-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
176 lines (137 loc) · 6.56 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import json
import spacy
import benepar
from nltk.tree import Tree
import numpy as np
import re
from gensim.models import Word2Vec
class NLQScorer():
def __init__(self, dataset):
self._pipeline = spacy.load("en_core_web_md")
self._pipeline.add_pipe("benepar", config={"model": "benepar_en3"})
with open(dataset, "r") as fp:
raw_data = json.load(fp)
self.data = raw_data["data"]
self.models = raw_data["meta"]["models"]
self._grouped_questions = { k: [] for k in self.models}
for entry in self.data:
self._grouped_questions[entry["generated_by"]].append(entry["question"].replace("?", " ?"))
self._max_name_length = max([ len(m) for m in self.models ])
corpus = []
for entry in self.data:
corpus.append(entry["question"].replace("?", " ?"))
with open("./org.ttl", "r") as fp:
content = fp.readlines()
corpus += content
corpus = [ line.split() for line in corpus ]
print(corpus)
self._w2vmodel = Word2Vec(sentences=corpus, vector_size=178, window=5, min_count=1, workers=4)
with open("./org.ttl", "r") as fp:
data = fp.read().split()
self._ttl_vocab = set(data)
self._ttl_vector = np.mean([ self._w2vmodel.wv[w] for w in data ], axis=0)
self._results = { m: {
"syntax_tree_height": { "raw": [], "avg": None },
"number_of_words": { "raw": [], "avg": None },
"similarity_graph": { "raw": [], "avg": None },
"similarity_questions": { "raw": [], "avg": None },
"sparql_syntax_ratio": { "raw": [], "avg": None }
} for m in self.models
}
self._results["meta"] = {
"columns": list(self._results[self.models[0]].keys())
}
self.column_header_mapping = {
"syntax_tree_height": "H",
"number_of_words": "N",
"similarity_graph": "cos$_G$",
"similarity_questions": "cos$_M$",
"sparql_syntax_ratio": "SP"
}
def calculate_scores(self, save_to = None):
self.syntax_tree_height()
self.number_of_words()
self.similarities()
self.sparql_syntax_ratio()
self.average_question_similarity()
if save_to:
self.save_results_to_json(filepath=save_to)
def save_results_to_json(self, filepath="./scores.json"):
self._results["meta"]["latex"] = self._generate_latex()
with open(filepath, "w") as fp:
json.dump(self._results, fp, indent=2)
def syntax_tree_height(self):
for k, v in self._grouped_questions.items():
for q in v:
try:
doc = self._pipeline(q)
parsed = list(doc.sents)[0]._.parse_string
t = Tree.fromstring(parsed)
h = t.height()
except:
h = 0
self._results[k]["syntax_tree_height"]["raw"].append(h)
self._results[k]["syntax_tree_height"]["avg"] = np.mean(self._results[k]["syntax_tree_height"]["raw"])
def number_of_words(self):
for k, v in self._grouped_questions.items():
for q in v:
self._results[k]["number_of_words"]["raw"].append(len(q.split()))
self._results[k]["number_of_words"]["avg"] = np.mean(self._results[k]["number_of_words"]["raw"])
def similarities(self):
for k, v in self._grouped_questions.items():
for q in v:
q_vec = np.mean([ self._w2vmodel.wv[w] for w in q.split() ], axis=0)
cosine_similarity = np.round(np.dot(self._ttl_vector, q_vec) / (np.linalg.norm(q_vec) * np.linalg.norm(self._ttl_vector)), 2)
self._results[k]["similarity_graph"]["raw"].append(float(cosine_similarity))
self._results[k]["similarity_graph"]["avg"] = np.mean(self._results[k]["similarity_graph"]["raw"])
def average_question_similarity(self):
for k, v in self._grouped_questions.items():
for outer_idx in range(len(self._grouped_questions[k])):
q1 = self._grouped_questions[k][outer_idx]
q1 = np.mean([ self._w2vmodel.wv[w] for w in q1.split() ], axis=0)
for inner_idx in range(outer_idx+1, len(self._grouped_questions[k])):
q2 = self._grouped_questions[k][inner_idx]
q2 = np.mean([ self._w2vmodel.wv[w] for w in q2.split() ], axis=0)
cosine_similarity = float(np.round(np.dot(q1, q2) / (np.linalg.norm(q1) * np.linalg.norm(q2)), 2))
self._results[k]["similarity_questions"]["raw"].append(cosine_similarity)
self._results[k]["similarity_questions"]["avg"] = float(np.mean(self._results[k]["similarity_questions"]["raw"]))
def sparql_syntax_ratio(self):
for k, v in self._grouped_questions.items():
for q in v:
score = 0
for w in q.split():
if w in self._ttl_vocab:
score += 1
score /= len(q.split())
self._results[k]["sparql_syntax_ratio"]["raw"].append(score)
self._results[k]["sparql_syntax_ratio"]["avg"] = np.mean(self._results[k]["sparql_syntax_ratio"]["raw"])
def _generate_latex(self):
header = "\\textbf{Model name} & \\textbf{n} & " + " & ".join([ "\\textbf{" + self.column_header_mapping[col] + "}" for col in self._results["meta"]["columns"] ]) + " \\\\"
latex_src = f"""\\begin{{table}}
\\centering
\\begin{{tabular}}{{|r||c|c|c|c|c|c|c|}}
\\hline
{header}
\\hline
"""
for m in self.models:
row = " \\textbf{" + re.sub(r".*/", "", m) + "} & " + str(len(self._grouped_questions[m])) + " & "
row += " & ".join([ str(np.round(self._results[m][col]["avg"],2)) for col in self._results["meta"]["columns"] ]) + " \\\\"
latex_src += row + "\n"
caption = "Columns: n $\\rightarrow$ number of questions, " + ", ".join( [ v + " $\\rightarrow$ " + k.replace("_","-") for k,v in self.column_header_mapping.items() ] )
latex_src += f""" \\hline
\\end{{tabular}}
\\caption{{{caption}}}
\\label{{tab:mylabel}}
\\end{{table}}
"""
return latex_src
def dump_latex(self):
try:
print(self._results["meta"]["latex"])
except:
pass
if __name__ == "__main__":
nlqs = NLQScorer("./data/2024-10-11.json")
nlqs.calculate_scores(save_to="output_2.json")
nlqs.dump_latex()