}qMG&M9ZfYVO)`Xy1yvIj>0r zxp}jlHvR-1@kVd{1?nOO9R5@tZcSrj`{(Lka`N(m($iTK>V?k!RqM`4>1M$^BRPXY zO@z9JXvV+}w}h@?E#()_Z&H)^C>nVtf4;aEgSQ1OBO-|V1~bv6&kyd*VppsX6!4Ea zufhL;K&Ek~RX!p#_p&yLA$j(^UpXOsDWMiJDI(q}uTS4Ln6vX~ec)|-4g_%Y3tmA& z)c@DqxUDZp;auELejqS+4jetsxj%?u_T)PWHW9H{>@O-Q`S#(S#g!{pGz#alP3pWT zLDm`=8_veg#{^1M+;m6#TheFcboZFl(TP^Sr5(zyV$DH%=uSWMK8Yi~eb+IUt|J0k ztiv($%<7fTSRh#i^2t;13+gK4O+?%VsqQM1P@Ft&YPuGDB|e5>B-)nG3?0Uz7_nmf zg|35D5R|l49$bKHad4=8Y6PDp0Wb9Dc=feUNPEO18KqMFFwccZ51wBqxlpMi^`oig zTslaEL6^$N2;9Uzv@T``x`j9#3bl1_`*l;dW-O1)A;DG*Ay%}`Hl@^C8<}7)jHm*- zHzKh2bJ16B3C1`NQ>u8pl6cefqP{e#ZTT~u3R)uoPdgugk|1s2zkWefhW2sC!i=GF zF|3)NeN&IQOMi&!%4&zSn!vw@&7-fu-`~s2>q8OyAFKH`1auQH{V0?@sh-dNEBy7z zmUqB91o}>iySzb4ZWFRbb=ednnVJ_n;@3SG%fW@&<{Kl$5D0@0OtSjd1xSF_XSt17 z#SKIoTy=9EyEfk`-L2Gi4&uJT+}*9s?Y`%1eVwFIJ;&VE!RghE8j9P`+7QHJ!~xHFXn~Io2K1jhXk(Zz1*Hu*}z}mhOaeank$*_owHtO zE8ThYe=IBORY$f`!nnlcw*#XMH0!I z1PMjDQ9(LXN=h)0?rsoKx;v#CBt=RAk?!tBDd}#c8xbVGxqROE-us{1A8`)XIeX8Z zS!>N2T#7{ePkr=b{J(K9B07CUKR@+&b6YMRMUl%OTPPy3&)ezzdnW=R%j$CNL!HDP zixb0l_K}(nFzit9^dr4^IEz9om*3O~xv>G0~W;Pg243sXJH3 z`khK8Y76b~?mIC$b;mMtfaJ7|;Wf2udRD@H2OXATvepuUw{?%t{uOm(xl~xbVCVk#) z>)vVQsB+jQ!@|O{W2-D9YI%et>1^0>BrQZ0E)^XDP&Fqp?rE451Hk-Rg5D~WVrF_=w zUHwmw5A3{JxE2(R>9)FGq5c#S61stfHCP*76X9y)M*s)Cy$}(tblCr?dj^1_YfDl& zx^5YGxxH?!UcS=ncD1f?_~XZqTg1cxA3l6=p^Ru<&^uWEZsp)Gnz%d9)N+R%4;{hr zVDoSUIUW@>A(aR*=0FSQv&9^v7CNBYPLxLAL^lWSe)w16I zlLoRXEp8J8hIFGKC{M+PYdu{>RH8=h#`FgQT?FbzU4RKhR_%U%FY3b`k2aLerYfXY zON{3{upGjL$$Rb>fv>77-I3C^ZaQgCr`Cu?^m`MT%SLoR*H?Z|iCE+^ zApLw>vR7x;RRxSP=XT-l)3#DPzVp1&Mw(c?7 z+2}df>zCIji1SiUwn)~gR??bn_?`{XX zJ`3L#Y8BcMs6zd6y2hSE;LEfi+(j95^@g_Ez(@bAWZwElqjwKOtSCV%c@X zT;$s04{i3=zve!@8v3@9Qesxue8kGi8WnHs(q7G`uC9LL=FOqnq|ViacG)cbzbCRN z26Ol*qYrzRwdq?py1?qD;&#aUdxllPe+hNpZ$w zb66YTlQ&tZ9)?NHN86NJdaL?42)Qo8Dwh*_D)NE$d2TKkYC=lEK?v)!y&ASaK1O*A z?e*+JIUyLR*Y*8-GhkmuFt)z#;?EQbmx+>XD%JmflAz_<92CKA3iJ8p1-aD=VAIUh zij+-LEE5*c4&iY4nI)V0gt`Wg@8#Bvq3F)UG z0ABnasq({wZbOk;sq&|IPH-l0lT_Y0-eQW6&nhb)<$Km@(RZGzR=n+f#GPP%b$OxB zdb@ZCqmj>Guy{B_f$`7oTtr63eV}s)$@2Z z?Y+&yM($(A|7GD~Zxe?^X^sR;2@h84pnkplz3$MH3GFM%#ah(ly~V< ze#h8G)SWuvK3N@4bH3%c^~?Mi$w?TibF$uTfyPFl2-J8kP`h%>HR@1597v>Xu%RI6 z%TJ5T%l$rmBA>pN%PzE~d0aWLJseIg91b#pgtCHX$}F)G*E7+L=&5}oSDph5`A||) zGEc4e8q9tn0fm;s);J1+*LEdz!2JLFBrP1+3e*|*=(s8I3h9atA&pDi+-m5qIzPrq zW8%y!AmgDE?*V0!<*a}mWN|W`;lOQ4(Ld7foy2rRj2Brk1EY;&K|J1!M--Q{aRB+{ zJhcue8o}b}mLqFQGH#&KktTZ|vxvzEO$p!=diwA5_tfIAs=XgIYAYlch6sWLLT|DC zCc(G6Uz$Tu!JBPLppdrJu4vQ(e=C_L^4m$pQFJP z6T#n`V|d5ApTLyt@q$u zpZcWHTQ+Ajr7g`jU|XN*p~b> zzW&`Z)DZ6SiKu&cScxF$VRQBmmaoD;9#{X8R8u2)V!!cvu;y-uasYGP9~Y0450@9+&)N%B6{-+sZ@ zj_^t`tT8!a<0)tQ)VW0a-~ooSvon2up^Ch`x5Z3NGZ;r_9C78A1oV^L;1O14{{zB@ zh01cz_34+Nspaz3ho22z#~#swJ-Oo^)K>kEsE@1;L+fBgT7 zq|2M9p}V*chLXEMw&D|haW{15-d_*02JM>YWStswDvFus3_XLd@IQ@ThxYsQj0`m3 zj$uvn7kOTJ5D*fQ&agpRVqsxHPl?JknMUv{js~bOdKNMqM5Oqylap$DIGp5kG`uw* z?0(5e!#?g4=5W5^I--~%B;5ybYCnx*Ju%H7wUNP6?$r4Di@9F!koY@T8@D9=M7;+G z7546B1}0K@6+Li|BuF)|s|CGFRc$S~wygA{IOLg&4hk}_|9LUKWr9R;L?jRMssH4k zX__{Kb&=UNCg|I_zRSd>mc9r!FMSB5*cxZfO~l&=L1ASv&L?}cNT%A!)pcp1H2{)v zV90LWK)V$b`XE6pj0_z{gr#q0zf(2Jot*DE)x#>FY6!~U&xWHaw4B|%rFY3O63{LE zM;Lk=SM&y}2dR*DCT51+x~EGL8iG-Xg1Gxzsj}P1#_fFCMJWd4s=!P6Hpm`A=0zq5HSh= ze>OxuG)eH=Xx*x?+h_(i2mjnm$UjXiNPg>1)*m~3tV!iZ@REw-*H%?MWg)u9#wG(w zCJ;Ql?_46Cu1HHm826|6ff@C{p|b7If$QxpgV!u~G!P9>?d#I#Qs10?OZ|Iv_iG&& zl`I>D(E;c1*Fq<y2T?@$vD5lPwdix~_ECXis3H{qM_r9NdI^X?19?p9M0+ zy|(UWp%#uyPS_smhYt{5?DP5)csFUwatcDZvsz}pf5$AWJHP@lKr{U~jA(?iFEphy zU$b&=-rIRwr!1$0>qDD2<@v4IQU`RG7a!3Wj|VwdLr6)uZN0vCS|8bWMBfx!JT0Eu zs{7WkP(E7gdWrJK?SvfR)xBgeaePzXNYfofq?Wp2LG1}I?|iJPPIFh(J=$A0#{b5J z17`MTa_kofrUS#mxUwyUTm?2@lhOX467yyH$LBgHM>k*Q{*c6y*k2FDF+)Fs5+Wp0 z##>|a+f12(i$EL&7Qs~&3J3eM< z>7A}fwo>~+^)Wqdo!Gb0CmSKeT5K49$W{v?fUm5v-~2lArgKmv7Ebo>eo9P3)yXiC zw#H%GEMp(!C~n*D%RKq~y6 zEL!w?+BZ@EK?yzrY*e-YR7oLXnNgx!2ic>|6cThkcZ0C$@ReEk5G?2dyy`dgzVloJ zkfFp#9c?NU*GZPRIiL%A}^sfSiiVpZFL=I#Lv$ee) zwxfDSw<#ds2j@p{n^}wCx(pK=MOBXDCs$%>z2Du>nwJjucKRjv+)i@4WPbRi2cTk= z2J3BZV+ZKr-N<9TJt{~dDE2(vFrH>w$elQrPyz9@Qa`!OpqT@Ew6O$TUA!9M)g`pO z*P|&r`lRAX++9`I(hmzDc5dF8sf8bkX{YeQ*rV{W6rK%UL%9tUFrWf2pFTzSiqgV7 ztKM)rB;FPxi1qMhc1v;@*?$o0S0U{j*fu{hoDwwsdlWF4Ue{O(|FY$?DlUFnREl#g zIj?z%dplx5q8fkyufctynDjI)EV^`8K}}k`**_|8SKpwDF^A9#c8-cNsorgP8rpVl zvrHbGiH@gpSF+5u+%KA|U4i(cXprx@&3%HvDE2s!<~7`}VetJwIciU)Sxo*loC=0#a2~g^VDUS+xbYpS-0&t!;Ug`)_hf+*V(+m{HT{_KCnBa?)1C!g&p~TxM}i*E_F-sj4=W+ z>Y(CeJ9cf)gn*R;yLFaT&w|Cr$A=R{*XJ+}T5mFF;no+4$kb|E3gaCLCIy#nyFU@NtTk+Tx`$xvTZ(Tc8qRqfzVr2Awbzc-FR!*oYL2mxIe)tR4 z^egt4`hGi_3P-mOs&6=!zK98MPk%6*X+u|#MZ6^6K!WA|QD1P{+;44V6G1FtbxryE z0{MD-VE3J87H?Rz%~^i-j-gmoh~62sID3snXJHgGuWv#6`c21Rd&f0x_vd>>rDkP^ zrqWQTB83^}pow8%XXi1UN=u`WN`68}`NZxm^82qJl0rNVfNB}Tpm;pb{NmyQ2_x8T z41f16pAxFp3P;7jormI0^xeB`^{G?P+I%!l5vjD8A=^IJxC7aS4+h@ie6tUIInlr} zY+xw;$>6>HyLk+@&v??q>F-Pfnlzsyk|QHzbpG71E9nSZa@-r;Q#Lz`K0a;?(lIn? z)HxhH+z;KQKs?>Go+-AOBd4cie)Q;0t;2T9(dL*v{lwA2zSG)BF7a1s!0@&26$)Jn zPxBXUTwGSZ#sdiwEDB_r8_$Jd_vgtKo#{;wQ8-0v`X}@##B>wTr`|)T9agVxEqUn~ zn@$T7hh+Mwh|;QVFL?^HzPu8zH!)XKkPF6S0}*EpZb(OGz@_nEv5k#Qk?9y4vck(# z1F+@y+5jrdC8yBR(vlj#=47~bR%I<^FR~c%CAlcudfz)T&Y$TY{W$nV=|^nU2aUiJ zx5E#biBoeu3?erA=%;ABTpH~b8rJA+_X!g(p1oqN&BOPc>wg&&K>4NqxwK9!G~&g) zvJ%Qh7`&S?_{bc$C})OycY6Eh_bDp39nVU8S(R+G)el&5D(aPLD?ynj$0BSkGiC!5 znrJAyjpW?{c+`u4HN1TD=1p>i?5kHzIm)>lc58A{pSZ)eNzZlR1Kcy4uDT85O6@0w zKq8c@TG#<~2&en09V8f!PxvZ`#Kpx=K*b)Fl%$olt*EHDzn+zfRFfufnG%_qo0FeY zXof(MgS-s1U%+Jq1u1pi_R(GbYy}bPI4uZk4=b}oEod2_*tFN|UUGgdQwV<)gzgln z<4e6_{w8``@rp;pxP+1mL&}~Pi9-KeGci@YZfrnm@Iy7nB+xbbgpG_oVv za+Q~y;qAXh_$K;xZa$S#VZ3yY^pU7`9?>&zpUK0ga8A%%eO*h2I&a~?h}*vMRH6SW zew2wji{MJAE8n(6d*~wR;rX3UKEYRSSt6j;cbs#t?ECH@Ef!AE3;=A{`T6;EzRJ;+ z-|It8$1{$bNoHeqi*1;7N28j6l)a0zH8p3`sS5^2`A06}a zKWHTmhtM&ar|zQ-JqnBy1>!73hOPcM<8{uDVkBDUW}dT6iZ3Rfx4IWO9cpdKOa|WW z$7^|?8aHp2l7akN_+qhstDoIXYHV^n_Z@A@QN7bnVLB%QYt6~aI0HPzMY z%J0FS?s+@Tep+q77%tG`t+YQUQ8V|QrFrD>p~V6ZeWRAYC-uq~h08e!g1LUS_RJU% zsXW%!_rngLIzRrfgXFN_#yvHHvk5?OBcT+KtKwAjkIuv6Ms9*IdWD`S(1Zcgb&s9B zu=&pfnHDS;)3E|SEjG&{_m!0ugZ5y;uD(8tBKL~xs)ai3tErwkyKT8&-@m_xydWq; zkr$+?S9`w{anNIdZX6g}D(LUYLv35x_lVbN)rZ-7%P_^ews_fw5Bac}RSO=E^NB85 z`hCu*{r1wYR;WOTE#b7CB?j$p!VFg5ElDv=>=|CXLkG6JkxK15>H8E_*A24e81{a} z>n@)EJ;ZScM_56@U^ZUVysQ>S5(oq~`hPvjtz`*1SgoVA23o15;^4dLHvRtLX16tKy?*qz$qT}VNugJ}Z4dLSuEi^ob59hgz+Pxe7ht%$ zS6pYiiVOaF(+p=IpzL^%>Nc2$ITW|m?1M30Wo?*Vhj(~*xIZ99&GojWj7}255hTuJ zbaC*I)#_dB>zS1`Lteo?=QBXPVZ&0J)wu2rK=CULcwvBiid`Z(P&1Fab`65ilsAG9uqN zKB`A+|Ii^R%86~omff`FEzK1xNrwRzfl|aOcXLz2{ zJaN;QY?}f_Z+AA8L(qk7mb9L1j%CtYxbZLXSVTL`11{OkM{>G%Kk1VsNium!4LB9Y zbj4Q1e7UN9KWbc_qO$>D;|UxwWJ|x*04W)oS`j~#eY7epuygyJ;M<={NFwEN?iVb^ zbISbrB|XgQ_s#2VZe6k1FUxFwd@>QM(KjQt)UHg54T2~t9|jM!cb@3U)lBy@w$IBE zGm!cV%2EaRc+=)MQ&?GXR^NK@;q)T1@q-4Mr7N?V=33)XWqECq23n97rYiYOyF>e* z!P(_r0V$W^2!v4lOY=+zil7Sn#32u!=OA|iEqWZAHkO|#3RH+NdHo(27a=4c26s?A&-XC^R#VPe zItPt75;SsicPBp~EknwjOI0kbv^k|EC0mpDZ0C1&aEsMK;f;y1aPPif0&)F7sj(~? zIyzTN>Dzy47Mz?2==s_%G8tj&Nf9L1VpCn+EGs~^o&MgLA%`hfI8J|9yI~7OMMlb* zHoVc=-rnACxyg<|u&}ZM6;Nb0@vt=9_V=1R^5jR;vdn4h2?jRTz4iMmHaBdTxaW-SYZA6D_45FBI@f~lSlQV#*PXK3O)^v zyjp2JTzK(UeXT}sRR<4GMz{(dcnI9QDS5MOlL{OD=is50LgFK;6{%aW;Y}T_9vq5~ znXcQX(RAs zNJdWON9+^b=p%PwIBIkpNL@KI@&Vau9!M9P=tPR;N&H0smF|e3j)1iE9$>E!u=9?K zp#Vq1VLhLC3Q_v%e%%gfKRMRj_Dv{A(5bP*1OYj-O5W440&Px)j<@bJ}r{QTfSxXseQJ!J*?Iam}RuBG-o_x^Wo_tj@cNo1Y?8Dq~j6lw}; z>oXy0AvfN1gSD60yAyeRzoIK*s&GeyWjfdEok2EiowP|=@^-zbdb$=9-pj!Rtt+x0mR-qw{S+cQl4T5203WLinaP(GSMc zpdeQIQzPI-&%^U~TKQ;PHflLmKsoEO$qGUVoT*C7PKZOnz-x}y(CJ9iM=!u;3_A%; z?1v6Y`@TZbAxKC-69583hplh1W$F!Xd@sYu+GT2MYYi_>j}rK7-{fB~5nv?=x!1_2 zNZKlPegN&r+RxABA9QMTvJms@>p?toZg(^*%$kv4zr(ghC^=8x+CGW@z}eN<0)q>@7?(B7c$`+;h!sKU2a0(x?BEHUS8hb#qr!d(DIL#B&IT(x2FqmdPID0`;1ZD z#ghHlMQnD@p&((PmpH{iH2-hZjsyIAETi^k-raNB;loPt-hmku=vfhy6Z2dq{6!0F z*U!U={N4Iex4$-9v-RZ2wln9Vo8!Q*dFud} ztk$BBsPm-DeSJ5na&s0(31y#gI+T_-!2vC`z8q!@FGI?g|E}Pcp2R|B!7gs7w*xDr zxlRBej|#YZ;+ZyB#<7}))}C-i_DVq9%rzvvqjJyA0}WF0K*~P+1Z)bnknlYQ`%+NfxW}gEo8rDtGrv=;wDbarE-& zS~oTflyWDGm?0&2f-8{7XaQ_Mhojo&A-A@^WmgX}65) zH&^0D3PMe{B_t(HmA`z=f-McaF{HXJ^b^B`>#Kdq&j1^&wLr4`$PTj6d`+jL5mipp zQ5LtqzvB1y_r258FNp-8*UqeLby({@J|+wnwr9&F9fCuVMp&2{`jr9#0x&>*Rk?Hk zx=v*85^_rdSM+4;T}W}v_t$0-%Mjox;P}Yp8qX>iW6b%`3T1i%k0ljy-E*0a((q4} z6?4Ggd9ss_kA*W8vJaitLzwN9)~SR&C?MtJJ#q8MKY}ri*2g9e&wVzt>O=I|>2ic@{VCe{J-4#a zfuzxMsh>y4rG<(BgMkjHmL@!F*t*t$Y@SLCOwO{dG>DMb-aD;OE!rHoz9l~4Tj|h< zHJ7rD^3+)1sC``Qbr9|6f-Z(Qy}4wmbEij?S@;JFdW>GNO->6z1&vGo*YA%U{mt3k z{amo|r=;Yez}Z&m%l_Q2iJh51eoV^YISw*~Qt;t}2Gi`HoPV(CpxbC3u|~Zd3V74< zMpdtJJVv$A+ub)9j+&qQuylmteF}u`o&@GKE!jlMvovQ8i*^xUlOX(lJ*=9@BL{mcYGfb7TNixkh#WA>EEq{N0M2UlI*L#c!n#Ov|P@ ze|u8TzYa^sGd*U*u`BV{`ab{Ch4YDPh!tynl?rp>WT&}LF~O#c0*R|M*_YQ!<|csU z&@5X|P@icazon!qlC%HUt)f0ujpe105gkCxP;yTl@-Q=pXnR66I1W9~mzQUj4myC~ zb6ZTm9krf%5Ab<~vJW_*qkF*~yQUl@t8K2|($ccG^2u^BUe}`;1ew37Dp@-oLJEuJ zxA7%0HI*8~K}fmN$=R9VLW|!CC@AeZhWq+(!S;j~q>vd3BWGN!tT+G+Z8hXWAnJM4 zp9YOLMHLk<;nv8)6j~jje(};z;O1h`fBDkCFOIWj@f12IuOVEHcfv+;RZBN@>Rkxg z>-MhIIPM}<3q^+**d%F{9|UP>QGim=vY5)YWr=3Wx&BLqkivBwOJ0GIr$*aApARrB z+IedlMGmWCdF9+OGs}l?&>Prx&+qD?V=$u}bZ7EL%Xzifkn(D=!4h1cUI?KbI$hXm zkW}MauthXw&>0RGyV>_!+Sf8^r_P)TMTFjl{`)8POi*!NhyHkAkPQHCFq?XCWL;~& z*&$=SIxa;!*uR3fYhN4K4zdYfTmiUMa2`PVniNuJP+OLP`0$aW$ z6dUi)u^4T-GZ;QRmJ&XR%XmZgsUTstm(9+x^!&9q@il2WIAOH4HShD83VP7tyo~Z@kp84ar#GqFQP%5?!XDfbI zVnS9f0Hr!PJ1+oE;s5-uw-#F`9F(X^X+dhKV(RaFxFW(pu$b&PDr-`PP5FmZ7^61hz6b{fBYxrUC8 zZe?x#Zr*swzkFEQk`)PfG*mSJRRM`$rPVYe>RmbJPS5UHRoJA6Oe!MXF0v~ z!Av;@f`muLxNrJX^6iN|ddCtKmcH<0b@&k<%_(Z{4-*@@(o#DBM0OLqQg@4ZITY*T zwZ`_>qFt*7uf8!aW6>FuNHiK9QO+CyVv)wEohi5H7oK)1?&|RbomLMk@$NnF(HY3Ow&qSF2n4v>|ddv8?G&cnGrAw35F#A z5m8%GQX)+^eblZ%SqjpMWKQM6M-E$RQc1kGVKsDhbu|Hla{JC5)Tmd!z?|vrOjk3o zu%PAaNPTnOssNonv7~fjVS8EGW4FC#jPg-Fk8@rKsi?-r#>=a#hCkCps_Zw3$UAGO zYPq5qNeN=Qt@b>&iC%OxR0{qePA`qWvG4qA&#|cGvQ~XtTvk@v2H9VkzjEv~pm;T2p5DCoGW02A7xoppgPAMVq^QU?H>ABq zsnF@#Js;ggB=N|KiB{7Y{`(`JnL)@EPal=6yV{5?4~#e^dm zOE$NDl>8uvsqWs)wjT4ckD{`E4=(;By{FXhuDD;#_?I-T;Fg@6q7wm5f8XksnvJV+ z>+s2kT+6mKDJpsPrY?$9wdIP$c0g%=oW7^2sA)1a@Dp5y9DM@!rodqV`Co9DT3#nFwuyGUYVSr3sUfq-pugD}~z+nWsBZ5j$6y%`$ zkd&nXGcsOc6w+)ysll>&$kxr0{oK-%>In?uRAm`)CMHKHb>*yf$6})iC}W#8wBsln zjjbN)!OV6I))qPC`rcnQreTa(N=ys$^J&LlLZFqV=38EH7*M;Ju{DjyYMOgAswQ)E zY8s3IVQ)N->4P)D^SfBv~`( zwY@#3v^(KKJug(=(UBlfeR45!%>tJy9upm%2(Mas(HNWFsG^Vx|6{Of%SQp%x<{|* z`LKYs1FCRg`{q@fNiBn+j*hZsNBi$RJ0RS+jX$93$kdd@a zHASlDB_9#HPAGuvhQEHqxnS~! z5VgfQS!|LNlVd{Qe`$K6mp z8rpn_b=|ysdZbu%8?<(hoq^)ucHI9`P+V4A+&m;JjKj{(ZpDiX9(uqWGO)5D4Tz9> zq+dS>>rNI!tgNgM;AsK{(AlKDy}h}u_@cj?b_%~EF8l|okLxn2LcO?Vxgp>&@an!v zkzpm;(FM5`do8vY)ym!SaVzGkL^J_hGuE=sS`OsfNqw<#+zS=CzHyd`^*#KcpOCWV zAA#%Hc;~}x>}k>ljfg{Ik(j$_L(wNZ-5vd;$JIk3UYDg?<{fL78_y&N^n)=blr zUwjI5Vj0Q|%*?InViDu(Fy?l;&iM`)5A7WunvU9n^@)OG-zf5^-Yk!Z`GWP_dAwO+ zNoArm2z_mtuI0|c&aH#$$S#6cOblWY^5{-lxX<65cUfDcp&9lbvcz@Wj#huKuU`Ob z^%ZN*Qxg~qDq;MoB33|D(2#V)#Ha1OP0Xt@UG`(!AGg-^G4S|lOC*@>EvASJ*Iy3_ z1X-?LuR@FrqM@NdWBA*n0Ip7`ri)#UOpu)w(4X*FP8r7;&CJbZ23A;J<&DcGi#roDv-Ls? zIyMFGEx_P-sx0K>yl`CG}+O6D_b;3O3*VGhtVxEJo&8ei(%sp-(xK3)XQwf zI__|y^aRm1GQC3{7~_+ZU#hA|R{K*sA#b*$ay-UpT!3E9t=}aJxj!4k7(}0-w@gf7 zUeF)CPmZ+wb39*WfEnKL>q~l;;1kzuwzU}XU$45@#a@hDb+7xn{ob=}gA+!M1Bp6X zXXSX-rkAIU^0Fin?r=%&lRu1u0v_2!D8=NT=d6|KU5kF>T@bI7cB4A}pf6I!4$0AI zqOf5HHi)EKGu(l!dU_xKb5&JB&I~4PhF@SWBk+q~=mo!KCEseDto~Rh1f0x~!<%GJ zt{h6F^IUXabB@j5B0k|QOZH|Q`7_rmDz7Yj_VppnIO%1$dG0Bp za{i5_rKL~56AoAV#r_#$BuMK6VFd++M>N%8X1q>IB<-`r-|*F=jgczn!#B}Xwktg! zk?j)ERHck=Kqyo}77RZ-VVv52vX8u$^a7GQwa0dvO|Y=MB(CJSy7|vMVVevsDuj~l z!k!Yr;kb=0aJ2E(;R2d-S=5Ts#QWuGZs{Ga^lnk!CD)w_ci+4mtrd#sZ!h8BjMVzl z_(Iw+(5~_skM4G}N&mSA=C15H1!8aU!4SvaBkQdaU_pD5`78T~GdDpwxd4pz$d4&A zjgmW!`GPkPCkI;?fm<^L-}?e0YmoY3CTN;S6BnLGrV3#+56HD7nfm%_T`SqhI3$r0e`Bsn5Yq%6+n(|=7zOQ?3zS-iZkr0Bz zmc>1T&diKLEcB(qap4-mADeVA1Je*1_z{0}4YCMr&_T-iF2D5MzRcE~)s0zw zoju%rFWCg*^Lo^%q?Ga3s}poJ%!_Of?lLoCOo&&%3KZwAY7i~(#fagkQ)#_vn=km) z`*SUNQc}{-OiAMOCBnxUkVFnMeRw>Km-^3l>K{$QP2|P~LbBWO4=g?`sbiM8R)1pZ zX(y_DB>7Wm%%fGyd}`W!&4iYXyDCaP^lMEA{)&m_=IDCG-SLU*V?&>I-Yb6#VRf3W zAng`%Kb;4ZNzB=K=zi37Y?7ZVF5$UHTN8JnNPR9YKBSegHC4%;mp8fMmxk1ngJcwn z9BG?6_{F07>8ZrEwYQ)pzQ@mBD;_?UE{4a;%bQU2W^>7c*%!*j7azV>YxeekC;L?B z=F4xqv-D^EERfF@kMVe@d{m!=2Kp*V_b23doNhazRMdaku^f$(Wt*2xmxJ(Ef4J%697NnqAbu7bij_gmDc>)9s0Ii_`HG?+|2y;lCasMgET@OaE?tf9 z72O$Sj+$xLMAM}0_vPBmlJ&ZSR#$OBm>(T~<8F6H<3LGe<2{xWbN)C=f$fF29W+h$ zBSZc2rh1DNZ{e`NfrQVDXL8kZUpJ+?H~o*n5#@pLcz!5~`fA zb<~dqR4CQ_cP$D2DhN1W{Qw37o3-> z0VLH)pZf?cXMTLPD{E4x|DM->ubHvg5u%hoVPmD!?>k?lBC=e{-`(D;auR4F4O0)D zo9!h^F*i$7k_MX>-r{2x73p&dBD@deTydY-xXo?Sl*+-FMCQr`g<47nb=n0@=U$vE zI-mNzrtEE;7>zp-ovmQDsrPQeX}7tP$~CX|PuFN0EEC5aEznxc&O8CjMT=K!NDz{m?k&BVnq*VZ4O~?xDoYjpY5R1bPN|T408|<+y^8|eZS7s5qjPVL8Eycov8B}Vk3-~0zJFk|P=BbM%V{@0 z)9LTwI*G97eV6c^;3fuPu$?X1GygV zdAEA$o96cR7po8H{tL7J7n2+yAP-cy5eQ20=$juxNq~)M@10+CNjTyl_tbftHpb?K zPtvEa2r*{6V{^?5okw>{tlyqty6rF0_k_FQ+|f$u+%Rrz0rOSE?F_D`_u2;m8BXyq z&wbAe!7{)xr7fP_GlZC*r9-i=w8-RunD^|AE-&>D;YlU62(9^vM~%*(xHZc8;rTQ3 zY&SQzy$*6quYSuDeh$#17K6PxH^0y`X}~zuD$GdH-upMA-UB1k5F*yo{{ORS{-@gmJJacFfV->sC6-o*A=2f+@#YNP8 zb~Rsr@0^!Y^;z=2;X9Jb3M%9JO+jd01e*stACMYKr3z63Hal87-IrZMI5j2A_FmW3 zGI>*dulhy~gV+n5Ry-z4=4Ji2-kHtJ&XBZko*gKYGh)m5RJPSj|a zPUe4}v&~0}RDnafOLu3~hlK)WMHd>7WF|L+Rk}9%HC9sjDZIOMZznV&^kzt#;{!wjEuk)y!aK35F-pP14pi83fUC{-1R=RLfM`+~V6SL8=6VpTa z`!mubHRWU!daFs&yv1)HWf&3SIA~dF-aLP_YFfwTMmV_ikld`1Ra;4k07l0lJ{K+Q z)WDOz39zg`EM~3=L;|Y_@KSK{#b2*CrFrs%44zvDlrB-JbKFAg(zhunLP4y<^Y#nU zFdP`TRLLw1He*kb&?lulBE0}Tr6S8eJxL&xnB~{~ntirDpxmWx?xq; zvSy`vUi6y(!%l|5cF5e~-@UQD~uob%7CIJ^WmWbJ)=` zl50>yB#-C6W)XkQ_H|=B#o${y|3Q7*l@mAqvLXDP_aU;I?NwE>R-rpjQbrM7$&Qj>gW(Ts zlEJ{27ix_jf-WF&f!~7K6Y^T8jqEHds5(K4iw@K(G$=j;HL`drPrfo3>A}3qBE9Bo zpm;+8AJXixOSEe!Anfx8Yw*P%vCLI2M@$uF6W6kpCRYp@qh8&*bH@kH0zD8j`ZJqI zH!baR82unXs&SA-0J5Mm>Lz-1{{uIrB>0ycKgbu6m*JF9u!*YpOYJ*cipLj#`rLK0 zbwU53%!L&eUO}6o_0@5a-A^p7(=(U+FPKr1_MbBE-V-+fvq$8**ljqosPA;&gPt}p zodTt@*{USU@-5 z`+3(;zR?lPZwP&gS^6GPbwk~X4~i16+FIB8z9Hz}&sE8PxQ>g~dx*ad{_m{fOA#tB zAS=3M(6mq8Z!lNWh=RCwQ)u?g8MEct^ev{S1&5cIAF#UhX~xt-a>LNSKn?(!C~%J; z-lHuvDF;jEpmGSk+q*mMRjM!bdZzVnRlhwh%VWrGI;XN+&+Agz1QW!sY%bT}2(WfG znC@nKQQY?1f$AC+MspuGoJx4iD0nH&Bd8;cgc9I}hb88aEDA0L$b-BFcYAz8f%2YJq#oavkknG1d(KiRyCtA4glk*1#6wx4^s}mKRFapgj z*a`DCtg<}832td?H~i`TJWIuq`2hZD<<_qrLl|Vw7LPQ1qCE9qYLAVEj*&N6 z^a3xOS*Il&r0^31m*T1D`*mUqSYW5W*L@%swe&sOrpgPLIQKhWeo0&W5EHO*Srz+E=Mh(Wq@oB*&5^U@%i0m zpz(qZ4s3XzJTZXPUsO3ZmsQ23z!ZD(cQsXBO)U_Y@<|i0cZCh7OjMrd)?f%v4Z=M7 z-H^_u&(N8cz-xWCuD(7hMd!j%hAGwnG%As=?t|eYRJbpp!8l%@1nE@X1=t)!X81!n zq5T)BCxbt#6I!aIXNe(sfd))}u+?ws@0ZQZ(PoQZ$}Mbo56n$+G9_fkD8|OCFI`l6 z4Pholm8blXki(&EbIEq$(`ADQ8e{Ud*KstZWrNG^)`*iQYP6HxRM6G*is2_!-SO!6 z+A8}4B$3CVKkybiWs(?r53PQF`@!~|C+WV*=FiWlLRaUu$PWdW^$YQ!cT=Bp%7^wA zS~*RI8KO0f2$9yhC)cR9DC|A^EZt3cERvP#|0D@e?*BQy3BCYe< zt~x3hu}Ae8fr!dPxcejxXs>vQ{WW+Ut8}+f3oA&gmMI|p^}N9Y-;gkLQ7yCi*D#|g zxpe{A`ibmZDVK&w1HML>o_SZ~rsn<@j}}`{HTrz&+?@}K_g^fRX6IT~G`EAf1u70IE_Zgm zokm?YrV@Fx%emJB*Ci4e%>`V|{pDN(^>6p$fKgA%N8c-{d=C9lEGHwyTl~eu4IcKc z`G)OD)e#AgjydgIJnM=LJ)Q}TyrClsp^fh@pTvbiAGu7CIRe0Q$VR5N_I6r2I`oGh z|FmOcU|@jO66kN-HJFf~f-lIyaSPG{rxQ8*EGalAkP6DBeVTY4x7~{s`lwe(r$vaQ z9{?S++8Z~FSSaqKdL}A*O(yw?AFMoDM#gLvmKS$#zkmP!79pV@$T>~v2Hf4p#{)430u_Af zDJ_=%3u{sg?n@Ywa;bAUrBLD2JT!}+@+XcVt_#_(1xhrmADNM3CrkI{ZRQOOQ5^Yc zVS(xy$|omcg&z1oL-69FO}_bu-OPm$VxEP5>44(PMU(vd#l={T(kdz{2@j2sO{Lx- zHX(tM@s+Hsn2Ji=s0$nqz>xuX`V3frud=D(K$U$W%x%fJUz}d+)7KKjd^OwlpGiCi zyB8&BGE_M?wRapuvCC~=h=-~DFlj3($)NDV8{#yxBlfMCGzn8*CSAjYj`3idGS}8D z!Jal%+s0P!uz;e4ga60Wdk0b-e}BNYk`WQILy^5@l%0(1?7d0$CcEqsvR5c8d#~&* zWMyyJ*<{b>-0%1MJio`^*ER0@bKd8?&TDiQJC?%G1ch5dyZcRPd3hU*pzKgIkb5^k zt3?36=6q5yHNb&&%ap+YgY3lls12U?5U8i|o)6x%{hpl&yDWSGHu^P#1bQ3~F}Li7V#;azo2yqfVJF%QpJg)QPe-GOxfQOh>yuF> zMx?9r2v%dL4xa~t^IlaluS7jNF?juDIVOGABfkwn8U=3f&!ISq-OaXGR{X5&Uy$eB zdC3(1>WeZ~Lu9jp6xm@)x{p6j{#F54Ue;c_{L;J>l+{iHTLp*-XyDPB5jx9!RI$wt zNP}G!eoK9ByR4!iNhR|&2~Hth+QW1N7%zGEpUB&`H%fj@>Z6RaaMjXeX1j1BpcJl> z-+_qjY8~v^OE->lYTeM*KTW-AKP!b8nQ#|tkG-2)$v*s)>-8(oxOvXmICS1RGBJb; zHgiAaM`sj9U)j!#(o$33T3%j$yBwo_P>7F*=L??GUl|izkXq%*$pzrw5d%LJu=@j> zp4ERy@(Ir$Yy?~`o#4`fq$xE5#E2Bae=>db>K;5|2n4KQktrvz+_AsD@|J_brjd!9WFby!Z+qd(tFJt-mPkQ4%xQfUC=C5VOJY+OfV)RQ( z1UuM$vKjEN#_KD7SR(w#&f~k? zjStLmILlX5gK3IO2WPaCdY03?!e8kKJJgPH@=KEaI(LX2G_FJeyIP*cE5WPrT^#=Y zCqM6k`Bw$w)eVD-7Db8U)0HNIin9rD%WIy6=t+5K#33F51}W(R)6pZf_(tzabA_yg zE>j094-XveQ&hxNgb@0t{m!n`KJxs@l}THM`Qq$0eyUs#l)gYX)ag+0twd+y7dyijy9q`tt)M*wMlEMeFQ_At0&Dmv zL7ENQ=#lej?Zl5C?;!Q0z>g8Db*aFYtU*TM5V2-QJ_ipZiKI zm5#FYClM;yj13q|?3t;G*J*i6+z{pa+xU`X_KB=nOLEV$!S-Z=)gM2@> zn#-=AYp~hYZBj73$aLHt*P$lTY&mRm=u1pk;~FTZ?Cxct+`6ave z)k_zx8MUm(jaYXAS~6C_rgRgy*#(3$XD6qpC4O@&OH1>hItG)1CpF36QWkw|g+79} zbZ&}Y2ss39nQ_H}*YAn(rLcS4oZzv@>V=(P$tG_J9W6^iLy|bT%!g{c7=o^rixfOZ9vDEghUd%>9pln3B>biu701v0>Z8jmhQM|EqFQjBEu>okOD~ z7+dDoN!h$P-_2pfj=Qmm&h;ptNzc=rA?q@sO2a>_>hk67*Sd_QD5r;g+hPu4Es@ zr`lBt5yrupT9@Jo4K+0tqf4eFXV#tqV`f*@xsXU-CBG@2s-ElVrfF8&`B}FS9J7XZ zL2mkeEw#dI?_&xGSg+jf{2YHB}n*LQ}*8k(93TpBvSOh#hZU^B6M>WSQr15s2Q`s`Z* zQ7dtgk$|&&1bC&XPyU#kJ`waXYHEZYgWw;op{<>CzXzICq#ZWg>7GKA92^|Lp26Jz zcegP`I|K+)$mBifhPAv}?sj!`8REOFv~hBA-3Kx$SRUSnoW1S2#&Fm!R3=~&1L>Te zp1ujLaoNJB{k6$g<~e0whFb|&GQbHbYB%VpM?aCElij@Bdb+3VKj*#B{$rN(2e}e zNZHKH9GN2nVGa@{a^6t8f1kL)pdi6+EZvI?~TJn3GRkC^>%@@`=)|uNmVp^6$ z-x=ji#f_FSh8w6^G8_>oEt7tADVLXc+bKozzb&yvE&IrC5fT!Dy;^Z|tt8lD@5L}% zRrDjdXX6cC9tFoba_cUf+3P_HFD=1m_CI}TPH2&h)5j*t-FTe@c6j2rZk?!GPg1_}Jrc0rBZixrke1oKWxm1Z;!SEFCNuk^ zSls%Sdl1T|LqQa!PZ`9jYVEiGyksq|0YZuIVXO2tgz9Qwa1rLOs?zZ;5*S)|kwjy=2&R&-ZieC-?s(L1c7&xjMXg zHS^7a2#kG9m7G}-R-VpekBw%ks$SErK3CGikg@zWyCo?gjP8}^LNQSkWUXj$Jq?)x;a=Xps$ z=53ytlTYO6%&=u*lVlTz1_FEM=?8d=Z#&9@pHd{1yQI3>(UeCQuG-g8wC6quBBKPS zX0IZWSJzmLn4$s&#&Fntgl5(nl#Pb=hUk3O^dU~v^9Ch=HlOw*?~L<}KV%c6WOLT> z{VmFYL>NJs)A`lxJn=-9Odmpg)P&DzjO5kn0^CEl0yC#pnrEd{pJ#6;YiniK6c4%@ zDPSdWG_5tj!fdZKSO0)j;RE*r8H(_r3Ny9mIy%^pymNo${$eI}h+?$1FI;;_dwt?( zQwM6yEKcS18l!Duhel9z}{SJXx3ov8>gde0?QeIr#B*RvZ z0uCTRA$#jiYNI|9NpSyu6YvF)^fJiW|0atMLr0unYlK!$L>W)friEU|-4;4!!yOYe zi1SOLGrH$0hzrRzr*@KI9&Nrwj@3B~izi7#MB?bv=Qt}B?G&rkJXvK1v5IteR%xWBRTw_y0@F5!8|f*4Ea$H&gxc(DAZv zVzoB)cH>v3sDT~plhZQ2v35*RExz3UIOD&JLiR~*}W0m-F-^ zM7#x7>)K|5UQ}{A%X#KiX8-qACb5|5kD&NvnxGiu|0Gv=?(ep+%=YP;_~yF;+pW=w zV_g=Gjel}!i*wz z28}Sadq9csQ^A`vvJ}NmQ~Vwe?pc&n9moz)Mf#VCI3#1aF8-v1@)gEnwYt&d%+iX#Ax1)FKg>hDg~TfH)#RRsz6$ z4frd-Q&iNk@(v*vN)1QDp+It&3My@nT7z%^gx>{4wFv#N&!4g^7>JBO6}mQ@gAch4 z$hFaPKh)>o`Nr0NaZH!mF9}wxU~*ukfp;MXUW1hV-7%E z8ayAe37ofq2K`QqDo5Fp7#`Q9B@?UJIua0Ty|$ghdrV7HWxEsoz)$q@c=G3129lBKQ4+;X=mPN6K*jCX_ zSZTqM6GLB7Lm3VABQl2{+m*rV8v7>#btR5M%+@NMR~|haIw$`aA8;9&%LmjllsFx^ zh-tpQZDZw*Vp@X$FkMVX=S!E@F{TA1#~?E}|FhY4f_2Wn)x12%bA|1INBtz*e+sfR zA7zA>d|XY;w_@H~={v2!i%nm}YQ4nFeasnNbjD#~YMf)nwvudS^l7i{wOs3KED@Ml zZy}YB~hmPx~w|c4^T8gyIbWcW; zxHWVgW#r{MfTXGNJtM!Y>I`N*jiI;^94X_BR6$ znKesMU>yar)?1)TU4PJn%xVn`EWL$NMVJ|2dSbPL>T=eukoAbYyFbG^r1Wk$<-@#a zlC4F(C?9_|y_4#*u-5+6IrMMNhqsj-@wS1Q`24$k@~6Vi#l89MLPl)RvLib(x8jYP zp~M=KS_?xYWaEuhPi9kn2UwreZhaqk$=v*I>w7;v$(L!5zBQrx7Xlo|AqkrYL~J%U z=hDu$?>ZWt!bAKOM8BwGd+1JR#9sxz<7s}F_}pdk^5skRQ_-?QB#HCy|EN(Ct_z)I z)!r(q$s6m7pVS*U3iyZ+?%_LO;GEgKt9fg}%@b4Tgw(6~@bLSnB!r*xycnJaFJxAB9URC%@vm6b(>ub8_T-e>5zYCrIT4o7e50Pn$! zs;Xohz`~H>$z7vsjI7zepEK?LGdrJf^XhQzJnNxc+}R0RsH#AlIA!xXdaz*gxRl_! zzwYvW+8HrrysY&^;qCbSmA5F)`GxVnKV?>DKgbNo!U@ab@wv3BKFdb!t+i*CFe@6$ zf+W^p(^fS@pvRUJRdq@@cVv;JK1x&PFK~v)--g6l|4lq_)$! zg6*_bLwF}pGI`bP~&7S^G5J6)e&Tsk>?2W_W20!+;R#3zws*D)Ip82iXt1im^eKI zc*TJdCCQU6d_^41g5iZ0=6_8vGZa6Bw2zmY(D7fc^Rkt0F(8{B_Vs{fBwdi-cDKx{ zog{CEv#c|@VoQw+ItzdqE##>&UQp-x zh0i)3*d;u7|X=sHUbPL|#Y-?I&hVIB(4Ez=aGDlGS86 z1_{ZEk33fpNDlq|{SDTKa}L8YR}50YJH7*U`s<#0zypGC!4r^lMj z4daEp_)acraLQa(`^XD4QiOfV@ z42g_f&sYS7i#^m-z8%P$_*z_iZ_ewOoI=P`WA&0N26D6i%vVXi%U#-rjYvlno)r`dPVL!5 zDz}uS+hWEqR*vD#e?U)NSzm@`8?M!Rb>aa01ETM9o#0-u+c-%1XGsA-!^am>9(v;a z95cmR$?HPfm<`@HJfF|tz3fsgS=w{k#rS9S88Szw-xvIjQtjT|`kgFMWsVMtQ{ntG zf}X$vqd6RiKttMZ$htY!_4%7hJ!hz_JH5qUZ_tWKd)PNZ^HTVw7NG_mPJRb}d0#(2 zZBJ(K%pI*S4Y(9YZSdsuaE<>Fxntqu`Y$}Y0kfEuU^}};*`Yab(zxaRa)MfnZYsYN z(nF5Y`=r^QJ1?pY@%=2Uu_}er{DMk1lFNt$AW{g*zNd0n6&FlHdsjLn*L$tV>)fH> zw4Ju&H}p5KQe&^tv-`e&L$$p<7v&Q4;;@dxjtWy&Ijrw$mQz{XS@q}Q{@+0w6sU;^ zzNMeX*uq>85MS#OJ7|3%HG1~#&n=2nw4GN92$9KFEc&HDkC$d`W`9P6c96E_N1j4Y zPY65u$eOXge$2hWFy)MsGxQ9gQmVy>^-+&TJLFY#Vot-eA@q4}GyHog!2oz1bqa-d zL`Fr1j0NSlg;Q=BuOcnB=X5*=)Ljra5C|!;=PK9t`%=O*hL3e!?kW72mQ8*uW!taU z);qkEO10?f+t7JBXj$qz*~K2I7srgvextajflkUC`$S#N(Boao`6Ad~+f2_+xcxnS z>#-Cx{^NoUa!61lfDd)Da%Q$Rz^k+40-TD7dhv$248651d&`Dr#DRu$!W1_Oi%Tn@ z2bcG-#nbUp{Sc4jakQkWZ`2ia5K>a&z@6;0Jw4%Haj47~gG^}nlAMSC3T)ZYF> z14+S*9mXVfaOdDV{%FI9fq?;WS)zbX$!chWQN)KEw@}|yEdCuY0VL{E%{&mMVVVlW zp$zMm{-@=}T>(@Bbd;L{N8`qali?to17|X9wxadXyCB7WGgg?~y!Gji-BYC0J_UlU z2`P~V`0QB9MQWVcXTP8crStU4!%u`4YY{zJ_XV#MptwR>fmKM@^4uKxNR5o#zc6}7 zbJ`D=)SmNW4K=zdUfUl@Pkt?~anVa#rZ8B)0*P)_Rn=(weaEN#{M5X>>N`yt7MwYs z$TuX^a!9ME`G@hN^m%u-rR1czSz#CHR_aO)5$j_$QPy+nJ_&VmovEAeDHPsR-F}iO zh||gra&yTb?2f5v%_*(-%FdEHrUC0aNnq;?=G)+gjAfIj!Z;DjIV>MoPWwN+KOJ@$ zCl<4>d77WXZg75kM{D)c96Ori75AGs+v@e8B%LhwanhyP05py94Qqf|59OWr?V1vm znFdW?N+N?68AwMOf0&(4s+aCp`{%priCD#r^mc*^0V>^@YxoFwo zm<;_$VzV(xk41%H@*#BKJ zXj~po**W3=o!M@Vkv!SpS7kznoZXfD1jSXypHf{f#1q!hSjc*I1Et(Gv@rMfS4UPW zLF@98hJ{U&nJ@&GgyaLL)0dXwjwoE*|8x*- zc*c>ovTwTHh8VT+aqZU8=D_-S-PDkJxTgL!d}*h(hjn0j)0zudyR=nWPpx|@KB1zz z34j2{x$7dZ z8j_%8Or3z&rN6=z z(r`88ZmB_ip~cV|cw5`j`d@DvxwAB>g}Ory<6@n!;5a2mR%OGW*%GGT_>=>_4b9?C zZ|8bNW8z1LkP?T5RV4YFo=x$P*BQ*<6Qh`r?F8UN&dlV+U+U#1;c?tx&6f}>asfYQ zjq7eg7yW*p6RZa_8&|C_H^KsQHEPakvQc&OB+2eq026?!&W!%m;S1;Mz?$Qgk<5&* z_bG+S2=h`e@iGH)Kl;!qNP0Rf3Cdp1q4)_F!KKxZsGj^ZsbS$S-&`LKIYA)ep+kw; zdF3c?ETnde!QKKP@>-O~`*Pvypmky-Xr;lD#~!xv?uVUfJ-xjJF#}92EbV}*kY<>@ z)zBb@b-B$f7n|Yl`#^1|w4Dos75-SBaHSR`L=tfeM*p%${4kNt(NOZ+*()B;n)dYDf|lr`O~iw>w7s zO3$mg>S@vN(kM+0io~hmG!yms-~6@*=~KX-Y3}aM?JL5E&K7`OuxB9FDH1VmQbDW< z|JZiT`IbwQRzsd#sG$}uRerX-nz52_C^$+t48%uOABBDy-V{4FMn+#qy>y#bCOcmb z`3MQgP!|*-RtJ=yepBYy@$2)2jjxc_#{WZX?AqOE#`i~U;2{}f6ERRcrfgo$B!EhB zE7!(WjqX0zl+oka!K*#^kIL}J9w%(;$f2N zvNo>o9Ac0Bz_cyTwyG_-r)IzAURS@~ATu8+Xm>`=K0Y)5HV=-jFM}g*4xv_Zu3Wrl zdRx+pSJ^0-tJPxFP>-tUHMtmm_u8O6Dpgdeu;#AN`reU->(z_5xAP|VAV&u$Y5eX6 z;U`75yMvC8hu+Nb6?{aRxZ941$HKo+B|1TPEdhB?0$AJM5bIKKp}8Tc>!tI|=@y%d zM$1tZ+PfRdX9kYHNS#QDP3^Q1CmU1g!L?b^Jg8!)3ta)!8_q)99&5QdbHcY10uJ5D zA@H|ue}vfuF+!<+J-c-4oD`4fzd>_V!ipPkCBjXKQQ!tV34n6w>Df~<*gF6wFMHi9 z3SfB1#s^AD%5X6LUn!s`kR#=C#jWIC>0Be(Md!3PtWZgG>2hm)yl{q~_88lF??!lMsTzq4i) z#bdE5#EeEtn^e2~-mS(1C-El7enGQQL^1bFjdRc1(;FP$^VojvvYZ^&$lP^j{c`JF zss!^B3ez%{*(O9#B{}Z~aeu>;_bm4m!9exxfL%!S&z~;=Bp6!Kn5HXgww&1WyqYoo&^ zJK&&h=ui0W%x2r1vscNU*8vhmb=aX zs@d6dXNK8v4$9cd*pt_T*q-%vWK$GxnxchHmUe5c6i#7pxv911bJWLI_o3W!(KUa2 zTXg1KtdjKL!gdI=O$h(Sb`NXm(-82Ndr?xUl0EQS$@REgszI1G;jwk1MApyq-kq8w zt;k;j318$n|9x2%I(`)9*KA<0x1wpmTVcT(yM059`S#5lcque_hZGd#x`RIM^oXxD zb*Qy8-D|4fvT_MGR;@dE{jNmpu_NYx^NzOj2E{E*waOS8{4VW%E~Urd;=`oa*Qj~u z;EfwfR`9{@Fz)2aKW9v1aH1dg#p)p%Vpy%QwxfXsc&_v7>mP4p625dR%)0~7xRn+2 z!NEaBidl&Ubbz^&-V;=@79iy-Le=#cktY-}#~rKNx#e2bH_b7qPe zJ28?n3W(*fHx2?RDF>WA?7_4B=k3T74jL`rf`WpZ9_6xDR{65pi7=L@Sx;3)*98F& zV7AW94|r9%)&-&jRFr>_5NdPt`$!J`dUu*9v9LH-u0``lfAZuBtRjteX6p-#aK1Bh z<_#~6r!a^vzCNa!4mcJ=-21*#Avvdk0dy zxc28F@$d4xlKm#6-nOTL1(^k-J#~wO)5(RWl93C2Wcb|#}8!>1;LKw#Q25a0gdbYe;vQu7SD+5;`AbSsBq3&D4 z!5wt~`^V`~tYZgvSjW zcrkG(1imsqw=pzC$|&l*3-lbq8Ci9z-$l_Ww6wMPNA4kYNl;Yo-@ni0CMPM0cDyt9 z{lDJ;uuxlPESklf z)*o`}3y3Ptvc4(XYGzEmKkzK3oHClH7sT50-?-o%_4 zZb@xD{5BD)35WqlonWmUG(--^f`&AVF4FCsxYR@;WYZ09r)qzXBXolMy`zH4$dan2 zJa*@A%r>ZA2#%8)?TIAsUhxAf23Ad&up;5#?;@`4wjk=k6?5Q_1Gsh zT>YS=sZ3@pduq;nnrQNS_vlYhuvfN*(j(#Ydv4}prL8PqL!-~6I7_73mwx{my`Sp+ zgcQ-VidpQ|Ws`}gJgvogrTv4F>4lHzw)R4N#bJ4|XQ$4E!?sMk21)wkqWh`GXBgpq zc;5B0g!ny`{q3LTgk#REy4aMZHtxT8;w5|SCHiD1_bEi({k+GsZ#C2>CH;pb`LUXC zYzJXr{Mpdc{k;_$k7#M|{og1#pK8?@-SRM@!^a?HA(sPu64OWLN{vBP+g+5zio;!2(j_=JJlj6OWGp+RVKb2G6{O-ad@P9f!Mb}*?W z6&N~UQ3^c(=0o(S@7S>S2Bv=oS1dO-_rTDQUwyq-)ELCh?ru&zSz4{yv@Q4#j}LY^ zG^*I^O1iqC;C7)*A)~9S3&I~Bw*t@-vFX)`xVZ4p?3h|xhr*_?wWCAgeSvoP`bW|S zr~kM_3}Z+Ub?z^9)Sr@CJw5FvlF9aqDLXiJ-#M0irT2J>7M=^4l{qyMWR!)?3}1ru zX-y*EgNwtAVaL}N2L`y0YUT_%Nle%%5yf`wbk-(#DUX}`W)kn4*jaAiUaR~Nmtdm% zt3h$GjPlVjiIp7_<>ng;ixwaic3Ji|58j{a85z4*!UQZVu>Mt49;y@n`m>h8X-Fk8 z9Ev%?4{Pj_M`LxChF|+qT#m-Q0|NQNdJ&2seO|T;q6*SmW=E)g%}q(! zRT|T$WWP(rCH2V~_0LfKULV?U&R(U4MO|MVfKe3hsAXwrY1=drn?t$neHkV*OotW% z%A>?c|Lx-2mt7sk7z$ClCtr-@ZYUcMmC&D%!H0omUbRTD8CVc;ZLn5%CGF8hak7l^ ztgo6)B3ri)2T_89|C56(H7;wkquA!fmlq%Uqej-*9;VqF&w1bp9qo`B8ykaFEViEB zx;jR%os&~rB#n#-kG`{$lYdSQ!}`WZczQ7G;lSK(zdrB7T`Vki@R9~Dq#{pNK>-U4 zG^ls)hSC;IOii^;Pk;G+I|uzw-V3OW)0upXSZ0wO9 z*?G#$+W;%(IY&=)8dZx^l7OGyQD}%=EEm75%C{v|B^shL9W#+U^l2R7*N%lt{L*+&!u1JO1OjGBo$np(FJ#SWaEjp5#wkp?L5 z;?eekt8wM5R;`}9zm?&%Q)A=2L3Yl5V-T;mDDg!(J%Z!|I0s|w+;c^Um_L6uk*!M3 zRnEo!um8i+qF-ZjWYW)7?p?c+@F9)izm^UQ9fJmoWsP);sZ+u&lL;^DW`!;gGNKJM zF`%){(m0-1M>(<_Gx^oF+GUdYE};M;@YmnGqgBy#jY{kLGDd0g7rl8*7B6e>I~zC# zKMj6*;eiRzwVlzS8#DSvq|UryiDvxO6iR;WHPhyFVs5H76=Xci%9ACK8MLL{VDyUZ z5bJry_Gs_&&**60j6On??ccM!b{?gm>!+7`btw=5W(R>Hz%0)ld7yv?UYSVqdsg|Q zo%fZMJcP^|h!-y`WM-j^AOjPQ)mT15ge&aknp#`^ersGobPE{w#-7$>Wzhl^Su(*Z zG#G@7It`u)zr}G)fA;jW0`3gEB*%UZdJhDR4Os5 zf0h#ey?Z4ncp9WYPoggEKk%ZXf=;aEj(G1KCaGG|z+#;KQC#=-=8kgk(h;&5gcEwXrO3etf)TAto5gx>G%o zk#hkiqDVjIOq9n~7y@fPdhM@jLnIp@IK=y%Jq2Aa+nP zShWeA#jjQ5v>Ddj%P6pRwapn@|8ZDdxsx*NIGa3E@@Nz1sXKQC!z(AnckMTg077Q-8M#T#*5M$UpKPlms&)o7sYbKDjsWgJ=2(7MB6;w zMkihWkfEF85;lHeL?ER342zi%vksM_l4UMLn9f=xxp;U?aNsssi??J_Wob_l4byF* z%h%D-MYVil7{*;DoEgj}VlO))?@+oT&`Ix$xX00oXDm#_yiAx{&RF^LZ&uj&oCxhz zzcs=?>QYYOy6yYir<)-KS|nGas zkws**n=T9{m_>ie!vgF%Qai2i4os-@tgNvUvWjg$$|(V7Bk8#+7+D!gpv7{TNu zG&h$~x)bzk;^1j0D_$84`#B@97>sVP1utZ9%-fwca)S;K7GJL_?QR&B^6>L(Z@ZCz zJa22NN_mot=ka3{U`*^-KUxF2B^a1xa!u%IYllGE%a2u4CnqkDg^QXq^E4 zJLsioxndB|v>n$TFKrhef6e+(G~D8bvqM`XqrH{mx>fS8_(qiY7qm3S+Qe?HFPc7@ z7PYWLOgLx4OzMS@I1zlA1jnSp$lg_PxQuO!bJ4roIFIaay31`!Ty;b*#ip^>YWz7a zwK2YNmqm0u&G_X-7F@LU4!yT?w!}(QR;px`*r{`~jX4u`kB@C#aLZG)!#|<4v~!Z07ja79!Z-6I;k@PC!-R1@X&w;Vl(*6_|*OBG5~ zSF|4SiLSfhyZ+V1>6N_rsVm2}fO^91)+YZVNu!}5;XlmGt*l*at#Oy$?KwW}y^7}w znC&&^ja(bguh#9UQuJvyQJBelISgL2Ned}!8a~Tua=rUTi!W5|O*QJDjJ+XS8X`@3 zX&M!nbKvp%@N7#h5>p1Qh}3-IkG=iZkrrH8%u=`vZ{H@qQc2VxQ#NWx`R3!HgfeJ1 z)YVBLu_6~UrgBX5j-3_1F-C|jM^>J}7j((MNO<`-9u*Z8Nm10{hxOMj7y*@X&$xMb zkO4KmVCi}sIbB{+(GJ=H206Tqzkk2MnRD1eKR7&$h>MfVSs!a^Lck3u4gmn9q@?s@ z>WVPaa+v(QCvBWlP!NiAMCvX0D_VpOZw?6Dx4OD7rN<*fL#@^Ji=V%IxzJ-o1=0*M zc1yahLmb9EBu8cUz^Z0|NmO5-5}au0S=9tSOyKeH@gZ}YA%Mf=%(segxt-wY;f}b7 zMke>EhsE&L8!Ayd+x;3#5i&b}jPdcHbzKiGu4lyrYOy0K!=Jm3%gBnp=E~M-tZi?H z4Gd(dhUVHqWt{#&ZSz!LRZnhmJXqxjF~9jeMPI<*CG<13sNIp{!vb7=L1~nbcHjE% z)oe}Mw%AM;dQd2^MVqBnHMu9&4lYJ5l^RZ1Sy|UcWPY3rg^9J)H>h1C*+ZiFbd9sj ziVz9L#5^~8099|W@S8V6Dr^4ycmMMhIw?^5;JyEMsduk>hm5Vvx;w%M8K=3+pJw=Y zAO}M1~076%kHGSC$#3nC7Gvdxnk> z;H!Dp3$YHm+;NWuI|G_JM(%(v!G-ymi?kDItji^K65*DpHFv~CnSDvyf$k6L%zU@=w8;Zavb8 zWH5qRF5D;5|L2tdn4^{ss#@Tczq8}j3prDkhdL%Ft4HA{o2d*IOy^KFX*~s%a!Ydf z>fEEzg~DIS^0?|%O8DGBtUdiII5B_H+f(({oxwNKUR(6xy?HPcLlO&@L($8C53sSp z#M`{Oyd2P1fcoJ>k=IY;ok5`(2tqJfHcyZn zQ>={@rRr3aFv12CN#E^HWg5+U&jhR+D;;CEywTM1VNbnA-ps!q{orj zvOg--vH)Uu>;sViS*KEDG!i;dVb&WMsFV4>)2MZihh@S450pklwT0w!9!fWJ|F~+` zU^Ez%bjDrCncS~l@?>&WJ!#);q>DJ`G7H(;lzyDE?{ZN2BHaEFOM}mj)XdABUb8sr zJw6>5PJO*r72L$hM3bAG)Es0mn{rku6A~r`VCaWFrlf>U-^JVc-oIOoVi!@5_fH== zo*8K`2`lNPsvl1`m)gvwKlFQZVQOURKjP|bQ}SoEhri@4gRI0v; zJ-XnSAU`htq3zO<|>A~2%yrM_KEAeOx0q?GcMECTEEfVx{ zyYY^fxD!6{RPnZdo$!Lu%D=ARCY4rtBf=zSnoJd|9GU2cv_Jv$gJ4|C9;Bs6eY<** z$rR5ATCRAAaT zz@H9YX-;bcf08>mK?e-N!ssdDSE_xf!gEIdln6s^dw6(s3qJu0HHd}g%$Xe>9PEHg z4jdUpp(F76(X!I(HsORDT;$a3HD>}y*S*b3nBhK|xa+@sN766!!(6D1J*Bv!nEyLk zq3v}H+%I+QA--Ggr;%5S-$!*tDNkEWaHCVo({t+Il$O^*v??aqetsOlT$j7 zmBXSJT)6s?U>o8q+hF21-Hu|6u(M5n&20W=mfNW%Iq*MU5-b!cZh=cLTPj;d=16oU zQ5AVAOHDwkCqMX^$v*_X{WF$sx4GkJf>Br>bXRTe z6ho%cTjI=j3?L7~X8HVtAGZ%hDdl$V;aFi@Yg_!L4e1a%iSl_MBju=r%W_&3vK#Sf z*~^029r3kuysy}iPI}0gqHS?t=ljopy&dg%d4)dVF}15b3^UtQF>}UKG8tR3t3lt^-z}i}7X2@M!eT+X3pn(30&R* zaq2@U_t#;zd!?h3Kj20J`xTJ(C^iHWlahXfTBkhgBTCq*mQ0g3huXV+3lnWUahb)H3qf4vt1Up@CAfgG>=70P6A40Tk%+!Vm379%`1r$bEvVP6|RNSx* zpCE(LyMb+S^82`tzA7>sZ+H52nWPOhA@+aV5>8b)5lp5r(u`D>_{f;sV`*nIq$)xz zqdSvj;o)ZYIQIq(!8XX+gM&Zo-j2hg&awLrC>k(6Cxv5-`GPoptu<4SLrVVROY!HgBZi+E66rl;5V(DBGQvsG zNYS9_)2nz5vRep>WVgU!V)F{q=dW=~qa1HM%N(Mb3^6L`zJiA{f^jd_EuSBaiH5b(QyQ0Z@Z z@DW~#r^DWD)6Q3lIv6h;&GQgY0Tmia0=5P%?+tusG2J2f_mBdY*BF9yt(gaX__$|F z5wCO={l;1xXQ6HDAe6hD5--OjNTpQii0m@qQTkCe?WsYYo0kXoSP;N%%4hs2h{VK1 zFsKa>?Rv_~TcxHL@Prsk!0YTjNa1ar*^UzvNnz)201k}Nosqq-jbSVWF@UwbHZLzP z*s{I?%T0D-BpDEv@>(-J^_7)`)|2JU<>o{5;WSZQNLXdbJuC#iM_f~rWI6O12^K04 zu8V=ipmt1Il$QrUogi$@q|D1y(1kmJb^sUm)IufnMA`ZI85bTu4cI{$79^L%Q?Y(i z0$6cwIA6cDN91m%-3$;%*AP*wDMFQ?6nujEW%-C~^`l7yjd zK3_im{1_xGpqiv-%WWbt%tR!$wm^SE&7D{s&QZqw{{07UOzN)hG}kV;dd=GzraeP4 ze}Kpxe>f(#f4KBhMMa&l^7GKsSo{VGhC0my$evkBk0myVw1I{#EJ= z_xq<$f$4uQHpAQ5fMcZ~i8eEz(9Pwh$hh0zjBgn`OT(!#Wp#rCznjKmT7Py1T?6h=>>&9`oRpD^3=`G86s{KXWQJC`VhBa~z% zXTu`)8&=;Gml&-IFwb&o8{)Whb>u>0=>I#=neFk_EKB?Eq9me&P)NTn>xlq)!dN*h zIp-&5`Q!iA=S!KN$DI=yo!R1>@U%jku+d)fRX2uL%!gU^&U zXm@f*UwV;przUJ0#RI2BMsVeM-7ppD$O9oy;wsy@EP)&h1QDywn?ZRAe+W$h#{4uR zA>a1)HVmo~($XJqYUlL-au0(rDmwlE(h}qH%sKB9 z+X5tCR68t7=e6xaWqiB05Flz?`{TzS$Z)fbSwtQ`XJ_t(#hkp)5&uc$-dku_JH>L{ znQe!K#eLE#&>|sobu-6=apC+v*VRpKY2?kd``ef_e5BeS}0gAjz+Vw!&X zfapQNT-fi^HnEMn@x=Xomr-OTQ=i3I713*g2#OWft3C&DbS=I_^fejun;#uzB6gWc zDs4vDtLRAQ@NXt8-l;DN@FOWdEJqkJTkGWCJ2O`op_i^MJ|u;okl|DjlaWt=9CklGtBecF@K|l|NlFNt33KN*Oy%%zYXV3?bM4ZRyyIcFwr?) zoUid7qyPqT^oY6*SA4e!6h| zPS`Oz@LQzw#?}qP1jlLP5qv>geNzLsaLV1C>8+(Dd1Xm~1UDy%2Y!KPsGDai>e*@!;54C!A#MWk=CB46b{^X%X~MT}|1UehlQ-R~R2W(wbT3Y@K88$z(eg zm^zLZb1SVfU4t)ihj?TBOwMypajd-lu_(&?+K<))*Ze|`M+J7v*A>#M+1 z8XFhVd=chMf4UY8?4+?&&+U~fk302jQC-}7?fba_|Hcal z=sxTp{9IjR@wqsxvmMSqw>uG%Rlk8=a7eDRnF}Bmoy5)9nd@anvu5A?j^y4a3 zhN0wKe(Qa5$;MY>k(2T{{wreD<&mEt(JtKU<&f>qWbM^8bA>2 zlN&$KD%GM!E69rf|4{XoVNrK&zwjUif+!7=0@5HMp&%jM(%mJEpn$Xp(jlGF-Q6uA zAcAx$-Hk{{z2`j7-uJyQ3_7#^YpwH_VR}yMoW5Ak@l2zIWJE~J%=*6YY2jpi z_H(s(aDuExp`jV3N{Tj@x_0_&Bqj1k;J^F?qrLr%qkYF4c|qxIHn<7`W9eUi#iW?X zn$r2>^iui4^T3KIo_p_8uL0YT3lY1fZ5~+iW8(6di#rBTPf!rku3GDS)&6}w+y>(G z8-^~XCoEt@d?9e2Y%M?SA^ZAMlV@wvQ}S@D>waycKL0KC^|zC1$I9+G zFv=0S5p?wR-e?x28NCK6z+{a(1#-~*A1nu7V5?N>^v|ZV1AnurqOxkRmD}D8;lT;- zr}*mKOdV0d*d~E)6N>HVG=EUfYf&Z46aJiDyv=S3%-n76m_24Hzg}C)BXkYadagYm z-aj{=BqC$DVeZ|c9AMV;clP$Ig2KZbwAlt%ohcU#tShRl% zGc-P~_MQUtbs&zeS7oL{JYr>i0Jkl4>wHqEsz4?(0#~lZ5(}fAO2JeLtY2Q|T>uyw z#2BQYhVNkgCv{&>acOA}q`tKqmBTAR+T;VP@rE`ovKI8eCZ>z~w@~TH z_|D~?L{cfCAZ*E|+ZsYmgU?|dx3he}QhF?wC9R6Z7#tO@aqG)*P#GU7XK-DM0~2vu zs1d`j^~&dUI#1qT+%|uRJx8O+Oq1kZV^P?^*vM8GfT#M*bw-M&E$QoI2i9-O&WyLN z?gSkAuYF*OFHNdz-!CbBz;tva-?C`z#T2qKKjndf_&fGOMPPy9?+mI?Uu?KKYfBHH zmx#E28zqlNsw`>Z$T9f;8C@*us&#Y-Xzxvt62OpEd>juu+^N;!?F)Vz+|7cn(20u% zH$#w<;3t~+b1H4<%{dcRkNGlI3@(!oaSbV+oq|{eo4(42;Tyg1>0k3%zJqvoUF^Tu z2$*#;ZJdn`qb_N~lfQk-gbWxjxv3AV=a)g-JT4zZ-SG(tQ9ST}P%=C^V zzXFx6bvT2vGuE>GVsE>6#u2K{k1ch=!QzMV)GcCep|H_TdAg3Bkr7=}Q*&rEYuuQk z`*=gBe%p{jz1UN+fY4AFqs0q5D_UB}{qK{3 zljx(;Ip8hrb94F|t=<`6p4ZM7EzAJ($N~@?#W=`B0N_rTcK#Hnr+a_+@Ifuu)ZCoj z6x~P)2NyRYF>#s^;}*oMAY(M&RXM0>fp!_Wp&pV+Fm)ZujcRuaJZ|v{`|V^t5jD+7 zAjOxkYmC=;{6SdzVQ*Gd9)!d!kQtiiJWzh+p`wYes8+0|s}WpOCakhD(a{h}V?ju7 z8Q-^BCK*hk`u@!(gUevLEVGD7r$hH1E)yKY;L7O-Z!XMXbx1A(zL4SIkJegIW z$d& zAf)MqQX-*8AA*B}htFwgX_1qIC67cb1c5yOfgEfYq8oL{FrHtHwZna4V)V?+q9P(b z(&e&XC#9)c9oV!N2XCuYi%Y{ z2P4~*AaxIXL-b_oKuUn~5vi-oUb-O!Ihh3o1@o&p7k}B|nhDw#Q2=>XdRDf#L!Rh1 zJmTSrt6(4GX*gEUWl1YSek|0Fw--jsIB_-m5N$KhsHBS0dtbKZ^QT+np@iK}s<5mM zp0Q1%Pba;RfYH${fkYR>>VIS-D0`F=%9lc=EWbpN{=|h^R;tD zRq@lEO_D96v#@#%k2Shyu2Wo7YoiUpNO=h$)KN;ne;$l^cUk728&lAJ)=Pv1^JXv2 zy+f8<$%%uSkHPdS_KPaihv#K~SQDF`V4>|V8$A=SYP_KxyZch?ZUhlhBDgqExxe>y zZrRm`TdlrOW-*v2tLqgoz55%&Hc!Risr`&i7L&N|OiU^?O~x;9{gFegHQ*&)4~{T} zE|3cI29_kJL1neIJ;T{Ds!CCyHO+*vLG?un$~>%|XHMHhre3+g+K-Nnr2~u>9Wp@# zlOeNi171!}j`ZHv>gsKHo8jSMwdXa!P%J?`!T;*x;MTVOQ^b+vsY`r90y09stP0ff znd~JcB?cS`(OluyvQU<7g%Cz34yxo!QiGMp+wE_8!isW~ z2|$@su~1L1iLv0=^tk@U#>pXMwif0Wwf{wRUf>yf80$&9F8HM^6&}hPsS?R2Kk%k{ zpS_=AG@+yJ_%T3yU$3*Cl;W6}#--EFER|t#j;hz~bd{}|oAws7QhD+eiD|y7WaF1` z*wY#Q@=pxMlto*ZXgklhp}>Qk%;S<*NLiq3ft)$;|2uQw-5reF|JOx=_)ysTwCSU& zm6Arhs&DC?3qM_b3M#uM2uvz-Uwff~9+g4%uhyp|-Jw8LDyAgB5aV{iyO2=Bx0CBU zq47t-w5ke99ybxOVXNjNVUmX}o(H#YB`o&3I+!r39sj#47!D*~4;#_Fd-3E!x(8eA zZ_M^+W7)duX-;j|QzvVTD2ROvDE)@)uKvP;DGn=0o}>EpKGrg8+oao%zPdCphW!N} zHsfGzDaYp+W?RpA;wZn;f7d~K{+D9YJUL3S6?ZHHhkCkW3SZOC9WYO-3<^4 zIMfBnxvx;#3}oss{|)^+RO8Qsctj`0-bih_{(>1xeAUfDwZ=Nbaos<)nKRsOCO>DsZ!x zaR6z+Y=hXq4P9d-$htF=>wszmO=v|LT zw&d;~5)X;dZhioU>7Fdw-#V43SNdZ~?$Xn}^loJSogQV9Zx9G&Phy$hc6cUu5g(&h z4cLgX`kEhAqN$p8I(85LByIV^ub86uX}0!OKwbX(>cpCq)8wUtMA}W7J^#EQ8q9%n z-~XP9V#bb*6?aA8xh!+Q>rbabH~~oE z(8Ed?ASDhm4i)=-__(<60U^#Et<>{{bPdqMi6_L!Tm4T9^3>FnWfzjD0_%+pelR(( zQ;?4sQqdJL9%8DcMa=Q^>Db}Z!QS3>KCdt02+6z>rHzuTO~}E? z00rA+?Oj-qaErT}_7OgI5VlX&1;`}KIGx-MF0K=kl9{a2h*)Vr%#ZczLQ&%2!Qvzt zoTHyj@Ej{1WNSMHIO+U|?jyj`9;=`1=f77EvS*`?K(iDB$MriB zT-oV9of)@Wsj1oqSduzZ*?Ja&kZTVFHH@E&?roeHN&H@3E@pFPv~-&caWG}_jnkRE~$Nw}>QX5^7IQqxry>(epQ zT~gQ$4Gn1M=t?r_wgv`p)GEOppP{VU5^R$%SuoP#&kwR}^o8bX-t4RV7LXuMkb2Gt zx7z)k&AZAZi?zp7E0TC-g~u*5JL;lxJSc71&A4ZK$eBekWBTO9feVM`<;v8=T{YXq zxvFTQgY)OLs&X;9pYt2ws}2u)vOM=_(d?dsQef-lGDXklnHSACKNp3|qUk)BG|+w3 zJl9en8@Ak%OD@ojT+ipU8T=-TOG|+3QU1A{&Lff`PCUT`;U&!7@JBJ8j!^IO-LEN2 z4MNJ=?9~~t(zADX*k+uc>*)kjrS9=%->H!(eR-}R9C!}5ouCRC1i~A2n#l&f`5dJp zPNqHvMT?MCn4g^fBA7czP-ZMl6Zv;X}^X2o+flYfAO~6tM3Cuz$LW` z%4GPi@4&q*%F+z6{`|>JKBMt8V=t<+bpZcg3ku`oT|W-AcFksvB%ry>`Kw}a&qe2A z@Alaq`BF6N7r!#fTyqC)MWw(*>5PYIVJ+NdR|gDEU6;Y+sq|}=tbvuO)Nop2{#D8t z{*0Hdb*RD-dzq`eC&B!%KSf&WPXOE*#P>hnM|^NNRW+fc%0WrFUg`sl|sfKjDo6GAoMtX zL?z5c;vWmXY}n;qrV4oAO*Xhd3F=U**R@(@%+HY#5izk((`%!kvOEA?dEZV3A`Qkz z$i_rUMzoe-$}pI3^Ja8uWBM2tb|09w1Aum`yPw0Y4>0;s#&T&Zx>B@mhs7 z3T_tXm=2T;YZ_z!EZ7oc@5NKLIO+a!BtZVHH&inmb$!*E&N{8$>)&p^OBWpt7gGDy-Y9(rnrQpbQD#@ths{I({k;zGSAso8v z3?eS%pHC5t56KHP60CM-+})@4)Gzp)`SM%1s@c2k2wOS`-3TLp$C;a`KYeE_n6Omc zIivoN{u`ECkN8}uh^MQ!v~e%hl?9H2a@SH9zbB^c7YEZbd&58t(nA&w{owvD?Fhet zy>JgH5_YpQg@n!Jix6RVzU5a%DdnGzaCj=%Iv>!fFV0Z+8<;$)Nv3q4>%uMZ&rM}G zSB!{?^v`-jRliLze@|Q8lHY4iv{~%C&wIp&%v!Q(rxP{T5Tu}~spo-G_AG+!y%WW@ zM>EP&EAd@Sma$?&(R-gIKMTINRN1&3v-p^U_ApQrtyP}c43zew{+>H3J2*a3Hbn9{CH6?9~J+Ak0B7G6UGd`}fZvB|J3i%FWFzlD%xf z3pK2qLbf3pgM+`Qk^tIe+>%W8+#`N74>Fw6Va_Qd7DRKGb5-5g(wuIw&5+i)R znvFky^6I)P^2r?KLVgv?N6=i2cqJi3p8C+9L$8C*Zx@Wp%h)K-HN=pc5zn@3_5ELu zX%#@t#&CS#?tWD-+(X~X&y|?Q@X>_XpJ7U<3a*-kIkuf0X{A`_3R*M+fTQlz97|U+vJ@Afw z=6)6agI}E?-v$mW*t`moeJ$@s*m2@}(fx1Y9&)yfCe=2E3IHhVDs;e6d-du8^fP%E z79Kju1bzPBfT=WMzr2_||~-97I4YD_gQO5ZbeUeC$`l%{3qbdH#NGC!>2Z zlo&8UfJiv6%AD~05ef`@!a_aXSJ6B&%^s(e3~*Wqh*~b_YZfIlV-3}^ARh5>>2Lm4 zRQ$d(0PKx>ch)}M;Xfd8Ngn6YMObdEyV*<6^gVtdBksvdxo%Fe$u!2sqdE-PZq=W1 z{Bu*%RLlp59aZS!rxFV|@0+L;^5b)7d^zaJUFP06(4_CRYf-F}?a35Eugd5&u1D(O~v3 z$^5uN`>JAYc`;a^)nKXPOI|S*?abmKIO z=RYR-yt!_bIk>!wzN42CVMqJV;SoAj!t)w zT5&3-=Mwps+D~K0@VV+*_MRZ%CV_gHTlo4C#DbFeys4~h)%?y3&*icIb-S9+_~e;E zSw&o;4ik9Ug#beU_q3MSSvR=HK@xGam8%saXAHC!=z$fLgo~SF(4NEv!_7V4nh6&l z|CYYKzBJBaD6pVV;KvC&plI)VkRn6*gyorLzYjz<0&v2poh~XN@pWc~#F|^%yEw*Y zaLxF1e}M?h{Wr9k#G&c9@Jk#VMRBb9-QaUknHGcuD##G9Keb4T)l4lprk(WeU$aA77y@g zn)HYWY@m0sIEttrHNE<5&0UHX`7x{{lg|*S2_TPeAhN^@_ntq|TzT%^j)>|0EXon9 z?pw}T$?jd8RHtP>SSzs-Mu{__60Jf>6O{KDudAZ6Y%mf&v3TDu!?$=QL9Gl#rB3h&KP*yl-JHaPz;qN@02W&I@+c}5zI5#;l-+MJk7d9(@n^;3^aCKSxg=l(w$>F zVyE?LJ4845hX}rv?WAd)#tONU-a)5?G2cTHLd#2w(w%yr24Z2cX*6Xlp{UJ!9UaAMV=jrhE4#v`>E=YhhI>6|(Gs$96XDonaOr^T^KT!p_JpqjsngJ3Bjr zmqMomEFmgzGr&SygN#tnk)UT|P$NzLpfXocJL(4yc-zPb?yXyW+6^$PEWnGP&MWJp z4lxf}l)5(yH?qsOL3&Ipmna$tEzRIAIBv4G;Y&~t$30kG(H5HI>82hM+hON>fbm#$ zEPPNv#KQZKoByh#MF=4o(*%SVvaRPcHqHb&4deCW9TN>}f*W_LL;xSQpg!Wgz^pH3 zL_f(2zyo6d?a9g3YW5LPXheZpBk9YaC*911tkY6KDkeYm#F?9$n%LZqt$pti_Hf90 zYY>>iwJmXak&*0wQ!DJ5_45c}gm`f4KM>joRnTN_r+{?ZMVP+PRz-7OF)eMfn*6GU z7w|D_~-McJOT@yJ7JV5cOH#Cvn>4&T`;kc&7r}YNL?mqxD|a~gTUs=w~;5Nvey$(qKd`( z*8^ADf|UoqNMTx#l$QQj%~gGg4(>RB=zT|WUx7O+0Ak?Mfnbo{Q&&>D;o;#?5uGXx z&^~C_CK$_`KoJZvIN}?1RN~>}q28!5>YK5#vBK)=gioGq(vguUgHHyEp8KHg3~bPy zkfP5(L5M&mL&55%Z`QZ4V5q99(&}2xgK>jZzr{L+HW$1(Ux6=W(BHoG0R|G|4^*kU6Q1=Y#LG@!V=|E%%DkZV0;WO}4lNn=s3K++zdxa)J1VnuWg5&CE{uxB z;*(7G6MrQgDVIJejVSnN9%8~w{iz(b%udiV{LE>lmbD2W$5`OWP*i4^JIs5gt|OP3 z%~XP8S~&%?_s2}?bhGd#xz5PUc0Y-p@p9hG|95~$Bye$HZ_?yTfI}0>aK<{Gr!e!} z3b>tyw7I9%rp}h%y74lTLu(AzFOu=XHj^)XBn{!ff#pO=3TY8>KLiC%NIwZX%I^=| z2PVioYuF=fdXty*dX1E}R`bKJxuB@8V2DP|@i%hraQ&{ypWXYhqfOJ}n^$RK6G||j z7gJ0d#j{Etr_Q36LqcBJ;WMCE0gDX^LebesQ8h=SvVFWt$iPL_n!M^liN?nXy^NQ={ZDo`>`UpmVf(*_a-*|8kBy`pzrKP2dlDm@ z3(^Oq5Al_M1Mro(*A+4F-M!&G9Jh{vBi_YCG8lK>*8RinNyJO}cyX_5Y!m$P8cpx* z3pLV^4%4Bum-~lG`nr=u5)u-RA3sj3sfj%-pR(qzvHcYU_nccb1WQ09fdsrJ$i^Qo zZpe8GUnDtvowIIdZy7+<}lk^$Z z&P;y^j`AJ&Em_&w=~Y#x56nzqct8^Si;IiV(}R6|=m0(YmXufq@3D|6w|ZV;5#?#b z#B)Gf`6E6)5;3vS3vw@DBnB!&VNT(d*4dcK_~MF9S5X}?2Ja)4fi1v%Sf1c^)pwrc z+B~pJklR~P)Kl@EkwBAqsVhQulsGAuf4RbLAZ{KdUL{K#Rpo>7!G`IWtFaZxL)oIh z^Y!?1d-FUyAvrnBDPBdd}eTO^$}~ zIebAvG7`$!gK{E&D24um{b?irTx(`(SJL)@#AB3*xz!J|QhqMbF)tFOUgbs;?izgBeWZ=&bnRLEa^gnZ z&+FeER`(<}3K|1bHpHdEa?obL_AO9Vgg?AU<+FsUH%`o4Iddw zg3BDw^pw8zfZUch9mA=!#54B>K&8iE+t*w2RjI38AXfhw|HjCTd$aP!%E_dWfc{%uddGRqT`g$oj(m>Tms-* zy!!e#fD0ky{KScgqjXrXi%weCDD~C>3Ny$it_%U0s9JO-4RG^t5r7(3KGV?GH1?2b4k0`S=6SA53NE0%pm*0h1ToJGxyPN_U*%U1 z!;de;7EGC9SK76mH!uRscd`A5M745TK%`M}vn( zt`mpl=cIg2f54-xoE#%awa+UliM8A%9%?LB>OnW8(lL2H>7_+q<(RKsRr!WZVjf|X z{)Dv{F<6Q<*OfgZfa)VP+e%=Dzohuo9#G{Z!2OzyXh2Kpm1l;`RxWB*fk5I4p6S7{>TSK> zlrJ`RW{ahm9s+Bi#IF~r%@{+v3-mn_7u4U@Mbn;GwLvVVG<6d;d(kqX0jSd3-BdkN z#&uy=wX<7%bikbxyzDE9qMdL)&>4wd5&3ps=e>aDv-tFp&j^GNh!_cLbbB~!#U`8H z^90cpU^jRTKZN}rDPuA%SfByP3B{Ml!5I$z%Us-*b)c2xO9WnRoKi}6;~)S`MM+bQ^nut$&}lx0qn)0D zq~kGIt;s+GH^O+e1aq@u-$!at%Do^jg;zqv@_T5%EOeJg0Mm-xIsv88?t0n?cTxyA zRDXXC87N>DgOVIYPi9Dce1Ets1+PXk-dJAteY^G}JxBa(%UA|dy*oxK^D%YbKBl9~ z%*nY8GJ|Le8HkmFC_XLFe7@gtwzqEw5vqb}wgy)M#}N>|3!6!k{>889ln0A@x~^>z z!iMcb^?fs%)t&Q$oyO#6e?o@OWn9Bso5(PrP93b}AKMMmL|UCpMt-ci?n_3V>P*Xb z!~GtFTdk=SIsdF}6nImr*|^u`6%uQ|R1q z3tx@;3MMg)r*AQ0ecgkz0#x!RI2}3JAxxm``6#`}WrIsZ!5)~)6b55bZw8yw#;Uwo z4u5KL!*zYu6KnrgUBwnbjvI5k-x=Sx96iL4sR`DVTRrg{g?33ahx^eXC4>R|*`LiR z%%e~L;neZ;8$PX?s1ggP_ALvRXM8xF^_1Fww*L4yNR4yL$LvJ0Aw(BjoaLb?H&5f~ z9A*shBp2Ag!*HA=N)us7DNMnz($F5*)$gejWFT7DuR7`Ih{{XH*xC{Pfl-7R|hv5Zav{Ygce3_vA?D?}6bdsZh2Vp26?))rw zq16Fe&Hs7#E`F$}gURCizyJe<)Mc(;rrB;iDn<$ZS(7?s(ylM5^A6dryI0D)Sj0c{8sw&=|yOA z1e%uvc7{eneLa$t`G5#$kkYxMnKa`vM>3+<6$G1g#-__x{Cayn07ga8vo7C@MrI}F)BN(Vnm+U)Hk)Zq*y$e~5-1L&S>>Ug+_xFMSO$Xz;eXdI;m^?LzI|&+cXp$~ zf89tfzdG1M0y`n!W7MT~ucc;>cBAmWs>riVs7+8FXmUJKNlThZkZu-O*os)rTI}3> zn^&l)!w^rL6z0|w5LlUBj}p%u`+b=WQFo_d{@l2KVg1*IFH}b_T*O*|HtMGOC(I&5 z+teV`V&lj$GRYLYG2C+e6kbjPBOveH{@%iVE37|hXJ#3HXI+PHbj|+2tHG1M;)rs1 zvxG1d%zB-LK_)`>eP1i6y0Vs%wfMvA6Zp80oU-7Tf220kjCSlMhIZoIx`icq?Ng!Z zTC)<0z^-p-_7xY$ZC&>*9bmmpjdv$b-1s^b-awlQ5^fV}0~TGmd-{@cUmLoKw22Le ztULOfOZb@MyI_Qoc&k3s=k(R}`pu40^tG7`O^g2T|K#k=t*n^~c%*4g|z>@vumGM#c?5 z(UCsy6=Ru<{QN-h{#I)-f9>dabLrZDa!2u`^TamtuCn98xP!fhurJ#c(+Y7tBYN;a zB(b*AX&PE+a}VXClII!H5l_B$;Ty6{eHD}GRLW}j0elcLxG1&trQH>$=;)q>mE2Y0D-(3V-4V$pPr_oHT9ENG(EbM6pzx*^V0^E|( z^!OK0S%XXiM43~+1)8c_aGlwSJhkuO=iwm)=t443o?3N($MxTbuAJY~p?<5n|7DjG z#U5cvp7Ak1IUcKfc)Bbwh-Q<-UNO*f(N5RrCjfVG_kY^@1CR51ulIoUYN9)^} zl;6=>X{3-{l>g1FjA*jXfX+dwGo^>@&OhU&D8c=$`qFuVw3G^q3w7#t6YSasuqji~ zb*el%6cNLK9uIj5)raiu)-zwV^8??@kpA1jbNLaj^FlKF7OU99^E0+LoB>^BZ<9(h znl#vNRa3o-4#<9CO6m*ohJfwN7C`qLQVtBqG(+|hw*-jQk$tXEdfV3nk&9}QQpt&l zL6C9FROF|Q2a5|d#8k}8vfjmGxo|!s+ltN1XjhDxi2EU~0_mAN%*ljx<^O=98!0y? zt9=eBCdfcO_}~BYmg4sI{rrz04$}Vbrs}5}RitPOTCx`*`U1u#0TdJzfX2Il>Vv&E z;!j06TKo5I--?sgrX>OfZZz^?6c9W{hyIEeh-&=W(S8rHzwPiik_yib{nw=13ob@f zSmks!wU0}e*dHXd9*@4=!aj*NPqVgtElryO#bsF7*gwCu>ORMa-a6lnI1##PzBKvW zsw4((>Z}ioD__(DJVeo0)wUBKpxOO#P&&kN;S*oIqS8)qwMB*4DMKhj+24P(O^te9 zOFwd{!dD|3e+F;5R(_JtNtq)X3g6!@17FE`tKsd?)D|6Y1fFe^n-0F zjc^Fy^X@Wh|Ji^4SNBa+EbCvS;=x zijTugfx|}*Ul;ZpBz?4dNS7p#H;c{E1#dk2t3gDJmx^T{{&BKrAg*3Q>Py^c7YB&L zOLl0YYk6-^6IB|~n;Q3bKx)GZ;UryKIa7*2xsMsgp(XFam$1TSS{XHTDf`vSmB*emxqW1*1onZq&~ z$jY;qj<=_9!E$S7-xw5xPDDi1_WgUv@CgLQ3IlV^`!20!D*FY@+HaP>VGk=OFg7^t zAg#Bxb-Dl%f}7mXf}yd!t^gVM%*S^QMsc{j!r~QobgTx%R2~AN4Na-;NMYZ=_b?D0 zRhwA&mYUn!qwGa4F*R8+|9>3P#-^&fumeJrV?=<0bPf@4L^_u0KTZ9Y% z4R$_=q`C=ybPX*nX_v4&M~Y3obhRZZDv79VRr*>yvCOgWx<2Gd!)m{|;}*13Wq5Tz z;ao=ZXf_NANeJrAtqlqu++pnyW`BNYQ>o@wjWbB19azc_E>z2|NWWE)PybO}Nk*i6 z{*)?y?L(v6BH})2b?9O&BVvtqj@s}1T~%9-gfKP$u5>5}U|)!y71nAkNyW1r}SOFXH+l*PA>Gfv_f>2qpxp~bv? z#5MH}A2G{Y)!uO4Iv?DOVQ56NW6xa8wjXYUff{76U?8rw1L&)5O?iw7^UPlrL8)X2 zI?#^W>8jYBL%p#v0oUX9X}4B`vFg1T%c?^9NHyWyalJ=$1Di(H7NU$@k$O!iwQ5co z;hP#k&rY|bDwGVqSERGCS?~|qV=uLkzKnHFoqD4wou6~R!LK1}OkR3ayFLcl${o*T zML@I16c`$c8T&*R9gN<6J+@(OZ9=2t!$t1dJpaE$+`rN%JZ* zEbsml4y0$0!iV>VMxl-*p2Ow}(DaqRKQO8$_+y%$o9hp}cBWjC^V;2CpzG|+5J&Wsm=F`E?#D(u~ zi5u@70GmTaD_)dwydgc?I5zgiG>GPrgfB8(<7i_nuIW{cefeXzNcxU3-P&I9A~;!U z`}h@%|H*EOlP~=#WQ{oecq&jb%O5^V`^WLV9=|1HpE(8N)iClxO*v7(|8$us>0 z54KWo2{m=joEmBO2WFNmEhjtBS$_Kg@kfpHU+MXw?A!dme{uQx| zwJ|A%9WmrdLANmXgz<~oC(ttNpZhu@gx;Lrwb7SVJ3#d;<&!5RQxgE;m7Dex^x=-eZm0q0HeYx)P;Y7_I(L;vR=v(u zvq557s@H6J>{xgBq}|E=WdmA-NP zJBX=b%X0J0>4S2u)@r6(qGivmL(Y|S*dHm?Yx8Qg)fPS@*jl}qFww_lGOlpB+*<1` ztEsx}Pu=1iSCHZU*o|G%L>&!bR%4Wu34v_$(^Fen^i*lDwEGBszyx&X|LW^kub-=$ zs!m?+7|OoY_61>MWS=Ikm9fV2VEj}Sx#^7EW?|o<+@IhT`6suPKmL9g{Mg|?p{||G zS1+nQ|E%uqGB&99$-j8`W&djV8u{7oV1872|7nieTK`YUn~+{PRYVZNke!$tk|-FEsZfUN=AyN1ucJggS_v& z_RpF7i+Z9k{B%Jh!y)xLw{3P8fx!6v0s0HqT_z>Wv1v(ebiS5aG@R3?D(p=olGk~76bHY3 z6H-)+7`>T_4uw9a^7x&R0ALqs*WQQq79EN-?`6vnLLo6%qa57oV83JtUxB;XZ!2cF zECzt6o~f*Q5e#GBRJYcamw{Z=XAG3M1u7lC=H^Q`DPG7Fx1Om9b)dMKpEsDCp5{Jx zg+mxpJ?YhJ1wAi_AY4BBIuy?vqV=E~Ci;Be8EW2~oGJ+IW3Vad0sU21P?J1z2c^T! zA1!;kjRNbH0$FP(&Boyo5qa;&K4hKLeJP>-cZ`365s4?$*(X^CuJZ5Ja^IGLIN~23 z8Oa_!M)ANqA#JVOxgAt-m*VOPHE#zHhzlNL+1E!36?;QVZwI9gy88J4^x6zBavb~< zQ;un%k9BWB(3W+!d877DWR)xpOcIRCs8}bWg?mG?7r)b>C&Zgu0^|w*|GM1g6`N&w@dJ1Y@fd@vQ346P=mLl zNjD{!Hlp}9`0P2(TL({!{U($yI5#QsMN?Y>HB`-4ti8)qAH?y|mU`b&PS?tj*A__1It(~sQp-p5Mh2scb|lZm7s02>JYux7E0**l^cQ6%3k0a_SUMtu4#$Z z?CeR;$=564BmVLRwL!^bEbdCKh@k667?`nj#oygT;F-qF{ zE#>-Lt6;VrR;^06wu6-ZCuN74Ag-TT!8iU_lkW=vfxX8jW zmKPExP{6t|&^-)UW?y(6KUPI93>d7VRn-*2woS^_i$R?iyO%5xJ8+{dYp;j1k-n|C z5DA7Fz^cpY38cfgM~nJ(^`z%&SuXx?L}PuONxx6vfX{yEEB_oB<=F7%P);#5GB_c< zqxoQ2i6eH$wT84Gg0Uc+_c1N+Ku^Q-Yf9>uMZA?KW$hK$t8JN?8ufoScrw${v(t~) z6k=b|Fy21Cen$%4Z_98CkjJ7bcknKaEr~LmQ|4jGh)tf1*dNZpB@V@=+1V-ru`s8Q zwtIyGRt)yfSIAOvFxVj zWgLLj7D5HMt%3}GbsndN zmBE#v2XT@(t%0&)Fo#G>2W%05KfQKnxQMg$o@VcGGsfdCR2Uclwj`7wd@M+fvs-c{ zzkDeqlRWbdKl{uS@qyf!FH=ri;?r?vw&ewGEQp19Z1Wp!M%d_}34-@6N)xq20!wyeV^2?zR?a6sN&>uu=r_rltPRbK zhfVZ}|DTA0Ki9rs_)pe&ivl#7(MX0as7`sdw)o3Qoal;rnjA;KoM zL|e${DP3#r_@TaKU}O`rPx2Fikdb(MFMdj9XD|(YmrQ2}re~pb!IrhgOv`YFjX-@x zoxqSz>q9PYAt6t%d$NBQ=*vH3GGap_&2Mx_&LH9qpMG4N0a&Z?(6#{L1H^7_|NHlO z+L(jrUInSHnwNJ&1Ml`+D+Pp{S+>RnydF%Uq@?sd6p!o6C@#hXmFo6vJ?_}pC}+ml z#DsrMP0jc2I2bu5TfJIm{et@r7rQV(3bEPjwhJAC?XX=UHQJ`8G&IJW>+3=Q0|Ejj zr?>Ry?Ae?74?5w_rY>iPG*F*0=f({5g`ttrM>xeYi;85u`L)DFL{P!N%P}Ye$O~YB z)V#cjktZL^a@#=o!$9&%6)fjS3=k&mqLoNKk6-u;w1zSicF1pP(%#FG!aN)h;c2VF2q@!@FyA?o! zQJPY(YAFcxSsl9mE7v1}tDPHJ1wY)i^Dc1FcJ@UvCs7`~ctM&gA4t-EhkoJH|1W~{ zswbbZup@o$m0{$c8`jtEf{+l?JMr=MnX%RB-05bUkp`a(&o|jXY`W$b4Cb+}|K?;Q zaSPh`c^f_tFpp6_WheQo(=n$L+v*By5}AB}yaQUduGCd6(QZ&OBn*|=R}1%`T;=5# z#c1KhpRI}J2flO^!-NwfxcA4Oa(EQ*%mV2K0cnyPleY}9HqEbaKRz)rx5N$Fhk=HQ z=6h#N_^}N#`Rg=BSgR3)rW-NGWLdBT*H0=y+#>pby&!; zW_HSpCIpA!_CN7cctY9mQS3z~X zSzqvFbY*z1#MIyY_A=Ir52i=fK4Mg!EjT+6B%mr6mLO9 zJUHU!L2DBo0{l3e%b`gX?5n+20O^2N0ANoD8$gPG9QaS?@F9~U4;boSjiVZgC~cjA zxY$HQlgnqDo0iBNWmi2|`IMZT(GJ1Hs^QrM1?Yfxr(1tV%7>J5<&_3OY@CHo$UI;z zw;Y6pXWBo^zg+FP-sEY?rK}#;p8A&(e?ba6zph52{H?Od$#C0>k8bg&X)XI}?0iq= z&=UTPE`9JGF<=YBeoS1@+3P9BqJV4&0BtAY1EdbM|J=I#l60AK{D=t)qz7%EiYHJI z{mwsVYNgO$z0_)|QqskfL3xERdoIBkE8y_rz^brorktzuWDNPQm8tSc-!U=2iu>>V zF%wh)#*l!|{?kI>*wZVzDh%ZV=y42@tMYP@2W(Zb_17~RRP}|$xwkOxJgp9+5zPFo zVh%ZD5I~iLW4fUo=%*U?+X&y@QkIyTW%|=WP3pp)MN-zq6xdM@AfjlJ_<(1F)zf27 zw^LBA!#nlWXQ`vKmsjf?RA>kVaFIYVT-)PZm&w0>DWeGjSfqsgoI7)Jy%zUK1lx2c zPZ_BxWf*@K7;Tt`+3VwEBkAB8=3gU4*Tor<+%-XN%wfUrn7g9ds_O1p>(&r1?X1q1 z_L5+|)h|jJ86NA*qwy(+`)Uh+#XWMeuB%ju>lZ#chBRQQp#Y25oPZ>mY;h?2hFeFD z1Y`vNiToAaeW)5Q%B&wqD4yIjma34d^VVBs$j#YF;(8<9GCcpjpV{qr#&pivruWXc zGGwL^ysTfd#wI`z7BA=}AS;(|aYaZ#a9dkj8?Kh#kq4tQ zee8L#cU^aPRv~BuBz-+}$>%dCdQj5ti`+G>)2^f403@Qdk&_teWfX4U9Yq z3<>d#jU{Msw$n;K7MOqY?0T*!>+F4whHig=Fl2}FxS+lQI>N69r=&lP zJ39N&Mm$|=J(og}!Rf7@yl3xEc>M7yW};*l{aRh0jCGDve~ZCWlhkvAJjvef9C?9Z z%n+zS4dWqvi$IWK){Oowd`@NCHNX2);zQY?&1x#H_G~VfAxDBnnIY}j`?>HQ1ucc! z6URT4xOu>17cu>cBbF7HDw|+g=kkkGM8NVT4U7nZJ8O@NZ;1#CfA(xvcrSaekNFhh zbpIo?9k?a}Bk$zZnWwBnO1MaCs<7%qL*+ITj{nj62WSRU$QN02|GaOgOcx;+lv(>_ zdSz!Oc8`YS6=uTBgI%(`gm==k+{L=g_Kt&O%=gc3r&enR!j>4BN`^>w-(kO=+jy4T zf}eW%^wyJ|WHwc!!#by9wd8*%R7j0P`^Ude;U5tOe&vqGxo4Btf9xHo!2bY+C1^+* zS}^tOqb#S}&4zC;xE+ar3en)j>H8Uw#J;?&uKJjNOqnKfJJK@=lEUij=gFaJguK!{ zZV4pAdGrL@oZ!DU+D*)d-;eocT+SyZ>eHy3Ny`sfnIT9LA+SyS`Uki()7|pJ^ZvX!Rx=KeM@k?RN_n!h?c@9ULmAmr#W)Eg4Jnnx~iffAjqK@q>+vs|)07qk3o`hqNyM zq5dxv1X!=?-fiH3-w$u{->-%Bbu_py>(sq@NqHU?3n7>i(A)UAZg0JrYp5P0q|LA^($rR3#lcXaIxy_Jd$1AzQI-Qd?V> zPBohwjBo42Ev=q}RMUU=Uk=)LW~gWy-a3{!;5<-WjCA$qQtQC@f@W_^(3?N6jv|6b%PY#ybn6NC2w2i?(xo zjJ|UmyMt9YyOjEva!c<1*(6waCrORGGdL?rRaF;nJ>d4oBwU!KI*8hy5H<=sIuJ{y*Npbl;+7Qfr+$+^A&2c}U{O;zxtr!?uLx zay~=;7Tz+A0!s6@Sv|o?`ivFLFH&>^JAIU2p&-Pe_vLEl6dB&d87Q7@WoFZ!n4pby zExP@uD8JYn!f=tC_#}DtZEC^?kqrqHytNe1f4Y(+z5FKwL3t0>xOKZs*3OQ?@Z=W?(KmGNlaJnOW)E4@n%QobX_ld zOH5heRNWiGtCR+*f~Lewu;PI`e)o!X@?qos%s5Q%mU6wQ1F%JMKbe)%x(v}2IBJfS zlj-<5Z}6M9oY%GoqVttCshuf6)n(Dvm!M(&P4XL6lv~Co7UIpJ>Z@vI%^!m93qo}@ zx$-sz_rY9;F+TW+V(*_8dvQfN})Co9=Fr6cGfZq+1$kB@W#oozf*B z-3`(uB_$x;E#2MS(*3XV-FttAV;FfHc)T$Q&IVL3gFr zooQ)l$z&eJ3q@Q)Vht#cETW7I4dK9fv0`q$;5Zh2XJ6Mt=r;qWj45~3f~CwV)t(@Q zBh!m^zj4*qSi0f~XqhY`YIrf)-V1U};HfxcU?Z9@5RcWtMUTfW`zRlq;^T=%?v(?3 zzm;AWO%MY&68Y;>7>1>3aPwk~bImH@Ar_3QGaq64JhE)W&g$D=H~rE$dX}NIq@|X7 zc$FnZMeT#h(z_6xD0nCc?wRfXd<#QT;lSo_6G87Oe8>XI-QUi&e#KC1k;!9$nvXBA z?Nx$^qS*#bMgeA3v?UOcW2O08P1@^f#5hGp)1(OSBocJ$P9KW@P-|M}^Pnz)vpbP> zYGAI$LZ!pCrz>*fpbCUrffUZSAQEY~v^8MjfF&kGArk4Ozwkj=b2;~Fm>{~r3H5@g z2*($A-wVl>r2SE6V;tV1K`$*|fSN7l%-H1_3}c8+(hUZHEvmyN2(KPZ_D6?{+Rg`` z!VU9jpBsmjS2tfTV@uRpeO_Vw$5k}fCRXpFNVA45v0r2@(5sQHU6Rf8kT_ZhZrkDF} zecm)Sr6A!44aC!PMkOj4FDxt=fkQZ@c(;TR85!AVvxiGfnv9q^H?*O%dmvjv9}y7& z;yuO=y+dOY6OjO?5a=lH{KNA>hX>?c=f}nrLsxWO$8CmmcD&{8%L)&O@^ zF2kC))fDe$9!`Fa_fqqyS**KvF$h9{2;1`aEDX2L&n@(IBccp`L;kxP7@_#oR@>*p zYUS-So~uIvECu?N-F4#5Q`*7X)~WNP|5xGy5>Cr;NG;nZ)N2F_l{_4UQ=p(ow;FKY z9GUnOM`;qHLN)YHBXsJ0ZPqW%L->;H?hh+Pf>7p61#tFAGE*SH$0ZJCf*hI(;7r>) z1Vd6xOI>zr!|L7kuk?@eNk6n5VL{*W-SGrjY^7Y(2(V#MF|w5Yc&GC8042&*8DrnN z4)4GHkNd@=h2G!OV#ZxGGh1iRB!NM~3Ip{?k(+^VEi7_A@s#wBmbj#(Xh5$6j^-ba zDitz?B3^RaNDI!?+3KYXsU&2VmSRA=i-v|da9XXx4K62GphFB|fqx241F53j?LU*E z9WeUVPEN|F{{a3nkJBy=5Lpt=-aUeCCLA!h0*vG*zp^dIy>VLT+Pq(Hv(%6cnlly= zS|Er^EC@^a6ZLqi6R4tt0FmI}U?q=Ipw-y;`{FF8a`U7-H#CtQh%rC{!5vk}(E3O@V0G=1+qRck z`2sD=BLDB0`xYQ=gsn^bqfXvpN2NWlJW=TTQId%i29zO1cALEqM&WOq&H~EPAU~@$ zMYotkY2${(W#p-W#a6844PzpVk|veHpRi+-St~9)EaU87r4-=PKiw~V>fi&8L4^Nv z4BiGq36wsJ*BhVj>t|Vgf+mMb>zm)2KJnrPE#pyafov*=-dHJ%_X89reIJM0$5hQ= zvtvDDLeYwve#4R7-;-@4c}Cv)>8-E(aOZha!?sn&y^J)q?F~&o2aMf<(fiFpV*MR; zWVUW+SXaz(p;jc*yX30_S2E8=MCe{GrOa@MG~!)E-)kQv-~~r{#_A--fPtBuva7Ti z_W9@`NNh~B2KEIgji=u{6^sR6cL0(>q^Wf;6j4amC05ir2aTJN?*VWokv_XiJo>W0 zvJy^c85-v24wwGXp*4et;DX0Tbx!b3ascaHX(Dp3kFqc(=?&A)$yV6tnT`rY31_7p zYwu0DBwR;N3)oB~RQW3-dA!Kq1*|oo%#Kho5>W+as({K$HegeXkgEYI>#8-Wu+L!<~d?lr5&5b5>2S-PHz@-N{feaPS=NyqHy1Eo< z<+>4}XqTx*ptU0c^0k1C8qMm_yMJV)7mU{Elp@{BMBpG+VFCu`3inG3aJ27RDyIc> zt~S$Z;pBqqe_)T<6^Kqec`OeUn0>85;PE0n2Gf6@d~lWLuByc=XaJQun5HJymmJcj z>W+>P!I9gJ@ugC#HmdZZkW5Kch-+x+8t^sf8{0^?c$=>nBqQP`qyjuu|M!wASI;Nj z3~j2?WT7qwPTYW{WsZMmwOby_vFf3;T4r%063ZdfffRsU#ahWFDfSLq;%o~?TKixA zJCm+fLc|w_*e*2a@Gxy>pbxXD7>wuH==MSE^CJT((BPu}pN{d|4`d;p{!?J`CcWe? zsDIbdUqhVN6bqEFYeD#ocB@0C;m-~M0};vp-lN$YJqrr(-DC9QzJ-Ayhqne++MiB; z!PEANa5pyz>w7hxcMibI@HFnBB|1G~#r@bZ0;BG1JKxoCU`#(ZBGa`A^rsl|o(NG8 zg57YU^m=}^8z%+wTwU`{&Tv}m7MT4EQ#I3-lv5cNwut%wv*tRMGz z1pGhK>f(cbaDnSM+pad(}B6UG@#l<2(S@AE|!N^ z559n=8syA2e=7t#LsL^zVBcZ;U85=+*&+*QbF1s?IbWFo-sB5(yoL>mO4P+gsBZPEq%=vix*^%WF@h&;Q4Q}}qa zcS@wa?C<&UFA2N6as{5RK!v=Bp{Cxlz&jd@bv~?9sTt+2%bd~*I7>5Iv3n&wNFA=) zS2SNeAq{w_9)6eo8^kU`I3u!2ecj_Dy3~7fbKDtA8D%A#;y=n&(!808k}7DvSGI+> zl>cAc!kGn+2K#9Ahh1{jY$Y=l|M zJBgtoUjjV02%Z_gbKGt^U{BG$!owK1_IF<;+!H=E#Y(&Rz4o3kDkZcG zN(aWTxm3s1!T;*6rSZmn)t1EU`~?@&Y)CS4)jJ@og#DB=0l@9vf`R?a=y@uq@05X8 zOf`->mhJH(ZERg;9yzo&gR5n>E?Um`Qr@6)*b4h zkl5qp=KHZOAdEEx`2iKx)t?6y`X=Lll31Ek;aNvUMv@45{uv0vy1cxct+S;Bm8x6t z-N1$aaC2rpQ4pc|RkS8wo9t!U6rjPZ#kF0Bl7n%)T~mI zkGes!270fUfi@Y^V#ItQA1slGOqU6TX${$|SYs&5819?+HnP|nE)00xm>iNC({8nO z#8l`p_0f0e#c@U7i?4+BnxDVmxnW%E)Fu7wzldU(oi~xS%~$|Rg|cczx7SxrQW%5jPJ)Mpmf)aVbBJ>X679aeE0UG(|nP%m!ulmP%U4 z@f`+Sam?BN8&y*D90_}!S`aEuVRGi&=ce%bz<;v~x_jN)`15KEcr!*vAA~`(o@QMQ z;|YAaMrCG3k4;C$8jLW>^CU(9yKl$i#i(|ifvxUiHn7}SSrZ%#g@f__L)o(rO^7M% zHd}8^xbN$gtsVYen{gQ81a`tUly1S4lBFGx5)H_EOU73=J<;gsIP(s2_s#-WEz7=u z!Wz#T>B}N=l_v0G#Ua5n61)MB7Yg-V_Gpas00x0f(WXSp1kCE#7^35hTsQGO(FfTe zC2L)P^vTdwTQ;iUeg0Uy%hN^)MNS4xvzHWDiHmu`LlGh;H%1Q}ca)xnoG+i{R>FyA za`K3X4h5}&)~0fnunvoKz6xIgZ0>+Qg{SeX>hFw6<#~yi@mmkzn7G+IH?Z&-cKOgq zAw*KGZT0SaW;0^-;{~D;f|rrtF6n?;87P;7y~p~6d-v4&y*JPIJd_Tt>E#KcOz(Sx z#B=T*{#kPT7V6a5Gg4OwrwPrzh4FI%M-Zsh05fOXxc(~;x&U4rw4Ew`t9YGlUmnbW zn0U&-A#tNmpFi8*oEmIy{+u?-0vaSB8=;H4+VA-X>aRZmPzXqsR46vQVlpx!K|#DtQ_G>HkYI*f@p0WqAF!hv>+ zhy3ommEq{{lIF+$1u}rEe&DqioTIXseR$gC_#+l)t*h-7!rx1=)_+UgtMQ%?1h*r@l&04Z0>@d~=-;gF5oXZ=bPip?@`df>$LrVP%b}9n2V}2> zeEh+l{1rE6<^@(#7a$3Ow6v_98)myNJK_p=WX(r01R3Lp9!?Ym$8zX6toYddOj&TJA*D7a1B+0{M;z^L{Jd}16~XWfPegmw}mOn&W6Pb@&}IL ztgI|3PU;(IRDdgkfaN0#G?mfR4S+ zDIC4h59&=10;ZV2@s0qaV$4ak=Sj3*LfU5ho~oiWu*9F{m5n&}Jw>}1oZZF%=BzWP zl(HydL&PzYVo1HYNuL`*CUbKYKehjjH*KPWPNf@dg3#=Xfia`&ce$v>(@*7dPvaRFZN!6}lF;vT6yf}{K8PxgE`EC8PdY{L@;;(vK53Fj?Bxmq z>FE}-FJPdK>yC-nZ_{EXlbwqC!&^cqB$>#9FQdFW{o;o}>dxywwJwRNuKf3$Cq*aI z*_hvl4`$XY4hPD%GXWV6^?CF%uioGvhj$#Aa!)}w0!nd+Z1x4b&HE1H>2GxZObHmv*uzZaHE|RrAa?ugY4YwnSfvKj<2&T?K7x2GIu$(k?q+BMA zDXsVdugUuORhn@XIfjT>6lSB1>F)1w^rv&}_V>m9`IhJC7$6}bxz2{~pCh{RRpM^; zq_xw8hceJ4`4m`-O0Z>bAM+LC19YTyI`(2Hm~|1km;>B}nGZPu)0N6uAvpF(AI6HD z=&&I*cLGfj;jatg-+hB+$;JD(f~tZ1MM4b`SdzOp%%?}& zMbX99tACgOcw8vQ?NrA)L?^ti)ddqN%I*TuV_{&<2d>>+tFjTvC~Wf)AFx%&uxDCT?=d$zk9VPSj}=3%S_ z-)$Cbi)ksMBd^%_`N^C|q>~F++kYK2VV#qMIO8bJM}&v7S|zWmNr2uOP@74JwDq2# zr-2d=KAi$ISIiDPI~IEX)AM)*c;}wOv$G`r$aPI9uU~;aA25dO&MH@ajKEG=T+}8L z_9g=^nIQ1>=|0pjC5g`F$qdMXfHs4%)FujSs({Va?zFdj_b;gT^v4C1*ML~hPxq-Q zDgEIlfaus}%9xk~;&;HO^Gtt~L;4wjg21x@)Ss}RW2tVTH^Urh_tG$^tNO*Kk&y?- zSK;p>G#8&|iye&v6Z3OhrTxE9*i~B7n}ykWt=#9|N+9@=98fGyws@%JOl99J{tr5I zlIWU|iaE0w^Mi1A^L)Mps1F#^p5esoD4F{hg~@#W1Z^5mH27M58}Kk;y2oI67O zs=hfiVJZ6A5|5a!05hK4_Bn_n@|Dsblxc>_j}8UKAXB4ql#DK5%+Mvi>M14pR+!X* zdrp;MMT!hVNUJLCni}9MWSzEDR}aDZF{gFBBGNVFe{Fv~Ya|lSF{K)0j%l(+5jvJXF`qZB|Y$SaIFN7EVg4b@d=@A3>pyX!?B`R#sfzVJz3ntgC_zq zGR^DP;#&oYlz3n-2TZo2?(Tdkc0QoB2<+4FfZknypBNvX1=K`xZ}0);!rk3HncwAC zhy7c6dJ$kS=lgnyf*G+*d@4i)PW90Azu&((*w+BK6cx~!lT-SiD8iuqc%T^qogQ$Q z2VHY0MG6Q)-d-$&>~Ls^2Eh7Uk1;I&Baf66^fu9!k(srrMvxI>rO1!Wgc2s5k9#n>-$x=S{u=DfQ z^>d~2k?yi_A%KOeqdYC?FQh=c&;XQo`+EV>gUW^7c&P_YvmsSJwI2_#6tyLCQ_@j^ zpA_o)0ZC!z2em(lSFARC0OXdg32|Rlg{3>z)9tJ7JC}g`)N1zEZFsvnC z8;0%ij(g71X2!`t3Xo$bykD-YSDL;yH2~bP%?-lF?ar=&Ki!W)#sD{=J@>dhh~0k>p{3NDtI1B2rSw;5;vCU_gz8 z5v`{RjF#U(H&jIhM^zBGnb7nsL4~-&aYq3fw|X>Rle<~nWDD*f89^EdB(cytXla3_ z*`jY!67hE|at4v@0O>Zc3}m%YPznLy1ITU# z$*u{Z`C(z`l9BOCtJ+YWx^AntJXd8|$>*ka2Pi}5{zUj^@m$bp^^yLlxPC`dt2MiNeSa?t{lt%;d!b|=@ z?81XDH0s#KcXV{*$)A4w$v9-;0QlYdYYa+s>v?{zd(!gAsHBAzkzQ?l-3{`rq7m3k zI+4IEf`;#Wn~#nLrnt*3cq~XM3u&+RO$a!`=Ky$PS7_U3hhI)?g5h&ZY4sQy#Z(g*`j7Vx9>FDACbBwG;yJe~fAVMwi@ z*Ql+9B9HsqmFTeT4Iss%TGL=Z&P3@1q84K=VH5Tj=EVD9EpZ-M2fGSrw1z9R^X~H~ zq`Of-t!A*M|DD<~?ap;4pD=ph;3t2jvHxTb&pmI}#46S<2M-LGl0Lru3YI9{pu*_N zzcODm38`{M;wd1%?F+OAv2ETF`zYWkewSn+56ALKQ>4lV57C#T6D9Rd>wlUOGKB1U zJJN1HxqJSqmGZqCU`W(($ACdhkpSW4aEdH}AfhJx?=?J(lr6s#=^`vp!?rb6^Fyp& zB|@_TYMNb)kMXZJovVA1*K&MO#x|Yi%ki@;sq_pWfC-Zc%9p)-#tM4%sFP8F!05Ws zF>T4NXZbd9I~HUhQmvw&?$zaPX%@nC)ocS@W4}d2%V&2GR2;QJ0a8_v?HrB}Q_8y; zNd|Ln*iVsX{faO#NI9g}x=dYNdB71qp%(p?L|R6s9kj%xYZ~Z7n6Zh8iIbC)S6AEp z0k^ov7Z#qN_AnSo1i?Zv{*{^%9-P;qOvKv-bzR-%bs=b_7Z994w>bb1{ek*G-N4xy zRGWeGW~}z8H#5Le?(5fD6)5UKbFp`L7%S8BA8I6pU?`|mfMG9d;Oyb##Bp(X`Am11 zLmHQvS?9Z-6l1f1d`WM_Gmuj10aK_B362~#+3L+jxD$vR)3-1Rf4C53O~E+5g>yPwp#b)L z`oGLQ3p;cAUs%_6t!Iog>Y#Z$|;VU~{x!mHIbwQ@`D33_(d@X&^_ zTNDZcoXX6(l8S0nEGaYT4IByrOi;IP3>UI#1L^2mg%HYAiNL>cbi4aecu6E@(dL9>ptiRIH$Kb zD8WaFaO<}qhjUV8`kR&(wk|w2+>1oae>f;Gx`NnS5`-WlSEQrbnC$tU492&t{d;zb z5ShTysJ*_&MH&TKCs8a5B^u|Y0D-E#@~6+(%u$LNN#8ZelJ_k{6gM6-lLT5|@@p>X zi`R2v2jMeWVB%oS9U-h^W4<9+$Yg2<*GM}c|I#&8ytw>jNi1i?rT+F2%n9t1oy87< zmJ6`Ld})^s^LHnDsR`Ha5k;#xOmrtcq@guS1|RB^HI47f`r5w}m3m zOy)P4d|}$_aOu*KrQrn))t&pd2<6#Jdot@*^m#Eh>w|D4^!K(Nu9&AmpFPaL4`1YS z9K7sjK@PiFoW78)+O7LjE;XJP76-vEd^{PhAwUXe#dV9B{ZU=5Bb@~&tF(Y3QO9$1 zScH-Z6Uz{-Sjkig_OlKa#wY9{b{Q^}lUx9#sV!V+*o=NC~7SR5E+_1kbIHn#GLCVpA)nAIOn zO?($5ghT=GAfAwORZM40fl2c(9cB(Jb{M}6tiA+i7>Vhd6bDtMx|5i5QVs(7v&f=R z&WnPCYD6NdEigIO6ph*Qqknn|Xy3_=4IuJo88-tj)+5PBlsl z;k2KJPfQdPuu_zslHa)*w{M&&si`4>#Z)Nsr$}s4(-yc=dq~1m`2~fbSETQgQC5Bt zESQtyC+!S=c7I_@1l$&+u158QQUMn~&4 zin-;N4rz7#?kR1OFN0AgApF7oV%JZ%+5K^(=hG);rgGApj9w{wXF&&9M*9rKX-_=6yKWn+Ljhg|{eIP@qWrSZ)xK?7h_NcAdf`UwZ5eie>& z?ISxaUF)Oe`qSyCwM6JP6d8TxrT#lN#}!3C5#u^LvQnD$txW=Q7?>%3xP^Wvr9jh5 zFc`mX&hNo&JcTpk)`bm7um&)ye+u_3HAL77!m8%{uzJ1&<`g{b0u|1X)6;*VA56#> zdz}1a>;c+`izC8$tsvWP{YGxm{^h7rub6@Mi=JO(SIavh92{k+Vy8k6q@bPw55-1s zaEJrn76t~!@M*hq|dL{q`X_VjENU(J|N7I4OWy4$~^%Xx}sI z`#A7H!ao0xY&|<`uyHJi&x;Y@p7aAeBH%RD-!q0qR(uJ{Y@mdE|khO z{weB~{?J;&6@;q(S?5pM!3V|jrKK#;_1si&@R~Q`K>5YT^NwZip_ola5^1gQb7ou=ddVN@zH$*w8B9{m8|yxwly5VI6f}=t z32rXeA*qm;xd23pfV~IvyxcN6ZK+$yvfkt8G239p!Vt=6($exg^oCtSZ)Afe|0ih( zVgh|pOe=kHJ6`X&k`~#2Bem}A0LH**5!1j2lqu!IdT-h6u4ieibemr0BUUB+0zn&X z{Xsmo`);0jMCu#PA8131w|Zkc4YMLp&&atGgSUY8@N6Tv71m&DaQ?ovgKpDDEa7qY z@O^1!UAooJh2#ju=KwP)br=!&%&59J7ZY z8@^MH8ULbRPE0_sY6r-9f0NnZ0lcv6qG%Z#lt-abp1%-K^-Q=J+&)8;W-O94{6P4R zacd#HA_aqo)UvZv8yhTppHTBazX4kF`CK69SAG7R7+VcWoh52zu`dQ?;@-sUU;&A% z``a_}k+Nt?St5T}WFu==&E57UWu~~;r>N%pNZVYYXP776BLj`9@7Eb;f0xr>WFQ73 zRoN!aB6RQa+py7oAF^v|(kq$IdAvrD7DbvHtlVfWG@eVevXs5P7pnphYfOVxM!h5V zmjjHko_G5XHwrG-o~_rOjAtv)PsHjv&V+yhM0d)a=J~ae+~?^$^RegO0Au-u4L@_D zgi+m#Eln3D_;hPK5-JU9Nd+ea!&d>zkm&@D^+MU>%f!LPoynvv_I}s&;i~8$rjCcPZ9G8EHr|fzeUFOtpM`X0vM*d&+B0F5+ZHd7`qX6E zgq7Le=6+?PZ-2Tx;2(ud3mDD?$FO3+XG45{LJ&Wp$5xnc2$a@4ynVHai(fk&H?-%J zW9-6P+uDds+c=nAHq&9uai6}(iu1iwgdvH__6ydphU=WHH*@I3g<;*5MDQOMJmB9{ zJQ~2{mAr;T=lS-Hn0MQaU(cP2dF}k{f9LbslbMK?F&d9>@n}E{xLQ>x%Q~ORBUjtD zX?W`E#Vd zN|{={4t0rN@2fiwaI*M-mvO%~lAG9Ppg}a%yKiTAu6(%SiIDHX@O^3!0p^!)kn^>k z->$QxA5P2pr<^Xx53;~*e9W8Mf5NV} z8*#_nqt>+>L3h8D@!6k}F9ppXJt^5aa3Su?p2mM=FdGzV6#2b~th~ICgtwciH#QM5W!267d`od6 zd^uNve#PkHL2Yw)K1DxqwQe2;%e6CWl!EiNBQ~DiiF?1IGTzm@Cou@S*4Nh;1FT8jbjeWb>t{^?) zD3u(XXby@}TdmKJwm{ErFi{|1xV75}iomO**CpB){2?68+md9#7x5+A)&&*zR$?Sv;7y z-colWbY$peH^|m>y;;a}w}hIRDMN@i`}$xtpM z{YR-I{Vz!&-`euDQTuU&!i8q9w?3sD!>XZMF`j+QnlLLMK6~DEfbp~8!I6NRsc*)E zA^wS4KB3d>&e8}=2idC`gn zM){E8>?@fAa~~yUQPQj%gq`t( zktxvnf|)pMmjlzg?tqQVnk~E@-ub6^J&Nq-_>GpZ{yitd5jy0vll!M2$&n`f*2mMC zimkkW$$EB@%+A#tS-tg9MlHXIi&tK(0HoQRN!ihQ;_=d%ZjmAK7O(z=v)6Rgt z0G5B1k8SrdaSMXNMA${UHZw7J$DuP%H(bS$lW;IL9(%pPkoO*wW506O>`4fEq^Y=^ zUvYA7{bpoii&YeUB#??EgN4z)%{>^~jnA1gf1#eH{r!VMIDz43WB^5O--ysg+jIK2 zm87>0YCkZ(vcLYIY3dS?Hue(BV!;!1iHnREin+VbhlgxUmuXd+jZna}-4g4-<#G^R z>TKKB^s|b1|0akPB4>X;ZYIZ6XT9(pz;GyFD$bhF^+P^NS{HuNwq}Rnb4gk)(Q8FY z>I@0zEpq*O-D#BC<=yahK`-Q4;6mui$BhK0Vmmbf@;J)*b2^G85oXk}0xt7$UC(Zg zOuApT%Tf4&cU4<-LT77@wCVQre)hcb{@!6PFs$;dC{1Z>jQhCOOhQWE`x{x445^BA zpK*2oe+rv|Nk_BfN{~)XxkR1|&Z(7mBae8Zj)lUVetMWu#ST(-bfJwcf`7N}(Hyl7(vID=nE2L4^!f6uje0>pmT|>G2*rZ(H|8+% zBeqoNwO!+CVOk?PycT;E6K@mw(y_d-R(+?DKBLf7N*R7B>3p}tgzOS;#4*^g(}}wE z>qk*RZZ5nR77_CAt7u8=sIEobsI(atM4xztCvd%cGldry9oAQ#(f7k2B>hurBL1xX z4a7l(qoe_^3_y)Jy@tI8&5U_toitzOw7z%xcoUBtdAoMq8r&gzvP6zGS zkm$&y8&+1aAo9|dYWQTNpUJ*w4l7~=0@gB@VIscR}8L(7y!EdQ0 z3zh%I4x)cIus$$;sajwB2AQPz*%6XXr`&Y@df-Yu;^uMON2=|=A>K*WWri`SIei5= zbIxbh7ra$6`RE48IPgIbf+2gVB~e_wf$L(&%~-zm304`{SW4dG|L%May&=&=3^G&viNbA4!N^&8w- zPf33c`kCBzPJ*#j!QT{T;ow&2{cT$z4pVEO#^C7BZc-oeF#SieGZ%sSa=fU=T@4;` zW`XL1=PZg1m&a9z!=E3Yy(?F&YmFT1xk|~2AFC!mG0BIJvL&iYS)BE$Dt3;Wb%UP` zheghppG8Enx!sZF1Hb>f@vnG&iByL!$koi%(cWP<{(__;2j-R&&sqh4fgF=Z8J4GN zLEzhfD!N>m5IiH*28*uYte$_S0-oIyyH-aXdM)*oUjpA6S+oi#k}>y^k9;N@6iS0n z8~jb3uumeNqa9H5Vjq`I)w;;0vlHydulUHH9;PUxtEr6Sj=<2HEyJ>N`%IH)+K3OX zF_5plj+?joV=i+S99L}d(#iE^pm0oO`CE|C<5IG$jzSGYlT5+t?L>~p50{HOnkr5E z{&A;M$s2NhO}?|8l8g^SXYLPs{(1(-FO2w!Gc78A^J>q2%9b!gp%s$KO+>T%T5CE! zu!F}w_CHTVjNJ+Q!l~Pr`+(Q$tMx*f&buFb9 z34V$wxAnlyMN|i~c$zbdC_U-y2qaNL-GiHS--%}!rCnh)WNi_J`QLk^Hga}Rn?cKk z)5$WQ>uJIfjd;|!_JD#=H4MSuBQ4f6XtsQo9n+N?;)1n{cia`ZlLnDW(r2v&tzxfV z%yNO7)=m5N@R3LQVb35evwfyt%c5sQ5@@j%y>EO5AFiz{1(sqJt>p*4QZF@*#2Sn+ zllBNR!{MVHxmmtY4dP*isBfZ#clHDOc5895)6x6b$d)FlczeZbtkh9*q-$iXZ1Y`1YNDn!Hu+8^>rhvOd`f zIz1&+Y`6HD1b;V1$uD^V{;{*ms_s(> zy4``^uS<;{n`*I{pOnEy=~&j6pfAWjs#X}-Qa`byK>pppv$oZsa?_!0&7L|I1vd$I zqfy7SS1cPxSzx>!PBz)PGj^8!4s|{%RA_pv}}mZ*e^5@l5>)x&~Nl3=Q5tx<)7S>m19bC0h#67zTBxuH}b*_3p z6LLEsubP8H)C^&RebN%zYi>Tcu-G6)Nj=9VidNwr++D53t>;9&KRDQ)H!m|yekjmg z45eqB$S!4h>4epScN_uUu^Upa!*1mwU81N96TZMo5~{}W(dTs5|Gjlx0{(m7LcK)I zP?MqogYub7tBw@rTt$Uy?<1;OL6o%}EcItX+Qt5GwmDQ6 z;=%R7xFc%$QywB^L!sfJ2-u{~wmqlyfq+a`MK1pjs8@SyUB~QAk2g~Eb2^dBzs4-L zWQ+}&W?7M4ggj{CE8*!Tm)uR6*v*nHBb3zYBA3j4Pw;8M zdTTbEGV086;BmSYmEp_&5v~3Wo+m8jJ5K9SP9zuN*jF@IFIWD&)PA~=%0hN{$kbB0 zZ$I`!zy1)?aPxOonXZ6S^N@8e-Hu1YQ?Ddw={-9?pQvv{wc+X2*tUHXE0F{5tO^eL zSr)3du$#eq-J7`*A=KqOjWaOi8fFH#KTA9q$4JOD6Q_n~z!RUMYE;7V)4{F=-6^Q- z_UL7D;0PtP7d$|u5#bl6)XP1?%xpa7=x*_oaQ$o4nXr?UGR<+(inzy8So4gGe$Ut3 zzihDkw7{Qz(7VCPBg`_*AHx9Sc|Wc2aM?rbiAOXhWAVdz$s)7MM9Og|ujdoq+p8WH zwi4mBy~unH_ER#7ptJ_%#p(CpdIR6{bHi*L?D*50r$@@u*{F>3`j<=$YJQG38aoQb z9(a;s{B&zKIPt0saf>jty({Gw{Jk)j@LM7e z965yW)hHHpzumKVF760G=!sUV^mJf!a=p6(?!@tB0)kJ3zk2Y6+|>t0HvPgM{6YLEB3iOKSI~0J$ z4w;MB&pf`e6?B&%dN{Pj|Lk{zRhnvN6=m(pXO zUwOskyCg%~x7Uc;O#Dm++(d3{xR7K5#KO)HI$JkXt(95a$$Jtk|MTT1%*`VBy8C;r z5$}z;ax$WqLd_S-$vvYoQ!KZC=OC9m2U0pxH7dUKs1B?!shC9ZzoP_YK0Q6zklhR- ze_-N8=v-ao_6hk}dXvp^uQSu#k48@m#|neR`Epd~d*qA4A-@r3AB^UA?al}owfl5t z8+1O+HnUtw`H8PSzY7dAscfu$&s6tQ-KUmP_+e#%y7~IM;z_55rRi;Hp=cNO;1hfD z;9A#?`ZHkiFeBh&W z6p~glQ^L2|^nMqw=SFKrhj$Rx(`zS$X@s#;pDqrKFB^4lJ6x~m=bdz)9lrOc9gu(| z<--nE-HeExtO;Yc5P#zLm+0=pjmz4w_}#sZuzAd-KmX$Z>h9&0}R}-Z*O=8t`sk zghk@$iz#rBd~cT;@$ySL_V!v#$8)H`7<)@9P1Ai$!mDG47`);NaJh*zv@B!zgW8+# zhOWN;e!=wBQ*#`NnEyfh)nYGYLYJV(cLNg7r+;b!F1^B1?E+9X zGjN(|=NvXlm3!egtAd&5(4TC$=g^>kT!Wxm;8+3f-d~UEZQ9BXx zxLicYOs*w)XTbjyd`qUSf+Ll0()U{m)rH+i&a`8xyXvOmkMr!i-8F@;7x-s9vtBb{ zJoSaIRvnU_x8WA=W@})Rs3#_dv9H!U&00me+xLCx)OQ}QXOxWZrYnigdHbftvlgtR zypmoR3L$gR9dLuk8q}x;&3ZTJ5M97I)?{+)#dkjjAvBF0W|5wEFTX!}?z&&SJn>e& zJXSdLTF=c&0w-AUViU;y!%=j>-82kELnIjzBrUt=iuCc%ek?!u*j<V}T>HgX3V_x-wu-kVGR-MLSN{l|S2 zf16_D+1&O(jTg^**$8k3Q~HQNADmzyMIt%HbA;vT)c)L_gYBJ06pSdX_t_V$sy4GN z%2Q*+iH{~fzYhhSK0db7qTPxLfiazJXTog!k~ll*M4`p3Xz9Q)rwlp70r!=J!0WeN zv$|#2gKWXDcJ>Bj$9m5=p{>F%COzUS(Yo?1aNMr( z@PUb<`P825?hc|fDAnD!WG^>G)q_6>QMAg9o5GRlAs)PPPv=ieIEHYkHf$7I@1ij5 z4Qx2ZRMX=JGM;A%m{EtnTH$|B(#D_S87>#hR6`Jy+R#}goSsSSZ{~BsbmiG3{Bw(N z%t7&xBUpx_N~geFvbp3nPT>TqwOG)|*S$y+^!Wq-FxsSEiK}l;1i$|JZ#PM>26uaJ z)D`}E&(!;)eK>_M!sqFR*2=@fMQLzws><&MbB@{Q(`4?lDqir!UcfKqsDh`*#+<3f zsJfXi{-mhGYYx$Z!sLOBj<}A?hEB3eF8CNiN%|UceP?D~kw~^nkG59cmyKD8CyGBC zug{*W#~*#A9YiB@ev+Apc%o?pqFxeBykW$VUE5n6taT|;~WsPq6rOMWzG`rfWhBS=Z3gfz;byAIMI z(v5To(%m7_ozmS%NJ)1JDBa!N-Mow6e>`8_F*sxR!L#G+z1Op;3N4WdgWM? zU>4Mc?8++T-LAsXdz7vXJE5h~jYU#{-i${>dGm12!U(+p{U|6OA~?Bdk3|Xx@jhE2 zF9?+3>lq_XnR!~4YW};5y&ILI#AFMtRD;-D?ImLsYAkYmpa< z(p3|~vQ=Cqd8}XYs=#lg2K2CNP4Pd(=Zlih$<+%8=f?&&(0VtY~Ldu6lFRfZQM!OMvEcIuT2OT1>e!rWSrNu$CxSYKb6g>6&=M*l1q3Ml@A zk$}?!$8`j3aUaq|Wz#EfsDn0x6D=_#J{k;cB+jU)2M+<0$kAdf_obz+{6M1?{n~;8)xO)w0kEH8B3VA0-RNR@sF3`HU~^1c^OqO zt=Bhh+h)Jv3DVQM6qQ_GhWYZM?W^)d9MOr%sPHj1>G3STyNSsOZkzmgu`2+R!-}JhJqaB%$i1=zw3cUas2M3 z&%tPHq4`hKi+5kQ%J~#38;Mo&{?%RI=Mid-n;n;dF?`s#GSJfd{nUlQ(pDfGBb$jO z?4jG^7g5^c-XHR0=-_o=TAFB}zg=$AY&`=3Tb)dHl7pM6vUIB%D7*Ag=OvL%o&OxX z8$+Yz@u+w#9;90r!Q=a5&#huF#}hW8PdDCI_kN9bO|~#HU|@rSljC(o(TKXurA0=@ zOo>zVWOZZgu`h3Ma{uSy8O~#pO}hs9npRYmZuGkAd1|a{o`l50HMyi3=kbWpeMF+` ziDKt4zAWf#jKH>bZT>;t33kghkJ$?gFaBf$r>8J&vCdQ){c?q0A0U zr_K@hyRLJ?M}Ju@j|!b-^YLib7P-7R5B+XULEun!?0Ar@qTwR%5(*26Q*WkvjmxF& zmD9`!zl}sD*w(2H!_SC`wd^W_OmEA;9(v*}Gm#(W?iDvbtl=4B6Gx&yuI}?TZz7)!ykILe$)tixZ=Tcuopkem)&+j{wBvjB%%l|>3>+#C_ zVNZ8tb~Xe6{QPHs*?^?EQKVC zB}OQ(ZP(yX_9&)hBIy2+a8JY6s(=Zm7niNWGw2S>X(7&?XzoAl{t2oGla36akqVD>r(c1KYO48jK14D>ayX<^?3lbcSy9U9WD({`h}e|P#iNQ8fYI+FIF62sUA}T} z%*n%{bxQBD9fImOXTLg;wtK6HMi#t#MEq~bTy2QtnwT*VcA&$(Wn|I3yY>f3XA4^j z8ot*3-pk{`PO=E~n&+P6Wt!lOi${6^)QKNv$-Z~6hVclh1H=ySG-EZs#lim9hR`Uo zhPPeki>?l9ZmY`3k$qb;(xYg2PAf7S6Acq^%Y!pITS`fQ-;n) zVn|kQ|296^&Xwbk7mNjqEa6h}3I&fVdBDlhWN-_IWwg4`dp)j}8t%3|4qxGNgbR07RM z7BhX{GoqgCuwaP=4J%FrBxYA?l6q2xsQ7>z2Tt=LZ7|)F(-i9b@v4I zMIm^)=hp(=z;cZPZo6_M<8%~;hl4ki2TW_)LlMw7tje7df-GojBz?^*`D`#SvppCV z#gm<=dX5dK#zZv-xg2t(8UXceQqj}?}Kj9HD83S#HMp^NwO&NlT zenZ`-?9}6mux=2Hap$C{(%`oGrw2q)evE2#l0t6qLx@bIKba5DO@wxDMU+-qvp(t}y_k;brq$29l@w!O;n!aa6gd5jRa&H(CrIoZdn6s-phr8=Z0X?VY zM~#8aRmbo(i6u*f%U_>@@y}*)2>5|G8fNb>B3Rq0;oJHu>rSJ|Rt8P1ge9a4uI?&N zZGfmbky-WIyuVj5wy=Xpt+Wk%U|<~f(5Ahz5d&TgQp1sW_qdU=6Ar+o95&ZE52yt6JG7LQ*DIe!35e)DC_F_bL2RQlMF;<#yYs%*%pv$+bdL9#x$tLV6}0 zG??v!!_F&-*TdfVh8GT*6Hed)+h(XC@;bk~Or6R=O!(E7SDS{O)6(nCsO&mTG5}nLfw9<4GpZ?VDM!TG0d>MCJk)A7v;g; zFtFi4(?rAHH{U-^n(tnwr0MF&@ zW(Yhd$c83NXuLT?rVC(5^SHlPTimK53qNc8w{vSj7ZQm8|Mp`?pzR;Yzax(=IiA)| z$reH3xUR9K#f*-+$CZ$m1)V7ACZc5@{si*VlbUW{Hm3VrCg@GFG10*BB)7Y<*LD=~pRBA*;m~!7+S@|4u$#);TZ4Z_rgzHI9uhNQ+s>q>=e&8X(w@lq*Q*_qsQGDl1 zB?aHS<$O-i8FQKbYG~s745!3=@12FDVo=ubp9-4?;*3+ZF_!pOsP8Bgv$OWteR}nm z9V+x-yTo7USM!PsIKPo%o>~VJU(rVt3Kdoew|kA;P4Nz)G@vRf#|f*^8+1+x#zrCp zbJ8&H7J6kkjSN=%53yKB@~0MMzd%y{1%O=373bEww4ptd3{Ot*f=B!Q$$<<~K?3g_ zYCiEQeialTm5q&ZmP5)R)Tp7cIpxKZTzy}wxdW)@QDDD8Qw+PJmy5?#z)x1rr!6my zxXn5fNWK4Y)*b8Jx)9BJ)}<?gt~OWPKE8px`=w#|E-g7nONth?+1F0iv4zZMi}o zW$9K{e%sxTiIol@g=|vypQt2F%7wxc3qwCTB_Lni1x-XRhsy`fF7c{5CO%68#7NxR zMg9ljd0yAnpXa`I0H(->2x*X9jG8i*y%YP8m=XEsHC7FG*YP!X{RPYiA-h zzJ65Rb{iQndGq_PLTeU@^h3Tm1h$P^*yPtoinbkAtj8G!{QVItv@LLP`^Fg1UpgNz4LqDo&f>9eSm!&1FIqRt~;^k$7| zhJ{HXg6G7m5-(jryHCNO$-cUK&fP1wJ4oiHVp@A{hwZB>_ZI}(f`Sio8xhGX1pJTK zPQopX>9*y;IbQrL$Dd)fWeGrGGR*0)jDQqVMgQbMqBwZ&EfLUqvCpN5ePZO!WS2u3 zm5Y^AYH}@F@=%xVh%4nEB_{TvEZC2xPhdpeAqLfK=!KMHHny-MRZHQiVD=KYS$FQ_ z^RAj{x47!uxclTDN+tX!?p2U7K(rKvVl%(fNTEAskK#zwS*6U{t3po+lA&1cSh2gI`gF_B5!73mKIStpbi_8gh|C$|Hzt_~`Nh;FkLDdj~Oy*$|Gid=s>v!uEn1bd- zD}(s$1uQ0UKs&X+ZRaBGroAV&U6u!D5>ZEmrTW34C=gY|A~~*e8_oUtp6(gn=*3jZ zb8FyBd=5)Yc-y;K8I7YoBK6+m>kZTO_mMq>2;=b+$y>vBEA}IN>#LG~w>r8jJ9niF z!YYh9iKV@ll%8cUq25vc4g`<(*E>gV{$6dWn?r zokBR^H9)k*3-F{>iUBtd+vj8uF81u03#k?=>%B5m=~^c4@)UBByDs8h^FTKGS4huk3uj z^49{LN@S4wfqGwdNIl{~pgkQK@m5EWcT|-V7?a$WA3S( z+WnAh<^mau!!~s<^^(A4gcf7HJX@0prCSacTq*iQ`H#6jOnXWcHDpZ3_fKQ6zI*dLA%jx2;NKvNLx}WeMD(r9yY?x( zN9*4$t2I?kIU&-QafZE(?pP_W!%J><{-ma$+WJj5T38mKEFsf%vMI#*8tjzw9WUZ! zWYsoeCfScgHNPb}A*xtZx8p%uH-I)gd@3Y_{O`ge|1z0*{Ah8vWCftWboG3p*E}}l znQ5B7lvWrD@g z6HpQd2*s(xG{3v>FWZ|`mveRE!jY7y{Fv)~K`_W}bVv+& zp?FHuvTo**n|twMSFJTw7!e|Utk4_piE{I@1TyfOATf!(86!k)_`gT6hd%}{L%PeWt??^2X96KQ}$h)LL13e^M$Fot_; z%dh;CnK*@Z&iQH1|MWpcvQJL<^4=kLo%R+@5h$s{mjO=1m>a~N$6K;oORZ1vpw^@0 z;evhMj%E~^&oEcK&*0ad_u#GCJ9XNJK+cY^WD){GxY3ZDgr-7>HKZGk-6`^jdyy$| zuhI+D$$n_!K%%ysw;vLyyPP$z&})Z-XgASlv z%3LtdiCt>Sn>EsCL+9+Wv2}YJ6Le40A`2l!S>b7D!Y4AP6p~+$kKWs+la!ncNGM4a zK|^6;9^zW-jfLO7zFGg8jqQxS@CERBZ&&Z+?!8a{AWt9IWtysx0=los>1hrsm>?z< zotl79uNhzr!kf*+R_bsL!B;GPP3F)sVu!}y0`F73=di@@YKIS}4w8$5-g*&0qIe*0StLg;x5taLf8T*=ir)ODEue(-8#-d3=Ew zC~?SB7uwu-CWM(kh-=FEcKfWVQVtGIe$yue&FB$R!n#Z%kF1I_-{$M7qs8;DazKUu zstPxb@)4pXh@5Os5YDqgS{QLSJopQmg7X>K5ecuSf7rZYtuK^JV&wFBpJI!n78wy4 zMW#;)6317%Er(|SeiGHxXI)R0{40#f|CWJqtgIQrja)@jM# zi$?$fEAeXWq7Xgn06bAz5IC=2g62`9B+*|o&tksyNYsqZyhqo{WpRt6 zB`R|Ko=UX)eH05Vp7as#Rb0v3*_2@5{yz7S(>pbZ^q7kms_xAgkveB3L*^c^nD1_+ zNmfm6ldxAWQ)qj&!n2VlPd z=u^0w9hI68#OCFwKP||WXnv}8=tA@rMd2AF0*XyghysGeneran`AU{_#&J?>z`z;> z57Vn%1nQW|HQP&TCe-O3^>8QcNjd5~(9u~Wj2A#RX(ulz{ZD(k8PFXD+7pP|;D0zD zQ~zzIB7em3Iy`D%gP9O5C@ggvr}96lE-6(?^DgcBii`VpG(mDurtS14f&PtHXtaQ! z0OYr6-+1lXg1|F+{_q&K!W^V5zI<4UnQaz>{8q*58vat?GJU9FooPU*{ZvD8P+HW$ zi64M-%>=28@!iP1pC5n|SV2AEC7JH|i(Adc?_NU!DMx{-JoU809J-`!>Bx@+=ciyT zsdYI4zfB_2{9to^J}RMa@xqI>+Fa)rCGmy_r$JU^!rL8}@5qyKdt>7@k=OYFC3$!N zaU>uKn{o!z8_zPX_w#G_+encU|Ab6S64V&i|>6rA|Vo4*QV92el z5iM{)2#k_|^6?-4ZuCr1v+!ZqIj+a?ka}M4Z@KIoPQf!)onBr@*4sYhmg2xvlNPqs zI%80w@I12%qY8B$Bm;gBX9(WN={uYO$|bxtE)yuOP12c{HwrERV@9)Ya_tcS-6C47|^+_Qkx z9-<+ck+vIb%&&Z+u-KR&`rb?CuyI@l6}@3dwEc^e>%PV15ss7O>Ek-GAR1tZfYa zCGpcp5}@P4PQk7_OAvkM8|(z-lcw&Er#9O-s00hiaUgv^e5b@60JpA0QTI$ z^h1wR_0-o9onIm|kNpZuRS(v>%aeOUspS~-uOdUK-zi|Zn~|wGov+R%c=Ew&$r1o7 zPL_rDkD)!q`Y!jZ9a-W=zB%m5RgeBFzu12UB48Apf@LN>6*jbYa8_p(jmw?6KOzVF*X!voHK*@n(LDR4V(DG~=bjH$(Pb z1CeZD+?rF8_U-GH^>P%w`Kj1{U`7$W7rMJ{dlZOH+m#Kpmxmxf0}Fi@QWluq)BBPU zF_~p!xR)2NgS~WlmX9CqIOA(GE1J5uIDCR4um7rFwH(~EKB<=te*%ncGGDVTv4>7q z7%ShqH3xE;cS1i}nD+NLVjOPh_j>JX;9xdHw{+pzV33)c(^KgK0d zez)dHx1h9gWgr8tBtYN)YJC1SV}1r6d{$$(NvUmst$}++|4QQSc%@3Wji&?gRp3B- z6)+{MRb%5d^zmr0a_t`Xsd)QSw)K?@8vH;b@N^R7j*a{Kcu4RhIuNz~iFtFW8KquL zW^lW1u#(2ZbwNo8vLj8Gu(~>QgsjHR!(r%rf62ja#RuKI`d9xzj63hL=~pr)A293W z;nclm=tZXczNRmLS0l1$_n+pz zwQXD(5T9VU{pNFk{_xD~hD^-`ZRj~e`w}esI551~ESL*+wge16ks6Y(+uCR-@Q3mG znl$qNM+dk!k?XO#)A`ekHfs0enzj+#22&@%4@Oyz(Z*XYK>KPgc}dP0v<)>Qy`Ifc zOD!i#$~$-E1&rsdz3RvHXaFab_|<|;>-59*>SQ;^(eRdJ-HZsEKh2`z-3V6Dwb#`~ zv_ap>d9U5unMs`j5ea(}$qFso6NCGc1$X%+%cSahSr=kw$iIc=MRn38SL_K1Gk7O7 zG-@Sr7d|FKrG<*~S|;QWW3|S1+N{O@%s2L*_C~Bnc+QT8XA2Bs zzAEtV3(&|x7M2oz1e&kdAql=JgM8dQEcqL8)}^>C_{GPdhy!D;moNF8yxVRu$=~Jr z%sq>P??lG<*cmkf8Gbn?o4f870t_673yk!b6Ky*$S~_`z$uFFYfWJkA4j+l+*;T}t z;A@p;I}I%}AC26xp8W+tP13vD$nDDd@_H@4&8xuO?C;z*rK)lJMaMmrs~=R_WaG1t zoPYM_b$_5kp@{d56w|^$BM}fWDDtmisa7A(qord!?(Q2#8o=xdzTJ*J3iL2FbRohr7WBXr=C-9r`n|DlAIO_7WJnRU1 z=ok_r2?xW(Lzkj8(E?#3hkO@yNj2!gLfUSQ?vW_EyTaz*SnQE7Wk2YtU`b=B*^DJ6 z+RyRm>lS2HOPC*D$mtMru0jamk_fk&AKpmPWPK@Y#lX)}hbeZwrjzgq!b~yNqxyO{ zQOxp0@JPFhQ4kS>1j-PejJZY$KuraDCkP;?0H>JrESzivKBGCSvSjdUC~xy;6MzuE zW>>4pF3Ls(AtGRTCg$!bA=y{aM-zdyvUWJNV&DUoue}1gBFw6}@1nC_L$hZKkA!a8 z&7QwipN%K;gW;K#bx*U>?6SK|_TYcKAcMs~&iGLy(@%E=^x!{}XiqwaJG;+Q5xYuV zt@PF9Ovoj#CD=*u+vs5Z-4l|Mc4o9gk3$-ZhB58R&JBYTz`i>~*dK=KK|U(J<@$0R zw7Yl+T~b%AH=F?s=({YoS5(mkiD8|{E%(>IrdBF-8}^JE)$xIIa`-~#p6&|p2e>`x zt&iJm$xRg&mma#DD%IJ)^F8}}PXnGBvDKa)4UW=?KKDD44|%fSSFKU7(CS~`d@t(V zHzBhYG7oq9)VCJQt_b;c(@9%9b6#R5owuK0rdpC^lIRW@Zgx9hcNCVnj5k3h3w z^+i@wuruii<&eA=`ROZj|HW@ynphpn`aODvlm3pi>HY9O;}*&ju`tc+|8rQu&^=p0 z@`Fi6IJkr&C50uDbP~T`|NDhX@Uhl#y=AJ@1*_Euot(*vGazEOFm5;Cf>8 zOcGb>Ws_Lpyl*zWKsv-(i|WJ(mj!E=%|K|hepUv~^=R{k%VWW>%w0*6=?}GTXZ74$ z;qIA#f>O#I9W*V5pN{xU<5>R>omRf`%XxOMFQQ|*C#Z-HoE&dmQMh~Yo-?GSht{iB zYZ7BYm=en!5nwufP;EZ$HSH0^{uHt>W7jmBJ4tcG?AYHzaAgh{Xb({H#!#^u^()Qk zH0az?6ZBckUly-L5%u7&*?@K#cQwQY;W3yVRQa@4ns!XSf(euO>0_u8BolsllL8*& z>j$35<>h!EMK%+yX1G?j3yiu{M!@E}GcDhtjW^Vu!`#05!GTx z+U+J3BWJB%w#uc9Lc*IiXV;J~!&h$X*|8JbY>76;9g)ogXZ{}Zcbh}yr!myf1BYab z>w6=2x`z}YVCew7sI1D@VmiK$HwmUQ5PPmN}2tzlv7StWSx z8}g4M`V)$c7pJ>1o+0x2r89zJt8*G;9xaSRuNzK_x)JBWDAHp1jQDC9)13}F7P76) zo^N~~QNr5)huEjfqA$r(ScG5BcFAZd24 ztRdzon3jXSJ=?y8t($7Y8orahU`}<~a(H^-Ki!C~6^8G9Rvmb=N{^0vto6vOQSM+6 zHR2qmp@$2cO5<1qU3C%Klp0emLz*4i6R%F5MYQ+A$+!eg%>0z)sbogoZjpb!{@8gj6j>t<7d)|Ypb@)y zMjCH?0!9Z%9OY9F;8Iv*Gqk{aKfT=Uc)Ktw448z*`2bgo1KLxS%llV>+4yt zPCC^ti-v{+^ZPl0M&>uR;y1AKeQf0vN_IQ_V1H$&z+y*du+CkRgWwM3|8^;^-A2_Y z%IMR#+_(gs!%e^35h;SLXEHngA>r1_eo7)OqK#j*=@~T@mR5NKN;%(EZhkMyZl3o& zX?jysMWA5xf6yiFDT}D%#Lxx%dSecLQC82A*7g&L%#;PptTt$)y2S=g^eI!MF%z7#hrFA z3h6lcdcEO0oB*bHfchpE&t_Va^2GaGy4Lf8B@L&;-04=WiJ)KS60QgZ&YB$ARx5Kjk zu#W{u)kF6yQV7%}eQATnP98aeL~{YjGKW;Qk*)B-?by&+(dBIx zV{|y_K;SPARFG~33le!+pN@tqRn_29cGyzWqf$xp=o7*Mx;BkPaeAV<9ig6Q z#9i5<&CZds^{=CEotuPX74!PeAT`Xz0AQuQNlP0ubGkiSPt&Lv3BJ0IdrqmI53gGX zINtod1{1X~?+_1~&6jv2+vr%OmguP9=jOFxYKR{n%yb%~htdqJWukS3vNR$${bzWg zpx9vUG}&?D;@*)X+2!p^9J)uSjR6;w4POjcL!f+kU;X=loiIR4z}1#t+do+^qnVei zYHA&{j}}eV+Z(+f5T5Q2QliA9POc~KqB)orp0*m)Es766RFOBO38B8i1eT=UxFACf z{5(PB<#6Ohv6Df?Y2+W)K^jrPzvULu(z%k(uzbw zjwccHTxKvf-+>*hMa>%?FMOY{0;%G+|p$Hp7rwUmtZ>LN3Q0{XM_agGX%TQ&+fz zgf#8q%|P$;u{A4F8Heh?y6WHv`ag4x!|Lew>PPy~SG2Xc1 zSJul7{X;bDGamH}9Q1nA-Elg{X_Du3o<`_=pg;!kF`s6-KH+m`7mt9cCz(E82*5+u zOShzv+IL(qA9_-i`A-($y=X~{HSm#B8afw=s8(%loFaNY>sa%SaqLvwtv!H27dZ6A zk+qyCczqGHFhJM+1745ld{MUbK?iW%8I1JQd-454=9@Hlad%JP!RT96$v*7I^2+(A z!&mg_lS5KK3ULCZ37+xu=$Ec`<{|KkLS|q96)&;4rCklXB?aayuFaBv5+8Mz8!-o} z1@tqXz7H^SQ!0hK+?+=m%c(KdJXmv~stpQj>VIrArss3(ggzk#!UC&KbZ%lIEJJM3 zkZFgr^?~SN%)Y+w?|`2pSNdv}ChD<=Xz(SnSGqr=qIN=nTHM2}g5nHg!>v87F-KH$ zYYQxKs(Hm7y!N%7habALUOU5i&7s8YGoDFJ-r(R-N`U6S;@JYq_4s!xAS5Aj?3(7= zPLr4xSxEqb`?YMt6G-35Dr)MsKG^okp`H!|IY)GJy8d1Jb>E~6Tw)Fd#{;b$oJu|g z9eLfL_B$u6?7x{@zD54^!pxyx4>FJqZf$GmJuHTYBSJise%!xE{oxuND=^D9a6tb# z8Z2pdM8XZBb6CHNj7wZ4MReL2EiIk?Dpfxy(4E3EwYSW(2cUL7C#O{1;i zn{>Za!0!+x?S3O6$O0;TdFfC1X8pn+ht+&G*Y!j4kAt#c+EDix$!fl}e z62Js?j=B8|V7;!u%i^)ZQcJ-015?nsM<&@0L4li>82S6ZE#mz9QlY=+?X)~s>y)*s zhgXu{_B%o4L}A)xFKODL*NraV@2h18-jmRctE?ft4&Bx}9A#U|1k~pV{BsyLY5sb? za91ahM)JE6Tm7nO8`C}8{d*gxOD{Jp0qssc{5pQd=V&!N0)`&Y^1NM$6m&b32F{+f z&tZ97LNw6iQ;GuKhvifh#G`w+1<##vdJO)@B00z>cHoZ!zD#T3=0_u(*K(XWMcLGa*Wn!Pq!?fx zxtCwUvlD=V`KSqjXSI$|3*R&J%CX{;-)Lyv^bb&3JZ2Oyr!KlC+EFIo8U zbV)_kq50OMME?no4lkPA1NuH+gqPZP%=8;#<3KZcmpO4GD^2V!z6UmC&K&Ua3CW=7 z#;c1CBdUKNk0;GA0`YSY-FJCK((hwCVeD5o{zRf%Lr9#E!PGx2KkL_UicgsHBPcQU zm7RNc3yUgRG`TGrkdyh+yUCyf>Zi{3X6T`8kYL=#A!lSzP|40~X=9FR}61pz%mmB#nE# zy&Uf>^FN08ON9{W4$YWW7&>cD)g30vs(mb{(|{#sYJ$hgPXRV@@LxwJaoiwEAbT^0 z7;kdaZA>BKpAXq?Lk~y0b&PNr=r!mwluGnP3;^g0&a#P+h{BJ*PKz;>vSs#jaU)qmZ#S5!Rzj9^f~vo- zM@=crWp=7%kP7p4`hF3@=N8iWvl}s$ec!xLxa4LuEm{h?qEb93k_?jHX%zemr|Cdv z)3atsQU#%Ie&ueV*!!C4@oHP*+m=-%0VWi~@jEJK;LD8$owz+WUs+%eM`L~d2_)XK z`Y9xXF&PLN3QM3z_sWvvU=brDAoibWnFWa|tu7lMdR3WLaPEZvGJ@;Lgl#q{9@)P5 z!DgpkV0AAr1%sXv(9i(MEN~J_31DF35_iE!<$?PiJ1VCF+W6VUOo^B?ZZuY9?Dd{M z!mm&IDNg(6wZIXqP!=R zZu_zX?;SkprY^E+{}{1Eb^=O8NGA*}gn5#TRAypC)8izvl>7W2$fGoamn}zwK??-7 zE>y<52}JdpuPc5_#v3;E@;kxC<$VT>YZ1m)pG4L7FeClJ2|uSff_r;qIo`1Rb095l z_bUnr)EcU)RZSSmIf(MJ=FEj#8}gp-R=(^&$T_NFo!O?BRnti`P5=cY)jp4g#^4Nb zj);*YgJa%u@f!3*kY4t7HyCP^9ia1`3^IQJ*v<+r<_tSJ3Xfp&Rr|`afd=~0oP0>)>#y8@dpP#7%9|~@{!N2JZD10H-~;pHDcK0kFKjl3g)9oIrUPJ z0(a)a!(U(oHDSM&VDrBslTCq-A0*u#NFLUh4BAY~+x}@mG-YDTjRqJ7AmU?f?7X#8 zCz*a+B>m?2bf50M5FoboHxOiQSS3KAmIf}O2i#vAJ&{zmI6?c}mL^qhUD@*%tm2T64m|`J2M_twhs{`n3x_^WdAeuSu~O;=tJ7eR2L6% zk(WXk2I2y?INl`juTH=Xg^PTS$a*x2T@pQ(_aMi#pTaX3OMAnz74}`}R2w|5v+gCP zI~CbgLr4$9>Zr)p39C|MD%<6JHg?w37@nSJ$gR+j5MPdC=UFBtalIMDmldn4-HFa$ z$Pu#pdbf{Z4SjcOm@IO4L6pUx{RMvks(odO)gth~$dRd(n z&4_|j8N21`E=C+LBFtFB;e2M;qWZ%T&!alAtTlwvPpdEwu8`_bJ^iN;%b0)5PymfD zky|XuEp)D2{U;S%A^)8VH?1I)#4*{zbeD9x_n(t9ga-|4<)*~}9J!Jvk`*s-+;&yw zSW7|>`RTyMs6D78r1C|H>WcpA)#PN&?JqLkSumrArg!WC^P zpXAbiY|EB!QByDqAkBaExZ4aI@_G(fL5Dd`nL6swm?|T+odNNxq>C=g+O2{>BzS^& z*^Q%Q_w-NC_&&=OX=I0;E7lR6(EfRNU)wt3az-_Evn8a^73SrWI(QOM5#BI}XMAQq zCSoYlI_1~+#zD6yrzAj@`2C&MH%@nJygTkRL9W;nxq6|VLVZ2gwoqa8KyyyhG3@DK z3ISXLD8=_{h6hy8x@`zSaNpHc4_#}%7EW+e-VFCy!-Tr+O7=VNt3e|Y_fO4V_HXr= zyspo&p2H-8HM8vP(Pc z2s(#>gqsZl#*Pr_c)(*F#xdMD@uuR);NcD&XQ>BZcC&iW#jl7|kdy2Yz`zK6l@b+F zMk5QMPU_3woZ%p6o8Gbcuxi5{BpnF~LbQ0x*M;?#RkP1gUBI;C@cRw_QzMykjdRZ2 zSzYl0^PyNmDhg{z0RGaAcMC`%ubJrUsN_%rn^F0(9aFa!U zTvfExvn^M;N>@F!3~tySk8N3_xPzCeQv6^oY1L<#Tq?&0xZ3mb9n2ZiSKZ{}_*@7c zN5hSHE^wqk$Wyje2ntbY+pufT+&i%xV&t@t(gV@xlE42pTmCeTDh7WPSs&%y z_&k8=TqwadSYFb0@^|s`r#Z(E(~2j=QOB9*}%LN3>_MMeIBP9D(9v2moJ=hNJ_>Haa%dTHyK9m=hj$;Xu-+vq|(M zOydO9qOodjzmQvfO-7OpElM>G?m4SaHzCv?G!o@0zIn(O$UZskcaw*`6Q?!Cfu5QBu-$jmI>I6s=A zKSE!9aH6|7`CzjnNp>v9TF~K6R$1<==OAJbms-fH_|j8)DpA^|FOC&lLJa)W|JU7n z$79{bf5Tr?C|gKYvKn?aAw&{N!zNqV^UORIWsg$SWmQ(PW$$cR$8wpVJ0vhb^n+{vF(qpa1tpzMz4@}KA2F!doNMO53T%DHV(@ch(|mXd$}~j zzQEA3MD(u0LY-~2#{?an>q>0b(6>PyA$+shn1(T_rc7trZr9V8V}}^#NMWcHDV=ZR z^LH22#7`+S>w2`i?#FJ#lHTi3pwls}2#*E<%-}pt0Lp^tjiPS1Sp#g2*HjK^H1p|(@G80K|wK#|y(fe0s{ zB?~_g>XNs9FnqPNJIBIBx-YV1Up|I%%O>XP-#rWGPm|24>E|LSh8p5 zo*;J@S_)jV?<#F4JT1-1Kgi0+zkC(p<77gqKX?Cf$m>wWSXI!ChN>YrFf&sH$~{xR(DgiTd8M-BGqs4jr^o%)+~`0#kG5=3i0iGE~2`l8esg zISl}JWbg3KC*i>h_J#_}oXS44r}14P2~~x8jfywsg_Y)0p%Q6%kL*K;{(K=esy^zAAJoEMO`1_S*exD49VQnGZl;vf#`iI0{fTWC zEM%Y41p^m)t*py9XC%>o0YlY#@Y5I3tCq1q0h&Dt!nn=#3<#{jQVmB#ye_9CWg4X`>De>>xO zxqc#hbK~+2*}W`U5CH=|MjlF336L`Yd=IUj7l2LN{zd?E22mE;lXKIaP5Ln*EfhYR zb?UEuw@eBfstlWyV^+6l63&MiVG7fd*a~#A5@~a4XK&B!`(Y{6T+9EFEfh+NwFw8I zIg^J5IF&8(?A%`l{F+N6J!P2m3i1#dmCva*+=f567O#jk*kIik`tb!$CHD}1KFLil zpAdy}cR~N%mkj;%j8%Ouir^l!gYn8f{UlWV`o@o5bH`Q3^^clnl6LoLpmfYMx$Q%I z7GY}6yb2d&O`ug&F-4e@pqy&)+-p3>z}M$gSfuZz00`sf8+H7=7e0>NHa-6#!2cPa z3a`_QAhvfUmVq2`Va^H28OP=%VCvfJ`A{E{Q)y(~h@A;p)tospG|Wdhx3OCU2p+c2 zsZlUI-x>Q7QpSh7)nJF|5!j)&4VOFzMP(qu?-V9tv#r1WV6VLODM}F#1ee1nFtbjU z!&{`r`|kO%U=9(FvF+B7)F;ds!|cTz|3T9K)=yl+6+xPAOmU5D9(Ic4?r9t$`>Pg;z|$p%chh#L^e0E>C5v& zw-%Y#w!;_DQCL?N-&T6)Aw^AC5j{i^9Vfgyu;6uKKfZS*emMLCEjfnGnlBmywkZCS z`7+#7LUTbwtd>T<$Q#yw-(^rJ>L4m=A}Z>jgOmk+V%zcXHvSKpqsx6!Lg#%EU}ShW zZ4DePB^0htnZ?^mJy5{Upp<+b-C)8fqCU6VZ*mDjd=Of}FwNYO^F8{cYt>I5t2O14 z4pwp#{5aW<0wh8^)B_0Ew`{7B9grt)KZF{ANI$)@!(|OLzhFj`6sRySP6cYj3u<~W zUH6yE_8HvQD>(GD8Wta?J+AHzMiV?C3*FdRag0#`SY>KxsAo`Ujv#(=bK)NT=dZwW zLYdpl&_fZM_@yiF4yE;zR~1Apc%yjFPvfiGfchUg<@7L$z0r;GjHvVXwhmmoU}^z> zj_f-_?0xc@iKiURNa`o=`eHp1<2-gA%S(mv*m?0YFP?&tacA&KN`m-|zFuCpUah3} z^Lw1vq#n?oKTWoH9Xo@QlG2LZMQ@s?(m2=qL4>PFH5n4#^87Zl#|0_8B(0P3ac6$q z;K_HTrxn1>4x}?pee79p`mEmcY$hH23QXC4rnK;}hn>UhHw+W^=6&xzH&UO}6e;mt zn;x0pr)khErlVjYmGcP!g4${@X0%c#0yI5E-y*g{DaZKhI*U>lJp8C?!|LN% zX3!^QOKCi`D#TDgt#dfhKE>4ai+Z|)OAyM&pcjLUM1WXtr3?P* ztVQ!B2mqMd*#^zU7~H|iAk+pDjW0oWEudn2sQ^$Y7 zYCe)5dFNgWhIBRfDeSDLQjBTLDK~r`d7H##H%y(>d=&AJoAv~>Bx}JxC>a!|g4)4X zH}DN_Ui|ox;&!#%wa^q<@E6E<^+SX%TSqyAsJqwt4D1!Kp!}x|9H2avq1`YAJ`3Wu z?ro@FKu;3pM|Opw(5w;sQMqe%sal2g z#Vrb~=d$yGMy>$f#cMzsn({0+lbpYH`Zm}s{Lx<4%Bs4zW2nRFM>rm-WQgI`JNaJ8 z-7AD*5p8*<$3cSc$JOW_`_F)dgC*;xe0w1nsu;i+QFeMu8%N39)cuFDLk}jwfH`95 znx0)g=&Il#(*0#Q=_nQ2Rp- zEAUsa$jgsS#@^S=WK=b&3bSQFBwA;(59tFkX-3)}87sRQW%R`En4Vfj^cctz!*6&p z7ve%LGM!VElS+6k#Z3DAbj)o)iGWz$)yx#>HJ*+ALRPoi3y@gHK&W~Vpa{sbhQ%`5 z^BeY#4F$$`dRSTrHr9MM=wXn9dZm}J-e;q0)jy1LVpAXZhkX`M)-NIAuci5})k#uhM=Aj%$^2$VwhLR7gM_8D+}*`Ys0}NQIz6w(%Jk?#MZh18#LQhN za?Xo{>@{>P4S2a!){lpf&ttzt0P_xKesEO?8Dapnz|5k^#0?(abKN(!{GfJbc|nk(zT@TFyfhLpKb&<}luU)6@a<%ZK)s&< zpuZN^s|~$vX~BH5{;{%&Y@}e&d{CgN53_-PeA_SkE|m@WW5mqeyQ#Y8Km#Ui`9fR8 zHQ76te)zqDVrlGx->VCTj(~X1Ki#U*A0(iBz9i>?{{v<3>sBah7Kh(U$HkZ-VpDRV zdOKJ)mHg1=d4{p|@EEVjH!H4+rwQvUgwoO{!w?tDC>ZO9D|aT(u05Gp3bv_~R(29H37dnIjw9< z3bH7gIxGez#&sGp905(mB1Z#w#m4joHg&YG?3>J!7e+pkP$YW*S~f)eTg*-_v;dP? z3q^(uTYtuv!8UACkn1eAUoeCC@t4$Iy4ueI+4piVl+px{qrYdmtqat$JEj1ZAL2=V z-n&|47hga`=F^$u=TEEnFv$#^+8VN^&WOghOEta>VWaO*gN&&JCC~rX!3!mL5W+eO zs7TSatQVnSf*~jSyZuOpDB!ca*94j1A_%ijCLasJe@KRR?iK@&u8U~jzyvW!!s+LN zOf>jZmivqxU)c^nY8N>)fS8%>S+3zRGG7org-ccjhPutv)d}xD%1ZA1-6RIr>ewA@M3@;G|IAGQONYZ)l4?FJ7~& zHYVTR(D9N)&IjBvC`)DZBe}**s#NfMXBSj8KvjLtzW|u3Yg^O}S(BaAB~fQFg|C;a zuHU_W3M^1}Q2_*ei%LU2NJBcf&eYhXYufvrwVBFp1I&BfdV z$Lc{SAxzC;a~haaOhDxkGq)Dy%vU)pn=Isur|+kEx#_#2XtYP}cWV(;+P?-#zIw71Q7 z(|G|t)try9N#vODllk0P9^bx}DQhVJ0d!VTdGadiBOYlL={$3>8tc0JH-DxoPj}Yk zom&K@Aq!hkePvXY+~x0U2}btx_SXeBo%UUZoXqn?0D>PJzULi=&*RhgV~&qw)VhC* znJ0s$qJY|O_6+q|#$83JYG^j(Lwy8{CYZk`R>pKCMcTl+kD1hS24iNNdc z)z;Cn@6|-igGded`ND8A*R?Ir>tB3zvLAmn;7nC~0r~VU3aN?<5Xa{{q&P1xa_y%e z?eR|n(kA3^F&2vU+zCvS%jMW6Kf3tzVDZ*fpyck|R(HVs+|0k(;q?uO5K4B|#LGr{ zBF>TE*YwXXMX{9x15kHhQORu{0-WcvM9*b|isOad!+AFTY3=C@gpi~%St$)TUi16C z{qkFw5TzNRb-}ZUhd;*jOJYmcCQq(d@vr&BNy$`S06*y5OMk}G_+QDbzjD(;hzzPw z)tviTj0zoO?ekE$bPA9W05h=tinRVkQYlgO0 zXMpDY$y6Cz$k`gZJ8Fk+rm7710a9p_SEHzRc^qo9B;4os`+2g$BuvyjxQ4bAH`gU7Z+ejs zI|p)&D*qhxYZ!BGKmsWmvNF`oD@FKz$86Mg>Cs#b+no#K50mn>R=cHqpZ(7UK4XG! zULo(t*uNbMuXP9>7|^B+6A-2)O55A5elq&m1VOB>E`N<CheOF+4{4$h#%j zaB>O6nfJUJ3z85INcwU+u6xDzzX|8OrV>;%`fZ6W{sR5IZP)Vv8VjS`$|u)n7z%mK zEf{)vLabv-UXacID~6=%Zb=>}Mgx@$*RTznsc659?D{cVn~oAHmzc7(I$XU+C_df2 z6&g^Ghz9^UNe{f5&B&ff8=No2fr!Wa+%2#;4xg=VD)3<88fNtEiruQT#XuQd7^wpN zBsd5r;bgRZxw11?0*vo{msO^Pl^KTO^X3++bg7<6wFC%^OOta*`S(n{La3h|u4TAb zl~n8a`bDZXeT;XqJL=`emQ1kiKD3NNr1dzW1`Rf#If*rUYjHcQViebU|E}P9xPlB6 zkwHlmBDuA9Y4WQ4j5Q`L0?@Mv;vymH^*J_2&&-7z>>CvQ{+Y#F;!gcI;odpBU)Os5 zKe@xb9&V1;04z)JO5bu6J!C{YjMSn0@?rN+3cRiS9l?m=mVMD{v3+?ZCAj?}Ovu9y zBZZI$A+))<&?^~aVaL`791i^{B)PeNo{oe!=g`fC1+8ChEJZ65d*#dp3dTSp9vjKn zj@|t(;OLd(2DQRdr*xfSbZs}b^eoW(;of>Y>R1Q>-%0*=t6qm&Wrx~*Xd*|-Ut0N< zkbAxGyv<(aBq2aYQ{?Fc(dMwa`*a)WP2B4hv)LY!|DZTiYVel9a z&X_FgI?aSfEs8A+Rh-8*Yh)xaP~5z|nXFn00h*Hqsmi*vZ`mCnw_8(UDSbzn`p=Pi z9gyUWx;Wd5VLBNI^1Z{de4vH+dCqSB>X}B-FC@r!u#X{TBK24fic(rF<~LZ4YxU*} zD>BkdVp?U!43BmKz7woE@}XXQ zovd@su0U&Z^m%%5OG}x7n_4dr+To_^RuAp;k&0i|83!nvFiB`7`9q)-gRf*A=C-gg zw`IMv9ctiQmV3=R%k2%~vHI~e^BA+2!)}nPW&l)_A>|OTgup71+4i4>@!p9as2RgP z%>95yL%Mes7NCx=^5@>c{p~N-KjkSwSqs0rAI?cQ@F_Lpbf4uwGe zBeMHy_RV652jJ~P#tKgSInBhgT2$Bd!QFcI40f7T7q+a(TbfanKuUNB3|`7KZ>zX7 zctkoOZBz%^-K)Arv(t$Iy_RlO@iUiC<(aU_X(ZaqeXX_d{XmzFMCO>G`2Kd6bwOYK z{))S;fMVFqKX=w>eMmf%{w?ot@4KExhP+#dt_}XA=v)uC&=_?qhGN)jB_`(^>M>J- z*S^8vBPi9jv(y%xcKNdgiLEn)f`KbDhL-cYtz%u5?}fKL=i1BUPnqK?dH56~mpqe4 z_I9_)Rh5jlMO_}YZy?A6-BN-(JboFu%74}gnesjmKo!O#95dy=3W+%w_U9BO9F+)ub91pH1@b;InK-5- zpCx6EnDg>VWg;#Pr;B|r{=&%D*pW(1VcQ+2d`biZ+*08GrQ*MGg6)tulR;yUf}@En z?%j>~+Gm2V+1nt%u_`{W-|^C;fqqbD*iCFBpdusH6ToI>(9X5nJO4;%K^C#1^FKm| z>)*v-bX!WPJ~dJfE$Ljkd#r$`Gs+@GJrVtOZIqb8S|o~z)5TowA_69bUgvOQMr!3e z^cqapf&Tp(h5RMOoB)7;%bv->Bfns~!@ zz9Fh$(CD{Z9!~je$ClpqEZxGMN8u}3L~{NWJNr)|L34|L-DEJwejicFwhsE-amZ-u#pzT{efL^3# zALMc@KlcO9;LgN$Ms|cS8^!sgBAHwDc=#KjV!;M~K4w?uX2u3{I};JsU)j_f?8av<<9y-d0|Mq^@31$*nPx*y zt<%Le=rE{ILl1699GE!zeHMp-ZIE!It1<_Imi!XG1U}5hLy(MrES_u$?t{HsppaGm zD_^1T_3RSeFCEn%LvE2*CEWUA*1nZkef_k6g+P71@N$@8aFODX0*H)06lxXP8|7nA zpMZE^ZWbhdO-D2clkAVD5lM)W1SS-4EiAE00nqrx_iH64;LvC9M z^$;LX#5w84!NT=OYYx5sqYLn+aS;dz4s-Y)$xRYovIAaxcN&7xFl{b$V{2xkj8NK} zXLS9QG0PJM!ASe?mq}dIH}VrHnZ5gROLIu5?5xBbmS%kdLOgWyuKSgKN6)ed!zQ3#mmN8%^+SIp6juo+)O9@ ztC?zf=?j%5RwXx9FZB2-5A2+WSQAnXa=>4awjd9MB7enxQ$T-08nUnkVMZ~b z%iKJA=NLAl#Lza>w$qo4tE)B5XYo%AmeTvTL`jT09NAxZQ!vO1ZYHrEGCV`|nmW%K z_{A~@IxHnMqXdSw`GM3SR|6J@x3JkM+1);vl1>B=XV}s8s_30AGieR<(Y1!S->bxU zOc(F#{ye=n!G``MsihIn0^v=-hJPR1@*++lOgh_{M;>VH2O)Z$o86(Y1`eIA)FYn%x{`WbJ%1RM!nEwca5xP^?^&|$jeu+og ztldOBnx>=zF?GH=fVhl!a7$45MjI7j*`rpS1}~4>g`@^ahRL2xDtD_hgNeSeU1BpF z_w7b1RT=Fpe=_eR{E-rP!u>q6rqwq1!ir}CW$VUl&k&rDk(G^}?qKvHXa$1&LX|hv zMkQGJy>-OxstQNt_FVe=gf_2T!u||lZ3D{)J&%vwHw-U&<(pKyL9&V%QFH$#)wjQw zUjFO$bN-{_3Sclg1MGDR|4yr|7D)3a$$Kn2tIsvh1(9GO%U!33iary~ex4(^2&gFR zr)bUihtY$oQiBFq2!wZjb*1-TuRrp&yu1i8wOl9Qo1wFwI%O(HRQI6KN?0&HZgQ(v zf0+v*afu_Y%JQp<&c6x{k8lQ#mzPC7DlLPp7fbTY#jo#L22ZFzzD1(&mt>CxAE@I5 zTIlD>E4@4m1Ft!Wa790_S?5b#zVla3|IxX^4%)^5a?iGUCEx*W5FZWe>XpAj@wpAh{44X?Pc>loCX3$wJhxP8?2x~B{~aZu1ql7nm%J9q9@lcY zZ9T{(>PUJ>9jb!6id%U2)?eIikhy<1fc_WGwr<(HjpWvdhjuC)7`{0Ca{&xcJ(9gx z#}xdqC(9`02J`I;rxTqW@EFPCx~4tc34HAee7pm{e9RP5f4Z)dys@?>d{#?Tg7l7l z=>|W{?p!Kui&+fVC!wd^zOdcO((EKI^13gY_KDS-&WaBW9w%d*||yCs*rLh$1R zdup4Jp`g7jtmE@5xxeKpQ~I%ggI&qorRta#+Z_ckg_Be1tlZByu9_k|>?eJ2lF~-U*kc#xPW|Ps`Ee*HjGtMjWKZ=q2LxbR&PTWgJ z;1+q+3U8hi4}S;$SL)w4 zZL)k7y%aXJ*dybr{yJ60(DMLd<((}|t%PwHanF3;)xB=uR(q57%tOxm+TTA$Y;+bL z?UuX>7O{zmSw*z{1dR7-y2ohzOz!)UTrwR0mudk^yY@w-scGD^jBGXvYa7Sh6Zp0^ zYCn%O2Of0*>a(f`NF98DkFI>7-U^eJJeitgh13P&9JBaU*l*nPXo)X1K6-*%1cy($ zECl{p_l>wqET7ufK75R&GA=S}-&hhN0BG7#)AR3NdzrizJ34{78)w1@Z9bi2Yzt^L z_0r<>{`yeT&~OwJ$gLB~*MjQ&)bATT?*)6lo7q)N>3`Kjcw$b0`isBk0nh{3XImjA ze#qA$@=^z8!Yxs#(#XF-I(+_mqVxSfza^0>Htl9O`m>m~$xa*?l1CdLk*e@GklKGg zbK}fGB;)TJc=$L6yZp~WdWSOcuW(@|IPf<9zTxGCbzpVuprHv})5y&mYsclZA4M<6 zIj>Hs3CpOT_?IHio7a4k91om2J@Mk)W8)f@_l#%BM#!ifE{Qaqr*7a|NxMs0%qyT^ zq;M~rEbwf3UHqdZUbZ}Ed5gi_O!*qg*~xUboQV~ACG3eviRjV#UYwS#D0&3G$hh-y zFh3=+Pe5n`zHXEc5gok1KhuYWd2tTQQ}o~s=7-j}m=_+$2<8vo2=Vwzcktr>Q;R$m zcf$3Eh6(~18T0-^{)G#eEw~cBe)Hz~hud|cCrW(2Mt#f#0pa6wM#SE9;11^Zo3!0o zMhdUP!zbuGb>c$YY-g#Q3xa}zOdma3YBs_KtmD8B(%!On?}k#vpMSqF9J@07@qd0_ zot23j_Y%Es5aYJ)`}yQo|G(VM&fxF0 z87fsRo9nAHU0e$nRuMNUhA1kk|M|UgB8E%xIOgLX$0GmVT;2P-l!&SbS&TG?A(JSAjiK{o4Mn=kU zhyy_DBtJ;~#=)iC^{#opw*|eoa^dvJrHH|u1Ub7`vL?Ux2D_G&EkVy|TNXS;U&+Ub zQn`PhqD#w8QEY!_Woc)nMNV5=JJRvzqa{#;qjZ6m%L6V8)swBUu~q&K-7gnXKYwcQDKO9`9x5?R}pXi(a%zjim zw^Ylp&>9f8rXJPu?h0G9>vDbmO0(!lPM40qu-$l7NnVR}cwI$ZV zbQ|)9Fb@AIer8{^ELrP>Gqb6oHW~eg&gX)mde|5p_NM+>?uU|EsD1~Vy{(A}y62YG zJx1ZxgZq0MYMJ`i2kuN_F}N;X!`#krwf{(5sM1fHeIHV$;n7g#Al=<*)q-)RRJa{~ zN)A6?ayIvAy9a4n)PuY8D1*uuggoZm8T3tZ8bvcMKoyxzE92Tq*V;s9(^h`|{P~ve zkqYLxMCV1PKgAAvOYG=rIgPy$W?^{)Gs4(T5Yy8V5)v-$E}+qgwVmm@3>a+w;>}@y z9{nnxKHgWIi4FsOeYA26ZuWrW%%>zW75Db4i(_N-Rne{#`~K*(CFNU@LOi(^y_A?) zhAv_Z8CTf)p6+Y9xVZFz1q8zl&&J9IeiJ3?H>`if!ecvHCj^5I4Hk#K+EkIsRV|?R zw}F2Y#rHNxOs%Yfch`HZ61RcUN377>nwAB1Enys*A8%jSyr;mG>$q^96 zz$va`?g97hxnic)z?uMRa)mH<-|_Kr80k1YGh+b83y=HGW^wGxa`^oDJ-c%+hBJzq zMMXsPmq+V)Q1g94vl*4Px8xqjI0Tlhb!skk8w3jz;Kq=jK)r9%fddm7^1%71Tjp-l zdY!8J<8}XG;FKm&%Kp(n!2uuOt17|Lr9ibp`$t;#t=DgY(NPU2{~EKGDg)*3DV83i{`te=zvJ<^#pT^sb9v-|`yW}J9knF3JM;_*={(!<5!FueZqB|>)C$z)y<2be?6xfPKdDdtEs60&ii+pc>~U7 zJFAHj{bOyPCB;F!i=@WIF_-SGrPtQIWEz=HP7nH3>0PTR*#8>EUMPS4dNrq20(bKF=7XhI;c$ivCZhdwb903@hdkkui65Dn`G08^x!jqmNd*$a zuCT=C-o1M=u#*(+B7ubq_MXJzo9D)xBB%uWtfeDuzg@K1{N;@i&-y>&x+ds? zIo}G~8MCWrF$2ZMg4A9RTJ=z#ajo{FSOPAn&Csj-s2n5Sny4JpouMbKWn0g(^d{Yv zrK@qa1a9*3gA|{RWYyZ^R9fFhwmkanD(Je+)WfzWowx*?S0~jHMO4lybC~Q@C<+0E2`$ zt8z5$L=;MgI59qXFUD+#7`-V?>(G9O$8~d&z6sAdS9#g*|Ue|&P*s_!494SI7e zY!*s3YL>?uM(WvO8b#0c8#YG@+stOx*4$UsrZ9Q6d!rYF_3S1k|q#oY!ki z9K@}M%C!gB7kcxoFuwqw()MQ4z;q)&J!z)HOy_1>%-(6xq%Axg8U6(C$$jqq`G(Tp z9qGoHkA*NwXMq|ti4e4E7NzuU@9Huk&1|sv_WEK^p~H;hwwjFL+S;0voC()#(!$0d zT7pKaT@=1sx97%qV3;G?Lkf5QHyPsZ!)f?TZ=XK-{OUln=t6O^0X9-j zr4v((`9uAQB_&tsokm~wi|6W9zIZEOp@9V4k24ZQ**>+a9iiViU7s9S+DG#)jL6FU5<4}Q?qwu3pORli`f*{YIxZWi~FJ{ zgX{Q8v-tKbW=f4SGdY5+Iv)93|4%kP#%f3Y|LTGLALvjna*fzAV_AmcA2_t~*Og?_ Iq#i!|Uui*9w*UYD literal 146951 zcmeFZi9giq|30pqQVFM1C~IXXgeWA2N@%Rvv!AkM9s4#0os!B{gX~Mz7))Ud##Rop z?9d>?rt&95zE?{~s@v2VVMcJ1^gd9<~fx553%+;a<)TkIwtpdU!g( zU9XAX5Wjxq{9`XKH_w|A5-taC5Qlr%OYjQ{c!P@^ce`ie$-uz&aR2Y2_eyyV42KvP zV0UjD_@&H`+WVOgRIV)|l2mJaM@qyvE4dk)Se{De;vg%Qr;q*e`9kQe6BmwOfc_dV z^NZ&B71sim;tJn3i?;&^!sFqMtG$C?90d^Os=Ir|;S>u**RT_&2k|)!!Ix&c6i{Oc zZuHkz2;(C~BKJQp7&4U3yD|Oq;{35=#DCv)?C@dVf8X;*NImaA--n$4zqkM2%=}*v z{NMKYUnFqv{}E7AP*fC0pg@Uc|G-E$+o=ljdtGDWyo!n&0|NuR)S`cYWG3wYu;%}F zuu7R2`)B#wF3XMb#r4Y>jD5{)ZQ_tFub5m^w~IOBf)f#z(uBQvs2={Y?U4*Gb>Z-_ z3%^kR{?rW-16jE^Gb0S|B#TEtwMA$CV=oa*0StAyj+^kX6_#k1r^O?1uiE5_ev;E%f}6%6^+| zWaK(tVbjh&RAKCCsbWaC3fn&!bVU?>!qICi;ksd2d60>fLEh(KJ3+Nj2R*wKO`-gZ zToZ1MxwS1`TNbfl1HC-=*^jr0av}HC###RwX-H63RZD(H&MMcN--`SzZJUs#u%v`j zXbIogHs0)3y7Un&SK65zw`9S~ltagmWwC!x-L1NhIc1ipGq$BO?I~wEc#7_pPk4bPq*1+Az^J< z6ENMR>*uuvS6Lg?zOGD6{iYIXa^1x(Q?W%X4wCvNCNuUjA}noQls+m7MR5q9b^Sny_Fx{Xw#*L12c-#;)AB5>C|Rk?G}N0K#O4ONCN(0%zv zM$VisZczUFlAmGUyk0_%^{rYDICiR7{Oay;h;w}Qa}HcVQVP?=2*WWIg9?G~SFCEy zb)c)ULYfI~6}ZEHjX&xyyUXfi4kq=Xi>djgx@UAcz8}EJ=aTcamF>u8<#Dxfc z8^wJ#?}_`Vk_0W0LWjYUZ4tR0j`xor>+0Ej{j{OSaOVUVxA5xfYSmJ!=;}(Jj_8F8 z6K?Ro=@QRv5iaBtgmZ=AbOfyLoSZOM3`f?$5ot$v1h%GH*M2J7aqWjq(H9Ksj%Qfjms1Dud=+Jzj{jhZzx7it)8h05P)b-|71dUndGc}}(W@bCTzLHs1rO4y z{-WE-=|seO|edpj7TBGa77ws@xNd!Ly2`*-N1 z;BNZg+al^DpH2w!QPl@WIM{PO^CNtmt}#P4y`ki5@*UA1Od>)^3qv%*;Tij5#8ba5 zEibQ<`S%{ABi9l?H#9H?Or;^HJr=&Bw&sMvLC5Zl+f459e+_@!O)6RIQ2PmUapXJl9F7quI6C~U0q#ub@e$f{=b(e6_vFn zv7Q!hHn?Cf9&IeTX5`d3Hs?AGQ5jmJ)G%!Fo3{S-MurTld(p>bP3w3>K28`lhMlfp z{PFHH?**sb?Ts)5^WT$o?2%;hbp>H{fD5cc@@hGE+iXry9~Lp(;bi{@N@rv}^s>C) zFTs-=vme5A!=`K*?i_w1|Mx96BhTUuPxo50wcw-p&tg6(6F(oVe-jxj@b3uDrJq7S zd+~I{7ZY;fh+E#GtpRYp0*$-5D-~)$^*c{8PO| zxjJ!7&nZcWbtj10w{o2tr3B(ziWV7vlU9&3oqldHOg2Y%WDXg3_809{YwNo6?+V3YzY<+ZPbaR2!Q4vuael)w!VeS{knP_m97Bp4GeKT%nC0_e)Hg zTWR&|njNV=$`Z*pL>U&(GfS_%Y9)ERr)rW$;6u?E$G<2a%wZR0b&et%FY@qigrl$Y zmpD`O0_{rQn(y1W*f#qav@s_PC6uC|iW|G3kskORAJy^7fSMbLg6T0JFP5mXDSWj$ zQhzE!S^saW@1{+PlZs1f*tz^a-HMd6t`K=u5YhEKqD{}hJR6cgWx zWPh>2w;Sn4Q<61%UG}PO+mGJZIv;$RK~3u4f^P*us{Uv&=oa4oP>9!a`>x@}5o&`F ztL_p5=}F!sLiGD;K-}-J*p_+bp{(AE*Ec$OB5wrW!ch=4dP^a96E&es%M6>c2Ul}) zS+FtJaz$8z0scdG* znW;Pj6Z3(EX@*UupO+djrs*vf>#@j*X*F9&n|_2zI=Z^uLum@d{H8~aOH8$ECzS<+ z^NiWaaa*7uxQ3!hHh52~8m=I~7#W7e1dmH~tW%GpvXho>?vS^1S}80UL-HX(FApXX zgWPG-gXt|L++b;MH_!;z=fkO?&TzQKtjW!n1?t2R4SNghal%r9=B{C8#j4Tfkz%#S zgP7j$(sgJvp+(V;`@WeQ#`QlQ3PZ2-^rcf$_)~no)LjZ`h(7Tz88EZN7?Y}JnTc(( zgO58aOR=6VX^Z|N5A#j3Mz%`hUD5XkdcpXKQX`s4etlO>1g?~Xj(BZ)m#(M|T`PIM zG4~*OE@_p-MC#Q^+jzIQ9i!y0dt@Y>bprQ`TlT-z`K>xEqJfXySrjEr%zXC3hJ_!h zIbysZr5LRf8MAhrxa`TiGAiF`H1*+nWYP^ip;FkJ79Y9f)T*gkjWh9Q^F)LE-%0L` zHcvUMl)X_kM0h?`4z66&t+b#jZ(1DU2|8d%IF35}9n|%i>@$K|Ylfw?u>^Qvn$#EH z2abAnnHQ}uLSP6P&c|!)*H*uktF7V*v>t}G`vdGUFqE!X@G3?^&si@5(n4OF(J@xa zOy2XsN`>WVpk%~`3ift4Qvdg6M#zuas55VD2pONALSUituOhpc%8q^)ih(^a0t$ zzqmmz{3C(fs_XCXF6_`KS4Yjsme0s@TAqg$h!;stW!vYSBbPtbud&1|c``?CX={WZ zP46|Wti548d4wI6eU4Mp$kC`|v0bTdFSbdOH=lWrW=`^C%}d*y)d(9;K72#(*8^@f z{J||eMNE9i+ND+Tn*PMZ1S)%K)6QD^k!iJLC)dDOGqP*yu(g86_j{ox3sP94V$5b> z&EilI8|n9m_@D|sY@B!15`j}#aui3+#MKS7b`A2C(T-NrdZE@tB1=D#b~&9ju&&&rGXQG~6$ zMT5%F&Ic+psBs-^c6sSZ>~L*BJVaPh2o`VUUb&dqH*viQc5Z>4dTz*}WXJ`Ty@2-d zdC+B7Dr{Ydu|oLY&N)%eel9)LWA>zAS^4Wlzv@jwkxrYl45d5_{<`J6lk)O6xRrjK z70r)f=k!6wOO>{Ax!%OsrP+@X)QE7h*FYfRKm53A?flX7`rI?HJfC?53$7GPDJIK# z<{q`T;U=K#9>YZi@|BqrH!xyGp4O!vLTrR{g!GFr$3mB0PkJZIxBa-fco0{8gLM`t z^FfZG1t0P-*+T>6eypJGW1nZlVv|Z`(+w!p;%Spj8D?+bIcryHP)ExvjhCxMw6&Qx z{7_L?)kL)MWhoi3&1f5#SbQMjel359z<jyI$Hwoe9OPfy zRnCQ-5&h>v!eU|_722KrwOuS-7 z!NSJ`0bgzXEMm>WH{?C8Nd2>?>FeHj|L4zl;tV)NFNkS7vUFN#8|O_+)J@}?)}Q7n z#-?dD5&=zGVrm&-d;VjrP)~tnC{0n7R7Jgq}myLgqxNa zy5h`G*ByExTB$b;W9*`3r#9)~aBG=l@5L_htHmVb{Aqs$K9fQYi?#4I5qhOTCF2h3 zL42|7)y~Ce^X6Spe*XB&>kCaaTy^!(n~DW((jdDxrQT3S^*O$ zI!+N{IIFA&fpK%fHjP;C;X|Vw#c4Q$oN1V&@ z?1CDDjnrIL9_M~DWw^r6Dc;GPj&IwiBM@oX8!L1CBorjoo9rxT2e}7wooC{b3=KL? zV;%o;>mbq}u5tz~*w{rITUewj@acrfu}CjGK?JHh-)OgbFv(w$ ze$z5PKmR7BurxL;&6Nl*aFS_qVaoEc-`t3aT>R!6k1i`S;1B%q1W+7g^zLo!gTTDwR!!FjOLjKL7^1HHo8*r9Cv!}tE zcd{z-$0sJcO1mF*C4)7c;_%H2JpdGZ@tthD z9&ws>R`;z;%!^VfJ^=M<9ik+sv+QeU$g)TOlOVo~e3a=r8=ZDj4`qWJVdvu;duXXq z+IRL6+l-uBeD-XSAr;WZaFW?O|K+KCFpVfLO$H=UQ22_1Cdi>zi_>=-MN!%Am!f(z zbQvKqr)hXUSkyy-`u`#J&#EmbBaHO<<4*-)4sBb&m%j4Z2{)fRU`|$2twdTOTK6|5S8|$eg*D()&;~TuMdQ( z*EpvgJ{YReu_r?}5tY5Y9f;hV&EuW&H?J+fCgp9JB`OfjpPQ{|g`vl#7aI>|T*=AK zzE_0&$`sZ98nQ4}VeE>-k9Z4p@L^`wFT+r6vx8gFT``bUpAJ~b@D)_Hj#Y|;eR%1J zGy~7Zzw+^~y(wba3q$7TK}?9~mtReW1NimKeaBM+{9v(RxBJkV4 z0CmT7_wAiZi`u!Ravv!a2=L;GhA`g*r(dW@w2z%pslgw0kU#@f(zH4930wPQz z-z4l(^|DH8AKSlFr^mv0(oU?19>kV|JON9G^WUt6y7Axidfy496InewwoX+cN0=r#5;n$Kk{hR+A~FbxylM%DEe%H(ysJ+ zK7Z;VAdFec%$8Ol&K6ToN63Yfc4Wqphi;Vo%LLA6W3jO>VK4MRCE*@C|MlZda>TWp z?brvy8qFYQL*V}m+cu0m-V~k$If=` zkj+rpr1hCD5%Y`TiOX}4JLi&j4wHGg5u!`A0 zTAV+gB~Lw%8lct4k%vu|Dr!7%ek&hI6S*!(;;1+dFiv_^Cw(t4M{=xEQD=2vRVuk7 zDQMRQhU%N>f93DARVMr2WhrFc8QEdgjLYVg_nC>59edq3Wa;g?=p@|N|Epgp9-^h- zU;S!&pdi5h>0ofF38MVWJ=F6E2c=`)^yg4$;dqS9je#2wL(ADvQnffN$>)=eb>}zw zTe<^yoRdEvXZOig_i&K2wJMo}vblu#!Z`b)wwSZ@iNQR{+-@0P-UIOiQBvpt^$&)*9m zwzjsjYa?)DKfelhjPm$c^9gzlf?m*RD1a!_LanrTS``4U|Fn4x>b6JawQuVU`09u> zd^(7%(S7KXtbGH4g5(#s8mq9KFFROxn*~!EGf_)OKWy9#MRdg}?yg%83=VS9w;AcV zifeAsFJI~!8NJos9P@(dA-$iDA)M2sO7z(|sLT_~hffm0j*pVF1)AtKW>*x^Xp}qfkZ;q6>ne9ceb*3}LzM%c0&(v$PBCO*zOytyR? zr-S&#&F^0}cpk#Oa0O5XPFH(cAE*Q_Uc7kS@5k?rjg9B%g)(SKSA@)cW=`>bVx_0F z+ui4O7Bb2x1AWUpw)D;R88UUzFS5Y^ac$|Vvtahd+LSwDWjLK=XkZ?@uMwdPP{z4` zEHomA1wtCa|7}ZLaEK4yTU$(J^aUJ6w7B99NR>@cjfCJ(1nDrnwN)KZF<9>;JrJbx zy1JUYLjqEfl=6bDTPglK&eq!#bxMF--taGUhm$kK{^!yyd-eSn$fZ>&%e@*B4nrlj zP1p|1=bD^oc4~}}R`1J8X)_4Y*V{?{6K7z0w(eLFX3_6oiqBL|sI z+yC~~g&YTEy{gpsl$0wlM_1RktmoZGH3%GsxcTLnmj2mNCt6+E@^&PWnK*4O*LPN8 z&j#Dn@kO#&R$R!9>A%-9ghfhfYev(2EIm9*sMX8bfjUE5o+;Zl2@ z`1Hucn|gT`o*rR{BO|X4TbiLds~`H9sd2?k8ebL>*Gp{Z6NH(?(`J?rVHjB14%RiL z;G3g0QGZ+ql$+&UOMA5{BIiw;mGs)~xra7iQKt)P?)v4Zq~d;L?c zb#v4}%cXSU!Zcu)n`5cdTm(>IgDlD7hlC{sPDwVcw^foJ6Ia$0sg)#GTA%6vJL2AY z)7JOWS9G*M>Sp1QtFNH(57Ymg^q95U+l()V)8tlaSE#hJEjTIok7*PFkTmxe11P&fmxPh!9ISvQj)Z z=ZGyU`{IhD-;fXyy0i9Ttz1fHZ(GT+fUWvf(2toXC!&`O$K`por3YoW(kG`mj#jgV zGyoO-Z$1A)UWqiQyr~mnBOK2!2?@>3mv#+i+$_DJy7sYK6ZQq5nSm7pbM@nUbpQL$s?zSI>R^X#6n&T zFtoBDQI_}nS2E6Df9)RoMn6tW6%*f?99H}8QFS;VXwdeWjZ`uOW+*5PphH@5q*U(5 zIA8t5?SBib*Lt&rx*8m#{s;sDc|2O>jmmz%eviCcZio*+mcM&O)#&nSpTB@`!g3|hJt>GcaPXFPwdfRN8TK5)eav~t??Ci74T}sBv z%1^)P52p`dgLE)mWA4qoT-WS0Z_yUv!k#T%owCD(>ZSVR;c92ITTYtLJwNMed;OrT zgcH8wFMjfKJ;QID6?vCdZs4>)`UFX+pGYkH{^X^U8PdgUZHi-Uoe27Ht5eDFqt&u| zZ>4~~UNyJhi%@Wl-VN*!aCCf3^^T;Cx|d6ew}{F%ZB+h3t$!1Bu%NcVrmcVe`RB}M zW{LhJX{R&kr*rb_&Srghko?Lg9$fsbnA!J5zr$n6APae$6p7c-@m$`Y-C%m3$}d89 zO7~W(R2_|8^{h3K*S?Gmd!~WWfB8B3-gh~g5>F7ewmEMltcnNF#+1o;tHIBq%!ZsM z7fKuV<^ETHwDP6%%XwtyY9{{nV+_!R;ia1?($-gNYuU?oCh7 z#T@bOb+}i73}KuH*sg9CiXU>;bN0~0Eaz#b7I3>(+&+GMfvGSzV)@9bScllCqOpNN z_U)%fTbx-H?ofWMh{rNftvW5<^E&x>Z?xwMn#qq|OYUgplFsPc0WGIPv?KNJ{Gb30*AJjZYOY{z(sAL*7@)<$ph5g(V z20bgyMa0F80CFyxtEhx_DsDORdbUd*szZypVT#_zG?R7jm{#*`t?2|TbkSzQjcebO z=2+)!4YJEmI=i=W*y)4jd9ubFuov8B#i?b9Ck{Cv^G49U0b%MC-eGf7j2qfSKtEGj zMB4OJdA-Q)A)cT0%{kD8g9u*``%qs4)B_#GjcfpT-P80UlTuZu!NQ*Ye0^_nq%0U< zF~RsA5UCvloMyVtwovzcp^Q z=meEmJ;c}LXvEJI&rbR}$)AG(&5GhqjkgNQ591Gdz#1lS znO2NO_dR7(d>!io&D#kFbgI)Bzx$bavSg|lEXsakKU{2V-X3I))j6J?BCwQC8-`df!;G=z4^BLIY zkEuRsBjf?jkv4;#nUiyTg83Dl?>6K`|JdC*v=VWEoDE91WB^wzFF>PLzsKnCm3
!JoZ2MWq+Co{meCmfToIfc6!MQj<@4m?d?ery_6__guOIMz=qYz9dh%pHr0QS6;l$!`k0sD$-A7Bf8XVf zDx96VJk=2c5xjJXf~(spa;@9(QBhO#MbJXlzOBxcb}3T61#MNJPtb?$@=iD*7anIi zbEGE5WF{(~w#9ix%sm%Ubu?BXAEI5u6zFONg>@Xh;rIUEHqDor{LeMHxvF6I#z01c zwidv0^aO+c*WBpv$b2)zAtYCCVg;Wy%KfXC5k&MeU|j)0b{FKP!1VB zc<^A0Z%2fP-_$*iEBth}4*TvNa5pu?WL|f;mGYLFkAeX6l#SGe$oNRMYM4WyYN1}{ zycDbe?(Sf3nH4-B(*#>4SgGPyK~{{m?Byf+M@Di;J~UWsiF<0$n?A1mR-oKgo_<=}|+D=^&9c zJ`2M+DJdyy(9KYi1-3@Gz(vV$nR4=*}`9${(PJ_?}BP~ynnri!q8I_y+=UurA_G{g3ZDP`5MJwXy64|U1%{JamoxOz#QH+Xxo zWXRdH)GiWOisYoFrM>;&Vf8g(Cw$|Zv*v{IAT5qEEengSqQcPOV$-m;1X+lrUOL=` zwh(m3=nt7Q1P4!t8h1?jP>u>-G?D_4QNQH3SU&6cHu6Act7?((`!~jVDp@qVuc15J zdB1%(Q>Q$wnw7w&@FOJ6@7r-Pi>lbaw`WM!i@dNCbihSnD5-1LyxYWZ?}6^Dou?0A z)Fz&O*qu^@YhCc6>nY%_0auQl* z*9tl(jGS+{pLe^uSaLRce@cm86F;1E>r$1BHX&y zbB4C~?hOx0*%68@sa0QfFSk0N!1Dw zPq0L2?X5Q}t$ekPJ~yzoWycCNtiWMkzsYV@%~Skp(CZ*E&>@bTG9GosZLsPuXn_5sI7c7V+Y%=)Snq7ECds%YB_$`b^YRvf zBxz>d6fx_wyN}6Rw7R|5)KhDJn~ zZeU<_K|w)PARJ6E-)d^ZEJ8%2J@cj-fg~x_elb3;M#K^|$0M#XbY+1?o%r35;nVH$ zsMl{|VzQ*22H%5i4zFH(UR<+gD)!(*#z^*0#3E zML)0Q4p}td6eIpV_?iYR2o7IL(8_%b@EA_JIox}c4RG39F7IQb7<#DC4Lx*hG^^o? zqgy%C%Ah!_+mT<*ry6PwoxlI^;X^LPz=|k&>J8}n_|v2t?wNc+>l3ciBMUx_O-(-Q ze;W;-m8S(%U|Jhk=~}(0+W6<6_fX%yeY@_z^qr4HS@qh>y44=Ec7M-D zC$1^4+0nqUY@Wj^o6`yBxH&_LW|AHtf3(yQisjP ze_xu5h(On3r)YKxCaE>FZ$Y|(Vf_UZk-}XoQDk{ndxV1PW zEDM2?(AN*{iy-0_w7e2j9&(hL5|K{grMO&^bhv2Wvxo;;tr0Ph0bE5{X{N4Lk>NZ@ z*xj*(zgXN*RCdJ}%ZqYh-(iCh5u*iHMX|X0PpV*<+`6FjnZnXeJy593&COl+rJ8r7 zD_H^XmnWM210=6;U|Rweo<>N5rXC`IS|;8y047nhqKETbL+*zKXjHW5J`^c*p)Mb7SyMw6e=(5QFoZm_$KwN|2+~D zPtiW0q#@Ua8fyMFR=WKHa?2>_sFn3;_W_xYZ72v3{0MFO&H0bvPu0U9cOCtMusp@J z*tj99o`)PPFPN1ew8K$8*IobiwBFiJP8KM;uC$^rUzGJbQUSFU*3b2-A^}F<=-m6h zf97dzos4zwqbed($hg2kPW!QPA5W$(uVbEucV1JLT(Y82Bt2+lp*@ zeV4br$`d$}B_X{w?=xsRC{2`htG1r`-RTp73`}eXTuasY5dsklbT-#%km)Iex?Sv1 zHa?zydNi-RkuM2}`~3NHRcfCZ8(jtvZ}|55Ik6owWhvkf-;jb92ur*MUeQcU=U2j! zZv0cy{aaa=P4PT6&!tu9y~qwZYD&d<8+6pgdOn65WLg@cvc1e2H}Ppwey>FJS5MnpBX z3za@+|50k8ZvFGj`zXf&h^DIM6Dt@p!^psjdAcilp`P-rnBWxVW6^ zYJ~-2rM{t|p+}{;>GH-=7n2Hos)(@t(yuD2sxyF|^>@EhX6Gb$=WN!3@=(N#5fts~ z+UW=dzMa+0W&?dHMM-Hg#oBukBR+rCzC#UNwi^d8+fCG29sh$Q>`nYV&Op|2s2bZk zk|1H6rEEBI!m!d7(|hgP>dJHI&Dn3Wn*+gnIw%`p2?E{?)8&EZ+BDzm*qO#H%RXTI z$&7shLvC&zn&CZ&+vhDddgdMxBH`#Q9qW&-VH3Wzmx@8yJP`pBr5yaO6QX;`RKqx&@YXHfHwb(eHUr)-S8NB z@o{6dG%6c3Xn3!AKilsV)hR5{EsSz#jxMK4$5$I$6BRT$_r3?hdJ`N3@F#&)qJ4!& z(9Ua&JA_e9NlTeCW70=p4_U4m;UbaH#PCqt- z*xj<<>uK%^x_~`OwMca9J-g#DhOznhplX|^{>g!2e$Rm!NVa)EtYZx7ob=dt^<=3= z&iQn{KMjP9)Skf8=)=qKr9y_yz($Y1w$N#`OS4!jr8rm(V6YhF|y(*6P*X zr+lP?sP)GO`?($1{NIhp0b{Hg2i}B?;U1m{dh{ss)vH$q_wRR;BRvLD%)^Q{bxwgOm8Glarw0W z3YsFiSiX&(Ql#nWTjMhm|D5x9{f+cIr>f8hnA;9P>0=05iz9aK4`%ThpU#$eZGtsj zQNXD}C32EgMQ8*pQ!WKlXK94S5{#|@qT~W48V6Px!J*slKpOxzn`RtT_~FL~?JjWg z)5ZKdGf}`=VBe97{#Y)YL7VED^rFCJ72kz%>{@D!nZ0wE=9e%_FjPwTaeBZ|`tfcs zr^B#+v(wt-r8R#S258pjf5l)yS0z!RFKw&{c=7qB6FTfbx)k0^mMRJeOg`#Rk*kvq zLY(hDX}JIu#STIXyGikm=Ayf9_Qi4C6i2t&Yb>=Im>3AcxUOE@@BZ@q@EtMMQ>~VI zo;!ONZ4=Yye0#hGyJf5d~|r6T4mf3JwM}{J~9kk<)9XRmk$9Dht$=w>#kr z&m*|A_YiY-I}7M7d87=b_goS(6jM-BTXj1aKjH4LkhT-R_TSsi>x3eJYy(8C%&aU# z>K3ri$~58QX>mZe*3#0tMay47yOF9Mg>lrB5^>Yt&+e>Lj@Zcf@;AGf6ZtB-DyM8% zc+&;LvGjt?S(3}%sfRP`S5kL&Kg8Drs?@ z9v9oQ^RNh2mcLqWP&$+?XPlZHjM>2lEvAn|c6C)y&!qY{%xia9YzI$^ULgv>hO52I zqG>N+F9y5P>VQRNEzLMKePsFe2ZqBxGs(UT>;F4Dm4$_c>!#P^dfHi8>sZO%Z=;x% z-7Ol^in-xS8WRKP{%{ajvOESKsI^KLtJkH~79o+}S7D6|sIaQ8Sk> zeYC_m8KkipsE=usyAr(5(ptgB{4H?R&#cU+b%b(3ZSRI*13Vk}G53L|7veCP=Y;*f z!(OAvnBn_#JwC#ER6{JxED4lt6zVtV?m8J+@GT8=e@Y%8drW!?JXl(|hMgW;8knGaK8jpoCdx{T z4pX*3zp`orPB=@@8C%T+9?bwG>#eQ>%~9_PNBE=PkYVXYO!p_!;^XrGPv&F0G8#YR zY&7`TisYkKq>trJ8tCoyJa1uQK00yJ)2~W=XXD7Bny$L&fVF3zP}y&%IM|&f-a=To zq;GMA=Xj?KO$;s7#Bo8f&}`Du!dl3f-16uAn^UnLQQ4WPg5dN9|1T>%A=HE2_`Qrb zh3lS1Vtc!0s^7Pl$P*yZOsVumxCix#BSAwI+6iZF9wF||XaOmXdBy@Evt`1XGd$DXd*M!%tiES0vnU z?Ii*+_+=00E;tC{up z2B$dCl4m`}uKDh%Em6LGBOT6_-7p*8!r4!j(e3H9#<4+y1?Ui7yE~!lL#|rL7(CPf zd|{cqPnf9t=T&yu;<*XYV~d4Ag)d6ECVukzGYT7bf zULSQP(b4$9TLTM=QHRbXjLhQ>V{Un3xDKPz= zfbV7HMqDk1x?1(7OJ3=yAjAWE`b|pi&|i77w-f8Xxe~g84B!j-SrByoUUy9X~_yRYsRwp8Z;Yzh zq6)oZjp`O{U8`(Fq?qlX_*WZZvft8I?XC#$6KL%T`pWzc2H5--uc=YK%8_#h>v!9X zIoJGI#vlL0-P6fuvi|fUUC0GO%!soLXzhd8)W&bxz`WY+HByZ+nvwqE#0Xa8*C>AsqaiFpL;)L-dC-_$FiW}Xx zQ9|N+6Gm}eriS=L@xZ)(k4vi4c+wKsQ3`sK#HTfrWwbagym}7ROsAM>$22;=X|#I_ z9V+m)+WP!MkcR07{fg{CMT*PwD1PFC=@xKS6o?d4KRhpObTH`1JE^X>+1;<*rP8SC zQ{npF;q~@#t3h1<`;W!>T_o>sE!NUOQ;+kp10A1b<5%}*K=q*0dfiWxh9ph{;aX7R zEl)QBG<5e3FpX#t!`hFkU3+tNz@-|nSWAeI%hG;~xzUyOtKaz8{l3fbea0$$>2qk; zE{ocR8Iq#=;8*RPk&%S<1-h)*kO)k@%av_fgC0wtFe_iicmz*Akp(i(niKE%LE%Aq=^?~4u6eyUYXmeO~@86}Cy z*b8nBxIySB2p<>zYD58 zbef6V36p@ct0Nqa5;{P)eN%bU?JR%pWqHGg#>U1JrM->l6DLmmu~f@Vt5xOREyXv~ z>>p2BlA%f$mu|WJUa(f=rW4r*taby$8K)Bj?L5qqAb8pmnivtC%_i@1CD?)@=#4!+#^n4@2u zSC5RY-NOr|`$zZ`w_Te$xuCq~<9(_kct>^X5ayah(lEKyPNVrTd=b$`&vzs30T-qA z_ShMg)|OaE(Oy6)@MSNop8M}^miBT+@Y6@P%Hm*JS_423!2mfaqZ(aOqSwG> z$FGw&$@aB3GFC&f4jt4tgTL?9BbA%$YpScw&2X+P!+7VZt8(0<9`ZyKBzhz(I(_F3 zUS?i$YMuW(*Nbw?AE+|>WlQNnX&5Ru*uKR1VL4wqc3yvi>QRMtLL%0KGuWx9>(g^F zHq52!C`E+B6I0V*8-{M_g9y5^7a|W&KS2kMSV!OxyNw`Z%D#0PvXVvTXEs*Qn@A*C z)7ESN2AX%g(m{|oS~*SHgR?;}PA$r+$+9B2e%Zqw4r}6l&+#V+bB{v1K=><2etD*L zIB8=ogz(GePa;?dEP0VnRea$@fV~wJ6&cu=MPTQmE$Vm?qg5}vx*^h6YRtm>A5hTh zwEeE22ObJGf`ZjJ-#zfEWO$g7{^GG!a^V9YC26ZVy*LHgm*2E5Fx<)jJwU=Q zC!)(l0b2u`(H*0Zw#I!{=U64m(9#bBx$TrhAT8gyff_idK#4;@h116GB`6H(tX3Yk}a=6VNU zGEL^@6=@N@MuihAbiqk?gZpEPRO|FFl(mB29V)fu;JM@4v}~5ysqubb>jB~l?~hI3A5f)v zsJ&6kGrz8%XC<#u{v*n8W~)!HsqV7{^6@1B7zf}i<1bEzstwBrx|aVUu_?b(Wuh9g zH_L3*GU;{1#U(@OXKBC8M%-c3=9O_y0F_}-JtcU#NzY%wGVzL#ZSW;SybldERQDAr&JoALkL ziCe0;Caw(-Dk#to1k|Dw##ifttY1RFiHh$8j-6qWMejq)@P?sjES-heRW;G?I!$fk z8nm1kBaU|u$#%^C@W0CFyWr_Jw@u(U;_Z@A_tTcaoe<;jtWBOUd5&(3u`B{qZ#864 zT%xf5d8io##`xTRt^i%!`{I-U1mtas&=ZfXd{rYw~6EDLk3-(z;g7}dREtNOmQy^m4g4P!McOW>gm)l)#$q*D!RBZrSH`^iQ(JHxf|K(S%oLyD8A|U{3YHsRRSH^bV?``iC_p<& z@mcx6S=Fi;3jq-siO>$yU?#D;UJlwmciOgei`Cm=Y4?P`0&?V9H|ZeezelFanR1|M zzxGI5Z5-bBE6*jvYv1%$0?W?MNK1-Wk3nc?=qwda8w@$b2#mN+1{G{)hsI=)JD)p5 zBns!fT|o1Vo}NGe(Ce*?TgLbH5_fA*OzVf~b0x#9o{B+J%Zf!q$uDM(@ygp*L-I2} zsE-&?PtI-LdVip9uQZszA4C^@~9C z`Ovgh<@?IPVIe8h_2(kux)Ix*;M14ttmC zjMq+~BZu)t?{z3^cAG~ooh7RPljqHYn6A4z8w-4ZPPN1DS5~}swx^YhLFYQ1FpNuW zfBo?(Fx_Sr6o`PRE7}aS*g{Neb}vMaJvPUr;EW7&2B5`z0D`=#2;I#md~tnZFkV*E zBJrYy>$HyGYEqsz;@UzrIl@=mAFgtraP-cBD7twB9QtvpC7us!00*D~?g8^SRFM!j z$&aCSYd6_Qfzx{0Gz z!w=93_LWBs@?Ft(9kW`74x0R0N|4cK69$^I5qhE-1lpjV5rQ@%#E)*&<|V6|GMj9%TcEhC*OV0BiXt0z%QYx^Q<6DWK_Sn;4@dM+vnrpgv!jS zNig8@lqooBKdhyf)}3L!1gqd8-!XqRAP~XZQ@!T=tQGz`vilmG*(DDs%kJU(hJn<` z?eYM{1aX}6Z{|*4&B@WUbw{*uC67wDNjR|)>wKq&RO7b7_I5Q51);dg+3@^nUi%0_ zC#jokKK}UU31afuIz2^8% zd0N$`a4=x1p&4~j*(1Of*M1$K3h+Z6WEF0&&Iy|hL6C?Y5cpzDGG`7En{HL6AvF4H z9t$Z`q!b6=`u~VyPW-(X4~F%u`)F-zlR*LOz&xaUXL7PbhTlAxD-l?7<$y9HwFw3s zvI1>ntD9>NV|x@t-D-iYd<&z861H})0GUMoXOwD06fgfv(;0rP5BYD)Pa{IUOUe4>sI|?}52Gh%#q;d)gX6^R3(qwuFFF02 zt^y86C}T!DmEKDnusA;u6x0Mg+B)H--Uct+cMaek45f#bnRe<9M~zY^Y2?Mo^`g%_ z)mtFOR$ol(f|;H0`+syxf#P~J?Xf>WxMQh3c1OX$`Q=Y&#o7s zR%a!t2#ol)uw8?1*yZlZk$qT1nSFoE*L-5%|L6_0;8J}GpNZq+{dww!5G4TXhkVsv$pj!VlDedwf4fUrJO2gR$v8C5@E;78u`C1d`8?C ziMO8yWUiK3%Ed4Nj|3Z6^XNfc5!pLLh+g4-1tS%pObjVwi4UFzloS1q#UB$c1iV8r z{(iORu}p!EEPm<`yant?&;F!OUJK|pkIsR0%{sU8T3y>`y|=KeJV&Uoy;byva}AK| zm7A)3;(`x+*_tkRdvY$8c7anDFW!4%QDE<}XUnmnKrN#0QayBZ?zy3k(lcD%LtE@H z13e@2nV)@T#8{yRV)%uZzva>)t!2V)&pk#UKc2ZN!aHfER%-v+Mq%Xq{~SaVr#>=# z1v7b|vz=WpTy#znx@#*^Rfh})%6Xkrc$ z_Fw=AkcvGe9}}PA``0l4hWoz4tJHk$W-BEtoz@=%120uJ)z#qFY58o1 zl)_H6K;cPpp!jWTr_qzW$`PK1y0o1-9LJ}YfnqG;*XI7WIx`7L@O|W3kWCqqd!U_q zf7P|tJ;xnWJ=S;e@2NHqWy;R3*XW(uk$Q$*=^k5Iw>Dm0ApJMye@)^7&9<=#)r^cH z-KE~6f;Vs85V|?9ex#3J()v8SjOLK6fn!y5WRdpMIzZltt~;^v^P3D_9s5buU2A5M z>54xYIS1n}Ppz5-3TX@=RERKuo)z$neD@|HU(p7l_WP|DXSO2r8 zwl##|h<0X12hybx93%!HK*B zRB!EA|NF)54PgjtV8C?lHq`j5;P*RNB022A;_Vk zGT1V9Fn?*oqkK^4lwkvGQ$dfJ=wBBD&dd#Jpq^(xwhI22YHRr08Bm5sTTlK##vdH3 z5!4kzi$8FQHyk1@;j~^Nvu6L9&`rN>I;LOU^_z#*Kj>@!Bv2`cpdib zl}Jo5OR~$dpH*F;u%{M3z?r4e1x`t%Fv!fRT7ZF72D9~T$m1-nL^^J9ODcl;0sigj zshfwMe97?)W&6xK{C`LNK-ze{zL1cxOegOnRb5@(upJOa8$I74Km$&yAxBNjzO>6E z65N?47X)pOPtK*zyMxd!h|5sgtAqCP3VQ($v15({BP_j+^5|Fkq}z!NhXf)we(bxM zwZ;g(tM9T8!UIp_Ri(Kf_*ilP8s?c-D_e(}T9F%Be%I>Kdy5cGH~nW*aw6^anc~<@ zc+^ns>zi36B_(aYL8NGEvOe1XBobY=ZDnt&{2k&({6jOdG)j+AUCq z)A}xx(gNJHvA88QFgq6FxAIAQL*kz_QQ-oXrtJkh-qnEX3Ah0PRdvWJmy*QpcG+2o zik&&3my7@|;%1a^9hxZ1Im-@Rf@-UJ=Jlr>==qRCU_>osBU%+!CHpDyGshBGz~$Vi zEIUN;kY=%Uv3hWCEQe0cXM%eCdR=*>>-?#1I4F83R|hw#d3R>|)li2&@eyU>3GVG3x6Fre*t)`XOJ{RXBUyB) z9-3P23o|`dH1*fX2pY7BXj@p_($&()WWi%ESnE`YMGPq~DE!W#ksPqklwaG|(d#)8 z4?^p3NJ`0sjXE{dlr=B$3Ay++X--y_fj0b{7T((Z7K6E(vnAVSP@^kfOI2~h=`m*O zBVK17tj+Yz;F&@FM5}({8_a768sR0?UZ|F>k!b*pCF4#lPs zBj<9m^M-T0mU5isQ|FZyfMVdaPJJd&=aZq2%Ir^?y>v&j2c|%G*Pn=kuRsKpPks=4 zSld{zVQxlVvv%Lleakqs02eMqYi};eVJGS>GPy#fKY)^QRqNho;q##MVn3p;bLh1s z6#+mpCo34Q?3TH;J@5)F))!{fN7Fv0otBx;HMmYOys2 z1qE^Izo-VOqBG9j${}yYbx$Xxa%?o!y%jFE+-H#yGPypIROtF5q`bZlKg4EgF_QkY zT6?Dn+N+{y@*ZG9wlI84ry7)*=qzF-n?9i3hsUEUG8%*$nst;eGFuKtfWF35aDmsg z<&HhCN*UlXCH*j6#VgM_eV~~%+Ww=1yA@%^=95bGZ<*={2{QD(*=RC0cvT^La7{~U z&bkxLZ{)il!fawR{dv{Zf=K(5htmc2o#?{hjanfA3wH`Miw<{rr)%NKZ=L*8lhPqK zsugfk8C#e+L;V=mS`W*q#Ev*a;me14atBv55#7>?0D6=vB?6cmD`HB}ZmcZG!9hzD zYE=H)Q^w__5KE2D%udz-SJt|MPs5s^$cEqrp(9lH&$kIDADF*MeIxnvyX!PgTenFP zkr|DpgE#rOr2usZ+!<0+oqmy&hA{lX%T>F?pVg?fL}pTtFQkJWU%zi;n`3+|=n3f_ zt*`!dP}JyE*Nuuv(^}9N^TIt%)%-(O=_+Fv)u;f6;sMVPw^aVRQS}kWJ1SoLzye%d z;dBVlck2~+yuiZnA2=i%B-MI zJhz>AiHu3)^;hy#f@j$~;92mP_Z*V;inqR44gd@^Y2jnl3iVQ&PP%x{Mk5XD5z?J_ zn)toUT!xs*#TX{Q?!a0cclErc0TD!x*GdaMnd z;ZW_!+4m8GafCe~GNl?dMY~u8EESwKFG}^u45eHMiguEUH^NjSyOiK{S)jJZBnfkLsGN1=rJmuI3DCNnsRrM0UmWe45KhuhJ17 zynlzi$E6_U>ym}bSCRj&g*+JF>qp%?B5GSHGy)bLbz`z7kr<>?>lbrMnV1&LsvZMq zs_fXnbiguUozTkrF{Syk?d1xnWeDcgEF*3A<_43bBbrjzj#@fJHk1j_(Mdu(Vtx{S zaGdMpyBup!-RLuylP<*~KC_$TaJRk2aa*}!0qnW^#F{&RaKEpOvp z4MvHI3v*T{nV=pJco4vkh>W|7qOZ2O3`BD(}k4h@rJTOx1cVZXjt zo#W{$>x|08qN(w33Rcdnkq#>6gg5wr`c{S?TtasN9`OXr@<8=bZvj8K++S zXHiRVW=^K=wKz?vsur54%|?%gFssD#+K0EAwgNoviXIA<3d%?U%C zzw<%rLj_|W!@Dz@ODN4hM=6~S=wOfB9I?=OZ4D_!EZJ9;&tq*ZR}+HvB27KBp4xt< zk8)b2^hf)vK5-g#l5`)Dpq4!bqYD6->MQ8=D| zCTqN$AMnLFy<$8Ypn-8i@yyryor8LQND@meb4UV;Z<+8b5$(f-DC*41aX-12MgGT@ zR%FeZE%LyihUujoeZEd~2yj1*uRI0U#Q+;msU)G(=pjuCuO%fuc$HjGXKHUn%mo<0 z*}4U2C0Vl#3ZyELRq7qZ3>^88R{(BW6U|G14Q?R;%-1|JI*UJnM-8BFHB}Tm6wt-o zg;M7I`=k^eeRP>f#VP_j?Np2`a1&Xe#PH$9&; zbc$3WJ6SN)sQ6_$+b%;w^(mR)-qWa0$c)D|>|c2-5|En32eWwghH0hrU81gyvtAQ9+H}+U`i4P<$kZn8hfn41M=C1}=7lgj5tT_4 zwxzoA!BVzKTw7rvfiAm~O~e004Aj@n`mzXUp!Xzz)UIPqjRd>rwkK(mEw$=_sC_fw zEr&x!P!xV|e;mh@|0wIVB+{^9KkmBaC}12LJ)s{nDEv0p+AIFI;&GV|@M4ww$5M`N zp?)pKI32mmXa@hF)qKBOU=q#8uUu2AE)wSidc`z^p3d{^rcM*7<4m$$fy1%TAB+3v zGsQ=YcrBaAdWK@*LdH`&F13J(mI9P9ngu+qCjdxthBRpHrOV%933)xVdG(%E?2vf_ zuy)KhSs%GbXWzBHg^WUG$yXmH5T#^|BuBUf3>Y>Y;A#jZ{)`parL9V@uU~)78`RS! z`C2SU3%!vY)4bmQtzq!T3-SvDDk9+jou1?+No`Dt`pY%F+j*)@(i=1*zm*YVV! z9^FQjB?5C&*q?i(D6%;{WhCalt@VS5=EeTav@*D}))IZ=@``Gpm+mJ04K0+xE( zC0|QL=`b|(bp8#EJ`hubtMIZuWl?IWk*Yxs0@hao-aY-%Exm?=mKwJ7ZGSn$qipyC z;ie2SzSsxA=wa@211thub#}i24dB@Vw6#nGMoW7_V?3*y*$I<>Ti6_9hO|FBwpaIZ za?&&bSfJc`Q7&JvQe(AYCN17Uk2oRlr+T_P{jfnu0X_q`-8|sh{*O!|>nC2%%-P1% zSdS7VNCh*JSlx;&_{^bO?BSKM%cTmx$Gy4i^#!XtQ z!s_*l7rvm~RRB8Iy+1lS1pYNFNL)I_&sm?0!&P`JjHIGUZrqF3n;x=$Tn7Nxys`TX zMcB^uJxplTY34LBuNf%f{Fp3L18oCkP*5tTM^as{D`m^odF9gfU8Ucf|kh%dsv&Czp@HW7==JZ0%hg*Sz^XitDuB zZMvnG_{YeJ1VWNQAN`I&lKs0k787%%`pw6A zYN@16n3}HSO26~4p!UbGqK6MzWi+;~O9d9Kq$NupS!rQUTK|9X+|%nF9x9R2VAjfW z@VBvYR2iKHe94yBiZ>w%pA6|PPRws-fn32MY>|Xiwmt9@lb=@iHo{M?U8>K2zM53z z$`Ef&nHfCYo*p3QrBvS!7_K?E)}E~yo(nwNQaKimKNj|WOf@H`0oj>P+tqn-gfRAvTJG|oZSWlKZw~z$$P$KLWc4p<28!|8wACE3;EW^y!ShOxgqOC2-!90Xkmw z0z*PI+AwG`cYQHL@F|OmNo3jGh6%n=8x>%y(TRpJ{%})tj)?zaQ&(00$~jl#t$12H zKK5JQu`Y;xJ8`I*)mEf}B-y@*#EWb&X>S`yVe_ z7cNufO*yv@jq~{nG(58u? z%HDhFq|;+=W#4JR%Qj`fD|)c}IEd!UI>AZfj48Y#me0&eGuWS5Vqb7{BmhPzarZ6c zt@pjwGce2<$nFSW1i0;HzcDOL{2#;FuHL(S7BXdEh3a&okqhvYci!41`W@w=FUO3oW;($8Dw$_%AX4->i=JpSvf2uyPOP>aD=&dR@wnV zV4Zr-&tB4nX(|_ZXp&|Syf@ZPMb4A*umaN*NC?kNy>%!1lkp;6^}v?mR*5?Q*VhvI z_`@fI2sdH%vcg*%IYV4=_JXF4@oTE3;2>Tvuo_Cl?0=rn>Kn zflG;7LqM}4*+n4ALG}F3k7rw@U@#sXqfX@pvbeLhb#o|nO4eA9wem0Q12tV0&^#sT zY>#>%OZ(-4Bw%X~`gQQ_@}GVrDhU5wwm{auF>&Uy>vy*ByKypQrrF|4pHX_4 zR{x;UBpqjX`ew~{{gSIPma?ity>E(oD*D|*(jmWE|X@_dC+<@NvEc}(3 z+ZSx3Zsq7(egd8ysPOWh#R9RO8HSTnU>OmW#&e2ink|9>2{psNl6VG#lRQKOqj# z+ygWDFImTa;Y_g=q9pZmGU*J^wXYjbu{%7PxC0c>@4W=Y8Bh*Z0VJlV&kTiUMwcni z0MsuTh75FrR~SH^2P4v*NIkx2xhWi&ML6~>b2GoR*Jl+4#+LuCSg@F1Dy*oyxv%+N zAa;lJ@)x-$7mQ~g@ZRcl3Lg+iNGtVcVZ8%DtG!;lOP=|^9ekL~x8vHDM+?#Efy+HA zzdCnv%d^vPo>(FaQSm%r?jqK|Z};;l;|9s!-!P<+7dXANFDw!nug`V7rio>E`)&2R z@1!H9{icRY#@DsZr0zEZ)Tx8jB$Lc58AOFcKm_B|(aX_?ovEwo1O_`Whl54FvGF(O zMPSdze3rR#um3+DFj`|1?dNtf&|uc9w)(z$K;?BC!$!*!0R-S`~)T& zq{tA>5fRPW0m48i%|DYLhM_b}pooWsm4cW31hJD{v73DT%l2tI~4NHUVB70kc6X#hQdaTc7Qa%J3?l_!L7t z$&9pLf26aETyVsH<~DvY{&Uaes4TIA$(ThP^S+pxCgvt{q#pB`RLE_1JHT;0aB}aL zh=_ur&Y&k2$~%?w)IsrVLdO0{``6UCDvu>CENh;uRVy!`RVjz?Mq8bNTw&ED`av7dI+W_5L(;8)m^ptdIRvbuN@# zav*S_#0h7}2fF1Cd8h8L#;+eO=ZNH*-~_93Yedcu0bKJG>*$Pi$s_IbhjCmVuL3bf zlJi~%@>lH7=#`G7+AKDrQw5-noxz>}LS=|l$m{PVvhk;-OJ(pm@$%hk^ON}|B*CR@ z5^^4JDe3; z0(`Yjnn7W&g2zE+IICv4cHMS`V~S(2i9+xWjMZ%T;M=Fb)78Jdh|d}}$EAsP_fBJ8 zodIGU(X=AbuqGRKe0PGhN_m~kj*X{=m-~Sl%~NylD^ixbdjYxSo9niVHumO+SyxZi z=2pu+R#o$LcgkxS3T*_oh+({^y&nTZ`+PMFYdpLFu&~}`krrfby96F#;AHKexjN$Dq_|B!)&n zZeqDmEvslb>^iXZ>8OR;tB(;>sLtXuFr4+=Qp<#WXA)nnWlXexhHf689|AfG;A~e~ z0Cj_VrUvQpQn@^Lc`}-(z@Z6XaIYeqZO86qztwXxEmiVr*t%SYTV`={>1VuoYi8$p zPK0v2UO|A@A?UKCO4ts0&r!EJ1vO_gWApopN}vAB+cP^eC~`@PK=(~^9_1*yTYSN* z9S3uHEmVipzmt?g-pWnt{*A;RuM|>5UaJ%Fx;q;v{>LrJ4XQc7gC5v#c^ted*MFu} zeY`XoHrl@K#OCy-R-7)D9Tb=kk`BwnfQNVSLUaUEVKZe#Lf8HA1uIrt*1@`^Q{7PU z0Pr79o0E+^&c*-U!$!djHVHgpWu+@<(1uf8uf_ctHq>-xOb+~y846FV_3EU7A8kt) zjdiZsi?w7_0n2A-0_D-8!s7I~6jSPCVPl~>k#?R0YEoonz}pRUPb#-mBqM+yxC~e_ z4eLh@B5ET#tQ6IQWy=#;Pv)o4*%`GJqbHE$KQg2{)*I(+%?Bg$Bhr8rwR&%E725s# zS2y!^Wi2aOJvA<~SHaaFJ+TIElj$1$a@avY$0FOjP#^VDljr!$)fPF_3Z?0(9LP)t zRs__7q#1?w#tFP)NzhhYtq;#d1l!9fE?I0MSGSMK_PwuD*Y&tAU>VKU-Su9&{rJi> z4UB3~dYhxY1Zi-vsnl1g4w}j;IcbC>*5ek>q;&hlhEs~G+@uNR{#x8?Ygd`OKlb(Z z*6RU}w8s(Y|MJH`&q=%PIDn5y(j-U&e!4^o_JQN)LC|UhdeM$s#wx#a++-7Xv^V~nYxrBE1w{q4S{RO;u>Y#p(c!oAz zh|o5ix}_+ssOTn|SyeNFy=*26&X-)Tx1S2?P6rs4thLIOIFFB17UIr&I!cq2ra?;5 zGdg#)(p1vXBW6eAEX!yBkH@gCLc4JD(Y8O$9I~paG-$6(oZe>$Q=_OV-{yz0ay}fL z&OFt%iG_Z}68I9j{ezUh%>?Q+D_~B>-LT1flGT_|O7pIvPsm?D*(BagLK;$M5vVv2 zS$-6>r@46)VKdsT(;)jqQe|@WX7u&sANfubTL#IsHhNyMM@@vl^@wKWg6aA=Tr}%z zCvaP9>y?baJ2x*J9aJ}9)w~?S+ETmoqmQ<-?Q=M+ZL1=LxyuLL_0apzT%2a|VFxj` zHjc}UY>Y9TE5r?)zsG;ayErVJdo$`@^&C`XX*|qh6fZKF?+jQUt+iZ0{sK)bOafo5 z`R>DJfYO7mQXp>?fZpB&{&}(x2O3?%>lG%o(;3ah&HfEbNH_im$n)y#!LotyjOk2( zrDKmhsQ!Z5%r^#%J>?qz#jC^jMBFMmU9Bvu!liC)59nCMH^gJ zoX^x@JDPNI?5?(cOy&mx#)7Ur9pbOhNLa!ZBl9BZh`Z$LH2n8o&V4ZWC>J=uhDhvV z7ODB#><+ZuNicZsbvv&;%w3P)m?mMbOxYkHkPAi%OHs6_v^wp74-F`GtDE7_DwY8Q z1IRqL+3NI8OE%&V0rp<&??Wa^+!3)@o&7nfy3?PT5llcR=DD>UW=ve_6u;zLRSx=D z%#u)%2P4!=$N~^sr#+LLhjfok`aUN49FvzdWcTvLbjp}VRN@vV< zvj2%3QU384VQvUS^wF8om3mwU#iX$}E(liiLtZvT!ydYf;70T6g)OY*v1BT^@?f{) z>Z<&zSJ8Yxj?d9g##s4WH^8VkPDO9{Yknu(`L_%hM?{cn%}}*Y9lf5vJa{lsRC)4k zh->hzvReNPrN?*s<}>7VclFXD<7yYJ$tq|L@@`19yu=(1vitxb4j?OCxBIqwF7~8! z5Sjp5oQ0DUxkI*iT=^N>uJa^cr%1A#!s%mAaNk&Iz(Z^Ok9aH^Wj3Ez{4tOe%Przz zmIH(!)h8hOcH46H=abDm5RiGIA#0HXHv<|*4)nRRkMFn=Aab01#)xXJ`#WFumeZ}p zI;q@Jla9zhde#2Y_5iq&h7*@^riUkEFJ7AXOGfn6EIOVT;;}a)msd*}C@8aI;jn_k zA%00kPn%@Li_B-AWn@j-)S`7+!{X7~SNYL<(*lbn)PjrK)DdamntifE1cn>!T|BPi zW#8YkMfqv)%#S5o*qFhFhMAa6?>onfoV@Qi>Ub(L1jL8!Sq11?N6P>>{>Te1nSbFY zD8Yh+#+ZKOGcJHnr8-kP!g1}(mf*p!!Rl$W!-8#`{xN%Rtw9BTf6+ENY6UvP^JpsL zbj@8xKJO?fQTLQ={NCDGqjtEVN@$cL|{jqwJ*cp#q!|d{t4q(9RGn9_t(JP2$s?rh?blxs*JprpIdJ)Ik7XaMb zWsMJiB!)9f=H%w7IcebDrT=n7wdyV8-qbrBc>?rdr>5BY=7gLE5$}f5n!!4_v@{Xz zBZRzh*6ozrv=`3b)LvG*;I;AY!R-{Qn{-*1SW6CO6vUGqv9Q4mje`S;_{p^HH5*vr z(wwWqLH8ZWNHC9q(WgzT)`mmdW2j@RlgMWFSWm6XO}E9BxjnF#5aPH@O;{gJmM-c+ zmz-sTptRQJpqvZyC4_u*kP45CXye$qyd|1c3>#mujkPgk%$$;K-ca!(7?#Ahtp1`2 zS#*+pl&icvkon)t5~|_X?53lapGfHBd+qm1E3mFs zwA@K!PxXazy?Su-4Jg0@E)Q970sL^&pevpycf2R)n&_oFzGwfO%CbgZvAkvDE0ta_ zn|QR(;sD!s9=x*)|Qww z%%^sj@VlP$6Bii-3-r-(&VBh3gK_8fv?r0hvP#pWkk=kf3SYFE@K^;TD_OVq6ji@ISNGOGM(?a;$nH4xP*PI1y@}0huLj*0Dr+Byq>>Qn*g}v4pTX71im_3v?wcGhl|FwGb z=&7x+f#WG(==4R%n5$N^M-)3N8{4??!-?YHZNBQH%}u*Qfs3LV=>;84pal%X`|`LMocTaA}pA5mq>{7XN7LyEjUowdv2<+@3__3X8rtTeSHlr43V(Ay^nRx1XkyMN$Q!dxA} zVAg|e#4O&Z>M{{Pb`iCdZei;N4yU6zH#Qc{6@~W4)WJ+2=Q!s)ner$CZ(4Zay<;vX z=Hoizt*oJ|q|&dT&o0B?kjHkmfPtD}d}#L@0i^UzfJ^gQLH{`C(cc>ptj<@4RfstP z{IvT`h`yn12xa|e1BZmDnw1A#92X&ubX0_ldW^`$4%D#Z8zM>se{~Q6M2;cUZd*a5 z-b>)Qshu((A7AAmlmL>$YFr6#bi{70u(61(S&%{a@q-%Q6YDeKuyn-_yF?h@8h94V zA))ZcG5|Xr(@GG!1v&K3<)i}N%GgrD`Y=1OV}_q9;UjfxH|_eo?{r2ii-ZuteKP-~ z1{;c+`!T8&cPnu<@l#2;xolr*=?EZFe&i^U?|$JGfnY0IF?t@}sXxN7Y1g|`pSyVV znVVZRwbu1NFLNkKG5dSGAMN-`99I5aP;6w!IybulyevoG~PENJn zrdt1&pYFxp>Lo~cl=5;Jk{ag5?e=2#O(qYlJERz1(!55NWSlw5K7KV_QNy%uYRJ7k z4fE0U6vK)es8w{XLZ;?-7!r8Hi&${{I|k0kMH|n8q7kW?Nq%)&dPh|;Xv{v+FEAuO zt|02wxRJYl6hN5{uC!jiCw@Ca+SYmE3s|D6V2P?5bwn^9ZnZIf3J>@8JUO}paH#3> zAO0Mp>th{yJ$L5BpFnP>S>B$^Xo<3vu)MfnROuZMKm_$T(3W*_dlmZ(xt?<5Um9kc zl-+@N#YAqDJJ2|n9l7&spMjAFaY@jTj4(&5ZVl~H)+3mG@MNsblYV%3A^pPQnh=x) zS{k}YuNi6A+ZSmkf?Hx%jv2n{tocRjV`V3q?1maNMw>u_CFX$Rd+EBRMcY6)K>4Ss zGQI0mYa39OcNd)?m#Vx`r>#SR#_x1J?bS!udjPiIi&OlG{allu35@U0>pA9oKq0l} zV#@~w?w`TNg`HrV)bWjx4>b^o1e`18kw)<5X8enz?i)PA8%Uy;7%ST8hI_cfo+{kh z!uB>mEN9*>N~q@PK3o2e3Vk06F^~~ABzDW$dL1kY!a4`%Eyy?U^ust#wj9YyXysUf z5Ggn(OUWH?Y=BrasRp#43Bx2KKjtXp{1EA8$8zs=YpD){?A_{Wb|(lXM& ziitSA$Iq2BMcs;tD`&rxPtQE{K^IILaRH-cNH`dIEN+I<2@sM7`0TBY@~u|=S$;no z=GwzD!>=b@P-b~sLlVMkS%ZsZOi8JZsOe0l-vV27_3CH0)ghgI`=xi)lJk8w&#!3^ zztg1HNK8z;boJ_s7ln_X4I++%UEz3%gVn%Br6aKZw>vj`;Q>xDmMl{|=TK4~*~VN+ z3rtii1BR3nO-H0ElO{Y8*UK5e{AOg53)=-UTPEr$)A{_HQ9pAd=X6?M=%e*;jxnp> z2fBP~5)x?NzklCX93U8TwRv`=qvk&9UK;z?vv7_mGxq>0d^^n0!^6WvDxI)DEAYGG zl`29Y+oFZSc1|;vnYu%&oYOMeDkaLEmXumX^hS_hX3&*BpL3(PJh$yPp>Px9>{aHuqu@5?<5i<*eGl}iOGbb&=AdWi=s<6xz^pq-_sq{is$S@Wk zCB8x{wVi^W+;ABCEtS53B-{~3fNsqB(m}l*9_>X>9k!Smo$2tnxDGjKww!BlE(XZ# zU?XvXFoy{;^V#ihKRY7(^An4i(s)3MVjd1$4c}W^=K;cz-GlYtNPWp%g471qL)toS zXhi8qbIoACVl-@+>BGHh|5RX9UfW%NYOjzz1ZyKvF_JhKv|xK%k&)j8D3PHKuajpM zK9gTt2_U#(2!Z&Gw;aNExSZomyp>EjS;hp%AQ0A0%ZVO-*LVh|TM*y71XCx&*6*Lr zmyXR~+MJOFxyw+Jz-M9Ckz1Hw7uKA&M#(=paOz-%o!*SI(*ee+DX05X%_hVlju6t< z(uHvj0XD(A@}DknglR4D`<5AlC{1$zRuI>l?}0JGB!9M5*^Lrb0cX!c=-CUpimJ=c zSG?OYjhR`Uxx=u0YmfrqFAZZ?_ie)lYQi4m`_?#5Qhj>mJFu;I9{w6-%DeqC6vPotb#~Tc%X63+BT`4$WQw+WSKYbDPYX{ymUK}FGiD{jP&owvRy%l|C2oXUK{wFMxk=Jk}5K`LXC~n1NrV~*hty^72doXQqt0mi#baA z6DN~Cg1^PqFkj(}&Y=~Tg7?osn5JI&rzyj{v!kOae*E~+XRR)awO?O|6RY`gvLwI% z^>%4Sj@Fv$TjA}Tc;A}jouRhIDiiPFh}r>7k4+~->XD~62|m@Y?NXNKOgX&~Q09vP zzokwLHuuX?_tcpLtecXOCyv83mqrIb0Hb-`gk0VOvv`_&dPo89vC?7j3gG7z8Mcvv zjh7;yBwXorT2GDmlZad@?n2X&CO@vBg7lqsQ29C&mzd!!hb6VZX<8tbvI)?y#jvSz z9170WPnf>*%&Db9s%7>^V*(8G}A(6$LI&6A*raWJx@_Y#ws<>ZpX--U&17npEk{dM=}3KX*-5TQil6(}^{7dH;$siGBwUpY%>(2s4MkAlY0gb=25 ziolxPYmiySxpS1Zrar}MZ|=q%1-85aDdnXXgfI4#^e(l_^@yn|hPL4Drtu{ELi=;S zeuaQwUiuT`sB3;^v01A6$dtkV3(y-N8LZPhTo%#`x9GK{)VlNkC8m^QgW9 zNMYlgU7xj?tX3Rt+oRmB4er~7$Q)doB`T_4uF|r#e_@NAman&`-`^vTI=CFSDR&7= z{l+dKmQM(5Li>5%?We@{t3P$JqA+O<8OW}8=ZL}+6G_3&I)Xbrs?sK{Cc_%pq5XaR z{pZtTbqT}T23Hn5PaddLMOK86Z@eh{_U+kJwUadV2^ksL7a>=2Fi@lUaBJc0-cYyt z=Og>7zd`ezmV`0taktK|7t&{U7(3F=P}7kTfj@7Gsq85i#^0&ege_kMx7B+H!tOxRm_fMzpp_qr%cSNmudS^8C6qIn|5>^w zJ-GG!jpDT@{8w}v88DYGs`HrE$vvteQ$u~5v*WjObbQg&ZRG4d+~ae1?&q9YzX0Jg z6%`84-;0zW>vJ3oU9`t6$W8E`Wn=(Z8VrJpShB*h&c^I4n6E-+xVzjxh5}~hB*s5m zaw7I8)V%VwPVxrruk@#nv#Sc!)Z&SK-CrDFFHurb)&k82__g1&rU!+t%Dp4MmRM_ zOw{^FlP|%;9rW+CVR>?uZ>#7W8E#$%z9E1&py1%(*!yT~4Tg`rl9m>;vEgV!_%*fa zdhj)d7^228o}v?X&pwq&&zBGN9=LfhHRR&x^$#z`N=?Z?=J+1GcHY(hS)m@|2i*kw zTZewB>@*Kniz;!E3t!R}hJ;Li7geTet_U~q!AiyQTOmTUch zd>i|HuW=#HMtY}xd1LJY#NQzNRxAPJ(kjIjsDzf0k~^;K_msJ0uE)eoPKSREbIFR%zjV*^YKaTuL63+&qvge|t{*={fr+hU-H6+Y-fC=w z%hmkCtD1xlEJ^O<&d!*1C$})Iu{Qc=NMERYI}zmOuc)G(JS%qT%AIn}KD$b~;JBwl z%SRLUIq0=abw@GkCZ?wMxVWx=Kq=Bp$z6mTx(hRS9oq-CU~)Xy)ioz>B!!Rol5hNZ zv^!}p>1XV(C`wX5^uNFL(Pt}|448^a8&lr5R}a&Nc%x8!ckkV!9U^>LlixL77hB}K zt|{d5Rc?c??4UBCkoda|>6#c@-IRS^l`#B-e>R*@#c*TGt!2^(O_o;C*U)XoE*O4+(d81(g^E;8HJLiY3O}gxttmq=j*+RIFfwc7%(tQ6`H%IBrp|7H0fjy#NpvPuP>Ef6jo7w*fkNBCl&e@ z!MWO%E8hf5S4}~9IgyKSGu>Q~*dE4N`#L|l+N|H32(uD#hg|BbcX=K5&pTC515XYB z2H{l3s05jlRJ(yXATx1#tay1?JL(kfj5i=f+jlO&)ze>u;eV z`|TVkQ+s`N^{JjcRJ*e!-n~VbT28)!QX*Mve4H+ddJlVghiI{d+*z|=Shw|aZh%cn ziZUu))`NUwqWHY``>wl8XvyaElTig-O#;X=?(iOo4GYLTlCRzU6o@3X&<6<(3D_2o zS|0~fTmBd1sNfC<0{dIvGBM~BrWMs`0wrqy#_W5h*S53x`n(&}c^HsTy5NY$;c_y& zl~~#}cVy05O$_RJwhp)*tdKn!Z*z!q1q}V-p)By7y=IG{Nr*WOTsTb>T^_@zbI=)Y zd0H;m@vE1aU2ke`9(SE6mMJ((uFjt2-?w;8G+rnD#Ybse;kjYpLc97g@1UOCu$--D z`0_!eG}))f&t!heA4p;EuU{Wbe!ev6;lko_vFgq)m+e$NUBH(pA&7TS?2R?#(77ZF zGIa|MSu!{&DkHXP-!tmTAZ*H5#o-GYegUFyZQI?m#3KqcVcG(YH_Q*7B!{!kG0vUk zq3koZ*5KuW5=MJxr{U5#biA=;@^V%v0fk4zSt07b9gsH8qY9;tmTIYB+`6*wE$h_e zisd`KyQF#D##-__h(1mim-5IsVuP+fC2ACyBH-P)OE>0lHLGA~MA>A?^d_dvhby36 z6ZVWX_06@Br=O?8{6%f5n{;ZBGN@#p4m)YKDQbTMwkc%Y7k#!00?30!sh`uVts&SO zkLOyrNWiXnaP!LdmXt8J4Vs(<+k} z13XkhLc-a(x#XuJub?q|m4@EoG2)lue=e`r2J&dik->7O&U@b3I6itm?F{ee(rfej z3F4jJu7@?v8SR&&FFg5adUJl8z=;!%6yAurKSggzzR`aoIHIA8P#B&lo9r0-Xgy0m z-@$RCMnK(>W1?=;2YNw&B%rrwP*qMe(8sFLZgu}l;n|Dmh-4X+tR&)|oxgA=pMZJl z@}K?rs?;LS`3WT4F*jq$1sv6&SarNJZ2<9RlD@)8X1n=2M#YUb;?pOB=V}5jcb%lx zld!{Wmvc5~!`zgOCqIBk+UMBcB;6a*uwk7mn3l`H`szO5EYOb?s19NmjD3->e$jb5 zz^9b{kZ|ubgsFyHMu6z?|5LlGdi*2+w2*ynVWmCySd%&uiKjO{d`)jl~wDF|NI zuL*X**`>)R1t*Han3*Y-`I2LM9F#5}C`}Z986s+_VqPmtzkHCUSzPP3e1CF4Ts7lc zJ|p>^YnL8PWZsEaAK4&cyryxZ^Cq#O1Z~mWGXB8#IT)!yZdJn2)H(%9h951QiKXR$wGJTwD6?~LXiDuR3m6+_ zfY@!vzJ28t{^1*j^=X~PSaa~D7y?=iJfS9*hsZqvlbmB^TobC4|MtDZ+jWQ3^}Zef{I zl6;7y3c<_p%V5V=hpu(?D7D|bh#C$xUc#tbkZ%?hHNj3i?@tP!^*JVIPU3WUcTOJa zD_>hFgt7OyA#)tmyF%$2!9Xz@N4gMD;nzPt+=4)~ zh-ih1e{w;*rLsk*76aDY9>Tk@3md;yn}mC0yU#%!X>K<5C_UUeursB)h?2`OG+)pU z2`|8~ddfCUH@5VoIKw`GP5Jg01J32>M`q)q1J_(j|0OC6L6R^B|8}z^c=C48>)HB# zLw;H37FB+a6>uMdrMgMySvqbS`-2ntFo-O?eQA_CGN0t(X7-5}j4CEYFE z(*4bO-uHd3@8=(0dN`c8@4ffTthHth_-=0OFUYkuv}p^iEH8Q$l? zixI{&^(1!|r zgyq*??)FR1HBYH>Ed~P)vt_R%l5%C@!D)p_i^<4Wp1rGte6E6;8k*hRU6@Q``Fj^Y-Mb12 zcmM&!pM+ZJ3m!IMBM_ZMgv=^7yMGfy{Ec1nc$@Y3~FDIT=LgwlW?dz#} zI0K&tQHbD@Y+WZjXfJl`Ok4qw2dB&*B0B^e2#RjD4K#2n!0_hx)z#IF4)&PxW%R&A zBiBNZp^?!XEbQaIog5F`4lVZAhHxDn9kFq7%~zHFW!z<0qU~A80gOh7W{5@LZ_Q|b z(aPnT0#N_SQCMb4LRc6fTzYyk9BTU-7PWj`n6Ty=BXl+#S?E+e^ws3)wr%2zybo>; zf8%nZZ0fagnuIpte5)7w;U(>8Ggw-Q=Xg_&WJ|J4f6P=A9WW$K6CrDBYh~lkq;O^w zgxknX&NHfUtI0}l=(Ffq;YS(2=7fY^h&<&I5vK8hK|!{F>>lb^Sg>wQR;3PPbd8VS zXl!hxdZ3RkE-wCh-~HdjqyL9cO+=S)=o;zt?1kyQ7!=(@|K1g?Uibyld-5Md>EHa` zg+>lt7(?px75HQ0x+}b4_VJdU&gb1cZZp%buQ@$0RLGwix+6Or%%{EF1g z-spVjP~a#$rutAy2KS=&QHAsaJT$;)fJ}Mzg%btpn!<{T_V*aLNR(Ibj%Y_n^@Q*!(JtY3Vq;@B6zVmvdDPGfxr(yKP-|X} z?ll*gbbE5Ucx=z3l^ktq35niE7~WYzlz}jPcB|@a<>>g9DCAC(XC+~eDH*;YGvVR9 zN}i>ao`H=8t7d+NA3D-L>p1+GM4W?YPq9iO6oryZH^sD{ua1|oG&P6l*b`Ut6@~@v zQ4bS*3}1S}X7o`T)}FVwH?QqHI_LpxwkG*3rfaSj)SWW>5z!C@dXb~%W4;B`dKg)4Cw)qOMIO8uj$DQ42mpr&b;zR3WKmOGZ zcy)G&la;kJe7hTiaVpS#Guv@WJ)1-OGsWj*UWNEC<==l?Ed3OasflU=H@Q>v)O7*g z@#g6POhl6MecQ#~_$6U!dd$(8Q8pYuk!+U0Klro988^QJ7)3ykxjaAV`1Q+dRf+L` zmtTfD+D=+1DWf)$?VHfe^;){G%6<+(JnLP1xLgUkwEXt>Vc4bGwt=d$@+^Rn;;&W~qpX9tct0*RJ)me7I^cUepIG)V}E9bmU~_O#>208Zbw^^FoC=8AlEXF zzF75WDg(ZT9P(?djTYUyJl|8G5%Hvf$sUq#-rU#rx^N()peWzZ`nMYW9uo0cCR}aG zUx5Bsff!o)<=-)FN8OjoYS9yX*R2!h*VY0*d_ccX7U+6Y>29QV^IXH!)YOVANT3LM z9KmtNnt=W!)CJ8G4o(CjTt6u}^w=aioKeg|z_FldX4T=KptJuurysD;uJTiW**kBmP~(g^aMHm9Dpc ziQ+aGz;P-Rb~!y0QrrqfgzS{^s4RO&wnG;h;E6 z+^rbkb=;upNffaj{t-G|~q=p7?7L;O)mMHQ8Z+SqMzrazEc~KR#JboZH?G zg8_241Oz66h5p6g{?xzMqxwG8D{7{RNvrwXaM>L5q;&ABP>hY~l|vH$gWRkeJolb< z&Dj*%%!%8>k*?hy8WQ5G$uZQK@oQgPc2N-t&?dLP zG87aqe3aordFzFcRnoJ&T;^Jv>J&;E*ZZZAx{+tMN#2>mpNtS0Rm`zZ~dm0`KOk!;8jdS=KZ`D6Rwf#mO)LFJ7d50LBBIu zzhBtHZ>}@>L8LA}>+Z~Xz1Fe*p{wTU5x)ROu|j3v9t#_5^V%{`;XtHLVuP^bUrvr_ zQ&ZFX6eiwE@vpj^zZf}o#uOHE+HZ~zqT&6O4Zub!Z_k-phe5KrV#)=7B!{aAKAnu{kQRvP%#Hr9Nu zPC-H5l$!b@4=+{U#;#(O`vFvtEB$Ffuh7!PbJFlKo8n6u0G7dDT3+^t!L_CPrvEO$ z@8qijbHu5g&2C?}xCjtl9&Xr_S5=q@8+%HFu{I1qb&O*K-1xti(TRwN2>$K3RajC2 z^2SQr1;1A+WB260H2^Kr#g7SWOAfQ4v&RHu`ONw7)uwp=rgHoNz7YS+J*I;>SVN6ZtEAHLjub8VC~e2H7h!qJqL`(elADWne*bz(1{UMSHJ#h{zQ<0ogNl=umiF$* z!0*sIkS1$1TCbA+n{Qvfe|5Nc(^xk^HEvL#wNDuQ|12yy0(1blUVPHyO=96F7qC{?CF)M zjKD)+f81}a=}j-{d~`91(lGYq)9BC;IY|II)Cv4(={?{0NCjzoSIWV>n)mGzUT$9A z^MnGw)CBJP;w%i)qeWEi-lxvep1iGxFGVgUFrK;W*+NnLvLr0|fyd%Nhir#lMk*fO zmmhmRGsOSMd2X%+`08{U#*i<5p_4N)F@X&`9ALCT`11u5)%kAOCG7#?g`(nnuxxG` z9v<#8QCpvv6jrH>EcgCDfZ0=Y2b_1+i7Wz}@Ph5yR91G?>+SkQZbLcd8c?U4&DkM(rR#aVQjTVK|%VObJjh@_uv{~%w9 zT2%Z#-Q94`VWJCn%9yUbyB9-&^}3I_v~|&53f7asSKFXh8$FoYMj+V3f)+(sz00(^ zG0>+xkJ}7ZS5`j409;}iKkF?@ue+?lcMav;W?4aRo<;=`C8de#jQgSUU~_z_*#E(9 zpGye@)clF7x|{P0h?bqPU;6h3fvXuoQI61=dgN`@EM;fwc}h6r6t=mYdPNYR9xdKpPKEQ*_@+tU zINu8H^=vX`PQ(QRFB8k52%PBgp8 znymQXe)O-G%qs1l&>CbLd`dzPs_uJUnZ%;4gEj2r*=y>5a}1c0)L)BdDFeBP_UhHE z%l?S|L<4wC**uXJ(no%!bCs@ME8lG{`34;klJJHBFyZ`deVwGO1z~8KjWq z<>gSUyelbrE0?Gpm!g;z9v>gFzi-bS&CShi!OHgZ$K}WaJfC7_j6fFhm3l+gNmu{o zzA=iM)fnD-R6a$3XXPYbg<4hs-1z7&JGF+1&~ugYl8jWzD~^S>kYunaOuX_)1p5Y!Jp?pH<{a@^U@nN_$5`qkcMdIoOMEkT;81dCu3&U9g znc1IF5U!yc*`&CBddTD*6d-7bCkMFgpc#L;JQ}MW2+WzRUl=tH0Z3-in>k-Z*&t{e z-lEr?8FKx=3q?=t^$!Zdg^R{O5U8@R|)6a1Him zpBg*EsHZQPM!e3L5<9(f@`xDN%dzdsQNku_MEr8dm~WHGge$9iH{o1Y4!%6tcp`Yr ztA1;8ib8(4$ylhpTs-{+L-LFF-{0eqQ3a)iV_6rGH%)EKT1XTPO6Myx6eXbs_>z#x z{CV;4)W?+NPveBxO*u-9z%*gFjWDCF5uz3-YY{Mp%}EHb4EwdgYqz9=MWN!jv$P-n z(~#HgkX1gO-xp9zu%DORc9oZxw_t5g5!B zG}rtFFhoSVx)vLpJ0-82 zkC!p_X{J<6;%jGU8v5chP!QaQ!_Efn`a5RiY@B$_(`>q?tPKETo+miRFez6?zkKhHL2@78 z$Pa&~kTf|X@s=i2<2B`b{sktV>4kMreSM4UOUP5;@yX36#<^3MKcko@yI5Oc@pZ5T zr@^8Va&O%!tuQOzGnX@bc-`~r!U@^y07xB$B{dCAaF$X=ic*IBb4O3h08RGx1R=K_ zP<)CrMyQusii#rA<>LeMwW?!_9M3Xd+%L4A5k7|!?>-Al$r}x1HU_%qm9Y|&$ao!% z6lG?l(su!Voja%OBR3r#oglPgt$-5epC9W}wJb(2I67uEqF$5OkaV{{a1;$M!Oy3w z4&jlm?JXBMsjsz8>aF}yFmfJ@D!9NyhxqLz&QVjb>`)R41(h#|re*;Eb&cHc10mP` z>HyY2`g5+c{D_#-`jG17!P=Q4IVUlCvUhq^ll(4})oPmq6YK6yhj(FR*oYL+6umOa z3}@*UmPQoLz3uBBA!cCbu6)Z)P(a{8DC_G=XMI(S=aaCeWD?ik^zfN|JU(LOK{2i{ z-wsUj{?*;x3ik5IaxO^!=b{}kDXGtLf*V18e!j5HC(%)(Jh0^?5Xg zJbaaZ7?|%WS&Er9e0kW{Frx2NlvdP7ybAoBBD;@kZ&e&Pwf{->n*w|Bv46OfybJl^ zOs80BhR_e^ptxG*`o}+6qvkd37;YDzwmwu~Z1%3yeBwHqniGb0Jb7icp0M$dspl?b zN=>$BQCCcd&5kE6BFz!7J37(9Xnp*VE zUZudc*9V=ZjDkYJ$RQIG(=jA!oQ54l&k}`iLI?=)47CId;~{bi3224}&Cg0pAGsfn znIN^K#@(?P0s_@iBJJgjY;5@JBL&ic?A4a{c62nv=y(P|T5AA>;?-(OK1mjhNhD6h zy*{s_FeW1voNw~XEf>N1=an|M;w%zR51-WjbR4AR9BQ^#DF=DV<;B_VfP#n^dqwUS zv>{43$M}5Uon4h78VS@n5y}=a-8*yoCq6U)Gj2 znWGk(E(HI4UavoE|BT~{V-kr=oT&0Xamm^+a#Nx9p}ckR&DXU%dTsBrGD8=kMlXE3 zEbrsQ^mQC?r9G%BFpayucr!@&eF;vh9B#;hgd}gu>xlXv2IqCWViu~`OlQ7Rv6jZm zG@7#oyKv>v9S>6jDoh?OIh#kq_0vBc9d!`;C7p0f*t5x^ReZ`Qor>jbkHxfWBR6m0 zy%XRw;w6f~HATD98PBeqd`MH1sJ3lbUG7%3c+A628FkgCPAlMuw_UR*55F)@Kqnjw zW@oq<7#JaTR+incV|RK4wg&~q@;5;fDr(>9S3{7LrQgC_$%vSrmna?D&8l+a{tq+T>Z zWA}5TLuZhA-OQK(b-m5)$e)E~L(ChaMXB2GWJrV8hx3}-La37!uU~E5bsTz5GD1N# z7i2_DsSBQ?!3jcSL0&ExCV$fo~O{Xd;q$#F2? z*7`t2ILI=VpI2N=0;B#K0IW+^zHwDImq{*ngEy)a<3CBEOwJ3{w1&pBs*q2tgD)O5 zWVN8)rcfWQYxolPDy=eNtWsxx@Ag9)&v4wYf9s>{>*G}dSyrQ`nyh8Td}*-g{v^xp z&d8F@bTT!!4(f9aKhl94h_!Wf^l1ypVu9L|^@q^(=ip$xT+J#H5UGZg_mGwi4Zx9D!qtEec$02#WxWz+8nh4Kk?)@r5;O*i+YQ{qB?&5G%fWg$56}H zY=nHbZ?+|;95@x^3j)i8d_nruCxHfpdu&!1Cc$MvXi^^a*tpyrkNBOJFFJQO3=$%$ ziy*S9=DqgqjN#xJ=M!JI_AUBeU8(9@&0tlR|K)U%^)u$#>q(p*DwcZ!!RqxyxD^~( z0~K1-sRuNbQuW=9sM^X~a<`NHVoVef|htCv;N2cL273>REbj1=ftpGTtG%(q;Saf93zEP*BSS#| zKGM21RgDh?GB7d}|6O%K)e$cPNlXXsBvWDX#%aFUZAc$yHvA=3K%dVBH`6~vJ!Izf z(?wZL8PjpunT=xR$=-o0v>GAg!Ovc0YVh@5#GIAQ zZ^5y}Fn`TMLyU9`wiezi6Pu;;)w=@H2ml6kIBPpm&#gD4j~!RJ&kr`mGzD%1O_sXH z_limcSO5gdT}5PPG|;M;{bEi(du|(tKXC}tHLJa~bq;K;OaliDU`|!LZrr_1k?wC- zJC)MkH(YEWzG%h-%-S{ zGLBBFE?8|$+OLYy@YB1g3193`(1nJ;??d*oZ9}8)XGStP>O+Z3yVnogX>#>$J#t^S z)^K9Vqf+$6u__ne-+wz8kQMUIe;P#|fe?5PGt=+}zxZ200e; zEUKjVPT<^;MwpZ{8$PwsrZv|TL&AP2H4jq2#D&lASSDGuaa!%v-^XMeE!PHij=_7 zaAtJ@6@n;E#V_}vX{whs+Pe?$anSiE8q_TCp)@|=uxzb6z*^6xbXsMYXBQfb|A|H; zg(~29p0qa>|Lxmk=Jrhj%KJ{8?P(V$mFQEluC(>(Z3oa{OJ7RD2$K8{s^X5G?se!A z5?U``ByV}s!8>&+G9_#-DVb_2Nrhle#T%%rDEs@)N5Od(d*xqH*+7JQ)kfD^fqgMc*EiL?J2Xx zZ@ynqcw5U+sc~VIVrQm#zp}|TM9UW+Vh{**Ut37fOxM zxnM6YbtL(UO1S4h`dI}hYI?*_Vn%@(vocPpM;p)78X8b+fe$#`t=_JKGLq=}^#G^^ zXv|0QB|*0hrARF%ogDD=5MY~{d~vDgx-{qlp1k+Lav;?|)py;UmjtmoG8n*I(S{G# zNDHB=2?}lH#5>%a@Q2K)Dk4#Gojyv|fmya4)I$D*Lr*0o3IknW66d$1R-w*kwab@2#@L05GPgy&28>QN& zR-UP~KUh;iLbX3|yDZ!!WX#3bjF9+szy9rq7$i8iEpjNMvX`R!WL*|27{ha@Zc`|$ z*Gyg1*eU-~ap+MxThd_&3rY!Wt9pJRrtRW0K2vH;SUO&_5|mX=Z$f?h)$!HiqDabf zn!K@9{}Yn?v4we(a)G^(NryQtzs-vuOe@9UR#A}zFq3tM znjlJ!l*&re36HYRTqZq*7Y!g%4~6y|?s7lv418ONUXB7(n{X{ao?G!)b+gh8mOEWf zf{;eR0yJ01-4h#2_#UO)^tz#W#fAqD+s-fZ$H!!*x(XCgt13L{Bdy0@Exg=!scMdv z*N?Z_C`Xkl$&4@oA>*5(|z5rbT|3KR%?eMZk38ZrN+tcy!`5t`~ z#^tpP|Mb9^k|N;%+l98qi3w^Nf@P7uvrk0gm$)Rj%%kYZAKN7>t8dQlg;bDHk#G4e zyB;_F{E=Sf`>wq)IKi{dmy_dA7b4WKw;iE30N5jN=68*Jb$w9CDvOjGY|nWf<*YbR%C6cXu0+Mb4`d z<2eZ8h<7l)%m7ldN=Qu-T$ZlKAHbo!3kR}32qH#*IIswxZEywCiPZJ5?cT7fqJdh& zw8>=9PW~HjvXkfLm-O`X6uB67#Jiq&f#%`iXf3DKKyv5(KIt)2=$Anv_*}+anI$@K zszL$%_~%gkbJNDYL@`3@TN=&rHmTvYXI3wFiKhE2TU zwGknFm8NocyMr2T!*!vHStE}AuXKxgVes#+AGqE84-t&i$$bvr1Zn!5+&R#l2t++? zg+G1zgg{H2@|zZ5QO#|DuT%sghQpbTh+EGS=nyT_0g|F>bb^QH*fl$?_BHiRd~IDf z+t?G&Ptk+F@liob&PGl6?i#a|$L=Ev11A9nKL?xE&-ud6={baLlCJc>256VaJlD^* z8mLT1K7IWfaCWr4-o>?lRCsu14A-jheO##z?+aPJoex z#Z-_Npz`BXvXznCVvG?*~Fuo?0r8!OBO$J zE!Skq4cAcK)zoA%!7A=|N`P$QGNiM$@7P^X5&8-wdbkwy1z(O+M5!>*=N(*`uUrXt zjA8!tb%?BXXUFoE=MHE7yfSO1VNxaRa`#h@^Hs{k@}g9@Wzh;|8pYc6<}Js=Tf)D_sxFpd3D^l}DNF=9zf{ zI-Cmz@iOoPK+z|m{W3q}AI$KSyR;%e#37a`B%o!aM zhNl7_ggLgGYiNT>(t06_1KRZD3CX#u6MFVUW3s9se(R{3h40+W$?#WJ9^a;h9y5;il3ro+zcpq#9-7%U_bl-b;IF1H z4-BB6_RD{Ig+p?a#0d!Ai8Zo+gajfXVM6nuDp4&I+sVy&G+M!MYUOEH*Zypg*Z$baBKvnM8DJdDNujpa$}#b4FJL`!PQ9cR7iVZPh%io7P&HeZz(}LHWJkY zq!XxyS%5G`i;Zw64xhfAgola;#uNR=RmQC9*jKo+2>Y#!-}f$xX6f6{XIUq--MW;o zjMwsWt9tBY5iLs&#o*h%{=i$d6b z7jhw#dr>FmAQ1b&ppBl95fzSy0qO~d^Hf^i@vl@}(Q5KNE-pjxXRdt7a*&%!Gr516F z`U~&xO*s31-+o9Oy^+-#Q{4=5Kwz|@*)%XA@B&r?kd%Z;+{((EX9BBU1RezHq>xkh z*Pk3&owg=_3TqeXBjKi0p7hLo!EOL6LCj~fzw)xBy?w;A8>w#rd0-8=Vc%zGmjd)V z?i&Xalh~_Q*P&rCcC(86u|$EKhb;y|M@Q##R8;c!?@MnL2Y$Ti2xqWpngaHlfq?<` zL)7$z8i*|l3yJdc{kCtInaeUS+7!;GS|@S+ktJ7Vp4ALIt&S?H=PF)PbrI{~b`HNM zmYKr_T*>SktqOkO(J{<+x}{X{{Fd++YW91?3l??^P`(gp4CNMhSoZd59UWw!h>RSK zS+3L?{DLwAblSV%FAmI~K0ugXxJ(F!^EA|!D{nC81x1raf(S3vrnjWzT8jFo+X_;K)sSkqs*dGo4>-J9j9h9l36o4Oh04>!567nS}NF zk1rB{lA(Qj+>V-UGXL!iAJ2o?#ql{qX=!O}uEJ2p+5gPRF(tue3D3-M==j-!nmPf9 zoAih3n~<(YXsHgQYP2jj&HTJkKiQ$H(Wu$W+WO(X0-zY^XrjrF>eogFU1)1`DsU#g z?V%?{-tS@05jPGXOE_fw6V=Je-(H^L$U-OafGwKYMqR<7dNh#GNr0IBJDFIre)wz6 z0D}DTyQEux9eELX$;+SbMXY)}zu_k0a73P(Q$Z!`C#L6%*G_wb_R-7M%=X8#<*93G zS;|Kq*XiiOpd=W6wGEJICYM6w=SPDCtyF$`^pQVxEiEnE#w{ga=}`r)LWO5yqZ1Jk zai58)5m1|Men$|xRLfRU2d3RMh7rrI1~>>f>{A@jSZaJ&yg~ zQmlPyG~#==-oHon*}jQz1}uLU$gHA)z2#nipsc}|0Z<5^K%9f4Xpp~Q zASG}}^uPS{hkRL$>fP$Y#OK{N-<-}fMKB$-so$P0?!+%5-kDw0_0_R56iwDo3TLuq z$syCKxk(h4XN94Zh}^79!8O*1Stv>ySNc->a@06#H)Hm*JpTXn1HN0MD>2T%jk5*$ z_<3lkKE$&!j83Tzqr#du^PC;Mb~0&S$nh_@#ICwQE36 z-fFkYM!CGw@41Z)3&$`E%groHX@d#qspfaw_~gMw8Z0i-pMrDSAO@}cD!6!$}zfO{vT6K+Wo^Fg9T`ry7XT51~E zXF0CHO8u9;lQ~a(20_d3CIB?#fEy(>Liv~Z5{oh(x}XD|d3|e$iV@GBJzYqO`PrIY zXw`Nv+Bsy8y_`~;?Ca~Bm83Kv-#U1ya+4bBCL@*8`lC^7mlv7#+a#U{n%qB=)Z~sJ`yl=Z==p= zJ!I*%U3-LgcZ!cjzB=1V`c|7FV}vezPbwZO8jwXoFFs-Niw;%Ob*L~>ojf&$z7%wV zjBgG=XK6s%K-3TY4QBQihZJ&hbt0>gFX+WgIIzCSaBAaQ_Y@(oyW`~E-X3T@cA9WG z3jec8+c6dJC%i$k2l6e&}LstUE_Bd zc5jm-hpJbNv2BK!vFtrQQdLO zd`iXl$_98k3H{Z3<$mGqtvW|`h1>GnXWPcc*Z3<(uZvg-1gDiablx_Lw;b1DMMFis zQF;NfbLV&=3~7l_SfW%2>LzS{rw9aWSD4r7dCbDh}+#kW3zIj$HMkrr9GG zYwK-Cr`?pgqSCUmR!9=@p(ntGmj>HcJou&n1)O{xU0qL}KE1}SQy1*Ax766zNBkeD z`G)yOcX!^@odD`R2N%$r^YZiS!%Prfhcz;R!aQMM!}W_Q`$DH~JleNznEGZ1{Ea_Y z&E(CRk?!yolCFh1>E$w47l{Nt+K%IUyVNkPJv9$9+f=mzZT@u(Ow8i2#fN~YM{41_CU99So3^sLj4d342Ky(zmL~i~($-ne zg3YY1%KBM_Dyuo6%(yyIz=E{QOK_gQRx&&iYIHzQ+Ee6lv3Yxw6y#Ri$%wBhuKp)t(kX5?t0>@+4c-LX}C%uL|_s^m&yergt7+Fl$*%sQtyp z4>rQ$(YQ^nnxve4<_Zvb=zRq@NYlc#RMVU$4yoi!CZeCZS3hdP$Q-`Q$w@>*Ae|wS zdk2VnzcArbY*1OZAn%y6nnVJ>!>>2i%d@kyu8D8W7nhf@Xv0h%T{C5ZWNIi!Z2^2j zn!sRU7og0c>z@mR+WG+tVvNYNQg}lOwA8owcqD=%&PpM1H|>rYkdaHq4kA1a6t=o+WUt2y&7Tdo<}$LR*%TOJdM| zxa4rGeC{NZVa*gZI=Jct60zl2Ku`Z3$NlS=0T|?!T2u8?Kc!xn&`@mR9F3(VID^DmSKK<6&Vyi5Vz@UMebz z4?!zyzbxn;=Jd^MOK1l=wLe76Z5bCp%aCVvl*%?;%)w*kF8l<7%^XS8X3o*K0@aO_ zuUH?m4wBb}Zkp)IhSWM0zto)St*gQ#uoZi!be8QY>A=$T;ll@Gp`{ebAWoPmV=QF+ zRvj{10KG%Ygbx${ZMOplcOjDefw1+FJ83O8?t0L_4S9d*7 z5MPc~A3gK5M6J$+3>lY#HSlXE`51zg{a#00hX8i|^!%a2ocOJ-A&Qv(*zNaGW$$oxY|pA~P!J$? zvL60W4ca(Y2rU-v=JNl2q^#^Qux}&(JmQCM4$pz+q!>zX=>1-LR=MXah({|}ITkwd zttoq(*PK0A*4N*Sqj&&39KjyPVR)?2Lf|l80FlUPef+_-iKmMiMOaMcr;J(o-o|tq z);z}@1_3@wzMn2K!OtK3s8dXSe@~gSPIUqIZH_>?cTqKRu`{9h(U=Gv6fK?gtaE39Vk+ z5Tu|3>eKsdmI*FXL4x zB`GNyDA~D&E!+e*p4gPmr>c(&I^~=QOz18whS{F&3r+Gn5Ef-@GahLB_3-1N8Q%Rv z5B-+0m>j6q4f)o47v22lt1dM6`K_ma(adJ4wcV=mxko$QDJCYlH<`DzNdMkPWh&Yp zE(Tgd=F8OB$8*AVe>(X0N^v>)kaAL#eP&QuiOU47{aI`vpdTOn;T*7zhiODW%|JLu zq1rYQlNX**ahh3MNU}q;syD;h4(HMDqOX@TuiuCFN-9G>g_LB~UbOWC;FdE*!0 z9Nnx_$|Fb5XHkiBeiWn7q(@us??4?9#k9>b}f!9$R}2998v4-tN8i zE{lhS`1hIU%TYnf??zwoKKuD^{DuaK*;=83g_GU{^Fwtr*SZnoT%La@ldBkob7^FO|bzY||WvrjO*`G;M~pO#@`fAH#g%k-z4$9xNJx%|7d(Vil7 zkvccSIM3dQs+jCawRWH=_=;dY3vT>ww6HTDJLc>)W9RN=PA>ifb1m0=+rqy$G*@(H zw|3N}PTw4|)Qi#k5wwRkB?B}0zmrKXbKH3ktGT&(SE7iHb$=o=$l)al6p_t7 zrIn#pjyra5ek3f4(^3MaLOqx+*|3n}m4q8xOjVy+eY0kKOf+j;7Pr&pe3{GHtDll+ zTEVnm-O;AZG6pTp>@%gD&059YvF=~y*(Hgc*uqH`sO`ObHm#Ee$6=iSSc}b)lkP?+ z3{2T(xpX-$$T=U!}rk>2}l+He^gA*bVZotizjsk&OH6<6n3`$AA#67&{e2Oj!Y*Rxb7l*FVq zHVV`2zI`8GxT?SUh7G8KJ%g+;K&jIetjE=R0FDG9oNG)Lvd!bc|L`lYJ6X|hm)`Zk z;~Fjxe%IN!Ly%uc`nV=#oK`k7U-+GDvc>1O0~9NUA=;iWBEei$pMbzZD3oK_vf*21 z%!57$ZeiC$^KTb>B&s51IB!zaPXqIQPt<#;5P{Lp{O?23<2B!H&Vqr5f~ya4w-qi) zOfD-wmJQTlUJXm!Hwu|i7@26q@j#2G_NdQ`0y{S(2)c6;;)Nvz5>;@{>bGh)$?OKF zA`sg6i~c@#(*5A;tGC*pcJ)>L$B!TLc@@)UpVs7pEQxC0EmPH)fKnBI{Y^Z-A*0vb*M}olVt5fNq+EwZnDVbu z#g6I>Pm$Liai((gjGE>v?EnLj_(r*lOaE*0*N<&4F~7OK6(Cb=7Lj3HG-+u4lm4fORwYEU?K#TtQ!K?!3)P2^!Qp+Kb_PM)Y5d3JI5BNb4SWX!->Ig)ij!zTykN?*Si*4&{ z#8Y%*)h%2u+h#9v>Z2Xm<4Q@Xq{zo@Qk8Sa4zk?59|K3*#pB3tL}#ktRU{ zK9q9{raHGSU+eoEPW5kTIVZhkaj*nKx%+=)4Ru2O=YNws^Axg0ylWSm5xv)vcST)v zZ)^6nPrYlc5}oeZ3CR(Mhy}b|HMnR_g6pYu%`PTV`3FqGqc>iF(|!?fVn@an0MBM2 zY#>2-C^#VK-q@_sNCgvQ5WZkR*4hdZU{K!OJwt6TvJO>?=7P)|8P}+DM&V`tvxz`Nln1(-fKX z4GbPYEsRvmIZNhUheH~=@7_b%ISY1;m5!S?xGl%gvy{j44VYqn?s_TYA?;#imG;8x zc6B~*7ZURMquKA;y<6}h`*yy2drL>Yp;&Btekhs6*7mB5Uy@XRB$ivQ_3oz@sEt8x z^k~{;IUY0YY!nFN-_N6!j1U5IfHHfh85+B z+juh%2c0zcO|kQ#Cp8b|uL|vF1$ZmAi~H20|HOqZk}3##1DXjoQ>kLhs{pKnDtjhZ zfT*-r&I0K)aQC^$YjWht@sYUQlix?k9NbgU#f7IY4#=N;_>t#uXLPsB2K6MJoBt%T|rG&%Nctwk-k} z=YhosL1(8O{TS#=F{tjD9nI%j;eT`k%w8l4`m`n{^E%+4%|%)!&>+xPt%)>(0{>%g zm+j}6VZ9RidKg>AG0DH1)G_%cl7cGGEPUN3`vUIR{2kfjJy~}_KJ{rqu*7ze(6}aR z$jkd=qh;olRDNQHhPS^#Ksa45SODcP*h|upkapMG+#zHeAT)eC5x1ICa0vJLchirzPER2Xz-4htb)M12Pr}WU^y9>6{J&v z97pX3U(tSf?X|dTM@5iGL|c0h>#Jd*SC2As=a9WJQZe2RLTl*l zy8(#tti`P-`pH|fwLA)wjoqY9L`17W0dnp7qk||!udmHzszhnM))jo3+n1$u&waO* z68Txci~N1R;$FFggL%fwRH?Z>X}ZVNDyn*p;5@@I3x+vY%jZixPV-CG4$OPUISijU{`wFC8*QW{!(dABlV09 zJEBacqG{?$lNPeU1%Pb6%hPoZ8ew-T=sGb@%zz#+sZg2#2uiV2%yOi1(6(y*!N(Nf5SYrXb;k8}My&Qvx{XrOma zEjEyPAAXECjioOIft8O~Oyf%cH`05!!9ZlRZl3bI%28xk>l7V^m24EB2aBivbWAQI zvc9Sbe*Va>YAo3&ht2L+cDTB_H);T$q#~agW!V^xi%k)6leC2|$fvNK9|!zO?mcV= zpQ^04xnQ9;zm^>5{5P$=Q1{^3Tk&zT%+Ji&dA?GlTkZ^W+nX*Sn@-eFIucP*|B3Dl zSHCY-_XIYeOFS+_Oig!uBh?Ug6Y!G2c*aQSp8S?R*;MWj;+x5i@qNb*%omuZw`LAFTp#JI= z%<>RResey3#s&jipd|`NL2wsc0Q!1nBcy2?Z-oiI2f7;RlMCn{Xf5pG)dO4g!Svu3 zKmQFddFp?fa&~gU@DI70rSTjrIYn=ih|v=bjw!f7e4&q!Su5255(Ep{61_ivCi})~ ziweD@GV=0%&(htnVtjniKpjd% zYCyGp;k8Zak=y`;F9pPh;2YZvh3L*~BiikI_foTEd0v@XTZcjB`sB$IT`0tC>~l?t z=eM>(*|mPmEAC~LC{WxSo z9St2tQ+zSd^YI!nra%4Yjz$xF^Uh+kbf{EvMczDM9J1`9lXwJ0! z!-s>l(;#?an-T-MlPFl>_q-$Yi!gRr54E<55DN++G;e)8RQA%la+~;nRK0ar)!i1Z z4WfWj0!m6sh@_;1q==+QOLvEKhti^;bVw@Q-5@O>Al)F{-F?Q|dtc{#AAh~?b+K5o zn7=v4e8w~G$M*Zx3JIQdhA35(-g3g5fBpUeHXB=fG+>(4`a#o(X?DWlh_~%ECy2O} zZO%FH#?Glfu{ofyjUYgK0bRVP@k`Azj60ZG~0d z%y<3c{N>i_7BY|3F z+ljj3=&ft^?b*g!Qk(*MDpqESk^!mB&hwdnII4uK^pJ5xMKA6x^vgiOE^ToZN??-;eq6BOz!fF{qmuge;s@p#ZUh*l^zey`Bxz7Z?%nZj|io1G-FHge#ozwqbgIV?A3me1U7_ z!E1xUUvJuD>34*lU79o|?r z9pQRJmS_KPrm7!=4Y{wubwmE!54o2(hg#UR#g3CHj>M0GBN~%N-9tMo2j#Vuuub03 zKd%}~rD@F5E-ou6X_lby{K*r&W=pKbYt5B{)LOr#2b#ao^(l%}I-XXo6PLveW=qNw ziL3hF@z<;#qU!knrJVf~-#lN%sbH;9EkYy6Pc$g8>WUKMDKhS@ zL~jr^r6Z`-lXa>sOwcf?{> zIi0E`8o~Ie+UYP;M297op|YK&#}?XU^|p>vl4=n@0tu#ciSlbfnw+b;k0&56Z?LZ+ zujmmr%lU;f+{j)Y-)*U`kJ(@+gl~)84>&Ai!Bl*xN0#n^f zxWXpL^DK=O8&r9`yCO*t^yI6nua~v9zq$4VhCUoUsc_o#_V!{4o{VIG1qMFM$AIv< zPp-{l`?C+88r$nSK4MO|vz(rv$6sos1gC=_{ZqlL)?)O-ItDJhiC;_%AvHDipNVBy z63;!)Igxa`A{k(in~k^|9Ln%EV`F2&PotWLhj&**G-x9_ccCTJ1gx63Z{HeQ*#piW zakL>JYE9@a#9q}5wU*S^vnW4(2pbBP6voiPn?v_`+|P0Re-@oKbS6GE<}l840Rs+q zVt7})D`-Z~4SyR3<1tkF3^6DkO+WeyIpeC~F5tk10|*6SHbjD_x1ay3HJr&BSDx@h zmf~-xpBZhQGD5}_RGr=S;;99F(8 zYORaNYl|VTcosa6_I~zMK`NA&#|;k>QcOqNK1Iy0_L+%QZrIQ_2&@V?8YxTvt~%+x z5CgLG`kxc5llF~Cg5fn0PvbuEJdaDo`p)BB3DLP_i%YaaU}bO6Od_XHww$`YIv(-X z)9tURHl|h7P*+jFj>htkpdX)cm8ZGK9&$*BNUdn0AIjan#jJ`wJ;d)~nG_ttgo~=r z>pd*vK&C%~vlJbf5FMr(kT)b*ffGyQTfQRHyfLZc7p7u!6f{G|c4Rg9FcK=DVabXg zHU8nx0<>dF1wByVGvjcbsz|A-BErVTCgT3%F#j4vYEt2&J4vuzmPpDO04A?#lVFB;Zm&$uV%<{U-wD@Yo`ELqh|g2ca(_Rgf{d{ z7hVmWA@^O^?wqRjk@+4mM-%Z`QIhL$1|*J@MKLfx2~^1D+;B~)xy8@LrJUIoP6fA- z&3~1USab?b@NY>;)^_{`FFHI6l5j)=DyILF8OQ76k_*jZ)L(8i>1;2xMAiD z@fUcnU?Xs3-ZRYySoR!1bh~^Ce12CwC)voa5fse-Yc_CXWpv*-?kP$Zk7*~rI zc=b(%DN!KHo8OESoE4xMe>GNqs}lSsBVP}H0up}=*|IaOpey!UCM!X{Q@Wd{CNb&@ zdXv_zF|(eXxWkJ$fD=9D+aRB@#X|^~c5&B9T`if|oNjqt`%-xtnkQ*UNQ)W6I~_~W zl};iG>Z#7}ED(|p)8-y3hzm$L?lqxt9GK3%Gl4QWjm}$a_{DiSdCe1qJnLG~s(otK zI(r--Pk*+a9ALR}C&Q>|423~yq3>t6$PsCDJD2D8^0xA9=L&Ow2dUDxz<(EA2GY8* zJ~4~vUOY9wc6N&y=83KqJS7uHoj5L|m6Vi3@lo@%*b32++0r%+-*iE5b_;(H8S_Xz~5{gP`qRIFi zeudLY1M3jhHq2PP0GM6%wB|2_7eP;t3Iujjr#4sZq;0Ji0Ix8vf8+b{BO=ML3EcH? z8wL~hFObkD#Rpz6aNkLY-Z9M7nLJNx;_oTT2l^QQ`+9CgZ+D1e@afJ^@DXg-zyv^+ zZYGzcet@35ikkJl2PdNQ1I0+GTS-jRu!jw-e|Rcd;D^3dGrjy+?gT(<1YZ%gL96CV zqLrvMwbzm|!=)4_lB^v(~+)VNQy6&Ta#{vq+^DwqH3weXdg%MK6P z?)V?aO@E|MJbP{~TEmm}=n!mjYJ7{sQ#kvmSbW8%;Cl%WS4)limu6HC~;>h2i z|B>u$Igi=E)*L5!vUtzZ#fV=;V2_wTCDSIC7PciXYPzVFRXhF=jUPQTX&``Z znp@Muh^J59Q0(-(f4F1Z$_|l5h_p7?j~7SjQrw{w0hoKmtNcLL4B@`Dr+xe8&J8*y42zsg@h<-owi_f{UfnOu2!83E-8<-pOQLCCk^f*!45&Kixynb?t_O4tSH~KOt-78Dh9iK2oq92B(HTpVHqjZDYP$6gGpEj<1n@=B`Mzq_^rM@=4vAbi47bYB2XZwC=A!*E0|~iD-6O7HR(D! z21kmv-nKWe-STWd;&g2o4Q-!amAi6QcsDs(#yF&k%zFRc?%2Wlvv6|PGSVbZ>8pB; zbp746!}2U9)iB&2FET=Dt&B=aO8#wZV1Ui*J()%^*6j)bKS7m2uP-fgx_?td0Cmbi zEG>R(wzPZ12K9ZpT_AQg@5e9D8KlD`^eNsMW@LE_zyuflp7>#)B}e zh1`zi5e3Q^@5Dzi&|I5SUte#tA)=%l&fz1S#QzVwdA5HVxvhGgf;6m$G}JX&j>9$d zE>FbXh3XBFW|CXq=~f5Oo47S^zLTLdK}R0$n-3ovMLjRux()f1!N_mgV+F#N!xQ2I zaWeAS>oK_QRv<^X{SZ5$v~=B|cS?!~jLnxJxtkqrV|_b z5-tsc>mF(5Q(&x4m)BwOhtT!&z_ z!5EYXf?iZ{`!5|{Fv6<}oPD^jw+s#*wndCQg=Yp-O-oio`|teD*x=p*7651xu$zJh z3_-#Ihbz;kbZCA9CAUQ2?&~@-~_FN-8}&qKXA80hI@@A6ZjBq zk2l}JKdMr0gVO-=RhD}bF#weY_sG(AdeeM3LMRDBm`T2?;deuj(C;NXC}`oIJqN`u z0!ZQR9Ks8tB=8Qgsx?DFU;y9k&_P^To@}=>qH!WWjct7_(HB3Jp+L>$(m{drGxn4p z8>ySSw`1x}W^>axIS^-fLOZCh)$s=A*^A81P&9w__4Tc~ zf%<}wnqZh0PA@>=e1Nfm_@lF*T2c9ucspu)jPr$bw~#KI>-U;-i0MuqM|2e#r(W}4 zBMGN)?ViCsWAAdsvC*U+e!f8EJj3(nlVaKO^X+?+RqofwC3yBlkoC)S<>gh+s*O+? z;oN$~y31P=Ol9;GXvb6e^|~uYUw|7}DztH=RY&=={Kvijkm)%?0E+K%Br2;B0=xDv z#<7+~r^>#mmT{pCY@h5Vw$C$3YvllrF4kF3zR~Ba6C3W#hg1p2@GU@Mj~Uk5#1d+s z4jhJ2A&p%w%hh|%a)s;5o@6cVxoisSg4U>Z>e!>3ty8~CcCS=JVj~zVL2Z}Yg{7TN zfEDxC=@ZqBOqMHo0o(Y6?;ywT=}lzm%1ax<2X-y>YDY(ogjf_;A(GP?o1r%~{Fc~ClC0v1g1`<3XGMD<>97b}vY$D%7sAgZm ziQcrZ$7VIbiAl!y0M`52S#+b&nTH@A9$t~{!mHAA#>!WB@7^tf=@`VKx3E}Ph&N4O zH@b&tJ;Cz$2=Pg98$*EB;L=vF-U0wjkv-U^{=Y zhmMp2kXM~vi*W+PQ%*X2ifa>g;kOmFPP`g0Y$7NuXGiYkQkW5bUhLX3F2Yx>iH*Sb zRbVgEzL05SKeLW+TM;~6^CCLWt2tLuQ24-VT*$N0;iU+?%(3I`J{SALz)c(t9vwmt z*Zmg)M_tboM~wkJ2|74S$~nO%d<+AU?W6`zqs?rI2^urb$pj+_nSIxPKv- z`*49o3^0Kz`mwy+vEG1~h$sk~jIRjgcI87O@ugFbWj-gjnasia54LPZD%yD4J8)n; zS@zhrkePA-$6hGAdSN$Ye1obayIR*=ve^?RR#qp$1#=czEG!CG~NZDDaFFL$9BjU0^=MQ6D^er4FoRar87lTUldgA?S`u^3`ZJ#kk zXA3XP`V-D(H^12WzMHGM2X7h$kw3iUs-&NMKBV-7U?o~qJ++ZJlnO*t=!1~Uk+0|c zfUUCydiXNdqYt2X-Ch41b$WDAzgg!McG5f{oveFvBC&h1-Z*~N=Y9QXzL387;Z0xN z5lz}f9C@sa!C7cq?0)+K`nIOxvve|PN!vSJpZ-uhk~IK?;rjz+oOtIe)4Un&%pORa zMDLbp2uq~6>}{Aq6lGA^Jo@I@>^P#Ft#sMWAJxuv-oOIGQyhm0 z#Jb}C?(Ho&;Vt+3{{7MI+qYw7G>Pp`cl9d5>R;0|GZxm}^7cN!`&n)ayI}%17GNaJ z?2G^O^!Nj?6|9K zzPDPtr}NK@ZTPpQGuc*tm_V~yw$PbT12^SpxNkuJE>difDQ681cu@cJJ!u6P-4KV(7$8Ij-yAAsp`qQHceJcQ~7Oeq~D@LtjnVV!NdRw z^8B;!j{=p2@oeW0&;AeUU0*9c{%@%&K;|%aT}fi1*V?43rTaa5gs9EuOw`W$sI8au zcoWI;^Hq4FT)mA~vz7{N$Hg1(V0fE>I2{PJj;vj$@FuH4)7#%z=$WBMI(6D@o_dqf zlqn`lv20W56)-nA6m^N&QiM{b-rO(y84*LDiQp!?u0<>Ra}6z_j25R{SX9}oya=KI z_TooYNLx;ho=<2?K!Ava9ToJ(+s}$haOavHIvVLg@OMT%M`zlC>m7I9-VR0F`^pC> z`?(wx|N3E{T`POuZL?JgapSofI)<4%%(LU0Tk-`IA#In|g>&t;jtZZ<7xdv}d)Ez1 zmj3Y-5LH`ZdxCw``sXB5%|XD~o9EB@KVm}r?2@j2(cR_U;k!K2{xFZEoA?OU_p zT;llnVIyTZ`GuJ^?2|!3LBBxpw0f&!0SQ->+}s39OI(DWV3!OS%sj#|HNhqi3j~S6 za;ykBE-uE$_2sS`vXB&sFxJIk5;l8}Z~ySTEl0MHOIsE+GT2ERjp1EQhyY-_V7 zpr!6RFcAN90VqV^=KkQe11-mttSt0d@0%Co0xt49SDY~rr#-*3gN-uWISq&{waAnT z`?9vkr8ob+J)0hL#b}K8HzKuA4^MA710kPpa$-mL1>e8#C=dzyrr_IhBa|od>k8>7d-ivgv&s-+9~P zPr(v{f<}1YE%slsIzk(xE8m*d8KWQrT(W;`hue^aP&{%i5+!994)6u;qYnoMb8;|F zNn>;sc`RN$uU)}I5~f@<*sJ0Fhhc$-2+fcl=__6B_}c3_^Ok-~d_)w|&o(a6OUm$c z9xoS@yEqiM=}Kk)yaz{os`f>3q(W+I^vzbYMwnOY^{L&7b6ZU2HO^xb?Dk0mq4r>% zUgTlP(@Lj$znKL${q7s{^D5SBW0up8=d@oHa^OC7@Q-wP_(}1mU>?3kI(=dILal0L z!c@kyCs9(Dr`I-Wg8QDwSO4a>{8&TtTO)bMM-z&e0QsH4<7JphSeRg;vZLu4zB8hP zcP?>CNtrfR{CRs6_f36H16%r6#^URxeCCP$-;rr))QH&U{0wWvF-pnA^f@v5H4U_` zd1}5ez(DEl?yf1m6+O%p6kAPlLpQj#>Ea%!w;iEe&c9yMgrm~az}U_l*nFT7%yoJh zAODiN32-vD0BA$qVSN5vjXoMKS+Ig((*jLn;w9)5j9^y?edUS+OgSoc_VC042x+~# zI3X>2HtF=K{;O?*`|s=tbv>U>z4gpooOg8W z@MGxZDSTQ>8|HQ^fic64}WMoGwrr_XZdit?r1)$G_NR(G1bdmQKUi{?1 zFWFOQyrDWid~xg{czPlGS?BpLV`N4oWF#cXmm*5>WWo=JQ4|7B?&Xj2swk^a9i*O* zxZj{tK;3=1LBqWv^mX?8n~ai&f1ya|77WWkT>eJ`8UvFBXIgqUAdb7C{+L*^?t78L zFaAx+BvD4>naKkZRH11cScb?;ZR^@sk27!()?3stz0V4%hKz-td@iDt4>;ACOd5pz zw~*bA`?{;_vdr8~AQtam{xb^wi%&W!3fcHXFJ3t{RgMZuWFq6DR!*KbCXZ<>q6rS8 zy(qWtsRTmp=0yj`U#tN{AM)DZ6`OImWJln%nUi8XE+S3 zTEHO$j5}1qnE2aDAnM;IQE%+SLY%+|U<4xnbNk`6Cg|OI(6UF|X^SiLfMyDC?-8?( z!D@Sx#1P^mL>3ctR6mn&K|*D8`M$YzXJ;qetXvkqNsyFLL`nI>eX3=$Hp5X2T%B-^ zeX%yV2gfkDG4>$hy8K)%BR&0tUMy;PxX6)-F<6u4R#YSYehv*Csg8Y10nfN%hD;N* z9yA=8PQ1NeuCQ=z@uxARC(>XC9s0vSoYPyZYDV+l99R90re(bX_7f>=m?(f6O$=d( z25*&!wsum}2T86)c3%FGFLhEc-d98Dk&IVQNiBUj?P!h59O-h~jN?}~RC}f(C(p8_|~5;UAs?(LQyHo~`hJaWj8HlbjGyXq;Soki848RvTDhJ`PNV$hKq( ztq-urLIQK`^E$0*lp*LV!#5fqsm6adtAYzH?P|9)KAG<9lOzOO}`K@j|xPnl;a9@}XCs=kkkhl?U=X`Q0X zlIbxC{hFT9<7NzBWZ|) zgL|pL)ws*Mo@s-u;wae|C zM%BzVBVAbG=!}jpPo__p;1+Q5q~wu@qRz+2Ip}iKS_?k+VV;cxkEm(l{{yFEU6E4 zJ$=?Ga@dokdlhu-&$D>|7kdj4vGlK!^@h7z)*dV%hz=ESuZB~u$4KC| z>xkzDIwp*4EB-jd#KFMuReIX?g*2L0CLXfhT45x^7Jw6|M;#--`}zv;f%W!DHi4T< zs&Dt}*ZUxpYSybahGfY~rYq<{zQc2m)Av7G6%J~Kwo92~x{J*QGf*o!9!L@>9Sxsjb4n2o344840bFT7h6vL#KcGoyM+09eF#Dvy>M(^ z*n_t1C#Y_JY&eZiL@Y|6LZ<#V5`#ob(u;w+ zzB(dNd%s5$-S6lIR}(s-Q$rpp=f}pfq9V1-uLi89DTE+p_Jr_a_j-|)Dk8^bWefbe zI*DgK`DL?LXM%>Uxw$hx&i#KJP#!V2zYFF)^(;TDTreN9cK2PsUYN+YF&wTW7)1-~ zXi4KL9be10x$zqiJwUBsUz%#@jvZZlSkd?*N2A%YuKXUPrOx*`-smskCyS`3Hed-t z&RHJs300lg(3Z<_-dT+7X220<6GUC|yr(%>o#D$5r3KfN&XIWZ=1)zfXbr*DI8+!F z3eo8^){*9)xlmq_&=S)Wd{1`3SKoYGiRRO!c&=x#`P6|7&&ojq>2#&`aZqE995?E# zi@9K00}=@(pdd zWE0NWFGf?Y)(#(ylK8e28uS=!?YXWSoOgBp+aEGxj#COHrT-kph_LJ;1}F%ykTfQH z5_n`o@$b9mEH`87{I>b4WzP0~?h(>uxqjRkTcFh*Dk}6UV#PaLj=k~6Z{enE24i@W z+Tap`D-v{qcrt0U(fE+uyOl$;<2KVZM*APLj@vL+P#@UcADH@|aQLbc)cXqOrN1T@ z2~mcebmF;7A;*+&;o@5ywxg9rOeB{rufG+NuzR(^WkqqFTwjW9L%lU|N|sw&E6bBHVDzh(OAX5%J_ZJvr}`d9{xul z?zW0h3SWcfG5@oNhm z5sbS_GyZ=E2AfBW+>2fJtOv-mR!&*eT(8gu6dNc@(J#E|LVcTbb@!Ivne&vJvqWzr zzx>bHmqeR;L{3ho)$i^01SzGa4z-rHYgIWlBZpvP#j2yy_xhzR_P2inJR@zDfid&7 zEz){m#qSZ3)Mjw`}G;@jhI!l_NByA(h73_6BCy zBoJUlX#T%;Ey%qGu0EK&I6OT3nPgI|7R%?DGvPH(4IwGGWMp4p9^HfOE-&~`p-IZ5 zUWOhWox^oyA)pN}ad31@PcmU6iUsxD!^3093tU5GWiLHE1iD0T?azumV zu2_raht9#l0Z|zGP=My^<76_i=MF87B{7ID7@ts2`JcQ*x}UjRE-|ZyUenF5s)N5HKBe*TVdEdBVUCW!sV2x(s8c+11H58?FWu?dWB+3nk z%+qSX3A@?6&&~RP`Ws03>3Ki`*nTM9O5Nz|D;9DRLK}Y9nbE+1HY{M-Q;dGf%=ABB zPiW`f;brIaKl|HmawGHB{m;-U=l*OsJ{G?-=>WmwZCh$+keNTV*j)&Usw&#ztDYXx zY1eBjI8%6fk>7n1-gWXV1T9roqk~SeB~gb$Y5TbWdRu680Ugt$KfhNzMO(j&XunWs zEb~6@lKffT)n+yNjT)E2D5!xVuzE}N-+B`NqJ5JXpRW5Mi392I-ST0_)2#@u=gj>c z7R@}5_j;Pz6a;@xHjaf&JQanlT23b_p;wCf6Kz7v$NZOy8p$j}?RM?S$)X)TPXZfi zR(TsCot9Mt&^dzrl^PyM(m%9o|H1y?HwJJ zYSuRei2fs}k`nKjAU47lbU_H#<93ymmc{_9M+z7%^z=S}hqKNrU)wJ1DIymb5vSAI z>KDF;K)XU6`ryF>PFGn83AB@)+06gG05;Lqj>g%Y${@sS((YVKWE(WG@gOJXC0M8; z0FHL}9-Mq#cwl2*2A;kIkaTDlvRkTURT=UXP<)2e#!svTwOTPE3d!lSt^~t-L2+SqX) z6NZpZHMpLstet$*4C?cW2rMN{sGM}){f9i$pnUmaj6{D=IC1xyAM|^O;`myd{IfZ+ zA~N+XHU)p1^S@t_C15#PY|OmkBhMIFr#I232&Oj-Hz!B+6`|8*l*+jeu%u|m8{9q? z{PYG(Yz&=kjUY*(&)=T9esSL?(OU^tc&A8eAamx*bQW(ouzNfg8049yra&e19)-nt492TrtpEz;W=?wFP>Mu3;}+3MPJ)zA;G9~%T88B$&CkM9G)^a2BI80 zInUGY82!G_y>B_#D=9U{oJgZ06x~h`5PN>`e1C75);&^6X4rnC_@cH&ZDb40kRJao z2{V~2(~JOyxAwIhgR+L3D1r56BL>o6uA#TJ-zl2!1w=m47u{U7LWA$y=UQvSI5IdZ zAh~!d1$HlJ^F2{a6kBDrHZ?`Ju-Kq0d`L*R07_sam#BlieG9Zj7~U@DO555Z@J>&{ z(i<8CH#axq>!4fok^W6mN>&hw1vT_%5aB5V1O$sxoMM+etdk4Xv5JeW3MY{X?VeCh6e0kY1iuAqFwB2q3s|QfD>se2*@-eh%3in;+`pQq|1ru@f7zQXmz*XQQ_= z#7m-S>Ya{%VEEo*1NTO$TKp9w{hAv2<dC%<51@2%osop{RcT5^X$rT8#RzBxIu|9%nopDf(BjgU8gS6STp*Y#?MT#@oV z<@z=wl21kjs=&ve!-EZYk}WzNc~lQyxV@@5y_mpR<*$~Acy@9{Q=u1kxj_H7pODAH z{5$8=(UzWn_;~+Gt5;$gYB=?yI!j5$1l2G+hPPIs+T29kEYXYZja3 zx#SA!g~QA6c`{TqlP`+*}{l z_W$J>u_*ac(mF-RYFB3SK$_76!>;)u#c_PN-*(ZRtIl?VyKf?PPrvKSA}bmU7C$-F zfIkMNS>?jR&4B!GH@d5J*HZ4S}-bhjp48#K|Vf6 zbrAAUpBs#YiOFU?^&H^jZ@B@r#EhWjVPSotD;%GkY?+$+K5!=i6v73#*#>=y+S!|$ zSY2P&hkH%ry9i;^gi?<)ySN?3tuSCCQmb<*o){6k^#KXwN_N8Atk$(6>RrL|Jd&E~ z@~_mpsvJ!p8}-}@ZabJ*=c@~r@|8$A-O02RbLsTQ{TlMjB;K+^mkj|jDv2wheytMs z>A^PqEC`Na&$WN~!0=PXPe6vlfpX`-V%NY^B%i1V-fPc8_lVn%ky-_UBwD|i>hqgm476y3e<*ePc6V$n z@NQ7Fsn_tMG;!qLuPxc*WLyHPP>>+{yYp54dP-{ghd6Ip8VZWbtH`OBf`uOfTfCFn z)8uBq;`4-}k|yWJfA+S%xou%Wz2|nZi^6pGEL5o>VKPpC+IRN;SfN(LGyG)wh^Sk} z6?8=GnS~R{7+>_qE8a2%2lMUm6c%JrZ7B?W=%JdYoZqEjZVm5f2_9Z4rrc$;`w-Y> ztarYHU$lK~Q)F+E<7FK@H0Hq0Yh`HdgByaHb@+}1pLwOuuk|EQL!;2i8yUU+&q^M_ z-Z$tyXr&^INGA33wvnwkza~n8> zXEn+Z+Y!`hw*ZhVWpD-!3@Sc8_2rHD`1n{J8*-y#E^08j*#fgiicma~3K)$LQ{xBh z0!1y(9GEe0?J;7SG1N%@U>O3i=3+%w<5P*PM5`N7yH^&&I7^`WRQN=~^N#eth|KGNE_gkg@Z^;jdwOnp*HeYpCy>)JjsHm8(PuI>}8CjTU za98Mab$03qC=!}m9UjUM?iWWU2oYDWK>C$B`=;FGd;dvLE1iTdR-tYsUEzfjZmwna zZa1n=!4JM~7$~-3`004V;fAy;x~^dq#c<%8X3>W`SxxZjAB04m8n&?&sWI)6xQtbJ zuwKWPAv-oJ=$r@>TB2W|SWR@XG)Ct=I6a(vtI)8$exLR;%nE!h`HD+LEdA7D3YpSW z9%)T0{=v6TCaTm%)-e(Bfvj#fAGdVKg4l`;Rk&w!8j{GaxkiQbd1WTACy=5<8p8`s{b#Tp7sM~KvqW>(H@a10b1ut3yT`lkR(H?^!Ra=_5t z%8GelaBwLp25@_b5%l!p&7o|3O-;?2ZdX_HXJsW$ ztjaTI$~$^nP-O^g$%Aq>p*XiSzB0<*VrOSJ+%9CYb0to;!Y-eOoMq^GA)!=z3C;QW9i3c+KP&Lt6yj#t zC7V8HrG<7HHUn>LT>P(_^$T`9bPRg;HyR940$4qP*#CEHdrJyi+Y6x}{BcDu@=Uw= z;%EIQMvM+2c2c|IJ38-OFR-$=8ei1iZjUaJmV0c|5uU@y?`&}xH&j18r{&v-wERg76Y89GHby?;1s{*c)hW}i@~Z+*dfpYT|{3I_$h zfjC(9&CSQsBFtJCZ__!tz{hn) zk^j=qTeDm#W^0`4sdFTL5$$gpBQyzRefinOohBZ-N*dWo;X*wI ztSn)v4o)^UVemIDPT&#|5doVsLSeYDxcHgi*&;sJkQ!qa5eFuarew^*)!w|pffW>E zA(2v87zQ^FDdk2~R8%5W zhYMw1WPM>$5;=I`0}+R)!ZQRR4N|8R=DAqFbAtkJ5SVE)=&y}?etr(*0x{d-dC5P~ zfBXBJU|{H5csTVSVO{wX)`DNz-mJHppXPT8$^WpHz{maQ9x z)Xoq2MJ0I|X#p|~$ zzge4I())t_B2ONey}A?;J4hA%zjxZ9Gpn2UVW~kjy<3jYEBV2< zySTgiwwPV>jJ37hf!w!!%cx!FLnqFomR)71)m1p;z;4L<93X?R&TWl4r_a2y$aGlk<(LAI=! zsog(@y3B6L&WQ0?MdFt;3rAC^ewZ8R=vJtGHq~<0EpzXmTwD{AkffEAgnM|vPO0<& zKkNlx&DXx%1R54bCVFONO_T}YQTfVFZaCky6NAOS%zwvQ%vd&mwuDnQEJZZ!xc2g53jMe10^w`&*6fx%MUh&QMx*%80Eu$E$v0 zUqRGY@G|_Vjf4&VAraxg{KZMq(3is*4<}x{!WJX?gC#DRhpE~5l5~_Dc%^UE<>~DC zjr5A&#qJ)x-rxJ6^G0`N6b-S+TZJU4lPTCUSu4b^A1@ubI`)wK{haVEtY*+>>_gv0wB34CNeg9G5U;F7&{AX`je?JlRdX@TTE7HHyP`|ly zUOd{jG3nO~MW}wk4PlTgr8fF1Y_~V!`O$0XIZU>1v?DrA?cEhI!)>?y7&=CT#I7GSUwS5a9e)f@CZSAfiL7*5yd5!YTr0#IO)$y|EUhsH!Rs<~Qme7!ZXCf*CU=4tDnUka|=7 z1zC9s7#YmmtVYFZ0H?^jkS)^N zm@Xn1V3p1U-7xI;eOg$p;63M9?CI4i!O7bP;xExn=NAf+?l*O6)IAw1h+$n5@-m;k zGo*xzu>?N$RLj(SKnD?Vn%+lBN&AUMKZ+O4C_@nOKm^IhUgL?yUV@DH_iK`G(n z&KJLM>8dQATHrc~?DcIu!Ie(FkE8J2&UnG7L^b>=hE@E;y#K0Of!f>*Q18G8th6kc zjd%Bi+q^wIU|H+`sdq#3b8#lGLuo7-HLnu;9S!dr8A#J%de*w=Z{_8Wv3aAdiOp05 z@^Ck*1$!yFhflT%m`?nar@a3C;gs3%vprzrfz{Q zy3(glvn3OlNG|@pxi({>?XeXvTbyNSmSB%Q$u3?+_JO^)r8n`3Y?$l)Ffs4%)O|dp zgwlC+*C;BRNvwnGuO8Cmve0?))JQ7oItE4W+t_%ev8)AC$m%ii<6!ueQalrpbBX>O zl(3JVrzEeYh7QNg*f`hLTnaW=q=1b5-of&n9wEde!4aWwevQNilT4VT+?$D9*-T7K zFB7<}o~Rn~aB`;9)oG^M{zyxEzcs-nHA{hnibdiFPJ@(+is=1fqqp#*(a_MU!SnlT z<>0Nldd^>0Vu;`bK~5fiDgw6xNiNrk?Fe~TTU*v$Ay+WhRI*9VD3Y z`XGISJL0R!qH0};Vg!K`^n^8X1=T(|?9JynvqMQggOEjQ2_5BM`uV&n{#;Fg11nYz z1?Be&_NAS|+=)YUkddS|F+)xkOJNfzg2;MIj*baATT4yfvQQ(Hs(=(vO)cv5P*dtN zXmzkdd1(H<>rC?BuPDSpcvJfP+l#GH+eo*;PacfO|7LRbJXrh#GKZ+1z7-~ti^DRpg2B(>X!s_G zKfbdVDHmc&xGsHtu_k`@ln;Kp9G?%>4MX;iu(&fWISD4Ur5KCFXHEz!K1HaBtsJ+k zPYN|Do$@Z>+H%AzrSZCqQ#*(fN(o6wLwz_Q-MZh|Mi@yZCT>fM*^{1s3l467#ap2D3-gY(FSu%AWA!%Lo6 znl57e_0o*pfu3U)Q1rnd)E-9hW^Ly_5=cz*V6sJ*w}A%s0vUfTzsg zUeZ=nM1jjEIOc=*)k?-KnRFT+0h*54dSiJx0BrwV_z9S(C~#&%9*;(@d-dqZNE$S7 zW4WzJmWmD8_^=*dfz5QqA}cir=aoZ=;(+b>j1!q!7BRR+zMiP z6$WcHrbggY1*sv@8;2MZb$))n2wJ@=TECw3GE?m!bCx|Lo)_FVGvSeZ{S>QshaC0RmCmW)m|-VaP*S(oJDF!1;od=N|G51&8Id!TEt2AiJg z&sX>-&p-uWW9zrkqdEJ}qs%y#SZ3+!#_-5PkfQWD>2*WWqqtA&Qf&lwBpr58jyX(g@OzsCUY$!qUKt?xzz*O<_V~h|(NBREWdWUgtRYGjf=^PYwy4pEZ#)@-XrH zd5B#!4~aSnQLR4F+3Bv1$xm%>TUpJnS(VUFL`awJXQI+EuYU_wpNejE@+J3mq;K)C z4Z0JDYyW&*f7}wh6ni;HukdN@_vAB$nG;x!g0s9hA(ekr#(cF(z&HaJ`ZB#~jNnFR z>EgqUs(v-=(npXPOy#LSS=JLu7|JvW3Ml6$Mw7)o;!52Wuo^I ziXV{r@LS{APw!d*M}8!55jMAeGUa^a_2Ls#W9G+#AN)--zPk#rC$g3Yz2bs;2jQP& zcw>I+7od>T%OY@rnjQ%8Qk9?lLu+gKKZS%qou2k=`)se<KJD zhpwtQBMLfms;0$SZ%bwu!>MnFQL0u`-_{b-D%+6MOtw=z=)B{sT;y1OOJeNbft4ld zqx!9WD+hWcVOwhkmYo`Z;Ap%Z`3GwBy?}s#s=5P$@kyg!pS5*MVt;OZDviJ1f=2ew z!0M33Qcc{C(V=v=&hb9_%ugxM2uKIyCvg4Q3T{8~6JD+o-LaU{MYVdtEKDR#O33Kv zHSzHNCp;F*`T%$b1}&>}hV1u+g!EI)%*=X*hC_?-?^M*}CL}7%HpZULx|76@{C_I8 zKh-^|o!;JX0W=@pI?+yjqEQnZ{a;;<9~6`k!;7!D^L`f#2l|CwpmCMdjnA~8Hi<>5 z@?f3k;e3V|$%_sOY1e>RA>vopwTc)97N%w?3qHp_MSpm=i`RpbDht_*>N>(sowuFr z>@u?-C;buNdmJhv=859u=}x3`bS2w$;RS*mo9-)C|5*-3UbMc#`?93WWIg>>GDTe- ztQehY6^G9H#qZEbWSDl9REJ(i6){S`(kD=XmPW3LrHJd>JAZ#$9PaV1ConE&68_s8 zH$g(ew=g)wlQYg1jZ*{J(1Dx;9qHf5$m4lb#}QU00%@ri4ExpT@c<|?G%{lNd8iyc zF`*7BuR`{0B_iS(Moc3qLekS|0aGXHimxbXZf*`m7%C3V*)ha*>gdd-NjMpRZR-8{ zgQH_Y;}bEnPNTN+OTzkNfb&giOjvAXu z?<37AI_oaJ<%86Lqy=;J6oKco)=ngO!c6IY^v!D638Tp#+soJP_v%?AI{kj|=ygXY z#D~S_sLPxhKRDB{x9#JCj|R`*zw4;4|7%sD`PZVzV(>!%Cp$h!kA_g!l%F_04EO(v za6j-|&F;9^eUJ}N7>}nkbm@SiGV;&QN0-m$bh20Yun#+yR~Y9ew4Ll)(-ZO649Fen z36zbR+vV^=ZnZ4q$eXFW*gT_o&rHkM}Sv)0V?Sv9X)*=78L`6>&@ z(Y$y+@NTKRKI;gOTm7hIyP<3PD)OTc-vK5FEK*^tfbgD1N`7{JnRgneq5=V(N9p@6^*d_-A9Krg*q9-0~kEn#^BaThjwn<9lbDnFe8H zkOx5LM1$~m|C9cakylXl=Z-~zkcODW1XEO|hb4N#Cj=5!P;i~+jx{Fyso?mYsI)2E z73AaN181|%!yPy1{KKAx%gZ~&iD8YI(9;fQYJY(ie^-YwdmJJqt+BDO`2sRcDW5&V z9UdNzqzD5O3@{}Ez?I+C5wLpzBu;$r{pGVaR903h7;M0|($d~pS{l*@coDc>E3K!~ z>h#$BMoZ^4)3P0Y2T`hxCA{TpSk$)(d&5^*RliujuwdUci!VvNZ@a>^`}K?utzat= z_iy0obgyi0U_}PDj7(NBEdwKC%dB_)OUY+c`m4|XQdAU-dBQ-YeO5|6^ zOZyt&W`=XpcymokOFKZF5NRrT<8-7iDRvkQ7fmOuW@kH^IQ zV9RgrMLE8Km~c{G;Vt*;?s%f}nrT({li@KtQZOQLo@6dF;VSjsC-U^A*F{&C?AYl) ziE$Zd&f4Ew2zEp?{0`qXTQ>?(e(K&D=SkwduNGz$Po#w zZ;PL-uN~X)|1^{b#N5nz`{t{@(a(>GRNGmbqk`}Z0-Q(Xo6za^QO+w-#Eie}pIq2x z)CHt%{cN5(VlBFkTl_)d6rlcGW3I1fc41OjQg_w(bG@R!Q5}E=Q*v@-nW$4WPMYJN zFmSJ=@3@Zml@#BYYb$3`QpJ6jul4#CbM&v{?PbZ>aKUO^nXlSPje4bzbY583?|gF6 zj9O_Ex()l)F-UcR)C!G^CBDax31Icp4_rIP`(Qj~2jUB5Hbw+BtRi%EbpIr&iGe2zu;_viS1V-$}GOOzrVZkhqk*Tzp$_afaxZ^Vt6HRsJ!4b z-qaufT;@AqZ2&XK>6k4uv$3@T8-?k99Ekd^uPy<{$;a;jO*F9V8#_DS%)9dO@%6*% z!`Q?`-i;3-2SI#5ZdDX0Ffd%$xsAefkM~^qVdMja8wksL6OAAGfX51N?)>K<37h*2$_g=k5Erp3yO*;iv*sKRvGW84k?ySMf zbK~IKe>lviBrwl>IEf_6b}{d#Ch*dUP1+${qRD&ncMWwNArmh=+Y&^;+*@#|x#cwYqvi==WOf_j@z z3SaAp{ZhB1q*e*SPNEkmkZfv_{0>vl0+KtRA7X=#fXA8?Bc1FPi+FVvs2 zvcu}Fv9VF*G&C(n@04MUUGF~rtRO&M&^B5S1*IoT9dib1ISZxa2OB7;4{86{-wA!h zJ?NL6C6JRB$ds#+`!G*bMU5tB&rEl^J+cggkVneURxQ0PgoW?fVRYR;IfhsoF1_cA zVQ5RX#W;&ZIdwMCcs&4(w)`5o_4=XHT&-#fwW7Er8Jghrod8i+6ciMAK*_)ySYa}& z9lzM%5vf9lu<(Ad(0_2{=)YUV9qFU?$FeV4#uR=Uh+YiR{lYlGuf!2F--pT8Uj|4+iueSBi37LtRw(kwmyXa&Rvw;tt;O#_iP6WyJOnl|h3P4(WEI#vtT zxZ9TVvcdA**pUrSCNO2l)d$c}KMM)v)QcXRm9bX5&hva9p4i+m=J;zwsV!TNkv28R zlb9dt5bIg#JXdBlM|1g4J)d&bB8m#%!q#663{On9{?3_5vb1pFm+Y)X*aS5HHSSf* zfnR)Onp)sF9l@8E#MbF+S)G0AUq>W7J_cNGq?@H-x2X8u-X1lu>lPML59;BIgUKO! zqBp{D9=sDl_yC5l@-GTtgMs}1%WUNF&@nJzHSt}6Eh;L?dT&X*o198wVRaP^${moK zchKIA4zI=_0^aLhUYDH|#-_8f1pT{L6L`I=YbPSJ(aX>5glf8i$fDZ?4h(|J>0r%Z_SC%WN~~l zY3@>LJt^2$ei$1W%N2?4zz~HdD=VAL!ax-!#&Bk#ng2b1@w2{?#cXG5+Be z&Zbbiz{W)oLm}{M_^L@m`zG8%*(Hy^r+U8$ULiHs2eRkM@%*;U&zBUrQ^WMTZ4?6w zS<<{>Cw3_nUsB}U}PU2m1DVxj!jPL zgY!L0cGvXuv^477Xs0u@AM-6%`dTj_qx2 zkx-k7iAgTyBt*#}^U=HYKph#dwq|;;l2Q}$h40s|UqztGRa37pAOAxN3;ai4q`DKt zo-lxr9H#5cyugf_8gk&>1LT}xP}fdMPOdjzVpvpOuIw}mj@ur+MvC=2^bf$~9TH5x z8~iB%G`A8P599d7*~AKeHt%gQrq@L9E&O)FF0#QtnyaP|QyF9qiYdK4zM~nP=d<(T zU8Lsc1LxCdrQBhqk-4+awL6Jxn39472j67I`V8p|KKIf7c77kYVF08dqLL^)-G4?{ zcR3a`Lvfr#BKa1cmi7_uT171JyV%C7Q$*b)&Q|-q5mGY5l0N;r18REo*;lhw3AJwS zl6>9|a~?`AI?daP;D)`jiUUby}jtU`9b1qsWZ_i7N%^0 zn+QoU+cFa|x=-2-j$WQpy9WHvxrkVuE`zmS7cy+>lVaYvBZbpeaB@ictki)(GJatS z-$n3%!~ERkKDl=ejc>oz)nU-n^!(7Aq}d14jU;Ezoy_BBlKmcGqUCg?rtq{Wywx#dcCH@cYKo-WEB5&Glssg25mT4?{ z(=^!*Lk{}^>_$*CigMP{8m{oM;lBRsZF2^rFB3bHqVq2RaLWR(pLkRK3oF6Ru?s0t{hpM%*!a5W63Qws# z>c+U2UzNim&(6+S|}l%eQR zA!wtv z5M9aAQl^q5UK{K359j09rpkB{(ffy5;+)3Z+(rM}S;i%p(t+{i_qmmX$fTrTFcc`~ ztAbip?0WuDf`47~885FsRF~+tt7S%P@b4p%lk-)Oo2nv62~a6sDF%eM#IT1+gVLlI zDOaR<{8*7)a39_W=`N?t<^(kMV)JpX_{2m-u6JhbT%i4i@@LAk#133XSoF)QX3aEL zuz@`R(u<&+MC`<+KDuqD|8z}bgXgs})Tzh{E{D);w@tk4rc;+2T==aRo10>ejm~@# zRX@uXGrJd|)+f!n5Zx5O{mFQnHVd0xJ1wUxE9WEE13C-CEp+|tv@9%D_xF3JK=3xT zrtIqOhX=LGy^>-J?OT8d8^^X1U+jd_!mPU+tp9rn06=Fpc+#_J5I{GFKLmF}(|79B|a z*ZuHN;`|eY@_=OzR0Bmjy8%)PiZn=Wee^`-XLkPQ&o^vrZ6hKFY=pJJ9x|sHX-=r9 zm^ShZe0xB$C9Fej9~2ddt5j93C_)RoVCn+=lYLhhnLZ zG|Kx}O&T7U)}SFCZYFoS&kExC2I3Fb{{yaR*BVD(y-bk}!F6UvtN(0Yb-roNhNsjp zv|f&Ob~M*_@Sf_2M@d|4GG250PW@et@h2wn%;4Ll=un_8+v7c^q(2Q*&NY#k+TS5> z-Dbx{#f3m!z%0LPkG^hG8|bgITJh$EZ8H3XH1k#OcuJ8TQI6hDm3&R_<+94{jrCkK zYBDfVVn_+U7h!);&bi+wi@g61PDGx6a}`gzq?{iQF#ZvTALE;jIvkl5S-c^b>?Eky zrFNt=kRaxrUC!z0XNN!#8ph3y$8-YFcn8!RFj)N<DYI3$n-V68t$x8yBJZX*s44?98X)!=qHL_XWvdJE)-N?j=L z@a*jDfH@fg=@U6Tzri112fXT40t|toG*j;ybakmwK^)}=PXTbFFoEzZ5hm*$8j5Xd zW`;+WeP*@$a}j^^tI3eI^F#R$o4|b_eUyCib9w)yszQuMl0husmVJUZySh$?Q2ZzX z2G-PsQ^|zXTai=(20t`*F=8&R*6j!usVa*2wU#0Ea-RvwNvm*-Kl~jzBeGt=b7;ie zEni(Q0REDf;TYGnsXFw{2*4nCZWhCv;Hj?FhV^3!w6vtR_fYOYwOmuo&CF*>(($o zTRka$n4cZO>DI8rQ$JN3eo!w$Tbqz#d)`G^NIz5GE%efNjQ7czCFR~Ah7!3X@vdxC zcp?iG$JVadhxKUIo-ho_)`jrx@KbfoEzCQQ%-!5KBq#hid;GeU7(wU1P)p;kdl<}~ z9#<9NL*vF*eRKBS+dH(j#mkuU=MTSr;OD!P8V?Ihisqy9A?Px!M7$rXQCL4cM~>xG zttbfC+4NV`Ru1UX0i$V|-z}PD`Hn|Z>ABAKIu_~m;TvP)Y|Ee2dLAO47xSxG65E9` z1l*#XZ+^WxvDf1Sjv@Vv1GB6>wSit~<-$2^- zNF!k3=_8bfk+IThwnCk)rKQChxF8aFI^b=+^S76RS(#ZG*13A{$`2pprqNSj2mpuK zeBvHh3P4uqSA5oZq$dVH|2;#)wc`w9Bu)&zLJ%U5-Z&x+wbIei_au3^e<2(rM@e2o z%P+S!!26+CRN6@M1rly)i^;9E$~9br`&EK*Lv( z^3miaS)k8NocDrvV~7K)><_ETlB@o5y_LdD$~g11x?WA;${nr=T@$giH6MOnt^bUN zpa*uzV|KV4E-d7d;|L->6=LfV! zrL5lSy<-Eo^;*l$7D0T%@6XxAme`B+J~ST4Z3Jui$#`Wjx|-~MS^5Z!HWo%qdJ2b^ zOJog+HGl2@(G%aM4wf96Rz=@Tj8pLt6u2ajtZ@nR&KjsdB~PG~x^}&Z*^8O5!3eUV zPyg6|9cjp%C8G#!2TT{O55KUBiWd?eFiaoo*azZ1`n@!|;~`_uOw`C?%1i^4KS;CH zq#8U7ulm;;!X`1?0C$zmcC?H|))>XmwD3lD9G@iZ6-S$Uj<^P|nV$a*-}|Thoh*;< z=G`*C>SSib+;|2mp%GDeRT$SToK>L-KK>WSni=U8P%+MqHgj$8bLd6t|0rD~gLn;G zZ9G61BWGhCf`*DJWNBH@Ev^P%#lh;}-GYMdNp|K}U`~o$8ANI+>5E8oc7!Q!OVWhF zy_^Q2p}@uXoS&GQpC2ONdInTAuRVQWiUZfp^t4hEpO|>WG{goeT7d5;hF}87=U~=Y z8D01|1{8nIkY_tFF~p7IdbB~dHLcjd;llSVw(~nq1g(A2WXkIoy9~sE1!CW-qGc+yvqoQ$;X zHf9Ufs2w)4(^c>9X|6vCm0G5h#CgdChlvv)8q!lCg_z0p&0tzg_d`qkXrT~99~`sloQVt z1Lgz0WNhR3mm=Bdk|=r3SZ?n7H~-t)(a>!g)P$nPCh`GP8pLsa5g3BukXjKKZ=N`r zxX{NsJHM~BpYncah~+ic=?j-DL=1s%WW~Ky&GBLWN@jW0*rk|AG*^p&fw3ZD{Gyl) z<+00Y-CsNE4~G2*{!C&w2?wCzRaQ_Tp|%pMcj`ClsdjirTr04Kms<@cTPH{xzMi9N z-&ey#QM_b0_Xol+qpRfqj;YJ|Ss?$26cZJvANNoKnT;!hgQ{@@5K}jm@DiI!GOVj$HC3QTQ^ioq(A#H1vrTZ!PJ%NTRO>}|^H}ge6;;va^CvK?m1qu;Z?khy%T44f70d7Q2sDKjfAXh;}M+aSt zIu-P3AWl>mN2dpCzL}XBozii1^L!*50~t66z%J34Iwur7_02lCimF^rxsc2Lfh$f< z&YitIh1?VqTUfASl5-=&zf#SAjqq_mON3l>z3+=IREjE#N^zRkg#P7%IKa8`Hp(!S zVomc}?7;bBQp^)Onp-q&)ft^{=vdG~f`fI8jC{j&@7n@hQd5k+hxP9p&i|ZZ)XM71kGoNl94s@>PWpTiasLD)DM`xB7p-*9o zP4;n(g-@)Rjtx68jau>IvcDhSy$~Fvo|umbsduM~HsX7es$_4%7#RfXwfMz}TwlJ9 zh<2#U(VY2&0gE3*Bb4tZyeGI=wL7njR&A9(@nBzl#E(k)x7exuzVq+*JDF!{b)Sf@ zoU6$P-R^O4)A}jc5~eZ5ICc zGgbCnguou*=pwVLR#B1sE8pw5t1bTBw~tXJCJHe(9@9ylTR}1$2ad8n8Ui#4RZfR2 zfW^Ys{|RX_2AOTEhviC8`xV-UM!`tENLvoKgdwLX|X2AwZv)<)xhAYuL5HPE( z7w=?X(DFMSAX9DC>0^Nf3+xbBuc|uDLV_N0bvizdJZOBtoa}(KHzqC8)roRem_D;g zQnjgI*aw?PCMLO=fqcl8K+-FrqAqvbMj+G0fW^WTVu;K_g0u$-HdAuiz>E@LDo=LR zIVJf&<(R$MT+d1M`Jrjp_$M{$>>M|jBQgn$=*rbylB3%sfIFD@Rrp4oW^hgTgj z$)7TsFt+HG;y(L+59B@K6e*+gR-G2g@>PtY>C_K5c&ZyfVVBWi9IRA6v5cx<$7xjU z_(w(|{Xx(XmmVZG_yB2{)}ZQHtS)+M36o^fhtVNo)m2zj0{OfRmt`WB>YQe)fUuMJA(M=(!w_4Hn-R%3|#>rEhDMkvdqpw3+nK$3z zZ9Od!B4f(flJ5&j7;S6;&GU`)`tNfj>+3FF_GFPasZ$;jH_lMlOx{qv`_78dsRWby>Ux-5uwMl1c~<)xxM zO2^oO)wpq;qn_vuMKms1&mAQ84YCwEs0zvEl9MClts}H`YxzpYxKLY z#WW54q5OP_rja#OdE38A+`@JMH(-A+0>9Y1Ul2Ava_sIaf0z*-b3CxkRjWv2$XCV|Egm2sh@psefzKF2Bn%ODK|qZ3Yv4kAvc17l3e zA9V_qAhm&5)DPD3f~#ZkKtmA`69Yji0=!5Wuek+|PeHY*QU=&&rkz7bR-Lr$`MU+W-5y?%Wm(7!xw<^oc69jYSC3|mb9f<<-pua^H{6Bud2{m!CG1{- znFmuLb<`hd@eK@9xRR{WEwdH`KDX&b^eP6J@-)A*?%$Y6|K?=>DMX1#M4wKdj5*j4 z9*dCzt)M5H_jFB#57bZ_@In$KPGiN|suxVj*|n@=m=b$mLs%H)Jv1KYC5s2KKt|(x zQ4u;!_Wv6o$~vQh=6ff)qL*UyhRdXpvg48|LTYjk%dmG|9y4w>9mJ@&Lb{EWWl1G+ zc4|Ymyk)#@c6JGk`FtQ;{_*a`^~sbiA^Pz1CSl&j?yl4biR0&{x$7T592q}l1X>J6 z8SKZh{IOk~WG`)1N)bBYvoAr~Qv?hK^h>iH-Fg7>MPMkMZd> z`oB?#il%}vz~-qH->j+0VXv>WlLA46u+DcqWxZ}7n|pv-f{;jl^7v-+qJZNLb!sYM z;fPtU&wgqWKHoF(gN#R9Pla&M3oR7%0<D3NZ>=T(eh}RI<>lo_9gnLp zzsa(y;@hCON}|#QQ??ZkIi5n$5tUU*5&pxU{Z_$WXZYl2oEXr;Ebr5>-L}WF?>EzX znsF4@;X#%nP5uY?U;~hRRpDA+IDUDL&q7yEdP=NgDohwSX+ZPp{CYFhwCAkGsjiA@ zdgB>FEc?xWGG?(}0XiTv%}nv7p4LGaeU zV2YvK;?21GvEw?Z&!N|^yfouiajiSP)Wo0xol#VjB%`)-UiCRf>~=hcmhdn>4(1)N zBsHF){Z5J7pUU921^Qp7`_m(r<&ojVjZD_~g&I_ixNZ93PjJ(v5Y*_1ZM<+Px5C?) zGGOJ0r%ObpZ2KFk@LS#LUz^5Q#r`Oi>KD+76OphbbV z1p4tG77SV{Dk{>)MwkZ&goQ~8cVPM6`KIk>Np5a#u~9Gi07aq%OiGqhRX2cB-%Z{p zu>kfez=&_`mpg1v*+bGxPU^s%-O(}Ojen(Y@~`E4Pn*oBofa|U$0^9whuQ{z_mXcq z;rH5rBt<-?CKV)~Wd!OeO3_O5y*-tnAs2zF2K<2pe|q)Q;$*2fyqCZUXanazfPvVD zr+B_QXk>&EHH%br+7w-v$r-OJR2sjZ*9mRB(fUdY`u(rkH1$D}m9BU0L_w(BFP8Q+ zqXoEQ<~Wq9M^%Pt=HGHbeA%C3eK8=A(HMA-RTO1(Hw@g|wbvMx(>zRwi1-Zj8YJ$(>{qL1Onu)R3sHz9o&_oV|9*C1LVqtOd#&_jNFOZ}nC18LiFx{tUrVCF_z6Tt*L6)mU*Ruop zZckcZ%JESZ!Yhl5iyhAnOmbah5IS66kahvkVQI8It_3yq2L}gL$8#`2fgy*Kj7;8* z4cxXJfhPd3M%7=1d`3uSNXdMCx~?w??zhc@rP)|ow#Zn?%*;Cw(-VDP(#D1h7^UjV zwyzvFK@8XgdTlx73^krFT#)i8JinGW=9mATQL!(-qwU%f@k+O;zq)(!ZF%clU#mXV z>3Z-OTIfdS9T%BQgU zoH#t7>C4X|Y3ULreH%@p9DY3#_v3(2*)^L&5=tS~e~6&8ajX{UnWQ;KN+w}o=6v$l&=4fS!&2nV#9rr!b)8? z-f;45Z-mtE>Y3=3Gq^m=@$C376`kuX)yG)sja)|kMqbXdl$tl4!~RCKfP;zJV_S?^ zZx_FGf2HhEZhLOd4=Nl*&xe?VfwB^jv;97fR<1AR+pQpDhFGN!OMQZ?wag@dpkEkdD zU!40hEE3ue<1pOauT{ho0^!R9?q|pTzrf>6IYMwl0di-!^o2TDFjD=`ySMSj_4okQ z4)$iu_cd-sb%_9)2--v-)_2d(%^|=qBs!YOXw}HfEJ(M-x4b)59pu_|b#>}(7}~dh zECuJ1N-%adSb@mg!a~=`C{s>3(4h3NfHwQ*k>;droF?HmETD<8hrT6Fcid`e_xXVy zTu0P z!oOZpje+bfX>*rqHA}^$AJv0n_CIRRirj0Ba*u~-9F6Y+zwX8>-nt*P-W~?0zpK+x zsRi?K`wCunPBj!Wx&giqSQZF^4UB;fV@;j%y^tyU)i19TqcCBEQdGoQ=EAx;@cNON z6Tq^g-XoUp{ciRHA8mc#&U1;g5188g4fm=I;Q3?w(ij~ z{Pz8ON2f%ME2;%CN44U4Ka|}s&0(M5A%G?O8U?yF9r&6=Pl|4Wboj2_iX?Y-9$R*^ zPyQ&8KzpoC@!J(THpaq-g)e`3{Y?xQv0WF(AhhLG98-99+9TE76oTS?8U8imp&h3E zqZTvfk>4}Eb!9hgYUfh!6)m?(T)3=Zl$qq#wT1iqBpbKOuSvc0{^>gt>-(a*Twl`P zGgnr;E4XG2>k$6ss<&rioC$dCT7t{p45IK5k8(R6P8S*;taWmIa})2ErDz<-HRKOv z@-qtbJeqXESsVbAm>*r9OaWdeHH5`6m*=Gtl906Y^k6_7O{$BzI3^Yr9yvMmom_|y z|9;;Clc|QbO~@pGwiM=Xxa^V1-9@@BO!qbLkx(U=5e(~n0^cW~;AgdM!d(r>4#_w{Ai`t(3s=`QPASU8MC&7<)iw zCIbX}jhYr?Vqml!uCveH7nvrQtrcgG8uroXY12i+0|sJ@*-{P@+Y?DsbMbkv2i!+g zejZhS{aHk7FiBLs%MEZy*zqJI)?R?761Wp@T(0g66N$8moWHBr;UbbP<{5fA*I3Bd z*^y5K5~~2&2BK?U%Ck#4MB`X9>b&CBQ zlp`Hqn8JAvi`VPU;N4m{%6LFA?NA<|YV{0~8raA8XK*Wm=6f@F(sxbDTB ziTLYnJ98{;pHJ5^1RR)o)!&Djg(U4ZI4mnjSj9dcoQa~ZdAt9s;Qz^7F7*6l9Zeyk zSBJC6x=Cg!-Jd^<7ij$bG-%WDvk@y`}o@(U!^`$C=^ zn!}~%IbPvcsX(wB`|RMHc`xaHwPUyh#=AhSqafWmW85I!e^0bUKNahtn~JW0qV!Yu zGgJ#+Xz5;7E2BUw2wS?{gH=U|4vSFB>6)g20erx8qQf>fHuAzFpFtUdG)7f5tU@Lj zDnRTZqNWDYj9l4&zmuUHdi)O$UWGdryzQ$XhHP0{3~)mj#Dn3baxW}xZ{5D#G(1cM z|M`F3GI(Jj)>#OGoEF!HbI~nwF@dWFGMqMuhlH`q6@=wTOI+C0CbX@jZgiKmf{l=6@^^v)Cl)l8)Bx><7wLM&oH)k)wyQ`QZ2rEbEBX00nol;icol_VZj6RbJyell%k6GM zbD*_F*_#C<6%_|ZY)Kjz^b<0^e;57!+eXqoWW$rJaSQt;vYOuC_~mCYuP(puZ^hpN znVjct__>peE|1X@CUSBK)995>ESx)!_`aP?8}H3_s3xOS78qL1$2sWj?vy=4V|*<>HKDt9!;2jo5_g&d{izB+$3qMldQ1*D#TNGdY z**@7HsEn4L$)8k9J#MvZb&gS*zlb%14v|TKW`XK# zrP|dk?D`kNj#W&vA}q6*r)#N5Ozagi{g+>%u1qpU@9F=|9q*bI7Y#l&7*s}l zSnt0B&MJW%#}B;&V#+#-hngD&1KBZ|JmDENDJLK~su^!ri7YlBRlKCL-kNkV*Qy}t zskug=rfZvx4&Ftw!D2?;WrS>5?_5_fJ;aRy#Cp`_F9ohkM40D&BR=7l*c z#x9A^oISqHjp>Jc9iqYKrnlbCxEi$>GG`>bSRr4FRN-Zow^~+t0Cfi`7mBVcq=W1- zWQY+cy_xRUK8Hvmc@2%+aFS9km_;dH*rCD)Y*V>^eB1$dD09Bf4TP<&Et^IKCj4G> zC~H__qY(1C78KM5YXZMEy?OA3hp79g+T_AQ4q`SnA(Pt}2q5X`L!j-458rRv-W~8Hj?l$X#o<=@NQpv{d-Y{Ch)$iz#X-X6$@5qryVZZr=P4gCrNJD;h zXxF<0#FG{WPGqrKZ>y-b#4yKtP~yD;YDIsRs`j41czavqhIlHfs>3t`Me#?R8`6i{45)7qb7p`}( z4hPl-su&A**BNs;r}a61ThyZqe3Pvou~%XQmncOeo3YBElil17G^Q@rHs9O4oS@y^ zx<{hHI##8&aGusvw7ROjv&k}lo>P1 zNaXwS#ge?;Yk%0O6X9#uHQgr|(ao8Bko3+St?rIBo0s3m#+thgx`&(J=0`)E3g6)! zQB|yPRy;rK^|y*-;c zr^B4_QDBo*SWNl?aZqCRDR?|zU+l}~a%0E%fj=Z1Lu{~L9FPcMVPR#(qnLE*!vNOm zJ>HLUmN>BY@K(-MDVGq|_ykju4w4I9TI&3-SV_eDI~z|7&$Eg>OzOIC@q4!GPV+(i z{R53-LAcixu zn!P#W-c#}Aynu4fyri~3*&GH7`QvvquT}<)r`z!_GY^%__)M-po_4H|E%{=yLJy|I~KE|SQE59d^jlfD@egcP{VY~P|MZ` z5AGYHYT(omTP6i07mlQKjD-`&ghyhabf`ShB9$ZR>dHvR*Y;LgwZmDyoP=%WS53^0 ze<^~xy8WY7&KsPc1OnoBHkmFyZkZ`y4Ntszg3eoirdeugXBfeErA8LjGqhqikTqM# zYk#!~qDz^t-}DK166+W|8m5*nSgL^hAGoYM7r6DietWA{ zV5L+b{ogTAcq1ZyI1YQHA6F$8(4HL;9b-fiO15^tsgexD{berQxddP*KNzNE3?1EY zB|N5VsM@>}Sb}!{>LKlmX4-zydDr2L>jSxx?fymEKJneQK>qzM3kcZUJrh-osbPwB zsYfsrwKjf6=^9NhSnM4m9+6ZsPe2WWT)IVIyuAtPqt;HloHV&o{f{W}T6P{F;Dd&^ zM{V|ap%?bPN?(DFsy|`1Sj?kG^mc1)&JaUi^6;k{bi+rNOe&SKSGxp7&)1|q(_#*~ zz8?I1_T_SxFr`%4S&=-JGMkFVF%I9Jdr_l}UfFW_iW9Z5ze_D|4ZaDOB~|9{s0O*)j5Psptrz`t-D%Ih zs%hoEr;|YiY4Mx3YpuDBfBx{H+(ZPHNPY--5K~*0AnC@Iz1J)oBHjXY=o`8%#q$_< z<+ut`$Ex3^fvq>fqof%VACAkQ3A_Bo0xqkC#Mx4CYA;mCAe zf&h}Z+`Prt0*Y4*sxbesbhU-yv{r`QXhNE@^;O}A9>wG4x9;3oIMizP^=;C5bK2IE z2L9wA%>jGP)6?l6lcIo?q;HuVU)xY3bk_B-`eX{0_RWl}piUXEeVfJT09|s|4B3bU zo36R|m~_2U(wlZQ{6C-2bTMgywE(u7;lov}fHiW$HPQd$qxN1uUNc?$V7ad>WvlHC z?%Anz{&H-^&)I_2xk%4v&6``dU(?dFgeWm8#ykqHA`6MX>)q@7(+|r@dL!p3{?Bn+ zmzJo~NyXNaBEl!#EUZjoA4|q^M}QvFTf*VUK~u)~MTe zqCV^HpX zHwCkCgt1r{T%tOZ*OD3Y8+h7 zbin_C<)d)mK&6#-H^CK{2LWHga>ThVFAo#$*fgnmnDjq@5e7KbD$G!-A>%4J^;%JH zS13^eGzFJiXIV^urOylv0PU|tVM9FNY~wKI%&nc>ua22K`;Aa|O5mbsyluSwM3OFG zRwOeOlpyrJ3UqLQHPn`f{(b31b3hBzKLsrdw@VMKnzLvv7dXWVo9P7l_N zfddy@2%)gzDHVHiTmm2I!`}t|?m|p!_v*}bjr0c$w81Cz zKNbc1*WMubPg1kJ0UKJq!Bj1#PTZ&K>-@zO9~tvHz;*>h{!)AT>G-~DvJ>QM6h-#q z@Ah_=zP0D@7ylg@j>;GW7NLQn+}k?Wn9oSHML_6&_;H2M8V@Y*PWJaI0g@)Jxihhp z>H$uqs~YU$NOD49gLifTMzPz>$E8dOXBr2Jd%>cKM%l_lbCYcZ(}H;CVfRm#y}R`T z0P)*FXE3*hnid|%5DJ(EZOjDt(-c{o%tSumr@^2g-e?u+_%wDr$Z4~OI-lBM^{=7* zx9Yl%o<;Bu#UBJxz6AR!$<4m+=v((R`yC{3gjNLW|DC6qhB2=OXv=E`1h<;+@qqNw z%^g$faGt5yBaH#QxlV>#zq9Fl!Oco>FM>?R#t?-9ug8`q~9&>pFRW8mu8rQ zA<`KmH7#w{nGMz#x_Ww^aEqno`Xs@c698|Ba!rUl_AJV3?1|%G zrjS*JSqFyH0Qe2X5iid+y(U0-{(fSvalav|;sH(-&#wBOFSw4gNnOoP=S+%%N?K>4 zaIvdHBX%P;JJm86hBoF@|AypX?5le^#>Q{zAFk2dBpWv6#4+GV5_CNyeBYN$d!Kb} z_FcSIFzqWGCx)ocU4lO;?q9SUuNv#Me=g&9C(Y18pU{Mm_JG>cf5wRF9l_$r%&|nXUd&@4gapOY&cC)2E{;&p}E>r%~)$ z_?P$)r-$=a4|}wKR@7iWJ(~TW9L5H?%6P0wJ!KK$4nB+$?C8HP%uhK$*x{lb9sn(MvL#5bW*%Fa^RzGnEvpzUKA_Mm!MV9ID; zZGSjc_JQ%#5x%wW+4!GAPZ%-%nWcafnRJ%XjXdL6!@Y!0M~MZa7L_ zK$?)Zlutv4o0tjA1mNT_lZ62#9&A^3_RZ8|wISKZ*Y{4h{&<7CdpEnO(n~Pwqo=2@ za=#X!Uj)}wsjqxwaHy>I)S>EvB|ru-le)S(sEZ3VajqPEfW!|7&WGcNJh4WIN7f4> za0@^AR1aKir0vGnICw2mmN}LBdRRXjbT7%g4onob;BvGwlpQr>3ov4K^KHq;8U)}m zBsyMVhw~}_{)@tI>b*n5hCANmdA*`R@o2($0~#lxDI_daB}}=)R4{JiQWntrw_X8_K3#4 zWZN!_$Y#ZGVvc+zk~W1#0*|-9BLXwRC}l4uOm{z;W9_=y!{7DCF=^P-OKxbYjbEJ6bJz*re z1+Z<~G>jBe*<4xw6m|d6$a^3Ity`vO?W38a$KYxp-u+DrsI1>y1PC=~RU)nyMvrHZ za&*d*8QJFr$+iGrC zB}03wu&Y7@wK4cSkVzE0Ns0_tzZzXy5s8)*D^KZLYo_Znf4!9nUZm?KKS`~g-gTFq z@rXayJ4}L<4_M>{yNXlnPDdE-tS}v2^PP>7EupibP57Nr+j*WHyMKIf5iQ`Q3)+${%>1tqS_i$ z(9kC`hWz@9va(jNbksGKklt^AJbIWrQo)x1!VMk*O$^Cw$iNbNPKj+fQ#Zb}t!HW) z2oOulKx9Jt_+XYStmj7Pc8}}9ild$Jo6Aixu{CpYZXO&)RfR)rN%h;u zwn0N~k;N`waGA@g|E+CH1&YvZbKLmOBxx?lXu?j4kMDV~?$fNVCuh_o_W$MCUUh)6 zT+e4ToCmAfUs)my;tnRu>`U82P>zf8&T-ZX%v1Ab2)? zdSriOixBf#iRrI;MF%o;ur#$Wl3fNDj%HZFF_(6IM+coc@FEwxV^~c&Zruz{semVXFHG1w}>c!?j_C?cI9oj~{&@i~+nR(~n-^de1CyXxEGA>ZT0s zBl#GY>X&QS2vA-%LNph+ynupb8(U0F495QXW*-dnafdPys8~?(6V+0{i5gTl1>={| zH2-UkYPEOlG&?pv-UQ2XzyqvG=DwptqwOCM@bY8D*l)Iw=C&D#MaX6;2i=>{=+5O~ zE$*KJKOCn}TH=gubk-v6)Jk#Nvdwwvcey>bIq7U!Wp>>2OOl#dj|obfh*VxmXm!x* zfx*{@%RMZ@W!weKZCo7V)y~3aW||pK*0%%Do$D(Z-X%}R7;kt4y<^-Th=_keRJkr<+sxuO z+}*mTCFpM(?CZ-ib3Oe6DGY=kdZc0fVsmo*QXPVEM3Z{+&BxWJfyIm8|uC2ufFUI7?~Wy9MHB|sdIZ)xyr)8+t=|Y=6#nqN>rQ3Y&L%p ztL43V-jY1=Qr5cxdpcdDIbN9+41e>!NC?cpg9Ia^5|!+z90~NG(xJQg-derwKD9-r zYYf?YrlAaXVMo?cbKU?1^cTVJp4>WXcam;L3jC@*Fq#}bHahJ;R)4~dCg$b!X}xu= z>K<6uQvjIA(rl!Wd`Wzo3 zyMi%IiB*6!IlsJoTU%Qj-uGBULdME7O7)AIlDbQVxmZ_(BV5s>a~kd*H3RzMo0q>=7U zY3c6nZUN~A5eZ4@M!Gw`eeQeT8{>{~?{IhyoOAcy|Fzee^EYd#0|Eetk%1}aD#iFwxRHTN&g}V)-uW^d?l8q|MO;M^ zQBdHAJQI6m8pXBa-0aL(%~}DdwV8iv&X#11T-kvoEgQ5{V%}Bs$riQMMeqBofqaR@ zm@>~;Ob|8q$i(7#=>J+uWNhF;xXzP*+E?2Jy4?uB?OLTh6P-Bu@H;<4T~piipOZKl z9#~eLwy4oNA6V|!eu>kfxLOcNFs1pD1cYjEny$;e7Zn>J7EMVTZ=Hd3Myv4)ZnT-r z(6{A_b&^A7Rl{Z8FK?jI`3ZR&o-x7wN|J`3kI)+Vxsv6&bH$(KhB2rk)EWtTvJeGo zis(+iTw*RxY^#v@#s(UoW=m(?^EVk;%0=}(DXNb;0&6dfw!Nc*7)C&s;o>DLx3lwyfBf zg-t1(>)hhYV~iOWk(s~4^RHFjpT5!ky_yQSz3L+u!EW>3R(MAFNYz=F?ovENwbbQ< z6K-jFc}DP)c$|%$T?_`5v^P2qUX+8qy(nlk&DheQg#iXs2Bl@#yhqSlnzp0?ve}WUfr|j zh9Gl}%PKi>^+o5~@iK7O3J)`IVc=eyrJjz_K|$pVX%5>eZ3+FhLtpDnLnvX>$0=JivfoPE@N%I;n_KJynaqcq&GcN*7$@ z6e1AXI!s^2D4N3oLizFX)j1o%duFl}X8kyo*7pcX0Fh69w^7b+WB8Q}3jgYZnh66g z7#qe!q3ve;Zv;{SE0=l`B*@L|j=68{$!`cK$+t`--fLn(YDst%ZsYaAv|9U*opB`U z2sg&>#wlon>2R(Nj)R30rY}?#KoG*c$0FN`D=JXbNHa5wYT*h3NTs#+IW5492ZBCR z0_o8?a1=mCFm+OwSL}#$+WncH?JlJbta}-wVO+k}P8h6@ij!}l{a8R5Z2y(#W%Zwl z>MWSJCZ|8rMHIgJl02?bnOz6#GGj!hg~Eh-58#D_`yxOB^ivFE=2mQOM`}}@TcDmCmjC_5A!jEx(iDKkfTu{?!*JU=?|iqWs=6foK#l=r=KTEp8i1Q4S~KMUBR}NXtTGP35GY_Y zqh_@Ppf+G~85WNiH(RJ$qG<2vC@v`(^w(Ig%a_FbcNkt2wVxk}dSfDl+}vm}2d`a3 zGeY|=Bp$~M1iqY}UaGb(y6w%OLUnJjDr=?1OshF;I)ABq?Qj%VdGBX|xO+w9k%|nTwT13WF!?WNg?TMIe*6oz!<#H)@3EvBlLe9mRWg*X=_E89QKPE` zk=`V2MX0ICZWrOK&6hi+5}m?AKp}uM8G9c58fsk8mN&hFB^qc!gG^14^Jv zIE=m;soN^{`i_hB&rsv);O5#Q6QtJrWsPGsYhnFGlID(s?n8^jtsCV0h03iCflQ-R z{~ol0h)Ylx0M7*8mJ{Ux1qJ{a*mGJ5bS^cZ3saEFKaE|#cxPI(&wjCo5)Y|J5&gns ztyjh7xquE4>q1+Z+o>)bEUc*hD5ntVK<7$o@=tgDAoDC3)y`?i=f`3Y6n&C^u2mHt z9LP85CxnU4eGQ6F!nnYn;mv%mh)jQZis%{$hI@pT9(3PWLPa;? zS#0R3o~uB^(yN6?8y^ZPnoJm)%1=CTZE*~VFnwPWK+3#j|G%j#9gP?qrVz2sMX7q~ z&i6O8bNaF8^4AAD!DLF_(J*%0#*dm*YPS7}Ks8PDaI!wR03iFa&`^MY1?X{-MaC;2 z@1snVtizc#GwBqI35=x|6f|oK4{lPo1j!()j)!FcOBKXz**x}dx)4k%Q(V;mZWU0N zKk~bxfXQKho%-%agSkeJwCp@)X(kdzt`U{jaDmWXO5)U#Z}n&1TXUKH95q_`g-QAIq6FI^GFu zvte^r2UUqZCcGtndZ?7&94lMxW+LhI=0FzU9Tr>CD2!TP>|a0a8Jqv@EL!Ft<4Ktzm}hXh!P zlcS5ie}9FT4Jt!$ZbIBU6SEpjeD};}XJ-N66#iR>jEpQfS8XI>&tRmjt_}Wq3n zusuEZ7iXKefve&4^z@@ZGDti+b-o^K>Tt97S=CcZ!MY(vT`AX2Q%_QtQ!iuE64?x_ zRKdbvZ>Qo%eOvzFo0I(MN&C?lA_ka7i-%xP`p@^-#pRGc`!qQ;QD&463V-OX>O=d; z&?x$ac=XrdhiOgpo2c{0MUdH0SU$Z|opvtgXbpd3l~7%od| zEzm>xKAE6E`Hz?YB%M(Y*RwnSxqkQwJrnU*Zl08G4Yib5YuSeM2<5i-CqiXv7}mkkyeFrvwyhlNYKc%Vq*D-7gdy}-tlv{+vC&K|fsL|JH<+nRrq6Nv_oM!*)) z1*A$4nS`@xBhm+2Ef_aif9tz{pePILj@yXJf8f7+JU)s3T)rqS*hSN})B#$Zpb+kD zM>Q}4Azx=}TUe(aQ{Q&L5V8B+JPK6o6Aj*?=Aq{8g*@dpY`UyMfeZ%lL1@)kk>0sK z;622}&8x{7fKPSsaJ-Qb&}E!CW|ab$dp99*oWQBZIgPd2tfYaQpc3g5W?^ZyQSlTp95etTQpnE+GH`FKBD301?rzYp zM1fCX2x!gJ_3c3bz##BLp91v{+D{%$Qjn$v8c2Xp9j8{-S+Di!Q+{V>cIAq_i^~Ay z1=nFUAUOxT0EDtW#n3>kvtTC#gJj_N_;~Dj32v~+*UsFxTqYJ42p}Fr4~nqSZ6m<3 z0IBQ8GFT8@tXu+3&+p%gOac_Ds`*Bhc>%JGeEj@Ix2Nk2Ed0}RbH=NkKEU_51O7H> zd_Y{}z{qR4fH0Hn=x{rys`ap-0qUh-@8^LTI&ULBED+YAYS|95IpWnVL9}iz}P)a_1s`etiG*D3qJQO8JVoqf&|(@ArFm9T$^g zorPi}w1D*wz`U1)&(TGqwZiK(8fwjEHNa(t0uPtGaXa;T(f!b;1A4QIklu+H+Q9#i z$AhuanS zH}Sp5mqShpNP>0HEc?3>Ye|Ty4j3*^ZjB!W@5#K4xQJdptVV*Pz7QAWVcD>4@7B%Z zG@}y!t;doA*F^y8QOwW>@~;=J?(iCSULj3e1yWbyBC# zpAoui@tIQXTbjHSbA|%OJ|oFk_ta-fDheX-!@<<4wo%RJYzMTez)~g)9+NbNG@@=# z4Y#&RXN`fWiWqc>XcMmY2hV}wthAy+0^qRKNH=}rva_SXqA#@$1uqB$yv9xN9#F7# zAkI??^bLNvY1Y(?Jb+v@ET9KfUqB5W-QEDVIiTc(p$jvWmWBh)-bo<+Od4`G06|e} zU{f;OB$w`Tcblf7{PNDw*i6Dr+yuer*x$3;T=t-C$$Z~HQg(ZKqc}wNellQ~annH3 zYR=CFg9S2<9E{D(UwwxoTB`SCo$pQx236HN>Kxmj&Z ziSf;R03UN}wc%MWHeGx7H2K9olxDHL5TBtYSg5{&mGAF$`P&^3@1(Q3AYtp|X z1WTjLOg{>NU>4)Qya_} zX2%y%p|k|7-hp_PfV?!Zh#bA3L_CXjPyOaGHm{ktAiqy~=YaUFuwUR^fB^*$SI#AB zN z0~u&!!B29=KragM2!jenOGoEjZ73)B%fLhgNh|}zmQ$dd|KHeJSw%%@3yacTxm;jn zhtT~1$&}2L5sbWIZg1T|a6->-MUM(vFzyAqPzXAKfPml)5>nvz@7!P%ATy|`%=CH+o7L%~{9CA8$_i+? z-G+|_Gf*@c&;h1Qx+KIH4pcuDZr+e$`V(o|c2`&MeZyp!uyHm|Tf{NLGd?=B+1i9i zKWEkNR!?rEz~B;Junmp*s3rVwIe%qlJ;o}T_BS~jT+wd4T)MW`FikYMV(w)6IhrwZ zyX?w38fb74(8YQ%hrjx7j{co#+h5iv{1D-4<`_6jqW!$OOdRZBy2pLrcVZ|eQGnR^ zzx3}NA&6p|2>#emswRhRz?1^WR#X@ks_pVa0ej>#nEzJ#-3oX{A52+}xI*ExHfT1~ zFs-ob2fJ{B)H#Y3Oc9Mo5&kEmMh)5(#H@HoPOpba{p)!gMq#r># z9FX=L$OyODc(DCk9>ZL~FNXWwcDBXol7fbhr5n^C;I9MYD4Vmb2xP?OD||t1OVX~? z$$hf=uht1mDFn`M7G5kcC_A^c=+=#S9pV1*?|VQYiC~PeL6r*@m;v14iI1!P0C%s# zO;yJBPbGoC2TLeYix>TX>?s=BN@Fv;uK);ZuD60#3sZeP ze{ho)xF)#&^j6$ziS7|~x}E6v_xICzGY$+4%y;?-=y!VGDbs9_8-@Zzcz%2^JaE_n zRTRikh3qBKJr@9I(1&E!WLmR;%mZLh1GRrd40kdJW5c3V3<5C=^0*MPNEW|~xQh!{ zZ||Fk()4t~!{s(S42*A@;_4b2Mnlmgzcy-3d&x;-4_fkjpqNXS5A1zHdM=T1n<*U5W%(>Bh3yp(|s*RR+{ zT#7Ak=NKIFUGj${DL*D|Ynhf%2A#A|{Ngk26s1Oq}U~+qNo&`XaEtINaF!@JfU6AjH0$IQthRU6w(rMKFA7^Z)X9^h zf9`uEp&Nc1PXj^J{@Rt8zLh*dgICh|rO!o>fp-E2^~m)F1`z&ZGt$vOCK0iB8!Q~n z7>}##Y2&~GQ%a8shvAHv;1?ct_TE~QNiBo=^^XN=MWJgqgBG}oD~)pmOrur4JM9cVC#m?sM7jI z3DT*(g5CD`No3W-t(ZG}^7|m-*pRvqhiPD_Uu&?Jt- z`2?uJU=UFpFY{uUYhD-uJR<$z>Iw~Y__%{^OX4f4ao&0>kk_8~nzZ0hS??o~jj>Uj z^r9pdaWb5)PsWQ)*8M2&n_KVpc~Ug!m{Q9Ir{*v9%V29^I3%=aa)JWC{$M zo*Kyrx(h;EFIR3Oidt9*oBh{_9Fq~#_k`BY&(6w>c>G1FmZBcmWAb$bxHwIKPaIs| z!9QPnjQj_TzJfm)FoHscOJ$@1|7i8T06>a`g~R7vTNn^#-2&e#uJf>|Hay`y{{|Q? zr3%-2Mrd37*pV0P&eN@pcWtAd|A?#>}YdEY-BPh|6bL zS=&Sc8xDW@NM^axUhXnoPjy6 z(dge{$h$XPikwbdb=-sJM^2`SAs;Fu>n^+aZe4y^LXjsNL7g627A^$|L=1dQ%c6Hw zIscfdU3qG5^~k4cJau-d@;X}=QKmOxPNnmj5?I55UMS!^UtSby8sQxrpq!rZ3&M8l z31;}9A;EK`jiY6VK#>M8(Oxm1w1n4QNE)k4aQJ|G*GoaB);Ii%J9I%1evk@(X7Yy@ zsuVbld;h$Befeeauybs{5l~|sU*IThN!w%EhDc%Z3wt_)8F;=wqT_RSiDc`(#r+GR zs%m^hg(?MxG7xOLC)ju=?Y)C)wl;I7jBkKi0fpr+rd7bGRV%uly0yDY1;ocdX2-zO z^cV|z_g_;|@PI^oBATI@g>id3uxW3Vn1oL=6n*!-8-J55*Kqmzd z2NGarnRmksf+Yd|52OjT#c0Gag#$DCjhpeFE8J1)&TmD zPynj>3&aWW^VdHZaux#*8vwbTo}Jz0gcSkG0_fhxW@jtXEP z43Ev}lI(8~UHjI??;CGB0ZO;-Wp~rxzU~P;r-5O+;(FJ^0HmA`?3qf~TP{m++7lI8 zUwnmk6Fp3LJ)LZy_l53BXSPJO%Z$lc_pg9qe|`Y(`3Zev)(RX;b64D#fOt@J1DOyd znP00L1@eas1KsC|Gla8lU`pKpmn>-LiCff0P7wAU>@s1AJz8z!1+sd+dh4cYN6umT z!Ao$!ED1Wm`*QTxJ*J+Je6iRP`!70Ug%6lW+&y?uztl{{ft>~hg8*EVm*0X3{=Bqe zJwIR+1`Nr{8ddc0k^M)E0tyBKzE{&+MqL5rCh|L4Ctml(o`QmROZ-13Mmz{x!3Jyh zJ%hVZ3R-_Iqh;^t2imC#W9v6?zxH5Hejk(dqnHEcE+kv6esU*Lgr<8w{|g5*2CyH6 z0Zp~d=yg8p`%GPCS(e1VimQ@nfME1rUl0Y=zZi3s40MLKhSk`U7e-nYzE4h10tqe! zB;(e1x!q)toths7TrgyXpB+zLwI)y;aN|x)%~(%;NS5`z*k&LcJNyuv5Fh$;ieXx9 zMqHW<>xyN)p7*>} z>xjNnTQQOVph~4)KiuNRa8a=#0qhtxnICYgf^Ds{bRq#1>)k~i2_IOlTWaSVv5w8y zjmq){dMcB!bi7x=_0jrMON4j3^P+ieZA#AV!-OF#KByTbnQi4TL3FxruO9yUXl5cx z0RGj>>P6fD%Fn}<4kAzq1%RrnoNPT19Dbj{OtiGDOiWVpHDLAHAIvggQOqVJ{dI8`aKpv9A<{%0X zVjJ#F8h{3%8O9f7zwvA5iSSB)KQ3bx{RyVYoD7`R*@>q0y{TkreK3dwH;;E*z{ zA1y7Pw`3PkenW8TkRE~w*5VKT0U|~`9GrEa@t3I4?|7zVfR#ih=0yh#u&}T&e{gH6 zHt0eX5D!_c9Ow7>&1*?b7kz59rlcldk(2NgPyS^?0Jf5u*qkUlcv@I2 z{(*lgz78r#IY()=5cUN%4rVs>CYauXtQ<+R3ss=za?R`96KIA15q(_vk@8wEzp5lE zH{jXbk&PG^)eN7#xh%#FV0g;fqkmw%=a#jJ1QG81D98RFnq&>N$w3yXYmeBMfq3NjhG`_%rm zj`14{jGsSA>fi2Mu|RA^YoIjf1HoQj+G1k@5)-j?TkHeWDk9?d&H=e002Eyi2sV(` z0xyE7;b=5?mH>GRoekbO8#vsfk?@#fyL^B*ndx|QZ!c`JKxPxLJL%}?L_w<;M?+Ia zTDo_B9^Yos_ff885ZLJ757YyZ%771;x15g9=BxoW=%Gw^|$~V4w`r9!?o72p`uWy`yL>%SQG%%AY13Q+zAQ_v=T$i?(I(-C58fy zCha`wkac7`z3HZ>FFvXbNXaP(wFnA(=o4Bxd@iqm7K*y@(?7p`l{h*cDviV|2V zCe(dxYYT+eCql{I%8V7QrKOvO^E-TdFK$ec3eL(O)zO4-V==S80-(?7rQ>VROUob` zomoW)G`kX;$n`fHb;^(+M<+jPb?>3Psk;0cT%5=JtNm!5tD8*mC<_QBpcNEQ85OQ3 zx(y}BX_FU|Px==9Z&%^{^d}=v) z!{|%J)5KsuxbU%l=7`0N`?jk|33=?Ps@$p~ z1S&lRY)vP_LMD;q*49?A!{LD$M3H1(qd(8!FhXHIfQ zru>7`guj)CUBu6PU_2r5i+tA>_LG-MPr=*ebDheyFBt=xqR^M?CU7|iQorus%Wz$p z4~P*GT_M_TH1nSrTRhw;yXsN1H{1G(^Kn0*A_baVe{D*__*UNHZoflMXz5PptsWvL za+yrXbJ&ZNx$F*$uJPT+$$muOsB8L@An%h}-qCAsXodohwbvJr9p5*K1e@eyPxJ?t zW+3Tv-NFRtY;Z;h+_y~*n&#U-}3Sa6|wy7*Lb|ODt#uG8_o5^}nB(_Ws&DizQ5m2E~^9 z0|QJey$3+JN_#j^TQXRxDgK7(Ee`oa2*7F~6JB=5T~I6lbv~?-MvdC!VVi=LP~LA%Xo{q{hg5;s~wK=?vIxd4|72geqLd_nZqKT2lAB`*hLZK5dLd7jA?XjP&g6`t>bn z`UVyQx8LL4zb=!Dia}=rf}k8FA2DI($_+}2u2)~ExhyQ!n<-vQ5%qICBY{~ zPyAlO#^Jw}x;j(?6BOmZ6ZC}8?9a_ax;xYj?5wpOXSRvB!x}%1!?a;&$u`={cF*EI z=|;`LCef8Alf6fc2;ipacU#h;Oa|J+Atfpe=-!_xO*ejlO2aQ93=crwp(SD`u<)^& zjVR|Cc09To${$Xc%r3$zR_kMUZ}|>hE0lkqN%w*zJSnax>ttM~E$~)t06#)1hdC;E zFw;G9p5#nTsZ<(tb%rZ^1^p7U-+BUTop@87`YNX76SNVK9#qdb8ciZ{GWV`V_WWPP#iqdW^2O82g-|$} z$Rm35k|Pq(kJIio^9zBY#_6=G(p}Vc6wk_DRmu^79PY8_iO<2?*sVFz3Ze#1Td+CK zV0@H=6-Foo?C17}!Snlrnj2dIX1s_&+Z*AP6)fIl z-4HSPM*IdN%3M;+Q4rhr2;yc3xaM>NLE19H;}}iOvh7gL^CfLpUHkohMaN=vgz4n8 zjdbuV$*8C~5iy)>TtplZR>1t5Jf7q$YK7ag_=k?|^JA|&RO|MuLntN%GIbftvl6Qu zsf%2UnZT#p0Ud|QtYdav#S|p?n3;kV%it(74Ax}kP%Ii7s%znM98%9aRFmJXt6~$n zGa+qw&xAAu56n$%IbE=Ls~qRVB7fwT%cKQ8uM8$wEqedNSv#}`_R$i4G-mIk2}34+ zUxJ0J$8jz6ouJEiM|z9pH)<^>#UCQ-rIAQB9L!_a5+oTNNqsrD#A<&L$D!-KC zm424$A8>nCN)QDaT~ow?h~cMCFfU+ZtOK-{L71GRjvQ+jdp)f)rE-@e-<4G z^*uT{78^N6v><9^B^dLi&cGw_2!s@u|ZK>RK@4!DJhxQqN6$QKQ*WX2u z{gI1aBgJo{-w{;dE8YteU2{7}r!Sq$^zIrde{+fBOdQ=7AFJ~uzTKxowH5wW z@1wp#xEpvT^(ymeg6m@y^Q*6wJc3$3#J@_7IELL~5sfM)pga)%kX9JJHJ&1vcpiW@ z8IW4vidG?B-dB_@!J*l_>+mCNl0+S?FXhvZk;sTy@7^h(TUO<()Te>6hZW3xT2l|> z^I}HtbTWR*L^J)CX{UvQY zM6cH1=^(;kG^bjs^*i3sCzM*gA=1%)I*jB(>4G-pU8lI`K9LtF&Bu-W+9y)gfH9*! zx0mJMo9t)oDAP{U1@7ezXg3i*BnB5B-oHlvGvhb^EHjt( zW$i0c@3p`O9LCX&{%|Z_&r7;Qd1}RML4>yDr!3dse7m2)$gp(wW?i-c8h2>kn1G0) zf2z@9Sdb*?<@u%y11R8uz#}WJ08I%rUx5WrBJblG@Hf{kEDiNGSe+5d0m%H^JNsf)+kwUP)t!7Vi<|*QpcXJ9etXUtyYx5^TRO*LpIH*{c_H>1|{4tMgp@-8_C#%0Fd)=_kb; zyx8-xf19E)5fZq!o>wmk?ZNELLJSOZCuUSoC6^Mu4_m5pY}F#R;@D8ja9G-Y`IA4O zl}SjVw(GCFx=A|Fc}It8!^gcLtB|MV&u5NfG~!aRHmnp%5tQJTa}C}_E?hdDvhjC- zs4inff{k>h1((s`m)8cwHashLJsh>JSK>OeYtMg`z#569{`4 za_BPSvi-AsG@IMxowdYwg5Uor$BvO)%rNMKmjL-Tlu*}K(H_whvOQ>hpVnCnM-@=Y zoJ?7TLwmxz{KETcykRo)@cspYy6W)Zk@fkhd$Ckxn>p|D50CGwL z4@8GvXYbdLJ7mdzZ9A^7?HIcs-Pje}TaZAlMR&cRV_2ER@c(t;1kay*ErkAJMbLrG zcA%z_KL1yevjIwBDF2F@E(`@l`cIL`4oxGb_}ByT6x=Q#tOrGKWw;Im=unuYWZG_@j&9aq1JleGY2XYhK4X-wEQ)} z&n1^el*>WYP9xx;Ne0c_zMEA)G^ly^9;sT%lHBS)oYmX}P+4v7PiI&R0!P;+cQQEz zn;+uX6pTcc6Uj<@{YZVu;5!9hL1{TH%UAl|@=xy#;k}32<5LSC_q}Fmu|_T2pt$5ikv1DfY7QNYT|68PCc8G>x}sU+ zpEUcLnHxh*J@fe;L{lh6g$U{ImRoTfiX~XhzwQbC?sK;6{l041t!YNpp-Fr#U@$D< z?aAnfXKpw^9RXJNow;t-bojK@-oPx6o6!rN%tya+gk^r1L$Sy=pLvnD*w}yRXht58 zwjhsCedy-JRaiE&uK9=WR&QSmE9Z#aAEjU7Tli^Mf-jTVx@Iy)AdXclF*el6ak@`_ zeV&mUeEh+)BWm83J30nbwHWsjaYx%%xVEVg!9=_H?&_q@8hGF5oFhNUn=tOs41dgI zy?09*-G0@_3e6(=5J{7{q!++W)GenLY(wIeE>L@wopO4R;u}Vd_v@z9w&Aa`M=jw{ zbIQhAazXa}+_P~)DoIQ*(az`fkXAbVtQcGPh?8;wal&w+_=Fl?n1e}6!H%aqe;2O6 za8s{9Tr$B2YRPwqJ@2m!G=;ELpz(IMN;{}N3>{1)8?z$aStO7A_tGhz=AP515oMOC z!0>Hnhs(BvJqPG22G~l9NK#U{fws2Xr+ujGRjgaerw`w@&q%2E>gV&q)k8Tkz1}8Y z^Dp^6|5Sb-nk82^{m*&N2@1Z6J5?M%TnO{MmyoT19bZcUae?-%5Sb#K+x7=8Kq209 zs^u+h3gz^4e`}@yW2@JN{iw`;H(sc@J%e`Lgf<%G&T39+; zt`78mBx44msXR4h3qob4e$)`lJYOeKThZBw-e{H#E$kpBMW@zWFDE z;Kpv8Ssmo1SAwuQw;!nGc&JfGA6piW>b3mOdE@8pqT%75LsvJ{D(@;Jzn#`^InwUs zLMWZ#Q(*dhBFh#9#XD4UgEmaOm%~Q_Axj@hF7@vlT`|7?RIAydDTAz*KJKWY0hAPk z5!}BAuF&+MUGg12}FP+y(4obQ#>AywPegWCqJTFz8pnr_sNp?>eie zU@K|K${Fd=MlT*?y5aq)bd)yAG7N%vRf4(>A4MeTDGiUg3U;)F7|>?&&%*?g$C7Nc zt|we%1>9`s=ahf#8f{jl)=r@}<(AlhgNFy9x2^J?kwo(FG_WSP2egmir!-Q8Ho zdI{Z|@4moC-mVpBPq1|KDDnHc1By2thDO7qmc5jI_}>hQglBGyiw40%HGZgyp-AJ$ z_adc(w|XMH$;8aNjRuEq8AtQFc_>yxQeD59+OWWD zAWI?PuXT%w++bKjxh0W{`__I}Zfiacn%{i}Tgs12%eqG1%z2e+sT1k(|N6>8ZB!hyp2oM zs}as%^^7MHSJxvF*>3g)MSQZ`cd(xE2j{Xy<=pyfs@DPmv>{GZEp)@*VBLn_v@+G$ z^l>zIZB@O?Zlgn@2}A&E5Z}`x$7e_yd)e`KP?hme8Juw)z>+GsY|i6fsvGsHKuo?rL2u#lpNBsV7o73XN8_C1AtJv$s z%nvWLbKZh37c4vcO+v+0Fy0X}HW4eP|Il5Mo=QUT?_w6Sx5^ahta6P6)B7mt@1D0L zRu94=kuueua2gG5#1mItUBo=X&Pn6!+!Z80icyt_m(QGrrbu*rtmbO9Q2QtS82NNj zB~>Ue8#ZE7v;4t3zuj(m8BtTF7@AslUT=UbiI{sP`8X;TGw^BF?V>mHMzg=R&MgOc zZL=`<9{D{7jI+CDko=%|5+y!xv9OyEUz`ZI_GG$b$`W?lXGPv@ctVMwPJuyx#Ylng1(qq@<)3vgZyAJV`?H)$bNdvNdFPuDLpNpq zLsTWkWru0bJ@42=5V%SHJ{s~__{qC z@6G-geW~g&|<0G{GHyOkuTfE!QPrrkoh&G@WzyJ?A8MF z!)93|Su2b^C%8o&$S=2y+QP=;VFgIh_t6&A2u=F0X5Y|VRvn-Fjk4&6iTK{W%Q4MV zqy^t-_R0I@TpzuNYflnq1<#y254a)6y}BjZWN|k}ETPqu@P*?e)g)d=_%#cyb3{MW&laO%#KF>o(yI04CVkk4{+~Cl((81noXhX%A@S9gFKE~acaNs9?&LLGiVjfyl@(zk$#@Ra} z?9j-5s}c!Iw6k`+Ya2poyJnJZs_m^>Cb9TByBkI{$UhjR0Prihtsl{k7vhuyb_AVVzCoj zhHrysUV^9I$E@Fw&PtuNsOvLv>s>cF^T{H09UneSeFM$?``f_c(5FG6UajHn&#H#R z{ed*MPg?_H?q{?$_ix=3%&9+v1J?(0{|WCbftvl(e#gXzpQJ7RO249!=J^nyyomUf z%ZU7ZrbKUb;W7|6$Z?RZH4QrIamH89lybI|yv-PA^_v7gi~HnD4HvCQns3BLM@?GJ zky;#zr+s%5pNknXv^Vt4bfZ*O7=Eh~thLLp8R{yRgEMcQ9n=k94s~j)#_bdi(s;;r@8P>vIej5uLEvzWCdf zc18%HATJ9GO97MqdXVLdENz?`ce}BD?Pe7mu@x7bu30-iTnjnNtiT;D)Zx=1I%&r} z%L*zNRG5nNTCczyI8E7%cKao8U}_KX$$ zo^>U@8{-1ArWJ8?L}8{Q*@%zNy+acmdq1Lvb~pA748BI=K7}D%h0|ao2|l=GHeb|> zWEY@(OdS@uf!E0>N{{vEd6QB5a9edb7X59F$W{%#;RPQ>3Q zk^fK-8cmK5Y^-BcYrYUP(3IGQFAt>-4aE$DrPF0YaufEUB6g5JtR|D4W=F22;DK|* zAoC*RpPVoa`NYuu)r3!%QGn5q2luWHLo1aSrKB&s#O^_$)5BQiT?dAE^D^{zyhhPr(vp6DOZ3}sMGSSFwGa|b?)g_|A9#echT z+g!^Ld1Ev}fe*Lab>}2$PK)fbaPos$F;0R4!ynqdWdLdnpWiH#8(z5W+~M*&+#Ck$ zd^uTG1euUWU#$(Z4z*OWJR;txk(-{mmaTHl-67QV^Xei+$4#*kSvQ}R*=S zGkfajdjIa6FoJQ%?8&%#IAS4QQLeod={L=73UkBcW^Ny^7}!+}m+pT?aRtfZ!<%a+ z8D1GW31vZQ-F={lt|bnf0?mx9vR9+^?%U7Jr@wPV2;4Hh@$wm|%%ID?w&&Ni=g-Xc zgNe~oOj*rIi`-!|Xk@_3kJCu~nvdf__bDkoBu8mipNN)Gk7Hiu)pRx*~Zaig~H`epN^0Fca z)~wD)LzbcLreLuY10{M&afliXfhwb(BHpi#x=X#Ct%1}rX0f_tlgiN{BGvIjY_Jyu4QcaTF zLxU1AWjo*9MHn%8{M;2)`%ux_y&Odon^x4$(ako?`XFHWAL2u6hFbRkb@17mBmUv@ zEfi_T&H~#DvjjLR!xU7h*ujJ>`T2JQqfc_~jyci2$4CR_$J$>{KH4ot$<0o~JND~+ zsx~V=*MD2Xh1qPlKJ~gjVqEaG6tZT^kH&t9!8|q@O#Kzq7GZj}KJwkLIX6^bVN$7o z^Ye|6pTt7;PybQ9yNU?=hfR?;Ey!uvuD-QE{e1%q?pm(}TYs!|bp;8IHb*z5j*CU} zzXI)M!XLlTFZgQtw7U@6>ed|ab@>FKMHt%g6mY5vn8#U>6A>ndh5ew}?G{-NcO~W; zR^4wZ_TAi!R#nMhI|M`f$mMaun^=|*zNFistmPdH8~Qh;F<95k#8fc1_8AR@;t9Ua zn8d#H3c`f0|D6@l+ST#%WIVLmsxUURsBH4~hYCDGPJ}uEqILB|)EA)x;f2uUm`G2*C*z9VXJAJp$J!_c3-V~5kt=!0t7Dt4amvW-mX-;2+e#XZ; zvl93=?Ts=eY5cYk=<9@TW9alWE3{>+$3%tl+OthtWlc?NWOfEeR*j zop=WVW1B1HaBVHDs4;qvuTlMc1WUIIj7^Vui_0($!c8-2zq8RZguUI2C@L1)jW$gJ zcVqSA7E2<5ukt_6Z*{kre~M53^rri*^QK_<<~K6jsUi&-5xwMh`EPw=%Z3X%%)ep= zoaRJAg~-U>SbBIw{=yRAGExn(PAS`0K4C!U|K|(}y7dOVAI1xa3KI5pTjwpq+OYxo zNp~L&YTv-s&D%X*PrHR|r*h1DG#H(pqrF7i*qxwSdZaNplKV=0ADvg5DRoPFz2VHC zXEjyO>i1G@eQ~^*?rHOpss~&S9CyrfElf#`ShON-%N}gM_UvLZMj-G#SB|T1R(ZWd zjn(+#O`ks@xPVbvm%@*i7zOnhPfa;;=9E#aQH@5mrU&bkBNws3_&##0Y=LA1JVtTN zt9l%F9zP{y*s(dCrYJl&3ys9*C(3=%j%fGOe!w(zQml&&c!ZA z{rF|^piwNUeAgb|Ow{#;QAT`n<4NB(_!qDB_HFU?_{QmdFz0U*hhQm2?cCPhV z->n%qU_s9IG8CH6xW8c9?p(q>*6Z}drRh+5D1GA&`CdSEz|uky>fAqSYiY&faGNm8U?TW)$}BprBChw#z{ z6q-NdEXjx$Wu3+`&`jTK8`LdTQ%H;Xw`^peRcbtDa^qf82K~{}h`wV&j3Oc0TsW3F zu97b8dsYCg&?nYwpqOuvS8ZlLydNE0H)>Op!B+Tt^I7)K2lSAL&J;yPegnILI!ayf zzFZC>m5%N#+LG>4<^VWZd5VoH8;te{3=rc+U_ENohJbg-Pp8z8qQZf|Q1oDht^yZ@*)G^QpR>zX00$_0MWYwECEawcU|43{j;gX)YPv>+^au z-e6Q%>)#!m=eTv!H4iSwWv{A5bMu}WF;qO$idI*`#o@hbDM^2#TDVL7X1dvCRATP@ z(s@<6ASM{LO3(R<2JB;6W4Uff;)%b!*$*K2mk}r@{R)dZ00<*XYXe+kAF5YYFq1ML zQacwH-Gy)Z^1ks?eLaw=GF)mXRiBIi@*etSGtg$2qRqcjxJr2Q=+Ka2{IoxK7sYq2 zjAv6dHKd(QKE);yR=?593yE{VX&_{5c%`a4^G$(WCp=TS1Qq@gi49Gc$#d#F|EVtf zxvvlZ5|`ry$w~(4S82s?D;hb!fUakc0~ORY}!fL8)UZk<*cM)H{CH^>8iBY;CL||ZLF0M zqw=M>X;HB%t$lE@+W5l&!LXE9+QZYLhtwMm^{PIT7c{6u7O@Z%! zdS|+Oe%4eL)=KRU4EG`i=K|3MKZOBZzxzMb6lHd4zp+1N?ssl{`irW=#KMf&;(O6- z&pajzUAFtBtS*tBL&aNH06lo?*))(INIT{}tuwvzo+8#%YmDl*?0y)kji4tDeHJ1M zBm%q6>QR3lni4VG{JK7)=XDfgi^N8ln%5;sduR1{e;ioIAF~LGq!`W0j$Zo;)V}vV z6fjdTrR2eGrsj8Mrc`sS#3wDyz@Gj!vLk8ylJun8`Ifvs=97iz_ma3^od!s3p&yva zwcU?8NsrdzRkE6zsH@BeyYwHfKe1|8Z#k7saQsP!?lz&yyYRUD3>kmZWG~Jo`q~or z`t6^k4d*3Sr&Zt{+0CSH?en&Mt-8_q-mmqZY^O{r58pY9pv89+6y~j)jP$+VQSy3N z(95w+7Rz%9X4<>%ltNb}qJ0ATH0s;3e*YO|!d@N`=vT&xDJ`OsKFOYpaD3TIFryhg zY|0L4E_|CX6M1^?<~_7aX3-KJhPQH}9_32A;z+I|#D@WgSe$L+Rq^Z8o_@DJ+RIfz zVI8ajMq+`;0)lRp=$58Diq5}IFE6z`f3PMR`4Chi^+Y%q*Npk!uh_%3O25B@;n}ZI zTjFc_8ZvO)87nrdOzux1=95?v4S z8|+5{t%rzvmd%h~IyEnT=FP_>y*sk{KwEUAT(CKqb+VC_nM0m}NNaKKjAuf+c*3IyeF2Kjo<`_P&iTO8}W8@9Rk@ zp&MnNi%DUQD8>cr52AT-DqkxhrN^;)?`jPpjX~$~!s(n|fX{yHFH@Wxy_ARA%aMrS z?#d>;i1@{%<+Y1k{)#HBlJR{xT|P7_u^KMidm*$L^Q=H&R=GsU*TjBMLxaBpY9(+e zi^}}I3To8T-A}*ymW!=F8Qsh_$WpnRZEcD77LQUY_{;fKe>2G;evW(d6S$q=RI{3% zcp-&ho$27Qs&Lt~i?>WGhFU2|z!93YMkQdnKhGaF64V5i$F8kj01!z-90QNh=e3d5 zPvRsZCEU=Zkbr^5@W$7T^-q*w+ML$GJX>n-=h*6cyhd?CH{2-woLJIBP?HljlJ&hL zytO-j#sJ-DWc*s0d*ESM;PMu(AERlNRn;^LKj-)fCLnO#+j}MFevh=d?S*a?U@S;l zaua-7lU&-SBJ*IQTeFuDzBh>66c2dgl3KCNOnJ1-4S{k>2qZ-(D(8^q1(F1EEMs2E z4Je)7G|dmsguNGn*|k^2OhT+A+T(OW*Pyal*Fv%<7c+kx(L_UFhOL!{8MYQ4B~#kt zoO?o5(*|w1U^avcA1{ZR3OOlV8!leOgKf9_jxjUBp@{3A4gC0EmDx2h^T32*g~UWW zizeB?)uIuJ+7)l*@AQOm=lX?yFdywDJk+(vYUhs}ySzY2j|vTBGs8>J(=Fd4X~OS) z1FDghV=+z93XjzDTJDa!T-C}1^**HpL;dWARf`j2UauTW=2dY1R zMK%#aY`GK3xAbpL)pxxcc7}RcSf78(vNPg~yuyGuwIBi?>P`2KnteG%zDrW}wH!51 zl;Dfi?C-Jom}-IOpi_jtR>rlWF2NxMDmxTOS zvDwkB!ED&bc#f+?^gam&|jx++q$kY-Fh8n{yyRcso1h|K*K` zCSvh`YL?C{X8NY)b5d~Z*wa{gQU>k5?jk3~W^yNctw~b}Jw+5C+qp1f{`jzTciZ;d zi!Cw#)vvgxL&o;MGGT#K&L{&9@WE#*_P@UDydqoYm@FBA7)4f z-&%FF)j@V6ke_||hit}_=M+w50TB@T9CWQr=rUH%ESwPL78~U-Y++w(HwbfGnJimG z)~%xX5n?5LQ!kV#FM)krR;L%M zQdC#c`V9U>enrRFfr&i~)VnojzeA^foqlk4V;9AjIIq2$5M!zsPGPQ}-!(m1f`Z^= zSzl37jUCWH8r%if{B7T1j3b=8Fp|Ys&Y$*A<6`ZpnAuhYVOTZR#H!=I--% zho%?Sr`gcXkHB!l+GN+(fkLPF0pn?Lot40Z&U$ldZvnjRoDfJ;jJYkf(M}8Ji`lOi zx*4#gjyKb2_5CP)T?Oi^gT-faZ!WW~M~t_n-wP#%*IE=e8?k8UR}di>?CrH(bf*q4 zo^7$~`9}+7+N9p)7HZ5n@RruWk(_q13Ix^p4%6LhNoKlmSm&$l7Nqhe7raq#3t&2RX1LsSPs0Neva#Zd}C z`c)tGaStv5G^)FwZxIW@Z96yVu#;4OY5bFZr>)OP>S&XP9!ZGf6h^;APxSC1Kh_3w zPwaET0GQ#BRk?xh`=r4&Hj)rbrUpWFfB4t_b%zRzf3N#YHtg#)$-brWhaAP1@7BCv zq{yG~^ir0HA_*CkDh{aAT&kJ8eKJ4(Mcn(Z5mq*~>}=Ufr>1`qVNy1Mcqt35g!22- z8sU?A*GNse-do!{k~I@c+{aprGeI%;*ThRd$DDn-4js7eoldpXsNkhgmKA#rH_^PH z3{4GZteh<6KNoJY_Fu`>OxCXB)NZkCCykvHKAu2}yviHX8-1x|+MnD&W-HD-QfFPxC$$>*2CNQ(;S`F_9 zX0*K;y=|rQ`1%2+UZUx;6Mx%DGeh}KvGS>6KJoT<`VJZNwoR^o5m9d)Yo5qzqsCe7I*wm957dxU^e;<9 zw0(05LitfI3f3Gz`Ji<9UiDHEF`&~QUL^R8*sg-@^S+)+JoY=TiW*_@hbQnMO=Z#| zlqavZlw=0^CAHy`$yscrF|NKr9lB-JK1>}uf{1;+atCC{EU z+jt#stHjSdPSE!V)2R>958NpZX#`mIff;bwE}|_zq1{ya2=JrzF~12!n_rA(&Dw-4 zm;|W5^m{3e`0-miGs|ANP@XR9x)r(9kp`JC16N3f!d}66jN2{7hVYA}i~646WH~w_ z`(aJ5doKu1&o&wCh3WH-u$NBQEKj!BOYdgYUQ9~fH*=qP^FEgf!=q+^W<@!A%j_t_ zG+)xwz0;6{Us2z6mP?ItuheOC%x;96@=q}j&%7C$vqGMZ0r$i^7z(s&LkiP%lU#L?sikoP&&Y`h(Ke_D)M+cI+}0(N8>8e;!&cj2kOYR9ix^OYLJB|Nn!zZB4j zk@{vc3dvLnD(V5yu~#g!nh~Tb0B30lr}*z#(1PKMGahqTE|+d0s`XDcOU6^rLh6}7k+6`8_pFR z^^)3B1eXtOp{y8(RQWF@C;PkLvfe*F+Ehz;$7+=g^aYEu#o(FfZyOQ1SX2@I#1UCPo5R;%wZmFCFZdmICnD$nm+*M&uO$g9U336UN_o=C)@TTSM z3-^yOt;k<+y`8i0T^w%ai_$<_xh*DyazNRFuj60ePmJ2QUh7^MOjb?qbR<5dR&-%r zp%3C0`uwD68dbLpTV!GwCUWY?ugfv3Td>cQ`PXsHK~z%6;riq54F{iia0(8g`nnOY z$D^-6Eo$R;mpUCX;pHWHPm~jbhIifum68ISd#+n#`jGdo(?QU#Vy}Ga=4Lj@%H#Hc zTO$M$wTc=xN?b5@mX$roYxOhRM^Y&9T4_=f$6d){K43%?k;sON0GxOR%lZ884QQj0?)P1Sp*$^n^$D~9GS zei>ap_M9V!3Dhro-(p3YK3r%da}4_0hvO| zRrcw}79)V+Q%RhmrVEa7Z*(l~ob~jn9uHM|Vn3xjx$T&0&2NUnY@YXac0GD#nN;|m zz(u0DA;Z2rEZawT`S3F$5bUd?sE2r6mWWW#mw))yBNp!7E`DErG?NmfSVvFk*_n_) zx18||R_U0D+0~N${vq_=7CLZERhb)@DZ<}rNUW3770Ro>EeLNX9lw`7z4_d2C4++~#E)y?#^KvTB@jhLx~{Q=M@*cDg^gU@ZN+?OUxJom10awHRhl>r`O%Q|fTI zX`v1gvy}LxIVCTCs#I$bbp7~U@~OKOUW}kvEU%jWpDtA9S}q*}db*G=Q?9Q0J)$f3JQK+oma~k(x61b`A^6b(hhv^G zVR%ORlB85@BvJEbCckr_1P8=3dbYEZJK9eD<8TJz}7j$b>ksn zv+F~PJ^G6HOP8bUQ@fQu<|{7m%t*kFgnPm`MkF|d#=~MnEQwIUyMdt}Z2j|)fN_t8 z16``j3N(Zhp45qA)TxT5_F*kg@fN$dW+}Z~%Ic=@8kv97zUJ$bL~V!!Qx(u6>DG=) zPI>{|IQ~wk%h@CEWqHMZ`E7U?CE9fCNbcI0W!Z69Xl+HVZ?nC#61wxwD6+x?N~Pet z`2POixSDwPh;TcKR~yAPoU-p?L(}Rz7c{RAbI_xm+oAp$F9E&;8yN?%Z{WO~iFb+I z1I{RZU>FKt&Gup{+cU2eXj`>=wr1ZrYxY3>kxqj)rLtWue`3Y%kweFMgABC0&LcI= z)WY@~<{2+0W2*b<)%z`$kRxt1$roJ|qugH_0yl-)h>ebgJ`?*Z$M*{*DJaR(POKNu zkvp($vm3gabvf+8|JS*%f7Zr8O7~Y4=h!6YMY|lLMUBso>>DQ+1ybj_oACd=kLKUfhL>N@ zYBGQ>@oI$l@~?WxIn66g1Z(aebR`Tiu*)$g9O=S5(iECkGk0SXJk#kzr<$DXYQe}+ z^Rei)3t`=X@7<2eRPD&zm}9ZgQb&V~OHheA>Im)9^S)mw4wI88bUD@x3<)uHy-NPC zrwA`%ND5g7v~j!*R!0I<_m3*HIBBY2@x0y({x#d*VuZ%zy)NW^?n7IPyXI!B-5wXl zwW1e_3@i3{y&}`b0*_{Iv?(NP}dFj43wY?lz4DXWLD1!MWYG9nB6x4>t(0ly^nwlq z1;6tzn4NmIIq$3RqImmj%@6afpcH2si8ym4<;ld7KuG~R5g03egWQxDaF z#Dtzrq)TY$W9#}e^?#HXau)$g^P1mF{iY8jyz?=zkk^VBVoPI}cI6*xwDq041s2pg z89iT?ug;5vDny8%-(s2cD+TaN?CJh39SwvdCoKPb5iVW<)LS=r;o#8hd`NNK_M_tz z*vD_nT1SP-#YsEw!}I|wv8Bb9V=*;gvg-CN@!vaJzOf#871mL@D2iG#nCz!>oD$cZ{+vhqd)X(EuRqHpRtm#O~H6dI*;#sLKBxZTWx z!s%afdU)Cuxm>RjLXyy7dRYSckP+40#L-)cutIggJEN;Bv1W0FkCa^D?;rmIOBF#I zwbShfIh3tGKau~gs#GdsAtnW=D9jpCCYWRp6Z+ejb`)ULZ~xUrYW-AZBQ5!ka3oy) zd&4ti7Wa2hBTMv5(L;+(apNmJ2pd2!(28Ov=$c+UnLgo;O@XYvkI-hp|20Z- zM;Z$Gz+i-P%)bgDkjpt1sI3YXt=9MhR8meGh(aE2Lx1!q-y1Qf>Mi^vnuv~K{^us0 zbadP#VEGEHf)|WlJd|BYcDB5lhhKi+fZ;cJxA4o9wIlPwE#ryj=d;?2fz68Btjm`<6Rj%a&LS&On%*y2pR{6w$C%<<87%2n|*p7@9^Q|m&4jOebxw1lPm&>*+ z$hXoA$WTE`0;_Gw^x}?nTpiBRGtBWM74L6NX58T#8_-|eOXG`olbf6Lg?OMrWGa3z z=(#${)Zug0!ElW{yudzfvfSldT|S|a9_|$;D(UU6a=k_V@&?&el@lufH1&?$Lhwf` zy=ZKdlh;wz8K@D+%(IdFe6rZVhC?7#7;m`r&FnC!YXJ9rS--`7G+!iB%5P08OqKEF zBOqQdsL!(z==n>qUQ(##+D6%nyMViZgN>lcOemvy4}*w(P;$8FKa6Ah@@F`Xmpc*r z-K{fZ5>TKc5$ez0%NibN1<5r#x&Om(CB>9O5e6Q;WXCF?XND~+jjcb*whp)@LBqP) zJg|Zk93R<|Col)Pu(X*9;p=&p#>>%9-g<-pS$!oJEG!e;{-Y|^dw<5Bc}_BHn~+q@ zzg=1@Lv!Qp%lK$(Y9{UN1$klLNtkFEMki7ZalP@+8XmMDzEVmJM-j4VE0!HWC8!{C zZ*|j)&aGM~n~b_UM#yBK5u!R~96t3c z$$@W*eK*S%8k9wE$DtA2?q{ptjd`W5cf#`c8y78IH!w$AN~ozyKY??dn* z?CJB(=Sy??`UDe$RQvVC5OsOLUN&*EdZG?|lN``wZ#+cG@H&21T~lK`kS5@Ef3;cR zcC_+q!J3DHE*_kZOom7Nrh?g|`!hEGgrGot^|{a)+}3^%u20X%jt_9t!1W|nFqTA? zk7Y5wUyOFWSo;3^VdcUcD?~hj9_hm81h0tM9YK9O#Ixez=)!9v*FcNyY0{tsxVc9< zIhlI1Y00UARg`~t!1jRH|~9kBaX;@L$+Bar%@$6Kz{U@zx@-wY@w#S4GQm z|Hrz438-l{mrI<})Tr>wPOEdFE2_@Mp3s2w?Q2RVa9_V_N(gE7Z?{^DAqXQ+OE$H?QZa(cN)%L`u~?jZNR2E(e^@euMGa zH7BQ~`bns;-qa{KACHCQcA9kNhNl|TM0rJj_Hx1B5cPrODF5o;kp-%+k>S=>+rXx%^sz{4yT-u_vLCd2G=JIhU4E>Nl{!EsvlG69 z79eY+EW9$wj!?-2SB@GWJmc8KGWHns|I{pV-IU~?-r-$z93Wz>-8^XUZQG5Sw+5(v?e=Epj zE?3xv#ArIdi|b!Tv+kP&I0kcSCn^|$_Rj<@cAUW_e_0M?UH{u!)pl(@ee?8y-&S3y z_|&u4E2BY&74Tudj#Z-ucR>&t^v$`&pIS#5aAj8slPnqg*vm*G030%JT9o>iI3DIs>z|BnvHp=!PCd>BdF?+1YXB6foY9^ z4uI8jN0gN@vMdbDImS>!*SC|!w0~o2Cav369hcGVA~!T`Q{YEmL>#W$@vy+o8^5#b|nXWIJkg>4e@aVfr0;KIZmQjG{AdL;bSv zCNFXmY?w!BqW)ujqwUcA_TNxjY*E~NX~|SQB2R7>37@Bh%Wh}Lw~$(cHwma#HMZFPG!I;uOPh8!*5S3DQ zf@lP0=zZvq@3m`HXl*}pOwL`!JjqKW&*q3ZpPw0g{sS@aHQw@#sQ^M!Z5BVGOnO_DZsKwWxK6qSR&pPWd};LY z*Cb$m9R~Rr^{o4Go6MeqAZCq9r4opcH2<+y+#QDR?P{z{+TN0lUyJS);@-hINxaws zUWF45{f4&{>aH(%H*RR&CHtTO!Zs{J`ETtQ8M>5L%gwP|#hTrnELhG61`X@;H5F`cg_r(@m}5=vu~?$n27sxnZH(8ttD+PmI4X0ITJ3Wxd;n`5R5= za$Y_kn+0*A8mDMWk?Yrjwlp;NYo9DQXMpT!+y}>f5`xIauI$&;y%v^xb5pq^N3Aok z#M~YgnOHCM%5g=cg6J|v>zAfg6cm_aX5MlYX*H$jF=9Yy1;>G-lXKXscczbpt1L`T-1lA(9D|1$1b1_>PpV8Y?dc02c9bKWW45SR2p zSM?ugba_d6KUs9&-mB`Wli`+*hsTNhSkTmz4xIYsZMXIv64{d z{Ufq(+b(NI?sc>+dnd@j^8cyA+E{4KHpt<^$e1~oHR*pR3+eY)k)JViRlfc701^eE zVR%`8{!$OlUAuy;Ce3Ns!k!Rc*4Bn2lNa^u`6q+jn1|&P3ZPBOqm-XsMUNTrW4U?J z>}g#5lQ48bVe{JjgxAAtwzgofICsWpf%6d!w1S|TVrZJs0OpM#cCLsRv$d`r{XiQX6TaZSK7MjhSyg@ORu1EUWyUb7&bxreus_1dUtNn5o6dnl&v>TX* zM(Go)CW)59%6xIbxpKwT-s&=S>`GBG(H@r<4l1A6A19)^ktW^xnnCdKKXi=UOy8cX zW4(`o8-Oj1-Ni|b!RY)!95n#I*n4@ls5a+F+cXncW%c$B@yDCyy_+kFT>wg>OsOtm zPA`|$!9gB^>vgpp&$ko~Y1lPs&?Et&$)Pi)+ZPw^VO&I=xGncv+$oI}Hb-9iyny2^ z(coS;b{~Dvjk5OjEW8+qd`(;*yV*<@F%34A@%*=5ZDYpgRWUVLB^p9`Ye!NPEQynM z2V8TPhaVR-zn1KfU4R>U5gOI;ZEcy6pufrNk%Iu7fAVNcOwD+842!$)_gim$q*h|F z7Q7k}dl7yr91vJKr|_0@)Q=o5PDW={CKtso=roZA9fs#)HO@@;=V5J;A4V+S3e7Li z|85^(*PcwLHWFs~>i?FVe?G?(83~hZ3 zs)EW8O=TZlPq9<6IOmRy87hVbF}${$pEe$@ep2zL?V`&&*1St)N>K1M z@7BWw^;kII`3vz=NdjtlE&{V3lk4}`F>Xmey8j*i+q_^f_dz`^NzaI=__Hq;0TA{;>r z8%r`ZVEPnpUPtUO@2ZOr1pxMLm48d6Tl)k)LZqy<-|9HfrH-yr!EAmsdqUHh`5HOb zY@pudiO_>@-R)`=mcFwa>gjZ90WxiSjoK&((|? z^RGxzBwU&Q=5-4$XRpSs(--%Dh}urJ1^}qWZ_qCq_%ixG0%F{Ta`K;#FOj_i_{QkM z;#$XyWjsrm3R)(=omCwTb+-h!I)+4*PKE>OG(Dw;xHbk1X>?O`w~mDXQ0e z0VITU9l<(h$wrnnXWf-whC~k*MA1}^sd0|UeqJP#r3&J81K8b2{X_ZZ{aPLG-!;bJ zAdi&v&`fEr+c1((9WWgY#46_MfhzfzkC~~ZNV-Iv2IPHbZQE{D-%V3MLpt>@Q~zLp zFYRGW%4gCLspRZCs9)4Lol3Q4Cs2Ct8Vea? z31}VoN%NlmDncMr4N0>KaYhm?gD0P9bxn**X~Td|UDOaKRU7rhcbpxj!={y^pxW+yS>Xj+d% z?jw_c_7;JFYxVY?reRk|EgOU;eX;q8x{x1T&~7AqwxBQ=X3CRLt=;;H=eIPg5B{@`1=c+>cRlj6Q>2F}zJsO7xr zw)0>cdtxL?vv}(Xpi@e4f@bgl#w&Ls#7 zuKhsWT57Ky$q$VU)>FGWG-yDp1ryW6<{4N_H0qsA8t!_O7h>k7EMRDLqk|$Bo1GFJ zxcbxiqLQ>Jzh^{d%LzeVgDoFZIRtj&wPk!UI1dBCr)M!gmM^0Ln|b(*N2%WLolBS^ zQhb|h3vu`pH~ovJQUr^Y;bPNZscHN+^_!F4p(bNXoGaB`8+fu*rWj{0L zDaIrZwq3bb#6E53qYW(V-U~A|SDjrMf?z)nn#XWf!|Seslz1V41r#0#p)afW>|Znx z5DFJa{&Vc+QYUNHO!4donUj!a(=|=hnN8E87Z8)#p)W9qKIDcY+RKw5PLA{baG9MG zzDM5z`(f=_(PD4ZdkUgK1F6KAT4V|gnu;3L8a0xWW6OMc+50CThy@9(=MQxZShV$^ zx)Bw^0zquFg(lpH!PHIHx-hD-woQ&Hj#phmKi&8r|8~4uayBPq^Z?7Mh30lDorp%R zK!IL1W}V@aSO7Kr;EDdfZrg{O_rit>{uca&eeyaHgcU)t6gqT! zF8ut_u$fhC{_}Yjs#%|>%q_TSQ%WFff7B~%(x)uxq4xAYNmNOXYVboQ)0BA`TPx7a z<$B*8lDi)s#6yA}@-twaQyBIEvX7?QHOhD!k|?LmRm z$j)K3Qw%}9F$;bqsM!V$v%NnN0i$=as|!B3=vAiG?ItdK9zEYfYIH^<;p9-x!`p%h;@;ke>d-bs3T{7IQw%^$1f2$ zZH;Mn)kJD^PT|_;Q@?_ka8QVV@Pd%Yt?FL-&<*O#o(K?+=2v@!I`2d(u*~Vd3JYor z9f5dd*Le*XizxY7Xuz5z<#*CD8m?a078&`$;$`SXDQbpa$itsoLWlK3?{rhGJ=;AA z>13gR4lkUE&91jhDS~h0L8}7m^tMvm3*$j%w7cj;AfE-jGBfN15Zy+RscMI`@$Tov z)g#(lVuV-$W^5Jj3)zz!zAbJPlpAtH2rz#!fXChPQ=U@A@KKqT`wz|?LT6?yO zK0HY>w9`m@icz^u3(F|gv$q{-bec8h2h(sq4F>-RwCA1=bXuaE$l6TrA;W?2 zg_*EMMgb_QHTK8faA;}$KsnPqIjUy*a?1xgx>4fC8h-Zm1P2I9cJ<{|rQ9}Wt00D2 z+^ZVwyzw<;-oF?6=K$sQ?|V?4?;yVTgjrA{7zmCz#I=NnmO(whNy4!j8&+H`7XpzM zaX@ZUz~&w(P@fo)9;{ z><^Tz|119SM$nWa(G=t+5JAgB#PM+^N)&zdLE2LDu0shgBr^cO+vU$0DYS})Wj#=! zLxvr?m_FFL3d|(;$Lec3^{lM>MY%}D{pwMkW7gj9818TKaVy|eP>u`jU;h-^cf=O4 zEcXs6;*C26)A0EI8msxVm!sU2n`%AQyTOkymU7xVRF?$IAxTI|y;>f&ii9!?{!%gP z$JXcwRi_l2DUEsm1&%R!*BNU5<6H9rH*@B-3NBVrTbk0#PHDM*1&Y7Lu=RF0y9bg) z1wxDaE;AmwjPe9%L=3M{)2!g+7lKHB5`En>|6MW6tZM48-`B-p_j3c7!YDM}FU`Pu z11)SCy{UQU|Ii%MIim2VE8p5&A#ZUfAFjFj`f>TJsf&Xe5SqX7ncEZQ5+dCAUwsx~ z6lAj@p~UfZL=qC43-N}~NT^I6Mn7STiFmB526Fxtw<|$D7ppND4+LNSQ0QE=nj#9V zX(e{{oYPQQa|W&(iOBzhYE2ihjN5bml%I*>pEE*NaQ}%;M`~_bI1maRKEc}4uDno) zb=@=viEYBH@E6vq#ol&~`ew8BGpdS&!#d6QLSY6$HVL(CICLSHjUS4q2;#_Ze!lFG z8R*lTa7`(1Xy#@$jR_RS(J+5uzGt!5#m4P2z6<5Llxkf!Fbzg}SGm1tFaFQqzYP1f zVlC9sUuzar=j-}9CBZ5U;AzcdR@p>#!R52@FB(F<=O0%t{}NEmx;!<#c?qg51sRfc zn0Gt_Lj88o!E-M#5))Ldwyi?$JKCkHKr#x16q&|AMT_AN6W=y^Cw{H)O`v%4gIG;@ zP3EgL4=+${4eSLw9Cd5yH+bQ@D{}a3m&*dRm&}_%I&lScMW7n#8OyniX!z~tL1_?2 zle9uZsP9cRxIKSCu)4m`z!T>{*oqrljs*giD>am~o!@O$kPwcOHkKAt4!ZqG82adx zzjc_B^(jS4=-I3#TQx;@eXUxZa%H?+njTd1sU?wiwUL_0V-#;36_fmkS>G%g*`fK< zQ=eU4{J2=kwq(Q3;*EBBelz!4kC*_~BLwuV_ONTj(DhetJ#|!We?gf=5T}fPsK8IU znn|sN$f8dzU31buYj2w|@u&%FCFzOwMM(Ba;ZkL9s)4JmN<|x#Ra?M0?tzU4K#_pd z7(-Y~4bZ{3AlF$woM6>Q#dg)>{zz?qtB>+v1*H96>24rrN7x5)gvXL5>CaM6HF3;# zI9HcG$yV%U-%UMq;(W^Ul0w9>JJfS+#0uNB7p0_ z%Cq|o%a=s;@SvV!a{a++iwa{`@5$PO4h{79eX1(US6u+Z)EV%;RQku*7w<+ znsEfw6C)m@YCwun@T>lzu`Do>nXFe&;4OlnSL*Y+mJ^nnzpgZZO=;TK^V z;9#d;vK$-HLq+AeH9-jQ52%FdTZ!+SPod^pgb$)!hFj=g*PiRQN`hCDL(C-kqd>~3 z7z^yA*D4&~t8&s(t!kC;{XrZR(uN`_i;E@5plv-DR?~G%!jr(8U6My#`b<{Iu9oV# zStp(2*Xtansk;in>l&D7@;612lR7LA4q5A#p_lj<0LByd73-!y^*8qJI)FJRf81Zl zu`6P@Q-k=8*V(qA1sTm4W@Q`3v4jRNlZfH_GEhF*5T&u+b^GtYN&%%-3*r+%Czf$4 z?lZrMRG0CCQ8zC(T{k?e_{MmnxE-8d&So4H3_i4{uCH zmkQ#Lk2lpiC0FFw@dO%OR+Gl+{-GtSHQ2t+mJ43(Om8PUpUHz7VMxsXBFduQV;9^S z@a^!@A`0b*;3Ng)q`Bn~=RIT6S`UL@4Ock4Sed(VPk1?E%PMQ+>S0v4kL~eXAO`yE zJ&U-WjfotCo>pQ|&(?IekO$ZzAJx6e%`Ku<4uRJfJbll(yYo>_;5Yx4<~grLX1R8` z<*2Y+4xw09_kmNU`eXg|C|dM`h362p39A6sTt#Gx!9H*>OQAK7HUgKJs~sJOBvN`u@L z2pc+~{B$!HeplN#70R6zs90MLaP=*Z%zbRp#CHz(pkCz}HmQU6mui=NNj2bK0XWXBKcDUtlc`sW2P6Xq_5H z2Jxl4Mkso~=9_FE19D$NFVuF@!`NiPn6caEIU9@&z))tndMDQxjk_DVWM@~ws*Oc5 z=wd0E)PoZ-pN>)isPYJRIpDT4N%)!6xlL`A=$Ck+%eDxu*L(pxlq3}qZY!l3gKD1L zip{sLDQ2;ky8qEdz4v2Yfm%AYj!YwayK@7xVyLo;NcUsO>NP8ai8P?69xOac;Tef=^+eOm z?TV~F-QfeGl&6x$EL4rU;mqD2GC|08y7?v5{WU+1w>K7u1ues?#nkcrO-WyOge#C5 zFVxecOT|Mv%(O^m^eDBXNVb%CFI=|m+B)kM{G~BK$k&(E{JNn1EqKP#!C;L5fK#_s zn2@&Za20Fv+U;L3VLVuL zGhGGI;jh@Izv2$R6TJROV7ipY1@ta3YkM~ARkiWFNL2T~nachzfEB{i8XCJD{9j=X zD~yZp<*Y*cp6nYr;m=gva2^ebo280T3ahKr|rR?KxgkjBY(c1 z8C~at7njdUuz%ttf*Q6iJIpOoX5Xf8ITL|3j=?G$^s={s}V!6FCF~5uJBZ;vamiaSWyuOG+HliLRaR(- z5xFRl0$03Jf0ea_SvmKzU&pc?9t1z)GE$RumPgfb*6dGqiAF%_`Bx`Ptc-{G7@;@w zTj#?BZ+{&;`&IGm4F|rE-juHE(L-dJI@)_G3T-;jNgyH7cC@t z>Kr$6qq#UjZa00KE8wHQdCY%#gjo|LGL3_v7A{xZV)=Svv6=+f)w!Op>@8sSdk-rd zz>`Mxf)6ziyCKn-6v+XS2cMcb1h)Q7d~$VO1Nt4^T-RnQt`+PU)QaRT{uYJ@DiUM- z4{C`V2xWn)GXRO{Zu%+rHe7oB0>pE5-q4TxG>2wIr)C|V$ac2(VkW`XskL@}2EIAhdHLXw zEUaJqvc-irzUzGvWIMvu8?OUbsl@E$uAwoXzJGaZvTciqKnk`^Vm`}%@sswsQ|#WI zDnVrg@=0@-;Ij9^dDrvHL%G{s%eKl(LzCTh;O&q(b#XR949TRV6aY~ekmgQqSFba5 z+w1C=Pq-1TuY=MszI?zsLSaxd6Y|9syj3uYHDOo=BaTG8Z{vs@Jl}Pw00siE>teBY z#cGBQO!7Dfdbx=NoEN>uR;L#pk9Y!Z^`*DB`Nw_u7KPt z<$ynf-@Xp|EVK-|T4R@M*(_+{?9G-M-tcR>Ou33b3_hXvXAYzBe_@)Sa(lgMJ#_KQ z$d|Ym_rqhgXu;X~Zz&<-FO!}zvST<7zHGm$fkY(}o$+URnia5Hwzu`m0{Ms>Afe)m zGjBEsbiRknu?pJa0NDZUWP(^6pH#$fSBM(KeL?>7EZT^D{sKT)!hC?h1JG(?m= zGm|0>BYTHr?^(92Qba~5lCA8SEpbBjCM)CE2gi8chi|^W=lA^cT-S45&mYhAxXyLX z;W+o_bKm#-e((3|O@>sqy`UN%3H4yG++b|kDRM9nP^?@IAuC_anXz2W;*9g=SwoFm zC#*T*1Ma@Bq&A~u<9wjifE-h3fW&+i`$>*?pL5h4;*Xx~wqj8O8;Y(wp%$)M*bXzy za15OcNAtCg9CjQyDgW16O}b(O6{iN4&J79C*NfI4ezP%osBuJSU1g-LHPO|cjI38j7a|7-Z=iP87u?A>_t$Pr&s&eDT#zD_Qrj@o_`w{!YC2+@b3`k)s~egj^^=J@8|>`- zxJ4481OM}d2v{9hq8I|4?MeXESVX}981Bt)BE#_K4LE!F@jfd4PbyK+;f!Xh_88e5*XZ^_J(qwhRnf6r{f` zX&9hTNGNsT={NxKAF)sz?e3)fB>dn-XRkett^PYg9_B}Zze-sF`r13MD_z|B>1d&Q z{PcGtoOQ}(^}8?pld!5+#2rPT2Gv# zgM^~_SJc{!)vXyUiv2Xiah^xzJ`gge5(3a2C}vOds{75Jee4oUt|>0~amSRDd*XxM zqSJEr@5CeIgzLKML#cqmo{%Bq^-5&?lYnw)U7+&g8M`Ss_1w|bys5SjQh|f8cHUS2 z)k9qq%x#@NTuH7Tr*5r1cyFM11pE+H2J}uI0b%l7m{|#j##o!c6OmNcQvW$LgtQDe z2ipxI2MGzx!W%{XNh}sYb~!xA!1H&bqRS|6to{WWhdhE*j$<_a8Aa@>y)(@C`De*~ z(OZZ&W?Ii~%$^OgxEz&@8eJ+3lL|=i4`&fnCVL1K{Hdm_M)iAYvr|C(Q@oaMF=T9} zir0rBTkZAi#d=5}f$+qgO=m)H*9+k%!DzhkEms3rz@WdOXUoZCt!vRu>Ob#wgh0mN zuShUUWxOCGX2pK>n^BHp!z8hkD}YT^ZQ0Fpb3sD+dAA+kRDVM?$a251%GxCl^PiWJ ztQ5e9`VVVrBfY_%+P4+%yw=nPA*t2jdk2D?djscBC%sijNm1N&#+A-OWa$txoDk~n zWB86LWO^GcX-iDiP~}q_PhA?}qSfPX%aV1Tck;SIrwVs|EcN4zr$-T7g)+#^*R!eO zlAy<9xalz;K8;jfC3VE(@TOp5HlUEY!~&}#8T-LoPOZ*m?epH%Bi>E$ zsI3~eK1A6ci?XBvO$0OKbtJ}K){?RycOl?o^2kbk8=TUoU#g$l)wfMsR!!S}8@Ijl zn7v5Yfi2`FGoo1O)jls3*@;B94;&h`pqsFy`9PhLsH2vN9a>TY7&a#lOw@OyoP>n0 zfEz(~*CFxHLs>IG%Lhzj^BN4m1FkS*7^pXz`eRRl^aXd)KEJ;00F20+ocr_Z(r0ok zbWQ3KrenD-sQMjFvM~seK)U0?cZ*%W_)2{bcM^P zt*#msz_wcGl}&hKcasB^Eo5tNLY~j>D~&SWa@88NBVLrA>$yKVPqfd|Z#pW;(SmLu zM=K#=%%x_f^!s>aE;L>+8ui%@_4^e9z%zZsXrGTLVu*$gg$f5iDq?mP+7YBX4!an% zelnzRDe|2qma;1}6~L%`;F?>L2^d^ik*9H$qAYn*wv#Kzy`^xR!m9SA{UyAZNH=Cj z%{{(gB5~jFa<3WBPu@SR89bG3#y+(M&pMuXHIJU*np+5ZZ7-myd)b_l)VJCb?4l-k zi~)N5bI#!#6z6VykO-Wj5r7)yyD6V=Hbc!1Rn}%=jg&ZWqNwC28aNyQ4Ju*6QN%Qq z?=TPTWn5yt7Beod*~b1f?gi>?0KN;lG(ApzENzxSg<}aO#k$jZReHHqrukJyIn}y0 zg}Zk?s>%eONDcDTxUyWw%_Ks#sAlDVM@gdZ7eo|SKLLvKBSneAlr+vys34U8YQ*)6 z8gVaPZ+)Ou_ZR@$F8@FTUPvXE(lfv`@46(Oka1JIiw*_2dQe6bo!)AI8xqy6O0l;e z+~J_5{h$HzHgI(hv!d>uu>-KrMJvn4iHkUrxGRGd&FxOg7~y6P{gNZ=w?3k#dY$_|u1H@w#~`O*u}W71}JC2Tob zp}myBkY;m?pU7CO+|v&#Dj;4fErUZ{y8lus2CwK5)q|}TR)AuOc6MN&QQ!?R`6Wo; z5C(o5fM()0E*Ya`xVEe(x2M4nCV<=c28gzX^{urnu@P{9A3}D`oQXb58Qz?OMj-uK zwv3O=t|OjD2g|9`vNWhV?HG>RWYHE(49(o>7hT`s%m(BRrUFd3VTCk!Nsvl5U%st~ zu_?&1b1D7CX4S7cNbw-|c$`vyj)|!Qo~X@Prj=glysqX+r#S8E9+6&IaU5}8X=edMF5dwi?tJbDl2QVkn^CXu`KrFylOI(dyNMD zl}M~tiv`bmlT*BYtrjro?V_(H55+%#G$j;QM0EVAGaj-Ks$Kp}dJ^TODpsnLx9di7Yy~t24cIOFCyfC|^zF$vDc4vA>0}-1Wk{u7<<0$Q9-<{KufM0`R_kZredk3UphTie7;vvG)VvH!afI6Pw$0Tl*L^XT%%bgj-dU4h<3}k2eHt{w0{V|c4R(Pa ztUROXorXoKsigd!5=;?z{?Zu$P|qcn3KFj9&%6@%HBM9lhY1wKN!2$d1c9Q+(YqYo zkNt8}`Y=De!c8mwfy2y)awiSXx@h@gc))wsGdLHbZzuF9t?%cf_K=86kQ;3G1nh6% z7@#SQG!(G;ZEH}R^M!1qDOCYT%#JUL+(`C}4S?zbdgjyQrRQDsQ!B$yrYk&MZJjJ2q>YO3%)yV zWW60*IF@oTXTJWHVxm@Z;B$V7!&V;%A-P8C1hYSD)kT%~3dZWIck5&&X&HkP-#Cei z>8nu<2qqQWPb&I+s`=Dj=B!I>r$s#h@;1l_9w1+WEe81K?Op&BhbRkKV-XRcn2Ad$ z(~n-$16?#IZM(g3+P2Cx_uD7*A}gw-ta0UOvp7YW`iw$4;Kzl`EN`N3`J;j)C1lt~ zx%FN`e}lt{em)P*AL~QQ?6WE+2yroahv|HTC>88u<71h|d24V_W*V4UKV|0Fo_2CX zPou!Yu^6gd`b^Ayp(#6aSrwO_0PuDM$jyeJ+J_Z`*XMc7LONU+Q>cQ(M$QmcU-b{M z3(e%v;1YiJWa=u}>E?kDFw$(VI{>a5U97n#%lVgBfxV^)HxzFXE9Txm$@HARD%P7? zHqh55qszU+^~&MLB1B1^P`TXn2)~=dK?P7z&_Y29N*++?2GW_IH1vFO zHN)$HOaUu3_bQj`nD4S<#aQmLGw{~?=bS#>^h_1Y!FM9(q@2(EVP_-u(e?qN)g2*3 z@4jsO;mCcZ@UChVX!9hBFSdAP!>Z z1^|I~zLQ|@_>?8o6mK;Y*As;}#q)H3r4E`Z+Br`*- zchOE~7%qDW*KIEo7TJCul)JG{AyG~s$q1QPANw>dTRwhKLbeWuBNVyHC$SdJEzT_d zZsx>8cDAtvVBjXoDaM(*nWYqbxCN#^v~YCjHy313h*@Io2MlA#bE0v0M=3|oB%>EW z1A4)sNNDSLbt=f~)zZ9ytAz?^s8q14;N{Q-y%+5A)Ox%xY)Vh2^A5-Ah-&iF6M)^$ zoceQF@o<6^^6~+ot{zU*7bY5h`;AD)VaXw#a#t``fkw#rJ;v5(rT!N~)6RO)u0#D# zJbARZYl<^Ft?y#M*l_)c)_WH0N7+zVeZhz4mCpaenR62Nj>7v>?2I%Fnz<$PlY@mu z{pOk2ZhWLNe#l?E`ujtOwFA_vFYgXwL@TC8(yCuAWQjhSywc9?a_1ZE zH9%GvmpDOvOj_gmRpTdU$R7bi<1Y6gsZFTiU5TFUeq9Go!+|C*!?Mr;)KL)v*SO=` z0!?_Xhfo$(1-m(SnY|rK zYSss0{}2LBo$F7y+wL+9X^pyRlop?5H&<|gHk_;{Bv?-{Z>}_ly2yZEQX+>O9<5xt z?PY@dt3@s$%%9?N1W4pIqh2bZnoT=`1RGwtYQN_Fao|lP=MC%3lHcEPczyz();6Sa z)#e+TgT*FQTV>T+!Fe)mpPSQKEL!q9aeEH~KEV{IaDbWOsW#z&*E zoU5W9aMx9B^N-72H`GDcBA&IAD9N2yG1*^dGKc2N@y`k>Pt4s0g=1eFG(-jeGZqNj z?O&M-!BW~T&DNmyAP4|z(?dsts?K~d{VDiIHW4!Ix%`;Cg94a2PD4r*;t3V@KV4pRj%3gKcHCvVcnEY_00=3>GifMpMS=V@8Bh=P)|3X~*;K37l-5_($&0+6%aZ6g z;gA{~b0q3*-i6EQb7)74EX?Ac%aJ~L=6~nwecOEB3O6FH)|vJpK@j_Q_~0`qF~iPS zsF9G>i*RqHsT6=yz&B$KI#{Lzl9KSMhyicCMplMp_dwD(-=H&9#S6wrc!mTQOAp+gq;4AqsWrJl$mMFfvj}hY3uS#VQo3$ z5JMNSI{P2vkV}B~kdTQ9M-i}rjD7{_q@k$l&39dRaRwV*S>}u?E-s=1{(w)2RK6ma zWZ}4So_(e#^n2q!=LK$PkH#hPACJ*5tk2ghg<#ga%hG?;siW3JcmBM|04Qmug4O9E zg7fkN&_>BBtMBdu1>b|O@9hu;ck1oHkJMKXfL|o-#%zpa=QD!6>@*XIAQ?QT>4&r^ z?g{nEFoc-fRPaHEB^wk6@r?5t?VbN+ByLeUxAS}hr`OhwD#jI$=b1C*EpB76rJ-G# z6{qPH9FKbpm6lhlD;RZ*%csVW{@oOAN$5TXafrenVktCGScg<5G}pg3|K*dn{qY?Y zv;##Dz{zI)kjvxMRF)2GQ?(0%4_tNUyh_Xr2k3_k;B;IuHQp(V zf`LF3bkACIvnNC#hexL;*(a&o?_i$B9Q$pRB9b)QF=$%cB0qT@rU&jyn;z{!;M|%l+M_g6!|3U^OB-Xk)(wiy2}wEWrCM zi4JZrK6^iS?d7-uBq5eNk3)aeP*kl`LA=Nxm%n3>TN~{&q3q$M!fwkiE=vz0+kGG@ z=ZE+g-zKs7*+je|!+q|3W`dSG5W<fA8Gz*%FT5+E$L9CNKRP|)^T1H#*F9%}Vy9I`rsrkDO*4AVa>WP*uU1dH zd;ihJ;1sVwcTHGF%F*5-vLI`ZNfaZvfc-uWJikGNxnI(>&2g>J9Xrc2B3CHHpa8Bw zoNgiF$`kw)T(C%E#XLyZ z$t#UyO_NXE%-EtY_aR7a+A=7!3wLS`s66Z%{vKuBemmpt5QSM(4|PS-dIaZri-b9h zuGq7++TC$}OlK!5*2Qb*UFKd=JzoipZc*46nSb?w8pi$mxw;{5!?oMrgCJ0O4{4)n zs=bh?GvnrJdXoV|NqM)zZ5hmMt&}6k51|wqK<}t(gLvT(k- zxi8e?`V%SV3&bj&O8r%9g@=I zt|8(Ojd^gMp=d|FN9ZZ9!{^FSu0Jf%@_`FGqe|BU-0Odi*Yd|A|EF(s>N+A<`q zdA4X8LBP9lU-~j4KGf+0D7T2X>5aC+UMQ`1+{uhALs_`4Ujh?;%=Djd6U^9nUv5X8 z#DSMTQ4EMI4i8@6VjK!eD+4dTx3j()3G#mDK{zJw*Vb>VyxpFm3K{4OkBHaJKCn=u z-zO|!TVXHv+4zTH>!Lzzk$Ndg+hf5TBA`qKk;0c-v4uH5G-Z+#499&r+xA5y%zBMRbRaWug z_V%zhmjBlGt>s9IN(0+2pCQX8@UlnKS*sr`R+PZraW=R&u-R=#F6)mV+FQ$X^c!nZ zH|L;i@Ei5gvu`Z@@<$_I6I~f`hsM3@^A#ls0iT#ETE<(07{N^}dv0z( z|0x>}r@$~OE#y~1(#LC`^4C0^4#)49lOW<}N5`nM29J>Wk%b>DAki5^3K%$s3bK0K zw?@qeCs9MI+=7o*^i5ful=Uj(QE(g~K$Mi<{*h-mRefi|Z3hTe%2aDAJoDge{het0 zM7o)>4%FWqLZIZ>aVetWTfgx)U<$`^@JQY4`JQOSMmm9!7V4$NaB2&D={{c5KhYsrGS*qiaJ;{+%r-j1I*rp1>S`tl_E|Q)3OmuTk?7GFI}pToTOxAUKDq zRik1H-D25xc=D#r0GdNmud_i6joFab*5Adc!`5~u-FLEtWbd>cm;m1Ek}NpGF-94Z zl(t4YN=i}K@HxcN6`SgbJ{9N_mdfl`78iEP@3Om7>!hgD+y~7Ue5s!86bo9!wrElmZNE;!FFvKrcdGmpOt+#A<{lsAj_exBUxxKLcfK7Jv zfT0;jsf`F#yqL$28SpdwvmI^F#R}dkq=7d6t-WBIfun1o#u*$cYtH7Cm^4t&1T@H~ z;`xq4)02?RqO9#5h6jup_`=~?I}44B-d}ePwv}o7lP^x;Z~vU|6^Nl}O&MCEbWVbI zQ#YIcC!_~188$IJ5;{sRdVE7ZH$hn%(9`ihN+BPmh8=!yJA<^oHA#dz>_-;}rA=(2Rci#K~M}RvDWekA{3Zs3JaxR8H6?DC5$6IRS?r z5mycKWkuxaotRFHxY)v~HNE z5CQI=u1#@WKW{ZsYo*i>L1Hx&cod=thmdS2`*2*?*7mGUAU69uAwpWQ?^i*9Mo}c{ z8x#UNAI|N8$XQV8D_rN! z+{!HFaT)aR#MDj#K7F&fnr9sE3S4jVs|KH+-Dx&+T+b_k6d3w^`vVPG;;||t zY}ducKel^`b5$3JI?F7NGPmn_sYV}YXsnL=OllkybGKufx{CQ28!P^9r6j-VQ;z~p zAFLX=$39p5o{Hv9N@x;Jh}ZopX!*7FYC`-!{w=sxl+XUTBBcERO=`vUBT;6g_<%e7 zOrxeg&R5~OZ4}d}RW`5u5$dMrhrHl&Q~BNXD{3F3wE#`qpNgbvOa0)+49+K>z)^1U zYk*p3CmXuQ2~hD_)8eW5_1Nf+kt&t(N6>L#|pT(C^Gwr_B zwTT@%MC}$hm*(C~!lHs8S@ltN&y&K@z{{4Cu?}(b55d=SwycpidHfg^u79G(RVgA@fj_5B`%(-oVUFJJ)v@%g8oHI zei}axogV(hqh|8>S6hO@j}e6yRpqo($}^Rpl#^N=A9eYWa|^OHg{*&J$lKJ-GEe<^ z6AO$^~sFC#Qxvv9)gfuttMH zkH*GET}=;(o9k9I=hNp7KxgrfvJ^1P|2s;<4=KoLG+ADb-=*gpu)SYt$j!|y@pN|w zi>`slQhZn zzPj1Mnuk(#^v-jSbCW6?USJw-)eSp1*dvlr1i)7Azk)8GMFM}a*#-cd)a=V^|JdOZ zD+lEAkGI_5dmzPP4s=H~O+Cv#CwD|6=3SCZ;%)kfwZGSeS&hZ+PY(|~@!7h{q|juE zzgN#Y+)&b#P4-Idb5?U-36^Ov;HDuZkdl^;o$mmbq*qg|M7xdC)#44K=L!vFj8bgg{K)?lbzg_Ike0sX zqO}}Vby?7_wE;#-imHsNEVuC(6q^8%z~ninSALk7-_xOI&K~jt4+Q+M>Oc`U{CFNF zoyWZ*VV>U@_TErjEyTyY5yvBN*!#oH%3-p-H$*i3hj4HHpB>~UCmQ*w0tKo5{u$~8 z6AVXSvYx1Cfq{V+P7*uSzxSuHmIS*cg`wtMb1$L-Y$oqUy^qgLL35LJ1MOiU0Q(_lH{8 zm^}D8+yBm{PQ7$mo~Z54(ND_F<-T%gqd_35w8_9)%IPdPq5&Sm=RljGK6y-icoOQ(fzN5`79cdQ>gcpwEg zaXVI!M>$KYtcwSLrb9_MORvIYlI~upnP`58`~Mla$r1=y1qTOX-8hG*EI*a+ZlgWW z%e3X##gd_Ij;>iaCQ}KpMeD7h?kAffIYSMbB5GC2m);bvw8@X5J$79NTc^&w<24Tq zpk%AFs%N0)EL*v^HO9E>55Vph6!=HHOOsmVGb?sBRdWsGgjavv&oS-z{3$Cdv@x8m zzSwSNDMSWO$bQ!U8cO)uL`!T5%8Y@5AxEz^uy8WY1zt`q_S>Lp|8%5{y^`l>Ja^fI zK7D!M^y$-j)xO7E&Y*;sZ^s+4#!9Yk!<~!mtfYw5wkwJ;pi7q(eneekGeX5NG&eW9 z#l2za8XP=x=gytQIy#G*SLfstzkIp&XJ$sfK7_#~b9!pZ9~QW9CbPu4`PONXY1e}I z-K|Nb3n#4`=1JTh-S8q9 zk9hf&?AONkHRh4_$AuQ`e8SSS?Y z$E&HRsB8hv2QUcP*Q_s&Er&>Qnmm0PV$&kP#!<1g^eHnlnFb8($Mz(lY z3QbK-DwJ%1s^^6`d4y?|N z-b9p%MMVODiB1hEOJ-(frP%orC2j3^hwBvGxrXvJDM$4#9K+6(CMB_CmT&%fE9CH$ zl$M*d-u8q2Cl}X^rSTl=@mqc)!!}jJWGmgDAExOIS3Ya4@Yr2%aVV#Rwr3$qNiw)| zyp-j!eHqRHbxN%Lqpx4T)_{I9n*8o*Ae?Jv^y8K1zz1o>++DYZkBa$2n>1Ni1L5tJ z_QlAGt#iCjy2BiVH@iJ{u|tL1Ykgy%(=r3UfB#-O_ER2ca}-t}NNjflwFn1+zqhY1 z33j=-xEN@i({VPZUhmf@CEW1^Hro30C%MgJi^#B?T*w(m>;^n%Wa2%`B{ zp5fcMFE{hm!@7(D18U}BG+F(9M!V2bH^!=tmP@zFTNHJ4Hcfl*kY`eT!%G(Z@$YYP z;EX!1^%(2d1JhkP#2LoHR2u#-C9~UNHoc2(1#m*IsE!H!J(q1$A%@C@!@aw)} zZC;lao%Yr!^;oxlXfQN~6Ur?9^I5gr)d`NcWNd6KmwE5khFo@7vq%Se=hinWT1As6 zxJW>betq4=lo$%wQ!bOX4;o)y4nk)KDvQ!Znd^LfvOo#!n#I?Fi|BP{>vB0Q{VpA| zIt;&#&J_%;iM8Eo*b%et?r@T#ugJ!@->yq@ zaiRKn{p*YO^=7+sxLnp|aTe03u^3iuaFHJm8gzzGYdJDKQddt(PCmcCUpwC~XVti% z%c#8wjs?1JZ%S9V?}}+V^%zFh`cP}V)z=G=Qk-7|@N-^4=ry^yGVK<3yjzT||5v_q|8i?g4-*>hwuq%JP+aPwI|`0+~hJURPU&I>hMj3s5{a>A(b@}Ffdaa4lt(~1zSFT)f zl1+-7-C+njF1#Rq`yKC5Xk_n-wHS0_dP`4=KQ4rf+ zDV&Hl!wHAJ0*j%U-%D6@1>xN9%tkNRG{D?>eWe<}hnHj`&Rd`4bpS$0y^u zIj#XjB5;1vk|BK=_n+ICA;w5edo>)77=%qJoXhVU1!50=!CB7V)lVPiwW_JEPDia_ zd7~c~E>3EL+{AHDMbQld;jM-0qKS!x>pVQQiPA4dHzwmlfh~xjd$iZ9s1r*|g_)Uo zpZ3$x@jdNdM(cHaeu!i6z;VkpRxj9oYVjkb%^l*rm64ILiXWA97q;EspU14TrtPEr zSg6OAeu&94Hv>e(axSmS2rjDzKgtguzPS^9{i4gpc;s@3G$*#2aVIPon8D0Yg@^s- zbc!*Ea+DB7*;GNrwmGj}jemN2Iy)V=!OhNJzh0XUmI{Ej(bn4=EnOpuJKY9okXP>7 zFZ|Q<@_5iw^vPa!gRQMEJG#1zA3l880}?wD#DyVWzolfp)mUArzRg>*PKOA?9^Yeh zxlz}QjX=ycg^2B}Kl$D8vPbf`$ZI>G9ER9x%lDXBXinSZl39cqbUE&HOg1#mw!EU^ z3y_j%v)pNsIc$p%`iJjv#yFVTc*Lo06(;O%Fey%pL+B4_M-%V8`#;yRr87T&z62`L z4aOnh9?Ky_2qIhN?u66#ol!VR6e_&b;I7?QY-iSQ-E<|#tSj@apq**FF+Sp{cOM9^ zN$4VtIEnRMTF+V@=xZ0sICa=ADZ*PE4djk;SD5@@mfeuzJ810TJ z;d0+v-_}wA(Y?C53Y-h>^d;_21AjJgR?t&xyDl Date: Fri, 22 Nov 2024 08:29:52 -0500 Subject: [PATCH 8/8] update with the HIP partition functions fix --- networks/He-C-Fe-group-simple/Make.package | 1 + .../partition_functions.H | 656 ++---------------- .../partition_functions_data.cpp | 655 +++++++++++++++++ 3 files changed, 728 insertions(+), 584 deletions(-) create mode 100644 networks/He-C-Fe-group-simple/partition_functions_data.cpp diff --git a/networks/He-C-Fe-group-simple/Make.package b/networks/He-C-Fe-group-simple/Make.package index 39c65eca7..3c406e47f 100644 --- a/networks/He-C-Fe-group-simple/Make.package +++ b/networks/He-C-Fe-group-simple/Make.package @@ -5,6 +5,7 @@ ifeq ($(USE_REACT),TRUE) CEXE_headers += actual_network.H CEXE_headers += tfactors.H CEXE_headers += partition_functions.H + CEXE_sources += partition_functions_data.cpp CEXE_headers += actual_rhs.H CEXE_headers += reaclib_rates.H CEXE_headers += table_rates.H diff --git a/networks/He-C-Fe-group-simple/partition_functions.H b/networks/He-C-Fe-group-simple/partition_functions.H index 4e5619f08..d34ee02f2 100644 --- a/networks/He-C-Fe-group-simple/partition_functions.H +++ b/networks/He-C-Fe-group-simple/partition_functions.H @@ -17,664 +17,151 @@ namespace part_fun { // this is T9 - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real temp_array_1[npts_1] = { - 0.01, 0.15, 0.2, 0.3, 0.4, - 0.5, 0.6, 0.7, 0.8, 0.9, - 1.0, 1.5, 2.0, 2.5, 3.0, - 3.5, 4.0, 4.5, 5.0, 6.0, - 7.0, 8.0, 9.0, 10.0, 12.0, - 14.0, 16.0, 18.0, 20.0, 22.0, - 24.0, 26.0, 28.0, 30.0, 35.0, - 40.0, 45.0, 50.0, 55.0, 60.0, - 65.0, 70.0, 75.0, 80.0, 85.0, - 90.0, 95.0, 100.0, 105.0, 110.0, - 115.0, 120.0, 125.0, 130.0, 135.0, - 140.0, 145.0, 150.0, 155.0, 160.0, - 165.0, 170.0, 175.0, 180.0, 190.0, - 200.0, 210.0, 220.0, 230.0, 240.0, - 250.0, 275.0, - }; - + extern AMREX_GPU_MANAGED amrex::Array1D temp_array_1; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real O16_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.012837224705172217, - 0.037426497940623665, 0.07188200730612536, 0.12057393120584989, 0.1846914308175988, 0.26245108973042947, - 0.3463529744506387, 0.437750562820388, 0.534026106056135, 0.6344772701607315, 0.8981764834976765, - 1.1760912590556813, 1.4668676203541096, 1.7641761323903307, 2.0644579892269186, 2.367355921026019, - 2.667452952889954, 2.9656719712201065, 3.2624510897304293, 3.5550944485783194, 3.845098040014257, - 4.133538908370218, 4.419955748489758, 4.704150516839799, 4.986771734266245, 5.267171728403014, - 5.547774705387822, 5.8267225201689925, 6.103803720955957, 6.380211241711606, 6.6551384348113825, - 6.929929560084588, 7.204119982655925, 7.477121254719663, 7.748962861256161, 8.021189299069938, - 8.292256071356476, 8.562292864456476, 8.832508912706237, 9.100370545117563, 9.640481436970422, - 10.178976947293169, 10.714329759745233, 11.250420002308894, 11.785329835010767, 12.320146286111054, - 12.856124444242301, 14.195899652409233, - }; + extern AMREX_GPU_MANAGED amrex::Array1D O16_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real F18_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.00860017176191757, 0.02530586526477026, 0.04921802267018165, - 0.08635983067474821, 0.12385164096708581, 0.1673173347481761, 0.20682587603184974, 0.28330122870354957, - 0.35024801833416286, 0.4065401804339551, 0.45331834004703764, 0.4941545940184428, 0.6646419755561255, - 0.756636108245848, 0.8419848045901139, 0.9232440186302765, 1.0043213737826426, 1.08278537031645, - 1.1643528557844371, 1.250420002308894, 1.3384564936046048, 1.429752280002408, 1.6748611407378116, - 1.9405164849325673, 2.220108088040055, 2.505149978319906, 2.79309160017658, 3.0827853703164503, - 3.369215857410143, 3.6570558528571038, 3.9434945159061026, 4.230448921378274, 4.514547752660286, - 4.800029359244134, 5.086359830674748, 5.371067862271736, 5.657055852857104, 5.94299959336604, - 6.230448921378274, 6.515873843711679, 6.803457115648414, 7.089905111439398, 7.378397900948138, - 7.6674529528899535, 7.956168430475364, 8.24551266781415, 8.534026106056135, 8.823474229170301, - 9.113943352306837, 9.403120521175818, 9.69460519893357, 9.984977126415494, 10.568201724066995, - 11.152288344383056, 11.73798732633343, 12.324282455297693, 12.913813852383717, 13.503790683057181, - 14.096910013008056, 15.584331224367531, - }; + extern AMREX_GPU_MANAGED amrex::Array1D F18_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ne20_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 6.9486561213582446e-06, 0.00016586881316040883, 0.0011034421778731533, 0.003892457497077877, - 0.00954097493969645, 0.01859524021829981, 0.031075444833369822, 0.04661767038571622, 0.0846241727916796, - 0.12822183093465686, 0.174311933665943, 0.22124805254602342, 0.2683385291343481, 0.36172783601759284, - 0.456366033129043, 0.5514499979728752, 0.6483600109809317, 0.7466341989375788, 0.8481891169913987, - 0.9532763366673044, 1.0644579892269184, 1.1789769472931695, 1.3031960574204888, 1.6434526764861874, - 2.0170333392987803, 2.4099331233312946, 2.8068580295188172, 3.2013971243204513, 3.5899496013257077, - 3.9731278535996988, 4.352182518111363, 4.725911632295048, 5.096910013008056, 5.465382851448418, - 5.830588668685144, 6.193124598354461, 6.556302500767287, 6.916980047320382, 7.276461804173244, - 7.6344772701607315, 7.991669007379948, 8.348304863048162, 8.703291378118662, 9.056904851336473, - 9.411619705963231, 9.763427993562937, 10.117271295655764, 10.46686762035411, 10.818225893613956, - 11.170261715394957, 11.519827993775719, 11.869231719730976, 12.217483944213907, 12.916453948549925, - 13.613841821876068, 14.3096301674259, 15.004321373782643, 15.702430536445526, 16.399673721481037, - 17.096910013008056, 18.838849090737256, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Ne20_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ne21_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 8.685880952436748e-07, 2.4754079983896385e-05, - 0.0001901793368385613, 0.0007372402163824667, 0.0019404293040471109, 0.004003921820573951, 0.007021925578680665, - 0.010986057727319889, 0.04118891376750491, 0.0777722105539352, 0.11230632139519969, 0.14260436993417835, - 0.16888829052162926, 0.19197861038694294, 0.2126999294489824, 0.23172922294680387, 0.26667282493464145, - 0.2996105757244402, 0.3321030146619489, 0.3650139334448046, 0.3988146649899235, 0.46982201597816303, - 0.5465426634781311, 0.6283889300503115, 0.7176705030022621, 0.8142475957319202, 0.9180303367848801, - 1.0293837776852097, 1.14921911265538, 1.276461804173244, 1.4082399653118496, 1.760422483423212, - 2.1271047983648077, 2.499687082618404, 2.870403905279027, 3.2380461031287955, 3.603144372620182, - 3.9656719712201065, 4.326335860928752, 4.683947130751513, 5.041392685158225, 5.396199347095736, - 5.752048447819439, 6.107209969647869, 6.4623979978989565, 6.817565369559781, 7.173186268412274, - 7.5276299008713385, 7.8819549713396, 8.23552844690755, 8.5910646070265, 8.944975908412047, - 9.298853076409706, 9.653212513775344, 10.008600171761918, 10.361727836017593, 10.716837723299525, - 11.071882007306126, 11.424881636631067, 11.780317312140152, 12.133538908370218, 12.84447717574568, - 13.55509444857832, 14.267171728403014, 14.979548374704095, 15.693726948923647, 16.40823996531185, - 17.123851640967086, 18.923244018630278, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Ne21_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Na22_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 4.3429426472042774e-07, 2.605759074128604e-06, 1.3028639028478182e-05, 4.559852671908958e-05, 0.00011984873864003523, - 0.0002626687122755098, 0.0029928105843703536, 0.010836979076306525, 0.02428653620880802, 0.0424270473387004, - 0.06402310268617777, 0.08796765614200239, 0.11338308526345185, 0.13961150376071624, 0.19275584832811385, - 0.2451455832343637, 0.2958922043442712, 0.3448263511644293, 0.39212883410565064, 0.48287358360875376, - 0.5717088318086876, 0.6627578316815741, 0.756636108245848, 0.8561244442423003, 0.9633155113861113, - 1.0791812460476249, 1.2013971243204515, 1.3283796034387378, 1.4638929889859074, 1.8215135284047732, - 2.1931245983544616, 2.5705429398818973, 2.9474337218870508, 3.322219294733919, 3.6954816764901977, - 4.068185861746161, 4.4361626470407565, 4.804820678721162, 5.173186268412274, 5.540329474790874, - 5.907411360774586, 6.27415784926368, 6.642464520242122, 7.008600171761918, 7.378397900948138, - 7.746634198937579, 8.113943352306837, 8.482873583608754, 8.851258348719075, 9.220108088040055, - 9.588831725594208, 9.957607287060096, 10.32633586092875, 10.695481676490198, 11.064457989226918, - 11.4345689040342, 11.80413943233535, 12.173186268412275, 12.544068044350276, 13.285557309007773, - 14.02938377768521, 14.773054693364262, 15.518513939877888, 16.264817823009537, 17.012837224705173, - 17.76492298464989, 19.64933485871214, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Na22_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Na23_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 1.737174453219938e-06, - 2.3885539658322847e-05, 0.00013113713282427166, 0.0004423207528904243, 0.0010999766245234138, 0.0022321731976362837, - 0.003929471989446119, 0.021128907257497758, 0.0479649055541949, 0.07726249885377773, 0.10525805048344758, - 0.13079227003361296, 0.15390201926318714, 0.17503899265296466, 0.19472325248715508, 0.23147162936712465, - 0.26668504599022796, 0.3016913566252569, 0.33713446730536967, 0.37335950050705796, 0.4487063199050799, - 0.5314789170422551, 0.6211762817750351, 0.7218106152125465, 0.8344207036815325, 0.9590413923210935, - 1.0934216851622351, 1.2405492482825997, 1.3926969532596658, 1.551449997972875, 1.9628426812012425, - 2.383815365980431, 2.803457115648414, 3.220108088040055, 3.6344772701607315, 4.045322978786658, - 4.453318340047038, 4.857935264719429, 5.26245108973043, 5.664641975556125, 6.064457989226918, - 6.466867620354109, 6.867467487859051, 7.267171728403014, 7.666517980554881, 8.064457989226918, - 8.463892988985908, 8.861534410859038, 9.260071387985075, 9.656098202012831, 10.05307844348342, - 10.450249108319362, 10.846337112129806, 11.243038048686294, 11.638489256954637, 12.03342375548695, - 12.429752280002408, 12.826074802700827, 13.222716471147583, 13.6170003411209, 14.40823996531185, - 15.20139712432045, 15.993876914941211, 16.787460474518415, 17.582063362911708, 18.378397900948137, - 19.17609125905568, 21.173186268412273, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Na23_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Mg24_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 4.3429426472042774e-07, 5.471765757979972e-05, 0.0007714899373308072, 0.0037633124724497638, 0.010764115210255056, - 0.022625058328435317, 0.039160607597355665, 0.05951911533271758, 0.08262238957783377, 0.13324118689139802, - 0.185518640557017, 0.2370005304649223, 0.2870228837145503, 0.3357157930198095, 0.43136376415898736, - 0.526339277389844, 0.6253124509616739, 0.7307822756663892, 0.8463371121298052, 0.9749719942980689, - 1.1172712956557642, 1.2741578492636798, 1.4424797690644486, 1.6232492903979006, 2.103803720955957, - 2.598790506763115, 3.089905111439398, 3.5774917998372255, 4.05307844348342, 4.52244423350632, - 4.984527313343793, 5.440909082065217, 5.894869656745253, 6.344392273685111, 6.791690649020118, - 7.235528446907549, 7.678518379040114, 8.12057393120585, 8.558708570533165, 8.99563519459755, - 9.431363764158988, 9.866287339084195, 10.301029995663981, 10.732393759822969, 11.164352855784436, - 11.594392550375426, 12.02530586526477, 12.453318340047037, 12.881384656770573, 13.3096301674259, - 13.736396502276643, 14.161368002234974, 14.588831725594208, 15.012837224705173, 15.86569605991607, - 16.715167357848458, 17.56466606425209, 18.413299764081252, 19.26245108973043, 20.113943352306837, - 20.96284268120124, 23.089905111439396, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Mg24_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Al27_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 8.685880952436748e-07, 3.4743419578801875e-06, - 1.0422942490878872e-05, 0.00032429686817590634, 0.0018833542475028369, 0.005477808032249926, 0.011239204769804155, - 0.018904286378932662, 0.028126564553716336, 0.03862016194970278, 0.05018673657450416, 0.07608019569340022, - 0.10530099179798433, 0.13774106877747655, 0.1734986149135784, 0.2127888058397363, 0.30319605742048883, - 0.4099331233312945, 0.5352941200427705, 0.6794278966121189, 0.8394780473741984, 1.0128372247051722, - 1.1958996524092338, 1.3873898263387294, 1.5843312243675307, 1.783903579272735, 2.287801729930226, - 2.7944880466591697, 3.296665190261531, 3.7944880466591697, 4.2878017299302265, 4.779596491257824, - 5.269512944217916, 5.7558748556724915, 6.2405492482825995, 6.725094521081469, 7.209515014542631, - 7.691081492122969, 8.173186268412275, 8.653212513775344, 9.133538908370218, 9.611723308007342, - 10.089905111439398, 10.568201724066995, 11.045322978786658, 11.521138083704036, 11.997386384397313, - 12.472756449317213, 12.947923619831727, 13.423245873936807, 13.89707700320942, 14.371067862271737, - 14.845098040014257, 15.320146286111054, 15.79309160017658, 16.267171728403014, 17.214843848047696, - 18.161368002234976, 19.110589710299248, 20.060697840353612, 21.012837224705173, 21.96284268120124, - 22.915927211697117, 25.305351369446623, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Al27_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Si28_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 2.1714669808675565e-06, 7.121845527843468e-05, 0.0005624812393818786, 0.002223099674110693, - 0.0059171580771474625, 0.01228240711882553, 0.021577095617092278, 0.03370716078346824, 0.06502557053071237, - 0.10275227725738852, 0.14387160800291654, 0.18660350439861528, 0.23028079132683374, 0.3222192947339193, - 0.42324587393680785, 0.541579243946581, 0.6839471307515121, 0.8518696007297664, 1.0413926851582251, - 1.250420002308894, 1.4727564493172123, 1.7024305364455252, 1.9375178920173466, 2.531478917042255, - 3.12057393120585, 3.7024305364455254, 4.271841606536499, 4.834420703681532, 5.389166084364533, - 5.937517892017347, 6.481442628502305, 7.021189299069938, 7.557507201905658, 8.089905111439398, - 8.622214022966295, 9.14921911265538, 9.675778341674086, 10.198657086954423, 10.721810615212547, - 11.2405492482826, 11.75966784468963, 12.276461804173245, 12.791690649020119, 13.305351369446624, - 13.818225893613956, 14.330413773349191, 14.840733234611807, 15.350248018334163, 15.85913829729453, - 16.367355921026018, 16.8750612633917, 17.38201704257487, 17.88874096068289, 18.90036712865647, - 19.911157608739977, 20.921166050637737, 21.9304395947667, 22.93951925261862, 23.948901760970212, - 24.958563883221967, 27.48572142648158, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Si28_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real P31_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 4.3429426472042774e-07, 4.820401221806151e-05, 0.0005624812393818786, 0.002468018295084159, 0.006670091319158333, - 0.013688955408210905, 0.023674199668938998, 0.0365510506801258, 0.05215275629691827, 0.09085986215557586, - 0.13887811232360858, 0.19608052467040618, 0.2628929908553992, 0.33982852740425823, 0.5237464668115644, - 0.7419390777291989, 0.9827233876685453, 1.235528446907549, 1.4899584794248346, 1.7442929831226763, - 1.9960736544852753, 2.24551266781415, 2.4913616938342726, 2.733999286538387, 3.330413773349191, - 3.9132839017604186, 4.48572142648158, 5.049218022670182, 5.608526033577194, 6.164352855784437, - 6.714329759745233, 7.264817823009537, 7.812913356642856, 8.359835482339887, 8.90687353472207, - 9.453318340047037, 9.997823080745725, 10.54282542695918, 11.086359830674748, 11.629409599102718, - 12.170261715394957, 12.712649701627212, 13.255272505103306, 13.79448804665917, 14.334453751150932, - 14.874481817699467, 15.414973347970818, 15.953276336667304, 16.492760389026838, 17.029383777685208, - 17.570542939881896, 18.10720996964787, 18.64738297011462, 19.187520720836464, 20.264817823009537, - 21.342422680822207, 22.42160392686983, 23.503790683057183, 24.5854607295085, 25.66931688056611, - 26.75511226639507, 29.477121254719663, - }; + extern AMREX_GPU_MANAGED amrex::Array1D P31_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real S32_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 5.211502513843472e-06, 6.948155872801059e-05, 0.0003893875360542875, - 0.001336870159627728, 0.0033782324012585556, 0.00696337755678715, 0.012456734172197396, 0.030114157908450765, - 0.05748428585387722, 0.09500536995017458, 0.14295136988131382, 0.20165707691270435, 0.3521825181113625, - 0.5502283530550941, 0.787460474518415, 1.0569048513364727, 1.3404441148401183, 1.631443769013172, - 1.92272545799326, 2.2121876044039577, 2.4955443375464483, 2.7737864449811935, 3.44870631990508, - 4.096910013008056, 4.726727209026572, 5.3404441148401185, 5.944975908412048, 6.541579243946581, - 7.133538908370218, 7.720985744153739, 8.305351369446624, 8.888740960682892, 9.469822015978163, - 10.049218022670182, 10.628388930050312, 11.20682587603185, 11.78175537465247, 12.356025857193123, - 12.9304395947667, 13.502427119984432, 14.075546961392531, 14.645422269349092, 15.214843848047698, - 15.783903579272735, 16.352182518111363, 16.920123326290724, 17.487138375477187, 18.053078443483418, - 18.621176281775035, 19.187520720836464, 19.753583058892907, 20.318063334962762, 21.450249108319362, - 22.580924975675618, 23.71264970162721, 24.84385542262316, 25.976808337338067, 27.110589710299248, - 28.24551266781415, 31.08635983067475, - }; + extern AMREX_GPU_MANAGED amrex::Array1D S32_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Cl35_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 1.8239985202970884e-05, 0.00020710907627919203, 0.0009431313908907785, 0.002698987769012708, - 0.005906875936599731, 0.010907713111778477, 0.017957319425972694, 0.027253766962590423, 0.0532486689285615, - 0.09021853774459236, 0.13964204799692437, 0.20296975189964025, 0.28111453407611076, 0.48000694295715063, - 0.7234556720351858, 0.9934362304976118, 1.2741578492636798, 1.5587085705331658, 1.841984804590114, - 2.123851640967086, 2.401400540781544, 2.678518379040114, 2.951823035315912, 3.6263403673750423, - 4.2878017299302265, 4.942008053022313, 5.588831725594207, 6.230448921378274, 6.870988813760575, - 7.509202522331103, 8.146128035678238, 8.781036938621131, 9.414973347970818, 10.049218022670182, - 10.681241237375588, 11.313867220369154, 11.943988875073773, 12.574031267727719, 13.204119982655925, - 13.831229693867064, 14.457881896733992, 15.086359830674748, 15.710963118995275, 16.33645973384853, - 16.96189547366785, 17.586587304671756, 18.212187604403958, 18.835056101720117, 19.45939248775923, - 20.08278537031645, 20.705863712283918, 21.33041377334919, 21.95375969173323, 23.20139712432045, - 24.450249108319362, 25.699837725867244, 26.950364854376122, 28.20139712432045, 29.456366033129044, - 30.71264970162721, 33.862131379313034, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Cl35_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ar36_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 4.3429426472042774e-07, 2.3451268844214655e-05, 0.00023141729162330258, 0.0010622869460975197, - 0.0031540913067783544, 0.007135153007315866, 0.013474284663478431, 0.02245187936733961, 0.048771089883939175, - 0.08643600351808534, 0.13560900039779808, 0.1965840257248699, 0.2696980636423851, 0.45331834004703764, - 0.6848453616444125, 0.9585638832219674, 1.2624510897304295, 1.5809249756756194, 1.9057958803678685, - 2.230448921378274, 2.550228353055094, 2.8662873390841948, 3.1760912590556813, 3.929418925714293, - 4.657055852857104, 5.365487984890899, 6.060697840353612, 6.746634198937579, 7.426511261364575, - 8.100370545117563, 8.773054693364262, 9.442479769064448, 10.11058971029925, 10.77451696572855, - 11.437750562820389, 12.100370545117563, 12.758911892397974, 13.41664050733828, 14.071882007306126, - 14.727541257028557, 15.38201704257487, 16.03342375548695, 16.684845361644413, 17.33445375115093, - 17.983626287124533, 18.63144376901317, 19.27875360095283, 19.92582757462474, 20.57170883180869, - 21.217483944213907, 21.863322860120455, 22.50785587169583, 23.152288344383056, 24.440909082065218, - 25.72916478969277, 27.01703333929878, 28.305351369446623, 29.595496221825574, 30.885926339801433, - 32.17897694729317, 35.41329976408125, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Ar36_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real K39_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 3.908632748276029e-06, 3.4307908925770636e-05, - 0.00016282990201490303, 0.000539492815639634, 0.0014074368520356397, 0.0031075244141559894, 0.010846721573671133, - 0.028297088943748088, 0.060956829214686044, 0.11414775667614005, 0.1912997955319451, 0.4132997640812518, - 0.7015679850559274, 1.0170333392987803, 1.3384564936046048, 1.6599162000698502, 1.9772662124272926, - 2.292256071356476, 2.6020599913279625, 2.910090545594068, 3.214843848047698, 3.9684829485539352, - 4.710963118995275, 5.444044795918076, 6.173186268412274, 6.897627091290442, 7.619093330626742, - 8.338456493604605, 9.056904851336473, 9.771587480881255, 10.48572142648158, 11.198657086954423, - 11.907948521612273, 12.6170003411209, 13.324282455297693, 14.02938377768521, 14.733999286538387, - 15.437750562820389, 16.139879086401237, 16.839478047374197, 17.539076098792776, 18.238046103128795, - 18.936513742478894, 19.633468455579585, 20.33041377334919, 21.02530586526477, 21.723455672035186, - 22.418301291319747, 23.113943352306837, 23.809559714635267, 24.505149978319906, 25.89542254603941, - 27.285557309007775, 28.678518379040113, 30.071882007306126, 31.465382851448418, 32.860936620700095, - 34.25767857486918, 37.761927838420526, - }; + extern AMREX_GPU_MANAGED amrex::Array1D K39_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ca40_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 3.4743419578801875e-06, - 2.6056887215373325e-05, 0.00012419046343446514, 0.0004254001802063995, 0.0011532564515138496, 0.005324252203746658, - 0.016451245325404363, 0.039380405510556264, 0.07909980819723089, 0.1397280011737941, 0.33041377334919086, - 0.6063813651106049, 0.9385197251764918, 1.2988530764097066, 1.6693168805661123, 2.037426497940624, - 2.403120521175818, 2.761927838420529, 3.113943352306837, 3.459392487759231, 4.301029995663981, - 5.117271295655764, 5.9148718175400505, 6.701567985055927, 7.478566495593843, 8.250420002308894, - 9.01703333929878, 9.781036938621131, 10.540329474790873, 11.296665190261532, 12.049218022670182, - 12.801403710017356, 13.549003262025789, 14.294466226161592, 15.037426497940624, 15.779596491257825, - 16.518513939877888, 17.255272505103306, 17.99211148778695, 18.72591163229505, 19.45939248775923, - 20.19033169817029, 20.920645001406786, 21.650307523131936, 22.378397900948137, 23.10720996964787, - 23.832508912706235, 24.558708570533167, 25.285557309007775, 26.008600171761916, 27.45939248775923, - 28.907948521612273, 30.356025857193124, 31.804820678721164, 33.25285303097989, 34.704150516839796, - 36.15533603746506, 39.78816837114117, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Ca40_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Sc43_pf_array[npts_1] = { - 0.0, 1.737174453219938e-06, 3.213660262116793e-05, 0.0006088881229004689, 0.0026394223512168323, - 0.006348788305828209, 0.011375876688411649, 0.017242084547645732, 0.02355944464942603, 0.030067962575438752, - 0.03661053325876141, 0.06810122175372875, 0.09804672309111767, 0.12848424511267922, 0.16058766813472455, - 0.1946644458530261, 0.23055748142930874, 0.2679262754358927, 0.3064134462100847, 0.3856843680943845, - 0.4672642331672854, 0.5514418243762168, 0.6393550853495756, 0.7324654125012992, 0.9380190974762103, - 1.1760912590556813, 1.4456042032735976, 1.7371926427047373, 2.0453229787866576, 2.359835482339888, - 2.678518379040114, 3.0, 3.322219294733919, 3.6424645202421213, 4.439332693830263, - 5.230448921378274, 6.017033339298781, 6.8020892578817325, 7.585460729508501, 8.36735592102602, - 9.14921911265538, 9.929418925714293, 10.710117365111817, 11.489958479424836, 12.267171728403014, - 13.045322978786658, 13.822168079368018, 14.597695185925513, 15.371067862271737, 16.146128035678238, - 16.916453948549925, 17.687528961214635, 18.45788189673399, 19.227886704613674, 19.99694924849538, - 20.76492298464989, 21.532754378992497, 22.30102999566398, 23.068185861746162, 23.835690571492425, - 24.602059991327963, 25.369215857410143, 26.136720567156406, 26.903632516084237, 28.439332693830263, - 29.97497199429807, 31.511883360978874, 33.05307844348342, 34.59217675739587, 36.13672056715641, - 37.68214507637383, 41.55870857053316, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Sc43_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ti44_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 4.3429426472042774e-07, 1.737174453219938e-06, - 7.382943437485088e-06, 0.0004987179011085027, 0.004043078170724821, 0.01413521502778782, 0.032426549056877405, - 0.058561151016688254, 0.09131586357749837, 0.1294359425571275, 0.17190802974603506, 0.2667731684215763, - 0.37035022176288673, 0.47788465213962983, 0.5860935485551829, 0.693748838923791, 0.9116901587538612, - 1.1522883443830565, 1.4409090820652177, 1.7788744720027396, 2.1522883443830563, 2.5415792439465807, - 2.9334872878487053, 3.322219294733919, 3.7041505168397992, 4.079181246047625, 4.996073654485276, - 5.885361220031512, 6.757396028793024, 7.619093330626742, 8.472756449317213, 9.32221929473392, - 10.167317334748176, 11.008600171761918, 11.85003325768977, 12.687528961214634, 13.52244423350632, - 14.354108439147401, 15.1846914308176, 16.012837224705173, 16.836956737059552, 17.65991620006985, - 18.481442628502304, 19.298853076409706, 20.117271295655765, 20.9329808219232, 21.746634198937578, - 22.559906625036113, 23.371067862271737, 24.181843587944773, 24.991226075692495, 25.799340549453582, - 26.60745502321467, 27.414973347970818, 28.220108088040057, 29.02530586526477, 30.63748972951251, - 32.247973266361804, 33.8561244442423, 35.46538285144842, 37.07554696139253, 38.68484536164441, - 40.29666519026153, 44.33041377334919, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Ti44_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real V47_pf_array[npts_1] = { - 2.518834949526704e-05, 0.0007584840322833457, 0.004226764680268442, 0.024475815916759108, 0.05998274311239668, - 0.1028026649155908, 0.14672973694476377, 0.18852098344730983, 0.22688178294786618, 0.2615226538586488, - 0.29260868165003595, 0.4071409645052156, 0.48021742410342627, 0.5329079468954852, 0.5750746363992424, - 0.6115960803783954, 0.6450760714077263, 0.6770396273057074, 0.708482088001612, 0.7725618227871047, - 0.8417322779915452, 0.9194240819892174, 1.0083997539725875, 1.110602503281611, 1.3560258571931227, - 1.651278013998144, 1.9813655090785445, 2.330413773349191, 2.6884198220027105, 3.0492180226701815, - 3.41161970596323, 3.7708520116421442, 4.127104798364807, 4.484299839346786, 5.365487984890899, - 6.238046103128795, 7.103803720955957, 7.967547976218862, 8.830588668685145, 9.69460519893357, - 10.557507201905658, 11.421603926869832, 12.285557309007773, 13.146128035678238, 14.008600171761918, - 14.869231719730976, 15.728353782021228, 16.586587304671756, 17.442479769064448, 18.298853076409706, - 19.152288344383056, 20.00432137378264, 20.85793526471943, 21.70926996097583, 22.559906625036113, - 23.409933123331296, 24.260071387985075, 25.10720996964787, 25.956648579205204, 26.804820678721164, - 27.652246341003323, 28.50105926221775, 29.34830486304816, 30.195899652409235, 31.891537457672566, - 33.588831725594204, 35.28555730900777, 36.985875357308394, 38.68752896121463, 40.39093510710338, - 42.096910013008056, 46.372912002970104, - }; + extern AMREX_GPU_MANAGED amrex::Array1D V47_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Cr48_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 8.685880952436748e-07, 8.251516766996927e-06, 3.951899976600419e-05, 0.00013330794422173613, - 0.00035120219371925006, 0.006401856055765157, 0.02685304570895992, 0.0621531182513584, 0.10696594975266842, - 0.15598699109465686, 0.20581584444582904, 0.25471214514215257, 0.30198352738731143, 0.39152612205819926, - 0.47640596203905256, 0.5602400543128645, 0.6474755901642433, 0.7433846322638775, 0.983175072037813, - 1.3096301674258988, 1.7067177823367587, 2.1398790864012365, 2.5774917998372255, 3.012837224705172, - 3.437750562820388, 3.8549130223078554, 4.264817823009537, 4.666517980554881, 5.648360010980932, - 6.606381365110605, 7.550228353055094, 8.484299839346786, 9.414973347970818, 10.340444114840118, - 11.264817823009537, 12.1846914308176, 13.103803720955957, 14.021189299069938, 14.935003151453655, - 15.846337112129806, 16.75511226639507, 17.66181268553726, 18.565847818673518, 19.468347330412158, - 20.369215857410143, 21.267171728403014, 22.161368002234976, 23.056904851336473, 23.94939000664491, - 24.840733234611807, 25.73078227566639, 26.619093330626743, 27.50785587169583, 28.394451680826215, - 29.281033367247726, 30.164352855784436, 31.049218022670182, 31.934498451243567, 33.70156798505593, - 35.46834733041216, 37.23299611039215, 38.99913054128737, 40.764922984649886, 42.5327543789925, - 44.30102999566398, 48.727541257028555, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Cr48_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Mn51_pf_array[npts_1] = { - 0.0, 0.0, 4.3429426472042774e-07, 6.0362737871404116e-05, 0.0005954436481690332, - 0.0023527034524912656, 0.0058636025937444025, 0.011219737158250307, 0.018191443590229183, 0.026405776501228783, - 0.035473365577059296, 0.08393991903492294, 0.12694077261184436, 0.1626799839654217, 0.19356340377635364, - 0.22185561141496238, 0.24912127857304392, 0.27638918590325057, 0.30436276263857276, 0.36442247019537943, - 0.4326074417788098, 0.5117005179251304, 0.6041057952026397, 0.7115562776994953, 0.9717395908877783, - 1.287801729930226, 1.640481436970422, 2.0170333392987803, 2.403120521175818, 2.7944880466591697, - 3.1903316981702914, 3.5854607295085006, 3.9827233876685453, 4.380211241711606, 5.372912002970106, - 6.363611979892144, 7.354108439147401, 8.342422680822207, 9.328379603438737, 10.311753861055754, - 11.292256071356476, 12.269512944217917, 13.24551266781415, 14.214843848047698, 15.1846914308176, - 16.14921911265538, 17.110589710299248, 18.071882007306126, 19.029383777685208, 19.985426474083003, - 20.93851972517649, 21.88986172125819, 22.839478047374197, 23.787460474518415, 24.73399928653839, - 25.67942789661212, 26.6232492903979, 27.56702636615906, 28.5092025223311, 29.45178643552429, - 30.392696953259666, 31.33445375115093, 32.27415784926368, 33.2148438480477, 35.093421685162234, - 36.97451169273733, 38.8555191556678, 40.737192642704734, 42.620136054973756, 44.505149978319906, - 46.392696953259666, 51.12057393120585, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Mn51_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe52_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 1.737174453219938e-06, 9.554373504133797e-06, 3.778197643341552e-05, - 0.00011333607006293108, 0.0030242952161453874, 0.015422212189991185, 0.040215337130588114, 0.07478865660777631, - 0.11488541698288197, 0.15714990338033966, 0.19960737134331175, 0.24132628928072955, 0.3217032118192907, - 0.3993396534463543, 0.4778337814344742, 0.5623989859221217, 0.6594581913549248, 0.9153998352122699, - 1.2695129442179163, 1.6910814921229684, 2.143014800254095, 2.6009728956867484, 3.0569048513364727, - 3.503790683057181, 3.946452265013073, 4.383815365980431, 4.818225893613955, 5.888740960682893, - 6.944482672150168, 7.9898945637187735, 9.02938377768521, 10.060697840353612, 11.086359830674748, - 12.11058971029925, 13.127104798364808, 14.139879086401237, 15.14921911265538, 16.152288344383056, - 17.152288344383056, 18.14921911265538, 19.143014800254097, 20.133538908370216, 21.12057393120585, - 22.103803720955955, 23.08635983067475, 24.06445798922692, 25.041392685158225, 26.01703333929878, - 26.989449817666692, 27.960946195733833, 28.930949031167522, 29.899273187317604, 30.8668778143375, - 31.833784374656478, 32.79934054945358, 33.76417613239033, 34.72835378202123, 36.655138434811384, - 38.58092497567562, 40.505149978319906, 42.42975228000241, 44.3541084391474, 46.28103336724773, - 48.20682587603185, 53.02938377768521, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Fe52_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe53_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 1.3028814913777444e-06, 6.080080186165502e-06, 2.0411360986187108e-05, - 5.384917717601842e-05, 0.00099773035779373, 0.004491618246634796, 0.011583129716232713, 0.02260939259680282, - 0.037536053829818145, 0.056184239286028684, 0.07836255359576534, 0.10393433162264984, 0.16508072986206487, - 0.2398955676994077, 0.3292351155694239, 0.4339067390755778, 0.5541592859186848, 0.8375884382355113, - 1.1702617153949575, 1.5314789170422551, 1.9148718175400503, 2.3096301674258988, 2.710963118995276, - 3.1172712956557644, 3.5276299008713385, 3.940516484932567, 4.3560258571931225, 5.396199347095736, - 6.440909082065217, 7.48572142648158, 8.52762990087134, 9.564666064252089, 10.597695185925513, - 11.626340367375043, 12.650307523131936, 13.669316880566113, 14.683947130751513, 15.69460519893357, - 16.700703717145018, 17.7041505168398, 18.70329137811866, 19.699837725867244, 20.693726948923647, - 21.684845361644413, 22.67394199863409, 23.65991620006985, 24.64542226934909, 25.62838893005031, - 26.60959440922522, 27.589949601325706, 28.569373909615045, 29.547774705387823, 30.525044807036846, - 31.50105926221775, 32.47712125471966, 33.45331834004704, 34.428134794028786, 36.37839790094814, - 38.32837960343874, 40.27875360095283, 42.230448921378276, 44.1846914308176, 46.13987908640124, - 48.096910013008056, 52.99956548822598, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Fe53_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe54_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 4.038750882690593e-05, 0.0006153933644858296, 0.0031795285189803882, 0.009608097244673555, - 0.021489478918632662, 0.039963481298721557, 0.06578505049986659, 0.09933285917375559, 0.1890456852906488, - 0.30450216050560097, 0.4386136969546961, 0.5858349639065905, 0.7435112541834851, 1.089905111439398, - 1.4727564493172123, 1.8864907251724818, 2.3201462861110542, 2.760422483423212, 3.2041199826559246, - 3.6503075231319366, 4.093421685162235, 4.539076098792776, 4.982271233039568, 6.089905111439398, - 7.190331698170292, 8.287801729930226, 9.378397900948137, 10.462397997898956, 11.539076098792776, - 12.61066016308988, 13.675778341674086, 14.734799829588846, 15.789580712164426, 16.838219221907625, - 17.88252453795488, 18.922206277439017, 19.957607287060096, 20.989449817666692, 22.01703333929878, - 23.041392685158225, 24.06445798922692, 25.08278537031645, 26.100370545117563, 27.113943352306837, - 28.127104798364808, 29.136720567156406, 30.146128035678238, 31.155336037465062, 32.16136800223497, - 33.164352855784436, 34.17026171539496, 35.17318626841227, 36.17609125905568, 38.17897694729317, - 40.18184358794477, 42.18184358794477, 44.18184358794477, 46.1846914308176, 48.1846914308176, - 50.18752072083646, 55.204119982655925, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Fe54_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe55_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 1.3028814913777444e-06, - 1.563431993241418e-05, 7.599488497457784e-05, 0.00023706007560618322, 0.0005564089438241259, 0.0010813488014597978, - 0.0018431377713960377, 0.009434322601068017, 0.022947317188587977, 0.04207202183227031, 0.06669370834774807, - 0.09644559083435453, 0.13073538555922604, 0.1689268514992448, 0.210470482925873, 0.30216484315823844, - 0.40437472924396634, 0.5173772341350337, 0.6421575367181118, 0.7795497407641858, 1.089905111439398, - 1.4471580313422192, 1.8312296938670634, 2.2355284469075487, 2.649334858712142, 3.0718820073061255, - 3.496929648073215, 3.926856708949692, 4.359835482339888, 4.79309160017658, 5.8819549713396, - 6.973589623427257, 8.064457989226918, 9.14921911265538, 10.232996110392154, 11.307496037913213, - 12.378397900948137, 13.444044795918076, 14.503790683057181, 15.558708570533165, 16.608526033577196, - 17.65417654187796, 18.69635638873333, 19.73399928653839, 20.768638101247614, 21.800029359244135, - 22.82865989653532, 23.854913022307855, 24.878521795501207, 25.899820502427097, 26.91960102378411, - 27.937517892017347, 28.954242509439325, 29.96941591235398, 30.983626287124533, 31.99694924849538, - 33.00860017176192, 34.02118929906994, 35.03342375548695, 36.04532297878666, 38.064457989226916, - 40.086359830674745, 42.10720996964787, 44.127104798364805, 46.15228834438306, 48.17609125905568, - 50.20139712432045, 55.28103336724773, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Fe55_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Fe56_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 1.737174453219938e-06, 9.988658214691803e-06, 3.951899976600419e-05, - 0.00011724368292883856, 0.0030902761496993327, 0.0156878675130911, 0.04089651650139036, 0.07635858866725904, - 0.11828391003740014, 0.16392102383975418, 0.21196213905930564, 0.2621108778253895, 0.36964919324674056, - 0.4887648498436591, 0.6206486780522652, 0.76578080127876, 0.924731337394998, 1.2855573090077739, - 1.6972293427597176, 2.143014800254095, 2.606381365110605, 3.0718820073061255, 3.5403294747908736, - 4.004321373782642, 4.468347330412158, 4.928395852256714, 5.38738982633873, 6.5276299008713385, - 7.66086547800387, 8.788168371141168, 9.909556029241175, 11.02530586526477, 12.136720567156408, - 13.2405492482826, 14.340444114840118, 15.432969290874405, 16.52244423350632, 17.606381365110604, - 18.686636269262294, 19.76192783842053, 20.833147111912787, 21.90036712865647, 22.96473092105363, - 24.02530586526477, 25.08278537031645, 26.139879086401237, 27.193124598354462, 28.243038048686294, - 29.292256071356476, 30.338456493604603, 31.383815365980432, 32.428134794028786, 33.46982201597816, - 34.51188336097887, 35.552668216112195, 36.59217675739587, 37.631443769013174, 39.70842090013471, - 41.78390357927273, 43.85913829729453, 45.93449845124357, 48.00860017176192, 50.086359830674745, - 52.164352855784436, 57.37106786227174, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Fe56_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Co55_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 8.685880952436748e-07, 1.433148143464237e-05, 9.336327741651445e-05, - 0.00038114325769492564, 0.0011510907323373071, 0.0028275866787247843, 0.005986127810021806, 0.019727612600003868, - 0.049238961363648255, 0.10167663281566902, 0.18228879723157643, 0.29243817096179087, 0.5865873046717549, - 0.9449759084120479, 1.3324384599156054, 1.7363965022766426, 2.1492191126553797, 2.56702636615906, - 2.9912260756924947, 3.419955748489758, 3.851869600729766, 4.2878017299302265, 5.382017042574868, - 6.482873583608754, 7.5820633629117085, 8.677606952720494, 9.767155866082181, 10.85003325768977, - 11.927370363039023, 12.998695158311655, 14.064457989226918, 15.127104798364808, 16.181843587944773, - 17.232996110392154, 18.281033367247726, 19.32428245529769, 20.3654879848909, 21.401400540781545, - 22.436162647040756, 23.468347330412158, 24.4983105537896, 25.525044807036846, 26.550228353055093, - 27.57403126772772, 28.59659709562646, 29.6170003411209, 30.636487896353366, 31.65609820201283, - 32.673941998634085, 33.69108149212297, 34.70757017609794, 35.72427586960079, 37.75587485567249, - 39.786751422145564, 41.818225893613956, 43.850033257689766, 45.88309335857569, 47.91750550955255, - 49.954242509439325, 55.05690485133647, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Co55_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Co56_pf_array[npts_1] = { - 0.0, 1.737174453219938e-06, 3.4307908925770636e-05, 0.0007363730997827178, 0.003397192878964486, - 0.008467734331585224, 0.015506451739574849, 0.0238164702394971, 0.03279759856010612, 0.04203693696495622, - 0.05128645751287553, 0.09519865223967468, 0.13622861655702886, 0.17671416946686702, 0.21729965897649603, - 0.2578772011708393, 0.2983265845453606, 0.3387098245578885, 0.3792523836931725, 0.4621652135836289, - 0.5500314690476197, 0.6456769741905006, 0.7513340033440492, 0.8684365267163909, 1.1367205671564067, - 1.4517864355242902, 1.7986506454452689, 2.1702617153949575, 2.5599066250361124, 2.9614210940664485, - 3.3729120029701067, 3.7902851640332416, 4.214843848047698, 4.6414741105041, 5.723455672035186, - 6.814913181275074, 7.9084850188786495, 9.0, 10.089905111439398, 11.173186268412275, - 12.250420002308894, 13.32633586092875, 14.394451680826217, 15.459392487759231, 16.521138083704038, - 17.577491799837226, 18.630427875025024, 19.680335513414562, 20.727541257028555, 21.77232170672292, - 22.81358098856819, 23.853089529851864, 24.890979596989688, 25.926856708949693, 26.960946195733833, - 27.99387691494121, 29.02530586526477, 30.056904851336473, 31.08635983067475, 32.11727129565576, - 33.14612803567824, 34.17318626841227, 35.20139712432045, 36.230448921378276, 38.28555730900777, - 40.3424226808222, 42.39967372148104, 44.45939248775923, 46.52113808370404, 48.5854607295085, - 50.651278013998144, 55.831229693867066, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Co56_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Co57_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 4.3429426472042774e-07, 4.994099386680048e-05, 0.0005963110461953748, 0.0027783956198411766, 0.008035647971175024, - 0.017613403025029208, 0.03234391616743566, 0.05264970241280307, 0.07864673504318612, 0.14731854080928636, - 0.23700682147881122, 0.34629017327562855, 0.4739201725299878, 0.6185154181425263, 0.9503648543761231, - 1.3263358609287514, 1.7299742856995557, 2.1492191126553797, 2.57978359661681, 3.0170333392987803, - 3.456366033129043, 3.900913067737669, 4.348304863048161, 4.795880017344075, 5.922206277439017, - 7.05307844348342, 8.178976947293169, 9.30319605742049, 10.423245873936807, 11.537819095073274, - 12.64640372622307, 13.751279103983343, 14.850646235183067, 15.94546858513182, 17.037426497940622, - 18.12057393120585, 19.204119982655925, 20.28330122870355, 21.357934847000454, 22.431363764158988, - 23.50105926221775, 24.568201724066995, 25.632457292184725, 26.69635638873333, 27.757396028793025, - 28.81690383937566, 29.87563993700417, 30.93247376467715, 31.989004615698537, 33.04532297878666, - 34.10037054511756, 35.15228834438306, 36.20682587603185, 37.26007138798507, 39.3654879848909, - 41.47275644931721, 43.578639209968074, 45.686636269262294, 47.79657433321043, 49.90794852161227, - 52.02118929906994, 57.31806333496276, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Co57_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ni56_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 4.3429426472042774e-07, 7.817230319428648e-06, 6.42708273977769e-05, - 0.0002904458650804842, 0.0009123622824012838, 0.0022498876258026487, 0.004694448751887299, 0.014735532704563181, - 0.03529042138996706, 0.07190703372466718, 0.13162956968664008, 0.2219004275849247, 0.5092025223311029, - 0.9132839017604184, 1.3747483460101038, 1.8555191556678001, 2.3404441148401185, 2.8221680793680175, - 3.303196057420489, 3.783903579272735, 4.26245108973043, 4.7419390777291985, 5.9344984512435675, - 7.117271295655764, 8.292256071356476, 9.456366033129044, 10.608526033577194, 11.750508394851346, - 12.88309335857569, 14.008600171761918, 15.123851640967086, 16.232996110392154, 17.33645973384853, - 18.432969290874407, 19.525044807036846, 20.612783856719737, 21.695481676490196, 22.773786444981194, - 23.8481891169914, 24.919078092376076, 25.987219229908003, 27.053078443483418, 28.113943352306837, - 29.17609125905568, 30.232996110392154, 31.287801729930226, 32.3424226808222, 33.39619934709574, - 34.44715803134222, 35.49692964807321, 36.54530711646582, 37.594392550375424, 39.68752896121463, - 41.77959649125783, 43.86981820797933, 45.959518376973, 48.04921802267018, 50.13987908640124, - 52.230448921378276, 57.462397997898954, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Ni56_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ni57_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 4.3429426472042774e-07, 1.737174453219938e-06, 9.554373504133797e-06, 3.257086475060328e-05, - 8.771862606148251e-05, 0.0017410663385697559, 0.007809206274475302, 0.019214774774593695, 0.03493231633712191, - 0.05345799700199784, 0.07364137994668778, 0.0948950837519807, 0.11713833477999397, 0.16608656859343762, - 0.22565890312281187, 0.3025878355093501, 0.4025382106894563, 0.5279492540555756, 0.8463371121298052, - 1.2253092817258628, 1.631443769013172, 2.0530784434834195, 2.484299839346786, 2.9237619608287004, - 3.369215857410143, 3.8188854145940097, 4.27415784926368, 4.731588765186738, 5.884795363948981, - 7.041392685158225, 8.195899652409233, 9.344392273685111, 10.482873583608754, 11.613841821876068, - 12.736396502276643, 13.851258348719075, 14.959041392321094, 16.060697840353612, 17.15836249209525, - 18.247973266361807, 19.332438459915604, 20.414973347970818, 21.492760389026838, 22.565847818673518, - 23.636487896353366, 24.7041505168398, 25.768638101247614, 26.831229693867062, 27.89209460269048, - 28.950851458888547, 30.008600171761916, 31.06445798922692, 32.11727129565576, 33.17026171539496, - 34.222716471147585, 35.27415784926368, 36.32633586092875, 37.376576957056514, 39.478566495593846, - 41.578639209968074, 43.67851837904011, 45.77959649125783, 47.88252453795488, 49.98721922990801, - 52.093421685162234, 57.372912002970104, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Ni57_pf_array; // this is log10(partition function) - MICROPHYSICS_UNUSED HIP_CONSTEXPR static AMREX_GPU_MANAGED amrex::Real Ni58_pf_array[npts_1] = { - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 0.0, 0.0, 0.0, 0.0, - 0.0, 2.822822391636452e-05, 0.00047225553585970024, 0.0025858928325085315, 0.008151594991554035, - 0.018820703394680185, 0.03585661791649524, 0.0601275962522883, 0.09212527438468374, 0.17939292292561174, - 0.29475734836761314, 0.43276876399762537, 0.5886922364625494, 0.7597527315231631, 1.1398790864012365, - 1.5670263661590604, 2.0211892990699383, 2.4913616938342726, 2.968015713993642, 3.4471580313422194, - 3.9253120914996495, 4.4048337166199385, 4.884795363948981, 5.363611979892144, 6.561101383649056, - 7.754348335711019, 8.94101424370557, 10.12057393120585, 11.290034611362518, 12.45178643552429, - 13.60530504614111, 14.752048447819439, 15.89209460269048, 17.02530586526477, 18.155336037465062, - 19.276461804173245, 20.394451680826215, 21.50650503240487, 22.6159500516564, 23.72098574415374, - 24.822168079368016, 25.920123326290724, 27.01703333929878, 28.10720996964787, 29.198657086954423, - 30.285557309007775, 31.371067862271737, 32.456366033129044, 33.539076098792776, 34.620136054973756, - 35.70070371714502, 36.78031731214015, 37.85853719756964, 38.936513742478894, 41.0899051114394, - 43.243038048686294, 45.39619934709574, 47.549003262025785, 49.70156798505593, 51.8561244442423, - 54.01283722470517, 59.41161970596323, - }; + extern AMREX_GPU_MANAGED amrex::Array1D Ni58_pf_array; // interpolation routine - template + template AMREX_GPU_HOST_DEVICE AMREX_INLINE - void interpolate_pf(const amrex::Real t9, const amrex::Real (&temp_array)[npts], const amrex::Real (&pf_array)[npts], + void interpolate_pf(const amrex::Real t9, const T& temp_array, const T& pf_array, amrex::Real& pf, amrex::Real& dpf_dT) { - if (t9 >= temp_array[0] && t9 < temp_array[npts-1]) { + if (t9 >= temp_array.lo() && t9 < temp_array.hi()) { // find the largest temperature element <= t9 using a binary search - int left = 0; - int right = npts; + int left = temp_array.lo(); + int right = temp_array.hi(); while (left < right) { int mid = (left + right) / 2; - if (temp_array[mid] > t9) { + if (temp_array(mid) > t9) { right = mid; } else { left = mid + 1; @@ -687,11 +174,12 @@ namespace part_fun { // construct the slope -- this is (log10(pf_{i+1}) - log10(pf_i)) / (T_{i+1} - T_i) - amrex::Real slope = (pf_array[idx+1] - pf_array[idx]) / (temp_array[idx+1] - temp_array[idx]); + amrex::Real slope = (pf_array(idx+1) - pf_array(idx)) / + (temp_array(idx+1) - temp_array(idx)); // find the PF - amrex::Real log10_pf = pf_array[idx] + slope * (t9 - temp_array[idx]); + amrex::Real log10_pf = pf_array(idx) + slope * (t9 - temp_array(idx)); pf = std::pow(10.0_rt, log10_pf); // find the derivative (with respect to T, not T9) @@ -730,127 +218,127 @@ void get_partition_function(const int inuc, [[maybe_unused]] const tf_t& tfactor switch (inuc) { case O16: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::O16_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::O16_pf_array, pf, dpf_dT); break; case F18: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::F18_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::F18_pf_array, pf, dpf_dT); break; case Ne20: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ne20_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ne20_pf_array, pf, dpf_dT); break; case Ne21: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ne21_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ne21_pf_array, pf, dpf_dT); break; case Na22: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Na22_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Na22_pf_array, pf, dpf_dT); break; case Na23: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Na23_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Na23_pf_array, pf, dpf_dT); break; case Mg24: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Mg24_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Mg24_pf_array, pf, dpf_dT); break; case Al27: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Al27_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Al27_pf_array, pf, dpf_dT); break; case Si28: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Si28_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Si28_pf_array, pf, dpf_dT); break; case P31: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::P31_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::P31_pf_array, pf, dpf_dT); break; case S32: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::S32_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::S32_pf_array, pf, dpf_dT); break; case Cl35: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Cl35_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Cl35_pf_array, pf, dpf_dT); break; case Ar36: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ar36_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ar36_pf_array, pf, dpf_dT); break; case K39: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::K39_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::K39_pf_array, pf, dpf_dT); break; case Ca40: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ca40_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ca40_pf_array, pf, dpf_dT); break; case Sc43: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Sc43_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Sc43_pf_array, pf, dpf_dT); break; case Ti44: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ti44_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ti44_pf_array, pf, dpf_dT); break; case V47: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::V47_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::V47_pf_array, pf, dpf_dT); break; case Cr48: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Cr48_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Cr48_pf_array, pf, dpf_dT); break; case Mn51: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Mn51_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Mn51_pf_array, pf, dpf_dT); break; case Fe52: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe52_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe52_pf_array, pf, dpf_dT); break; case Fe53: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe53_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe53_pf_array, pf, dpf_dT); break; case Fe54: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe54_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe54_pf_array, pf, dpf_dT); break; case Fe55: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe55_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe55_pf_array, pf, dpf_dT); break; case Fe56: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe56_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Fe56_pf_array, pf, dpf_dT); break; case Co55: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Co55_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Co55_pf_array, pf, dpf_dT); break; case Co56: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Co56_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Co56_pf_array, pf, dpf_dT); break; case Co57: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Co57_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Co57_pf_array, pf, dpf_dT); break; case Ni56: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ni56_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ni56_pf_array, pf, dpf_dT); break; case Ni57: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ni57_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ni57_pf_array, pf, dpf_dT); break; case Ni58: - part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ni58_pf_array, pf, dpf_dT); + part_fun::interpolate_pf(tfactors.T9, part_fun::temp_array_1, part_fun::Ni58_pf_array, pf, dpf_dT); break; diff --git a/networks/He-C-Fe-group-simple/partition_functions_data.cpp b/networks/He-C-Fe-group-simple/partition_functions_data.cpp new file mode 100644 index 000000000..1b52b9083 --- /dev/null +++ b/networks/He-C-Fe-group-simple/partition_functions_data.cpp @@ -0,0 +1,655 @@ +#include +#include +#include +#include + +#include + +using namespace amrex; + +namespace part_fun { + + // this is T9 + + AMREX_GPU_MANAGED amrex::Array1D temp_array_1= { + 0.01, 0.15, 0.2, 0.3, 0.4, + 0.5, 0.6, 0.7, 0.8, 0.9, + 1.0, 1.5, 2.0, 2.5, 3.0, + 3.5, 4.0, 4.5, 5.0, 6.0, + 7.0, 8.0, 9.0, 10.0, 12.0, + 14.0, 16.0, 18.0, 20.0, 22.0, + 24.0, 26.0, 28.0, 30.0, 35.0, + 40.0, 45.0, 50.0, 55.0, 60.0, + 65.0, 70.0, 75.0, 80.0, 85.0, + 90.0, 95.0, 100.0, 105.0, 110.0, + 115.0, 120.0, 125.0, 130.0, 135.0, + 140.0, 145.0, 150.0, 155.0, 160.0, + 165.0, 170.0, 175.0, 180.0, 190.0, + 200.0, 210.0, 220.0, 230.0, 240.0, + 250.0, 275.0, + }; + + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D O16_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.012837224705172217, + 0.03742649794062367, 0.07188200730612536, 0.1205739312058499, 0.1846914308175988, 0.26245108973042947, + 0.3463529744506387, 0.437750562820388, 0.534026106056135, 0.6344772701607315, 0.8981764834976765, + 1.1760912590556813, 1.4668676203541096, 1.7641761323903307, 2.0644579892269186, 2.367355921026019, + 2.667452952889954, 2.9656719712201065, 3.2624510897304293, 3.555094448578319, 3.845098040014257, + 4.133538908370218, 4.419955748489758, 4.704150516839799, 4.986771734266245, 5.267171728403014, + 5.547774705387822, 5.8267225201689925, 6.103803720955957, 6.380211241711606, 6.6551384348113825, + 6.929929560084588, 7.204119982655925, 7.477121254719663, 7.748962861256161, 8.021189299069938, + 8.292256071356476, 8.562292864456476, 8.832508912706237, 9.100370545117563, 9.640481436970422, + 10.178976947293169, 10.714329759745233, 11.250420002308894, 11.785329835010767, 12.320146286111054, + 12.856124444242301, 14.195899652409233, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D F18_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.008600171761917567, 0.02530586526477026, 0.04921802267018165, + 0.08635983067474821, 0.12385164096708583, 0.16731733474817606, 0.20682587603184974, 0.28330122870354957, + 0.35024801833416286, 0.4065401804339551, 0.45331834004703764, 0.4941545940184428, 0.6646419755561255, + 0.756636108245848, 0.8419848045901139, 0.9232440186302765, 1.0043213737826426, 1.08278537031645, + 1.1643528557844371, 1.250420002308894, 1.3384564936046048, 1.429752280002408, 1.6748611407378116, + 1.9405164849325671, 2.220108088040055, 2.505149978319906, 2.79309160017658, 3.0827853703164503, + 3.369215857410143, 3.6570558528571038, 3.9434945159061026, 4.230448921378274, 4.514547752660286, + 4.800029359244134, 5.086359830674748, 5.371067862271737, 5.657055852857104, 5.94299959336604, + 6.230448921378274, 6.515873843711679, 6.803457115648414, 7.089905111439398, 7.378397900948138, + 7.6674529528899535, 7.956168430475364, 8.24551266781415, 8.534026106056135, 8.823474229170301, + 9.113943352306837, 9.403120521175818, 9.69460519893357, 9.984977126415494, 10.568201724066995, + 11.152288344383056, 11.73798732633343, 12.324282455297693, 12.913813852383717, 13.503790683057181, + 14.096910013008056, 15.584331224367531, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Ne20_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 6.948656121358244e-06, 0.00016586881316040883, 0.0011034421778731533, 0.003892457497077877, + 0.00954097493969645, 0.01859524021829981, 0.03107544483336982, 0.04661767038571622, 0.0846241727916796, + 0.12822183093465686, 0.174311933665943, 0.22124805254602342, 0.2683385291343481, 0.36172783601759284, + 0.456366033129043, 0.5514499979728752, 0.6483600109809317, 0.7466341989375788, 0.8481891169913987, + 0.9532763366673044, 1.0644579892269186, 1.1789769472931695, 1.3031960574204888, 1.6434526764861874, + 2.0170333392987803, 2.4099331233312946, 2.8068580295188172, 3.2013971243204513, 3.5899496013257077, + 3.9731278535996988, 4.352182518111363, 4.725911632295048, 5.096910013008056, 5.465382851448418, + 5.830588668685144, 6.193124598354461, 6.556302500767288, 6.916980047320382, 7.276461804173244, + 7.6344772701607315, 7.991669007379948, 8.34830486304816, 8.703291378118662, 9.056904851336473, + 9.411619705963231, 9.763427993562937, 10.117271295655764, 10.46686762035411, 10.818225893613956, + 11.170261715394957, 11.519827993775719, 11.869231719730976, 12.217483944213907, 12.916453948549925, + 13.613841821876068, 14.3096301674259, 15.004321373782643, 15.702430536445526, 16.399673721481037, + 17.096910013008056, 18.838849090737256, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Ne21_pf_array = { + 0.0, 0.0, 0.0, 8.685880952436747e-07, 2.4754079983896385e-05, + 0.0001901793368385613, 0.0007372402163824667, 0.0019404293040471109, 0.0040039218205739505, 0.007021925578680666, + 0.010986057727319889, 0.04118891376750491, 0.0777722105539352, 0.11230632139519969, 0.14260436993417835, + 0.16888829052162926, 0.19197861038694294, 0.2126999294489824, 0.23172922294680384, 0.2666728249346414, + 0.2996105757244402, 0.3321030146619489, 0.3650139334448046, 0.3988146649899236, 0.46982201597816303, + 0.546542663478131, 0.6283889300503115, 0.7176705030022621, 0.8142475957319202, 0.9180303367848801, + 1.0293837776852097, 1.14921911265538, 1.276461804173244, 1.4082399653118496, 1.760422483423212, + 2.1271047983648077, 2.499687082618404, 2.870403905279027, 3.2380461031287955, 3.603144372620182, + 3.9656719712201065, 4.326335860928752, 4.683947130751513, 5.041392685158225, 5.396199347095736, + 5.752048447819439, 6.107209969647869, 6.4623979978989565, 6.817565369559781, 7.173186268412274, + 7.5276299008713385, 7.8819549713396, 8.23552844690755, 8.5910646070265, 8.944975908412047, + 9.298853076409706, 9.653212513775344, 10.008600171761918, 10.361727836017593, 10.716837723299525, + 11.071882007306126, 11.424881636631067, 11.780317312140152, 12.133538908370218, 12.84447717574568, + 13.55509444857832, 14.267171728403014, 14.979548374704095, 15.693726948923647, 16.40823996531185, + 17.123851640967086, 18.923244018630278, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Na22_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 4.342942647204277e-07, 2.605759074128604e-06, 1.3028639028478182e-05, 4.559852671908958e-05, 0.00011984873864003521, + 0.0002626687122755098, 0.0029928105843703536, 0.010836979076306525, 0.02428653620880802, 0.04242704733870039, + 0.06402310268617777, 0.08796765614200239, 0.11338308526345184, 0.13961150376071624, 0.19275584832811385, + 0.2451455832343637, 0.2958922043442712, 0.3448263511644293, 0.39212883410565064, 0.48287358360875376, + 0.5717088318086876, 0.6627578316815741, 0.756636108245848, 0.8561244442423004, 0.9633155113861113, + 1.0791812460476249, 1.2013971243204515, 1.3283796034387378, 1.4638929889859074, 1.8215135284047732, + 2.1931245983544616, 2.5705429398818973, 2.9474337218870508, 3.322219294733919, 3.6954816764901977, + 4.068185861746161, 4.4361626470407565, 4.804820678721162, 5.173186268412274, 5.540329474790874, + 5.907411360774586, 6.27415784926368, 6.642464520242122, 7.008600171761918, 7.378397900948138, + 7.746634198937579, 8.113943352306837, 8.482873583608754, 8.851258348719075, 9.220108088040055, + 9.588831725594208, 9.957607287060096, 10.32633586092875, 10.695481676490198, 11.064457989226918, + 11.4345689040342, 11.80413943233535, 12.173186268412273, 12.544068044350276, 13.285557309007773, + 14.02938377768521, 14.773054693364262, 15.518513939877888, 16.264817823009537, 17.012837224705173, + 17.76492298464989, 19.64933485871214, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Na23_pf_array = { + 0.0, 0.0, 0.0, 0.0, 1.7371744532199383e-06, + 2.3885539658322847e-05, 0.00013113713282427166, 0.0004423207528904243, 0.0010999766245234136, 0.002232173197636284, + 0.003929471989446119, 0.021128907257497758, 0.0479649055541949, 0.07726249885377771, 0.10525805048344757, + 0.13079227003361296, 0.15390201926318714, 0.17503899265296466, 0.19472325248715508, 0.23147162936712465, + 0.26668504599022796, 0.3016913566252569, 0.33713446730536967, 0.37335950050705796, 0.4487063199050799, + 0.5314789170422551, 0.6211762817750351, 0.7218106152125465, 0.8344207036815325, 0.9590413923210935, + 1.0934216851622351, 1.2405492482825997, 1.3926969532596658, 1.5514499979728753, 1.9628426812012425, + 2.383815365980431, 2.803457115648414, 3.220108088040055, 3.6344772701607315, 4.045322978786658, + 4.453318340047038, 4.857935264719429, 5.26245108973043, 5.664641975556125, 6.064457989226918, + 6.466867620354109, 6.867467487859051, 7.267171728403014, 7.666517980554881, 8.064457989226918, + 8.463892988985908, 8.861534410859038, 9.260071387985075, 9.656098202012831, 10.05307844348342, + 10.450249108319362, 10.846337112129806, 11.243038048686294, 11.638489256954637, 12.03342375548695, + 12.429752280002408, 12.826074802700827, 13.222716471147583, 13.6170003411209, 14.40823996531185, + 15.20139712432045, 15.993876914941211, 16.787460474518415, 17.582063362911708, 18.378397900948137, + 19.17609125905568, 21.173186268412273, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Mg24_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 4.342942647204277e-07, 5.471765757979972e-05, 0.0007714899373308071, 0.0037633124724497633, 0.010764115210255056, + 0.022625058328435317, 0.039160607597355665, 0.05951911533271758, 0.08262238957783377, 0.13324118689139802, + 0.185518640557017, 0.2370005304649223, 0.2870228837145503, 0.3357157930198095, 0.43136376415898736, + 0.5263392773898441, 0.6253124509616739, 0.7307822756663892, 0.8463371121298052, 0.9749719942980689, + 1.1172712956557642, 1.2741578492636798, 1.4424797690644486, 1.6232492903979006, 2.103803720955957, + 2.598790506763115, 3.089905111439398, 3.577491799837225, 4.05307844348342, 4.52244423350632, + 4.984527313343793, 5.440909082065217, 5.894869656745253, 6.344392273685111, 6.791690649020118, + 7.235528446907549, 7.6785183790401135, 8.12057393120585, 8.558708570533165, 8.99563519459755, + 9.431363764158988, 9.866287339084195, 10.301029995663981, 10.732393759822969, 11.164352855784436, + 11.594392550375426, 12.02530586526477, 12.453318340047037, 12.881384656770573, 13.3096301674259, + 13.736396502276643, 14.161368002234974, 14.588831725594208, 15.012837224705173, 15.86569605991607, + 16.715167357848458, 17.56466606425209, 18.413299764081252, 19.26245108973043, 20.113943352306837, + 20.96284268120124, 23.089905111439396, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Al27_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 8.685880952436747e-07, 3.4743419578801875e-06, + 1.0422942490878872e-05, 0.00032429686817590634, 0.0018833542475028369, 0.005477808032249925, 0.011239204769804155, + 0.01890428637893266, 0.028126564553716336, 0.03862016194970278, 0.05018673657450416, 0.07608019569340022, + 0.10530099179798431, 0.13774106877747655, 0.1734986149135784, 0.21278880583973628, 0.30319605742048883, + 0.4099331233312945, 0.5352941200427705, 0.6794278966121189, 0.8394780473741984, 1.0128372247051722, + 1.1958996524092338, 1.3873898263387294, 1.5843312243675307, 1.783903579272735, 2.287801729930226, + 2.7944880466591697, 3.296665190261531, 3.7944880466591697, 4.2878017299302265, 4.779596491257824, + 5.269512944217916, 5.7558748556724915, 6.2405492482825995, 6.725094521081469, 7.209515014542631, + 7.691081492122969, 8.173186268412275, 8.653212513775344, 9.133538908370218, 9.611723308007342, + 10.089905111439398, 10.568201724066995, 11.045322978786658, 11.521138083704036, 11.997386384397313, + 12.472756449317213, 12.947923619831727, 13.423245873936807, 13.89707700320942, 14.371067862271737, + 14.845098040014257, 15.320146286111054, 15.79309160017658, 16.267171728403014, 17.214843848047696, + 18.161368002234976, 19.110589710299248, 20.060697840353612, 21.012837224705173, 21.96284268120124, + 22.915927211697117, 25.305351369446623, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Si28_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 2.1714669808675565e-06, 7.12184552784347e-05, 0.0005624812393818785, 0.002223099674110693, + 0.0059171580771474625, 0.012282407118825528, 0.02157709561709228, 0.03370716078346824, 0.06502557053071237, + 0.1027522772573885, 0.14387160800291654, 0.1866035043986153, 0.2302807913268337, 0.3222192947339193, + 0.42324587393680785, 0.541579243946581, 0.6839471307515121, 0.8518696007297664, 1.041392685158225, + 1.250420002308894, 1.4727564493172123, 1.7024305364455252, 1.9375178920173466, 2.531478917042255, + 3.12057393120585, 3.7024305364455254, 4.271841606536499, 4.834420703681532, 5.389166084364533, + 5.937517892017347, 6.481442628502305, 7.021189299069938, 7.557507201905658, 8.089905111439398, + 8.622214022966295, 9.14921911265538, 9.675778341674086, 10.198657086954423, 10.721810615212547, + 11.2405492482826, 11.75966784468963, 12.276461804173245, 12.791690649020119, 13.305351369446624, + 13.818225893613956, 14.330413773349191, 14.840733234611807, 15.350248018334163, 15.85913829729453, + 16.367355921026018, 16.8750612633917, 17.38201704257487, 17.88874096068289, 18.90036712865647, + 19.911157608739977, 20.921166050637737, 21.9304395947667, 22.93951925261862, 23.948901760970212, + 24.958563883221967, 27.48572142648158, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D P31_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 4.342942647204277e-07, 4.820401221806151e-05, 0.0005624812393818785, 0.002468018295084159, 0.006670091319158333, + 0.013688955408210905, 0.023674199668938998, 0.03655105068012579, 0.05215275629691826, 0.09085986215557586, + 0.13887811232360858, 0.19608052467040618, 0.26289299085539924, 0.33982852740425823, 0.5237464668115644, + 0.7419390777291989, 0.9827233876685453, 1.235528446907549, 1.4899584794248346, 1.7442929831226763, + 1.9960736544852753, 2.24551266781415, 2.4913616938342726, 2.733999286538387, 3.330413773349191, + 3.9132839017604186, 4.48572142648158, 5.049218022670182, 5.608526033577194, 6.164352855784437, + 6.714329759745233, 7.264817823009537, 7.812913356642856, 8.359835482339887, 8.90687353472207, + 9.453318340047037, 9.997823080745725, 10.54282542695918, 11.086359830674748, 11.629409599102718, + 12.170261715394957, 12.712649701627212, 13.255272505103306, 13.79448804665917, 14.334453751150932, + 14.874481817699467, 15.414973347970818, 15.953276336667304, 16.492760389026838, 17.029383777685208, + 17.570542939881896, 18.10720996964787, 18.64738297011462, 19.187520720836464, 20.264817823009537, + 21.342422680822207, 22.42160392686983, 23.503790683057183, 24.5854607295085, 25.66931688056611, + 26.75511226639507, 29.477121254719663, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D S32_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 5.211502513843472e-06, 6.948155872801059e-05, 0.0003893875360542875, + 0.001336870159627728, 0.003378232401258555, 0.006963377556787149, 0.012456734172197398, 0.03011415790845077, + 0.057484285853877215, 0.0950053699501746, 0.14295136988131382, 0.20165707691270435, 0.3521825181113625, + 0.5502283530550941, 0.787460474518415, 1.0569048513364727, 1.3404441148401183, 1.631443769013172, + 1.92272545799326, 2.2121876044039577, 2.4955443375464483, 2.7737864449811935, 3.44870631990508, + 4.096910013008056, 4.726727209026572, 5.3404441148401185, 5.944975908412048, 6.541579243946581, + 7.133538908370218, 7.720985744153739, 8.305351369446624, 8.888740960682892, 9.469822015978163, + 10.049218022670182, 10.628388930050312, 11.20682587603185, 11.78175537465247, 12.356025857193123, + 12.9304395947667, 13.502427119984432, 14.075546961392531, 14.645422269349092, 15.214843848047698, + 15.783903579272735, 16.352182518111363, 16.920123326290724, 17.487138375477187, 18.053078443483418, + 18.621176281775035, 19.187520720836464, 19.753583058892907, 20.318063334962762, 21.450249108319362, + 22.580924975675618, 23.71264970162721, 24.84385542262316, 25.976808337338067, 27.110589710299248, + 28.24551266781415, 31.08635983067475, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Cl35_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 1.8239985202970884e-05, 0.00020710907627919203, 0.0009431313908907785, 0.002698987769012708, + 0.005906875936599731, 0.010907713111778477, 0.017957319425972694, 0.027253766962590423, 0.0532486689285615, + 0.09021853774459236, 0.13964204799692437, 0.20296975189964023, 0.28111453407611076, 0.48000694295715063, + 0.7234556720351858, 0.9934362304976116, 1.2741578492636798, 1.5587085705331658, 1.841984804590114, + 2.123851640967086, 2.401400540781544, 2.678518379040114, 2.951823035315912, 3.6263403673750423, + 4.2878017299302265, 4.942008053022313, 5.588831725594207, 6.230448921378274, 6.870988813760575, + 7.509202522331103, 8.146128035678238, 8.781036938621131, 9.414973347970818, 10.049218022670182, + 10.681241237375588, 11.313867220369154, 11.943988875073773, 12.574031267727719, 13.204119982655925, + 13.831229693867064, 14.457881896733992, 15.086359830674748, 15.710963118995275, 16.33645973384853, + 16.96189547366785, 17.586587304671756, 18.212187604403958, 18.835056101720117, 19.45939248775923, + 20.08278537031645, 20.705863712283918, 21.33041377334919, 21.95375969173323, 23.20139712432045, + 24.450249108319362, 25.699837725867244, 26.950364854376122, 28.20139712432045, 29.456366033129044, + 30.71264970162721, 33.862131379313034, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Ar36_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 4.342942647204277e-07, 2.3451268844214655e-05, 0.00023141729162330258, 0.0010622869460975197, + 0.0031540913067783544, 0.007135153007315866, 0.013474284663478431, 0.02245187936733961, 0.048771089883939175, + 0.08643600351808534, 0.13560900039779808, 0.1965840257248699, 0.2696980636423851, 0.45331834004703764, + 0.6848453616444125, 0.9585638832219674, 1.2624510897304295, 1.5809249756756194, 1.9057958803678685, + 2.230448921378274, 2.550228353055094, 2.8662873390841948, 3.1760912590556813, 3.929418925714293, + 4.657055852857104, 5.365487984890899, 6.060697840353612, 6.746634198937579, 7.426511261364575, + 8.100370545117563, 8.773054693364262, 9.442479769064448, 10.11058971029925, 10.77451696572855, + 11.437750562820387, 12.100370545117563, 12.758911892397974, 13.41664050733828, 14.071882007306126, + 14.727541257028557, 15.38201704257487, 16.03342375548695, 16.684845361644413, 17.33445375115093, + 17.983626287124533, 18.63144376901317, 19.27875360095283, 19.92582757462474, 20.57170883180869, + 21.217483944213907, 21.863322860120455, 22.50785587169583, 23.152288344383056, 24.440909082065218, + 25.72916478969277, 27.01703333929878, 28.305351369446623, 29.595496221825574, 30.885926339801433, + 32.17897694729317, 35.41329976408125, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D K39_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 3.908632748276029e-06, 3.4307908925770636e-05, + 0.00016282990201490303, 0.0005394928156396339, 0.0014074368520356395, 0.0031075244141559894, 0.010846721573671135, + 0.028297088943748088, 0.06095682921468604, 0.11414775667614005, 0.1912997955319451, 0.4132997640812518, + 0.7015679850559274, 1.0170333392987803, 1.3384564936046048, 1.6599162000698502, 1.9772662124272926, + 2.292256071356476, 2.6020599913279625, 2.910090545594068, 3.214843848047698, 3.9684829485539352, + 4.710963118995275, 5.444044795918076, 6.173186268412274, 6.897627091290442, 7.619093330626742, + 8.338456493604605, 9.056904851336473, 9.771587480881255, 10.48572142648158, 11.198657086954423, + 11.907948521612273, 12.6170003411209, 13.324282455297693, 14.02938377768521, 14.733999286538387, + 15.437750562820389, 16.139879086401237, 16.839478047374197, 17.539076098792776, 18.238046103128795, + 18.936513742478894, 19.633468455579585, 20.33041377334919, 21.02530586526477, 21.723455672035186, + 22.418301291319747, 23.113943352306837, 23.809559714635267, 24.505149978319906, 25.89542254603941, + 27.285557309007775, 28.678518379040113, 30.071882007306126, 31.465382851448418, 32.860936620700095, + 34.25767857486918, 37.761927838420526, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Ca40_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 3.4743419578801875e-06, + 2.6056887215373325e-05, 0.00012419046343446514, 0.0004254001802063995, 0.0011532564515138494, 0.005324252203746658, + 0.016451245325404363, 0.03938040551055626, 0.07909980819723089, 0.13972800117379408, 0.33041377334919086, + 0.6063813651106049, 0.9385197251764918, 1.2988530764097066, 1.6693168805661123, 2.037426497940624, + 2.403120521175818, 2.761927838420529, 3.113943352306837, 3.459392487759231, 4.301029995663981, + 5.117271295655764, 5.9148718175400505, 6.701567985055927, 7.478566495593843, 8.250420002308894, + 9.01703333929878, 9.781036938621131, 10.540329474790873, 11.296665190261532, 12.049218022670182, + 12.801403710017356, 13.549003262025789, 14.294466226161592, 15.037426497940624, 15.779596491257825, + 16.518513939877888, 17.255272505103306, 17.99211148778695, 18.72591163229505, 19.45939248775923, + 20.19033169817029, 20.920645001406786, 21.650307523131936, 22.378397900948137, 23.10720996964787, + 23.832508912706235, 24.558708570533167, 25.285557309007775, 26.008600171761916, 27.45939248775923, + 28.907948521612273, 30.356025857193124, 31.804820678721164, 33.25285303097989, 34.704150516839796, + 36.15533603746506, 39.78816837114117, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Sc43_pf_array = { + 0.0, 1.7371744532199383e-06, 3.2136602621167924e-05, 0.0006088881229004689, 0.0026394223512168323, + 0.006348788305828209, 0.011375876688411647, 0.017242084547645732, 0.02355944464942603, 0.03006796257543875, + 0.03661053325876141, 0.06810122175372875, 0.09804672309111766, 0.12848424511267922, 0.16058766813472455, + 0.1946644458530261, 0.23055748142930874, 0.26792627543589265, 0.3064134462100847, 0.3856843680943845, + 0.4672642331672854, 0.5514418243762168, 0.6393550853495756, 0.732465412501299, 0.9380190974762103, + 1.1760912590556813, 1.4456042032735976, 1.7371926427047373, 2.0453229787866576, 2.359835482339888, + 2.678518379040114, 3.0, 3.322219294733919, 3.6424645202421213, 4.439332693830263, + 5.230448921378274, 6.017033339298781, 6.8020892578817325, 7.585460729508501, 8.36735592102602, + 9.14921911265538, 9.929418925714293, 10.710117365111817, 11.489958479424836, 12.267171728403014, + 13.045322978786658, 13.822168079368018, 14.597695185925513, 15.371067862271737, 16.146128035678238, + 16.916453948549925, 17.687528961214635, 18.45788189673399, 19.227886704613674, 19.99694924849538, + 20.76492298464989, 21.532754378992497, 22.30102999566398, 23.068185861746162, 23.835690571492425, + 24.602059991327963, 25.369215857410143, 26.136720567156406, 26.903632516084237, 28.439332693830263, + 29.97497199429807, 31.511883360978874, 33.05307844348342, 34.59217675739587, 36.13672056715641, + 37.68214507637383, 41.55870857053316, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Ti44_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 4.342942647204277e-07, 1.7371744532199383e-06, + 7.382943437485089e-06, 0.0004987179011085028, 0.004043078170724821, 0.01413521502778782, 0.032426549056877405, + 0.05856115101668825, 0.09131586357749837, 0.1294359425571275, 0.17190802974603506, 0.2667731684215763, + 0.37035022176288673, 0.47788465213962983, 0.5860935485551829, 0.693748838923791, 0.9116901587538612, + 1.1522883443830565, 1.4409090820652177, 1.7788744720027396, 2.1522883443830563, 2.5415792439465807, + 2.9334872878487053, 3.322219294733919, 3.7041505168397992, 4.079181246047625, 4.996073654485276, + 5.885361220031512, 6.757396028793024, 7.619093330626742, 8.472756449317213, 9.32221929473392, + 10.167317334748176, 11.008600171761918, 11.85003325768977, 12.687528961214634, 13.52244423350632, + 14.354108439147401, 15.1846914308176, 16.012837224705173, 16.836956737059552, 17.65991620006985, + 18.481442628502304, 19.298853076409706, 20.117271295655765, 20.9329808219232, 21.746634198937578, + 22.559906625036113, 23.371067862271737, 24.181843587944773, 24.991226075692495, 25.799340549453582, + 26.60745502321467, 27.414973347970818, 28.220108088040057, 29.02530586526477, 30.63748972951251, + 32.247973266361804, 33.8561244442423, 35.46538285144842, 37.07554696139253, 38.68484536164441, + 40.29666519026153, 44.33041377334919, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D V47_pf_array = { + 2.518834949526704e-05, 0.0007584840322833457, 0.004226764680268442, 0.024475815916759104, 0.05998274311239668, + 0.10280266491559079, 0.14672973694476377, 0.1885209834473098, 0.22688178294786615, 0.2615226538586488, + 0.29260868165003595, 0.4071409645052156, 0.48021742410342627, 0.5329079468954852, 0.5750746363992424, + 0.6115960803783954, 0.6450760714077263, 0.6770396273057074, 0.708482088001612, 0.7725618227871047, + 0.8417322779915452, 0.9194240819892174, 1.0083997539725875, 1.110602503281611, 1.3560258571931227, + 1.651278013998144, 1.9813655090785445, 2.330413773349191, 2.6884198220027105, 3.0492180226701815, + 3.41161970596323, 3.7708520116421442, 4.127104798364807, 4.484299839346786, 5.365487984890899, + 6.238046103128795, 7.103803720955957, 7.967547976218862, 8.830588668685145, 9.69460519893357, + 10.557507201905658, 11.421603926869832, 12.285557309007773, 13.146128035678238, 14.008600171761918, + 14.869231719730976, 15.728353782021228, 16.586587304671756, 17.442479769064448, 18.298853076409706, + 19.152288344383056, 20.00432137378264, 20.85793526471943, 21.70926996097583, 22.559906625036113, + 23.409933123331296, 24.260071387985075, 25.10720996964787, 25.956648579205204, 26.804820678721164, + 27.652246341003323, 28.50105926221775, 29.34830486304816, 30.195899652409235, 31.891537457672566, + 33.588831725594204, 35.28555730900777, 36.985875357308394, 38.68752896121463, 40.39093510710338, + 42.096910013008056, 46.372912002970104, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Cr48_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 8.685880952436747e-07, 8.251516766996927e-06, 3.951899976600419e-05, 0.00013330794422173613, + 0.00035120219371925, 0.006401856055765157, 0.02685304570895992, 0.06215311825135839, 0.10696594975266842, + 0.15598699109465686, 0.205815844445829, 0.25471214514215257, 0.30198352738731143, 0.39152612205819926, + 0.47640596203905256, 0.5602400543128645, 0.6474755901642433, 0.7433846322638775, 0.983175072037813, + 1.3096301674258988, 1.7067177823367587, 2.1398790864012365, 2.577491799837225, 3.012837224705172, + 3.437750562820388, 3.8549130223078554, 4.264817823009537, 4.666517980554881, 5.648360010980932, + 6.606381365110605, 7.550228353055094, 8.484299839346786, 9.414973347970818, 10.340444114840118, + 11.264817823009537, 12.1846914308176, 13.103803720955957, 14.021189299069938, 14.935003151453655, + 15.846337112129806, 16.75511226639507, 17.66181268553726, 18.565847818673518, 19.468347330412158, + 20.369215857410143, 21.267171728403014, 22.161368002234976, 23.056904851336473, 23.94939000664491, + 24.840733234611807, 25.73078227566639, 26.619093330626743, 27.50785587169583, 28.394451680826215, + 29.281033367247726, 30.164352855784436, 31.049218022670182, 31.934498451243567, 33.70156798505593, + 35.46834733041216, 37.23299611039215, 38.99913054128737, 40.764922984649886, 42.5327543789925, + 44.30102999566398, 48.727541257028555, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Mn51_pf_array = { + 0.0, 0.0, 4.342942647204277e-07, 6.0362737871404116e-05, 0.0005954436481690331, + 0.002352703452491265, 0.0058636025937444025, 0.011219737158250306, 0.018191443590229183, 0.026405776501228783, + 0.035473365577059296, 0.08393991903492294, 0.12694077261184436, 0.16267998396542166, 0.19356340377635362, + 0.22185561141496238, 0.2491212785730439, 0.27638918590325057, 0.30436276263857276, 0.36442247019537943, + 0.4326074417788097, 0.5117005179251304, 0.6041057952026397, 0.7115562776994953, 0.9717395908877782, + 1.287801729930226, 1.640481436970422, 2.0170333392987803, 2.403120521175818, 2.7944880466591697, + 3.1903316981702914, 3.5854607295085006, 3.9827233876685453, 4.380211241711606, 5.372912002970106, + 6.363611979892144, 7.354108439147401, 8.342422680822207, 9.328379603438737, 10.311753861055754, + 11.292256071356476, 12.269512944217917, 13.24551266781415, 14.214843848047698, 15.1846914308176, + 16.14921911265538, 17.110589710299248, 18.071882007306126, 19.029383777685208, 19.985426474083003, + 20.93851972517649, 21.88986172125819, 22.839478047374197, 23.787460474518415, 24.73399928653839, + 25.67942789661212, 26.6232492903979, 27.56702636615906, 28.5092025223311, 29.45178643552429, + 30.392696953259666, 31.33445375115093, 32.27415784926368, 33.2148438480477, 35.093421685162234, + 36.97451169273733, 38.8555191556678, 40.737192642704734, 42.620136054973756, 44.505149978319906, + 46.392696953259666, 51.12057393120585, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Fe52_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 1.7371744532199383e-06, 9.554373504133797e-06, 3.778197643341552e-05, + 0.00011333607006293108, 0.0030242952161453874, 0.015422212189991184, 0.040215337130588114, 0.07478865660777631, + 0.11488541698288196, 0.15714990338033966, 0.19960737134331175, 0.24132628928072955, 0.3217032118192907, + 0.3993396534463543, 0.4778337814344742, 0.5623989859221217, 0.6594581913549248, 0.9153998352122699, + 1.2695129442179163, 1.6910814921229684, 2.143014800254095, 2.6009728956867484, 3.0569048513364727, + 3.503790683057181, 3.946452265013073, 4.383815365980431, 4.818225893613955, 5.888740960682893, + 6.944482672150168, 7.989894563718773, 9.02938377768521, 10.060697840353612, 11.086359830674748, + 12.11058971029925, 13.127104798364808, 14.139879086401237, 15.14921911265538, 16.152288344383056, + 17.152288344383056, 18.14921911265538, 19.143014800254097, 20.133538908370216, 21.12057393120585, + 22.103803720955955, 23.08635983067475, 24.06445798922692, 25.041392685158225, 26.01703333929878, + 26.989449817666692, 27.960946195733833, 28.930949031167522, 29.899273187317604, 30.8668778143375, + 31.833784374656478, 32.79934054945358, 33.76417613239033, 34.72835378202123, 36.655138434811384, + 38.58092497567562, 40.505149978319906, 42.42975228000241, 44.3541084391474, 46.28103336724773, + 48.20682587603185, 53.02938377768521, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Fe53_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 1.3028814913777444e-06, 6.080080186165502e-06, 2.0411360986187104e-05, + 5.384917717601842e-05, 0.00099773035779373, 0.004491618246634796, 0.011583129716232713, 0.02260939259680282, + 0.037536053829818145, 0.056184239286028684, 0.07836255359576534, 0.10393433162264984, 0.16508072986206487, + 0.2398955676994077, 0.3292351155694239, 0.43390673907557786, 0.5541592859186848, 0.8375884382355113, + 1.1702617153949575, 1.5314789170422551, 1.9148718175400503, 2.3096301674258988, 2.710963118995276, + 3.1172712956557644, 3.5276299008713385, 3.940516484932567, 4.3560258571931225, 5.396199347095736, + 6.440909082065217, 7.48572142648158, 8.52762990087134, 9.564666064252089, 10.597695185925513, + 11.626340367375043, 12.650307523131936, 13.669316880566113, 14.683947130751513, 15.69460519893357, + 16.700703717145018, 17.7041505168398, 18.70329137811866, 19.699837725867244, 20.693726948923647, + 21.684845361644413, 22.67394199863409, 23.65991620006985, 24.64542226934909, 25.62838893005031, + 26.60959440922522, 27.589949601325706, 28.569373909615045, 29.547774705387823, 30.525044807036846, + 31.50105926221775, 32.47712125471966, 33.45331834004704, 34.428134794028786, 36.37839790094814, + 38.32837960343874, 40.27875360095283, 42.230448921378276, 44.1846914308176, 46.13987908640124, + 48.096910013008056, 52.99956548822598, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Fe54_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 4.038750882690593e-05, 0.0006153933644858295, 0.0031795285189803882, 0.009608097244673557, + 0.021489478918632662, 0.039963481298721557, 0.06578505049986659, 0.09933285917375559, 0.18904568529064877, + 0.30450216050560097, 0.4386136969546961, 0.5858349639065905, 0.7435112541834851, 1.089905111439398, + 1.4727564493172123, 1.8864907251724818, 2.320146286111054, 2.760422483423212, 3.204119982655925, + 3.6503075231319366, 4.093421685162235, 4.539076098792776, 4.982271233039568, 6.089905111439398, + 7.190331698170292, 8.287801729930226, 9.378397900948137, 10.462397997898956, 11.539076098792776, + 12.61066016308988, 13.675778341674086, 14.734799829588846, 15.789580712164426, 16.838219221907625, + 17.88252453795488, 18.922206277439017, 19.957607287060096, 20.989449817666692, 22.01703333929878, + 23.041392685158225, 24.06445798922692, 25.08278537031645, 26.100370545117563, 27.113943352306837, + 28.127104798364808, 29.136720567156406, 30.146128035678238, 31.155336037465062, 32.16136800223497, + 33.164352855784436, 34.17026171539496, 35.17318626841227, 36.17609125905568, 38.17897694729317, + 40.18184358794477, 42.18184358794477, 44.18184358794477, 46.1846914308176, 48.1846914308176, + 50.18752072083646, 55.204119982655925, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Fe55_pf_array = { + 0.0, 0.0, 0.0, 0.0, 1.3028814913777444e-06, + 1.5634319932414176e-05, 7.599488497457784e-05, 0.0002370600756061832, 0.0005564089438241259, 0.0010813488014597976, + 0.0018431377713960377, 0.009434322601068017, 0.022947317188587973, 0.04207202183227031, 0.06669370834774807, + 0.09644559083435453, 0.13073538555922604, 0.1689268514992448, 0.210470482925873, 0.30216484315823844, + 0.40437472924396634, 0.5173772341350337, 0.6421575367181118, 0.7795497407641858, 1.089905111439398, + 1.4471580313422192, 1.8312296938670634, 2.2355284469075487, 2.649334858712142, 3.0718820073061255, + 3.496929648073215, 3.926856708949692, 4.359835482339888, 4.79309160017658, 5.8819549713396, + 6.973589623427257, 8.064457989226918, 9.14921911265538, 10.232996110392154, 11.307496037913213, + 12.378397900948137, 13.444044795918076, 14.503790683057181, 15.558708570533165, 16.608526033577196, + 17.65417654187796, 18.69635638873333, 19.73399928653839, 20.768638101247614, 21.800029359244135, + 22.82865989653532, 23.854913022307855, 24.878521795501207, 25.899820502427097, 26.91960102378411, + 27.937517892017347, 28.954242509439325, 29.96941591235398, 30.983626287124533, 31.99694924849538, + 33.00860017176192, 34.02118929906994, 35.03342375548695, 36.04532297878666, 38.064457989226916, + 40.086359830674745, 42.10720996964787, 44.127104798364805, 46.15228834438306, 48.17609125905568, + 50.20139712432045, 55.28103336724773, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Fe56_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 1.7371744532199383e-06, 9.988658214691801e-06, 3.951899976600419e-05, + 0.00011724368292883856, 0.0030902761496993327, 0.0156878675130911, 0.04089651650139037, 0.07635858866725904, + 0.11828391003740016, 0.16392102383975418, 0.21196213905930564, 0.2621108778253895, 0.36964919324674056, + 0.4887648498436591, 0.6206486780522652, 0.76578080127876, 0.924731337394998, 1.2855573090077739, + 1.6972293427597176, 2.143014800254095, 2.606381365110605, 3.0718820073061255, 3.5403294747908736, + 4.004321373782642, 4.468347330412158, 4.928395852256714, 5.38738982633873, 6.5276299008713385, + 7.660865478003869, 8.788168371141168, 9.909556029241175, 11.02530586526477, 12.136720567156408, + 13.2405492482826, 14.340444114840118, 15.432969290874405, 16.52244423350632, 17.606381365110604, + 18.686636269262294, 19.76192783842053, 20.833147111912787, 21.90036712865647, 22.96473092105363, + 24.02530586526477, 25.08278537031645, 26.139879086401237, 27.193124598354462, 28.243038048686294, + 29.292256071356476, 30.338456493604603, 31.383815365980432, 32.428134794028786, 33.46982201597816, + 34.51188336097887, 35.552668216112195, 36.59217675739587, 37.631443769013174, 39.70842090013471, + 41.78390357927273, 43.85913829729453, 45.93449845124357, 48.00860017176192, 50.086359830674745, + 52.164352855784436, 57.37106786227174, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Co55_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 8.685880952436747e-07, 1.4331481434642371e-05, 9.336327741651445e-05, + 0.00038114325769492564, 0.001151090732337307, 0.0028275866787247843, 0.0059861278100218065, 0.019727612600003865, + 0.049238961363648255, 0.10167663281566902, 0.18228879723157643, 0.29243817096179087, 0.5865873046717549, + 0.9449759084120479, 1.3324384599156054, 1.7363965022766423, 2.1492191126553797, 2.56702636615906, + 2.991226075692495, 3.419955748489758, 3.851869600729766, 4.2878017299302265, 5.382017042574868, + 6.482873583608754, 7.5820633629117085, 8.677606952720494, 9.767155866082181, 10.85003325768977, + 11.927370363039023, 12.998695158311655, 14.064457989226918, 15.127104798364808, 16.181843587944773, + 17.232996110392154, 18.281033367247726, 19.32428245529769, 20.3654879848909, 21.401400540781545, + 22.436162647040756, 23.468347330412158, 24.4983105537896, 25.525044807036846, 26.550228353055093, + 27.57403126772772, 28.59659709562646, 29.6170003411209, 30.636487896353366, 31.65609820201283, + 32.673941998634085, 33.69108149212297, 34.70757017609794, 35.72427586960079, 37.75587485567249, + 39.786751422145564, 41.818225893613956, 43.850033257689766, 45.88309335857569, 47.91750550955255, + 49.954242509439325, 55.05690485133647, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Co56_pf_array = { + 0.0, 1.7371744532199383e-06, 3.4307908925770636e-05, 0.0007363730997827178, 0.003397192878964486, + 0.008467734331585224, 0.01550645173957485, 0.0238164702394971, 0.03279759856010612, 0.04203693696495622, + 0.05128645751287552, 0.09519865223967466, 0.13622861655702886, 0.176714169466867, 0.21729965897649603, + 0.2578772011708393, 0.2983265845453606, 0.3387098245578885, 0.3792523836931725, 0.46216521358362883, + 0.5500314690476197, 0.6456769741905006, 0.7513340033440492, 0.8684365267163909, 1.1367205671564067, + 1.4517864355242902, 1.7986506454452689, 2.1702617153949575, 2.5599066250361124, 2.9614210940664485, + 3.3729120029701067, 3.7902851640332416, 4.214843848047698, 4.6414741105041, 5.723455672035186, + 6.814913181275074, 7.9084850188786495, 9.0, 10.089905111439398, 11.173186268412275, + 12.250420002308894, 13.32633586092875, 14.394451680826217, 15.459392487759231, 16.521138083704038, + 17.577491799837226, 18.630427875025024, 19.680335513414562, 20.727541257028555, 21.77232170672292, + 22.81358098856819, 23.853089529851864, 24.890979596989688, 25.926856708949693, 26.960946195733833, + 27.99387691494121, 29.02530586526477, 30.056904851336473, 31.08635983067475, 32.11727129565576, + 33.14612803567824, 34.17318626841227, 35.20139712432045, 36.230448921378276, 38.28555730900777, + 40.3424226808222, 42.39967372148104, 44.45939248775923, 46.52113808370404, 48.5854607295085, + 50.651278013998144, 55.831229693867066, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Co57_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 4.342942647204277e-07, 4.994099386680048e-05, 0.0005963110461953748, 0.0027783956198411766, 0.008035647971175024, + 0.017613403025029208, 0.03234391616743567, 0.05264970241280307, 0.07864673504318612, 0.14731854080928636, + 0.23700682147881122, 0.34629017327562855, 0.47392017252998775, 0.6185154181425263, 0.9503648543761231, + 1.3263358609287514, 1.7299742856995557, 2.1492191126553797, 2.57978359661681, 3.0170333392987803, + 3.456366033129043, 3.900913067737669, 4.348304863048161, 4.795880017344075, 5.922206277439017, + 7.05307844348342, 8.178976947293169, 9.30319605742049, 10.423245873936807, 11.537819095073274, + 12.64640372622307, 13.751279103983343, 14.850646235183067, 15.94546858513182, 17.037426497940622, + 18.12057393120585, 19.204119982655925, 20.28330122870355, 21.357934847000454, 22.431363764158988, + 23.50105926221775, 24.568201724066995, 25.632457292184725, 26.69635638873333, 27.757396028793025, + 28.81690383937566, 29.87563993700417, 30.93247376467715, 31.989004615698537, 33.04532297878666, + 34.10037054511756, 35.15228834438306, 36.20682587603185, 37.26007138798507, 39.3654879848909, + 41.47275644931721, 43.578639209968074, 45.686636269262294, 47.79657433321043, 49.90794852161227, + 52.02118929906994, 57.31806333496276, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Ni56_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 4.342942647204277e-07, 7.817230319428646e-06, 6.42708273977769e-05, + 0.0002904458650804842, 0.0009123622824012837, 0.0022498876258026487, 0.0046944487518873, 0.014735532704563181, + 0.03529042138996706, 0.07190703372466718, 0.13162956968664008, 0.22190042758492473, 0.5092025223311029, + 0.9132839017604184, 1.374748346010104, 1.8555191556678001, 2.3404441148401185, 2.8221680793680175, + 3.3031960574204886, 3.783903579272735, 4.26245108973043, 4.7419390777291985, 5.9344984512435675, + 7.117271295655764, 8.292256071356476, 9.456366033129044, 10.608526033577194, 11.750508394851346, + 12.88309335857569, 14.008600171761918, 15.123851640967086, 16.232996110392154, 17.33645973384853, + 18.432969290874407, 19.525044807036846, 20.612783856719737, 21.695481676490196, 22.773786444981194, + 23.8481891169914, 24.919078092376076, 25.987219229908003, 27.053078443483418, 28.113943352306837, + 29.17609125905568, 30.232996110392154, 31.287801729930226, 32.3424226808222, 33.39619934709574, + 34.44715803134222, 35.49692964807321, 36.54530711646582, 37.594392550375424, 39.68752896121463, + 41.77959649125783, 43.86981820797933, 45.959518376973, 48.04921802267018, 50.13987908640124, + 52.230448921378276, 57.462397997898954, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Ni57_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 4.342942647204277e-07, 1.7371744532199383e-06, 9.554373504133797e-06, 3.257086475060328e-05, + 8.771862606148251e-05, 0.0017410663385697559, 0.007809206274475302, 0.01921477477459369, 0.03493231633712192, + 0.05345799700199783, 0.07364137994668778, 0.0948950837519807, 0.11713833477999397, 0.16608656859343765, + 0.22565890312281184, 0.3025878355093501, 0.4025382106894563, 0.5279492540555757, 0.8463371121298052, + 1.2253092817258628, 1.631443769013172, 2.05307844348342, 2.484299839346786, 2.9237619608287004, + 3.369215857410143, 3.8188854145940097, 4.27415784926368, 4.731588765186738, 5.884795363948981, + 7.041392685158225, 8.195899652409233, 9.344392273685111, 10.482873583608754, 11.613841821876068, + 12.736396502276643, 13.851258348719075, 14.959041392321094, 16.060697840353612, 17.15836249209525, + 18.247973266361807, 19.332438459915604, 20.414973347970818, 21.492760389026838, 22.565847818673518, + 23.636487896353366, 24.7041505168398, 25.768638101247614, 26.831229693867062, 27.89209460269048, + 28.950851458888547, 30.008600171761916, 31.06445798922692, 32.11727129565576, 33.17026171539496, + 34.222716471147585, 35.27415784926368, 36.32633586092875, 37.376576957056514, 39.478566495593846, + 41.578639209968074, 43.67851837904011, 45.77959649125783, 47.88252453795488, 49.98721922990801, + 52.093421685162234, 57.372912002970104, + }; + + // this is log10(partition function) + + AMREX_GPU_MANAGED amrex::Array1D Ni58_pf_array = { + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 2.822822391636452e-05, 0.0004722555358597003, 0.0025858928325085315, 0.008151594991554035, + 0.018820703394680185, 0.03585661791649524, 0.060127596252288286, 0.09212527438468374, 0.17939292292561174, + 0.29475734836761314, 0.43276876399762537, 0.5886922364625494, 0.7597527315231631, 1.1398790864012365, + 1.5670263661590604, 2.0211892990699383, 2.4913616938342726, 2.968015713993642, 3.4471580313422194, + 3.9253120914996495, 4.4048337166199385, 4.884795363948981, 5.363611979892144, 6.561101383649056, + 7.754348335711019, 8.94101424370557, 10.12057393120585, 11.290034611362518, 12.45178643552429, + 13.60530504614111, 14.752048447819439, 15.89209460269048, 17.02530586526477, 18.155336037465062, + 19.276461804173245, 20.394451680826215, 21.50650503240487, 22.6159500516564, 23.72098574415374, + 24.822168079368016, 25.920123326290724, 27.01703333929878, 28.10720996964787, 29.198657086954423, + 30.285557309007775, 31.371067862271737, 32.456366033129044, 33.539076098792776, 34.620136054973756, + 35.70070371714502, 36.78031731214015, 37.85853719756964, 38.936513742478894, 41.0899051114394, + 43.243038048686294, 45.39619934709574, 47.549003262025785, 49.70156798505593, 51.8561244442423, + 54.01283722470517, 59.41161970596323, + }; + + +} +