-
Notifications
You must be signed in to change notification settings - Fork 1
/
IndicMPT_train.py
193 lines (161 loc) · 6.45 KB
/
IndicMPT_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# peft model py 681
import os
# os.environ["CUDA_VISIBLE_DEVICES"]="0"
import torch
import torch.nn as nn
# import bitsandbytes as bnb
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
import transformers
from datasets import load_dataset
from peft import LoraConfig, get_peft_model
from torch.nn import DataParallel
import math
import wandb
import argparse
parser = argparse.ArgumentParser()
import transformers
parser.add_argument("--model_indic", default="indiMPT_tokenizer_64k")
parser.add_argument("--wordEmbTrain", default="false", help = "[true | false]")
parser.add_argument("--run_name", default="workshop")
args = parser.parse_args()
wandb.init(project="vocab_adap_clm", entity="nandinimundra", name = f"{args.run_name}")
name = 'mosaicml/mpt-7b'
tokenizer = AutoTokenizer.from_pretrained(f"indic_tokenizer/{args.model_indic}")
config = AutoConfig.from_pretrained(f"./config_{args.model_indic}/", trust_remote_code=True)
# config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model_kwargs = {"device_map": "auto"}
model = AutoModelForCausalLM.from_pretrained(
f"./model_{args.model_indic}/",
config=config,
# load_in_8bit=True,
# torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True, **model_kwargs
)
print(model)
for name, param in model.named_parameters():
# if args.wordEmbTrain == "true" and name == "transformer.wte.weight" :
# continue
param.requires_grad = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
param.data = param.data.to(torch.float32)
model.enable_input_require_grads()
# for name, param in model.named_parameters():
# print(f"{name} : ", param.size() )
# class CastOutputToFloat(nn.Sequential):
# def forward(self, x): return super().forward(x).to(torch.float32)
# model.transformer.wte = CastOutputToFloat(model.transformer.wte)
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["Wqkv"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
if args.wordEmbTrain == "true":
print("inside word emb train ")
for name, param in model.named_parameters():
if name == "base_model.model.transformer.wte.weight":
print("inside param true ")
param.requires_grad = True
# print(f"Parameter name: {name}, Requires gradient: {param.requires_grad}")
for name, param in model.named_parameters():
print(f"Parameter name: {name}, Requires gradient: {param.requires_grad}")
print_trainable_parameters(model)
def preprocess_function(examples):
# result = tokenizer(examples["text"])
# return result
return tokenizer([" ".join(x) for x in examples["text"]])
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of block_size.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
block_size = 512
text_path = 'train_all_seed_corpus.txt'
dataset = load_dataset("text", data_files=text_path)
# print(dataset)
# dataset = dataset.map(lambda samples: tokenizer(dataset['train']['text']), batched=True)
tokenized_dataset = dataset['train'].map(
preprocess_function,
batched=True,
remove_columns=dataset["train"].column_names
)
lm_dataset = tokenized_dataset.map(group_texts, batched=True)
tokenizer.pad_token = tokenizer.eos_token
# model = DataParallel(model)
trainer = transformers.Trainer(
model=model,
train_dataset= lm_dataset, # dataset['train'],
args=transformers.TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_ratio=0.1,
# max_steps=200,
learning_rate=2e-4,
num_train_epochs=3,
fp16=True,
logging_strategy= 'epoch',
save_strategy="epoch",
output_dir=args.run_name
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
trainer.train()
model.config.use_cache = True
folders = ['eng_Latn-hin_Deva','eng_Latn-eng_Latn', 'eng_Latn-brx_Deva', 'eng_Latn-tam_Taml', 'eng_Latn-asm_Beng' ]
# for folder in os.listdir("/nlsasfs/home/ai4bharat/nandinim/nandini/vocab_adap/seed_train_test/"):
for folder in folders:
text_path = f"/nlsasfs/home/ai4bharat/nandinim/nandini/vocab_adap/seed_train_test/{folder}/test.{folder[-8:]}"
dataset = load_dataset("text", data_files=text_path)
print(folder , " " , dataset)
tokenized_dataset = dataset['train'].map(
preprocess_function,
batched=True,
remove_columns=dataset["train"].column_names
)
lm_dataset = tokenized_dataset.map(group_texts, batched=True)
tokenizer.pad_token = tokenizer.eos_token
data_collator = transformers.DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
training_args = transformers.TrainingArguments(
output_dir= f"{args.run_name}_mpt_indic",
evaluation_strategy="epoch",
per_device_eval_batch_size = 16
)
trainer = transformers.Trainer(
model=model,
args=training_args,
eval_dataset=lm_dataset,
data_collator=data_collator,
)
eval_results = trainer.evaluate()
perplexity = math.exp(eval_results['eval_loss'])
print(f"Perplexity- {folder[-8:]}: ", perplexity)
wandb.log({"perp-{}-".format(folder[-8:]): perplexity})
# #################### Now evaluation