This repository has been archived by the owner on Jun 7, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 151
/
model_fourier.py
128 lines (108 loc) · 4.52 KB
/
model_fourier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""docstring for installed packages."""
import datetime
import logging
import pandas as pd
import numpy as np
from prometheus_api_client import Metric
from numpy import fft
# Set up logging
_LOGGER = logging.getLogger(__name__)
class MetricPredictor:
"""docstring for Predictor."""
model_name = "Fourier"
model_description = "Forecast value based on fourier analysis"
model = None
predicted_df = None
metric = None
def __init__(self, metric, rolling_data_window_size="10d"):
"""Initialize metric object."""
self.metric = Metric(metric, rolling_data_window_size)
def fourier_extrapolation(self, input_series, n_predict, n_harmonics):
"""Perform the Fourier extrapolation on time series data."""
n = input_series.size
t = np.arange(0, n)
p = np.polyfit(t, input_series, 1)
input_no_trend = input_series - p[0] * t
frequency_domain = fft.fft(input_no_trend)
frequencies = fft.fftfreq(n)
indexes = np.arange(n).tolist()
indexes.sort(key=lambda i: np.absolute(frequencies[i]))
time_steps = np.arange(0, n + n_predict)
restored_signal = np.zeros(time_steps.size)
for i in indexes[: 1 + n_harmonics * 2]:
amplitude = np.absolute(frequency_domain[i]) / n
phase = np.angle(frequency_domain[i])
restored_signal += amplitude * np.cos(
2 * np.pi * frequencies[i] * time_steps + phase
)
restored_signal = restored_signal + p[0] * time_steps
return restored_signal[n:]
def train(self, metric_data=None, prediction_duration=15):
"""Train the Fourier model and store the predictions in pandas dataframe."""
prediction_range = prediction_duration
# convert incoming metric to Metric Object
if metric_data:
# because the rolling_data_window_size is set, this df should not bloat
self.metric += Metric(metric_data)
data = self.metric.metric_values
vals = np.array(data["y"].tolist())
_LOGGER.debug("training data start time: %s", self.metric.start_time)
_LOGGER.debug("training data end time: %s", self.metric.end_time)
_LOGGER.debug("begin training")
forecast_values = self.fourier_extrapolation(
vals, prediction_range, 1
) # int(len(vals)/3))
dataframe_cols = {}
dataframe_cols["yhat"] = np.array(forecast_values)
# find most recent timestamp from original data and extrapolate new timestamps
_LOGGER.debug("Creating Dummy Timestamps.....")
maximum_time = max(data["ds"])
dataframe_cols["timestamp"] = pd.date_range(
maximum_time, periods=len(forecast_values), freq="min"
)
# create dummy upper and lower bounds
_LOGGER.debug("Computing Bounds .... ")
upper_bound = np.array(
[
(
np.ma.average(
forecast_values[:i],
weights=np.linspace(0, 1, num=len(forecast_values[:i])),
)
+ (np.std(forecast_values[:i]) * 2)
)
for i in range(len(forecast_values))
]
)
upper_bound[0] = np.mean(
forecast_values[0]
) # to account for no std of a single value
lower_bound = np.array(
[
(
np.ma.average(
forecast_values[:i],
weights=np.linspace(0, 1, num=len(forecast_values[:i])),
)
- (np.std(forecast_values[:i]) * 2)
)
for i in range(len(forecast_values))
]
)
lower_bound[0] = np.mean(
forecast_values[0]
) # to account for no std of a single value
dataframe_cols["yhat_upper"] = upper_bound
dataframe_cols["yhat_lower"] = lower_bound
# create series and index into predictions_dict
_LOGGER.debug("Formatting Forecast to Pandas ..... ")
forecast = pd.DataFrame(data=dataframe_cols)
forecast = forecast.set_index("timestamp")
self.predicted_df = forecast
_LOGGER.debug(forecast)
def predict_value(self, prediction_datetime):
"""Return the predicted value of the metric for the prediction_datetime."""
nearest_index = self.predicted_df.index.get_loc(
prediction_datetime, method="nearest"
)
return self.predicted_df.iloc[[nearest_index]]