-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathknn_dynamic_benchmark_splits.py
172 lines (155 loc) · 9.61 KB
/
knn_dynamic_benchmark_splits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import pickle5 as pickle
import time
import pandas as pd
import multiprocess
from tqdm import tqdm
from copy import deepcopy
from ge import DeepWalk
from ge import Node2Vec
from natuke_utils import metapath2vec
from natuke_utils import regularization
from natuke_utils import embedding_graph
from natuke_utils import get_knn_data
from natuke_utils import run_knn
path = 'your-data-path'
file_name = 'knn_results'
def restore_hin_split(G, cutted_df, edge_group,
n_jobs=-1, k=-1, node_feature='node', neighbor_feature='neighbor',
group_feature='group', embedding_feature='f'):
# function
def process(start, end, G, df, edge_group, return_dict, thread_id):
value_thread = df.loc[start:(end-1)]
restored_dict_thread = {'true': [], 'restored': [], 'edge_type': []}
for _, row in tqdm(value_thread.iterrows(), total=value_thread.shape[0]):
edge_to_add = edge_group.split('_')
edge_to_add[0] = row[node_feature]
edge_to_add = [row[node_feature] if e == G.nodes[row[node_feature]][group_feature] and row[node_feature] != edge_to_add[0] else e for e in edge_to_add]
knn_data, knn_nodes = get_knn_data(G, row[node_feature], embedding_feature=embedding_feature)
knn_nodes['type'] = knn_nodes[0].apply(lambda x: G.nodes[x][group_feature])
knn_data = knn_data[knn_nodes['type'].isin(edge_to_add)]
knn_nodes = knn_nodes[knn_nodes['type'].isin(edge_to_add)]
edge_to_add[1] = run_knn(k, G, row, knn_data, knn_nodes, embedding_feature=embedding_feature)
restored_dict_thread['true'].append([row[node_feature], row[neighbor_feature]])
restored_dict_thread['restored'].append(edge_to_add)
restored_dict_thread['edge_type'].append(edge_group)
for key in restored_dict_thread.keys():
_key = key + str(thread_id)
return_dict[_key] = (restored_dict_thread[key])
# split threads
def split_processing(n_jobs, G, df, edge_group, return_dict):
split_size = round(len(df) / n_jobs)
threads = []
for i in range(n_jobs):
# determine the indices of the list this thread will handle
start = i * split_size
# special case on the last chunk to account for uneven splits
end = len(df) if i+1 == n_jobs else (i+1) * split_size
# create the thread
threads.append(
multiprocess.Process(target=process, args=(start, end, G, df, edge_group, return_dict, i)))
threads[-1].start() # start the thread we just created
# wait for all threads to finish
for t in threads:
t.join()
if n_jobs == -1:
n_jobs = multiprocess.cpu_count()
restored_dict = {'true': [], 'restored': [], 'edge_type': []}
return_dict = multiprocess.Manager().dict()
split_processing(n_jobs, G, cutted_df, edge_group, return_dict)
return_dict = dict(return_dict)
for thread_key in restored_dict.keys():
for job in range(n_jobs):
for res in return_dict[thread_key + str(job)]:
restored_dict[thread_key].append(res)
return pd.DataFrame(restored_dict)
def load_graph_train_test(iteration, edge_group, evaluation_stage):
with open(f"{path}splits/kg_{edge_group}_{iteration}_{evaluation_stage}.gpickle", "rb") as fh:
G_found = pickle.load(fh)
train = pd.read_csv(f'{path}splits/train_{edge_group}_{iteration}_{evaluation_stage}.csv')
test = pd.read_csv(f'{path}splits/test_{edge_group}_{iteration}_{evaluation_stage}.csv')
return G_found, train, test
# if a new graph is generated this function can split it according to the splits file
def new_graph_splitter(G, test, extra_cut_from='nubbe', node_from_feature='node_from', type_feature='edge_group'):
G_disturbed = deepcopy(G)
for _, row in test.iterrows():
neighbors_list = list(G_disturbed.neighbors(row['node']))
neighbors_hidden = []
for neighbor in neighbors_list:
if G_disturbed.nodes[neighbor][node_from_feature] == extra_cut_from:
neighbors_hidden.append({'neighbor': neighbor, 'edge_group': G_disturbed[row['node']][neighbor][type_feature]})
G_disturbed.remove_edge(row['node'],neighbor)
return G_disturbed
def execution(algorithm, split, iteration, edge_group, evaluation_stages):
# if a new graph is generated load it here
# with open(f"{path}/your_graph_name.gpickle", "rb") as fh:
# G = pickle.load(fh)
if algorithm == 'deep_walk':
for evaluation_stage in evaluation_stages:
print(f'Evaluation for {algorithm},{split},{iteration},{edge_group},{evaluation_stage}')
G_found, train, test = load_graph_train_test(iteration, edge_group, evaluation_stage)
# if new graph
# G_found = new_graph_splitter(G, test)
start_time = time.time()
model_deep_walk = DeepWalk(G_found, walk_length=10, num_walks=80, workers=1)
model_deep_walk.train(window_size=5, iter=3, embed_size=512)
embeddings_deep_walk = model_deep_walk.get_embeddings()
G_found = embedding_graph(G_found, embeddings_deep_walk)
restored_df = restore_hin_split(G_found, test, edge_group)
with open("{}results/execution_time.txt".format(path), 'a') as f:
f.write(f'{algorithm},{split},{iteration},{edge_group},{evaluation_stage},{(time.time() - start_time)}\n')
restored_df.to_csv("{}results/{}_{}_{}_{}_{}_{}.csv".format(path, file_name, algorithm, split, edge_group, iteration, evaluation_stage), index=False)
elif algorithm == 'node2vec':
for evaluation_stage in evaluation_stages:
print(f'Evaluation for {algorithm},{split},{iteration},{edge_group},{evaluation_stage}')
G_found, train, test = load_graph_train_test(iteration, edge_group, evaluation_stage)
# if new graph
# G_found = new_graph_splitter(G, test)
start_time = time.time()
model_node2vec = Node2Vec(G_found, walk_length = 10, num_walks = 80, p = 0.5, q = 1, workers = 1)
model_node2vec.train(window_size=5,iter=3,embed_size=512)
embeddings_node2vec = model_node2vec.get_embeddings()
G_found = embedding_graph(G_found, embeddings_node2vec)
restored_df = restore_hin_split(G_found, test, edge_group)
with open("{}results/execution_time.txt".format(path), 'a') as f:
f.write(f'{algorithm},{split},{iteration},{edge_group},{evaluation_stage},{(time.time() - start_time)}\n')
restored_df.to_csv("{}results/{}_{}_{}_{}_{}_{}.csv".format(path, file_name, algorithm, split, edge_group, iteration, evaluation_stage), index=False)
elif algorithm == 'metapath2vec':
for evaluation_stage in evaluation_stages:
print(f'Evaluation for {algorithm},{split},{iteration},{edge_group},{evaluation_stage}')
G_found, train, test = load_graph_train_test(iteration, edge_group, evaluation_stage)
# if new graph
# G_found = new_graph_splitter(G, test)
start_time = time.time()
embeddings_metapath2vec = metapath2vec(G_found, dimensions=512)
G_found = embedding_graph(G_found, embeddings_metapath2vec)
restored_df = restore_hin_split(G_found, test, edge_group)
with open("{}results/execution_time.txt".format(path), 'a') as f:
f.write(f'{algorithm},{split},{iteration},{edge_group},{evaluation_stage},{(time.time() - start_time)}\n')
restored_df.to_csv("{}results/{}_{}_{}_{}_{}_{}.csv".format(path, file_name, algorithm, split, edge_group, iteration, evaluation_stage), index=False)
elif algorithm == 'regularization':
iterations = 30
for evaluation_stage in evaluation_stages:
print(f'Evaluation for {algorithm},{split},{iteration},{edge_group},{evaluation_stage}')
G_found, train, test = load_graph_train_test(iteration, edge_group, evaluation_stage)
# if new graph
# G_found = new_graph_splitter(G, test)
start_time = time.time()
G_found = regularization(G_found, iterations=iterations, mi=0.85)
restored_df = restore_hin_split(G_found, test, edge_group)
with open("{}results/execution_time.txt".format(path), 'a') as f:
f.write(f'{algorithm},{split},{iteration},{edge_group},{evaluation_stage},{(time.time() - start_time)}\n')
restored_df.to_csv("{}results/{}_{}_{}_{}_{}_{}.csv".format(path, file_name, algorithm, split, edge_group, iteration, evaluation_stage), index=False)
iterations = 20
if __name__ == '__main__':
# just to be compatible with execution time codes
split = 0.8
#edge_groups = ['doi_name', 'doi_bioActivity', 'doi_collectionSpecie', 'doi_collectionSite', 'doi_collectionType']
edge_groups = ['doi_bioActivity']
#algorithms = ['deep_walk', 'node2vec', 'metapath2vec', 'regularization']
algorithms = ['deep_walk', 'node2vec', 'metapath2vec', 'regularization']
evaluation_stages = ['1st', '2nd', '3rd', '4th']
# regularization
for iteration in range(10):
for edge_group in edge_groups:
for algorithm in algorithms:
execution(algorithm, split, iteration, edge_group, evaluation_stages)