-
Notifications
You must be signed in to change notification settings - Fork 0
/
MCD.OGK.MVE.R
156 lines (139 loc) · 3.65 KB
/
MCD.OGK.MVE.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
library(rrcov)
library(MASS)
library(robustbase)
library(robust)
library(pcaPP)
library(mvtnorm)
library(clusterGeneration)
#install.packages("mvtnorm")
#install.packages("pcaPP")
#install.packages("robustbase")
#install.packages("robustbase")
#install.packages("fit.models")
library(MASS)
D<-read.csv("4.3.csv",header=T)
#conta=matrix(rep(round(5*as.numeric(apply(D,2,max))+rnorm(9,0,1)),5),5)
DD=rbind(as.matrix(D),conta)
Y<-DD[,c(1,5,6)]
X<-DD[,c(2,4,8)]
nDD=cbind(X,Y)
dim(D)
v.mve<-cov2cor(CovMve(nDD)@cov)
#v.bve<-cov2cor(MeanVar(nDD,Beta=0.1)$V)
r11<-v.mve[1:3,1:3]
r22<-v.mve[4:6,4:6]
r12<-v.mve[1:3,4:6]
r21<-t(r12)
###=====================================================
#v.mcd<-CovMcd(nDD)@cov #?CovMcd
#v.ogk<-covOGK(nDD, sigmamu = scaleTau2)$wcov
###======================================================================
########### squre root matrix for r11
ev1<-eigen(r11)
sev1<-sqrt(ev1$values)
dm1<-diag(1/sev1)
sr11<-ev1$vectors%*%dm1%*%t(ev1$vectors)
################# squre root matrix for r22
ev2<-eigen(r22)
sev2<-sqrt(ev2$values)
dm2<-diag(1/sev2)
sr22<-ev2$vectors%*%dm2%*%t(ev2$vectors)
##################### Define Cross correlation matrix m
m<-sr11%*%r12%*%sr22
############## compute SVD OF m
sd<-svd(m)
##################### canonical correlation
can.corr<-sd$d
l=can.corr^2
################P.Value Calculation of canonical variate paires##########
Y<-DD[,c(1,5,6)]
X<-DD[,c(2,4,8)]
p=ncol(X);q=ncol(Y);n=nrow(X)
L=PV=df=matrix(rep(0,min(p,q)),nrow=min(p,q))
for(m in 1:min(p,q))
{
df[m]<-(p-m+1)*(q-m+1)
df
X=0
for(k in m:min(p,q))
{
X=X+log(1-l[k])
}
L[m]=-((n-1)-.5*(p+q+1))*X
PV=pchisq(L,df=df,lower.tail=F)
}
L;PV;df
Table=round(data.frame(CanCorr=can.corr,Chisquare=L,df=df,p.value=PV),3)
################## canonical weights
a<-sr11%*%sd$u
a[,colSums(a)<0]=-a[,colSums(a)<0]
b<-sr22%*%sd$v
b[,colSums(b)<0]=-b[,colSums(b)<0]
################### caninical loading
lx<-r11%*%a
ly<-r22%*%b
#hist(lx[,1])
######################## cross loading for x
clx=matrix(rep(0,ncol(X)*ncol(Y)),ncol(X))
for(i in 1:ncol(Y))
{
L<-can.corr[i]*lx[,i]
clx[,i]<-L
}
clx<-clx
####################### cross loading for y
cly=matrix(rep(0,ncol(X)*ncol(Y)),ncol(Y))
for (i in 1:ncol(X))
{
L<-can.corr[i]*ly[,i]
cly[,i]<-L
}
#####################cross loading
clx<-clx
cly<-cly
################ propotion of Explained Variance for x set
pevx=rep(0,min(length(Y),length(X)))
for ( i in 1:min(length(Y),length(X))){
pex<-sum(lx[,i]^2)/length(lx[,i])
pevx[i]<-pex
}
### percent of variance for x set
###########################propotion of Explained Variance for y set
pevy=rep(0,min(length(Y),length(X)))
for ( i in 1:min(length(Y),length(X))){
pey<-sum(ly[,i]^2)/length(ly[,i])
pevy[i]<-pey
}
### percent of variance for y
ppevx<-pevx*100
ppevy<-pevy*100
################Redundency for x
Rx=rep(0,min(p=3,q=3))
for ( i in 1:min(p=3,q=3)){
R1<-can.corr[i]^2*sum(lx[,i]^2)/length(lx[,i])
Rx[i]<-R1
}
#########################Redundency for y
Ry=rep(0,min(p=3,q=3))
for ( i in 1:min(p=3,q=3)){
R2<-can.corr[i]^2*sum(ly[,i]^2)/length(ly[,i])
Ry[i]<-R2
}
Rx
Ry
Table=round(data.frame(Rx,Ry),3)
P.cca=cancor(X,Y)
##================================================================
#=====================================================
#Examples
data(hbk)
hbk.x <- data.matrix(hbk[, 1:3])
v.mcd<-attr(CovMcd(hbk.x),"cov")
## the following three statements are equivalent
c1 <- CovMcd(hbk.x, alpha = 0.75)
c2 <- CovMcd(hbk.x, control = CovControlMcd(alpha = 0.75))
## direct specification overrides control one:
c3 <- CovMcd(hbk.x, alpha = 0.75,
control = CovControlMcd(alpha=0.95))
c1
###========================================================================