-
Notifications
You must be signed in to change notification settings - Fork 3
/
oliveKernel.h
170 lines (153 loc) · 5.06 KB
/
oliveKernel.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/**
* The MIT License (MIT)
*
* Copyright (c) 2015 Yichao Cheng
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/**
* The CUDA kernel of the engine.
*
* Author: Yichao Cheng ([email protected])
* Created on: 2014-12-20
* Last Modified: 2014-12-20
*/
#ifndef OLIVE_KERNEL_H
#define OLIVE_KERNEL_H
#include "common.h"
/**
* The CUDA kernel for expanding vertices in the work queue.
*/
template<typename VertexValue,
typename AccumValue,
typename F>
__global__
void edgeGatherKernel(
PartitionId thisPid,
const VertexId *workqueue,
const VertexId *workqueueSize,
const EdgeId *vertices,
const Vertex *edges,
VertexValue *vertexValues,
AccumValue *accumulators,
int *activties,
MessageBox< VertexMessage<AccumValue> > *outboxes,
F f)
{
int tid = THREAD_INDEX;
if (tid >= *workqueueSize) return;
VertexId srcId = workqueue[tid];
VertexValue srcValue = vertexValues[srcId];
EdgeId first = vertices[srcId];
EdgeId last = vertices[srcId + 1];
EdgeId outdegree = last - first;
for (EdgeId edge = first; edge < last; edge ++) {
PartitionId dstPid = edges[edge].partitionId;
// Edge level parallelism, which is exploited by SIMD lanes
AccumValue accum = f.gather(srcValue, outdegree);
if (dstPid == thisPid) { // In this partition
VertexId dstId = edges[edge].localId;
f.reduce(accumulators[dstId], accum);
activties[dstId] = 1;
} else { // In remote partition
VertexMessage<AccumValue> msg;
msg.receiverId = edges[edge].localId;
msg.value = accum;
size_t offset = atomicAdd(reinterpret_cast<unsigned long long *>
(&outboxes[dstPid].length), 1);
outboxes[dstPid].buffer[offset] = msg;
}
}
}
/**
* The CUDA kernel for scattering messages to local vertex values.
* If a node receive any message from other partition, the vertex will be
* marked as active.
*/
template<typename AccumValue, typename F>
__global__
void edgeScatterKernel(
const MessageBox< VertexMessage<AccumValue> > &inbox,
AccumValue *accumulators,
int *activties,
F f)
{
int tid = THREAD_INDEX;
if (tid >= inbox.length) return;
VertexId dstId = inbox.buffer[tid].receiverId;
AccumValue accum = inbox.buffer[tid].value;
f.reduce(accumulators[dstId], accum);
activties[dstId] = 1;
}
/**
* The vertex map kernel.
*
* The initial value of `allVerticesInactive` is true. All the active vertices
* write false to `allVerticesInactive`. When there is no vertex is active,
* the final value will be false.
*/
template<typename VertexValue,
typename AccumValue,
typename F>
__global__
void vertexMapKernel(
int *activties,
int verticeCount,
VertexValue *vertexValues,
AccumValue *accumulators,
VertexId *workqueue,
VertexId *workqueueSize,
F f)
{
int tid = THREAD_INDEX;
if (tid >= verticeCount) return;
if (activties[tid] == 0) return;
// Deactivate anyway, since we only want the vertex with changed
// accumulator to be activated in the vertex phase.
activties[tid] = 0;
if (f.cond(vertexValues[tid])) {
f.update(vertexValues[tid], accumulators[tid]);
// if the local state is modified, activate it
activties[tid] = 1;
VertexId pos = atomicAdd(workqueueSize, 1);
workqueue[pos] = tid;
}
}
template<typename VertexValue,
typename AccumValue,
typename F>
__global__
void vertexFilterKernel(
int *activties,
int verticeCount,
VertexValue *vertexValues,
VertexId *workqueue,
VertexId *workqueueSize,
F f)
{
int tid = THREAD_INDEX;
if (tid >= verticeCount) return;
if (f.cond(vertexValues[tid])) {
f.update(vertexValues[tid]);
activties[tid] = 1;
VertexId pos = atomicAdd(workqueueSize, 1);
workqueue[pos] = tid;
}
}
#endif // OLIVE_KERNEL_H