This repository has been archived by the owner on Jun 24, 2021. It is now read-only.
forked from hoanhan101/algo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstaircase_test.go
117 lines (95 loc) · 1.8 KB
/
staircase_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/*
Problem:
- Given a stair with n steps, count how many possible ways to reach the top
where at each step you can either take 1, 2 or 3 steps.
Example:
- Input: 3
Output: 4
Explanation: 4 ways are 1-1-1, 1-2, 2-1, 3
- Input: 4
Output: 7
Explanation: 7 ways are 1-1-1-1, 1-1-2, 1-2-1, 2-1-1, 2-2, 1-3, 3-1
Approach:
- Similar to Fibonacci numbers problem, every count is a sum of three
preceding numbers.
Cost:
- Brute-force: O(n^3) time, O(n) space.
- Top-down: O(n) time, O(n) space.
- Bottom-up: O(n) time, O(1) space.
*/
package gtci
import (
"testing"
"github.com/hoanhan101/algo/common"
)
func TestCountSteps(t *testing.T) {
tests := []struct {
in int
expected int
}{
{3, 4},
{4, 7},
{5, 13},
}
for _, tt := range tests {
common.Equal(
t,
tt.expected,
countStepsBF(tt.in),
)
common.Equal(
t,
tt.expected,
countStepsTD(tt.in),
)
common.Equal(
t,
tt.expected,
countStepsBU(tt.in),
)
}
}
func countStepsBF(n int) int {
// if there is less than 2 steps, there must only be 1 way.
if n < 2 {
return 1
}
// if there are 2 steps, then there are 2 ways that is 1-1 or 2.
if n == 2 {
return 2
}
return countStepsBF(n-1) + countStepsBF(n-2) + countStepsBF(n-3)
}
func countStepsTD(n int) int {
memo := make([]int, n+1)
return countStepsMemoRecur(memo, n)
}
func countStepsMemoRecur(memo []int, n int) int {
if n < 2 {
return 1
}
if n == 2 {
return 2
}
if memo[n] != 0 {
return memo[n]
}
memo[n] = countStepsMemoRecur(memo, n-1) + countStepsMemoRecur(memo, n-2) + countStepsMemoRecur(memo, n-3)
return memo[n]
}
func countStepsBU(n int) int {
if n < 2 {
return 1
}
if n == 2 {
return 2
}
n1, n2, n3, tmp := 1, 1, 2, 0
for i := 3; i < n+1; i++ {
tmp = n1 + n2 + n3
n1 = n2
n2 = n3
n3 = tmp
}
return n3
}