diff --git a/Source/sdc/sdc_newton_solve.H b/Source/sdc/sdc_newton_solve.H index ef30b3b76b..d7a1b96ab2 100644 --- a/Source/sdc/sdc_newton_solve.H +++ b/Source/sdc/sdc_newton_solve.H @@ -80,11 +80,12 @@ f_sdc_jac(const Real dt_m, // we are solving J dU = -f // where f is Eq. 36 evaluated with the current guess for U + // note: we store -f for (int n = 1; n <= NumSpec; ++n) { - f(n) = U(n) - dt_m * R_full[UFS-1+n] - f_source(n); + f(n) = -U(n) + dt_m * R_full[UFS-1+n] + f_source(n); } - f(NumSpec+1) = U(NumSpec+1) - dt_m * R_full[UEINT] - f_source(NumSpec+1); + f(NumSpec+1) = -U(NumSpec+1) + dt_m * R_full[UEINT] + f_source(NumSpec+1); // get the Jacobian. @@ -117,13 +118,17 @@ sdc_newton_solve(const Real dt_m, const int sdc_iteration, Real& err_out, int& ierr) { + // the purpose of this function is to solve the system - // U - dt R(U) = U_old + dt C using a Newton solve. - // This is Eq. 36 in the paper. + // U - dt R(U) = U_old + dt C + // using a Newton solve. This is Eq. 36 in the paper. + // + // here, U_new should come in as a guess for the new U for + // iterations > 0, it will be the solution from the previous + // iteration initially. // - // here, U_new should come in as a guess for the new U - // and will be returned with the value that satisfied the - // nonlinear function + // upon exit, U_new will be returned with the value that satisfied + // the nonlinear function JacNetArray2D Jac; @@ -135,9 +140,7 @@ sdc_newton_solve(const Real dt_m, Array1D U_react; Array1D f_source; - Array1D dU_react; Array1D f; - RArray1D f_rhs; const int MAX_ITER = 100; @@ -195,7 +198,7 @@ sdc_newton_solve(const Real dt_m, int info = 0; f_sdc_jac(dt_m, U_react, f, Jac, f_source, rho_new, T_old); - // solve the linear system: Jac dU_react = -f + // solve the linear system: Jac dU = -f #ifdef NEW_NETWORK_IMPLEMENTATION RHS::dgefa(Jac); info = 0; @@ -208,44 +211,33 @@ sdc_newton_solve(const Real dt_m, return; } - for (int n = 1; n <= NumSpec+1; ++n) { - f_rhs(n) = -f(n); - } - #ifdef NEW_NETWORK_IMPLEMENTATION - RHS::dgesl(Jac, f_rhs); + RHS::dgesl(Jac, f); #else - dgesl(Jac, ipvt, f_rhs); + dgesl(Jac, ipvt, f); #endif + // on output, f is the solution (dU) for (int n = 1; n <= NumSpec+1; ++n) { - dU_react(n) = f_rhs(n); + U_react(n) += f(n); } - // how much of dU_react should we apply? - Real eta = 1.0_rt; - for (int n = 1; n <= NumSpec+1; ++n) { - U_react(n) += eta * dU_react(n); - } - - Array1D eps_tot; - - // for species, atol is the mass fraction limit, so we - // multiply by density to get a partial density limit - - for (int n = 0; n < NumSpec; ++n) { - eps_tot(1 + n) = integrator_rp::rtol_spec * std::abs(U_react(1 + n)) + - integrator_rp::atol_spec * std::abs(U_new[URHO]); - } - eps_tot(NumSpec+1) = integrator_rp::rtol_enuc * std::abs(U_react(NumSpec+1)) + - integrator_rp::atol_enuc; - // compute the norm of the weighted error, where the // weights are 1/eps_tot auto err_sum = 0.0_rt; for (int n = 1; n <= NumSpec+1; ++n) { - err_sum += dU_react(n) * dU_react(n) / (eps_tot(n) * eps_tot(n)); + Real eps; + if (n < NumSpec+1) { + // for species, atol is the mass fraction limit, so we + // multiply by density to get a partial density limit + eps = integrator_rp::rtol_spec * std::abs(U_react(n)) + + integrator_rp::atol_spec * std::abs(U_new[URHO]); + } else { + eps = integrator_rp::rtol_enuc * std::abs(U_react(NumSpec+1)) + + integrator_rp::atol_enuc; + } + err_sum += f(n) * f(n) / (eps * eps); } err = std::sqrt(err_sum / static_cast(NumSpec+1));