-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
132 lines (101 loc) · 4.51 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""Data provider"""
import torch
import torch.utils.data as data
import os
import nltk
import numpy as np
class PrecompDataset(data.Dataset):
"""
Load precomputed captions and image features
Possible options: f30k_precomp, coco_precomp
"""
def __init__(self, data_path, data_split, vocab, opt):
self.vocab = vocab
loc = data_path + '/'
# Captions
self.captions = []
with open(loc+'%s_caps.txt' % data_split, 'r') as f:
for line in f:
self.captions.append(line.strip())
# Image features
self.loc = loc
self.images = np.load(loc + '%s_ims.npy' % data_split)
self.image_embs = np.load(opt.image_emb_path)
self.text_embs = np.load(opt.text_emb_path)
self.length = len(self.captions)
self.im_div = 5
# the development set for coco is large and so validation would be slow
if data_split == 'dev':
self.length = 5000
def __getitem__(self, caption_id):
# handle the image redundancy
image_id = caption_id//self.im_div
image = torch.Tensor(self.images[image_id])
caption = self.captions[caption_id]
vocab = self.vocab
# Convert caption (string) to word ids.
tokens = nltk.tokenize.word_tokenize(str(caption).lower())
caption = []
caption.append(vocab('<start>'))
caption.extend([vocab(token) for token in tokens])
caption.append(vocab('<end>'))
target = torch.Tensor(caption)
image_emb = self.image_embs[image_id]
image_emb = torch.Tensor(image_emb)
t_text_emb = self.text_embs[caption_id]
t_text_emb = torch.Tensor(t_text_emb)
start_id = 5 * image_id
v_text_emb = self.text_embs[start_id: start_id + 5]
v_text_emb = torch.Tensor(v_text_emb)
return image, target, image_id, caption_id, image_emb, v_text_emb, t_text_emb
def __len__(self):
return self.length
def collate_fn(data):
"""Build mini-batch tensors from a list of (image, caption) tuples.
Args:
data: list of (image, caption) tuple.
- image: torch tensor of shape (3, 256, 256).
- caption: torch tensor of shape (?); variable length.
Returns:
images: torch tensor of shape (batch_size, 3, 256, 256).
targets: torch tensor of shape (batch_size, padded_length).
lengths: list; valid length for each padded caption.
"""
# Sort a data list by caption length
data.sort(key=lambda x: len(x[1]), reverse=True)
images, captions, image_ids, caption_ids, image_emb, v_text_emb, t_text_emb = zip(*data)
# Merge images (convert tuple of 3D tensor to 4D tensor)
images = torch.stack(images, 0)
# Merget captions (convert tuple of 1D tensor to 2D tensor)
lengths = [len(cap) for cap in captions]
targets = torch.zeros(len(captions), max(lengths)).long()
for i, cap in enumerate(captions):
end = lengths[i]
targets[i, :end] = cap[:end]
image_emb = torch.stack(image_emb, 0)
v_text_emb = torch.stack(v_text_emb, 0)
t_text_emb = torch.stack(t_text_emb, 0)
return images, targets, lengths, image_ids, caption_ids, image_emb, v_text_emb, t_text_emb
def get_precomp_loader(data_path, data_split, vocab, opt, batch_size=100,
shuffle=True, num_workers=2):
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
dset = PrecompDataset(data_path, data_split, vocab, opt)
data_loader = torch.utils.data.DataLoader(dataset=dset,
batch_size=batch_size,
shuffle=shuffle,
pin_memory=True,
collate_fn=collate_fn)
return data_loader
def get_loaders(data_name, vocab, batch_size, workers, opt):
dpath = os.path.join(opt.data_path, data_name)
train_loader = get_precomp_loader(dpath, 'train', vocab, opt,
batch_size, True, workers)
val_loader = get_precomp_loader(dpath, 'dev', vocab, opt,
batch_size, False, workers)
return train_loader, val_loader
def get_test_loader(split_name, data_name, vocab, batch_size,
workers, opt):
dpath = os.path.join(opt.data_path, data_name)
test_loader = get_precomp_loader(dpath, split_name, vocab, opt,
batch_size, False, workers)
return test_loader