-
Notifications
You must be signed in to change notification settings - Fork 0
/
201612_Algebraic_Geometry+_Handout.tex
47 lines (41 loc) · 1.71 KB
/
201612_Algebraic_Geometry+_Handout.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
%!TeX spellcheck = de_DE
%!TeX encoding = utf8
\documentclass{article}
\input{./preamble}
\begin{document}
\begin{defn}[Complex of \(R\)-modules \cite{Eis1}{1.10} ]
A \bf{complex} of \(R\)-Modules is a sequence of modules \( F_{i} \)
and maps \( F_{i} to F_{i-1} \) such that the compositions \( F_{i+1} \to F_{i} \to F_{i-1} \) are all zero.
The \bf{homology} of this complex at \( F_{i} \) is the module
\[
\ker \left( F_{i} \to F_{i-1} \right) \/ \im \left( F_{i+1} \to F_{i} \right)
\]
A \bf{free resolution} of an \( R\)-module \( M \)
is a complex
\[
\mathcal{F}: \hdots \to F_{n} \overset{\to}{\phi_{n}}
\hdots \to F_{1} \overset{\to}{\phi_{1}} F_{0}
\]
of free \(R\)-Modules such that \( \coker \phi_{1} = M \)
and \( \mathcal{F} \) is exact
(sometimes we add `` \( \to 0 \) '' to the right of \(\mathcal{F}\)
and then insist that \(\mathcal{F}\) be exact except at \( F_{0} \) ).
We shall sometimes abuse this notation and say that an exact sequence
\[
\mathcal{F}: \hdots \to F_{n} \overset{\to}{\phi_{n}}
\hdots \to F_{1} \overset{\to}{\phi_{1}} F_{0}
\to M \to 0
\]
is a resolution of \( M \).
The image of the map \( \phi_i \) is called the ith syzygy module of \(M \).
A resolution \( \mathcal{F }\) is a \bf{graded free resolution }
if \( R \) is a graded ring,
the \( F_{i}\) are graded free modules,
and the maps are homogeneous maps of degree 0.
Of course only graded modules can have graded free resolutions.
If for some \( n < \inf \) we have \( F_{n+1}=0 \),
but \( F_{i} \neq 0 \forall 0 \le i \le n \), then we shall say that
\( \mathcal{F}\) is a \bf{finite resolution of length} \( n\).
\end{defn}
\input{./bibtex}
\end{document}