forked from Linfeng-Tang/SeAFusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcityscapes.py
127 lines (108 loc) · 3.61 KB
/
cityscapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#!/usr/bin/python
# -*- encoding: utf-8 -*-
import torch
from torch.utils.data import Dataset
import torchvision.transforms as transforms
import os.path as osp
import os
from PIL import Image
import numpy as np
import json
from transform import *
class CityScapes(Dataset):
def __init__(
self,
rootpth,
cropsize=(640, 480),
mode='train',
Method='Fusion',
*args,
**kwargs
):
super(CityScapes, self).__init__(*args, **kwargs)
assert mode in ('train', 'val', 'test')
self.mode = mode
self.ignore_lb = 255
with open('./cityscapes_info.json', 'r') as fr:
labels_info = json.load(fr)
self.lb_map = {el['id']: el['trainId'] for el in labels_info}
## parse img directory
self.imgs = {}
imgnames = []
# impth = osp.join(rootpth, Method, mode)
impth = osp.join(rootpth, Method, mode)
print(impth)
folders = os.listdir(impth)
for fd in folders:
fdpth = osp.join(impth, fd)
print(fdpth)
im_names = os.listdir(fdpth)
names = [el.replace('.png', '') for el in im_names]
impths = [osp.join(fdpth, el) for el in im_names]
imgnames.extend(names)
self.imgs.update(dict(zip(names, impths)))
## parse gt directory
self.labels = {}
gtnames = []
gtpth = osp.join(rootpth, 'Label', mode)
folders = os.listdir(gtpth)
for fd in folders:
fdpth = osp.join(gtpth, fd)
print(fdpth)
lbnames = os.listdir(fdpth)
# lbnames = [el for el in lbnames if 'labelIds' in el]
names = [el.replace('.png', '') for el in lbnames]
lbpths = [osp.join(fdpth, el) for el in lbnames]
gtnames.extend(names)
self.labels.update(dict(zip(names, lbpths)))
self.imnames = imgnames
self.len = len(self.imnames)
assert set(imgnames) == set(gtnames)
assert set(self.imnames) == set(self.imgs.keys())
assert set(self.imnames) == set(self.labels.keys())
## pre-processing
self.to_tensor = transforms.Compose(
[
transforms.ToTensor(),
# transforms.Normalize(
# (0.2254, 0.2585, 0.2225), (0.0521, 0.0529, 0.0546)
# ),
]
)
self.trans_train = Compose(
[
ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
HorizontalFlip(),
RandomScale((0.75, 1.0, 1.25, 1.5, 1.75, 2.0)),
RandomCrop(cropsize),
]
)
def __getitem__(self, idx):
fn = self.imnames[idx]
impth = self.imgs[fn]
lbpth = self.labels[fn]
img = Image.open(impth)
label = Image.open(lbpth)
if self.mode == 'train':
im_lb = dict(im=img, lb=label)
im_lb = self.trans_train(im_lb)
img, label = im_lb['im'], im_lb['lb']
# test_image = np.array(img)
img = self.to_tensor(img)
label = np.array(label).astype(np.int64)[np.newaxis, :]
return img, label, fn
def __len__(self):
return self.len
def convert_labels(self, label):
for k, v in self.lb_map.items():
label[label == k] = v
return label
if __name__ == "__main__":
from tqdm import tqdm
ds = CityScapes('./data/', n_classes=9, mode='val')
uni = []
for im, lb in tqdm(ds):
lb_uni = np.unique(lb).tolist()
uni.extend(lb_uni)
print(uni)
print(set(uni))