This repository has been archived by the owner on Jun 24, 2021. It is now read-only.
forked from hoanhan101/algo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumber_factors_test.go
110 lines (89 loc) · 1.85 KB
/
number_factors_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/*
Problem:
- Given a number n, count how many possible ways to calculate n
as the sum of 1, 3, 4.
Example:
- Input: 4
Output: 4
Explanation: 4 ways are 1-1-1-1, 1-3, 3-1, 4
- Input: 5
Output: 6
Explanation: 4 ways are 1-1-1-1-1-1, 1-1-3, 1-3-1, 3-1-1, 1-4, 4-1
Approach:
- For every number, we can either subtract 1, 3, or 4 in a recursive way.
Cost:
- Brute-force: O(n^3) time, O(n) space.
- Top-down: O(n) time, O(n) space.
- Bottom-up: O(n) time, O(n) space.
*/
package gtci
import (
"testing"
"github.com/hoanhan101/algo/common"
)
func TestCountNumberFactors(t *testing.T) {
tests := []struct {
in int
expected int
}{
{4, 4},
{5, 6},
{6, 9},
}
for _, tt := range tests {
common.Equal(
t,
tt.expected,
countNumberFactorsBF(tt.in),
)
common.Equal(
t,
tt.expected,
countNumberFactorsTD(tt.in),
)
common.Equal(
t,
tt.expected,
countNumberFactorsBU(tt.in),
)
}
}
func countNumberFactorsBF(n int) int {
// if n is less and equal than 2, there is only 1 way to subtract 1.
if n <= 2 {
return 1
}
// if n is 3, there are 2 ways as 1-1-1, 3 would work.
if n == 3 {
return 2
}
return countNumberFactorsBF(n-1) + countNumberFactorsBF(n-3) + countNumberFactorsBF(n-4)
}
func countNumberFactorsTD(n int) int {
memo := make([]int, n+1)
return countNumberFactorsMemoRecur(memo, n)
}
func countNumberFactorsMemoRecur(memo []int, n int) int {
if n <= 2 {
return 1
}
if n == 3 {
return 2
}
if memo[n] != 0 {
return memo[n]
}
memo[n] = countNumberFactorsMemoRecur(memo, n-1) + countNumberFactorsMemoRecur(memo, n-3) + countNumberFactorsMemoRecur(memo, n-4)
return memo[n]
}
func countNumberFactorsBU(n int) int {
tabu := make([]int, n+1)
tabu[0] = 1
tabu[1] = 1
tabu[2] = 1
tabu[3] = 2
for i := 4; i < n+1; i++ {
tabu[i] = tabu[i-1] + tabu[i-3] + tabu[i-4]
}
return tabu[n]
}