-
Notifications
You must be signed in to change notification settings - Fork 1
/
merkle_tree.cu
315 lines (276 loc) · 8.93 KB
/
merkle_tree.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#include <cassert>
#include <cmath>
#include "merkle_tree.cuh"
__host__ __device__
void two_to_one(F* digest, F* left, F* right) {
F state[SPONGE_WIDTH] = { F(0) };
for (int k=0; k<SPONGE_WIDTH; k++) {
if (k < HASH_WIDTH) {
// left
state[k] = left[k];
} else if (k < 2*HASH_WIDTH) {
// right
state[k] = right[k - HASH_WIDTH];
} else {
state[k] = F(0);
}
}
poseidon(state);
for (int k=0; k<HASH_WIDTH; k++) {
digest[k] = state[k];
}
}
__host__ __device__
void hash_or_noop(F* digest, F* leave, uint32_t leave_len) {
if (leave_len <= HASH_WIDTH) {
// noop
for (uint32_t i=0; i<HASH_WIDTH; i++) {
if (i < leave_len) {
digest[i] = leave[i];
} else {
digest[i] = F(0);
}
}
return;
}
// hash_no_pad()
// hash_n_to_hash_no_pad()
// hash_n_to_m_no_pad()
F state[SPONGE_WIDTH] = { F(0) };
uint32_t quo = leave_len / SPONGE_RATE;
uint32_t rem = leave_len % SPONGE_RATE;
for (uint32_t i=0; i<quo; i++) {
for (uint32_t j=0; j<SPONGE_RATE; j++) {
state[j] = leave[i*SPONGE_RATE + j];
}
poseidon(state);
}
if (rem) {
for (uint32_t i=0; i<rem; i++) {
state[i] = leave[quo*SPONGE_RATE + i];
}
poseidon(state);
}
for (uint32_t i=0; i<HASH_WIDTH; i++) {
digest[i] = state[i];
}
}
__global__
void device_fill_digests0(
F* d_digests_caps,
uint32_t num_subtree_digests,
F* d_leaves,
uint32_t num_subtree_leaves,
uint32_t leave_len,
uint32_t num_caps
) {
int id = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while (id < num_caps * num_subtree_leaves) {
int j = id % num_subtree_leaves; // outer loop
int i = (id - j) / num_subtree_leaves; // inner loop
uint32_t from = j;
uint32_t to = (j>>1<<2) | (j&0b1);
hash_or_noop(
d_digests_caps + (num_subtree_digests*i + to)*HASH_WIDTH,
d_leaves + (num_subtree_leaves*i + from)*leave_len,
leave_len
);
id += stride;
}
}
__global__
void device_fill_digests1(
F* d_digests_caps,
uint32_t num_subtree_digests,
uint32_t level,
uint32_t num_level_subtree_digests,
uint32_t last_level_start_idx,
uint32_t level_start_idx,
uint32_t num_caps
) {
int id = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while (id < num_caps * num_level_subtree_digests) {
int j = id % num_level_subtree_digests; // outer loop
int i = (id - j) / num_level_subtree_digests; // inner loop
uint32_t left = last_level_start_idx + j*(1<<(level+1));
uint32_t right = left + 1;
uint32_t to = (level_start_idx + (j>>1)*(1<<(level+2))) | (j&0b1);
two_to_one(
d_digests_caps + (num_subtree_digests*i + to)*HASH_WIDTH,
d_digests_caps + (num_subtree_digests*i + left)*HASH_WIDTH,
d_digests_caps + (num_subtree_digests*i + right)*HASH_WIDTH
);
id += stride;
}
return;
}
void device_fill_digests_caps(
F* digests_caps,
uint32_t num_digests,
F* leaves,
uint32_t num_leaves,
uint32_t leave_len,
uint32_t cap_height
) {
uint32_t num_caps = 1 << cap_height;
F* d_digests_caps;
F* d_leaves;
cudaMalloc(&d_leaves, sizeof(F)*leave_len*num_leaves);
cudaMalloc(&d_digests_caps, sizeof(F)*HASH_WIDTH*(num_digests + num_caps));
cudaMemcpy(d_leaves, leaves, sizeof(F)*leave_len*num_leaves, cudaMemcpyHostToDevice);
device_fill_digests0<<<N_BLOCK, N_THREAD>>>(
d_digests_caps,
num_digests / num_caps,
d_leaves,
num_leaves / num_caps,
leave_len,
num_caps
);
cudaDeviceSynchronize();
int level = 1;
uint32_t num_level_digests = num_leaves >> 1;
uint32_t last_level_start_idx = 0;
uint32_t level_start_idx = 2;
while (num_level_digests > num_caps) {
device_fill_digests1<<<N_BLOCK, N_THREAD>>>(
d_digests_caps,
num_digests / num_caps,
level,
num_level_digests / num_caps,
last_level_start_idx,
level_start_idx,
num_caps
);
cudaDeviceSynchronize();
level += 1;
num_level_digests = num_level_digests >> 1;
last_level_start_idx = level_start_idx;
level_start_idx += (1<<level);
}
cudaMemcpy(digests_caps, d_digests_caps, sizeof(F)*HASH_WIDTH*(num_digests + num_caps), cudaMemcpyDeviceToHost);
cudaFree(d_leaves);
cudaFree(d_digests_caps);
// caps
for (uint32_t i=0; i<num_caps; i++) {
uint32_t subtree_digests_idx = num_digests / num_caps * i;
uint32_t left = last_level_start_idx;
uint32_t right = left + 1;
two_to_one(
digests_caps + (num_digests + i)*HASH_WIDTH,
digests_caps + (subtree_digests_idx + left)*HASH_WIDTH,
digests_caps + (subtree_digests_idx + right)*HASH_WIDTH
);
}
return;
}
void host_fill_digests_caps_sub(
uint32_t subtree_leaves_idx,
uint32_t subtree_digests_idx,
uint32_t cap_idx,
F* digests_caps,
F* leaves,
uint32_t num_leaves,
uint32_t leave_len
) {
for (uint32_t i=0; i<num_leaves; i++) {
uint32_t from = i;
uint32_t to = (i>>1<<2) | (i&0b1);
hash_or_noop(
digests_caps + (subtree_digests_idx + to)*HASH_WIDTH,
leaves + (subtree_leaves_idx + from)*leave_len,
leave_len
);
}
uint32_t level = 1;
uint32_t num_level_leaves = num_leaves >> 1;
uint32_t last_level_start_idx = 0;
uint32_t level_start_idx = 2;
while (num_level_leaves > 1) {
for (uint32_t i=0; i<num_level_leaves; i++) {
uint32_t left = last_level_start_idx + i*(1<<(level+1));
uint32_t right = left + 1;
uint32_t to = (level_start_idx + (i>>1)*(1<<(level+2))) | (i&0b1);
two_to_one(
digests_caps + (subtree_digests_idx + to)*HASH_WIDTH,
digests_caps + (subtree_digests_idx + left)*HASH_WIDTH,
digests_caps + (subtree_digests_idx + right)*HASH_WIDTH
);
}
level += 1;
num_level_leaves = num_level_leaves >> 1;
last_level_start_idx = level_start_idx;
level_start_idx += (1<<level);
}
// caps
uint32_t left = last_level_start_idx;
uint32_t right = left + 1;
two_to_one(
digests_caps + cap_idx*HASH_WIDTH,
digests_caps + (subtree_digests_idx + left)*HASH_WIDTH,
digests_caps + (subtree_digests_idx + right)*HASH_WIDTH
);
return;
}
void host_fill_digests_caps(
F* digests_caps,
uint32_t num_digests,
F* leaves,
uint32_t num_leaves,
uint32_t leave_len,
uint32_t cap_height
) {
uint32_t num_caps = 1 << cap_height;
uint32_t num_subtree_leaves = num_leaves / num_caps;
uint32_t num_subtree_digests = num_digests / num_caps;
for (uint32_t i=0; i<num_caps; i++) {
host_fill_digests_caps_sub(
num_subtree_leaves * i,
num_subtree_digests * i,
num_digests + i,
digests_caps,
leaves,
num_leaves / num_caps,
leave_len
);
}
return;
}
void print_leaves(F* leaves, uint32_t num_leaves, uint32_t leave_len) {
for (uint32_t i=0; i<num_leaves; i++) {
std::cout << std::dec;
std::cout << "leave" << i << " is [";
std::cout << std::hex;
for (uint32_t j=0; j<leave_len; j++) {
std::cout << leaves[i*leave_len + j] << ", ";
}
std::cout << "]" << std::endl;
}
std::cout << std::endl;
std::cout << std::dec;
}
void print_digests(F* digests, uint32_t num_digests) {
for (uint32_t i=0; i<num_digests; i++) {
std::cout << std::dec;
std::cout << "digest" << i << " is [";
std::cout << std::hex;
for (int j=0; j<HASH_WIDTH; j++) {
std::cout << digests[i*HASH_WIDTH + j] << ", ";
}
std::cout << "]" << std::endl;
}
std::cout << std::endl;
std::cout << std::dec;
}
void print_caps(F* digests_caps, uint32_t num_digests, uint32_t cap_height) {
std::cout << std::hex;
for (int i=0; i<(1<<cap_height); i++) {
for (int j=0; j<HASH_WIDTH; j++) {
std::cout << digests_caps[(num_digests+i)*HASH_WIDTH + j] << ", ";
}
std::cout << std::endl;
}
std::cout << std::endl;
std::cout << std::dec;
}