From 3ba62ccba36faa228ff3e25e5ff15ba915cce776 Mon Sep 17 00:00:00 2001 From: belucci21 Date: Fri, 23 Aug 2024 09:51:54 +0000 Subject: [PATCH 1/2] first commit --- icons/maps-and-blue.png | Bin 0 -> 31199 bytes icons/maps-and-green.png | Bin 0 -> 33899 bytes icons/maps-and-pink.png | Bin 0 -> 31032 bytes icons/maps-and-red.png | Bin 0 -> 29240 bytes project.es.ipynb | 812 +++++++++++++++++++++++++++++++++++---- 5 files changed, 734 insertions(+), 78 deletions(-) create mode 100644 icons/maps-and-blue.png create mode 100644 icons/maps-and-green.png create mode 100644 icons/maps-and-pink.png create mode 100644 icons/maps-and-red.png diff --git a/icons/maps-and-blue.png b/icons/maps-and-blue.png new file mode 100644 index 0000000000000000000000000000000000000000..1e55d87c45383a9e7480b9565798498e5044b472 GIT binary patch literal 31199 zcmYhibySq^^FF>T3oMItcPt{^9nv6;A|>4&(y_!M-KaDuNGl~s*8-xT#G-UAin^pL zA|VLBXJ4Q9_nhA!960*Keb0T(%r$e(lV)nHOAcd!fj}T~y*pa>Kp-&iCl~}J27Vn! z%>4y^5d`1U)c`e5v+aODTp&Fy_4^U_`{kr%Z05h-4|SAM`QN$I_W4O*s`}vt-F+bExPYTsxGs41zo#5mSCQY-l7czD3x@vc#_q$z6>%T3pV>*UF; z6Vu1XdwcU2h$GUH)0eS-nl{Qy4j2DGSand)rv)gwkX=O4C-Ns3P6;ST@|C^Y@U?}N zy(6>zxyShy>N%0U)mhF68F)red4tG=UwIg}d3a6eo|D8Zm0Mhs{WOc^;r)(>V!cLM8$?-GNRQFeAfA zwXok|eWd%uzVnBF(`T+9q2^-(&BcNo##}mZnQGinD+1G0>7rCY8Y@b>UDAkP#(ul4 zgTv(*`me`SpNHZd1TWi21-{_iYU2;i;!1VW(w5^*p)E&5QgpLwZ;^MuZ-!R3j&BQH1@B1$6ah2m77 z6K5uX=a$9OgC>@jKcGmDD_FyZQ{qoSuOQj*J)8%>?F(GF{aY2uRwqcNS}CwAPue0Q z%2G9UJBzIW)bL^GK&uxW-(Oau!FEYorvO?yzFU0N5a2p~^~Z+JR}gP(f#h-J5NB(} zBm1in!{HH#ZOX{cnUsJT9S&J(00_dxz{|sun2=*MOo+~*!jW6?P2~3*pqKiXH^fJ; z?ls81*5T3wTYy}ltG4-%P`n}M61Xko#wjPEg;nyh-_f z51oBg^OCk$TM~?{BO2_WE4$4e`2os|%*9(g=!7sQrjj!DG%L;)BdGX?$%I{oQyIO?GAqx2O01L4hd0} zj&~$aK<}3W_A;Ld#Qd6{J)oN=l7+G*C2evbHwjbTjc=~nxVLAiMdC5_%(nQGEYwi@ z*730QX!*s8m6ur-$^f!f72lGR@}w~(-j3cJ?+NtnED?sGA>m16@p{OrR@`T99A!Ah zEOV_mTcO<+6f#q2$&^dQ?WO;C_>f-vwoh7;~b)w2OO6D<5BPWZAa zn!k+1km5d^;<@-A!;EMh)GG7Nt4b?2!{o z-ON4L8G}B}2R7z5Rkp*Yu?eyT8%nV0aFKw+!$)sR<)#GT{6w?V-UGP8GF38}aD0H_7ru0+J~Lw6 zSE7yVw`w!YqP9}TyT>j+Ig;bp&n}R;)zC|;6rBrI=4;g@>`|(&5Lq~)X$4pG_mJJ` z(U*xsLy2KW*x8U%n#E*53HMR*@Gt(!{3+H1Ad(i7pbU5^dbmIOkKa1v_MI zNpZ1=f;0NDcvpx@1~14l$Arq+k~gx86O#?}Lz>IUE^Z^0?KY?kBl7`-nSR?ZkndFN zZ5lC0ozbK?eab@p1NTYi>XIi>^RobJO)sGS{B`4J9AzN2_`5(RB#f%)GiAV@wtthF zFoQ-C{=_R?3sj#DPsP@Op9{wcGa#uWn3318{vo8Tw{51{UHm0a4I#}{*`lv7Va7jM z>WG}OR`wI*J^oZE`M8Y1Xy^v+}`q_$F1+Zy3RjBil2`tSq* z8{RHQqW-lcXFn&A1C>IuM@A@9QGwKf;&qRqRJpfupstOU# zay9Z$&Z_{HnA$0Eu#RI9Dox_(W|b2J0U!u<%dY((?9xH7H3!(9PK62>{L_o8@J-hT zcUI&AupP9bQ0X!s68euPP^0vtZ!eIc;zyJn>-fId7k4;8?%e|HxqD}-0&c3gDW<9W zcLjI~mjbd5>F2!tbHZpzA1*G5$MT0eTxXGH>8<d>pv_ zuhXc#YeAgl_sS2Dea5i-_EL3UnGkYhA2MGm&_gsco|=gVcfk}{H7pJ;2Lf&dZPakf zd^7YABumbbL?8}krZtssNJDVDbbW8u09I0OD%nmk_UyvLXzh|2SxAi~=}ga4%F3X= zqXC38-Z|f_=)<7~ikOR^l59XC+SXLVJU197{+!47`>vz?M?>HuNe{7G2P)VgJDerP zTtQE~3%Kqw2Nfw1lu950KEMYEJ7?MF&;gMAxG56>+>{9%kd?PbR`o9NX#%j(nmc9> zwHDCpkY>Sb9y4c1CP@4h*+OZWvcGhu+ACm*U;xp_P)RqnYQ>09g z_P!N>Kss5OFZ zKNAS-uEb-M4MMjurxj~S(NQZYhWB{wLEhL~Rji?-Dq(07JsNk(EKmh5kamG!M~X|w z@gcC0Rv(u%2+y&sqrs>vu#X)mLRn|fTydUHUJCC?$-Ri|U2H6@@Tp0UfGk)C6yYx1 zc*TEIJu41|1Kx;g&Y&ipn{`8`(DP{GAK*n=#tKg$mqix|5Cn{f|%wcAMJ3>B~sBI76MTYu~N*G#?Q%4nInj$c1f zgkZ|a#JJAu+uhj>qpz3|g$UeCFKn+{6)cnl>Ckw+k~d7R@6J*Q1T*5X^d+qN;(kI( zd~?`N8{QZgy$h-*ipAbIdsX$Y8>tjl8pBag@VPprz3Ju;U5!gLs+lTJM`pK~q+NlbD zX=NVg$tO>VxGJ0Ul|K)2kO1XaGhmb+7Dw0)}0Cx!6dwkOQt zwB_yz%IhG0dC<(Xtc+d~+1Ca#ieuqhF64js52Q;*{U)4Q6+1}al*_%xG0IjMKy*T~ zVafE8?`=6P?%fN<#|5>%z&*L-KQy9u)Nh5851bC&uS`njKJ>ygKE(am88* zkCe@7x)~ThvS2@4Cw-;QCgtAXdB-0ZMySxAx?*S+23Ti2JCs{R8#|1OOro=lxw}Zl zwx*Wg+h?o0Xwglz)cLnT)HZQu=FtOwZI3N1qgF0Gh)7S%UXo{youM!^K^u5M_!nbCsB1d3SmCOJagg}ZtFi)p3b-wjZzGAlvJiAZl*#oGz20>-z&b8s ztte93vSmpU=NeAfHc^H$c8i&kX4RNKaVAph_}#aJO;+kwp~xhqQ!j9GkYJ=hfFHJ; zEi)y>M~j$aXb6->7Jkq31X>d=zi(%iaxle5A!&(0H*M^#_|GvHq-$57VY<`EGS;> z*OA1SFQVP&=U=jUWWQEng8TfyZrc9P0zA76^ zS&-im)~nCC#?^Y4X!N5DFY+_X_-s$Q_>W>dGYQ^4S8S|O60&{XlD->h+5IxDe;_K4 zUg*VEm*v_{sttpI_0IfcYM!|PXA%*b0RZgEi22oo%yA!>Q#g({DIHVrt9A6>cpO>H z%NNdT*5Kf+nRt~hV~O|wT8+eleA4-*?hoVXAP!O^6o5Oqeu9GStdOs)ID8-8YpRRt zT#R3(6({y*toPXK>D}0uPzw$2>mCOT$Nxhngc0cjhAoHJU+*R~x$`tvKF-P{y}`+M zth>ij#B!$V;`(QLW0q2c<4(TN2wRLbh2^;>~xiiDKF}=Tl{^N!fUHnvT4U7GA;ry0;!nf)RKGH=b z*hK)uuz(}#-^@|D@}?l}FY%YK@>PC*fPsnQ$`d{aWi%Q%Z>zXb`zSu4ZKX`y-q&xJ z)L5r%H$N_S+s|ZDXp^GtR3rn39up_Ax8cmSIbqjc6rC`}CT9f0=WD=~sZjHd>(`3L zK|m&!0Wz_RfjdeG$q_Oo+Re%IW8GSt9qPNFcG&D0!LT3>Y#rQ9$8${JQ(B@t3%-!e zea_qEDAdkps;k<9TWN54+^d`z0Qe9PX02bm00t zQDx~F(46qcilRz5CQ}@b-b=K_L6OO9Re+UdV%gUx5ezuGVzHnN%-`*T#E3%6N zigOCE+}Uqaua651-Jf>YVbj3VZ}lWU6Attp8$G6ZHZozfZDyZYI%^1>n|(zW_VKOt zSlQ$wf#6)7v5~ew1|Go4$HY>gp)E~*Ho$TcPZLny@2Ojhi{ZnzJ5!Riw2L)&LSN?PBd?5^+E5AW44Ysk8gktU8 zp!o17bfMMf=jnC?)KT!(n6Z%~_UT}Ww*G)y?y9PII`e*`?+5fBG4A2dY{Bo29CJUo z9*&K`6w3s#r59Ur>Y8_``cb>&+p`b@KRr@>Y);_4na@-?M7U8D5>v4k%K<+`M6%Mu zsVWa2`Oc>&eUo8BuCtEk+m{#pS_7`nWsSPdhR?Bs-n7M;`7-<54PaNX-I`>mTa{MZ$^vpbaaAv{q9-V?`7H529+9qd5WXqgja{l`?CBUVm+iZOKPt@v8qZ90U%U~m zFnLhg$cEAO5!WM1VXR_Q`iKNFsa)O`8N)hmLc`jclmt*aH7B#r#jVg7FwaGnytl6dpki z)AOdXw3#3aYK70pWMGb|yTE`S1tYB$f%>!x zqM4o|`nsrI*UnIOTUvNu2mZYNN9&_`qS11p!vU){^oPF4a+cITX_Q!+R5We87%^SY zt;!7sxJ|e-YJuSia9CrL2D&eIvA1D`VXnLtWB<^fGbUmD+ZfFzpk;EY96{AYa2B4~ zxV&<|)SM3h=u-h35$~qT6wtl9_zmXDlXoWV7*0>&T0Pu;sRV{V24t|xq9+5E-X{8`d?b%j+;b$fHjd%p4@*x zt^!b!>ODf6(@`b`uGS)vwaTpcYsmgW7@6fLBGnx}#ZbHQ^nd*TZ*y<*f3JNuW_K@9 zKb9ZXA?-obQRJ-#6kpl#N8rEEwPs}&JwZ& z5E9fO`L;fxxd`y!`$Eqj&1zvgP&PtL4|chio2KUS3f^H*9Py{*`vhm|UXUL`$1xH| zRfwBKr*H600@+#cQU>}J(vFO)21oPPaYgv8A8|W16OyI36lD&;jNdkCv}9Z%jbZi0 z2)>YOZO{{KOtu%mb#60^SSwK0PO9%C&I0dU-K!1_u}M-TW{P^8o0F5*!e{O2lWqWD z=F4}!*KN>H_UV&5zFZYaUmg3)!AzzjjIfUE<|^E&cvXPXZp+ws-KxDC84O>9Xw=;* z?uHJ4m!y_=TP;LL3{*2G$%VW#7O1fR8&+?bWh#$HDUffs&U&n5O5(lNaM}B=Poh1= zJ^+M@y0O%MHy{Wit$Jd%Sf$Eqex0>iJyv=i$DvEXr;|jLTG%nv75xp7Ke@e5%gp0s z4Xm<{l5Uym7Me#i<1{k3agUiIO(d#|(%;}?6vG5~xuKE~#%9H(mz3{(i-18^W+TZ+ zC%SidWwlf70nqdbG9@$f(@(=kz!$C^f-)LI^V;J7K{pE>0OAaI7=`}a>-f2NTt!_IDt-1}HbCQ6$uEwX6ke`t%MLB!F%T9@ z)9|X&fmU90_6v?-fLq6(Ld-X#J9+RfCS2#mO`w&Q_tmDv>xsT5V8Bn+FGDLskAK6S z`^9K?OVNk<@EqQkXGK!iR|Qy}xj8!Bf>~}=^BpB=W%%87!tiqS9S=^dFuO<4`&r6 zLq<$Tt&hfOOiT=<0EV!4i8D7!x`~5I1 zEJG?Yvjy3#%=iqnf9l{PFeIbX>E-uwN|2V|f&e(F6*NobBB4^(Yu@9AfGq0wlR9I7 z+VTuVPfsb;fwS$~=4;dSCY~~N!Xvooezg#<#tadK-lBJC6KUCsT6TkfBEvEmU~+6p znpt-~LI&yKVZELoyFW&Yc@o>*H^N=ZQ4&gE z$nNEIHwBW^c?HQ0iB}xe7 z*blii5SEm1Mb%$6z?x*%i71Y7Fc+{f;i+#M@! zc7@cw_;@@l?0D|VkYE?8p2^1MdrVKc28)N?>P~(por{?L{L#u4tnu!B6N1<20nH`KnnuA@pw z!!4)p81-V=6&}Z1ZkMeJIz!9U4=kG5 zy&mtz=h*(0`pf_)jJqKp@S8eH3fJ2o`gC?^eYoxPVkE@ad_o>wl?sn<2seTrIPaRT@b{qT2uan%hx7ZFJo1Z=v({TV3t&+SzWmbD~RnQTworOZ0rPA+_2tNb0J^X$1G47 zCJr7GAv;*dT`C{(n_Y&6_$3Vyth;@(<888QJu%!K=JApg*#XiUm)*0Zc3A}L@%ad; zP+`UM_v6pLJ!b1%VTsB>`Ha@0?;g*LrOFuXLY;mw+7OstvV}H^YXp#VVwX%&#B^bP zJd4Dc71EW9vy_5}F6o2}fnzy|HZzHu;+Ov~nXIPaqrO<{Tgf}6qOGxnulodurWfc! z@?!&a7gxBg*taLL-yMSN(+U9ezi_>o|3Gt7#IdFQCXsx<@qZ2e6nEbqIj~^pSyKYL z{bz2MJaj3@2i~+@Eq6dK5bvX9?F>teA0a6jKh4tp1=YgVAzSE7tas@Chj!w$(8uahFI5KDzHq50n#R3f++94J9GHE z)B|S0U}Bp&eJ4T1M)&o%g_Cnr(?oSv=?-WYwtffOy0r;Sur$#8F|$A=Yf zcV%ok`W7-@rHEpo8kNG5IuQJ9l%A^6f#`PrqdmdCOWn*yvu_}g&TG7^QSquW*_U(8H`_b@ z-z)%E5}9%l#rpPTY=nVWkS3O^Ep;gSur5%KVNl~YHz1LnyLmoLVQHZU5x5OzH`n6s z0PkboC9}hw6pshAhp?2iDE79DjHy|AzV@IBa8PZW%TO*viUr>V;b|flskMHpX?XAA z1M9yx#tKLJMI*uq&$am_JeYsrW*0UI_D>5qadDY>i{}!478!R?vAO9*^f@KF*ku^! zA1qJE=YJ>yi7$gSD|gb=*#Gs9c$i6gxa)8^{<|LS69&2=!at~YvpWWOT3g#GEJ+@S zaV}^LmUn#JJvU1OR7}3;&j<`$UyG*k7nZ!W$|rxej#loyfA{!uX@J z`PVXMk5RLopH=%BN!jMqL?@@KA_c)f+)vL<%9NR#?I0;xRL*^E6HGF+`-sq;dw}?B zKBTsyWhdo1sFdlsFKK2HX%0`bS$$SK5dEo4+ZZWiG_J`TsXfnnlA1Ix#IgfMy3~nf z?N{+r3>3zYY=Qzwo?_Z=37xRY7W zihx~kctHYvmBKf5jLS)c;H@)-z78L(ZSHm31BaKv|eIk(7A z!^Z_9jIrY$vwLgxLsOd7i{Wmm*AYORK|=^KzkzJox$;-e@BnZ-k@4Q6_Lm#Up^__~ z$=?&CfIfaF-?$8p&h&L-8^KG|MUkADz1h#cu`EC`D?BUvq?SyclXy(4KNBeFHa-SK zcZtA$rQ6I_y|gx+vgY9T?^Bg5mUZF*?*aOWWEvc?SKcX$bU#@l?qQxH!!cr>T*2wL zT0*r)l`htWViqP^LVb&;_7gfhcn%R%tOWRQiK-T33j#`!BH(eROE`L4_j;!R3E&Ls8Ym_?nnlp6r%7HiBNUwX5PuRo`lYQK|Oz8AN zD0^#BN^V%qxIG>(DG@j=)!BVQh2^tEd>IiKtjZM0zHYIVgLL7yIXiqitVGw$eAYV9 zN!sPHZsvHl{!b3vcjG$JXqhXyIUMunqqzrvr2o?{|36fHfKl(64r*flll*g-a7M0Owq5W?31@u<${skoE$9Jrg+-`j~ z+{A{Yd_R7kpYZ|g{eJ=X<@aqp>>CN3sZ3RSJ)qZF6~&MA*HqLAm+Ff|UjeAZtff#pau>1+?})3?tzC=^TK)UeD_}B>HY3@Th$$J>@3*f=Xk0JAQM&KAap1GJcW$* z^`yr@;}-NY_2ZT!&jU^}sgIQl_kl5&++38@SH~lOrY7$BS^rN44`b0!>^+^_{M5j1 z69CCnbNWwAVz4MD{fKXy7k?4$Y-i~$j9+IF4l6M%r^Y6t7$kx`ZV~(Xh2p7Gxos^~ zT6R`42ce<?S$j5vGvu(@7I1TqcbA`DqjQz}xdhtoAoF)PvC1 z#xS(@128uPfy6SwNqDV13dc<>&2+mcMR{q zLZFfH;1T`~pKd8fkxBv^cVLCFkSi*9%goF`q^Kf3!ab`j`!kQGB^u0azY&Z-uu=#y zOVq(;J63fJ@N%}8BIplIq}oR{oBAPAwv9K;stUieIj1Scf=EA)u4*Kr-`|)Ko`M(m>L%oF+yi|Kh zO%-86*z-08Xd`c4uCvF_Ci^HM)H2s3RQv#_&?l<{q{?Xm<}m1jiH|}FT)m=Y=IT^)5r_z7@uxcW*;`=G9aBE zP#_`4<~uftOvD2x#jNJPsEr?9A#Qc(^I-a|oZO=5cmnS8CmW=fvOO z>iWW?VaXYhavcp*dLubBrto8IoLgkt&*uTTodagDlVRBvc+w|6+#JGc{%hAYS^T3< zG$J^qBtn#aW6`9UMZ z1l3sx;lp*X87FlwbD+m=@>B&r*ic1;u{A2PN50ITIG9c|T?}~pu`0<)98=XM7k_WLs^MBxjd11;;mB|zcgPP*v?t$RVE~o-0%7C*{|z&(zOJMu z#};{FLpM28PaN75Ipy6H&PGPZZD$52FM04W@9c3ZdXbQ^!6uh6K%bt0_1 ziaQF*%Z>T78ppowu=Ry^gr@nN5r<^zQP_&IDZn2-X~j)zNe(+NFL{wEav48tx0H_U zEp;)tMhoG_m$7bU8DRd07wnKm9iFlAF%{iMY|OYmm+|W+>i|Yu{;%G)s=^t?bPWKa z>i*}jF$qTqrmtM6EY8~yh-$GN^9*^XhY6_Q)+Iz z$u@HGHd}!X;UYGLcmDzXwus4J|BF0RRize2oAmI~F2$bpNT5TD`Ns4qtYZlnk97mb zKL4kgy?NzOAd7r;fq67A-YED(YGw&2IyK^2!#ks|uUs9q#Y7)7$M|I0KKI>uY-yw} zcbF25SduLT0_hEEQ(zXC&Ozmb40mwt))4j!#>NW&u`H8&8$iuHcSU+TpWByej-^kH z>YNS>n3hG!HQ~#tXrXwOm}R*>9j*}YZHK*3-;AS!xJ2d6HA+sb_L{pos{p=YxtUwx zQdQ{^WP(G>!)5Y;`4+0hRi!_7br)wVrN9pqJH$f?0E65wMbUnB{1CFO&FO?6sp)6q zDtK(qc*^*7Sn1WL!pBn;Qvl*L{=(-DTEod>Y&Z8`P;Q13ti95_U}R6&kpjEHxdL4Y zAEqQmG80{$40-m)9V8IC^PG&o9u*pf#Z!PzDn5n|7b4*wj+?s3!phPvJ0GDL``(b) zwUcqM)z9_CEXkGXaG8RooULeGpXHqSU`4_H@Br)NKEgm9IfOf)A6siN8r16!orxYpnz8tCgFBDL*5Fq1ZbG-(?WTU&li+|gmBiB8U z?9SWSHxT9@l7O*XjL@F5OjF{7FR5qU#kXB09g>NP*qRa;Y+HZ7DBrOqk=g{@gkd z|A8G1r|o1dwda%gpTzdfNnM2$m45Gv-yQonS3`{!Kc(KJWwijkLH2kWNv`A$b~nhq z8>bLhVxHAXETDedATs{cfx}J-4?de&P&iVd~@~vxRD-XN+%#c%1YX6#&Nes zvl_ru%^mxQgEA;9eJTuQl6IKc1a>tCm!-jxwB4dQ{T++VfDRwAbEAY&9{G`Vd?WH) ztkeMzswbClDc1B3a=&62F^;H}h|Y-eWodY8yc(ykGFi_eW8Qx)kC^3|kB9PB?=0J^ z`<;)zEyCg%CJJyW%M5TrK+PEscwmoS&^pLY?j>wqUyuZ%%LpIt5mV%l7=#{Cc1|Oh zWLJ8pc+(q~e`2}R0j|)V`%f!-P-frh6_=Hlg-FXrhl5rBxNYvUAO)#Si{yyyWeAIR zZiybGV}7E1E|+E&U!uIox3LKGr=xxJAd&A4Z?hyHq?kzrS`Uk2EQj*!$eg6fdARb@JbH$kRRt?+hpUq$ zlswSkA_SXEKbrr+HFNe$Cc<-h2q_S|&p5hkRfOX|a+R2)vjp%WvR#{e_${okQ@mr& zjPCY|*5H9qDs%v{G*cMU?gRN?%=PHG`eNBfnVpx%O!E21>qgtxg6yuaVQT_3_$@S) zGo91R$$Po(IQx+d;-I2Db>V%2(oD4NvU+hW90LrBO8A0aaQI3ABS>rLu4~fU`;3#{ zdnAH9ho$L_vw`a#m5q0YHnLfBM#Kx^1#a> zNcvD^+utgfPjb|9jecMKkSu?>={BMCf*4RRco#2D-T<`M$g_^h_J_u5`3 zu{T-18BGxcZT$K>+-kY<0YPixjRkZLtjz9&_ttz%pd0P4u)kaXjR>MK4b`%lY7zep zx*?L;E8`%Ye|Ddci7<(R8`rMVQ%@;DAng@?b=a5hQ$bPfG(uDJ7>p!i`#(UuMo;z>AjuK0nabca% z0(^sauo*3Yor{g2vU*oY3BVPm#~%G+oNjHe0)1)E zql%?HYUW|_W19rs3=uvSY5d6NV(-UEuR^@TA*bR?Wb4V)^}#TEtcmS)496HIl6Nl3lH(GnBeO^z~7D2UxsDlTvcE zbjFEfba~4m_J9DrGNY9^$kE-MccjL92m#L-c(r}b&rKm<6(LSB*cj~G* z&CE4lU>F^B2+9o91_t8<%3K*grb7CkS#=Wk9<5bwfM~OZsOzba@81u<0S4>_onKb= z!E6sc#ugvI5QE4if$9uiK<=P!-Uayg)w&&swS^ZmExZY>o?$Elic_&}DJEYgl_fyZC;Szy^Gm20La zziVRNF)a_*?cqE9CBRvBsl+K*T{*e>Pkg;&K1dJBz+{?s{oWiPaCG?vdB#T85=$5P ziIF#)LR0n9+_6!N(|r-@s^%E0+F#3f-X-QB6Y?0PN&<_gN1WHEuG=|p_olyntj}Zt z5>9xX{p>}cp{yYZO^&o{0nS)!8T7vGZ~ylSJ@ar^}V^hqw=3)lOarwnIlCYyT^bh5pp%@c_5gIdWX$O+PdRT?-Z zKVCyKW#c?<`c;+FSL$7s>uzE-*%ht|+!dd5xsIR5pX=rl#i+bK@s;ju-(4zX&inDM zwuHNy;k4a?LUG@LzJz`S=f+yb8hZEA_=h$&4<)D6LAw%ls@;M_aJ}i)Or#dhvKvRgs7J@QaA^TN#rNzWA?i$jh1Jxuxp9k3)r%)fT$07{`GTow@H628I`q zUdMyt)aWv%<5sXE_Qv0w8;FbRFtnw{2!@DHCRc&9@Rq#=pppbyI}>)Iq1C!vg&e;_ zL%yJfZQDPS!TAkRDAtJNMiMku2Uss zJ}OA%a?5dQ?*W6y!*P;232})`2m(`Gx%tXbY2P;{m_>=U;ERu+Z0_owvPS&*;0Jr- z1d+U1(dt7x@dt~8hEBZ>`yh==m#1B7M6TK81=1u@1NUp@guU0|d*P8W$O`BDz^chU zpzqYxA6j%>0lnnX35xTR*AN3yz|s-=!@Vw>rQ;0(#X>d37_xZi0P#}I)8&uWZ$|Wt zw#gJeR*;kn<0?@4kvQv+Z7Oue`WRBax&nXk4{;J!v!ux6iI+Ym+#Xup3kQwmT z4^P^@@SC5h(F$mtYAG={$uDZp=R^BzkaS;c(^>u!Ab*;d_tc$zf7hx!jxaeP3y{Tv zE3yZTx4w^fG*p1;{~L;@i(KHU=P#~r&K8dT*QN2AB*u*KvNOL&_D4RXO|iS7e*cju zX#d38qtK1hur%qiT}o)D=~;Ypx3qG_;TQ#w*ki!gEF^m-y7q>fA(9zS&|WUdCC#A?Q9Q&Zd@U|1w|o@T0_z0TS1Ae5Im1o##42rETuXVp@%_a^ z(}0xFjQSbr{A`qnM4R1Rb6so`%0heIGQ{q`4-y#d>L_D|89*|}u1J>{HS*zF)Hib1 zpD*4iGOyROu5oLJrPS5y38pmvfGqfN<53UfPbb zB;Txnzq z+wehYXX)RKIK*4#>vefem7!F=I_+IhFWS~g19CS>fj|}p3_EzVB3#`S|EXUO)(lET zpAx9zbfj;L)-)FEVQUFJx;Nchh?5`Y@ueO`CjBWLKZf`O+tE}~f_#1mzPOyG1UgRz zs+kLLXfptp&EUGFj_h&wY&DFf#8H9dhZj;VuHIuV2pK-%7iP+tl2|<)Zk=->T@I$}-r7ueYw;*iMpWU!JJlLGLFo zPO2p+*h$obxinP42&Hm^o3=uS)cUmNu_b`U{}+5pFq8(QL&-gCHcb8G+E^-pzV(ko z(p1U#CgS})%{VyDJ&F9&iAPIsZNY%1%l6t_BmJ7GDG@;64Y$^bX7skc2>>;Hb=0;$ z`MNfSg%M$4N4$p>fW4>V=q5eZQNyGX2NlSXj3&e9%8hr78(baXyUj-1E7CCwXm*JI zozL#6o$0af^i~u|UxHFiPn#RpPY!T`yD2i!d2!*M-`zfvWJ`xe!|Y%7#~=(?^a2ul zyTF}>QVi|p6kx*5%eZB&6I@eRWuFb1ZHz01|KMl!P8YtxaaCM9rRF!4mZw+wmcx)h zoM^q9^N{rB>)T&5^X6Jgq5mWUFTv}uQ`x+%n0H&gl-FNE{t*$qOh>tVb*#cu zOLOh|=>FCXjo3jN_;bD0fJE;VSZ?|F(Oyq8uAU7j=xpS6{)P_FFA4hf5v=s_>4cGS zAF9DX?6kEop%La6E4;Lo%@-@X86RlRe%xyv21F-{nw&NSj-_Ypgz&7Utm{u> z_Su1Y;U0@(QcwrAb1bjU!ktp>{|Ha#I_N-!ar6V%q4C`sT`D3};LXEfh*ejH*kvE7!AHB>>&4>Dntr^B`Fc^)zEIVyh;kcds^i?;>g@nb%t%t`P0rk>;6;!F3@D`ccc| z+qgFqI@sVUmDoG09!Uo=B09J2w$5J0u>~gfhL3mE2hm7n9w3>R|D3q@MS0_=PJCR} zpZs?Gr;zG{_!2rd8$*9@z3#9$074d0Fy$#N256z^hJ3 zgA=r1yy{2Tpjv!O{mFVxD7r$5GjXtJ}%! zYW-cRO?Z00RC~Mh8Jr+|+>BOXeh6~Fa>)5QRA~^=(VK00+Wq;$tK{JAgD*WRltRZm zht2vob!&jMw@!;2{N44~^4++4IVYUcSZRah@BPQ&Kk2jmc{Wy+T9BeDjJA2s7X+V- z2RWk`$Hqlt4Tsje+5aVsq>&<2WYAfGh=foBTbfEn5J`=noMUuxe{31!ramLULT-ew zdDsUEVNVm89;TdB%kouz%pnLbup+j zV^6?`^k21HZa3zJnepsJKIW&-uzPAw+ZJNp<=^y)2nDSR>@a@ko~?z6XYz`yG82LV zpXl{sTAC*9Cd=Zc9vOY-O3O&Kh*?CRlG)DfB1#KY2#||1R6p%h*R!LOh6J_rs*WFS zci2_wwZC2pJ$*m^x4}jvb@&4V=*jFee@}+Q;G3@e`)DnixUbfea(i|}YwAYjnGSEq zl@uk=yDN%Oog=z7WNY{Hs^JsvSJd71hTB69x3pQ*0{W$IaW=f^~N<=nT;f$7fnr>vE)t>UJ zZ@XVXPoV!`xeI-rHm(ofUEB}R*ff1oF=rBDpz5P;HQDIrLmpFw`g!lg-+ZQXL;X&B z$@c0;9iRTcrrtU%s_%OP9R?V100HSnP>}ABmK5od?(U&WV1{l)>F$t}kcI(~PNf@B z8M<5W9zNgSz0dudXZG3bv-Vo=de?f_xgZG<4?h%0!hg#%3mgUE&5Jq*l8>oc%6wQZ zwW=yhK4ER`{0A;7l$P>jPP{;S6rQD0y~ab)dMvZ%ib?#_okE*=1AFEjE}g;eo4;!0 zIy#O-LBx!Qj?NCd4Gt(}g#Rv^)1Ma@w6RG^30|DyEpJFcU$NZ9v~Tu^Ux30Tg_7n< zIas7!Rj<8oRKDJ!-TatsEAK?yV;)kYOpmnIf=2Hx9$9(!t{r7C)KuuT-?649cRjG{ z_FF;^iSU~xm%)oaUkw_PhQ$pktN>hdV0?ZU_O7RtrX6XGXO-8uFOOoB`ZUwj%cAnD zrLif&sx~4>g`UV%zfX$^r~&}GAKQYL(kp!HcUl+cuj7jE$tw~}N{~n2t zLhdJ6GJa>l;@LUo3)kEfb`U@a zbpDU8XGuw<2xh52^VjBs`bFI9UBMoJ|)5@FPI&2rARUAdPWhN8hc?mo3tk(@Xcgu{ElC$zuMoRhI%?XlbM< zW}9toMP4e(Fkom;Ef0rE5+Sy4=tE=th3=k#dn}EMEO!(v1OhXv{gL=u7jc3!gQ?n&L`SVWKFbf8`faesT0YHIHWZBvx|OF_Q1l(%FwFZEbyNi9qQpZ(*P736;aLSIaCG{&O@ z3I~Qogj|M7)xS|i{QWB~zid;ktw7T`d@iFlgZdeNXDQ*7bg}Ko*h&>-`H1QB4|K@6z5-!%254E@@RH-?Lj`ue21s*hs#r8j(@Sddq zAAo?0v1$P~k%okKVcR&oubJZOgRVeuj@`{47_Ts=ewr=TueDOwgKK3&I=;W8$1oi5 z?KRUDyRy8{PKf9`fm;fWo1pnRvR2ndzkQ$^BCs1Nw_o+SwVH77#5sAE_<5dA25|D- zP^*(JANS?oMioc>OeeSeGjk841m66x$@=1wXujm+edgdp6I899VHoLL@8WZlX4$vD zbu2L}rJE}{E$rlVI8M5WbPfZWcZ;{XBM#_cGMR#7vq~6Uq>T17=DBRMtib3UaB7*7 z;)V_&|IGZuc*clq{?WKl!vWyX!GT5NG^=|IPr2syWn10WXKm1yKejwSRrN=$fQroe z%5x&ySf7(5a>etb`iGX3E8B55otZmlo_a5mkV;uJZbD;oc3)RKgYYos=$-+@bHW=E z`b$=WjUtt2AEm8W+h*Ujh)2dJDt^x$pq%seSwhH^@h(t3DX6h5-=)sHJgVoJnR{jE z_mwr|pI_Zi>R%ZQcH6Qt&mT-bQkrQX#2egR?D){3-PjZ$Vj>VdDuFPr-yznMX~qi5 znLGXS49;u7*MKjW7k*~5QEQgP$CZ$DSxVy*)*m{cJ^vaI+lW#Qa%l=>f9`oh`~Vu} zSlBJSU$tmmX%Q_5?wc{5*+A9~Is1Gc18R%=-0)2Haj8Lu1mZw3jyf-Nw=u_#M3J_S zAptnWBkc{d)XUV2u67UchGF`gzr3${XSQhE#wIlpKTuvf8hD@oAjPW{9QhVHH2iU>BI$RP2(Y6O!?OARf(rI z`%VV(7M+T*%Khg;ek42Ve~JpS;OJgy4|PcOr~3 zN=N@MLS)oekBVTbN~ax0NJ5>G-ErlFE_2A;YC~)QMg9JTPy0R2%Qmy6jKRF`#I{*Q zKZ;)#Rv-4iu2|yGEdarEJa*crJ55ENyG=f1o%bI~m!B**`E}u&h~f+tYi%4^RxLrl zFf)uLcaNs_rl?r?xIQN3F;eiM6V}R~6#asE;YgoWI`ltb#=~V9!G2J4kBk;iV(Vh1G~uKZZ@jh0V_(|J#${%d$~>$j5$1XU$Wz^>g|25aC&Kw!}eGo zzKA0{C0 zXsf_5Plu%Bhy60crzgIv#=BhO`CT8yPIiMU$Vh430_A zYCaAB%ln~-O+fzI4CS9fPT(d_fI%%sOh6E(A=R%TOUl?TMPJAspe8aev(LOZC$(jlx|86eP@Fv*DO7 zvbY|Qe`#DfT>duC^pjP_pGv?}0TFj#;_K1wBozy^%E*rV@nyk8(zl(1e5*5czQm98 znuhBNB`LgHWYwdZb&+Xjm4CeJ?Y8I@iYf*B;8dk}JFA`^CM50G*LR||?O4E8p06dR zj7fPvPE2A8w7@T{rG-mg_wiTh@=k^{KYn^}R-s*#`~X!TYnjvnY&&;1O*lw=zpW{u*N;RN#Ae=YGuIX)&kiWR3c}?S7-mc}q zNRAHn5q$51!AF4Ik_^tzueL&W)^Mr2>>Cv9s#Yi${j@SGJj0y1nndepbaR0^ljFfi*k-Dtj zjdyl&PLn@WtIXVJI`z%D)>U zLZ?gCE}bUnMhiA16}a9w7v$2sBYRPk#t6|TlB3Tv$$xUxC*;<`jH2ycR90rZ#XWze zNr8zBMmN01Ughq$k=iI{I`PY+o|)Q)Cf@Y16U@p0Yz93}{RxY7cdk#9)TPaWY*(hv zXei1MBJXj>_7bwL(5@#QB>%*!0v{(bWI&=1B;$DaE19ThN}c^>TN*pbDoo_`Y=5~wDldU z?k@IUsq+)ImR3NWUjg+SxzXi@6XSz|(S%nvoKy#P_jdlSCi-5A)TONR@wQe|Ft`n> zG`$JJHky^Pxmo?n>%D$9_DbHjJ2vTiqX<_#h+KA#3SJN=_<3y%!!PReuSw281hk_8 zVU=1hLbB2!U~nm}9ee^Ppl=&~@k&eLWv7>ni8+TmuoD&FgQ>PC47=xDde#YeyK#?G zCZ{ zJWu1ecf!|atG2UKp~N-YG!?x&BUu6py-B}wiVLLG9;yhQ-b%!NAW)k>=c^uKQ)7^+V69`D?L09_ad z)h;|8flp70)l_vObRIg6yRZTzGqBqwLd3Sv*a&3-0UvVa7Bw;zA`tOjP9ijMQVY%( zXhAufjw|+rv6d5EvV;I6;E9gL405viioEA>?^M$YMcJSqIp(EX_iDEIi0vg?$HTps z_IBZO-a|9{JoScYj_n4d1qY%{qMb+gq{}HXFWEKcr!Q@buW-?6!N# z=cjTvzERck^&z@Wm{|E}^b+ap#Pk7kSAwBMP$FXbh1?$eo8Fb|5uC7o&A zx?}ACY*>f}lqO-rNCo-RA9d;7Nw}jad^yAv)@!H{-kBBUXuGr}gXI8I>L$KXY+0Ba z7`%V9#gzM2foi9#aegoiLF$xhopt0A0<0CKuKV`5&?Tfnz?cW77U%S1W;lgCM&0N0 zu5*{0Qe1NtX8Yr(H88cc1QGx0UbH|ZWDI&YoBZlQ)<6Q3&iU@G9ol49>vEc_LWblg=TIn+7+Op0 zH~(m-J&xArsVXD(c43gL)H7nk9k?g-TD3-O_1+?`T> zKnmjhqRq?qIunOBUjZRM0XLhNG29tpVh1!51k=}PDa1I32tf>vBA)g+&dSlO==L~T zzj8$*!?EiT_FXdiRbbKjdmxL_zY1ylH(!TJ&MXh&UNrHdtkAG=J?+89e&fFQTNk}& zq@4?80|`nqbAok611&U$Dho}C%ug5xi6ksz)i3+ER{uJAnn}@{JYK?mn!*}rERzW9 zJlIEj-493ZLEK&H7lv$9UL+W zXachm1TQ})g`kBS0#&6mVCD@?og!4%$>9(eqhfEq-B2A+yvQ7q%r7duk4TC`sE;{B ztbtZ?LR3EbnKzj9Aun@7@vRo*=b3N4JjuedB5?ew_lcV6>WpxieCxaCXF;!b#h@b^S`RH$a7IvZhK_vasj8d-dq^nba2Z*z?NTe_=FacgUI z&;4)e(XIBHzHpBuoSWpOcD z&2k1$-Y}7`%fDcn*i>P7Zb1HWBEc{f;;M=-I zamnEjvI0yLv!V68LzqF{2wL6D6XhZd3O<9_NkvnngS28&7Y&60;Ckszv;CyOfvA&* zpb$+FFNg8yk*g}@tS0aUoHKUVYTO5n#Kv8bX( zVpv9BWCNLAC0qvjRsEmvNg8>^f#@=&e`vr_;3nlNHu?d^dM0T$Z`kO>hmYrzJsV06 zTWEBJ$n8FT_b15NbDsKc*JY7K^{987lqL$0ngn3(&iF7)nh+B%n!Cs?^LTXn1-j3` zpm*000F}$ks2;%P6G*N`iw&s8nf{ey=iH0S7ac_GB(&I}EA zPl`4f^(++ng7o*p{@k|+CDnRnru_lNu5lro!i28yICH7_ zb4#i9_mH0lqr?`(Z-87h4G{?KQO)pZNKiYLyo1VxuCe1_k(_$i2{$#oO-_e00u;b5W{@GV#m!hEX@@zs zn@T`OJhqom`oFJK`Do8AkQh=7nQwR$0hsy|$l$2b@M-co6Qmr%zn`DgOVj08CJvD{I&{!NYlHLHX7lf+4Xe1wDRL z$_>tsSp7-K^sH>k#@}jvfn0xuaTQxTtc}%%?ilcJY_`BAymAQ;Bb0;6YlLzrKBPmJ z8(u9RdX14c(L%%N=n)^30i<0xbALim%SCq?1Lw^0Mq;h&CDncRa{RY|0QcNvW=J7p>|-N!Ln zl}b3H>89bkvEir4%>g~ztiWv`&UIpNyuAQs=75Mlu~#3G<0SZK#$|tOP7DWN-5C~G z^tXz9_ad3_XT<0+MYosN*^rG0U<2D%tT%fbxj2;*a=GW*wqd#8>}{eSbszZhkG?Y1 zdz_G%+x+4DFHVIpBcjcv`KMKZEMiW|h>*#($XMh8?ZITy(TG6N6|CR-NSy@3d{vTa z3ivR(w4vZn+rNG)*3Et${3-Tz#2BD2XfW^D)Sld|d_j8S^$F}B3+|w35580iNuj?P z1&*;#JH?`qdtqcB1fuYI_(njli%Oqy`MKbK?#myYKYtqcMMqKeuQse!prR{|Bm7bz z;0uxp9lR^_exL&ln6yxe+ z?U$hYL*dp0QSD)g#Eo)Jh1hX)6iS*H)&*j=-{qfBpnMh=IaOK3*$m$0%x=cqnYZ%^x+U&a6Y?e%KU_S zcair^rY}yfvQrPO%wV?ZVMH7wPZ3tuT}J? z$imvnJi2<__?y8Fv*oX_+awb}aBLvV&#Uj{8zaB1Q08KT98~tJ-f>~VL|K~cG|6kX^ z_7ZR%A3StYGXU4|KJVtNIpLto};QOrawR?ebE?}gC#$}hE1c9_RMJzD) zXzu!Gg8Mt48JJ$&R?hTkohy24Pg$Oqr&74-15~RaZ+Reg9IO*#-HAY6XXfE^XQ*zD z!z6^1SHH12v+nwk{NsnWi#S6vVcH12_Xy0)h^hGzf(f`YHgR-tuoFF1iRr>^j1jQ? zoSGxM!viX5E?kT~e(&e+V+;4g6F*f6psA8H<3=ImT(u=l+J ziqwrSUr}JYqXU-^{ja0?1l~JkzznqyHwap)5qk%s_1J*~^Yeh~F9F>2I^^V=XQh8$ zPAm}Xb`gOAK5GR2=Je}yDQjq1XFs#5_j7@xUh&XfPbuiTp+VMQCbXLx;bzQV=_8_#>KpvG}GYRyY6r8dr0`T{=;IazUns;*>h z0+y!KqoxZhP^27J)(V?~PsxFo7ow5H28&8wp%jr>S89dW^ed1Pq|Zokj(tcNeZV}u zL;*Gw#R~>J=!lru4uuWUO)*K}Bz_G9z8-c0C6I%Mb-O+WYLv4`aCJ zq5-wY+2@;upAPQnhK=ES6G_`Q4K0A-h!Lpr~Gjx*1Fm^ z?AqW?ZZ!3kPW)^|5bz9% zq@UieoRnppEQ*ka-|BHdY@+x-+oO_yAI(|F+L;Ig!-8BHn!{}vi2%lh3`B=R6Su)^ zvmQ;Jk?rf<8%^l{9H!U1EyzItm@Syl5Tv)et`Aok><@n+vkFwKpM#7%(mABDEU%&| zu5{vj*Ahki8+uKmJL{rfk;4Lj!qpB@M?{zDI@|xe1XM^cDe!x((RB6#NfiuND4(>cNd{_)`;!*aj)Hn`}22D;0%*{?T zA}1bLVsR*N^Jp^jEZD#_o)zv3qjo^r zdz1BDZ*_W-0?bKem19M_ROJF(o=FamaJ@_2@I;{`qaFJeQA4Hm1~3+BNW6rP#mnhG zj4}mw*bmno@wJ4ln|#>st4bf7Z7cv#@~7B&BNe?oS1zdfgV4s##2X*Mze|AUn$=LG zzi3{CwW${Tvu&xHi}1VsK5;?v*n#0dLgzi9Hh{5$!50G(gR|At+U6BVTc)0Ee8yN0 zn7Q&tARoo_*|xi5xYi*t1zeE}GaZR=72;j(>s;3`RU?eDR{2*za`elP?)piwF- za8l60Rd8LRVC9Q~dwgz2`5;r`NRxv|B?==61A(KWR9=)%nlk9>Hy{0?`}$8e*qf+n z3DY3_!YsVF++SToWThL=Y|LKBJ4D--Ws@rdd+SGrvfO>%?&LXYL@MH4QAb@sQpR?? zhx2b&TlED=D_y@~NU>a834P7svkg<;KOG5qLt`|DY@pcIb!C)+2tGRJB~u3Sj3Q#r zvG>JYg3n=D$c@wYt-l$i2WB>e!+*eMhPQ%0iwUBsSKaw$2u(n zoXtpRO7o?Og)L@+3w<6Ap)@yeer_-QSIr5I~p>VPg*dry~T_jLjH>U8zc9tH67GwlmbgV59vnxC@t)q z&WPK>cwdr9T{Li(t`-VXM?r23dXcv=B{Xqh69-uD%(L8$uaWCS+T| zU@iZirxaACNs)f5vx%B$d-XuzjW9^=KDRJz*M!izcYDgc-p6TD+fROV8L`oMtoR}? zHpCH}|3Z}K=KvnKf%5f1MPPxReHpF^ItGUU(eS?y>s>G9mw&s|GDZRMAx}Mhb4Cl@ zqxP>7mf83sY&LZ8Lr{Kk4lnAyMR_;UH?YqRjKqo+w;UxAZn3Kf6ju;{Aem6CYDgB2 zbZ3^(dwtUM6{+#_cxqYTRr(-|--#|w_(CrqQ4{Y7+9kEp$TH)_tx8BxlE0|0l{*^4 zkg92)q^$Awv&T`Tl_veYqxiUgX~C4UazGPuck-{3{CKsR2M(G%CKSU{KBEd=D-Xnkh|nA%W(254}<;vTPvVdYlC*@e){TF?0B4Iy|7^ly?RjKlvW zdhBM>nUemWkCcaiyK&(+k&kMlCU?1=>F9P@YCPs z->n-TEBGvgYvX`Jn>Qefe~YMOx1PlR3Ka!Lwcoy?k~`)E2ww_l*^OuYS{*SZ=Ov$f z*Q)Dh=J>f1+{baVtUdxG&K*&JOV5ya?9;RkXDz-6x8RWew=xq(SRPqFh2H|U6(qR) zx#{c+(24#+b@4*@w>X0(7sjo`s(SDi{x?)KeOjSI!L!2M-7l z_`I5t$AZkt&1G}DOZO^BclcfmLH_c~e>tb9)CJhZs&fqP)v}L)A?NBiHn>kO&lNjX zd#Qoy0#;gE@ViwhC0r{o{obEP%N^7Sw9RtlH4B1&fQ?D z1yKR{`o1@TPHA3sjPxI0U;JJf`GBS>W7>{eLp0xJRkO8yfXU-t#f9|_2W|>BymGJk zBn(x9W)pnXxyxN7b4Xlb2|XyE@+#S@GzTMhz1ve4Ynr_C$}aqVpUIgqT5sZO3G13w ztG{Ipy9MIeHXE%g*bJb{S;P)TK0`O(RbwhFUVdfw)?=1EdbFM#^hpU=W~8CX_lom} zK2J7I{WMM?B5nw-M3K$CD1H$r|6}-p6{3|Py;&d10@?XQwkGTmq8N$i~B}apN zRx~!aMKq0_Z-Mp5t;1%ahYrV+6s6<3 zV@=5N<=2ta9>vtfw8J98f=J%Xm`3le+_0vDQ~bWu+>2Pq z%yA9jLes-zPhaVpxTLRvVsa9gNILeWO%g+kHT*!a5?UUk;dRhETHkJkdFfXfAe4h> z*J4PO|>doQi%6h zREReTB8wqtdjywl&j+V*Ar>y|ISEZ$Rd<>L#Bv7T3fD!qXrjdNxPs3Zrb`S1%bC@N zyXS%5d*Uz63>l^MyeY=b1fj0z@4GOu^k>Er#7JDE!)SZ$wh!N|Z7NFr4elF^!#I5_ z@+}Pn8~7L6DWWxd4i#b#$`T4y5FkvOnm$JXiYe3_Jos=i^n~Lt9_)Pzgk!D0 zi43HQ1tggNdlq2~-|z)j~P8ZSB=5N3@L zlv&Tg6jfH$aute-KwsDVbyIM5nPu^7Yvn**EqHJT^{6IRtGQpP?w}Sr04Rx4kh&f` z=#WL0P|p4HCW`dkVc9$=Jko&stLAN+zZGk1c?9i?BMP%O&(Wy^iLPbQ-ME;H<8y&< zw~Ds6nDYB4*G)ZAfod@1XS)Nf&Cvfs&=9mCHl26g7Hk%c%x>D)!%BLtFM(xKd4)SY z_lvnzEsM!IJFm+-HUbD%N-tc!=N z@JO=7*(qw(5r$0bYzj-u$BZ1|%fV{#F_2nNX2FdU6HX}-^V-qKJ@WL3nlIGj5F513 z`UdLd?-x8LA6=?E?;hnRmEi#Ih$Wp+yV!?gm1l-JwUrG&E7IllksT1W7-Z6J0!GtUAYYB_U8?6ume@w(hwTMuQW(%IMm^IP%oR|dp z#CfJ1Po{w8v2$AN&Tju*bub>zb}8+9(4<)WnsVWB%HgSFfG`y~R*Njw^$Bop@Ay=a z*|0Hzj2zZxCVGx>l9&TFzRgmibJ@~M&-vsyk$AK7h>kGzPy)E~NB`suT^Z#KCt~Rb zCEMUTpUQuhJSTaW#{XQCe1As003d1D;aq>D=^l)hthWN1N09zrZqS+x1XaQu z&%w1da4;oRi(7!L7;9Evp}&-$P8h^E7?T=gO!$i9wAAJ4m9Xo>gQXrgm%Xz36-wQO#fe4$(>bK zJxyaV;(n*Gp#?beACJ=)$awNKBa4jG{LRMHr<1ioe^u6h^}n{&a9g``CP#1O0XA$1 z>xT&qC8j*LhJlq81KM&70AleH=iT$>97UHagtxu=T<1gtk2*P|wD1RU4R#9eLqCG% zEym-#$We|_rVPe@5OvWz+~2;Ii5)y1K8v`YFhhPVnkae?wkAv^s_-2UE_mg`j+LjK)(K_wi6fuwj6Fr|(7q=Ye z@R<35GlX5$5>n(7Fx|UJo{aO%hm; zx!*~!Mx^pR{L7Vr*~@;=-)-cI>~Fq9K|V@8pO_T_5Z9h@*~>WaY5_>hIDpuRiyOY1 zi0%9lgfVlrjo$k~grCbBxsd>O&zb^IvEzAqqk*%@7=L`YNzwysdi(1)&y$)gS2^hq z2UTO07{K|}2^gpfAAc(f$p+1bFTW8(kjiR8{KZ?99Lj!lp!w>2k3EXUL~47Mk^as9 zcq}E^%^5~G$N%h)2CtBXU_^GtU6dLr6U4ZLfoHyG=j*ol#eOX17) z;`)DTT_HQD$_T>{(?=a6Lf*_`2xH2@OVKe8Ni}wWGf}~!A5jt;^GENE+{;Bbp85FE3+~@D?yI_J|L4fY%c?cBu<}6HUOh6`Uvb4(5mKJDroNa$Fd|4lr zN4}g>4%?)Cm3suYCg_)XPC>r=Q=^|5jVnGI?iVsr#4T0Cg2kmrfkPQZ+Sjk z^}-&E3E!?+aW6NVq}J%?O>ixqt^PmPwP{L|bBe2g>Jz>QfTV)5gN$n9)%qDzCX00f zT{xsIk#y+$7N%va+4S5!bSE!9ASLjgxyda9HcsT35`F|)_sMm+T+-yjvt6y-!zUhR-iNgAh>*&_lha;_^((*^(&*9F(~G0jAY-VX;>Ax9^%G&ANmz^u`n zuO69PE^EQ>8=U)IbNB`%%t+{e1*1FFc0GjRA&M-1QQ6ZpUH{*&`lWOzV86d$t$*0K zLDR@2k7PTeotJHM_&(PJvWtaZf@=tSlQABfwvbDl3xCjIH3z3T#r*d?U;%Yp$a2{i zoeeD{&m%Ga<&``~`sQcp?Y%7Gk3f-n3c9+!wa9=)1@e!JsmtPMx^e44h+O~&xa2f? z{eO?|=H`y75dz(^I6W^)I}mamxEESqg04}+mp=TtP5id>4=WgjXl(o5#tM9~8Kfwu LDqACM7V`f9AztN7 literal 0 HcmV?d00001 diff --git a/icons/maps-and-green.png b/icons/maps-and-green.png new file mode 100644 index 0000000000000000000000000000000000000000..3c13622752cf736d5daf86cd7fedc776d61e236b GIT binary patch literal 33899 zcmYg%Wmr_*`}LV&fB|VFMM^>%X;4zSr5i-LrBh}Ik&^C|ZV(CSK~O=ur9n_yLIw$i z_l(c)e_ih<_;BW&z3+YJT5CsZYbp`q)8YdFK&YZDuLA&3@LwnZ#{vJG`cGeie;{5u zN^(HmDBTVKFaj#_vU>g&`+0b&bo%H|Jy%Yduz`jMoAy95N>Uqgm<_p}3^q&;CMyGz z6)|Scs?(H#(L9GF*X7Fq4~~=+WU+hW&E;VVz9gh1+Q!M=K4g?Cj7;iXS6W(OIGHwq zm4@c}hiBsSkJx`NUxoCT4lY&J1tu^uFfqb()U1|l;uyxMamAMVsWsLnXsI+vdB4gRMp?V;;iaVB=b5csV(ZyU}maVW{&pRHoU0!dM71f3-~H)?zjHWVs6 ze#*Sc;yZh0;Itm?!DJ;4XEmNxf)%pD zT1ZU}Nx;Y#|JRuePZbgbwq-x#G31BP=evt!)sREw7$u+rfc$420X$?oo{JFVp2cDR zS@v|4(XXgi+mC^zcJh*k9&GSXrcahaI~{X0kx>kXec!xI$X(&xhmeK zWN_k}Gi(P-gr9OH;p4^&ErNDPNqv3#QRW-wWCJ)H`5it0FlL04@XK5MlJf2rTD=f^ zB~AFL95UVAnlW|+yZ#urN^?Gd{2q(tD z3Ei&eM42%2GelU*O^tn3H6pAKKgcQCoAai^Gnd>_n-Zf&LcKg-S9G?GCp3L#D0?CWpFE4|>I6+dRy+#S^DhmSOx%@<@y7y>hab?_DN8{~bWzXARw+jm zL%d6;A}cH)NKR@hAK%?u1=3V}w^%{%255jy&W3!M1Kb-<)jXm#Y9MbGYfuDXC@U5^ zf#B^CAgs4pta?ulA0z9TN=H=$a^psW=222Ww+(K#pmDFGZ3Xbd__{! zZu$nvl{-6s6yhD{*q+*RLOINnjNm5;%_$R7xx|!6k6VFLI1y6=88iV)kKoS{+Zz^G zqoxcFqQ>v5XQ*UKL+tD>8F1K27x~pa0yt)HL}*p0_mRhQrx-CMvVo>9sWdHWc7tvN zJ&@4bmHV_d8gfDk9U+0^Ww!ffNU5EXIN%i2s7OF)faDdXi8+3xS?>h_N4Lvh(CV{0 z7TmWYP#t)G!V8J3&;7O6;7D%LLihlv7pJgIH zptnA;CR;UtwpqBSsG8$i6}R9geUq~ihr+rwd`_6&jrPVu72ze3V8A%;q;AXCtp&%t zs>f-lS|fqtu^fe2cdhOV&}$ZoB(cC&6l8FKw)>MZh?D$F5y5V@)<09@yw$?I&?!<` z@y<_9_|{Ssn9QM&vrm!5W$k0#PFdKsU&=T-rHG*3())6`2Z*^YDAY@W4>gp}ReCK* z;vMRnECW_4)6rDDazOCZw~xUCYE#EmC=#d&3nP{cSqF3WxH)PxW*QC5QqsvWeuU8* z-VHpQ-&()89YnH2!wNp6cqhlsG+<0Tu2&j1o@B>RWDe)P$Dg1QT4nN~OHLln5)E!o zW%s26Q)`8))ooZL$pAI-qxxy76UQIpPr=c7x52Px{5Ud{e44+}kZloO2bq#GK4G

8EiI@zquWq-()W+HCqEYvnZ$w*ZHNTT z-9l=$_QfefO711FC{aMy1HP)9%7A0%m|yYnGL!V5TBnZ85L{$0(^|k^RIeoeEi7RtWVlZ%S11fFsp*rJ!JI4#z5N>qsd=r9M+%h#y8(NH;J>a&CYU<7AQX%F zAmN;DbJrL#^X;*O* z=BW@IX0%Lzihk6_avOR^nn}ai^>?WfzWc!5D{nA26p0Ju3wAM6MJ4o@}f@B=fYN&8&HpYXh6 zoSc>|&3>HyiYPpzA#a{RKG04A(Ed;Y)y|wF5@;=Gq(X|omimKm&#h`)z~$LP{9``Y zg3MYCYRae z5MS22dYuOPvRt7n>{`50t>azCRX>T~q8>%YZp zl37`$TU3bV1wEi-F)Y2WhL6b!lhLp}>L6ytO8uD>Se#medJ-GBuY+3PQ|U~jl%^FN zxekT~KONJB*L!T?yAdhakziND!GyYeCQB2l9Bq;`k11bGc)=!Le5u~1P41G4Z?p5< zCC`(yN<<0v{tDCu>mU3+%saq;&AI0M`(ST9iRpzz0Qwfsq;1h^m#=qC7&l_@&;hibq6P_BKv8eZh z)C@0ov1LK~$xyy98*Ne?dLS;=jiR_GUoJwSRNOB4`04 zOqb><*%>c0R%xU~T(JdH`vK>M9Z4X1Z#)lf1balblO24Z27Nczt(=I3o6QtbC_#6} z?k`@NxA#PtF&Rmo@m=yKo+<|9b9sY5UpJo(I$PG0Y^xv&U`H@P$$8|_pfTTC0bvjE zO4RH8x#Jb>hdE^ay8I$o4!YCV(hX%AX79e~za|(}WiS54geBw6ty{n`7fYy8Sq`a~ z&UxF1vPRs%%5qSbWrYl(34OkGRHn%~LE-)kb_-bu{cjaq!X|7-9&3B9rlZVw0+>J; zZff+oS6BW5e=TuVPz5I(W+&(&`N|FUVX=ypyDNURY-}6P=$U-^FFgLkz6dSIK(k6r zYHc_m7}9P+R9}BjPmUYY6JcxAeJLv5>7@Jq5*h#B2v^NMfquN6gy&#n{_b>t4Bi>-~NGkep|l=y^Sv$NC3t ztq@yUi@`8ku*ekY=HY+BE9`A0+?+Ci{#gW*T9ba*Z7mph)?^be&tg0z(Ic!qRKdkv zocnd%r+6>SjufMKdxGh&Qxs_bt3oy;noxeuSbE*{=-%PLVkhbAH2f~+Now#Fac?xV ztmkySAaN=Q--bCPolz5if0bFi_>oKa)S))o$ho9g6PJGwrw0%1|72}1g}h3`=A%5g z^h_D{X7##lI<;ZJ?|V?$K!Z`_+c%tatVVZbMuJwlJqL+)kClhOjqSR2v6}NR%Q-9H_tWO8_VByCeCEt%?i|p5i&$zP} zbkr=>N~?k7doCk>$GfOG+#J4p6v@hEo720GR-8#LH4 zTibj0A)e{O8aM1`F3wpt=omOjUv+Bp9|5a%R%R?jq{i6qZ})1Z^C(RchE7t{1LvIZ zyuNW}ewS!tUU_V?4EYdfd^WG>u7%ybQWB3Y_09p4<2c*V0e8;t=~4o^DNVxpT8-a4 z_pjZ8X%` ze%Khgf5admbolTc!!2?~HZQVIA%uGou`>ri%a`1?vpXkPmQ;&;k8k&@fR+(+WG^%r zW7)54ZfAw)2(W=|Q}DI-Cw11*(aBcB+(lqT>iM@x9tXR%J)bF8*=bQ#@JEW#rH@w7 z(>IWF&o8bls#4*H7Ui*ip`FCBl=Kio^$c!JWJ+)}=d7RaMeFFbCf$ zoAkvr@ao1EFi-l?EJgzf4Vju?NRph{=z=?q!Mr1OUjUNF2BY4>7qpC12O+KEGyu2L z`#td>tl(mWbPdzL8B>*hnLb2LcQ^;x?V!zl5#ANo+#NWIu>9j-?b$u0RE^0J1bA{B z4mx^d=33@NYZVnI#(7cvR9JygR06sZOxtP;g#KwkY=(Yj33_0mFh#iL)W4nHf1Z!mWPAO z+u7C~;#>}sAdh%ws%aAfy?(s*>vPTLM1J7T>C?>*7rRg9?^k^M#82(MYsP=Kxg+vq zPz+2D0xN5+`)&EZs1SaQ{dF8U`sKRrOvHb)J}jD8v{ISM5UzZuoi}0YFeIN^PxCZ- zm~1RX0}iz^pYE8wYdxzp^6JmowIwN89XZSC{W8IjB}vg-KKeaH8ycW>_cQ7@IVT@Q z6QVy+lOn%o2LHfdcTia(F! zgv}r5GNx&OvlL2bU1V!4;M5*^uw+N$$laqYTQ9m86&#ZM=_k)rZb5{raW$^4%bSqN zXd)uj^_c_m|L=ExlC1S7LUUN+w9Vpf(WYr!<2>?B_TM5{%}4~x^oQC-*98tmrMT1-kZj78~2My28t7 z{s#}jbeL@zrzL-ty-6l(V}3^jZG%c_mbg`e6+8W2p~UIsyRp7sP}Ur9T?2NOxaMv2 ze<6j-0xl0coe8e>XSV*{)8fWk)I_264shq&U8$0pA?l}D-~j3x!xB4{vh1q%~e^iY!NSfguq{2=?7| zVBhV(sVj}d?hTft6+E*0tHvV01N(GleNU;fe5y#4Nur)8IK)G)=~dh-uy~O?7%wUD zx-}}r*v-TdI9V8u7~<@f5+O8Ec;*FL3JWBOaLqAw{a*DM%hLU6sn;#_As}&rtwX^_ zfO<;MX)KPX*6$WLV+jtjI+MXSZ&jgS(s(91MNglu?ak;E>D!24$_@^)lywQMhlj|Z z>~fvs2r6jp!hQ~?79_nOQW`vKiAPz~bcF9@E@F-c7jrxlCJDALkRhrydnRl zf)$-BgZcD&2(7bd%1R|T&d1j#ZwrAl3nQVqlU(s$Wfb5t)vxm~gFi&-e$?Do#}(eW zy7Dq0(mWrjPC?B?+OZDjeLEQ zU~1nf-dB&)ZSk(Hw2^ZVvoKG;?CBqr)5eUa!fi{9ww^&#jW79{gGlK7B!#U?f3vCM znlH#Qc$2Hys)T{=mALjph--wWVuvwzX+Lmi_OI9xnlwFtvLpPnZFML#(R9(rjPT9m zMVl_^G$|(&2d0&e$=0veo70uX_E7FR7Wq8*y!^~}6}_#9IBUs}`8%3*nm$8DUmY4L zUxow=h~u_SIIVet8;(OgPKGh9CNB1i^IK{ormhbUD;)`Pt%V~bM#xX=C>Z=^X?UM< zFo7RXrJZ@DP6N=sDfNQ~FRc#XM~~njbIUcEtV~3fGJSgG3o6q;tY+6T&u_4Sk1zE< ztJtF4W+Mp^c&Ss#$J8pKyZWJwa8q*21IKd08yZVVhAA@Vq5cYK-kt;4?We6{d{L!Q5jwKW&OSZTPsspJcKyA=qj zDrHIMruR5~AE3*))n__+_}$f)s^J|o+WuCps7n@JxuM!+?n|mKVe%NDYU03A)2v&j z$GYfmwyEn}mBJefQ%y)y^_F|v!Er<7%fJtszvJ83)|O)GduG3KMr;0uc)npf{f_T_ zm-Jw@UuQ2p&ZI_3O7O0`k-ZtgJwtiXw^jHt?Qk=?^UIQUX4d<{m}A$d-lf_N^d^+S zo$dLsGJu*p@k6bg&52-H#~#eN=Fv!3rlZ$=_!3ciB#EJabSBC^$^W>utI8Jq=B>W3 zqMt+8!te|3rm3#wx}ev6PVH)4cA}A&OXM3>s>TckmQC`d|G|!WSQ7uWDmdvzcR1N0 zCX0dI1!1|n+KpYVAsMLe$ohmjKE0wzInZ~TysIF2U`51T<09mKE23wC)zpHfeu#JH zp^2m|AM$1HkRU*~uBz1VugQ4K>4iO`6%kFy(@ILUU<1k)4-(F z>IKa{=wQ~ADpW<9^6ll)X!K5mZivCo1<_EAi-L#yS!8%dSK*e+09wqbD%C(YBEVR-6O|5B?B%?$h%TD zUVKdaB`QPY{qXEjHI^lVOLag_$kwAvR-}}(V0e3%;9ZK;K8D%5e8@^nzT#Y%&KxkC zm`}(Io%zc7u$acbWOvVX-`l;_c}_PJx1nwM_O3VI*q3QMPV=WAo>OhQ{MKX7ViPZBp^{ z)Ppp&5Sq^ud!yN5S(T#9IJ<1){{Uf0-QUn5EWE(*n1n6v&xzt!V6RhGipm_^-i6Op z(=^%jlfAo^Z;o5Nqr$5~u7ctbyF#45l#fv>tVl8soUy-ZxR0Ea*ZE(Mket!JvUV^s z%Hph^C=&2lTz2HuW7Y1$?je}?YPZzaTTn~C87j^vju;DPx6dF9=5*fyr$P<=-?Y00 zj{*#1Ax8Gg=-ew{Wkq6Rgy!0BZI3X=l(RZn9W*kFUpcmGfR^M36t0Q#)2T^hl6kwD z+w+BqlV&#S+9cI3SlFK{L&Kq+6%?^w6_;L^j)KfJw4}-$9Xmp?P076Q?wZ0^iR_e} zOUmtSPT1X_zq&@RYtAJeE-9`jhmxOnTHelLQECL+gT$H_@?~s>dKn}e=L2MRlB92L zr=FJ7EZz=9nCel5KM!lDNB|&PhQU1Lv9nQJ`cJ^~!Fz?WKSKBXHn9?>jg7#QRk5Vj5Ex8m!IYEAJETs7RJmghj`^6?vo7@B%-$J0i0ZtP zzpj~(7g2k+mVUJ1<96*JFJeMaLs=1=`X^si*kYhRHnjG1fM8z21XZff!F}5cn^eSJ zB^kh1d=~dr=k<#B+3i1l%AP6<2Hhb_xvr!j!`cRaQm0HgD74s zi0KF&s3@Q|*@EHe4tV(4Wkeo2=JGt?tw=?4#Mh@%sIaeru9pOCH!4tzU!rVm7&J^isfOB2Ku754ZFP*DhIY)|X^}N)L(m;-OP{r`_{Gao_{b zcMY?oV6dTB_?lhoHg-`1y%Ff6)G!X>-8O0b9l+332~8H2g68~w^Q-hC-2PcybiI=Z z=b%c~{B|(`F#mHS@u#OkXOz+3A-O#sQ?_v`t{48cL(wdY##8xR|M7zxBo*vRORn zphbyerynA@LjUx!sXcmH@Orl1|i_WmpSxzBUT_9bb~0|j*lS?i6V&FnX;db^I$Pg%98Bl`rw9lLvi z?{+lJW-xAjyvJzh{hIX$4Na?KAXT9$@INiUDE)dqU z5(9XdRqek~x|(dc$V)o2)mb=UdC#!`MeN>~BP+4Ag+H1ReSS0fMkI?9FWB_smSl3J zrk=w8TuDspzsaGOY>M%~SlH72K@iTSn`&5x@K0wWcC#8MrMWLmMzyCZuRpm(S~$&q z0TQzfg!!g<#Bh;D7WU5c>!w_xl;@Y@vs21Ak6{BCwq$T!mAl~rAbi7B@=O+0yPBhO>$ibuf zL$6T8Z>TNJ_JQi23Y*HcRJ)q{l|KXJt(Y@%BWLDW+VzUhHhl#SfwHIz3d|9)%NpUsTST(LuNP<&@_r)O`%9dfDXdArmU@4;Ooj;Oh^#mI{KD6l%B zwZF)y*S-2pUfpAhQcdR0r8vLbXTfXKh~2AX0K_ImR@weaN4C zz3AyNfX*f9yI74A|6Q`wKId=u*@V-{j0A@B8*MW4*d8&nq2BY~-@_xdPxHpZkd1P8 zp2-=2P@~3hM%I99z$k>R%Mb*#dA3Mm|K@JdsjgL9bJ!V^+AY+Z5QRR=a&oUq2A-&C9wmqZrN)N><#7vcF(+>$z*9;Wy5z|z zX19tT)kHH4xwL-d{V&bBa^xe6)avywAu_l&D9uTpVdCH}#Yu&jZU-<)knoJ@*?38A z@d1aa_-}WpE~q0ff2BG4GygUC=9PH(QOT%sA?12wquR-x73ZdE_t*6qS;JHt0YG^s zxm7uZcm6tZcF{I~6f32=JAZ{2Qdt>9XYjmZx)pN!yUNXZ`zLiJ!=d%>$NH(NDwvjr ztexcD%lyHw@=?2knL{R)ue030CnjWiNmb4EQA1Jhp(~;?yIU|9p5Sk+<83kYfB&@k zi?3Aa)GmYeckshq&|5`M_ds06%T7cxY9<2d)uIF&YIKjbDx_lJi?%!+qEuutBz) z=#}?@fA!=U9~br_Mz+w>S||y%VL+dG+_>w1dTg>&{3G?qAt$Y=Ik@gs0%`SvF}^@t zOC>o$uzq*G6Zs#Jj5J8$2%&>vKr7WlnaZF=eal@UGC1CQ534s)&whS1vLa7;o3bXM zP8GJ}C32xzG^f4u2V^LdD>Q_%K-WYVcSn!@40IAf1Q#hRFuvxeLX3@5*@fJh{i&N+ zOytA);5F`3;X4aCE(!nOI2P053PB8~uWO^5IES8&Y$kNpVVt3i<`d8+x+@v7a(j3z zc?YBQ(BAbXc@5zgP+OVYkNj^M5egzX7{OH80N+Z>w*4zZ@lLjYyx=S(2hpkRyO3eE z{LV`XLaBLT{nWfayY`g!C4GS@#@_OW=rFBDIhE^^Z-G^3Sax|Ww=;@-NY+-v zcNRu9|GsPLEYpAJBS5EZ$+9K`EKWbwkz07Y<_>l*PFjwY*)Ytn-`sMYUZb4$Ced^& zhH;qlL4M@m?W#ug-LXI0C=JZ`NSXnHZSuRIpaOpM`uTJ!Ee{!EE@kRz0FPbLcMi;i z7n4I3dHNITYfy4cr@%W%dIv%{j%C$NTH}s?`8;$f2!DEIIkc9%1LEY4bB1%&{dGz0 zjWS&9wT0j8?cq3GNXAa0ySyHBVpt2t@lN%d&kvd(Su~&Bs65kPTY(j7KwMT{ zJS<{Vg{pg-HQ%gciLXE!ST)>e z!XX`elifubXUE>e2yl?bIl+vPkSW5=$j&b#6e*Qmd@+s0@`}j*FgkaEjn~t;;i+dM z_?~b;*4^;<*h*qLMs*4dO@0kAjf;dn&Y!eSl+@3rSWKJnAxzp-$R6D87op}!WH#8~ z;nX;I{bgG&I_bTSnTjG2B+A&3|1ebiT4n)C&_4ZP;*tu1k6fzW3=Yt6qIvJU<!M!T{Kv5PwB;K`zl{Yg=!@=fYjxvm zLFgpRbjkdC3o}v_hfdNLj9INBv59F5aBoc+p+(gl3hh|xo_7949W37>P%(HU9>yQ% zKI7j5_>M$b7*Z4-uH)}hCHcy~7;{W9 zqJIZJ|D#~^fx>%#-TILv4KHPcw(tAcAE403Gx3dpH1}y^h0i~HC$wUj|)`A5Au-fdt8S7E%otu>2d<#STLdK zTW0itpO`m?%oW+MdM?{*mlEuBRuCVRWlYD7QAefa$}!48iS{(?(vI~aIBs%4)MgF{ z!CAY5BPZp%BBZB2os@fw0VU~2*{TvvwJjm*W`HvRrBy?iMJU*p%3FBsa3RMa)C>V` zD)&Jj69UD5L|;1nga%jgSwY4*dRmaN6YaI3&#wuh>&d;LA)6@}{bos>E$XYv*RK!>s#l#Gq-Mn0bS?=9lj)=5qPm0SmtLx5adLQRo;1}wVkgW zsWc3BbsE!Yxj(>G+v>IJX%-kVZW))fhFtFZ@}(-e#@ zB4!YrZWA>6bp2cQg;#6gDE9ia-Ru`yP=Yv2YE{%%ReHopPT`p^5s7f@`(gJ;wkDzC zbOZVH8EfGI#_NM_8SpY1_V4!Z(gExcZJ#fH?br6=HG=u(LhwDS9*?BPBX{>BBJhy@ z@L{6%)6174*GzM|W5Cx2O|EQeDyLE{P?Kts=gd+=hX`tGf`iFdz>Ko@Dy$|g! zy_@MQEZu7rzbzGAl2R)PH7Z(z(Z{cZptdNj8Dity#2>YPbv~!DnO~VI6?mq%w9s#2 zOojzIxiwZ(}V7B^`w1{v2i% za|IydBh=aW8ap82#pgn;X;KLrIF_NrIJx~*=9~+WvHeR-7JM&~H^U>Qgm^D9SU=^R ze8W3!3X`IDmmKR5eE$yxXY*9k1g*ErE`!RVung_E1{GdE*sTS9^={w1>{KpXiD9^Y zf4xiQm<_(J3~w$=`tWH8&R?K#dCyG1h58?U{^Bc&4Z39E0x6|;wyxv`l~#<*P=d}P zs$HM>zh{=(84uRCUv19Pt6gFt6ROTD4mg+#L@;H2gb+1J=o{E8b|+$nIsKPn)U2f7 z)v->00PfUZcSC;i`F|VkBeOaMwFe_lH?rZ>tFaT{kc`7$6#bpc^kiYpJeD^^>ay_O zD9;WprWM0#C?XmG^|<$aupy>Oc~`Z;1i`htdkb#Jq|lR;1|Da$)n+v78_bUCQbh|1J;GHQ--mYtUQF@wa?MR@(ykGRbn%Si~dtft$j z;P0?^=hOG;C7~D`(7K!Dr0X2ch3>;ysdP1Gn&>UlJWTEYYFm{A;7B$&_1^<&L+@^x zVMCEO)$^=3%(V$MryF&40||jbpJ?(Sh=sPQQueD~P)3H(&e|2$rdFpVsYQ`n6lV z)OQ}YF{vdQ1Q}l9x`{lIHbiO4@ACc6RaRsX$L)f0^`d)poep6d|HPc3&dh%1;&@&V ziTP>sp>`o7G8QaEuVO;htKg`|8PKNsUIBEe-9JWS@0QymFtsTn;^-bPyr(s0f(fXj zHvMkG-G4W2wchyo#kpI3<1XkZ&T)l^tx;UZ(p7ATCbVTY@q|*<2;oYuhqPVB?CJc z`)&P@%?BHvqmVf2fIsC2Il=Z}CGWPHj$omJQj%GH;FwA7Mx~8Y z8!&v$V?h9xVSpb@YcVr^)R~E8tASZ)_A1*y-Pn6vX4(JvU|oQY`~r-ohE&wBRrd;s z;87XgP2JW$;ZZ!B=bbM!0v^4bCZQpA(v-ASNf%9^ZhrpT0*CR!lO8s!4L02-S7QP{ z2(y$-iEBkk1Bo&W!X{B?g3l++%BIlsw}-q}I<@$BjwJRC|3|i=09(MJsN-KDtqMu# z4kRB+c^iTL942sWC8w?h*>lnv%NgJik3>Ymu0j0fo^JQAuDb;`rS1Z0(l0x2DeoZw}v~ksZ%CmJImo@KOJ}m$E!2$ zvYK?mFD!3ODMMdT_P{3At5*E9|<4as_^hFnNO-YcnBB$vb^XMQod3J|4G#4vXU2inMh3 z{u7P}GzvN_qDbrTR4;$IRu?pW0F|lp4Ytz50_W|~>m7i?mXUS3>!ZESQ5JQ0r-Dq% zH7b{kURa?Yz3qmOvf&KvIC;H4S)IMWU1^@LJ_AmGnvER6S}mIPK*~z7$p=>-J_nW~ z45A+1f#o(iAP`LfH6Uj+BTYTcP=7G6GM6=!QWOG}R{v#6ShjFo*9m?Y4zzZ0yLnqI z6;CKYeUp8HPUjQF5Ta-zk$~&7ZD!aOq zOu&#e%eWMUY{YG9DNl~-pKfoBeH_9|N-?4Vw=zLH=S2kj`c;w6NBI?d#B*!y*;PS( z?!(GzYO(2mr>dicI$iAzWIsF8Hs>E6TqQC8W2gm^FKJl9Vph=)G``XgIX3O@@qt= zfLY)!&vQxrhYrlu#KWEOz=P3>)aJJ%K_D19QXa{3GcQD{7hLa>jBAJ*z>>?Cg;nZ-=h+;TO~aKb{ujQNJzpI^vZ{P*DF^MMC`& zu%tTwBd(k2so+gsy#>Sx>ECk4`B)N%dq`2es28jIzpVCQBW6#`<>EFLx8D+$?hK%aL#JPUsN~?lLN#C^ z+M%fR${h!oobw@*pIBg@u`a)0nD^tdfd%@_GBK5vee!>WDReni*N<5QQJfE1%dAQo z@012*1oCptta9n#N{E5x#hW&HZ!QZ`X@cO8)XHQ@Y?tCU^e~6%erzfpb>h!-C z9af|32~~rwiicdHGay#q{Q!$5o2j@o?ZP0av{0Z;#ok0bK=bhTQhLwuH$h3*tLL&H zdHA66E2spyzs{pEt1SC718P~H0?l(xx{rmzZ&q$|>d2I->Hb=;q!bw8J??+1W>jw?nc>6?z=UmsgRw-7Ukg?&iN($>| zKO^J9LdD=9pv$l#txwZY{TWX`_*JonynOHmxA*y+ZURto5XsBHl&ArfCx(@J1f~4& z%;zK@cWzXy@)TU9OEvDcrYmv;7vTULP0Qu9jMQxLHSLb?t0!yD7lBW35SQ1Qn?c8<2D_t|MXoUd9hL#{C3&Xl3*Lmr z2Q%k*KH>>(tmE_sy7arad9w_)ryIQMC%#ZmT&q`HA9$*y_(zjtzc0ho3yfN3ErspP~K@W&nfPokT{T$1^f{6qR z31R!&?SywDqCb>}c)P840~@!kQlvad{;xM24a=x_GyohCCD)ZZ9bRk2;CtBp;^!s! z5*Vfu+E#Qa@*wVRijz*qCM7f+W_|use5>-1+#{ESAssc1noEg_Z@dq}8h%7TWbZwv z*5++mhgm21b}f{l`S5Ohu*l)#t=L~P&tNVtB?uM@s2$!TdhZ?LLSn44FL5AIn5Qkt z^4V!lHuG3pdzPW*-efij4Uq1P4lI9q@G*8K_9UZnWv}3nAb6#DW!vtXr^3Fn$zO%Q zNdigZDMjehic?>&@}icuw6_U+;=h5;;8sCDQrC3Z8wl zEUAq?m{!XssyL165vl|ceQY4^#j=%7&t^+9g5kW~VY1ECTZ;HcK~7Cl^HRUJRVkfC zjA8K>tm){! zlB?*GXAI&8^&Cx9xZP5fm1#6)ELf;TTm(DBCAnAXPLup^>=zDyC~aD!ByUgG;>0UE zF_GXwu>U5_OI_bqX-s2zF1cla@Z&dUe|B+0dLB3x7vQw;ngAFY_xUGykey2x&l{*>!C;2T=J5{Az8+y=P9U-!Wu_v>^Avk(U1Sk{q>}o66N{H7BIr;!_1NA zN}f-Il>e0lXAgbdb?1T@VI_i!a==?OO@0ZZU~ct@@1B zrH(d{ZTUoRtKRo_r+g{pFW_rxVZ{%i1nM=Hmw!GP2s0dDn&aS*UoayNDxsYw z9}esqdmcKE>Xwu6^V9{>RQ)PO%_-RpXiXW|07frI(KzlmTiI-mJ0HYWp#JO&o#l1b zYuai_u?H}4;=$0T@wz76bMplhmQ?m5ann^`Nf7*2%6dlt0H_U7S8_Tx4$&p0v3P+U zF$uUEP14;|#kkXJ(a7SB8m{ID6h6E^aPNkPFo2lBrUJKwE1ulL$X%d1ZecFkAk+o` z5`Rw{QlIC~7|Nympg8?HFZDyXt#ilLtydi0Zz!54Ly3=k1#farxB$m`q3NYpE=FlD z5#*fR-Tj9DzAv^5fR|m9)s1ivrNlrt%<6zel=IEP!lh>#oY9EorHRITWzw zST&=!k8+h-$sCAHACAYke+*olw|%sv`nsvU`32x{s|x;Mx=FP0?q&3GXj-FG+1=)h z`kg>;Ntvq_)2QjzSHOBqVaek4g2#WiYbcWvMmeA9XwQ~zla=wM5CHVc@bQ%$XLIJ; z1sKB3murw>LgUeU+41ayS!Q%C}&ekx!X@wNg_i$h?hh%wlu`>*sZoUU_jWg?X{O3Qc^zS+?Ir z>b>)1yAM$bRT*L-8W0Z8EzPkWEEk7HpVPh*->I!{3Hp=*4DgZX?p-P{3pFV z{~M}wx%ib5S9Wbr{<9^S$0)UFVB6RQVGj5LL zzo@y7C9h~ymB64U_0UWfj%l$0TeD{%u6L7MGs(lr5GR)`%x1P24)Qc=?-lQz)X)L5 z4+)+5ENU!LaqY8v$}&Avn@ji{q#ko~ae!btyvd7urbPJ@{Ky@vKsv=+S6nMk4%Jk$ zr(Pq4<98`=YzF*K3*fu!lMmi!W;ZBidTKxffLA>cy>qnIP6{T33!$$Wt~qz?{>QHp zS)oguDMIj=Wil7%--xR85l8;VZ1T#U>aa)36jYzT@gb;B3MOo)0w>r{6T;yiJaf~>C%avo@h6kgrl z)QiG5=`?b&?B+j0J2{5&+X=Kw$e|5^LzNV_30gh~4!v=?+Tl6KtA93aYj&zDx4><1 zayH(#sKsr1xD~ADT4c2hCb--_n&3zc4UskBv?)(5$fASJ@4;#$PTec+5}Qt<+E#ek z`h3&;^R8Z=22quqpDa79|1@ULlZCQot(QT+sPgrkO)BfP6PFfTHR1VX;dr`DIm5zV zR`R67K|~F_Z&{oEp&+Z)nk{Iw*c7iRDroj%Jx4qYpt;4rQ+G1rBba726O_edVTv!-E_69DRG zxd?*!veiER;P$pzi;|8>Ml8ni6iz>bb=Q7-cWj!~#w;aUQ?qpQ@JqKX! zPtMu5K<_&;3{kU(3GMlvyR;g=;bL#T?Wq+FrvKqKAOzf=m=k`I9duXwK+$+@q^($@ z^pjV7+~$xKH+#v*i++wb9BjVEpz5k(u1WUEz*9Nx$>tE*xECkb!by04)ndn`kPIug zZDm^#%d)#?_q|NAxYq4+<(J7jZ~*rsbK|yy#c%rkC89OyM~9SCovs1hg|F>D+_1T0 z^{^6_&izxRNvZNBbMe5=MUi7ySq4|L%eAe$BpY0yM*Kypk5|{%#MDdsRB@gWVZI}@ zk!h!?AmB}P1X0)}HKlc)1Tpr3`kc=4?mpDc(9R2?BQ&o1WyN=kGh%z!P{flmXO(Mt zQvatV#7t{XI zwD6(qX_DXO3}S`j=y~WgdL@g`QhQ5qy}E2q`TC69%F23XZY#%N61+!_zpHg9;gfn% zS2)ZN-+rCEfB$yPHj!*RT9^zY{0*1K3T7=*aWw^~ax!Wms9a+(;oSGn-h zd5@Usu;5iGYCo zZhU{f&+Fk|cF&%B&zYHPu4`tNA9zgaW`uR#PVBndFcB6|?%ik#kY@JEk*&cQ_DP0w zpTA&c+Wnf7NxgkDyc0x-p0EUo0stp@;=&!UKWTLOwW0Y!yhi(n6fTVjjtw|tw5zkCW~*XS2oPLwn8 zmosEAsg`Mz#5OwZO%(KB&0sb=e>K#v6@AzzgHzHOSUok(qj(#-cqp8s3EzC_Y$l~f zu6R3;+uK^8;k#1H`y6ei@3M$C^ijnzm zX3*8>+P^Bz1|KTXzDA-2DAXxP_&q;yo2-w0=;o&?paM)5Tz-)K3Mr-j%O|gREw_-| z!1LGgWnwyErY(HNRD3UO*W+myxqfo;^?$KIHbv0fE#9W|$PgxR3(c0x*~ zg`ZKDFegZXsAbhChQ*{sb1-V)5>z`)%bA-X{nz^X;pMB!Tt9{2KSsw-AF6k45?lV) zf!4<4vXuGy<+1R9Y+)nT`0WEo6^3P6o`+C=x|~NcmhCW!1#g*Fx!b*p;3Z2b4DvsQamMD07Lole`QIILCMObX}h0pmH*w9{w82FkNW?cZuYwY{dET5NZB zS9!Ugj_xk*ChVV|uEX+rN!p*AnQ4E?*2(g@ugdW64+}M2FJ!*7jCs1U21Mr+F6Pd= zhVrH+9hHLGo(MLqN@N;Y;$PlC@&4?c$H-zh{9lhXhmByRV3V9W@9`=LvN6Tl>cead z10iE^mT_dM70;K~|K!%jPX~^#_laj0;hBqXD(GABJ8I1ZyBjDB1r2=u!^Ay(gE{lE zG?nuo_SFe}H44!Ha0tOWQ%0!|qhry%LiuWQYY|g-3xwQ5x|*Yo0!0yx1ff$KUJX44 zP+Yf<%7GYMT(-R|Uc(O*W}!vPzxL2cyR5gLjv~F(X&28wFFKUJHDt?(ldfzT3)ZCu zR^2hRvlQs;P*KobrTTCwJSVJmlEFSnGFhvYof@uug%-wk6xv?>dyf`MwEauy8Tk7X+5>z|Uu>!n2d+= z+KBk2w6l22ucNRuT&rZ7R7l6iLcySNtdq0BEkQ^-qMU?G+6R@@?l=2$q4`-)N5 zPOnw0X70EGlx0-s#{Y%gsvnur2|=}$cW(u5guzZtsujpY*eG%Q0X9C34=2;E4wM&^ zi}lX_Y8b!#6N=8T9voT4Y0W==w%^M5y=7lZe!GDG?=-QiswS#8ARPmHU4b1lpKSTQae){qU~-4D0fx|A4G}0{fOV)`uq=-c6-@`=_e&W1f4AD3rvit7%F_ zt6p=$9^838tO}dIO|jxylm!gA6}=X2$3e(pPnmJYCR)E&1<2r*mBs>=x1aUq!shXp zRKS{BUBHW6kFJaL>B)=r{ZFxOO5zO)I6x4ZGt-6ZUTXpqva9lX7wj~Rs`w3M&#K}i>=j{C$ngHs22^0ENV*$G{faLZ)XjXkia}#wP*p9np&+Kc z=~em#Id483C*pCk|3_p0&Teaddw&OObS0nF0 zF1VaI)tdJDOnCkok!`Gpy131{QmFMV^XPadZi~mbP{($OJbYk=8WB!nj z63uEyICWsO6Yuy4pSaPD`_V<1Y(xEzke=nf5|5|*syorGaHBc=-7)Xi6fZ{Wn~J}W zEXEpl@@@hv-;(??K^Vjoq@^4_^5FFUs{ER-Lfqmy$FNQ3{d&Q!$87!4Lqs`JYY6)* zz@s_b+b_M6eXfi8w}5%{%l2$}W45}?q1V?DMwf>ZXon^8PJap}#YkGUJkpR7(fJWM zMiRbwaMKWd9#|XuL+EE)SbOTMqVrW^P1NsMmEFT_C22O?tNv3>+Mo`Vi=J1?86(Qw zU&_&p)svKiQP7z*d{(GUhQ1UHEdvw1lePAaFUV0`EAwP!+dEtIHHreADy{GTn_pqo zGPa)OpDNb(o!**1^%vDFfkV{G6#cicD5tp5^R)j3CbwjJburGN%=j`H#0dV_p?O9H zBp3Jb(QQ}44|1WD)~qXab#D;x&*o`?PO}f5iRZTZn z1-qLpZfWA0(i2ieq8S5gSH*0^|7$3n@zjnxrvCn--EgL;3R~0mBi-L`c-k-8jGQ_I0if+^z*BeY81YIfatP1fEnZK%tM$Z zgZZ%1AE?tMIAZwxHJ=FtUrfH+&(eeWz+c!Rqv294nLf0a?4r;104@3o7T3-#oT=1) zq@WgSjn~j+?^o0k=3k*Wug7tpA5iri&#m1cz~M=rc>b8J_cNri@~c1Jbic=yK){(c zxa>I-Nl9ZeKZE|uiA;vNG%5wJ+(y$?cMNr(sozxLYN{W-YM5JG`aNB*<4CA5usp{z z+bHr+)2i?I`6iFlqhN3UtFi8w_nsOwHbSPr{F?fKI!-y@OaG{B3H7(ocjEviK7L%K z>xVulQ5Wy>9`SXMl;IS29W$HV|F1eAHosb5rC;D<#LM>-wr!tu-oJ4tYiMQae-7p( zj2P+96`j!;L4+d!cFO1T?Gn$V(PTab>jwE>!T&!{geAtq3v5MRq0~hFkUM7M>%hnT zS4;fd!F=>>&BIVBn-f<5h35@xEzo+u`>4C($LXfGPdj7yV^dRc$`gBZ#&myjn6jE) z_?L|Og}RJ?ZUj@Ag||*Ix6S*)#z3&{IMrhgb3`41KKo^`xCZ&Ghj z+g}OvyXBU@aF|>q8JU+&tE(|^eLq2TL^({@{-8$WuR#*i^uuCm9N5w^)=H9pk;PQl zaCrTj6~Wu&wD4!tA{%%jfYR{`R3|dKyGR z3BlvR9P&rJi%*QgA_Po{x)GOoBa2d%ASCZx>TL;40gImaMMTkZI0V0x8T8~4H2J5! z*JVG4ILWz)x8UctZcQm%mwV_%3jVD;8BG{e8*70__OF|5Ha0QlqHDm?Yc-bt|Aq`nu#Jaq ziD@$AHa<2=sj}Yd(ojdUZ^+Ol*uxd_it$wEy1)N+b0#EO%5s0)Jd2^P^(wg(3(;4AT~PA?3MC@JE>vpqMYA*!xu|G*J{yk2|K#V{vHjm)+1 zH(bBUA|Wq`lRxig8}CgD;l&?$9k1wrYrP<${nk>EA|%nW3=t*M^s+;3DhVBhzo^>Tsi5jW#~U)ir}C0?Y}$Q zjM|}n)oq-NW5x4Uc6~5GbLX%rkBaD9aX-HYKzQe(f_*$LN&+q)%UX%b#eJOdarEk% zd2RDfV_>`K7pVkValbvjBYlW-)gQ{+j=l>;_Sfdn7wY&04s8k&N7Fk`Y>e{n$PYJo zk!VYi@RzdsoDjFE#+%B0-1hzbP8CHEj^468%QK~~0yX1dBInGJz|~{mN7kMzLC({I z<3HJAMs96Nx@;p0SIZ%eA9Gx zC!@x%b^6KqTAhOAPxkUNBj{;`!t1>&g9i9@+wtIshH4J=*Up@Pj4`^tE5>v6a$?q0 z-3~@hwJbG(PGtcRR6ixR%Ke@?!&7@CCHWy^fx8Lo4iZ1shy`f>jf@o+&t-M)W@d~! zeqC2FU6(!MpSZgzxxIuW4nG%8U}Rszu(2Pg41L13LShnqK!U|DyUKF=qk}QQI+q91 zBmZ>w3H0%tO|_>{QGVA9+((FG1xv-02s(NY0~ao=3hm^pvt-h5rRAXMU;cD3GOlmt zAEAU<`aP?nVywS(8OvWycX=rIbTPNiLzQcCQj*_C!oqSTp{6r&!zn41r6&I1QPV{; zsfqmzDZC+Lh_W`eFE}HxR7|u)=yl~!licLQPRqMj@i*+18zq+W*p`ksvSsGyK{~yu z+Es%Fjrt&%d24`QV)>&8OyWhZB~#cgbqso{G-Wcc8wH{TKgZ=57)aA*VN&GOu$?OO zk4Y6TpEXopLDn|&`9(aa>kYreGHfX1ELi3d2HIRbPRevmsVSm6eVvpF-S>sDorzz6 z5_5^Sg>b#i-3bwMl$bN4ex?xXWeqh_Co4LPEI~2ICs0S$s@5C&z&OX@LEvs$Hu)4z zh}~?Can{Vie5tu|-PGdjLX3 z^wRI_oBO#pn41vUy;va6j{JnRgYYDBz{cZ+cc)2yDP7Uka&kyE>YP4#sl?tZ2 z*X{!|i`wjQS|wdE+-@bgx2vC?b!>X`OyW~g(&Evz+H0k&=Ln#}%eRfqsgnx#5ja_aX zm1Zqi{CR@^xDwp#T};5dk8%zN&&q459PQu~78rMyT2;uJ5=*$4fNrFW23oepUoJBl)&0(WouQRLBPm?| z=2mA`K;D8o0;9dzOiUKS`+XyqC5dW|!h`?DEB1|t;7k(I8KGQ5Sxn{U-IPDF0Igx%D+VO1r#sl50}(az$;$AjUUt z7W>st_YS-Cs$!_!-C+MUuvSSh4X+plp8xdr(V+4iECXl;h$fl(^HLNFyp-{`Bul;P zMTukvxlwS{q&V=St{9r+Cx44=XCe%}^?gtGo@)9@0=iZ1 z7P}XA#@g;X1+zQ7t2p_NOdcFa#OE=iVwkwH4y&(nY;+{j*(29SwjAJf?C+3zVLe~o zW^X`y8hY0Am-1G(po%TV#Gaqia+zReD_Cn@uyw2wPO>4h(>t1Om=P=f{K(q}uGZ0* z6N|m3XCnSZM#qnqIY;CcZ}Y%QarHC7x61XN-VNyoI}3tw4J$+Wr5tmd-F~P6i9;I% z3Lka4vFL)zZNUD(QbfM?rsCKD*X->&e5YB?%5`VV% zIp@A1bokDw16sw`TxsFb%H|cpRbt@}V>e%qMINrFAak`^cJ--o6xO5`L+x~Z{A-ge20V8g|-xw6jo7|a5`u2Xl49lqnO89Ng%xz%sq zBtAPFH4S#Ao<(Co`&Q1@&}CVeAE=kAV<9`(hYve_%PZ(&WalO(EkeXi5iM^d^wl;~ z?j20COC8+srrtg3$tp{{AZZX6LTIgO(6M-{_=Yz6Hgmog)VsUN0zcZVjF8n^1aH{%R zK!#!GGiB{{uv;c`4eK0tuaEKhWGc}pPqj_bGF!>+r_ugoZ%EvZKn{xls~l|5`9mN7 ztzN-+ylqzRdaqY^S+uwS@#)LI;rxbO1UCM4_P7FjjHg2A_oSjSsG+@Y_xW|z0U|8Z z4C@6RAN^Z`VD1{?t(kC1MyL^~qOhjB8yI#z%kVP0SX=t1#bVfezvORKh31qA0tL0H z!@*dI7LNXN!wCIP%ci@OY?^W(A7T$v7JDwwGfkb5RKgka4=in;-a=c}rK|d$^CVV8 z=I~BXc+{37vEs%9b-d zK&dU|Tl+kj#My;%C&M;<*{)o~Z-7V;5Yp#&AU-8^)mjf}WFY#6xQ_hE?D)Fk8OG(6 zrl&!my>k9!$J%jjGxfiab3wK3j8tSp5Z`r^bv!5*BcdFdq1EQ|DrCe#P95br$sw%i7(Hrz)+T1!JyJEwknkGQ;YDLn@v0k-X6jEGj; zz4NPUxlWQ!b$=qPJa5duMximuUHNA0;kHt#$J#$qHqy(g>xSpZq{Ng_wPLxl&&8Wt z_dFh_P(gp9&o)7igJ3^}20lgYETj9!vpSfpD;P?VE?;uL%|9M=(Qw&lG9~kWW1}@- z0BfTRb*`d!QBh{u4X9~S21q~k@1zg7D50-|@BY~)JQ{E2TUq%N8h~6XRw!Kbn4w%1|eWSNNNXF8I`*KtP;!;hkFJpMqv@|KSJbZ6J2%(vVFT?zMhDBeBMc#DUYg0qxLpL|kUl7SO5 zvUX`NpU%F;`gjN9^Gq~9=O;j>+ya%>OCXgM0!4RqUcow6*&RCSs-)|6Vc|Xx=~H%- zd&W0N1({s1i%V5T$m(yfuvnL$EhNup4(=OIA?=h$vW2-gtKiiD357W#`-kH6%5Z?rgDQsug)Ov8C1{!ERm zggZcwIY+T&hEu*^%T!b*e>jJbw;?cna%avp@g`tsD-#n38YQb?N?v}!i;%K{&T^ga zXoF8sJ9F7a=-?H&+;JpnJ!~{Uw1cFwq$gD5?UZpm$QvKK;!r=)u#F`4rcBM!4=HdZ zH&V*D>qA;3yH*7;*aO0C?NGb@!QW*syG_-?z#Z3}=E>h;Fw$ZV`6rv$lnReW0pUaU zGubv;qvio8^)Nc-C^8x*YK}zNB{CJiep(LPNh=7%iGh&zN%e|^`27n@G3+Nh^mn-T ztxlpG;usT*o7<}9qJ}RmFh#;y%Nn~)*Am>dg1iMQN3ej_K*Ml~A7 z8(5C$oBPWhrEjI4XmyWt0B`$3P)4ljh3g7Eq5p-M(JD%xki#iLlqF?;huG6UX$FvF()F%h2`uSbDf&1n=|h`78BOVJCzA-A~UTCBGL3JzxrY>Qlmk!<6Pm0IVJ& z&N56#%qGCTRtX|HRKyq5&C+&PQb(?>Pmv&$7GWi3=^VLcZr-nt2k%0^XF zD-xdbIhv-#Fk3Pj+;efMx+ARjsvVB)|5po;#(4j!QKy=6TKna%IfX?F?OxR0ufJHW zEe0)7!sU)K=DL=I9+?{e;nuxZdYMwuF|^R|*k5Jek)+>Xr#g_Jy$T=DFeS#b6~^#< z>nngM-q^ksSw_~>cqW=_kbLS@TH?DX-I8(Ut?Yz%e8N(LG zyhG~G;9PP)SqlPv<$kK8>FEn>eZ^dx_0 zsga^D>>`g3Xp}9F&uD-9c$I332Q_E}6TGO(gi$$#2sy@9pXtl3{!)x;)(sg`A61?uX#`O@SWL`Dmb}LFC*h#2MQY;d!LET{-xAzgTSAHPSo)Z#x?k|PVXo~ z7Xt4fDm-HaOB@qgOMV|T{i2bGz)4cgdU@t?TYP*fIe4SF@8n8$gJA=^qvO{%1= z??~a>)D`6Y0}R44I`o$-2~HkNeedS^&Xx@59m3$^JKoOkW}8Jg#9^f)zF(aAEt(#`gnk}$}r9J>K9z59q)q_udkjf z59ni>G`vhBUbR=hO+Ow~wa+g{g|}`nATd195kb6o9n7+SFTBdXk}Ib@dLTR^Q#*6` zYa^*X#KtF$GMb!Yv#W+XE;1k8bFO0kFe$~g+8eT3uU`BBIVc&HWn6ccYd+00YAfNH zk7osIAml-~Z2Jb9`txTl`7^G1i&|oEReJ3all5-%60X&Mo;)deKc*5c*tIbqy7Gn0 zqhl>TN0$d{QX*xc|3lh1ruYHX=%7D?qSyD##q#9kPD7b^{y`XX}G*X5K$C_9j)BVld6}=1qnW)VOL|*;L)(s zJMw3n4A0QHwIj`=gSnSVIzMBp=K0N>H8GF>A!KvhFO#&bdNY2M;yt)|+U(uzkzH97B)~8Kv2GrKkH7 zdqU0EM4*~=&cn2WKW!!^<&qnbx;ww6QBbZRn^LDx&QlehR4c+qI$h((-e&ct=ZaWq zksNKKb+d{q*`5~x?_{VbW;Xw(a}4?C(TTu&%u0o<;A*LYz0+4W=a|F{QE~3ef@S7D zx8MAZ4C5NRuswq&jR+-Fi?gW~m$wORKvtR;Io}Gz1S1UY(Bd`1w0bSGnB|`NAd30N39Sm8DN3P z3BtWCFz~rXs}J$b(Ai~HeaBAQpskR5WVY0lPl%fg+z*4QFxOLsi!$fJp;u^@{A{YA zx8LAJ1Y-r2j`T97j)2Ip;07Wh@+_ub?Fq6Y$Q0^4F+v`y45x@VwRmu{=+J0@X^P#s z{dn+PgK?{A0~??y0iBQ&>H6^v6*b|2TBD*C3LxxYc6-dwLMU*xZ@%6Lf{$^dw+3G5 zx#Q$xgq8?&|6q*y-B^+f3tbm!;luEug7wu$UT5(Yf^-JVDNT?JzG$$jKZWtWLZWaN_o0 zJPgP(KrbB&wIxcX`sG#(OMZiQHF8A%mZnQVFF;rcen(S@%Yw^=9029K7v{R}G~K6s z-+gkSjYwU9;T>P2HN7K>gx-kl>Fa3QJ$}y`wYR**ubHzd0w%#YSSXS#tOr{DS?hGstdFL?pH$}BKlQVd;$4ulRWrGp41RZ zGL0IZijgTIz+(RutshOrR?J#B#BcfXN@CUkq{T2)O82zfl$yJEk!S? zZN>gx=yFf1O0xT?9a9;_F2ioa#%GWn<# zh@B;E4xkEzSdL)W)H1T?sS$z1e>QS%8>+pY`Sv6ygm*7HvyjjI+*g%3OEHKHGQnq& zW|X_1sU$rD&5z$*j-t*?R{G#%{aO)7mEm@3d{y^&)1Z^VQDwI;E%?wR;`xKiP~?K6 zND!L;=+St9kv+y5GPbRzw2-t^`68aGHWQH7lWpfit}4KPXM=>`&>z5ea#a~Iu;!6) z{cMa)QVjdFwV@6>&H-Y6oshCf2e`drmf=g+an}uILd-$g(Ghax>g>aw4Oj&Lt<>3aM z!?-q+a~T-=>`po{W!1*UVbZO6*lRKO<>BD$<5DIIf=m1~ z$27=R1g5Jkn&kg^9X-?a4;_r}?5r&^qSWw#|LFqXqF2})b0Fdg{RU2ikP@b)-^|QF zAU=S)(A%KKMJO88Sadx2N>*@AD7b+3A^t+~$D;^yYbL>bim+HI%@4?XKSkaQF@6r- z+(#!z>!=+AvZYER|8n|=sAwAtu_ULS>2?%oEcM;jK#?e6JA!vd9ELgKEtyG7QxpBe zfQNmST8$&%?%CB-zK3}Aw!Fqgc9jY}KMJ34y)Yw-Y|{YgB}{66agDdzJLzOxRYd%R znFMY405g8oY(@6Cn}rLh{(fa28m^DB$m!^;4g+W*f?hm!Vo%ap?V)^>Y&>_5r&ec* zTX`Sv&v$!k$ZRB5IMHhX6^@r8XEMFSvpn^4Z- zc)i0lk=S0G%v(q8mPJ(89Zm;6t@E^7;(>_8z6Rd=vbf+MY|Ky&bTLoEcoRkrkcMvg z5D_cKBe!Y00()c4q4pq1++go8^ME%la?93rly9yo1h?eZy2e{B9kD#ng*Eg8+-t^F zr_UR|v@~eSVFAttHIxX3iV$0^5_1VzZ`C5&F|?_FW_Vlm2i6lQ4FN967Msa zq`^h;g@E9ze9#xo@;o^8*yv{)4bc-@-BPIjo2Hx+V$A2J7Dr5c~`1zAQVVj8qw!kJY z_yj(c&gLa$8Y519!$6CRl(fl9i+`?Kjy|;*U~2wl27R2Y;oLtChn;M844{>6e|6fG z^M6(XVjup8OR5-`#HeoAS@!_+GZ+~n$yo#5t6g64%Kb>m1i~$QIZ0RnySRrH{*b}{ z<6pPGiYXRb)}x9&1@vgx(O&;*Z-`=;e4K#{6?xLzc=yp6r7-__ggGH0uw8FW@QrK@ z?LVUURJ*r2T56T21~a(#sEkzAEjt1q=v#I%+;RVxg__1E_msb)+R#4Dk(0_^ptkuh zQzeiiqkhSo`$NhJm70N=6X$S6=ZyszFDiZ&VpQfk5B#!}bCG@iGb5l3N!ch_N+SXT zIJXyyIJD~yi%s94qC|N@pjxSDzT{a5-W2!ohF?d;Isd^$e__%Sqlf;`Yl z8yzi>8OcvPg1e{Gzdm3k@!I&bwka4xyYEA{j*SVpU-o)Sh=y$1!WVJUS-SJi32k z`241T7kT1~?7#Di9$FvJ5D&=YZ8C>X&^IJxse$X+lOtlSexp3Y2gvu7yMt1c)+`kT zdFML2&8YF|0FgT2Lxc!z@g=*xi@|SuecWDEO=w`hv(vw0` zc()3i)1gCO+zr6s$H6qx(^}d6y~( zpf;gi;Unc3T~>3InA^>Z1Rz|1Xr-Z|Q(h)y&a3R(Vx`!6O#exeZeqjk`85Bo*inRi zPnewcrC`B@^k!m(x}*VewZ%brjEOCHqbA557j-T$Q-}Q66$*0t5ozqWh~359{JMNl zLe>={3E&{E#{`N@vv9T@_b^x2`%TxS#pAaTRq zG~^Q&l1h8$)pUm_^5Q~qAx)1FIMxGGlYb+|PRhR9w+KzJ0Cw6w-)?K>8{C36d8+le zN;ArnjeWn1v}Gwh+W);IP8Rl>*#TN@n7qNFz$OE1*|U;hK4JVd+W(>U(N!#AP1lgg zhO=BT9v9o|8aH{imclO`!#P@DLJ%{5?_Ol5WqC&TNBAPFXl`fyGA+WoLINretwP#- zq0Uq6krEB4C=?4c71ujDXftunsxB3=*tDXx##{KhC<@Li7kBds)sUfsfup7(gKvfb zkWZ*4)Ze&f*yP?m~Z15S}5}459&oVq4+o z-SOivuhTpZT)FQe7Pge(Rj9d#7p`i}<}0{C$5>*2+hT>>F#Z>BL;?j;V@PgC5EW&i zgM(G0z5CJ|y&y0S5Mq%g*ZkZ@Fx-dk-&-8J`%{yv*^fP1X_jPrX@l18i%DlOkJ)W{ zBYDeTc4nBdJzee8<<_gmIc^PhdL?K%@F#y;V}eJgBuU}xxG#oIb(s#Q8&p*XXa{`blI#X&_4eCY;M`2HkV^e7dHT@QRd)EE5g>P3fz)T&xVh^r=QMPWr{yQ(e|W zTi&7zjx|q_(9V_@21C&$h2|>A!~bEWm~v_0e=@bm!dQQP5i@Lj!i}77czKD)j#kHD z6d?uB4%b-H3Oog-mZ5S8xA-l3Ng~#17#;Rn%w83TZ3i=%#_%)Vd#2)=GwYZ=RD`Rm z@Ngd{Kv7(fYc`n-N!|87gFasKKkMB?6crTLeP$-3wA+jZUhRMRi!J9F8mrx4O+S;j z_7k=sZ2K3x35qCWH%+xTwpzD;|Cusi_oud8v@>M=*E$XQX%0)!fdQM*1ofHj>+Rgt zX3FxUYayNA?xvXB9j1k_%AHCOP460~G^W0lu2vZvGPBO%sQr>2td=6(m>MrB4SVfb zy%v?j{K6JdOac%&p^~PQz-p0e{-E>K9EIG^1vC%HH>>izaup57iEhYEhz7Um(3nPT zwmlvBa4_}pws%-T`Pp16Ek3R&9N*$G>uVy6l8tHuCJ9UBS@RWh33@_ z-$K%I&~1DqY{B_x@+CkxjxByv0nnlWUBu8)wWij|CZ9QRW!x&`k!=l}?4|YU7Sf`3 zaHxp}CfeQJ@eW3S#EqLM3wZ~qa?^0HCBnYc*WD>NyCj9ZP6EA~oi9!=mY#ft3rPji zrft4J(!8s@bxvi4JIkC7*V@7)B+rf+j* zL`IDsYHpX#bL5!#E{+x)1!FET?6C(5ZU$t8(=oFXG5iB|Ro<1Mm*$eX;bmELP&0J4 z#%RYp8Qljj)>B}qbug70i=E2x*=U2T8EYBZ*r}AG%ix4VOSs9E5NdHjz6zy+g-z8_-JR8MU)LtTf{4UmtsXI;S()Rn| z%QWl@7k(rJ(K#fOC$TQ@ez_hxx(k(E8ARX62w^7ULxP`(emwOK73*K#a$%{duoRAxxuSRDVFTSIa#dWL&HJ=XDs9muQ|!VRu!B$UFLmq)5h zpyTAOkaTJCei^1fuMN%sC2KxVvP406zZ2SP5pFmd%utvg{p5JtrYlv^8S=>3to!=0 zHqY08wF32ZR)<(X$`R^M<0TAQE8F)k)v`_Wg0}7E_0R?Plq@m+K=FM$LVoPBb0g(; ziSyojGhMemD6@{d(K~dcZxUgcr;0!;!*@=KXIE=JAHMBnE>u1g)l|8DW&15i)8V%AzQyE zHoPD1#Q3qTdb}r|ZNS>}b#_2jk=a$*u(Sq;5Pt%FP!>IqH`PIwFEdn@lN0;1bJT+L ziUN6s$hqf2Vdzo$patjgc z`x#)KR#Gl1158Xm3bmTq$yFbY<8}LHA)I zJAKQ+z9P~Ms|umfpXop0YndF(ocbVd$4j1%!Rif@LNm!Pv6%c-tH_IQbc%}L0j7PF zS0~0G#R>;W7_{8bFNa++Wg$)J{#bxcgz(%!I1O&8w?{pZAbTeSR5CPkotAhmNs!0o zpD5q&+lgh|m@6QaaN#Av+;v^CB+S$?*4ve^*Z~j8_g}5jraEShYnP$b7v={hgEBXN z@)BW2-@VVyv;;n5LnJ;xTqRhQc`_mc2hwl_Eu&1B!5~g6#HNp~y=15YnM1X>s zc&0+2m~gt+i@i;d-za8tgNq9%nOCOCmLR=jo90I5S}B_PQv6wU5~UsiAga_0WepYV zxPRBM!AD{He*m81G?gi`8$nEBQun<~ny-3mL_;1LMF)`n{{dICtOC^{JQozsp)1gd zCyU|51x$ZH5$~x{6ON-`EBG5_phji|@hjG~BC9cep&)*tcXb%uYu3%ggj_&H$rO^B z;xP!9M3K-~V*E^LeB5V-+Agi2M`n_{rB}q&1cjGH2hW(3{t{lpdOxw1H-`iHub!uF zOs$b|gnE^p@gMC)6@`)elr&r(YOKq_f&3O9(nBC8vV-IwFsu6hBfIPntD?0r?Yn3v zBpMbnnC>rv?_10GFN#40vU#yd-v^n-4+B1KnN{$n6OT>#($<5nk2HE8$1+!yXTf3= z?VPcGI?f6r@ylfo_u;B99TRNA#bN)5*2W*@<|o=6jQ2H*iuQUy^ndbxmB2m|{Y|kz z?Hv6NSM{ZoDIC(qV+(&f?aa| zen#DPErPeYzMnH~TsfZzD? z+lG@=t`5WU&WiB>fTq8#F;s3o@i+4~H{{Q0;3KQ>tSCr@*}BiN+}?u%(v2mtApQT! zjXTNEFcvv1^RR+!uCjt}$pk|o1u!Z4AhzB^!2Jz{&^M%ql#fq+Y5q3{g?}O`C=o@V zWFz;_F^5zeHP#x7fW_M36x!;b3|_$rp}hMzH0Ac~#AM3;_sPp-0Cs03ct;Nl9w_ zA_GBxo91AKDA6w7_KhZ)ej*<|m~^ty!YPQHz641k=J&Frw`($nxm0wZ@?Z&azvd{l zn9X0l6BW8I8h1S&LFg%S;$-5?Y5#jgQ)obmHRIQZ`oYE+3RyeIgfD*oSHF)AYd+I- zbVnWJt$`1&=J(}vTOkgW#X7dXaGZV|#l&a)jDRm|%YDE3nm&QmY<=SB)cRmzK`Bq? zm&ep^X`+x2XGzBUJH!;Mq8T7OHvsa(6u{YsaGWiiX373s1WanQgM((B1$e49s6G^Q zXLQRJd%S>@>&=6cqIS!LQ>;hf_qJiH&Um+P*v1Jv-Gs&%2BQ>fHLq&RvT+NsZuL^H zD}$WE1q4DNnlPB>3DdP8z!~@>&2lcZ^s#`Dw8=mAn}2n=#QrxwljNBhSTwx(mQ)|G z<41kk`l5yn=S{1CYC@b~K{;DiP{E;T+C^wU9#8e(Alboo2n}3jC1E;psAh1OYk~tg zM)2Jo?H)zkE7U9<4#C}4GRNKs(Jw$aA`|nDF%>5gc{wsB?S2K*)>4s?w|dOz2Syu& zt4=`Vx{|lKvD<&j(s&=kzw0@USnNtkwJ=2GixRREAA{;e17>hqzRcIMkz2>v8S=Jn z-V=u^=WZfEAixMx9Zzap;>fa-s!I{lS*H*fNfw^&%f2RI0PRoYSC^JQT5RazxvP-~i7T3Tgr?nB#Ht3(q`_`0w1s;sO2@~9z%=@0Hgh=RjQD4L zoaMA{wzV91$Pclywfvf0@J3INr1L~}$d~)^ol}X8JRp^uKfGWV=OIuTBzd4E#qzak zkm3=X486zS1nwX31`)USL{x-pG?WY~k_CAndN;|5=!3fB?bp>yoO2TEQMAPPe*Vu%NSJg zOp<|W+w;&v5yd3}0N?Zy#ct$j#W?TP8(@+(S~2gQItc@#|2+OA8r4%aCyc%VYCT8x ze~aa+gZ_q;T_>{_v5Iogi#S4V=49+ghP5b{qm%SjTpCk5-cx7u_UlSHP9gyCPfl7% Ks`3Rq@c#jKHvxYD literal 0 HcmV?d00001 diff --git a/icons/maps-and-pink.png b/icons/maps-and-pink.png new file mode 100644 index 0000000000000000000000000000000000000000..ef047de222a9986dc1282d080b4161fa8ffb6431 GIT binary patch literal 31032 zcmY)WbySq!_dX8K3^jCzbazRL)Bw`mB_$=2BAqjofrONVlyoCV*N93tNW*{v(jeXZ z?sxd++NyzSYxFCB&n}1A#z<>S|96Kp+V4R|p7-4g8!0 zOkDv#;8zB!ilFKd`YjNM8KnM1!6?9bHyig8z45=^t_C`&^P_b+3I!OfMM00{9WzTt z4j~B)OF`KPiBEA4jgXAUW9I%C5JAHZ`~$c>B9HqGoci+$A|m2bj3|5CY3@gUQ?~~QaI_t9+@n3Q=l8se1ESn_8P_*wC@>65_9nSt}R;qJcTL;R}%7pJhAV%=_C#| zhMAJ_$9AM~?EJ;p$H+?jI>yZ)(N>&pxR)l)|HN6IxI3Td|V;K-Eq|0{SOGV@kGdKv6ycn;31;<*LPj+z)AZen1-0Yg5+c_oO(WJld!xf5bY&YVKc z>v#MotWX(f2>wN8V)O7DHySWoEhez2*>yWiDka-*^|wXm7?&iq$p~I@@GZ+puAtVH zU4~JX37Z}}Fy^~L_b(a>u#8s7`%r(^gX{B1H#59(PVblQpB4;P2m-F21!6T&gs9yGf!zuzn*-)EP5?GTzY=85|Arp6dEVHw^^#g%)hl!o zDB0AhFgH$Ec8-$NVk4`gH=*1gYY6S-!0lYEYXYm$xXszvqt9iJq^#5y!xw}heW6z%I zNudX+E_}&ZC`LYZj1d3LZfj1h1iQx!s$C-Fj%if>r-`Hmb%hMKIYS19ULKyzG2;Xi zIqt_HMKL$PxzR6kNqgGv8|^SP)PZd=NE?144biv?S|PKwVta-e1Y4onl!m4Is1iT3 zRAUBjNLvC;JhROAfL~AUHN$ZW<SLFu&5G;y-f@Bfaq2O8$cR9*K`DL)dPmCMYhf z!c2jli^1DIU+&03gf;eK7BqSqa6>HAnvq$cRt&4>JHr8%r zA(}@irW;Cu{>bOImNF?BLWq)Z?7Eg!VTcM`GkT5rk1ggqv|En3c)&S4G3S}{Y$&#w zT+?L01&Wvk3-P zMuVutJgHK=O{z4JKtaC(z5(}BpKBk&OgWiE;${#IBcU{4Ra?Qntf=`>g4d*nz$`#a zM#EehS7#sCLgQjcg(2DG>4Zws_{sNEE%^0fkXXPRaH|I`KpYQ-KgBxvyT3?Ji@1O; z659KboV7@HP6^oOVpf6=)g={C8uomNHsC?!^v)tT%n;HGfs;K}t)OmG&@mko0K(rD zEluxLC9WpWl(pvKe5eHIi~iAjcKG z{YVk~DyO(+7<#v~)JgeCIa7E(-Ynnv-;lofh$QKAjm``na{3PSQ3jSrVTBFOwH8rXeXFd`SX ze;*qdMhO_kV^i6q;?p9|!Xl;{xfGrz3VH&E=de%7|B6IX)v*F|EmdO){tzR3et_j0 z>w=lXAx!XH8V{rEA*V_nIp7CAioilqa)04I8YxW}4Qx(6 z$(SVmX@!!${o?^Ng1o1AXi_y=iG|r{6gYpNHy7DKd!b=>6dCjV|F{1#DvejS__Z-; zlrukqP~-P6L>M|oL~sB=uPwsWO-~AA2v7|e(E0#;ferJFB8lk%A=?-c@cH?ChgW*o zDCl>22?}6tnA$6h>Gc`H>tFJWGn<*w;pxePZmN7OD{#*;Q6*iYfuS>yQ|$abfv^NN zeGrBe01&nnQ#?EH_;qgzFCaj#p@`)Wn%)A46(J56oeA-i#H@(Lp-wOeToREQ@ zBpvZc{siU-N>IFy>HhH=0J9kd`t?>bc64e%(@Ac&K!P5@0`eEHKUlM3IVu=10o=5G z-M6|h7h8wh6T5g3upvyLiDJ76FhQ*_`u)rRQgm`@JJdxG2TVVe`OuIh(4Ir&3%fVk zg4K^IR<&HLL08o;9PG`3>;rV9l7D8%_TM1}oB@p1Fqn%6DCnbI89jmv!3B4|^Si&j zP)i%c7!nH_J6qKGBWZWk2mq5x_;Q<}*29+erdSR-rL)%R+yi&GV=ro&-CS z3CYM#thE)}(o7Qn%HI8a$t08FXXyD7{LL%io}7kE9jDAFMjTv zAa>l)wB3IRU-&T6;ci<{g6W`F`YVX{TLcc;k(dX@EJ-zvlk;*ntKMxE$V0rTWPD?U z*Tanq0dxcB0C(R9B%blm7j`M06Hk7v8%y<*Of6kto`;x?S{|tYOrNk;-pkTx*2_IDAHplnl*LzP+P$jT-TYacBfhBwalK;w@DNmGAp+;8Y2 z#&=a*jJV&5F?8w~VZtY&xMl)RQ&WxnJ|%v#=pW)QYXpokMpgVm#~`x}VQo0P8!^01 zuqmydzSfDDqhYDF4Mon1BAOngbVF~n)vT?}#PBK59v8u<{xTxvglr}6H>(Q67ULL? z;_X!_&-9{gK&H}LA6?2M42{B>!VPqqOmCOgpE_|t()Yk|;;CZQe)e5K z^i`8)X~*BB)D0X3U2xCYQ!QVtq3BNED0N~ZN##Memw?6JoXqPP_*;CEo*Rx~g7_=m zTc1_?`g^5rSt_B35g&d2_E&y{t|CQbt`8m5%)eQ+Y8*qx{FT##z&wL-!e32|8~+J_ z%q&?_d>D`&U+UB?u_bue5Ubfy2s%;PxsxPv;H+N58sfFdm?ySh8VRp(XlS@BAWO%3 zbw*k&BekuSm6!n+aTnjb=Q%7N>TwdLMNCGo&5m=GPwKjSAot~ zTyxwZk|cHWI5!~uX7j9Ro+S0}b8@LyW$|iCtn^Iz%?d=Gr>B0scj(aV;Bu{V9+WO> zoqqK70JedW?amBOL)L(TJ+gPO@}==l>AZbiMk3IO&DeUs>0;mB{c8l}@hN>n6ADsO zFZ(OD16ySp^QP4|KH8GbmW>H=M#Ib$U-S=%ATAoeI`oQKBsYhE2=JN|5+0e)5Z&*g z#6gEeP9vqYN!{pb>#=gr!%nxcF-(sIq`mMJ&6HeNQ6TB2-DTkW`N>=1_5$It?{2Pc})~Q8-=XA21d1BbG z;!`sfon#kV)~qK zKZ*r2ku}i{s*&V40HS}F)?40&vmTbIO`K+I@UsL)j)FF%rNNHVBEr}Hjrw|ie)#6x z{0+sz-c0d6uu(g5w6LVG3)3&2-O9#g8Ar)-_OrZAK-+PJSQE(Cza?#J#PDPq z2mh^f(wxdqbb9g+(sq(k#`n$a{3`cX+i}oN-%gmvua-C%F88p1WDa#{ds5$oX4I9X zChN3=p8`^jq!n&TWys+xKQuk=Z!9dOSsI$hNA2_!3M70BSP4SxX5x`I#4jqKzca1r zDAD^D9eb_yqVd{hM!A!E!;Mudu+mj`0|_joM@86&PIx-Fb{l)vM9rhjBPcC{4R`@_ z29dPvu~6)1_*_=6G`x$B*vXO~Ty&{Erb|KBpfP^Jogb!?DpL2}Ej%@I*;W9x`d59IurN1tvnO6-uuD)wJA4#3+Xl&FxNKMiCmJIX;g!>tDQ>uMN zaZNH8BJPTR@SNzi(lbvLpXtG)&w%-ZM&ZGG*6Mr4IV10ERSW!j1Rn7fy%g`u`G$*c zGxjlhO=)#dEIJ!qdKr3i)YjkLOAAg+jx|+>ULT~}=*4K*QzVDpOxrFYPYOk=tc-r9;_@>1>2N856YQHTC%*pyB|t^^@Z({`2soXX*kaps)HmGVmZ1a!YcZ{fQAT>P*a))L}QW52NA#M&`M+Z}Z+nlZa( zfG!p(90vpq)Rz<+`{x7-8qj(18;R>TWKF#w^VlkMT&uH~yE#P1gRr>A2Bn3P7z;iQ z^d;jd)Ab{RzqMqmD^pL5R@h!TE@?Lg<>}prNiq&eXaVzxGXGd@%(JD0V^@qs`J#O(emvT>RICwlY1NDuY3Ns;NKgHVmwYV_ zzL%7NRW(HM;@aU$ZOb|{FuK%sih9vR2*#$a$OC0ra}@iOd+x=XYA}Z^_`>H2kN=1A zMeZrT?QTQ{wgxaV41Y3?zvv~XuW0Gw&7j|NZJ@gOGa$9^mg)qVf0L!SFn4dICh;P; zQJbF-2!0xd{L_vFZoB)xXU}CCm!cuoAY!!%1aGX` z1-#jwQp^)+#oI*vlDVh>QoV^Th@Wd))j+(tx-}Q{}i76vwOoN5}wpb96p0N zOOpzpj=EYYope(yLqA;Z-N0p{UW2*3xV$^-JXbYrRs(Xp`ZjjHXLdZAe*R7IXz9I# zgsc~U7fkCsoi(0eJ{XtJGrHX2!=7%qC4m#02t;GsuPKYve4e40PZh7B#_zeC69V1Q z9P9RB(^OxoYJCfAQJm9n;WI23QI+;tjVIM8h&b-YyN;)!v7+h#I$F zdLipY{eU7c={h6c$dPHG#+rt(FCAQw>OTzk#F1vPH3S}z@8NI7@7)3yXyI<{0}p{8 zptMca;J76_{HCQcuEV&jLenfhf5N8o)Wrk;D(elYgZeE2ixg)pVwf-&ZNM4sdc~rb zczrK32n)orDWNL+9)8Wb`y0J>;m5Vm?v2JEz3)JwflC`Dk=B-3xnJf znhPD7ON-)B5s(Bhe1BfMdUjY~j9K1Ue_r5m z&Zr$BO>z`5pIw_E*DF5zZsw2uBz!BGhZDgNwO0I0(LCid+94>mAb+^GdXNlQG5mq0 zfjjuu%T`D1T4C6bfs>C)sO$$?thtX5in=@fm5K7bw=6OAT9P7?s-Z*Gwl8uFwilGr zPsnvghTY+qDLt5pe2^5X(!!U6cz<&7j6U^mCjw?uB-WeEfaP`QXuO z{nx*ZxXXgIr$?GRi7)LHe|H+qmeK%mi`Qh#c|w0881BoPX}#=X#mC;ZzBhFftqD{2 z#Poxj+UX7439{2+74`jCL!;}daLnH)>PvTLHAK4RiSIVPHB;_UIVU#sTcwDEI&KC- zYf<5Q;~ffWejc9X!vGs_4dym%5P5D)YZ|$m@s0hc?8+%W%y*6Cvzm2;3>e^=A@9L9S#alK?-H8eNJJz`x$bmSGJNY9+wOya_ z#+RwipT$AzWyYLE8ryP1I>QbW=WCWx4hzksKR$FMwa(mIGpaVWI0Sx8{FEKb^@CjBSA_QEZN>&WK!%&7}{j?NSU~7P7uzRhrK$1u2&Pgpg@wi zu>7g(uST$pxtg5$76F^Cj(QiAo?I%Xa?6vGJ$&Sa!|``6z(p^_x7AkrH2%Jp7KxwP z)M1%pUp}eGZutxu4n~NVXS*!V4L@MhdN8n1ak(Q4OeM$$!xJy%1Z*qr3Fh4j2;j0q zcCdLAJOehCky*an%%XGh@?)agiu9Yy1N0FS^t~gov~f{mK9ac9kp3L z`E`K%nqt0RK>MYs^eX@ePi;74%Tky7DRssTUtAI8-w~o=MhxZNdX1P2CTZPeNpR1` zuw5Lm{`qsW2|Mp|w66=#kK9hW0^(r6idS;~52VkxC7qdc@xQI@?!T+s?j= zs!JB(Gw4$;wgXb@iV86s?5ifcl1Ac1==I!q-m;5ovzNY(dkSjI$7X$r$(xg+~)DIlT z5Wv%oZX)z1cHlE6GTORZ{a{7+a<0D{jUd2KXE*-A_X~YmFeki*P?4+*1sAkGW*Yc% z8mV_d=znGSo|rV@_iv0Fa`V7Hq~803cGAS6tq1SkCw`iBC8a{4+p9NU2)pZ(T1^8+ zh!wSXl>2(4=BYJ!WWC25_dJ`Z;Y;A1G~3NHAmCW%3!d^!`bTxrwfd0PUnb{e;hl#6 zB*=GbX*xsBQe3c&*+}fIZZgaprQdw?I!RAz2U4s=$#LXO+#+@;tFSpoasgq!oSw+I z{-81KOk_Lf3+NKZeRJY$vHH?Og5`O14LH>Sc+%IYvH`4tq}K;&rZddQw%rICs(aV&ETNA&>ePZy|vClIqv+4ow zORR-d4?wSW-v!&g@WIptr`D=6tx{h?eNM11ZDo&iu%wP11 z*#Vk5UarX%B1JDT`&wEa$IWMCCo^hXruvYi)4a<$+DW{PnqOZZ{VqZi2LP^sw7jp2 zPqZ;AA7#p(4VxHCj=Cy=kdhY>6#XMiR4UL~wwzF^z)xm6*;uB>LHDt3HCAojB*_s} z?#dfzk*--O4lhd`DD-IC*BKenH@I(-x}Z>CWIZl<6dVq3?;kb#7$mQ z5tEPsl12^pb0G--ICVQVa7ne#6&N z_`{zMq~@<=kYS#eJU2p7YYkyfvt~$eXNe8o82>9(clm^IB$vSQ%ztkhlb)4*-?BXJ z6O?;cHzJIc%YVaZ9MkRozOS0V6~xNdJV67>pfaCVE~!9%P&{h*jA1IU+;?}kZ+X9J zJSfl};$xb>?`Qax6c_L|R-O}47hcicZ;SWJX?_V4sr6BrmQ@}F7!bCZZAo}PLwc6F z1SA2kzuApbqHPzQ5(HyOkJX?%3j4?@EfMlDdE_C5-BGScmWo@Rm^IFCldBr)hcOVt znHW7LZsELWJam)+Q{+F#)i@3q8>M29{2ic+2r()R<#>keUR3?5iK6oK!HSvX7K*B_ zowLJGO>kf^M{DOOv*J9en;{{fTX=9u76xxzqkW()kW;a zV09#`+Z=9e2V@CTDo=n(zA2p@)iqYXCu$d)I0?=;yNAWUR<|MlAwcy$j9av~yPaG? z9>UKco7fHR6IXN(S+x_e9RL}EkZv;!DFOZ- zXElEiy=MGH>5WvlE9hDEUBo1KX+um^IX<6%%cfz4dr?X>nuj==-2!Oc4`mVjmOJss zQ_pfSrw3oA>s?3udy6g^{!NF4Z2%pMM4Kn^`EFapk&Bp*$zy7wu4-bJ4Q;=*UF#kY z)k&`0wSRUa(LQKDjSfAKAo_E(NY4Zee-S5=9-Cf1k5GXLWw)&Ncdpb|NBzpr&A!WT@D?&rIAi?}jinU)pL zzzt8y5~d9SoZr^{mPA)+R)FJ1-%5genGD~SfFD$|OvC9}9IOP>fThg;g`401 z$mls^PK`fiiIc6~&w2pjCk26|0Elw}MePC`VEl`9OWFgCRvp*+v|tUk*(h2-m4b^< zwOgd^z9@P8P$KIE5b^RXPIr0fID8K>4t}MQi%I|lnZtkVkP_AN`FH5T|7B%lLZR3h z#uv-TZ>9s7vU@k2GNlr zx*VB8lw|-^6bUC{DQazAxG1CC8ogT6HH`R*{~8t`ex_QjWG8^E3&y+ynzxOTznp$P z0X~vmp3P#)am#CafbVSUWEcm_!;B|Q5=EcXLFoPvV>hwX*NH{Q2{DVSm^+%U)Ub^Y zt}<0)WbiH4eiIJ>b3C>EHY)Xm7CA!T$&@iH20@S}qWegQw<1yqbOM;D7{&eF51Zf% zZ*f1=fkpU4!>+DlIt$DE$*U@K05Uf;*4dAAUmStEIs#pE;3FrWkfYISzOtrvkpD+p zDy1joKtp&5#Ea3q_Ze;t72&ms0Ane#q?(kMuEMUJK^ zM>x#-fZc3u4Ba&fiiV7p{8#FN474Hua?hOV`@AX zkep};*+Y)cZ@apBS@}a&fDb|2VS59HnTEC(9{Kz0krwLVSi4izj9F+JvEUGB<&N=MzAt@4VRGir6R|Q zyVttbwvSp+7(99y)$qXA_}6#6s`SU^1OVpVt$qroP{ztU0PBEzWUr6kdT>wOr}`s5 zm_iO9(}N35muPfILQHY{ms=UQRpWOX3~SaKo`qEj|XUB3VOWH;dbgGd~z)oar+|2M*0 zL`*M-OXShcW}nsOyxtCk`Fo7ZN3|!o4bkelYXUHI+hBBgr)DtxiTKD4H-~;r5bWO{zk3b7& z*8VEQyY2PO%oHznDY}z0jjpHoXs>uI(3B2q%!;w;5g@|9Hxq`s-H6sL_sL$PN{5YN z6h>mc^x_B0E*HmX?|=c52Z1`464A}Uo6`}h<$m^jiGn3F^9`P@Cb&}F?CetjVC`g& zRMbWeNfp$W%EOzkhrMa)8jTPXopjQ6foEER*)DF8fmBip@5`Z$r>&XM}t z&e)~I7_~}_i-B?x{i@A}&M>fG9$Zo0modT{bjS<8jV7tTAuLj#hg&j=d4>gG_lf;| zoOA#TBoV5%BUg-Fw>HprQPuH!+hx1%P7hsDfTaQAWCFf$-M9E)PZY!Am!~7%8^}+- zQ9Q)!yZ)Wh9HCC8!c6-BumM2;`6HlImAd-6E1FVP(LEcEVP9`4H2(YL82Re7Xms-H zS7+|~BIqE2QQ2O?8&?HejFGeayLT-Weig2`v`3YGt%vUYbNcsgi~)Y{2bGz&U~lgf zK2(!Vt{>5-Wy1M)^xW>rU{&60=qbwim(%evx<@5PFB*vM-v)9;GFl>ceC{JGt+y*C zO)^d4I(?YP{}zaY(8cfPI`aBjOYAsJlfGwt?pt$vMSl#_jV_Ys(DKT{o#RF~F|fM* z@>6`bgSs}5R7&qt8pJMUNceR)e&5eIM_;#pl4DBISH29v!rzC0 z9qW5vDT?8^ts#7N@`-xtE00RpYtSbg=o7oNAze`}SdEyGfD{Yzh1PPKjOoDU^2>w`B{4H1dib>;@ z^O()X{wzJBzX4T79*SX>t?qYL{l`lgB>#pC^ z@!_E|F)lNw!-{oQZGa&SCool-ZVRvD|)cN1OkCI(5@z+<^$ev+b zoOOAX-QyhT=lgY9VO#>lDYJ9&zzV1EuJzu6l=DnrbDOoA-|+YG&mr7fVz$VS;m59+ z@8MlDK^WKQS8F2gl%n5;*Sj*KBhT6o11V1)vq6UB;E308qTU8lsNtL{PUPNR_O%|i zWTc(H3aqV!YNPraAY0ld^9sJJ`C2V}$HOGWTNZ4zwGR67=|m3e$R%JKzdI%WQ;5o5 z4?s*0)D$j6hS513(=T57tzHVk{ya-;y3pyqp#!8(n>bOe((FTn(9OB~=a;vPF~p?U zyC42MFI2ho2Lyzm(x)9VGN%YWtoUQ8_gB|*unR%OEJg?vSzyd zCACM-suONfH`A zf9U_NJaN$oR;dvU?1;UT zs>vk^RGBm`_H}Cpw|^(}EzslNS$!RPDcPmM%nC7#S`)FkZ1lKCjkVr(6$ss9U50`- z+&y~9*H(aO9m*~{wiWN7_?2T+y zPC~1`H{Za!IG6hM4Vt3;-vp=mJi(vUR;%8ddL$tY7{TbN`qJkv3+!YvtzTBrSEq7O zy!B~_xqI#vHGQTd0F|5Kh>EBm3up7_u)gc)JjNK&rlnSVA{4wF-CtGq>UEH2EHR3~jei3;P@UW}=yKO}z8weB_|nG1NV6s_oOwlSb@3?P`t? z-Nxae4HPsaS?~TOc4T7-FQAyNTww5;Y>adJ41_@xRZ`P+w_ZnY#wZsDd6Y#4>cye) z8TDlY@cPt${Fp?^NB94#gw7{?TMjGUHh04{q@^^7ma%gYy9rsjBLj4bbcfmA{rVmh zk|W68i=D?7fIAKPYW|tbGiBT<#v49*++=zE{=T(g^y19@-4_=XW+#ZXJThf!$^618 z8jNCPUod&pwP;X}oky7RpWrfIqBt#Z0A)AA*-119v^gSMDSOeDHj_cTMi54?=`$s& z5D8pM*H#nXuU_oh7^iQV&6`00%*{8;r1XR_FH8J>uB51MxXi_Fb4;nFE(9hzT1VZ` zBJfBKZ$&pH{(5Km7>E4F<523>?EnGfIYvIf&-^_9`mkZwa6j^;&}l=2iTVt9F>u*_ zkZ9n94or;c5jme0QHp~C3eazp;hqei>&uDn5tlNiYRh!##Vc#TX|JN5GQ}XK{|ieL zpLC2osH|~`} z{HA+mw5q(3TBmWq6dBf6Y}+a9ynpVAk(x%6GKC}2fpoan%h|8%l`l(I7}q-WGEf8L zW23mI3D+8i8FvPoZRDHhlx$jEXt}9c`h2&ZBO$Vs5Vq}c-_{HIKzLiMCqHC5QT2+l z5gdjwE53|#sU1Bw^RI`T$HYU9icsUSO8PY@xH=f14)XF`j3A zISXphLkSh=i%nL6&Ac%VZP~M&__reNQxgMZMT`I%ad|{GVWVV@On?-O7E~ZhR;F2= z?sKnJ0bfQn$+1tF;@dcTQdnTr((Iq@?qb<4bFx!kw?0W7oQZrG4o*9z{0`t14wV79 zt+{rEe=L~@k=zUfuP-X`)LHH5Zw$*)khnc}1yL=43Yowmqd-G>!?zh%evki=a$#-^xCF`eeKkY!-rX=-{y6 z)c8+SfG%jc%8e`0rh(;0F%2S#>@Zl`BIEApgLb&aKyU1BNz@NUA%F&2{#gX{mjIr$ zz94hmx64~qWI{l*p!E%_&h#~|uf~ttV09SrWs9-1gvpjJSKA1_W`s|^t*0%<3{YUq0u5(0A9If~C8=3v7!Tre$tfY(x(Wz0| z_BY--M#R^J<{HPATnIc=1{5zV5;W&8>~3Ui>{0;LTJFO7NZ7{&qDv>1Igb;Ue?zsg z8-WcbPL&WP;(21j1$od6UcZO?=)Ude39n#`n~4__U>VUZ4g?F$vNcWfuM&U>x^~)K z6IF>0;XA3>I39PLGc(6HjKI!o5!xgkF!`~({i|Owv{jc-;}1VcO#)rWwj@fQ?2(mP z{AmU{i@XZWeOUh2@{Ih&M^mAi5s^CV6)eCl=@ZX=V?-<}PQAeYaCkpu)`rT+^5Pti3@6 z9JrAGUk;5OPu%`|eWy;n2|t{bIcZQ?+wB1(#%$jc;be^7ry6CNqj|FvHQ$p>!H zD`nUh|DiaN+5_tQ%4%=IJ{_u9XQJ%A#Y^Z4+CXV!o#AcXzcOVn5YM@D!tj(k2i^n$k&eU-+%dR>N_nQYjk3H^6Koqp|mC{ zKKUT{t?(8iepp(}$e`)a>&5F0CnwA!_OWEyjnr?y>@MzP$lvzO1Y7!pN8-3q%Ed1T zkrCKPlS#j`#`N|gP2i=n#*`yKf(Q9eD zPQSj?V#9mBFqasY6h=E8`LYC>=95yBYN;=|BKA*VbSin==_LzKDnoc6C<9~X7SK5KE;(4g5O{=mQ3;r+)%%HHH`v(IWf5@40 z-$w-9sax}~lOOq8GA8Itf(9xd3SU38bqmy>N|{iKW`DCpzUS~YuR8W!?AC&2I>nC` z3XNmEF;64<=9-fYWHV*dzvB=r=#u9eA?&yzZzkHh5Pk{}&`!~xM}5ybMcs**rnJXXgIY8|W}=({}tJw?X6;{g5x$CQoj>Fr)q1J4@hmSE4JY9T7H1&3J#(i1yAhL_+;H@i(fU z^t-wp<+2GAJ8E~jV{Z0~{$^r=8>3@2D6Ry?oI?H!? zj;Ef8`kH#8xu5vi8u6t$mHoe-!jGYp6M6WaJIeg!#y0~#K!M`pWbIM$h7LZ}Ax-x~ zF(=7dQ4-oe!t%n@NdV)%?SaEF$!SLM1Zgu+-w_%&Otgc2di73IVKX^ZS9hhDk6(SH zd4+L^wNlVR9@o3-s3^iQ<&%1143{qK+dqu5DD>V8qW5`~e^;ZoK5w#NWx4@qC8}M8 zIDAN6VvM!p`m~Wv^HcPf;P-#Ye`B6PRP^s*;^^zj@vqT3uw{;^PR2S74q1i^uRhxE z)0|zTFBV=`jVH8n(}5g&c!f{$1U_wTe4ZeNp4PYiTUjsxF3F8rCItEYV;HH$Nez6upi9ZmfTO-vGWKuQiv_q15EmsRtiiR1erSXx+ zOe>aAB2W+^zGRO{i$@4cyAhpkil!DFmzX3uFmP+_n;o8&rrJKfVJ4F?sRU?}IHuF{ z`rCuJ83VsTjaEXhf(}}mVc$&gaW2~ce7hAUbHZR*8}%is*{m}Q)s{cROsoVUC5uuH zhD>%CV;9(c`E$Z^yVPW3On9dq18U0Z@{ms!DtpCq(ul~YHG>0v8B9QDSeCJ{IHb~x zd6K1gTN^*D`JBcMBXOCq(z4qkn*9=JPO*9_XtY)&-mrRh;a?k~`uz-)}GW2th|Gxs;=L62WSR9=MVlwY&jTc2q0Fwei+&6wuC9F$z_*#I&RkqpXH7< zwH*A6W{WLeR2=(tJoGIjH4Vuy*3=-}FROYkk<+%n;l>Q8phjWuvfVO?M>|cS$)BaH z9@b$qhY}w)gb1dTcF^;(qXv@U|8>TZ2|zq;M-3POSEin{-23PFR={gY6dEaCgr8)` zPFy_fqf=-clFsSa&a^yT=41c6u_554`b8XMh`7b5QGc-3k?$MjRIR$-NF+Ab=9||) zgw;=7KbV))+5qyjriEy; zsE1U9E-zJm(7R&H53|mBnfie4+nCMq$%C>QoTxR9FKdk27MYVFr6iJIU zbVdKn6aVCvT>C2?y~quGgktM@v~&mJyNGwZi)1|%q6teCK78Y8tg+1~)PB_R=t?U8 z?qB;K-m;B7QJwJPnaE}oZYopDJu7i)dQxk4$6}eeL@V1N6N`C?G__Ep$;1J~Gjz4< z;!?TA%cm#+}K-E412BMNA;p>M0%Mu6E3QNIsgzv9D&4%UeiKp zr1S_f?~4sYhmTrwvDb`Bhq*Eg6IS_(NpI{)%7u&6pGrID(j3Kq2J1P+A?Ef?aL>lb3UqsDT_=Chmh`-B zpKM!bI4dT}8hiI+6AF4OOZ3Nts%Nw!X#ay4=veyY0o{<%?KAVl+%Wypzn$J;{i8ys ze2PogO+X_hG90IpLRFw(@JJ`UK2CW3Au5A!>k_#d8~ewZK^qX+(x6&?uG;uhZtvqO z6sfWk!h!$=yoPCA?b_O{;vQdMjG>?nanFrwznpKKUT%)_qVlBy_IcE5MQHEC`)Kk2 zvMYZI&ejgjcA}y{l1&axA`#C}JDVmx7Y`*DM#3Ny528PQDc4TUEWh6uft#^s1%5zM zbd#r|Eiy|ynq+xba#96dWFFVO2pJXh|9@J5g=+-?jUY(kj?U}ABM}=0QXmc%`#NNN zD{V;k{qw<)OI1oh^xiXl;N5nf=TJ>vNDnQ&puj&!CDR=0+u_ zRvd;KYNVz!X!sF*?<1U9H}}K!yrCLzhgAS3kPjT^F~!~}j_}>~Mzfz2zDk*L|Cza} zBzxaW5(_ER3dTA?xp^k6`Cd}&|Mf^e-fpLxR<_|QyIvXfPP;)L150cjwwXb%}uC5(=*KNIDt-+!ClMdbk zdUKxImD(;sl|6-}c(mVsY;4e^Zpd}8%*4mO+~jWp}l6n z1t6@8U2^R)?`5l6f|~Zf5StG{-yr+@{CF3&z@ay^)4NyRA8h@L4qgw7AEC2ozdOOq zznhaeHbwU9nITU<@A zf3}=O#?$y${q;|?_vR0?64xtQLOm%xK~!?l6`{fsukhzVv&yF^anSGh@n}qg8*RRJf_kr-7xYBT_NY#-7TylF}?U0Rv~`^A7U3h1h2gl1Q#h9989QMZfKwjwg&Mz zPD(8pG4=L7Rr5@KDRM>E5_Q+M$gOftx-EK4QBn8@k-M=q8S*79anV$n$k+q4I9|8^ z#+)S|b3bDWp#Gi~SExA!vLR>ILva?K!iTQe zmM;x7=lV0I1cHu&qt_PcZ)A29Gw!@M+eCG9H)5M``+pj*>8%3wgvZ~|Z$XcdYp-BB z2lGUpHbV~%(EoRUM{?exuFqhb(}xQ_w*?c&tNk%aKBnsb4v3Ht*}sncIIimq0@&e4 zg!yOjyiOLY*vz+FwPBR8(*>W<(z>JgrFrS4rJ|Squ17Tf-^Zo_uH)FNksY8x@W<%f zCn-^ds>e0{-zFER>gN)qzn0%OF;~PFmk)>ES0~ahZY(yI@NCHFf~s7m2Np!kX>jZW5G%1E-DQrin|4b0oq&aBPOWh_ zbF%Vm7uNZ?;N@S)-jEAuU(dLENcVLrRP-T@_4M=yYXnjdlX6$;;7jLY!jcHT0b(;R zDKhKFIl49mILFC;W?P0b;upR0iXz0*lE$T#z6tc9vsaqmRDXkij08`! zk=p$=QJwp*cho0CNMKvbgjKR)y)^4WpqPIV-=%=2`L~b1j{LFS%_E$y0RiCQQE2+M zZMH8(>M6spm?7I%S=+CZ(<>Qc7y2J{B|HI{tz_6@F}shwV6itgA6sfthVCUzzH4I> zS>8;R;&7pNwmLMwX{zkisdqBSQ!amjbc^{y@4oQB)eP~I$cgO%3L2>JH(p{arntWj zp+N?e?DTm>Aw^A{1knl|hn?77uk@ zLslfHdsGPXjE0m>(S{o9IvV=!KkVll=@ab6Uj?t*F!RzH#)eT5+UT%LuU@K+y>IlEla>S`H<8bquwKaH9lWuPEg}UvL&5* zn2akc+PhGqJmkIw)UrQgn*{QhfvhrFiw?zQTRLyo#dtl+t-7QWZ^s|JU%J?HYGY_c zX1g5k4HXvN*dwZqX!O778^51x4EuWTUFzIrfPC_jLg->R&<)ZpB zX{zsBcE0!=HPJkO@3?NOEz0sz0Q4FG;Z}th42Au24)$SeDP&TX@<}xuZb1KM{$pek zS&|L#vf-i^{w%3TSyf^4pcQSCw8T5ugOifRs9Eq)4RzY~mOl?lW*8-f_oGwgGH zy2t@V?(JLtemQ1dD`C@t1aGGAdCbtPf$_qtFDfR~95ul_?S@(TG{m+5$on5xjWwQX z{`%T>NY~Nk$(zpEE@fknx=al@eJ2L>*T+hj&tYBs;7_@OQn}0g2TRyWTEQ4~e%0w` z*6-s3q+;sjhu@YKSDuXizB|no{inWatxx74bNj8rzUcp2@n;#=HmVrUvfmV+ zeh1r>kny+7JWBdwXeT)gZp0@X{`Kh}7mZ|ru`K^@3MTBnZ@f9a1^rSl zQ{v~%SUJYog%x7ZF=yxry6eKWOIG861u02pw;SF2LJkt%#6SLr`-bur-9o^@qwRWX zqk^GnjPSeJxu#+YLr@G9)ud}wyLP!O^& zKNCzU;h}bxIsK31+T#%uah0H~O(x_zC)4~oI6Hu(;9AtW z0G1=ld`8{-qtKdz%J@_n+j<(&4JEYxIm(#)Qj;ewcs zsiHfL6fyE8P=C>zeJc=Nb9`=h_XP4COfTK#c$jkpD%`N!jiKIpr&e?jj}T;R#`AJm z3=loNc#gA2t9+;a;XG~VlQ4`fAez<3jxXe)q!1xg za|>3HobwlTm2RK^H2!ice%{l|*yS=ppv zUTGKvAry3xljqo3EJM=Zty0hk?Bfklg1KG$^VL?R%7MbC^)E`HA~kOhz<|PmJLKGI zCi&0a&ux=+2bn54bPwsY#1@F^m_U$kNUk2|vqG%?_uhq%H&6Q6!^~wC>$yg<;sZ#% z?A{(hqg{(){Yo$#=zDJ(1jyR`bq{}z6uhVCtCXvV=I_yy6R$e%MnG|;9=#g4?l8t` zt*7b81(lAAXwj}5X3R4gLDl~y!PQ0r68#u8K-QmcX7OmIchssCq0gW+3eHtIhU*lFIEm-rc z&f8c#lT;>ag5N$`Z+gotG-K)Yss0D~u_jcgY4_)y+@idOQE~4gzn!esV;CEg#;Z9Y z48qXb+=uJS)h_)0CieLwCp+?x>#TJskxTP-){d03G9GMCyrbOBbnKoU|G4aEdFTz` z_tLBVf?ti4{gikP9kV~*oA>RQ13dlY)TYHqYRQpKw{=KaaRG?p*sT9KgoGn&j73M=SCJTE^l@Nf0xdh6U{^&l*6(e~|fe5lULOGE)GhkzoqoK>7+y-aEhty}~ zXHYI2iyj~UE#wctkM}kEi;u`E)gvtw`pRkRN-u&^RjA6o>P#VrIz|)J^bCRXPxLw? zwn^lGM{&irSHh`v{h><)c7L(O+S^&Q?B3q~C-i;Z(Sg8 zhGZKLP)1z&LV{Mp7^b>?=nwyF{OJk zSh*bdj3ZfBdV1$bOq%ukoI@4QowqG_4EI&6>Wz!{sYGElIQRDA>nxp@n~Y;$Z-fx> z$oebMQ>T;*{YR0F)FfXuksIf($ZFZCp_6=)>&)u-hUUjl%Hz3wcK(BVF}u<{C-j!I zLY0%Vr%=97b2ak%#3~3`z1;TacR#M#)tg%iJO+JZJiu4l`}wDBRiBO9npeW;*Gb~w z@nw9+T!^{j2IX&<2pkM%d{R1})g&QL%G$0%j#hQ`%u*Ck1b;yS z?>J2@jw?$i?7b59%ElV2q0Lul{LNn(Z(IBEsrRMggl`;N9jC?<*YUFVyPDdBs@wM{ zu0-hGdu}$xeBw;~*A)9Ci<$o+DeJacv`s>#b=}Ss+MQ_^M|!Vj^jLA*(WYKsU+~|f zx>xcp$amno++Xs1f2VWrI%4y{oOP`oQr^UNantGMk30pj@R^W*sNtYHkxX5v=EG)m z#}1O5PIGtG`cFa9%6~{M9|4&NXdk+zz4=ZolnGUWK)&y!S}isVRIcZ9#Ov`G-4V9N z=_TWtBI6IKC2|TFUT>#vd7Si3k&TgNzr`p{f8;I`6Kv?w&2Sz(2Ls)d{jUh)lM5NB z#Amnj;W{^5IPc|4vb#zro^={-Q3KX3$sjeF?8?!aBaG8lu7im=rG~r29xG{=X3hDv zvpa@9JAL$jk39~f#^y;+t85o$CmTbrl^TC^M-C;qu~h^v1`H!RP_EAjm~Qiw4HTyV zl#9V~<+G98GYz`_Tixb(t)u6CQ@atdQ5rPESf$OW=+T9F4)&8$RKI$9oL`% z4f1JHj}2{aa+tKYJ4vINHT73;rvJj1nAPE4LdkcZ!FX`BU;d$=jdrF4?ARTBNOJr( zD3`xx(Kl=IW&!FRm~$7h?BckKqSi1mxp$I=2w04Hn>ZlOWznskWSfX@yb zLw*BRIEr=>5mSp$iQAJ1_cQ{kjYm#0MUKQ`o*Z}Ke)a?TGAm|R(=LTiN@PEm1gRd$ zNPZ+cF*26Xt;19v;S}I|n^=>7_0Ik|4~+gU7kZjCjjoL*1Ku2eCyP-zScnCC8rY~AE&V-450TvX&zJ@+4v zMPF12E8;C3VW$TY^@YOzzB-wf{wW>%p>FzOLT6pIaT45&a48ZJ7a08o*UP2 z)4_Xjf%O}&#qjOB6hYx(p|ZcFpCR`b&t;Ab7$MG7n>jfVJoDN-&NT#7Tj@lM0cg{0 zLXQ1M0l4f)uAyrOqX3V&)9| zo)10DtOXcw^RunH}ETQBAKvKvQ|c+@Yq| z805DQ(tOYnJ|6m=+q+E>C5Iyb9p~0Hx4-5qzlFc)?1{t+_2qH+PycrmlN98aDsX|=$E%;}c^Ce9}`SVSU z#G6klQ%T*89izNiso?^TU@k?YEVs8wpD^IO6XGc4g-U@7S61Z8f67&k9i2sVe++43Jpl}h``;--bpm+-UAy`DZ zVxpL4aj9!jJRAG?F6RCsfW5TQut#?6`L;N>vU=JV!DY6cZ-=P_4q93p0SDS!sPL-O zQXU`UnU6o>0`alqEls;0q4PCw)Uw9Q^AUYRBJ&^XIB7yxNbpZD_I8m1ic zsfY=HJ;BYWFr2M~R@wctsHvPT z?4ai6V2WuJoIb*wzZBC+9uKSf<-=jEHXF?nW9Aby`t@Lr#`nJN<;$$F%I_URG*|0Q zLtcuzE@Os{4bc-k1e??&aZZgdU9g~Iu_j-#UBOay~xxYISR=9?nd6CNz3uF`M5JHQvA z5zn|XHnT7rDf>5^#*n`*qTN9Sl z$8reXMYNq)Ga1>8RO+okxvuwpa~?EX0G5{_L~e1d zFfC_!%SiCXhk4DuP*o5O=4ozddLAiZruk0WubMIfzBM*&r8*Y>`V z8W23TFbSkP{!&)hwg0BQb)E7hXXyfdlW~N>ijyQCUuL7cfO{PB*`KWg*PHey6K`o-r~7ltIixw?*e_KHKBe1zE6 zB`anOm(ip3a-l!t%lUAluwS*L{Lsc%X?Gh&qV%h!P;XR+k8s#&&3hPKSvslWV8@te0ax*FAz0@G0 z`TRJy#J?w(V*%}D;6BlKMLaK0lfsOeuM!KOcLVn-g@Xk)X#PgoXbc-6etx6%xCHkL zv>&i>QzkX1$y#@XYJpR#FyXhxog0{O7gha}sU=0|FC`iH4YibQUSgt3-H437Q0g3A zdVb7KH#_E8r|8FbNQbNoM|^^KLMwomDn#c#94c=Tz4(@7mf*aFL>v7IfW8ps@4J@w zNz)7TGaaCLoV}AOBc=Fo_9bZp2`=oNr&!JFOor4_O`Lf~*~ZItnU4z@!Jbz=0!`XH zhtN%EEM+K*b*X3mt;c8xaN+c6?}aK_@Z%6Qz5UaoMDH!>84l`y(sVvAjvW6X(DMm_ zNx|B_S1(#=`6YMfV2mE5Q@d)ZPVc573h&X5O_8LiNsOXxo5Qqo>m&nhlw%)4*C$(S zRNr~xh|htGV>C4ZUDS^c@k2vqZ~8$7MliZ_f-!I3^aau^Wj%7yA6aEjDE71CbA*4@ z7Yw^v0)N)uL!k*GjOG{niLr*M&JC|mI^i;AIs|7hq0hP1Tu|Y5&{;8BNZ}DvV8@T( ziIiD$U%k6=sy;ctzP3I`-l z%ZC#aJy2$gWlzsskAJ_h-B`E4Ea8Vr*|eh0-zZUb^JF^_eYv=*F74V!JCVHZ;{PFw zlM2YosuMHy2gr0RQmH?U-Y!~y=-Y5 zVck=g`gOLR3t_ZqLy=M|P?S_z$BxGKYna)aIIL4q?o{lA2WVI)FB2<&M3H&|i{|H_ zHE_adVv*hPd9ed!EiI9jSf-ph^x-vuW;4raru`4&nl+b6;qHDb6h=?cW;5ItSbh(+ zB`DGXV6WK5^VS{I&r?g5qm~C-`Jr^?W8!TF-$H@}}1j1vf9Xm$M*F z=OB=LB=e%Cpu8N}mp8xCOi+9ZkhH?W?}U|r+8%V6OXKMDIQkfknVVX#LE7xz!%wQ9 zDFdf@MZ848{BduW%c0|Joick*sBVy;Q+!ONrGO&k$9woax1Y@9=099pL72TnMltp9 zL1I&j$5j0EA_R~3@(GQx6N@=Y56F~0dwwFw(5{YQd<2v_!JEphdC{g?GCBBvU68lB zyPx)3+Hw#9-&xsDg5%u7X1K3URX?i0M$SQGupt|D!Wv!}`+@Nc;ru@@6hM*s$GYLE@?wwI)^z3C|BQqQ7^~2{uJ4?~9&av?XD=0|&EodoJaczOne>US=#`J7 zO9s8ZdXN*bLhwwoVQ9GB?1}?RDLJi!6C5ou96|)xOtak@ET~&IVAm{$S9xiZ>8<0A z!mD@=5i%N^)QM6+^)HCH0Jd*!4=JoFY4kFmoBsodjll+gLC7I|IDu!HNvU4ug+B8W z65^W4jxcMi4lMv68+rIfz_+rK;^+>tSl6&{Ut;xXmLMRa6@S-&3}*RUwKHz|?33j0 zP0mno8DXQ;L!j8__DRLf?$27n@Q}_0#@if+G;CsEfNG~*iR->qRg%}qSe)ceEu!|A z>eE;Ysv8Z6Mkx{C=#SRL19>K;4S_KGx5Om2n}r>TxS=+`NQw1x?vL2^wz8EzVJ+^K zy<6gus|qacU?0e-OPNm^E8%dfc&`4i#Tu0Ozj+t2+(3-+9E;C z@=PQ!TpRyX)ZfaH`#o@{*|`z)pZfF0Pd zYr32*qux~stjB;>q{zjBQE5AYW)BGs@Iok=z9s0i14U}D*6^H&Lg)rZ>7(a%waI-Y zxTJxuHg_2}uYx3hE;cpbANpaq#4TdYpN}AS#A`<**7e$B7^ng-H@Mk+L*|pP9#n}1 zbw__r9LWbK#ry2gmCncPztOS)%O0mR&Gxvb{-Pu-MCFQn_b&dOx9)Fsc~~MBt;5FuWgKN3o#o!_{EC!#ebo78g4FNX7$EZQWQAr2Dcj z%8~Cb*;fnFC2j%O2aMkvYUSIm($dguccQ)k|7*v=8!Ot;l>gY!-2z`|6o`U-@&+GM z!U%VaQ45lu??c{mDvKu@tr9Z;%dgR>%tCsJSq2gh0 z*9S41F8zMfSvZ`ad@9WB3CXUmg}rYjaCkf-6%i@-pKHg$cc`EO*Ee{J|K3!{V_|co zjL|R&TM_w`|KQj79ux&moYm(V!dy%Iw8r{@k0u;cKgiEG3`4H`IJb%o zRC!gb{RCAI*aSc&yV#>O^1K;PK7f3R?82oL9Kn8ofITjBm z%?GO_5a25xso>FuWEV-z)!Z9$hm_ZLiNfdxB70uJ>Wg&_sx@dvQKZf;oZTNinekTf ztNAsWm_OGBHrWPE$Pz8{Ll0W8wPk1`wkrv+hX}c&&5scj$AJY=M0JrunZw`Ds1iLK zIo;cdFP71b#WlvdO-Y^@(SiL{yn|o9g7zuV=dJssMqrT~Ye}m%96v+b9Mjh;b6D-aGRqd`r6OHz zwO3047vC};5rI@9W#Er161FgBV~FA+BhFg#PQy$+EDbr*c{1Nplr&A8?kvY_pBNGZ z2z{Ch#Jn~U?x3{h1_ycEyfEL_aY&9A=i0#dz2$wG_zkG=?DV#`cA=zm`80QcIxJVu z6yr*3^#v$8s6{VY`2AVR(4T}d-$bgFn;)6>fxR9BSo?golwSx}@J6u^jOQW9EuLP6 znQZnjOgg+#1@AdZK0^MGU_x{y15QIqo-`AH3S&1Nc-c|C@!}*t0nE5TNe;*BIUEN^ zmi>2E$Gl8kLwLZ0!zi@?&a#*aIOb89?#pm~r{M>hm^2V9kbH^x3i2Yt(G?kVv&)a< zUWyTdZ^T6Z$}+Z~Js11ymQL~+gx|k)oD?%6UL?)1`soyUuk>WZKOf3Odzuy^pO}$|s<$-16`=edM|A4!;}Of_>djJ~bg8#gp?Vpf9tN3tWnHH}VM31%8Ev3g zrEh=AvxI}wXOQ#WB0TJSGRu)dMy^yAN6YlCkfOU66*yYd3`0IF<*JG2E!ioM^mU8zUFE*EK#bq%GA@rb0G1=mHhMZ3&u$)0 zA1;rZ-=?Rc-SJDCVMslSmxEf2gOMd@Am#;ShheR-+tg8xyv&} zQ^&MtMee4&+5>WhZjzqsPi}wXQ!(nsTqF&)+b6hB@Sj1SK`>->zvL2t4DOAyx z3lGFEn4apzmL69Ln|SP^WUEn@;kO_D?T9K*>UUT>?>{^yhub}_)=KlEq%{t9bGQ`` z%t3{V-g%Zo>{kcd@J-!5S4{mn7D%6;^%__**A_VZmdu;_6%oq!8em{3Ub6Ytw#MV4 z7x72JxDrky?@SFp#O3Hc6-2plrKJO)0tqrhEuYQauXih=e%fjDC5E?7f#G6Z}0 zY*`ZviP9G>t~Y)hc%h(bx`tf8F|mKs_eUb@F$)_34a~)H!~DH})-)&>1pVHVxlP4p z0hYgslD0_9vGdJ26zmU&o0l zOBQTnm^v4lc%J$pd*3}{4P8mA)PoD4GulC$;b-(nk-N)pO?5a!!4X@MaI=u#!>&=7|p9{nS)`3q> z{g5LR)Lbjn1Qy$~RWKhgu zK*^MaHiSrQC*TMqcJ#jemJBNACSQ}&B~^s<;83Ycug_t8qrV>xkA|hO z(sDW`d|B|F{lDXrMD;L`8g9INmfSdF%vI8>hSuyD6!6;G=U{Tv5MUW(YUld}Noeko ztTXuq|BAy`hINEjq*(1?%vnDWpUnIGs3#3zS#NK_fBwAdt;4gw=08OO(Cz!$q@ z7$)3LlBdiLsmtSHO00e(^ERJj7RqF3#TwE=mTVZ-=)oP=ub2<=<(W>2G%d z5r8YXtK@h$mbZz6jD5VV*H2gocz)3~`oy#c1|zWJqWhdB)9gjvHxGG3&JS6-u%U$A z`s!?$XSKHcYtRwrx9Cqd8OlK0H4s0*KDmq^+4;NTuY17>1VDE;2kR+T#Bf~*hw2_hE% zWq|sI5<(7M2Db|@b1f-8fgtKd+0?td7!xrpxaL9*$+dHF0U1}yJ&$i->ixb)48?-O zp0onEy-}o@hZQ2Ky!p#cOz)qP#tSclJvgTtH}zN4MF}J|2=BH8Da)oSNjP<5+1d@* z+{v@ryWeuUKDevL39?NlEKN51OaEIOcf6Tu!1haNUsZEn2$T}UdMBlu#JgFHK`q>N z;l*TP{NTebr>SE=eZx~}&+9CC`sM`<{&$rq$AKjzjOO&CJ}(&LZV9ap@`y|s4d*j+ z{rLoG?d5w^ijVQz_-bh(5>QUEjD*)B_D9t%3m5{5(B(&1LmoYQ~4Yd=?pDCLCNE8Vh zFyV`oIoaAlc0X-3g?z^~ccUOpz2hOy!t&O2YMcJJ+{QkNgZcVYqbbZ2#`gKr>=inL~J$U=R3lzPvgqobiEMtwj{{4NjJ7JI{S)z5_=qi2umTtBQ zX}GHoDt?PNW|BKoai7Wp>(aSSYd&2&IktWZ`l0~>#$lmKt>(gynZgCdKzs-Gq07Kq z`x20He8F~+lYFD$T&lEp!=WrZp%|j&eBnb?mIHN28S@E{13y0oTpoynY5{(<-H&Zc zD#?xQU;q0SH>f)rAQJjsr_frpgxTi+sln?z<9E+FZ;mDaC; zD5vRnI>OqiYmV1*MbBU>tRa4Q(=9!wEh5$WVMXNwAN?`mMN4kF90gjfT$g5)6JsF{-fvrN z6)pSpVj79T7ntZyd42s<{asip_YXl zws}pp^oZBd4F!#zbaX&1gV&*~u`zsSWrMrzZEiY>{q}np}SCi0V~3 zC>Bm-hYfVpETF26UNOEVf5HH%fUf#^Z5f!Je=?v!;nVU#OJpn$sr&`pBrnd`<1Nz3 z2BtXJ(7Z|;s8To_ay_#H8yGyW8XTp)!D|iNK9RLa2h(XovDtcaI{Z&S9r{arl5>hb z{HyWe9&7He9yE3%>?%#~=AqRY4Ewqk9(Rl6i8K}9zd*i_ML)1 zKSHsm?NV-<@l|lcz6E7+S91e4+)C7OY6D@dcmlm7P8F(9BL#)_@`@}e@08&Cu6@90*e8! zJ_aChj=6Ji|Mos_+3eSDJFkv+EYD8P5Jv4NnGP;^7E^8JQx&VD!D?tb41j?x@{GqN zmuF7%?58P?mzk7qHLNirL&FX}(x9}YV#C_nKrg;J9uxz!TYKy>f!a2>awhk3r1nqC*Gw|L7eW?? zY9{yFzjH{jhl$3oGu{GSl4u@^c0cN_xN21J2y-pEuS}BB(}ElavKzftZIeGxYmxwx zp}&QbXGyOgJ^Lr{EW1lx+NnrqU`Zu(GcbQ);ty0xx8YfoMBJpR^ogP4DkG0eLH;>$ zHO%rH9|vSvG1LbNztAAxzvlv8B&!;!@5A!XQT=#vL>@idWxFg?7Xx=Sv=2fGz6}{* zAS8itoG;5kB5EVN`6Oqn;bMjd4UCGaHqUsrw&AQHnnVD|5im?AJM(84T)W7C#L08o z{Z+@_W1?JN>|yT0BR&vM%27Tmn=x$E{|d>(8{|fSn@IuZZ{3)-7F5N@-m5OCwIKp#Q#*G44-U92No>hDbatz|s z9vja;IaN0=iGsEn_BCTnUYjQeGoD9~!7Sco`;sr_<22k84f5kDkGDva0+(Vug$%!E zxj)9+ht~g13EJTQYyb%Mj3*&G~=JYx*fPn;1^i^_3b;qL8V#rgy9`;(qi7Ldw1xNCRD|DC25<+>=-H(Ga(OsrmBQC>378PiwF=lw*G3M z6wJwD)&_%t5skJGZ6QuW&RHlqH^Y1JO2FAf@t?y|vjUuNr1B0){_&?pNPioJZPLbj zs7bRR+DY8cB0k=w`st}JO_vP>jAa_BY9Lv8;*_xI|6}v~UZVFp(05}Jup4QknP8JF zQMb1er_BSrs4r3et@7^Fygfl5>^K=|^QtUQDh$a)`LVVD?4}nybyS2@I6LV03is7g zQ?-JgqxKF-O)gLrWWE$*n`C@&vmZrxfa}8&Ma?zDCPL*!dodMUh7TJko$ILB;Z3cX zp0e$WrD;bK#a1_*7?!0^0>}b!E6mZ!^fNL1mlb|Nm@$8AQdi(~knx~3;MAeLXi47< zZL7xRLqp4eFiKE7|D`^#lpfY6u%jfVh7EuJXmpYEw18h1rTn<>>|R1S^=z&yb5_=@ z4ICc@G0V0DVYC(wcKGqN#BsneuN~D%^zdhb@Nhww=|#Td+5|S=qn%pk)ITr%CW!ps zm^QK^cG!Z;To$BOp7h%j27X?Ftw9c;M^4Ia-HRS&CJ)i+VpG^Ylh#4)olkh~(Qiox z>w!Nr!6Ab&f}P84L;9_tz2_bZS@4{Yu$S|```cEhjNtILcz4qw%%GPS7@Z3;9-aA^ z3;4${vId3JBQGsxhm8Lw0O#Rh!C^r-V!fb2^G09dS~wVuzSSLNq~#=Q;IwJE|KfGS Z9oB$fO<5ZL@F`?KLGF!gnT$#B{{b(i!iE3< literal 0 HcmV?d00001 diff --git a/icons/maps-and-red.png b/icons/maps-and-red.png new file mode 100644 index 0000000000000000000000000000000000000000..aa12b2aeeed1ba167c715f963019bf50a74975d2 GIT binary patch literal 29240 zcmZ5|bzGBS7xp#=1BFdmY9K8wB@If7gdm+mK)Sm(QKlduC?H)5N)D8e93rA1-60GV zX_&O+_w0S&?~m{MYy9AO?)%)=Irll&iSg{7fi}%0)=MA|h~|!thA{{P0e*ylC@FxC zz0lEP-~$|BtbH3))z7{P0&#)vXxuUhwcE(0n)SIq*4?g{rBNc8cCAzRSrK*0jTCu4 zDZcx+g`A$6yt@A33hU_IBI!&aO`ViN^C6`xn%9Ni-r78@i0JPNQXYuv|95ey;<6nO zy}tV?e?}mpdZBqBDlh0@Dnb;i0oCBLh9L70N(c+kYo9pP-2r0zGBi)VgY)D<9|=b0 z5|Ym@VnF9|Bfu}B5wq)rHqV9cezaHRz&D9UjBS*>`uNTdm^4fV=&ot|#%4y_nI$jn zvM5z!NSvxF*%rtSdfQyQO7X#h$hjV)%|?rV;D}EC z4K=71Zvhmg;hV(|(WeRxWx=`ayNs3WMyQ;}abIg{nLKO!(SZm@mVc(l@KOqbbsn(% z*5CvlWF-orcGr@l8Zz|s3Cvxeu;QjMRUyR5(fiW3p&A9(!F(Y7XKpQ&dbjYM>u9fX z`{UqaJ4pphI|GbM6%qNhgR!`LNRRdkCX-4KJScSy;z&o7u--3eSH>|)9KIHkiFyD* zKr%qgka>Rsxh_-#6$sGOo zws}b|w6WbmNRsw-7GMbPS==-XseTX>=I4$oW!s(Ppdz$#Z{JP%*3w}XM4GsxxB&%( zb5m&JJ3r$i&<)gLq2x+Z;BskK7w87Q;LPV4C3PIIPKQVxWFO@mhNx=WRlTdBfuex4 zlO;j>gNQyUw3usv&=QYLk)hAql-6s7eHn1y@P2})mh_FibQ&=8ORp&Ra)CwKs)_ht zyEuMdS>ht5_})<;WhDLNOa~%cf5esc8y0vXa$Gl0mW$w^(!678y5%8pUtN>X4&Atq zr#f&`lY#D;?4jzuITP#ia3q}oF$Bd7%i!HAou$XP$qe&x zzYqZ<#y>6x;I+OhT<_K(e1|51=Qc}nO@Y<207vlVlh{s~(o#EvuRN{-{ZuUuT2c5S z_wrFdTwCuFn51E}X8#Qhga;@Cy!&URJ(39%j}Bs$`zJjiVtvm)6F~Ie{!!Cm+)-u}jo?z&4ym&b5Jc7W^5Df!l z2n0o~@GC1ZAMxX62Q3AoX+dKCxK^E~YBRteKk7#k4wQbtW((}k$zrZBod1BTkZlx5 zfx{)H0S{WBKTX!K(ee2Li z6)Ja0uH~Oz-xV+|=$yP|I?encANQ3U02YGI+d<0EP{*-hb2U;#5FolJD*hs1i^~V~ zXkWi3`9GEps?f=TqrxCY32WaaV?jtKk8ib1kH7B)@wWMw8-NdgdM54q{+<%8KJUSBkX^^1}OyY3ZnYTOX+K^jaxnRqbq(ECTPdq1Fs z-!0)B|F#w^@rM}Zz~7I4#G@&d3<&J72&$))(tLmkUB8joP0GOoa+-D_#R+qu=;T2kk2jYh`v&|c!_6dN+)f?CfuN}-$Q$s@eR=Xk2N2vE;-WaIXuZ7@Y64hH(PE$ZCu}jgb2m{f4|o@y zyO29BvLZJ0e@Vw*UWjJp#WHi+T( zID9#KWbw@*!53V>#?X#QPCg_P+18e!M*JIYq9E}m>UjR3{le<(rpLCYi%Q8w7(Xh8 z_w1UlqY-y#-}&QWo!fvKuRMB?92hFcIr&!m8qM`r*z)*9v%0@nsnhLzMb|*i+0G5T zad1Y<@rPOJi`W8hqM8cSo+* z3nC7JyMd#^Q4mLEH+sHKLcK$9JCjy#3T^_z?mfKTjrh`8n$Yld^XmjJ4K39vMI&|N z=PapD-3@^2-yr)ug7nSM6x5{!2|2!uBUK3?VgM6rEYa#1c2mt+Y+h>_y!d2(F<~C8XD^DcS1n*#0LhCs11u^#1$utteKsZ$w`ji;z?2zk*GpY z=4ieVxO>ohE=}Nt#jNpABX$|hY3Io|$bL+9UzK|Hy^Kt3lfayLBz%(xh-+7*gzb}9hWOC7i%>WN^6%pk7b$}XI-zL14` zdycqz*O!&YUX=etkDG0ceX^7CO1zg$a~-_$cd=jSW7(r@#@97j+o_FEF;P~L%{6@0 z(VY^md$xD$ew&DT{!$fXR-BY=W3kjB@iGSUx8(UsEuB?4btw05{2R>Y(Qp-cC(7cl zTML``8vKa%SYg7*deN9vctCPe+l8C zZhm(O<*&LP^ZHS;6ZRypU_BSD(m=dzYBy$gaZJ9p)IW#i6VY|QY`Z(Qzc@xhG!xdC zO|YiSZ1&mGdTIoLs+QF2ELQ=j$gF)YPjr65Z;?^ACcf~gnmdg!`r1H)3i1rKc%utR ze=lX{$VzX~hf!`$1p_LVDCnw+{x@Lu>Ooyk%r0DHPxf;w#pGy5vDa0$EE@Z9sv`>A z;@|_HYjgA*?30f;GIdDo<}p(-jk%I1r3Jad9ScZ?{G?Kau3L7dT2RE2JBo3LN|#^< zOQ0ANbpB2cxaw27CqaWGXNw(E2=xjEq7m$ZUFjJU$fOn8cK@U9c*r`g#XQ9KzD3$_ zx+HLj>(vIRd8NsN3w68=#uQ=s^8)Pgz9hUkSuKd4&>Z}v(zds?zGMK@YBwhUD}|!e zE^j$F65_#6*cDAYN}I~agx~SHWvY$otyq__UZp-&hBF~b^y5IWC$hAaFz1{>Qqkn!Q=A7P~IUU2U!RihbUBjDh{) zszg$E#gj_1nMdh?diYMWu0D`(g9uAL{v_W1(l&>EqV#VyfGxwz8SvT&aWZeJ0$m{j z7mSncX&@zo3#1=>pwnIKsr;`h*7U=^UD8c%AQ;eAMZzNFAfYjBw7kFm$-u`Azp}|o z0%Y3-6ao@rke-uTz>wR1vKCyG2ar*=C#)`n9m(R3)jlUO{vpHfDC{v`-VO~{7O~&- zx0K{!$;J1>EBHRVStdEUNKAP{@u%|j7_04}iJ7_Q8%_DS3K_h*_|81MHeHZ7bAwnQ z&QYwtXJCkGh57T!Ms4P5Z_JOLm2T^r5%vw$yi0xFv1svL^6H7W%Dm~LmuZ(mM%pTL zj`e_J=9@Rf>yKT0wflXtIpc36e3nupbLUnd1ep%qg5)88TEx&)Y!D94<4V6h2W$qc z1Z(p&EU$fET)iI*SCKjn?DNbwo87%b*i6NP)Cg3zZgf5MI~;T#@#FA@5$!{<_Bi+B7;tWE1zdY8!9 z1!q|1Io0Gr>D;-t*6V%^`z`c)^!;7FPjem9q;vf*1K>GY?Hz9)hgb|hN5`K_|4KV` zwXdhP6A05D@h4Vmj+D!f_}`g(4A5;Z-o7t^VR9^?5&zkd8y=kv>{x>YBdQ@)RX44Q zA9CRuV6N$ab^HIF9w!P(z3pDayg6B})6Gp`xQT9mrdfL@( zQbO$A*zjPiQys5Vd38NGrII7EN_9anbrq__PSawo!AdJP+W}+k8zguF4B^|u_gV5* zqZbV~IlO+#bUv&*Uk)HvKOB)(fB{xP5uFuVP4zFdCf197N4pA25}WJCE0eHEXrmHe zz9ex;2^Qf*D79fvL5q7pEWAK>lp!JV7HxC)5_=K>QD)65O4^YJ;C6VVn zGqSd;Br#e{l84pF=A;U z8QfLmQ0&Q zXk{q2b*jU?*l^;935gyDIe#VgW~4QXv8s0smWZtoLewvZfBPFgNq6-51&j34vkZ8; zr-Yrl6hLRWUOsVOEWt*hrLumo5GS?Sf5;GyU@T48C3G_dOXP0B#Rh8Y&xkZn5Q&-C z7t)^Y`a0d%Y~|78SY+_>f%}dr|DaHk#Sd!Jgvr7#Sb}Q*yd~8fveqTj&D%u4o^R27 z_vw#b#oCr2OK772?zQad(Y#eFwm~>=ij@&V0L$)Jlxo?9A4%hEi|=%DR0Nlj*+wAD zL2L-=(-Mbj0s*Ek;1)RzAoiwJg(qxzK?qfx!jJG7W@C>G4s{TIfG7o>Bxs02*5w+j z#&u|VNQUp3Ue;Eu3tIaCF%#XAi)jFG+#(0tpYJsAs!7UVMB^V=+UJG8*7~gh2y0Mo zI%1A6hg83pk6h{eSSLRyP#{N!3-F^Lydq>*o;T71-TkgP)f#$t_@hyxMTT8Cme zgGz*jpX-K`j+o385H5%m1J`dkxOS-f7sQZty#G^-dzZDk`?vnS;YEX-up^eAPno-b zGg{f|2MZngGMXd&s@3xse*~?-s;ufYfh9m`mmP0Eav;gFO$t1cbKg?_n?1Zvr$ca( z1?%^gJGB}K;GHt~s~nL`8cSa5x6fb4{#=8PH!6`FjAJfqnB^%-u^f;!UF&6>qQwLV z)^vbOzaHEZEjdWcj;oXc>a5NZc2sH<38SN$2mvx59|fO+U*`VAR?JtG6&%TZE4Whb z$Etqs0PkZxoZzG&g43mm+Vd6h_3d<1=V+^sUB|MXzW8;36Z7r+kHKGsVP&pX7qXC2 z&kk;xprOta^r3X_&B4FfO|`-~PAI67Cp^*(<&ey}l>(nrU32QY`x3As=?Q0%>PSo6 zuUN?(T> z+KO@yR<6WdZC6Q?vD!c5$QgHyqYy9zl(BPnboLganQU1$U;Y~lz)gc+q#%@B5&1AX zMPKTm&iSzpf&T}z)m|0QID%xj+wvA}YYwbKHzCL^sNHBoBX?Kv2gwwC@Ov{VwTwNU zDYJ|ZTBwT!0!!jUSKkAu(hsdEvd`z~dip3vSi}D(>03! zryOlE$0{9s3u&Fez^e%eYurowl?4$1j)50@U9pn&CGOwSDB~&xtc=R{lkX@$Q4bbV zt!zd1fmDP}aCYBv@?#vVznMQC`G?D8C21F*{xf63X>7i2u1R&VC*#up^_K>S?#?JY zw=#`*pv8o|g}_JS)w>yLHDta4HDoy5CM5sTlsJb-<|}P~eo8PO=$1rD>6eWCP5ab5 zmpkEm7DhK6#Jv3YKgo9F?noer+G?s7YeTKyJJ$B&+)WIidk8=q?u2q|HHc02wd7u5 zwI83m&8B(q7RYcJM<25j<5jMJ=!_Ww~ zm0F`2dzV8pc(*#%qqT*7ybGJ&&^?Q0+){Dx-tkC>ZTg&qGZwIu#|gN0%KX=f`>T9$v>NooY> zf|4gFveLz&3%)!7XG-wWIBq7@HrTc*Elg`(rby)fL0zOgbT=M`Mo#q~B;HZX%nO)M zun<>n_-#Z92yy$Ko(UFfNH)W_W>@BY*5C2yy@Eiy7U149@!M#5?GcGd%VqgVN8He% zk}rU;9SWh%w9wkneeLU|%|5sa^6sa-dP97tVuE|JK)sKAL;{Q{3iL(v#5qR}1UzqR zak*R&b~;_ePF#*)e^4=4vALQGKd0|S@6~G;xSl%d*Hqm68ZiA~n(gk|tEud_k^Wq| zpzxMPq#fwA2-t<%s}xAx$Zyc-geXFlHefm9Np*9UnGNqCN50!d#%d#^p#3kFus}<& z1c<6us497S(1@%t?S7#(u~}j)q2R6QOPQo{Ak~o_BV5w5t*YU!2nf%+G6jUOiHOZ&1xP}BgG)~l>m8Oqs7sW z%*Z#sne$D&bgMw;;h}iy)cxBlsYwD?-MYx?nJHv=b0EcwfOWivgmv#++nLX8_ zdxpkt0%V|6L-K}G-37&;VB*9z^{d7kKn?rj^pY4l=+NpR%AtXAt34hb=;KT5s;7p3 zHyE2f=0Qh$cUd0!$cH)uRqrfr@R_=yz1ThH8uF$K>o92f2FsKEQ(XME>3O!v<=D`S$|y3$cf z9!<4bMNT9dLhV#oid|ip!sk;k1)DGA{plH5OQoeW87TX?8}pNLMCL6EroC~;CDuue z^t5Y@iw>lXra}cj*i1R4JL(N|2yCwojFn*P%3hui49LX&I6Z$P90KDb1427WEkRiw z;(L{d0msdmej7L4w1pdN_h4)`!b9DM2A5q4YPowpL1V!I#2Pcv9t%?b9@qxmR3tb| z6@~UCPd6xqCfHZPDODsw>F7a3qAK2{Vy5WmqXDXIF(A$KQW`bMl)<70&kMtk_;6p; zI=3Y~6=NI}C0staHAwPl-kC3Tw!g9o`rj-7nKlRpHl$A(r?Oc`wT@Tzp#HbzPq_kx zwV%HE9cx~iMkTf!vqPT*I1~sDQ9X8-bhVnTu??%cCLzS;j}_2@yT=^U2RI?$`&hAW z(iTf~Qs_<&B}rZ`BvaXgn6np)2GZkCIA-(T`S=Ty8nCnrB~{a%KIkX+4+B8wXGpoB z=xYb9)a6)mOf04qEl+`~e~&$~HE*NVp#Uo3co1_`__wymlUWx$rSavT;kbNg&K5!Z zz5LB2)iyop&5h12ywumBx1VlNvH$6*?@0v%skj7QGyfVGw_WXS_i|1ORa%qW(4PoL z>J79WBTWTPHg)rb{*85y|M})@JH@FXsRpI{jKpX8fD-TN7mjJN&a$+d@N1g>#1TEzDlr8Tn5|fkcMv50}FJ8)tvmV6nv;V&Q)rzMTos;hG?3 zTT|z!6)T#=hQ;Hb#ZqTpjt|SLeodt*o$UTt+x~R@uGWnBDKnM#Hs!`DVRlaQEt-{- zEl`@P!XhkKkK9y?@0$SK0V&!ebEEk14jXuy`~D)Se4OlMmZdyf#V=whnwi6hF`|kb z>hRFctq40KQ3F*Ec{AQN&-U=o7P``wKz9NLnUQPcg=sH2k^oxV>C=ES@>whCb@N_%I|*c-RTM?&R%n*AH6X(+NQgqH z-=pa7Z<9#zoHDZPVboOmLGJrwfp${sj~`bZi%3?orjO7D6tSHi*n*Cg3@6`X&=drYcspey1&L^e zaIPEaT+)Qb8K5{|6Eqx;7GwT9osb7iOz7JoMJ|yk-wg$JuNCl3j_vx8d>afUl`iFm zqXqYT`J2RNle)5Xyv!HJ?AC{-6hES=7}1n1-&U=v^B&y+ zz!)sPQO9p zIAkJN5T??=2$3zqL?KN$P8btneZXneum?2hpgg{5v5B#6*|$=#e3*Qr^NkxdVhh8X1T+b{Zu;6cJ(>Q^pxs5WFkU^01D$xaC>>h=j^0-lVEMgdpS zk^Tr1%lLI%67z`l;-GRF5A)O>?r48-#Fe{1qH+V$@mdJ+>bc{LatDGJ+@ShK)!!FI zrno47xyHX5`amcAsXj^@#{5-cvG-=o4EVKfw8bXHtmK&5+2Izjz)CdD!&MB{1>6lf zVPO2Xp%}^WPadcDeA^$%^l^qlh}y)3MOq7L#Y4A%ln+s#IyI4E~xXeh0(i*FaukLQ-S zgi$r~xk!F48CE8bY@_g$7;CgV4Jqe64u&C;3f1rbcLHfmPAKZ%L$A!1F#@M~dWi2t zqb`5e_Cf%D{lQAQ0U(GLG|AUDu$V;#7J-w}z7`#K3J%4_8jeX zYXk>5>(k!pCWZPIkST_vxxq&?WHZZFr>0y!K@KPSnXuTq{pcX--hcb&hYF$g)Fa40 zWE;KlaAbs&sKmKqn{aqUx-Vs9YSFBzPbH9 z5OG@JkppLaqW)*PR9OHGR%nvYxovyt*T%2vNVIZ**0OB7GDK;GW&a!z528 z`dRiqa$G3-T1-(#?(`L;H(Pl`MlkrcNOB-)7NchVJVem_+2rb3{cmP`HoMJy`mL$3 zmiMt18vF!cWaJAT=DrplydG0w~hc9-)lKC^z zbd6pOSiR>^P{OUa?3BVi5&dt1K~@(2h#8Z#n!K4upT6sPZuHoXcD&UARa_rxh!sx1 z4IJYcrA2;n7yIN`6JgOoiqPA^IAMMiftt5yPT&8za-joIm5E7UQtT7Hgtl+gG%7nb zV~k@qFb6CAbTsbcdvR8Ah_b+y&6#$;b>e2sALkFdnm)nA=Dcbbmxb%#r|7n_T(86J zWa0Q@CB;Y2j7;0Uc9?7BDwT&J?I4ry?MQ=pN|1V)^A-!41NzXD{LGxL6EWEG7j*@j zK3x!`x)tkORvuL^nwK@Zg6gv{2y0}R6iSa?1)?I?blu#SxpNmgcSUwrEOZlBzV0V#ral=XLTb$+DxlLc@$Z_TB!B2Dm3%rt!KdE;UTL@0YdHE)0H6H}soKN$K(t2xo8fjk~mAj)pxl>iM8R?pkl& zg6eh2{iz2l83wdh1;HMb%}##%+x9mW50}7pir=ymCgEs4_3dDytC&IQpHezBt@)d^ zROdS4W_FA>T?8{%AX&=nQI9>zR~wqo3C44?w4M#HUnFBhIVR^*;{d~zhCb|6Zh5q$ z*t7}yEwrwP>$mCX>MZKo&y9FQQu$SWOunLpg4qhvj?9MTZp`KIN}^k6O49s?AbF!w1>l_svz1Qu{lp|e4&W42{WZbyK*t-w9tUWJg20oZNuKL{B zj_m?}%_#5lm73NCW&N#fxL}KKxNtRJWo?q$^6ky4<}m-Rv0H9dRDb!!uGk%F>EY`T zeabIl1ZTdMViQU)I;Vmf^G50TD)LJLZLEACnyUg9yv3M9dU)%2NBA$HOwTrKXPJ6x zjh;?5FjlDck@qM5U+v?Nc$vFewi7|@HaFLP7xvwU45GS}Ckxv}S@pgzRubiwaS30qOw`yPMq0^LMg-Ve{@!>oyFB%b^AQ?g&l@{GGf~ zgTs6X?tw_Datr*(=0ET%^Psw-?FfXntA77#U8fM3i)V$Z;9LO(ISH_8YRD}rwLZR{ z#(P?QlvA<~FE)$%j{q-eVCy1n0Hx65S`(MB-x7%|>W=gY!TBfuy3CYChh`Ow3R|9M z_1m+Ib~B}Ml$jzf-Ema(69L%K>m0l~ei437M`k?s@yB_ks(9S_I6#vdcqkCK+Zf z4z{P`188nVF9zvH|OIgXI1&WpHm;*9}AZ5$%NUroy~}$Hz{-g9;pk- zPza3@xr$^0ZIy`h%P?5JnVM}2ZjN3qXz%RHh6dC?2!2hod1u9;xkwCOx?gP! z%owv`VkY6m36r-*I;ZeG5V50?k6&YENhYYGk}{d1ojPr5X}gk zpTu{rp2tjSZbVzWGS8zwy52L~ZNaVI_ZpuFAAi2uj`ab1eEFEtxD~~oli8S@`w1x6 zj#Hr-Q=bM)HheJkc^C>*!KJf}V?JWNFbQh|gF3V;8le;=ILSD7I)D1dLy|AOz zLE}Z?X3ti&jdm}12^=@PoJvlFN)4aWi)GTGztf|&VP>))`rF++?uQ%ZVv3*t#aX2U zM!CHDl*I$dyz;b(W7FY%*@_{*oR#11wn08KP(_OxRjMGjF%LOKf7Prs_hyG#)ds31 z4;H8=&K34|nq$lnSvy}ksy7MYeqr3;O^_Z@gP~Qf(mFS&@}*Ly+D4M|u1Os@kLQSc zkOvZ6{7vXwnO&G4kqye|9?t(XcgWbjG5RF1MAHN!;RiwaT-0CY0!nG?mTg63&E4#p zky8;J;SxF;1>(>L^KZh0P#3ZpTbFToKbvjTCSKu#IiUFxzKZEF708dgv$e06xx#}) zO(hZlA#T%T@(15=Gh9V*9LYFcp z=Z)U1brPfSbDq51FNDD-U5=H}F)YF$#DJ(m`gw~EXyZ8F$sfX|*rpP1e?U#?!Evn@-g*M zZ9sa^U@A~a%mw2MHAn9D~vuRzG zMbE_7A6lGIe;N-g9y&)k8u3{e(x|@PD5T^U^ zE}tzc;w=le#9au?Z~U4>pHwx#nlU&Pc$t0 zk(OQS+V}@U&vj}jAM>DKJ7&J9F^%G9O=pRZ5Ap7eJ z)C^i)FLc!drt4tRc`~1&hydW0GF^3ODtW5r32A@7b$TIFe{ID6<5}HjRWp#z@N+y{ zu27-@PYIOp7fPVVvt=u5v(mKu?0D~$Ld3cGH67R1Z+uUpl;$Fq70qtkWPQ%*@eX^2 zx&PHz^2hgO#n2H6^_T~vx*((>$n#`gg-j=l_G$EG)WZ-Z8%odlANq+*n0Nn4?@caC zT|dN`8YTQ1mi0RLG7dP;UEs@Q?i^V+J@9647b$UT0L&-Je<}SG{|&0LpwN=JxZv|DNRqdY@?&ts`%LT2Bs0>EF>gf3MBKCrMilFg z83sLTq!r{a^OpISU@`EjPbIhQnZ6lsre?J~yn66LSd|ZMMUf8*wRrDda$^PN@P*L+ z2h~ZtOp*Dgw-X&K2qaQo^pkG{AC0-K``R;g*K%8?{(+hW`$p`#on->hR7^zOj!FMG zrlYckIy4hCK>f&=fNX{rXh5gAiFY#abqX+82 zbf^M`hohz4gS}0J+DRb1^4<##=mYwd$n}_TG;;3#Xh4|#20EhbLKl|3CtYvlK%)RA zN+=R3iF;NbrClFFeEgr87@D|9E9Z#PO@8AW&iI@`?xiyKU?WO$AAvG}CGTH<$6rIO z3=ZY?0nJmL9tjO zUvMxS-%mzu5SIg*{At;&F3ggM*N2;Ndb!V9BJ+&Kf-S_V_}n-tF>D+aneG)xZ-|-x zSUdIUG|pna+L_?u%Z$wdvBO$~<%SjnTfTJ2zK>gX(Cp#YoL;ySl(Iuyug3esqjSre zg`8Cmdf0&(nVLGMcc^bv=%ArmZ>!WH%AA!RZr$(kSoL_}yl&q00`^`EehaRWRa=ZS zfX-#sCO}l&(45&X4aXS7taj{+Hi^x4_99*G*Fs9(T*{Y zrVkzMV3$u3gzNT^pK=l(<(#HhSJEHZnG(C>*PVEf=M+j(Y}k>&z-utXn^i0J>bTdS z4eCfqcz=g$pQQBxj?VW(6$Si{ycg@cGrBtC_I7uLn)ScPXeSq@rURaUlV-UilRr14 z{bQa2YU!_q18Sj)9P7|3Hr)0u!N#J0HSemW)AQqil$P$m$9N*ra`Z=h_8s8M8C0<5 zBo*cMOm#ib7I|I<&<HLOfq9vba29^Uxmvo zX->B0Z2Qys3AWY(Z0M@?Sx02)2H`!+rYhR{_-Wtqqsk+k8ie9g}DOYHKrs`cj{3 z6B^)5EQVb#T_TR`QQev6cVBV7lCnNrvPSJh(cG5e#I<#!$84v>6w35=GFKrm#V4{h z8%1aJlbY6oALqbpiujH@>Q5tdsPIb%n_iR&tny#8<5__ToBD+X1yp6`-g)Wqt+Stl z2mCq^1M)ehnWQ~|Tfp}%JX?!({cg@T-LtyclNr-*2N1%+uL%LtHyM{*&1fn^(8pE2 zxYa9*NDTbQ-%7ouV&d85E)SP+(X- z3jv0GN%G=4t`y8{y|QN&mkMGBx3o_PPucnU1o(#Q1hiGOIb&-d@>L7N$)i=?{CpPp zul9C<>7`eD324SS%dxaN{-Su&_e@G9YTuES>$2*RMj)8<7I2K@;=$?M{e`@s3CQ}J zMi9&Ko)yfVdbJ@Wo}*!mxKHIDfRAa;i;ET!k?lD&9th%YPosnV9!Ei)SF zSW6Ww~;CEgZmi|??1YuIN{!HEoS@r)XIp~ZJ={Yx%vwG5A!Zc`u1@) zri#XPp!W%|tQ>_LZ!A_6#(c5H&G6%T)*FlKu*)SQ4cyL1WyD%iYgmG6!smM&ewFo@r6+|{fn%(A*hgV_H)ac zo;T__KZVa^C)(@~mmaJKexP^>WEkRBbk++m-z_>QLVU)wf-HJU>2ad7GVv#~UZXE8 z7;syu`c*9UW(?fZN_+l{1MA80%Ry6v;jpr8rioq2g;oPlS#x7>XvKtI{ZaC+Fx-xQ zIuF(y-f&yJbsjn%Ao@yGvEIedn$_r*&m z`X8RFP23K1K@1e=83!V{_7=N`Lehkr?`mamgK_I!!F`SIm26CSavE0Oy#LBvpBlQQJi@guU zh9bTuU%IsmB(^Fu`u?c=XGQVi)l4&tzl^%(#A2EFcAO=PvIL5&zP((oGkz?R)7&S$ zuMB?u>9V<$0;{qV#@6OTtigS{J>mnx$$fZEBwjpTOJ%&(BZs#rJq+OkRWb6wQ3Poc z(yE@6<&Qm!i121c@(dD0tM{KL)v(eVw)S@HbO1LB*YMwfO2076d~+lFM9xRaaFNhU zp+El4js0Jda6*9wGlG+1j`imY>gTsn2y<_YHluys^<%BS2ddtMuk|@>XooEk>!xi_ zOcVocFUyA(Bwsns0ag|_`6>C4Ig;~GGSPbZYvj7p<3UVDstsFTVY6CH*40V+0LhiH{17yHliK2WX zS58x)^u9cJ@cSly!14_RKPT_3?Mz0)=&z`@GM#(GByUWHr{J2E@XT6o!?_0pbA~b+ z+xdwJ?0XHJTnz#i;S3@E@m(7p8eN7Gkoc`--OpDVt0(R1N|bNCeV6OqEM0F+f4hR1 zkPACfr*!@>Z1mBtZu`;A@)cdr;rnatY`EBhTjlo+oa)@IoR{8-f~l`vtfQ8%#6KKe z=z!lAqqEvZ@1ITU&yLGS@V4rK%Hr5n`=Wz}FA)^scC^!chzYW54I|a%Yhk>F z+RW?!_1+qrc%;Hu_o^=Q_a;q_Wp8<0EO%~s&84R>=|Ig+7k#dt%l9S*PXM6~@dVTQ zCcBEH&Gx>I)oW42B^DaRa$5BYF?<61- z70>?ud#Zvkt>ciWUoN~k+zlmg;P13r76w8r-wW0|`rPjLk}+@MIA5*YUpES$?$pw} z|5|t~QfQJ#@&h;UuL#VQt>p>pg^7mG6dUnB`IRedZ0{%5Um-I+HGl~mUO!Ob2kBe) z9=ItxewDOeIbLg1QgXqrJV@|jjuEX-S*xt6d_7GmAj4K2>>I>p5Ee>L{LADCTuG{H zn zzXhh$0s&T~xMGpzXn6nAqA>oqNV`jsFkE>|%@RW*~+VMc1;L5M=x~>EIQ&XbG2h!%eQ&Nps(8t!E7siyLWpztn(J_=Zs3#?Nt) z3Yf+0drSG9I=CzLd&fq0DsVlt?)qzGZ@M{`%yBx+PK1d>7WP}3b3406=|()t&IoRh z0izMNo_@9Z@OGGKs?7Uay9~pcoEbV;3sa=k?u(NLIHmOg^Gi*>Kw>Q(X}}>m9!$fA zjdd9!nZYPnIZ1Dq^eS1=D=pf80Zyxo7;dZ9H{{l#v+4rDVqerD?+Qw-oE>5!qoY_* zzoCX4%HxDHDJv56Gso{bPdIVFT>A0ip!&hCX=e~{bFMgcP8vO2o9YgOY$~{I{OGH8 z%OJNt5fvq0sj}7#qmr(KEs)pEj2ZzZUWbuo1R{S97?xn6`CsT_sVXuJ_% zkl)^EtLyixO5f~ekGj3nk$9Z*qr)6}$gW0Z-4KoY`^{4U%ar$LPj>{4^22h?sHH|J ztfhwyDM>A*+v>iM%(NzRE6n{~6Fn7E*iNp#CKqp>!4YqSOJ5`drMM;?>__;0oNg5u zs{c9g^pD@~WZ5((G}V`V@9S--7+({t7*vicz{kxAa7gPj`IOcjDCW^O^HXJM1tP|O zT+4cR9J{(*@h6kMaw-ZNoB#x--+E<3(+IyMt3jMVlNuWTuzvGHTPk@%e!+r}vF2YyUT^(<-Svf9*G8XjV3Wm|{a zUB1C)@B91i(Vk<~Ovyi$YJ0}2-p9*l1T%I;82|E7oVtvmw;!2aNFW(j9Y`6Rdf$B_ zb+pkt$yny}TVM#k#dF7^=0uz25Co0GS<1HLsBzSlkL_EftLtX&ng)DI`1JhMey)b9 z=~K!s6Ys;`@5U23vj*_z7o`4=#*halz7D@KHdlU3CV!C2CSNp@!JU>eYhU_yQ4nfA zQcG<)d0OD%{=_v0Zm%+thKJR0y`rI*K>0@$pZ9cFZ=TC6WSL!B9S^jH&61!u4d{p) zpBY!t`MqHn4kU1cJ`ICT$CMN=xxqD!qy8Ce&jo&nWZPEOi%8Zmn06HT__>{q=h4TG z!r~`4F($H>N1WwXKI`WzvGpP?gj~_#IUQp?59D#PUI@XjZ|%;cb}H?4eChe)es0qA zyJ?>BODB(#q@%s|OH#MUJvn!ti7EC9v(U?Upz*tbDAhIH34!OwmB)gE^r$;)YSRWd zlyERGqLXJy@`hRC5MtQy%xoh2+)6(rzloNBgxXIK+U+6knA#f_)VnqjFIluhh==rZ zIQ{Ha1SiAHk(%A=N zcd_3{FY6^@MZTz8?^$(MU^9=s~%bEL9{|0dik z0U{H3n70~EtYYAN3&pwLC4#+N6m|D;4IXwXO?QvH>|($uyK8y(?OBnd!YOT5tD*!^ftLT3Rux5?N;^ON zdX^bu)weV_4blolA&0eU{%P|XHXE$A^}2US|Bb&KpG*;(e>u{6xma9XNqi4fKUGaf z{$~j0uf-(}8&G+6y**>4(w5A}h{rI@~GCAdE z2GBt(F3COiN5XY>cbra|YV33+>axWp9?FUt?%wkuXLq>-$+AjP#JY& zU3r45L@j;W=2!!6(tx-)59>pC1McY=vp5D$gI!J&8)v*3mf;7 z&CVQ--|nrpE@nK{j9NN zGVXnEe>Z_K-DDzDhJEH^0vcf%TDYm@lDw|x==LA(IaoyQ%oItRvGn@!zfv}T<;a{V zn$bIbg*I@j#MRMS^V+WY9&-EYzNF%imKkJ)!cIyT`|X)r@ynyr_borufx@$1{*qIV zm7QP8y{VCzTBX8Mj)4ZvDpuVUg9`*Q0usvP@do#HN37q7Nxc@EivfQXE|r={MY|5= zU~wFA0jaxxBoqk{x5szk4b^AJh zYf_X_Ic+e>&f5)F7zbR<3(YoXDJw>(Z2c%nY@RNx?##Ra9WhT*fG1YUe3?)?0@cXw z$v;Q)-B~!B6$`|b^ClIRku%=*MSFCi#Z`SLwOW%x5@|c}1-XRb#h-dpG1MyFD!w!n z>Frhfc`-7X2n7#93>Ai25s#1FkUX#qw|$HfjJ>G65&01*v80ti=~MT!tO_D-a{AQ; zuX15{q)wF)i!H2cnlQpX{#VYFxOe~59O;F~33wJAmBNMW@zeNTh}Z0gP_C_yUm!;r zqCYsui$<_-_#>bT;3bN%1xu!M-^Y|$D_Hu+#yZti<Nx@6b+{ z`qPZ$`NFNM33;lHuIK#ilTApG2Ay~r2H%XxE8l4T4`9aAf<;RprqUEJz``1|=%gt5wCB}J-Aq6xV%W=Z=yA;7V!h4u| zG>Wtr`#fJiJsIDY&cws?LNK`QmAP(YYs~xSA^y}u7cSE)DaN*ENgwW;*Igt? z?mCsIjih4==ZAhdyr-+LmZ<3lm z@R9FJn|`o&QOGKb#%_q)wZ1pJ>4p-*LpBEHVQy%-4=Lag&DG|4rw^(Ry7EI0xJbk2 zQ*(?ht#&NL9how1eb&^ErV63fEUFHtwUI%pS<f$e5_?tuLgkh?qza7T?!BB<0Y?V$Y28OQvcBF z+pg;_U!%b>xxPwD{=K1^z)j~SIrvF`+2GvQ1d1W5M4mW3iWG+R?Ie+c6$2jx_#b z$uSd|R+6v%`n8YgOTWe5HjD_fzs58V;qJbWcz2>EB;H{0m|6O_W($TbM5ZGJQ}jaE z`c+)}k(Xt~$`E-`Doo3`d}67q>a%Wz<)Lz-o#$T@b?+^cogW} zLCnctjcM^dJhlP@-T$aBjC`F^JHJzxF-K={!j`N!3^#j5%_i3L-V=Nng&@j^BDjR}hVQ`ln|AIvnXx;?8=vC z@B=rzn~&5-wmYJw|MjNlu#d52FJEag%yIntjmKlo@&D0 z@0k%*#x}z#?N7mzf0j|wQX(mpo8)VggKdO6Jzg0*FopLi1Fbg4Qu{7)NHOF1aL}&e z@*-X`q;v=gnc{6Gt}3wg?CXW1dV^^ZEto04wUJjKAlcjGCjgb+A4a!M?t#t@hIloF zu~aFV+dsQ)_8q^=|HtE~d>ZR-gU@>MwKcy-BK5|4bjN+T--#CkalCC_a-Ci3 zQD!bUIW)kYfr#2w17geny4>7+pOtME^he{It|jx!iD$6k9qfz!O+1Vx8Jnn}2!OU_f@Ccz^Tqpy%2G)^?2zGW(c3=nBRyWqHn?4xK zsO2f1I2bo{D(vjl$%36ogrM+K=Kg$=lbtuB-*Wa8d3gK1iX+1m=8q9#y4m+Y6gZNI zItA2^+B^pdQC*bH*EQRhq$b4fQ@sw23q}w8i0L=m!Kw}V84{PVv?j(%g6DI<7b4Az3^b4kT+jW=$A(oD&W45n(#v5*y+YyTo}N};RDF965XK;|1~ zRa)MKG%#2v|6U|J*V6y&njIeu&EFw~@)Od#>JwdXam!KuClV&WD&L_xNec)KI#||G z)|_MWO6ATx!vha6Bkt9?8c_wqI_{pP6Hm`WbeJoi|DLHhjgR~T)~P2!;EXtD#8svj z#jFBpk*dXXlSe2c3Sj=Co(PqQB*g2kUm5z)Z4)}=5x|*^7 zi{$=T%GDHTM&0tDP-m-LnQ0Jb$0F5HkfRmUr49_^0EyPI>iwI>94Z+SUs!Ez93)u^ zzoK_89Dn)#Rl^2Cuhr4YlViUZF}IaFqe_aghPt6M^C_lIVBiC!8QcUuv|+<(bCXMV zC{XT%RyY-3h)9Cm3JF*TAW--_*TR`9t=;VEj;YCaH?0VXD(Bu&T#1CfeWNF89@8or zg4h+PS$wUoVxR?l#YgJC{N_dXrzx^eA!_HxIP$ejqs>;P3I+-6rXBp~+lyIl`tqsw zS@SLZ4(A=icvb&)=s0opg zO$wPOYww6_}xpWI{F z24crN&T}8y;LLBqMKx4tHo66C*C)3k4Kx8HcewfcX@v!$Ur!(dlzmT02?_gqca?Wc zr5aNwe5r)`mHf?5F`5b&Cdu((iuwv?EB~|qu9k*JnVHDINACk~;NyE0XBRm{fa(4e z8?*Wq;>?S=HjMnq%Z*Q#^zSK!+-$o#Ps%H-)nsq`gJs~b4-S)WT79T_(*tMV;=Jh! zoGuF3@oKlY?B|84z=Cd2i`tkhPP=V*kXi%76hYTL@T5F>LsX(F<{{`D!}loudDGX% zTxt0cJ0nLmk}p}q>wS`LqYby#yiOY=!x5>{9ysf8Yd;R#-S%EHTHjllCoJom<$C8J*)Oo+3@$aO2 zN^2EnsZ`N(9XAea}=Ol=FQ? z*7C8ZSpMNiZefe$QwJB@|3XS2Qx22-s{S5XQS{rW3RFye-nU1pV3~^V^kZ-=9Z_hl z>s{RD2orscv#Pw+X;FKp{H9Z|=r)Gy4?4m}K-Y<1=DnhwgR|m5dP`R?9o=|STp251 zid(Zy(~sI?+{R>_;ZgYe6TkGi15$cb@>2KTOVCNvjLE>GsFh#F5`kf4n%n2W--E*< zRfO*o?@NR6b3d$Za)f3ZGor}83T7x!rZEuC|DPIwWyTa1TXEJs_+9t+9#dogo+utv zMg4D+2zbEB3hdx4Z@xtl)1sSRyG`8O8J>x2OH{1)I^%|P^4#RYUd(?DJ%?C%Y>mx8 z5EVJyf$X%$PBXp0!#ZIX3%-rNN8nKfc zo9Lwvo$|6b{RfBrhd3N<2D6bZu&p)YRwYA zo-Dr;T+$>mjQB8pYdE)_;9lJU#WIKB+HrOD$1wxPok%fqR z`f!SG(GlgIAH>_|4|{KLf&h^=TCm?Q3s{hUPTnXecWSm#*Jpf(`_mn*lQ6-%gZh-5 zICoR5GLG%C#w9=-ABl&q8YgSS`EU8B0;PIdi)^oD_p3<15;^zvl4JO9K&HwK<=|sV zAGVL~uVi5f!x>9LwIB29px$&SDZ}>113n5sis>n|k9Cn8Yzw=_Y<*ZOdN=}ll!_ao zPK=j>;CTvZ7v-3tEwb=ZK`m=cgdDv`H?xsGRWyVr*Hmh0yH7~cUn_3y8$O`;4; z^t&Oji7nV$$lQPtlE8Gv|129EH%iYVGd3*9?w<$-GKpJ4w3bD}LLqgMF=5YRh30-G zoG3(+qilFqDW2&KeEnCo_4YP?O}_=y)RYjDiH@7{*0awif8_(2>`lSA<_GhwHQczZ zh|z(y>dH)VBk2Wv9%>L<#wZ}fpp3K*E8@Ow8UP=FygT4MLZZMl1y7MeQ{(^A(@+7K zp@=&!&ZE&OmA3e9$;i#fLp}|e)Uwb1DZm1pM?A&%;@~@>lck{KiViWzK*I|$DyWm4 z-V#7gI8;>qMd$w*S7=g&(#!;dz+6l*L^0VbIRO!aDEl<1YQ*X|DS((qKA@M@fhqDqkXfMLTG-;z`f56s_8Q> zpj6G>Q~##t0L?abvVxAyuEzI$$T&d>crw8HfmNPvuKipm6iKF?LVnZB5)N9a$^(Qu zx=N<@G~7vfP6sf-@$g_1y7%t2TqOa^04`M9!RlIu3sfWhU&vysn086U<%}Q3^r0Vk zUESG%C}5zG^8M~`qFg0a!PIikg|u253%E8?XM(({tz7FrWDyDJv6=zykSIy<=Ce&f zXmb`2N-~4c$`O$vM$^(&QmRa@T1YRzI_`r8?0UoNXR(?kjy?4}o5yT}2K=GGlv+E- zX3^wT6&qk2cdq&xWQl(G@17WZQY6ucnkPkGbZnt6Ax3Q`G3So!^jFF6?n$91yLlP%W8IZI5nW>KJU?IrmZ zV_=mV*f|wp6}p8vxQi`SW^F!2;zQUcas9s#EVc7-CR()xW#$cx<#yuur92H}+>SCBpH)p2ElqDV5W&DX95263r<`CdBgfhBv|=Ctt&o z5L1kC&}T_FD#o*$po|De_({JwaXSXC1HL`4!Y>@e;o8H!p%})*Xua6G=n*=|%_g`VR`dj#U9BK-8iY#&|-Nb~*YoU}ar?%lz{@1<7ZjZ1M2@;Lyw{q^P>0Wyo5_LS1?b-MnJLD`Y5 z{#kFgmyLkj6#*`C`zcbqf4k(nswP{%GAhSblaV~$-x|_aux;tEz!}^Y(PG_WV?uNV zy;jwP?=v0Qns4PARZsWi5P7)PBdkq7aZsbn538iz#@u=K{yv4~a4)(lLE#lR#~+`gGl|h9LXzvuq~RHE&p$|<)jErl%#@W0 zy3_6AHH|%{L=V#Es)FQvwFZTxnw2wKqe->!9Vs{+%Lt)!oUM5vt**^ z2^@e7b z3q7tG>6b}E$6b@8Z5XoEP2gZsP+_y|vuz1F*J;Knl9mC7q(+a+MN(6Umn144RTr{Y z!_)gzF*?ACea2Wp>>tOcM>QWx=n5-6b4)#C1n&@8w7NyOGUB6IjV+hc&9?!$f$KH` z0aq&Yqo>M2#S-V54ZT#1ym|yhG=Tz$*pf# zNHdt4Sa52js=b8Upsop*1v^l#TD__gP55q75d%R5pBL@&-e%OdAN{J)wGATF^~b9` zg4z=vlL3OR1n5XQt7N;e7u#}cqGb8b$4dO6i7sDxk6dx&LPQnwEhY14 zrJDFDS|kbq9&t%>Rq~qxrcUFDE~8s#wXbK0G2hMebM*;Ual;xTJqM7PTtG|A`yF>G zI64F;TA?v@j@q+KGx+F_abkU3%8L$#a_``u(-71z_jOn1KYz@il5O|4*(^3OQc;=+xjve%4gMSh~fgfB_XO&(l#B1QP8cHCiV!|vM9nomj(l!01YFVkUl z(wVf0i#KEgo_XR#M5{@ux@?`LON?jIKmU~ot+pA2Upn$of zAhNw6NHd{z>lps=mms@@oNe4r%X|+Bu2o1L8+0(YzP!lXqnQ;#1w8z%RNDX2#oaG^ zE{#YCZc99U|3F8iU+!=A$`N&rQ|by>5QRT;%+v{9V@odjF^A#tBWYe5!ZM4vvFrp%MvrP>lOtB0JHf{E03mi5b$)3 zjI2rb;!5L8m>Z26-AU8*_ZcN$yjYlkpc>mlw8is6xb_6Dj`tt8SANV*#7mlLJz(^y zsZslVz4J+nFNPl2CE8q?s}zUiA7@oRf0w6s`C8Gix@dGwoy}0vZ!i~BMTV^WD&@VT zh32pUN@cfudk_b`=#g^E`xm+9-grn~FU?=;6d&Hw18SY_9+h86FmX#~r&Bc_A{t<@ z=Y|{(jEv%ln|W?$7xh`an)_{C=WW*&)|X}XyW`K_J8~sBl9U46FEOpNr-zUGGGaX_ zrGOU3nc$P!NKfW18;5#ZNk34j*_r>-#`0uE;akAUUW=dDokDoV95wtan+*OScDNFj zuH?bW>n17)xkc|rajVb?+dOoa3+?Ipdfu^yT1t@AsGA7I%7oMGv_v}mWCgLE8JVvW)-0ZVe6MaHkD zAK&O-_Fp;$rr$1A+j$%C;EQV98UC++EyX|6UC?tof#_!yj7$xJ%vkwk`L$na+TRMh z)0U#}NuT!3WT)d`6jk=jTr_w83G^G%d{@mS=E`%8d*v~|J_tb_N%>@vtM0i}OM8_C z6HCWA-Zx`J)&>zT6ySmT&G4q6ZhyL-Zm1fK(eJ24f~Lz}Di4>@I2vAnu6%m@#-)1!THbRNyX9ewzB zRuZnZZ+nVXp^VcD6#hcDfYfktZT|*GMzf@UPc@+tRSi{w5J0`!#>kPJewW)NM~ORD z#Q7WP{?aQ>sK1cDMGE6L<(qL!bM|E(3{_m2puj_;+cbHpgS$8e1di=i`EB)mFrd(_ zBzRP@4*KybPd)N1bRbgloh+g~z^#l5_(_Yj&pqQDU#=X0;SJ^<1vYR05?bzRq_xss z`(%M57if5~A?H%povfUGoQzt*PU6TsiL`Zraz-k`fwyyF7~QHUO2wEIiu&<(V<>SdOW%*g|`fmkX z@p&>{B_{hKcNLuk+Gi)fn@RU8+DMwZK8M_*cR zA@>RrK_K3vyZr24Q%#kwL+|lXE!;~~pzKFpCfz;5J3MjxiTmN_iA~VERX^RzT=34d4ZY8{^(;#brN2@ zJ;!z9?m?FH<9Cy)sCO!R6&GqGB{`!nB9j9ft%poxk^wo-OY)O@TqLayan>OvtB)PA ziCT5Y@w2b>W5Y(x!JuV#SQ94A}wkdwR_djBd z0dmTo%{4+!Z!Z2u(Y5%}t1S!+la;ON~p9HWC7~Uck7hQXYQ^sxV z;F;E!r(>#kp$sXuvIK(&+nW_Ka#bvedHPaL2rtxTZj4+p#sxYT z>1>d-RE^V}qs*j*xlf+LSXIF{5(kYPB#$@IkwwVLP2&Q_+euxYIaT&tH>2ww!;*WB zQ8h@i*oKC-hpNe00iYbZ7*Pi(t$hgn@lK2Fz(4SQt2b5w`Q}c0w_^wg<>IFHZJ;!a zM4ChN(-`dhucX{G#5$jN=>S{c@Vmhez=DCVclEe2Wu5yfewDt7pfhd672VCenWQ|m z?7@`}w4}%iS~DOH-6my7%7b%&%PosD*mDGv67QS4)=d zR4)w%wd5NO*xQmgl%Lt5))fa;8rDE3J(rj}zMl4iBtD;iKjf2VGeF&CKy56r@UbqMOPIg%P z%x54u2~x>0;vK3=-Y=Q^cAg6dvy2)UA|6A`&nr&VcB(&wwUHRpgW^i7j=KBvYo6{Z z08Gf|MD8HEUFpxP@Vj}=pU>I27gRz%_do}=DvbcFyeF4#>b=~&X5AMbWlY5$W|P>% zl$3AO^`lXd){aFcE|4;j?J?2SX6be{@B$T8gExB~5aUWp@m6XUtusYrJ_~@AwqJdi zH%LSbnv0iM-_A{wVMVoQ@Sb5(lR1?)%2?_r`vEz^)_i!5m2xdB$;$d9S?NnTwU^Wm zdfn0PLip1!hNja{1ZX4oM1ogu6_Mrs+)&xiQb)?*Qz$`DwQ;^<8OY3JOAXborlM zVhBSQj|+FLJX$?Y7^r=|0HJ-NeGx53c9}t;vp+>Q&K2P26_8Ljga-uUwpP6w|LpET zdY?H?`OI~n7_GxhMjlt_CK2}O(||ud6IHJjc;^Xwha_zjDoVRP5qk@u{OUS~M0%+v z$b(Zb7SFOWd?#TeAH$#Qxo>7ktH?wI!6%Q)kj2qc*bg^xWf?rnNMc~dKCbcdp|;$0 zy`L=m6WeoNAe9g(wEh=*yX5xV=GS8{=&16c10ONk=DvXZihdG1;P|Am%RZQ}mUocs z6-rLLRjON_V3CG286`DF1O<+M{@_DICD>Gm)m|)5)-`0~Dj_5+*0e!dK~)TntY`Dj zZI}|(rNxrcz84$$%OP-qLXr=4+(INKu4N~;BL-eh{XL~e_cab0ce;@L%7E5wezOobr%<%Pob~}8EUZz!2sQee8q&G5o zNM@#0@wa}aRhXf8Gn+Aet6vw&u(Uq+It28W5sJnRwdFI@^@rdWL%yPo#BQ0F0dfp7 zp{#f~F9_0ezrT6?jLynxI^k3dj~M-dOb?wmql`2-Z!XPz0F%cUVav6q+YKV*PP-k&1M?5Hs`8i-u)C0#DCTd%pc6>u+_fRvHSu`vn|PyO@)hX^(}BTHJ?qkprR{a{4| z$h{zYKzY|Z7|Y(eUiuur_=z?#jv|Ik02C9+lv^Qsr2~n&lm1Pa}!jol;6-a);V_2X22^L" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# TODO: Code" + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Cargar el dataset\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "# Filtrar las filas donde 'level5' es \"Arroyomolinos (Madrid)\"\n", + "arroyomolinos = ds[ds['level5'] == \"Arroyomolinos (Madrid)\"]\n", + "\n", + "# Trazar el histograma de precios\n", + "plt.figure(figsize=(10, 6))\n", + "plt.hist(arroyomolinos['price'], bins=20, color='blue', edgecolor='black')\n", + "plt.title('Histograma de Precios en Arroyomolinos (Madrid)')\n", + "plt.xlabel('Precio (USD)')\n", + "plt.ylabel('Frecuencia')\n", + "plt.grid(True)\n", + "plt.show()\n" ] }, { @@ -614,7 +783,9 @@ "id": "impressed-combination", "metadata": {}, "source": [ - "**TODO: Markdown**. Para escribir aquí, haz doble clic en esta celda, elimina este contenido y coloca lo que quieras escribir. Luego ejecuta la celda." + "Este histograma analiza la frecuencia, el rango de precios, y los outliers (casos atípicos) de las propiedades en Arroyomolinos (Madrid). Este tipo de análisis ayuda a entender mejor el mercado inmobiliario en la zona, ya que permite observar cómo se distribuyen los precios de las propiedades.\n", + "\n", + "Al observar la distribución de precios, podemos asumir también el nivel socioeconómico del sector, puesto que áreas con precios más altos suelen estar asociadas con un nivel de vida más elevado. y la identificación de outliers puede señalar propiedades excepcionales o casos de precios \"irreales\" en comparación con la media del mercado." ] }, { @@ -630,12 +801,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "id": "numeric-commerce", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "El precio promedio en Valdemorillo es de 363860.29 USD\n", + "El precio promedio en Galapagar es de 360063.20 USD\n", + "Los precios promedios en Valdemorillo y Galapagar son diferentes.\n" + ] + } + ], "source": [ - "# TODO" + "import pandas as pd\n", + "\n", + "\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "\n", + "precio_promedio_valdemorillo = ds[ds['level5'] == \"Valdemorillo\"]['price'].mean()\n", + "\n", + "\n", + "precio_promedio_galapagar = ds[ds['level5'] == \"Galapagar\"]['price'].mean()\n", + "\n", + "# Precios promedio\n", + "print(f\"El precio promedio en Valdemorillo es de {precio_promedio_valdemorillo:.2f} USD\")\n", + "print(f\"El precio promedio en Galapagar es de {precio_promedio_galapagar:.2f} USD\")\n", + "\n", + "# Conclusión\n", + "if precio_promedio_valdemorillo == precio_promedio_galapagar:\n", + " print(\"Los precios promedios en Valdemorillo y Galapagar son iguales.\")\n", + "else:\n", + " print(\"Los precios promedios en Valdemorillo y Galapagar son diferentes.\")\n" ] }, { @@ -653,12 +853,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "id": "hourly-globe", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "El precio promedio por metro cuadrado en Valdemorillo es de 1317.95 USD/m²\n", + "El precio promedio por metro cuadrado en Galapagar es de 1606.32 USD/m²\n", + "Los precios promedios por metro cuadrado en Valdemorillo y Galapagar son diferentes.\n" + ] + } + ], "source": [ - "# TODO" + "import pandas as pd\n", + "\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "# columna 'pps' \n", + "ds['pps'] = ds['price'] / ds['surface']\n", + "\n", + "precio_m2_valdemorillo = ds[ds['level5'] == \"Valdemorillo\"]['pps'].mean()\n", + "\n", + "precio_m2_galapagar = ds[ds['level5'] == \"Galapagar\"]['pps'].mean()\n", + "\n", + "# Imprimir los promedios de precio por metro cuadrado\n", + "print(f\"El precio promedio por metro cuadrado en Valdemorillo es de {precio_m2_valdemorillo:.2f} USD/m²\")\n", + "print(f\"El precio promedio por metro cuadrado en Galapagar es de {precio_m2_galapagar:.2f} USD/m²\")\n", + "\n", + "# Conclusión\n", + "if precio_m2_valdemorillo == precio_m2_galapagar:\n", + " print(\"Los precios promedios por metro cuadrado en Valdemorillo y Galapagar son iguales.\")\n", + "else:\n", + " print(\"Los precios promedios por metro cuadrado en Valdemorillo y Galapagar son diferentes.\")\n" ] }, { @@ -674,12 +903,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "id": "common-drilling", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAIcCAYAAAAwmqVEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZqUlEQVR4nO3deXxU1f3/8fckmUx2tkDYElYJ+6oCUlwJi4Ci1qrQitJSFxAVtVatArUUtcrP5Wtd2ipqRVwquKIiioqCCiKIhLCIhB3Ckn2ZZO7vj2OCMSGZSTJzJ8zr+XjkMTP3npn5BA5k3jnnnuOwLMsSAAAAAISIMLsLAAAAAIBAIgQBAAAACCmEIAAAAAAhhRAEAAAAIKQQggAAAACEFEIQAAAAgJBCCAIAAAAQUghBAAAAAEIKIQgAAABASCEEAQAAAAgpJ00I+vTTTzV+/Hi1bdtWDodDS5Ys8fk1LMvSgw8+qG7dusnlcqldu3aaO3duwxcLAAAAwDYRdhfQUPLz89WvXz9NmTJFF198cZ1e48Ybb9QHH3ygBx98UH369NGRI0d05MiRBq4UAAAAgJ0clmVZdhfR0BwOhxYvXqwJEyZUHCsuLtZdd92ll156SceOHVPv3r11//336+yzz5Ykpaenq2/fvtq4caNSU1PtKRwAAACA35000+FqM336dK1atUqLFi3Shg0bdOmll2r06NHaunWrJOmtt95S586d9fbbb6tTp07q2LGj/vCHPzASBAAAAJxkQiIEZWZm6tlnn9Wrr76q4cOHq0uXLrr11lv1q1/9Ss8++6wk6YcfftDOnTv16quv6vnnn9eCBQu0du1a/frXv7a5egAAAAAN6aS5Jqgm3333ncrKytStW7dKx4uLi9WiRQtJksfjUXFxsZ5//vmKdv/5z380aNAgZWRkMEUOAAAAOEmERAjKy8tTeHi41q5dq/Dw8Ern4uLiJElt2rRRREREpaDUo0cPSWYkiRAEAAAAnBxCIgQNGDBAZWVlOnjwoIYPH15tm2HDhqm0tFTbt29Xly5dJElbtmyRJHXo0CFgtQIAAADwr5Nmdbi8vDxt27ZNkgk98+fP1znnnKPmzZsrJSVFv/3tb/X555/roYce0oABA3To0CEtX75cffv21dixY+XxeHTaaacpLi5ODz/8sDwej6ZNm6aEhAR98MEHNn93AAAAABrKSROCVqxYoXPOOafK8cmTJ2vBggVyu93629/+pueff1579uxRYmKihgwZojlz5qhPnz6SpL179+qGG27QBx98oNjYWI0ZM0YPPfSQmjdvHuhvBwAAAICfnDQhCAAAAAC8ERJLZAMAAABAOUIQAAAAgJDSqFeH83g82rt3r+Lj4+VwOOwuBwAAAIBNLMtSbm6u2rZtq7Cwmsd6GnUI2rt3r5KTk+0uAwAAAECQ2LVrl9q3b19jm0YdguLj4yWZbzQhIcHWWtxutz744AONHDlSTqfT1lrQeNBv4Cv6DOqCfgNf0WdQF3b3m5ycHCUnJ1dkhJo06hBUPgUuISEhKEJQTEyMEhIS+M8CXqPfwFf0GdQF/Qa+os+gLoKl33hzmQwLIwAAAAAIKYQgAAAAACGFEAQAAAAgpBCCAAAAAIQUQhAAAACAkEIIAgAAABBSCEEAAAAAQgohCAAAAEBIIQQBAAAACCmEIAAAAAAhhRAEAAAAIKQQggAAAACEFEIQAAAAgJASYXcBJyWPR/rxR2nLFvO4WzepY0cpjMwJAAAA2M3WT+VlZWW6++671alTJ0VHR6tLly669957ZVmWnWXVT0aGNHOmdMkl0jXXmK9LLjHH0tPtrg4AAAAIebaOBN1///164okn9Nxzz6lXr15as2aNrr76ajVp0kQzZsyws7S6u+8+adUqKTxcat3aHDtyRHrzTWn/fmnWLKlHD3trBAAAAEKYrSHoiy++0IUXXqixY8dKkjp27KiXXnpJX331lZ1l1Y3HY27T0yWXS2rZUnI4zLG2baWDB6WNG6XFi6XUVKbGAQAAADaxNQSdccYZevrpp7VlyxZ169ZN69ev18qVKzV//vxq2xcXF6u4uLjicU5OjiTJ7XbL7XYHpOYTce/caW6dTikuzgShn2vZUsrJkdavl3bskFJSbKgSwaa839rdf9F40GdQF/Qb+Io+g7qwu9/48r4Oy8YLcDwej+6880498MADCg8PV1lZmebOnas77rij2vazZ8/WnDlzqhxfuHChYmJi/F0uAAAAgCBVUFCgiRMnKjs7WwkJCTW2tTUELVq0SLfddpv+8Y9/qFevXvr222910003af78+Zo8eXKV9tWNBCUnJysrK6vWb9Tf3Dt2aFl6utJuu03OwkJzMCxMio6WWrQw1wjl5JipcH//OyNBkGR+Y7Fs2TKlpaXJ6XTaXQ4aAfoM6oJ+A1/RZ1AXdvebnJwcJSYmehWCbJ0Od9ttt+nPf/6zLr/8cklSnz59tHPnTs2bN6/aEORyueT65TQzSU6n0/5/oD+FM+exY3KWlpopcWVl0uHDJvxERUkxMVK/flKnTlwThEqCog+jUaHPoC7oN/AVfQZ1YVe/8eU9bf0kXlBQoLBfhIHw8HB5yhcZaCw8Humdd8z99u0ly5Ly8syt02lC0NGjUq9e0kUXEYAAAAAAG9k6EjR+/HjNnTtXKSkp6tWrl9atW6f58+drypQpdpblu8xMszFqjx7Sr34lRUaazVLz8sz56GgpMVGaOpXlsQEAAACb2RqCHnvsMd199926/vrrdfDgQbVt21bXXHON7rnnHjvL8l1urlRUZO4nJkqjRknHjpmpcJZlrgfav18qLTWjRowEAQAAALaxNQTFx8fr4Ycf1sMPP2xnGfUXH2+u+SnncEjNmpnQs3mztHevVFAgPf209M03ZkocI0IAAACALRiSaAgpKVK3buZ++WJ7hw5JX35pAlBZmdSli9Shg7RunfToo2ZTVQAAAAABRwhqCGFh0rhx5n5GhpkKt2mTlJ1tRoUSEszIT5MmUs+eUlaWtGSJmRoHAAAAIKAIQQ0lNdXc9u1rFkr44QezMlybNtLgwVLLlua8w2FWkEtPN+0AAAAABJSt1wSdlG6+Wfr4Y+n//T8zRa55cxN8fi42VtqzxyyoAAAAACCgGAlqaGFhUvfuUlKSGQn6ZQCSpPx8s5BCfHzg6wMAAABCHCHIH1JSTBDatev4QgnlLEvavdtcI5SSYk99AAAAQAgjBPlDWJhZBjsx8fgCCaWl5nbTJnN8wgT2CwIAAABswKdwf+nRQ5oxQxowwGyaumWLuR040BxnnyAAAADAFiyM4E89ephV4zIzzSII8fFmChwjQAAAAIBtCEH+FhYmdexodxUAAAAAfsKQBAAAAICQQggCAAAAEFIIQQAAAABCCiEIAAAAQEghBAEAAAAIKYQgAAAAACGFEAQAAAAgpBCCAAAAAIQUQhAAAACAkEIIAgAAABBSCEEAAAAAQgohCAAAAEBIIQQBAAAACCmEIAAAAAAhhRAEAAAAIKQQggAAAACEFEIQAAAAgJBCCAIAAAAQUghBAAAAAEIKIQgAAABASCEEAQAAAAgphCAAAAAAIYUQBAAAACCkEIIAAAAAhBRCEAAAAICQQggCAAAAEFIIQQAAAABCCiEIAAAAQEghBAEAAAAIKYQgAAAAACElwu4CTloej5SZKeXmSvHxUkqKFEbmBAAAAOxmawjq2LGjdu7cWeX49ddfr8cff9yGihpIerq0eLG0ebNUVCRFRUndu0sXXST16GF3dQAAAEBIszUEff311yorK6t4vHHjRqWlpenSSy+1sap6ysiQHn9cysqSkpOl2FgpP19at07atUuaMYMgBAAAANjI1vlZLVu2VOvWrSu+3n77bXXp0kVnnXWWnWXVz1tvSTt3Si1amClxYWFSQoLUs6cJRkuWmOMAAAAAbBE01wSVlJTov//9r2bOnCmHw1Ftm+LiYhUXF1c8zsnJkSS53W653e6A1Hki5e/vXrpUysmR9u+XIiJMGDrlFCkxUerQQdq6Vdqxw1wjhJBX0W9s7r9oPOgzqAv6DXxFn0Fd2N1vfHlfh2VZlh9r8dorr7yiiRMnKjMzU23btq22zezZszVnzpwqxxcuXKiYmBh/lwgAAAAgSBUUFGjixInKzs5WQkJCjW2DJgSNGjVKkZGReuutt07YprqRoOTkZGVlZdX6jfqVxyP3I49oWWqq0h54QM6ICMnlMucsy0yDa93aTIk7elS66y5GgiDJ/MZi2bJlSktLk9PptLscNAL0GdQF/Qa+os+gLuzuNzk5OUpMTPQqBAXFdLidO3fqww8/1Ouvv15jO5fLJVd5uPgZp9Np7z/QH380K8GlpsqZkCDnzp1Sy5ZS+bQ+l0vas8c8Hj5c6tSJ5bJRie19GI0OfQZ1Qb+Br+gzqAu7+o0v7xkUn8SfffZZtWrVSmPHjrW7lLrJzTVLYUvm+p+YGOnQIXPM4zGjQUePmv2CJkwgAAEAAAA2sv3TuMfj0bPPPqvJkycrIiIoBqZ8Fx9v9gKSzAIIgwdLbdpIhYXS4cNmoYTERGnqVJbHBgAAAGxme+r48MMPlZmZqSlTpthdSt2lpEjdupn7lmWmwiUmStnZZjQoM1MaNkw691x76wQAAABgfwgaOXKkgmRthroLC5PGjZO2bzebpSYlmU1SHQ4zEtShg3TxxUyDAwAAAIIAn8obSmqque3b1wSfLVvM7cCB0owZTIMDAAAAgoTtI0EnnZtvlvbtM4slxMebqXKMAAEAAABBgxDU0MLCpI4d7a4CAAAAwAkwRAEAAAAgpBCCAAAAAIQUQhAAAACAkEIIAgAAABBSCEEAAAAAQgohCAAAAEBIIQQBAAAACCmEIAAAAAAhhRAEAAAAIKQQggAAAACEFEIQAAAAgJBCCAIAAAAQUghBAAAAAEIKIQgAAABASCEEAQAAAAgphCAAAAAAIYUQBAAAACCkEIIAAAAAhBRCEAAAAICQQggCAAAAEFIIQQAAAABCCiEIAAAAQEghBAEAAAAIKYQgAAAAACGFEAQAAAAgpBCCAAAAAIQUQhAAAACAkBJhdwEnncxMqaBAio+XUlKkMHImAAAAEEwIQQ0lI8Pczp0r5eVJUVFS9+7SRRdJPXrYWxsAAACACgxTNIT0dOnJJ839Fi2k1FQpMVFat0569FFzHgAAAEBQIATVl8cjLV4sHTliHsfHS+HhUkKC1LOnlJUlLVli2gEAAACwHSGovjIzpc2bpXbtqp5zOKT27c1IUGZm4GsDAAAAUAUhqL5yc6WiIikmpvrzsbHmfG5uYOsCAAAAUC1CUH3Fx5tFEAoKqj+fn2/Ox8cHti4AAAAA1SIE1VdKilkFbs+equcsS9q926wOl5IS+NoAAAAAVMES2fUVFmaWwd671zzOyTEjP/n5JgAlJkoTJrBfEAAAABAkCEENoUcP6dprpe3bzSpx5fsEDRxoAhD7BAEAAABBgxDUUFJTTQi66y5zfVB8vJkCxwgQAAAAEFT4hA4AAAAgpNgegvbs2aPf/va3atGihaKjo9WnTx+tWbPG7rJ8l5FhbufOle69V7rnHum++8weQQAAAACChq0h6OjRoxo2bJicTqeWLl2qTZs26aGHHlKzZs3sLMt36enSk0+a+y1amKlxiYnSunXSo48ShAAAAIAgYus1Qffff7+Sk5P17LPPVhzr1KmTjRXVgccjLV5sFkSQzLVAHo+UkCD17Clt2iQtWWKCEdcHAQAAALazNQS9+eabGjVqlC699FJ98sknateuna6//npNnTq12vbFxcUqLi6ueJyTkyNJcrvdcrvdAam5isxMads2uX/aB8j9y6DToYO0dau0Ywd7BaGK8n5rW/9Fo0OfQV3Qb+Ar+gzqwu5+48v7OizLsvxYS42ioqIkSTNnztSll16qr7/+WjfeeKOefPJJTZ48uUr72bNna86cOVWOL1y4UDExMX6vFwAAAEBwKigo0MSJE5Wdna2EhIQa29oagiIjI3Xqqafqiy++qDg2Y8YMff3111q1alWV9tWNBCUnJysrK6vWb9RvMjOluXPldjq17PzzlXbDDXIeO2bOhYeb/YIkM03OsqSICKlzZ7Ov0OjR9tSMoOF2u7Vs2TKlpaXJ6XTaXQ4aAfoM6oJ+A1/RZ1AXdvebnJwcJSYmehWCbJ0O16ZNG/Xs2bPSsR49euh///tfte1dLpdcLleV406n075/oJ06met/liyRzj9fzuxsOcvKzPU/+fnSsWOSwyFFR0tt25o9hNavl/78Z3N83Dh76kZQsbUPo1Giz6Au6DfwFX0GdWFXv/HlPW29Un/YsGHKKF9a+idbtmxRhw4dbKqojixLys01910uM9ojSeXzEh0Os3BCWJgJTJ07S9nZ0mOPSaWl9tQMAAAAhChbQ9DNN9+s1atX6+9//7u2bdumhQsX6umnn9a0adPsLMs3mZlmj6DyBRE8HhN+3G4TfsLDzW1h4fGgFBYmtWxpFkxYvdq+2gEAAIAQZGsIOu2007R48WK99NJL6t27t+699149/PDDmjRpkp1l+SY3V8rJMUFHkpo0Mdf/uFzm2M/DUUnJ8efFxpqgdOBA4GsGAAAAQpit1wRJ0rhx4zSuMV8XEx9vpriVh6D8fCkvTyorM8HHso6PCEVGHn9efr7kdEpJSfbUDQAAAIQodu+sr5QU6Ve/On4dUEmJCTzlI0GWZcKQy2UCk2QeHzoknXKKNGSIfbUDAAAAIYgQVF9hYdJFF0nNm5vHZWXHR4HCw4+3Cw83x7OzpR9+MNPmbrjheHgCAAAAEBB8Am8IsbFSaqq573KZZbAlE3yaNDm+MMIPP5ilsnv1MgGoMU8DBAAAABopQlBDyM09fr3PpEnSjh1m0YNWraTkZLMM9urVJvScfrqZAscIEAAAAGALPok3hPh4KSrK3G/WzIz+/FxhodS+vXTxxVLHjgEvDwAAAMBxXBPUEFJSpG7dzH3LqnzOsqTdu6UePUw7AAAAALYiBDWEsLDj1/dkZJjFD0pLze2mTVJiojRhwvE9gwAAAADYhk/lDaV8YYS+faXDh6UtW8ztwIHSjBlmJAgAAACA7bgmqKHdfLO0b59ZLCE+3kyBYwQIAAAACBqEIH/weKQ9e47f79iRIAQAAAAECUJQQ7vzTumjj6QjR8zj5s2ls86SrrmGKXEAAABAECAENZSMDHO7dKlZFKF1a/P4yBHpzTel/fulWbMIQgAAAIDNmKPVEDweE3QkyeWS2rSRoqPNV9u25tjGjdLixaYtAAAAANsQghpCZqa0fr25n5AgORzHzzkcZvPUsjJpzRrTFgAAAIBtmA7XEHJzpfx8c7+gwOwPFBZmAlF0tBQZac7l55u2AAAAAGxDCGoI8fFSXp65n55ugpAkRURIzZodvz4oNta0BQAAAGAbQlBD2LDBbI4qSZYlhYeb+2VlUlaWCUht20qnnmr2DQIAAABgG64Jqq/SUumxxyS32zwOCzNByOE4fr+oSIqKki68kP2CAAAAAJvxiby+Vq82y2M7neZxdLQJOmVlZiW4sDAzMpSQYKbDAQAAALAV0+Hq68ABqbj4eAhq1szcd7uPjwbl5ZkRIRZFAAAAAGxHCKqvpCSzD1Bp6fFjTufxUFRUZIJQfDyLIgAAAABBgOlw9TVkiJSaWjkElfN4zEpxUVHS8OEsigAAAAAEAUJQfUVESDfeKLVsaR5nZ0slJWYE6MgRc2zQIOmSS1gUAQAAAAgCTIdrCOPGmWt+yhdCOHbMXA+UkCCNHCn9+c9Sjx52VwkAAABAhKCGM3q09O670ksvSZs2STEx0rBhUufOjAABAAAAQYQQ1NDOOEM66yy7qwAAAABwAgxRAAAAAAgphCAAAAAAIYUQBAAAACCkEIIAAAAAhBQWRmhomZlmg1SXS1q3TtqzR0pOli68UIqMtLs6AAAAIOQRghpKRoa5nTtX+vZbaetWqbjYLI8dESG1bi3dcot03XW2lgkAAACEOqbDNYT0dOnJJ839vXvNPkEFBWYDVYdDcjrNiNBdd0lPPGFvrQAAAECIIwTVl8cjLV4sHTliHq9bJ5WUmPAjmfuFhVLTpuZ2/nxzDAAAAIAtCEH1lZkpbd4stWtnHuflmQAUHm6mwoWHS6WlUk6OFBUl7dsnvfGGvTUDAAAAIYxrguorN1cqKpKio81jyzLBp3wkqFxZmRk1KiuTdu0KfJ0AAAAAJDESVH/x8WaE58AB89jhMEHo5xwOszhCcbG5n5wc+DoBAAAASCIE1V9KitS9u7R7t3kcGXl81MeyzG351Di3W0pMNMtlAwAAALAFIai+wsKkiy4y4UaSWrQwx0pLzVe5ggIThqZOZb8gAAAAwEaEoIbQo4d0663mfni4CUQRP11uVT4aFBUljRljlskGAAAAYBsWRmgo3btLP/wgde1qpsYNGCC5XGbp7JISqW9f6eabzSgRAAAAANvY+ol89uzZcjgclb66d+9uZ0l199575jYjQ/rxR+mzz6RVq8yI0IUXmgDUo4etJQIAAAAIgulwvXr10r59+yq+Vq5caXdJvnv7bWnWLHM/MVHq3Vvq0ME83rVL6tWLAAQAAAAECdunw0VERKh169Z2l1F3paXSo4+azVAls+hBfr6ZAhcbKx0+bM6ff/7x64QAAAAA2Mb2T+Vbt25V27ZtFRUVpaFDh2revHlKSUmptm1xcbGKi4srHuf8FDzcbrfcbndA6q1i1Spp1y65W7Qwtfz4o7kOyOM53ubLL6U77pD+/nd7akTQKu+3tvVfNDr0GdQF/Qa+os+gLuzuN768r8OyfrmzZ+AsXbpUeXl5Sk1N1b59+zRnzhzt2bNHGzduVHx8fJX2s2fP1pw5c6ocX7hwoWJiYgJRMgAAAIAgVFBQoIkTJyo7O1sJCQk1trU1BP3SsWPH1KFDB82fP1+///3vq5yvbiQoOTlZWVlZtX6jfvPFF9IVV8jtdGrZo48qbcoUOYuLJYfj+PLYkpkm1769GRVinyD8xO12a9myZUpLS5PT6bS7HDQC9BnUBf0GvqLPoC7s7jc5OTlKTEz0KgTZPh3u55o2bapu3bpp27Zt1Z53uVxyuVxVjjudTvv+gbZrZ8LOT1PznEVFJgRJJgBZllkW2+Uyq8a9+6506aX21IqgZWsfRqNEn0Fd0G/gK/oM6sKufuPLe9q+OtzP5eXlafv27WrTpo3dpXivsFDq0sVskiodH/0pHwEKCzMLIkRGSmVlZrU4AAAAALaxdSTo1ltv1fjx49WhQwft3btXs2bNUnh4uK644go7y/JNfLzUubMJP+XK74eHS06nCUJut3mcnGxPnQAAAAAk2RyCdu/erSuuuEKHDx9Wy5Yt9atf/UqrV69Wy5Yt7SzLNykpUvfuUvkUuLAwKSrKBJ6wMLOEdkSEGTFq395snAoAAADANraGoEWLFtn59g0jLEy66CJp717z2OmUioqOT4ezLDMNLiZGmjmTRREAAAAAmwXVNUGNVo8e0rXXmvu9e5ug43abDVPLyszjM8+Uzj7b1jIBAAAAEIIaTmqqub3nHmnMGKlfP2n4cGnCBGnKFBOEHn1USk+3tUwAAAAg1AXVEtknhbVrzRS5Cy4wewWVa9pU2rRJWrLEBKYw8icAAABgBz6JN7QtW8wKcD8PQJJ53L69GQnKzLSnNgAAAACEoAZXVCTFxlZ/LjbWnM/NDWxNAAAAACr4NB3u2LFjWrx4sT777DPt3LlTBQUFatmypQYMGKBRo0bpjDPO8FedjUdUlJSfLyUkVD2Xn2/Ox8cHvi4AAAAAkrwcCdq7d6/+8Ic/qE2bNvrb3/6mwsJC9e/fX+edd57at2+vjz/+WGlpaerZs6defvllf9cc3Lp1k3btqrx5qmQe795tVpJLSbGnNgAAAADejQQNGDBAkydP1tq1a9WzZ89q2xQWFmrJkiV6+OGHtWvXLt16660NWmijMW6ctHOnWQShfXszBS4/3wSgxESzWhyLIgAAAAC28SoEbdq0SS1atKixTXR0tK644gpdccUVOnz4cIMU1yilpkozZkiLF0ubN0t79pgpcAMHmgDUo4fdFQIAAAAhzasQVFsAqm/7k06PHiYMZWaaRRDi480UOEaAAAAAANv5vE/QRx99pNdff10//vijHA6HOnXqpF//+tc688wz/VFf4xUWJnXsaHcVAAAAAH7Bp6GJa6+9ViNGjNBLL72kw4cP69ChQ3rxxRd1zjnn6IYbbvBXjQAAAADQYLwOQYsXL9azzz6rZ555RllZWVq1apVWr16tQ4cO6V//+peefvppvfnmm/6sFQAAAADqzesQ9Oyzz2rmzJm66qqr5HA4jr9AWJimTJmim266Sf/5z3/8UiQAAAAANBSvrwn65ptv9Je//OWE5y+++GJdcsklDVJUo1Raam6ffFJKT5eaNpX69JEGDZKKi1kcAQAAAAgSXoegrKwstW/f/oTn27dvH7pLY7/9tvTgg9LNN0u33y4VFprjDocUHW1WiuvdW+reXbroIpbJBgAAAGzkdQgqKSmR0+k88QtFRKikpKRBimpU3n5buukm6dChqucsSyookDZuNCNDhYXSrl1mHyGCEAAAAGALn5bIvvvuuxUTE1PtuYKCggYpqFEpLZUeeUQ6ePD4dLjquN3St99K118vZWRIS5aY0SGmxgEAAAAB53UIOvPMM5WRkVFrm5CyerUJNW63mfp2Ig6H2TQ1I0Nq395cM5SZyT5CAAAAgA28DkErVqzwYxmN1IEDUlGRGQWqYaqgLEvyeKScHCk2Vtqzx4QiAAAAAAFX7/lYpaWlysvLa4haGp+kJCkiwoSc2jgcUkKClJ8vRUWZ1eIAAAAABJzXIeitt97SggULKh2bO3eu4uLi1LRpU40cOVJHjx5t6PqC25AhUocO3rWNjTXXAe3ebRZFSEnxb20AAAAAquV1CJo/f77y8/MrHn/xxRe65557dPfdd+uVV17Rrl27dO+99/qlyKAVESH94Q9mGeyargmSpF69zDVBiYnShAksigAAAADYxOtP4t9//73OOOOMisevvfaa0tLSdNddd+niiy/WQw89pLfeessvRQa1q6+WTjvtxKEmLExq21bq0kUaOJDlsQEAAACbeb0wQm5urlq0aFHxeOXKlbr00ksrHvfq1Ut79+5t2Ooag3fflbZtOz4SFBFh7luWuW3VSrrjDmncODMFjhEgAAAAwFZefyJv166d0tPTJUl5eXlav359pZGhw4cPn3APoZNW+T5B2dlmsQPpePgJDzePCwvNeQIQAAAAEBS8/lR+6aWX6qabbtILL7ygqVOnqnXr1hoyZEjF+TVr1ig1NdUvRQat1aulzZvNfY/H3EZFmWuEoqLMstkFBdLSpWZfIAAAAAC283o63D333KM9e/ZoxowZat26tf773/8qvHy0Q9JLL72k8ePH+6XIoHXggFRSYjZLLf+zCA83U+IkM/KTn28CUHa2fXUCAAAAqOB1CIqOjtbzzz9/wvMff/xxgxTUqCQlmdBTWno8BHk8JhRJZmpc+Xk2RwUAAACCAhep1Ef5PkGWZYKOZKa/lX8VFppzsbFsjgoAAAAECa9DULNmzdS8efMqX506ddKoUaO0bNkyf9YZnMr3CYqMNNPipOPXBpUrKzOjQIcOBb4+AAAAAFV4PR3u4Ycfrvb4sWPHtHbtWo0bN06vvfZa6F0XNHmy9Nhj0pYt1Z+3LHPt0KOPSueeywpxAAAAgM28DkGTJ0+u8Xz//v01b9680AtBu3d7t+jBO+9Ic+dKd9/t/5oAAAAAnFCDDUuMGzdOm8uXiw4lhw55t/y1xyM99dTxaXMAAAAAbNFgIai4uFiRkZEN9XKNx9KlVa8DOpFDh6Q33vBvPQAAAABq1GAh6D//+Y/69+/fUC/XeBw54n1bj0fatct/tQAAAAColdfXBM2cObPa49nZ2frmm2+0ZcsWffrppw1WWKORk+N92/BwKTnZf7UAAAAAqJXXIWjdunXVHk9ISFBaWppef/11derUqcEKazR8GQlq10668EL/1QIAAACgVl6HoI8//tifdTROJSXSqlXet7/pJrOnEAAAAADbsGlNfbzxhpSX513bhARpwAD/1gMAAACgVl6FoGuvvVa7d+/26gVffvllvfjii/UqqtHYtcssdhATU3O78HBzu3+//2sCAAAAUCOvpsO1bNlSvXr10rBhwzR+/Hideuqpatu2raKionT06FFt2rRJK1eu1KJFi9S2bVs9/fTT/q47OCQnm4DjcEhlZSduFxNjzltW4GoDAAAAUC2vRoLuvfdebdmyRcOGDdM///lPDRkyRCkpKWrVqpVSU1N15ZVX6ocfftDTTz+t1atXq2/fvj4Xct9998nhcOimm27y+bm2ufBCqXVrqbi45naWJcXFSV27BqYuAAAAACfk9cIISUlJuuuuu3TXXXfp6NGjyszMVGFhoRITE9WlSxc5HI46F/H111/rqaeeqlN4slVkpHTLLWbBg9r07Ck1a+b3kgAAAADUzOsQ9HPNmjVTswb6QJ+Xl6dJkybpX//6l/72t781yGsGVJs2tbcpKZH69JFSUvxfDwAAAIAa1SkENaRp06Zp7NixGjFiRK0hqLi4WMU/m3qW89NGpW63W2632691Vqu0VPrHP6SICLmjokwt0dHVt123Ttq0SUpNDWCBCHbl/daW/otGiT6DuqDfwFf0GdSF3f3Gl/d1WJZ9V+svWrRIc+fO1ddff62oqCidffbZ6t+/vx5++OFq28+ePVtz5sypcnzhwoWKqW2FNgAAAAAnrYKCAk2cOFHZ2dlKSEiosa1tIWjXrl069dRTtWzZsoprgWoLQdWNBCUnJysrK6vWb9Qv3nxTuv56KTdX7uhoLXvmGaVNmSJnYWHVtjEx0umnS489xrQ4VHC73Vq2bJnS0tLkdDrtLgeNAH0GdUG/ga/oM6gLu/tNTk6OEhMTvQpBtk2HW7t2rQ4ePKiBAwdWHCsrK9Onn36q//u//1NxcbHCy/fX+YnL5ZLL5aryWk6n055/oElJZuW3n4UeZ2Fh9SHI7Za++07auFHq0iWARaIxsK0Po9Giz6Au6DfwFX0GdWFXv/HlPescgg4dOqSMjAxJUmpqqlq2bOnT88877zx99913lY5dffXV6t69u26//fYqASgoDRkideggZWXV3jYszOwV9Pnn0vjx5jEAAACAgPM5BOXn5+uGG27QCy+8oLKfNggNDw/XlVdeqccee8zra3Pi4+PVu3fvSsdiY2PVokWLKseDVkSEdNdd0hVX1N7WssyeQvv2SZmZUseOfi8PAAAAQFU+D0fMnDlTn3zyid58800dO3ZMx44d0xtvvKFPPvlEt9xyiz9qDG4TJkiTJ0u17ZMUEWGmwRUXS7m5ASkNAAAAQFU+jwT973//02uvvaazzz674tj555+v6Oho/eY3v9ETTzxR52JWrFhR5+fa6tZbpddfP/H58oAUF2emxMXHB6YuAAAAAFX4PBJUUFCgpKSkKsdbtWqlgoKCBimq0fniC7MhqiSFh5vQExZmbiMizJfHI/3wg9SjB6vDAQAAADbyOQQNHTpUs2bNUlFRUcWxwsJCzZkzR0OHDm3Q4hoFj0d6//3joz3lt5ZlgpDHY+5blhQVZabPsSgCAAAAYBufp8M98sgjGjVqlNq3b69+/fpJktavX6+oqCi9//77DV5g0MvMrLw6XGmpCTySmfpWHoqioqTf/c6MBAEAAACwjc8hqHfv3tq6datefPFFbd68WZJ0xRVXaNKkSYqOjm7wAoNebq504IDZB6g65aNAvXpJl18e2NoAAAAAVFGnfYJiYmI0derUhq6lcXK5pK1bj4/+VMfjka680lwbBAAAAMBWXn0qf/PNNzVmzBg5nU69+eabNba94IILGqSwRuOtt6TCQjPd7UTCwqRmzQJXEwAAAIAT8ioETZgwQfv371erVq00YcKEE7ZzOBwVG6iGBI9H+vDDmkeBJHN+9+7A1AQAAACgRl6FII/HU+39kPfLRRFOxLKkyEj/1wMAAACgVqzVXB+5uSbclK8AdyIOh9SxY0BKAgAAAFAzn0PQjBkz9Oijj1Y5/n//93+66aabGqKmxiM+3lwLVNuCBzExktMZmJoAAAAA1MjnEPS///1Pw4YNq3L8jDPO0GuvvdYgRTUaKSlS3761t4uPl7p29X89AAAAAGrlcwg6fPiwmjRpUuV4QkKCsry5PuZkEhYmNW1qNkg9EYdDCg83bQEAAADYzudP5l27dtV7771X5fjSpUvVuXPnBimq0SgtlZYurXl1OMuS8vOl7OzA1QUAAADghHzevXPmzJmaPn26Dh06pHPPPVeStHz5cj300EN6+OGHG7q+4LZ6tbRjh7kfHl75XPliCZYlFRRI27ZJAwYEtj4AAAAAVfgcgqZMmaLi4mLNnTtX9957rySpY8eOeuKJJ3TllVc2eIFB7cABMxrkcFQdDfr547Cw2leQAwAAABAQPocgSbruuut03XXX6dChQ4qOjlZcXFxD19U4JCVJLpcJPDXtn1RYKG3fHri6AAAAAJxQna7WLy0t1YcffqjXX39d1k8jHnv37lVeXl6DFhf0hgzxfoRn3jzp7bf9Ww8AAACAWvk8ErRz506NHj1amZmZKi4uVlpamuLj43X//feruLhYTz75pD/qDE4lJWZKnDeys6X586XRo2vfVwgAAACA3/g8EnTjjTfq1FNP1dGjRxUdHV1x/KKLLtLy5csbtLig9+CDUlmZ9+2/+cYspgAAAADANj4PSXz22Wf64osvFBkZWel4x44dtWfPngYrrFH44Qff2vsycgQAAADAL3weCfJ4PCqrZvRj9+7dio+Pb5CiGg1f90WKjDSLKQAAAACwjc8haOTIkZX2A3I4HMrLy9OsWbN0/vnnN2Rtwe/WW02w8dbAgWYxBQAAAAC28TkEPfjgg/r888/Vs2dPFRUVaeLEiRVT4e6//35/1Bi8YmKkKVO8axsVJd10E4siAAAAADbz+RN5cnKy1q9fr5dfflnr169XXl6efv/732vSpEmVFkoIGbfdJi1aJBUX19yuf3+pb9+AlAQAAADgxHwKQW63W927d9fbb7+tSZMmadKkSf6qq/HYskWKjpaczqrnwsOl2FizkarTKeXmBr4+AAAAAJX4NB3O6XSqqKjIX7U0Xg6HFPbTH6XTae6Xf5WWHg9BobZwBAAAABCEfL4maNq0abr//vtVWlrqj3oan27dpIQEKT/fPC7/c3E4TPgpLDRLY3foIKWk2FcnAAAAAEl1uCbo66+/1vLly/XBBx+oT58+io2NrXT+9ddfb7DiGoWUFKmo6PimqZZlws/PhYczCgQAAAAECZ9DUNOmTXXJJZf4o5bGad48KTNTcrmqPx8RIbVsKe3aZdp17BjQ8gAAAABU5nMIevbZZ/1RR+NUUiLNn1915OfnLMssnJCfz8IIAAAAQBDw+pogj8ej+++/X8OGDdNpp52mP//5zyosLPRnbcHvtdekY8dqblNWZsJPbCxT4gAAAIAg4HUImjt3ru68807FxcWpXbt2euSRRzRt2jR/1hb83nvPu3ZZWdKpp7IwAgAAABAEvA5Bzz//vP75z3/q/fff15IlS/TWW2/pxRdflKemqWAwSkullSuPL6MNAAAAwDZefyrPzMzU+eefX/F4xIgRcjgc2rt3r18KaxTOOcf7th98IOXl+a8WAAAAAF7xOgSVlpYqKiqq0jGn0ym3293gRTUaJ1oRrjplZdLdd/uvFgAAAABe8Xp1OMuydNVVV8n1sw/+RUVFuvbaayvtFRRS+wTt3+9b+x9+8E8dAAAAALzmdQiaPHlylWO//e1vG7SYRqddO9/aN23qlzIAAAAAeM/rEMT+QNUYMECKjDT7BXnD6ZTS06UePfxbFwAAAIATYrmy+iguNhuheqNJE7On0JIlNW+uCgAAAMCvCEH14XSajVC9ERMjJSSYkaDMTP/WBQAAAOCEvJ4Oh2osW+b9qE5enlRQYFaJ8zY4AQAAAGhwto4EPfHEE+rbt68SEhKUkJCgoUOHaunSpXaW5BtfRnTy8sxeQRs3SgcO+K8mAAAAADWyNQS1b99e9913n9auXas1a9bo3HPP1YUXXqjvv//ezrK817Gj920ty4wEHTgg/etfZlocAAAAgICzNQSNHz9e559/vk455RR169ZNc+fOVVxcnFavXm1nWd676CLf2ns8ZpnsTZuk119ngQQAAADABkFzTVBZWZleffVV5efna+jQodW2KS4uVnFxccXjnJwcSZLb7Zbb7Q5InZX88Y8Vq8O5f3FbrfBwE4I8HmnDBmnHDiklJQCFIliV91tb+i8aJfoM6oJ+A1/RZ1AXdvcbX97XYVmW5cdaavXdd99p6NChKioqUlxcnBYuXKjzzz+/2razZ8/WnDlzqhxfuHChYmJi/F0qAAAAgCBVUFCgiRMnKjs7WwkJCTW2tT0ElZSUKDMzU9nZ2Xrttdf073//W5988ol69uxZpW11I0HJycnKysqq9Rv1i+7dpX37JJkRoGXPPKO0KVPkLCw88XNSU831Qamp0t//zkhQiHO73Vq2bJnS0tLkdDrtLgeNAH0GdUG/ga/oM6gLu/tNTk6OEhMTvQpBtk+Hi4yMVNeuXSVJgwYN0tdff61HHnlETz31VJW2LpdLLperynGn02nPP9DTT5cWLapcS2FhzSHoyBGzX1DfvlKnTlIYWzXBxj6MRos+g7qg38BX9BnUhV39xpf3DLpP4B6Pp9JoT1Dr39/35xQVSb16SRdfTAACAAAAbGDrSNAdd9yhMWPGKCUlRbm5uVq4cKFWrFih999/386yvPfjj74/56yzpFmzpB49GrwcAAAAALWzNQQdPHhQV155pfbt26cmTZqob9++ev/995WWlmZnWd5zOHxvf8UVBCAAAADARraGoP/85z92vn39tW3rW/vYWOnJJ6Xx46UI2y/HAgAAAEISF6XUh6/XLjVtKm3dKjWWzWABAACAkxDDEfVR0ypw1Tl0SIqLkw4c8E89AAAAAGrFSFB9tG7tW/vSUik/X2rRwj/1AAAAAKgVIag+duzwrb29+9ICAAAAECGofjIyfGtvWWZxhMOH/VMPAAAAgFoRguojLs639pGRUkyMlJTkn3oAAAAA1IoQVB+/+53vz2nfXhoypOFrAQAAAOAVQlB9JCf71t7plH7/e/YIAgAAAGxECKqPP/3Jt/YDBkhXX+2fWgAAAAB4hRBUH7t2+dZ+6FApjD9yAAAAwE58Iq8PX6bDhYdLAwf6rxYAAAAAXiEE1cdrr3nfNjLSTIcDAAAAYCtCUH34skR206ZSYaHfSgEAAADgHUJQffzrX961Cwsz0+Fyc/1bDwAAAIBaEYLq47vvvGvn8ZggFB/v33oAAAAA1IoQVB8tWnjftqiIEAQAAAAEAUJQfYwY4X3bQ4ekjz7yXy0AAAAAvEIIChTLkv79b6m01O5KAAAAgJBGCKqPu+7yrf3mzdLq1f6pBQAAAIBXCEH1ceiQb+0LCqT9+/1TCwAAAACvEILqIzHRt/ZlZWZaHAAAAADbEILqY9Qo39pHR0tdu/qnFgAAAABeIQTVh8fjW/sOHaRmzfxTCwAAAACvEILqo1Mn39oPHSqlpPinFgAAAABeIQTVx6efet/W4ZCGD5fC+CMHAAAA7MQn8vpIT/e+bXS0FBfnv1oAAAAAeIUQVB++rPTWpImUlOS/WgAAAAB4hRBUH2ed5X3bsDBpyBD/1QIAAADAK4Sg+vBlkYMDB6SSEv/VAgAAAMArhKD6eOIJ79uWlkoPPui/WgAAAAB4hRBUH7t2+db+hx/8UwcAAAAArxGC6iMiwrf27dr5pw4AAAAAXiME1UfXrr61Z48gAAAAwHZ8Kq8PX0eCMjP9UwcAAAAArxGC6mP9et/aN2/unzoAAAAAeI0QVB+lpb61v/xy/9QBAAAAwGuEoPqIi/OtfVKSf+oAAAAA4DVCUH1Mn+5929NO821zVQAAAAB+QQiqj2PHvG9bVCR5PH4rBQAAAIB3CEH18dJL3rfduVNavdp/tQAAAADwCiGoPkpKvG9bXCwdOOC/WgAAAAB4hRBUH+3b+9a+ZUv/1AEAAADAa7aGoHnz5um0005TfHy8WrVqpQkTJigjI8POknxzzz3et42Lk9q29V8tAAAAALxiawj65JNPNG3aNK1evVrLli2T2+3WyJEjlZ+fb2dZ3jt61Pu2+fm+b64KAAAAoMFF2Pnm7733XqXHCxYsUKtWrbR27VqdeeaZNlXlg/37vW9bVCRNmyY5ndIFF/ivJgAAAAA1sjUE/VJ2drYkqXnz5tWeLy4uVnFxccXjnJwcSZLb7Zbb7fZ/gb/0xBNSdLSp4Re31crNle68U3I4pNGjA1Ehglx5v7Wl/6JRos+gLug38BV9BnVhd7/x5X0dlmVZfqzFax6PRxdccIGOHTumlStXVttm9uzZmjNnTpXjCxcuVExMjL9LBAAAABCkCgoKNHHiRGVnZyshIaHGtkETgq677jotXbpUK1euVPsTrLpW3UhQcnKysrKyav1G/aJJk4q77uhoLXvmGaVNmSJnYeGJn5OcLIWFSU89JQ0dGoAiEczcbreWLVumtLQ0OZ1Ou8tBI0CfQV3Qb+Ar+gzqwu5+k5OTo8TERK9CUFBMh5s+fbrefvttffrppycMQJLkcrnkcrmqHHc6nfb8A60m7DgLC08cghwOKTzcTIs7dMhcHwTIxj6MRos+g7qg38BX9BnUhV39xpf3tHV1OMuyNH36dC1evFgfffSROnXqZGc5vmvVyrf2kZEmCDmdUlKSf2oCAAAAUCNbR4KmTZumhQsX6o033lB8fLz2/7TaWpMmTRRd0wIDwaJJE+ngQe/bO51SdrbUq5c0ZIj/6gIAAABwQraOBD3xxBPKzs7W2WefrTZt2lR8vfzyy3aW5b24ON/al5WZ4HTDDVJEUMxEBAAAAEKOrZ/Eg2RNhrorKvKtfUqKdP/90rhx/qkHAAAAQK1sHQlq9H780bf2DzxAAAIAAABsRgiqj5qWwq7OsmWSx+OfWgAAAAB4hRAUSBs2SJmZdlcBAAAAhDRCUCCVlJg9ggAAAADYhhAUSHFxUny83VUAAAAAIY0QFEhRUWaFOAAAAAC2IQQFUkSEFMYfOQAAAGAnPpEHUm4uq8MBAAAANiMEBZLTyepwAAAAgM0IQYHkcLA6HAAAAGAzQlAgRUayOhwAAABgM0JQIDVtyupwAAAAgM0IQYHUoQOrwwEAAAA24xN5IB08aHcFAAAAQMgjBAVSaandFQAAAAAhjxAUSC1b2l0BAAAAEPIIQYH0ww9SerrdVQAAAAAhjRAUKE6ndPiwtGSJ5PHYXQ0AAAAQsghBgeJ2myWy09OlzEy7qwEAAABCFiEokJo2lYqKpNxcuysBAAAAQhYhKJBKS6WoKCk+3u5KAAAAgJBFCAqkffukHj2klBS7KwEAAABCFiEokBwOacIEKYw/dgAAAMAufBoPpNhYMxIEAAAAwDaEoED66iv2CQIAAABsRggKpJwc6fXX2ScIAAAAsBEhKJDCwqS1a9knCAAAALARISiQIiKk/Hz2CQIAAABsRAgKJI/HLI7APkEAAACAbQhBgTZoEPsEAQAAADYiBAVSVBT7BAEAAAA249N4ICUnm+lwAAAAAGxDCAqk8HAWRQAAAABsRggKJJeLRREAAAAAmxGCAmnAABZFAAAAAGxGCAqkkSNZFAEAAACwGZ/IA6lNG7srAAAAAEIeIShQHA6uBwIAAACCACEoUOLjpbZt7a4CAAAACHmEoEDJy5O++sruKgAAAICQRwgKpAMH7K4AAAAACHm2hqBPP/1U48ePV9u2beVwOLRkyRI7y/GvsDApKcnuKgAAAICQZ2sIys/PV79+/fT444/bWUZgxMZKQ4bYXQUAAAAQ8iLsfPMxY8ZozJgxdpYQOIWF7BEEAAAABAFbQ5CviouLVVxcXPE4JydHkuR2u+V2uwNfUHR0xV33T/fdPztWRUaG1LWrv6tCI1Leb23pv2iU6DOoC/oNfEWfQV3Y3W98eV+HZVmWH2vxmsPh0OLFizVhwoQTtpk9e7bmzJlT5fjChQsVExPjx+oAAAAABLOCggJNnDhR2dnZSkhIqLFtowpB1Y0EJScnKysrq9Zv1C+aNKm4646O1rJnnlHalClyFhZW337mTGnWrAAVh8bA7XZr2bJlSktLk9PptLscNAL0GdQF/Qa+os+gLuzuNzk5OUpMTPQqBDWq6XAul0sul6vKcafTac8/0GrCjrOw8MQhyOOR+I8E1bCtD6PRos+gLug38BV9BnVhV7/x5T25Uj+QNm2yuwIAAAAg5Nk6EpSXl6dt27ZVPN6xY4e+/fZbNW/eXCkpKTZW5idr15rRoJ+vEufxSJmZUm6uFB8vpaSwihwAAADgR7aGoDVr1uicc86peDxz5kxJ0uTJk7VgwQKbqvKjvDzpxx+lzp3N4/R0afFiafNmqahIioqSuneXLrpI6tHD1lIBAACAk5WtIejss89WkKzLEBgej7RliwlB6enSo49KWVlS+/ZSaamUnS2tXGlGhm68kSAEAAAA+EGjWhih0XM4zK3HY0aAsrKkli2lDRvM/dJSKTzchKDoaOmhh5gaBwAAADQwPmEHUkKC1K2bCTmbN0sxMdJXX0n79pn7LVpIsbFScbH0zjvSRx/ZXTEAAABw0iEEBdK550odO5pFEAoLTRgqKDCjQS6XGfVxuaTWrc35t94yo0YAAAAAGgwhKJAuv9wEnfh4qaxMOnDAbLhaPk2unNstxcVJu3aZoAQAAACgwRCCAql8VCclxSyGkJMjRfzisizLMsdbtzbXB+XmBr5OAAAA4CRGCAqkQ4fMbViYdMEF5jqg/fvN8tgej7k9dMgcT042iyPEx9tbMwAAAHCSIQQFUsuWx++fe650/vnmGqCCAunwYXMdUJs20umnm/s9ephRIwAAAAANhiWyA6lbt+P3w8Kka64xoz+ZmWZluCZNzPS4PXukxERpwgSWyAYAAAAaGJ+wA+mXgaZHD7Mp6q9+ZRZHOHhQOnJEGjhQmjGDzVIBAAAAP2AkKJDy86se69FDSk01o0G5ueYaoJQURoAAAAAAPyEEBVJsbPXHw8LM/kEAAAAA/I7hhkBi41MAAADAdoSguqpLoNm2rfLzf/xR+u47c0tAAgAAAAKC6XB1lZlZ9+emp0uLF0ubN5vV4aKipO7dpYsuYjEEAAAAwM8IQXWVm+v7c7p1MwHo0UelrCyzIWpsrFkwYd06adcuVoUDAAAA/IzpcHUVH+/7c3JzzQhQVpbUs6eUkCCFh5vbnj3N8SVLmBoHAAAA+BEhqK7atvX9OZMnSx9+aEaAHI7K5xwOqX17M1JUn6l2AAAAAGpECKqrr77y/Tm7dknffCPl5VV/PjbWXCNUl6l2AAAAALxCCKqrvXt9f05JiQlA77wjHTxY9Xx+vlkkoS5T7QAAAAB4hRBUV3v2+P6c0lIpIkI6fFj67DPp0KHj5yxL2r3bLIqQktJwdQIAAACohBBUV+vW+f6coiLJ5TJfBw9K334rud1Sdra0aZOUmChNmCCF8deCIMc+VwAAoBFjiey6WrOmbs8LDzdhJyFB2rfPBKEWLaSBA00AYnlsBDv2uQIAAI0cIaiu9u2r2/PCwszqcIMHS+vXS1OmSIMGmSlwjAAh2LHPFQAAOAnwqbuunM66PS8uzvzWvLDQjAANGiR17EgAQvDzeNjnCgAAnBT45F1XCQl1e15sLIsgoHHKzDRT4NjnCgAANHKEoLpyu31/Trt2Zpnszz4zo0AsgoDGJDfXXAMUG1v9efa5AgAAjQTXBNXV/v2+Pyci4vjXr3/NtRNoXOLjzSII+fnVj4SyzxUAAKHF4zEzQHJzzc//Nm3srshrhKC6Kinx/TkjR0qRkdKBA1JSUsPXBPhTSoq5nm3dOnMN0M+nxJVP8Rw4kCmeAACEgupWi+3Zs9H8kp+5WIHicEjR0WZBhehofluOxicszCyDnZho9rXKzjYbALPPFQAAoaV8tdh168zP/9RUc7thgzmfkWFvfV5gJChQLMusnlVSwm/L0Xj16GGWwS7/zc+ePeY3P+xzBQBAaPjlarHlM0MSEqQmTcz9d94x54L4F6OEoEDauVPq04fflqNx69HD/Mbn53OA2ecKAIDQUNtqsZIZCcrMNNvABClCUCA5HNLYsfy2HI1fWFhQ/8cGAAD8pLbVYqVGsVosv7oNlPBwqVUrMzyYnm53NQAAAIDvfr5a7Ik0gtViCUGB0q2b1Lu3mT+5ZImZTwkAAAA0JuWrxe7aZa55/7nyx6mpQX/9OyEoUFwuMx2ufXszEpSZaXdFAAAAgG9qWi22fFW4sWOD/lrh4K7uZFK+uWRsbKOYJwkAAABUq3y12AEDpMOHpS1bzG2/fuZ8aqq99XmBhRECpUMHc5ufH3zzJH+52y8rfQEAAKAm1a0W26aN9N57dlfmFUJQoOTkmHmSu3cH1z5B1e322727GeZkFTsAAACcyC9Xi3W7bSvFV4SgQNm8WYqIMPMnTztN+v57+0ddynf7zcoya73HxpqRqnXrzMVuM2YQhAAAAHDSIQQFSk6O2UU3Kkp6/nn7R11q2u23Z09zoduSJWaYk6lxAAAAOInw6TZQunY1QWjPHjMalJpqbtetM6Mxgd47qLbdflnFDgAAACcpQlCg5OSYqWY9e5rRlvDw46MuduwdVNtuv6xiBwAAgJNUUISgxx9/XB07dlRUVJQGDx6sr776yu6SGt6BA1LLlsEz6lLbbr/BuIodAAAA0ABsD0Evv/yyZs6cqVmzZumbb75Rv379NGrUKB08eNDu0hqWxyNt3CgdOlT1nB2jLrXt9rt7t7lOKVhWsQMAAAAaiO0haP78+Zo6daquvvpq9ezZU08++aRiYmL0zDPP2F1aw2rVyoSczZurhg47Rl1q2u130yZzfMIEFkUAAADAScfW1eFKSkq0du1a3XHHHRXHwsLCNGLECK1atapK++LiYhUXF1c8zsnJkSS53W65A70u+eWXS2+8UfHQHR1d6baKFi3MtT85OVJenlkpTjKB6MABs8NumzaBXV+9a1dp2jTp7bfNTr8HDpgwduqp0tix5nwjWu+9MSrvtwHvv2i06DOoC/oNfEWfQV3Y3W98eV+HZf1yWCJw9u7dq3bt2umLL77Q0KFDK47/6U9/0ieffKIvv/yyUvvZs2drzpw5VV5n4cKFiomJ8Xu9AAAAAIJTQUGBJk6cqOzsbCUkJNTYtlHtE3THHXdo5syZFY9zcnKUnJyskSNH1vqNNrhVq6TRoyseuqOjteyZZ5Q2ZYqchYVV2193nXT0qJlq1qGDWR0uKsoslT12rLlFyHG73Vq2bJnS0tLkdDrtLgeNAH0GdUG/ga/oM6gLu/tN+Swxb9gaghITExUeHq4DBw5UOn7gwAG1bt26SnuXyyWXy1XluNPpDPwf9BlnSM2aSXv3Vq6lsLBqCEpNNYsfZGZKF1xgptLl55trgFJSuO4G9vRhNGr0GdQF/Qa+os+gLuzqN768p62fviMjIzVo0CAtX7684pjH49Hy5csrTY8LShER0lNPedf29NPNEtiJiWYxgs6dpT59pI4dCUAAAABAgNn+CXzmzJn617/+peeee07p6em67rrrlJ+fr6uvvtru0mo3bpz01ls1txk1ytwOHCjNmGGWnQYAAABgG9uvCbrssst06NAh3XPPPdq/f7/69++v9957T0lJSXaX5p1x48wKarffXvn4rFnSlVcy7Q0AAAAIMraHIEmaPn26pk+fbncZdRcRId13n/Tuu2afHebOAgAAAEGLoQkAAAAAIYUQBAAAACCkEIIAAAAAhBRCEAAAAICQQggCAAAAEFIIQQAAAABCCiEIAAAAQEghBAEAAAAIKYQgAAAAACGFEAQAAAAgpBCCAAAAAIQUQhAAAACAkEIIAgAAABBSIuwuoD4sy5Ik5eTk2FyJ5Ha7VVBQoJycHDmdTrvLQSNBv4Gv6DOoC/oNfEWfQV3Y3W/KM0F5RqhJow5Bubm5kqTk5GSbKwEAAAAQDHJzc9WkSZMa2zgsb6JSkPJ4PNq7d6/i4+PlcDhsrSUnJ0fJycnatWuXEhISbK0FjQf9Br6iz6Au6DfwFX0GdWF3v7EsS7m5uWrbtq3Cwmq+6qdRjwSFhYWpffv2dpdRSUJCAv9ZwGf0G/iKPoO6oN/AV/QZ1IWd/aa2EaByLIwAAAAAIKQQggAAAACEFEJQA3G5XJo1a5ZcLpfdpaARod/AV/QZ1AX9Br6iz6AuGlO/adQLIwAAAACArxgJAgAAABBSCEEAAAAAQgohCAAAAEBIIQQBAAAACCmEoAby+OOPq2PHjoqKitLgwYP11Vdf2V0S/GD27NlyOByVvrp3715xvqioSNOmTVOLFi0UFxenSy65RAcOHKj0GpmZmRo7dqxiYmLUqlUr3XbbbSotLa3UZsWKFRo4cKBcLpe6du2qBQsWVKmFPhe8Pv30U40fP15t27aVw+HQkiVLKp23LEv33HOP2rRpo+joaI0YMUJbt26t1ObIkSOaNGmSEhIS1LRpU/3+979XXl5epTYbNmzQ8OHDFRUVpeTkZD3wwANVann11VfVvXt3RUVFqU+fPnr33Xd9rgX+V1ufueqqq6r83zN69OhKbegzoWXevHk67bTTFB8fr1atWmnChAnKyMio1CaYfiZ5Uwv8z5t+c/bZZ1f5/+baa6+t1Oak6DcW6m3RokVWZGSk9cwzz1jff/+9NXXqVKtp06bWgQMH7C4NDWzWrFlWr169rH379lV8HTp0qOL8tddeayUnJ1vLly+31qxZYw0ZMsQ644wzKs6XlpZavXv3tkaMGGGtW7fOevfdd63ExETrjjvuqGjzww8/WDExMdbMmTOtTZs2WY899pgVHh5uvffeexVt6HPB7d1337Xuuusu6/XXX7ckWYsXL650/r777rOaNGliLVmyxFq/fr11wQUXWJ06dbIKCwsr2owePdrq16+ftXr1auuzzz6zunbtal1xxRUV57Ozs62kpCRr0qRJ1saNG62XXnrJio6Otp566qmKNp9//rkVHh5uPfDAA9amTZusv/zlL5bT6bS+++47n2qB/9XWZyZPnmyNHj260v89R44cqdSGPhNaRo0aZT377LPWxo0brW+//dY6//zzrZSUFCsvL6+iTTD9TKqtFgSGN/3mrLPOsqZOnVrp/5vs7OyK8ydLvyEENYDTTz/dmjZtWsXjsrIyq23btta8efNsrAr+MGvWLKtfv37Vnjt27JjldDqtV199teJYenq6JclatWqVZVnmg05YWJi1f//+ijZPPPGElZCQYBUXF1uWZVl/+tOfrF69elV67csuu8waNWpUxWP6XOPxyw+0Ho/Hat26tfWPf/yj4tixY8csl8tlvfTSS5ZlWdamTZssSdbXX39d0Wbp0qWWw+Gw9uzZY1mWZf3zn/+0mjVrVtFvLMuybr/9dis1NbXi8W9+8xtr7NixleoZPHiwdc0113hdCwLvRCHowgsvPOFz6DM4ePCgJcn65JNPLMsKrp9J3tQCe/yy31iWCUE33njjCZ9zsvQbpsPVU0lJidauXasRI0ZUHAsLC9OIESO0atUqGyuDv2zdulVt27ZV586dNWnSJGVmZkqS1q5dK7fbXakvdO/eXSkpKRV9YdWqVerTp4+SkpIq2owaNUo5OTn6/vvvK9r8/DXK25S/Bn2ucduxY4f2799f6e+vSZMmGjx4cKV+0rRpU5166qkVbUaMGKGwsDB9+eWXFW3OPPNMRUZGVrQZNWqUMjIydPTo0Yo2NfUlb2pB8FixYoVatWql1NRUXXfddTp8+HDFOfoMsrOzJUnNmzeXFFw/k7ypBfb4Zb8p9+KLLyoxMVG9e/fWHXfcoYKCgopzJ0u/iaj3K4S4rKwslZWVVeoIkpSUlKTNmzfbVBX8ZfDgwVqwYIFSU1O1b98+zZkzR8OHD9fGjRu1f/9+RUZGqmnTppWek5SUpP3790uS9u/fX21fKT9XU5ucnBwVFhbq6NGj9LlGrPzvubq/v5/3gVatWlU6HxERoebNm1dq06lTpyqvUX6uWbNmJ+xLP3+N2mpBcBg9erQuvvhiderUSdu3b9edd96pMWPGaNWqVQoPD6fPhDiPx6ObbrpJw4YNU+/evSUpqH4meVMLAq+6fiNJEydOVIcOHdS2bVtt2LBBt99+uzIyMvT6669LOnn6DSEI8MGYMWMq7vft21eDBw9Whw4d9Morryg6OtrGygCczC6//PKK+3369FHfvn3VpUsXrVixQuedd56NlSEYTJs2TRs3btTKlSvtLgWNyIn6zR//+MeK+3369FGbNm103nnnafv27erSpUugy/QbpsPVU2JiosLDw6usVHHgwAG1bt3apqoQKE2bNlW3bt20bds2tW7dWiUlJTp27FilNj/vC61bt662r5Sfq6lNQkKCoqOj6XONXPnfUU1/f61bt9bBgwcrnS8tLdWRI0capC/9/HxttSA4de7cWYmJidq2bZsk+kwomz59ut5++219/PHHat++fcXxYPqZ5E0tCKwT9ZvqDB48WJIq/X9zMvQbQlA9RUZGatCgQVq+fHnFMY/Ho+XLl2vo0KE2VoZAyMvL0/bt29WmTRsNGjRITqezUl/IyMhQZmZmRV8YOnSovvvuu0ofVpYtW6aEhAT17Nmzos3PX6O8Tflr0Ocat06dOql169aV/v5ycnL05ZdfVuonx44d09q1ayvafPTRR/J4PBU/jIYOHapPP/1Ubre7os2yZcuUmpqqZs2aVbSpqS95UwuC0+7du3X48GG1adNGEn0mFFmWpenTp2vx4sX66KOPqkx1DKafSd7UgsCord9U59tvv5WkSv/fnBT9pt5LK8BatGiR5XK5rAULFlibNm2y/vjHP1pNmzattGoGTg633HKLtWLFCmvHjh3W559/bo0YMcJKTEy0Dh48aFmWWcoxJSXF+uijj6w1a9ZYQ4cOtYYOHVrx/PJlJUeOHGl9++231nvvvWe1bNmy2mUlb7vtNis9Pd16/PHHq11Wkj4XvHJzc61169ZZ69atsyRZ8+fPt9atW2ft3LnTsiyzxHDTpk2tN954w9qwYYN14YUXVrtE9oABA6wvv/zSWrlypXXKKadUWu742LFjVlJSkvW73/3O2rhxo7Vo0SIrJiamynLHERER1oMPPmilp6dbs2bNqna549pqgf/V1Gdyc3OtW2+91Vq1apW1Y8cO68MPP7QGDhxonXLKKVZRUVHFa9BnQst1111nNWnSxFqxYkWlpYwLCgoq2gTTz6TaakFg1NZvtm3bZv31r3+11qxZY+3YscN64403rM6dO1tnnnlmxWucLP2GENRAHnvsMSslJcWKjIy0Tj/9dGv16tV2lwQ/uOyyy6w2bdpYkZGRVrt27azLLrvM2rZtW8X5wsJC6/rrr7eaNWtmxcTEWBdddJG1b9++Sq/x448/WmPGjLGio6OtxMRE65ZbbrHcbnelNh9//LHVv39/KzIy0urcubP17LPPVqmFPhe8Pv74Y0tSla/JkydblmWWGb777rutpKQky+VyWeedd56VkZFR6TUOHz5sXXHFFVZcXJyVkJBgXX311VZubm6lNuvXr7d+9atfWS6Xy2rXrp113333VanllVdesbp162ZFRkZavXr1st55551K572pBf5XU58pKCiwRo4cabVs2dJyOp1Whw4drKlTp1b5pQd9JrRU118kVfp5EUw/k7ypBf5XW7/JzMy0zjzzTKt58+aWy+Wyunbtat12222V9gmyrJOj3zh++gMBAAAAgJDANUEAAAAAQgohCAAAAEBIIQQBAAAACCmEIAAAAAAhhRAEAAAAIKQQggAAAACEFEIQAAAAgJBCCAIABLXNmzdryJAhioqKUv/+/fXjjz/K4XDo22+/9er5V111lSZMmFDvOjIyMtS6dWvl5ubW+7V+6b333lP//v3l8Xga/LUBAFURggAghB06dEjXXXedUlJS5HK51Lp1a40aNUqff/653aVVmDVrlmJjY5WRkaHly5crOTlZ+/btU+/evb16/iOPPKIFCxbUu4477rhDN9xwg+Lj4+v8Gm+88YbS0tI0ePBgnXHGGdqxY4ckafTo0XI6nXrxxRfrXScAoHYOy7Isu4sAANjjzDPPVElJiebNm6fOnTvrwIEDWr58uXr16qULLrjA1tpKSkoUGRmpU089VWPHjtWcOXNsqyUzM1Ndu3bVjh071K5duzq/Tvn3JEl/+MMfNGjQIF133XWSpMcff1wLFizQ119/3SA1AwBOjJEgAAhRx44d02effab7779f55xzjjp06KDTTz9dd9xxR0UAqm7q2bFjx+RwOLRixQpJ0ooVK+RwOPTOO++ob9++ioqK0pAhQ7Rx48ZK77dy5UoNHz5c0dHRSk5O1owZM5Sfn19xvmPHjrr33nt15ZVXKiEhQX/84x/lcDi0du1a/fWvf5XD4dDs2bOrren777/XuHHjlJCQoPj4eA0fPlzbt2+XVHU6nMfj0bx589SpUydFR0erX79+eu2112r8s3rllVfUr1+/SgFowYIFatq0qd5++22lpqYqJiZGv/71r1VQUKDnnntOHTt2VLNmzTRjxgyVlZVJUkUAeuedd7R7925dffXVFa83fvx4rVmzpqJuAID/EIIAIETFxcUpLi5OS5YsUXFxcb1f77bbbtNDDz2kr7/+Wi1bttT48ePldrslSdu3b9fo0aN1ySWXaMOGDXr55Ze1cuVKTZ8+vdJrPPjgg+rXr5/WrVunu+++W/v27VOvXr10yy23aN++fbr11lurvO+ePXt05plnyuVy6aOPPtLatWs1ZcoUlZaWVlvnvHnz9Pzzz+vJJ5/U999/r5tvvlm//e1v9cknn5zwe/vss8906qmnVjleUFCgRx99VIsWLdJ7772nFStW6KKLLtK7776rd999Vy+88IKeeuqpipDl8Xj0t7/9TYsXL9aSJUsUFRVV8VopKSlKSkrSZ599VvsfNgCgXiLsLgAAYI+IiAgtWLBAU6dO1ZNPPqmBAwfqrLPO0uWXX66+ffv6/HqzZs1SWlqaJOm5555T+/bttXjxYv3mN7/RvHnzNGnSJN10002SpFNOOUWPPvqozjrrLD3xxBMVYeDcc8/VLbfcUqXOuLg4tW7dWpKUlZVV6fzjjz+uJk2aaNGiRXI6nZKkbt26VVtjcXGx/v73v+vDDz/U0KFDJUmdO3fWypUr9dRTT+mss86q9nk7d+6sNgS53W498cQT6tKliyTp17/+tV544QUdOHBAcXFx6tmzp8455xx9/PHHuuyyy/TII49o7ty56tevn84++2xNmjRJN9xwQ8XrtW3bVjt37jzxHzIAoEEQggAghF1yySUaO3asPvvsM61evVpLly7VAw88oH//+9+66qqrfHqt8lAhSc2bN1dqaqrS09MlSevXr9eGDRsqXfhvWZY8Ho927NihHj16SFK1QaM23377rYYPH14RgGqybds2FRQUVIS1ciUlJRowYMAJn1dYWFhp1KZcTExMRQCSpKSkJHXs2FFxcXGVjh08eFCSdPPNN+vmm28+4ftER0eroKCg1u8DAFA/hCAACHFRUVFKS0tTWlqa7r77bv3hD3/QrFmzdNVVVykszMya/vkaOuVT3HyRl5ena665RjNmzKhyLiUlpeJ+bGysz68dHR3tUx2SuSbnlwscuFyuEz4vMTFRR48erXL8l8HL4XBUe8zbpa+PHDmili1betUWAFB3hCAAQCU9e/bUkiVLJKniA/m+ffsqRkpOtD/P6tWrKwLN0aNHtWXLlooRnoEDB2rTpk3q2rVrg9fbt29fPffcc3K73bWOBvXs2VMul0uZmZknnPpWnQEDBmjTpk31LbVGRUVF2r59e40jUgCAhsHCCAAQog4fPqxzzz1X//3vf7Vhwwbt2LFDr776qh544AFdeOGFkswoy5AhQ3TfffcpPT1dn3zyif7yl79U+3p//etftXz5cm3cuFFXXXWVEhMTK1Zlu/322/XFF19o+vTp+vbbb7V161a98cYbVRZGqIvp06crJydHl19+udasWaOtW7fqhRdeUEZGRpW28fHxuvXWW3XzzTfrueee0/bt2/XNN9/oscce03PPPXfC9xg1apRWrVpVscqbP6xevVoul6vStEIAgH8wEgQAISouLk6DBw/W//t//0/bt2+X2+1WcnKypk6dqjvvvLOi3TPPPKPf//73GjRokFJTU/XAAw9o5MiRVV7vvvvu04033qitW7eqf//+euuttyqWhO7bt68++eQT3XXXXRo+fLgsy1KXLl102WWX1fv7aNGihT766CPddtttOuussxQeHq7+/ftr2LBh1ba/99571bJlS82bN08//PCDmjZtqoEDB1b6nn9pzJgxioiI0IcffqhRo0bVu+bqvPTSS5o0aZJiYmL88voAgOPYLBUAUC8rVqzQOeeco6NHj6pp06Z2l+M3jz/+uN588029//77Df7aWVlZSk1N1Zo1a9SpU6cGf30AQGWMBAEA4IVrrrlGx44dU25uruLj4xv0tX/88Uf985//JAABQIAwEgQAqJdQGQkCAJw8CEEAAAAAQgqrwwEAAAAIKYQgAAAAACGFEAQAAAAgpBCCAAAAAIQUQhAAAACAkEIIAgAAABBSCEEAAAAAQgohCAAAAEBIIQQBAAAACCn/H470TSq5A/MMAAAAAElFTkSuQmCC", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# TODO: Código" + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "#scatter plot\n", + "plt.figure(figsize=(10, 6))\n", + "plt.scatter(ds['surface'], ds['price'], color='red', alpha=0.5)\n", + "plt.xlabel('Superficie (m²)')\n", + "plt.ylabel('Precio (USD)')\n", + "plt.grid(True)\n", + "plt.show()\n" ] }, { @@ -688,7 +939,7 @@ "id": "ahead-liquid", "metadata": {}, "source": [ - "**TODO: Markdown**. Para escribir aquí, haz doble clic en esta celda, elimina este contenido y coloca lo que quieras escribir. Luego ejecuta la celda." + "En algunas áreas, las propiedades con superficies similares pueden tener precios muy diferentes, lo que podría deberse a variaciones en el nivel socioeconómico del barrio, la antigüedad de la propiedad, o incluso la demanda del mercado en ese momento." ] }, { @@ -704,12 +955,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "id": "valid-honolulu", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "El número de agencias de bienes raíces en el dataset es: 1821\n" + ] + } + ], "source": [ - "# TODO" + "import pandas as pd\n", + "\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "numero_de_agencias = ds['realEstate_name'].nunique()\n", + "\n", + "print(f\"El número de agencias de bienes raíces en el dataset es: {numero_de_agencias}\")\n", + "\n", + "\n" ] }, { @@ -725,12 +992,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "id": "static-perry", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "La población con mayor cantidad de casas es Madrid Capital con un total de 6643 casas.\n" + ] + } + ], "source": [ - "# TODO" + "import pandas as pd\n", + "\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "\n", + "poblacion_con_mas_casas = ds['level5'].value_counts().idxmax()\n", + "numero_de_casas = ds['level5'].value_counts().max()\n", + "\n", + "# población con mayor cantidad de casas y número \n", + "print(f\"La población con mayor cantidad de casas es {poblacion_con_mas_casas} con un total de {numero_de_casas} casas.\")\n" ] }, { @@ -746,12 +1030,64 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "id": "binary-input", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Unnamed: 0 id_realEstates isNew realEstate_name \\\n", + "1 2 153867863 False tecnocasa fuenlabrada ferrocarril \n", + "3 4 152776331 False tecnocasa fuenlabrada ferrocarril \n", + "85 86 153152077 False sinergical inmobiliaria \n", + "94 95 153995577 False viviendas365com \n", + "109 110 153586414 False area uno asesores inmobiliarios \n", + "\n", + " phone_realEstate url_inmueble \\\n", + "1 916358736.0 https://www.fotocasa.es/es/comprar/vivienda/ma... \n", + "3 916358736.0 https://www.fotocasa.es/es/comprar/vivienda/ma... \n", + "85 NaN https://www.fotocasa.es/es/comprar/vivienda/le... \n", + "94 911226014.0 https://www.fotocasa.es/es/comprar/vivienda/le... \n", + "109 912664081.0 https://www.fotocasa.es/es/comprar/vivienda/ma... \n", + "\n", + " rooms bathrooms surface price ... level4Id level5Id level6Id \\\n", + "1 3.0 1.0 NaN 89000 ... 0 0 0 \n", + "3 3.0 1.0 86.0 89000 ... 0 0 0 \n", + "85 1.0 1.0 50.0 107000 ... 0 0 0 \n", + "94 3.0 2.0 120.0 320000 ... 0 0 0 \n", + "109 3.0 3.0 142.0 425000 ... 0 0 0 \n", + "\n", + " level7Id level8Id accuracy latitude longitude zipCode \\\n", + "1 0 0 1 40,28674 -3,79351 NaN \n", + "3 0 0 0 40,2853785786438 -3,79508142135624 NaN \n", + "85 0 0 1 40,35059 -3,82693 NaN \n", + "94 0 0 0 40,31933 -3,77574 NaN \n", + "109 0 0 0 40,3313411 -3,8313868 NaN \n", + "\n", + " customZone \n", + "1 NaN \n", + "3 NaN \n", + "85 NaN \n", + "94 NaN \n", + "109 NaN \n", + "\n", + "[5 rows x 37 columns]\n" + ] + } + ], "source": [ - "# TODO" + "import pandas as pd\n", + "\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "poblaciones_cinturon_sur = [\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"]\n", + "\n", + "ds_cinturon_sur = ds[ds['level5'].isin(poblaciones_cinturon_sur)]\n", + "\n", + "# Subconjunto\n", + "print(ds_cinturon_sur.head())\n" ] }, { @@ -767,12 +1103,43 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "id": "lyric-bunch", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAJdCAYAAABOPfTtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFrUlEQVR4nOzdd3yNd//H8ffJThCbGEHsTVFqxQoxSo2arVW7tEXtog1aN7WLpriLWi1Cqa32CDVK7aIhFWLUiBFJ5Fy/P/xybkeCRMM55PV8PDw41/U91/U543s572t8L5NhGIYAAAAAAHbHwdYFAAAAAAASRmADAAAAADtFYAMAAAAAO0VgAwAAAAA7RWADAAAAADtFYAMAAAAAO0VgAwAAAAA7RWADAAAAADtFYAMAwIYOHjyogIAAXb582dal4AX666+/9MUXX+jUqVO2LgXAK4bABqQQefLkUYcOHSyPt27dKpPJpK1bt9qspudVvXp1Va9e3dZlvDCPf1ZIujx58ujtt99+ZrsX3Q/mzJkjk8mkc+fOJTj/n3/+UePGjRUVFaWsWbO+kBrsRYcOHZQnT55kXearsh2LiopS8+bNdfr0aRUsWNDW5bw0r8u2Oqnfs8S+7lfl+wvbI7ABL1HcjzeTyaSdO3fGm28Yhry9vWUymRL1YxPJo0OHDpbPxWQyydPTU6VKldL48eMVFRVl6/JShEf7hslkkpubmwoWLKhevXq9tkeeDMNQu3btVK1aNX355Ze2LsfuLF++XPXq1VOmTJnk4uKi7Nmzq0WLFtq8eXOyLP/ixYv64osvdOjQoWRZ3tP07t1badOm1ezZs2UymZJ12WazWT/88IMqVKigDBkyKE2aNCpYsKDatWunPXv2JOu6bC1uW+3p6anIyMh480+fPm3ZhowbN84GFQIvhpOtCwBSIjc3Ny1cuFBVqlSxmr5t2zZduHBBrq6uL7wGX19fRUZGysXF5YWv61Xg6uqqWbNmSZJu3rypoKAg9evXT/v27dOPP/74Ums5deqUHBxS5v60ESNGyMfHR/fv39fOnTv17bffas2aNTp69Kg8PDxsXV6StW3bVq1atUqwT589e1ZVq1ZV3759k/1H/KvMMAx98MEHmjNnjt544w317dtXXl5eunTpkpYvX65atWpp165dqlSp0r/ajl28eFEBAQHKkyePSpcunfwv5P9du3ZN2bJl03/+858Xsr39+OOPNW3aNL3zzjt677335OTkpFOnTmnt2rXKmzev3nrrrWRfpy05OTnp3r17+uWXX9SiRQureQsWLJCbm5vu379vo+oe2rBhg03Xj9cPgQ2wgfr162vJkiWaMmWKnJz+1w0XLlyosmXL6tq1ay+8BgcHB7m5ub3w9bwqnJyc9P7771sef/jhh6pQoYJ++uknTZgwQdmzZ4/3HMMwdP/+fbm7uydrLS8jsNvC3bt3lSpVqqe2qVevnsqVKydJ6ty5szJmzKgJEyZoxYoVat269csoM1k5OjrK0dExwXn58+fXoEGDXnJF9m/8+PGaM2eOevfurQkTJliF2c8++0zz5s2zbDftcTt2//59ubi4WHa6ZMqUScOHD38h67p8+bKmT5+uLl26aMaMGVbzJk2apKtXrybLel7Utu55uLq6qnLlylq0aFG8wLZw4UI1aNBAQUFBNqnt3r178vDwYEcokl3K3IUL2Fjr1q31zz//aOPGjZZp0dHRWrp0qdq0aZPgc8xmsyZNmqRixYrJzc1NWbNmVbdu3XTjxg2rdoZhaNSoUcqZM6c8PDxUo0YNHTt2LN7yEjp3fseOHWrevLly5colV1dXeXt7q0+fPvFOPenQoYNSp06tsLAwNW7cWKlTp1bmzJnVr18/xcbGWrUdN26cKlWqpIwZM8rd3V1ly5bV0qVLE/1ezZgxQ/ny5ZO7u7vKly+vHTt2JNguKipKn3/+ufLnz2+pfcCAAc99SqODg4PlGoS464/irotav369ypUrJ3d3d3333XeSHh6V6927t7y9veXq6qr8+fNrzJgxMpvNVss1m82aPHmySpQoITc3N2XOnFl169bV/v37LW0Suobtr7/+UvPmzZUhQwZ5eHjorbfe0urVq+PV/c0336hYsWLy8PBQ+vTpVa5cOS1cuPCprzXuu/DTTz9pyJAh8vLyUqpUqdSoUSP9/fff8dovWbJEZcuWlbu7uzJlyqT3339fYWFhVm3iviNnz55V/fr1lSZNGr333ntPrSMhNWvWlCSFhIRIkh48eKCRI0cqX758cnV1VZ48eTRkyJAnfs4bNmxQ6dKl5ebmpqJFi2rZsmXPXGdi+4EknTx5Ui1atFDmzJnl7u6uQoUK6bPPPrPMf9I1bNOnT1exYsXk6uqq7Nmzq2fPnrp586ZVm+rVq6t48eI6fvy4atSoIQ8PD+XIkUNjx4595muIM3/+fMtnlSFDBrVq1SreZ/qy1pMYkZGRGj16tAoXLqxx48YleOSxbdu2Kl++vKSEt2OJeT1bt27Vm2++KUnq2LGj5TS6OXPmSHrydaSPX5sUt/4ff/xRQ4cOVY4cOeTh4aGIiAhJSesridmePi4kJESGYahy5crx5plMJmXJksXy+Isvvkjw/UzoO/q0bd2TvMxtdZs2bbR27VqrPrNv3z6dPn06wf9Dr1+/rn79+qlEiRJKnTq1PD09Va9ePR0+fDhe2wsXLqhx48ZKlSqVsmTJoj59+iRYW9z37MCBA/L19ZWHh4eGDBlimff4NWyJXS6QEAIbYAN58uRRxYoVtWjRIsu0tWvX6tatW2rVqlWCz+nWrZv69++vypUra/LkyerYsaMWLFggf39/xcTEWNoNHz5cw4YNU6lSpfT1118rb968qlOnju7evfvMupYsWaJ79+6pR48e+uabb+Tv769vvvlG7dq1i9c2NjZW/v7+ypgxo8aNG6dq1app/Pjx8fbyTp48WW+88YZGjBihr776Sk5OTmrevHmCYeNx//3vf9WtWzd5eXlp7Nixqly5coIhwmw2q1GjRho3bpwaNmyob775Ro0bN9bEiRPVsmXLZ67nSc6ePStJypgxo2XaqVOn1Lp1a9WuXVuTJ09W6dKlde/ePVWrVk3z589Xu3btNGXKFFWuXFmDBw9W3759rZbZqVMnS7AbM2aMBg0aJDc3t6dea3L58mVVqlRJ69ev14cffqgvv/xS9+/fV6NGjbR8+XJLu5kzZ+rjjz9W0aJFNWnSJAUEBKh06dLau3dvol7vl19+qdWrV2vgwIH6+OOPtXHjRvn5+VkFlTlz5qhFixZydHTU6NGj1aVLFy1btkxVqlSJFzgePHggf39/ZcmSRePGjVOzZs0SVcejHv8MOnfurOHDh6tMmTKaOHGiqlWrptGjRyfYb06fPq2WLVuqXr16Gj16tOW79+iOkoQkth/88ccfqlChgjZv3qwuXbpo8uTJaty4sX755ZenLv+LL75Qz549lT17do0fP17NmjXTd999pzp16lj1ZUm6ceOG6tata7mmsnDhwho4cKDWrl37zPfuyy+/VLt27VSgQAFNmDBBvXv31qZNm+Tr6xvvs3pZ63mWnTt36vr162rTps0Tj0wmxrNeT5EiRTRixAhJUteuXTVv3jzNmzdPvr6+z7W+kSNHavXq1erXr5+++uorubi4JKmvJHZ7+rjcuXNL+t93NjkltK17kpe9rW7atKlMJpPVDpiFCxeqcOHCKlOmTLz2f/31l37++We9/fbbmjBhgvr3768jR46oWrVqunjxoqVdZGSkatWqpfXr16tXr1767LPPtGPHDg0YMCDBOv755x/Vq1dPpUuX1qRJk1SjRo0E2yV1uUA8BoCXZvbs2YYkY9++fcbUqVONNGnSGPfu3TMMwzCaN29u1KhRwzAMw8idO7fRoEEDy/N27NhhSDIWLFhgtbx169ZZTb9y5Yrh4uJiNGjQwDCbzZZ2Q4YMMSQZ7du3t0zbsmWLIcnYsmWLZVpcLY8aPXq0YTKZjPPnz1umtW/f3pBkjBgxwqrtG2+8YZQtW9Zq2uPLjI6ONooXL27UrFnzie9TXLssWbIYpUuXNqKioizTZ8yYYUgyqlWrZpk2b948w8HBwdixY4fVMgIDAw1Jxq5du566rvbt2xupUqUyrl69aly9etU4c+aM8dVXXxkmk8koWbKkpV3u3LkNSca6deusnj9y5EgjVapUxp9//mk1fdCgQYajo6MRGhpqGIZhbN682ZBkfPzxx/FqePTzyp07t9Vn1bt3b0OS1eu7ffu24ePjY+TJk8eIjY01DMMw3nnnHaNYsWJPfa0Jifsu5MiRw4iIiLBMX7x4sSHJmDx5smEY//tMihcvbkRGRlrarVq1ypBkDB8+3DIt7jsyaNCgRNUQ1zd+/fVX4+rVq8bff/9t/Pjjj0bGjBkNd3d348KFC8ahQ4cMSUbnzp2tntuvXz9DkrF582bLtLjPKigoyDLt1q1bRrZs2Yw33ngj3mt/nn7g6+trpEmTxmqaYVh/lnGvKyQkxDCM//XROnXqWD43wzCMqVOnGpKM77//3jKtWrVqhiTjhx9+sEyLiooyvLy8jGbNmj3xvTQMwzh37pzh6OhofPnll1bTjxw5Yjg5OVlNf1nrad++vZE7d+6nLm/y5MmGJGP58uVPbRcnoc8vsa9n3759hiRj9uzZ8Zb7eB98dNmPbnvi1p83b16r783z9JXEbE8T0q5dO0OSkT59eqNJkybGuHHjjBMnTsRr9/nnnxsJ/ex7/Dsa9/oT2tYlxBbbasMwjHfffdeoVauWYRiGERsba3h5eRkBAQFGSEiIIcn4+uuvLc+7f/++VX8zDMMICQkxXF1drd73SZMmGZKMxYsXW6bdvXvXyJ8//xO/Z4GBgfHqfPx7kpTlAgnhCBtgIy1atFBkZKRWrVql27dva9WqVU88HXLJkiVKmzatateurWvXrln+lC1bVqlTp9aWLVskSb/++quio6P10UcfWZ360rt370TV9Oj1CXfv3tW1a9dUqVIlGYah33//PV777t27Wz2uWrWq/vrrrycu88aNG7p165aqVq2qgwcPPrWW/fv368qVK+revbvV9QAdOnRQ2rRprdouWbJERYoUUeHCha3en7jT6eLen6e5e/euMmfOrMyZMyt//vwaMmSIKlasaHUES5J8fHzk7+8fb/1Vq1ZV+vTprdbv5+en2NhYbd++XZIUFBQkk8mkzz//PN76nzboxJo1a1S+fHmrQWpSp06trl276ty5czp+/LgkKV26dLpw4YL27dv3zNebkHbt2ilNmjSWx++++66yZcumNWvWSPrfZ/Lhhx9aXTfUoEEDFS5cOMGjpj169EhSDX5+fsqcObO8vb3VqlUrpU6dWsuXL1eOHDksdTx+1PLTTz+VpHjrz549u5o0aWJ57OnpqXbt2un3339XeHj4E2tITD+4evWqtm/frg8++EC5cuWyev7TPsu4Ptq7d2+rgWW6dOkiT0/PeK8hderUVtdWuri4qHz58vH62eOWLVsms9msFi1aWH0nvby8VKBAgXh94mWt51niTiV89Hv4PJ739Tyv9u3bW31vnqevJGZ7mpDZs2dr6tSp8vHx0fLly9WvXz8VKVJEtWrVinf6ZVIktK1LyMveVsdp06aNtm7dqvDwcG3evFnh4eFP/D/U1dXV0t9iY2P1zz//KHXq1CpUqJDV/0Vr1qxRtmzZ9O6771qmeXh4qGvXrk9cbseOHZ9Za1KXCzyOQUcAG8mcObP8/Py0cOFC3bt3T7GxsVYb80edPn1at27dsroe4VFXrlyRJJ0/f16SVKBAgXjrSp8+/TNrCg0N1fDhw7Vy5cp418bdunXL6nHc9VePSp8+fbznrVq1SqNGjdKhQ4esztd/1qh4T3otzs7Oyps3r9W006dP68SJE/HqiRP3/jyNm5ub5VQ2V1dX+fj4KGfOnPHa+fj4xJt2+vRp/fHHH89c/9mzZ5U9e3ZlyJDhmfU86vz586pQoUK86UWKFLHML168uAYOHKhff/1V5cuXV/78+VWnTh21adMmwetbEvL4e20ymZQ/f37LtS1xn0mhQoXiPbdw4cLxblXh5OSU4Hv4NNOmTVPBggXl5OSkrFmzqlChQpYfWufPn5eDg4Py589v9RwvLy+lS5fOUl+c/Pnzx/uexd0D69y5c/Ly8kqwhsT0g7gf0sWLF0/S63vSe+ji4qK8efPGew05c+aM9xrSp0+vP/7446nrOX36tAzDiPeZxnF2drbJep7F09NTknT79u0kPe9xz/t6ntfj24Wk9pXEbk8T4uDgoJ49e6pnz576559/tGvXLgUGBmrt2rVq1arVE68le5aEtnUJednb6jhx18b+9NNPOnTokN58802r7dWj4q4dnj59ukJCQqyuDXz0lPfz588nuN1I6HOUpBw5ciRqgJGkLhd4HIENsKE2bdqoS5cuCg8PV7169ZQuXboE25nNZmXJkkULFixIcP6T/vNLitjYWNWuXVvXr1/XwIEDVbhwYaVKlUphYWHq0KFDvMEzEnN9yY4dO9SoUSP5+vpq+vTpypYtm5ydnTV79uxnDoSRFGazWSVKlNCECRMSnO/t7f3MZTg6OsrPz++Z7RIaJc1sNqt27dpPvB7hZd0ot0iRIjp16pRWrVqldevWKSgoSNOnT9fw4cMVEBDwUmp41KN7tROrfPnyllEin+RFDoGf1H7woj2pnxmG8dTnmc1mmUwmrV27NsFlpE6d2ibreZbChQtLko4cOaLGjRsn6bmPet7XE+dJ37HY2NgEl/1vR0/8N9frPSpjxoxq1KiRGjVqpOrVq2vbtm06f/68cufO/dTXlJAXMSJkcmyr47i6uqpp06aaO3eu/vrrL33xxRdPbPvVV19p2LBh+uCDDzRy5EhlyJBBDg4O6t2797/q0/YwaiZSBgIbYENNmjRRt27dtGfPHv30009PbJcvXz79+uuvqly58lP/g4i7AP306dNWezavXr36zD21R44c0Z9//qm5c+daDa7wrAEaniYoKEhubm5av3691VD1s2fPfuZzH30tcafLSFJMTIxCQkJUqlQpy7R8+fLp8OHDqlWrlk3uZ5UvXz7duXPnmYEvX758Wr9+va5fv56ko2y5c+fWqVOn4k0/efKkZX6cVKlSqWXLlmrZsqWio6PVtGlTffnllxo8ePAzhz8/ffq01WPDMHTmzBmVLFnSaj2nTp2y+kzipj1ax4uQO3dumc1mnT592nJ0UXo4KMvNmzfjrf/MmTMyDMPqO/Hnn39KejjwT0IS2w/i+tfRo0eT/Bqkh+/Xo300OjpaISEhidppkBj58uWTYRjy8fF5oTsMkns9VapUUfr06bVo0SINGTIk2YJMQp62rUifPn2CA6acP38+3lGjhNi6r0hSuXLltG3bNl26dEm5c+e2nGVx8+ZNq52Djx/VTSpbbqvbtGmj77//Xg4ODk8csEuSli5dqho1aui///2v1fSbN28qU6ZMVq/l6NGj8bYbCW1/k+JFLRcpB9ewATaUOnVqffvtt/riiy/UsGHDJ7Zr0aKFYmNjNXLkyHjzHjx4YPlh4efnJ2dnZ33zzTdWe5InTZr0zFrifhg9+jzDMDR58uREvpqEl2kymaz24J47d04///zzM59brlw5Zc6cWYGBgYqOjrZMnzNnTrwfUi1atFBYWJhmzpwZbzmRkZGJGiHz32jRooWCg4O1fv36ePNu3rypBw8eSJKaNWsmwzASPNr1tD3/9evX12+//abg4GDLtLt372rGjBnKkyePihYtKunhiGWPcnFxUdGiRWUYRrzRBxPyww8/WJ2KtnTpUl26dEn16tWT9PAzyZIliwIDA61Ob127dq1OnDihBg0aPHMd/0b9+vUlxf8+x+2tf3z9Fy9etLoGMSIiQj/88INKly79xNMhE9sPMmfOLF9fX33//fcKDQ21mve0z9LPz08uLi6aMmWKVbv//ve/unXrVrK9h02bNpWjo6MCAgLi1WMYRrzvir2sx8PDQwMHDtSJEyc0cODABN/L+fPn67fffvtXdUuy3BMwoWCWL18+7dmzx2rbs2rVqkTfquBl9ZXw8HDLNayPio6O1qZNm6xOIc6XL58kWa6plR5uR+bOnfuvarDltrpGjRoaOXKkpk6d+sQ+LT3s149/l5YsWRLvGr/69evr4sWLVreeuXfv3jNH63yWF7VcpBwcYQNsrH379s9sU61aNXXr1k2jR4/WoUOHVKdOHTk7O+v06dNasmSJJk+erHfffddy757Ro0fr7bffVv369fX7779r7dq1VnsRE1K4cGHly5dP/fr1U1hYmDw9PRUUFJSoayiepEGDBpowYYLq1q2rNm3a6MqVK5o2bZry58//zGtJnJ2dNWrUKHXr1k01a9ZUy5YtFRISotmzZ8fbw922bVstXrxY3bt315YtW1S5cmXFxsbq5MmTWrx4seVeQi9K//79tXLlSr399tvq0KGDypYtq7t37+rIkSNaunSpzp07p0yZMqlGjRpq27atpkyZotOnT6tu3boym83asWOHatSooV69eiW4/EGDBmnRokWqV6+ePv74Y2XIkEFz585VSEiIgoKCLKcd1qlTR15eXqpcubKyZs2qEydOaOrUqWrQoEGiBnHIkCGDqlSpoo4dO+ry5cuaNGmS8ufPry5dukh6+JmMGTNGHTt2VLVq1dS6dWtdvnxZkydPVp48edSnT5/ke1MTUKpUKbVv314zZszQzZs3Va1aNf3222+aO3euGjduHG9I7YIFC6pTp07at2+fsmbNqu+//16XL19+6hHepPSDKVOmqEqVKipTpoy6du0qHx8fnTt3TqtXr9ahQ4cSXH7mzJk1ePBgBQQEqG7dumrUqJFOnTql6dOn680337QaKOPfyJcvn0aNGqXBgwfr3Llzaty4sdKkSaOQkBAtX75cXbt2Vb9+/exyPf3799exY8c0fvx4bdmyRe+++668vLwUHh6un3/+Wb/99pt2796dLLWnS5dOgYGBSpMmjVKlSqUKFSrIx8dHnTt31tKlS1W3bl21aNFCZ8+e1fz58y2h51leVl+5cOGCypcvr5o1a6pWrVry8vLSlStXtGjRIh0+fFi9e/e2bPvr1KmjXLlyqVOnTurfv78cHR31/fffK3PmzPF2OiSFLbfVDg4OGjp06DPbvf322xoxYoQ6duyoSpUq6ciRI1qwYEG8+rp06aKpU6eqXbt2OnDggLJly6Z58+bJw8Mj0TUl5EUtFynISxmLEoBhGNbD+j/N48P6x5kxY4ZRtmxZw93d3UiTJo1RokQJY8CAAcbFixctbWJjY42AgAAjW7Zshru7u1G9enXj6NGj8YapTmg47OPHjxt+fn5G6tSpjUyZMhldunQxDh8+HG/o60eHVn5UQsNG//e//zUKFChguLq6GoULFzZmz579xOGlEzJ9+nTDx8fHcHV1NcqVK2ds37493pDJhvFwaOkxY8YYxYoVM1xdXY306dMbZcuWNQICAoxbt249dR1Pej2Pe9LnYhgPh9kfPHiwkT9/fsPFxcXIlCmTUalSJWPcuHFGdHS0pd2DBw+Mr7/+2ihcuLDh4uJiZM6c2ahXr55x4MABq/U8PqT42bNnjXfffddIly6d4ebmZpQvX95YtWqVVZvvvvvO8PX1NTJmzGi4uroa+fLlM/r37//M1x/3XVi0aJExePBgI0uWLIa7u7vRoEGDeEPWG4Zh/PTTT8Ybb7xhuLq6GhkyZDDee+8948KFC1ZtEvuexkls34iJiTECAgIMHx8fw9nZ2fD29jYGDx5s3L9/36pd3Ge1fv16o2TJkpbv35IlSxJ87c/TDwzDMI4ePWo0adLE8rkUKlTIGDZsWLzX9eiQ6YbxcBj/woULG87OzkbWrFmNHj16GDdu3LBqU61atQRv05CY4fHjBAUFGVWqVDFSpUplpEqVyihcuLDRs2dP49SpUy99PUlZnmEYxtKlS406deoYGTJkMJycnIxs2bIZLVu2NLZu3Wpp86Rh/RP7elasWGEULVrUcHJyivf5jh8/3siRI4fh6upqVK5c2di/f/8Th/V//HsV59/0lcRsJyMiIozJkycb/v7+Rs6cOQ1nZ2cjTZo0RsWKFY2ZM2da3WLCMAzjwIEDRoUKFQwXFxcjV65cxoQJE544rP+TtnVPYi/b6icN6//pp59a/l+sXLmyERwcnGB958+fNxo1amR4eHgYmTJlMj755BPLLXQS8z2Lm/e8ywUSYjKMRF6BCwB4LW3dulU1atTQkiVLnjhSKQAAsA2uYQMAAAAAO0VgAwAAAAA7RWADAAAAADvFNWwAAAAAYKc4wgYAAAAAdorABgAAAAB2isAGAAAAAHbKydYFpCRms1kXL15UmjRpZDKZbF0OAAAAABsxDEO3b99W9uzZ5eDw5ONoBLaX6OLFi/L29rZ1GQAAAADsxN9//62cOXM+cT6B7SVKkyaNpIcfiqenp42rAQAAAGArERER8vb2tmSEJyGwvURxp0F6enoS2AAAAAA881IpBh0BAAAAADtFYAMAAAAAO0VgAwAAAAA7RWADAAAAADtFYAMAAAAAO0VgAwAAAAA7RWADAAAAADtFYAMAAAAAO0VgAwAAAAA7RWADAAAAADtFYAMAAAAAO0VgAwAAAAA7RWADAAAAADtFYAMAAAAAO0VgAwAAAAA7RWADAAAAADtFYAMAAAAAO0VgAwAAAAA75WTrAgAAwKsnNDRU165ds3UZKVqmTJmUK1cuW5cB4AUjsAEAgCQJDQ1V4SJFFHnvnq1LSdHcPTx08sQJQhvwmiOwAQCAJLl27Zoi791Ti1HfKotPAVuXkyJdCTmtxUN76Nq1awQ24DVHYAMAAM8li08B5ShSytZlAMBrjUFHAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE7ZNLCNHj1ab775ptKkSaMsWbKocePGOnXqlFWb6tWry2QyWf3p3r27VZvQ0FA1aNBAHh4eypIli/r3768HDx5Ytdm6davKlCkjV1dX5c+fX3PmzIlXz7Rp05QnTx65ubmpQoUK+u2336zm379/Xz179lTGjBmVOnVqNWvWTJcvX06eNwMAAAAAHmPTwLZt2zb17NlTe/bs0caNGxUTE6M6dero7t27Vu26dOmiS5cuWf6MHTvWMi82NlYNGjRQdHS0du/erblz52rOnDkaPny4pU1ISIgaNGigGjVq6NChQ+rdu7c6d+6s9evXW9r89NNP6tu3rz7//HMdPHhQpUqVkr+/v65cuWJp06dPH/3yyy9asmSJtm3bposXL6pp06Yv8B0CAAAAkJKZDMMwbF1EnKtXrypLlizatm2bfH19JT08wla6dGlNmjQpweesXbtWb7/9ti5evKisWbNKkgIDAzVw4EBdvXpVLi4uGjhwoFavXq2jR49anteqVSvdvHlT69atkyRVqFBBb775pqZOnSpJMpvN8vb21kcffaRBgwbp1q1bypw5sxYuXKh3331XknTy5EkVKVJEwcHBeuutt575+iIiIpQ2bVrdunVLnp6ez/0+AQBgSwcPHlTZsmXVa8GvylGklK3LSZHCThzW1Pf8dODAAZUpU8bW5QB4DonNBk4vsaZnunXrliQpQ4YMVtMXLFig+fPny8vLSw0bNtSwYcPk4eEhSQoODlaJEiUsYU2S/P391aNHDx07dkxvvPGGgoOD5efnZ7VMf39/9e7dW5IUHR2tAwcOaPDgwZb5Dg4O8vPzU3BwsCTpwIEDiomJsVpO4cKFlStXricGtqioKEVFRVkeR0RESJJiYmIUExOT5PcHAAB7YDab5e7uLkcZcjA/ePYTkOwcZcjd3V1ms5nfFMArKrF9124Cm9lsVu/evVW5cmUVL17cMr1NmzbKnTu3smfPrj/++EMDBw7UqVOntGzZMklSeHi4VViTZHkcHh7+1DYRERGKjIzUjRs3FBsbm2CbkydPWpbh4uKidOnSxWsTt57HjR49WgEBAfGmb9iwwRI4AQB4FS1atEjSXenCXluXkiIVSiXVWLRIYWFhCgsLs3U5AJ7DvXv3EtXObgJbz549dfToUe3cudNqeteuXS3/LlGihLJly6ZatWrp7Nmzypcv38suM0kGDx6svn37Wh5HRETI29tbderU4ZRIAMAr6/Dhw/L19VXXWSuVvVDxZz8Bye7iqaOa0bmRtm/frlKlOC0VeBXFnX33LHYR2Hr16qVVq1Zp+/btypkz51PbVqhQQZJ05swZ5cuXT15eXvFGc4wbudHLy8vy9+OjOV6+fFmenp4PT+lwdJSjo2OCbR5dRnR0tG7evGl1lO3RNo9zdXWVq6trvOnOzs5ydnZ+6usEAMBeOTg4KDIyUrEyyexgFz8lUpxYmRQZGSkHBwd+UwCvqMT2XZuOEmkYhnr16qXly5dr8+bN8vHxeeZzDh06JEnKli2bJKlixYo6cuSI1WiOGzdulKenp4oWLWpps2nTJqvlbNy4URUrVpQkubi4qGzZslZtzGazNm3aZGlTtmxZOTs7W7U5deqUQkNDLW0AAAAAIDnZdLdYz549tXDhQq1YsUJp0qSxXAuWNm1aubu76+zZs1q4cKHq16+vjBkz6o8//lCfPn3k6+urkiVLSpLq1KmjokWLqm3btho7dqzCw8M1dOhQ9ezZ03J0q3v37po6daoGDBigDz74QJs3b9bixYu1evVqSy19+/ZV+/btVa5cOZUvX16TJk3S3bt31bFjR0tNnTp1Ut++fZUhQwZ5enrqo48+UsWKFRM1QiQAAAAAJJVNA9u3334r6eHQ/Y+aPXu2OnToIBcXF/3666+W8OTt7a1mzZpp6NChlraOjo5atWqVevTooYoVKypVqlRq3769RowYYWnj4+Oj1atXq0+fPpo8ebJy5sypWbNmyd/f39KmZcuWunr1qoYPH67w8HCVLl1a69atsxqIZOLEiXJwcFCzZs0UFRUlf39/TZ8+/QW9OwAAAABSOru6D9vrjvuwAQBeB9yHzfa4Dxvw6ktsNrDpNWwAAAAAgCcjsAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdcnqeJ4WGhur8+fO6d++eMmfOrGLFisnV1TW5awMAAACAFC3Rge3cuXP69ttv9eOPP+rChQsyDMMyz8XFRVWrVlXXrl3VrFkzOThw4A4AAAAA/q1EJauPP/5YpUqVUkhIiEaNGqXjx4/r1q1bio6OVnh4uNasWaMqVapo+PDhKlmypPbt2/ei6wYAAACA116ijrClSpVKf/31lzJmzBhvXpYsWVSzZk3VrFlTn3/+udatW6e///5bb775ZrIXCwAAAAApSaIC2+jRoxO9wLp16z53MQAAAACA/3muQUeuXbumc+fOyWQyKU+ePAkeeQMAAAAA/DtJGh3k2LFj8vX1VdasWVWhQgWVL1/eckrkqVOnkrzy0aNH680331SaNGmUJUsWNW7cON5y7t+/r549eypjxoxKnTq1mjVrpsuXL1u1CQ0NVYMGDeTh4aEsWbKof//+evDggVWbrVu3qkyZMnJ1dVX+/Pk1Z86cePVMmzZNefLkkZubmypUqKDffvstybUAAAAAQHJJdGALDw9XtWrVdPXqVU2YMEFr1qzR6tWr9fXXX+vSpUuqWrWqrly5kqSVb9u2TT179tSePXu0ceNGxcTEqE6dOrp7966lTZ8+ffTLL79oyZIl2rZtmy5evKimTZta5sfGxqpBgwaKjo7W7t27NXfuXM2ZM0fDhw+3tAkJCVGDBg1Uo0YNHTp0SL1791bnzp21fv16S5uffvpJffv21eeff66DBw+qVKlS8vf3t3pNz6oFAAAAAJKTyXh0fP6nGDhwoH799Vft2rVLbm5uVvMiIyNVpUoV1alTJ0nXuz3u6tWrypIli7Zt2yZfX1/dunVLmTNn1sKFC/Xuu+9Kkk6ePKkiRYooODhYb731ltauXau3335bFy9eVNasWSVJgYGBGjhwoK5evSoXFxcNHDhQq1ev1tGjRy3ratWqlW7evKl169ZJkipUqKA333xTU6dOlSSZzWZ5e3vro48+0qBBgxJVy7NEREQobdq0unXrljw9PZ/7fQIAwJYOHjyosmXLqteCX5WjSClbl5MihZ04rKnv+enAgQMqU6aMrcsB8BwSmw0SfQ3bxo0bNWjQoHhhTZLc3d3Vv39/jR079l8Ftlu3bkmSMmTIIEk6cOCAYmJi5OfnZ2lTuHBh5cqVyxKSgoODVaJECUtYkyR/f3/16NFDx44d0xtvvKHg4GCrZcS16d27tyQpOjpaBw4c0ODBgy3zHRwc5Ofnp+Dg4ETX8rioqChFRUVZHkdEREiSYmJiFBMT81zvEQAAtmY2m+Xu7i5HGXIwP3j2E5DsHGXI3d1dZrOZ3xTAKyqxfTfRge2vv/566h6ccuXK6a+//krs4uIxm83q3bu3KleurOLFi0t6eBqmi4uL0qVLZ9U2a9asCg8Pt7R5NKzFzY+b97Q2ERERioyM1I0bNxQbG5tgm5MnTya6lseNHj1aAQEB8aZv2LBBHh4eT3orAACwe4sWLZJ0V7qw19alpEiFUkk1Fi1SWFiYwsLCbF0OgOdw7969RLVLdGC7ffv2Uw/VpUmTRnfu3Ens4uLp2bOnjh49qp07dz73MuzN4MGD1bdvX8vjiIgIeXt7q06dOpwSCQB4ZR0+fFi+vr7qOmulshcqbutyUqSLp45qRudG2r59u0qV4rRU4FUUd/bdsyRpWP/bt28neEpk3AoTeTlcPL169dKqVau0fft25cyZ0zLdy8tL0dHRunnzptWRrcuXL8vLy8vS5vHRHONGbny0zeOjOV6+fFmenp4PT+lwdJSjo2OCbR5dxrNqeZyrq6tcXV3jTXd2dpazs/PT3hIAAOyWg4ODIiMjFSuTzA7PdYcg/EuxMikyMlIODg78pgBeUYntu4keJdIwDBUsWFDp06dP8E+hQoWSXKRhGOrVq5eWL1+uzZs3y8fHx2p+2bJl5ezsrE2bNlmmnTp1SqGhoapYsaIkqWLFijpy5IjVaI4bN26Up6enihYtamnz6DLi2sQtw8XFRWXLlrVqYzabtWnTJkubxNQCAAAAAMkp0bvFtmzZkuwr79mzpxYuXKgVK1YoTZo0lmvB0qZNK3d3d6VNm1adOnVS3759lSFDBnl6euqjjz5SxYoVLYN81KlTR0WLFlXbtm01duxYhYeHa+jQoerZs6fl6Fb37t01depUDRgwQB988IE2b96sxYsXa/Xq1ZZa+vbtq/bt26tcuXIqX768Jk2apLt376pjx46Wmp5VCwAAAAAkp0QHtmrVqiX7yr/99ltJUvXq1a2mz549Wx06dJAkTZw4UQ4ODmrWrJmioqLk7++v6dOnW9o6Ojpq1apV6tGjhypWrKhUqVKpffv2GjFihKWNj4+PVq9erT59+mjy5MnKmTOnZs2aJX9/f0ubli1b6urVqxo+fLjCw8NVunRprVu3zmogkmfVAgAAAADJKdH3YXvw4IFiY2Otrsm6fPmyAgMDdffuXTVq1EhVqlR5YYW+DrgPGwDgdcB92GyP+7ABr75kvw9bly5d5OLiou+++07SwwFI3nzzTd2/f1/ZsmXTxIkTtWLFCtWvX//fVw8AAAAASPygI7t27VKzZs0sj3/44QfFxsbq9OnTOnz4sPr27auvv/76hRQJAAAAAClRogNbWFiYChQoYHm8adMmNWvWTGnTppUktW/fXseOHUv+CgEAAAAghUp0YHNzc1NkZKTl8Z49e1ShQgWr+f/mxtkAAAAAAGuJDmylS5fWvHnzJEk7duzQ5cuXVbNmTcv8s2fPKnv27MlfIQAAAACkUIkedGT48OGqV6+eFi9erEuXLqlDhw7Kli2bZf7y5ctVuXLlF1IkAAAAAKRESboP2/79+7Vx40Z5eXmpefPmVvNLly6t8uXLJ3uBAAAAAJBSJTqwSVLRokVVtGjRBOd17do1WQoCAAAAADyU6MA2ZcqUBKenTZtWBQsWVMWKFZOtKAAAAABAEgLbxIkTE5x+8+ZN3bp1S5UqVdLKlSuVIUOGZCsOAAAAAFKyRI8SGRISkuCfGzdu6MyZMzKbzRo6dOiLrBUAAAAAUpREB7anyZs3r/7zn/9ow4YNybE4AAAAAICSKbBJUq5cuRQeHp5ciwMAAACAFC/ZAtuRI0eUO3fu5FocAAAAAKR4iR50JCIiIsHpt27d0oEDB/Tpp5+qffv2yVYYAAAAAKR0iQ5s6dKlk8lkSnCeyWRS586dNWjQoGQrDAAAAABSukQHti1btiQ43dPTUwUKFFDq1KmTrSgAAAAAQBICW7Vq1V5kHQAAAACAxyRq0JHQ0NAkLTQsLOy5igEAAAAA/E+iAtubb76pbt26ad++fU9sc+vWLc2cOVPFixdXUFBQshUIAAAAAClVok6JPH78uL788kvVrl1bbm5uKlu2rLJnzy43NzfduHFDx48f17Fjx1SmTBmNHTtW9evXf9F1AwAAAMBrL1FH2DJmzKgJEybo0qVLmjp1qgoUKKBr167p9OnTkqT33ntPBw4cUHBwMGENAAAAAJJJogcdkSR3d3e9++67evfdd19UPQAAAACA/5eoI2wAAAAAgJcvSUfYgNDQUF27ds3WZaRomTJlUq5cuWxdBgAAAF4CAhsSLTQ0VIWLFFHkvXu2LiVFc/fw0MkTJwhtAAAAKQCBDYl27do1Rd67pxajvlUWnwK2LidFuhJyWouH9tC1a9cIbAAAACkAgQ1JlsWngHIUKWXrMgAAAIDXXpIHHZk7d65Wr15teTxgwAClS5dOlSpV0vnz55O1OAAAAABIyZIc2L766iu5u7tLkoKDgzVt2jSNHTtWmTJlUp8+fZK9QAAAAABIqZJ8SuTff/+t/PnzS5J+/vlnNWvWTF27dlXlypVVvXr15K4PAAAAAFKsJB9hS506tf755x9J0oYNG1S7dm1JkpubmyIjI5O3OgAAAABIwZJ8hK127drq3Lmz3njjDf3555+qX7++JOnYsWPKkydPctcHAAAAAClWko+wTZs2TRUrVtTVq1cVFBSkjBkzSpIOHDig1q1bJ3uBAAAAAJBSJfkIW7p06TR16tR40wMCApKlIAAAAADAQ891H7abN2/qv//9r06cOCFJKlasmD744AOlTZs2WYsDAAAAgJQsyadE7t+/X/ny5dPEiRN1/fp1Xb9+XRMmTFC+fPl08ODBF1EjAAAAAKRIST7C1qdPHzVq1EgzZ86Uk9PDpz948ECdO3dW7969tX379mQvEgAAAABSoiQHtv3791uFNUlycnLSgAEDVK5cuWQtDgAAAABSsiQHNk9PT4WGhqpw4cJW0//++2+lSZMm2QoDAAAA7FloaKiuXbtm6zJSrEyZMilXrly2LuOFS3Jga9mypTp16qRx48apUqVKkqRdu3apf//+DOsPAACAFCE0NFSFixRR5L17ti4lxXL38NDJEyde+9CW5MA2btw4mUwmtWvXTg8ePJAkOTs7q0ePHvrPf/6T7AUCAAAA9ubatWuKvHdPLUZ9qyw+BWxdTopzJeS0Fg/toWvXrhHYHufi4qLJkydr9OjROnv2rCQpX7588vDwSPbiAAAAAHuWxaeAchQpZesy8Bp7rvuwSZKHh4dKlCiRnLUAAAAAAB6RqMDWtGlTzZkzR56enmratOlT2y5btixZCgMAAACAlC5RgS1t2rQymUyWfwMAAAAAXrxEBbbZs2cn+G8AAAAAwIvjkNQnhISE6PTp0/Gmnz59WufOnUuOmgAAAAAAeo7A1qFDB+3evTve9L1796pDhw7JURMAAAAAQM8R2H7//XdVrlw53vS33npLhw4dSo6aAAAAAAB6jsBmMpl0+/bteNNv3bql2NjYZCkKAAAAAPAcgc3X11ejR4+2CmexsbEaPXq0qlSpkqzFAQAAAEBKluQbZ48ZM0a+vr4qVKiQqlatKknasWOHIiIitHnz5mQvEAAAAABSqiQfYStatKj++OMPtWjRQleuXNHt27fVrl07nTx5UsWLF38RNQIAAABAipTkI2ySlD17dn311VfJXQsAAAAA4BFJPsImPTwF8v3331elSpUUFhYmSZo3b5527tyZrMUBAAAAQEqW5MAWFBQkf39/ubu76+DBg4qKipL0cJRIjroBAAAAQPJJcmAbNWqUAgMDNXPmTDk7O1umV65cWQcPHkzW4gAAAAAgJUtyYDt16pR8fX3jTU+bNq1u3ryZHDUBAAAAAPQcgc3Ly0tnzpyJN33nzp3KmzdvshQFAAAAAHiOwNalSxd98skn2rt3r0wmky5evKgFCxaoX79+6tGjx4uoEQAAAABSpCQP6z9o0CCZzWbVqlVL9+7dk6+vr1xdXdWvXz999NFHL6JGAAAAAEiRkhTYYmNjtWvXLvXs2VP9+/fXmTNndOfOHRUtWlSpU6d+UTUCgF0JDQ3VtWvXbF1GipYpUyblypXL1mUAAPDCJSmwOTo6qk6dOjpx4oTSpUunokWLvqi6AMAuhYaGqnCRIoq8d8/WpaRo7h4eOnniBKENAPDaS/IpkcWLF9dff/0lHx+fF1EPANi1a9euKfLePbUY9a2y+BSwdTkp0pWQ01o8tIeuXbtGYAMAvPaSHNhGjRqlfv36aeTIkSpbtqxSpUplNd/T0zPZigMAe5XFp4ByFCll6zIAAMBrLsmjRNavX1+HDx9Wo0aNlDNnTqVPn17p06dXunTplD59+iQta/v27WrYsKGyZ88uk8mkn3/+2Wp+hw4dZDKZrP7UrVvXqs3169f13nvvydPTU+nSpVOnTp10584dqzZ//PGHqlatKjc3N3l7e2vs2LHxalmyZIkKFy4sNzc3lShRQmvWrLGabxiGhg8frmzZssnd3V1+fn46ffp0kl4vAAAAACRFko+wbdmyJdlWfvfuXZUqVUoffPCBmjZtmmCbunXravbs2ZbHrq6uVvPfe+89Xbp0SRs3blRMTIw6duyorl27auHChZKkiIgI1alTR35+fgoMDNSRI0f0wQcfKF26dOrataskaffu3WrdurVGjx6tt99+WwsXLlTjxo118OBBFS9eXJI0duxYTZkyRXPnzpWPj4+GDRsmf39/HT9+XG5ubsn2ngAAAABAnCQFNsMwlD17dkVHR6tQoUJyckpy3rNSr1491atX76ltXF1d5eXlleC8EydOaN26ddq3b5/KlSsnSfrmm29Uv359jRs3TtmzZ9eCBQsUHR2t77//Xi4uLipWrJgOHTqkCRMmWALb5MmTVbduXfXv31+SNHLkSG3cuFFTp05VYGCgDMPQpEmTNHToUL3zzjuSpB9++EFZs2bVzz//rFatWv2r9wEAAAAAEpLoxBUSEqJGjRrp+PHjkqScOXMqKCjIEpRelK1btypLlixKnz69atasqVGjRiljxoySpODgYKVLl86qBj8/Pzk4OGjv3r1q0qSJgoOD5evrKxcXF0sbf39/jRkzRjdu3FD69OkVHBysvn37Wq3X39/fcopmSEiIwsPD5efnZ5mfNm1aVahQQcHBwU8MbFFRUYqKirI8joiIkCTFxMQoJibm370xNmA2m+Xu7i5HGXIwP7B1OSmSowy5u7vLbDa/kt+h1wH9wPboB7ZHP7A9+oHt0Q9s63XoA4mtO9GBrX///nrw4IHmz58vNzc3jRs3Tt26ddOBAweeu8hnqVu3rpo2bSofHx+dPXtWQ4YMUb169RQcHCxHR0eFh4crS5YsVs9xcnJShgwZFB4eLkkKDw+PN6Jl1qxZLfPSp0+v8PBwy7RH2zy6jEefl1CbhIwePVoBAQHxpm/YsEEeHh6JeQvszqJFiyTdlS7stXUpKVKhVFKNRYsUFhamsLAwW5eTYtEPbIt+YB/oB7ZFP7AP9APbeR36wL1E3iIo0YFt586dWrp0qapUqSJJeuutt5QzZ07dvXs33kiRyeXRI1clSpRQyZIllS9fPm3dulW1atV6IetMToMHD7Y6chcRESFvb2/VqVPnlRxN8/Dhw/L19VXXWSuVvVBxW5eTIl08dVQzOjfS9u3bVaoUIxTaAv3A9ugHtkc/sD36ge3RD2zrdegDcWffPUuiA9uVK1dUoMD/7jkUN1rilStXXto92fLmzatMmTLpzJkzqlWrlry8vHTlyhWrNg8ePND169ct1715eXnp8uXLVm3iHj+rzaPz46Zly5bNqk3p0qWfWK+rq2u8QVIkydnZWc7Ozol5yXbFwcFBkZGRipVJZod/d/0ink+sTIqMjJSDg8Mr+R16HdAPbI9+YHv0A9ujH9ge/cC2Xoc+kNi6Ez2sv8lk0p07dxQREWH54+DgoNu3b1tNe5EuXLigf/75xxKaKlasqJs3b1qdlrl582aZzWZVqFDB0mb79u1W54hu3LhRhQoVstyGoGLFitq0aZPVujZu3KiKFStKknx8fOTl5WXVJiIiQnv37rW0AQAAAIDklujdAYZhqGDBgvGmvfHGG5Z/m0wmxcbGJnrld+7c0ZkzZyyPQ0JCdOjQIWXIkEEZMmRQQECAmjVrJi8vL509e1YDBgxQ/vz55e/vL0kqUqSI6tatqy5duigwMFAxMTHq1auXWrVqpezZs0uS2rRpo4CAAHXq1EkDBw7U0aNHNXnyZE2cONGy3k8++UTVqlXT+PHj1aBBA/3444/av3+/ZsyYIelhWO3du7dGjRqlAgUKWIb1z549uxo3bpzo1wsAAAAASZHowJac91+Ls3//ftWoUcPyOO56r/bt2+vbb7/VH3/8oblz5+rmzZvKnj276tSpo5EjR1qdZrhgwQL16tVLtWrVkoODg5o1a6YpU6ZY5qdNm1YbNmxQz549VbZsWWXKlEnDhw+3DOkvSZUqVdLChQs1dOhQDRkyRAUKFNDPP/9suQebJA0YMEB3795V165ddfPmTVWpUkXr1q3jHmwAAAAAXphEB7Zq1aol+8qrV68uwzCeOH/9+vXPXEaGDBksN8l+kpIlS2rHjh1PbdO8eXM1b978ifNNJpNGjBihESNGPLMmAAAAAEgOib6GDQAAAADwchHYAAAAAMBOEdgAAAAAwE4R2AAAAADATj13YDtz5ozWr1+vyMhISXrq4CEAAAAAgKRLcmD7559/5Ofnp4IFC6p+/fq6dOmSJKlTp0769NNPk71AAAAAAEipkhzY+vTpIycnJ4WGhsrDw8MyvWXLllq3bl2yFgcAAAAAKVmi78MWZ8OGDVq/fr1y5sxpNb1AgQI6f/58shUGAAAAACldko+w3b171+rIWpzr16/L1dU1WYoCAAAAADxHYKtatap++OEHy2OTySSz2ayxY8eqRo0ayVocAAAAAKRkST4lcuzYsapVq5b279+v6OhoDRgwQMeOHdP169e1a9euF1EjAAAAAKRIST7CVrx4cf3555+qUqWK3nnnHd29e1dNmzbV77//rnz58r2IGgEAAAAgRUryETZJSps2rT777LPkrgUAAAAA8IhEBbY//vgj0QssWbLkcxcDAAAAAPifRAW20qVLy2QyyTAMmUwmy3TDMCTJalpsbGwylwgAAAAAKVOirmELCQnRX3/9pZCQEAUFBcnHx0fTp0/XoUOHdOjQIU2fPl358uVTUFDQi64XAAAAAFKMRB1hy507t+XfzZs315QpU1S/fn3LtJIlS8rb21vDhg1T48aNk71IAAAAAEiJkjxK5JEjR+Tj4xNvuo+Pj44fP54sRQEAAAAAniOwFSlSRKNHj1Z0dLRlWnR0tEaPHq0iRYoka3EAAAAAkJIleVj/wMBANWzYUDlz5rSMCPnHH3/IZDLpl19+SfYCAQAAACClSnJgK1++vP766y8tWLBAJ0+elCS1bNlSbdq0UapUqZK9QAAAAABIqZ7rxtmpUqVS165dk7sWAAAAAMAjknwNGwAAAADg5SCwAQAAAICdIrABAAAAgJ0isAEAAACAnSKwAQAAAICdSvIokbGxsZo4caIWL16s0NBQqxtoS9L169eTrTgAAAAASMmSfIQtICBAEyZMUMuWLXXr1i317dtXTZs2lYODg7744osXUCIAAAAApExJDmwLFizQzJkz9emnn8rJyUmtW7fWrFmzNHz4cO3Zs+dF1AgAAAAAKVKSA1t4eLhKlCghSUqdOrVu3bolSXr77be1evXq5K0OAAAAAFKwJAe2nDlz6tKlS5KkfPnyacOGDZKkffv2ydXVNXmrAwAAAIAULMmBrUmTJtq0aZMk6aOPPtKwYcNUoEABtWvXTh988EGyFwgAAAAAKVWSR4n8z3/+Y/l3y5YtlStXLgUHB6tAgQJq2LBhshYHAAAAAClZkgPb4ypWrKiKFSsmRy0AAAAAgEc8V2A7ffq0tmzZoitXrshsNlvNGz58eLIUBgAAAAApXZID28yZM9WjRw9lypRJXl5eMplMlnkmk4nABgAAAADJJMmBbdSoUfryyy81cODAF1EPAAAAAOD/JXmUyBs3bqh58+YvohYAAAAAwCOSHNiaN29uufcaAAAAAODFSfIpkfnz59ewYcO0Z88elShRQs7OzlbzP/7442QrDgAAAABSsiQHthkzZih16tTatm2btm3bZjXPZDIR2AAAAAAgmSQ5sIWEhLyIOgAAAAAAj0nyNWwAAAAAgJfjuW6cfeHCBa1cuVKhoaGKjo62mjdhwoRkKQwAAAAAUrokB7ZNmzapUaNGyps3r06ePKnixYvr3LlzMgxDZcqUeRE1AgAAAECKlORTIgcPHqx+/frpyJEjcnNzU1BQkP7++29Vq1aN+7MBAAAAQDJKcmA7ceKE2rVrJ0lycnJSZGSkUqdOrREjRmjMmDHJXiAAAAAApFRJDmypUqWyXLeWLVs2nT171jLv2rVryVcZAAAAAKRwSb6G7a233tLOnTtVpEgR1a9fX59++qmOHDmiZcuW6a233noRNQIAAABAipTkwDZhwgTduXNHkhQQEKA7d+7op59+UoECBRghEgAAAACSUZIDW968eS3/TpUqlQIDA5O1IAAAAADAQ9w4GwAAAADsVKKOsGXIkEF//vmnMmXKpPTp08tkMj2x7fXr15OtOAAAAABIyRIV2CZOnKg0adJIkiZNmvQi6wEAAAAA/L9EBbb27dsn+G8AAAAAwIuTqMAWERGR6AV6eno+dzEAAAAAgP9JVGBLly7dU69be1RsbOy/KggAAAAA8FCiAtuWLVss/z537pwGDRqkDh06qGLFipKk4OBgzZ07V6NHj34xVQIAAABACpSowFatWjXLv0eMGKEJEyaodevWlmmNGjVSiRIlNGPGDK5xAwAAAIBkkuT7sAUHB6tcuXLxppcrV06//fZbshQFAAAAAHiOwObt7a2ZM2fGmz5r1ix5e3snS1EAAAAAgESeEvmoiRMnqlmzZlq7dq0qVKggSfrtt990+vRpBQUFJXuBAAAAAJBSJfkIW/369fXnn3+qYcOGun79uq5fv66GDRvqzz//VP369V9EjQAAAACQIiX5CJv08LTIr776KrlrAQAAAAA8IslH2CRpx44dev/991WpUiWFhYVJkubNm6edO3cma3EAAAAAkJIlObAFBQXJ399f7u7uOnjwoKKioiRJt27dSvJRt+3bt6thw4bKnj27TCaTfv75Z6v5hmFo+PDhypYtm9zd3eXn56fTp09btbl+/bree+89eXp6Kl26dOrUqZPu3Llj1eaPP/5Q1apV5ebmJm9vb40dOzZeLUuWLFHhwoXl5uamEiVKaM2aNUmuBQAAAACSU5ID26hRoxQYGKiZM2fK2dnZMr1y5co6ePBgkpZ19+5dlSpVStOmTUtw/tixYzVlyhQFBgZq7969SpUqlfz9/XX//n1Lm/fee0/Hjh3Txo0btWrVKm3fvl1du3a1zI+IiFCdOnWUO3duHThwQF9//bW++OILzZgxw9Jm9+7dat26tTp16qTff/9djRs3VuPGjXX06NEk1QIAAAAAySnJ17CdOnVKvr6+8aanTZtWN2/eTNKy6tWrp3r16iU4zzAMTZo0SUOHDtU777wjSfrhhx+UNWtW/fzzz2rVqpVOnDihdevWad++fZZ7w33zzTeqX7++xo0bp+zZs2vBggWKjo7W999/LxcXFxUrVkyHDh3ShAkTLMFu8uTJqlu3rvr37y9JGjlypDZu3KipU6cqMDAwUbUAAAAAQHJLcmDz8vLSmTNnlCdPHqvpO3fuVN68eZOrLoWEhCg8PFx+fn6WaWnTplWFChUUHBysVq1aKTg4WOnSpbO6kbefn58cHBy0d+9eNWnSRMHBwfL19ZWLi4uljb+/v8aMGaMbN24offr0Cg4OVt++fa3W7+/vbzlFMzG1JCQqKspyyqj08GifJMXExCgmJub53xwbMZvNcnd3l6MMOZgf2LqcFMlRhtzd3WU2m1/J79DrgH5ge/QD26Mf2B79wPboB7b1OvSBxNad5MDWpUsXffLJJ/r+++9lMpl08eJFBQcHq1+/fho2bFiSC32S8PBwSVLWrFmtpmfNmtUyLzw8XFmyZLGa7+TkpAwZMli18fHxibeMuHnp06dXeHj4M9fzrFoSMnr0aAUEBMSbvmHDBnl4eDzxefZs0aJFku5KF/baupQUqVAqqcaiRQoLC7MM+IOXj35gW/QD+0A/sC36gX2gH9jO69AH7t27l6h2SQ5sgwYNktlsVq1atXTv3j35+vrK1dVV/fr100cffZTkQl9ngwcPtjpyFxERIW9vb9WpU0eenp42rOz5HD58WL6+vuo6a6WyFypu63JSpIunjmpG50bavn27SpUqZetyUiT6ge3RD2yPfmB79APbox/Y1uvQB+LOvnuWJAc2k8mkzz77TP3799eZM2d0584dFS1aVKlTp05ykU/j5eUlSbp8+bKyZctmmX758mWVLl3a0ubKlStWz3vw4IGuX79ueb6Xl5cuX75s1Sbu8bPaPDr/WbUkxNXVVa6urvGmOzs7Ww3Y8qpwcHBQZGSkYmWS2eG5buGHfylWJkVGRsrBweGV/A69DugHtkc/sD36ge3RD2yPfmBbr0MfSGzdz3UfNklycXFR0aJFVb58+WQPa5Lk4+MjLy8vbdq0yTItIiJCe/fuVcWKFSVJFStW1M2bN3XgwAFLm82bN8tsNqtChQqWNtu3b7c6R3Tjxo0qVKiQ0qdPb2nz6Hri2sStJzG1AAAAAEByS/TugA8++CBR7b7//vtEr/zOnTs6c+aM5XFISIgOHTqkDBkyKFeuXOrdu7dGjRqlAgUKyMfHR8OGDVP27NnVuHFjSVKRIkVUt25ddenSRYGBgYqJiVGvXr3UqlUrZc+eXZLUpk0bBQQEqFOnTho4cKCOHj2qyZMna+LEiZb1fvLJJ6pWrZrGjx+vBg0a6Mcff9T+/fstQ/+bTKZn1gIAAAAAyS3RgW3OnDnKnTu33njjDRmGkSwr379/v2rUqGF5HHe9V/v27TVnzhwNGDBAd+/eVdeuXXXz5k1VqVJF69atk5ubm+U5CxYsUK9evVSrVi05ODioWbNmmjJlimV+2rRptWHDBvXs2VNly5ZVpkyZNHz4cKt7tVWqVEkLFy7U0KFDNWTIEBUoUEA///yzihf/3/nIiakFAAAAAJJTogNbjx49tGjRIoWEhKhjx456//33lSFDhn+18urVqz81/JlMJo0YMUIjRox4YpsMGTJo4cKFT11PyZIltWPHjqe2ad68uZo3b/6vagEAAACA5JToa9imTZumS5cuacCAAfrll1/k7e2tFi1aaP369cl2xA0AAAAA8D9JGnTE1dVVrVu31saNG3X8+HEVK1ZMH374ofLkyaM7d+68qBoBAAAAIEV67lEiHRwcZDKZZBiGYmNjk7MmAAAAAICSGNiioqK0aNEi1a5dWwULFtSRI0c0depUhYaGvpCh/QEAAAAgJUv0oCMffvihfvzxR3l7e+uDDz7QokWLlClTphdZGwAAAACkaIkObIGBgcqVK5fy5s2rbdu2adu2bQm2W7ZsWbIVBwAAAAApWaIDW7t27WQymV5kLQAAAACARyTpxtkAAAAAgJfnuUeJBAAAAAC8WAQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwUwQ2AAAAALBTBDYAAAAAsFMENgAAAACwU3Yd2L744guZTCarP4ULF7bMv3//vnr27KmMGTMqderUatasmS5fvmy1jNDQUDVo0EAeHh7KkiWL+vfvrwcPHli12bp1q8qUKSNXV1flz59fc+bMiVfLtGnTlCdPHrm5ualChQr67bffXshrBgAAAIA4dh3YJKlYsWK6dOmS5c/OnTst8/r06aNffvlFS5Ys0bZt23Tx4kU1bdrUMj82NlYNGjRQdHS0du/erblz52rOnDkaPny4pU1ISIgaNGigGjVq6NChQ+rdu7c6d+6s9evXW9r89NNP6tu3rz7//HMdPHhQpUqVkr+/v65cufJy3gQAAAAAKZLdBzYnJyd5eXlZ/mTKlEmSdOvWLf33v//VhAkTVLNmTZUtW1azZ8/W7t27tWfPHknShg0bdPz4cc2fP1+lS5dWvXr1NHLkSE2bNk3R0dGSpMDAQPn4+Gj8+PEqUqSIevXqpXfffVcTJ0601DBhwgR16dJFHTt2VNGiRRUYGCgPDw99//33L/8NAQAAAJBi2H1gO336tLJnz668efPqvffeU2hoqCTpwIEDiomJkZ+fn6Vt4cKFlStXLgUHB0uSgoODVaJECWXNmtXSxt/fXxERETp27JilzaPLiGsTt4zo6GgdOHDAqo2Dg4P8/PwsbQAAAADgRXCydQFPU6FCBc2ZM0eFChXSpUuXFBAQoKpVq+ro0aMKDw+Xi4uL0qVLZ/WcrFmzKjw8XJIUHh5uFdbi5sfNe1qbiIgIRUZG6saNG4qNjU2wzcmTJ59af1RUlKKioiyPIyIiJEkxMTGKiYlJ5LtgP8xms9zd3eUoQw7mB89+ApKdowy5u7vLbDa/kt+h1wH9wPboB7ZHP7A9+oHt0Q9s63XoA4mt264DW7169Sz/LlmypCpUqKDcuXNr8eLFcnd3t2FliTN69GgFBATEm75hwwZ5eHjYoKJ/b9GiRZLuShf22rqUFKlQKqnGokUKCwtTWFiYrctJsegHtkU/sA/0A9uiH9gH+oHtvA594N69e4lqZ9eB7XHp0qVTwYIFdebMGdWuXVvR0dG6efOm1VG2y5cvy8vLS5Lk5eUVbzTHuFEkH23z+MiSly9flqen58O9Jo6OcnR0TLBN3DKeZPDgwerbt6/lcUREhLy9vVWnTh15enom7cXbgcOHD8vX11ddZ61U9kLFbV1OinTx1FHN6NxI27dvV6lSpWxdTopEP7A9+oHt0Q9sj35ge/QD23od+kDc2XfP8koFtjt37ujs2bNq27atypYtK2dnZ23atEnNmjWTJJ06dUqhoaGqWLGiJKlixYr68ssvdeXKFWXJkkWStHHjRnl6eqpo0aKWNmvWrLFaz8aNGy3LcHFxUdmyZbVp0yY1btxY0sND4Js2bVKvXr2eWq+rq6tcXV3jTXd2dpazs/PzvxE24uDgoMjISMXKJLPDK/XVeW3EyqTIyEg5ODi8kt+h1wH9wPboB7ZHP7A9+oHt0Q9s63XoA4mt264HHenXr5+2bdumc+fOaffu3WrSpIkcHR3VunVrpU2bVp06dVLfvn21ZcsWHThwQB07dlTFihX11ltvSZLq1KmjokWLqm3btjp8+LDWr1+voUOHqmfPnpYg1b17d/31118aMGCATp48qenTp2vx4sXq06ePpY6+fftq5syZmjt3rk6cOKEePXro7t276tixo03eFwAAAAApg13vDrhw4YJat26tf/75R5kzZ1aVKlW0Z88eZc6cWZI0ceJEOTg4qFmzZoqKipK/v7+mT59ueb6jo6NWrVqlHj16qGLFikqVKpXat2+vESNGWNr4+Pho9erV6tOnjyZPnqycOXNq1qxZ8vf3t7Rp2bKlrl69quHDhys8PFylS5fWunXr4g1EAgAAAADJya4D248//vjU+W5ubpo2bZqmTZv2xDa5c+eOd8rj46pXr67ff//9qW169er1zFMgAQAAACA52fUpkQAAAACQkhHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2JJo2rRpypMnj9zc3FShQgX99ttvti4JAAAAwGuKwJYEP/30k/r27avPP/9cBw8eVKlSpeTv768rV67YujQAAAAAryECWxJMmDBBXbp0UceOHVW0aFEFBgbKw8ND33//va1LAwAAAPAaIrAlUnR0tA4cOCA/Pz/LNAcHB/n5+Sk4ONiGlQEAAAB4XTnZuoBXxbVr1xQbG6usWbNaTc+aNatOnjyZ4HOioqIUFRVleXzr1i1J0vXr1xUTE/Piin1BIiIi5ObmpsunjujBvTu2LidF+ufvELm5uSkiIkL//POPrctJkegHtkc/sD36ge3RD2yPfmBbr0MfuH37tiTJMIyntjMZz2oBSdLFixeVI0cO7d69WxUrVrRMHzBggLZt26a9e/fGe84XX3yhgICAl1kmAAAAgFfI33//rZw5cz5xPkfYEilTpkxydHTU5cuXraZfvnxZXl5eCT5n8ODB6tu3r+Wx2WzW9evXlTFjRplMphdaLxIWEREhb29v/f333/L09LR1OYBN0A+Q0tEHAPqBPTAMQ7dv31b27Nmf2o7AlkguLi4qW7asNm3apMaNG0t6GMA2bdqkXr16JfgcV1dXubq6Wk1Lly7dC64UieHp6cnGCSke/QApHX0AoB/YWtq0aZ/ZhsCWBH379lX79u1Vrlw5lS9fXpMmTdLdu3fVsWNHW5cGAAAA4DVEYEuCli1b6urVqxo+fLjCw8NVunRprVu3Lt5AJAAAAACQHAhsSdSrV68nngIJ++fq6qrPP/883qmqQEpCP0BKRx8A6AevEkaJBAAAAAA7xY2zAQAAAMBOEdgAAAAAwE4R2AAAAADAThHYAAAAAMBOEdgAAAAAwE4R2AAAAJ6CAbUB2BKBDQCQ7B79gcuPXbyq4r67N2/eVFRUlG7evGk1HUip6AMvF4ENSIS4DVNoaKj+/vtv3bhxI948AP/rD3fu3FF0dLTMZrNMJhP9BK8UwzBkGIZMJpNWr16tli1bqmrVqqpTp47WrFkjk8lk6xIBm4nbrkvS9evXbVxNykBgAxLBZDIpKChItWvX1ptvvqnOnTtr8eLFlnn8GAVk+YG7du1aNW3aVDVq1JCfn5/CwsL4gYtXQtzOOJPJJJPJpFWrVundd9+Vv7+/Ro8erZIlS+rtt9/WoUOHbFsoYCNms1kODg/jw7hx49S3b1+dPn3axlW9/ghsQCKcPXtWffv21ccff6yvvvpKTk5O+vrrrzVr1ixJhDakbGazWdLDfrBy5Uq1bNlSb731lvr27auYmBj5+fkpODjYxlUCT/fZZ59p9OjRio6OlmEYio6O1uzZs/XZZ5/p008/VcGCBbV161Z16dJFpUuXtjyPbT9Skriw1r9/f3399deqU6eOHB0dbVzV689ksKUBnurw4cNasmSJIiMjNX78eEnSiRMnNHnyZO3bt089evRQ586dbVwl8PKdO3dOefLksTw+e/asWrVqpbZt2+rjjz9WWFiYqlSposjISBmGoeXLl6tSpUq2Kxh4gv/+97/q1q2bjh8/roIFC8owDEVGRqpkyZKaNWuWSpcureLFi6tBgwb67rvvJEkzZ86Un5+ffHx8bFw98GI8ePBAsbGxcnV1tZq+bNkyffLJJ/r5559VtmxZSVJUVJTOnz+vggUL2qLU1x5H2ID/t2rVqniH9W/evKmAgAAFBgbq/PnzlulFihTRJ598onLlymnmzJmaOnXqyy4XsKl58+apY8eO2rBhg2Xa3bt31aBBA3Xr1k0XL15U9erVVbt2bR0/flze3t7q2rWrtm/fbsOqgfjMZrNCQ0PVpEkTFSxYUOvWrdOWLVvk4eGh6tWr6+eff1aJEiXUsGFDTZs2TZJ069Yt/frrr1q/fj1H2PDaCgoK0t9//x1vemhoqLy9vVW2bFkdP35cY8eOValSpVSuXDkNHDjQBpW+/ghsgB7+hx0UFKQ///zT8liS0qVLp969e6tKlSratWuXfv75Z8tzihQpoj59+ih//vxaunSpZfQwICXImTOn7t+/r8DAQEtoK1mypN577z25uroqICBAJUuW1OTJk5UhQwYVKFBAx48fV6dOnRQZGWnj6oH/cXBwUM6cORUUFKQ+ffqofv36un37tiSpYMGCmj9/vvLnz69x48bJyclJkjRmzBj9/vvvqlu3Ltdn4rW1aNEirV69Ot70ggULKiQkRG+//bbeeecdHTlyRN27d9f06dP19ddf648//rBBta83J1sXANgDBwcHubq6Wi44j4mJsZwC4OvrK1dXV40ePVpTpkyRg4ODGjVqJEkqXLiwPv/8c3l6eipdunS2Kh94qcxms2rUqKEpU6ZowIABmjFjhiSpTp06KlCggKKjo3X27FlVr15d7u7ukqRMmTJp69atKlCggGUaYC+6dOmi5cuXa9q0aercubPeeecdSdKAAQN05swZbd++XZ06dVK+fPl07tw5rVmzRlu2bLE6JRh43eTLl085c+aU9PCUdycnJzk5Oal+/fr6+uuvtXz5cn322WeqVauWvL299eeff6pChQpyc3OzceWvHwIbUry401kcHBxUuXJlbdq0SYGBgYqMjFSGDBk0evRoVahQQYMHD9aYMWM0YcIEOTg46O2335YkztdGihPXZ3LlyiVfX199//33ioiIkKurq6pVqyYXFxelTp1aP/zwg4oUKaJNmzZp6dKl+vTTT5UtWzYbVw9YMwxD165d07lz51StWjXNnTtXlStXVosWLeTu7q4ZM2ZowoQJOnDggHbs2KGSJUtq165dKlq0qK1LB16oN998U9WrV9dXX32ln3/+WVeuXFHmzJnVoUMH9ezZU23atJGDg4NiY2N1584d9e3bV25ubsqfP7+tS3/tMOgI8Ihdu3apZs2a6tatm2JjY7Vnzx6FhYVpwYIFqlWrlnbu3KkpU6bo9OnT+uqrr1SvXj1blwzYxNKlS9WtWze1aNFC4eHh2rhxo3x9ffXJJ5/I399fly5dUuvWrRUWFiYPDw/NmTNHb7zxhq3LBhIUHR2t69evy8vLSwMHDtSkSZM0Y8YMS2iLExsbKwcHB06DRIoxYcIEjRgxQkFBQfL29taIESO0cOFCHT9+XIULF1ZkZKSWLVumWbNmKSIiQnv27JGzs7PV8P/49zjCBujhHtaIiAgNGDBAAwcO1IgRIyzz3n33Xb333ns6fPiwqlSpopiYGM2ePZu9q0ixwsLCNGTIEA0fPlyffPKJJGnLli0aOHCgJk6cKHd3d/n6+mrr1q06d+6c0qdPr7Rp09q4auB/4u4ZeOnSJTk5OSk6Olo5cuSQ9PD6NEnq2rWrTCaTWrVqJRcXF0li+HKkKBEREdq4caPmzp2rWrVqadWqVVq9erW+/fZbFS5cWA8ePJCDg4Pu3LmjihUrasSIEXJyctKDBw8s13siefBuAnp4/6jY2Fhdu3ZNRYoUkfTwOjZnZ2ctXbpUpUqVUkBAgKZPn64aNWqoYsWKnKONFMvFxUUxMTHKmjWrZVqNGjU0duxY1a9fX46Ojrp165YaNmzINT6wO3Fh7ZdfftGXX36pGzduKFWqVOrVq5c++OADSf8LbR9++KHu37+vDz74gB+gSHGioqL0+++/K0eOHFq/fr1at26tr7/+Wt26dVNUVJQmTpyoxo0bq0uXLpajabGxsfSVF4BjlUix4s4GvnPnjiQpQ4YMSps2rX755RdJkrOzs2JiYiRJxYoVs4waJomwhhTLbDYrOjpabm5uunjxoiRZ+kn16tVVuXJl7dmzR0FBQbp7964tSwUSZDKZtGrVKrVu3VqtWrXSrFmz5O/vr86dO1vdomXMmDHq0KGDhg0bxncZr7240bEf5enpqdq1a+vbb79VixYtNH78eHXv3l3SwzMtdu3apWPHjlmd+shR6BeDwIYUKW4P64YNGzRo0CDt2LFDktS9e3edOHFCo0aNkvQwtMW1d3d3V2xsLPfcQYry+PfdwcFBOXLkULt27TRo0CBt2LDB0k8kKU+ePBoyZIhGjhypVKlSvexygWe6cOGCJk+erC+//FK9e/dW/vz59dNPP6ls2bL6+OOPNWnSJEvbqVOn6siRI5zSi9fao9ebXbp0SZcvX5Ykubq6qlSpUpo9e7YaNmyo999/X5J048YNffTRR7p7964aN25sq7JTFI5ZIkUymUxavny52rRpo+HDh8vDw0OS1KhRI50+fVqLFy/WgQMHVLNmTR0+fFirVq3S3r172XOEFCVux0ZwcLD27dun27dvy8/PT+XLl9fgwYN1/vx51a9fX1988YUyZ86sU6dOadWqVRo1apTV6ZKALTz6IzTumpro6GilTZtWVatWVYsWLXTp0iXVqlVLtWvX1tixY/XRRx+pb9++iomJUf/+/SVJWbJkseXLAF64uH4ybNgw/fjjj3J0dFSZMmW0cOFC9evXT9euXdOMGTPUtGlTeXh46OrVq7p9+7b27dsnR0dHBhh5CRglEinSmTNnVK9ePfXp00cffvih1bxr165pw4YNCgwMVFRUlDJlyqTRo0erZMmSNqoWePniwtqyZcv0wQcfqHr16vrzzz+VJUsW1a1bVwMHDpTJZNLXX3+tH3/8UZGRkfLw8NCMGTNUpkwZW5cPSJLOnz+va9euqWzZsgoKCtKJEyc0dOhQ3bp1S2nTptWIESO0Z88eLViwQOnTp9fnn3+uH374QXfu3NHJkyeVMWNGW78E4IV5NGjNmzdPAwYM0OjRo3Xjxg1NmDBBuXPn1oYNG+Th4aEFCxbo2LFjunr1qooXL66ePXsywMhLRGBDihD34zPO7t279f7772vdunWW+6gltIcoMjLSclNtIKXZuXOnWrZsqYCAAHXu3FnHjx9X+fLl5e3trebNm+uLL76Qg4ODLl++rFSpUunBgwfcQB524969e+rWrZv27dunjh07avDgwfrhhx8sp3UZhqEWLVrIwcFBP/30kySpT58+KlasmFq2bKk0adLYsnzgpVm1apVu3rwpSZb+cfToUTVu3FhZs2bVhg0bEjzFPTY2ljOPXhKOXyJF2b59u/7880/dvHnTMlCCZB3Wtm3bpu3bt0uS3N3dCWtIMR7df2c2m3X8+HE1aNBAnTt3VkhIiBo2bKgmTZrI19dXs2bN0ujRo2U2m5U1a1alTp2asAa74uHhoU8++URp0qSx3Ibi/fffl9lstuzEq1GjhpYtW6aBAweqQ4cOmjdvnnx9fQlrSDHOnTunJk2aqF27dlaDqxUvXlwrVqzQlStX1KBBA0ugexRh7eUhsOG1FvcD1GQyadOmTapevbrOnz+vkiVL6u7du5aLyx89srZixQqtWbNG0dHRtigZsLmtW7dqx44datKkiT755BPdv39fHTp0ULVq1TRv3jyNGjVKZrNZ3377rWWAHsCexG37c+XKJQcHBxUrVkyrV6/Wnj175ODgYJn/7rvv6vPPP9fGjRt18eJFbdq0yXLWBZASeHt7a82aNcqXL59WrVplmW4YhooVK6YVK1bowIED+uyzz2xYJTglEilCaGiofvvtN/31118aMGCAJCkoKEht27bVe++9p+7du8vBwUGLFi3SjBkzFBwcbLkfG5CSbNu2TTVq1NDy5ctVr149ubi46PDhw2rdurXmz5+vMmXK6PTp0+rdu7dKliypDz/8UN7e3rYuG0hQTEyMbt68qb/++ktfffWV/v77b02fPl1vvfWWpU1UVJRMJpMePHhgGYAKeB09aXCQqKgobd++Xa1bt1atWrUspwjHHYkOCQlRrly5OKJmQxxhw2svNDRUefLkUadOnaw2VE2aNNGKFSu0evVqNWnSRO+++67WrFmjLVu2ENaQIp0/f17nzp3TyJEj9c4771iG6zebzYqKitKePXt0//59zZ8/Xy4uLho4cCBhDXYlbh/0gQMHtHz5cs2aNUuOjo6qUKGCPvvsM+XKlUu9evXS3r17JUn/+c9/NGHCBDk5ORHW8Fp7NKz9+OOPGjNmjIYOHaorV67I1dVVfn5+WrRokX799Ve1atVKkizX/vv4+MjR0VGxsbE2qz+l4wgbXnuRkZGaNWuWhg0bppYtW+q7776T9L89Rzdu3FBISIhMJpNy5sypzJkz27hi4OW7dOmScuTIIWdnZw0aNEgBAQGWeTdu3NDHH3+s4OBgGYahiIgIbdiwQW+88YYNKwYSFhQUpB49euiNN97QmTNnlDZtWnXq1Ek9e/bU1q1bNW3aNG3ZskW+vr76+eefdeDAAb7LSDEGDRqkhQsXqnDhwoqKitKpU6e0bNkyVapUSZK0ceNGvf/++ypZsqQ2btxo42oRh3E48dp5fERId3d3denSRYZhqE+fPsqbN69lSPIHDx4offr0Sp8+vQ0rBmwvW7ZsWrRokbp06aJjx47p9u3bSpMmjQzDUPr06TV+/Hjt3btX//zzj3x9fZU3b15blwzEc/DgQfXs2VNjx45Vhw4ddP78efn4+OjevXuSpOrVqytz5swqX768Tp48qWPHjnFGBVKM6dOna968efrll19UpkwZrVixQk2aNFGzZs20YMEC1axZU7Vr19Z///tfTZ8+nfur2RGOsOG1EhfW9uzZo6NHjyosLEzNmzeXt7e30qRJo4kTJ+rTTz/VmDFjLDdFBVIas9ksk8lktWMjzsKFC9WuXTv1799fI0eOlJOTU7ydIICtPemH5JIlS/Ttt99q8+bNOnXqlOrVq6datWpp5syZkqTw8HB5eXk9dRnA6+jGjRsaO3asihYtqrZt22rlypV6//339Z///EebN2/W7t279eOPP8rX19fqefQT+8ARNrxWTCaTgoKC1KFDB5UrV06nTp3SDz/8oHfeeUcDBw5Unz59ZDKZNGjQIN27d0+ff/65rUsGXprLly8rc+bMlv98N2/erO3bt+vGjRt65513VKpUKbVp00axsbHq2LGjHBwcFBAQwE1RYVfifkBeuHBB27Zt07179+Tv769cuXIpLCxMadKkUWxsrGrXrq169erp22+/lSStXLlSR44c0SeffKLUqVOzEwKvtcd3tKVPn14NGjRQ7ty5deLECfXr109fffWVZeCoZcuWqXr16tq3b5/Kli1reR5hzT7wKeC1curUKfXt21eTJ0/Whg0bdPHiRXXq1EkHDhzQuHHjdO/ePX344YcKCAjQlClTdP36dVuXDLwU3333nSpUqKDff/9dkrR27VrVqVNHv//+u9asWaNPPvlE3bt314ULF9S2bVvNnj1bEyZMUL9+/bjQHHYjLqwdO3ZMb7/9ttatW6czZ84oV65ckqT69etr7969cnFxUZMmTfTdd99ZfnBu2rRJ+/fvl9lsliQCG15bj4a1oKAgLV26VJJUpUoVeXt769ixY8qcObOaNWsm6X/3LBw1apRKlSpls7rxZAQ2vFauXbsms9msSpUqWUa4GzJkiPz8/LRs2TJdu3ZNLi4u6t27t86cOaMMGTLYuGLg5Wjbtq2cnJzUtWtX/fbbb/rhhx80ZcoUrVixwjJM/40bN9SvXz9dv35dbdu21bRp07RgwQJ2bMAuGIZhCWtVq1ZVw4YNNW3aNI0ZM0bSw3toHj58WIMHD1auXLmULVs2SVJISIiGDBmi+fPn68svv5Snp6ctXwbwQsWd8i5Jhw8f1rBhwzRjxgz9+uuvljbh4eE6cOCA7t69q0uXLmny5MmKiorSkCFD5OTkpAcPHtiqfDwB17Dhlfb4If+dO3eqVatWWrlypcqUKaPo6Gi5uLhIkjJkyKAvvvhCH3/8sa3KBWziwYMHcnJyUmRkpEqXLq1UqVLJw8NDo0ePVtWqVS1tZs+ercmTJ+v7779X+fLlJUkRERH8wIXduH79upo0aaKSJUvqm2++sUwfM2aMBg8erHr16ql27dq6c+eOxo8fL3d3d2XKlEnR0dFatGgRo0EixRgyZIjCw8O1b98+nT59WuXLl9egQYNUv359mc1m1ahRQzt37lSePHmUKlUqHThwwLKjG/aHI2x4ZcWFtV27dmnFihWSpMqVKyt9+vTq37+/Hjx4YAlrERERyp8/v3LkyGHLkgGbiNtj6u7urkOHDsnR0VG7d+/W8ePHrdp06dJF169f1+rVqy3TCWuwJ5cvX1ZYWJiaNm1qObUxMDBQw4YN05QpUxQTE6OdO3eqYMGCOnLkiL7++mtNnTpVmzdvJqwhxZg+fbqmTZumrl27at26dfr111919+5dffPNN1q3bp0cHBy0bds2zZs3T19//bV+//13OTs7c2TNjnGEDa+kuLAWFBSk7t27q3nz5vr000+VL18+HT9+XPXq1ZOPj49GjBghDw8PrVixQt9995327t0rHx8fW5cP2ETc9T/3799X+fLlFRUVpTlz5qhixYqSpNjYWNWsWVNNmjRR7969bVsskID58+erQ4cOiomJsZxdceHCBYWEhKhq1ao6cuSI+vTpo5s3b2rp0qXKkyePbQsGbKBz5866ceOGgoKCLNP27NmjNm3aKFu2bBo2bJjq1q1r9ZzY2Fg5Ojq+7FKRSBxhwyspbuj+Tp06aezYsZowYYLy5csnSSpatKg2btyoO3fuqG3btmrWrJmWLl2qdevWEdaQosTtjwsPD9fff/9tuReVm5ub9u7dK5PJpHbt2mnSpElau3athg4dqv3796tevXq2LBt4ojx58sjJyUnLly+X9PA7njNnTlWtWlVms1klSpRQy5Yt5eDgIDc3NxtXC7xccQNEubm5Wbb3hmEoNjZWb731lj777DMdOnRI3333nTZv3mz1XMKafSOw4ZUQFhYm6X8/QKWHN0itUqWK3nvvPcuw43Ebq4IFC2r//v365Zdf9Msvv2jbtm0qU6bMyy8csJG4o9ArV66Un5+fatWqpUKFCmnOnDkKCwuTu7u7fv/9d3l4eKhv374aP368wsPDtWfPHhUqVMjW5QMJypMnj9KmTau5c+fq/PnzVtcwx40GeerUKct1OcDrLO604DhxoatmzZpav369Fi9eLJPJZJnu6uqqGjVq6MKFC5o/f/5LrxfPj8AGu7dy5Up5e3tr165dMplMltB29OhRnTt3Ti4uLnJycpLZbLZslOKuzSlZsqRKliypLFmy2Kx+4GWK22lhMpm0Zs0atW3bVu3bt9f27dvVuHFjDR48WD/88IP+/vtvubu7a+/evcqVK5dMJpOmTZumEiVK2PgVAE+WM2dOTZ8+XevWrdOwYcOsrsOMiIjQgAED9P333+vzzz9XmjRpbFgp8GI9ekPrxYsXa+LEiRo8eLDOnz+vpk2b6rPPPrPcouXs2bO6fv26Fi9erHfeeUfDhg3TnDlzdOzYMRu/CiQWd0OF3XvrrbfUqlUrNWjQQGvWrFGlSpUkSdWrV9fWrVu1evVq1a9fXw4ODoqNjVVkZKS++uorvf/++/HO0QZeV7t371alSpXk6OgowzB05coVTZ48WYMGDVL//v116dIlbdiwQZkzZ9aYMWP04MEDdejQQd7e3jpx4oTCwsLk4eFh65cBPFPjxo01ZcoU9erVS/v27bPcxiUsLEz79+/Xpk2bVKxYMVuXCbxQcWFtwIAB+umnn1SqVClFR0erYMGC+vHHHzVw4EC5urqqV69eypQpkyQpderUateunU6cOKF8+fIpderUtnwJSAKOsMFuxR1Jy5Ili6ZMmaKGDRuqTp062rVrlySpXLlySpUqlWbOnGkZJfLOnTsaN26ctm3bpgIFCtisduBl2rZtmxo3bqxRo0ZJkuUUmNatW6t9+/a6cuWKatasqRo1auiPP/5Qs2bNNH36dH333XeWI2358+e38asAEsfR0VHdunXTzp07VbRoUR04cEDHjh1T8eLFtWPHDkaDRIrx448/av78+VqxYoVWrlypgQMHWgbkSZ06tYYOHaotW7Zo2rRpmjRpkv744w+5urpq/vz5Sp06NYHtFcIokbA7jx7ml/53Lc6VK1f06aefatmyZVq3bp2qVq2qw4cPq0+fPgoPD9ft27fl4+OjkydPav369fynjRQjNDRUgYGBWrlypdq0aaMhQ4ZIki5duqRs2bJp5MiR2rVrlxYtWqT06dNrxIgR+vbbb+Xl5aVff/1VGTNmtPErAJ4PI9shJZs4caL+/PNPffvtt/rpp5/UpUsXjR07Vt27d9fNmzfl4uJidebEiRMnNHbsWK1cuVKbN29WqVKlbFg9koJTImF3HBwcdPLkSc2bN09du3ZVzpw55ejoqCxZsmj8+PEyDEN169bV2rVr5evrqzlz5igkJESbN29W/vz5VblyZeXNm9fWLwN4aXLlyqUPP/xQDg4O+uGHH2QYhj777DNly5ZNknTlyhW5ublZBue5ffu2ZsyYoYoVKxLW8EpLaOcekFJcuHBBly9f1saNG9WlSxeNGTNG3bt3lyTNnj1b58+f1/jx4+Xo6KjIyEhduXJFDx480NatW7le+RXDETbYnZiYGFWuXFn79+9X/vz59c477+jNN99UixYtJEl3795V586dtXLlSsuRNgDS33//re+++05Lly5V+/btNXjwYElSQECApk6dqtatW+vatWtauXKlDh48qIIFC9q4YgDAs/zzzz8J7lzbtWuXevfurUOHDmnSpEnq2bOnpIeXh7Rp00Z58uTRlClTLO1jY2MVExPDLS9eQRxhg91xdnZW8+bN1bp1axUvXly7du1S9+7dtXLlSlWpUkXdunVTYGCgUqdOrQYNGmjlypWqXr26rcsGXrrHjyh4e3urU6dOkqS5c+cqNjZWQ4cO1eeff64bN27o1KlTio2N1e7duwlrAPAK2LFjh4YPH66AgAD5+vpK+t+2v3jx4nrrrbcUGRmpW7du6cqVKwoJCdGIESN06dIlLVu2zKq9o6MjpxC/ojjCBru0detWvfPOO9q0aZPKlSunS5cuacaMGfrPf/6jN954Qx07dlSRIkU0c+ZMbdq0SWfOnGGPEVKUuP+At23bpj179ig2Nlbdu3dXhgwZFBoaqhkzZmjp0qVq06aNhg8fLkm6d++eHB0d5erqauPqAQCJcerUKXXr1k2pU6fW4MGDVblyZUn/u37zypUrGj58uHbv3q1Tp06pePHiSpcundatWydnZ2eu83xNENhgt+KGIp81a5bc3NzUqlUrHT58WOXLl1doaKh27dqlfv366cMPP1TOnDltXS7w0q1YsUJt2rRRiRIldOnSJUVHR2vdunUqVaqU5fTIFStWqGHDhvrqq69sXS4A4DmcPn1aH3/8sQzD0LBhwyyhLSYmRs7OzoqOjlZUVJQWLVqkd955R5kzZ5aDg4MePHhguXYZrzaG9YfdqlChgv766y+5uLioc+fO2rp1q5YuXaq5c+fq22+/1YQJE/Tee+8R1pCixO1ju3//vrZv365p06Zp165d2rFjhypUqCA/Pz8dOHBA3t7e6tatm/z8/PTrr7/qn3/+sXHlAIDnUaBAAU2ZMkUmk0kjR47Uzp07JT28hMQwDF27dk0tWrTQ77//rqxZs8rBwUFms5mw9hrhCBvsWrVq1bRz5055eXlpzZo1DEELSNqzZ49atGihggULatSoUXrrrbckSTdu3NAHH3ygnTt3av369SpTpozCwsLk4uKizJkz27hqAMC/kdCRtsuXL6tFixYKCwvTiRMn5OzsbOsy8QJwhA12KW4/wsCBA5U/f35NmzZNpUqVEvsXACl9+vTy8fHRli1bZDabJT28f2H69Ok1e/ZsVa9eXeXKldOhQ4eUI0cOwhoAvAYePdL25Zdf6pdfflHbtm119epVS1h78OCBrcvEC0Bgg12KG/mubNmyMpvNOnDggNV0ICUrVKiQvv/+e1WoUEFt27bV5cuX5eDgIMMwlC5dOn333Xdq06aN1Q1TAQCvvkdD2zvvvKMLFy7o8OHDlrDGaZCvJ06JhN2bP3++unfvrs2bN6t8+fK2Lgd4qeJGgzx06JBOnz6t+/fv64033lDx4sUVGhqqFi1a6Nq1a9q1a5eyZs0qs9lsCW/s4ACA19PJkyc1ffp0TZgwQU5OToS11xyBDXYvLCxM77//vubNm8cAI0iRli1bpm7duqlMmTK6ePGi3Nzc1KJFC/Xv319nzpxRu3btdOPGDW3evFnZsmWzdbkAgJeIsPb645RI2L0cOXJo7dq1hDWkSIcOHdKHH36okSNHav369QoMDNSRI0d0584dSVL+/Pm1YMECGYaht99+W7GxsTauGADwMhHWXn8cYQMAO7Zw4ULNmDFDW7duVUhIiGrWrCl/f38FBgZKejhqWIECBRQSEiKTyaQ8efLYtmAAAJCsOMIGAHYue/bsunjxonx9fVWnTh1Nnz5dkrR161YtWrRI169fl4+PD2ENAIDXEIEN/9fevcVEde1xHP+NzIWLAlajLVovlUEHiRGrVplGpVorhESNEapGHWuMEZUmVar1wSiKNi1pBG0JjQYVjYpREVFjQ9PUMBHxTqqIxgcvLzRFidCKiMx58DgpBzyXBtn7lO/nib33mr3+rIdJfrP2WhuAyVy/fl1Pnz6VJL311lsqLCxUVFSUZs2apby8PHXr9uKru7CwUJWVlbx3BwCAvzECGwCYyN27d+XxePTJJ5+osbFR8fHx2rJli548eaLY2FjV1NTowYMHWrNmjQoLC5WRkaEePXoYXTYAAHhNWMMGACby5MkTbdu2TSUlJXK5XPr222/lcDiUnp6u7OxsRURE6I033lBDQ4MOHTqk2NhYo0sGAACvEYENADrZy3el/f777woJCWlzvbGxUd99950OHjyokSNHavv27XI4HDp37pxqamoUFhamYcOGsYU/AABdAIENADrRy7B26dIlJScn6/Lly6qqqtLJkye1adMmf7vGxkbl5uYqPz9fbrdb27Ztk8PhMLByAABgBNawAUAneRnWrl27pvj4eCUlJSksLEyHDx/WkSNHtGHDBn/bwMBApaWlKTY2Vvv379fixYv9G5EAAICug8AGAJ3gZVirrKxUXFycVq5cqezsbEnSV199palTp8rr9Wr9+vVqaWmRJAUEBCguLk6DBg1SQ0ODamtrjfwXAACAAXg1OgB0gm7duun+/fuaPHmykpKSlJmZ6b+2d+9ePX78WDExMfrhhx8kSRkZGZKke/fuKSUlRampqerZs6chtQMAAOMQ2ACgkzx//lyDBw9WY2OjvF6v3G63tm7dqszMTJ09e1ZRUVHKzMxUSUmJCgsLFRMTo9OnT+vKlSuENQAAuig2HQGATnT79m2lpaXJbrerb9++On78uAoKCjR16lRJUn19vcrKynTs2DHZbDYtX75c0dHRBlcNAACMQmADgE5269YtrVixQmVlZdq0aZNWrVol6cUMXEBAgL9dc3OzrFYehAAAoCsjsAGAAe7cuaPU1FQFBARo3bp1ev/99yVJL7+SLRaLkeUBAACTYJdIADDAkCFDtGPHDvl8Pm3evFler1fSi6BGWAMAAC8R2ADAIE6nUzk5ObLZbFq9erXKy8uNLgkAAJgMgQ0ADOR0OvX111+rf//+ioiIMLocAABgMqxhAwATaGpqkt1uN7oMAABgMgQ2AAAAADApHokEAAAAAJMisAEAAACASRHYAAAAAMCkCGwAAAAAYFIENgAAAAAwKQIbAAB/Azt37lRpaanRZQAAOhiBDQCA/9Hu3bsVHh7+b9ts2LBBI0eO7JQ+Dxw4oO3bt2vs2LEd1h8AwBwIbACALsnj8chischischutysyMlIZGRlqbm42urR2paSk6NatW23OV1dXKyMjQydPnlRoaKgBlQEAXier0QUAAGCUadOmKT8/X0+fPtWpU6e0fPly2Ww2ffHFF0aX1kZQUJCCgoLanB86dKiqqqoMqAgA0BmYYQMAdFkOh0NvvvmmBg4cqGXLlmnKlCkqLi7Wo0ePtGDBAvXs2VPBwcFKSEjQ7du323y+qKhITqdTgYGB+uijj3T//v1X9nXhwgV9+OGH6t27t8LCwjRx4kRdvny5VZu6ujotXbpUffv2VWBgoGJiYlRSUiKp/Ucic3NzNWTIENntdg0dOlQFBQWtrlssFu3cuVMzZ85UcHCwnE6niouL/+JoAQCMQGADAOCfgoKC1NTUJI/Ho4sXL6q4uFjnzp2Tz+dTYmKinj175m/7xx9/KDMzU3v37pXX61VdXZ0+/vjjV967vr5eCxcuVFlZmcrLy+V0OpWYmKj6+npJUktLixISEuT1erVv3z7duHFDX375pQICAtq937Fjx/Tpp59q1apV+uWXX7R06VItWrRIP/30U6t2GzduVHJysiorK5WYmKh58+bp4cOHHTBaAIDOwCORAIAuz+fz6ccff9SZM2eUkJCgoqIieb1excXFSZL279+vt99+W0VFRZo9e7Yk6dmzZ9qxY4fee+89SdKePXvkcrlUUVHR7uYfH3zwQavj77//XuHh4fr555+VlJSk0tJSVVRUqKqqSlFRUZKkd95555U1Z2VlyePxKDU1VZL02Wefqby8XFlZWYqPj/e383g8mjNnjiRpy5YtysnJUUVFhaZNm/ZXhwsA0ImYYQMAdFklJSXq3r27AgMDlZCQoJSUFHk8HlmtVn8Qk6RevXq1WStmtVo1ZswY//GwYcMUHh7+yvVkNTU1WrJkiZxOp8LCwhQaGqqGhgbdu3dPknT16lX179/fH9b+k6qqKrnd7lbn3G53m/5HjBjh/zskJEShoaH69ddf/6s+AADGY4YNANBlxcfHKzc3V3a7XREREbJara9tjdfChQtVW1ur7OxsDRw4UA6HQ+PHj1dTU5MktbuhSEew2Wytji0Wi1paWl5LXwCAjscMGwCgywoJCVFkZKQGDBggq/XFb5gul0vNzc06f/68v11tba2qq6sVHR3tP9fc3KyLFy/6j6urq1VXVyeXy9VuX16vV2lpaUpMTNTw4cPlcDj022+/+a+PGDFCDx48aHfr/va4XC55vd42ffy5RgDA/z9m2AAA+BOn06np06dryZIlysvLU48ePbR27Vr169dP06dP97ez2WxauXKlcnJyZLVatWLFCo0bN+6VL692Op0qKCjQ6NGj9fjxY6Wnp7eaVZs4caImTJigWbNm6ZtvvlFkZKRu3rwpi8XS7nqz9PR0JScnKzY2VlOmTNGJEyd09OhRlZaWdvygAAAMwwwbAAD/Ij8/X++++66SkpI0fvx4+Xw+nTp1qtXjhcHBwVqzZo3mzp0rt9ut7t2769ChQ6+8565du/To0SONGjVK8+fPV1pamvr06dOqzZEjRzRmzBjNmTNH0dHR+vzzz/X8+fN27zdjxgxlZ2crKytLw4cPV15envLz8zVp0qQOGQMAgDlYfD6fz+giAAAAAABtMcMGAAAAACZFYAMAAAAAkyKwAQAAAIBJEdgAAAAAwKQIbAAAAABgUgQ2AAAAADApAhsAAAAAmBSBDQAAAABMisAGAAAAACZFYAMAAAAAkyKwAQAAAIBJEdgAAAAAwKT+AbjbleqtgjmkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# TODO: Code" + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "poblaciones_cinturon_sur = [\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"]\n", + "\n", + "ds_cinturon_sur = ds[ds['level5'].isin(poblaciones_cinturon_sur)]\n", + "\n", + "# Calcular la mediana \n", + "mediana_precios = ds_cinturon_sur.groupby('level5')['price'].median()\n", + "\n", + "# Trazar el gráfico \n", + "plt.figure(figsize=(10, 6))\n", + "mediana_precios.plot(kind='bar', color='skyblue', edgecolor='black')\n", + "plt.title('Mediana de Precios por Población en el Cinturón Sur de Madrid')\n", + "plt.xlabel('Población')\n", + "plt.ylabel('Mediana de Precios (USD)')\n", + "plt.xticks(rotation=45)\n", + "plt.grid(axis='y')\n", + "plt.show()\n" ] }, { @@ -781,7 +1148,9 @@ "id": "sublime-newspaper", "metadata": {}, "source": [ - "**TODO: Markdown**. Para escribir aquí, haz doble clic en esta celda, elimina este contenido y coloca lo que quieras escribir. Luego ejecuta la celda." + "Este tipo de análisis es útil para entender las diferencias en el mercado inmobiliario entre estas áreas.\n", + "\n", + "Observamos que la mediana de precios varía entre las poblaciones, lo que refleja diferencias en el valor percibido de las propiedades, la demanda, o el nivel socioeconómico de cada área. Por ejemplo, si \"Getafe\" tiene una mediana de precios más alta que \"Fuenlabrada\", esto podría indicar que Getafe es un área más deseada o con propiedades de mayor valor en comparación con Fuenlabrada." ] }, { @@ -797,12 +1166,51 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "id": "random-feeling", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Para la variable 'price':\n", + "Media: 223094.48\n", + "Varianza de muestra: 14921367508.05\n", + "\n", + "Para la variable 'rooms':\n", + "Media: 3.02\n", + "Varianza de muestra: 0.72\n", + "\n", + "Para la variable 'surface':\n", + "Media: 111.75\n", + "Varianza de muestra: 4263.05\n", + "\n", + "Para la variable 'bathrooms':\n", + "Media: 1.63\n", + "Varianza de muestra: 0.57\n", + "\n" + ] + } + ], "source": [ - "# TODO" + "import pandas as pd\n", + "\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "poblaciones_cinturon_sur = [\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"]\n", + "\n", + "ds_cinturon_sur = ds[ds['level5'].isin(poblaciones_cinturon_sur)]\n", + "\n", + "# Calcular la media y varianza para las variables\n", + "variables = ['price', 'rooms', 'surface', 'bathrooms']\n", + "\n", + "for variable in variables:\n", + " media = ds_cinturon_sur[variable].mean()\n", + " varianza = ds_cinturon_sur[variable].var()\n", + " print(f\"Para la variable '{variable}':\")\n", + " print(f\"Media: {media:.2f}\")\n", + " print(f\"Varianza de muestra: {varianza:.2f}\\n\")\n" ] }, { @@ -818,12 +1226,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "id": "fifteen-browse", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "La casa más cara en Alcorcón está ubicada en Alcorcón con un precio de 950000 USD\n", + "La casa más cara en Fuenlabrada está ubicada en Calle de Paulo Freire, 5, Fuenlabrada con un precio de 490000 USD\n", + "La casa más cara en Getafe está ubicada en Getafe con un precio de 1050000 USD\n", + "La casa más cara en Leganés está ubicada en Avenida Reina Sofía, Leganés con un precio de 650000 USD\n" + ] + } + ], "source": [ - "# TODO" + "import pandas as pd\n", + "\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "poblaciones_cinturon_sur = [\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"]\n", + "\n", + "ds_cinturon_sur = ds[ds['level5'].isin(poblaciones_cinturon_sur)]\n", + "\n", + "casas_mas_caras = ds_cinturon_sur.loc[ds_cinturon_sur.groupby('level5')['price'].idxmax()]\n", + "\n", + "# Dirección y el precio de cada casa más cara\n", + "for index, row in casas_mas_caras.iterrows():\n", + " print(f\"La casa más cara en {row['level5']} está ubicada en {row['address']} con un precio de {row['price']} USD\")\n" ] }, { @@ -841,12 +1272,64 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "id": "civic-meditation", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_622/487487773.py:12: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " ds_cinturon_sur['normalized_price'] = ds_cinturon_sur.groupby('level5')['price'].transform(zscore)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAK+CAYAAAArP9Q0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACL2klEQVR4nOzdd3gU5d7G8XvTGyEEAgm9SlF6M/QeUBEEQcECiGBBEVARbBAQAZUiSFEPUhQsgOKx0BWUJkVBkSJSld4DCUk22Xn/4M0elk1gk2wy2fD9XFcu2Gdmn/ntPDu7uTPNYhiGIQAAAAAAkKu8zC4AAAAAAIBbEYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAABywK+//qrY2FidPHnS7FKQgw4cOKCRI0dq7969ZpcCwAMRyIEMlC1bVr179za7DORjc+bMkcVi0aFDh+xtLVq0UIsWLUyvwyxmvP7cxOdK9pUtW1b33HPPTedbs2aNLBaL1qxZkyN13Gy7OXv2rDp37qykpCQVK1YsR2rIK3r37q2yZcu6tc+cHj93SUpKUrdu3bRv3z7ddtttZpeTa/LLZ3Vm32euvm5Pef8ibyCQ45aQ9ovT1q1b053eokUL3XHHHdlezvfff6+RI0dmux/8j8VikcVi0YQJE5ym3Wxcgd69e9vfQxaLRaGhoapZs6YmTJigpKQks8u7JaRtp2k/AQEBuu222/TMM8/k2z3HhmHo0UcfVfPmzTVmzBizy8lzvvrqK3Xo0EFFihSRn5+fihcvru7du+uHH35wS//Hjh3TyJEjtX37drf0dyODBg1SwYIFNXv2bFksFrf2bbPZNG/ePDVs2FDh4eEqUKCAbrvtNj366KPatGmTW5dltrTP6tDQUF25csVp+r59++yfIe+8844JFQI5x8fsAoC8au/evfLyytzfrL7//ntNmzaNUJ4D3n77bT311FMKCgoyu5QctWLFCrNLyHf8/f31n//8R5J04cIFLV68WC+88IK2bNmizz77LFdrycrnSn4xatQolStXTomJiVq3bp1mzJih77//Xjt37vTI7fqRRx7Rgw8+KH9/f6dp+/fvV9OmTTVkyBC3hzRPZhiGHnvsMc2ZM0e1a9fWkCFDFBkZqePHj+urr75S69attX79ejVq1EjNmjXTlStX5Ofnl+nlHDt2TLGxsSpbtqxq1arl/hfy/86cOaOoqCiNGzcuS3XezMCBAzVt2jR16tRJDz30kHx8fLR3714tXbpU5cuX15133un2ZZrJx8dHCQkJ+uabb9S9e3eHafPnz1dAQIASExNNqu4qvqOREwjkQAbS+yUrr4uPj1dwcLDZZbhdrVq1tH37ds2cOVNDhgzJseXkhfWXE7/U3ep8fHz08MMP2x8//fTTatiwoT7//HNNnDhRxYsXd3qOYRhKTExUYGCgW2vxxM8VV7iy7XTo0EH16tWTJD3++OMqXLiwJk6cqK+//lo9evTIjTLdytvbW97e3ulOq1ixooYNG5bLFeV9EyZM0Jw5czRo0CBNnDjR4Y8Vr7zyij7++GP5+Fz91dTLy0sBAQFmlZquxMRE+fn52f+oVqRIEb3++us5sqyTJ09q+vTp6tevnz744AOHaZMnT9bp06fdspyc+qzLCn9/fzVu3FiffvqpUyBfsGCB7r77bi1evNiU2hISEhQUFMR3NHLErflnesAF15/rabVaFRsbq0qVKikgIECFCxdWkyZNtHLlSklXD7eaNm2aJDkcnpkmPj5ezz//vEqVKiV/f39VrlxZ77zzjgzDcFjulStXNHDgQBUpUkQFChTQvffeq6NHj8pisTjseR85cqQsFot27dqlnj17qlChQmrSpIkk6ffff1fv3r1Vvnx5BQQEKDIyUo899pjOnj3rsKy0Pv766y89/PDDKliwoCIiIvTaa6/JMAz9888/6tSpk0JDQxUZGel02HhycrJef/111a1bVwULFlRwcLCaNm2qH3/80Wl9fvbZZ6pbt64KFCig0NBQVa9eXe+++65LY9G4cWO1atVKb731VrqHsl3vhx9+UNOmTRUcHKywsDB16tRJu3fvTve1p7f+0s5RXbNmjerVq6fAwEBVr17dfi7Yl19+qerVqysgIEB169bVb7/95tC3q+s/Pdefn1a2bFmH99O1P2n1HD58WE8//bQqV66swMBAFS5cWN26dUv33NY///xTrVq1UmBgoEqWLKk33nhDNpst3VqmT5+u22+/Xf7+/ipevLgGDBigCxcuOMyzb98+de3aVZGRkQoICFDJkiX14IMP6uLFizd9rR988IEqVKigwMBANWjQQD///HO68yUlJWnEiBGqWLGi/P39VapUKQ0dOjTLh5x7eXnZ13HaOkob8+XLl9vH/P3335d0da/6oEGD7NtuxYoVNX78eKf1ZrPZ9O6779rfGxEREWrfvr3DKRXpnUN+4MABdevWTeHh4QoKCtKdd96p7777zqnuqVOn6vbbb1dQUJAKFSqkevXqacGCBTd8rWnnMX7++ed6+eWXFRkZqeDgYN177736559/nOZfuHCh6tatq8DAQBUpUkQPP/ywjh496jBP7969FRISov379+uuu+5SgQIF9NBDD92wjvS0atVKknTw4EFJUkpKikaPHq0KFSrI399fZcuW1csvv5zhOK9YsUK1atVSQECAqlWrpi+//PKmy/z555/VrVs3lS5d2v5eGjx4cLqfK3v27FH37t0VERGhwMBAVa5cWa+88op9ekbnkLuy3aSdJrVr1y61bNlSQUFBKlGihN56662bvoY0n3zyiX2swsPD9eCDDzqNaW4txxVXrlzR2LFjVaVKFb3zzjvpHjnwyCOPqEGDBpLSPwfXldezZs0a1a9fX5LUp08f++flnDlzJGV8HYfrP3vTlv/ZZ5/p1VdfVYkSJRQUFKS4uDhJmdtWjh49qs6dOyskJEQRERF64YUXlJqaesP1dfDgQRmGocaNGztNs1gsKlq0qP1x2vfZ9dJ7j97osy4juflZ3bNnTy1dutRhm9myZYv27dunnj17Os1/7tw5vfDCC6pevbpCQkIUGhqqDh06aMeOHU7z/vvvv+rcubOCg4NVtGhRDR48ON3a0t5n27ZtU7NmzRQUFKSXX37ZPu36c8hd7RfICHvIcUu5ePGizpw549RutVpv+tyRI0dq7Nixevzxx9WgQQPFxcVp69at+vXXX9W2bVs98cQTOnbsmFauXKmPP/7Y4bmGYejee+/Vjz/+qL59+6pWrVpavny5XnzxRR09elSTJk2yz9u7d2998cUXeuSRR3TnnXdq7dq1uvvuuzOsq1u3bqpUqZLefPNNe7hfuXKlDhw4oD59+igyMlJ//vmnPvjgA/3555/atGmT0xf3Aw88oKpVq2rcuHH67rvv9MYbbyg8PFzvv/++WrVqpfHjx2v+/Pl64YUXVL9+fTVr1kySFBcXp//85z/q0aOH+vXrp0uXLmnWrFmKiYnR5s2b7YcKrly5Uj169FDr1q01fvx4SdLu3bu1fv16Pffcczdd92nrv1mzZpoxY8YN95KvWrVKHTp0UPny5TVy5EhduXJFU6dOVePGjfXrr786XXgovfUnSX///bd69uypJ554Qg8//LDeeecddezYUTNnztTLL7+sp59+WpI0duxYde/e3eFQ5Myu/xuZPHmyLl++7NA2adIkbd++XYULF5Z09ZeVDRs26MEHH1TJkiV16NAhzZgxQy1atNCuXbvshwOfOHFCLVu2VEpKioYNG6bg4GB98MEH6e4ZGTlypGJjY9WmTRs99dRT2rt3r2bMmKEtW7Zo/fr18vX1VXJysmJiYpSUlKRnn31WkZGROnr0qL799ltduHBBBQsWzPB1zZo1S0888YQaNWqkQYMG6cCBA7r33nsVHh6uUqVK2eez2Wy69957tW7dOvXv319Vq1bVH3/8oUmTJumvv/7SkiVLXF6X19q/f78k2dehdPVw8h49euiJJ55Qv379VLlyZSUkJKh58+Y6evSonnjiCZUuXVobNmzQ8OHDdfz4cU2ePNn+/L59+2rOnDnq0KGDHn/8caWkpOjnn3/Wpk2b7HuGr3fy5Ek1atRICQkJGjhwoAoXLqy5c+fq3nvv1aJFi3TfffdJkj788EMNHDhQ999/v5577jklJibq999/1y+//JLuL6nXGzNmjCwWi1566SWdOnVKkydPVps2bbR9+3b7+M+ZM0d9+vRR/fr1NXbsWJ08eVLvvvuu1q9fr99++01hYWH2/lJSUhQTE6MmTZronXfeydIh59ePweOPP665c+fq/vvv1/PPP69ffvlFY8eO1e7du/XVV185PHffvn164IEH9OSTT6pXr16aPXu2unXrpmXLlqlt27YZLnPhwoVKSEjQU089pcKFC2vz5s2aOnWq/v33Xy1cuNA+3++//66mTZvK19dX/fv3V9myZbV//3598803Nzwn3JXtJs358+fVvn17denSRd27d9eiRYv00ksvqXr16urQocMN192YMWP02muvqXv37nr88cd1+vRpTZ06Vc2aNXMaq9xazs2sW7dO586d06BBgzI8ssAVN3s9VatW1ahRo/T666+rf//+atq0qSSpUaNGWVre6NGj5efnpxdeeEFJSUny8/PL1LaSmpqqmJgYNWzYUO+8845WrVqlCRMmqEKFCnrqqacyXG6ZMmUkXX3PduvWza2ndaT3WZeR3P6s7tKli5588kl9+eWXeuyxxyRd3TtepUoV1alTx2n+AwcOaMmSJerWrZvKlSunkydP6v3331fz5s21a9cu+xFQV65cUevWrXXkyBENHDhQxYsX18cff5zhdQvOnj2rDh066MEHH9TDDz+c4YUZM9svkC4DuAXMnj3bkHTDn9tvv93hOWXKlDF69eplf1yzZk3j7rvvvuFyBgwYYKS3WS1ZssSQZLzxxhsO7ffff79hsViMv//+2zAMw9i2bZshyRg0aJDDfL179zYkGSNGjLC3jRgxwpBk9OjRw2l5CQkJTm2ffvqpIcn46aefnPro37+/vS0lJcUoWbKkYbFYjHHjxtnbz58/bwQGBjqsk5SUFCMpKclhOefPnzeKFStmPPbYY/a25557zggNDTVSUlKc6roZScaAAQMMwzCMli1bGpGRkfbXlzauW7Zssc9fq1Yto2jRosbZs2ftbTt27DC8vLyMRx991Om1p7f+ypQpY0gyNmzYYG9bvny5IckIDAw0Dh8+bG9///33DUnGjz/+aG9zdf2n1X/w4EF7W/PmzY3mzZtnuD6++OILQ5IxatSoGy5v48aNhiRj3rx59rZBgwYZkoxffvnF3nbq1CmjYMGCDnWcOnXK8PPzM9q1a2ekpqba533vvfcMScZHH31kGIZh/Pbbb4YkY+HChRnWm57k5GSjaNGiRq1atRzePx988IEhyeH1f/zxx4aXl5fx888/O/Qxc+ZMQ5Kxfv36Gy6rV69eRnBwsHH69Gnj9OnTxt9//228+eabhsViMWrUqGGfL23Mly1b5vD80aNHG8HBwcZff/3l0D5s2DDD29vbOHLkiGEYhvHDDz8YkoyBAwc61WCz2RyWc+02lDYm176+S5cuGeXKlTPKli1rX/+dOnVy+oxyxY8//mhIMkqUKGHExcXZ29PeR++++65hGP8bkzvuuMO4cuWKfb5vv/3WkGS8/vrr9rZevXoZkoxhw4a5VEPa+3zVqlXG6dOnjX/++cf47LPPjMKFCxuBgYHGv//+a2zfvt2QZDz++OMOz33hhRcMScYPP/xgb0sbq8WLF9vbLl68aERFRRm1a9d2eu032zbHjh1rWCwWh+26WbNmRoECBRzaDMNxLK/ffl3dbgzj6nZ+/faZlJRkREZGGl27ds1wXRqGYRw6dMjw9vY2xowZ49D+xx9/GD4+Pg7tubWcXr16GWXKlLlhf++++64hyfjqq69uOF+a9MbP1dezZcsWQ5Ixe/Zsp36v3wav7fvaz5605ZcvX97hfZOVbeXaz2vDMIzatWsbdevWvek6ePTRRw1JRqFChYz77rvPeOedd4zdu3c7zZf2fXa99L5jMvqsS48Zn9WGcfV3o9atWxuGYRipqalGZGSkERsbaxw8eNCQZLz99tv25yUmJjpsb4ZhGAcPHjT8/f0d1vvkyZMNScYXX3xhb4uPjzcqVqyY4fts5syZTnVe/z7JTL9ARjhkHbeUadOmaeXKlU4/NWrUuOlzw8LC9Oeff2rfvn2ZXu73338vb29vDRw40KH9+eefl2EYWrp0qSRp2bJlkmTf+5rm2WefzbDvJ5980qnt2j2eiYmJOnPmjP3iL7/++qvT/I8//rj9/97e3qpXr54Mw1Dfvn3t7WFhYapcubIOHDjgMG/a+VQ2m03nzp1TSkqK6tWr57CcsLAwxcfH2w/vz6qRI0fqxIkTmjlzZrrTjx8/ru3bt6t3794KDw+3t9eoUUNt27bV999/7/Sc9NafJFWrVk3R0dH2xw0bNpR09TDb0qVLO7Vfu14yu/5dtWvXLj322GPq1KmTXn311XSXZ7VadfbsWVWsWFFhYWEOy/v+++9155132g8JlaSIiAinw41XrVql5ORkDRo0yOECZP369VNoaKj9cOq0PeDLly9XQkKCy69j69atOnXqlJ588kmH8/F69+7ttFd94cKFqlq1qqpUqaIzZ87Yf9IOd07v9IjrxcfHKyIiQhEREapYsaJefvllRUdHO+11LVeunGJiYpyW37RpUxUqVMhh+W3atFFqaqp++uknSdLixYtlsVg0YsQIp+Xf6IiI77//Xg0aNLCfLiFJISEh6t+/vw4dOqRdu3ZJuroN/fvvv9qyZctNX296Hn30URUoUMD++P7771dUVJR9m0gbk6efftrhvN27775bVapUSfcQ+hvt3UtPmzZtFBERoVKlSunBBx9USEiIvvrqK5UoUcJex/VHvzz//POS5LT84sWL248ekKTQ0FA9+uij+u2333TixIkMa7h2W4mPj9eZM2fUqFEjGYZhP/Xk9OnT+umnn/TYY485bOvSjcfS1e0mTUhIiMO1Dfz8/NSgQQOHz5L0fPnll7LZbOrevbvDezIyMlKVKlVy2iZyazk3k3ao97Xvw6zI6uvJql69ejm8b7KyrVz/PdO0aVOX6p09e7bee+89lStXTl999ZVeeOEFVa1aVa1bt3Y6PD4z0vusS09uf1an6dmzp9asWaMTJ07ohx9+0IkTJzI8Esjf39++vaWmpurs2bMKCQlR5cqVnb7/oqKidP/999vbgoKC1L9//wz77dOnz01rzWy/QHo4ZB23lAYNGqR76GjaL9s3MmrUKHXq1Em33Xab7rjjDrVv316PPPKIS2H+8OHDKl68uNMvIlWrVrVPT/vXy8tL5cqVc5ivYsWKGfZ9/bzS1XOqYmNj9dlnn+nUqVMO09I7t/f6XzoLFiyogIAAFSlSxKn9+vOg586dqwkTJmjPnj0Oh/5fW9fTTz+tL774Qh06dFCJEiXUrl07de/eXe3bt8/wdaWnWbNmatmypd566610g3Taekzv8LuqVatq+fLlThefSm/9SemvE0kOh+hd237+/Hl7W2bXvyvi4uLUpUsXlShRQvPmzXMIBmnnZs6ePVtHjx51OPT+2uUdPnzY/geEa12/vjJaj35+fipfvrx9erly5TRkyBBNnDhR8+fPV9OmTXXvvffar0eQkbTnV6pUyaHd19dX5cuXd2jbt2+fdu/erYiIiHT7un79picgIEDffPONpKu/ZJUrV04lS5Z0mi+998K+ffv0+++/33T5+/fvV/HixR3+EOSKjMbk2s+GO+64Qy+99JJWrVqlBg0aqGLFimrXrp169uyZ7vml6bl+XVssFlWsWNF+bumNtp0qVapo3bp1Dm0+Pj7prsMbmTZtmm677Tb5+PioWLFiqly5sv0X6bTPvus/6yIjIxUWFmavL03FihWdwnHaPaAPHTqkyMjIdGs4cuSIXn/9df33v/912Gal/20raUEps7fCdHW7SVOyZEmn11CoUCH9/vvvN1zOvn37ZBiG05imufaw+Nxczs2EhoZKki5dupSp510vq68nq67/XMjstpJ2PYlrFSpUyOn9lx4vLy8NGDBAAwYM0NmzZ7V+/XrNnDlTS5cu1YMPPpjhudw3k9H33vVy+7M6Tdq1KT7//HNt375d9evXd/i8ulbatTumT5+ugwcPOpybf+0pSYcPH073cyOjw/VLlCjh0gXcMtsvkB4COeCiZs2aaf/+/fr666+1YsUK/ec//9GkSZM0c+ZMhz3MuS2983+7d++uDRs26MUXX1StWrUUEhIim82m9u3bp3sBr/TO58voHL9rw94nn3yi3r17q3PnznrxxRdVtGhReXt7a+zYsfbzQyWpaNGi2r59u5YvX66lS5dq6dKlmj17th599FHNnTs3U693xIgRatGihd5///1Mnb+YkYyuLJvR63dlvWR2/buid+/eOnbsmDZv3mz/xTbNs88+q9mzZ2vQoEGKjo5WwYIFZbFY9OCDD2Z5ea6aMGGCevfubd8uBg4cqLFjx2rTpk2ZDmzpsdlsql69uiZOnJju9Ov/QJIeb29vtWnT5qbzpfdesNlsatu2rYYOHZruc9JCYE6rWrWq9u7dq2+//VbLli3T4sWLNX36dL3++uuKjY3NlRqude1eKVdl9AfRa+XkLcJSU1PVtm1bnTt3Ti+99JKqVKmi4OBgHT16VL17987xbeV6rnyWpMdms8lisWjp0qXp9hESEmLKcm6mSpUqkqQ//vhDnTt3ztRzr5XV15Mmo/dYampqun1n9+rj2Tlf/lqFCxfWvffeq3vvvVctWrTQ2rVrdfjwYZUpU+aGryk9OXFFdXd8Vqfx9/dXly5dNHfuXB04cOCGt5J988039dprr+mxxx7T6NGjFR4eLi8vLw0aNChb23ReuOo8bh0EciATwsPD1adPH/Xp00eXL19Ws2bNNHLkSHsgz+hLsUyZMlq1apUuXbrksJd8z5499ulp/9psNh08eNDhL9J///23yzWeP39eq1evVmxsrMPtWLJyqP3NLFq0SOXLl9eXX37p8NrTO2zXz89PHTt2VMeOHWWz2fT000/r/fff12uvvXbDIwCu17x5c7Vo0ULjx493ut1M2nrcu3ev0/P27NmjIkWK5PhtzXJi/Y8bN05LlizRl19+af+l9lqLFi1Sr169HK6Cn5iY6HRl5zJlyqRbx/Xr69r1eO1ekOTkZB08eNAp3FavXl3Vq1fXq6++qg0bNqhx48aaOXOm3njjjXRfT1r/+/btsx/OKF093P7gwYOqWbOmva1ChQrasWOHWrdubcr9nCtUqKDLly/fNNBXqFBBy5cv17lz5zK1l7xMmTIZvl/TpqcJDg7WAw88oAceeEDJycnq0qWLxowZo+HDh9/09lDXj7thGPr777/tR/hcO+bXjkla27V15IS0z759+/bZjw6Qrl707sKFC07L//vvv2UYhsN74q+//pIkpws3pvnjjz/0119/ae7cuXr00Uft7defSpP2nt+5c2emX4Pk+naTVRUqVJBhGCpXrlyO/kHI3ctp0qSJChUqpE8//VQvv/yy24Jqem70WVGoUCGnz0bp6p7O6/f6psfsbUWS6tWrp7Vr1+r48eMqU6aMChUqJOnqHSGu/UP19UdlZJaZn9U9e/bURx99JC8vLz344IMZzrdo0SK1bNlSs2bNcmi/cOGCw1F+ZcqU0c6dO50+N9L7/M2MnOoXtxbOIQdcdP2h2iEhIapYsaLDrS3Swt71X/Z33XWXUlNT9d577zm0T5o0SRaLxX6l27RzuqZPn+4w39SpU12uM+2XnOv3Flx7NWh3SW9Zv/zyizZu3Ogw3/XrzsvLyx4EsnJrkLRzya+/N2tUVJRq1aqluXPnOozBzp07tWLFCt11112ZXlZmuXv9r1q1Sq+++qpeeeWVDPcqeXt7Oy1v6tSpTntH7rrrLm3atEmbN2+2t50+fVrz5893mK9Nmzby8/PTlClTHPqdNWuWLl68aL/qf1xcnFJSUhyeW716dXl5ed1wXOvVq6eIiAjNnDlTycnJ9vY5c+Y4bTvdu3fX0aNH9eGHHzr1c+XKFcXHx2e4HHfo3r27Nm7cqOXLlztNu3Dhgv31d+3aVYZhpLu3+kZ77u666y5t3rzZYZuJj4/XBx98oLJly6patWqSnLchPz8/VatWTYZhuHSXiHnz5jkcKrxo0SIdP37c/tlTr149FS1aVDNnznQYu6VLl2r37t03vNODO6Rtm9dvJ2l7265f/rFjxxyuARAXF6d58+apVq1aGR6unt62aRiG0+0XIyIi1KxZM3300Uc6cuSIw7QbjaWr2012denSRd7e3oqNjXWqxzAMl26vaMZygoKC9NJLL2n37t166aWX0l2Xn3zyicPnU1Zl9F0sXQ2OmzZtcvjs+fbbb12+lVtubSsnTpywX0PiWsnJyVq9erXDKR4VKlSQJPs1LaSrnyOZPQLtemZ+Vrds2VKjR4/We++9l+E2LaX//bdw4UKnc+zvuusuHTt2TIsWLbK3JSQkOP0ekVk51S9uLewhB1xUrVo1tWjRQnXr1lV4eLi2bt2qRYsW6ZlnnrHPU7duXUnSwIEDFRMTI29vbz344IPq2LGjWrZsqVdeeUWHDh1SzZo1tWLFCn399dcaNGiQ/cu0bt266tq1qyZPnqyzZ8/ab3uWtufHlb86h4aGqlmzZnrrrbdktVpVokQJrVixwn6vX3e655579OWXX+q+++7T3XffrYMHD2rmzJmqVq2aw626Hn/8cZ07d06tWrVSyZIldfjwYU2dOlW1atVy2BvmqubNm6t58+Zau3at07S3335bHTp0UHR0tPr27Wu/7VnBggVveNibu7h7/ffo0UMRERGqVKmSPvnkE4dpbdu2VbFixXTPPffo448/VsGCBVWtWjVt3LhRq1atcjh/TpKGDh2qjz/+WO3bt9dzzz1nv+1ZmTJlHM6/jIiI0PDhwxUbG6v27dvr3nvv1d69ezV9+nTVr1/ffkGlH374Qc8884y6deum2267TSkpKfr444/l7e2trl27ZviafH199cYbb+iJJ55Qq1at9MADD+jgwYOaPXu20x6qRx55RF988YWefPJJ/fjjj2rcuLFSU1O1Z88effHFF/Z76eaUF198Uf/97391zz33qHfv3qpbt67i4+P1xx9/aNGiRTp06JCKFCmili1b6pFHHtGUKVO0b98+++kJP//8s1q2bOnwOXGtYcOG6dNPP1WHDh00cOBAhYeHa+7cuTp48KAWL15sPyy8Xbt2ioyMVOPGjVWsWDHt3r1b7733nu6++26XLpIVHh6uJk2aqE+fPjp58qQmT56sihUrql+/fpKujsn48ePVp08fNW/eXD169LDfyqls2bIaPHiw+1ZqOmrWrKlevXrpgw8+0IULF9S8eXNt3rxZc+fOVefOndWyZUuH+W+77Tb17dtXW7ZsUbFixfTRRx/p5MmTmj17dobLqFKliipUqKAXXnhBR48eVWhoqBYvXpzuubxTpkxRkyZNVKdOHfXv31/lypXToUOH9N1332n79u3p9u/qdpNdFSpU0BtvvKHhw4fr0KFD6ty5swoUKKCDBw/qq6++Uv/+/fXCCy/kyeW8+OKL+vPPPzVhwgT9+OOPuv/++xUZGakTJ05oyZIl2rx5szZs2OCW2sPCwjRz5kwVKFBAwcHBatiwocqVK6fHH39cixYtUvv27dW9e3ft379fn3zyif17+GZya1v5999/1aBBA7Vq1UqtW7dWZGSkTp06pU8//VQ7duzQoEGD7HuA27Vrp9KlS6tv37568cUX5e3trY8++kgRERFOf1TKDDM/q728vBwuXpqRe+65R6NGjVKfPn3UqFEj/fHHH5o/f75Tff369dN7772nRx99VNu2bVNUVJQ+/vjjbN9OLqf6xS0mh6/iDuQJ6d0e61rNmze/6W3P3njjDaNBgwZGWFiYERgYaFSpUsUYM2aMkZycbJ8nJSXFePbZZ42IiAjDYrE43Ibk0qVLxuDBg43ixYsbvr6+RqVKlYy3337b4TY6hnH1dhkDBgwwwsPDjZCQEKNz587G3r17DUkOtyFLu83J6dOnnV7Pv//+a9x3331GWFiYUbBgQaNbt27GsWPHMrx12vV9XHv7kRutJ5vNZrz55ptGmTJlDH9/f6N27drGt99+63QLnEWLFhnt2rUzihYtavj5+RmlS5c2nnjiCeP48eNOy7ierrnt2bXSbkmT3riuWrXKaNy4sREYGGiEhoYaHTt2NHbt2uUwz43WX5kyZdK9xV16taR3GxZX178rtz1Le43p/aTdTuX8+fNGnz59jCJFihghISFGTEyMsWfPnnRv7/P7778bzZs3NwICAowSJUoYo0ePNmbNmuVUh2FcvV1TlSpVDF9fX6NYsWLGU089ZZw/f94+/cCBA8Zjjz1mVKhQwQgICDDCw8ONli1bGqtWrXJad+mZPn26Ua5cOcPf39+oV6+e8dNPP6V727fk5GRj/Pjxxu233274+/sbhQoVMurWrWvExsYaFy9evOEyMnovXy+jMTeMq9vu8OHDjYoVKxp+fn5GkSJFjEaNGhnvvPOO0/b/9ttvG1WqVDH8/PyMiIgIo0OHDsa2bdsclnP9mOzfv9+4//77jbCwMCMgIMBo0KCB8e233zrM8/777xvNmjUzChcubPj7+xsVKlQwXnzxxZu+/rTt5NNPPzWGDx9uFC1a1AgMDDTuvvtup1t6GYZhfP7550bt2rUNf39/Izw83HjooYeMf//912EeV9dpmpt9/qaxWq1GbGysUa5cOcPX19coVaqUMXz4cCMxMdFhvrSxWr58uVGjRg3D39/fqFKlitPt99K7bdauXbuMNm3aGCEhIUaRIkWMfv36GTt27Ej3Flk7d+60b8cBAQFG5cqVjddee83pdWV2uzGM9L9zDMO124elWbx4sdGkSRMjODjYCA4ONqpUqWIMGDDA2Lt3b64vJzP9Gcb/vhPCw8MNHx8fIyoqynjggQeMNWvW2OfJ6LZnrr6er7/+2qhWrZrh4+PjNL4TJkwwSpQoYfj7+xuNGzc2tm7dmuFtzzK6rWN2tpWMblN2rbi4OOPdd981YmJijJIlSxq+vr5GgQIFjOjoaOPDDz90+t1h27ZtRsOGDe3fsRMnTszwtmc3u4Xr9fLKZ3VGtz17/vnnjaioKCMwMNBo3LixsXHjxnTrO3z4sHHvvfcaQUFBRpEiRYznnnvOWLZsmcvvs7RpWe0XyIjFMFy8CgYA02zfvl21a9fWJ5984nSLKgDIyJo1a9SyZUstXLjQ4bY8AAAgb+AcciCPuXLlilPb5MmT5eXlpWbNmplQEQAAAICcwDnkQB7z1ltvadu2bWrZsqV8fHzstwnr379/pm4bAgAAACBvI5ADeUyjRo20cuVKjR49WpcvX1bp0qU1cuRIvfLKK2aXBgAAAMCNOIccAAAAAAATcA45AAAAAAAmIJADAAAAAGACAjkAAAAAACbI9xd1s9lsOnbsmAoUKCCLxWJ2OQAAAACAfM4wDF26dEnFixeXl1fG+8HzfSA/duwYt4oCAAAAAOS6f/75RyVLlsxwer4P5AUKFJB0dUWEhoa6tW+r1aoVK1aoXbt28vX1dWvfyHmMn2dj/Dwb4+fZGD/Pxvh5NsbPszF+ni0z4xcXF6dSpUrZ82hG8n0gTztMPTQ0NEcCeVBQkEJDQ9mgPBDj59kYP8/G+Hk2xs+zMX6ejfHzbIyfZ8vK+N3stGku6gYAAAAAgAkI5AAAAAAAmIBADgAAAACACfL9OeQAAAAAkFWGYSglJUWpqanZ7stqtcrHx0eJiYlu6Q+5K238kpKSJEk+Pj7ZvrW2qYG8bNmyOnz4sFP7008/rWnTpikxMVHPP/+8PvvsMyUlJSkmJkbTp09XsWLFTKgWAAAAwK0kOTlZx48fV0JCglv6MwxDkZGR+ueff7Id5JD70sbvyJEjslgsCgoKUlRUlPz8/LLcp6mBfMuWLQ5/Gdq5c6fatm2rbt26SZIGDx6s7777TgsXLlTBggX1zDPPqEuXLlq/fr1ZJQMAAAC4BdhsNh08eFDe3t4qXry4/Pz8sh2ibTabLl++rJCQEHl5cfawp0kbv+DgYKWkpOj06dM6ePCgKlWqlOXxNDWQR0REODweN26cKlSooObNm+vixYuaNWuWFixYoFatWkmSZs+erapVq2rTpk268847zSgZAAAAwC0gOTlZNptNpUqVUlBQkFv6tNlsSk5OVkBAAIHcA6WNX2BgoLy8vOTr66vDhw/bxzQr8sy7IDk5WZ988okee+wxWSwWbdu2TVarVW3atLHPU6VKFZUuXVobN240sVIAAAAAtwqCMzLijvdGnrmo25IlS3ThwgX17t1bknTixAn5+fkpLCzMYb5ixYrpxIkTGfaTlJRkP8lekuLi4iRdPQHfarW6tea0/tzdL3IH4+fZGD/Pxvh5NsbPszF+no3xyz1Wq1WGYchms8lms7mlT8Mw7P+6q0/knuvHz2azyTAMWa1WeXt7O8zr6jaaZwL5rFmz1KFDBxUvXjxb/YwdO1axsbFO7StWrHDboSbXW7lyZY70i9zB+Hk2xs+zMX6ejfHzbIyfZ2P8cp6Pj48iIyN1+fJlJScnu7XvS5cuubW/vGbcuHH67rvv9PPPP7v8nEKFCumTTz7R3XffnYOV/c8999yj6tWra+zYsZl+btr4JScn68qVK/rpp5+UkpLiMI+rFwLME4H88OHDWrVqlb788kt7W2RkpJKTk3XhwgWHveQnT55UZGRkhn0NHz5cQ4YMsT+Oi4tTqVKl1K5dO4WGhrq1bqvVqpUrV6pt27by9fV1a9/IeYyfZ2P8PBvj59kYP8/G+Hk2xi/3JCYm6p9//lFISIjT+cGvfLUzS30auro31dfXVxa5foG4Mffdkanl9OnTR/PmzXNq37t3rypWrJipvrLC399f3t7emc5fgYGBbs9sGfHx8ZGfn1+mlmcYhi5duqQCBQrIYrEoMTFRgYGBatasmdN7JO1I7ZvWkamqc8js2bNVtGhRh7+G1K1bV76+vlq9erW6du0q6eob6MiRI4qOjs6wL39/f/n7+zu1+/r65tiHVk72jZzH+Hk2xs+zMX6ejfHzbIyfZ2P8cl5qaqosFou8vLyczxXO4tXWLcb//ytLpvrI7LnKFotF7du31+zZsx3aIyIicuWc+LSr0Wd2Wemu6xtI++NGVqWNr6vSTjO49n1hsVjS3R5drcv0KxTYbDbNnj1bvXr1ko/P//4+ULBgQfXt21dDhgzRjz/+qG3btqlPnz6Kjo7mCusAAAAAcAP+/v6KjIx0+Onbt686d+7sMN+gQYPUokUL+2ObzaaxY8eqXLlyCgwMVM2aNbVo0SL79DVr1shisWj16tWqV6+egoKC1KhRI+3duzfDWrZs2aK2bduqSJEiKliwoJo3b65ff/3Vab7jx4+rQ4cOCgwMVPny5R2We+jQIVksFn3++edq3ry5AgICNH/+fJ09e1Y9evRQiRIlFBQUpOrVq+vTTz916Dc+Pl6PPvqoQkJCFBUVpQkTJjgt++OPP1a9evVUoEABRUZGqmfPnjp16tTNVnO2mR7IV61apSNHjuixxx5zmjZp0iTdc8896tq1q5o1a6bIyEiHw9oBAAAAAO4zduxYzZs3TzNnztSff/6pwYMH6+GHH9batWsd5nvllVc0YcIEbd26VT4+PunmuTSXLl1Sr169tG7dOm3atEmVKlXSXXfd5XQu/WuvvaauXbtqx44deuihh/Tggw9q9+7dDvMMGzZMzz33nHbv3q2YmBglJiaqbt26+u6777Rz5071799fjzzyiDZv3mx/zosvvqi1a9fq66+/1ooVK7RmzRqnPwhYrVaNHj1aO3bs0JIlS3To0CH7BcdzkumHrLdr185+tbrrBQQEaNq0aZo2bVouVwUAAAAAnuvbb79VSEiI/XGHDh0UHBx8w+ckJSXpzTff1KpVq+ynCZcvX17r1q3T+++/r+bNm9vnHTNmjP3xsGHDdPfddysxMTHd+3G3atXK4fEHH3ygsLAwrV27Vvfcc4+9vVu3bnr88cclSaNHj9bKlSs1depUTZ8+3T7PoEGD1KVLF4f+XnjhBfv/n332WS1fvlxffPGFGjRooMuXL2vWrFn65JNP1Lp1a0nS3LlzVbJkSYc+rv2DQvny5TVlyhTVr19fly9fdliP7mZ6IAcAAAAAuFfLli01Y8YM++Pg4GANHz78hs/5+++/lZCQoLZt2zq0Jycnq3bt2g5tNWrUsP8/KipKknTq1CmVLl3aqd+TJ0/q1Vdf1Zo1a3Tq1CmlpqYqISFBR44ccZjv+muFRUdHa/v27Q5t9erVc3icmpqqN998U1988YWOHj2q5ORkJSUl2e+wtX//fiUnJ6thw4b254SHh6ty5coO/Wzbtk0jR47Ujh07dP78efv54keOHFG1atWcXpO7EMgBAAAAIJ8JDg52uqK6l5eX09HJ194v+/Lly5Kk7777TiVKlHCY7/oLZ1970bK0i7hldG/1Xr166ezZs3r33XdVpkwZ+fv7Kzo6Oku3k7t+L//bb7+td999V5MnT1b16tUVHBysQYMGZarv+Ph4xcTEKCYmRvPnz1dERISOHDmimJgYt9/y7nqmn0MOAAAAAMh5EREROn78uEPbtXugq1WrJn9/fx05ckQVK1Z0+ClVqlSWl7t+/XoNHDhQd911l26//Xb5+/vrzJkzTvNt2rTJ6XHVqlVv2nenTp308MMPq2bNmipfvrz++usv+/QKFSrI19dXv/zyi73t/PnzDvPs2bNHZ8+e1bhx49S0aVNVqVIlVy7oJrGHHAAAAABuCa1atdLbb7+tefPmKTo6Wp988ol27txpPxy9QIECeuGFFzR48GDZbDY1adJEFy9e1Pr16xUaGqpevXplabmVKlWyX8U8Li5OL774ogIDA53mW7hwoerVq6cmTZpo/vz52rx5s2bNmnXTvhctWqQNGzaoUKFCmjhxok6ePGk/zDwkJER9+/bViy++qMKFC6to0aJ65ZVXHG53Vrp0afn5+Wnq1Kl68skntXPnTo0ePTpLrzWz2EMOAAAAALeAmJgYvfbaaxo6dKjq16+vS5cu6dFHH3WYZ/To0Xrttdc0duxYVa1aVe3bt9d3332ncuXKZXm5s2bN0vnz51WnTh098sgjGjhwoIoWLeo0X2xsrD777DPVqFFD8+bN06effnrT87dfffVV1alTRzExMWrRooUiIyOdbu329ttvq2nTpurYsaPatGmjJk2aqG7duvbpERERmjNnjhYuXKhq1app3Lhxeuedd7L8ejPDYmR0ifN8Ii4uTgULFtTFixcVGhrq1r6tVqu+//573XXXXdm6IT3Mwfh5NsbPszF+no3x82yMn2dj/HJPYmKiDh48qHLlyqV75fCssNlsiouLU2hoqMMeWniG68fvRu8RV3Mo7wIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMwH3Ike/Ebox1aT4vm5dqqIbGbR4nm5cth6v6nxHRI3JtWQAAAADyLvaQAwAAAABgAgI5AAAAAAAmIJADAAAAAGACAjkAAAAAwFRLlizRp59+anYZuY5ADgAAAAAwzaZNmzRw4EBFR0ebXUqu4yrrAAAAAJAZ3zyXpadZDEOByVZZ/Hwli8X1J3Z8N1PL6d27ty5cuKAlS5ZkrkATnD17Vn379tWSJUtUtmxZs8vJdQRyAAAAAIApChcurD///NPsMkzDIesAAAAAcIvYuXOnOnTooJCQEBUrVkyPPPKIzpw5Y59+6dIlPfTQQwoODlZUVJQmTZqkFi1aaNCgQfZ5Pv74Y9WrV08FChRQZGSkevbsqVOnTtmnr1mzRhaLRatXr1a9evUUFBSkRo0aae/evQ61fP3116pTp44CAgJUvnx5xcbGKiUlRZJkGIZGjhyp0qVLy9/fX8WLF9fAgQNzduWYgEAOAAAAALeACxcuqFWrVqpdu7a2bt2qZcuW6eTJk+revbt9niFDhmj9+vX673//q5UrV+rnn3/Wr7/+6tCP1WrV6NGjtWPHDi1ZskSHDh1S7969nZb3yiuvaMKECdq6dat8fHz02GOP2af9/PPPevTRR/Xcc89p165dev/99zVnzhyNGTNGkrR48WJNmjRJ77//vvbt26clS5aoevXqObNiTMQh6wAAAABwC3jvvfdUu3Ztvfnmm/a2jz76SKVKldJff/2lqKgozZ07VwsWLFDr1q0lSbNnz1bx4sUd+rk2WJcvX15TpkxR/fr1dfnyZYWEhNinjRkzRs2bN5ckDRs2THfffbcSExMVEBCg2NhYDRs2TL169bL3M3r0aA0dOlQjRozQkSNHFBkZqTZt2sjX11elS5dWgwYNcmzdmIU95AAAAABwC9ixY4d+/PFHhYSE2H+qVKkiSdq/f78OHDggq9XqEHwLFiyoypUrO/Szbds2dezYUaVLl1aBAgXsofvIkSMO89WoUcP+/6ioKEmyH9q+Y8cOjRo1yqGWfv366fjx40pISFC3bt105coVlS9fXv369dNXX31lP5w9P2EPOQAAAADcAi5fvqyOHTtq/PjxTtOioqL0999/37SP+Ph4xcTEKCYmRvPnz1dERISOHDmimJgYJScnO8zr6+tr/7/l/68qb7PZ7LXExsaqS5cuTssICAhQqVKltHfvXq1atUorV67U008/rbfffltr16516NfTEcgBAAAA4BZQp04dLV68WGXLlpWPj3MULF++vHx9fbVlyxaVLl1aknTx4kX99ddfatasmSRpz549Onv2rMaNG6dSpUpJkrZu3ZqlWvbu3auKFStmOE9gYKA6duyojh07asCAAapSpYr++OMP1alTJ9PLy6sI5AAAAACQz1y8eFHbt293aOvfv78+/PBD9ejRQ0OHDlV4eLj+/vtvffbZZ/rPf/6jAgUKqFevXnrxxRcVHh6uokWLasSIEfLy8rLv4S5durT8/Pw0depUPfnkk9q5c6dGjx6d6fpef/113XPPPSpdurTuv/9+eXl5aceOHdq5c6feeOMNzZkzR6mpqWrYsKGCgoL0ySefKDAwUGXKlHHH6skzOIccAAAAAPKZNWvWqHbt2g4/o0eP1vr165Wamqp27dqpevXqGjRokMLCwuTldTUaTpw4UdHR0brnnnvUpk0bNW7cWFWrVlVAQIAkKSIiQnPmzNHChQtVrVo1jRs3Tu+8806m64uJidG3336rFStWqH79+rrzzjs1adIke+AOCwvThx9+qMaNG6tGjRpatWqVvvnmGxUuXNh9KykPYA85AAAAAGRGx3ez9DTDZtOVuDj5hobK4pVz+0bnzJmjOXPmZDj9yy+/zHBagQIFNH/+fPvj+Ph4xcbGqn///va2Hj16qEePHg7PMwzD/v8WLVo4PJakWrVqObWlnYuens6dO6tz584Z1plfEMgBAAAAAJKk3377TXv27FGDBg108eJFjRo1SpLUqVMnkyvLnwjkAAAAAAC7d955R3v37pWfn5/q1q2rn3/+WUWKFDG7rHyJQA4AAAAAkCTVrl1b27ZtM7uMWwYXdQMAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAuN2SJUtUsWJFeXt7a9CgQWaXkydxH3IAAAAAyITYjbFZep5hGLImW+Xr5yuLxeLy80ZEj8jS8k6cOKGxY8fqu+++07///quCBQuqYsWKevjhh9WrVy8FBQXdtI+RI0dqyZIl2r59e6aX/8QTT6hPnz4aOHCgChQokIVXkP8RyAEAAAAgnzlw4IAaN26ssLAwvfnmm6pevbr8/f31xx9/6IMPPlCJEiV077335tjyL1++rFOnTikmJkbFixfPseV4Og5ZBwAAAIB85umnn5aPj4+2bt2q7t27q2rVqipfvrw6deqk7777Th07dpQkXbhwQY8//rgiIiIUGhqqVq1aaceOHZKkOXPmKDY2Vjt27JDFYpHFYtGcOXMkSRMnTlT16tUVHBysUqVK6emnn9bly5clSWvWrLHvEW/VqpUsFovWrFkjSVq3bp2aNm2qwMBAlSpVSgMHDlR8fHzurpw8hEAOAAAAAPnI2bNntWLFCg0YMEDBwcHpzpN2yHy3bt106tQpLV26VNu2bVOdOnXUunVrnTt3Tg888ICef/553X777Tp+/LiOHz+uBx54QJLk5eWlKVOm6M8//9TcuXP1ww8/aOjQoZKkRo0aae/evZKkxYsX6/jx42rUqJH279+v9u3bq2vXrvr999/1+eefa926dXrmmWdyYa3kTRyyDgAAAAD5yN9//y3DMFS5cmWH9iJFiigxMVGSNGDAAHXs2FGbN2/WqVOn5O/vL0l65513tGTJEi1atEj9+/dXSEiIfHx8FBkZ6dDXtRdpK1u2rN544w09+eSTmj59uvz8/FS0aFFJUnh4uP25Y8eO1UMPPWR/bqVKlTRlyhQ1b95cM2bMUEBAQE6sjjyNQA4AAAAAt4DNmzfLZrPpoYceUlJSknbs2KHLly+rcOHCDvNduXJF+/fvv2Ffq1at0tixY7Vnzx7FxcUpJSVFiYmJSkhIyPBicTt27NDvv/+u+fPn29sMw5DNZtPBgwdVtWrV7L9ID0MgBwAAAIB8pGLFirJYLPbDxtOUL19ekhQYGCjp6oXXoqKi7Od3XyssLCzD/g8dOqR77rlHTz31lMaMGaPw8HCtW7dOffv2VXJycoaB/PLly3riiSc0cOBAp2mlS5d28dXlLwRyAAAAAMhHChcurLZt2+q9997Ts88+m+F55HXq1NGJEyfk4+OjsmXLpjuPn5+fUlNTHdq2bdsmm82mCRMmyMvr6mXJvvjii5vWVadOHe3atUsVK1bM3AvKx7ioGwAAAADkM9OnT1dKSorq1aunzz//XLt379bevXv1ySefaM+ePfL29labNm0UHR2tzp07a8WKFTp06JA2bNigV155RVu3bpV09fzwgwcPavv27Tpz5oySkpJUsWJFWa1WTZ06VQcOHNDHH3+smTNn3rSml156SRs2bNAzzzyj7du3a9++ffr6669v6Yu6EcgBAAAAIJ+pUKGCfvvtN7Vp00bDhw9XzZo1Va9ePU2dOlUvvPCCRo8eLYvFou+//17NmjVTnz59dNttt+nBBx/U4cOHVaxYMUlS165d1b59e7Vs2VIRERH69NNPVbNmTU2cOFHjx4/XHXfcofnz52vs2LE3ralGjRpau3at/vrrLzVt2lS1a9fW66+/fkvfp5xD1gEAAAAgE0ZEj8jS82w2m+Li4hQaGmo/1DsnRUVFaerUqZo6dWqG8xQoUEBTpkzRlClT0p3u7++vRYsWObUPHjxYgwcPdmh75JFH7P8PCwuTYRhOz6tfv75WrFjh6kvI99hDDgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAADDV1q1bNWnSJNlsNrNLyVUEcgAAAAC4haxZs0YWi0UXLlwwuxRJ0unTp9WtWzfdcccd8vK6tSKqj9kFAAAAAIAnOf76iCw9zzAMWa3JSvD1k8Vicfl5UaNis7S8jRs3qkmTJmrfvr2+++67LPWR02w2mx555BGNGDFCbdu2NbucXEcgBwAAAIB8aNasWXr22Wc1a9YsHTt2TMWLF8+V5RqGodTUVPn43Dxuenl5admyZblQVd50ax0PAAAAAAC3gMuXL+vzzz/XU089pbvvvltz5sy54fzr169XixYtFBQUpEKFCikmJkbnz5+XJCUlJWngwIEqWrSoAgIC1KRJE23ZssX+3LRD4JcuXaq6devK399f69atk81m01tvvaWKFSvK399fpUuX1pgxY+zP++OPP9SqVSsFBgaqcOHC6t+/vy5fvmyf3rt3b3Xu3FnvvPOOoqKiVLhwYQ0YMEBWq9W9K8tEBHIAAAAAyGe++OILValSRZUrV9bDDz+sjz76SIZhpDvv9u3b1bp1a1WrVk0bN27UunXr1LFjR6WmpkqShg4dqsWLF2vu3Ln69ddfVbFiRcXExOjcuXMO/QwbNkzjxo3T7t27VaNGDQ0fPlzjxo3Ta6+9pl27dmnBggUqVqyYJCk+Pl4xMTEqVKiQtmzZooULF2rVqlV65plnHPr88ccftX//fv3444+aO3eu5syZc9M/LngSDlkHgFtU7MasnY/mDl42L9VQDY3bPE42r/SvpjoiOmvn5wEAgKuHqz/88MOSpPbt2+vixYtau3atWrRo4TTvW2+9pXr16mn69On2tttvv13S1eA8Y8YMzZkzRx06dJAkffjhh1q5cqVmzZqlF1980f6cUaNG2c8Dv3Tpkt59912999576tWrlySpQoUKatKkiSRpwYIFSkxM1Lx58xQcHCxJeu+999SxY0eNHz/eHtwLFSqk9957T97e3qpSpYruvvturV69Wv369XPn6jINe8gBAAAAIB/Zu3evNm/erB49ekiSfHx89MADD2jWrFnpzp+2hzw9+/fvl9VqVePGje1tvr6+atCggXbv3u0wb7169ez/3717t5KSkjLsd/fu3apZs6Y9jEtS48aNZbPZtHfvXnvb7bffLm9vb/vjqKgonTp1KqOX7nHYQw4AAAAA+cisWbOUkpLicBE3wzDk7++v9957z2n+wMBAtyz32nDtrj59fX0dHlsslnx1r3L2kAMAAABAPpGSkqJ58+ZpwoQJ2r59u/1nx44dKl68uD799FOn59SoUUOrV69Ot78KFSrIz89P69evt7dZrVZt2bJF1apVy7COSpUqKTAwMMN+q1atqh07dig+Pt7etn79enl5ealy5cquvlyPRyAHAAAAgHzi22+/1fnz59W3b1/dcccdDj9du3ZN97D14cOHa8uWLXr66af1+++/a8+ePZoxY4bOnDmj4OBgPfXUU3rxxRe1bNky7dq1S/369VNCQoL69u2bYR0BAQF66aWXNHToUM2bN0/79+/Xpk2b7Mt/6KGHFBAQoF69emnnzp368ccf9eyzz+qRRx6xnz9+K+CQdQAAAADIJ2bNmqU2bdqoYMGCTtO6du2qt956S7///rtD+2233aYVK1bo5ZdfVoMGDRQYGKiGDRvaz0EfN26cbDabHnnkEV26dEn16tXT8uXLVahQoRvW8tprr8nHx0evv/66jh07pqioKD355JOSpKCgIC1fvlzPPfec6tevr6CgIHXt2lUTJ05005rwDARyAAAAAMiEqFFZu1OJzWZTXFycQkND5eWVMwcrf/PNNxlOa9Cggf3WZwMHDnSY1rx5c4fD0q8VEBCgKVOmaMqUKelOb9GiRbq3VPPy8tIrr7yiV155Jd3nVa9eXT/88EOG9aZ3e7PJkydnOL8n4pB1AAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAADIQHoXKwMk97w3COQAAAAAcB1fX19JUkJCgsmVIK9Ke2+kvVeywvTbnh09elQvvfSSli5dqoSEBFWsWFGzZ89WvXr1JF39q8OIESP04Ycf6sKFC2rcuLFmzJihSpUqmVw5AAAAgPzK29tbYWFhOnXqlKSr9822WCzZ6tNmsyk5OVmJiYk5dtsz5Jy08bty5YoSExN16tQphYWFydvbO8t9mhrIz58/r8aNG6tly5ZaunSpIiIitG/fPocbzL/11luaMmWK5s6dq3Llyum1115TTEyMdu3apYCAABOrBwAAAJCfRUZGSpI9lGeXYRi6cuWKAgMDsx3ukfuuH7+wsDD7eySrTA3k48ePV6lSpTR79mx7W7ly5ez/NwxDkydP1quvvqpOnTpJkubNm6dixYppyZIlevDBB3O9ZgAAAAC3BovFoqioKBUtWlRWqzXb/VmtVv30009q1qxZtg5zhjnSxq958+YKDAzM1p7xNKYG8v/+97+KiYlRt27dtHbtWpUoUUJPP/20+vXrJ0k6ePCgTpw4oTZt2tifU7BgQTVs2FAbN25MN5AnJSUpKSnJ/jguLk7S1ZXnjo3oWmn9ubtfZI+XzbXDf9Lmc3V+d+H94h5sf9mX2+/99JZ9oxoY27yL7c+zMX6ejfEzjzvCl81mU0pKiry9vd3SH3JX2vh5eXnJZrPJZrNlOK+r26jFMPGygWmHnA8ZMkTdunXTli1b9Nxzz2nmzJnq1auXNmzYoMaNG+vYsWOKioqyP6979+6yWCz6/PPPnfocOXKkYmNjndoXLFigoKCgnHsxAAAAAADo6gXfevbsqYsXLyo0NDTD+UwN5H5+fqpXr542bNhgbxs4cKC2bNmijRs3ZimQp7eHvFSpUjpz5swNV0RWWK1WrVy5Um3btuWQkzxk3OZxLs3nZfPSHefu0M7wnbJ5ZfzXLXcb1mCYU1vsN7tybfkZGdGxmtklZArbX/a5uq3kBFe2v/S2FeQNbH+ejfHzbIyfZ2P8PFtmxi8uLk5FihS5aSA39ZD1qKgoVavmGAKqVq2qxYsXS/rfRRROnjzpEMhPnjypWrVqpdunv7+//P39ndp9fX1z7E2fk30j8zIbrm1etlwN5Om9V1LzwB0IPfU9zPaXdbn5vr9RDRnVwbjmfWx/no3x82yMn2dj/DybK+Pn6viamgIaN26svXv3OrT99ddfKlOmjKSrF3iLjIzU6tWr7dPj4uL0yy+/KDo6OldrBQAAAADAnUzdQz548GA1atRIb775prp3767Nmzfrgw8+0AcffCDp6lUNBw0apDfeeEOVKlWy3/asePHi6ty5s5mlAwAAAACQLaYG8vr16+urr77S8OHDNWrUKJUrV06TJ0/WQw89ZJ9n6NChio+PV//+/XXhwgU1adJEy5Yt4x7kAAAAAACPZmogl6R77rlH99xzT4bTLRaLRo0apVGjRuViVQAAAAAA5CzzryQFAAAAAMAtiEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACXzMLgC4VdSds0WSdHzpCKdpdx48l9vlONh0X39Tlw8AAADcithDDgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYwNRAPnLkSFksFoefKlWq2KcnJiZqwIABKly4sEJCQtS1a1edPHnSxIoBAAAAAHAP0/eQ33777Tp+/Lj9Z926dfZpgwcP1jfffKOFCxdq7dq1OnbsmLp06WJitQAAAAAAuIeP6QX4+CgyMtKp/eLFi5o1a5YWLFigVq1aSZJmz56tqlWratOmTbrzzjtzu1QAAAAAANzG9EC+b98+FS9eXAEBAYqOjtbYsWNVunRpbdu2TVarVW3atLHPW6VKFZUuXVobN27MMJAnJSUpKSnJ/jguLk6SZLVaZbVa3Vp7Wn/u7hfZ42Vz7cCPtPlcnT+7DB9fSVKqVzrL8/HOlRoy4i2bx72P2f6yL7fe+zda9o1qYGzzLrY/z8b4eTbGz7Mxfp4tM+Pn6hhbDMMwslVVNixdulSXL19W5cqVdfz4ccXGxuro0aPauXOnvvnmG/Xp08chXEtSgwYN1LJlS40fPz7dPkeOHKnY2Fin9gULFigoKChHXgcAAAAAAGkSEhLUs2dPXbx4UaGhoRnOZ2ogv96FCxdUpkwZTZw4UYGBgVkK5OntIS9VqpTOnDlzwxWRFVarVStXrlTbtm3l6+vr1r6RdeM2j3NpPi+bl+44d4d2hu+UzcuWw1VJtRb8KkmqHVHLadq2w+dzfPk3sqVjH43oWM3UGjKL7S/7XN1WcoIr29+wBsNyuSq4iu3PszF+no3x82yMn2fLzPjFxcWpSJEiNw3kph+yfq2wsDDddttt+vvvv9W2bVslJyfrwoULCgsLs89z8uTJdM85T+Pv7y9/f3+ndl9f3xx70+dk38i8zIZrm5ctVwK5JeXqYSvetnSWlZKa48u/kVR5eex7mO0v63Ljfe9KDRnVwbjmfWx/no3x82yMn2dj/DybK+Pn6viafpX1a12+fFn79+9XVFSU6tatK19fX61evdo+fe/evTpy5Iiio6NNrBIAAAAAgOwzdQ/5Cy+8oI4dO6pMmTI6duyYRowYIW9vb/Xo0UMFCxZU3759NWTIEIWHhys0NFTPPvusoqOjucI6AAAAAMDjmRrI//33X/Xo0UNnz55VRESEmjRpok2bNikiIkKSNGnSJHl5ealr165KSkpSTEyMpk+fbmbJAAAAAAC4hamB/LPPPrvh9ICAAE2bNk3Tpk3LpYoAAAAAAMgdeeoccgAAAAAAbhUEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQ+ZhcA5CuHN2Q87fK5q/8mOs9TNj4x24s+FFwr230AAAAAyD3sIQcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAR5JpCPGzdOFotFgwYNsrclJiZqwIABKly4sEJCQtS1a1edPHnSvCIBAAAAAHCTPBHIt2zZovfff181atRwaB88eLC++eYbLVy4UGvXrtWxY8fUpUsXk6oEAAAAAMB9TA/kly9f1kMPPaQPP/xQhQoVsrdfvHhRs2bN0sSJE9WqVSvVrVtXs2fP1oYNG7Rp0yYTKwYAAAAAIPtMD+QDBgzQ3XffrTZt2ji0b9u2TVar1aG9SpUqKl26tDZu3JjbZQIAAAAA4FY+Zi78s88+06+//qotW7Y4TTtx4oT8/PwUFhbm0F6sWDGdOHEiwz6TkpKUlJRkfxwXFydJslqtslqt7in8/6X15+5+kT1eNtf+zpQ2n6vzu8Y3wymGj58kKdXHeR6bry37i/bxzvJTvWXzuPcx21/2ufe9n7Vl36gGxjbvYvvzbIyfZ2P8PBvj59kyM36ujrHFMAwjW1Vl0T///KN69epp5cqV9nPHW7RooVq1amny5MlasGCB+vTp4xCuJalBgwZq2bKlxo8fn26/I0eOVGxsrFP7ggULFBQU5P4XAgAAAADANRISEtSzZ09dvHhRoaGhGc5nWiBfsmSJ7rvvPnl7/2+vXmpqqiwWi7y8vLR8+XK1adNG58+fd9hLXqZMGQ0aNEiDBw9Ot9/09pCXKlVKZ86cueGKyAqr1aqVK1eqbdu28vXNeM8octe4zeNcms/L5qU7zt2hneE7ZfNywx5qSfrnlwwn1Vp6XpJU26eg07TTl5Oc2jLrSFD1LD93S8c+GtGxWrZryE1sf9nn6raSE1zZ/oY1GJbLVcFVbH+ejfHzbIyfZ2P8PFtmxi8uLk5FihS5aSA37ZD11q1b648//nBo69Onj6pUqaKXXnpJpUqVkq+vr1avXq2uXbtKkvbu3asjR44oOjo6w379/f3l7+/v1O7r65tjb/qc7BuZl9lwbfOyuS+QK+NDUywpyZIk73Tm8bImZ3/RKalZfmqqvDz2Pcz2l3Xue99nr4aM6mBc8z62P8/G+Hk2xs+zMX6ezZXxc3V8sxzI4+PjtXbtWh05ckTJyY5hYuDAgTd9foECBXTHHXc4tAUHB6tw4cL29r59+2rIkCEKDw9XaGionn32WUVHR+vOO+/MatkAAAAAAOQJWQrkv/32m+666y4lJCQoPj5e4eHhOnPmjIKCglS0aFGXArkrJk2aJC8vL3Xt2lVJSUmKiYnR9OnT3dI3AAAAAABmylIgHzx4sDp27KiZM2eqYMGC2rRpk3x9ffXwww/rueeey3Ixa9ascXgcEBCgadOmadq0aVnuEwAAAACAvChL97zZvn27nn/+eXl5ecnb21tJSUkqVaqU3nrrLb388svurhEAAAAAgHwnS4Hc19dXXl5Xn1q0aFEdOXJEklSwYEH9888/7qsOAAAAAIB8KkuHrNeuXVtbtmxRpUqV1Lx5c73++us6c+aMPv74Y6cLtQG5re6cLS7NZ/j4ytauhmot+FWWlIyvjp4pl8+5px94vNiNsWaXAAAAgDwuS3vI33zzTUVFRUmSxowZo0KFCumpp57S6dOn9cEHH7i1QAAAAAAA8qMs7SGvV6+e/f9FixbVsmXL3FYQAAAAAAC3giztIQcAAAAAANnj8h7yOnXqaPXq1SpUqJBq164ti8WS4by//vqrW4oDAAAAACC/cjmQd+rUSf7+/pKkzp0751Q9AAAAAADcElwO5CNGjEj3/wAAAAAAIPOydA75li1b9Msvvzi1//LLL9q6dWu2iwIAAAAAIL/LUiAfMGCA/vnnH6f2o0ePasCAAdkuCgAAAACA/C5LgXzXrl2qU6eOU3vt2rW1a9eubBcFAAAAAEB+l6VA7u/vr5MnTzq1Hz9+XD4+Wbq1OQAAAAAAt5QsBfJ27dpp+PDhunjxor3twoULevnll9W2bVu3FQcAAAAAQH6Vpd3Z77zzjpo1a6YyZcqodu3akqTt27erWLFi+vjjj91aIAAAAAAA+VGWAnmJEiX0+++/a/78+dqxY4cCAwPVp08f9ejRQ76+vu6uEQAAAACAfCfLJ3wHBwerf//+7qwFAAAAAIBbRpYD+b59+/Tjjz/q1KlTstlsDtNef/31bBcGAAAAAEB+lqVA/uGHH+qpp55SkSJFFBkZKYvFYp9msVgI5AAAAAAA3ESWAvkbb7yhMWPG6KWXXnJ3PQAAAAAA3BKyFMjPnz+vbt26ubsWACYa/uUfpi5/bJfqpi4fAAAAyG1Zug95t27dtGLFCnfXAgAAAADALSNLe8grVqyo1157TZs2bVL16tWdbnU2cOBAtxQHAAAAAEB+laVA/sEHHygkJERr167V2rVrHaZZLBYCOQAAAAAAN5GlQH7w4EF31wEAAAAAwC0lS+eQp0lOTtbevXuVkpLirnoAAAAAALglZCmQJyQkqG/fvgoKCtLtt9+uI0eOSJKeffZZjRs3zq0FAgAAAACQH2UpkA8fPlw7duzQmjVrFBAQYG9v06aNPv/8c7cVBwAAAABAfpWlc8iXLFmizz//XHfeeacsFou9/fbbb9f+/fvdVhwAAAAAAPlVlvaQnz59WkWLFnVqj4+PdwjoAAAAAAAgfVkK5PXq1dN3331nf5wWwv/zn/8oOjraPZUBAAAAAJCPZemQ9TfffFMdOnTQrl27lJKSonfffVe7du3Shg0bnO5LDgAAAAAAnGVpD3mTJk20fft2paSkqHr16lqxYoWKFi2qjRs3qm7duu6uEQAAAACAfCdLe8glqUKFCvrwww/dWQsAAAAAALeMLAXytPuOZ6R06dJZKgYAAAAAgFtFlgJ52bJlb3g19dTU1CwXBAAAAADArSBLgfy3335zeGy1WvXbb79p4sSJGjNmjFsKAwAAAAAgP8tSIK9Zs6ZTW7169VS8eHG9/fbb6tKlS7YLA3LLmUtJMlKsbumrgPXmR4ecupLolmUBAAAA8GxZusp6RipXrqwtW7a4s0sAAAAAAPKlLO0hj4uLc3hsGIaOHz+ukSNHqlKlSm4pDAAAAACA/CxLgTwsLMzpom6GYahUqVL67LPP3FIYAAAAAAD5WZYC+Q8//OAQyL28vBQREaGKFSvKxyfLtzYHAAAAAOCWkaX03KJFCzeXAQAAAADArSVLF3UbO3asPvroI6f2jz76SOPHj892UQAAAAAA5HdZCuTvv/++qlSp4tR+++23a+bMmdkuCgAAAACA/C5LgfzEiROKiopyao+IiNDx48ezXRQAAAAAAPldlgJ5qVKltH79eqf29evXq3jx4tkuCgAAAACA/C5LF3Xr16+fBg0aJKvVqlatWkmSVq9eraFDh+r55593a4EAAAAAAORHWQrkL774os6ePaunn35aycnJkqSAgAC99NJLGj58uFsLBAAAAAAgP8pSILdYLBo/frxee+017d69W4GBgapUqZL8/f3dXR8AAAAAAPlSls4hT3PixAmdO3dOFSpUkL+/vwzDcFddAAAAAADka1kK5GfPnlXr1q1122236a677rJfWb1v376cQw4AAAAAgAuyFMgHDx4sX19fHTlyREFBQfb2Bx54QMuWLXNbcQAAAAAA5FdZOod8xYoVWr58uUqWLOnQXqlSJR0+fNgthQEAAAAAkJ9lKZDHx8c77BlPc+7cOS7shrzh8smbz+PjJ0kKSTknWZNzuCC4U+zGWHnZvFRDNTRu8zjZvGxmlwQAAABkWpYOWW/atKnmzZtnf2yxWGSz2fTWW2+pZcuWbisOAAAAAID8Kkt7yN966y21bt1aW7duVXJysoYOHao///xT586d0/r1691dIwAAAAAA+U6W9pDfcccd+uuvv9SkSRN16tRJ8fHx6tKli3777TdVqFDB3TUCAAAAAJDvZHoPudVqVfv27TVz5ky98sorOVETAAAAAAD5Xqb3kPv6+ur333/PiVoAAAAAALhlZOmQ9YcfflizZs1ydy0AAAAAANwysnRRt5SUFH300UdatWqV6tatq+DgYIfpEydOdEtxAAAAAADkV5kK5AcOHFDZsmW1c+dO1alTR5L0119/OcxjsVjcVx0AAAAAAPlUpgJ5pUqVdPz4cf3444+SpAceeEBTpkxRsWLFcqQ4AAAAAADyq0ydQ24YhsPjpUuXKj4+3q0FAQAAAABwK8jSRd3SXB/QAQAAAACAazIVyC0Wi9M54pwzDgAAAABA5mXqHHLDMNS7d2/5+/tLkhITE/Xkk086XWX9yy+/dF+FAAAAAADkQ5kK5L169XJ4/PDDD7u1GAAAAAAAbhWZCuSzZ8/OqToAAAAAALilZOuibgAAAAAAIGsI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJjA1EA+Y8YM1ahRQ6GhoQoNDVV0dLSWLl1qn56YmKgBAwaocOHCCgkJUdeuXXXy5EkTKwYAAAAAwD1MDeQlS5bUuHHjtG3bNm3dulWtWrVSp06d9Oeff0qSBg8erG+++UYLFy7U2rVrdezYMXXp0sXMkgEAAAAAcAsfMxfesWNHh8djxozRjBkztGnTJpUsWVKzZs3SggUL1KpVK0nS7NmzVbVqVW3atEl33nmnGSUDAAAAAOAWpgbya6WmpmrhwoWKj49XdHS0tm3bJqvVqjZt2tjnqVKlikqXLq2NGzdmGMiTkpKUlJRkfxwXFydJslqtslqtbq05rT9394vsMXx8JR8/F+b7/3lcmNedbF45tDwf7yw/1Vs2NxaSNZnZjrxsXvKyedn/D8/jyvjx2Zp38f3n2Rg/z8b4eTbGz7NlZvxcHWOLYRhGtqrKpj/++EPR0dFKTExUSEiIFixYoLvuuksLFixQnz59HMK1JDVo0EAtW7bU+PHj0+1v5MiRio2NdWpfsGCBgoKCcuQ1AAAAAACQJiEhQT179tTFixcVGhqa4Xym7yGvXLmytm/frosXL2rRokXq1auX1q5dm+X+hg8friFDhtgfx8XFqVSpUmrXrt0NV0RWWK1WrVy5Um3btpWvr69b+0bWLRvUXbp86qbzGT5+Mu4dpOTFE6SU5Fyo7KqKqcG5tixXJTYpneXnfldikFtqGNGxmsvzjts8Tl42L91x7g7tDN8pm5f5e/iROa6M37AGw3K5KriK7z/Pxvh5NsbPszF+ni0z45d2pPbNmB7I/fz8VLFiRUlS3bp1tWXLFr377rt64IEHlJycrAsXLigsLMw+/8mTJxUZGZlhf/7+/vL393dq9/X1zbE3fU72jcyzpFhdDtiGdHVea+4Fcq/UvPde8TJSsvzcVDddGzIz29C1Ac7mZSOQe7AbjR+fq3kf33+ejfHzbIyfZ2P8PJsr4+fq+Oa5ky9tNpuSkpJUt25d+fr6avXq1fZpe/fu1ZEjRxQdHW1ihQAAAAAAZJ+pe8iHDx+uDh06qHTp0rp06ZIWLFigNWvWaPny5SpYsKD69u2rIUOGKDw8XKGhoXr22WcVHR3NFdYBAAAAAB7P1EB+6tQpPfroozp+/LgKFiyoGjVqaPny5Wrbtq0kadKkSfLy8lLXrl2VlJSkmJgYTZ8+3cySAQAAAABwC1MD+axZs244PSAgQNOmTdO0adNyqSIAAAAAAHJHnjuHHAAAAACAWwGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADCBj9kFAEBGjr8+It32uie3yfDxla1dDdVa8KssKVa3LO/UpSSX5lt8TzW3LC89DcqF51jfAAAAyFvYQw4AAAAAgAkI5AAAAAAAmIBADgAAAACACUwN5GPHjlX9+vVVoEABFS1aVJ07d9bevXsd5klMTNSAAQNUuHBhhYSEqGvXrjp58qRJFQMAAAAA4B6mBvK1a9dqwIAB2rRpk1auXCmr1ap27dopPj7ePs/gwYP1zTffaOHChVq7dq2OHTumLl26mFg1AAAAAADZZ+pV1pctW+bweM6cOSpatKi2bdumZs2a6eLFi5o1a5YWLFigVq1aSZJmz56tqlWratOmTbrzzjvNKBsAAAAAgGzLU7c9u3jxoiQpPPzqbX+2bdsmq9WqNm3a2OepUqWKSpcurY0bN6YbyJOSkpSU9L9bF8XFxUmSrFarrFb33BopTVp/7u4X2WP4+Eo+fi7M9//zuDCvO9m8cnd5rrBZsv5R4C2bW2pIbztK9Ur/IB7Dx1eGt+/V////v+5g8XHttfjK223LvJ6X7da4tEfa67zR6+WzNe/i+8+zMX6ejfHzbIyfZ8vM+Lk6xhbDMIxsVeUmNptN9957ry5cuKB169ZJkhYsWKA+ffo4BGxJatCggVq2bKnx48c79TNy5EjFxsY6tS9YsEBBQUE5UzwAAAAAAP8vISFBPXv21MWLFxUaGprhfHlmD/mAAQO0c+dOexjPquHDh2vIkCH2x3FxcSpVqpTatWt3wxWRFVarVStXrlTbtm3l6+u+vXTInmWDukuXT910PsPHT8a9g5S8eIKUkpwLlV1VMTU415blqsQmpR0efxpw1OXnHgm+wy011C1TyKmt1oJfM5zf8PaV0fohWVbPlyXVPX9lPnMp6eYzSfq6fRW3LC896a2H/MjL5qU7zt2hneE7ZfNK/8iEYQ2G5XJVcBXff56N8fNsjJ9nY/w8W2bGL+1I7ZvJE4H8mWee0bfffquffvpJJUuWtLdHRkYqOTlZFy5cUFhYmL395MmTioyMTLcvf39/+fv7O7X7+vrm2Js+J/tG5llSrC4HbEO6Oq819wK5V2ree694GSkOj1MN19eHValuqSG9UGZJuXHQNiRZUq03nc9Vhov9uOs1pyejcJpf2bxsGb5mPlfzPr7/PBvj59kYP8/G+Hk2V8bP1fE19WRFwzD0zDPP6KuvvtIPP/ygcuXKOUyvW7eufH19tXr1anvb3r17deTIEUVHR+d2uQAAAAAAuI2pe8gHDBigBQsW6Ouvv1aBAgV04sQJSVLBggUVGBioggULqm/fvhoyZIjCw8MVGhqqZ599VtHR0VxhHQAAAADg0UwN5DNmzJAktWjRwqF99uzZ6t27tyRp0qRJ8vLyUteuXZWUlKSYmBhNnz49lysFAAAAAMC9TA3krlzgPSAgQNOmTdO0adNyoSIAAAAAAHLHrXHDWwAAAAAA8hgCOQAAAAAAJsgTtz2D54jdGGt2CTdV1+wCAAAAAMAF7CEHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATOBjdgEAzBew5pDD4xbe8S4/95LvLjdX8z+nbjDN4mNTuKQzl5JkpFhzrAYAAAAgp7CHHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwgY/ZBQAA3KPunC1ml5Cubb3rm10CAABAnsQecgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATMB9yAEgk8pe3pFznR/2z3hamUY5t1wAAADkOvaQAwAAAABgAgI5AAAAAAAmIJADAAAAAGACAjkAAAAAACYgkAMAAAAAYAICOQAAAAAAJiCQAwAAAABgAgI5AAAAAAAm8DG7AOBW85d3vNklAAAAAMgD2EMOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJjAx+wCAAB5y6lLSW7tb/PBc05tvvJWjWBp2+HzsirVaXqDcuFurQEAACAvYg85AAAAAAAmIJADAAAAAGACAjkAAAAAACYgkAMAAAAAYAICOQAAAAAAJiCQAwAAAABgAgI5AAAAAAAm4D7keUjsxlizSwDgghYr43Ks70A/74wnhmzJseUCAAAg97GHHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwgY/ZBeDWtvngObf3WepSkgpYU28+o5EqP7cvHch/CljPZuv5ZS/vcGrztvhJwc1VOn6nUo1k5ycd9lfs4RipTKNsLTunjYgeYXYJAADAg7GHHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATmBrIf/rpJ3Xs2FHFixeXxWLRkiVLHKYbhqHXX39dUVFRCgwMVJs2bbRv3z5zigUAAAAAwI1MDeTx8fGqWbOmpk2blu70t956S1OmTNHMmTP1yy+/KDg4WDExMUpMTMzlSgEAAAAAcC9Tr7LeoUMHdejQId1phmFo8uTJevXVV9WpUydJ0rx581SsWDEtWbJEDz74YG6WCgAAAACAW+XZ254dPHhQJ06cUJs2bextBQsWVMOGDbVx48YMA3lSUpKSkpLsj+Pi4iRJVqtVVqvVrTWm9eeufr1st94p/b7ydnufFh9fyZUbmvn4Of6LLLm6vk2QtlwfX1lyfeE5954xfG6wTeTSurb42K5ryd7r9bY4P9/b4uvw7/W89P/tefxz0d3fK57C3d9/yF2Mn2dj/Dwb4+fZMjN+ro6xxTAMI1tVuYnFYtFXX32lzp07S5I2bNigxo0b69ixY4qKirLP1717d1ksFn3++efp9jNy5EjFxsY6tS9YsEBBQUE5UjsAAAAAAGkSEhLUs2dPXbx4UaGhoRnOl2f3kGfV8OHDNWTIEPvjuLg4lSpVSu3atbvhisgKq9WqlStXqm3btvL1zf6eq3Gbx7mhKs+y7fB5t/fZadkehaScu/mMPn7y6/q8khdPkFKS3V7HreKyT7g5C/bxVXinx3Tu64+klNz9K7NL768sCvC9wR7ykKI5ttxrnbmU5PA4u6/355bOn73eFl+1iOivNac/UKrhPH4RBf5/r3qphtladk4b1mCY2SWYwt3ff8hdjJ9nY/w8G+Pn2TIzfmlHat9Mng3kkZGRkqSTJ0867CE/efKkatWqleHz/P395e/v79Tu6+ubY296d/Vt87r+MNH8z6pUt/dppFglayYCdkpy5uaHA0PmHHJlP0w9xXp1zHNTDr5fLJYbBPJcep1O6zObrzfVyPj5qYY13em2tBHO45+Lt/ovUzn53Yqcx/h5NsbPszF+ns2V8XN1fPPsyXnlypVTZGSkVq9ebW+Li4vTL7/8oujoaBMrAwAAAAAg+0zdQ3758mX9/fff9scHDx7U9u3bFR4ertKlS2vQoEF64403VKlSJZUrV06vvfaaihcvbj/PHAAAAAAAT2VqIN+6datatmxpf5x27nevXr00Z84cDR06VPHx8erfv78uXLigJk2aaNmyZQoICDCrZAAAAAAA3MLUQN6iRQvd6CLvFotFo0aN0qhRo3KxKgAAAAAAcl6ePYccAAAAAID8jEAOAAAAAIAJ8uxtzwB4hgLWs6Ys97JPpCnLzWlXkjO+FeCl6+4PjuypO2dLxhMvn3Spj+Mz17mpmv9XppEkKWpUrHv7BQAAeRJ7yAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMAGBHAAAAAAAE/iYXQAAZEVIyrn//WtNNrka5DdXklNdmu/UlUT3LnjnD5KkI1MOqGG5cPf2fTMd383d5QEAAPaQAwAAAABgBgI5AAAAAAAmIJADAAAAAGACAjkAAAAAACYgkAMAAAAAYAICOQAAAAAAJiCQAwAAAABgAu5DDgAeooD1rNklZEmLlXHOjb5+0gNS0x/j0r2PfKCf99X/hGzJ4eoAAADMwx5yAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEPmYXAADA9a4kp0qSLl1KMmX5BUxZ6v8ErDmk49tO5O5Ct4y46SxRo2JzoRAAAG4d7CEHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAEzgY3YBAAB4qr+843Os739SEt3ST12fMLf0k+9885x5y+74rnnLBgDkKewhBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAExAIAcAAAAAwAQEcgAAAAAATEAgBwAAAADABARyAAAAAABMQCAHAAAAAMAEBHIAAAAAAEzgY3YByMcOb7jpLGUvJ7l9sQWscW7vE4A5CljPml2Caa4kp7qln1NXEl2bcecPTk1FCwQ4PD7eq60kKdXHV7r3CZ18spO8U6zZK7BMoxtO3nzw3E272HRf/0wvtvO/N+83pyz58g/Tli1J3rKpvrcU+80upbq4b2Zsl+o5XBUA3JrYQw4AAAAAgAkI5AAAAAAAmIBADgAAAACACQjkAAAAAACYgEAOAAAAAIAJCOQAAAAAAJiAQA4AAAAAgAm4DzkAAPnYX97xWX7uPynp38PckJ8k6beUi7KkJGe5f0nS/u9vODnZhfux1/l0faYXeyQT896WGpzp/iUpsUXZLD0vP4rdGGt2CTc1InqE2SUAuAWxhxwAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYEcAAAAAAATEMgBAAAAADABgRwAAAAAABMQyAEAAAAAMIGP2QUAAADkRwFrDqXbfmfwB7lbyPV8vKXOLVX/m9lSSqpLT/n6q+wtslTqnpvOs/ieatlbSDYNP/7HTecZ26W6a51981w2q8nY1kNxUunO2jqzv7yMFIdpS0oOzbHl5jUuj4UHit0Ya3YJkqS6c7ak316sbi5X4ixqVN5YR+7AHnIAAAAAAExAIAcAAAAAwAQEcgAAAAAATOARgXzatGkqW7asAgIC1LBhQ23evNnskgAAAAAAyJY8H8g///xzDRkyRCNGjNCvv/6qmjVrKiYmRqdOnTK7NAAAAAAAsizPB/KJEyeqX79+6tOnj6pVq6aZM2cqKChIH330kdmlAQAAAACQZXk6kCcnJ2vbtm1q06aNvc3Ly0tt2rTRxo0bTawMAAAAAIDsydP3IT9z5oxSU1NVrFgxh/ZixYppz57072eZlJSkpKQk++OLFy9Kks6dOyer1erW+qxWqxISEnT27Fn5+vpmu7/kS8luqCoPSbj5LKmJ7v+bUIKrf2eyeSklIUHJNi/l8b9NIT2Mn2dj/DyCzZb+2Bg2LxkJCbLYvGTJYB53SZSRo/27Is7N79EEW8rNZ8pJNkNKSJBsKZLNtfuQZ1eizYWZEsxdLym2uJvOc/bsWdc6i8+513Ip0aaEhARdSrTJy3BcsSkJN38N+YXLY5HHuJIf8komiM9gu71gNb8+P5PGPzP579KlS5Ikw7jx95jFuNkcJjp27JhKlCihDRs2KDo62t4+dOhQrV27Vr/88ovTc0aOHKnY2Pxzo3gAAAAAgGf6559/VLJkyQyn5+k95EWKFJG3t7dOnjzp0H7y5ElFRkam+5zhw4dryJAh9sc2m03nzp1T4cKFZbFY3FpfXFycSpUqpX/++UehoaFu7Rs5j/HzbIyfZ2P8PBvj59kYP8/G+Hk2xs+zZWb8DMPQpUuXVLx48RvOl6cDuZ+fn+rWravVq1erc+fOkq4G7NWrV+uZZ55J9zn+/v7y9/d3aAsLC8vROkNDQ9mgPBjj59kYP8/G+Hk2xs+zMX6ejfHzbIyfZ3N1/AoWLHjTefJ0IJekIUOGqFevXqpXr54aNGigyZMnKz4+Xn369DG7NAAAAAAAsizPB/IHHnhAp0+f1uuvv64TJ06oVq1aWrZsmdOF3gAAAAAA8CR5PpBL0jPPPJPhIepm8vf314gRI5wOkYdnYPw8G+Pn2Rg/z8b4eTbGz7Mxfp6N8fNsOTF+efoq6wAAAAAA5Ffc/BUAAAAAABMQyAEAAAAAMAGBHAAAAAAAExDIAQAAAAAwAYHcTQ4dOqS+ffuqXLlyCgwMVIUKFTRixAglJyebXRpcNGbMGDVq1EhBQUEKCwszuxzcxLRp01S2bFkFBASoYcOG2rx5s9klwUU//fSTOnbsqOLFi8tisWjJkiVmlwQXjR07VvXr11eBAgVUtGhRde7cWXv37jW7LLhoxowZqlGjhkJDQxUaGqro6GgtXbrU7LKQRePGjZPFYtGgQYPMLgUuGDlypCwWi8NPlSpVzC4LmXD06FE9/PDDKly4sAIDA1W9enVt3bo12/0SyN1kz549stlsev/99/Xnn39q0qRJmjlzpl5++WWzS4OLkpOT1a1bNz311FNml4Kb+PzzzzVkyBCNGDFCv/76q2rWrKmYmBidOnXK7NLggvj4eNWsWVPTpk0zuxRk0tq1azVgwABt2rRJK1eulNVqVbt27RQfH292aXBByZIlNW7cOG3btk1bt25Vq1at1KlTJ/35559ml4ZM2rJli95//33VqFHD7FKQCbfffruOHz9u/1m3bp3ZJcFF58+fV+PGjeXr66ulS5dq165dmjBhggoVKpTtvrntWQ56++23NWPGDB04cMDsUpAJc+bM0aBBg3ThwgWzS0EGGjZsqPr16+u9996TJNlsNpUqVUrPPvushg0bZnJ1yAyLxaKvvvpKnTt3NrsUZMHp06dVtGhRrV27Vs2aNTO7HGRBeHi43n77bfXt29fsUuCiy5cvq06dOpo+fbreeOMN1apVS5MnTza7LNzEyJEjtWTJEm3fvt3sUpAFw4YN0/r16/Xzzz+7vW/2kOegixcvKjw83OwygHwlOTlZ27ZtU5s2bextXl5eatOmjTZu3GhiZcCt5+LFi5LEd50HSk1N1Weffab4+HhFR0ebXQ4yYcCAAbr77rsdvgfhGfbt26fixYurfPnyeuihh3TkyBGzS4KL/vvf/6pevXrq1q2bihYtqtq1a+vDDz90S98E8hzy999/a+rUqXriiSfMLgXIV86cOaPU1FQVK1bMob1YsWI6ceKESVUBtx6bzaZBgwapcePGuuOOO8wuBy76448/FBISIn9/fz355JP66quvVK1aNbPLgos+++wz/frrrxo7dqzZpSCTGjZsqDlz5mjZsmWaMWOGDh48qKZNm+rSpUtmlwYXHDhwQDNmzFClSpW0fPlyPfXUUxo4cKDmzp2b7b4J5DcxbNgwpwswXP+zZ88eh+ccPXpU7du3V7du3dSvXz+TKoeUtfEDANzcgAEDtHPnTn322Wdml4JMqFy5srZv365ffvlFTz31lHr16qVdu3aZXRZc8M8//+i5557T/PnzFRAQYHY5yKQOHTqoW7duqlGjhmJiYvT999/rwoUL+uKLL8wuDS6w2WyqU6eO3nzzTdWuXVv9+/dXv379NHPmzGz37eOG+vK15/+vvXsPqqpq/wD+PYBcD4IIiljghUtoqIBggJMgOlyUQEsZhqupOKWSFxrDG469mqYlmOOFsXDGSSynVBSDiEQRUUFFMUnBQfDCHStRITms3x++7l8nIAG1Lb7fz8yeYa+119rPWfsMzuNarL14MaKiov7xmiFDhkg/3759G15eXnB3d0dSUtJzjo6epKvPj158pqam0NTURHV1tVp5dXU1zM3NZYqK6H/LvHnzcPjwYRw/fhyvvPKK3OFQF2hra8Pa2hoA4OzsjPz8fCQmJmLHjh0yR0ZPcvbsWdTU1MDJyUkqU6lUOH78OLZs2YLm5mZoamrKGCF1hbGxMWxtbVFaWip3KNQJAwYMaLOayN7eHt99991T982E/AnMzMxgZmbWqWtv3boFLy8vODs7Izk5GRoaXIAgt648P+oZtLW14ezsjKysLGkjsNbWVmRlZWHevHnyBkf0khNCYP78+di/fz+ys7MxePBguUOip9Ta2orm5ma5w6BO8Pb2RlFRkVrZjBkz8Nprr2HJkiVMxnuYxsZGXLt2DeHh4XKHQp3g4eHR5jWfV69ehZWV1VP3zYT8Gbl16xY8PT1hZWWFjRs3ora2VqrjrF3PUFFRgYaGBlRUVEClUkm7YFpbW0OpVMobHKlZtGgRIiMjMXr0aLi6uiIhIQH37t3DjBkz5A6NOqGxsVFtRqCsrAyFhYUwMTGBpaWljJHRk8ydOxd79uzBwYMHYWhoKO3bYGRkBD09PZmjoyeJi4uDn58fLC0tcffuXezZswfZ2dnIyMiQOzTqBENDwzb7NRgYGKBv377cx6EHiI2NRUBAAKysrHD79m3Ex8dDU1MTISEhcodGnbBw4UK4u7tj7dq1mD59Os6cOYOkpKRnsiKaCfkzkpmZidLSUpSWlrZZvsc3y/UMK1euVNuYwdHREQBw9OhReHp6yhQVtSc4OBi1tbVYuXIlqqqqMGrUKKSnp7fZ6I1eTAUFBfDy8pLOFy1aBACIjIzErl27ZIqKOmPbtm0A0OZ3YnJy8hP/PIjkV1NTg4iICFRWVsLIyAgjRoxARkYGJk6cKHdoRC+9mzdvIiQkBPX19TAzM8PYsWNx6tQpruTsIVxcXLB//37ExcVh9erVGDx4MBISEhAaGvrUffM95EREREREREQy4B85ExEREREREcmACTkRERERERGRDJiQExEREREREcmACTkRERERERGRDJiQExEREREREcmACTkRERERERGRDJiQExEREREREcmACTkRERERERGRDJiQExER/ZdCocCBAwfkDkMWnp6eWLBggXQ+aNAgJCQkPNd7PqvxXrFiBaKjo58+oBdQeno6Ro0ahdbWVrlDISKi54AJORERvXCioqKgUCigUCigra0Na2trrF69Gi0tLc/1vpWVlfDz8+t2++vXr0OhUKBfv364e/euWt2oUaOwatWqp4zw35Ofn98jktyqqiokJiZi2bJlAIDs7Gzpu9Pe4eXlJXPEXePr64tevXrh66+/ljsUIiJ6DpiQExHRC8nX1xeVlZUoKSnB4sWLsWrVKmzYsKHda//8889nck9zc3Po6Og8dT93797Fxo0bn0FE/0+lUv2rs6RmZmbQ19f/1+7XXTt37oS7uzusrKwAAO7u7qisrGxz7NixAwqFAu+//77MET/SlecZFRWFzZs3P+eIiIhIDkzIiYjohaSjowNzc3NYWVnhvffew4QJE5CamgrgUYISFBSENWvWwMLCAnZ2dgCAGzduYPr06TA2NoaJiQkCAwNx/fp1tX6/+uorDB8+HDo6OhgwYADmzZsn1f19CXVRURHGjx8PPT099O3bF9HR0WhsbHxi7PPnz8fnn3+OmpqaDq+5c+cOIiIi0KdPH+jr68PPzw8lJSVS/a5du2BsbIzU1FQMGzYMOjo6qKiowKBBg/Cf//wHERERUCqVsLKyQmpqKmpraxEYGAilUokRI0agoKBA6qu+vh4hISEYOHAg9PX14eDggJSUlH/8DH9dsr5r1652Z5sfz/jn5+dj4sSJMDU1hZGREcaNG4dz586p9VdSUoI333wTurq6GDZsGDIzM9vcszvjvXfvXgQEBEjn2traMDc3Vzvu3LmD2NhYLF26FNOmTeuwr+zsbLi6usLAwADGxsbw8PBAeXm5VH/o0CG4uLhAV1cXpqammDJlilTX3efZ3NyM2NhYDBw4EAYGBhgzZgyys7PV4goICEBBQQGuXbv2j2NBREQ9DxNyIiLqEfT09NRmwrOysnDlyhVkZmbi8OHDePjwIXx8fGBoaIicnBzk5uZCqVTC19dXardt2zbMnTsX0dHRKCoqQmpqKqytrdu937179+Dj44M+ffogPz8f+/btw08//aSWwHckJCREWmbfkaioKBQUFCA1NRV5eXkQQsDf3x8PHz6Urrl//z7Wr1+PnTt34pdffkG/fv0AAJs2bYKHhwfOnz+PSZMmITw8HBEREQgLC8O5c+cwdOhQREREQAgBAGhqaoKzszPS0tJw6dIlREdHIzw8HGfOnHnywAMIDg5Wm21OSUmBlpYWPDw8ADxaERAZGYkTJ07g1KlTsLGxgb+/v7Rsv7W1FVOnToW2tjZOnz6N7du3Y8mSJU893g0NDbh8+TJGjx7d4TW//fYbAgMD4enpiY8//rjD61paWhAUFIRx48bh4sWLyMvLQ3R0NBQKBQAgLS0NU6ZMgb+/P86fP4+srCy4urpK7bv7POfNm4e8vDzs3bsXFy9exLRp0+Dr66uWzFtaWqJ///7IycnpMH4iIuqhBBER0QsmMjJSBAYGCiGEaG1tFZmZmUJHR0fExsZK9f379xfNzc1Sm927dws7OzvR2toqlTU3Nws9PT2RkZEhhBDCwsJCLFu2rMP7AhD79+8XQgiRlJQk+vTpIxobG6X6tLQ0oaGhIaqqqtptX1ZWJgCI8+fPi/T0dNGrVy9RWloqhBBi5MiRIj4+XgghxNWrVwUAkZubK7Wtq6sTenp64ttvvxVCCJGcnCwAiMLCQrV7WFlZibCwMOm8srJSABArVqyQyvLy8gQAUVlZ2eFnnTRpkli8eLF0Pm7cOPHBBx+o3WfTpk1t2pWWlgoTExPx6aefdti3SqUShoaG4tChQ0IIITIyMoSWlpa4deuWdM0PP/zw1ON9/vx5AUBUVFR0GIefn5+wt7cXf/zxR4fxCiFEfX29ACCys7PbrXdzcxOhoaHt1nX3eZaXlwtNTU21cRFCCG9vbxEXF6dW5ujoKFatWvWPn4GIiHoezpATEdEL6fDhw1AqldDV1YWfnx+Cg4PVNkVzcHCAtra2dH7hwgWUlpbC0NAQSqUSSqUSJiYmaGpqwrVr11BTU4Pbt2/D29u7U/cvLi7GyJEjYWBgIJV5eHigtbUVV65ceWJ7Hx8fjB07FitWrGi3by0tLYwZM0Yq69u3L+zs7FBcXCyVaWtrY8SIEW3a/7Wsf//+AB6Nx9/LHi+ZV6lU+Pjjj+Hg4AATExMolUpkZGSgoqLiiZ/jr37//XdMnjwZkyZNwocffiiVV1dXY/bs2bCxsYGRkRF69+6NxsZGqf/i4mK8+uqrsLCwkNq4ubm1GZOujveDBw8AALq6uu3WL126FHl5eTh48CAMDQ2l8oqKCuk7olQqsXbtWpiYmCAqKgo+Pj4ICAhAYmIiKisrpTaFhYUdfne6+zyLioqgUqlga2urFs+xY8faLE/X09PD/fv3270/ERH1XFpyB0BERNQeLy8vbNu2Ddra2rCwsICWlvo/WX9N3ACgsbERzs7O7e5GbWZmBg2Nf///oNetWwc3Nze15LUr9PT0pCXTf9WrVy/p58f17ZU93jRsw4YNSExMREJCAhwcHGBgYIAFCxZ0aTM8lUqF4OBg9O7dG0lJSWp1kZGRqK+vR2JiIqysrKCjowM3N7dnttleR0xNTQE8+vttMzMztbq9e/di48aNSEtLg42NjVqdhYUFCgsLpXMTExMAQHJyMmJiYpCeno5vvvkGy5cvR2ZmJt544w3o6ek9dbx/f56NjY3Q1NTE2bNnoampqXatUqlUO29oaGjzGYmIqOfjDDkREb2QDAwMYG1tDUtLyzbJeHucnJxQUlKCfv36wdraWu0wMjKCoaEhBg0ahKysrE7d397eHhcuXMC9e/ekstzcXGhoaEibyD2Jq6srpk6dio8++qhN3y0tLTh9+rRUVl9fjytXrmDYsGGd6rsrcnNzERgYiLCwMIwcORJDhgzB1atXu9THwoULUVRUhAMHDrSZkc7NzUVMTAz8/f2lDfPq6uqkent7e9y4cUNtxvnUqVNqfXRnvIcOHYrevXvj8uXLauWFhYWYOXMm1q1bBx8fnzbttLS01L4fjxNyAHB0dERcXBxOnjyJ119/HXv27AHwaFVCR9+d7j5PR0dHqFQq1NTUtPnOmpubS9c9XuXh6OjYYV9ERNQzMSEnIqKXQmhoKExNTREYGIicnByUlZUhOzsbMTExuHnzJgBg1apV+Oyzz7B582aUlJTg3Llz+OKLLzrsT1dXF5GRkbh06RKOHj2K+fPnIzw8XFoS3hlr1qzBzz//rLbs2sbGBoGBgZg9ezZOnDiBCxcuICwsDAMHDkRgYODTDUQ7bGxskJmZiZMnT6K4uBhz5sxBdXV1p9snJydj69at2L59OxQKBaqqqlBVVSXtgG5jY4Pdu3ejuLgYp0+fRmhoqNqM8oQJE2Bra4vIyEhcuHABOTk50nvDH+vOeGtoaGDChAk4ceKEVFZXV4egoCB4enoiLCxMivXxUVtb225fZWVliIuLQ15eHsrLy/Hjjz+ipKQE9vb2AID4+HikpKQgPj4excXFKCoqwvr166XP353naWtri9DQUEREROD7779HWVkZzpw5g08++QRpaWnSdadOnZJWHRAR0cuFCTkREb0U9PX1cfz4cVhaWmLq1Kmwt7fHzJkz0dTUhN69ewN4tLQ6ISEBW7duxfDhwzF58mS13az/3l9GRgYaGhrg4uKCd955B97e3tiyZUuX4rK1tcW7776LpqYmtfLk5GQ4Oztj8uTJcHNzgxACR44cUVt6/qwsX74cTk5O8PHxgaenJ8zNzREUFNTp9seOHYNKpcJbb72FAQMGSMfjd61/+eWXuHPnDpycnBAeHo6YmBhpR3jgUeK8f/9+PHjwAK6urpg1axbWrFmjdo/ujvesWbOwd+9eaXl+WloaysvLceTIEbVYHx8uLi7t9qOvr49ff/0Vb7/9NmxtbREdHY25c+dizpw5AABPT0/s27cPqampGDVqFMaPH6+2S313n2dycjIiIiKwePFi2NnZISgoCPn5+bC0tJSuSUlJQWhoaI94LzwREXWNQoj/vhOFiIiIqIcRQmDMmDFYuHAhQkJC5A7nmaurq4OdnR0KCgowePBgucMhIqJnjDPkRERE1GMpFAokJSWhpaVF7lCei+vXr2Pr1q1MxomIXlKcISciIiIiIiKSAWfIiYiIiIiIiGTAhJyIiIiIiIhIBkzIiYiIiIiIiGTAhJyIiIiIiIhIBkzIiYiIiIiIiGTAhJyIiIiIiIhIBkzIiYiIiIiIiGTAhJyIiIiIiIhIBkzIiYiIiIiIiGTwfz0W200ozP43AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# TODO" + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from scipy.stats import zscore\n", + "\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "poblaciones_cinturon_sur = [\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"]\n", + "\n", + "ds_cinturon_sur = ds[ds['level5'].isin(poblaciones_cinturon_sur)]\n", + "\n", + "# precios usando Z-score\n", + "ds_cinturon_sur['normalized_price'] = ds_cinturon_sur.groupby('level5')['price'].transform(zscore)\n", + "\n", + "# Gráfico\n", + "plt.figure(figsize=(12, 8))\n", + "\n", + "# Histograma de cada población\n", + "for poblacion in poblaciones_cinturon_sur:\n", + " subset = ds_cinturon_sur[ds_cinturon_sur['level5'] == poblacion]\n", + " plt.hist(subset['normalized_price'], bins=20, alpha=0.6, label=poblacion)\n", + "\n", + "# Título y etiquetas\n", + "plt.title('Histogramas Normalizados de Precios por Población en el Cinturón Sur de Madrid')\n", + "plt.xlabel('Precio Normalizado (Z-score)')\n", + "plt.ylabel('Frecuencia')\n", + "plt.legend(loc='upper right')\n", + "plt.grid(True)\n", + "\n", + "# Mostrar el gráfico\n", + "plt.show()\n" ] }, { @@ -855,7 +1338,7 @@ "id": "precise-heavy", "metadata": {}, "source": [ - "**TODO: Markdown**. Para escribir aquí, haz doble clic en esta celda, elimina este contenido y coloca lo que quieras escribir. Luego ejecuta la celda." + "El gráfico muestra la distribución normalizada de los precios de las propiedades en las poblaciones de Fuenlabrada, Leganés, Getafe, y Alcorcón. Al normalizar los precios, podemos comparar las variaciones dentro de cada población sin que el efecto de las diferencias en los valores absolutos distorsione la comparación." ] }, { @@ -871,12 +1354,50 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "id": "initial-liverpool", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "El precio promedio por metro cuadrado en Getafe es de 2066.31 USD/m²\n", + "El precio promedio por metro cuadrado en Alcorcón es de 2239.30 USD/m²\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_622/1254672352.py:10: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " ds_cinturon_sur['pps'] = ds_cinturon_sur['price'] / ds_cinturon_sur['surface']\n" + ] + } + ], "source": [ - "# TODO" + "import pandas as pd\n", + "\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "poblaciones_cinturon_sur = [\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"]\n", + "\n", + "ds_cinturon_sur = ds[ds['level5'].isin(poblaciones_cinturon_sur)]\n", + "\n", + "#price per square metros2\n", + "ds_cinturon_sur['pps'] = ds_cinturon_sur['price'] / ds_cinturon_sur['surface']\n", + "\n", + "# Calcular la media del precio por metro cuadrado\n", + "pps_getafe = ds_cinturon_sur[ds_cinturon_sur['level5'] == \"Getafe\"]['pps'].mean()\n", + "pps_alcorcon = ds_cinturon_sur[ds_cinturon_sur['level5'] == \"Alcorcón\"]['pps'].mean()\n", + "\n", + "# Resultados\n", + "print(f\"El precio promedio por metro cuadrado en Getafe es de {pps_getafe:.2f} USD/m²\")\n", + "print(f\"El precio promedio por metro cuadrado en Alcorcón es de {pps_alcorcon:.2f} USD/m²\")\n" ] }, { @@ -891,12 +1412,67 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "id": "accepting-airfare", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_622/2267956501.py:11: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " ds_cinturon_sur['pps'] = ds_cinturon_sur['price'] / ds_cinturon_sur['surface']\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAASmCAYAAACN2ZLOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU5fn/8U8mC5CEDBAJQxYiIYadMFKXKGpKhLSmWJVSFgX8IiqIIpsgShVZhCqIIAq1uFICEZdfVdQAwdCmYqU6qQpfEyMKQgg7CQmQbeb3B9+MDAmQwExmJvN+XZdXmfOcnHOfPFrOPfez+NlsNpsAAAAAAAAAAAC8gMHdAQAAAAAAAAAAANQXhQ0AAAAAAAAAAOA1KGwAAAAAAAAAAACvQWEDAAAAAAAAAAB4DQobAAAAAAAAAADAa1DYAAAAAAAAAAAAXoPCBgAAAAAAAAAA8BoUNgAAAAAAAAAAgNegsAEAAAAAAAA40T/+8Q/Nnj1bxcXF7g4FAJokChsAAI8wa9Ys+fn5XdTPXn755frd737n5Iga5vXXX5efn59++uknt8YBAAAAwL127dql2267TS1btpTRaHR3OADQJFHYAAAfUvPle13/PProo+4ODwAAAICPqclR/vOf/7g7FKeorKzUkCFDdPfdd2vSpEnuDgcAmqwAdwcAAGh8s2fPVseOHR2O9ejRw03RAAAAAEDTsH37dg0dOlQPP/ywu0MBgCaNwgYA+KDf/va3+tWvfuXuMDxCWVmZQkJC3B0GAAAAgCagd+/e6t27t7vDAIAmj6WoAAB2fn5+mjVrVq3jl19+ue6++26HY8eOHdPEiRMVExOjZs2aKT4+Xn/+859ltVrt5/z000/y8/PTwoUL9fLLL6tTp05q1qyZrrrqKm3btu2C8bz22mvq16+fIiIi1KxZM3Xr1k3Lly8/5/kbNmxQ79691bx5c3Xr1k3vvvuuQ3vNNPctW7bogQceUEREhKKjoyWdXgf3gQceUOfOndWiRQuFh4dr8ODBde6ZsX37dvXr108tWrRQdHS05s6d6/DcNf7+978rLS1NkZGRatasmTp16qQ5c+aourr6gs8OAAAA4LS9e/dq9OjRateunZo1a6bu3bvr1VdfrXXerl27dOuttyokJEQRERGaNGmSMjMz5efnp+zsbPt5//znPzV48GB16NBBzZo1U0xMjCZNmqSTJ086XO/uu+9WaGio9u7dq9tuu02hoaFq27atpk6dWuud3mq16vnnn1f37t3VvHlztWvXTvfff7+OHj3qcN5//vMfpaam6rLLLlOLFi3UsWNHjR492nm/LADwEczYAAAfVFxcrEOHDjkcu+yyy+r98ydOnNBNN92kvXv36v7771eHDh302WefacaMGdq3b5+ef/55h/PT09N1/Phx3X///fLz89MzzzyjO+64Qzt37lRgYOA577N8+XJ1795dt956qwICAvTBBx/ogQcekNVq1fjx4x3O/f777zVkyBCNHTtWo0aN0muvvabBgwfrk08+Uf/+/R3OfeCBB9S2bVs98cQTKisrkyRt27ZNn332mYYOHaro6Gj99NNPWr58uZKTk7Vjxw4FBwdLkoqKivTrX/9aVVVVevTRRxUSEqKXX35ZLVq0qBX/66+/rtDQUE2ePFmhoaHavHmznnjiCZWUlOjZZ5+t9+8bAAAA8FX79+/XtddeKz8/Pz344INq27atPv74Y91zzz0qKSnRxIkTJZ2eid2vXz/t27dPDz/8sEwmk9LT0/Xpp5/Wuua6det04sQJjRs3TuHh4friiy/0wgsvaM+ePVq3bp3DudXV1UpNTdU111yjhQsXatOmTVq0aJE6deqkcePG2c+7//779frrr+t//ud/NGHCBP34449atmyZLBaL/vWvfykwMFAHDhzQgAED1LZtWz366KNq1aqVfvrpp1oDsgAA9WADAPiM1157zSapzn9sNptNku3JJ5+s9XOxsbG2UaNG2T/PmTPHFhISYsvPz3c479FHH7X5+/vbdu/ebbPZbLYff/zRJskWHh5uO3LkiP28v//97zZJtg8++MB+7Mknn7Sd/dfSiRMnasWSmppqi4uLqxWfJNs777xjP1ZcXGxr3769zWw213r+vn372qqqqi54r61bt9ok2d588037sYkTJ9ok2f7973/bjx04cMBmNBptkmw//vjjea95//3324KDg22nTp2q1QYAAAD4mpp39G3bttXZfs8999jat29vO3TokMPxoUOH2oxGo/2de9GiRTZJtv/3//6f/ZyTJ0/aunTpYpNk+/TTT+3H63pPnz9/vs3Pz8+2a9cu+7FRo0bZJNlmz57tcK7ZbLb16dPH/vmf//ynTZJt9erVDud98sknDsffe++98z4rAKD+WIoKAHzQiy++qI0bNzr80xDr1q3TDTfcoNatW+vQoUP2f26++WZVV1frH//4h8P5Q4YMUevWre2fb7jhBknSzp07z3ufM2dB1Mwyuemmm7Rz504VFxc7nBsZGanbb7/d/jksLEwjR46UxWJRUVGRw7n33nuv/P39z3mvyspKHT58WPHx8WrVqpW++uore9tHH32ka6+9VldffbX9WNu2bXXnnXeeN/7jx4/r0KFDuuGGG3TixAl999135312AAAAwNfZbDa98847GjhwoGw2m0PukZqaquLiYvu7+ieffKKoqCjdeuut9p9v3ry57r333lrXPfM9vaysTIcOHdJ1110nm80mi8VS6/yxY8c6fL7hhhsccpl169bJaDSqf//+DjH26dNHoaGh9lkjrVq1kiR9+OGHqqysvPhfDACApagAwBddffXVl7R5+Pfff6+vv/5abdu2rbP9wIEDDp87dOjg8LmmyHH2erNn+9e//qUnn3xSW7du1YkTJxzaiouLZTQa7Z/j4+Pl5+fncE5CQoKk03t9mEwm+/GOHTvWutfJkyc1f/58vfbaa9q7d69sNpvDvWrs2rVL11xzTa2f79y5c61j27dv18yZM7V582aVlJTUih8AAADAuR08eFDHjh3Tyy+/rJdffrnOc2pyj127dqlTp061coL4+PhaP7N792498cQTev/992vlJGe/pzdv3rxW3tO6dWuHn/v+++9VXFysiIiI88Z40003adCgQXrqqae0ePFiJScn67bbbtPw4cPVrFmzOn8WAFA3ChsAgAuqa2O8/v37a9q0aXWeX1NQqHH27IgaZxYPzvbDDz8oJSVFXbp00XPPPaeYmBgFBQXpo48+0uLFi+vcrLu+6toP46GHHtJrr72miRMnKikpSUajUX5+fho6dOhF3evYsWO66aabFBYWptmzZ6tTp05q3ry5vvrqK02fPv2S4gcAAAB8Qc0781133aVRo0bVeU6vXr0adM3q6mr1799fR44c0fTp09WlSxeFhIRo7969uvvuu2u9p58rlzk7zoiICK1evbrO9prCiJ+fn95++219/vnn+uCDD5SZmanRo0dr0aJF+vzzzxUaGtqgZwEAX0ZhAwBg17p1ax07dszhWEVFhfbt2+dwrFOnTiotLdXNN9/sslg++OADlZeX6/3333eY8VHX5n+SVFBQIJvN5jBCKz8/X5J0+eWXX/B+b7/9tkaNGqVFixbZj506darW7yM2Nlbff/99rZ/Py8tz+Jydna3Dhw/r3Xff1Y033mg//uOPP14wFgAAAACnCwItW7ZUdXX1BXOP2NhY7dixo1ZOUFBQ4HDeN998o/z8fL3xxhsaOXKk/XhDl+c9U6dOnbRp0yZdf/31dQ6iOtu1116ra6+9VvPmzVN6erruvPNOrV27VmPGjLnoGADA17DHBgDArlOnTrX2x3j55Zdrzdj44x//qK1btyozM7PWNY4dO6aqqqpLjqVmZNTZS0K99tprdZ5fWFio9957z/65pKREb775pnr37u2wDNX57nf2DJIXXnih1rPfcsst+vzzz/XFF1/Yjx08eLDW6Ky64q+oqNBLL710wVgAAAAAnH6nHjRokN555x19++23tdoPHjxo/3Nqaqr27t2r999/337s1KlT+utf/1rrmpLje7rNZtOSJUsuOs4//vGPqq6u1pw5c2q1VVVV2QdLHT16tFbO0bt3b0lSeXn5Rd8fAHwRMzYAAHZjxozR2LFjNWjQIPXv31///e9/lZmZqcsuu8zhvEceeUTvv/++fve73+nuu+9Wnz59VFZWpm+++UZvv/22fvrpp1o/01ADBgxQUFCQBg4cqPvvv1+lpaX661//qoiIiFozSKTTy1/dc8892rZtm9q1a6dXX31V+/fvP2ch5Gy/+93vtGrVKhmNRnXr1k1bt27Vpk2bFB4e7nDetGnTtGrVKv3mN7/Rww8/rJCQEL388suKjY3V119/bT/vuuuuU+vWrTVq1ChNmDBBfn5+WrVq1XmX3wIAAAB81auvvqpPPvmk1vFZs2bp008/1TXXXKN7771X3bp105EjR/TVV19p06ZNOnLkiCTp/vvv17JlyzRs2DA9/PDDat++vVavXq3mzZtLkn0WR5cuXdSpUydNnTpVe/fuVVhYmN55550L7v93PjfddJPuv/9+zZ8/X7m5uRowYIACAwP1/fffa926dVqyZIn+8Ic/6I033tBLL72k22+/XZ06ddLx48f117/+VWFhYbrlllsu+v4A4IsobAAA7O699179+OOPeuWVV/TJJ5/ohhtu0MaNG5WSkuJwXnBwsLZs2aKnn35a69at05tvvqmwsDAlJCToqaeectjU+2J17txZb7/9tmbOnKmpU6fKZDJp3Lhxatu2rUaPHl3r/CuuuEIvvPCCHnnkEeXl5aljx47KyMhQampqve63ZMkS+fv7a/Xq1Tp16pSuv/56bdq0qdbPt2/fXp9++qkeeughLViwQOHh4Ro7dqwiIyN1zz332M8LDw/Xhx9+qClTpmjmzJlq3bq17rrrLqWkpNQ7JgAAAMBXLF++vM7jd999t7744gvNnj1b7777rl566SWFh4ere/fu+vOf/2w/LzQ0VJs3b9ZDDz2kJUuWKDQ0VCNHjtR1112nQYMG2QscgYGB+uCDDzRhwgTNnz9fzZs31+23364HH3xQiYmJFx3/ihUr1KdPH/3lL3/RY489poCAAF1++eW66667dP3110s6XQD54osvtHbtWu3fv19Go1FXX321Vq9erY4dO170vQHAF/nZGDoKAAAAAACAJuj555/XpEmTtGfPHkVFRbk7HACAk1DYAAAAAAAAgNc7efKkw+bdp06dktlsVnV1tfLz890YGQDA2ViKCgAAAAAAAF7vjjvuUIcOHdS7d28VFxfrb3/7m7777jutXr3a3aEBAJyMwgYAAAAAAAC8XmpqqlauXKnVq1erurpa3bp109q1azVkyBB3hwYAcDKWogIAAAAAAAAAAF7D4O4AAAAAAAAAAAAA6ovCBgAAAAAAAAAA8BoUNgAAAAAAAAAAgNdg8/B6sFqtKiwsVMuWLeXn5+fucAAAAAC3s9lsOn78uCIjI2UwMF6qocgxAAAAAEcNyTEobNRDYWGhYmJi3B0GAAAA4HF+/vlnRUdHuzsMr0OOAQAAANStPjkGhY16aNmypaTTv9CwsDC3xFBZWakNGzZowIABCgwMdEsMcD362TfQz76DvvYN9LNvoJ9rKykpUUxMjP1dGQ3jCTmGK/HfjOehTzwPfeJZ6A/PQ594HvrEszTF/mhIjkFhox5qpoaHhYW5tbARHByssLCwJvMvKmqjn30D/ew76GvfQD/7Bvr53FhG6eJ4Qo7hSvw343noE89Dn3gW+sPz0Ceehz7xLE25P+qTY7AYLgAAAAAAAAAA8BoUNgAAAAAAAAAAgNfwmMLGggUL5Ofnp4kTJ9qPnTp1SuPHj1d4eLhCQ0M1aNAg7d+/3+Hndu/erbS0NAUHBysiIkKPPPKIqqqqHM7Jzs7WlVdeqWbNmik+Pl6vv/56IzwRAAAAAAAAAABwNo8obGzbtk1/+ctf1KtXL4fjkyZN0gcffKB169Zpy5YtKiws1B133GFvr66uVlpamioqKvTZZ5/pjTfe0Ouvv64nnnjCfs6PP/6otLQ0/frXv1Zubq4mTpyoMWPGKDMzs9GeDwAAAAAAAAAAOIfbCxulpaW688479de//lWtW7e2Hy8uLtYrr7yi5557Tv369VOfPn302muv6bPPPtPnn38uSdqwYYN27Nihv/3tb+rdu7d++9vfas6cOXrxxRdVUVEhSVqxYoU6duyoRYsWqWvXrnrwwQf1hz/8QYsXL3bL8wIAAAAAAAAAgIvn9sLG+PHjlZaWpptvvtnh+JdffqnKykqH4126dFGHDh20detWSdLWrVvVs2dPtWvXzn5OamqqSkpKtH37dvs5Z187NTXVfg0AAAAAAAAAAOA9Atx587Vr1+qrr77Stm3barUVFRUpKChIrVq1cjjerl07FRUV2c85s6hR017Tdr5zSkpKdPLkSbVo0aLWvcvLy1VeXm7/XFJSIkmqrKxUZWVlA5/SOWru6677o3HQz76BfvYd9LVvoJ99A/1cG78LAAAAAO7itsLGzz//rIcfflgbN25U8+bN3RVGnebPn6+nnnqq1vENGzYoODjYDRH9YuPGjW69PxoH/ewb6GffQV/7BvrZN9DPvzhx4oS7QwAAAADgo9xW2Pjyyy914MABXXnllfZj1dXV+sc//qFly5YpMzNTFRUVOnbsmMOsjf3798tkMkmSTCaTvvjiC4fr7t+/395W8781x848JywsrM7ZGpI0Y8YMTZ482f65pKREMTExGjBggMLCwi7+oS9BZWWlNm7cqP79+yswMNAtMcD16GffQD/7DvraN9DPvoF+rq1mVjMAAAAANDa3FTZSUlL0zTffOBz7n//5H3Xp0kXTp09XTEyMAgMDlZWVpUGDBkmS8vLytHv3biUlJUmSkpKSNG/ePB04cEARERGSTo+iCwsLU7du3eznfPTRRw732bhxo/0adWnWrJmaNWtW63hgYKDbE1lPiAGuRz/7BvrZd9DXvoF+9g308y/4PQAAAABwF7cVNlq2bKkePXo4HAsJCVF4eLj9+D333KPJkyerTZs2CgsL00MPPaSkpCRde+21kqQBAwaoW7duGjFihJ555hkVFRVp5syZGj9+vL0wMXbsWC1btkzTpk3T6NGjtXnzZr311ltav3594z4wAAAAAAAAAAC4ZG7dPPxCFi9eLIPBoEGDBqm8vFypqal66aWX7O3+/v768MMPNW7cOCUlJSkkJESjRo3S7Nmz7ed07NhR69ev16RJk7RkyRJFR0dr5cqVSk1NdccjAQAAAAAAAACAS+BRhY3s7GyHz82bN9eLL76oF1988Zw/ExsbW2upqbMlJyfLYrE4I0QAAAAAAAAAAOBGBncHAAAAAAAAAAAAUF8UNgAAAAAAAAAAgNfwqKWogKbOarWqoKBAxcXFMhqNio+Pl8FAfREAAACA9yG/AQAA7kJhA2gkFotFb6avVd6uQlVUWhUUaFDn2EiNHD5UZrPZ3eEBAAAAQL2R3wAAAHdiKAXQCCwWi+YuXKodxQGKTR4u89DJik0erh3FAZq7cCmb2wMAAADwGuQ3AADA3ShsAC5mtVr1ZvpalYZEypw6RK1M0QoIDFIrU7TMqUNUGhKpVekZslqt7g4VAADAqy1fvly9evVSWFiYwsLClJSUpI8//tjenpycLD8/P4d/xo4d63CN3bt3Ky0tTcHBwYqIiNAjjzyiqqoqh3Oys7N15ZVXqlmzZoqPj9frr7/eGI8HeATyGwAA4AkobAAuVlBQoLxdhYrr3Vd+fn4ObX5+forr3Vff7dqrgoICN0UIAADQNERHR2vBggX68ssv9Z///Ef9+vXT73//e23fvt1+zr333qt9+/bZ/3nmmWfsbdXV1UpLS1NFRYU+++wzvfHGG3r99df1xBNP2M/58ccflZaWpl//+tfKzc3VxIkTNWbMGGVmZjbqswLuQn4DAAA8AXtsAC5WXFysikqrQsMj6mwPbdNWFZVWFRcXN3JkAAAATcvAgQMdPs+bN0/Lly/X559/ru7du0uSgoODZTKZ6vz5DRs2aMeOHdq0aZPatWun3r17a86cOZo+fbpmzZqloKAgrVixQh07dtSiRYskSV27dlVOTo4WL16s1NRU1z4g4AHIbwAAgCdgxgbgYkajUUGBBpUePlBne+mRgwoKNMhoNDZyZAAAAE1XdXW11q5dq7KyMiUlJdmPr169Wpdddpl69OihGTNm6MSJE/a2rVu3qmfPnmrXrp39WGpqqkpKSuyzPrZu3aqbb77Z4V6pqanaunWri5+oabFarcrPz9e2bduUn5/PskVehPwGAAB4AmZsAC4WHx+vzrGR2pGbI3PqEIfp2jabTTtzc9Q9Nkrx8fGqrq52Y6QAAADe75tvvlFSUpJOnTql0NBQvffee+rWrZskafjw4YqNjVVkZKS+/vprTZ8+XXl5eXr33XclSUVFRQ5FDUn2z0VFRec9p6SkRCdPnlSLFi3qjKu8vFzl5eX2zyUlJZKkyspKVVZWOuHJPUvNM9X1bF9//bXWrHtH3+/ep4oqq4ICDLqiQ3sNGzxIvXr1auxQfcb5+qQhYmNj1S0uRt99+5natBtUK7/5+dvP1D2ug2JjY5vkv9vO5Kw+gXPQH56HPvE89IlnaYr90ZBnobABuJjBYNDI4UM1d+FSWTIzFNe7r0LbtFXpkYPamZujlicKNWLcBBkMBgobAAAAl6hz587Kzc1VcXGx3n77bY0aNUpbtmxRt27ddN9999nP69mzp9q3b6+UlBT98MMP6tSpk0vjmj9/vp566qlaxzds2KDg4GCX3tudNm7cWOfxG5Ku0Q1Jjsf27NmjPXv2NEJUvu1cfdIQNyRdoxskSbtqtV2d+itJ0ieffHLJ9/EVzugTOA/94XnoE89Dn3iWptQfZ86mvhAKG0AjMJvNmjl1gt5MX6u87HRVVFoVFGhQ99gojRg3QWaz2d0hAgAANAlBQUGKj4+XJPXp00fbtm3TkiVL9Je//KXWuddcc42k05shd+rUSSaTSV988YXDOfv375ck+74cJpPJfuzMc8LCws45W0OSZsyYocmTJ9s/l5SUKCYmRgMGDFBYWNhFPKlnq6ys1MaNG9W/f38FBgZKOr381ONPPqXvSvyVmFJ7pP9/s95R1zCr5j71hAyGprdqsrtnqtTVJ5eirudJ6BCpoYPvYOZNPTm7T3Bp6A/PQ594HvrEszTF/qiZ1VwfFDaARmI2m5WYmKiCggIVFxfLaDQqPj6+SSZtAAAAnsJqtTosAXWm3NxcSVL79u0lSUlJSZo3b54OHDigiIjTGyNv3LhRYWFh9uWskpKS9NFHHzlcZ+PGjQ77eNSlWbNmatasWa3jgYGBTSYRrcuZz5efn68dO39WbPJwWf38HU/0k2J6XKft2enatWuXEhIS3BCt61gsFj393DKVhkQqru8fFRoeodLDB/RNbo5+fG6ZZk5tvMFOzvp3rk+fPjKbzeQ3TtDU/3/A29Afnoc+8Tz0iWdpSv3RkOegsAE0IoPB0OSSNAAAAE8xY8YM/fa3v1WHDh10/PhxpaenKzs7W5mZmfrhhx+Unp6uW265ReHh4fr66681adIk3XjjjfbR5QMGDFC3bt00YsQIPfPMMyoqKtLMmTM1fvx4e1Fi7NixWrZsmaZNm6bRo0dr8+bNeuutt7R+/Xp3PrpXKC4uVkWlVaHhEXW2h7Zpq4pKq4qLixs5MteyWq16M32tSkMiHfbca2WKljl1iCyZGVqVnqHExESvKwqQ3wAAAHfxrrcmAAAAADiHAwcOaOTIkercubNSUlK0bds2ZWZmqn///goKCtKmTZs0YMAAdenSRVOmTNGgQYP0wQcf2H/e399fH374ofz9/ZWUlKS77rpLI0eO1OzZs+3ndOzYUevXr9fGjRuVmJioRYsWaeXKlUpNTXXHI3sVo9GooECDSg8fqLO99MhBBQUaZDQaGzky1yooKFDerkLF9e7rsPyWJPn5+Smud199t2uvCgoK3BQhAACA92HGBgAAAIAm4ZVXXjlnW0xMjLZs2XLBa8TGxtZaaupsycnJslgsDY7P18XHx6tzbKR25OY4zFyQTu+xsTM3R91jo+x7pDQVvjpTBQAAwJWYsQEAAAAAcDmDwaCRw4cqtKxQlswMHSvao6qKch0r2iNLZoZanijUiOFDvG45pgvx1ZkqAAAArtS03hgBAAAAAB7LbDZr5tQJ6mas0q7sdFkyFmtXdrq6G6v1+JTG20C7MdXMVNmZmyObzebQVjNTpUsTnKkCAADgSixFBQAAAABoNGazWYmJiSooKFBxcbGMRqPi4+Ob3EyNGjUzVeYuXCpLZobievdVaJu2Kj1yUDtzc07PVBk3ock+PwAAgCtQ2AAAAAAANCqDwaCEhAR3h9FoamaqvJm+VnnZ6aqotCoo0KDusVEaMa5pzlQBAABwJQobAAAAAAC4mK/NVAEAAHAlChsAAAAAADQCX5upAgAA4CoMDQEAAAAAAAAAAF6DwgYAAAAAAAAAAPAaFDYAAAAAAAAAAIDXoLABAAAAAAAAAAC8BoUNAAAAAAAAAADgNShsAAAAAAAAAAAAr0FhAwAAAAAAAAAAeA0KGwAAAAAAAAAAwGtQ2AAAAAAAAAAAAF6DwgYAAAAAAAAAAPAaFDYAAAAAAAAAAIDXoLABAAAAAAAAAAC8BoUNAAAAAAAAAADgNShsAAAAAAAAAAAAr0FhAwAAAAAAAAAAeA0KGwAAAAAAAAAAwGtQ2AAAAAAAAAAAAF6DwgYAAAAAAAAAAPAaFDYAAAAAAAAAAIDXoLABAAAAAAAAAAC8BoUNAAAAAAAAAADgNShsAAAAAAAAAAAAr0FhAwAAAAAAAAAAeA0KGwAAAAAAAAAAwGtQ2AAAAAAAAAAAAF6DwgYAAAAAAAAAAPAaFDYAAAAAAAAAAIDXoLABAAAAAAAAAAC8BoUNAAAAAAAAAADgNShsAAAAAAAAAAAAr0FhAwAAAAAAAAAAeA0KGwAAAAAAAAAAwGsEuDsAAAAAAADgfaxWqwoKClRcXCyj0aj4+HgZDIyfBAAArkdhAwAAAAAANIjFYtGb6WuVt6tQFZVWBQUa1Dk2UiOHD5XZbHZ3eAAAoIljKAUAAAAAAKg3i8WiuQuXakdxgGKTh8s8dLJik4drR3GA5i5cKovF4u4QAQBAE0dhAwAAAAAA1IvVatWb6WtVGhIpc+oQtTJFKyAwSK1M0TKnDlFpSKRWpWfIarW6O1QAANCEUdgAAAAAAAD1UlBQoLxdhYrr3Vd+fn4ObX5+forr3Vff7dqrgoICN0UIAAB8AYUNAAAAAABQL8XFxaqotCo0PKLO9tA2bVVRaVVxcXEjRwYAAHwJhQ0AAAAAAFAvRqNRQYEGlR4+UGd76ZGDCgo0yGg0NnJkAADAl1DYAAAAAAAA9RIfH6/OsZHamZsjm83m0Gaz2bQzN0ddYqMUHx/vpggBAIAvoLABAAAAAADqxWAwaOTwoQotK5QlM0PHivaoqqJcx4r2yJKZoZYnCjVi+BAZDHzdAAAAXCfA3QEAAAAAAADvYTabNXPqBL2ZvlZ52emqqLQqKNCg7rFRGjFugsxms7tDBAAATRyFDQAAAAAA0CBms1mJiYkqKChQcXGxjEaj4uPjmakBAAAaBYUNAAAAAADQYAaDQQkJCe4OAwAA+CCGUgAAAAAAAAAAAK9BYQMAAAAAAAAAAHgNChsAAAAAAAAAAMBrUNgAAAAAAAAAAABew62FjeXLl6tXr14KCwtTWFiYkpKS9PHHH9vbk5OT5efn5/DP2LFjHa6xe/dupaWlKTg4WBEREXrkkUdUVVXlcE52drauvPJKNWvWTPHx8Xr99dcb4/EAAAAAAAAAAICTBbjz5tHR0VqwYIGuuOIK2Ww2vfHGG/r9738vi8Wi7t27S5LuvfdezZ492/4zwcHB9j9XV1crLS1NJpNJn332mfbt26eRI0cqMDBQTz/9tCTpxx9/VFpamsaOHavVq1crKytLY8aMUfv27ZWamtq4DwwAAAAAAAAAAC6JWwsbAwcOdPg8b948LV++XJ9//rm9sBEcHCyTyVTnz2/YsEE7duzQpk2b1K5dO/Xu3Vtz5szR9OnTNWvWLAUFBWnFihXq2LGjFi1aJEnq2rWrcnJytHjxYgobAAAAAAAAAAB4GbcWNs5UXV2tdevWqaysTElJSfbjq1ev1t/+9jeZTCYNHDhQf/rTn+yzNrZu3aqePXuqXbt29vNTU1M1btw4bd++XWazWVu3btXNN9/scK/U1FRNnDjxnLGUl5ervLzc/rmkpESSVFlZqcrKSmc8boPV3Ndd90fjoJ99A/3sO+hr30A/+wb6uTZ+FwAAAADcxe2FjW+++UZJSUk6deqUQkND9d5776lbt26SpOHDhys2NlaRkZH6+uuvNX36dOXl5endd9+VJBUVFTkUNSTZPxcVFZ33nJKSEp08eVItWrSoFdP8+fP11FNP1Tq+YcMGh6Ww3GHjxo1uvT8aB/3sG+hn30Ff+wb62TfQz784ceKEu0MAAAAA4KPcXtjo3LmzcnNzVVxcrLffflujRo3Sli1b1K1bN913333283r27Kn27dsrJSVFP/zwgzp16uSymGbMmKHJkyfbP5eUlCgmJkYDBgxQWFiYy+57PpWVldq4caP69++vwMBAt8QA16OffQP97Dvoa99AP/sG+rm2mlnNAAAAANDY3F7YCAoKUnx8vCSpT58+2rZtm5YsWaK//OUvtc695pprJEkFBQXq1KmTTCaTvvjiC4dz9u/fL0n2fTlMJpP92JnnhIWF1TlbQ5KaNWumZs2a1ToeGBjo9kTWE2KA69HPvoF+9h30tW+gn30D/fwLfg8AAAAA3MXg7gDOZrVaHfa3OFNubq4kqX379pKkpKQkffPNNzpw4ID9nI0bNyosLMy+nFVSUpKysrIcrrNx40aHfTwAAAAAAAAAAIB3cOuMjRkzZui3v/2tOnTooOPHjys9PV3Z2dnKzMzUDz/8oPT0dN1yyy0KDw/X119/rUmTJunGG29Ur169JEkDBgxQt27dNGLECD3zzDMqKirSzJkzNX78ePuMi7Fjx2rZsmWaNm2aRo8erc2bN+utt97S+vXr3fnoAAAAAAAAAADgIri1sHHgwAGNHDlS+/btk9FoVK9evZSZman+/fvr559/1qZNm/T888+rrKxMMTExGjRokGbOnGn/eX9/f3344YcaN26ckpKSFBISolGjRmn27Nn2czp27Kj169dr0qRJWrJkiaKjo7Vy5Uqlpqa645EBAAAAAAAAAMAlcGth45VXXjlnW0xMjLZs2XLBa8TGxuqjjz467znJycmyWCwNjg8AAAAAAAAAAHgWj9tjAwAAAAAAAAAA4FwobAAAAAAAAAAAAK9BYQMAAAAAAAAAAHgNChsAAAAAAAAAAMBrUNgAAAAAAAAAAABeg8IGAAAAAAAAAADwGgHuDgAAAAAAADRcVVWVsrKyVFRUJJPJpJSUFAUEkOYDAICmjzceAAAAAAC8zJo1a/TskmUqPFqmavnLX9WKbB2iRx5+UMOGDXN3eAAAAC5FYQMAAAAAAC+yZs0aTZu1QNbIHoq5rp9C2kap7OBeFVo2a9qsBZJEcQMAADRp7LEBAAAAAICXqKqq0rNLlska2UOd08YoLCpe/kEtFBYVr85pY2SN7KGFS5apqqrK3aECAAC4DIUNAAAAAAC8RFZWlgqPlinS3E9+fo4pvZ+fQZHmftp7tExZWVluihAAAMD1KGwAAAAAAOAlioqKVC1/hbSNqrM9+LIoVctfRUVFjRwZAABA46GwAQAAAACAlzCZTPJXtcoO7q2z/cShvfJXtUwmUyNHBgAA0HgobAAAAAAA4CVSUlIU2TpEhZbNstmsDm02m1WFls2Kah2ilJQUN0UIAADgehQ2AAAAAADwEgEBAXrk4QdlKPxWeetXqmRvgarKT6pkb4Hy1q+UYd+3mvrwgwoICHB3qAAAAC7Dmw4AAAAAAF5k2LBhkqRnlyzTz+tfULX85a9qRbUO0dQnH7W3AwAANFUUNgAAAAAA8DLDhg3T4MGDlZWVpaKiIplMJqWkpDBTAwAA+ASWogIAAADQJCxfvly9evVSWFiYwsLClJSUpI8//tjefurUKY0fP17h4eEKDQ3VoEGDtH//fodr7N69W2lpaQoODlZERIQeeeQRVVVVOZyTnZ2tK6+8Us2aNVN8fLxef/31xng8oJaAgAClpqZq1KhRSk1NpagBAAB8BoUNAAAAAE1CdHS0FixYoC+//FL/+c9/1K9fP/3+97/X9u3bJUmTJk3SBx98oHXr1mnLli0qLCzUHXfcYf/56upqpaWlqaKiQp999pneeOMNvf7663riiSfs5/z4449KS0vTr3/9a+Xm5mrixIkaM2aMMjMzG/15AQAAAF/FcA4AAAAATcLAgQMdPs+bN0/Lly/X559/rujoaL3yyitKT09Xv379JEmvvfaaunbtqs8//1zXXnutNmzYoB07dmjTpk1q166devfurTlz5mj69OmaNWuWgoKCtGLFCnXs2FGLFi2SJHXt2lU5OTlavHixUlNTG/2ZAQAAAF9EYQMAAABAk1NdXa1169aprKxMSUlJ+vLLL1VZWambb77Zfk6XLl3UoUMHbd26Vddee622bt2qnj17ql27dvZzUlNTNW7cOG3fvl1ms1lbt251uEbNORMnTjxvPOXl5SovL7d/LikpkSRVVlaqsrLSCU/sWWqeqSk+m7eiTzwPfeJZ6A/PQ594HvrEszTF/mjIs1DYAAAAANBkfPPNN0pKStKpU6cUGhqq9957T926dVNubq6CgoLUqlUrh/PbtWunoqIiSVJRUZFDUaOmvabtfOeUlJTo5MmTatGiRZ1xzZ8/X0899VSt4xs2bFBwcPBFPas32Lhxo7tDwFnoE89Dn3gW+sPz0Ceehz7xLE2pP06cOFHvcylsAAAAAGgyOnfurNzcXBUXF+vtt9/WqFGjtGXLFneHpRkzZmjy5Mn2zyUlJYqJidGAAQMUFhbmxshco7KyUhs3blT//v0VGBjo7nAg+sQT0Seehf7wPPSJ56FPPEtT7I+aWc31QWEDAAAAQJMRFBSk+Ph4SVKfPn20bds2LVmyREOGDFFFRYWOHTvmMGtj//79MplMkiSTyaQvvvjC4Xr79++3t9X8b82xM88JCws752wNSWrWrJmaNWtW63hgYGCTSUTr0tSfzxvRJ56HPvEs9IfnoU88D33iWZpSfzTkOQwujAMAAAAA3Mpqtaq8vFx9+vRRYGCgsrKy7G15eXnavXu3kpKSJElJSUn65ptvdODAAfs5GzduVFhYmLp162Y/58xr1JxTcw00jNVqVX5+vrZt26b8/HxZrVZ3hwQAAAAvwIwNAAAAAE3CjBkz9Nvf/lYdOnTQ8ePHlZ6eruzsbGVmZspoNOqee+7R5MmT1aZNG4WFhemhhx5SUlKSrr32WknSgAED1K1bN40YMULPPPOMioqKNHPmTI0fP94+22Ls2LFatmyZpk2bptGjR2vz5s166623tH79enc+uleyWCx6M32t8nYVqqLSqqBAgzrHRmrk8KEym83uDg8AAAAejMIGAAAAgCbhwIEDGjlypPbt2yej0ahevXopMzNT/fv3lyQtXrxYBoNBgwYNUnl5uVJTU/XSSy/Zf97f318ffvihxo0bp6SkJIWEhGjUqFGaPXu2/ZyOHTtq/fr1mjRpkpYsWaLo6GitXLlSqampjf683sxisWjuwqUqDYlUXPJwhYZHqPTwAe3IzdHchUs1c+oEihsAAAA4JwobAAAAAJqEV1555bztzZs314svvqgXX3zxnOfExsbqo48+Ou91kpOTZbFYLipGnF5+6s30tSoNiZQ5dYj8/PwkSa1M0TKnDpElM0Or0jOUmJgog4HVkwEAAFAbb4kAAAAAgEZTUFCgvF2Fiuvd117UqOHn56e43n313a69KigocFOEAAAA8HQUNgAAAAAAjaa4uFgVlVaFhkfU2R7apq0qKq0qLi5u5MgAAADgLShsAAAAAAAajdFoVFCgQaWHD9TZXnrkoIICDTIajY0cGQAAALwFhQ0AAAAAQKOJj49X59hI7czNkc1mc2iz2WzamZujLrFRio+Pd1OEAAAA8HQUNgAAAAAAjcZgMGjk8KEKLSuUJTNDx4r2qKqiXMeK9siSmaGWJwo1YvgQNg4HAADAOQU09AfKy8v173//W7t27dKJEyfUtm1bmc1mdezY0RXxAQAAAGjCyC98k9ls1sypE/Rm+lrlZaerotKqoECDusdGacS4CTKbze4OEQAAAB6s3oWNf/3rX1qyZIk++OADVVZWymg0qkWLFjpy5IjKy8sVFxen++67T2PHjlXLli1dGTMAAAAAL0d+AbPZrMTERBUUFKi4uFhGo1Hx8fHM1AAAAMAF1euN8dZbb9WQIUN0+eWXa8OGDTp+/LgOHz6sPXv26MSJE/r+++81c+ZMZWVlKSEhQRs3bnR13AAAAAC8FPkFahgMBiUkJOiqq65SQkICRQ0AAADUS71mbKSlpemdd95RYGBgne1xcXGKi4vTqFGjtGPHDu3bt8+pQQIAAABoOsgvAAAAAFyKehU27r///npfsFu3burWrdtFBwQAAACgaSO/AAAAAHAp6j3P99ixY8rMzLR/fvfdd10SEAAAAICmj/wCAAAAwMWqd2Fj2LBhWrhwoe666y5J0sKFC10WFAAAAICmjfwCrmC1WpWfn69t27YpPz9fVqvV3SEBAADABeq1FJUkHTp0SNu2bdMrr7yimTNnujImAAAAAE0c+YX7WK1WFRQUqLi4WEajUfHx8U1i026LxaI309cqb1ehKiqtCgo0qHNspEYOHyqz2ezu8AAAAOBE9S5stG7dWpJ0zz33aMKECfruu+9cFhQAAACApo38wj2a6pf/FotFcxcuVWlIpOKShys0PEKlhw9oR26O5i5cqplTJ3j186FuVVVVysrKUlFRkUwmk1JSUhQQUO+vOQAAgBer99/4f/jDH1RVVaWAgAAtWrSoSYzoAQAAAOAe5BeNr6l++W+1WvVm+lqVhkTKnDpEfn5+kqRWpmiZU4fIkpmhVekZSkxM5N+zJmTNmjV6dskyFR4tU7X85a9qRbYO0SMPP6hhw4a5OzwAAOBi9X6ru+++++wjHwIDA/X888+7KiYAAAAATRz5ReM6+8v/VqZoBQQG2b/8Lw2J1Kr0jAbtSeEp+1kUFBQob1eh4nr3tRc1avj5+Smud199t2uvCgoK3BIfnG/NmjWaNmuB9re4XDFpD6n73fMUk/aQ9re4XNNmLdCaNWvcHSIAAHCxi5qjuW3bNn366ac6cOBArZfX5557zimBAQAAAPAN5BeuZ//yP3n4ub/8z05XQUGBEhISLng9T1rSqri4WBWVVoWGR9TZHtqmrSoqrSouLm7UuOAaVVVVenbJMlkje6hz2hj5+Z0erxkWFa+WkXHKW79SC5cs0+DBg1mWCgCAJqzBf8s//fTTmjlzpjp37qx27do5vBSf/YIMAAAAAOdDftE4nPnlf32WtOrRo4ezH+GcjEajggINKj18QK1M0bXaS48cVFCgQUajsdFigutkZWWp8GiZYq7rZy9q1PDzMyjS3E8/r39BWVlZSk1NdVOUAADA1Rpc2FiyZIleffVV3X333S4IBwAAAIAvIb9oHM768r+++1nMn9vNJc9Rl/j4eHWOjdSO3ByHmCTJZrNpZ26OusdGKT4+vtFiauoqKiq0atUq7d69Wx06dNCIESMUFBTUKPcuKipStfwV0jaqzvbgy6JULX8VFRU1SjwAAMA9GrxzmsFg0PXXX++KWAAAAAD4GPKLxlHz5f/O3BzZbDaHtpov/7vU48v/+u5nsXPnTqc/w7kYDAaNHD5UoWWFsmRm6FjRHlVVlOtY0R5ZMjPU8kShRgwfwsbhTjJ//nzFdErQhD/N17OvvKUJfzr9ef78+Y1yf5PJJH9Vq+zg3jrbTxzaK39Vy2QyNUo8AADAPRr8Zjdp0iS9+OKLrogFAAAAgI8hv2gczvryv75LWpWUlLjiMc7JbDZr5tQJ6mas0q7sdFkyFmtXdrq6G6v1+JQJjb7vR1M1f/58zXt+hSqifqV2aRN1+cgFapc2URVRv9K851c0SnEjJSVFka1DVGjZLJvNcU8em82qQstmRbUOUUpKistjAQAA7tPgpaimTp2qtLQ0derUSd26dVNgYKBD+7vvvuu04AAAAAA0beQXjafmy/8309cqLzvdvul399gojRhXvy//67ukVVhYWKMvBWQ2m5WYmKiCggIVFxfLaDQqPj6emRpOUlFRoedf+osCO16lqNQxMvzfjJ3QqCsUHBmvvZnSkpde1pQpU1y6LFVAQIAeefhBTZu1QHnrVyrS3E/Bl0XpxKG9KrRslmHft5r65KNsHA4AQBPX4L/pJ0yYoE8//VS//vWvFR4ezoZ+AAAAAC4a+UXjutQv/+u7n0VcXJzy8/Nd9RjnZDAYlJCQ0Oj39QWrVq1SaXWA2vVMthc1ahj8/NS6Z7L2787VqlWrdM8997g0lmHDhkmSnl2yTD+vf0HV8pe/qhXVOkRTn3zU3g4AAJquBhc23njjDb3zzjtKS0tzRTwAAAAAfAj5ReO7lC//a5a0mrtwqSyZGYrr3Vehbdqq9MhB7czNOb2k1bgJzJJognbv3i2bIVDN28bU2d78smjZDIHavXt3o8QzbNgwDR48WFlZWSoqKpLJZFJKSgozNQAA8BEN/hu/TZs26tSpkytiAQAAAOBjyC+8T32WtKqsrHR3mHCyDh06yM9aqVMHf1Zo1BW12k8d2iM/a6U6dOjQaDEFBAQoNTW10e4HAAA8R4MLG7NmzdKTTz6p1157TcHBwa6ICQAAAICPIL/wTuxn4XtGjBihx2bN0dFvshUcGe+wHJXVZtPRb7LV0r9aI0aMcFuMAADAdzS4sLF06VL98MMPateunS6//PJam/t99dVXTgsOAAAAQNNGfuG92M/CtwQFBWniA/dr3vMrtDdTat0zWc0vi9apQ3t09JtsVf64TdMmjnXpxuEAAAA1GlzYuO2221wQBgAAAABfRH4BeI8ZM2ZIkp5/6S/avztXNkOg/KyVaulfrWkTx9rbAQAAXK3ehY2dO3cqLi5OTz75pCvjAQAAAOADyC8A7zRjxgxNmTJFq1at0u7du9WhQweNGDGCmRoAAKBR1buw0atXL11++eW69dZbddttt+nqq692ZVwAAAAAmjDyC8B7BQUF6Z577nF3GAAAwIfVe2e3Q4cOaf78+Tpw4IBuvfVWtW/fXvfee68++OADnTp1ypUxAgAAAGhiyC/gC6xWq/Lz87Vt2zbl5+fLarW6OyQAAIAmod4zNpo3b66BAwdq4MCBstls2rp1q95//31Nnz5dw4YN080336xbb71VAwcOVNu2bV0ZMwAAAAAvR34BV7BarSooKFBxcbGMRqPi4+NlMNR7PJ9TWSwWvZm+Vnm7ClVRaVVQoEGdYyM1cvhQmc1mt8QEAADQVFzUG56fn5+uu+46LViwQDt27JDFYtENN9yg119/XdHR0XrxxRedHScAAACAJor8As5gsVg0ZfoMTZw5RzOefl4TZ87RlOkzZLFY3BLL3IVLtaM4QLHJw2UeOlmxycO1ozhAcxcudUtMQEMw2wgA4OnqPWPjfK644gpNmTJFU6ZM0eHDh3XkyBFnXBYAAACADyK/QEPVFBJKQyIVlzxcoeERKj18QDtyczR34VLNnDqh0WZJWK1WvZm+VqUhkTKnDpGfn58kqZUpWubUIbJkZmhVeoYSExPdNpsEOB9mGwEAvEGDCxubN2/Wu+++q59++kl+fn7q2LGj/vCHP+jGG2+UJIWHhys8PNzpgQIAAABoesgvcKk8rZBQUFCgvF2Fiksebo+lhp+fn+J699V32ekqKChQQkKCy+MBGsKTioQAAJxPg97qxo4dq5tvvllr1qzR4cOHdfDgQa1evVq//vWv9dBDD7kqRgAAAABNEPkFnMFeSOjd99yFhF17VVBQ0CjxFBcXq6LSqtDwiDrbQ9u0VUWlVcXFxY0SD1BfZxcJW5miFRAYZC8SloZEalV6BstSAQA8Qr0LG++9955ee+01vfrqqzp06JC2bt2qzz//XAcPHtRf//pXvfzyy3r//fddGSsAAACAJoL8As7iaYUEo9GooECDSg8fqLO99MhBBQUaZDQaGyUeoL48rUgIAMD51Luw8dprr2ny5Mm6++67Hf6CMxgMGj16tCZOnKhXXnnFJUECAAAAaFrIL+AsnlZIiI+PV+fYSO3MzZHNZnNos9ls2pmboy6xUYqPj2+UeID68rQiIQAA51PvwsZXX32l22+//Zztd9xxh7788kunBAUAAACgaSO/gLN4WiHBYDBo5PChCi0rlCUzQ8eK9qiqolzHivbIkpmhlicKNWL4EDYOh8fxtCIhAADnU+83qUOHDik6Ovqc7dHR0Tp8+LBTggIAAADQtJFfwFk8sZBgNps1c+oEdTNWaVd2uiwZi7UrO13djdV6fAqbL8MzeVqREACA8wmo74kVFRUKDAw894UCAlRRUeGUoAAAAAA0beQXcKaaQsKb6WuVl52uikqrggIN6h4bpRHj3FNIMJvNSkxMVEFBgYqLi2U0GhUfH89MDXismiLh3IVLZcnMUFzvvgpt01alRw5qZ27O6SLhuAn8OwwA8Aj1LmxI0p/+9CcFBwfX2XbixAmnBAQAAADAN5BfwJk8sZBgMBiUkJDgsutXVVUpKytLRUVFMplMSklJUUBAg9J8wIEnFgkBAKhLvd94brzxRuXl5V3wnIZYvny5li9frp9++kmS1L17dz3xxBP67W9/K0k6deqUpkyZorVr16q8vFypqal66aWX1K5dO/s1du/erXHjxunTTz9VaGioRo0apfnz5zu8zGVnZ2vy5Mnavn27YmJiNHPmTN19990NihUAAACA87givwBcXUjwJGvWrNGzS5ap8GiZquUvf1UrsnWIHnn4QQ0bNszd4cGLeWKREACAs9W7sJGdne30m0dHR2vBggW64oorZLPZ9MYbb+j3v/+9LBaLunfvrkmTJmn9+vVat26djEajHnzwQd1xxx3617/+JUmqrq5WWlqaTCaTPvvsM+3bt08jR45UYGCgnn76aUnSjz/+qLS0NI0dO1arV69WVlaWxowZo/bt2ys1NdXpzwQAAADgwlyRXwC+Ys2aNZo2a4GskT0Uc10/hbSNUtnBvSq0bNa0WQskieIGLokvFQkBAN7pkueoVlVV6dSpUwoNDW3wzw4cONDh87x587R8+XJ9/vnnio6O1iuvvKL09HT169dPkvTaa6+pa9eu+vzzz3Xttddqw4YN2rFjhzZt2qR27dqpd+/emjNnjqZPn65Zs2YpKChIK1asUMeOHbVo0SJJUteuXZWTk6PFixdT2AAAAAA8zKXkF4AvqKqq0rNLlska2UOd08bIz+/0KPqwqHi1jIxT3vqVWrhkmQYPHsyyVAAAoMmq91vOBx98oMOHDzss4TRv3jzNmTNHVVVV6tevnzIyMtS6deuLCqS6ulrr1q1TWVmZkpKS9OWXX6qyslI333yz/ZwuXbqoQ4cO2rp1q6699lpt3bpVPXv2dFiaKjU1VePGjdP27dtlNpu1detWh2vUnDNx4sRzxlJeXq7y8nL755KSEklSZWWlKisrL+r5LlXNfd11fzQO+tk30M++g772DfSzb6Cfa7vU34Wr8wugqcrKylLh0TLFXNfPXtSo4ednUKS5n35e/4KysrIYzAcAAJqsehc2nnvuOf3hD3+wf/7ss8/0xBNPaPbs2eratasef/xxzZkzR88991yDAvjmm2+UlJRkH5X13nvvqVu3bsrNzVVQUJBatWrlcH67du1UVFQkSSoqKnIoatS017Sd75ySkhKdPHlSLVq0qBXT/Pnz9dRTT9U6vmHDhnNubthYNm7c6Nb7o3HQz76BfvYd9LVvoJ99A/38i0vd3NtV+QVwJqvV2uT2CSgqKlK1/BXSNqrO9uDLolQtf3tODAAA0BTVu7Cxfft2h6Ti7bffVv/+/fX4449Lkpo3b66HH364wYlH586dlZubq+LiYr399tsaNWqUtmzZ0qBrONuMGTM0efJk++eSkhLFxMRowIABCgsLc0tMlZWV2rhxo/r376/AwEC3xADXo599A/3sO+hr30A/+wb6ubaaWc0Xy1X5BVDDYrHozfS1yttVqIpKq4ICDeocG6mRw4fKbDa7O7yLZjKZ5K9qlR3cq7Co+FrtJw7tlb+qZTKZ3BAdAABA46h3YeP48eMKDw+3f87JydHgwYPtn7t3767CwsIGBxAUFKT4+NMvY3369NG2bdu0ZMkSDRkyRBUVFTp27JjDrI39+/fbX9BMJpO++OILh+vt37/f3lbzvzXHzjwnLCysztkaktSsWTM1a9as1vHAwEC3J7KeEANcj372DfSz76CvfQP97Bvo519c6u/BVfkFIJ0uasxduFSlIZGKSx6u0PAIlR4+oB25OZq7cKlmTp3gtcWNlJQURbYOUaFls1pGxjksR2WzWVVo2ayo1iFKSUlxY5QAAACuVe85uFFRUfrf//1fSVJpaan++9//6rrrrrO3Hz582CnLNFmtVpWXl6tPnz4KDAxUVlaWvS0vL0+7d+9WUlKSJCkpKUnffPONDhw4YD9n48aNCgsLU7du3eznnHmNmnNqrgEAAACg8TVWfgHfY7Va9Wb6WpWGRMqcOkStTNEKCAxSK1O0zKlDVBoSqVXpGbJare4O9aIEBATokYcflKHwW+WtX6mSvQWqKj+pkr0Fylu/UoZ932rqww+ycTgAAGjS6v2mM3jwYE2cOFGPPfaYPvroI5lMJl177bX29v/85z/q3Llzg24+Y8YM/fa3v1WHDh10/PhxpaenKzs7W5mZmTIajbrnnns0efJktWnTRmFhYXrooYeUlJRkv++AAQPUrVs3jRgxQs8884yKioo0c+ZMjR8/3j7jYuzYsVq2bJmmTZum0aNHa/PmzXrrrbe0fv36BsUKAAAAwHlckV8AklRQUKC8XYWKSx4uPz8/hzY/Pz/F9e6r77LTVVBQoISEBDdFeWmGDRsmSXp2yTL9vP4FVctf/qpWVOsQTX3yUXu7t2iKe6EAAADXqndh44knntDevXs1YcIEmUwm/e1vf5O/v7+9fc2aNRo4cGCDbn7gwAGNHDlS+/btk9FoVK9evZSZman+/ftLkhYvXiyDwaBBgwapvLxcqampeumll+w/7+/vrw8//FDjxo1TUlKSQkJCNGrUKM2ePdt+TseOHbV+/XpNmjRJS5YsUXR0tFauXKnU1NQGxQoAAADAeVyRXwCSVFxcrIpKq0LDI+psD23TVhWVVhUXFzdyZM41bNgwDR48WFlZWSoqKpLJZFJKSorXzdRoqnuhAAAA16r3G0+LFi305ptvnrP9008/bfDNX3nllfO2N2/eXC+++KJefPHFc54TGxurjz766LzXSU5OlsViaXB8AAAAAFzDFfkFIElGo1FBgQaVHj6gVqboWu2lRw4qKNAgo9HohuicKyAgwKsH7TXlvVAAAIBrMbcTAAAAANBkxMfHq3NspHbm5shmszm02Ww27czNUZfYKMXHx7spQkiu3wvFarUqPz9f27ZtU35+vtfuqQIAAOpW7xkbrVu3rrU+qXR6NExCQoKmTp1qX0IKAAAAAM6H/AKuYjAYNHL4UM1duFSWzAzF9e6r0DZtVXrkoHbm5qjliUKNGDeBPRzczJV7obC8FQAATV+9CxvPP/98ncePHTumL7/8Ur/73e/09ttvsw4uAAAAgAsiv4Armc1mzZw64fSX29np9i+3u8dGacQ4ljfyBK7aC4XlrQAA8A31LmyMGjXqvO29e/fW/PnzSTwAAAAAXBD5BVzNbDYrMTFRBQUFKi4ultFoVHx8PDM1PIQr9kI5e3mrmpkgNctbWTIztCo9Q4mJifx7AACAl3Pa3+S/+93v9N133znrcoDPsVqtKigokHR6WjZrwAIAAF9GfgFnMBgMSkhI0FVXXaWEhAS+zPYgrtgLxb68Ve++517eatdee94FAAC8l9Pe6srLyxUUFOSsywE+xWKxaMr0GXp0zjOSpEfnPKMp02fIYrG4OTIAAAD3IL8AmraavVBCywplyczQsaI9qqoo17GiPbJkZpzeC2X4kAYVo1y1vBUAAPA8TitsvPLKK+rdu7ezLgf4jJo1YHcUByjmhsGSpJgbBmtHccDpDQ8pbgAAAB9EfoGLYbValZ+fr23btik/P59Z0B6uZi+UbsYq7cpOlyVjsXZlp6u7sVqPT2n4XhhnLm9Vl4tZ3goAAHimeu+xMXny5DqPFxcX66uvvlJ+fr7+8Y9/OC0wwBecvQZsgJ9N0k9q1S6KNWABAECTRn4BZ7NYLKc3C99VaN8svHNspEYOH8pm0R7MmXuh1CxvtSM3x2GPDemX5a26N3B5KwAA4JnqXdg416jxsLAw9e/fX++++646duzotMAAX2BfAzZ5+P+9dP+ytqx9DdjsdBUUFCghIcF9gQIAADgZ+QWcqWYWdGlIpOKShys0PEKlhw9oR26O5i5cqplTGz76H42nZi8UZ1xn5PChp2e+Z2YorndfhbZpq9IjB7UzN+f08lbjJjBoDACAJqDehY1PP/3UlXEAPok1YAEAgK8iv4CznD0LumaUfitTNLOgfVDN8lZvpq9VXna6ffZO99gojRhHgQsAgKai3oUNAM535hqwrUzRtdpZAxYAAAA4v9qzoH/hrbOgrVarU5Zm8lXOXN4KAAB4pnoVNsaOHauZM2cqOrr2F69ny8jIUFVVle68885LDg5o6s5eA1Zn5GGsAQsAAJoq8gs4U1ObBc1eIc7hrOWtAACAZ6pXYaNt27bq3r27rr/+eg0cOFC/+tWvFBkZqebNm+vo0aPasWOHcnJytHbtWkVGRurll192ddxAk3D2GrBXmK+XIqVj+/fqe8u/WAMWAAA0SeQXaKjzzWBoSrOg2SsEAACgfupV2JgzZ44efPBBrVy5Ui+99JJ27Njh0N6yZUvdfPPNevnll/Wb3/zGJYECTdWZa8Du/Oc6acht+vmf69Q9qh1rwAIAgCaJ/AINcaEZDGfPgj5zOSpvmgXNXiEAAAD1V+89Ntq1a6fHH39cjz/+uI4ePardu3fr5MmTuuyyy9SpU6daa5kCqL+aNWDz8vKUn5+vBX+aps6dO5OwAACAJov8AvVR3xkMZ86CjuvdV6Ft2qr0yEHtzM3xmlnQTXGvEAAAAFe5qM3DW7durdatWzs7FsCnGQwGxcfHKz8/n43tAACATyG/QF0aMoPhzFnQednp9pkd3WOjvGYWdFPbKwQAAMCVLqqwATR151vDFwAAAIDrNXQGQ80saG99j29Ke4UAAAC4GoUN4CwXWsMXAAAAgOtdzAwGg8Hgtcs0NZW9QgAAABqDdwxdARpJzRq+O4oDFJs8XOahkxWbPFw7igNOr9lrsbg7RAAAAMAnnDmDoS5NbQaDwWDQyOFDFVpWKEtmho4V7VFVRbmOFe2RJTPj9F4hw4d4zQwUAAAAV+KNCPg/Z6/h28oUrYDAIPsavqUhkVqVniGr1eruUAEAAIAmr2YGw87cHNlsNoe2mhkMXZrYDIaavUK6Gau0KztdlozF2pWdru7Gaj0+xXl7hVitVuXn52vbtm3Kz88nx3EifrcAADSOi16K6uDBg8rLy5Mkde7cWW3btnVaUIA7NHQNXwAAADgP+QXOVjODYe7CpbJkZiiud1+Ftmmr0iMHtTM35/QMhnETmtwMBlfvFfL111/rb2vfYuldF2BZYwAAGk+DCxtlZWV66KGHtGrVKlVXV0uS/P39NXLkSL3wwgsKDg52epBAY7iYNXwBAABwacgvcD41MxjeTF+rvOx0+5fF3WOjNGKc82YweBpX7hXy7NIVOtosQnHJwxUaHqHSwwe0IzdHcxcu1cyp9fudVlVVKSsrS0VFRTKZTEpJSVFAgGdv4Wm1Wl26sXzNssalIZGX9LsFAAD10+A3j8mTJ2vLli16//33df3110uScnJyNGHCBE2ZMkXLly93epBAYzhzDd9Wpuha7U1tDV8AAABPQH6BC3H1DAZfUbMkUmmISeaUwfZZ6jVL71oyM7QqPUOJiYnn/d2uWbNGzy5ZpsKjZaqWv/xVrcjWIXrk4Qc1bNiwRnmWhnL1TIqzlzW+2N8tAACovwYXNt555x29/fbbSk5Oth+75ZZb1KJFC/3xj38k8YDXqlnDd0dujsPLqPTLGr7dm9gavgAAAO5GfoH6cOUMBl+xc+dOSdLlPZMueundNWvWaNqsBbJG9lDMdf0U0jZKZQf3qtCyWdNmLZAkjytuNMZMCpY1BgCg8TV4qMCJEyfUrl27WscjIiJ04sQJpwQFuEPNGr6hZYWyZGboWNEeVVWU61jRHlkyM06v4Tt8CCNsAAAAnIj8AmgcJSUlkk4vsVuXCy29W1VVpWeXLJM1soc6p41RWFS8/INaKCwqXp3Txsga2UMLlyxTVVWVy56hoc6eSdHKFK2AwCD7TIrSkEitSs+45A2+WdYYAIDG1+BvaJOSkvTkk0/q1KlT9mMnT57UU089paSkJKcGBzS2mjV8uxmrtCs7XZaMxdqVna7uxmo9PoU1UQEAAJyN/AJoHGFhYZJOL7FblwstvZuVlaXCo2WKNPeTn5/jVwl+fgZFmvtp79EyZWVlOTfwS2CfSdG777lnUuzaq4KCgku6z5nLGteFZY0BAHC+Bi9FtWTJEqWmpio6OlqJiYmSpP/+979q3ry5MjMznR4g0NhYwxcAAKDxkF8AjSMuLk75+fn66Zut6hER3eCld4uKilQtf4W0jaqzPfiyKFXLX0VFRS6J/2I01kwKljUGAKDxNbiw0aNHD33//fdavXq1vvvuO0mn19C888471aJFC6cHCLgDa/gCAAA0DvILoHHUDNQKLSuSJTNDcb37KrRNW5UeOaiduTmnl94dN+GcA7pMJpP8Va2yg3sVFlX7C/oTh/bKX9UymUwufY6GOHMmRStTdK12Z82kqFnWeO7CpRf1u/VmVquVQYEAALdocGFDkoKDg3Xvvfc6OxbA41RVVSkrK0tFRUUymUxKSUlRQMBF/WcDAACAc3BWfjF//ny9++67+u6779SiRQtdd911+vOf/6zOnTvbz0lOTtaWLVscfu7+++/XihUr7J93796tcePG6dNPP1VoaKhGjRql+fPnO7wHZmdna/Lkydq+fbtiYmI0c+ZM3X333Zf8DICrPTJhrP629i3lZaerotKqoECDusdGacS48y+9m5KSosjWISq0bFbLyDiH5ahsNqsKLZsV1TpEKSkpjfEY9dKYMylqljV+M31tg3+33spisZx+3l2F9uftHBupkcOHNsnnBQB4lnp9Q/v+++/X+4K33nrrRQcDeJI1a9bo2SXLVHi0TNXyl7+qFdk6RI88/KCGDRvmtPtUVFRo1apV2r17t2JjYxUeHu60awMAAHgiV+UXW7Zs0fjx43XVVVepqqpKjz32mAYMGKAdO3YoJCTEft69996r2bNn2z8HBwfb/1xdXa20tDSZTCZ99tln2rdvn0aOHKnAwEA9/fTTkqQff/xRaWlpGjt2rFavXq2srCyNGTNG7du3V2pqar3jBRpLzah66fS/78/On6edO3c2aJR9QECAHnn4QU2btUB561cq0txPwZdF6cShvSq0bJZh37ea+uSjHjUQrLFnUvjSssYWi0VzFy5VaUik4pKHKzQ8QqWHD2hHbo7mLlyqmVObZjEHAOA56vXGcdtttzl89vPzk81mq3VMOp0IAN5uzZo1mjZrgayRPRRzXT+FtI1S2cHTL+zTZi2QJKcUN+bPn6/nX/qLSqsDZDMEKjjIoFcWP63nnntO06dPv+TrAwAAeCJX5ReffPKJw+fXX39dERER+vLLL3XjjTfajwcHB59zuZwNGzZox44d2rRpk9q1a6fevXtrzpw5mj59umbNmqWgoCCtWLFCHTt21KJFiyRJXbt2VU5OjhYvXkxhAx6nZlT9zr0HNHrIbXp0zjOKi4rQyOFDddVVVzXoWjU50LNLlunn9S/YB4BFtQ7R1CcfdeoAMGdp7JkUvrCssdVq1Zvpa1UaEukwE6aVKVrm1CGyZGZoVXqGEhMTm2RRBwDgGer1N4zVarX/s2HDBvXu3Vsff/yxjh07pmPHjunjjz/WlVdeWSuRALxRVVWVnl2yTNbIHuqcNkZhUfHyD2qhsKh4dU4bI2tkDy1cskxVVVWXdJ/58+dr3vMrVBH1K7VLm6jLRy5Q29QHJEkLX3pV8+fPd8bjAAAAeJzGyi9qNgRu06aNw/HVq1frsssuU48ePTRjxgydOHHC3rZ161b17NlT7dq1sx9LTU1VSUmJtm/fbj/n5ptvdrhmamqqtm7deknxAs5WM6p+R3GAYm4YLEmKuWGwdhQHnJ7FYLE0+JrDhg3TFzlb9MbSP2vhYxP0xtI/6985WzyyqFHDbDZr0Z/n6/m5f9L8xybq+bl/0sI/P82MgotUUFCgvF2Fiuvd12F5L+l0UTqud199t2uvfZYQAACu0OA5ohMnTtSKFSvUt29f+7HU1FQFBwfrvvvu0//+7/86NUCgsWVlZanwaJliruvnsG6sJPn5GRRp7qef17+grKysix6RV1FRoedf+osCO16lqNQxMvzfy2Cz9p0klSsg9koteellTZkyRUFBQZf6SAAAAB7LVfmF1WrVxIkTdf3116tHjx7248OHD1dsbKwiIyP19ddfa/r06crLy9O7774rSSoqKnIoakiyfy4qKjrvOSUlJTp58mSdm56Xl5ervLzc/rmkpESSVFlZqcrKyot6Rk9W80xN8dm8hdVq1eqMdSo3RutXKYPk72eTtFtt2rXXr1IH679Z7yg9421169btokbV9+vXz/5nm83mFX3dsWNH+5+rq6vdvuKEt/53cvToUdlkkDH8MvnLWqvd2CZcNhl09OhRr3o2b+2Ppow+8Tz0iWdpiv3RkGdpcGHjhx9+UKtWrWodNxqN+umnnxp6OcDjFBUVqVr+CmkbVWd78GVRqpa/PbG9GKtWrVJpdYDa9Uy2FzXO1Kp7X+0u2KZVq1bpnnvuuej7AAAAeDpX5Rfjx4/Xt99+q5ycHIfj9913n/3PPXv2VPv27ZWSkqIffvhBnTp1uuj7Xcj8+fP11FNP1Tq+YcMGhz0+mpqNGze6OwSfdkPSNbpBkrTLfqyP/25J0tWpv5JUewk3ND5v/O9k7J13SCqsu7GFlHTnHSoqKtJHH33UqHE5gzf2R1NHn3ge+sSzNKX+OHMm9YU0uLBx1VVXafLkyVq1apV9lNL+/fv1yCOP6Oqrr27o5QCPYzKZ5K9qlR3cq7Co+FrtJw7tlb+qz7kuc33s3r1bNkOgmreNqbO9eXiUbIZA7d69+6LvAQAA4A1ckV88+OCD+vDDD/WPf/xD0dHR5z33mmuukXR6aZVOnTrJZDLpiy++cDhn//79kmR//zOZTPZjZ54TFhZW52wNSZoxY4YmT55s/1xSUqKYmBgNGDBAYWFhDXtAL1BZWamNGzeqf//+CgwMdHc4dlVVVdqyZYv279+vdu3a6aabbvKoza6d6auvvtKsRS8pcdCDCggMkkFW9fHfrS+rO8gqg6oqyvXfd1/UrCkP6Morr3R3uD7JU/87uRCr1arHn3xK35X4KzFlkMNyVDabTf/Nekddw6ya+9QTXrXHhrf2R1NGn3ge+sSzNMX+qJnVXB8NfoN79dVXdfvtt6tDhw6KiTn9pezPP/+sK664Qv/v//2/hl4O8DgpKSmKbB2iQstmtYyMc1iOymazqtCyWVGtQ5SSknLR9+jQoYP8rJU6dfBnhUZdUav91OG98rNWqkOHDhd9DwAAAG/gzPzCZrPpoYce0nvvvafs7GyHZWfOJTc3V5LUvn17SVJSUpLmzZunAwcOKCIiQtLpUXBhYWHq1q2b/ZyzRyFv3LhRSUlJ57xPs2bN1KxZs1rHAwMDm0wiWhdPer41a9bo2SXLVHi0zL7pdWTrED3y8IMevT/ExWrdurX8ZFXx4UNqZfqlwGeVQdUyqPjIYfnJqtatW3tMH/kqT/rvpL7uHDJYcxcu1X8y1ymud1+Ftmmr0iMHtTM3Ry1PFGr4vRPq/P88b+CN/dHU0Seehz7xLE2pPxryHA0ubMTHx+vrr7/Wxo0b9d1330mSunbtqptvvrnWplGANwoICNAjDz+oabMWKG/9SkWa+yn4siidOLRXhZbNMuz7VlOffPSSRnaNGDFCj82ao6PfZCs4Mr7WclTHtueopX+1RowYcYlPAwAA4NmcmV+MHz9e6enp+vvf/66WLVvalw41Go1q0aKFfvjhB6Wnp+uWW25ReHi4vv76a02aNEk33nijevXqJUkaMGCAunXrphEjRuiZZ55RUVGRZs6cqfHjx9u/pBs7dqyWLVumadOmafTo0dq8ebPeeustrV+/3om/GTjTmjVrNG3WAlkjeyjmun4KDm+vIwUW/fz1PzXpsadktVp15513ujtMp4qPj1fn2EjtyM2ROXWIdMZ/TjabTTtzc9Q9Nkrx8bVnqQMXYjabNXPqBL2ZvlZ52emqqLQqKNCg7rFRGjFuAhuzAwBc7qK+mfXz89OAAQM0YMAAZ8cDeISaEVvPLlmmn9e/YB/RFdU6RFOffPSSR3QFBQVp4gP3a97zK7Q3U2rdM1nNL4tW5bG9UmK0qnZ9pckP3MfG4QAAwCc4K79Yvny5JCk5Odnh+Guvvaa7775bQUFB2rRpk55//nmVlZUpJiZGgwYN0syZM+3n+vv768MPP9S4ceOUlJSkkJAQjRo1SrNnz7af07FjR61fv16TJk3SkiVLFB0drZUrVyo1NfWS4odrVFVV6dkly2SN7KHOaWNUWviDfsxarfLSYsngr+NqrsmPPq6EhARdddVV7g7XaQwGg0YOH6q5C5fKkpmhK8zXS5HSsf179b3lX2p5olAjxk3wqqWC4FnMZrMSExNVUFCg4uJiGY1GxcfH8+8UAKBRXFRho6ysTFu2bNHu3btVUVHh0DZhwgSnBAa427BhwzR48GBlZWWpqKhIJpNJKSkpTluDd8aMGZKk51/6i/bvzpXNEKjgIIP0m6c19YHRmj59ulPuAwAA4OmclV/YbLbztsfExGjLli0XvE5sbOwFN7xNTk6WxWKpd2xwn6ysLBUeLVPMdf1UWviDdv/r7/IP76DWPfsroGW4TuzfpSNfrtfkx2Zp6TNzm9RI8zNH1e/85zppyG36+Z/r1D2qHaPq4RQGg0EJCQnuDgMA4IMa/A2txWLRLbfcohMnTqisrExt2rTRoUOHFBwcrIiICAobaFICAgJcOvJuxowZmjJlilatWqXdu3crNjZWkhw2lgQAAGjKyC/gakVFRaqWv4LD2+vHrNXyD++gNlcNtC91FmyK06n4q1Vavler0jOUmJjYpEac14yqz8vLU35+vhb8aZo6d+7cpJ4RAAD4nga/yUyaNEkDBw7U0aNH1aJFC33++efatWuX+vTpo4ULF7oiRqBJCwoK0j333KOnnnqKPTUAAIDPIb+Aq5lMJvmrWkcKLCovLVbLK65y2L+l6lSZDH5SbGKSvtu1VwUFBW6M1jUMBoN9Lw2WCgIAAE1Bg99mcnNzNWXKFBkMBvn7+6u8vFwxMTF65pln9Nhjj7kiRgAAAABNFPkFXC0lJUWRrUNU9PU/ZbXZFNAy3N5mk1R2aK9CmgUqvktPVVRaVVxc7L5g0WRZrVbl5+dr27Ztys/Pl9VqdXdIAAB4tQYvRRUYGGgf3REREaHdu3era9euMhqN+vnnn50eIAAAAICmi/wCrhYQEKBHHn5Qkx57SsfVXCf271KwKU5Vp8pUdmiv/E4cVWKf3io7dlhBgQYZjUZ3h4wmxmKx6M30tcrbVaiKSquCAg3qHBupu4b+0d2hAQDgtRpc2DCbzdq2bZuuuOIK3XTTTXriiSd06NAhrVq1Sj169HBFjIDPs1qtKigoUHFxsYxGI9PHAQBAk0F+AWc613vzsGHDZLVaNfnRx3Xky/U6FX+1DH5SSLNAJfbprbhOnWTJzFD32Cj7kk3egDzB81ksFs1duFSlIZGKSx6u0PAIlR4+oB25OXp26QoNu+N37g4RAACv1ODCxtNPP63jx49LkubNm6eRI0dq3LhxuuKKK/Tqq686PUDA151rdM/I4UNlNpvdHR4AAMAlIb+As1zovfnOO+9UQkKCJj82S6XlexWbmKT4Lj1VduywLJkZanmiUCPGTfCawgB5guezWq16M32tSkMiZU4dYt/bpZUpWubUIfo2a539PAAA0DANKmzYbDZFRETYR05FRETok08+cUlggCdw9wio843umbtwqWZOnUDSAgAAvBb5BZylvu/NV111lZY+M/d0QeC7bOV+s1lBgQZ1j43SiHHe825NnuAdCgoKlLerUHHJwx02rJckPz8/Xd4zSVKldu7cqa5du7onSAAAvFSDCxvx8fHavn27rrjiClfFBB9RVVWlrKwsFRUVyWQyKSUlRQEBDZ5E5DLuHgF1odE9lswMrUrPUGJioteMKgMAADgT+QWcoaHvzWazWYmJiV67hNPF5Ak1A7ak01+2d+7c2Wue15sVFxerotKq0PCIOttDW18maZ9KSkoaNzAAAJqABr3JGAwGXXHFFTp8+LCr4oGPWLNmja7ue5NGTZiuqU8v1agJ03V135u0Zs0ad4cm6ZcRUDuKAxSbPFzmoZMVmzxcO4oDNHfhUlksFpfHYB/d07tvnaN74nr31Xe79toTFAAAAG9DfgFnuJj3ZoPBoISEBF111VVKSEjwqi/5G/q8FotFU6bP0KNznpEkPTrnGU2ZPqNRchpfZzQaFRRoUOnhA3W2lx49JEkKCwtrzLAAAGgSGvz2tmDBAj3yyCP69ttvXREPfMCaNWs0bdYC7W9xuWLSHlL3u+cpJu0h7W9xuabNWuD24sbZI6BamaIVEBhkHwFVGhKpVekZLl8H9YKje9q0VUWlVcXFxS6NAwAAwJXIL3CpfO29uSHPe+aArZgbBkuSYm4Y3KgDtnxZfHy8OsdGamdujmw2m0ObzWbTT99slSTFxcW5IzwAALxagwsbI0eO1BdffKHExES1aNFCbdq0cfgHOJ+qqio9u2SZrJE91DltjMKi4uUf1EJhUfHqnDZG1sgeWrhkmaqqqtwWo6fMlLjg6J4jBxUUaJDRaHRpHAAAAK5EfoFL5WvvzfV93pYtWzoO2GoXJUlq1S6qUQdsOZPValV+fr62bdum/Px8j4/dYDBo5PChCi0rlCUzQ8eK9qiqolzHivb834b1RfbzAABAwzR4Q4Pnn3/eBWHAV2RlZanwaJlirusnPz/Hlzc/P4Mizf308/oXlJWVpdTUVLfE2Ngjvs7coDw0NNR+vGZ0z47cHIe1c6XTo3t25uaoe2yU4uPjnRIHAACAO5Bf4FL52ntzfZ9X0lkbV/8yY8A+YCs7XQUFBUpISGjsx2gwd++BeLHMZrNmTp1wOvbsdHvs3WOjdOfQsdqzZ4+7QwQAwCs1uLAxatQoV8QBH1FUVKRq+SukbVSd7cGXRala/ioqKmrkyH5x5gioVqboWu3OHPF19st5SIsgjR5ym77++mv16dNHI4cPPT1FPDNDcb37KrRNW5UeOaiduTlqeaJQI8ZNYHQPAADwauQXuFQ1o+J95b25vs97/PjxJrNEV82SWqUhkYpLHq7Q8AiVHj6gHbk5mrtwqWZOneDxxY26Nqyvrq6msAEAwEWqV2GjpKSk3hdk0yucj8lkkr+qVXZwr8Kiao+YOnFor/xVLZPJ5IboTmusEV91vZyfPLJfUqWeXbpC0yc+cN7RPSPGefbLOwAAwLmQX8DZfO29uT7Pm5+f32gDtlzp7D0Qa/Kzmj0QLZkZWpWeocTERI8uXtVsWH+m6upqN0UDAID3q1dho1WrVrX2GjgX/mLG+aSkpCiydYgKLZvVMjLOYTkqm82qQstmRbUOUUpKittibIwRX+d8OW8XJeknlYaY7C/n5xrd48kv7QAAAOdDfgFX8LX35gs979kDtnTGf3KXOmDrzOV0Xf17tu+BaF9S6xfeuKQWAABwjnoVNj799FP7n3/66Sc9+uijuvvuu5WUlCRJ2rp1q9544w3Nnz/fNVGiyQgICNAjDz+oabMWKG/9SkWa+yn4siidOLRXhZbNMuz7VlOffFQBAQ1eJc2pXD3i63wv55J0ec8kfffpGvvLeV2jewAAALwV+QVcxdfem8/3vGcP2LrCfL0UKR3bv1ffW/510QO2Gnuvi8beAxEAAHiHen17fNNNN9n/PHv2bD333HMaNmyY/ditt96qnj176uWXX2aNXFxQzb87zy5Zpp/Xv6Bq+ctf1YpqHaKpTz7q8O+WO7lyxNcFX85bX8bLOQAAaLLIL4DGceaArZ3/XCcNuU0//3Oduke1u6gBW+7Y66Ix90AEAADeo8HD4rdu3aoVK1bUOv6rX/1KY8aMcUpQaPqGDRumwYMHKysrS0VFRTKZTEpJSXH7TI2zuWrE1wVfzo8e4uUcAAD4BPILwLVqBmzl5eUpPz9fC/40TZ07d27wgC137XXRWHsgAgAA79Lgt42YmBj99a9/rXV85cqViomJcUpQ8A0BAQFKTU3VqFGjlJqa6nFFDVeqeTnfmZsjm81Wq/2nb7aqCy/nAADAB5BfAK5nMBjsucXFzkK3L6fbu++597rYtVcFBQVOiblGzZJaoWWFsmRm6FjRHlVVlOtY0R5ZMjNOL6k1fEiT3UsFAADUrcHfJC9evFiDBg3Sxx9/rGuuuUaS9MUXX+j777/XO++84/QAgaboXBuUHz96QIqUWp4o0oh7H+DlHAAANHnkF/BkVVVVHj/LvLG4c68LV++BCAAAvE+D38huueUWff/991q+fLn+93//V5I0cOBAjR07lhFVQAPU9XIe0iJIGnKbpj40lpdzAADgE8gv4KnWrFmjZ5csU+HRMvu+gJGtQ/TIww96zL6Ajcnde124cg9EAADgfS5qqEl0dLTmzZvn7FgAn3P2y3loaKjy8/PVq1cvd4cGAADQaMgv4GnWrFmjabMWyBrZQzHX9VNI2yiVHdyrQstmTZu1QJJ8rrjhCXtduGoPRAAA4H0ueg7tiRMntHv3blVUVDgc5wtZoGHOfDmvrKxUfn6+myMCAABofOQX8BRVVVV6dskyWSN7qHPaGPn5nZ4REBYVr5aRccpbv1ILlyzT4MGDfWpZqnMtp1t65KB25uac3uti3ARmUAAAgEbR4LewgwcP6n/+53/08ccf19leXV19yUEBAAAA8A3kF/A0WVlZKjxappjr+tmLGjX8/AyKNPfTz+tfUFZWllJTU90UpXuw1wUAAPAUDS5sTJw4UceOHdO///1vJScn67333tP+/fs1d+5cLVq0yBUxAgAAAGiiyC/QmOqzGXhRUZGq5a+QtlF1XiP4sihVy19FRUWNEbLHYa8LAADgCRpc2Ni8ebP+/ve/61e/+pUMBoNiY2PVv39/hYWFaf78+UpLS3NFnAAAAACaIPILNJb6bgZuMpnkr2qVHdyrsKja+0WcOLRX/qqWyWRqzPA9CntdAAAAd2twYaOsrEwRERGSpNatW+vgwYNKSEhQz5499dVXXzk9QMCTWa1WRioBAABcAvILNIaGbAaekpKiyNYhKrRsVsvIOIflqGw2qwotmxXVOkQpKSlueRY4FzkdAADeqcGFjc6dOysvL0+XX365EhMT9Ze//EWXX365VqxYofbt27siRsAjWSyW02vL7iq0ry3bOTZSI4cPZW1ZAACAeiK/gKs1dDPwgIAAPfLwg5o2a4Hy1q9UpLmfgi+L0olDpwshhn3fauqTj/rUxuFNFTkdAADeq8FvYg8//LD27dsnSXryySf1m9/8RqtXr1ZQUJBef/11Z8cHeCSLxaK5C5eqNCRSccnDFRoeodLDB7QjN0dzFy7VzKlsnAcAAFAf5BdwtYvZDLxm9sazS5bp5/Uv2JeuimodoqlPPuqwdBW8EzkdAADercGFjbvuusv+5z59+mjXrl367rvv1KFDB1122WVODQ7wRFarVW+mr1VpSKTMqUPk5+cnSWplipY5dYgsmRlalZ6hxMREpjADAABcAPkFXO1iNwMfNmyYBg8efMHNxuF9yOkAAPB+l/w3dHBwsK688sqLSjrmz5+vq666Si1btlRERIRuu+025eXlOZyTnJwsPz8/h3/Gjh3rcM7u3buVlpam4OBgRURE6JFHHlFVVZXDOdnZ2bryyivVrFkzxcfHM/oLF62goEB5uwoV17uv/QW4hp+fn+J699V3u/aqoKDATRECAAB4r0vJL4C6nLkZeF3Otxl4QECAUlNTNWrUKKWmplLUaCLI6QAA8H4NfisbPXr0edtfffXVel9ry5YtGj9+vK666ipVVVXpscce04ABA7Rjxw6FhITYz7v33ns1e/Zs++fg4GD7n6urq5WWliaTyaTPPvtM+/bt08iRIxUYGKinn35akvTjjz8qLS1NY8eO1erVq5WVlaUxY8aoffv29qnGQH0VFxerotKq0PCIOttD27RVRaVVxcXFjRwZAACA93FmfgHUhc3AcTZyOgAAvF+DCxtHjx51+FxZWalvv/1Wx44dU79+/Rp0rU8++cTh8+uvv66IiAh9+eWXuvHGG+3Hg4OD6xw9I0kbNmzQjh07tGnTJrVr1069e/fWnDlzNH36dM2aNUtBQUFasWKFOnbsqEWLFkmSunbtqpycHC1evJjCBhrMaDQqKNCg0sMH1MoUXau99MhBBQUaZDQa3RAdAACAd3FmfgHUhc3AXc9qtaqgoEDFxcUyGo2Kj4/36CWcyOkAAPB+DX5ze++992ods1qtGjdunDp16nRJwdSMhmjTpo3D8dWrV+tvf/ubTCaTBg4cqD/96U/2WRtbt25Vz5491a5dO/v5qampGjdunLZv3y6z2aytW7fq5ptvdrhmamqqJk6ceEnxwjfFx8erc2ykduTmOKzHKkk2m007c3PUPTZK8fHxbowSAADAO7gyvwBqsBm461gsFr2ZvlZ5uwpVUWlVUKBBnWMjNXL4UI/dfJucDgAA7+eUISkGg0GTJ09WcnKypk2bdlHXsFqtmjhxoq6//nr16NHDfnz48OGKjY1VZGSkvv76a02fPl15eXl69913JZ3eCO7MooYk++eazd/OdU5JSYlOnjypFi1aOLSVl5ervLzc/rmkpETS6dFjlZWVF/V8l6rmvu66PxzdNfSPenbpCn2btU6X90xSaOvLVHr0kH76ZqvaVBzQnUPHqrq6WtXV1Q26Lv3sG+hn30Ff+wb62TfQz7W58nfhjPwCOBubgTufxWLR3IVLVRoSqbjk4QoNj1Dp4QPakZujuQuXaubUCR5Z3DAYDBo5fKjmLlwqS2aG4nr3VWibtio9clA7c3PU8kShRoyb4NGzTgAA8HVOe4P74Ycfam3Y3RDjx4/Xt99+q5ycHIfj9913n/3PPXv2VPv27ZWSkqIffvjBZSO45s+fr6eeeqrW8Q0bNjjs7+EOGzdudOv98Ythd/zu//5UKWmf1EJS5K8kSXv27NGePXsu+tr0s2+gn30Hfe0b6GffQD//4sSJEy69/qXmF2hanLXUUc1m4Lh0VqtVb6avVWlIpMOsh1amaJlTh8iSmaFV6RlKTEz0yAKB2WzWzKkTTs82yU63zzbpHhulEeM8syADAAB+0eDCxuTJkx0+22w27du3T+vXr9eoUaMuKogHH3xQH374of7xj38oOrr2+pZnuuaaayRJBQUF6tSpk0wmk7744guHc/bv3y9J9n05TCaT/diZ54SFhdWarSFJM2bMcHjOkpISxcTEaMCAAQoLC2v4AzpBZWWlNm7cqP79+yswMNAtMaA2q9WqnTt3qqSkRGFhYYqLi7ukl3b62TfQz76DvvYN9LNvoJ9rq5nVfKlckV+gafHGpY58QUFBgfJ2FSouebjDUk6S5Ofnp7jeffVddroKCgqUkJDgpijPz2w2KzEx0av2BwEAAKc1uLBhsVgcPhsMBrVt21aLFi3S6NGjG3Qtm82mhx56SO+9956ys7PVsWPHC/5Mbm6uJKl9+/aSpKSkJM2bN08HDhxQRESEpNMj6cLCwtStWzf7OR999JHDdTZu3KikpKQ679GsWTM1a9as1vHAwEC3J7KeEAMcde3a1enXpJ99A/3sO+hr30A/+wb6+RfO+j04M79A0+OtSx35guLiYlVUWhUaHlFne2ibtqqotNr30vRUBoPBYwsvAADg3Bpc2Pj000+ddvPx48crPT1df//739WyZUv7nhhGo1EtWrTQDz/8oPT0dN1yyy0KDw/X119/rUmTJunGG29Ur169JEkDBgxQt27dNGLECD3zzDMqKirSzJkzNX78eHtxYuzYsVq2bJmmTZum0aNHa/PmzXrrrbe0fv16pz0LAAAAgIZzZn6BpsWTljpy1lJYTYnRaFRQoEGlhw+olan2ygulRw4qKNAgo9HohugAAEBTV+83sZMnT+r999/X8ePHa7WVlJTo/fffd9hwuz6WL1+u4uJiJScnq3379vZ/MjIyJElBQUHatGmTBgwYoC5dumjKlCkaNGiQPvjgA/s1/P399eGHH8rf319JSUm66667NHLkSM2ePdt+TseOHbV+/Xpt3LhRiYmJWrRokVauXMnaqgAAAICbuCK/QNNiX+qod99zL3W0a68KCgpcGofFYtGU6TM0ceYczXj6eU2cOUdTps+oNdvI18THx6tzbKR25ubIZrM5tNlsNu3MzVGX2CjFx8e7KcKLY7ValZ+fr23btik/P19Wq9XdIQEAgDrUe8bGyy+/rPfff1+33nprrbawsDAtXbpUP//8s8aPH1/vm5/98nO2mJgYbdmy5YLXiY2NrbXU1NmSk5N9/sUTAAAA8BSuyC/QtNRnqaMTpyq1ePFiVVZWqmPHjpoyZYqaN2/utBhYCuvcDAaDRg4fqrkLl8qSmaG43n0V2qatSo8c1M7cHLU8UagR4yZ41cwW9nMBAMB71PsNY/Xq1Zo4ceI52ydOnKg33njDGTHBhzE6BgAAwDeQX+BCzlzqqC4bVr+kf23O1KvvfKxVH/1Ds5esVHj7aD300ENOuf/ZS2G1MkUrIDDIvhRWaUikVqVn+HTOYjabNXPqBHUzVmlXdrosGYu1Kztd3Y3VenyKdxV9aopYO4oDFJs8XOahkxWbPFw7igNOF28YKAkAgEep94yN77//XomJieds79Wrl77//nunBAXfxOgYAAAA30F+gQupWepoR26Owx4bkrR53ava8dkGtehyo1r2/LWah3fQqcO7dXz7P/Ty6nckSS+88MIl3d++FFby8HMvhZWdroKCAp/efNpsNisxMdGr9yC5mP1cqqqqlJWVpaKiIplMJqWkpCggoMHbmAIAgItU7zeNqqoqHTx48JztBw8eVFVVlVOCgu9hdAwAAIBvIb/AhdQsdRRaVihLZoaOFe1RVUW5Dv+8U5ZP1qhFxz4K//XdCo5MkKFZcwVHJqhtyj1qFn+tXvvbWp06deqS7l+fpbAqKq0qLi6+pPs0BQaDQQkJCbrqqquUkJDgVUUNqeH7uaxZs0ZX971JoyZM19Snl2rUhOm6uu9NWrNmjTvCBwDAJ9X7baN79+7atGnTOds3bNig7t27OyUo+BameAMAAPge8gvUR11LHW15da4U0Ewtu92ogKBmDucbDH5q2f1GVQaGatGiRZd07wsthVV65KCCAg0yGo2XdB+4X0OKWGvWrNG0WQu0v8Xlikl7SN3vnqeYtIe0v8XlmjZrAcUNAAAaSb0LG6NHj9acOXP04Ycf1mr74IMPNG/ePI0ePdqpwcE3NHR0DAAAALwf+QXqy2w2a9Gf5+v5uX/S/McmqlfC5fILbKbmER3rPD+wdaTkHyiLxXJJg6NqlsLamZsjm83m0Gaz2bQzN0ddYqMUHx9/0feAZ6hvESskJETPLlkma2QPdU4bo7CoePkHtVBYVLw6p42RNbKHFi5ZxmwzAAAaQb0LG/fdd59uu+023XrrrerWrZtuv/123X777eratatuu+02DRw4UPfdd58rY0UTxRRvAAAA30N+gYY4c6mj3r17S1WVOnV4t8M5Nmu1qirKVX5gt2xVFfomb6emTJ9x0cvanmsprGNFe2TJzFDLE4UaMXyI1y27hNrqW8TatWuXCo+WKdLcT35+jv3u52dQpLmf9h4tU1ZWVmOGDwCAT2rQG9jf/vY3rV27VgkJCcrPz1deXp46d+6sNWvWMN0SF40p3p7LarUqPz9f27ZtU35+PsuBAQAApyK/wMWYMmWKAiqP6/j2f8hqPf0l9OmiRqWqrTaV5X8mv6pTuumeJy55z766lsLalZ2u7sZqPT5lgsxmszMfDW5S3yLWgQMHVC1/hbSNqvM6wZdFqVr+KioqauQnAADA9wQ09Af++Mc/6o9//KMrYoGPqhkdsyM3R+bUIQ7LUdWMjunOFO9GZ7FY9Gb6WuXtKlRFpVVBgQZ1jo3UyOFDSeAAAIDTkF+goZo3b67Rdw3Ty6vf0UFJLbvfqICWbVVxtEhl+f/SqYJ/K/Gm3ym8Qye1iYmTJTNDq9IzlJiYeFGzK8xmsxITE1VQUKDi4mIZjUbFx8czU6OJqSlivZm+VnnZ6fYcqHtslEaMO13EOnDggPxVrbKDexUWVTs/PXFor/xVLZPJ5IYnAADAtzS4sAE4W83omLkLl8qSmaG43n0V2qatSo8c1M7cnNOjY8ZNIHFoRBaLRXMXLlVpSKTikocrNDxCpYcPaEdujuYuXKqZUxmdBgAAAPd54YUXJEmv/m2NDv30leQfKFt1lfwqTyrxpt/p5pEPSzpjz77sdBUUFCghIeGi7lezFNa5WK1WCh9NwIWKWCkpKYpsHaJCy2a1jIxzWI7KZrOq0LJZUa1DlJKS4q5HAADAZ1DYgEeoz+gYNA6r1ao309eqNCTSYQZNK1O0zKlDLnnEGwAAAOAML7zwgp599llNmjRJ73+yWfE3DNI1vx0q/2bNHM5z9Z59zHRuWs5XxAoICNAjDz+oabMWKG/9SkWa+yn4siidOLRXhZbNMuz7VlOffFQBAXzVAgCAq/G3LTwGU7w9Q0FBgfJ2FSouebjDsmCS80a8AQAAAM7QvHlzTZo0SbsOlyr22pRaRQ3JtXv2MdPZvdwxU2bYsGGSpGeXLNPP619Qtfzlr2pFtQ7R1CcftbcDAADXorABj3KhKd5wveLiYlVUWhUaHlFnu6tHvAEAAAAN4a49+5jp7F7unCkzbNgwDR48WFlZWSoqKpLJZFJKSgozNQAAaESX9Ha1Z88e7dmzx1mxoAmzWq3Kz8/Xtm3blJ+fL6vV6u6QcA5Go1FBgQaVHj5QZ7srR7wBAADfRn6Bi1GzZ19oWaEsmRk6VrRHVRXlOla0R5bMjNN79g0f4vTign2mc+++ks2mI4U/aV/BtzpS+JNks52e6bxrrwoKCpx6X/wyU2ZHcYBik4fLPHSyYpOHa0dxwOm9Gy2Wi752fXPXgIAApaamatSoUUpNTaWoAQBAI2vw37xWq1Vz587VokWLVFpaKklq2bKlpkyZoscff5yRKKiFNWe9i7tGvAEAAN9EfgFncNWefedb6qhmpnNZyRF9ueFtHT16RFarTQaDn1q3bqMu1/RjprMLuHKmDLkrAADeo8GFjccff1yvvPKKFixYoOuvv16SlJOTo1mzZunUqVOaN2+e04OE92LNWc90vgStZsTb3IVLZcnMUFzvvgpt01alRw5qZ27O6RFv4ybwJQMAAHAK8gvUR332UnD2nn0X+pLbaDTqZOkxffb+avmbEtT2+pvVzHiZyosP6fB3/9ZnH6xWuxA/Zjo7mav2BCR3BQDAuzS4sPHGG29o5cqVuvXWW+3HevXqpaioKD3wwAMkHrBjzVnPVJ9RSK4a8QYAAHA28gvPV1VV5da9BBoyit5Ze/bV50vunj176uTxYzrZ4nJ1vu738vM7ndO0CI9U1HW/V976lTp1/CfFxcVdcjz4hSv2BCR3BQDA+zT4bfTIkSPq0qVLreNdunTRkSNHnBIUmgZXjaS5kPqM5vJVDRmF5OwRbwAAAHUhv/Bsa9as0bNLlqnwaJmq5S9/VSuydYgeefhBDRs2zOX3d8co+vp+yX3fPS0U0qqt2rSN1+E9OxV2mUmBzVqosvykSg4VqU10vIIPlmnnzp1OzXd83Zl7ArYyRddqv5g9Ad2VuwIAgIvX4MJGYmKili1bpqVLlzocX7ZsmRITE50WGLyfK0bSXAhrop7bxYxCctaINwAAgHMhv/Bca9as0bRZC2SN7KGY6/oppG2Uyg7uVaFls6bNWiBJLi1uuGsUfX2/5P7222/VrEWIrr72Ov2w62cdKyz4ZY+N0BDFXXuddm8qYI8NJ3PFnoDuyF0BAMClaXBh45lnnlFaWpo2bdqkpKQkSdLWrVv1888/66OPPnJ6gPBerhhJcz6siXp+jEICAACeiPzCM1VVVenZJctkjeyhzmlj7MsshUXFq2VknPLWr9TCJcs0ePBgly1L5a731/p+yS1JQYEGBflZlXTN1SouKVZFRYWCgoJkDDPq2P69Ts13vFFFRYVWrVql3bt3q0OHDhoxYoSCgoIu6Zqu2BOwsXNXAABw6Ro8rOWmm25Sfn6+br/9dh07dkzHjh3THXfcoby8PN1www2uiBFeqmYkzc7cHNlsNoe2mpE0XRo4kuZcqqqqtGTZS9p7QorteY2MEZEKCAyyj+YqDYnUqvQMWa3WS76Xt2IUEgAA8ETkF54pKytLhUfLFGnuZy9q1PDzMyjS3E97j5YpKyvLZTG46/31zC+561LzJXePHj1+yXckGY2t1LZthIzGVrJJTs13vNH8+fMV0ylBE/40X8++8pYm/On05/nz51/ytWv2BOxmrNKu7HRZMhZrV3a6uhur9fiUhg9oa8zcFQAAOEeDhtZUVlbqN7/5jVasWMEmfrggV4ykqYvFYtHSF5frk5xtataqvQ6//Zpat26j7n1TZYrrymyE/8MoJAAA4GnILzxXUVGRquWvkLZRdbYHXxalavmrqKjIZTE05P31UvfZO/PnW7ZsqYQO7fW/F1jqKCEhoVHyHW80f/58zXt+hQI7XqV2PZPVvG2MTh38WUe/yda851dIkmbMmHFJ93DmnoCNlbsCAADnaVBhIzAwUF9//bWrYkETVDOS5s30tcrLTrfve9E9Nkojxl360lA1y08VWVuqVZ/fydSzryqOH9Xh7/6tz9dn6Nq0ITLFdWU2glyzFi0AAMClIL/wXCaTSf6qVtnBvQqLqv1+eOLQXvmrWiaTyWUx1Pf99fjx45oyfcZF77NX1z59rZv7q/pIyQW/5HZ1vuONKioq9PxLf1Fgx6sUlTpGhv/rt9CoKxQcGa+9mdKSl17WlClTnLIslbMGrtGXAAB4lwYvhnrXXXfplVde0YIFC1wRD5ogZ46kOdOZmwn2ujZVW/9jUXV1tVqERyrqutu097P/px3/2qB2l3dmNoIYhQQAADwT+YVnSklJUWTrEBVaNqtlZJzDclQ2m1WFls2Kah2ilJQUl8VQn/fXq349QE8/t+yi99k71z59O3NzZKs+orblhfr/7N15fFTV+fjxz6zZ95UsBEIg7BARlU2QKEHtQuVHWSxq1VpRxN2KS9WKRatVUVy+rVUrNWxq1YoVMIgaQEUYQIgQQiCBhAmQlewzc+f3RzpjlknIJDPJTHjer5cvydzJnXPnJplzznOe8xScY5LbXeMdb7Vq1SqqLVpiRk2zBzVs1CoVYaOmUVK4h1WrVnHTTTf1Uisdk3sphBBCeA+nAxtms5k333yTzz//nHHjxhEQENDi+PPPP++yxom+w5UraWyaFxMMDQklNDCA8jNGIhMHoVKpiBh6Mae3raPsZAEFP3wr2QjIKiQhhBBCeB4ZX3gmrVbL/Xcu5oHHn+bQhjeIS5uOf2Q8tWeKKDZsQX1yP/c99qDbCofbdNR/vfb3i/nXmnVUB8S1yOiw1dkzbFzLqsy1jBkzxuHEdPOFUo6/H6KCzTxy8285e/Zsh5Pc7hjveCNFUTAYDCio0QaGYbVCq9gGvpEJWNU6CgsLe6eR5yD3UgghhPAOTvdC9+/fzwUXXABAbm6uyxskRGe1KCaoUjEkZRC79+3nzPEjBEfGogsMo7G+nn1b/k1CAJKN8D+yCkkIIYQQnkTGF55r/vz5ADy7YiXHN7yMBQ0aLMSHBXDfYw/aj7tbe/3X5gudVK1mzztTZ68z339oayZqtZrx48c7bFt3a3v0JbYtvb76/gcUi5mKIwb8IhPwi4hDH/BT5nz9mROoFBP9+/fvxdYKIYQQwts5Hdj44osv3NEOIZzWuphgRGQkF4weSW7eESqK86ivOE1DxUmGjUxkyeJFko3QjKxCEkIIIYSnkPGFZ5s/fz5z5swhKysLo9FIbGws6enpbs/UaM1R/7XFQicHzlVnr7vf76g2hzO1PfqS5lt6Tbj2Po7/33OYyk+ij06m2lhAYGwS+oAQFKuV8h+2EqSxsHDhwt5uthBCCCG8mNNLSW688UbOnj3b5vGamhpuvPFGlzRK9CxFUcjNzWXnzp3k5uaiKEpvN6lTbMUE8/dkY7VaAYiIjGTCxRcx4cI0IqxVXHnpxfz9/1497wYWQgghhBDeQsYXnk+r1ZKRkcH1119PRkZGjwc12tN8oZMj56qz153vt03k51RqSZq2gLR595A0bQE5ldqmmiAGQ9cvzMu03tIrPH4AF6b/AlPJEWryvsNcX0ON8RjVRbkUbXwD09Gd3HnbLd0uHC6EEEKI85vTgY1//vOf1NXVtXm8rq6Od955xyWNEj3HYDBw7x+WctcjT7L0zy9y1yNPcu8flnpFR9xWTDCwphjDxrVUGE9gbmygoqSI/G820k9zliW33eoxAy8hhBBCCNGWjC9EVzla6GRjtVrJ35PN0A7q7HX1+1tP5IfGJqDV6e21OaoD4liVudbhgjFvXVTWEfuWXmMn27f0unDqDCZcOQdV2THOGjZw6vO/c/I/L+BTtIuH77qVpUuX9nKrhRBCCOHtOj3jW1VVhdVqxWq1cvbsWXx9fe3HLBYLn376KdHRjlN4hWdqni6cPG0BgRHRVJeeImdPNsuee4lH7vP8YtJSDFsIIYQQwjvJ+EJ0l22h07LnXsKwcS3JYycTGB5Fddlp8vdkE1Rb3GGdva5+f1dre/TVrava29LrwqkzuGDSdA7s3s6Pn/6T+b+YwR//+EfJ1BBCCCGES3Q6sBEaGopKpUKlUjncm1+lUvHEE0+4tHHCfVqvMrJ1yG2rjAwb17Iqcy1jxozx+OJ3UgxbCCGEEML7yPhCuMKYMWNYOOeXrHv/Q37c8AYavQ8+Ok2nFzp1ZaFUV2pz9NSist4oZt669mFzaq2WxP7JKENTue666ySoIYQQQgiX6XRg44svvsBqtTJ9+nTef/99wsPD7cf0ej1JSUnExcW5pZHC9bq6yshTSTFsIYQQQgjvIuML0V3NMyAaGi1YFTPRAQHM/X/X8Itf/KLTE/rOLpTqaCIf2tbm6KlFZb2VEWLb0itnT3aL64OftvQa0cGWYEIIIYQQXdHpwMbUqVMBOHr0KP37928zGS68S1dWGQkhhBBCCOEqMr4Q3dFeBkT+nmxWrf+IpKQkpybznVko5exEfk8sKutMRsjIkSO7dO5z6e6WYEIIIYQQXeF0zyIpKYns7Gx+85vfMHHiRIqKigBYtWoV2dnZLm+gcI/mq4wcab3KSAghhBBCCHeQ8YVwVneKd7uCbSI/sKYYw8a1VBhPYG5soMJ4AsPGtU0T+Qvm2ify3b2orLffD/hpS6/hIWYKtmZiWPsCBVszGRFi4eF7pfahEEIIIVzP6cDG+++/T0ZGBn5+fuzevZuGhgagqbP25z//2eUNFO5hW2WUvycbq9Xa4phtldFQSRcWQgghhBBuJuML4Sx7BsTYye1nQBQUkZeX57Y2ODOR7+5FZZ19P/Lz87t0/s5KS0vjr88s58Vlj7L8obt4cdmjPPfMnyWoIYQQQgi36PRWVDbLli3j9ddf57rrrmPNmjX2xydNmsSyZctc2jjhPpIuLIQQQgghPIGML4SzPGVb3c7W5nC0dZWlsZH9X39C5amTVJQc5/ILh3d5UVln34+qqqound8ZUvtQCCGEED3F6cDGoUOHuPTSS9s8HhISQkVFhSvaJHqIbZXRO5lrOLQ1015gbkRSPAsXSbqwJ1AUpdNFDIUQQgghvJGML4SznC3e7U6dmchvvaiswljE/h2fY1b7gEYL5kaMuXuJjQpn6dKlTrehs+9HcHAwRqPR6fMLIYQQQngipwMbsbGx5OXlMWDAgBaPZ2dnk5yc7Kp2iR7S2VVGoucZDIamoFNBsT3olJoUx3UL5nls0EkCMUIIIYRwlowvhLOcLd7tCWyLyhYvuRPDgTx8Uy4mdOhkfCPisVSVUHnga5568XUAp4MbnX0/kpOTyc3Ndel1CSGEEEL0FqcDG7/73e+48847efPNN1GpVBQXF7Njxw7uu+8+Hn30UXe08bxnmyyGpv1TU1NTXTpZLOnCnmffvn38+fmVVAfEkTxtAYER0VSXniJnTzbLnnuJR+7zvIwabwzECCGEEKL3yfhCOMtbt9UdMWIEeccKCRgygdj036LWaNCo1RASRmBCKkUbYcWrf+Pee+9Fr9d3+rze+n4IIYQQQnSH04GNBx98EEVRSE9Pp7a2lksvvRQfHx/uu+8+7rjjDne08bxmmyzOLzrFjXNn8eCTfyE5Plomi/u41evfpzogrsWKq9DYBNIy5mLYuJZVmWsZM2aMxwxODAYDy557yasCMUIIIYTwDDK+EF3hjdvqrlq1imqLlphRl6HT6VocU6tUhI2aRknhHlatWsVNN93k1Lk7836YTCZXXo4QQgghRK9yOrChUql4+OGHuf/++8nLy6O6uprhw4cTGBjojvad15pPFg+eMgcwkThlDjmGbb0yWdyT2wyd71saHS48SfLkX7dII4em37/ksZM5uDWTvLw8j8i0URSFdzLXeFUgRgghhBCeQ8YXoqu8bVvdwsJCrGodvlGJDo/7RiZgVesoLCzs0vm97f3oaef7GFMIIYToa5wObNjo9XqGDx/uyraIZlpPFmtVVuAYoTHxvTJZ3JPbDPXWlkae1NFtNCsERkQ7PBYYHkWjSaGysrKHW+VYXl4ehwqKSZ62wCsCMUIIIYTwTDK+EF3R1W11q6urWbx4Mfn5+SQnJ7Ny5Uq3B9P69++PSjFRf/o4gfGD2xyvP3MClWKif//+XX6N9t4Pd29v7Olk21whhBCi7+l0YOPGG2/s1PPefPPNLjdG/KTtZLHVfqynJ4t7cpuh3trSyNM6unqtmurSU4TGJrQ5Vl12Gr1OTUhISI+3y5HKykoaTd4TiBFCCCGEZ3DH+GL58uV88MEHHDx4ED8/PyZOnMgzzzxDamqq/Tn19fXce++9rFmzhoaGBjIyMnj11VeJiYmxP6ewsJBFixbxxRdfEBgYyPXXX8/y5cvRan8aPm3dupV77rmHAwcOkJiYyCOPPMINN9zQ6baK3pORkUHW19tRB4Sj0ur55scC/rWuH+lTJrJx40a3ve7ChQt56PEnKf9hK/5xKaibLQpSrFbKf9hKkMbCwoULXfq65/v2xrJtrhBCCNE3dXqJxttvv80XX3xBRUUF5eXl7f4nXMNTJotbZ46Exiag1ent2wxVB8SxKnMtiqJ41Ws1Z+vo5lRqSZq2gLR595A0bQE5ldqmAnwGg0tfrzVFUcjNzWXnzp32VVSD+/cjf082Vqu1xXOtViv5e7IZmhRPSkqKW9vVWSEhIeh1TYEYRzwtECOEEEIIz+CO8cWXX37J7bffzjfffMPmzZsxmUzMmDGDmpoa+3Puvvtu/vOf/7B+/Xq+/PJLiouLueaaa+zHLRYLV199NY2NjWzfvp1//vOfvP322/zxj3+0P+fo0aNcffXVXHbZZezZs4e77rqLm2++2a2T4sI1MjIy2PLtXvxHXE7ElXcTO285EVfejf+Iy9ny7V4yMjLc9tp6vZ67bvs9pqM7Kdr4BtVFhzE31FFddJiijW9gOrqTO2+7xanC4efSfKyTOGUOQNP2xj001ultvTXGFEIIIYT7dTpjY9GiRaxevZqjR4/y29/+lt/85jeEh4e7s23nteaTxb25ar8ntxnqjS2NnKkPYWujK7eqap0pEuCn58a5sxg3ZhRHP9mEYeNaksdOJjA8iuqy0+TvySaotpiFi5Z4TOp4SkoKqUlx5OzJbvEewk+BmBEeFIgRQgghhGdwx/jis88+a/H122+/TXR0NLt27eLSSy+lsrKSf/zjH2RmZjJ9+nQA3nrrLYYNG8Y333zDJZdcwqZNm8jJyeHzzz8nJiaGsWPH8uSTT/KHP/yBxx9/HL1ez+uvv87AgQP561//CsCwYcPIzs7mhRdecOvEuOie6upqsr7ejv+Iywm77EZU/+tP+8QNRh87CICsrz+nurrabdtSLV26FIAXX/0/Sgr3YFXrUCkmgjQWHrjrVvtxV/C07Y17g2ybK4QQQvRdnQ5svPLKKzz//PN88MEHvPnmmyxdupSrr76am266iRkzZrTpJIjuaT1ZTLO3tycni3syc6Q3slQ629H9+OOP+XLbDpduVeUoJbqurAQw8dFnW/h/P5vBd7v3cGhrpv01RyTFs3CRZ6VKq9Vqrlswr2nFlxcEYoQQQgjhGXpifGHrN9oCJrt27cJkMnH55ZfbnzN06FD69+/Pjh07uOSSS9ixYwejRo1qsTVVRkYGixYt4sCBA6SlpbFjx44W57A956677mq3LQ0NDTQ0NNi/rqqqAsBkMmEymbp9rZ7Gdk2edG133XUXARFxhI+ahl7XcrtfNCoiRk1DZczhrrvu4rXXXnNbO+677z6WLFnC2rVrOX78OImJicydOxe9Xu/S9ysvL4/8olMMnjIHrcqKmqasBDUKWpWawWmTOPL1eg4dOtRnFyGVl5djRU1IRCQa2mZlhIRHYEVNeXl5r/yseuLvyflM7ofnkXvieeSeeJa+eD+cuRaniof7+Pgwf/585s+fT0FBAW+//Ta33XYbZrOZAwcOuL3Y2vmk9WTx4LRJEAcVJUUcNmzrscninswc6Y0slc4EU0rLq1jx+j/Q9x/tsj1Z280UiYkHjlEdEMvO3Xt5dvlT5Ofne0RB846kpaXxyH1LmrJPPDwQI4QQQgjP4c7xhaIo3HXXXUyaNImRI0cCYDQa0ev1hIaGtnhuTEwMRqPR/pzmQQ3bcduxjp5TVVVFXV0dfn5+bdqzfPlynnjiiTaPb9q0CX9//65dpBfYvHlzbzfB7uc//zk///nP//eVxcEzBsAv/wLAp59+6vb2REREEBERAcDnn3/ulte4ce4swAQcsz82TlPY9I84YO4scnNzyc3Ndcvre4Jbr70GKHZ80A8mXHsNRqOxR+55ezzp90TI/fBEck88j9wTz9KX7kdtbW2nn+tUYKM5tVqNSqXCarVisTjqFIruaj5ZnP/1epg7i+Nfr2dEfEyPTRb35DZDvbGl0bmDKac4c8pIv9Q0Lj7HVlXOBBw6yhQBGDBqAge/WE1+fr7XpESnpaUxZswYl2/XJYQQQojzg6vHF7fffjv79+8nOzvbBa3rvqVLl3LPPffYv66qqiIxMZEZM2YQHBzciy1zD5PJxObNm7niiivQ6XQ99rqKopCfn09VVRXBwcEkJyfb+6OLFi1i/cavCb/iNvT9BrX53saTRyjb/CpzMqa4NWOjp+Tl5fHgk38hccocQmPiUaMwTlPILkt/FNRUlBRx/Ov1PP3oA302Y0NRFB5+7AkOVmkYkz67zRhzb9b7DAtWWPbEH3tl3NJbvyfCMbkfnkfuieeRe+JZ+uL9sGU1d4ZTgY2GhgZ7qnh2djY/+9nPWLlyJTNnzpTJSzexTRYfOnSI3Nxcnn70AVJTU3vs/e7JbYZ6Y0ujcwVTcnZ8jtVUz8hLf+7SPVnPmSkSFtkjxeFdTa1We00gRgghhBC9z13ji8WLF/PJJ5/w1VdfkZDw0+KV2NhYGhsbqaioaJG1UVJSQmxsrP053333XYvzlZSU2I/Z/m97rPlzgoODHWZrQFN2io+PT5vHdTpdnxmIOtKT19e6fl3r7WNffPFF3o7uh/WHrYRFJttrbABYFYXyH7ZSW1rMiy++2CfuSWpqKsnx0eQYtv2vxkbT9SqoMVtVHDZsY0R8TI+OL3vDtXPnsOy5l/h+43qHY8wFv1vi8HezJ/X1vwPeRu6HayiK4rKFj3JPPI/cE8/Sl+6HM9fR6cDGbbfdxpo1a0hMTOTGG29k9erVREZGdqmBwjlqtZqUlBRyc3N7ZQV8T24z1NNbGp0rmKItyycqJo6gqNimwY6xkIbaanz8AwmL7d/luh/nzBQpP9MjxeGFEEIIIXqLO8YXVquVO+64g3//+99s3bqVgQMHtjg+btw4dDodWVlZzJ49G4BDhw5RWFjIhAkTAJgwYQJPPfUUp06dIjq6aRHK5s2bCQ4OZvjw4fbntN62ZvPmzfZziJ7nqH6do+1j06dMZMu3OwAIGDYVXUQcptJian78ktrcHaRPmdhiCzRXTsz1NE/Z3ri3yba5QvS8cwWahRDCFTod2Hj99dfp378/ycnJfPnll3z55ZcOn/fBBx+4rHHCc/TkNkM9vaVRRx3dS6+6gb9lvs+xPTso+NFAeXkZimJFrVYRFhZO0rC0LgUgOsoUATj2ww6G9kBxeCGEEEKI3uKO8cXtt99OZmYmH330EUFBQfaaGCEhIfj5+RESEsJNN93EPffcQ3h4OMHBwdxxxx1MmDCBSy65BIAZM2YwfPhwFi5cyF/+8heMRiOPPPIIt99+u31V96233srKlSt54IEHuPHGG9myZQvr1q1jw4YN3XxXRFe0W7/OwfaxGzduJCMjg6yvP6f+2G5UWj1WcyNKTRnpUyayceNG+3l7YmLO3YETT9je2BPItrlC9JzOBpqFEKK7Oh3YuO666xzWAhDnj57cZqintzRqr6MLsP6DD9ny8SqCUy8hatLl+IRE0lB5htKD35D98SrSxw13OgDhMFMkLJKTJ/IZP8QX1ekjXHvTvdLRFkIIIUSf5Y7xha0uwrRp01o8/tZbb3HDDTcA8MILL6BWq5k9ezYNDQ1kZGTw6quv2p+r0Wj45JNPWLRoERMmTCAgIIDrr7+eP/3pT/bnDBw4kA0bNnD33XezYsUKEhISeOONN8jIyHDp9fRljY2NrFq1isLCQvr378/ChQvR6/VdOldH9escbR+7ceNGqqurWbx4Mfn5+SQnJ/PSSy9hNBrZuXMnISEhnD17lj8/v9KtE3M9taK5t7c39hSyba4Q7udMoPl8+xskhHC9Tgc23n77bTc2Q4je56ijqygKKpUKXWR/fBJHofEPRqXWoPEPxidxFPrSYlTqrg3Im6+e+v7j/+PEyRKsVoVfPfkQ1TW1/GvNOtRqtaxkEEIIIUSf5I7xhdVqPedzfH19eeWVV3jllVfafU5SUlKbraZamzZtGgaDwek2Cli+fDkvvvp/VFu0WNU6VIqJhx5/krtu+z1Lly51+nznrF/nYPvYwMBA+8+gwWDgsSef+inAoFVjPJ6PT9xQpl7jnom5nl7R3NvbGwshzg/OBpqFEKI7pDcjUBSF3Nxcdu7cSW5uLoqi9HaTPEZeXh5ldWYmzphFuA+cLc7jzJF9nC3OI9wHJsyYRWmtiby8vC6dPy0tjd/M+zV+OjUxyUOZMvt3AIz4+S3kVGqbMjpkwCyEEEIIIfqI5cuX89SLr9MYfyExV9/FgOueJubqu2iMv5CnXnyd5cuXO33O5vXrHKkuO93u9rG2AENOpZakaQtIm3cP4Rf+jFP6fpw2nqTk6MEWz7dPzBUUdXkM0HpFc2hsAlqd3h44qQ6IY1XmWhmXCSG8TlcCzUII0VWdztgQfZMUdOqY7UM5MWUoA7U6KqsqaWxsRK/XExIcgtnUiOH7T7v8oawoCv9asw5Vv2FMy5iLVmUFjhEaEy9pmkIIIYQQok9pbGzkxVf/D93A8cRn3Iz6f6t5A+MH4x+XQtFGWPHq37j33nud2paqo/p1VquV/D3ZjHBQv669LVN8QyMJGzaJhlNHydm2iZgBqaia9cW7OzHncEWz1Wofa0QNGs3B7z+RFc1CCK/TPNAcGpvQ5nhHgWYhhHCWzJSexxytTkqatsDjMwV6MsOkxeovlYqQkFCioqIJCQkFlarbH8r2Qc3Yye2naXZjNZgQQgghhBCeYtWqVVRbtISNmmYPatioVSrCRk3jrEXDqlWrnDqvrX5dYE0xu/67mn1bPmLP5vfYt+Ujdv13NUG1xSxcMLfNQqH2+uJ6vR6NRk3IwDGUlZVSbixs8X3dHQO0XtFceuYMO779ju07d/Od4Qf2HTnOj7l5fPfdd106vxBC9BZboDl/T3ab7SFtgeahDgLNQgjRFZKxcZ7y1oJOPZ1h0tXVX50laZpCCCGEEOJ8UVhYiFWtwzcq0eFx38gErGodhYWFDo93JC0tjQtHDmlTuyNQY+au237vcKzQXl88JDiE0MAASmtNWBQrDbXV9mOuGAM0Xzxl0fqye99+TFp/guNS0Pn4cfbkUUrM8M7aDxgxYoRk0gshvIYt0LzsuZcwbFxL8tjJBIZHUV12mvw92U2B5kVLPGqeSQjhvZz6S2Iymbjxxhs5evSou9ojeog3Zgr0RoZJ89Vfho1rqTCewNzYQIXxBIaNa9td/dVZ3dkPWIiukJo6QgghPImML84v/fv3R6WYqD993OHx+jMnUCkm+vfv7/S5V69ezatvr0GbMonBs+9j9E3LGTz7PrQpk3j17TWsXr26zfe02xdXqRiSMggqT1JTVkJDTbVLxwD2Fc2Grzl0OA+T1p/IxEHo/QJBpabq2A8kDRkOsUOl1oYQwuukpaXxyH1LGB5ipmBrJoa1L1CwNZMRIRYevneJBGuFEC7jVMaGTqfj/fff59FHH3VXe0QP8bZMgd7MMLF9KL+TuYZDWzPtmSIjkuJZuKh7H8qtM0JoFmNyxWqw7lIUhby8PCorKwkJCSElJUVWVngxqakjhBDC08j44vyycOFCHnr8Scp/2Ip/XEqL7agUq5XyH7YSpLGwcOFCp85rNpt5dsVKlLiRpF59MypVU381IDiM8KRUDm14g+dWrGTOnDlotT8NgTvKzg6PiCDEUoE+SE1Fzpec2vsF5oYa4iNC+fX/+xVjxozp8vtgWzz14BN/5sihXPpdeCUWUyONVaWUHvwWdcVxRlw1F1//IA5uzZRaG0IIr5OWlsaYMWNkPkEI4VZOb0U1a9YsPvzwQ+6++253tEf0EG8r6OSwwN7/2DNM3Njpd9eHcus0zcFpkyAOKkqKOGzY1qtpmjIJ3rfYMp6qA+JInraAwIhoqktPkbMnm2XPvcQj98nKGSGEEL1DxhfnD71ez123/Z6nXnydoo0QNmoavpEJ1J85QfkPWzEd3ckDd93qVOFwgKysLIrLa0icON0e1LBRqdTEpU3n+IaXycrKIiMjw37sXFumxKqrWPrKSxw/fpx1739IsamBkhoTf8t8ny+37WjRL3Z2QVBaWhoL/98veXjZs5R/b6LMqkKtVhEeHsHwq+YSmzwMc2ODRy02E0IIZ6jVagnKCiHcyunAxuDBg/nTn/7Etm3bGDduHAEBAS2OL1myxGWNE+7j7toRrnauDJOA0AgqyivYsWMHgFtWArjrQ7l5Rkj+1+th7iyOf72eEfEx3c4I6SqZBO9bvLWmjhBCiPODjC/OL0uXLgXgxVf/j5LCPfZaGEEaCw/cdav9uDOMRiMWNARExTs87h8ZjwUNRqOxzbFzZWcDrFr/EdUB8Qy7erLDfjHQpQVBF110EcNHjSJ0+FR8AgLx8Q8kLLY/qv/1xzxtsVlHJNNbCCGEED3N6cDGP/7xD0JDQ9m1axe7du1qcUylUsnAw0t4W0GnjjJMjPk/snvT+5QUHuf/Vn/E2g2fn3Mg4Wkdb1tGyKFDh8jNzeXpRx8gNTW1V9okk+B9T29nPAkhhBAdkfHF+Wfp0qXce++9rFq1isLCQvr378/ChQudztSwiY2NRYOFmtNFBMe3XZhVe6YIDRZiY2Mdfr+j7Ozk5GTy8vJ4YtmfKTH5MzF9NpWnizhdkIuPfyBjr5jDns3r+esLL1FnsVIdEO/0gqCUlBSGDogn5+Sxcy4287TxS3OuyPT25OsTQgghhGdyOrAhhf36DnfWjnC19jJMjPk/8s2GNVThR9LUuUyafgXVZac7HEh46hZLiqJQUFAAQEFBAYMHD+6VzrxMgvc93lZTRwghxPlFxhfnJ71ez0033eSSc6WnpxMXFkCxYQtBcckttqOyWhWKDVuIDwsgPT293XM0z842GAzcv/RhDDl5/HjkGFrfII788WZ0gSHo/ENQq1WEhYXTP3UM2/7zCf3HpTOhCwuCOrvYbO/evR45fgHXZHp76vhMCFeTAJ4QQriW04GN5qxWK0CbyU/hPbyloJOjTn9AaAS7N71PFX7EDr+YMWNGodX7dDiQ6GzHu6c7HKtXr+bZFSspqzWz4smHuPWBxwj3f5L771zM/Pnz3fa6jsgkeN/jbTV1hBBCnL9kfCG6QqvVcv+di3ng8ac5tOEN4tKm4x8ZT+2ZIooNW1Cf3M99jz3YonB4e5qPF6InzOJkRCF1tdU0GI9iriklOi0DfWAopQe/ZfeXG6isriMmNa3LC4I6sxWWp24R64pMb9kCV5wvJIAnhBCu16XAxjvvvMOzzz7L4cOHARgyZAj3338/CxcudGnjRM/wloJOrTv9FeUVlBQeJ2nqXMaMGUVEZKT9uY4GEp3teCuKwr/WrOuxDsfq1at54PGnUeJGMmBK0yqy+Izfc+z7LB54/GmAHg1uyCR43+NtNXWEEEKcf2R8IbrL1l9+dsVKjm94GQsaNFiIDwvgvsce7FR/uvV4obKykob9eWjCE4kdMZXynf/h9IFtDJp5E/ETZ5G3sYKG+hxCIx1vcdXZBUHtLTYDuPcPSz12i9juZnrLFrjifCEBPCGEcA+newfPP/88ixYt4qqrrmLdunWsW7eOmTNncuutt/LCCy+4o41C2KWlpfHXZ5bz4rJH+f1v/h/JA5O5dPoVLYIaNq0HEvaO99jJ7Xa8d/5wkKWPP0VOpZakaQtIm3cPSdMWkFOpbcoWMRhcej1ms5lnV6xEiRtJ6tU3E9wvGYDgfsmkXn0zStxInluxErPZ7NLX7YhtEjx/T7Z91aSNbRJ8qEyCexVbxlNgTTGGjWupMJ7A3NhAhfEEho1rm7Y5WDBXBoxCCCF6hYwvhKvMnz+f77K/5J8vPcNzDy3hny89w7fZX3Z6kZCj8YJKrUHtG4hapSJo8Hjqz1ZQV1qESgU+Mclo9H6cPXnM4fmcWRBkW2w2fvx4hgwZglqt7tT45WBBEXl5eZ26Plfrbqa3p1+fEK7QOoAXGpuAVqe3B/CqA+LsCyyFEEI4x+mMjZdffpnXXnuN6667zv7YL37xC0aMGMHjjz/O3Xff7dIGCtFa8wyTtRs+p7rsdKcyC87Z8Q6L5MTJEmKShzKth1YMZWVlUVxeQ+LE6f/bC/inQIJKpSYubTrHN7xMVlYWGRkZLnnNc/G2wvKic7yppo4QQojzi4wvhCtptdou95tbjxdMpkZ8/fxRNBrqq6vQ+IWgWK3UVZymtr6BoMAAaoODObpvO0mjL3Z5VqynbxHb3UxvT78+IVxBalgKIYT7OB3YOHnyJBMnTmzz+MSJEzl58qRLGiVEZzi7vc65Ot4nC/Opq69j4OiJPdbhMBqNWNAQEBXv8Lh/ZDwWNBiNRpe8XmfJJHjf5C01dYQQQpxfZHwhPEXr8YJer8fHR4c+0I/aRjM1pwow152loeoMMcFBxEbFEtA/AT9zpVsWBHn6FrHd3e7U069PCFeQAJ4QQriP04GNlJQU1q1bx0MPPdTi8bVr1zJ48GCXNUz0LWazmaysLIxGI7GxsaSnp3eqeJ8jzQt7T500gYJ1H3ZqIHGujvfRPdvwUVmJHzrW4eu6o8MRGxuLBgs1p4sIjm/b4a89U4QGC7GxjvftdSeZBO+bvKWmjhBCiPOHjC9ET2o+lmjdv209XggJDiE0MIDys+VExydT+ONXJCQkMDl9BiEhoRg2rWP8qKFcO29OU40+Fy8I8vQ6ad3N9Pb062uto58dIdojATwhhHAfp2eWn3jiCebOnctXX33FpEmTANi2bRtZWVmsW7fO5Q0U3m/16tU8u2IlxeU19iJ+cWEB3H/nYqeLYhsMhqYsgmaFvcP9tPjVF1FwjoHEuTregbXFREaEcXTPdiITkwmL7Y+qWUfVHR2O9PR04sICKDZsISguGVp05hWKDVuIDwsgPT3dZa/pDJkEF0IIIYS7yfhC9BRHY4nUpDiuWzCPtLQ0h+OF5KREdn6znUN7t+DXUE7az6+FhloMmzbZJ+7T0tJIS0tz+aS3N2wR251Mb2+4Pptz/ewI0R5vC+A5Q4J9Qoje5nRgY/bs2Xz77be88MILfPjhhwAMGzaM7777Tj7QRRurV6/mgcefRokbSeLE6QRExVNzuohiwxYeePxpAIfBDUcfkAaDgaWPP0WVNoSBoy8lfuhYasrPNAUlaoq4ZcFs4uPjO/xAtXW8//nuagz/eZ26ugb8/HxIjA5HCQ4g79hxvt6wlpCIaMLCIhgxOYPY5GFd6nB05kNeq9Vy/52LeeDxpzm04Q0GXJgOgyKoOpnPse+zUJ/cz32PPdjl7JautEm0T94/IYQQwvVkfCF6gsFgYNlzL1EdEEfytAUERkRTXXqKnD3ZLHvuJR6576cAReuJ+tC6GvR1p/ENCqX4u08dTty7a0GQN2wR251Mb2+4vs7+7AjhiDcF8JwhwT4hhCfo0mzpuHHj+Ne//tXtF1++fDkffPABBw8exM/Pj4kTJ/LMM8+Qmppqf059fT333nsva9asoaGhgYyMDF599VViYmLszyksLGTRokV88cUXBAYGcv3117N8+fIWk8Fbt27lnnvu4cCBAyQmJvLII49www03dPsaRPvMZjPPrliJEjeS1Ktv/l9xbAiOTyEoLplDG97guRUrmTNnTot75egDMsxXyy7DbsoVf/zDLJz8dB0BW//D0EumM/aKOezZvJ6vtn3Dc8/8udMdApVai0prpaaunm937SFyyAWM//USck+UUFvfSOmZAnZ8ksmoCZdTVXrSqQ6HMx/ytsDOsytWUrTx/2DyQxRt/D9i/bXc99iDTme1uKJNoi15/4QQQgj3cdX4QghHFEXhncw1VAfEtVgxHRqbQFrGXAwb17Iqcy1jxoxBrVY7nKhPTk4mPz+/Vxa4eMMWsd0J7Hjy9Tn7syOEI94QwHOGBPuEEJ6iS4ENi8XCv//9b3788UcAhg8fzi9/+UunV5V/+eWX3H777YwfPx6z2cxDDz3EjBkzyMnJISAgAIC7776bDRs2sH79ekJCQli8eDHXXHMN27Zts7fl6quvJjY2lu3bt3Py5Emuu+46dDodf/7znwE4evQoV199NbfeeivvvvsuWVlZ3HzzzfTr14+MjIyuvAWiE7KysiguryFx4nR7UMNGpVITlzad4xteJisry34fHH1AHs87yNb/vk9FpZmYkaMw11ZRW1NLhfEURev+waGdXzL84nQOHvn2nIW9m59/2NU3ExgexVdbNlOr2k9FeTlDfXRcmJZGbt4Ryn19OfPDaXZ99Hd+edVMrutkh6MrH/Lz589nzpw5fP755zQ0NPD6X57g8ssvd1mmhnQ8ukfePyGEEMK9XDW+EH1XdzJn8/LyOFRQTPK0BS22gQFQqVQkj53Mwa2ZLcYSjibqe3OL1r6+RaynXl9XfnaEcMSTA3jOkGCfEMKTOD1SOHDgAL/4xS8wGo32zIpnnnmGqKgo/vOf/zBy5MhOn+uzzz5r8fXbb79NdHQ0u3bt4tJLL6WyspJ//OMfZGZmMn36dADeeusthg0bxjfffMMll1zCpk2byMnJ4fPPPycmJoaxY8fy5JNP8oc//IHHH38cvV7P66+/zsCBA/nrX/8KNKW2Z2dn88ILL0hgw42MRiMWNARExWNVFOpKizDX1aD1C8AvIh7/yHgsaDAajUA7H5BWK8bKOoJHX0Ftg4lTOTsIHn4pkWNmogmKoCp/L6WFe9m3/XNC1Q0dFvZ2dP7KygoatP4MnD6f04bPydm2icuuvYMJF0dQWVXJmfgITu34kN/f/FuGDh16zmvuzoe8VqslPT2dTz/9tFvF1V3Zpt7mCVs/efP7J4QQQngDV44vRN/U3czZyspKGk0KgRHRDo8HhkfRaFI6HEuI85P87AhX8tQAnjMk2CeE8CROz5zefPPNjBgxgu+//56wsDAAysvLueGGG7jlllvYvn17lxtj6wyEh4cDsGvXLkwmE5dffrn9OUOHDqV///7s2LGDSy65hB07djBq1KgWW1NlZGSwaNEiDhw4QFpaGjt27GhxDttz7rrrLoftaGhooKGhwf51VVUVACaTCZPJ1OXr6w7b6/bW63dFTEwMAT5aqg59S7Uxn4bqKhQrqFXgExhMYGwyAT5aYmJiMJlM5OXlkV90isFT5qBVWQErlVWV1NXVEhmVQJnKgk98KtFjp6Pzbcro0Q8cQZ2/H1ZjLlVFBvz9/WloaCA/P5+qqiqCg4NJTk5GrVY7PL9iakCnhkB/P7QjLubMN//mbEkBYf2SCA8JJtgvlbP7AqmsrOzUe+/oNexUMDhtEke+Xs+hQ4cc1upwx33ubpt6y759+1i9/n0OF56k0ayg16oZ3L8f8+fMZvTo0T3WDne8f974+yy6Ru71+UHu8/lB7nNbrnov3Dm+EN7PFZmzISEh6HVqqktPERqb0OZ4ddlp9Do1ISEh7roM4aXkZ0eIliTYJ4TwJE4HNvbs2dNi0AEQFhbGU089xfjx47vcEEVRuOuuu5g0aZJ9VZbRaESv1xMaGtriuTExMfZV/kajsUVQw3bcdqyj51RVVVFXV4efn1+LY8uXL+eJJ55o08ZNmzbh7+/f5Wt0hc2bN/fq6ztrxZMP/e9fYx0/4VdjaWho4NNPPwXgxrmzABNwrOl4OFx+eVLTvy/4fbNvtAWe1EDK//67iry8PPLy8uzPMhqN5Obm2r9uc/4YuPKKAUA14A8XXkvTxPX/jvvBhGuvwWg02tt4Lm1eo7k4YO4scnNzW7SrNVffZ1e0qTdMmXAxUya0fOzEiROcOHGiR9vhrvfP236fRdfJvT4/yH0+P8h9/kltba1LzuOu8YXwfq7KnE1JSSE1KY6cPdktzgNgtVrJ35PNiKR4j1rkIzyD/OwI0ZIE+4QQnsTpwMaQIUMoKSlhxIgRLR4/depUtz7Mb7/9dvbv3092dnaXz+EqS5cu5Z577rF/XVVVRWJiIjNmzCA4OLhX2mQymdi8eTNXXHEFOp2uV9rgLEVR+PWC3/BdUQMBI6cTEBmP1scfc0MtNWeKqNm/hYvjfVmbucqeUfHgk38hccocQmPigabVAN/t3gNWhePfbcQnZSJ+0f3xDY5ArdFgqqumpiiXUH8dqsNbCQ/wRZc4ggGjJhAYHkV12WmO/bCDwBoj8351NW+t+6jF+bFa+e77XVQ0qvD39+XMNx8yddZvCOuXhNVqZW/W+wwLVlj2xB87tc2Qo2torqKkiONfr+fpRx9oN2PD1fe5u23qaYqi8PBjT3CwSsOY9NmcKsjlxx1ZVFSUY1Gs1JafIi5QzUt//Qtjx451e3vc8f554++z6Bq51+cHuc/nB7nPbdmymrvLXeML4f1cteWJWq3mugXzWPbcSxg2riV57GT7WCF/TzZBtcUsXLREthUVbcjPjhAtSbBPCOFJnA5sLF++nCVLlvD4449zySWXAPDNN9/wpz/9iWeeeabFAKezQYDFixfzySef8NVXX5GQ8FPENzY2lsbGRioqKlpkbZSUlBAbG2t/znfffdfifCUlJfZjtv/bHmv+nODg4DbZGgA+Pj74+Pi0eVyn0/X6QNYT2tBZubm5mDS+pE2dzpGTpZQe3Y8VFSqsBPjoSJt6JY1Ht1NQUMCQIUNITU0lOT6aHMM2+wdkYHAofn7+nDQaqSk/g97cgFrvR3V1FVarlYbyEvxUVpIT+7Hrm1J8ItOYnD7H/uEaFJPIyOgEDBvX8mX2DgbGRfFjs/OjggEDk9m19wcO784iUq/CLyyWUmOxvaO64HdLHP48OOLoGmysViuHDdsYER9Dampqh51fV95nV7Wpp+Tm5pKTf5ykaQsoPprLNxvWooQlEjF+Gj4hkVSXFHL8+//yyFN/4enHHnJ70W53vn/e9Pssukfu9flB7vP5Qe7zT1z1PrhjfCH6BldueZKWlsYj9y1pqtWxNdNeq2NEUjwLFy1hzJgx5ObmenVRX+Ee5/rZcfd4RAhPIsE+Ifo2T6h16wynAxs/+9nPAPj1r39tn+CzWpv2nP/5z39u/1qlUmGxWDo8l9Vq5Y477uDf//43W7duZeDAgS2Ojxs3Dp1OR1ZWFrNnzwbg0KFDFBYWMmFC0/40EyZM4KmnnuLUqVNERzd1eDdv3kxwcDDDhw+3P6f1NkKbN2+2n0O4h20gknbBRYzWaCkqLqK2thZ/f3/i4+KxmE0YcrPtA5H2PiBjQ/w48s0eLFUlWCuKiIqYRl1NNVWlRgJ84MILJnA4ewNWUz0jL/15u6u5Dm3N5JYFszm+/qMW59eY6/ErP0Jg+WECo6LYs35Flzuqnvgh74lt6ojt5yYgLJJdm95DCUskfuKsn4JV/QZSP2wS1VVHe6Rot7e9f0IIIYS3ceX4QvQtDrc8sTbV4WtsbKS+4gx6bee3PElLS2PMmDFtBux79+7l3j8sdVic3NHzpd93/mnvZ0d+FsT5SIJ9QvRNBoOh6ffaQX/IU3+vnQ5sfPHFFy578dtvv53MzEw++ugjgoKC7DUxQkJC8PPzIyQkhJtuuol77rmH8PBwgoODueOOO5gwYYJ9NdeMGTMYPnw4Cxcu5C9/+QtGo5FHHnmE22+/3b7K/tZbb2XlypU88MAD3HjjjWzZsoV169axYcMGl12LaKv1QCQhIbHFcUd7L7b3ATktOZgzwWPYm/s9uf85S/CAYURFxxEXF8PxXVvQluUTFRNHUFSsw7bYVnPFx8c7PP9FSfFce+9rBAUFdbuj2tUPeVtUFJrS7l2ZQeEJHY/ORn1tPzdFB/dQXl5G1KTLWwSrTA11aDRqBo6dxMFdn5xz6wFX8IT3TwghhOirXDm+EH1L6y1PykpLyc07QkV1DRaLQvmP24hpPMnZs2c7fU61Wt2i79hRcfL7H32SmPBgyustXjPAF+7T+mdHiPOZBPuE6Fs66g8te+4lHrnPM+e+nA5sTJ061WUv/tprrwEwbdq0Fo+/9dZb3HDDDQC88MILqNVqZs+eTUNDAxkZGbz66qv252o0Gj755BMWLVrEhAkTCAgI4Prrr+dPf/qT/TkDBw5kw4YN3H333axYsYKEhATeeOMNMjIyXHYtoq2u7r3Y3gckwMcff8y69z+kuCwHTc0Rqk5oGJEUz6VX3cDfMt9vt4DV2TMlmOqrKSgoYPTo0Ty7/Cny8/Pd9gHs7Ie8LSqaX3SKG+fO4sEn/0JyfLRLB0292fEwGAy8tepdvvhqG9VnqwkMCuSySyfx24XXtrk+28/Njn3bsShWfEIimx21UnXGSFhgAP36J2P8pnNbD7hCT79/3pb+J4QQQnSVK8cXom9pnjmb/f4/qNSEQkg/fH0DqT26F19zLfq4ofz5+ZVdGnB3VJy8/7h0Nh7KJa/oCDNvepCgqFivGOALIURPkWCfEH1DR/2htIy5GDau7ZEdU7rC6cCGK9lSzDvi6+vLK6+8wiuvvNLuc5KSktpsNdXatGnTMBgMTrdRdJ2rt/BRq9XMmjWLX/ziFw6DHl9u2+EwiGI8ksMXmS+jUcy89u4H+Kz7yL7Savz48W65dlt7O/Mh3zwqOnjKHMBE4pQ55Bi2uXzQ1BsdD4PBwG9uuJm8YwVYtX6gVsOZCnIPv01W1hf86+03Wlyf7efmwB+f5GhZCdUlhQT1G4ipoY6qM0Z05lqGDB9JdfmZNhk/7tZT7583pv8JIYQQQrhDWloaD92zmN/dvoRTZxUCwmOoV6sID49g+DU3EDNwqFMD7uaLR8rKyjh0rJjky1oVJ7daOXwkH//kcVjyv8GKglan94oBvhBCCCGEM/Ly8jhUUEzytAXtbu9/cGtmj+yY4qxeDWyIvq8rW/ica1K3vcllR0GUY3u/IfvjVegj+zN+xiwSU4Z61Eqr1lFRrcoKHCM0Jr5PDJoURWHxkjvJPXocTUg0uqAoVDpfrKZ6zGdPk3v0OIuX3MXXX37R4vrS0tJY/vjD/O72JZz8/r/UD5uERqMmLDCAIcNHEh4RgWHjWocZP97OW9P/hBBCCCHcJSgoiJjEgaQOn4pPQCA+/oGExfZH9b/+Y2cH3K3HGbVnyzh5uoJ+01r2syurKqmoriGifyrGvG9oqK22H/P0Ab4QQvQV7tyuWwjxE1ut28CIaIfHbdv799SOKc6QwIZwO2e28OnqpK7ZbObUqVOMSR2IYd9+jm45hslsJT/3AEFxI5k65yYio6IAz0qlahsV/SmLqS8MmnJycti5ey/qsHgChk3Ff9CFaAMjMFeXUnvke6pzvmTn7j3k5OQwcuTIFt87btw4/v7KSzz05NNUVx1l4NhJ9OufTHX5GQwb1/bJot3enP4nhBBCCOEulZWVmMxWEoZfgFanb3O8MwNuR+OMEzm7OfLem3z3zXYmTJlGRGTTFqiNjY0oihWloQa1WoWPf6DTryeEEKLremK7biFEk9Y1kltzVCPZU8jMmOgRtiyL8ePHM2TIEIeTsq0ndUNjE1qkfFcHxLEqcy2KorT4vtWrV3PR5Klcv+QPvPzuR+zYl8vxvIOMGhBN0sAU0q+51h7UsLEHDQqK7CsAeoM3R0U7Y/Xq1SgaPf4pFxF8wdXoQmNRaXXoQmMJvuBq/FMuQtHoWb16tcPvHzduHE8/9hAXJfhRtusTDOtepGBrJiNCLDx8b9/LXLAHusZObj/9r5d/ZoUQQgghelrzAbcjzQfciqKQm5vLzp07yc3NRVGUdscZSaMuImnwMMpO5HHocB78b6tkvV6PSgWnDmwjPDyCsNj+7b6eEEII17IFonMqtSROmQPQtF13pbZplw7ZZl4Il7LVus3fk92mbIStRvJQD90xpcsZG6dPn+bQoUMApKamEtVq4lgIZ3VlT7fVq1fzwONPo8SNJHHidAKi4qk5XUSxYQtr/rORyLBwAiNiHL6eJwQNvDkq2hnHjh1D7RuI/+AJDu+p/+BLqMn5kmPHjrV7jt4set7T+nqgSwghhOiIjC9Ee2wDbkf19GwD7hFJ8Zw9e5Z7/7C0zZa2UydNcDjOUKnVjJg8k7IP3ubItxtJjAymX9IgrHVnqTv8HbUnjzD8hnvsW161fj1PHOALIYQ36+vbdQvhiVxdI7knOd2impoabrzxRuLi4rj00ku59NJLiYuL46abbqK2ttYdbRTnCWcndc1mM8+uWIkSN5LUq28mOD4Fjd6P4PgUUq++GVXCWE4cP0ZVSbHD83lC0MCbo6KdMWDAAFRqDSqdj8PjKq0PKrWGAQMGdHiezmT89AXOrEYUQggh+goZX4hzsQ24A2uKMWxcS4XxBObGBiqMJ+xblI6/YAx/fn4lOZVakqYtIG3ePSRNW0BOpZaX//42pafPOBxnxCYPY+LPr0Vz6jDHtmRiWPsCBVtXc3GCL8P7x1B8eJ/D11u4YG6f7ZMKIURvkV0MhOgdthrJw0PMFGy19Yc8f8cUpzM27rnnHr788ks+/vhjJk2aBEB2djZLlizh3nvv5bXXXnN5I8X5wdnshaysLIrLa0icOB2VquWgQqVSkzDucg4d2cX3/32XK25+qN2VXe4KGtgKXXWUZdA6Kjo4bRLEQUVJEYcN2zw6KtoZ8+fP5/m/r6Kh+BDawPCmIAdNlUSsioWGk7moFRPz58/v7aZ6hM6uRvTWQJcQQgjhiIwvRGfYBtzvZK7h0NZMe0bGiKR4rv39Yv61Zl27dcp2fPg2p49mcfa0kbC4/m3OHRASzrCRI5lz5XS0Wi2xsbGkp6fzww8/OHy9hYs8d4AvhBDeTHYxEKL3eOOOKU4HNt5//33ee+89pk2bZn/sqquuws/Pj1//+tcy8BBd5uykrtFoxIKGgKh4h+fzj4xH6+MHFUU9nkplK3TVOg3eUaGr5oO0/K/Xw9xZHP96PSPiY7x+0DR8+HDGDUthb/73aALD0YX1Q633R2msxVRupD5/J+OGD2L48OG93VSP4M3pf0IIIURXyfhCdFZ7A+5zbWk7fMLlnNi3jf1f/YfJc29rM87Y8/l7NBYf4/3PttJobuq7f/b5Fq5bMI+/PrPcqwb4Qgjhzfr6dt1CeDrbjinewunARm1tLTExbWsWREdHS6q46JZzTeoG1hRx6VWz2LVrFyEhIURHR6PBQs3pIoLj265grz1ThF6r4sbfzCPvWGGLlVbDk+KYetUvMZvN5ObmunSAYit0VR0QR/K0BQRGRFNdeoqcPdkse+4lHrmvbbDCNkg7dOgQubm5PP3oA6Smpnr9oEmtVvPyi3/lulsWc3z/ZszRg1D5hWCtq8R86ggDfOp4+YWVXn+drtTRakRvD3QJIYQQjsj4QjjD0YDb4Qpfq5XKqkoaGxtRa/VERsegq2q74GnP5+9xIud7ki6YRtLkmZ3quwshhHCP1gteaRarll0MhBCtOR3YmDBhAo899hjvvPMOvr6+ANTV1fHEE08wYcIElzdQnF/am9SN8tWCVsXfMt+3PzY4MZZQvZViwxaC4pJbbEdltSoUG7YQHxbA73//e9RqtX2lVVFREVuzt7c4V3vZFM5qXeiqdRp8R4Wu1Go1KSkpLg+09La0tDTe+dtK3lr1Ll9+s5uaM40E+OqZlj6OG36zQAaKDnhj+p8QQgjRVTK+EN3VeoVv6Zkz5OYdoaK6BkWxYqoupfFUCbdfP5fjJ0vs4wydVkVj8VGSLpjG5Nk3OdV3F0II4Xp9fbtuIYRrOR3YWLFiBRkZGSQkJDBmzBgA9u7di6+vLxs3bnR5A8X5p/WkblFREavWf0h1QDzJF0+2r6I6uCebkPBoyvN3cmgDxKVNxz8yntozRRQbtqA+uZ/7HnsQrbbpx3zIkCEYDAZWrf/IqWwKZ5wrDT557GQObs0kLy/Pq1K7uksm6p3nbel/QgghRFfJ+EJ0V/MVvv3HpWP44QAmrT/BcSlo9b4Ufv0eFrWe7O/38fC9dxAUFERlZSVlZWWseONfJE2e2W7f/ccv3mXz5s2Eh4dLH1YIIXpAX96u+1w6U6tVCPETpwMbI0eO5PDhw7z77rscPHgQaCoQfO211+Ln5+fyBorzk21SV1EUMte9R3VAvOMMCODCkECKS45yfMPLWNCgwUJ8WAD3PfZgi6LU3cmm6CwpdNU+magXQgghhCMyvhDd9dMK3xV8uf4N1ImjiU1NpbGqlFO7N6OvOcUlCxZTfHgf765Zz3PP/Bm1Ws3OnTtpNLffd6+pLCPnhx948vlX8fUPdGmmtxBCiPb11e26O+JMrVYhRBOnAxsA/v7+/O53v3N1W4RoozMZEAVbC3n3rac4fvw4RqOR2NhY0tPT7Zkazpyru9kUUuhKCCGEEMJ5Mr4Q3ZWWlsbCObO4+6HHoLqc43nfoFarCA+PYPhVc4lNHoZvQHCL/n5HfXdj/o9s/8+7WKIGE3nxlYRFx2GqqSInb6/U3hBCiB7QV7frdqQrtVqFEJ0MbHz88cdceeWV6HQ6Pv744w6f+4tf/MIlDRMCOp8BUVNTQ0ZGhkvO1V42hdlsJisrq8PgSetCV80DKFLoSgghhBCiiYwvhDvEx8eTPGQEA6b+PyymBnz8AwmLSaSq+iynT59CrdXRYLLY+/vt9d2tisKB7M+oVgcQPGA0x05Xk3/qEGq1ipDQgdTU1EjtDSFEG7KNkOiKnthdRIi+qlOBjVmzZmE0GomOjmbWrFntPk+lUmGxWFzVNiFcmgHR/Fwh0XEUFRdRW1uLv78/8XHxHZ5r9erVPLtiJcXlNfbtruLCArj/zsUttrtqXegqeexkAsOjqC47Tf6ebCl0JYQQQgiBjC+Ee4SEhOCj16D38SM0aTClZ87wzc7vWxYRzz9CUVER48ePb7fvfuJHA/kH9qAfMhldcBRB/RLR+fhhaqij4owRRRPKzh/2nnd189xJJoSFt5NthERXSa1WIbquU4ENRVEc/lsId3NlBoTtXF9u/jfVgYnUNpqxokKFFX+9lsDq40xLaXuu1atX88DjT6PEjSRx4nQCouKpOd1UoPyBx58GaBHcaF7o6tDWTHunZkRSfJ8vdCWEEEII0RkyvhDu0Nki4u+s+5CkpCTS0tIc9t1rq8qwmBsISRxMbPJQoGkMovcLJDJxEKfMJk7s20R5ebnTbexMFvj5RiaEhbeTbYREd0itViG67vzuQQm3cOVqG1dmQKjVaqLDQ8ndvgbtgAsJShqBzj8Qc+1ZTuXuofjY98y56NYW5zKbzTy7YiVK3EhSr74ZlarpWHB8CkFxyRza8AbPrVjJnDlzWgxIbIWuZNWRaM32+wFNKzP6egE0IYQQQpx/equ/40wR8ebberTuu+/bt4+Hn3mZQH9/bEGNn6jw1es4XV9HRUWFU+3rbBZ4T+rtTAmZEBbeTrYREt0ltVqF6DqnAxtLliwhJSWFJUuWtHh85cqV5OXl8eKLL7qqbcILuWO1jasyIMxmM+s/+gRdRAKWU4cpPXkQ1FpQzGg1WnQRCbz30Sfcf//99iBFVlYWxeU1JE6cbg9q2KhUauLSpnN8w8tkZWW1qfGhVqslTVC0YPv9yC86xY1zZ/Hgk38hOT5aVqMJIYQ4r8n4om/p7f5OV4qIQ8u+u6Io+KitVB7dS1DcoDZZ45VH9+KjshIaGtrpdjmbBd4TejtTQiaERV8g2wiJ7pJarUJ0ndO9g/fff59Jkya1eXzixIm89957LmmU8E621TY5lVqSpi0gbd49JE1bQE6ltinjwmDo8rnT0tL46zPLeXHZoyx/6C5eXPYozz3zZ6c63FlZWRScPI1G50PgsCnEZiwi7uf3EJuxiMBhk9HofDh28jRZWVn27zEajVjQEBAV7/Cc/pHxWNBgNBq7fG3i/ND89yNxyhwAEqfMccnvhxBCCOHNZHzRd3hKf8dWRHz63N8x5edzmT7nRi679g5ik4cB597WIywsjITEBJSSPIq2f0hdaTEWUwN1pcUUbf8QpSSPhMQEwsLCOtWe1lngwfEpaPR+BMenkHr1zShxI3luxUrMZrPL3oNzcefYrbPsE8JjJ7c/IVxQZM/+EcITyTZCorts2YaBNcUYNq6lwngCc2MDFcYTGDaubdqpZMFcCfAK4YDTvxWlpaUO05+Cg4M5c+aMSxolvE/r1TahsQlodXr7apvqgDhWZa7t1h7KtlVU48ePZ8iQIU7/US8uLqautg5t7BD8Rl4OoXEovkEQGoffyMvRxg6mrq6O4uJi+/fExsaiwULN6SKH56w9U4QGC7GxsV2+LtH3tfn9iGkKlIXGxLvs90MIIYTwVjK+6Bs8qb/TvIh4v5SRhMcNQNVs7HCubT1SUlK4aOxIomL7EaJUcXrbOo5veJXT29YRYj1LVGw/Lh47qtOrZ21Z4HFp08EKtaePU1V4kNrTx8EKcWnTKSqvabHAyp16YuzWGTIhLPqC5tsIOSLbCInOsO1UMjzETMHWTAxrX6BgayYjQiw8fK9sySdEe5wObKSkpPDZZ5+1efy///0vycnJLmmU8D7esNpGURTQ6tHEDMaKCrXWB43OF7XWBysqNDFDQKNv0YFPT08nLiyAYsMWrNaWHXurVaHYsIX4sADS09N7+nKEF/GG3w8hhBCit8j4om/wpP6ObVuP/D3ZWK3WFsds23oM7WBbD9vq2Tg/hdCoWC6cdhUTZv6KC6ddRWhkDPH+ilOrZ21Z4Iqpjrz/vkH+ljUc2/4f8resIe+/b6A01vVoFnh+fr5H3CuZEBZ9QXf/3ghh44qdSoQ43zhdY+Oee+5h8eLFnD59munTpwNNK1D++te/yv635zFvWG0zbNgwVCoVFosFtVaPrQ+vUqlQq/RYLGZUKhXDhg2zf49Wq+X+OxfzwONPc2jDG8SlTcc/Mp7aM0374apP7ue+xx5sUThciNa84fdDCCGE6C0yvugbPKm/81MR8Zf4/tNMTA31mOqq0fkFovPxJbShhIWLlnQYmGhR5+/Hr+w1KEYmxbPwNudWz8bGxqLUn6Xgqw/wiR9G8Ih0NIERWKpLqT2yi4KvP8Baf7bHssCrqqo84l7JvvKiL2j+98awcS3JYycTGB5Fddlp8vdkN20jdI6/N6J3KIpCXl4elZWVhISEkJKS0uv3SWq1CuEcp2djb7zxRhoaGnjqqad48sknARgwYACvvfYa1113ncsbKLxD89U2obEJbY6fPVOCqb6agoKCXvvAOHv2LHqtBnNpAXVaHfrwfmh8ArA01NBYdhJzaSF6rYazZ8+2+D5bEb9nV6zk+IaXsaBBg4X4sADue+zBHi/yJ7zPuX4/ZDWaEEKI85mML/oGT+vvpKWlERceyGf/egOzLgi0OjCb0JrOcuNv5ncqMJGWlsaoUaPIysrCaDQSGxtLenq604uaLrvsMrRKI41+ofiOuBwLVixmC/g2fV1bdhKfsqNcdtllXb1cpwQHB3vEvZIJYdFXtAiEbs20B0JHJMWzcJFsI+SJDAZD0/0qKLbfr9SkOK5bME/ulxBepEvLzBctWsSiRYs4ffo0fn5+BAYGurpdwst0tNrGeCSHLzJfRqOYee3dD/BZ91GvfGCEhoYS7O+LYqrCWldB3fFyUKnAakWrVuFnqkLt70toaGib750/fz5z5sxxalDjidH/vsgb3ufWvx80y/iX1WhCCCGEjC/6Ak/p79j6hi+++CL/fO8T9KnTiB5xKfqIeBpLi6g48BVvrfuYuLg4li5d2uG5HE18ffb5FqfHMceOHSM8JoHTwdHUlhzFJ7wfWt8AzPU1NJSdRBMcTZg5nmPHjvXISt3k5GSPyZSQCWHRV6SlpTFmzBiPH5uKpr/ty557ieqAOJKnLSAwIprq0lPk7Mlm2XMv8ch98rdHCG/RpcCG2Wxm69atHDlyhAULFgBNhZmDg4NlEHKeam+1zbG935D98Sp0EYmMGHcJYVHRWBoaOFB8tMc/MMLCwkhITKCkphSNKRyf2EGo9H5YG+toMB7BUldKTGICYWFhDr9fq9WSkZHRqdeS6H/P8Jb3ufXvx+C0SRAHFSVFHDZsk9VoQgiv4A2BZOG9ZHzh/Xq6v+Pob9LevXt5J3MNOfnH+XLzRvRDLyV8yrX4+vqg0Wjw8U8lIGEIRRthxat/495770Wv1zs8vysnvsrLy6k3WQjtN4CG+irqT1TYF1jpNGr8Y5OoL9lLeXm5S96bc/G0TAmZEBZ9hWwj5PkUReGdzDVUB8S1COyGxiaQljEXw8a1rMpcy5gxY+RvkBBewOnARkFBATNnzqSwsJCGhgauuOIKgoKCeOaZZ2hoaOD11193RzuFF2i92qah0UJ+7gF0QXGE+OnJ3b0NRbGiVqsICwujSqXipZWvcestNxEWFnbOzmt3J1RSUlK4aOxIvjlyBotylvKcL35qT3g4mth+XDwoqt2VSZ19fYn+9wxve5+b/37kf70e5s7i+NfrGREfI6vRhBAez1sCycI7yfii73Bnf6d5X7yoqIit2dvJLTxp/5sU5quhpKwKTdww6v2iwT+UoBFTsapU1Nc32IMbapWKsFHTKCncw6pVq7jpppscvpazE18djRUqKiqoq68jMSKKoLhkqstOYWqoR+fjS2B4NGeL8zleX0dFRUWX3x9neVqmhEwICyF6Ql5eHocKikmetqBFtho01V9NHjuZg1szycvLk79JQngBpwMbd955JxdeeCF79+4lIiLC/vivfvUrfve737m0ccL7NF9ts2/fPpa/WEKlAo0B0USNuxifkEgaKs9Q9M1/qMrbRZ5Wy6GiM4QGB3Q4QeKKCRXbyqTC517irH8/Bo2ZgEavx9LYSGnxUYLrTrJwwdx2gxWdeX2J/vcMb32fbb8fhw4dIjc3l6cffYDU1FSPaqMQQrTmbYFk4X1kfNG3uKO/07wvXlpexYnjhej8Ahg/cx4jxk7g7Gkjn/1jOUpwPzLGpfNj1jrQ6PCN6I9ap8diaqShsRF/Pz8AfCMTsKp1FBYWOnw9Zye+zjVWCA0NxUdlpfLoXoLiBhEU8VORcKu16XEfldXhlrjuJJkSQpxfJPsWKisraTQpBEZEOzweGB5Fo0mhsrKyh1smhOgKpwMbX3/9Ndu3b2+TsjtgwACKiopc1jDhvWyrbcrLyzlz5gw+w6YSP3GWfVBgrq+hoeYsmv5p+IREM2TmlfhpaHeCpPWEik9gMJ+/9xY7P97Cvz/6mH+9+XcmT57cqba1WJn041f2gcfIpHgW3uZ4YsaZCR2J/junqx0rb36f1Wo1KSkp5ObmnpcdSSGEd/HWQLLwLjK+6Htc2d9p2RefT3VeAUEJlVgrT7L/my8IjIhG7+uHLjgSTfI4Dh/JJzgyFiwmGsqO49dvMGqNDsXcgEVR0KjV1J85gUox0b9/f4ev2dHEl6Wxkfy928nda+CFF15g/PjxrP34vxA1uN2xgn1L3JI8irZ/SMTQi9EHR9BYVUrpwW9RSvJI6GBLXHeSTAkhzg+SfdskJCQEvU5NdekpQmMT2hyvLjuNXqcmJCSkF1onhHCW04ENRVGwWCxtHj9x4gRBQUEuaZToGyoqKmiwqogeOMY+EWJVFIx7vkAT0Z+Q4VOpOX4Ai9VKaGyiwwmS1hMqH765gvzvslBp9aDRUWlqYOoVM0mfMpFNmzZ1ql3OrExydkKnJ6P/3r7aojsdK1llIYQQPcObA8nCe8j4QrSndV+8qqqSqvpGogaNQud7CUXbPyRn2yaGXnwZigLRSUOpOFVA6pgpaNf/g+oDX+ITk4LaNhaxWlGsVsp/2EqQxsLChQsdvm57E1/b3/87uzb9G5NaB2otb77/X/7+z0yCBo5m9OAZWLS+aHX6NmOFvyxf1mxL3CpOb1vn1Ja4QgjRHZJ9+5OUlBRSk+LI2ZPdYo4Hmj4j8vdkMyIpXv4eC+ElnJ4FnTFjBi+++KL9a5VKRXV1NY899hhXXXWVK9smepGiKOTm5rJz505yc3NRFMXpc4SGhuLn60d9owmwAlBXWkRDdSVBg8ejWK1oNVr0eh+g2QRJQRF5eXlAswmVsZObgho7t+A76ELCM24nZs6fiMhYQsCIdL74dl+nC3vDTyuTxo8fz5AhQ9oNCDR//XYndJq1t/kgyBFXRf8NBgP3/mEpdz3yJEv//CJ3PfIk9/5hKQaDoVvn7Sm2jlVOpZakaQtIm3cPSdMWkFOpbSpieI7r6Kn3WQghzncSSBY9QcYXoj2t++KNjY0oihWdjx8qlYqIoRdTVlZKfe1Z1GoVSn01imLFAoyb8SvqjnxP6ZZ/UHsyF0tjHXXFeRRtfAPT0Z3cedst7RYOt0185e/JxmptGsdsf//vfLPxQzTJ4wmfcRsx/+8xImYswm/IROpraziam8PuffspPXMGaDlWyM/P57oF84jzUwiNiuXCaVcxYeavuHDaVYRGxhDvr7S7Ja4QQnRH6wBxaGxCiwBsdUAcqzLXdmnOxxvZtigPrCnGsHEtFcYTmBsbqDCewLBxLUG1xfL3WAgv4nTGxnPPPcfMmTMZPnw49fX1LFiwgMOHDxMZGcnq1avd0UbRw1yVohgWFkZCvxgqKk9y5riO4MhYTLVVWCwWzCo9qsZaAvz98PH5aUDReoLENqHiExhM/ndZ+A66kNBLr7d/yPj0G4Q6MAxUKj7/KotXXnmFlJQU0tPT0Wqd/vFuw9kJnZ6I/nvyaovOZJG4YlsTWWUhhBA9Q9L1RU+Q8YVoT+u+uF6vR61WYWqoQ+8XiD44AkWx4usfRFhYOKcObCMwIRW9Xs/E2U31WXZt+oAzxwyoNHo0VgtBWgsP3HUrS5cubfd1bRNfy557CcPGtSQNv4jvN32A76CLCJl0LSqs6PQ+aDSJKMOn0lD0IxV5uwlJGkZu3hEmRESAStVirDB+/Hint8QVnsVsNpOVlYXRaCQ2NtZlY04h3Emyb9tqsUX51kz73+MRSfEsXCR/jztim/OBpp8tqRkqepvTn8KJiYns3buXtWvXsnfvXqqrq7npppu49tpr8ftfMTbhvVw5aZ6SksKFo1LZWVSBRpdAZXEedWUlWBpqUdeWotPpiAoPJST4p8mQ1hMktgmVz997C5VWT8DQKS3+aFoVCyqVCr/UidQfM3DvI38iNLofcWEB3H/nYubPn9+t98PZCZ3Wg6DksZMJDI+iuuw0+Xuym6L/i5Z0+Q+/q/c6d+V2Vp0NiLmiY+Xu91kIIUQTCSSLniDjC9Ge1n3xkOAQQgMDKD9jJDJxEI1VpajVKnwDgxkxaQafvf08mroqrKOGYPbzY/ikK9H5+lN+4CsuHDOKiy66iIULF7abqdFc84mvz//1NGaVjpAhE1FjRaPXo9JoUGl0qFRq/AamUXkyF3N1ORVmXyqrKgkJCW0zVpBi3d5r9erVPLtiJcXlNVjQoMHisjGnEO4k2beOyd9j59nmfPKLTnHj3Fk8+ORfSI6PPu/qtAjP4lRgw2QyMXToUD755BOuvfZarr32Wne1S/QCV0+a2yafC597ieqKoySmjEEzNIXvjDlUHf6G2OEXMyQlFZrtedt6gsQ2obLz4y2g0aELax5csKI01oNKhT6iPyqtDwH9BpF4+bUUG7bwwONPA3Sro9mVCZ3ORP89oWh260CETqsiJtiPyy+bykUXXeTUh7ozATFXdaxklYUQQrifBJKFu8n4QnTEUV98SMogdu/bz+nCPGrydxEeGooKNcWH9zEiKYbYKD0FW1fb+4ajk+JZ+NorXeob2ia+7rjjDvJOZhEQMwCLSo1a3TSM1vj4o9bqsFpVoFJjqatB0fvQ2NjY7lhBinV3TW/WF1y9ejUPPP40StxIEidOJyAqnprTRS4bcwrhTpJ92z75e9x5zed8Bk+ZA5hInDKHHMO2Xt85RJzfnAps6HQ66uvr3dUW0cvckaLYYvJ51yc0mhTCdSaU04fxK49EYx6MubGh3QkS24TKvz/6mEpTA6bS4/j0G4RVsaA01mM1N6L28cd05gRWcyP+UQkE9UsmUafjyOelLHv6WWbPnt2pVVmOdHVCp6Pof0eZDSNHjuywPa4KCrQORNRUlbF3y8fszjnCxu0GUpISuHBUaqci784GxFzZsZJVFkII4X4SSBbuJOML0RFHffGQ8ChS+oWz+4sN1BX+gDo+gcKv1vzvb9ITLu8bqtVqLrjgAt7+90bM5cWowhOwWq1NfV6VCp/wflTlfY+lpgKLqR4UM/UVZzDs2iLBXxdx1VbJXWE2m3l2xUqUuJGkXn0zKlXTvQyOTyEoLplDG97guRUrmTNnjmxLJTySZN+K7mo956NVWYFjhMbEd2kRtBCu5PQn7+23384zzzzDG2+8IR/cfYy7UhQdTT6fPXuWf61Z16kJkrS0NP715t+ZesVManK+QB0YhkqtRqVSodL7Y9XoqfnxSyy1lfiHx/Lj+89jsShYzCaOna5i3rXX8ehDf+hyp9c2ofPPd1ezZ8Mb1DWY8PPRkTY8hes6mNBxFP0/V2bDQ/cs7rAtrggKtP5QKjl6kJ0bP0AJS2TQL3/J2aoqGhvLyak426nIu7MBMVd3rGSVhRBCuJ8EkoU7yfhCdMTWF3/7X5l8897L1NQ3EuCr58q0EVy2+NfEx8e3+Zvk6r7hwoULeejxJ6k48BXhU65FsZjQqJsWTql8g2g8mYtSZeRszpcoOjVl5SmMGCDBX1fo7fqCWVlZFJfXkDhxuj2oYaNSqYlLm87xDS+TlZVFRkaG29ohRFdJ9q3orrZzPlb7sfO1TovwHE6PHHbu3ElWVhabNm1i1KhRBAQEtDj+wQcfuKxxome5M0XR0eRzWlpapydIJk+eTPqUiXzx7begUuGfOhl9RAKNZwqoPZhNbe4ONL4BnNi5ETQ6fMP7EXrBz6g5dYyjjTUu6/RaFTNWcyNWnQqr1Xrub2imM5kNa9Z/wOQJF7V7ju4GBRRFYfPmzXxr2EfSpGuwWiwcyN6IEpZI/MRZqFQqNP4hnC1uIPnCSeR/s/GckfcWATGrlcqqShobG9Hr9YQEh7QJiEnHSgghvJMEkoW7yPhCnMvBgwf5Knsbx0+VY1asaNUqGmsquOTCCxg/frzbX1+v13PXbb/nqRdfpwwF/yGT0IbHYa4soSbnKxqO7ab/kFEMigtn4a+vcXpbV+GYq7dK7gqj0YgFDQFR8Q6P+0fGY0GD0Wh0y+sL4QqSfSu6Q+q0CE/mdGAjNDSU2bNnu6Mtopf1dIqibYLEbDaTlZXFjh07iI2NJT093eFqvU2bNpGRkUHW11nUHzOg0upRzI1Yqsvx7ZdC2LirUAVFo/UJoCZ/F6WG/+ITPYARM37F6QPbu9zpbb5KaPjPb7WvEvrRyVVCnclsyM1ex+QJHb9nXQ0K2FK4d+47yOHjpzj1xScc2LaRysoq4q/4rb1NOh8/FMWKyWTqVOTdFhA7nncQY2UdFdU1KIoVtVpFaGAAsSF+bQJi0rESQgghhI2ML0RHmtc3GPirm3qtvsHSpUsBePHV/6O8YC+KSovV3Iiqvoqk/on87LJLWLhgrvRjXcgdWyU7KzY2Fg0Wak4XERzfdhxce6YIDRZiY2Pd8vpCuIpk34qukjotwpM5Hdh466233NEO4QF6YyX96tWreXbFSorLa7CgQYOFuLAA7r9zscMBysaNG6murmbx4sUcOXKEnYY9+I1MJ+6y31B9Mh+f8DjUPv6EhF1N6fb1mI2Hie8XR5CuZae3s8XnXLlKqFNRbrNyzvesK0GB5sGZAdMXUJV/Ap+AUE4ZNlNRdpp+6p/+FJga6lCrVej1egL8Qs4ZeU9JSSHcT8tXmz4kdGwGIXEp6Hz8MDXUUXb6JPmbPmTqwKA2ATHpWAkhhBACZHwh2ucJ9Q2ajxtmz57N3XffzbvvvktBQQE+Pj5MmzaNqKgo6ce6gSesEk5PTycuLIBiwxaC4pJbbEdltSoUG7YQHxZAenq629oghKtI9q3oitaLoGkWZ5Y6LaK3dbr3pygKzz77LB9//DGNjY2kp6fz2GOP4efn5872iR7Wkyvpm6++Spw4vdOrrwIDA3n77bfJzc1l3k23YwzuT1XRYcyVZ0CtRaXzAb8Q/BOGoao5ScWpEwRH9rN3ep0pPufKVUKdinJrOzcYciYo0CY4A5woPUt5I/S76CoqThzhdP4BAi6IAhVUnTESFhhASHAIFSVFnYq8W61WTGcKaTj+A5aAADRaHZbaKhqO/4DpTCHWpOEOv086Vq7T2WCdEEII4SlkfCHOpbfrG3Q0brjppptc/nqiJU9YJazVarn/zsU88PjTHNrwBnFp0/GPjKf2TNO4VX1yP/c99qDUBxJC9FmtF0EPTpsEcVBRUsRhwzbZTlz0qk5/+j711FM8/vjjXH755fj5+bFixQpOnTrFm2++6c72iV7QEyvpXbH6qrKykvDIaMLi49m99VMaGhpQ6/1BBVrfAPqNuZRGXz8aaqvtnd6ioiJWrf+o08XnXLlKqDNbfY3uH9fp97CzQQFHwZkhKYPYvW8/tVZf/MKiqTiyl6qkYTTWVaMz1zJk+Eis0KnIe15eHuX1Fib/YiEFPxo4vW2dfSuq8PAIRv9iIWVHvpVCUm7kTLBOCCGE8BQyvhDn0pv1DXq7aLXo+a2S22NbbPfsipUc3/CyfaeB+LAA7nvswR7ZCk0IIXpT80XQ+V+vh7mzOP71ekbEx8h24qJXdTqw8c477/Dqq6/y+9//HoDPP/+cq6++mjfeeEOicn2Qu1fSd3b11ebNmxk0aJDDAEtISAh11RWU7P6S6MFjaQztj9U/EpXSQEPBXs7s3oSf2ozeL4D8PdkMT4pja/Z2p7aV6s4qIUcr6M+11de83y/mxIkTLn2vHQVnIiIjuWD0SHLzjlCXMIQT2z7k+FaFpFGXMGLMBWjM9Rg2ru1U5N12/hFjJzBo3BTKjYU01Fbj4x9IWGx/LGYThoM7pJCUm8igWwghhLeS8YU4l96qb+AJRatF72yV3J758+czZ84csrKyMBqNHdaGFEJ0T21tLQ8//DD5+fkMHjyYKVOm9HaTBD8tgj506BC5ubk8/egDpKamyueg6FWd/hQuLCzkqquusn99+eWXo1KpKC4uJiGh7YSvEB3pzOqrRrOVF156GW1QhMNV6MnJydSdraBGn0h4ykQsjY00mkyodAH4DptGQ+UZ6ktyOLp3ByH1RqZe9Uv+lvm+U9tKdXWVUEcr6Dva6mvkyJEuD2y0F5yJiIxkQkQExyOCCDhpIDnBj/ryHAo/3+/U9mOtzx8eN6DFcSkk5T4y6BZCCOHNZHwhzqW36ht4QtFq0aQnt0o+F61W65Ytz4QQP5k3bx4ffPJf8AtDpdWxdfdBpkyZwm9/+1v+9a9/9XbzzntqtZqUlBRyc3Nl+2vhETod2DCbzfj6+rZ4TKfTYTKZXN4o0feda/VVeXE+DXU1lBLMRe2sQg8ICACdP6qgaKrOnCQgMh6tXyD1leXUlRWhCgjHZDKRYC1lyb1LMJvNTm8r1ZVVQp1ZQf/XZ5Y73OrLHb9PHQZngNNH9jF98iX8Zfky8vPznd5+zFNSxM9HMugWQgjhzWR8Ic6lt+obeELRavGTntgqWQjR++bNm8f7n23Fb9h0AoZPxSciEVVl08LPjz/PZt68eaxZs6aXWymE8CSd7gFarVZuuOEGfHx87I/V19dz6623Nk0w/88HH3zg2haKPqnD1VeKQvGuLLQopN/wABqdDmi7Cn3ONb+kvKqa4KEDQa2h8UwBViuogUAfLUpMIo1FQdxy829JS0sjNze3w22lzp4pwVRfTUFBQYvOcmdWCdm2nSovL+f1v/+Dav9+9kl+q6KgKGZiB43gyK5S3nl3DX8dM6bHJpo7G5zRarVdalPz8+/+bA0RcQPR6PVYGhspLT5KcN1JKSTlJjLoFkII4c1kfCE6ozfqG3hC0WrRkru3ShZC9K7a2lo++OS/+A2bTvj0m1Crmxbu+fQbBFjwHXQRH3zyGbW1tfj7+/duY4UQHqPTgY3rr7++zWO/+c1vXNoYcf7oaPXViV2fU3dkJxOunm8Patg0X4Wek5NDXX0dkUHBBMcNoqGuGovZhEarw8cvkKriIxxrqGfnzp1ERESQnJzcbmaB8UgOX2S+jEYx89q7H+Cz7qMW2151tEqo+bZTFeUV5BceJ2nqXMpKSzFVneZA9kbKy8tQFCuKqYGi/cVMnTyBWbNm9dj77e4U7rS0NP7fz2bw7IqV7Pvq0xYDzt/euVhqPLiJDLqFEEJ4MxlfiM7q6foGkpEshBA96+GHHwa/MAKGT7UHNZoLGDqJitzvePjhh3nhhRd6oYVCCE/U6Z7gW2+95c52iPNQe6uvwnxURPRPJG3mrx1+n20VulqtRo9C6aHv0ASGodXp8Q8KA5WK+ro6TuzbRm1VBave38Bn2TtJTYrjogvGUvjJphaZC8f2fkP2x6vQRfRn0LjJBEVEQ2MtOSePtCi+7GiVUOttp8IrTlP00Wpq9WFkZ/2XhhM5aGNSiJp0OT4hkdSXl1CY/SEv//1tkpKSWkz427I+oGmLIVcXYXJnCrfBYOC9TzYRNWoqw1PGoAsIxlRTxem8vbz3ySaGDh3qsuCGo6LsnpYN0lNtlEG3EEIIbybjC+GMnqxvoFar+c28X7P08afY+q8XGDh6IvGpY6ipKO3xotVCCHE+yM/PR6XV4ROR6PC4PjwOlVZHfn5+D7dMCOHJ3LPERYhOcrT6KjExkfseX37OVei1tbWYTfWU791K5ZlT+CcOxS8kGh+9llO5u6kvziUkpj+jZ/0evY8fOXuyKfxkE//vZzP4bvceDm3NpKHRQn7uATRhyWjjhnGouAxrcTkqrPjr/Qis1bVbfNlR4WZFMaP39SUwKJC8bw+gC41l6MRf2rfa0gaGETlqMubqwhbntWV95Bed4sa5s3jwyb+QHB9tzxhxFXekcLdXwBogIWWYSwtYd1SU3VOyQnqyjV2pASOEEEIIITpmMBj415p11JkUSgoPcizHgI/KSkJiAhePHdXjRauFEKKvS05Oxrp9Lw2lx/GLG9zmeGNZMVazieTk5F5onRDCU8lsl+h1ttVX119/PRkZGQwdOpTUpDjy92RjtVpbPNe2Cj3cV0vWtp0EJF9I2Ojp6DVWanK/pSR7DUf+8yqNJUcI7defxJRhRCUOstfnqA6IY+fuvTzz1JPcedNvuOKS0Wi0Oiwh8Zj8wgnsP5Kw1IsI7D+SOm0QxkZftn6zy55J0Zy9cPPYyfbJ/LDY/oSFhWP8fjMoFnwSRzUrgGml6oyRsKBAhk+4nIMFReTl5dmzPnIqtSROmQNA4pQ55FRqmyasDQa3vv/d5eh9sLFvHfa/a+2O5u9T0rQFpM27h6RpCzzqfeqNNtq2GRseYqZgayaGtS9QsDWTESEWHr5XBt1CCCGEEM5o3p8b+YvfM/vBl7hk7h2Ep45HDcz/9WzpXwkhhIs99dRTUFdOTc6XKIq1zfGag9ugrqLpeUII8T+SsSE8zrlWoQfWFIFWxSlCCB86iOLTZaiCY/GrP4tKsVB94iDK2dP4WRsYPulXqP63Wt02yf7tv1dyy6LbOVp8itOlZRwvLkFn/ZHYxGHoA4IB0AcEowsIptxs4mhOFqWlpW3a6ahws0qtZsTkDL5Y/RoN1bUE6f0wm01gMVF1xojOXMuQ4SMJDA6i0aRQXl7Omvc+sGc7aFVW4BihMfEtCqW7ItvBXXqigHV7WSGtC8r35vvkTBtdzZ3bjAkhhBBCnC9a9+fKSkv53rCXiuoaLLEjOPpjBbfecRd/e+Ulxo0b19vNFUKIPsPf359rfnYl73+2lTIgYPhU9BHx1FcWAwOoP/Id1/xsphQOF0K0ILNeotcpikJubi47d+4kNzcXRVE6XIW+cM4sCkrKqdSEUq8NoN+Q0YQnpuKbMBxC49FGJKEy1zP8okuJTR7W4rVqKss4ePAQm7/ZR2F5I2UWX9Qh0SjVZZR8tZq6kz9lFagAva8fjQ0N5OTktGl388LNzcUmD+OCy3+JurGWyh+/pujbTzHu+5pQnYULRo8kIjLSvp1WRUVFj2Q7uFN774ONKwpY91RWSHf0dhtt24yNHz+eIUOGSFBDCCGEEMJJzftzZaWl7N63n/JGFUFxKUSljKHfhVdy4qzC0sef8ohsYSEcMZvNbNy4kX/+859s3LgRs9nc200SolPWrFnD7JnTqP9xC6Wfvohx9UOUbXoVgF9cPpk1a9b0cguFEJ5GMjZErzpXPQJHq9B37tzJiZMlBKb0IzJxEKAiyGqlpraG+uBgTlsaseTrCAqLavFaVkXhm4/+Sb3Kh9BB44kZOYl6dHD0MA0nc6kv2MuZ7z4m4Rd3oVKpsVqt1J3IwWpucDhJ3FHhZkXjS0NVGeTvxhwUiUplpb7wByJ8fkl4RIS9qHNoaKjbsx3crcX7MOPXVJ2torGxEb1eT3BQsEsKWPdEVkh3eUMbhRBCCCG8laIobs9OtffnwqPYuXsPJq2/fbwBEBCdSEB4DFXakF7PFhbCkdWrV/PsipUUl9dgQYMGC3FhAdx/52Lmz5/f280T4pzWrFlDbW0tDz/8MPn5+Qwe3FRv46233urllgkhPJEENkSvse1fWx0QR/K0BQRGRFNdeoqcPdkse+4lHrmvqT5A62LXFRUV1NXXEanXASoa6uupqKqk0WTGam0KYNRWV1Cct5+4IaPt31dadJSio4cIGj6VpEtno1KpUWqq0YVGow2LA8VMXe4O6kqOovXx5+zhnZiKD+Ln50dcXFyb9re3Zda+rzey7T+Z+PQfRUD/EeijB6BCxdn83Xzx3pvkf/8FKZG+LFy0hICAAHu2Q0h0HOUlBZAA5ScLCIpJ6jDboScGd51hex/uf/RJPnj9GTSxg9D4BmOpr8JiPEJ/33oWLnq0W21rnhXSUUH57mSFdJc3tFEIIYQQwhudazGUq9j6cycLjlBRXUNwXAq2oAZAY1UpGrWKgaMncvDHr8jLy2szVhGit6xevZoHHn8aJW4kiROnExAVT83pIooNW3jg8acBJLghvIK/vz8vvPACACaTiU8//bSXWySE8FQS2BC9ojs1E0JDQ/FRWak8uhd9eDyl5eUoKi06/xBUajVVBwqxmk3szvqI0Kh4Boy5hOqy03z3yTug0RM3dioqVdM5A/wD0Gm1mKxq/AekUZu7nZLN/8A/oh8+gSGodT4k9osiPT3d4XXYtsx6J3MNh7ZmUt9oZve32/CJH82Qq25CpVZRdvIEjY31+CcMo7KiBOOBb/j7B+tIS0tDURRSk+L45vP3sChWamuqmbH4Wr788F/4BwSiUauYMKhttkNPDe6cYbWYaSwtRFVdDlodmE1YG6qxxoZ1+9wdZcfYCsp3NyukJ9tosVh6rZ1C9ARPCbwKIYTwfp1dDOUKtv7cd3u2YQkeiM7Hz37MarVSevBbwsMjiE8dw+l9WyUTV3gMs9nMsytWosSNJPXqm+3j3eD4FILikjm04Q2eW7GSOXPmoNXKNJAQQoi+QWYZRK/oTj2CsLAwEhITUEoOc/TL9TRUlqL39cVy9jTl33+CcvookfEDCOqXzK6P/s7uNc9TsDWT/n5W/PwD8AuJaP5iRISHoVbMoPcDVARFxRGSMBiTRcGnupj77lzcYecvLS2Nvz6znBeXPcqs6RPQ+QczcMqv8A8Jxy8ojPjBI4lLHkrcgBT6XzQT/EIoKysDmrIdLrpgLCcOfE9RZQMhY2cCEDJ2JkWVDZzI+Z7xF7QM7tgGdzmVWpKmLSBt3j0kTVtATqW2KXukh/f7tQWptImjmPvQSmb85jam/mI+M35zG3Mfehlt4ihWZa5FUZQuv4YtKySwphjDxrVUGE9gbmygwngCw8a1BNUWs3DB3F6dOPWGNgrREwwGA/f+YSl3PfIkS//8Inc98iT3/mGp7EUuhOgxX331FT//+c+Ji4tDpVLx4Ycftjh+ww03oFKpWvw3c+bMFs8pKyvj2muvJTg4mNDQUG666Saqq6tbPGffvn1MmTIFX19fEhMT+ctf/uLuSzvvtF4MFRqbgFanty+Gqg6I63Y/szl7f67uJOU/buPsyaNYTA3UlRZTtP1D1BXHGT5pBjUVpZKJKzxKVlYWxeU1xKVNtwc1bFQqNXFp0ykqryErK6uXWiiEEEK4noTqRa+orKykodFCY0MdJ/P24+MfSFhsf1T/m/TtqB5BSkoKF40dyVc5RVSeLMRUVky1Wg1WK7qAIHyDw4kLDyQt/Vcc/O9bLPrNNYwePRqz2czP5/+W0oKDxI+4hEZTI4qi4OvrS4CpgoKv38NqMVF+PJfKwh8J1Ji57bbfdypd11a4eceOHaD1ITA6/qeDKhU+/kEA6H38OKnSYDQagabB2ne795A0bhqa+JHU11cDEZjrq0m5cBqWokh27t7L3LlNE+LdyXRxF3uQatoC1BoN4XEDWhxPHjuZg1szu52q3zo7xpapMiIpnoWLXLdSrzu8oY1CuFNPrqoVQoj21NTUMGbMGG688UauueYah8+ZOXNmi/26fXx8Why/9tprOXnyJJs3b8ZkMvHb3/6WW265hczMTACqqqqYMWMGl19+Oa+//jo//PADN954I6Ghodxyyy3uu7g+qKMsv+b9zHYXQ7mgn9lcWloaf370QX53+xIKN75BQHgMGrWK8PAIhl81l5iBQzFsXNvr2cJCNGc0GrGgISAq3uFx/8h4LPw0DhVCCCH6AglsiF5RVFREfu4B8o3lqHU+qNUqwsLCGTE5g9jkYR3WI7CtpNr3yBOc9AsmdPAF1JksmOrrqS8rQjl9lPq4iZRUVNNosZKYmMiQIUNQFIUJY4fzRe635Kt8UPuHoNLoqTcepnLfFvSh0SSOnkTq6DRUplrqTh7h+/25GAyGTk/ExcbGosFCzekiguPbDnRqzxShwUJsbCzw02Bt1LQFhMbEU11VAZRz0QVjCQwOpaIkocVgrTcGd+fSk0Wz2yso70lZEN7QRiHcwRMDr0KI89OVV17JlVde2eFzfHx87P2x1n788Uc+++wzdu7cyYUXXgjAyy+/zFVXXcVzzz1HXFwc7777Lo2Njbz55pvo9XpGjBjBnj17eP755yWw4YRzba/ak/3M5saNG8ffX3mJpY8/RZU2hIGjJxKfOoaaitKfMnEXLZHPM+ExnB2HCiGEEH2B9MREjzMYDKxa/yG6uBH4DJtK/5/dRtSkX1OpDuKbDWsxHskhf082QztYBZWWlsYdv7sBdUkOxd9+QsUPX9JwzIDeUk/I6Cso94lmx/Zt5OYe4rW/vYHBYECtVnP1zBlYTh6kcu/nVB/aztlD2ZR9+xGKRofaL5iwsGCGpg5l2NiLSJs5z+n09vT0dOLCAig2bMFqbfk9VqtCsWEL8WEB9podLQZrKpU9kBMSEgIqVZvBWm8N7jrSvGi2I64umm3Ljhk/fjxDhgzxyAGlN7RRCFfrzhaDQgjR07Zu3Up0dDSpqaksWrSI0tJS+7EdO3YQGhpqD2oAXH755ajVar799lv7cy699FL0er39ORkZGRw6dIjy8vKeuxAv1pntVXu6n9ncuHHjeOZPjzIhJZrKH79iz/oVFGzNZESIhYfvlQxE4VmcHYcKIYQQfYFkbIge9dOK3nimzknH8MMByk4eJzgylrhLfk7h1+/xReZKxg0fxMJFd3Y4Ifyzn/2MJ5b/BRMRJF5yFVa1nmqVL1a1Hj8fX07lfYdaraZIFcmy517ioXsW893uPUQPSOVUUQE1Z45hNpkwN9TB2VIsZ0vZV3SIQzs+Z9z0n3Ph1BlOZ0BotVruv3MxDzz+NIc2vEFc2nT8I+OpPVNEsWEL6pP7ue+xB+01O5oP1kJjE9qcr/Vgzdnn9wRvKOwthHA/Twy8CiGEIzNnzuSaa65h4MCBHDlyhIceeogrr7ySHTt2oNE0bdUSHd3yb5lWqyU8PNy+jYvRaGTgwIEtnhMTE2M/FhYW1uZ1GxoaaGhosH9dVVUFgMlkwmQyufQaPYHtmhxdm6IovLt2PQ0hCVyYPtvef/SJjSM8Yw57s94nc+17/OmxRxienMjB/dsJj5ndpp95fP92RiT3JykpyS3v4ciRI3l62Z/Iz8+nqqqK4OBgkpOTUavVXnnPOronone48p7cf+di/rj8BQo2v03s6Kn4R/SjtvQkxn1f4l92mPsevBur1Sr3vwPyO+J55J54HrknnqUv3g9nrkUCG6JHNd9KKTQqigtGjyQ37wgVxXkoihV9SCSNhSYWzpl1zlVQ+fn5+AeHEVRj4WzhQUwhCSg+wWhVFipyDqCqKcU3JJKBYyZQ8MO3rHz1/8gtKKK23krIiEsJ8ItommDTaLBUnsFcXoTvgDGYK0+x47/rARg7YarTE3G2mhzPrljJ8Q0vY0GDBgvxYQHc99iDLWp2tA4K0GyRs6OggCcGEWxbgy177iUMG9eSPHYygeFRVJedJn9PtqTqC3Ge8MTAqxBCODJv3jz7v0eNGsXo0aMZNGgQW7dudetq5uXLl/PEE0+0eXzTpk34+/u77XV72+bNmx0+PmXCxUwBoKDNsYsymrJlNm3a1KnnffbZZy5p67kYjUZyc3N75LXcqb17InqPK+6Jv78/zz35cLNHGoEImPxTraFPP/20269zPpDfEc8j98TzyD3xLH3pftTW1nb6uRLYED2q9YreiMhIJkREUFlVSWNjI2qVlSM1R4iPd1z0rPW5/AJDGTpsON/9dx1naxtQafVgtaDVaom/+CoaT/xIY10NyWMns+f9FRQUFBI46nLiLvklP367BV1YHJrgaDSDA6net4lG4xHCpy6k4rsP2fXFJySnDOnSRNz8+fOZM2cOWVlZGI1GYmNjSU9Pt2dq2LQOCgxOmwRxUFFSxGHDtjZBAU8NIkjRbCGEJwZehRCiM5KTk4mMjCQvL4/09HRiY2M5darl1kdms5mysjL7/vSxsbGUlJS0eI7t6/b2sF+6dCn33HOP/euqqioSExOZMWMGwcHBrrwkj2Aymdi8eTNXXHEFOp2uxbHdu3fz+F9fZczsxWh1+jbfa25sYO8Hr/D4vbdxwQUXsG/fPlavf5/DhSdpNCvotWqG9I9j3pxrGD16dE9dktfr6J6I3uGOe2I2m/nyyy8pKSkhJiaGqVOnthmHCsfkd8TzuOueOPpcGdy/H/PnzJbPlXPw5t8TRVEcZmF6M2++H+2xZTV3hny6iR7lcEWvSkVISCgAFcYT+Og0nQokhISEUFddwbHvtxGQOgmtLgRdcDhYTJhKT3Dm4Pf4qc34+AcSGB5FfV0DJquakIFjqDhdjGIFn/B+oFhRTA34DhxH1TfrsVSWEDTkEkq/PMSODau5fFT/Lk3EabVaMjIyzvm85kGB/K/Xw9xZHP96PSPiYxwGBTw1iCBFs4U4v3lq4FUIIc7lxIkTlJaW0q9fPwAmTJhARUUFu3btYty4cQBs2bIFRVG4+OKL7c95+OGHMZlM9kHk5s2bSU1NdbgNFTQVLPfx8WnzuE6n6zMDUUccXV9YWBgqFCpLzzjM8qssK0WFQlhYGDqdjnHjxpGWlubWfqaiKB7Rj+2JdvT1nzlv5Mp7otPpmDlzpkvOdb6S3xHP48p7YjAY+PPzK6kOiCN58q8JjIimuvQUP+zJ5ujzK3nkPlmc2Rne9ntiMBia5tEKiu3zaKlJcVy3YF6fuN/edj864sx1SGBD9ChXruhNTk6m7mwFNfpEQoZMxlLfgNo3EJVGgzZuGA1VpZhK8wiNTqDqjBE/P198ff2orq2lrvEsqFSodf5YrQpKQw0qjQ7+929tSAxKfQ3mksMsXH6/2wc1tqDAoUOHyM3N5elHHyA1NbXd1/XUIIKtaLYQ4vzkqYFXIcT5pbq6mry8PPvXR48eZc+ePYSHhxMeHs4TTzzB7NmziY2N5ciRIzzwwAOkpKTYF6QMGzaMmTNn8rvf/Y7XX38dk8nE4sWLmTdvHnFxcQAsWLCAJ554gptuuok//OEP7N+/nxUrVvDCCy/0yjV7m66MCdzZz/SUyQ5PaYcQQvRVP9V9jWvx+RMam0BaxlwMG9eyKnMtY8aM6fX5FeE6BoOBZc+91BTMmrbAHszK2ZPNsudekmCWF5PAhjgnV64acuWK3vz8fND5owqK5mxpMeYzxVgaa9EGhaMKjkYTnoC69hTlJccp+OFbUgckUtdgouT4YQiOwaooKI21aHwDsep8MJ0uRGmsw1R+ksayYpTaCv7f9Tf02B83tVpNSkoKubm5nXqPJYgghPBEnhp4FUKcP77//nsuu+wy+9e27Z+uv/56XnvtNfbt28c///lPKioqiIuLY8aMGTz55JMtsineffddFi9eTHp6Omq1mtmzZ/PSSy/Zj4eEhLBp0yZuv/12xo0bR2RkJH/84x+55ZZbeu5CvZgnZfl5ymSHp7RDCCH6suZ1X5sH1QFUKhXJYydzcGsmeXl5Mt/SR0gwq2+TwIbokDtWDblqRW95eTnlVdWgLad882dYUKFSa7EqZlAsBA2fSp3Jwr6sD0gIVHHbnbfx+zvuQqk8SXDcIMqryzCVF6OKGohKrcFkzEUXHElI8lhObVtPqK+aRx55pEvXKIQQ5zMJvAohetO0adOwWq3tHt+4ceM5zxEeHk5mZmaHzxk9ejRff/210+0TTTwhy89TJjs8pR1CCNHXta772lpgeBSNJoXKysoebplwFwlm9W0S2BDtcueqIVes6K2oqKDsVBGNp8/gO+AC/AddiDogDFPVaeryd1G1fwsqUy1xw/vx8L0PEhAQgF9QKIE1NajO5BPg4091eTHmqjNYKo2Yy4vxSxzJ6R0fYC4w8Ie7bkWvb1vMUAghhBBCCNF97szy60zWuadMdnhKO4QQoq9zWPe1meqy0+h16k7VfRXeQYJZfZsENoRDPbFqqLsregMDA2moqUE/ZCx+KRejWMwoZ8tQqTT4D5mA1dxI/aGvufuOxaSlpbFz5078AkMZOmw4uza+T02DCbPZjLmuGqWxDpWPP40nDxOoNvHwXbezdOnSc7bBU4oMCiGEEEII4Y3ckeXX2axzT5ns8JR2CCFEX+fKuq/CO0gwq2+TwIZwyBtWDR08eBCVXxD66GTQ6tBHJKDW+6I01mOqLEEfnYzp+D5yc3OZMmUKISEh1FVXcOz7bQQNn0xESDRWlRqr2UT5kb00FP1IeICOD9dlMnLkyHO+vhT3E0IIIYQQwrM4k3XuKZMdntIOIYTo6zypxpPoGRLM6tvkN1U45DWrhtRa9JH90YfHN9XXMJtRqbXow+PRRySC+qfYXXJyMnVnK6hWB6CKSqFW5UutVU+9NoDgkdPQJ44kJDiIoUOHnvNlbQOmnEotSdMWkDbvHpKmLSCnUtv0AWkwuPOq3UpRFHJzc9m5cye5ubkoitLbTRJCCCGEEOKcWmedh8YmoNXp7Vnn1QFxrMpca+/f2iY78vdkt6nLYpvsGNoDkx2e0g4hhDgf2Go8DQ8xU7A1E8PaFyjYmsmIEAsP39szNZ5Ez7EFswJrijFsXEuF8QTmxgYqjCcwbFzbFMxaMFeCWV5KMjaEQ96yakiFFRVW1Go1KrUaUAFWrIqCStV03CY/Px90/qiD+1FrUgiITELrF4C5roaaM0WoQ/phraogPz+/wywUh9t0Wa2o/AJJuOAy8rZ9yjuZa7yyuJ9koQghhBBCCG/lbNa5p6zc9ZR2CCHE+cKdNZ6E57EFs97JXMOhrZn2+a4RSfEsXCTBLG8mgQ3h0DlTtQxfExfiT3l5Obm5ub3yATB8+HB0mGk4sR/f2GSsFrP9mEqlouHEfnRYGD58OADl5eWUV1UTMmIwmuAYGs0mGs5WoFJBSFQcFr2G8m92Ul5e3uHrth4wlZ45Q27eESqqa1AUKyZrAB9v2sTUSR8za9Ysl1xrT9TycGexeCGEEEIIIdzNmaxzW//abDazcM4v2Zq9ndxenOyQSRchhOhZ7qjxJDyXBLP6JglsCIc6WjX0Q/ZnnM7ZQXVUFA8//VKvreqPiIggeeBAjhX/yNldagIGj0cbFIn5mtislAABAABJREFU7BmqD+/EUvwjyQMHEBERAUBFRQV19XVE+vsTHBNNY2MjiqKgVqvR6/VUmc9SXl9HRUVFh6/bfMBUeuYMu/ftx6T1JzguBZ2PHw3VlRzek8WK1/9BUlJSt9+Tnsii6Ili8ecrR0EpIYQQQgjhep3NOi8qKiJz3Xst+tdD+vfjlgWziY+P79RkhzsWHsmkixBCCOE+Eszqe3o1sPHVV1/x7LPPsmvXLk6ePMm///3vFivcb7jhBv75z3+2+J6MjAw+++wz+9dlZWXccccd/Oc//0GtVjN79mxWrFhBYGCg/Tn79u3j9ttvZ+fOnURFRXHHHXfwwAMPuP36vJ2jVUMNdTWcKiogYvAFjL78//Xqqv6UlBSmTbqY/35/mFOnjnD6RA5WlQaV1YLex4eYfnFcduEQ+0RyaGgoPiorlUf3EhQ3CL3ex34uq7XpcR+VldDQ0A5f96cBUwm5x4oxaf2JTBxE0zZYYDXVExIRjSk4ttvBgJ7KovCGYvHeqL2g1G/m/bq3myaEEEII0ed0pkBolK+WVes/pDogvkX/+sc92Rxf/xGP3LfknP1ddy48kkkXIYQQQojO6dWlHzU1NYwZM4ZXXnml3efMnDmTkydP2v9bvXp1i+PXXnstBw4cYPPmzXzyySd89dVX3HLLLfbjVVVVzJgxg6SkJHbt2sWzzz7L448/zt/+9je3XVdfkpaWxl+fWc6Lyx7lqQeXMCg+igGXXMnUa+88ZzE+d1Or1Vx0wVhqio/gGxFH/AWXk3TJTOIvuBzf8Dhqio8w/oKfggphYWEkJCaglORRtP1D6kqLsZgaqCstpmj7hygleSQkJhAWFtbh69oHTDs+p/xsNcGRsdiDGlYrpQe/JTw8kpGX/pyDBUXk5eV16fqcLX7YHV5TLN6LdFRg/tmXXu/t5gkhhBBC9DnnKhAaWFMEKqgOiO9y/7qjPt6y517CYDD04BULIYQQQpy/ejWwceWVV7Js2TJ+9atftfscHx8fYmNj7f81n3T+8ccf+eyzz3jjjTe4+OKLmTx5Mi+//DJr1qyhuLgYgHfffZfGxkbefPNNRowYwbx581iyZAnPP/+826+vr7CtGgoLC+PU2XoGpU1pf1V/NybynaUoCt/t3kPCiAtJCPVFKd5Pw5HvUYr3kxDmR8KIC9m5e699YJKSksJFY0cSFduPEKWK09vWcXzDq5zeto4Q61miYvtx8dhRLbYKUhSF3Nxcdu7cSW5urn3rqusWzENbls+ZH7IxV5e3CJCoK44zfNIMgiJjuhUMsGdRjJ3s9ve7edq+I55SLN5bnDsoFWt/nhBCCCGEcB1b1vnwEDMFWzMxrH2Bgq2ZjAixsHDOLMrqzF3uX/fkwiMhhBBCCNExj6+xsXXrVqKjowkLC2P69OksW7bMXjNhx44dhIaGcuGFF9qff/nll6NWq/n222/51a9+xY4dO7j00kvR6/X252RkZPDMM89QXl7ucHV+Q0MDDQ0N9q+rqqoAMJlMmEwmd11qh2yv21uvD03Ft62oCYmIREPbznpIeARW1JSXl/dIO/Py8sgvOsW4K+YQEtWPipLjNNTV4OMXQGhMIpWnT3Lk6/UcOnTIHqz4zbxfc/Kl1znrH0tq2kQ0eh2WRhNlxgKC64xcO28OFosFi8XCvn37WL3+fQ4XnqTRrKDXqhncvx/z58xm9OjR3PG7G3jwiT9Tvn0dap0ParWK6LBwhv5sLjEDUqkoKSLAT09gYGCn34/m97kn3++kpCSGJydycP92wmNmt0nbP75/OyOS+5OUlNSrP4PewvazOXjKHLQqK2D96aAKBo2+BDBz+PBhUlNTe6uZogd4wt9u4X5yn88Pcp/bkvdCeKr2alXs2rWrW1nKsn2rEEIIIYTn8OjAxsyZM7nmmmsYOHAgR44c4aGHHuLKK69kx44daDQajEYj0dEtO6VarZbw8HCMRiMARqORgQMHtnhOTEyM/ZijwMby5ct54okn2jy+adMm/P39XXV5XbJ58+Zeff1br70GKHZ80A8mXHsNRqORTz/9tEfac+PcWYAJKIQEAH+aJpELIQ6YO4vc3Fxyc3Pt3zP/mp85OFMUACdOnODEiRP2R6dMuJgpE1o+0/YclUrFM48/3E7LjrX7+p1hu889+X5PmXAxUwAoaHPsooym4GHz+jaiYz/9bB5re7Bf0/+OHDnCkSNHeq5Rotf09t9u0TPkPp8f5D7/pLa2trebIES7HNWq6Gxx8faylGX7ViGEEEIIz+HRgY158+bZ/z1q1ChGjx7NoEGD2Lp1K+np6W573aVLl3LPPffYv66qqiIxMZEZM2YQHBzsttftiMlkYvPmzVxxxRXodLpeaYOiKDz82BMcrNIwJr3tqv69We8zLFhh2RN/7HKxbGfk5eXx4JN/IXHKHEJj4tscrygp4vjX63n60QdabC9lu5b8/HyqqqoIDg4mOTnZ3mZnrnP//v08+9LrVAfEMmDUBALDIqkuP8OxH3YQVGvkvjtuZfTo0Z2+pub3WaPR9Pj77ShLZUj/OObNucap6zjfnetn8+ypE0zvZ2bQoEGSsdHHecLfbuF+cp/PD3Kf27JlNQvhLTpTXHxEUnybsYNNdwMjQgghhBDCdTw6sNFacnIykZGR5OXlkZ6eTmxsLKdOtawJYDabKSsrIza2aQ/72NhYSkpKWjzH9rXtOa35+Pjg4+PT5nGdTtfrA9nebsO1c+ew7LmX+H7jepLHTiYwPIrqstPk78kmqLaYBb9b4vC9c4fU1FSS46PJMWxzODA5bNjGiPgYUlNTHU78Dxs2zOF5c3Nzyck/TtK0BSgqTcuDKkgcOZEDWzMpKChg3Lhx/OGu23gncw2HvlhNo0lBr1MzNCmehb+7jbS0tC5dm+0+9/T7PW7cONLS0tqk7fdEoKovOdfP5pF93zC934UMHjy41/+miJ7R23+7Rc+Q+3x+kPv8E3kfhLex1cpb9txLGDauddi/XrhoSbt93+4GRoQQQgghhOt4VWDjxIkTlJaW0q9f0z4uEyZMoKKigl27djFu3DgAtmzZgqIoXHzxxfbnPPzww5hMJvvga/PmzaSmpjrchkp0zFaM753MNRzammmfyB+RFM/CRUu6PJHfFd0dmLTH2RTz9vbwVRSFjRs3YjQaiY2NJT09Ha3WuV+53ni/HaXtC+ec62czvPGU/XlCCCGEEKLndKd/7a7xhxBCCCGEcF6vBjaqq6vJy8uzf/3/2bv3uCjL/P/j7xk5KCCDB3QElESS0hQn24yysjTJ3DY3a1Vate20upmd7OCulZabZvYtrdbaX/vdzBUl22p3sw0Nw7LMzIY0KWg8JwKeGASU09y/P/wyiaCCAnPg9Xw85pEz1z33XPd9MdN93Z/ruj47duxQVlaWOnbsqI4dO2rWrFkaPXq0rFartm3bpkcfPb6kUHJysqTjI+6vv/563X333XrttddUWVmpKVOmaOzYsYqKipIkpaSkaNasWbrzzjv12GOP6bvvvtOCBQv04osveuSY/cGpbuR74gK+OW78n80U85ODAcuWLdPzC15R3uFSVauN2qhaUR1C9cj9UzRu3LhGH6O3nG803On+Nm8bO6lWLhcAAAC0nHO5vvamgV4AAKD1crlc7vvqDofjlCvW+DOPBja+/vprXXPNNe7nNXktJk6cqEWLFmnz5s1avHixioqKFBUVpeHDh+uZZ56ptfTO0qVLNWXKFA0dOlRms1mjR4/WwoUL3eUWi0WrVq3Svffeq4EDB6pz58568skndc8997TcgfohbxrVb7PZ1K9fP2VkZJzT7IgaJ04xH3DdrSoq2KPyshIFh4Qpomv3M04xX7ZsmR6dOVeuqIvU/fJrFRoZrdL9e5VnX6NHZ86VpEYHN7zpfKPhTtVprq6uJrABAADgQTXX1zU3BTZt2tTgAAcDjwAAgCfZ7Xa9lbpc2/cW6o4xo/T4M/MUF91FE1LGtqpBFh4NbAwZMkSGYZyyPD09/Yz76Nixo1JTU0+7Tf/+/fXZZ581un7wDTVf5pxdee4RUx99vOasv8w1U8yn/fEppT27Vqbg9lJAoFRVKaP8iOK7ddT4ybPq7bhUVVXp+QWvyBV1kRJG3iWT6fg24dHxah8Vp5yVb2j+gld06623nnXgxZ/UdCT9uUNYX1CqurraQ7UBAABAjfr6EQmxUQ3qRzDwCAAAeILdbtfs+QtVEhql86+8VVKlul95q7Ltn2v2/IWaMa31zCDlzip82olf5rghKQrr1EUlBwuVnbVOs+cv0PhbRyk6Ovqsbpqb2gQoqFMPtbH2Upt2FlUfdao6f7tkPnrK92RkZCjvcKm6X36tO6jh3p/JrCjbtdqz8mVlZGS4l1Rrrc6lIwkAAACci9P3I1rXTQEAAOAbXC6X3kpdrpLQKNmSxyjAZEjaqYiu0bIlj5E9PU1LUtOUmJjodwOH60NgAz7r5C+zyWSSJEVYY9Rj4FCtXfGGHvrjU+rZu6+Cg9o0+KZ5zX7bRF2om4f/RsVHilVRUaGgoCCFtw+XfdXbp/yRyM/PV7XaKDQyut59h3SOVrXaKD8/v2lOgo+iIwkAAABPOV0/ojXeFAAAAL7B4XAoZ1ee4oak/N/1y88rIZlMJsUNGKwfMlPlcDhaxcxSrtLgs9xf5gGD3Z0RSTp44IDsW7bK3L2/jPAonXf1LYodkqJsZ4Bmz18ou93e8P2azbJYIhQZ2UUWS4RMZvPxH4lde2slvq9htVrVRtUq3b+33n2XHdirNqqW1Wo9t4P3YSd3JCOsMQoIDHJ3JEtCo7QkNU0ul8vTVQUAAIAfOlU/QjrhpsAprvcBAAA8xel0qqLSpbBOXeotD+sYqYpKl5xOZwvXzDMIbMBn1ftlNgzlOrapMiBE1oSLZQ4MVnVluSxdohTbb5D2lkkLX1mkqqqqxu33BKf7kRg6dKiiOoQqz75GhlH7xrxhuJRnX6PoDqEaOnTo2R20H6AjCQAAAE/ipgAAAPBFFotFQYFmlRwsrLe85NB+BQWaZbFYWrhmnkFgAz6rvi+zs9ipopJShXe2qqL4oMxmk44cLNCafyzUJ+/8Xfvy8vXfdV/p7kl/OOXMjXP5kQgICNAj90+ROe875ax8Q8V7HaoqP6rivQ7lrHxD5n3fadr9U1p14nA6kgAAAPAkbgoAAABfFB8fr4TYKG3PWifDMGqVGYah7VnrdEFstOLj4z1Uw5ZFYAMtwuVyKTc3Vxs3blRubm6TLDNU35e5oqJCLpehgKC2OvjDBgWbDWV/9amc5vaKvOI36jnqfkUM/KVyS9ueclmqc/2RGDdunObNfFxdj+7UnpUvK3vxn7Rn5cuyHt2peU89rnHjxp3zsfsyOpIAAADwJG4KAAAAX2Q2mzUhZazCSvNkT09TUcHxpfCLCvbKnp6m9mV5Gp8yptXkCGu9w8bRYux2u95KXa6cXXmqqHQpKNDc4ETep1PzZZ49f6Hs6WmKGzBY5oBAVZYc1O7P3lFgSYEMk0muiB6KvnyUTCaTKo6WqG1EpPpfMlzbv0yvlRTQ5XLJ4XDI6XTq6iuStHvF++79hnWMVMmh/dqete74j8Tkqaf9kRg3bpxuvfVWZWRkKD8/X1arVUOHDm3VMzVq1HQks7PW1UrWKP3ckexLRxIA4AVOvDYICwvzdHUANJH6+hGNvd4HAKCpnXjtabFYFB8fz/+LUIfNZtOMaVP1Vupybf9shTRmlPZ8tkJ9o7tq/OSp53Sv1ddwlxXNym63a/b8hSoJjVLckBSFdeqikoOFys5ap9nzF2rGtHP7wp34Zc7JTFV5ZbUqtm9TtTlIidfdrC0bPlXkBYP+7+a5oeID+eoQFqoIS8TxXA6ZqXI4HCotLa0TfOnQto3aledpV2aq+7W+sdEN/pEICAhQcnLyWR+bv6IjCQDwBScPzAhtF6Q7xozS5s2bNXDgQE9XD8A5OrkfcTbX+wAANJXmGhQM/2Sz2ZSYmKicnBzl5uZq7hOPKiEhodXdSyOwgWbjcrn0VupylYRG1RqZH2GNkS15jOzpabVmTJytmi9zTVR77969euvt95X342ZVHDumoPYdVHG0RMUH8hVYVabefS6STCZ3LoevvvpK7/03o07wZXvWOoWW7NU9KaMVHR1NtLwJ+VNHkhEVAOB/6huYcfRQgaRKPb/wNT32wB986v9VAOp3cj+CazkAgCc096Bg+Cez2az4+Hjl5ua22usXAhtoNg6HQzm78hQ3JKXWckOSZDKZas2Y6N279zl9ltlsdu/jF7/4hWJjY7Xglb9oZ/Y+5W9Zp7YRkeoQFqrefS5Sp86dJf1fLocAsz7+ZO1pgy+ffv6l5j/3bKN/IKqqqliK6jT8oSPJiAoA8D+nHJjRNVrSTpWEWptkYAYA73BiPwIAgJbWUoOCAX/EXVY0G6fTqYpKl8I6dam3vGbGhNPpPOfPOnnUfGJiot54fZHunvQH5ZYWq/8lwxVhiZD+738QNbkcoiJClF9UqrhrBjdp8GXZsmV6fsEryjtcqmq1URtVK6pDqB65f0qrTx5+Il/uSLpHVIR0U+TAXyowNFyVpcXKdnzLiAr4DWYkeQfaoWWdbmCGJJ3XL0k/fLKsSQZmAAAAoHVryUHBgL8hsIFmY7FYFBRoVsnBQkVYY+qUlxzar6BAsywWyzl9zulGzU+9d7Jmz1+o7V+m15vLYej1Q/XmP//bpMGXZcuW6dGZc+WKukjdL79WoZHRKt2/V3n2NXp05lxJIrjhxRpyA7FmREWBEa42ET313a58uVz7ZDabZInoqdLSUkZUwOcxI8k70A4t74wDMzp0brKBGQAAAGjdWnJQMOBvCGyg2cTHxyshNkrZWet+nk5nGHIWO1VeXi7H+tW6ODZK8fHxZ/0ZDVmH8HS5HEJDQ5X67/QmC75UVVXp+QWvyBV1kRJG3iWT6fhN7fDoeLWPilPOyjc0f8EruvXWW1mWygs19Aaiw+HQ11ty5IxMlLnSrPCoeAUGt1Nl+VEVHciXq02ENm75lhEV8Fms8eodaAfPOOPAjMMHmmRgBgAAANBSg4IBf8RQYjQbs9msCSljFVaaJ3t6mnZ8v1mff/65PslYpY/+8Zp+3LBahQUF+vbbb89q/yevQxhhjVFAYJB7HcKS0Cj3qPkXnpujl2Y/oTl/fEAvzX5C8597VjabzR182Z61ToZh1Np/zXJVF8RGNzj4kpGRobzDpYqyXesOatQwmcyKsl2rvYdLlZGRcVbHjOZTcwMx2xmg2CEpso19SLFDUpTtDNDs+Qtlt9vd2x4+fFg/7SuQLN3UuXsvBbULk8ncRkHtwtS5ey/J0k0/7SvQ4cOHPXhEwNlp6G+ry+XydFX9Gu3gOae7NpCknVvWN+raAAAAADiVpr4vBbQmBDbQrGw2m2ZMm6rI8jx9tmS+fli1RMccXyuqU3tdMfr3OtA2us5N44Zyr0M44DT5MXbtlcPhcOdy+MUvfqHevXu7lwc6OfhSlP+TqirKVZT/k+zpaWpflqfxKWMavJxQfn6+qtVGoZHR9ZaHdI5WtdooPz+/0ceL5tPYG4hFRUU6euyo2gYFSjp5/XWT2gYF6uixoyoqKmrpQwHOWWN+W9F8aIfm5XK5lJubq40bNyo3N7dWgOiU1wYFeyVJ7cvyG3VtAAAAAJxKU9+XAloT1sJBs0tMTFTnyEj17D9IvQZepbah7dXB2kMms1mGYciennZW+Qiaah3CmuDLqZarqlnmoyG5F6xWq9qoWqX79yo8um40vezAXrVRtaxWa4OPE82vscm6IiIiFGwy5NzxrdpH9ar1HsM4/nqwyVBEREQLHwlw7ljj1TvQDs2nIcsO1ndtENouSBozStPum8QSYAAAAGgyDb0vBaA2Ahtodg6HQ7m796nfkJQ66wXWd9O4oZpyHUKbzabExMRTBi4amnth6NChiuoQqjz7GrWPiqu1HJVhuJRnX6PoDqEaOnRog48Tza+xNxA7dOigmO4xKihwaO8X76vTBYMUFN5JFcUHdfCHDXIVOBTTPUYdOnRoycMAmgRrvHoH2qF5NCZvycnXBmFhYcrNzVX//v09fBQAAADwN2e6LwWgLr4daHbNNeq0qdchPNVyVY3JvRAQEKBH7p8ic953yln5hor3OlRVflTFex3KWfmGzPu+07T7p5A43MuceAOxPiffQIyPj9elAy5SpLWbLK5i7f/8be1Z+Rft//xtWYwjirR206AB/VgDEz6JNV69A+3Q9M4mb8mJ1waca8C/nW6JOgAAWsKp7ksBqB/fEDS7xt40bqiWWIfwbG6CjBs3TvNmPq6uR3dqz8qXlb34T9qz8mVZj+7UvKce17hx4866Pmgejb2BWPO3F9XOpYhIqy4ZcoOSrv+1LhlygyI6d1V0iIs1MOGzWOPVO9AOTY+8JQBOxW636+HHpuuBGc9o+rMv6YEZz+jhx6afVR5AAAAAtAyGjaPZ1dw0zs5aJ1vymDr5CLZnrVPfsxx12tzrEDY290KNcePG6dZbb1VGRoby8/NltVo1dOhQZmp4qZobiLPnL5Q9PU1xAwYrrGOkSg7t1/asdcdvIE6eWusGYq2/ve8/df/tXRQbrfF/YA1M+DbWePUOtEPTIm8JgPo0Zok6AAAAeA/usqLZnc1N48ZoznUIz+UmSEBAgJKTk8+5DmgZZ3MDkTUw4c/4+/YOtEPTIW8JgJOdPDu7ZiBTzexse3qalqSmKTExkd9dAAAAL0NgAy2iuUed1qxD2NS4CdK6nM0NxOb62wO8AX/f3uHkdqhZB55AR+M05wxSAL7pbGdnAwAAwPMIbKDF+OKoU26CtD7cyAXgzex2+/FBArvy3IMEEmKjNCFlLEulnEFzzyAF4HtYog4AAMB3EdhAi/K1m8bcBAEAeAtfXQfe5XJ5zaAG8pYAOBGzswEAAHwXgQ3gDLgJAgDwNF9dB94bZ5j44gxSAM2D2dkAAAC+i8AG0ADcBAEAeJIvrgPvzTNMfG0GKYDmwexsAAAA30VgA2ggboIAADzF19aB99UZJgBaH2ZnAwAA+CYCGwAAAF7O19aB98UZJgBaL2ZnAwAA+B4CGwAAAF7O19aB97UZJgDA7GwAAADfwhAUAACagcvlksPhkHR89LrL5fJwjeDLataBDyvNkz09TUX5P6mqolxF+T/Jnp52fB34lDFeM7r4xBkm9fG2GSYAAAAAAN/CjA0AAJqY3W7XW6nLtX1voe4YM0qPPzNPcdFdNCFlLGt146z50jrwvjbDBAAAAADgWwhswC/UjIxmTVwAnma32zV7/kKVhEbp/CtvlVSp7lfeqmz755o9f6FmTPOuG9DwLb6yDnzNDJPZ8xfKnp6muAGDFdYxUiWH9mt71rrjM0wmT/W6egMAAAAAfAOBDfi8mpHRObvy3KNXE2Kjmm1kNEEUAKficrn0VupylYRGyZY8RgEmQ9JORXSNli15jOzpaVqSmqbExER+N3DWfGUdeF+aYQIAAAAA8C0ENuDTThwZHTckRWGduqjkYKGys9Y1y8jolg6iAPAtDodDObvyFDck5f+W3jHcZSaTSXEDBuuHzFQ5HA6fuDENnCtfmWECAAAAAPAtBDbgs04eGV2zfneENaZZRka3dBAFgO9xOp2qqHQprFOXesvDOkaqotIlp9PZwjUDzqy5ZiT6ygwTT2NGKAAAAAA0HIEN+Ky6I6N/1tQjo88liMKNCqD1sFgsCgo0q+RgoSKsMXXKSw7tV1CgWRaLxQO1A06NGYmexfkHAAAAgMYhsAGf1ZIjo882iMKNCqB1iY+PV0JslLKz1smWPEY64efCMAxtz1qnvrHRio+P91wlgZMwI9GzOP8AAAAA0HgMG4fPOnFkdH2acmT02QRRam5UZDsDFDskRbaxDyl2SIqynQGaPX+h7Hb7OdcLgHcxm82akDJWYaV5sqenqahgrySpqGCv7Olpal+Wp/EpY5i1Ba9x8ozECGuMAgKD3DMSS0KjtCQ1TS6Xy9NV9UucfwAAAAA4O9xZgc+qGRm9PWudDMOoVVYzMvqCJhoZ3dggytncqKhZsko6PkOEmxiAb7LZbJoxbar6WKq057MVkqQ9n61QX0u1/vQwI6/hXdwzEgcMPvWMxF173f9/QtPi/ANoai6XS7m5udq4caNyc3PpUwAAAL/FUlTwWTUjo2fPXyh7epriBgxWWMdIlRzar+1Z646PjJ48tUlGRp+8vMyJNx/qW16msUtX1SxZtX1voe4YM0qPPzNPcdFdWLIK8FE2m02JiYnKyclRbm6u5j7xqBISEpipAa9DwnvPOpfzTw4vACdjGVwAANCaENiAT6sZGf1W6nLlZKa6L+D7xkZr/ORTj4xu7M2AxgZRGnOj4sS1tc+/8lZJlep+5a3Ktn/O2tqADzObzYqPj1dubi43HOG1SHjvWWd7/rl5CeBkDcnXc9FFF3m6mgAAAE2GwAZ8Xs3I6IYGKs72ZkBjgigNvVHRvn17vf63v7uXrAowGZJ2KqJrtGzJY2RPT9OS1DQlJiZyUxQA0OQaOyMRTetszj/JxgGc7ORlcGt+S2qWwa3pU8yZ3cfDNQUAAGg6BDbgF8xms3r37n3G7c71ZkBDgygNvVEh6aQlq37OFVLfklUAADSlllzWEXU19vw39OYlAyKA1qWhy+Bu377dQzUEAABoevR40GqcTULv+tQEUX7xi1+od+/e9d44qLlREVaaJ3t6moryf1JVRbmK8n+SPT3t+I2KlDE6cuQIa5sDADzqxIT3uzJTZU97UbsyU0l430Iac/5JNg6gPg1dBre4uLiFawYAANB8mLGBVqOxCb3PVUOWrsrNzWVtcwCAxzV2WUc0rYaef5K9A6hPQ5fBDQ8PV35+vgdqCAAA0PQIbKDV8MTNgDPdqDh5ySqdEG9hbXMAQEtq6LKOaB4NOf8kewdQn4YugxsXF6fc3FwP1hQAAKDpMAwPrcaJNwPq01w3A063dFWdJasK9kqSigr21lqyihGzAACg5ubl9qx1MgyjVlnNzcsLGBABtDoNXQaXPgUAAPAnXNmg1fDWmwEnrq2957MVkqQ9n60457XNXS6XcnNztXHjRuXm5p4xdwgAAPBu3LwEcCrkSwIAAK0NS1Gh1ai5GTB7/kLZ09MUN2CwwjpGquTQfm3PWnf8ZsDkqR65GVCzZFVOTo5yc3M194lHlZCQcNZ1sdvtx3N77Mpz5/ZIiI3ShJSxdGoAAPBhDcnhBaB1Il8SAABoTQhsoFXx5psBZrNZ8fHxys3NPacOiN1u1+z5C1USGqW4ISkK69RFJQcLlZ21TrPnL9SMadz0AADAl3HzEsCpkC8JAAC0FgQ20Or4880Al8ult1KXqyQ0qlbiwAhrjGzJY2RPT9OS1DQlJib6xfECANBacfMSAAAAQGtGYAOtkr/eDHA4HMrZlae4ISnuoEYNk8mkuAGD9UNmqhwOh18ePwAAAAAAAAD/x5BtwI84nU5VVLoU1qlLveVhHSNVUemS0+ls4ZoBAAAAAAAAQNMgsAH4EYvFoqBAs0oOFtZbXnJov4ICzbJYLC1cMwAAAAAAAABoGgQ2AD8SHx+vhNgobc9aJ8MwapUZhqHtWet0QWy04uPjPVRDAAAAAAAAADg3BDYAP2I2mzUhZazCSvNkT09TUf5PqqooV1H+T7Knp6l9WZ7Gp4whcTgAAAAAAAAAn0XycMDP2Gw2zZg2VW+lLldOZqoqKl0KCjSrb2y0xk+eKpvN5ukqAgAAAAAAAMBZI7AB+CGbzabExEQ5HA45nU5ZLBbFx8czUwMAAAAAAACAzyOwAfgps9ms3r17e7oaAAAAAAAAANCkGL4NAAAAAAAAAAB8BoENAAAAAAAAAADgM1iKCgDQ7FwuFzlfAAAAAAAA0CQIbAAAmpXdbtdbqcuVsytPFZUuBQWalRAbpQkpY2Wz2TxdPQAAAAAAAPgYAhto9aqqqpSRkaH8/HxZrVYNHTpUAQF8NYCmYLfbNXv+QpWERiluSIrCOnVRycFCZWet0+z5CzVj2lSCGwAA4IyY/QkAAIATcSWIVm3ZsmW6dPDVmjj1MU17dqEmTn1Mlw6+WsuWLfN01QCf53K59FbqcpWERsmWPEYR1hgFBAYpwhojW/IYlYRGaUlqmlwul6erCgDwI59++qluvPFGRUVFyWQy6f33369VbhiGnnzySXXr1k3t2rXTsGHD9OOPP9ba5tChQ7rtttsUHh6uiIgI3XnnnSopKam1zebNm3XllVeqbdu26t69u+bNm9fch9Zq2e12PfzYdD0w4xlNf/YlPTDjGT382HTZ7XZPVw0AAAAeQmADrdayZcv06My5Kmh3nrqPvE99b/+zuo+8TwXtztOjM+cS3ADOkcPhUM6uPMUNGCyTyVSrzGQyKW7AYP2wa68cDoeHaggA8EelpaVKTEzUq6++Wm/5vHnztHDhQr322mvasGGDQkNDlZycrGPHjrm3ue2227R161atXr1aH3zwgT799FPdc8897vLi4mINHz5csbGx2rRpk55//nnNnDlTf/3rX5v9+Fqbmtmf2c4AxQ5JkW3sQ4odkqJsZ4Bmz19IcAMAAKCVYr0dtEpVVVV6fsErckVdpISRd8lkOh7jC4+OV/uoOOWsfEPzF7yiW2+9lWWpgLPkdDpVUelSWKcu9ZaHdYxURaVLTqezhWsGAPBnI0aM0IgRI+otMwxDL730kmbMmKGbbrpJkvTWW2+pa9euev/99zV27Fh9//33+uijj7Rx40ZdcsklkqSXX35ZN9xwg+bPn6+oqCgtXbpUFRUV+t///V8FBQWpb9++ysrK0v/8z//UCoDg3Jw8+7NmoETN7E97epqWpKYpMTGRZakAAABaGe7YolXKyMhQ3uFSdb/8WndQo4bJZFaU7VrtWfmyMjIylJyc7KFaAr7NYrEoKNCskoOFirDG1CkvObRfQYFmWSwWD9QOANAa7dixQ/n5+Ro2bJj7NYvFokGDBmn9+vUaO3as1q9fr4iICHdQQ5KGDRsms9msDRs26Ne//rXWr1+vq666SkFBQe5tkpOT9dxzz+nw4cPq0KFDnc8uLy9XeXm5+3lxcbEkqbKyUpWVlc1xuB5Vc0zncmwOh0Pb9xbq/CtvVYDJkGT8XGiSzrddoW2frVBOTo7i4+PPscb+rynaBE2LNvEutIf3oU28D23iXfyxPRpzLAQ20Crl5+erWm0UGhldb3lI52hVq43y8/NbuGaA/4iPj1dCbJSys9bVGmUpHR8xuz1rnfrGRnMjAgDQYmqu7bp27Vrr9a5du7rL8vPz1aVL7dmGAQEB6tixY61tevbsWWcfNWX1BTbmzJmjWbNm1Xl91apVCgkJOcsj8n6rV68+p/ffMWaUpEpJO+sWRkkaM0q5ubnKzc09p89pTc61TdD0aBPvQnt4H9rE+9Am3sWf2qOsrKzB23o0sPHpp5/q+eef16ZNm7Rv3z699957GjVqlLvcMAw99dRT+n//7/+pqKhIV1xxhRYtWqTzzz/fvc2hQ4d033336T//+Y/MZrNGjx6tBQsWKCwszL3N5s2bde+992rjxo2KjIzUfffdp0cffbQlDxVexmq1qo2qVbp/r8Kj695ULTuwV21ULavV6oHaAf7BbDZrQsrY4+tfp6cpbsBghXWMVMmh/dqetU7ty/I0fvJUlo4AALQK06dP10MPPeR+XlxcrO7du2v48OEKDw/3YM2aR2VlpVavXq3rrrtOgYGBZ7UPh8Ohx5+Zp+5X3qqIrnUHJBUV7NWez1Zo7hOPMlCiAZqiTdC0aBPvQnt4H9rE+9Am3sUf26NmVnNDeDSwUZPY74477tDNN99cp7wmsd/ixYvVs2dPPfHEE0pOTlZ2drbatm0r6Xhiv3379mn16tWqrKzU7373O91zzz1KTU2V9HNiv2HDhum1117Tli1bdMcddygiIoL1b1uxoUOHKqpDqPLsa9Q+Kq7WclSG4VKefY2iO4Rq6NChHqwl4PtsNptmTJuqt1KXKyczVRWVLgUFmtU3NlrjJ0+VzWbzdBUBAK1IzaCVgoICdevWzf16QUGBBgwY4N6msLCw1vuqqqp06NAh9/utVqsKCgpqbVPz/FQDY4KDgxUcHFzn9cDAQL/piNbnXI4vISFBcdFdlG3/vN7Znz/aP1ff6K5KSEhgoEQj+PvfnC+iTbwL7eF9aBPvQ5t4F39qj8Ych0cDGyT2g6cEBATokfun6NGZc5Wz8g1F2a5VSOdolR3Yqzz7Gpn3fadpTz1O4nCgCdhsNiUmJsrhcMjpdMpisSg+Pp4bEACAFtezZ09ZrVZlZGS4AxnFxcXasGGDJk+eLElKSkpSUVGRNm3apIEDB0qS1qxZI5fLpUGDBrm3+dOf/qTKykp352v16tVKSEiodxkqnB1mfwIAAOBUvPYK8EyJ/SSdMbFfzTb1JfbLycnR4cOHW+ho4I3GjRuneTMfV9ejO7Vn5cvKXvwn7Vn5sqxHd2reU49r3Lhxnq4i4DfMZrN69+6tX/ziF+rduzc3IAAAzaakpERZWVnKysqSdLxfkZWVpd27d8tkMumBBx7Q7Nmz9e9//1tbtmzRhAkTFBUV5V4S98ILL9T111+vu+++W1999ZU+//xzTZkyRWPHjlVUVJQkKSUlRUFBQbrzzju1detWpaWlacGCBbWWmkLTqJn92cdSpV2ZqbKnvahdmanqa6nWnx5m9icAAEBr5bXD0T2Z2K+8vFzl5eXu5zVre1VWVnosy7w/Zrn3BrfccotGjRqltWvXqqCgQF27dtXVV1+tgIAAj5xr2rl1oJ1bD9q6daCdWwfauS5vPRdff/21rrnmGvfzmmDDxIkT9eabb+rRRx9VaWmp7rnnHhUVFWnw4MH66KOP3EvdStLSpUs1ZcoUDR061J3Hb+HChe5yi8WiVatW6d5779XAgQPVuXNnPfnkk8wIbybM/gQAAMDJvDaw4Ulz5szRrFmz6ry+atUqhYSEeKBGP/OnLPfeJiIiQuXl5Vq1apWnq0I7txK0c+tBW7cOtHPrQDv/rKyszNNVqNeQIUNkGMYpy00mk55++mk9/fTTp9ymY8eO7px9p9K/f3999tlnZ11PNE7N7E8AAABA8uLAhicT+02fPr3WNPLi4mJ1795dw4cPV3h4+Lkd2Fnyxyz3qIt2bh1o59aDtm4daOfWgXauq2ZWMwAAAAC0NK8NbHgysV9wcLCCg4PrvO4NGea9oQ5ofrRz60A7tx60detAO7cOtPPPOA8AAAAAPMWji5KS2A8AAAAAAAAAADSGR2dskNgPAAAAAAAAAAA0hkcDGyT2AwAAAAAAAAAAjeHRpagAAAAAAAAAAAAag8AGAAAAAAAAAADwGQQ2AAAAAAAAAACAzyCwAQAAAAAAAAAAfAaBDQAAAAAAAAAA4DMIbAAAAAAAAAAAAJ9BYAMAAAAAAAAAAPgMAhsAAAAAAAAAAMBnENgAAAAAAAAAAAA+g8AGAAAAAAAAAADwGQGeroAvMAxDklRcXOyxOlRWVqqsrEzFxcUKDAz0WD3QvGjn1oF2bj1o69aBdm4daOe6aq6Na66V0Tje0MdoTnxnvA9t4n1oE+9Ce3gf2sT70CbexR/bozF9DAIbDXDkyBFJUvfu3T1cEwAAAMC7HDlyRBaLxdPV8Dn0MQAAAID6NaSPYTIYYnVGLpdLeXl5at++vUwmk0fqUFxcrO7du2vPnj0KDw/3SB3Q/Gjn1oF2bj1o69aBdm4daOe6DMPQkSNHFBUVJbOZFW4byxv6GM2J74z3oU28D23iXWgP70ObeB/axLv4Y3s0po/BjI0GMJvNiomJ8XQ1JEnh4eF+84eKU6OdWwfaufWgrVsH2rl1oJ1rY6bG2fOmPkZz4jvjfWgT70ObeBfaw/vQJt6HNvEu/tYeDe1jMLQKAAAAAAAAAAD4DAIbAAAAAAAAAADAZxDY8BHBwcF66qmnFBwc7OmqoBnRzq0D7dx60NatA+3cOtDOQOPwnfE+tIn3oU28C+3hfWgT70ObeJfW3h4kDwcAAAAAAAAAAD6DGRsAAAAAAAAAAMBnENgAAAAAAAAAAAA+g8AGAAAAAAAAAADwGQQ2AAAAAAAAAACAzyCw4UVmzpwpk8lU63HBBRe4y48dO6Z7771XnTp1UlhYmEaPHq2CggIP1hgN9emnn+rGG29UVFSUTCaT3n///VrlhmHoySefVLdu3dSuXTsNGzZMP/74Y61tDh06pNtuu03h4eGKiIjQnXfeqZKSkhY8CpzJmdr59ttvr/Mdv/7662ttQzt7vzlz5ugXv/iF2rdvry5dumjUqFHKycmptU1Dfq93796tkSNHKiQkRF26dNEjjzyiqqqqljwUnEZD2nnIkCF1vtOTJk2qtQ3t7N0WLVqk/v37Kzw8XOHh4UpKStJ///tfdznfZeDM6MN4Hn0N70KfwLtw7e59uM72PlwTe5cztQffj58R2PAyffv21b59+9yPdevWucsefPBB/ec//9GKFSu0du1a5eXl6eabb/ZgbdFQpaWlSkxM1Kuvvlpv+bx587Rw4UK99tpr2rBhg0JDQ5WcnKxjx465t7ntttu0detWrV69Wh988IE+/fRT3XPPPS11CGiAM7WzJF1//fW1vuPLli2rVU47e7+1a9fq3nvv1ZdffqnVq1ersrJSw4cPV2lpqXubM/1eV1dXa+TIkaqoqNAXX3yhxYsX680339STTz7piUNCPRrSzpJ099131/pOz5s3z11GO3u/mJgYzZ07V5s2bdLXX3+ta6+9VjfddJO2bt0qie8y0FD0YTyLvoZ3oU/gXbh29z5cZ3sfrom9y5naQ+L74WbAazz11FNGYmJivWVFRUVGYGCgsWLFCvdr33//vSHJWL9+fQvVEE1BkvHee++5n7tcLsNqtRrPP/+8+7WioiIjODjYWLZsmWEYhpGdnW1IMjZu3Oje5r///a9hMpmMvXv3tljd0XAnt7NhGMbEiRONm2666ZTvoZ19U2FhoSHJWLt2rWEYDfu9/vDDDw2z2Wzk5+e7t1m0aJERHh5ulJeXt+wBoEFObmfDMIyrr77auP/++0/5HtrZN3Xo0MF44403+C4DDUQfxrvQ1/Au9Am8D9fu3ofrbO/ENbF3qWkPw+D7cSJmbHiZH3/8UVFRUYqLi9Ntt92m3bt3S5I2bdqkyspKDRs2zL3tBRdcoB49emj9+vWeqi6awI4dO5Sfn1+rbS0WiwYNGuRu2/Xr1ysiIkKXXHKJe5thw4bJbDZrw4YNLV5nnL3MzEx16dJFCQkJmjx5sg4ePOguo519k9PplCR17NhRUsN+r9evX69+/fqpa9eu7m2Sk5NVXFxcaxQGvMfJ7Vxj6dKl6ty5sy666CJNnz5dZWVl7jLa2bdUV1dr+fLlKi0tVVJSEt9loBHow3gv+hreiT6B53Dt7n24zvYuXBN7l5Pbowbfj+MCPF0B/GzQoEF68803lZCQoH379mnWrFm68sor9d133yk/P19BQUGKiIio9Z6uXbsqPz/fMxVGk6hpvxN/cGqe15Tl5+erS5cutcoDAgLUsWNH2t+HXH/99br55pvVs2dPbdu2TX/84x81YsQIrV+/Xm3atKGdfZDL5dIDDzygK664QhdddJEkNej3Oj8/v97vfE0ZvEt97SxJKSkpio2NVVRUlDZv3qzHHntMOTk5evfddyXRzr5iy5YtSkpK0rFjxxQWFqb33ntPffr0UVZWFt9loAHow3g3+hrehz6B53Dt7n24zvYeXBN7l1O1h8T340QENrzIiBEj3P/u37+/Bg0apNjYWL399ttq166dB2sGoCmMHTvW/e9+/fqpf//+6tWrlzIzMzV06FAP1gxn695779V3331Xay1x+J9TtfOJa13369dP3bp109ChQ7Vt2zb16tWrpauJs5SQkKCsrCw5nU698847mjhxotauXevpagE+gz4M0Dj0CTyHa3fvw3W29+Ca2Lucqj369OnD9+MELEXlxSIiItS7d285HA5ZrVZVVFSoqKio1jYFBQWyWq2eqSCaRE37FRQU1Hr9xLa1Wq0qLCysVV5VVaVDhw7R/j4sLi5OnTt3lsPhkEQ7+5opU6bogw8+0CeffKKYmBj36w35vbZarfV+52vK4D1O1c71GTRokCTV+k7Tzt4vKChI8fHxGjhwoObMmaPExEQtWLCA7zJwlujDeBf6Gt6PPkHL4Nrd+3Cd7V24JvYup2qP+rTm7weBDS9WUlKibdu2qVu3bho4cKACAwOVkZHhLs/JydHu3btrrbEG39OzZ09ZrdZabVtcXKwNGza42zYpKUlFRUXatGmTe5s1a9bI5XK5f8Dge3766ScdPHhQ3bp1k0Q7+wrDMDRlyhS99957WrNmjXr27FmrvCG/10lJSdqyZUutTuvq1asVHh7unl4KzzpTO9cnKytLkmp9p2ln3+NyuVReXs53GThL9GG8C30N70efoHlx7e59uM72DVwTe5ea9qhPq/5+eDZ3OU708MMPG5mZmcaOHTuMzz//3Bg2bJjRuXNno7Cw0DAMw5g0aZLRo0cPY82aNcbXX39tJCUlGUlJSR6uNRriyJEjht1uN+x2uyHJ+J//+R/Dbrcbu3btMgzDMObOnWtEREQY//rXv4zNmzcbN910k9GzZ0/j6NGj7n1cf/31hs1mMzZs2GCsW7fOOP/8841x48Z56pBQj9O185EjR4xp06YZ69evN3bs2GF8/PHHxsUXX2ycf/75xrFjx9z7oJ293+TJkw2LxWJkZmYa+/btcz/Kysrc25zp97qqqsq46KKLjOHDhxtZWVnGRx99ZERGRhrTp0/3xCGhHmdqZ4fDYTz99NPG119/bezYscP417/+ZcTFxRlXXXWVex+0s/d7/PHHjbVr1xo7duwwNm/ebDz++OOGyWQyVq1aZRgG32WgIejDeB59De9Cn8C7cO3ufbjO9j5cE3uX07UH34/aCGx4kTFjxhjdunUzgoKCjOjoaGPMmDGGw+Fwlx89etT4wx/+YHTo0MEICQkxfv3rXxv79u3zYI3RUJ988okhqc5j4sSJhmEYhsvlMp544gmja9euRnBwsDF06FAjJyen1j4OHjxojBs3zggLCzPCw8ON3/3ud8aRI0c8cDQ4ldO1c1lZmTF8+HAjMjLSCAwMNGJjY427777byM/Pr7UP2tn71dfGkoy///3v7m0a8nu9c+dOY8SIEUa7du2Mzp07Gw8//LBRWVnZwkeDUzlTO+/evdu46qqrjI4dOxrBwcFGfHy88cgjjxhOp7PWfmhn73bHHXcYsbGxRlBQkBEZGWkMHTrU3YEzDL7LQEPQh/E8+hrehT6Bd+Ha3ftwne19uCb2LqdrD74ftZkMwzCafh4IAAAAAAAAAABA0yPHBgAAAAAAAAAA8BkENgAAAAAAAAAAgM8gsAEAAAAAAAAAAHwGgQ0AAAAAAAAAAOAzCGwAAAAAAAAAAACfQWADAAAAAAAAAAD4DAIbAAAAAAAAAADAZxDYAAAAAAAAAAAAPoPABgDAa/zwww+67LLL1LZtWw0YMEA7d+6UyWRSVlZWg95/++23a9SoUedcj5ycHFmtVh05cuSc93Wyjz76SAMGDJDL5WryfQMAAACojT4GAPgnAhsA0Ers379fkydPVo8ePRQcHCyr1ark5GR9/vnnnq6a21NPPaXQ0FDl5OQoIyND3bt31759+3TRRRc16P0LFizQm2++ec71mD59uu677z61b9/+rPfxr3/9S9ddd50GDRqkyy+/XDt27JAkXX/99QoMDNTSpUvPuZ4AAACAJ9HHaDj6GADQtEyGYRiergQAoPldddVVqqio0Jw5cxQXF6eCggJlZGSob9+++tWvfuXRulVUVCgoKEiXXHKJRo4cqVmzZnmsLrt371Z8fLx27Nih6Ojos95PzTFJ0l133aWBAwdq8uTJkqRXX31Vb775pjZu3NgkdQYAAAA8gT5Gw9DHAICmx4wNAGgFioqK9Nlnn+m5557TNddco9jYWF166aWaPn26u8NR35TsoqIimUwmZWZmSpIyMzNlMpm0cuVK9e/fX23bttVll12m7777rtbnrVu3TldeeaXatWun7t27a+rUqSotLXWXn3feeXrmmWc0YcIEhYeH65577pHJZNKmTZv09NNPy2QyaebMmfXWaevWrfrlL3+p8PBwtW/fXldeeaW2bdsmqe40cZfLpTlz5qhnz55q166dEhMT9c4775z2XL399ttKTEys1eF48803FRERoQ8++EAJCQkKCQnRLbfcorKyMi1evFjnnXeeOnTooKlTp6q6ulqS3B2OlStX6qefftLvfvc79/5uvPFGff311+56AwAAAL6GPgZ9DADwJAIbANAKhIWFKSwsTO+//77Ky8vPeX+PPPKIXnjhBW3cuFGRkZG68cYbVVlZKUnatm2brr/+eo0ePVqbN29WWlqa1q1bpylTptTax/z585WYmCi73a4nnnhC+/btU9++ffXwww9r3759mjZtWp3P3bt3r6666ioFBwdrzZo12rRpk+644w5VVVXVW885c+borbfe0muvvaatW7fqwQcf1G9/+1utXbv2lMf22Wef6ZJLLqnzellZmRYuXKjly5fro48+UmZmpn7961/rww8/1IcffqglS5bo9ddfd3dqXC6XZs+erffee0/vv/++2rZt695Xjx491LVrV3322WdnPtkAAACAF6KPQR8DADwpwNMVAAA0v4CAAL355pu6++679dprr+niiy/W1VdfrbFjx6p///6N3t9TTz2l6667TpK0ePFixcTE6L333tNvfvMbzZkzR7fddpseeOABSdL555+vhQsX6uqrr9aiRYvcF9/XXnutHn744Tr1DAsLk9VqlSQdOHCgVvmrr74qi8Wi5cuXKzAwUJLUu3fveutYXl6uZ599Vh9//LGSkpIkSXFxcVq3bp1ef/11XX311fW+b9euXfV2OiorK7Vo0SL16tVLknTLLbdoyZIlKigoUFhYmPr06aNrrrlGn3zyicaMGaMFCxboz3/+sxITEzVkyBDddtttuu+++9z7i4qK0q5du059kgEAAAAvRh+DPgYAeBKBDQBoJUaPHq2RI0fqs88+05dffqn//ve/mjdvnt544w3dfvvtjdpXzUW8JHXs2FEJCQn6/vvvJUnffvutNm/eXCtxnWEYcrlc2rFjhy688EJJqvfC/kyysrJ05ZVXujscp+NwOFRWVubuHNWoqKiQzWY75fuOHj1aa+RTjZCQEHeHQ5K6du2q8847T2FhYbVeKywslCQ9+OCDevDBB0/5Oe3atVNZWdkZjwMAAADwVvQxjqOPAQAtj8AGALQibdu21XXXXafrrrtOTzzxhO666y499dRTuv3222U2H1+d0DAM9/Y1U78bo6SkRL///e81derUOmU9evRw/zs0NLTR+27Xrl2j6iEdX3/25AR9wcHBp3xf586ddfjw4Tqvn9zRMZlM9b7mcrkaVL9Dhw4pMjKyQdsCAAAA3oo+xnH0MQCgZRHYAIBWrE+fPnr//fclyX0BvG/fPvdooxMT6p3oyy+/dHcgDh8+rNzcXPcoqYsvvljZ2dmKj49v8vr2799fixcvVmVl5RlHVPXp00fBwcHavXv3KaeE18dmsyk7O/tcq3pax44d07Zt2047qgsAAADwRfQx6qKPAQBNj+ThANAKHDx4UNdee63+8Y9/aPPmzdqxY4dWrFihefPm6aabbpJ0fKTSZZddprlz5+r777/X2rVrNWPGjHr39/TTTysjI0Pfffedbr/9dnXu3FmjRo2SJD322GP64osvNGXKFGVlZenHH3/Uv/71rzqJ/c7GlClTVFxcrLFjx+rrr7/Wjz/+qCVLlignJ6fOtu3bt9e0adP04IMPavHixdq2bZu++eYbvfzyy1q8ePEpPyM5OVnr169XdXX1Odf3VL788ksFBwfXmm4PAAAA+BL6GPQxAMCTmLEBAK1AWFiYBg0apBdffFHbtm1TZWWlunfvrrvvvlt//OMf3dv97//+r+68804NHDhQCQkJmjdvnoYPH15nf3PnztX999+vH3/8UQMGDNB//vMfBQUFSTo+4mnt2rX605/+pCuvvFKGYahXr14aM2bMOR9Hp06dtGbNGj3yyCO6+uqr1aZNGw0YMEBXXHFFvds/88wzioyM1Jw5c7R9+3ZFRETo4osvrnXMJxsxYoQCAgL08ccfKzk5+ZzrXJ9ly5bptttuU0hISLPsHwAAAGhu9DHoYwCAJ5mMExc6BADgNDIzM3XNNdfo8OHDioiI8HR1ms2rr76qf//730pPT2/yfR84cEAJCQn6+uuv1bNnzybfPwAAAOBL6GOcO/oYAFojZmwAAHCS3//+9yoqKtKRI0fUvn37Jt33zp079Ze//IUOBwAAANCK0McAgKbFjA0AQIO1ltFUAAAAAFoGfQwAwNkgsAEAAAAAAAAAAHyG2dMVAAAAAAAAAAAAaCgCGwAAAAAAAAAAwGcQ2AAAAAAAAAAAAD6DwAYAAAAAAAAAAPAZBDYAAAAAAAAAAIDPILABAAAAAAAAAAB8BoENAAAAAAAAAADgMwhsAAAAAAAAAAAAn0FgAwAAAAAAAAAA+AwCGwAAAAAAAAAAwGcQ2AAAAAAAAAAAAD6DwAYAAAAAAAAAAPAZBDYAAAAAAAAAAIDPILABAAAAAAAANJFDhw5p1qxZ2rBhg6erAgB+i8AGAKDVWLJkiS644AIFBgYqIiLC09UBAAAA0EAmk0kzZ870dDXOyDAMTZgwQZmZmbLZbJ6uDgD4LQIbAIAmt2PHDk2ZMkW9e/dWSEiIQkJC1KdPH917773avHlzo/eXnZ2tmTNnaufOnWddpx9++EG33367evXqpf/3//6f/vrXv571vgAAAAA0rb/85S8ymUwaNGiQp6tyTubNm6edO3fqvffeU1BQkKerAwB+K8DTFQAA+JcPPvhAY8aMUUBAgG677TYlJibKbDbrhx9+0LvvvqtFixZpx44dio2NbfA+s7OzNWvWLA0ZMkTnnXfeWdUrMzNTLpdLCxYsUHx8/FntAwAAAEDzWLp0qc477zx99dVXcjgcPnnNfuzYMVVVVenDDz9khjgANDMCGwCAJrNt2zaNHTtWsbGxysjIULdu3WqVP/fcc/rLX/4is7nlJwwWFhZKEh0MAAAAwMvs2LFDX3zxhd599139/ve/19KlS/XUU095tE7Hjh1TUFBQo/oubdu21Z/+9KdmrBUAoAZLUQEAmsy8efNUWlqqv//973WCGpIUEBCgqVOnqnv37u7XfvjhB91yyy3q2LGj2rZtq0suuUT//ve/3eVvvvmmbr31VknSNddcI5PJJJPJpMzMTEnSv/71L40cOVJRUVEKDg5Wr1699Mwzz6i6utq9j/POO8/dMYqMjKyzPu9///tfXXnllQoNDVX79u01cuRIbd26tSlPDQAAAIBTWLp0qTp06KCRI0fqlltu0dKlSxv0vr179+rOO+909wV69uypyZMnq6Kiwr3N9u3bdeutt6pjx44KCQnRZZddppUrV9baT2Zmpkwmk5YvX64ZM2YoOjpaISEhKi4uliRt2LBBN9xwgzp06KDQ0FD1799fCxYsqLWPNWvWuPsUERERuummm/T999/X2mbmzJkymUxyOBy6/fbbFRERIYvFot/97ncqKys7m1MHAK0WMzYAAE3mgw8+UHx8fIPXxd26dauuuOIKRUdH6/HHH1doaKjefvttjRo1Sv/85z/161//WldddZWmTp2qhQsX6o9//KMuvPBCSXL/980331RYWJgeeughhYWFac2aNXryySdVXFys559/XpL00ksv6a233tJ7772nRYsWKSwsTP3795d0PKH4xIkTlZycrOeee05lZWVatGiRBg8eLLvdftZLXwEAAABomKVLl+rmm29WUFCQxo0bp0WLFmnjxo36xS9+ccr35OXl6dJLL1VRUZHuueceXXDBBdq7d6/eeecdlZWVKSgoSAUFBbr88stVVlamqVOnqlOnTlq8eLF+9atf6Z133tGvf/3rWvt85plnFBQUpGnTpqm8vFxBQUFavXq1fvnLX6pbt266//77ZbVa9f333+uDDz7Q/fffL0n6+OOPNWLECMXFxWnmzJk6evSoXn75ZV1xxRX65ptv6vQpfvOb36hnz56aM2eOvvnmG73xxhvq0qWLnnvuuSY/twDgr0yGYRiergQAwPcVFxfLYrFo1KhReu+992qVFRUVqaqqyv08NDRU7dq107Bhw1RYWKiNGzcqODhYkmQYhgYPHqz9+/crNzdXkvTOO+/o1ltv1SeffKIhQ4bU2vfRo0fVrl27Wq9NmjRJS5Ys0aFDh9z7nTlzpmbNmqX9+/erc+fOkqSSkhJ1795dt956a61k4gUFBUpISNBvfvMbkowDAAAAzWjTpk265JJLtHr1ag0bNkyGYahHjx4aPXq0XnrpJfd2JpNJTz31lHvm9cSJE/WPf/xDGzZs0CWXXFJrn4ZhyGQy6cEHH9RLL72kzz77TIMHD5Z0vA/Qv39/GYahbdu2yWw2KzMzU9dcc43i4uL03XffufsX1dXVOv/88+VyuZSVlVVrWduaz5Akm82mvLw8ff/99+rYsaMkafPmzbLZbPrtb3+rxYsXS/q5T3LHHXfob3/7m3tfN998sz799FMdOHCgSc8tAPgzlqICADSJmmnaYWFhdcqGDBmiyMhI9+PVV1/VoUOHtGbNGv3mN7/RkSNHdODAAR04cEAHDx5UcnKyfvzxR+3du/eMn3tiUKNmP1deeaXKysr0ww8/nPa9q1evVlFRkcaNG+f+/AMHDqhNmzYaNGiQPvnkk0aeBQAAAACNsXTpUnXt2lXXXHONpOMBjDFjxmj58uW1lpc9kcvl0vvvv68bb7yxTlCjZh+S9OGHH+rSSy91BzWk4/2Ve+65Rzt37lR2dnat902cOLFW/8Jut2vHjh164IEH6uTqq/mMffv2KSsrS7fffrs7qCFJ/fv313XXXacPP/ywTv0mTZpU6/mVV16pgwcPuvtUAIAzYykqAECTaN++vaTjI6BO9vrrr+vIkSMqKCjQb3/7W0mSw+GQYRh64okn9MQTT9S7z8LCQkVHR5/2c7du3aoZM2ZozZo1dToCTqfztO/98ccfJUnXXnttveXh4eGnfT8AAACAs1ddXa3ly5frmmuu0Y4dO9yvDxo0SC+88IIyMjI0fPjwOu/bv3+/iouLddFFF512/7t27ap3mdyaZW137dpVax89e/astd22bdsk6bSfs2vXLklSQkJCvZ+Tnp6u0tJShYaGul/v0aNHre06dOggSTp8+DB9EABoIAIbAIAmYbFY1K1bN3333Xd1ymo6Ezt37nS/5nK5JEnTpk1TcnJyvfuMj48/7WcWFRXp6quvVnh4uJ5++mn16tVLbdu21TfffKPHHnvM/RmnUlO+ZMkSWa3WOuUBAfxvEgAAAGgua9as0b59+7R8+XItX768TvnSpUvrDWw0l5OXuG0ubdq0qfd1VosHgIbjjg0AoMmMHDlSb7zxhr766itdeumlp902Li5OkhQYGKhhw4addtuaad4ny8zM1MGDB/Xuu+/qqquucr9+4miv0+nVq5ckqUuXLmesAwAAAICmtXTpUnXp0kWvvvpqnbJ3331X7733nl577bU6AYfIyEiFh4fXO6jqRLGxscrJyanzes2StbGxsad9f01/4bvvvjtlf6FmH6f6nM6dO9earQEAaBrk2AAANJlHH31UISEhuuOOO1RQUFCn/MQRSF26dNGQIUP0+uuva9++fXW23b9/v/vfNR2BoqKiWtvUjHQ6cb8VFRX6y1/+0qD6JicnKzw8XM8++6wqKytPWwcAAAAATefo0aN699139ctf/lK33HJLnceUKVN05MgR/fvf/67zXrPZrFGjRuk///mPvv766zrlNf2DG264QV999ZXWr1/vListLdVf//pXnXfeeerTp89p63jxxRerZ8+eeumll+r0RWo+o1u3bhowYIAWL15ca5vvvvtOq1at0g033NDQUwIAaARmbAAAmsz555+v1NRUjRs3TgkJCbrtttuUmJgowzC0Y8cOpaamymw2KyYmRpL06quvavDgwerXr5/uvvtuxcXFqaCgQOvXr9dPP/2kb7/9VpI0YMAAtWnTRs8995ycTqeCg4N17bXX6vLLL1eHDh00ceJETZ06VSaTSUuWLGnwFO7w8HAtWrRI48eP18UXX6yxY8cqMjJSu3fv1sqVK3XFFVfolVdeabbzBQAAALRW//73v3XkyBH96le/qrf8sssuU2RkpJYuXaoxY8bUKX/22We1atUqXX311brnnnt04YUXat++fVqxYoXWrVuniIgIPf7441q2bJlGjBihqVOnqmPHjlq8eLF27Nihf/7znzKbTz/e12w2a9GiRbrxxhs1YMAA/e53v1O3bt30ww8/aOvWrUpPT5ckPf/88xoxYoSSkpJ055136ujRo3r55ZdlsVg0c+bMcz5XAIC6CGwAAJrUTTfdpC1btuiFF17QqlWr9L//+78ymUyKjY3VyJEjNWnSJCUmJkqS+vTpo6+//lqzZs3Sm2++qYMHD6pLly6y2Wx68skn3fu0Wq167bXXNGfOHN15552qrq7WJ598oiFDhuiDDz7Qww8/rBkzZqhDhw767W9/q6FDh54yb8fJUlJSFBUVpblz5+r5559XeXm5oqOjdeWVV+p3v/tds5wjAAAAoLVbunSp2rZtq+uuu67ecrPZrJEjR2rp0qU6ePBgnfLo6Ght2LBBTzzxhJYuXari4mJFR0drxIgRCgkJkSR17dpVX3zxhR577DG9/PLLOnbsmPr376///Oc/GjlyZIPqmZycrE8++USzZs3SCy+8IJfLpV69eunuu+92bzNs2DB99NFHeuqpp/Tkk08qMDBQV199tZ577rk6CckBAE3DZJCZCAAAAAAAAAAA+AhybAAAAAAAAAAAAJ9BYAMAAAAAAAAAAPgMAhsAAAAAAAAAAMBnENgAAAAAAAAAAAA+g8AGAAAAAAAAAADwGV4T2Jg7d65MJpMeeOAB92vHjh3Tvffeq06dOiksLEyjR49WQUFBrfft3r1bI0eOVEhIiLp06aJHHnlEVVVVtbbJzMzUxRdfrODgYMXHx+vNN99sgSMCAAAAAAAAAABNLcDTFZCkjRs36vXXX1f//v1rvf7ggw9q5cqVWrFihSwWi6ZMmaKbb75Zn3/+uSSpurpaI0eOlNVq1RdffKF9+/ZpwoQJCgwM1LPPPitJ2rFjh0aOHKlJkyZp6dKlysjI0F133aVu3bopOTm5QfVzuVzKy8tT+/btZTKZmvbgAQAAAB9kGIaOHDmiqKgomc1eM17KZ9DHAAAAAGprVB/D8LAjR44Y559/vrF69Wrj6quvNu6//37DMAyjqKjICAwMNFasWOHe9vvvvzckGevXrzcMwzA+/PBDw2w2G/n5+e5tFi1aZISHhxvl5eWGYRjGo48+avTt27fWZ44ZM8ZITk5ucB337NljSOLBgwcPHjx48ODBg8dJjz179pxtV6BVo4/BgwcPHjx48ODBg0f9j4b0MTw+Y+Pee+/VyJEjNWzYMM2ePdv9+qZNm1RZWalhw4a5X7vgggvUo0cPrV+/XpdddpnWr1+vfv36qWvXru5tkpOTNXnyZG3dulU2m03r16+vtY+abU5c8upk5eXlKi8vdz83DEPS8dkf7du3P9dDRgNUVlbqk08+0TXXXKPAwEBPVwdNgDb1T7Srf6Jd/Q9t6p883a5HjhxRz549uT4+SzXnbc+ePQoPD/dwbfxDZWWlVq1apeHDh/Nb5wGcf8/h3HsW59+zOP+exfn3LH88/8XFxerevXuD+hgeDWwsX75c33zzjTZu3FinLD8/X0FBQYqIiKj1eteuXZWfn+/e5sSgRk15TdnptikuLtbRo0fVrl27Op89Z84czZo1q87r69evV0hISMMPEOckJCREGzZs8HQ10IRoU/9Eu/on2tX/0Kb+yZPtWlZWJkkso3SWas5beHg4gY0mUllZqZCQEIWHh/tN596XcP49h3PvWZx/z+L8exbn37P8+fw3pI/hscDGnj17dP/992v16tVq27atp6pRr+nTp+uhhx5yP6+JFA0fPpxORwuprKzU6tWrdd111/ndF7O1ok39E+3qn2hX/0Ob+idPt2txcXGLfyYAAAAASB4MbGzatEmFhYW6+OKL3a9VV1fr008/1SuvvKL09HRVVFSoqKio1qyNgoICWa1WSZLVatVXX31Va78FBQXuspr/1rx24jbh4eH1ztaQpODgYAUHB9d5PTAwkJsBLYxz7n9oU/9Eu/on2tX/0Kb+yVPtyt8SAAAAAE85Q2rx5jN06FBt2bJFWVlZ7scll1yi2267zf3vwMBAZWRkuN+Tk5Oj3bt3KykpSZKUlJSkLVu2qLCw0L3N6tWrFR4erj59+ri3OXEfNdvU7AMAAAAAAAAAAPgOj83YaN++vS666KJar4WGhqpTp07u1++880499NBD6tixo8LDw3XfffcpKSlJl112mSRp+PDh6tOnj8aPH6958+YpPz9fM2bM0L333uuecTFp0iS98sorevTRR3XHHXdozZo1evvtt7Vy5cqWPWAAAAAAAAAAAHDOPJo8/ExefPFFmc1mjR49WuXl5UpOTtZf/vIXd3mbNm30wQcfaPLkyUpKSlJoaKgmTpyop59+2r1Nz549tXLlSj344INasGCBYmJi9MYbbyg5OdkThwQAAAAAAAAAAM6BVwU2MjMzaz1v27atXn31Vb366qunfE9sbKw+/PDD0+53yJAhstvtTVFFAAAAAAAAAADgQR7LsQEAAAAAAAAAANBYBDYAAAAAAAAAAIDPILABAAAAAAAAAAB8BoENAAAAAAAAAADgMwhsAAAAAAAAAAAAn0FgAwAAAAAAAAAA+AwCGwAAAAAAAAAAwGcQ2AAAAAAAAAAAAD6DwAYAAAAAAAAAAPAZAZ6uAHyTy+WSw+GQ0+mUxWJRfHy8zGbiZAAAAADQ3OiPAQCA1o7ABhrNbrfrrdTlytmVp4pKl4ICzUqIjdKElLGy2Wyerh4AAAAA+C36YwAAACxFhUay2+2aPX+hsp0Bih2SItvYhxQ7JEXZzgDNnr9Qdrvd01UEAAAAAL9EfwwAAOA4AhtoMJfLpbdSl6skNEq25DGKsMYoIDBIEdYY2ZLHqCQ0SktS0+RyuTxdVQAAAADwK/THAAAAfkZgAw3mcDiUsytPcQMGy2Qy1SozmUyKGzBYP+zaK4fD4aEaAgAAAIB/oj8GAADwMwIbaDCn06mKSpfCOnWptzysY6QqKl1yOp0tXDMAAAAA8G/0xwAAAH5GYAMNZrFYFBRoVsnBwnrLSw7tV1CgWRaLpYVrBgAAAAD+jf4YAADAzwhsoMHi4+OVEBul7VnrZBhGrTLDMLQ9a50uiI1WfHy8h2oIAAAAAP6J/hgAAMDPCGygwcxmsyakjFVYaZ7s6Wkqyv9JVRXlKsr/Sfb0NLUvy9P4lDEym/mzAgAAAICmRH8MAADgZwGergB8i81m04xpU/VW6nLlZKaqotKloECz+sZGa/zkqbLZbJ6uIgAAAAD4JfpjAAAAxxHYQKPZbDYlJibK4XDI6XTKYrEoPj6ekUEAAAAA0MzojwEAABDYwFkym83q3bu3p6sBAAAAAK0O/TEAANDaMaQDAAAAAAAAAAD4DAIbAAAAAAAAAADAZxDYgFeqqqqSJKWmpio9Pd39HAAAAAAAAADQuhHYgNdZtmyZrkm+QZI044XXNHHqY7p08NVatmyZh2sGAAAAAAAAAPA0kofDqyxbtkyPzpyroPMGSJIuvO1JHS7IU559jR6dOVeSNG7cOA/WEAAAAABOzeVyyeFwyOl0ymKxKD4+XmYzYwoBAACaEoENeI2qqio9v+AVuaIu0vnJEyUdUZvAdgqPjlf7qDjlrHxD8xe8oltvvVUBAfzpAgAAAPAudrtdb6UuV86uPFVUuhQUaFZCbJQmpIyVzWbzdPUAAAD8BsNG4DUyMjKUd7hUUbZrZTrpT9NkMivKdq32Hi5VRkaGh2oIAAAAAPWz2+2aPX+hsp0Bih2SItvYhxQ7JEXZzgDNnr9Qdrvd01UEAADwGwQ20CxcLpdyc3O1ceNG5ebmyuVynfE9+fn5qlYbhUZG11se0jla1Wqj/Pz8pq4uAAAAAJw1l8ult1KXqyQ0SrbkMYqwxiggMEgR1hjZkseoJDRKS1LTGtQvAgAAwJmxng+a3NlOv7ZarWqjapXu36t2Mb3qlJcd2Ks2qpbVam3O6gMAAABAozgcDuXsylPckBSZTKZaZSaTSXEDBuuHzFQ5HA717t3bQ7UEAADwH8zYQJM6l+nXQ4cOVVSHUOXZ18hQ7ZFMhuFSnn2NojuEaujQoc19GAAAAADQYE6nUxWVLoV16lJveVjHSFVUuuR0Olu4ZgAAAP6JwAaazLlOvw4ICNAj90+ROe87/Zi+WJJUVXFUxXsdyln5hsz7vtO0+6eQOBwAAACAV7FYLAoKNKvkYGG95SWH9iso0CyLxdLCNQMAAPBP3CHGWXG5XHI4HHI6nbJYLIqPj2+S6dfjxo2TJC1Y9FdJ0g+pT6uy/KiiO4Rq2lOPu8sBAAAAtC719UHMZu8YqxcfH6+E2ChlZ62TLXlMrf6QYRjanrVOfWOjFR8f78FaAgAA+A8CG2i0U+XQGJjYr0mmX48bN06jRo3SqlWrNPvhSbJarRo6dCgzNQAAAIBW6mzz+LUUs9msCSljjy+/m56muAGDFdYxUiWH9mt71jq1L8vT+MlTvSYQAwAA4Ou4U4xGqcmhURIapbghKQrr1EUlBwuVnbVO2e/8S0dLy1RysFAR1pg6723M9OuaIEZKSooCAwOb/DgAAAAA+IbT9UFmz1+oGdOmekVww2azaca0qccDMJmp7gBM39hojZ/sHXUEAADwFwQ20GAn59ComV5dk0PD/tFyHctfq232z3Tx9WOZfg0AAADgnJyxD5KepiWpaUpMTPRwTY+z2WxKTEz02iWzAAAA/AVXV2gwdw6NAYPrz6Fhu1IhEZFS/g+yp6epKP8nVVWUqyj/J9nT045Pv04Zw0U9AAAAgAY5Yx9kwGD9sGuvHA6Hh2pYl9lsVu/evfWLX/xCvXv3pv8DAADQDJixgQZzOp1nzKER3C5UE0aP0KZvtzD9GgAAAMA5aUgfpCF5/AAAAOBfCGygwSwWi4ICzWfMoXHppZcqJSWF6dcAAAAAzklD+yANyeN3Ki6Xi74LAACAjyGwgQaLj49XQmyUsrPW1VrfVqqbQ6Nm+jUAAAAAnK3G9EGqq6sbvX+73X482feuPPds84TYKE1IGctscwAAAC/GMBQ0mNls1oSUsQorzSOHBgAAALzOokWL1L9/f4WHhys8PFxJSUn673//6y4fMmSITCZTrcekSZNq7WP37t0aOXKkQkJC1KVLFz3yyCOqqqqqtU1mZqYuvvhiBQcHKz4+Xm+++WZLHF6r1Jx9ELvdrtnzFyrbGaDYISmyjX1IsUNSlO0M0Oz5C2W325vhiAAAANAUmLGBRrHZbJoxberxUU3k0AAAAIAXiYmJ0dy5c3X++efLMAwtXrxYN910k+x2u/r27StJuvvuu/X000+73xMSEuL+d3V1tUaOHCmr1aovvvhC+/bt04QJExQYGKhnn31WkrRjxw6NHDlSkyZN0tKlS5WRkaG77rpL3bp1U3JycssecCvRHH0Ql8ult1KXqyQ0qtZMkAhrjGzJY2RPT9OS1DQlJiYycAsAAMALEdhAo9lsNiUmJrIOLQAAALzKjTfeWOv5n//8Zy1atEhffvmlO7AREhIiq9Va7/tXrVql7Oxsffzxx+ratasGDBigZ555Ro899phmzpypoKAgvfbaa+rZs6deeOEFSdKFF16odevW6cUXXySw0Yyaug/icDiUsytPcUNSai1vJUkmk0lxAwbrh8xUORwOltgFAADwQgQ2cFbIoQEAAABvVl1drRUrVqi0tFRJSUnu15cuXap//OMfslqtuvHGG/XEE0+4Z22sX79e/fr1U9euXd3bJycna/Lkydq6datsNpvWr1+vYcOG1fqs5ORkPfDAA6etT3l5ucrLy93Pi4uLJUmVlZWqrKw818NtNXr27On+d3V1da28GjXnsSHn8/DhwzJklqVTZ7WRq065pWMnGTLr8OHDtE8DNeb8o2lx7j2L8+9ZnH/P4vx7lj+e/8YcC4ENAAAAAH5jy5YtSkpK0rFjxxQWFqb33ntPffr0kSSlpKQoNjZWUVFR2rx5sx577DHl5OTo3XfflSTl5+fXCmpIcj/Pz88/7TbFxcU6evSo2rVrV2+95syZo1mzZtV5fdWqVbWWw8K5W716dYO2m3TbzZLy6i9sJyXddrPy8/P14YcfNl3lWoGGnn80Pc69Z3H+PYvz71mcf8/yp/NfVlbW4G0JbAAAAADwGwkJCcrKypLT6dQ777yjiRMnau3aterTp4/uuece93b9+vVTt27dNHToUG3btk29evVq1npNnz5dDz30kPt5cXGxunfvruHDhys8PLxZP7u1qKys1OrVq3XdddcpMDDwtNu6XC796alZ+qG4jRKHjq61HJVhGPo245+6MNyl2bOeZMndBmrM+UfT4tx7Fuffszj/nsX59yx/PP81s5obgsAGAAAAAL8RFBSk+Ph4SdLAgQO1ceNGLViwQK+//nqdbQcNGiTpeL6FXr16yWq16quvvqq1TUFBgSS583JYrVb3ayduEx4efsrZGpIUHBys4ODgOq8HBgb6TUfUWzT0nN425lbNnr9QX6evUNyAwQrrGKmSQ/u1PWud2pflKeXuqfW2GU6Pv2nP4dx7Fuffszj/nsX59yx/Ov+NOQ6GngAAAADwWy6Xq1ZuixNlZWVJkrp16yZJSkpK0pYtW1RYWOjeZvXq1QoPD3cvZ5WUlKSMjIxa+1m9enWtPB7wDTabTTOmTVUfS5V2ZabKnvaidmWmqq+lWn96eKpsNpunqwgAAIBTYMYGAAAAAL8wffp0jRgxQj169NCRI0eUmpqqzMxMpaena9u2bUpNTdUNN9ygTp06afPmzXrwwQd11VVXqX///pKk4cOHq0+fPho/frzmzZun/Px8zZgxQ/fee6975P6kSZP0yiuv6NFHH9Udd9yhNWvW6O2339bKlSs9eeg4SzabTYmJiXI4HHI6nbJYLIqPj2f5KQAAAC9HYAMAAACAXygsLNSECRO0b98+WSwW9e/fX+np6bruuuu0Z88effzxx3rppZdUWlqq7t27a/To0ZoxY4b7/W3atNEHH3ygyZMnKykpSaGhoZo4caKefvpp9zY9e/bUypUr9eCDD2rBggWKiYnRG2+8oeTkZE8cMpqA2WxW7969m3y/LpeLgAkAAEAz8WhgY9GiRVq0aJF27twpSerbt6+efPJJjRgxQpI0ZMgQrV27ttZ7fv/73+u1115zP9+9e7cmT56sTz75RGFhYZo4caLmzJmjgICfDy0zM1MPPfSQtm7dqu7du2vGjBm6/fbbm/34AAAAALScv/3tb6cs6969e52+RX1iY2P14YcfnnabIUOGyG63N7p+aD3sdrveSl2unF15qqh0KSjQrITYKE1IGcsSVwAAAE3Ao4GNmJgYzZ07V+eff74Mw9DixYt10003yW63q2/fvpKku+++u9YIqZCQEPe/q6urNXLkSFmtVn3xxRfat2+fJkyYoMDAQD377LOSpB07dmjkyJGaNGmSli5dqoyMDN11113q1q0bo6oAAAAAAE3Kbrdr9vyFKgmNUtyQFIV16qKSg4XKzlqn2fMXasY08ncAAACcK4/Og73xxht1ww036Pzzz1fv3r315z//WWFhYfryyy/d24SEhMhqtbof4eHh7rJVq1YpOztb//jHPzRgwACNGDFCzzzzjF599VVVVFRIkl577TX17NlTL7zwgi688EJNmTJFt9xyi1588cUWP14AAAAAgP9yuVx6K3W5SkKjZEseowhrjAICgxRhjZEteYxKQqO0JDVNLpfL01UFAADwaV6TY6O6ulorVqxQaWmpkpKS3K8vXbpU//jHP2S1WnXjjTfqiSeecM/aWL9+vfr166euXbu6t09OTtbkyZO1detW2Ww2rV+/XsOGDav1WcnJyXrggQdOWZfy8nKVl5e7nxcXF0uSKisrVVlZ2RSHizOoOc+cb/9Bm/on2tU/0a7+hzb1T55uV/6egLocDodyduUpbkiKTCZTrTKTyaS4AYP1Q2aqHA5Hs+T1AAAAaC08HtjYsmWLkpKSdOzYMYWFhem9995Tnz59JEkpKSmKjY1VVFSUNm/erMcee0w5OTl69913JUn5+fm1ghqS3M/z8/NPu01xcbGOHj2qdu3a1anTnDlzNGvWrDqvr1q1qtZSWGh+q1ev9nQV0MRoU/9Eu/on2tX/0Kb+yVPtWlZW5pHPBbyZ0+lURaVLYZ261Fse1jFSFZUuOZ3OFq4ZAACAf/F4YCMhIUFZWVlyOp165513NHHiRK1du1Z9+vTRPffc496uX79+6tatm4YOHapt27apV69ezVan6dOn66GHHnI/Ly4uVvfu3TV8+PBaS2Gh+VRWVmr16tW67rrrFBgY6OnqoAnQpv6JdvVPtKv/oU39k6fbtWZWM4CfWSwWBQWaVXKwUBHWmDrlJYf2KyjQLIvF4oHaAQAA+A+PBzaCgoIUHx8vSRo4cKA2btyoBQsW6PXXX6+z7aBBgyQdn97bq1cvWa1WffXVV7W2KSgokCRZrVb3f2teO3Gb8PDwemdrSFJwcLCCg4PrvB4YGMjNgBbGOfc/tKl/ol39E+3qf2hT/+SpduVvCagrPj5eCbFRys5aJ1vymFrLURmGoe1Z69Q3NtrdBwYAAMDZ8Wjy8Pq4XK5a+S1OlJWVJUnq1q2bJCkpKUlbtmxRYWGhe5vVq1crPDzcvZxVUlKSMjIyau1n9erVtfJ4AAAAAABwLlwulxwOhwYm9pMKc2X/aLmK8n9SVUW5ivJ/kj09Te3L8jQ+ZYzMZq/rigMAAPgUj87YmD59ukaMGKEePXroyJEjSk1NVWZmptLT07Vt2zalpqbqhhtuUKdOnbR582Y9+OCDuuqqq9S/f39J0vDhw9WnTx+NHz9e8+bNU35+vmbMmKF7773XPeNi0qRJeuWVV/Too4/qjjvu0Jo1a/T2229r5cqVnjx0AAAAAICfsNvteit1uXJ25ami0qWjpWU6mr9WZXuyFdwuVEGBZvWNjdb4yVNls9k8XV0AAACf59HARmFhoSZMmKB9+/bJYrGof//+Sk9P13XXXac9e/bo448/1ksvvaTS0lJ1795do0eP1owZM9zvb9OmjT744ANNnjxZSUlJCg0N1cSJE/X000+7t+nZs6dWrlypBx98UAsWLFBMTIzeeOMNJScne+KQ4QE1I6ecTqcsFovi4+MZIQUAAACgSdjtds2ev1AloVGKG5KisE5dVHKwUNvsn0n5P2jC6BG69NJL6YcAAAA0IY8GNv72t7+dsqx79+5au3btGfcRGxurDz/88LTbDBkyRHa7vdH1g+87eeRUUKBZCbFRmpAylpFSAAAAAM6Jy+XSW6nLVRIaVSunRoQ1RhdfP1b29DR98+13SklJOeugBgO1AAAA6vJ48nCguZxq5FR21jrNnr9QM6a1/DRwOiUAAACA/3A4HMrZlae4ISm1EoVLkslkUtyAwfohM1UOh0O9e/du9P4ZqAUAAFA/AhvwS6cbOWVLHiN7epqWpKYpMTGxxQILdEoAAAAA/+J0OlVR6VJYpy71lod1jFRFpUtOp7PR+7bb7Xrm+QUqrGqrrj0vUTdrdwUGBit78xceG6gFAADgLRgqDr/kHjk1YPCpR07t2iuHw9Ei9amZPZLtDFDskBTZxj6k2CEpynYGaPb8hSyVBgAAAPggi8WioECzSg4W1ltecmi/ggLNslgsjdqvy+XS/BcX6JvvHSooyFfWF5/o0/eX6JuP31XU+f1VEhqlJalpcrlcTXEYAAAAPofABvxSc46caqyTZ49EWGMUEBjknj1CpwQAAADwTfHx8UqIjdL2rHUyDKNWmWEY2p61ThfERis+Pr5R+/33v/+tT77cpDYx/RR5xRj1+OW9irziN3Ka2+vLD99WeKduLTpQCwAAwNsQ2IBfaq6RU2fD22aPAAAAAGgaZrNZE1LGKqw0T/b0NBXl/6SqinIV5f8ke3qa2pflaXzKmEYtf+tyufT2P9+XqUuCelx5i9p1ipI5IEjtOkUp+vJRcnXorp3Zm1ReUd0iA7UAAAC8ETk24JdqRk5ttX+m8/pfpoqjpQoOCVMHaw/JZNL2rHXqexYjp86GN80eAQAAANC0bDabZkybejyfXmaqO59e39hojZ/c+DwYDodDeYeOKPy8PqqqOKagdmHuMpPJpE4XDNK+NW8ppENQiwzUAgAA8EYENuBXXC6XHA6HnE6nunfrqg/+u0TffvGJ2oZFKDAoSKHt2iokLEzRIS6Nnzy1RRKHnzh7JMIaU6e8JWePAAAAAGh6NptNiYmJ7r6IxWJRfHz8WfU3nE6n2gQFK7JLlJwH8tW5ey9JP8/8DgrvpNISp6Ljz2+RgVoAAADeiMAG/Ibdbj8+SmpXng7uP6A9e39SULcLZI29UEY7iyqOHNbBn37QscItmvrYg40eOXW2amaPZGetky15TK3lqGrW3W2p2SMAAAAAmofZbFbv3r3PeT8Wi0XBgW0U2SlcZfsO6cCebQrvbFVgcDtVlh/V/m1bFFh1VL+55dctMlALAADAG3EVBL9gt9s1e/5CZTsD1OOqsapub1W7hMEKH5CswPDO6ptwvgZffY1uvH2qzvvFMG385tsWS9bdHOvuAgAAAPBPNQOjDu/Klq1fX3UIMnQkz6ED2zareO+Pcu3Zomsvs+lXv/qVp6sKAADgMdxJhc9zuVx6K3W5SkKjZEseI0MuOZ1F6trvKkX2iFdlQKj25RcqsnOkIiI6KM52ZYsn665Zd7ePpUq7MlNlT3tRuzJT1ddSrT893Ph1dwEAAAD4pxMHRu3elKELz4vSpQP66oKYTooo2a1+XQP10P33MTAKAAC0aixFBZ/ncDiUsytPcUNSZDKZVF5WIpfLULClsySTwjtbVZTnkLPYKYslwmPJupty3V0AAAAA/qt2QvJl7oTkA2OjNT7lfgZGAQCAVo/ABnye0+lURaVLYZ26SJKCQ8JkNptU7jygdp2iFBjcTi6XoYqKCkmeTdbdVOvuAgAAAPBvDIwCAAA4NQIb8HkWi0VBgWaVHCxUhDVGHaw91KFDRx38YYOiLx+lyvKjMptNCgoKIlk3AAAAAJ/BwCgAAID6MdQDPq8mud72rHUyDEMms1l9ByfLfHiP9n7xnvZv26LwtkEyjh4hWTcAAAAAAAAA+Dju7KJRXC6XcnNztXHjRuXm5srlcnm6SrWS69nT01SU/5M6x8TposuuUfmOTTqyPk3lWz7SrsxlJOsGAAAAAAAAAB/HUlRoMLvdfjx53a48d/K6hNgoTUgZ6/FAQe3keqnu+v166BW6enCSoqOjWZMWAAAA8FIul4tcEgAAAGgwAhtoELvdrtnzF6okNEpxQ1IU1qmLSg4WKjtrnWbPX6gZ0zw/C4LkegAAAIDv8eYBVAAAAPBOBDZwRi6XS2+lLldJaJRsyWNkMpkkSRHWGNmSx8ienqYlqWlKTEz0eBChpZPrMbIMAAAAOHu+MIAKAAAA3ofABs7I4XAoZ1ee4oakuIMaNUwmk+IGDNYPmalyOBwtGlQ4G00ZiGBkGQAAAHD2fGkAFQAAALwLgQ2ckdPpVEWlS2GdutRbHtYxUhWVLjmdzhauWeM0ZSCCkWUAAADAufGnAVQAAABoWQx7wRlZLBYFBZpVcrCw3vKSQ/sVFGiWxWJp4Zo1XE0gItsZoNghKbKNfUixQ1KU7QzQ7PkLZbfb5XK5lJubq40bNyo3N1cul6vefZ08sizCGqOAwCD3yLKS0CgtSU075fsBAAAAeG4AVUOv+wEAAOC9mLGBM4qPj1dCbJSys9bVmiIuSYZhaHvWOvWNjVZ8fLwHa3lqDZni/j8LXlanzp2Vu3vfGWdzMLIMAAAAOHcnDqCKsMbUKW+OAVQ1s7h/2LlXziKnZFSpd2yM7vvDJA0cOLDJPgcAAADNixkbOCOz2awJKWMVVpone3qaivJ/UlVFuYryf5I9PU3ty/I0PmWM16576w5EDBhcbyCiQ2wfrfnSrq93F59yNseJ/GVpLgAAAMCTagZQbc9aJ8MwapXVDKC6oAkHUNXM4v5y2wHlOStVWG7W3iPSf7/8TuMm3qVly5Y1yecAAACg+XnnnWh4HZvNphnTpqqPpUq7MlNlT3tRuzJT1ddSrT897N35JE4biDAM5R0sVmVAO/UaeFWDlpXyh6W5AAAAAE9ryQFUNbO4846aVXT4sI6FdVOXwWMVd/ND6nXTfSqN7KOZz72oTZs2NcGRAQAAoLmxFBUazGazKTExUQ6HQ06nUxaLRfHx8V47U6PG6aa4O4ud2l+Yp9Awi9qGtq9VdqplpXx9aS4AAADAW9QMoHordblyMlPdy8L2jY3W+MlNN4DK4XDoh517VVZSKVeHHoq+fJT7Or5dp2j1vHacdq5+U6+89lf97fVFXt/HAQAAaO0IbKBRzGazz+WNqDcQYRhyFjuVn5+vw9u/U/euVnWw9qjz3vqWlaoZWTZ7/kLZ09MUN2CwwjpGquTQfm3PWnd8ZNnkqXSGAAAAgAZoiQFUTqdTziKnSsvN6nLJoDpL1Aa1DVFYzAX6cfcWcuUBAAD4AAIb8HsnByI6xPZR3sFi7S/M0+FtW1S83a6j1l/p0KFD6tS5c633nmpZqZYaWQYAAAC0Bs09gMpisUhGlSrLpWBL5zrlleVHFRQWIdehNuTKAwAA8AEENtAq1AQiXnhpoT5Z8qEqA9opNMyimC5dVWwk6PDhQ9r07RYNTOznDm6caVkpX12aCwAAAGht4uPj1Ts2Rtu+/E7lzv1q1yn6hFJDxQfy1U6VimgfSq48AAAAH0BgA61GYmKiOkdGqmf/Qeo18Cq1DW2vDtYeKtiZoy9XLld+9gZ9W1mqq64ZppLDBxq0rJQvLs0FAAAAtDZms1n3/WGSvthwl3atX6me145TUNsQVZYfVfGBfAVUliqwJF8XnEeuPAAAAF9AYAOthsPhUO7ufeo3JKVWEnFr3IW6bORYfbPqn9q1Nk2f796oiPBQlpUCAAAA/MjAgQM160+P6qnnXtTO1W8qLOYCBYVFqJ0qFViSL6u5WONTbmcGNgAAgA8gsIFWw+l0qqLSpbBOXeqUWeMu1HW3P6wv/v6Mfj/uJiUlJbGsFAAAAOBnxo0bp969e+uVRa/rxz1b5DrURhHtQ3XBedEan3I7g5oAAAB8BIENtBoWi0VBgWaVHCysNWOjRmnRQUV0iNCgQYMkSZs2bSJvBgAAAOBnBg4cqL/99TV3rrzQ0FDt2rVLmzdvVmFhoYYOHaqAALrKAAAA3oyrNbQa8fHxSoiNUnbWOtmSx8hkMrnLahKFdwkJ1Gtv/K9yd+9TRaVLQYFmJcRGaULKWEZvAQAAAH6iJlfesmXL9PyCV5R3uFTVaqM2qlZUh1A9cv8UjRs3ztPVBAAAwCkwDB2thtls1oSUsQorzZM9PU1F+T+pqqJcRfk/yZ6epuq875VXcEDfFwcqdkiKbGMfUuyQFGU7AzR7/kLZ7XZPHwIAAACAJrJs2TI9OnOuCtqdp+4j71Pf2/+s7iPvU0G78/TozLlatmyZp6sIAACAUyCwgVbFZrNpxrSp6mOp0q7MVNnTXtSuzFT1sVSpa8dwBXTvJ1vyGEVYYxQQGKQIa4xsyWNUEhqlJalpcrlcnj4EAAAAAOeoqqpKzy94Ra6oi5Qw8i6FR8erTVA7hUfHK2HkXXJFXaT5C15RVVWVp6sKAACAerAUFVodm82mxMRE95q6FotFLpdLDz35Z8VdNrjWElWSZDKZFDdgsH7ITJXD4VDv3r09VHMAAAAATSEjI0N5h0vV/fJrZTLVHu9nMpkVZbtWe1a+rIyMDCUnJ3uolgAAADgVAhtolWrW1K2xceNGVVS6FNapS73bh3WMVEWlS06ns6WqCAAAAOAUqqqqlJGRofz8fFmtVg0dOtRd5nA4VFJSIovFovj4eJnNdRcqyM/PV7XaKDQyut79h3SOVrXaKD8/v9mO4Vy4XK5aA7VOdZwAAAD+isAG/FJjL/QtFouCAs0qOVioCGtMnfKSQ/sVFGiWxWJpzmoDAAAAOINTJfwe8+tf6YILLtDjz8xT6dEKBQWalRAbpQkpY2Wz2Wrtw2q1qo2qVbp/r8Kj4+t8RtmBvWqjalmt1pY6rAaz2+16K3W5cnblqaLSddrjBAAA8FcENnwcI3XqOpsL/fj4eCXERik7a51syWNqLUdlGIa2Z61T39hoxcfX7fQAAAAAaBk1Cb9dURep++XXKjQyWqX792rn2hWa98ob+t9X5quD7Xr17t5LJYf2KztrnWbPX6gZ06bW6gsMHTpUUR1ClWdfo/ZRcbWWozIMl/LsaxTdIbTWTBBvYLfbNXv+QpWERiluSIrCOnVRycHCUx4nAACAv2rdd8B9nN1u18OPTdcDM57R9Gdf0gMzntHDj02X3W73dNU8puZCP9sZoNghKbKNfUixQ1KU7QzQ7PkLT3luzGazJqSMVVhpnuzpaSrK/0lVFeUqyv9J9vQ0tS/L0/iUMa0+aAQAAAB4yqkSfsuoVvmhPLWJvlCS9P2uAm38JkvVAW1lSx6jktAoLUlNk8vlcu8rICBAj9w/Rea875Sz8g0V73Woqvyoivc6lLPyDZn3fadp909RQID3jAV0uVx6K3W5SkKjZEseowhrjAICgxRhjTnlcQIAAPgr7tL6qLO9ge/PzvVC32azaca0qepjqdKuzFTZ017UrsxU9bVU608PM/IJAAAA8KSahN9Rtp8Tfh/Z+6N2ZCxTtTlI7fsdn11h7tBNhytM+mbzdzp08KDiBgzWD7v2yuFw1NrfuHHjNG/m4+p6dKf2rHxZ2Yv/pD0rX5b16E7Ne+pxjRs3rsWP8XQcDodyduUpbsDgWjPMJclkMp3yOAEAAPyR9ww/QYOdfAO/5qK25ga+PT1NS1LTlJiY2CpmGNQsx7V582bZsx26cOSdp77Qz0yVw+GolTj8RDabTYmJiSzvBQAAAHiZkxN+Gy6X8rM+kSmskwID2iq4c6wkydQmSJ2799KBPduU69imX9gSVVHpktPprLPPcePG6dZbb62TiNybZmrUcDqdqqh0KaxTl3rLwzpGnvI4AQAA/I33Xa3hjNwjdYaknPUN/ObgiXwfJ+bTOFC4X7vy98vl2KULAtqpU+fOtbZt6IW+2Wxu0fMGAAAA4MxOTvh99OBelZc41f6CwTr83aeqchZIsiogoI0kk8I7W1WU59C+3dsVFGiWxWKpd78BAQFKTk5u0WM5GxaLRUGBZpUcLFSENaZOecmh/ac9TgAAAH9CYMMHeeNInbNJ2N0Un3li4rxu5Ue1P+3/qfCwU2Wbv9PF/S+qFdzgQh8AAADwXScn/K46WiqXIbXrfqGKt2fpiGOjlHyjQkNCVWFIgcHtVF3t0o6szzUoNlrx8fGePoRzEh8fr4TYKGVnras1c1+SDMPQ9qx16usHxwkAANAQrK/jg04cqVOflr6B74l8H/Xl04js3kuR1igZzn2qaNNOuY5tkmFI+vlC/wIu9AEAAACfdHLC72PFByTDpaOFe9SmY4yq9uVKko4ezld1ZbmO7Nuhw99/rvZH92l8yhifX17WbDZrQspYhZXmyZ6epqL8n1RVUa6i/J9kT09T+7I8vzhOAACAhmDGhg/yppE6nsr3Ud9yXCazWX0HJ+vLlWkqraxQpaWzDh48T22qKrU9a93xC/3JU7nQBwAAAHxUTULv5xe8or2ff6fSw4dU6TLUpe/lir9ulCTpwJfvqexYhUoPFSimvVl/fmJhs80ib2k2m00zpk09Pls+M9U9W75vbLTGT57qN8cJAABwJgQ2fFDNSJ3Z8xfKnp6muAGDFdYxUiWH9rf4DXxP5fs41XJc1rgLddnIMdry6Yfas+E/+jb/W3XqaDnjhX5VVZVPJAwEAAAAWrsTE35v2LBBqz/boJC2RxV3/kBJlbINHq4fsz6XpYNZzz71Jw0cONDTVW5SNptNiYmJLZ7fEAAAwJtw59ZHJSYmavytNyntnXeV/Z/XFBAcquCgNi0+UsdT+T5OlzjPGnehgtuGKrTysO67c7z69+9/2gv9ZcuW6fkFryjvcKmq1UZtVK2oDqF65P4p7hFhAAAAALxHTcLv5ORk3fh/+f62f7ZCGjNKxTmf6/L4rhqf4r8zGMxmc5MOHAMAAPA1BDZ80ImJussrq2UyB6hr+yD9ZvQo/epXv2rRkTqnCzBIzZfv40zLce3Y/IUGXnShbr755tOej2XLlunRmXPlirpI3S+/VqGR0Srdv1d59jV6dOZcSSK4AQAAAHixmhkMOTk5ys3N1dwnHlVCQgIzGAAAAPyYR6/0Fi1apP79+ys8PFzh4eFKSkrSf//7X3f5sWPHdO+996pTp04KCwvT6NGjVVBQUGsfu3fv1siRIxUSEqIuXbrokUceUVVVVa1tMjMzdfHFFys4OFjx8fF68803W+LwmsXJibovHvuwLhx5lw62i9aSFf/St99+26L1qQkwbM9aJ+P/EnXXaM6E3U2ROK+qqkrPL3hFrqiLlDDyLoVHx6tNUDuFR8crYeRdckVdpPkLXqnz9wQAAADAu5jNZnefg2WZAAAA/J9Hr/ZiYmI0d+5cbdq0SV9//bWuvfZa3XTTTdq6dask6cEHH9R//vMfrVixQmvXrlVeXp5uvvlm9/urq6s1cuRIVVRU6IsvvtDixYv15ptv6sknn3Rvs2PHDo0cOVLXXHONsrKy9MADD+iuu+5Senp6ix/vuTo5UXeENUYBgUHuRN0loVFakpoml8vVYnVqigDD2apJnNfHUqVdmamyp72oXZmp6mup1p8ePvO084yMDOUdLlWU7VqZTLXrZzKZFWW7VnsPlyojI6PJ695QLpdLubm52rhxo3Jzc1u0bQEAAICWxvUvAAAAGsKjS1HdeOONtZ7/+c9/1qJFi/Tll18qJiZGf/vb35Samqprr71WkvT3v/9dF154ob788ktddtllWrVqlbKzs/Xxxx+ra9euGjBggJ555hk99thjmjlzpoKCgvTaa6+pZ8+eeuGFFyRJF154odatW6cXX3xRycnJLX7M58JTibrPpCbA8FbqcuVkpqqi0qWgQHOL5Ps4l8R5+fn5qlYbhUZGS5IMl0tHD+5V1dFSBbQLVbuO3VStNsrPz2+2+p/OiUuO1ZzThNgoTUgZ67drBQMAAKD14voXAAAADeU1OTaqq6u1YsUKlZaWKikpSZs2bVJlZaWGDRvm3uaCCy5Qjx49tH79el122WVav369+vXrp65du7q3SU5O1uTJk7V161bZbDatX7++1j5qtnnggQda6tCajKcSdTfEuQQYztXZJs6zWq1qo2qV7t8rkwzlZ32i8hKnXIZkNkkmGXIdOyKr1drgfbpcriY5BzVLjpWERiluSIrCOnVRycFCZWet0+z5CzVjmv8mQgQAAEDrw/UvAAAAGsPjgY0tW7YoKSlJx44dU1hYmN577z316dNHWVlZCgoKUkRERK3tu3bt6h5Bn5+fXyuoUVNeU3a6bYqLi3X06FG1a9euTp3Ky8tVXl7ufl5cXCxJqqysVGVl5bkd8DkICwtTaLsgHT1UoIiu0XXKjxwuVGi7IIWFhXmsnj179nT/u7q6WtXV1We1n5r6N+dxXHXVVTqvawflffkvmdu0UWDH7uow4DoFhHVUZckh7f86XW0DAxQREdGgemzevFnLVvxTP+7ep4oql4ICzDq/RzeNu3W0+vfv3+B6uVwuLU1boXJLjC4ZOto9OyfYGqWOybfq24x/KjXtHfXp08en1g5uiTZFy6Nd/RPt6n9oU//k6Xbl7wlN5eQld2uuf2uW3LWnp2lJapoSExN96voXAAAAzcfjgY2EhARlZWXJ6XTqnXfe0cSJE7V27VqP1mnOnDmaNWtWnddXrVqlkJAQD9ToZ3eMGSWpUtLOuoVRksaMUm5urnJzc1u0Xs1l9erVzbr/6Q8/UM+rhqQO0tVjJY1Vfn6+Pvzwwwbt78qkQboyqfZrP/30k3766adG1evKpEG6UpK0q07ZpcmXSJI++uijRu3TWzR3m8IzaFf/RLv6H9rUP3mqXcvKyjzyuaezaNEiLVq0SDt37pQk9e3bV08++aRGjBghSTp27JgefvhhLV++XOXl5UpOTtZf/vKXWgOhdu/ercmTJ+uTTz5RWFiYJk6cqDlz5igg4OeuU2Zmph566CFt3bpV3bt314wZM3T77be35KH6FW9dcrcpNdXMbgAAABzn8cBGUFCQ4uPjJUkDBw7Uxo0btWDBAo0ZM0YVFRUqKiqqNWujoKDAvTSQ1WrVV199VWt/BQUF7rKa/9a8duI24eHh9c7WkKTp06froYcecj8vLi5W9+7dNXz4cIWHh5/bAZ+jzZs36/mFr6kk1Krz+iUprENnlRw+oJ1b1qt9Wb6m3TfplLMDmmpGQUuorKzU6tWrdd111ykwMLDZPsfhcOh3Ux5WUae+qgoMkyGTTDIUEhyoi/pcqI6hwdrz2QrNfeJR99/pyVwul/701Cz9UNxG/a/5tZyFP6n8aKmC24XK0iVGmz95TxeGuzR71pMN6rx88803mvnCX5Q4eooCAoPqlFdVlOvbd1/VzIf/oIsvvvicz0FLaak2RcuiXf0T7ep/aFP/5Ol2rZnV7E1iYmI0d+5cnX/++TIMQ4sXL9ZNN90ku92uvn376sEHH9TKlSu1YsUKWSwWTZkyRTfffLM+//xzScdnHI8cOVJWq1VffPGF9u3bpwkTJigwMFDPPvusJGnHjh0aOXKkJk2apKVLlyojI0N33XWXunXr5nM5/LyFNy+52xTIHQIAAND0PB7YOJnL5VJ5ebkGDhyowMBAZWRkaPTo0ZKknJwc7d69W0lJx4fEJyUl6c9//rMKCwvVpcvxi+DVq1crPDxcffr0cW9z8mj71atXu/dRn+DgYAUHB9d5PTAw0OM3AwYOHKjHHvjD8QvjT5a5L4wviI3W+Lv/cMoLY7vdrmf/55Xja9YO/o17zdotWeu0439e8do1a5v7nJeUlCgsvIMG//o3Kti/X2VlZQoJCVF0VLRMZrOqKspVerRCJSUlp6xHbm6usrfvUWivQfp46as6fPiQXC5DZrNJHTp0VOyFNm3dtkG7du1q0AizDh06yCSXnAcPKMIaU6fceeigTHKpQ4cOHv97PBve8D1C06Nd/RPt6n9oU//kqXb1xr+lG2+8sdbzP//5z1q0aJG+/PJLxcTE6G9/+5tSU1N17bXXSpL+/ve/68ILL9SXX36pyy67TKtWrVJ2drY+/vhjde3aVQMGDNAzzzyjxx57TDNnzlRQUJBee+019ezZUy+88IIk6cILL9S6dev04osvEtg4SxaLRUGBZpUcLKz3+rfk0H4FBZplsVg8ULtzQ+4QAACA5uHRwMb06dM1YsQI9ejRQ0eOHFFqaqoyMzOVnp4ui8WiO++8Uw899JA6duyo8PBw3XfffUpKStJll10mSRo+fLj69Omj8ePHa968ecrPz9eMGTN07733ugMTkyZN0iuvvKJHH31Ud9xxh9asWaO3335bK1eu9OShn5PGJur2ljVrvXH6dU0nqvTwAcXEdK9T3pBOlNPp1MH9B7S9MENGx1hFXjFMwZbOKnce0MEfNmjL+o9lMZU3eIRZfHy8EmKjlJ21rlZ7SZJhGNqetU59Y6NPOYMEAAAAx2dfrFixQqWlpUpKStKmTZtUWVmpYcOGube54IIL1KNHD61fv16XXXaZ1q9fr379+tVamio5OVmTJ0/W1q1bZbPZtH79+lr7qNnmgQceOG19vDWPnzeIjY1Vn7ju+uG7L9Sx6+g61797vvtCfeN6KDY29rTnytN5Z07mr7nzTsXbzn9rwrn3LM6/Z3H+PYvz71n+eP4bcyweDWwUFhZqwoQJ2rdvnywWi/r376/09HRdd911kqQXX3xRZrNZo0ePrrUGbo02bdrogw8+0OTJk5WUlKTQ0FBNnDhRTz/9tHubnj17auXKlXrwwQe1YMECxcTE6I033vD50VRms7nB68t6w5q13jr9uimCCO3bt1dhQZ7MvS5X7OWj3Pto1ylK0ZeP0q61adq/7Qu1b9++QXUym82akDJWs+cvlD09TXEDBiusY6RKDu3X9qx1al+Wp/GTp/pF5wcAAKCpbdmyRUlJSTp27JjCwsL03nvvqU+fPsrKylJQUFCtZW4lqWvXrsrPz5ck5efn1wpq1JTXlJ1um+LiYh09evSUy916cx4/b9CUOea8KZ+QP+fOOxVvOv+tDefeszj/nsX59yzOv2f50/lvTB4/jwY2/va3v522vG3btnr11Vf16quvnnKb2NjYMyZ2HjJkiOx2+1nV0R94es1aT0y/bujskKYKIpgD2yqwc6xOihvJZJICO8eqcnfj/v5sNptmTJt6PBiUmeoOBvWNjdb4yUxXBwAAOJWEhARlZWXJ6XTqnXfe0cSJE7V27VpPV8ur8/h5i/pyAvbuEaWxt97coJyAns47c7KmzJ3nC/kSve38tyace8/i/HsW59+zOP+e5Y/nvzF5/Bod2CgvL9eGDcfzBZSVlSkyMlI2m009e/Zs7K7QQjy5Zq0nlsFq7OyQsw0iVFRUaMmSJVq/fr1MbQIVEhykA3u2KbyzVYHB7VRZflTFB/IVEhykwC5ddeTIkUYdR2OXHAMAAPBFTd2/CAoKcs+2HThwoDZu3KgFCxZozJgxqqioUFFRUa1ZGwUFBbJarZIkq9Wqr776qtb+CgoK3GU1/6157cRtwsPDTzlbQ/LuPH7eYuDAgbLZbOd8/est57Spcuf5Wr5Ebzn/rRHn3rM4/57F+fcszr9n+dP5b8xxNDiw8fnnn2vBggX6z3/+o8rKSlksFrVr106HDh1SeXm54uLidM899/x/9u47PMoya/z4d2p6b0MqhNBLCIiKBZEocUX5uSpicBFXXRcWVhEUZcXVteEqKs364loQENuurrgCBgFRFIShRhJCSSWQ3pOpvz9ixoQUZpKZNM7nut7rNfPMPHM/87i793nOfZ/DrFmz7C65IzpHV/Zs6OwyWO3dHXJuEqHh3+GKigrS09ObBVRLlixh2WtvUmlWYzZbsVot+AUfJSSiLxWGyt+ah3t7oQsJo7zYt12JI0dKjgkhhBBC9CSdFV9YLBbq6uoYM2YMGo2GlJQUbrnlFgDS0tLIyspi3LhxAIwbN45nn32Ws2fPEhpav9t5y5Yt+Pr6MnToUNt7zt0xvmXLFts5RMf0pvmvM+Kw7tIvUQghhBCiu7Fr5jNlyhSmTZtG37592bx5MxUVFRQVFZGTk0N1dTXHjh1j8eLFpKSkMHDgwF5V16s3aCi35F2Vh37TBkrzczAZ6ijNz0G/aUN9uaXp01qdCJtMJjZt2sR7773Hpk2bMJlMdn93Z5bBOnfS76+LRK3R2ib9lV7hrFm3AYvF0uLnG4IotVrNm2+/w/y/P8ui55Yxb/HTLHhkka2c2ZIlS3h22RsYIi4ibPI8+t29FI+IgdSWFlJQXEaAlwcXJ4zgsrGjufTisZRkpjJYmn0LIYQQQti4Kr5YtGgRO3bs4NSpUxw6dIhFixaxbds27rjjDvz8/LjnnnuYP38+3377LXv37uWPf/wj48aN49JLLwVg0qRJDB06lBkzZnDgwAE2bdrE4sWLmTNnjm23xaxZszhx4gQLFy7k6NGjvPbaa3z00Uc8+OCDLvu9RM/U0TgMGi0UG3VF6wvFMnPJyMhw9eUIIYQQQnQrdu3YmDx5Mp9++mmrW0FiY2OJjY1l5syZpKamcvr0aacOUnRce8strV+/nheXryKvpAozKlSYCQ/w4uEH5pKcnHze7+3MMljO2B1yvh0fC++fxbLX3kTTbywRSfei/PV7Qi6eQuHPG6k9fYxf6soZnRBPdWkx+l1fS7NvIYQQQohzuCq+OHv2LHfeeSenT5/Gz8+PkSNHsmnTJq699loAXnnlFZRKJbfccgt1dXUkJSXx2muv2T6vUqn48ssvmT17NuPGjcPLy4uZM2fy1FNP2d7Tr18/Nm7cyIMPPsjy5cuJjIxk9erVJCUldeAX6Vz29qMTHdfR3nld3S9RCCGEEKK7siux8ec//9nuEw4dOtS2TVt0L472bFi/fj0Ln3weS/hwoi6biFdIBFUFueTpt7LwyecBzpvc6MwyWB2d9DfZ8THpNsoryikpLUXr4U3CpNvQb/6IxX9/kkqTmrARE2xJDQCPPnEEXzSZgt1fULLva74uSycmKlyafQshhBBCtMBV8cXbb7/d5nF3d3deffVVXn311VbfExMT06zU1LkmTJhg283b0zjaj050XEd653Vlv0QhhBBCiO7M7mU5paWlbNq0yfb3Z5995pIBCddqKLc0duxYBg4c2Gb5qReXr8ISPpxBk+/FNyIOldYD34g4Bk2+F0v4cJYuX3XeslTt3X7dUC5q3759pKent1o+qrHGk/6WnG/S37DjIyBmKD/u3sMPe/axW3+IH/bsY9dPP6H2CuCX9GNYlCrcQ6Kafd6jTxx9kv6MQqFk3LB+LHvmcZb+8zlbgGixWEhPT2fPnj12X5MQQgghRG8l8UXna9idnFqmJmbCdBJun0/MhOmklql5ZumKbpes6U3zZ3vjsHM1LBQ7sX8nVqu1ybGGhWJS9lYIIYQQFyK7m4cnJydjMplYs2YNH3zwAUuXLuXmm2925dhEF0pJSSGvpIqoyyaiUDSddCsUSsITJpK9cSUpKSnn3Xbv6PZrvV7P2g0fc+W4S3jypddQYLFrFVlHd4eUlZVRVFJOfs4ZzG5++IbHoXHzoOTkYY58+x9M1eUYKmqxKNWU5x7HL3owKpWqyTnqivJQqRSMGzeuSbkrWRknhBBCCNGUxBedq6c1oZb5c72GhWLPLF2BftMGYkddgXdgCJXFBZzYv1PK3gohhBDigmV3YqOwsJA9e/bw9ttvs3jxYleOSXQD+fn5mFHhFRLR4nHP4AjMqMjPz7frfPZuv25YRVbnF8mVQPwtcykrKrT1uFj8UOtlnTo66ffx8aHwbD6aSAMRcf0BBUUnDpP5w5eogmPwGDgedXkBZd+9T/kv36EJicHTw8OW3LBYrZQc2oaPysyMGTOaXVNrfTvauiYhhBBCiN5K4ovO5Yx+dJ3F0flzQ8+QkpIS29+t6Yn9RTrap0MIIYQQojeyO7EREBAAwD333MP999/P0aNHXTYo0fV0Oh0qzFQV5OIb0XyHQ3VhLirM6HQ6u8/ZsP26NY1XkV2UeAuQiVqjdWgVWUcn/RZjLcbCTKzWS6mrqSb75y2ogvvid9GN1BVkQl0lAYPHUXpsD0WAcciV+Ib3o7Ywl5JD2zCe3MPCebPQarXNrqknrIwTQgghhOgsEl90rp7ShNrR+XPjnR1WlMy642Yee+If3DFtaos7w3vqLpCO9OkQQgghhOiN7E5s3HrrrZhMJtRqNS+99JJMoHq5xMREwgO8yNNvxSc8tkk5KqvVQp5+KxEBXiQmJjrtO521iqy9k/6KigpCw8Ipq8gn94d/U6fxxVhTif+IazEU5YChGo27J32T7uKkSk1x6k7qTu2nWOOGwmrCR2Vm4bxZLFq0yOnXJIQQQgjR20h80bl6ShNqR+bPVVVVTXZ2+AUFA3kcLVc129nRG3ZRn2+hmBBCCCHEhcTu6OG+++5Dra7Pg2g0GpYtW+aqMYluQK1W8/ADc1HmHSZt42rKczMw1dVQnptB2sbVKE8f5qEH5tr+nXAGZ64ia09zPj8/P4JCghkxLhGP2iKKft6Iqews5uoylGYDnoE61FotKo2WAdffw4Bb5hEZ6s/0313BiqcXkXU8rUlSw9nXJIQQQgjRm0h80bl6ShNqe+fPJSUlTXZ2+OsiUWvqd03HJ95CpVc4a9ZtwGKxNNsF0vBe/7AIYi9NIt/iw4rX3sBkMrV73L2p0bkQQgghRE/QrqfSe/bs4dtvv+Xs2bPNJmwvv/yyUwYmul5ycjIALy5fRfbGlZhRocJMRIAXDz3xqO24szReReamC2923NWryGzNx4tOM/qGOylTfEpZVhoevv54hMVSdSYTNzd33Dy8sVotmGuq6RMRzcKFC1tdOdVTVsYJIYQQQnQliS9cr6c0obZ3/lxaWmr3zg6g2XuLCgtJzzhOaWUVtQpf/rfjS+7982wemPsXh3du9OQSV0IIIYQQPZXDiY3nnnuOxYsXM2jQIMLCwppMIs+dUIqeLzk5malTp5KSkkJ+fj46nY7ExESn7tRoYEss7N9JYNLUJscaVpENc+EqssbB3vFdX+PmH4JHWSGVJ/ZjtipRGqsIiO4PCgWGmmoqc44ybpCuzfE0vqbGNYI765qEEEIIIbo7iS86T09oQm3v/Nnf39+hndGN31tUWMi+g4cxqj3xDY/DL3IQNcf3crTY5HBZqt5Q4koIIYQQoidy+On08uXL+de//sVdd93lguGI7kitVpOUlOTy72mcWDiQ8ikXJ12EyVBHWXFRp60iawj23lu7nv9u2UJ1ZS1mYypUlxA+JhGtuyc1Rblk7tqId3kWc2ctanM8PWVlnBBCCCFEV5H4onN19ybU9s6fvby8HNoZbXtvWATpGccxqj0JjuoPKKgpykPr7s7Iib8n89BPTZqTt8XRRudCCCGEEMJ5HE5sKJVKLr/8cleMRQhbYmHtho8BOPDZqyiwdOoqsoZgb8IXX7D8jbcpMbthRUH5vv9RZDBQW1mKn7KWJ/+2kDFjxth1PmevjDOZTJ2yi0YIIYQQwtUkvuh83b0JtT3zZ4vF4tDO6Ib3xl6aRGllFb7hcYACq9VK0dGfCAwMIrBPDCqVxlbC6ny/kSONzrvz7y2EEEII0RM5/CT0wQcf5NVXX5XmfsJlEhISGDp0KF9//TVPLvgLAQEBnb6KTKlUctNNNxETE8P76z7k6KlcykprwA0GDR/B3L/82a6kRgNnroxbv349Ly5fRV5Jla3vSXiAFw8/MNfpfU+EEEIIIVxN4gvRwGKxNJkvv7jkWTIyMjh8+DAAw4cPtyUIWtrZ4RcYBB5wIOXTZjujG957cMsn1Cp868tPFeVRdPQnlKXZDL1+GgqlslkJq7bY2+jcnnMJIYQQQgjHOJzYeOihh5g8eTL9+/dn6NChaDSaJsc/++wzpw1OXLgaApDRo0c3+3esMzkzIeGMlXHr169n4ZPPYwkfTtRlE/EKiaCqIJc8/VYWPvk8gCQ3hBBCCNGjSHwhoOUG3IEeaqxWKyW15l9f+7xJU+5zd3ZYUTLujpsZ4mth+p+a7oxueO+KV1/nf9/toOb4XrTu7gQGBjH0+mnoYocAzUtYtcXeRuf2nEsIIYQQQjjG4cTG/fffz7fffsvVV19NUFCQNPQTvV532apvMpl4cfkqLOHDGTT5XhSK+uSKb0QcPuGxpG1czdLlq5g6daqUpRJCCCFEjyHxhWipAXd2xlF2bP4PxsIsrpgyg2GjxrXYlLvxQqSSkhLy8/N55h9/x83Nrdn3JCQk8H9vvMa9f57N0WITIyf+nsA+MSh+XbTUUgmrttjb6NyecwkhhBBCCMc4/PTzvffe49NPP2Xy5MmuGI8QohUpKSnklVQRddlEW1KjgUKhJDxhItkbV5KSkmJXs3fp0yGEEEKI7kDiiwtbiw24rVbyy2rwH5VEXfYhso7up/+YK1ttyt2wEMloNPLVV19x4sQJKisrW9xtrVareWDuX3hm6QoyD/2ESqVpsTm5PTu07W10Lo3DhRBCCCGcz+GnmIGBgfTv398VYxGiWzi3tm9n9Pew5zvz8/Mxo8IrJKLFc3gGR2BGRX5+/nm/T/p0CCGEEKK7kPjiwtZSA+6y8jJKK6vwC4/D7OVFwfcfUZKfRWB43zabch88eBCAR59+gaoaA1qNsknpqgb2NCe3lzPPJYQQQggh7OdwYuPJJ5/kiSee4J133sHT09MVYxLC5VpLJLRU27elYMiZ7P1OnU6HCjNVBbn4RjTfzl5dmIsKMzqdrs3vkz4dQgghhOhOJL64sLXUgNtgMGCxWNG4eaBSa7BYrNRVV9qOt9SUW6/X8+KKN0i++QairpyKR2BYi6WrGpzbS8/HxweAiooK0tPTHVrc5My+fEIIIYQQwj4OJzZWrFjB8ePHCQsLo2/fvs2a++3bt89pgxO9Q1fsgGhLa4mEi0eP4pMvNzep7dtWMOSssZxbT7i170xMTCQ8wIs8/VZ8wmOblKOyWi3k6bcSEeBFYmJiq9/nij4d3e3+CiGEEKJnkfjiwtZSA26tVotSqcBYV4O5uhylUoGbp7ftM+c25f6tnFX9Ah//sAjMKFstXdWgoYSVXq/nzbff6dDipu7Sl08IIYQQ4kLhcGLjpptucsEwRG/VFTsgzjeeFhMJ+u/Y+M9XCIodwVU3/9b473zBUEe0WE+4je9Uq9U8/MBcFj75PGkbVxOeMBHP4AiqC+t3WyhPH+ahJx5tMyHh7D4d3e3+CiGEEKLnkfjiwtZSA24/Xz/8vb0oLjhNXfYhAgODCNBFAy035baVs7o6GTA2OX9bpavAsYVGQgghhBCi+7A7sXHixAliY2N54oknXDke0Yt0tyChrURC7LjrOJKWjkdVJVit8OsxOH8w1F4t1RM+33c2lIh6cfkqsjeutPXHiAjw4qEnHj1vCSln9unobvdXCCGEED2LxBcCWm/ArfPz4MTm/2AszGLklBmYTcZWm3LbylkFhgB5zb6jpdJV4PhCIyGEEEII0X3YndgYOXIkffv2ZcqUKdx0001cfPHFrhyX6OG6Y5DQViLBaDTiHTmYqpxDtsaEjbUWDHVES/WE7fnO5ORkpk6dSkpKCvn5+eh0OhITE+0qHeWsPh3d8f4KIYQQomeR+EI0aK0B91X9fLDEDKHk+E/oj+5qtSm3rZxVcQGENz//uaWrGrRnoZEQQgghhOge7E5sFBYWsmXLFj7//HOmTJmCQqHghhtuYMqUKVx77bW4u7u7cpyih+mOQUJbiQStVovW25+aOkOTxoQNWguGOtJfoqV6wvZ8J4BarbarVNS5nNGnA7rn/RVCCCFEzyLxhWistQbcwHnn2w3lrI4d2gXhFzU51lLpqgbtXWgkhBBCCCG6nt2JDXd3d2688UZuvPFGrFYru3bt4osvvuCRRx4hOTmZa665hilTpnDjjTcSEhLiyjGLHqA7BgltJRL8fP3wwMiZylK0Hl5NjrUWDHW0v0RL9YTP950d5Yw+HdA9768QQgghehaJL8S5WmvAfb6FMg3lrP657DUASs/k4hEQ2mrpqgYdWWgkhBBCCCG6VrtqxCgUCi677DKef/55UlNT0ev1XHnllbz77rtERkby6quvOnucoodpHCS0pCuChIZEwon9O7FarU2OWQFNZT5+ylpOHfyR0vwcTIY6SvNz0G/aUB8MTZ9mC4Ya+kuklqmJmTCdhNvnEzNhOqll6vr6wHp9q+MwGAy8/fbb/OMf/8DX0x2vivrvON93OktycjIvPPkoYTWnyN64ktT3HiN740p0Nad4wY4+HdA9768QQgghei6JL0RHJSQk8PD9swDI/u5j9BteIXPbOob5mXlsQcu939qMD35daDTYyQuNhBBCCCGEc9i9Y6MtAwYMYMGCBSxYsICioiKKi4udcVrRg3XFboTzaa0xYcNKLp2ynDl/W8juffub1PY9t45vR/pLLFmyhGWvvUmlWY1VqUFhMeJmrmbo4MFklma1+p3O1pE+HdA9768QQggheg+JL0R7jBw5kpycHJ5/fCGVlZXnLRV7vvigtZ0eQgghhBCi6zmc2Ni6dSufffYZp06dQqFQ0K9fP2699VbGjx8PQFBQEEFBQU4fqOhZumuQ0FpjwsaJhPM98G9vf4klS5bw7LI30PQbS9iICbiHRFFbkE3JoW3of9nNrIsSuP322x3u1dFe7e3TAd33/gohhBCi55H4QjhbXFwcGo3GrvfaEx8IIYQQQojux6HExqxZs3jrrbcICAhg4MCBWK1WfvjhB1599VX+8pe/sHLlSleNU/RAXREk2NPMu7XGhEqlssW+GV9/s7VJ34z29JcwGAwse+1NNP3GEpF0L8pfEyLeEQPwDI8jdxOs/egzlixZglardfrv4goSBAohhBCioyS+EB3VeP7v7e3drnO0FR8IIYQQQojuye7Exr///W/eeecd/vWvfzFz5kzbSnWLxcK7777L7Nmzufbaa5kyZYrLBiu6D3sSCNC5QYIjzbwbGhM2XMfevXvJzc3l/Y/+Q5V3BLETpuMdFEpl0VlS9+/kmaUrWPxQ/cP69jQZXLNmDZVmNWEjJtiSGraxKBQEjJjAmaz9rFmzhnvuucfpv42rSBAohBBCiPaS+EJ01Lnzfy8PLXdPu4mDBw8yZswYh87VWuNyIYQQQgjRPdmd2HjnnXeYP38+d911V5PXlUold999N2lpabz99tsSeFwAHEkgQOcECQ3NvCu9wttMSrR2HXVGM6dOHMes1HD19N/ZEhYt9c1oT3+JrKwsrEoN7iFRLY7fPTgSq1JDVlaWC36djjlfEkuCQCGEEEK0h8QXoiNamv/XFJ8BjLy44g0emfcX2UEshBBCCNGL2b2set++ffz+979v9fjNN9/M3r17nTIo0X01BBCpZWpiJkwn4fb5xEyYTmqZur7fgl7f6WM6t5m3vy4StUZrS0pUeoWzZt0GLBZLq9cR97t70I6YhCpyBD9+9RH5J36xvdfWNyMzl4yMDFt/Ce+qPPSbNlCan4PJUEdpfja7/vMuptwjjL/80iZjjI6ORmExUluQ3eI11BbmoLAYiY6Ods2P1E56vZ4Fjyxi3uKnWfTcMuYtfpoFjyzqkvsshBBCiN5F4gvRXq3O/8MiAKj00jWb/wshhBBCiN7F7sRGYWEhkZHNy+40iIyMpKioyCmDEt1TexIIncHWzHvUFa038/41KdHadZitoPEOIvrKW7EERJH6/Wasja7DOyCY0vIqdu3aRXp6OvHx8Sx+6H6G+pnI3LaOHW8/zeY3/0H23hQqq+t4a92nTRIAM2bMwEtppHD3f6nKOUpdUQ5Wa/35LVYrJYe24aMyM2PGjM750ezQHZNYQgghhOg9JL4Q7dXW/B+g74hxTeb/7WGxWEhPT2fPnj2kp6dLkkQIIYQQopuxuxSVwWBAo9G0fiK1GoPB4JRBie7JFkBMmN56AmHbOjIyMjq1NJGjzbxbug6tVotSqcBkqCVo8CUUfP8RJflZBIb3paiwkAM//0jmyRO8+cEnbNj4ja301kv/XMIXX3zB8jfeps+gBIaPvxGfEF2zMlgAA/v3Z0/qUfJSzqL29MPNNxg3XX+qTx/HeHIPC+fN6jaNw89N/jT8Ti2V5pJ+GkIIIYRoD4kvRHudd/4fENxk/u8oR0vvCiGEEEKIzmd3YgPg8ccfx9PTs8Vj1dXVThmQ6L4cTSB0Fkebebd0HX6+fvh7e1FSmE+ALgqLxUpddSVFhYXsPXCI/GOHCes7iMvueoiqkkJb0uJv8+ey/ftdaKNHckkrCYCXXllBjdmK16BxXDryejKyz1BXU0ndmROU71iLj9rCY/P+yqJFizrnB7NDd01iCSGEEKJ3kfhCtMd55/8lhU3m/45oT+8+IYQQQgjR+exObIwfP560tLTzvkf0Xo4mEDqLo828W7wOhYKBcf3Zd/Aw+Wn7sBjrUKk1HPj5R/KPHcaXGkZfezsaN3d8g3X4hUWS+t1BHv3bYtQ+QcROvKPFBEC/kZex6bW/ET0mkXG/ju1Si5lj6ceoqBhLwZHvuWpAII888kin/V726K5JLCGEEEL0HhJfiPZqa/4PcOrQLgY3mv/bq2HXcoVnH/qOuISaylIsFhMBumjZtSyEEEII0c3YndjYtm2bC4chegJHEwidpaGZ9zNLV6DftIHYUVfgHRhCZXEBJ/bvxKc6jxmz77cFH61dR1BwMAkjhrH949UoyvNI3bSWzFMnCes7iNHX3o4udghHvvuKPV9toKrOiBUFGZXFuHn54Dl6Cv665mMzGmupNioIG5Rg+x6lUsWgwYMBKI3qw7FuuPOhuyaxhBBCCNF7SHwh2qu1+X9FyVkIB5/qfGb86S8OJx8yMjLYvf8wlQpvTqb/gsViRalUEBAQyLArkmTXshBCCCFEN9LhZSYmk4nKykpnjEV0cw0BhHdVHvpNGyjNz8FkqKM0Pwf9pg31CYTp07pk9VJCQkKTZt76Da+QuW0dw/zMPLag6Xbxtq4ja28Kw0M1LJhzH5MuHUmfoACuuXO+Lamx/bP3MIYMJPS6vxA1/WkCLrsdk0LLru93cryF5oSl+TmgUhEQGt7iuLvrzoeG5M+J/TuxWq1NjjUksdqzCk4IIYQQ4nwkvhD2aGn+n/3dxwA89NdZ7SoXtXv3bo6fzKLGK4yQy28j+oY5hFx+G2VKH37cuIGqsuJuOXcXQgghhLgQ2b1j47///S9FRUXcddddtteeffZZnn76aUwmExMnTmTDhg0EBAS4Ypyim2gIIN5f9yFp29bZmukNi4lgxuyurTebkJBAfHw8GRkZlJWV4efnR2xsLCdOnGDPnj34+fkRFxeHUqls9TpC3NWgUbJx+4+UlldxuqiEb957mYTEm9jz1QY0USPRJd6FUqHAbDLh3X8UyrIcqovy2H/oMLGxsSh+TexYrVbOnPwFbzcNSlNdi2PurjsfHN0FI4QQQgjhKIkvREc1nv+XlJRQUlJCXV0dnp6eWCwWh+aqFouFlG07UIcPInT0JNw8fQDwCAon4rKbyP3hPxzY9gXhvppuN3cXQgghhLgQ2Z3YePnll7n11lttf//www/8/e9/56mnnmLIkCE89thjPP3007z88ssuGajoPlpKIDQkDLqaUqm0bQvX6/U8vOgx0jLzbImLQTHh3Dn9dhISEppdR25uLms+/g+VXhHEXnIFwwJDMG/dQs6xw2zd8CblFeX0ufoqlL+WlDLWVuOm1RIwJpETKes5e+QHjvYLZ8DQeFsCIExTS99RQzix//tuVb7LHt05iSWEEEKInk/iC+EMSqWSqqoqPvzkM07knuXuaTfx6NMvEBsRapv32yMjI4MzZTVEDB5DRdEZ3Dy9gfq5u0KhIGjwxRz/fCWjLx3RLefuQgghhBAXGrsTG0eOHGkSVHzyySdce+21PPbYYwC4u7vzwAMPSOBxgWicQOiO9Ho9zyxdQaVXOLETpuMdFEpl0VlS9+/kmaUrWPxQ/YP5huuwWCys++gTKr0imiQg4i+6FJPGi6y9WzHVHkMToMNsMmGsrUZpNeHvG4ibexgxV97MLxv+yamtBioPbW2UAHgAoMfufOjOSSwhhBBC9GwSXwhnaDzvH3DlVMBI1JVTSdV/32Tefz5lZWUYTBaGx4/mwC/pFGYfxzdYh8bNA2NdDRXl5SgtRhKvHi9zYSGEEEKIbsDuxEZFRQVBQUG2v3fu3MnUqVNtfw8bNoy8vDznjk6IdrBYLLy/7kMqvcKbJCn8dZEkJE1Dv2kDa9ZtID4+3haUZGRkkJaZR+yE6U12VQQFBzMmfgR1pWcoP3GA0iPf4xM3Gq1G/WtSwx0ApdYDn4BA/vrH6YwcObJZAqAn73zo7kksIYQQQvRMEl+Ijjp33q9WWIFT+IdFtDrvb42fnx9ajRKtwsLokcNJzzhOaV6GrYG4p6mauJhILr744s65OCGEEEII0Sa7ExsRERH88ssvREdHU1lZyYEDB3jllVdsx4uKivD09HTJIIVwRGtJCqjfRh476gqObltHRkaG7YF9WVkZBqMF76DQZucLCg4mafIUsnd+hjH7AKGXXoubmxsNW9OtVgt5+q1EBnozc+ZM1Orm/7GSnQ9CCCGEEE1JfCE6qvm832o71tq8vzVxcXEMigkndf9OEpKmMS4oiLLyMgwGAxqNhhO7vmbYiMFShkoIIYQQopuw+6nq1KlTmTdvHmvWrOFPf/oTOp2OSy+91Hb8559/ZtCgQS4ZpBCOaCtJAeAdGILBaKGkpIT09HT27NlDcXExWrWSyqKzLX6murSY/tGRqEuzObnlfcpzj2Oqq6E8N4O0jatRnj7MQw/MbTGp0aBh58PYsWMZOHCgJDWEEEIIcUGT+KJ3s1gstrl2eno6FovF6d9h77y/rKzsvOdSKpXcOf12vKvy0G/aQOmZXLw8PNCYDZz4cRM+NaeZMX2azOGFEEIIIboJu3ds/P3vfyc3N5f7778fnU7HBx98gEqlsh1fv349N954o0sGKYQjGraRVxadxV8X2ex4ZXEBNZWlvPF/b3OmvAaD0YJGreBM9knKd37NFbfc02KT7wmXjmHMqLt4aeVrZG9ciRkVKsxEBHjx0BOPkpyc3JmXKYQQQgjRo0l80Xvp9fr6MqyZebYyrINiwh1q5m0Pe+b9Wo0SPz8/u86XkJDQo0vICiGEEEJcSOxObHh4ePD++++3evzbb791yoCE6Khzt5Gfm6TY/80nFBcU4N03ntgJV9oai5d+8wmZe7cBMOKK61ps8p2QkMC0adNISUkhPz8fnU5HYmJimzs1hBBCCCFEcxJf9E6Nm3nHTphum2un7t/pUDNve5w776dRFdqGxUnDYiIcKh8lJWSFEEIIIXoGeRorep2GbeTPLF2BftMGYkddYUtSHNd/R9GxfYSOGE/Cdbc3aSx+1R0PsH3tcmpO/EymsRiDqeUVWmq1mqSkpK68RCGEEEIIIbqdc5t5N55r29vM22Kx2J1UOHfePyDhcgiH0jO5HNN/b1uc5GhSoqGErBBCCCGE6L7sTmwEBAQ0a8QM9dt/Bw4cyEMPPcS1117r1MEJ0V6tbSOP8PGgJiKG4Vdc12Jj8VHX3Mqpb9fywL1/IDAwUFZoCSGEEEK4iMQXvU/zZt6/saeZd3tKWDWe95/47mOYdhPZ333MsIgwKR8lhBBCCNGL2Z3YWLZsWYuvl5aWsnfvXm644QY++eQTh+rgLlmyhM8++4yjR4/i4eHBZZddxj//+c8mTQInTJjA9u3bm3zuz3/+M2+88Ybt76ysLGbPns23336Lt7c3M2fOZMmSJU3KA23bto358+dz5MgRoqKiWLx4MXfddZfdYxU9T0vbyEtKSnjs+RVtNhg0mqwEBgYyduzYTh6xEEIIIcSFwxXxhehaHWnm3ZESVg3z/rS0NNLT03n+8YUMGjRIFicJIYQQQvRidic2Zs6c2ebxUaNGsWTJEocCj+3btzNnzhzGjh2LyWTib3/7G5MmTSI1NRUvLy/b+/70pz/x1FNP2f729PS0/bPZbGby5MnodDp++OEHTp8+zZ133olGo+G5554D4OTJk0yePJlZs2axdu1aUlJSuPfee+nTp4+UFOrlzt1Gnp6e7tQGg0IIIYQQon1cEV+IrtXeZt7OKGGlVCqJi4sjPT1ddlwLIYQQQlwAnDbbu+GGGzh69KhDn/n666+56667GDZsGPHx8bz77rtkZWWxd+/eJu/z9PREp9PZ/s/X19d2bPPmzaSmpvLBBx8watQofve73/H000/z6quvYjAYAHjjjTfo168fL730EkOGDGHu3LnceuutvPLKKx2/cNGjNDQYPLF/J1artcmxhgaDgx1sMCiEEEIIIZyvPfGF6FrtnWvbSliNuqL1ElaZuWRkZLj8GoQQQgghRM/gtMRGXV0dWq22Q+do2JIcGBjY5PW1a9cSHBzM8OHDWbRoEdXV1bZju3btYsSIEYSFhdleS0pKory8nCNHjtjec8011zQ5Z1JSErt27erQeEXP09Bg0LsqD/2mDZTm52Ay1FGan4N+04b6BoPTp8kKLyGEEEKILuaM+EJ0rvbOtTtSwkoIIYQQQlyY7C5FdT5vv/02o0aNavfnLRYL8+bN4/LLL2f48OG216dPn05MTAzh4eEcPHiQRx55hLS0ND777DMA8vPzmyQ1ANvf+fn5bb6nvLycmpoaPDw8mhyrq6ujrq7O9nd5eTkARqMRo9HY7msU9mv4nV3xew8fPpy/zZ/L+o8/5djOjzCYLGjVSkZGh3P7n+cyfPhwuc8u4Mp7KrqO3NfeSe5r7yP3tHfq6vvq6u/taHwhukbjZt5p29bZmoAPi4lotZl3e0tYCSGEEEKIC5fdiY358+e3+HpZWRn79u0jPT2dHTt2tHsgc+bM4fDhw+zcubPJ6/fdd5/tn0eMGEGfPn1ITEzk+PHj9O/fv93f15YlS5bwj3/8o9nrmzdvbtLfQ7jeli1bXHbuK8ddwpXjmr6Wk5NDTk6Oy75TuPaeiq4j97V3kvva+8g97Z266r423kXdHq6OL0TXaWjmnZGRQVlZGX5+fm32vWgoYZW6f2eTHhvwWwmrYVIuVgghhBBCNGJ3YkOv17f4uq+vL9deey2fffYZ/fr1a9cg5s6dy5dffsmOHTuIjGy+QqexSy65BKivw9q/f390Oh27d+9u8p4zZ84AoNPpbP+/4bXG7/H19W22WwNg0aJFTQKt8vJyoqKimDRpUpP+HsJ5TCYT27dv58yZM4SFhXH55ZezdetWrr32WjQaTVcPTziB0Whky5Ytck97GbmvvZPc195H7mnv1NX3tWFXc3u5Mr4QXU+pVDJw4EC733vn9Nt5ZukK9Js2EDvqCrwDQ6gsLuDE/p31Jaxm3y/lYoUQQgghhI3diY1vv/3W6V9utVr561//yr///W+2bdtmV+Cyf/9+APr06QPAuHHjePbZZzl79iyhofU1Wbds2YKvry9Dhw61veerr75qcp4tW7Ywbtw5y/V/5ebmhpubW7PXNRqNPAxwgfXr1/Pi8lXklVRhRoUKM33DAli0YJ785r2Q3NPeSe5r7yT3tfeRe9o7ddV97eh3uiK+ED1Xe0pYCSGEEEKIC5fTemy0x5w5c1i3bh2ff/45Pj4+tp4Yfn5+eHh4cPz4cdatW8f1119PUFAQBw8e5MEHH2T8+PGMHDkSgEmTJjF06FBmzJjBCy+8QH5+PosXL2bOnDm25MSsWbNYtWoVCxcu5O6772br1q189NFHbNy4scuuXdRbv349C598Hkv4cKIum4hXSARVBbkUHKkvO/DJJ5+QnJzc7vObTCZSUlLIz89Hp9ORmJiIWt2l/9rbzWKx2L19XwghhBBCiJ7O0RJWQgghhBDiwmXXE95Zs2axePHi85aJAtiwYQMmk4k77rjjvO99/fXXAZgwYUKT19955x3uuusutFot33zzDcuWLaOqqoqoqChuueUWFi9ebHuvSqXiyy+/ZPbs2YwbNw4vLy9mzpzJU089ZXtPv3792LhxIw8++CDLly8nMjKS1atXk5SUZM/lCxcxmUy8uHwVlvDhDJp8LwpFfcDiGxFHUGQ/oIIVr7/F1KlT25WMaGknSHiAFw8/MLdDyZLOoNfr61erZebZVqsNignnzum3y2o1IYQQQvR4roovRM/nSAkrIYQQQghx4bLraXFISAjDhg3j8ssv58Ybb+Siiy4iPDwcd3d3SkpKSE1NZefOnXz44YeEh4fz1ltv2fXlVqu1zeNRUVFs3779vOeJiYlpVmrqXBMmTGi1jq/oGikpKeSVVBF12URbUqOBgvq/T5dWk5KS4nASqrWdIHn6rSx88nmAbpvc0Ov1PLN0BZVe4cROmI53UCiVRWdJ3b+TZ5auYPFDshVfCCGEED2bq+ILIYQQQgghxIXBrsTG008/zdy5c1m9ejWvvfYaqampTY77+PhwzTXX8NZbb3Hddde5ZKCi98nPz8eMCq+QiFbfY0ZpK1Fmr7Z2gviEx5K2cTVLl69q904QV7JYLLy/7kMqvcJJSJqGQqEAwF8XSULSNPSbNrBm3Qbi4+NlS74QQggheiyJL4QQQgghhBAdYfdT3bCwMB577DEee+wxSkpKyMrKoqamhuDgYPr37297ACuEvXQ6HSrMVBXk4hsR1+J7VFjQ6XRtnufcXhTHjx9vfSeIQkl4wkSyN65s104QVzt69Cg7f/oZ776jOHngB/oOvwTlr8kXhUJB7KgrOLptHRkZGbJFXwghhBA9msQXQgghhBBCiPZq13L1gIAAAgICnD0WcYFJTEwkPMCLPP1WfMJjmyQhrFgA6OPvSWJiYqvnaKkXhbmqlLraulZ3gngGR2BG5fBOkLY4o9H3+vXr+cdzL5BVWIEquxDFjs14ub3F2OunMezK6wHwDgzBYLRQVlbmtLELIYQQQnQ1iS+EEEIIIYQQjuhedXjEBUWtVvPwA3NZ+OTzpG1cTXjCRDyDI6guzKX4yA74y83cP/u+VstFtdaLYt+3/6Wu9iAFR3ahS5jY7HPVhbmoMJ93J4i9nNHou6EniEk3lOBRo/AMj8NQkkfh95+w5f3lnD2VxlXJf6WyuACtRomfn59Txi6EEEIIIYQQQgghhBA9jSQ2RJdqaOD94vJVZG9ciRkVKsz0C6tfsXfrrbe2+Lm2elFMuO0+TmVmkfX9fwgdOR6l6rd/za1WC3n6rUQEeLW5E8Rezmj03bgnyJDr7+VsYQGFh3dQfmgrVqsFi7sf+u+/5VSqntCIGK4ZM5i4uJZLdwkhhBBCCCGacsbu6s48rxBCCCGEOD9JbPQSPXlSnZyczNSpU0lJSSE/Px+dTsf48ePZvHlzq5/JyMggLTOP2AnTm9VfVqpUjLl6MjvWLCX102VEX36TbSdInn4rytOHeeiJRzvcONxZjb5TUlJ+6wmiVGI4uY8S/f/wiBmF1+ArUPkEU5d/nNrMfZw4so+Qay/pMfdWCCGEEEKIruSM3dWdeV4hhBBCCGEfSWz0Ar1hUq1Wq5s08jYajW2+v6ysDIPRgndQaIvHhyWMJef7WOpKM5vsBIkI8OKhJx617RTpiLaSK440+s7Pz8eMCq+QCCwmE/l76pMavuNus71HHRiOW2Af6jQaPvn8Sx5++OEOJ2aEEEIIIYTozZyxu7ozzyuEEEIIIezX7iejBQUFpKWlATBo0CBCQkKcNihhvwt1Uu3n54dWo6Sy6Cz+ushmxyuLC4gM17H0reVkZ2fbdoIkJiY6LSFwvuSKvY2+dTodKsxUFeRirCzGaDISMGAcSpUahVKF1WLCqlShcdOijB1D1ve/kJKS0iQRJIQQQgjR00l80bN09o5xR7/PWburO+u8QgghhBDCMQ7PtKqqqrj77rsJDw9n/PjxjB8/nvDwcO655x6qq6tdMUbRinMn1f66SNQarW1SXekVzpp1G7BYLF09VKeLi4tjUEw4J/bvxGq1NjlmtVo5sX8ng2MiGDx4MElJScycOZOkpCSn7nJonFxpib2NvhMTEwkP8CJPv5XaskJAiTogHKVag0KhxGyoRalS4ekXhCognFqjmby8PKddhxBCCCFEV3JmfLFkyRLGjh2Lj48PoaGh3HTTTbZkSYMJEyagUCia/N+sWbOavCcrK4vJkyfj6elJaGgoDz/8MCaTqcl7tm3bxujRo3FzcyMuLo533323XdffE+n1ehY8soh5i59m0XPLmLf4aRY8sgi9Xt9tvs+2u3rUFa3vrs7MJSMjw6GxuOq8QgghhBDCMQ4nNubPn8/27dv54osvKC0tpbS0lM8//5zt27ezYMECV4xRtOJCnlQrlUrunH473lV56DdtoDQ/B5OhjtL8HPSbNuBTnceM6dMASE9PZ8+ePaSnpzdJ8phMJjZt2sR7773Hpk2bmgWr52NvcuV8jb7VajUPPzAXZd5hzh7ZhcVkwFyej8VkxFhTDiYDHl4+KABrdRkWk6FXJquEEEIIcWFyZnyxfft25syZw48//siWLVswGo1MmjSJqqqqJu/705/+xOnTp23/98ILL9iOmc1mJk+ejMFg4IcffuC9997j3Xff5e9//7vtPSdPnmTy5MlcffXV7N+/n3nz5nHvvfeyadOmjv0YPUDDjvHUMjUxE6aTcPt8YiZMJ7VMzTNLVzg9udHe73PW7urOOq8QQgghhHCMw8vXP/30Uz755BMmTJhge+3666/Hw8OD2267jddff92Z4xNtuNAn1QkJCSx+6P76/iLb1tn6iwyLiWDG7PsBWPDIohZ7jxw9epQXl68ir6TK1n8jPMCLhx+Ya3f/jYbkyjNLV6D/+kNC4uJRe/liqiqnIOMAPjWnmTH7fru2oDd85xPPLKGsvICKw9/iM/Ym1CoVHj5+aN09sFitlP+yE7WphqFDh7b/hxNCCCGE6EacGV98/fXXTf5+9913CQ0NZe/evYwfP972uqenJzqdrsVzbN68mdTUVL755hvCwsIYNWoUTz/9NI888ghPPvkkWq2WN954g379+vHSSy8BMGTIEHbu3Mkrr7zSq8uFdnYZpo58nz2la+3ZXX0uV523vTq7JJgQQgghRHfhcGKjurqasLCwZq+HhoZKKapO1t0m1V0hISGB+Pj4ZpP5AwcOtNp75M9z55GVX4AqOoGoyybiFRJBVUEuefqtLHzyeQC7kxvx8fFcPmYEb73zPvu2fgEqLSqFhYgAL+56YK5D/U2Sk5OJj4/nhlumkZ99kFqNloCRE1AqfanOP0Hp4e0YMvX069ePoKCgdv1eQgghhBDdjSvji4YFPoGBgU1eX7t2LR988AE6nY4bb7yRxx9/HE9PTwB27drFiBEjmowpKSmJ2bNnc+TIERISEti1axfXXHNNk3MmJSUxb968VsdSV1dHXV2d7e/y8nIAjEYjRqOxQ9fZWTIyMjiRe5YBV05FrbACjXYtK2BAwuUc/+5j0tLSzrtr2RXf1/A7Go1GYmJiGBobxdHDPxAYdkuTHe5Wq5Xswz8wLDaamJgYjEYjFouFEydOUF5ejq+vL7GxsS0mCBw9rysdPHiQ9R9/yrGs0xhMFrRqJQOi+5A89RZGjhzp0u9uSePfX3Qu+e27lvz+XUt+/64lv3/X6o2/vyPXorCeW0PnPBITEwkKCuL999/H3d0dgJqaGmbOnElxcTHffPONY6PtAcrLy/Hz86OsrAxfX9+uHo6NxWJh/sJH+TmrnP5jxuPu5UOALhqFUonVakW/aQPD/Mws/edzPW7VjtFo5KuvvuL6669Ho9E49FmLxcKCRxaRWqZusrILwGw08uaDt6CJGcPIm+egaPS7WK0W0jauRldzip92bj9vPw69Xs9Ly1bw7U/7MajccVNr8PHzI2ZIAhaLCZ/q0w43b28Ye8reNApyM6mqq28crrCY8XLXEBIezTVjBl9w91R0X3Jfeye5r72P3NPeqavvq7PmyK6KLywWC1OmTKG0tJSdO3faXn/rrbeIiYkhPDycgwcP8sgjj3DxxRfz2WefAXDfffeRmZnZpKxUdXU1Xl5efPXVV/zud79j4MCB/PGPf2TRokW293z11VdMnjyZ6upqPDw8mo3nySef5B//+Eez19etW2dLqgghhBBCCHEhq66uZvr06XbFGA7v2Fi+fDlJSUlERkYSHx8PwIEDB3B3d78gasp2JwcOHKCwoICTB/eTnnoQL28/gkLD6DfsIsqLTtf3mbCzFNK5evKWZlvvkQnTm/UeyTyyG4vGE8+4sRhNRrRaN9sxhUJJeMJEsjeuJCUlpc0yAvW1fpdz6IwBn3HT6DN4NHVlRRQd/YnM9CNcev1t5B1TOLwVv6G8VVbeCsJih6B198JiNqJUaTDUVuFXm8+M6dN6zL0QQgghhDgfV8UXc+bM4fDhw02SGlCfuGgwYsQI+vTpQ2JiIsePH6d///7t/r7zWbRoEfPnz7f9XV5eTlRUFJMmTepWi6catLQbINTXg4ysPIbdeB/+YRHNPlN6Jpfs7z7m+ccXOm3HxqNPv0DUlVPt+j6j0ciWLVu49tprbcm+lq5jYHQ4t0+9mZEjR3Lw4EFeXPEGlV46+o4Yh3dgCJXFBZw6tAvvqnwevn9Wi7sfzndeV7JYLDz2xD84Wq4iPrH5rpEDKZ8yxNfCM//4e6fGDS39/qJzyG/fteT371ry+3ct+f27Vm/8/Rt2NdvD4cTG8OHDOXbsGGvXruXo0aNAfQmdO+64o8WVScI1GproVXqFc+WMa8grKqfgbB6nT/1C3qdvMvHSi1iwwLHdAo3P/f66D1vsTdGe83W2tnqPVJUUglKNxi+0xQbcnsERmFGRn5/f6vkbav0WKgPxGBCNb8QAlGo3PILCibjsJnJ/+A+pP2whIfH3HN3xIRkZGQwcONDu8TfpHZKZhvHXezAiJoIZ09t3T4UQQgghuitXxBdz587lyy+/ZMeOHURGNi/Z2tgll1wC1D9E79+/Pzqdjt27dzd5z5kzZwBsfTl0Op3ttcbv8fX1bXXMbm5uuLm5NXtdo9F0u0BUr9fz3Mur6su6XnGbrazrCf135Ob9TO2WT7nqjgeaPVA/pv+eYRFhDBo0yCkP1AcNGkRsRCip+u+b7cRu6/sa/6ZjxowhISGhxUVbFouFDz78iBK3UBISp9rO7xMWxfDQSPSbNrD2w49JSEhodj1tndfV0tPTST2RTcyE6VgUqqYHFRA1/DKObFtHZmamQ3GIs3THf6cvFPLbdy35/buW/P5dS37/rtWbfn9HrsPhxAbUN9v705/+1J6PCidoqYleP6uVsvIy6uquIuP7rwgJ09hWvLV1Hkd6UzyzdIXDpZW6Qlu9R7wCgsFiwlh2FmVE81Vf1YW5qDC32kwSftsREjZyEiU5RWjcfgteFQoFQYMvoeD7jzAaa9vdvL213iGyU0MIIYQQvZGz4gur1cpf//pX/v3vf7Nt2zb69et33s/s378fgD59+gAwbtw4nn32Wc6ePUtoaP1CmS1btuDr68vQoUNt7/nqq6+anGfLli2MGzeuw9fQ1SwWC+9+sI4cgwcRw0dRabLip1LXN+y+7naqqqo4e2gH+77+kP4JV9p2OJzYv7NDO8Zb0rCb+ZmlK9Bv2kDsqCva9X1KpbLFB/xt7fRWKBTEjrqCo9vWtbpQqbXzulpbC7kAvAND2h2HCCGEEEL0FHYlNr744gu7TzhlypR2D0bYp8UJuEKBn58/ANpx15LWxgQcWt6VMTC6D4UFBU0SJkB9EJM0Df2mDQ6VVuqqclZxcXEMigkndf/OZiu7YoZdjNJYTXXGHjQjL27yOavVQp5+KxEBXiQmJrZ6/oZAIiA0HGVeMca6GrQe3rbjWt8gLBYrpfk5HWre3lWBkhBCCCGEq7kqvpgzZw7r1q3j888/x8fHx7YL18/PDw8PD44fP866deu4/vrrCQoK4uDBgzz44IOMHz/eVj5o0qRJDB06lBkzZvDCCy+Qn5/P4sWLmTNnjm3HxaxZs1i1ahULFy7k7rvvZuvWrXz00Uds3LjRgV+he1q2bBlrPvkC7fAkcvYfQYEVLzcN8cOH0T8ujhFXXMfh4kzCLQVkbltniyWGxUQwY7bzF0E12c3s5O/rqQmCthZyAVQWF3QoDhFCCCGE6AnsSmzcdNNNTf5WKBSc23O84eGx2Wx2zshEqzo6AW9cxqrxroyft33OyYP7uXLGNe1asXTud3RVOavzrewa3C+azPxU0r5aTXjCRDyDI6guzCVPvxXl6cM89MSjbTYObwgklKY6/L29KCnMJziqP1D/mxnKi1Aq4czJX7g4JsIp9YWFEEIIIXoTV8UXr7/+OgATJkxo8vo777zDXXfdhVar5ZtvvmHZsmVUVVURFRXFLbfcwuLFi23vValUfPnll8yePZtx48bh5eXFzJkzeeqpp2zv6devHxs3buTBBx9k+fLlREZGsnr16jZ7tPUE69ev55/LX6dO7UvwwEvR+vhjqqmiqjCXH/fuByAmOgo3Dy9m33cvAQEBnbKIyVW7mXtqgqCthVxWq5UT+3cyTOIQh/TkHpNCCCHEhcquxEbjXgTffPMNjzzyCM8995xtq/WuXbtYvHgxzz33nGtGKZroyAS8pTJWUL8ro/+Y8aSnHiSvqJx+Viuck9ywd8VSa4mTzixn1ebKrlXLOHr0KC8uX0X2xpWYUaHCTESAFw898SjJycltnvu3QOJ7BoxJRH/oCIXZx/EN1qHWunPm0A7M5UWERfpLo28hhBBCiBa4Kr44NzlyrqioKLZv337e88TExDQrNXWuCRMmoNfrHRpfd2YymXhx+SrQDcbLYkFpMaBUqtB6+aLx8qU08xcOHD5CoJcWrUZJQEBAp+4udsVu5p6aIHBWiS5Rr6f3mBRCCCEuVA732Jg3bx5vvPEGV1xxhe21pKQkPD09ue+++/jll1+cOkDRXEcm4G3VkXX38sHL24+Cs3mUlZfZSls1sGfFUluJk/aUs+qItlZ2JSQkMHXqVFJSUsjPz0en05GYmNjmTo0GjQOJrL0pxMUMrW/efvRHyk/9gvVsWn3z9ge7fz8SIYQQQoiuJvFF95CSkkJeSRVR19/F2QPbqDi2h8CxN6JQKFAAXsERVGQeQr9tI5f37X4P+9ujJycIXFmi60LSHRblCSGEEKJ9HE5sHD9+HH9//2av+/n5cerUKScMSZxPRybgbZWxCtBFExQaxulTv1BXd1WTY/auWOpoAz5na2tll1qtbne5gCaBxIGv0RjNhBnqGB3rw9SHnmbKlCl2B0Cy7VkIIYQQFzKJL7qH/Px8zKjwDo1COepqsr7/nOI9/8VnwFjUPkFYasqpyvgZq3cdM/62FID09PQeP4ftyQkCV5XoulB0p0V5QgghhHCcw4mNsWPHMn/+fNasWUNYWBgAZ86c4eGHH+biiy8+z6eFs7R3At5WGSuFUkm/YReR9+mbZHz/Fdpx1zq8YqmnNuBrD2cEErLtWQghhBAXOokvugedTocKM1UFufhGDCD68v9H/v5vKf7hY0y1VZhrKjEWZzPjH/X9SBY8sui3OaxaSZifB4kTxnPxxRf3uIfrPTlB4IoSXReK7rYoTwghhBCOcTix8a9//Yvf//73REdHExUVBUB2djYDBgzgP//5j7PHJ9rQngn4+cpYlRedZuKlFxEcqia9HSuWemoDvvbqSCAh256FEEIIISS+6C4SExMJD/AiT78Vn/BYfCIGYLVYyP3pS0yAyWTE3dufH3bv4fNN36IKH0LshOkYrEoOH9jHwaN7+d+2f9K/XzQXjxre4xbqSILgwnMhLcoTQggheiOHExtxcXEcPHiQLVu2cPToUQCGDBnCNddc02yVg3A9Ryfg9pSxWrDg/hYTJnD+7eY9tQFfSwwGA2vWrCErK4vo6GhmzJiBVqt1yrlra2t55G+LybYEMHhoPL6hfVAqVXZte5bSVUIIIYToTSS+6B7UajUPPzCXhU8+T9rG1fhHxFGYtgf8+uAWMRIvrAyPDWfXlvVYfPuQNCYRs0LBgYOHMXqG0vfauzi7bzOV1Wc4UqqyLdQZMmQIL730EidPnqRfv34sWLAAd3f3rr5cIS64RXlCCCFEb+NwYgPqt2VOmjSJSZMmOXs8ohPYW8aqccLE3pJJPakBX1sJgiVLlrDstTepNKuxKjUoLEb+9uTTzPvLn1m0aFGHvnfJkiUsXb6KSosWn9HXU7x3P3v26RkxbAijRiW0ue1ZSlcJIYQQojeS+KJ7SE5OBuCFZStJ37QdTdRIvAIj8HbXEj98GAGeajJ8g1HFjuHY8ROAFaPak+Co/oCC4CHjKPj+I/qOvJTMQz9x1933knEqE5PGB9QaMKXw3NJXuPsPyaxcudKuMTXM2UtKSigtLcXf35+AgABZ3CM6rDctyhNCCCEuRO1KbFRVVbF9+3aysrIwGAxNjt1///1OGZhwLUfKWDlaMqknNOBrK0Hw9ddf8+yyN9D0G0vYiAm4h0RRW5BNyaFtPLvsDYB2JzeWLFnCs8veQBEyCK3Vgt/wRMymOuqKT7PvUCoAo0YltLjtWUpXCSGEEKK3kvii+0hOTiY+Pp4/zn2IgIsmExLZj4jwCBRKJaczDmOxQGjMYApzjwNWAmKGAPUPhLW+QVgsVgw1VeSmHSTtZC4eA6/Ef9hVuAdFU1uURcWRHby19lOA8yY3Gubsu/cfJic7hzqrAg93DyL7hHHRiEGyuEd0SE9alCeEEEKI5hxObOj1eq6//nqqq6upqqoiMDCQwsJCPD09CQ0NlcCjB7GnjJXFYuH9dR9S6RXeZBXL+UomdWYDPkdLM7WVIHj6hWVs27oFTb/LiEi6F+Wv1+sdMQDP8DhyN8Hy195iwYIFDpelMhgMLHvtTTT9xhJ80XUU/vAZ5uoSNAF9UHv6UZUDh478wsiRI5tte27vfRBCCCGE6O4kvuh+qqqq8PELYMSYS1Frfpvzunl6o1QqsNRWYrZYsFosaNw8bMcN5UUolQpUKg3p+37AY/B4gifejUqlAsAzfCDuugEUAO988CEvvvhiq2WpGubseTVKCqqsuA25itB+8dQajJSWnWZPbilZsrhHdFBPWJQnhBBCiJY5nNh48MEHufHGG3njjTfw8/Pjxx9/RKPR8Ic//IEHHnjAFWMUnaC15EBGRgZpmXnETpjerMZxWyWToHMa8Dlamul8CYKv31tOZZ2ZiOHjbUkN2/UoFASMmMCZrP2sWbOGe+65x6Gxrlmzhkqzun4XSFAEak9fqo7vxW/MZBQKBW6BfaipLCQ9LZ3qzANNtj135D4IIYQQQnRnEl90P631HgjQRRMQEMjZI9+jCe6LxWKisqQQn8BQrEDR0Z8IDAzi2N5t4O6D15Army26USoV+AwbT+EpPS+99BKPPfZYs+9vmLNXePbBXJWPSjeQiMtuQqFQ4IuVwmwNKk0klaUnZXGP6LDOXJQnhBBCCOdxOLGxf/9+3nzzTZRKJSqVirq6OmJjY3nhhReYOXMmN998syvGKVyoreSAyWTCYLTgHRTa4mdbKpnkTBkZGVRWVrY4uWxPaabzJQi8IwaicPNCqWr5PxruwZFYlRqysrIcvpasrCysSg3uIVEoFEr8h11J4c9fUbZ3I179x6D09MNcXcbRHV8wLETTZNtzWVlZl94HIYQQQghXkfii+2mt94BCqSRi2MWkrV2FOugU7hGDqKqpw02lgLLTuNUWMfT6aez934co1FrcgiJbbADvFhQJag0nT55s8fsb5uxBQ8ZzMv0XQi6/ttF5FPgG6yjLyyAqLp6je7+UxT2iwzpjUZ4QQgghnMvhJQgajcb2sDU0NNT2gNfPz4/s7Gznjk64XENyILVMTcyE6STcPp+YCdNJLVPzzNIV5Obm2lZrteTckknOcvDgQQAeffoFFj23jHmLn2bBI4vQ6/VA850X/rpI1BqtbedFpVc4a9ZtwGKxNDnv+RIEQbpIFEoVtWdaDrJqC3NQWIxER0c7fE3R0dEoLEZqC+r/c+LRJ47gi66HqmLKfvyUgv+tomLfV0SrSnlsQdOkTONVcy1x1X0QQgghhHA1iS+6n4beA95Veeg3baA0PweToY6Tvxxk785v0CitBGktqM+mU3VoK2d+/JySw9vpP2w07p4+VJcVYTUZMJbktXj+uqIcMBnp169fi8cb5uwqNzcsFitufsFNjmvcPLBYrKi9fGVxjxBCCCHEBcrhxEZCQgJ79uwB4KqrruLvf/87a9euZd68eQwfPtzpAxSuY09yYPv3uxgY3YcT+3ditVqbfN5qtXJi/04GNyqZ5Ax6vZ4XV9Q36Y66cmqzZIter/9t58WoK1ovzZSZS0ZGRpNj50sQ6IL9UFoMVJw8iOWc67VYrZQc2oaPysyMGTMcvq4ZM2bgrTJRcmib7dwefeLQJc4k+LKbQaHER2nk888+abbTpGHVXGfeByGEEEKIziDxRffU0HtgqJ+JzG3r2LfhZfZ8tAJleT43zn6cmxe8wHV/mM3Vv7+DoRNvxTNmOIe2fMSpb9dy/ZVjURsqqEjdgcVyzpzaYqXiyA40xkoWLFjQ4nc3zNnNdXUolQrqygqbHDfW1aBUKjBVlcviHiGEEEKIC5TDiY3nnnuOPn36APDss88SEBDA7NmzKSgo4K233nL6AIXr2JMcSMvMY8IVlzVbrVWan4N+0wZ8qvOYMX2a0+qP/pZs0QHgHxbR4k6MkpKSdpVmOl+C4NSBXYwe0h/z6V/I3bSaytxjmOpqqMw9Ru6m1RhP7uGBv9zncONwAK1Wy7y//BnjyT1Nzl2Vd5zCn7/GWnCcBQ/MabGBYmur5lx1H4QQQgghOovEF91XQkICL/1zCcueeZzZd9xMZLiO6+55lJCoOA5++x+O7NhIXdlZrr7mOq6+4TaiYvoy794ZLHvpBe65czp1GT9SkPI21XnpmOuqqc5LpyDlbeoyfuSPf7i91cbhDXP2oryTBAQEUHT0p0Zzdyvlhfn4eXlSkHFAFvcIIYQQQlygHOqxYbVaCQ0Nta2cCg0N5euvv3bJwIT9TCYTKSkp5Ofno9PpSExMRK0+/621t29DREQEix+6v74Px7Z1tj4cw2IimDG7eR+LjrAlW65OBoxNjjVukl1aWtpiQ8MGrZVmakgQPLN0BfpNG4gddQXegSFUFhdwYv9OfKrzeP6Vl/j6669Z9tqbnMnaj1WpQWEx4qMys3DeLBYtWtTu62v4bHvO3bBqrjPugxBCCCFEZ5D4ovtr6D1QVlaGxt2bI99/hf6bLzCptKDSgNnIjo9Wk5A4BXdPbwIDA1EqlaxcuRKAf32wnsJTelBrwGREY6zkvj/cbjve2nc2zNkrlErM+enkfP8Zfv3iqTUYoew0ZnMpPspyZvylvi+dxWKx7dbOyMhg0KBBXb7op2FM0pBaCCGEEML5HE5sxMXFceTIEQYMGOCqMQkHrF+/nheXryKvpAozKlSYCQ/w4uEH5pKcnNziZxom2JmZmZgMtVQWncFfF9XsfY2TAwMHDiQ+Pt7lE3NbsiUwBGhek7ch2eLv799iQ0P4rTTTsFZWb9mTIEhISGDBggWsWbOGrKwsoqOjmTFjRrt2apxr0aJF7Tq3xWLBy8uL22+9mdLSUvz9/QkICJAASQghhBA9lsQXPYefnx9Zx46QmV+IR/+L8R92FdrASOqKcqhM3c7ubz4nRhfcZGHRypUrefHFF3nppZc4efIk/fr1Y8GCBa3u1Gis8Zx9d0U+Ob9sJzt1Bx7uHkT2CWPsiMHMmH4XCQkJ6PV63l/3ISdyz3L3tJt49OkXiI0I5c7pt3fZ4p+GMaVl5tnijUEx4V06JiGEEEKI3sShxIZSqWTAgAEUFRVJ4NENrF+/noVPPo8lfDhRl03EKySCqoJc8vRbWfjk8wDNkhuNJ9h1BjOZJzPI++wDrpp6L8EhIbb3tZQcaFit5Uq2HhjFBRDe/HhDsiUgIOC8Oy9mzL6/1Qf+CQkJ503UaLVa7rnnHpdc5/nOfe7qroqKCj748KMWAyNJagghhBCip5L4oueIjo4mNzcHtwHjCbz6j1itVixW0AT3xe/KaKwWKznpO4iOjm7yOXd3dx577LF2fWfjOXtJSUmLi3v0ej3PLF1BpVc4A66cChiJunIqqfrveWbpChY/1Pk7mxuPKXbCdLyDQqksOkvq/p1dNiYhhBBCiN7GocQGwPPPP8/DDz/M66+/Ls38upDJZOLF5auwhA9n0OR7USjqH277RsThEx5L2sbVLF2+iqlTp9rKUrU0wQ7cv4udX6xh07rXuWzSTUT1H2R3csAVGurpHju0C8IvanLs3GSLUqnsUGmmzkjUtMe5q7vqaqo4k5NJ0MDRjLpGAiMhhBBC9C4SX/QMa9euxeruh8+gyzAbjaBUYmvZaLXiMWgcJaf2cf3117N161anfW9bc/bf+vOFk5A0DbXCCpzCPyyChKRp6DdtYM26DcTHx3daTHPumBp2ljf0DOyKMQkhhBBC9EYOJzbuvPNOqquriY+PR6vV4uHh0eR4cXGx0wYnWpeSkkJeSRVRl020JTUaKBRKwhMmkr1xJSkpKSQlJf02wfbsQ+ylSRiNRqqqq4m7aDzegSF8u24lez5aSUFsLG4aVZf1bWiop/vPZa8BUHomF4+A0FaTLfbsvOhJmiWfAkPYsXULVXVeqEpKqK2uwF8XKYGREEIIIXoNiS96hqysLFBp0QZGYLZawGz59YgCFAq0QdEo1G5s27mLZ599tt27NBxh6883YfqvCQSr7Vjj/nwZGRmdtqCp+Zh+01VjEkIIIYTojRxObCxbtswFwxCOys/Px4wKr5CIFo97BkdgRkV+fj5QP8H++VAahuhL2PWzHovFilKpwN/bi4Fx/bnunkX8svEtZt9xMyNHjuzS5EBCQgIP3z+LnJwcsr/7mKoaQ5s7MTq686K7NPVraXVXWVkpdWpP+k1MpkD/Danfbyas7yAUSqUERkIIIYToFSS+6Bmio6PBbMBQkoc6NBarQoECZX1eQ6mkrigLq8WEyjuIV1a+zsMPP+yU/nRtsfXnCwpt8XhDf76ysjKXjqO7j0kIIYQQojdyOLExc+ZMV4xDOEin06HCTFVBLr4RzRtkVxfmosKMTqcDYPfu3WRk5hDUfxLuGjVYTKBUU1xnZd/Bw4wcMhCNuzcxMTHd4gH5yJEjycnJ4fnHF1JZWemyhEN3aurX0uoug8GAxWJF6+5J0OBLKPj+I0ryswgM7wtIYCSEEEKInk/ii55hxowZLHzsCSp+2YlfSCwqlQp+3TlusVio+mUHFkMt2rD+VBaeZM2aNS7rV9fA1p+v6Cz+ushmxxv68zVuaO5q3XFMQgghhBC9kV2JjfLycrtP6Ovr2+7BCPslJiYSHuBFnn4rPuGxTcpRWa0W8vRbiQjwIjExEYvFwjffbqeuzkCxfhNmkxmLFZQKcPP2w10Xx5EDlQSpu98EOy4uDo1G45Jzd7emfi2t7tJqtSiVCox1NWh9g7BYrNRVV9qOS2AkhBBCiJ5I4oueR6vVMnP6bax8Zz0owGvoVWgCIjCW5FL1yw5qMnbjM/BSLHVV1Knc6ktXuVhDf77U/TtJSJoGjSo/ndufr7OcO6bG5ai6akxCCCGEEL2RXYkNf3//ZvVBW2M2mzs0IGEftVrNww/MZeGTz5O2cTXhCRPxDI6gujCXPP1WlKcP89ATj6JWq0lPT+dYZi5YzRiUHgSNuw61dxB1RdlUHPuZqsM7KFUpGXpR3AUzwXZ2Uz9nlLNqaXWXn68f/t5elBTm4+XpgVKpwM3TG5DASAghhBA9l8QXPdPSpUv54ssvOXlkG7WZB1CoNFjNJqzGGnxGXovKzQvj2RMosFJeXs57772HTqcjMTERtdrhYgHn1dCf75mlK9Bv2sCAhMshvL5P3zH9983683WGc8cUO+oKvANDWu0ZKIQQQggh2seu2eW3335r++dTp07x6KOPctdddzFu3DgAdu3axXvvvceSJUtcM0rRouTkZABeXL6K7I0rMaNChZmIAC8eeuJR2/GSkhJycnLxG3wZirBB1FaUYiktxGK2oAwbgLEkn4pjP9Lv91c1mWB3l94TruDMpn7OKmfV4uouhYKBcf3Ze+AQmbu2EuyuxScwjNL8HAmMhBBCCNFjSXzRMymVStZ98AFXJt2IwtMPt8BINKHReEQPp/bUIUyFpzBUFGGuKmbdxq188NUOVJgJD/Di4Qfm2uITZ0pISGDxQ/fz/roPOfHdxzDtJrK/+5hhEWHN+vN1VnzTeExp29bZYoTWegZ2td4c9wkhhBCi97IrsXHVVVfZ/vmpp57i5ZdfbjIpnTJlCiNGjOCtt96SGrmdLDk5malTp5KSkkJ+fn6LK6KKi4upNprRRQ8DN0+KTueCuzcqL3/UajeUQ8ZjLspm844fuFGvJyEhoc2H9fHx8T1+4uuspn7OLGfV2uoulakWj5LjeJccwzskhP0fL+/WgZEQQgghxPlIfNEztPTA++KLL+a+P9zGm++tx2AxY6mtwHg6A4VCgaGiCGNhNn5DriT6ypvwComgqqB+R/nCJ58HcFlyIz4+nrS0NNLT03n+8YUMGjSoSYzS2b31GsbkqrjJWcmI7tRzUAghhBDCEQ7vB961axdvvPFGs9cvuugi7r33XqcMSjhGrVaTlJTU4jG9Xs97a9dRa7RQVFKCxXQWhYcfGt9QFAoFCoUCtU8Qbr5BmLx1rFm3AYvFwnMvr2rxYf3Djz9NWKAvJbXmHj3xdUZTP2eXs4LWV3ddHBPBHQtex8fHp0cnlIQQQgghziXxRffU1gPvlStXotPpeHnla1RVFYPKDQVWzFXF+A25kpHT5tt6APpGxOETHkvaxtUsXb6KqVOn2hZhOXOngFKpJC4ujvT09Gbn6areekql8ry7v9vDWcmI7tZzUAghhBDCEQ4nNqKiovi///s/XnjhhSavr169mqioKKcNTHRcw0T1jNELv5BwrIAFJRqfYBRaD1RaN6wmE8byQqwWMx66/vx0YA+nTr1IlX9ss4f10WMS2ZSWTkbuca6751F8QnQ9duLrjKZ+zixn1ZirV3cJIYQQQnQnEl90P+d74P23+XOZOnUqEyZMYNu2bdTV1VFRUcG6jVuJvvImW1KjgUKhJDxhItkbV5KSkkJSUlKn7RRwxWKkruSsZERv+12EEEIIceFxOLHxyiuvcMstt/C///2PSy65BIDdu3dz7NgxPv30U6cPULRP44nq5ddOxfDBCo5n6lFFjUbjHYTVasFiNKJSqzCd/gWLUs3x4joqj2WQplDQ/5p4iouKCAoOrj+h1cqx4yfwjB2D+cSPWLGg1mh77MTXGU39nFXOqrXxuWJ1lxBCCCFEdyPxRfdyvgfe29cu57459xMWFYvB9FtCIiAgAItCjVdIRIvn9QyOwIyK/Pz8Tt0p4KrFSF3BmckIZ/8uDbtvGs59bikwIYQQQghnc3imcf3113Ps2DGmTJlCcXExxcXF3HjjjaSnp3P99de7YoyiHWwT1VFXoFSpiBo8EkPOUQyn9mEuyUGpsGIqP0vl/v9Rk52K14BLwc0HN+8A3PzDqNYGsO/gYYoKCwEoKy+jtLKKoOhBWCxQV11p+y7bxDcz1zaZ7Qkayj4N9TORuW0d+g2vkLltHcP8zDy24PzBVONyVo1ZLRaK805xQv89xtpKfHx8XHkZQgghhBA9msQX3UvjOOLcB95nTh6lIP80Z7R9CLzoBhJun0/MhOmklqnZvOMHrMZaqgpyWzxvdWEuKsyEhoY2eTjvr4tssmCq0ivcVh7XGVy5GKmztXVvHI3JnPm76PV6FjyyiEefrt919ejTL7DgkUXo9Xo7rkoIIYQQon0c3rEBEBkZybPPPuvssQgnOnei6hMUhm9IOBWFJyne9i4a3xAsZiMqpRKfYVcRMPQKzuzcQIB/AFaFGh9fX6qqa0jPOM64oCAMBgMWixVLXRVKpQI3T+8m39eTAoLGOlL2qaVyVvknfuHIzk2UlBRRVnQWH5WFN1b/i5l3JPeYMl1CCCGEEJ1N4ovuo7UH3laLhSM7N6EMi8M/JIa6uloKMtNx8/Rm1LVT0W+yoEo7Sp5+Kz7hsU3KUVmtFvL0W4kI8CImJqZTd1A4o7ded+HMZMT5f5ezmAy1ZGZmthkjNd59M+DKqYCRqCunkqr/vseVKxZCCCFEz9KuxAZAdXU1WVlZGAyGJq+PHDmyw4MSHXfuRNXN0xtPvwCCEq4lb+834O6JJqQvGh9/tD7BFO3+AvPZE4y8ZQZZB36k6OhuQhKuofT0ccrKy9BqtSgUcPbI9wQHBhGgi27yfT0pIDhXe8s+nVvOyjeoD4d2fYPRpw+a2EuJHKplYGQYv2SmyqReCCGEEOI8JL7oHlp74F2Sn0VJSTHaqEjO7t1E1REtSqUapQI83DSERPQlKDiM4iw9aRtXE54wEc/gCKoLc8nTb0V5+jAPPfEoVVVVnbqDIi4ujgFROnb+9z10/YfhHRhC3+GXoFSr7e6t50qONFB3ZpKmrZ6DhQUFbP/sA0x5Gbz+wWe4aT9vsf/JuaWx1AorcAr/sAi7S2M5s4G8EEIIIS4sDic2CgoK+OMf/8j//ve/Fo+bzeYOD0p03LkT1QBdNAEBgZSVFdAvMZlTOz+n7tgPVNbV4BEUDgol/cZMYMDIS/Dx8ePHjRs4u28zSg9fqqsq8VBaqTm2m+rTxxl613wUysYrsLo+IOgqDeWs3lu7ns8//z8MgQMIjhxEgI83A+P6ExQcTN/BI3pcDxIhhBBCiM4i8UX30toD77rqSqrLSyg8sB0PXX/6jE3EotRw9vgR8k4e4OTWL9FgZkhMH4qLUsneeAQzKlSYiQjw4qEnHiU5OZn09PRO3UGxYcMGNm/5hqzCCn45fAiVErzc32T4ZZNQadR29dZzFUcbqLeVjHA0Jmut52D28TR+2PwfjIVZXPH//kTfUeNa7X/SvE+H1XZ+e3bfdFYDeSGEEEL0Tg7P3ubNm0dpaSk//fQTHh4efP3117z33nsMGDCAL774wqFzLVmyhLFjx+Lj40NoaCg33XQTaWlpTd5TW1vLnDlzCAoKwtvbm1tuuYUzZ840eU9WVhaTJ0/G09OT0NBQHn74YUwmU5P3bNu2jdGjR+Pm5kZcXBzvvvuuo5feozRMVL2r8tBv2kDZ2TwGXzIRc346efu3EzZoDBdNvAEfT0+8o4YQNfZaxlx+NSgU6GKHcOnkaXhUnaF075ekf/l/ZG5bzyWR7gyNDiPv2EFK83MwGeoozc9Bv2lDfUAwfdoF+dA+ISGBWffeTUy/OC6/7v9x+cVjGHfJxbbG6z21B4kQQgghRGdwZnwhOu7cOKJh3l9bWU5p3knUgZH0u2oqaD0pyM0CPx0BlyfjPvByLN4hKKMTGDJ8JI/f/yeW/u1+3lvxT37auZ3k5GTgt4fzJ/bvxGq1Nvnuhofzg520YGr9+vUsfPJ5yoOG0v/m+fS99VECxt9JnX8/dn21HlXeIbt667lCQwmn1DI1MROmN+lX8szSFS32p2jt3rQ3Jju35+C+DS+z56MVKMvzue6u+cSNvarN/icdKY3VnusXQgghhGjM4R0bW7du5fPPP+eiiy5CqVQSExPDtddei6+vL0uWLGHy5Ml2n2v79u3MmTOHsWPHYjKZ+Nvf/sakSZNITU3Fy8sLgAcffJCNGzfy8ccf4+fnx9y5c7n55pv5/vvvgfoVXJMnT0an0/HDDz9w+vRp7rzzTjQaDc899xwAJ0+eZPLkycyaNYu1a9eSkpLCvffeS58+fUhKSnL0J+gxGiaq76/7kLRt6zAYLYR5KaitOIVnYRXmSk/cLFWoy/MZnTTZ9iAeIKzfYMJi+jM6yo9Z991DQEAAcXFxHDhwoMn5tBolw2IimDH7wi6zVFFRgVrrTsyAoag12mbHe2oPEiGEEEIIV3NmfCGco6U4wlBTgZu7O/5Rg3BzdyPvWAYmtTsKr2BMVivqPkOoyjxEVoWFKpUbx09ls/Sfz7X4kP2qy8ex/423+e7DQqKGjEHt5obZYKAo7yS+NaedsoPCZDLx4vJVWMKHM2jyvb/2/LBiCA3DNHAEp75x40xhFiNGjOjQ97THuSWcGnZeNCQQ2trt3XjHuP6/b1BTU4eHhxujhw3mznbEZI17Dh48eJCVb69hyOT7CAhvWnq4pR0Y7S2N1ZHrF0IIIYRo4HBio6qqitDQ+hUZAQEBFBQUMHDgQEaMGMG+ffscOtfXX3/d5O93332X0NBQ9u7dy/jx4ykrK+Ptt99m3bp1TJw4EYB33nmHIUOG8OOPP3LppZeyefNmUlNT+eabbwgLC2PUqFE8/fTTPPLIIzz55JNotVreeOMN+vXrx0svvQTAkCFD2LlzJ6+88kqvTmxAy82xY2NjycjI4PDhw5w8mcA3O38i6+dvUCdciXdgCJXFBZzYvxPfmtPcf84Kpo402+7NXNGUUOrNCiGEEOJC4Mz4QjjPufP+zMxMXnzzfYw+Xpw58QuVleUoAiJRWKxgMaH29kft7k2tVU2+wZ1tP+5tVoKocemhgpIKcg78j4M/fIPG3QutWklEgBd/fGCuUxZMpaSkkFdSRdRlExs1Mleg1bqh1boROeYasjeuJCUlpdNjwuYlnH7jSAN1hVKNQm1FoVRjxdrq+86noedgWVkZGndvfEJ0Lb7v3MVa55bGotGltFUay1nXL4QQQogLm8OJjUGDBpGWlkbfvn2Jj4/nzTffpG/fvrzxxhv06dOnQ4NpmCAFBgYCsHfvXoxGI9dcc43tPYMHDyY6Oppdu3Zx6aWXsmvXLkaMGEFYWJjtPUlJScyePZsjR46QkJDArl27mpyj4T3z5s1rcRx1dXXU1dXZ/i4vLwfAaDRiNBo7dI1dpV+/frZ/PnDgAOs//pRjWacxmCwYjCZq0naRnn8MrYcnWrWSkdHh3PzH+9Dr9XzxxRdERUUxbdo0tFpts/OZzWan1z5u+J17yu8dExPD0Ngojh7+gcCwW5rVu80+/APDYqOJiYmx65oOHjzY5B5p1UoGRPcheeotPbaBZk+7p8I+cl97J7mvvY/c096pq++rs77XlfGF6JiGB95Qv5AnKMAP38gwTpwupKCmCo2PCaWiFqVSBWYjKo0bfn2HUV1azMnUFIqKimznaig9VOkVjm//SzCdrSToosmoAiLRqlX06xOI4ewpPvlyM4MHD+5wciM/Px8zKrxCIlo87hkcgRkV+fn5Hfqe9nBGCadKr3CGTL4X76BQKovO8ksLPTAc5ehirXP7dAxIuBzCofRMLsf037fav6Qj1y+EEEII0cDhxMYDDzzA6dOnAXjiiSe47rrrWLt2LVqttkN9KywWC/PmzePyyy9n+PDhQP1kVKvV4u/v3+S9YWFhtglofn5+k6RGw/GGY229p7y8nJqaGjw8PJocW7JkCf/4xz+ajXHz5s14enq2+xq7kyvHXcKV49p+z9mzZwkKCiIoKAiAb775phNG1tSWLVs6/Tvb68pxl3AlAJnNjl2cdBHQfJfSec93zj3KyckhJyen/YPsBnrSPRX2k/vaO8l97X3knvZOXXVfq6urnXIeV8UXwrlsq/MzUwmPGcmp3HzUag0aLz9QqCg7uhO1ly9ugeGYamsoqasjNTWVcePGNSk9NOraqXy7diXWwBhiLrsJhQIKs49TYbRyadI09Js/ckoZIp1OhwozVQW5+EY079dRXZiLCjM6Xcu7E1ypu5Zwak9z8sZly0589zFMu4ns7z5mWERYq+WKXbHbXQghhBAXHocTG3/4wx9s/zxmzBgyMzM5evQo0dHRBDfq0eCoOXPmcPjwYXbu3NnuczjLokWLmD9/vu3v8vJyoqKimDRpEr6+vl04so6xWCw89sQ/OFquIj6x+a6CAymfMsTXQqCfNy+/8S7qmNH4D7sC9+BIagtzKD2yE1PmPh76y91Nfh9XMBqNbNmyhWuvvRaNRuPS73KmlnZaDIwO5/apN9u108Lee/TMP/7e48pS9dR7Ktom97V3kvva+8g97Z26+r427GruKFfFF8K5Gq/OP/5TPpYaNeaqYhRmA1Un9mIsOIXfgIuozk2nIv0nLMZa23y1cemh0jPZlJQUE3L5Nba5rm+wjtK8DMoryp1WhigxMZHwAC/y9FvxCY9tVI4KrFYLefqtRAR4kZiY2LEfph3ak0AA15dwOncHRuyoK5qUKm5tB0ZD2bK0tDTS09N5/vGFDBo0qNV4pb3XL4QQQgjRmMOJjXN5enoyevToDp1j7ty5fPnll+zYsYPIyN9WbOh0OgwGA6WlpU12bZw5c8a2skan07F79+4m5ztz5oztWMP/b3it8Xt8fX2b7dYAcHNzw83NrdnrGo2mRz8MSE9PJ/VENjETpmNRqJoeVEDU8Ms4mLKGvT98hznmEsKunolSocAMaMLiCArtT+4mI6+seoMHH3zQVpbKlXrabz5mzBgSEhLa3RvDnnt0ZNs6MjMzO63erMlkIiUlhfz8fHQ6HYmJiajV7f+vjp52T4V95L72TnJfex+5p71TV91XV32nM+IL4RoNq/Offu6fpP30E9VpP6DQuKF290ShcaM09XtMtRVYaipQmI22XT2NSw8VZKZjsVhx8/staaVx88BisWIwGAhwUhkitVrNww/MZeGTz5O2cTXhCRPxDI6gujCXPP1WlKcP89ATj3ZoXtte7U0gdEYJp5Yax2s1SobFRLS6A6PhmuLi4khPTz9v/NPe6xdCCCGEaMzhWdzdd9/d5vF//etfdp/LarXy17/+lX//+99s27atSd8GqH9IrNFoSElJ4ZZbbgEgLS2NrKwsxo2rr9Ezbtw4nn32Wc6ePWtrOrhlyxZ8fX0ZOnSo7T1fffVVk3Nv2bLFdo4LhT0T4awTx6lGi27EBJTnrAJSKhQEjJjAmaz9rFmzhnvuuafJcWl2Xa9xLWJHdbd6s+vXr+fF5avIK6nCjAoVZsIDvHj4gbkkJyd3yhiEEEII0bs5M74QrpeQkMCHa99n1NhLOW1wR6VWUV18Fm34YDz6DkLrF0Jd6Vk4nUrK93u47DJ9k9JDbp7eKJUK6soK8QgKB8BYV4NSqUCr1Tq1DFHDfPXF5avI3rjSNp+NCPDioSce7dL5bHsSCJ1VwuncxvGuiO3am0ARQgghhGjgcGKjpKSkyd9Go5HDhw9TWlrKxIkTHTrXnDlzWLduHZ9//jk+Pj62nhh+fn54eHjg5+fHPffcw/z58wkMDMTX15e//vWvjBs3jksvvRSASZMmMXToUGbMmMELL7xAfn4+ixcvZs6cObZdF7NmzWLVqlUsXLiQu+++m61bt/LRRx+xceNGRy+/R7NnImysqwGlBveQqBbP4R4ciVWpISsrq8nrer2+flKamWeblA6KCefO6bfLpNQB3ane7Pr161n45PNYwocTddlEvEIiqCqoX+G28MnnASS5IYQQQogOc2Z8ITqHVqvl8Ucf5uEnllBaA14DxhKQcB1Ws4naihLc3D245Ja7KT++lzXrNvDCkmdspYdGXTuVgIBAio7+RMSvPTbKC/MJ8PbC18cX/a6vnVqGKDk5malTpzp1B7KzNE4glJSU2CoVeHl5YbFYmiUSOrOEU0cWa9mrMxIoQgghhOi9HJ7N/fvf/272msViYfbs2fTv39+hc73++usATJgwocnr77zzDnfddRcAr7zyCkqlkltuuYW6ujqSkpJ47bXXbO9VqVR8+eWXzJ49m3HjxuHl5cXMmTN56qmnbO/p168fGzdu5MEHH2T58uVERkayevVqkpKSHBpvT2fPRLhfVASnS45RW5CNd8SAZueoLcxBYTai1WrZs2cPfn5+VFRU8NzLq6j0Cid2wnS8g0KpLDpL6v6dPLN0BYsfkhU39uou9WZNJhMvLl+FJXw4gybfa6tJ7BsRh094LGkbV7N0+SqmTp3aLYJCIYQQQvRczowvROdJTk7m9OnTPLP8TVReAVTlHUOBFS83DfFjRtE/Lo5SHw+OblvHiRMnbKWH9m/5mJghCRza9Q2Z2zegCY7B002LLiQM/eaPXFKGSK1Wd9vYT6lUUlVVxYeffHbeRWK9sYRTZyRQhBBCCNE7OeWJpFKpZP78+UyYMIGFCxfa/Tmr1Xre97i7u/Pqq6/y6quvtvqemJiYZqWmzjVhwgT0er3dY+uN7JkIP/zUk0y5dRolh7bhGR7XpByVxWql5NBWFLVl7Nh3hG9/TkWrVpKffQK38MFcdfNvD+L9dZEkJE1Dv2kDa9ZtID4+vkdNsLtKdwlWUlJSyCupIuqyiU0aLQIoFErCEyaSvXElKSkp3TZIFEIIIUTP1d74Qrhe4/Kz0dHRjEoYjW58InUGI56enkSER6D4da7aUEa1pKSEgIAAfv+7RFK27eBMRha+ilpOH92BQa3FPSSU8qJQhvWNIPlPf+Hs2bO89957nbK7oqvL6er1ep5ZusLuRWJSwkkIIYQQop7TZojHjx/HZDI563TCRc43EY6Pj+eOqTfzxgcfk7vJSsCIq3EPjqS2MIeSQ1upTv+R6LhhxCbOwDsolNOnMjh45mPc809z5uRRdLFDbN+lUCiIHXUFR7etIyMjQ1bi2Kk7BCv5+fmYUeEVEtHicc/gCMyobOXjhBBCCCGcTeKL7ufc8rPG2kpy8vIJHVvJwCEjm72/sriAupoqXn9rNWcrajEYLWjUCjSmagI91Lj374/RZEFhNeNmraOmsoy7/jSLomozZoXr+7t1dTldi8XC++s+pNIrvMlu7fMtEpMSTkIIIYQQ7UhszJ8/v8nfVquV06dPs3HjRmbOnOm0gQnHOLLSKD4+nj97eHD48GEAhg8fTt++fXnuueeYNWcO1QYrYQH+nE7dRs3JfSjUbigtJhS1ZUTHDeOWR1fYJt3u/sEEDLmcurMnSf1+M2F9B9lWaEHnN7vuLbo6WNHpdKgwU1WQi29E87JX1YW5qDCj0+k6ZTxCCCGE6L0kvugezhdPtLSzoKIgn8y3l/DD5v/gE9yH4JAQ2/utViuHdn7N2dxMPKKG0n/ClXgHhZKdcZQfNv8HY2EBV0yZgYdfAAe2fkHKrn3U1lTjNeBiAhMuJyR6AOaKQpf1d3N0p4QrZGRkkJaZR+yE6U1K0ML5F4lJCSchhBBCXOgcTmycW85JqVQSEhLCSy+9xN133+20gQn7ObLSqKX3lq98jUOHD1Or8gK1Fswm1JY6Roy/nuryYswluSSOv5yM/BJiE2c0mXRrtVpUKiV+/eIp3vslJflZBIb3tR3vzGbXvU1XBiuJiYmEB3iRp9+KT3hsk3JUVquFPP1WIgK8SExM7JLxCSGEEKL3kPii650vnmhtZ0FAeDRXT/8rX7/7Mts/fpvEm+/AOzC0voyq/jsKUncRNGA0o6+7vf4zViv5ZTX4j0qiLvsQv/y0FZMFzP6RWFRqPAddRsBlt6FSQGllNcFBkQyafK/T+7u1d6eEs5WVlWEwWvAOCm3xuCwSE0IIIYRoncOzwm+//dYV4xDt5MhKo5beu3vntxw4mo/RIxi/UdfhM/gK6oqzqTyynYM/bufSSTfhPngUJWU5mCw0m3T7+frh7+1FUbURs8VKXXWl7VhnNrsWzqVWq3n4gbksfPJ50jauJjxhIp7BEVQX5pKn34ry9GEeeuJRaRwuhBBCiA6T+KJr2RNPeHl5tbqzQNd/KFdMmcHPn/8fv2x8G7XWHa1GSbifJ5UhIYy85lbbZ8rKyyitrMIvPA6zpydpn3yHb98R+IZEYkGJz5CrQKlC4+GBsbqS0vIywkJDnd7frSM7JZzJz88PrUZJZdFZ/HWRzY7LIjEhhBBCiNbZvfykpqaGL774goqKimbHysvL+eKLL6irq3Pq4ETbzl1p5K+LRK3R2lYaVXqFs2bdBiwWS4vvVapUHM8rwis+Ca/BV2IszsWqVmKprkATEoM6KJI9mz8lZujF5BaVYjbUUVl0tukgFAoGxvWHstNUFZ+hrqoSk6GO0vwc9Js21De7nj5N6r32QMnJybzw5KOE1Zwie+NKUt97jOyNK9HVnOKFJx51SZ3jxiwWC+np6ezZs4f09HQsFotLv08IIYQQnUvii65nbzxRUlLS5s6CvvGXEjtwGHP/mMySv81j2TOPM+veu/Hw9m/yGYPBgMViRePmARp3jGYLPhEDMFaUgFKNNigcqF8gpXH3xGA0YTAYnN7frbvslIiLi2NQTDgn9u/EarU2OdawSGywLBITQgghhGiR3cut33rrLb744gumTJnS7Jivry8rVqwgOzubOXPmOHWAonWOrDSyWCzoUzMIHXcT5eVl+Pn6cSz9GEarAo/AcFQevhRvepW89x8BlRqFUoXFaMBUXcWuL94h1NeLMB8tJ/bvbLJdGyAwKAg/cylaHyWlqdspOLit05tdC9dITk5m6tSppKSkkJ+fj06nIzExsUM7NTIyMqisrGyzb0hXN3IUQgghhOtJfNH17I0nSktLz7uzwE2rYuTIkbYdDunp6c0+o9VqUSoVGOtqqCk9AxYzHsER1JUXgsWEoSgPTVA4CoUCpVKJ1VqffKktcm5/t1Z3SlitlJWXUZh7CpOhFh8fH6d8X2uUSiV3Tr+dZ5auQL9pA7GjrsA7MKS+lNf+nfWLxGbfL4vEhBBCCCFaYPfTybVr1/L444+3enzevHk89dRTEnh0IntXGu3evZuNX2/ml+OnKAw/gzqvGH9vL0zGOlAoUbl7U3lsN6bKIjwGjMNryHg0/n0wluRSeTiFNP1PVIb4M+f5Z1n76X9bnHTrlOUsenUFPj4+XdLsujtypKF7d6ZWq52y5f/gwYMAPPr0C1TVGFpNVnSHRo5CCCGEcD2JL7qevfGEv78/g2LCSW1hkVNr5WcbdiM0/kxDGdvigtNUnTiACjNKjZaA/qNRqz6g4pftBF05HZVSidlkQqGoT7A4u79bS2MrKiwkPeM4JRWVFB7aiVtxBm+s/hcz70h26dwzISGBxQ/dX7+oZ9s626IeWSQmhBBCCNE2uxMbx44dIz4+vtXjI0eO5NixY04ZlLCPPTVZ62qqeH/DZ1R7hOLpH4pPkA61dwAlhfnUFhWDxYKxpoyK/f/DI/Yi/C67HZVGCyjQBEXhM/pGFCjIPrqdjz79N7fecD279+2XSfd5yI6DpvR6PS+ueIPkm28g6sqpeASGtZis6IpGjr0lASWEEEL0NBJfdD17ezwEBAQ4vLOgtd0IOj8PTmz+D8bCTEJ0kRQd/YnQ0ZPwH3QJBQe2UqpUohhxFVY3Hyg/w0n9Rqf3dzt3bAExQ0nPPkN1nQFjYSY+ajMj/t+f+KXodKcsrElISCA+Pl7mpEIIIYQQDrB7ZmgymSgoKCA6OrrF4wUFBZhMJqcNTJxfSyuNGlitVk7ov6O6tAD34eMZMuISSgre5ezh74m56jaCo/pTYLVC2VEqjnwHFgsecZeiVNcnNaxYsRiqUSjAe/jV1OWm8u2PegxWFY8t+KvszGiD7Dho6rdkRX3pAP+wCMwoW0xWdHYjR0lACSGEEF1H4ouud954otFODKVS6fDOgtZ2I1zVzwdLzFBOnS7g+KFvqS7KI2LwGGL73MqRHRvJO6VHoVThqVUTHeLLQy7o79YwtvfWrue/H62gwqzCLyiU4MBght6QjC52CFar1SULa1qiVCpd2qhcCCGEEKK3sTuxMWzYML755hvGjBnT4vHNmzczbNgwpw1MnN/5arIqCo5hsio4m3WCU8eOUlNeSvnxdKpKCwkfk4iPfxglVgNlaTtBoUATGA5YsZiMWAzVWA21KN28UPsEoNK6g1rDWZM7az/8mKX/fE6SGS3oih0H3Z0tWXF1MmBscuzcZEVnNnKUBJQQQgjRtSS+6HqO9nhoz86C1j4D9fPE3bt3k7JtB2dKUjGYLIxJGIknRkaNHM4ll1zS4f5ubUlISMDDwwP9kTSCR04kOCqWAF00il+vxxULa4QQQgghhHPYPUO8++67mT9/PsOGDU6foPQAAKPHSURBVOOGG25ocuy///0vzz77LC+//LLTByja1lZN1sDoeFa9exTf8NGEXDQON79gitN+JvuHzzn+xav4BOkwlhUQ4W4iu6wOw9lTaIIiAQtYrajdvdF6+1F35iRYLCg07oT1G8LRkz/LxL4Vnb3joCewJSsCQ4C8ZscbJyvsLYfg5+fXoTFJAkoIIYToehJfdA+O9ng4d2eByWRiy5Yt5Ofno9PpWkxEtLYbYeDAgQwcOJDp06d3WRmmiooKNO7exI6+ArVG2+y4MxfWCCGEEEII57E7sXHfffexY8cOpkyZwuDBgxk0aBAAR48eJT09ndtuu4377rvPZQMVrTt3FZSPjw8Wi4VHFj2G1T+ckFHX4O5d/yA4eNhlBA6+hFNb3kNdkUdsbDQPz/0T9y9YSMmpfXjq+mFVKNF4+6NQKLBarFT8sgOlwopXQAj+ukjK0nfLxL4VnbnjoKewJSuKCyC8+fHGyQpHyiF0hCSghBBCiK4n8UX30d4eD+vXr+fF5avIK6nCjAoVZsIDvHj4gbkOlY7qqjJMBoOBzZs3cyrtEMb/ruGSG2ag0jZNbjhrYY0QQgghhHAuh5bBfPDBB3z44YcMHDiQ9PR00tLSGDRoEOvXr2f9+vWuGqOwQ0MwoFarefPtd/jLw4+z+2gWppoq0r98k4rc9N/eq1LRZ2wSpaWlFOXn8Nr7G/D0CaDm+G5KfvoMU9lZzIYa6s6cpGjH+9RlHsAnLBofH1/KKyoxGWrx8fHpwqvtvhrvOGjJhRgYNSQrTh3a1exYQ7JicKPazXdOvx3vqjz0mzZQmp+DyVBHaX4O+k0b6sshTJ/W4RV8koASQgghugeJL7qPhnhi7NixDBw40K6kxsInn+eMR1+iJv+VYXc9S9Tkv3LGoy8Ln3y+29+/JUuWENV/IM+teoec0jp+3PI5r/31//HDp/9ne8+5c1UhhBBCCNF9OFys9LbbbuO2225zxVhEBzXuGRBy6U3kh+SgcvPg7NGfOfbNOvpe8XsC+g3HWFdDSVERNZUVKPsMpO/VdzD81lB2rF2JftuX1GYeRKl1RwEoseAZFIGptoYqjxB2fL4OdfEJlrywlPvnzG61JnIDi8XSZdvKXeF819NZOw56koZkxT+XvQZA6ZlcPAJC26zd7GhjSkd1VskrIYQQQpyfxBc9j8lk4sXlq7CED2fQ5HtRKOrncb4RcfiEx5K2cTVLl69i6tSpHe6P4Yp4YsmSJTy77A00/cYSNmICmoBwKvNPUnH0e37c9BkWs5nh429oca4qhBBCCCG6B9d0YROdrnHPgOgxiRxOTaWiugalCdyjhlNZU0nmtg2YzCZUShW1ZzNx9/Bk3M332h7sTrxrAYPHXct/X/s71RVnUbj7gncgdYY61D7B5O3bitJixCcggq9/OsKu3ffyj8cWtrrNXK/X1z+czsyzPZweFBPOndNv75FNme25HkcbMF4oEhISePj+WeTk5JD93cdU1RjaTFa0txyCvRxNQPW2BJ0QQgghREekpKSQV1JF1GUTbUmNBgqFkvCEiWRvXElKSgpJSUnt/h5XxBMGg4Flr72Jpt9YIpLuRfnrPFAdMwT3sFgKsLLnqw/xNJYwLDbaaQtrhBBCCCGEc0lio5do6BkQEH8dP+3VU2lWofQPR6H1QqlS4R5TS+XujwlTVKAbfBHbDn9HROwAAvvENDlP+KCRTLzjAba+txS1pwe1dRWYDNWYygtwCx+C36CLiRgwAuoqyNy1kSf/+QpxcXH4+fk1eeh74MAB2+6R2AnT8Q4KpbLoLKn7d/LM0hUsfsi1AYKzH0Q33g1zvuvpjB0H3Vlrv/3IkSPJycnh+ccXUllZed774spay44koHpbgk4IIYQQoqPy8/Mxo8IrJKLF457BEZhRkZ+f3+7vcGT+7Yg1a9ZQaVYTNmKCLakBoFKp8PLyxDLias5kH2T86GEsWrRIFrMIIYQQQnRTktjoJcrKyqgzmjmRe4YyowJtUDhatYa66iqsCiXa8IFY1B4c+ymFoqxj1JzU02/abNvnrRYLJflZ1FaWc3T3t7jHjmXcNZPZs3EdNQYTKt0Agi+9GUN1JeXVNYSFhtNvYjLHv1rNH/80m6gBgzGarGg1SgZG96Hg7FkqvSKarIb310WSkDQN/aYNrFm3gfj4eJcECs5+EN14N4y91+PqHQfdVVu//fDhw4H63RIajaaLR2pfAspVAbUQQgghRE+m0+lQYaaqIBffiOYlVqsLc1FhRqfTtev87Zl/2ysrKwurUoN7SFSLxz1Co0GlxWAw9Pq5uxBCCCFETyaJjV7Cz88Pc10teTlZuPUdjYd3fW8ApUpFXXUVtSX5WFGQn5mBoaII3LzRf7eFX3ZtwdPbl+rKckwqd4yGOkrys9H6BlKWdwIroHDzxH/I5SiVSjTunhiqyzAYDJiMBqwBUeQX5zJi6FVEDh1NZdFZ9Lu2cOynvVx+y0VNSvwAKBQKYkddwdFt68jIyHD6inxXPIhu2A0TO2G6Q9fjyh0H3dH5fvu/zZ/b1UNspq0ElCsDaiGEEEKIniwxMZHwAC/y9FvxCY9tUo7KarWQp99KRIAXiYmJ7Tp/e+ff9oiOjkZhMVJbkI13xIBmx2sLc1BYjERHR7dr7EIIIYQQonN06GlcTk4OOTk5zhqL6IC4uDh8NFCZk47W+7eGx2qNG56+AZjyfkHt7onKN4T4pOmEDBpDQfZxTp3IIPXQAU6dPMGZzHQ0uoF4jpyENmwAJw//jKGyBLPJiNonCKhPlFitYDabKc7NRBMUiVdgGG5e3qg1Wvx1kcRdfj2K0EGcSt2L1WJpNlbvwBAMRgtlZWVO/Q3OfRDtr4u0jSkhaRqVXuGsWbcBSwtjaktZWRkGowXvoNAWj7vqenoSe377Dz/+rKuH2aKGBNTYsWMZOHCgLUlhC6hHXdF6QJ2ZS0ZGRlcMWwghhOiVJL7oGdRqNQ8/MBdl3mHSNq6mPDcDU10N5bkZpG1cjfL0YR56YG67G4e7cv49Y8YMvFUmSg5tw2K1NjlmsVopObQNH5WZGTNmtGPkQgghhBCiszic2LBYLDz11FP4+fkRExNDTEwM/v7+PP300w4/MBbOo1QqGX/FOAw5Ryj5+UsMJaexmAwYSk5TvOe/1Oal4xE1DK2XHyVnc8g79APamFH4T7ib4P+3kKBJc9BEjiD3p68wFmQReelk1H0GYTHUYKosxVhRBIDFbEahAFNdDdXVlWjVKrRaNW6e3vXHTSbOHDuAxWIgK+0QRTknmo21srgArUaJn59fs2Md4aoH0X5+fmg1SiqLzrZ43FXX05PY89unZ+V10ejaRxJaQgghurOGnlZQ/7/DPXkeLvFFz5ScnMwLTz5KWM0psjeuJPW9x8jeuBJdzSleeOJRkpOT231uV86/tVot8/7yZ4wn95C7aTWVuccw1dVQmXuM3E2rMZ7cwwN/uQ+tVtvu8QshhBBCCNdzeAnNY489xttvv83zzz/P5ZdfDsDOnTt58sknqa2t5dlnn3X6IIV9brzxRl55/f+oPqWnuOQ0VkCpALW7J16xCZhrKlBr3Tj201aU4cPwGXMjVosZFCoU3gH4jr0ZrFYMWQeoLS8kaPAl1GSlYsw/ReHuLwm4aDIWqwKtWkHF2UKwmLEWnCAwMJgAXTRHvvuKPV9toKrOiMlixVxXxb+X/Y3Lfn8Xw668HgCr1cqJ/TsZFhNBXFzzerwd4aoH0XFxcQyKCSd1/84mJYnAtdfTk9j125vsfzDh7Obv7dE4oPbXRTY7LgktIYQQXaWhp9WJ3LPcPe0mHn36BWIjQtvdT6yrSXzRcyUnJzN16lRSUlLIz89Hp9ORmJjY7p0aDVw9/160aBEAy157kzNZ+7EqNSgsRnxUZhbOm2U7LoQQQgghui+HZ5zvvfceq1evZsqUKbbXRo4cSUREBH/5y18k8HABex/yDhw4kKuvuIyUn1Px8A/EJ2Ig7kHhGAw1ZO/+Bkt1Cd4eHhQYTAQOuBSVu3f99mulCquhBoupDt8hl1Ocl0rtqQMQPRJjbTWePr4UH9+DoaYSt7BYPLx98dUqMWf/gpI6ht58F6nff832z95DEzWS0OFXofQOpiL7KLWZerZ98i8sJhNRQ0ZzYv9OfKrzmDH7fqc/qHbVg2ilUsmd02/nmaUr0G/aQOyoK/AODKGyuMCl19OT2PXbq+37fVpqQD4wug8TrriMiIiITkt0SEJLCCFEd9S4p9WAK6cCRqKunEqq/vt29xPrahJf9GxqtZqkpCSnnrMz5t+LFi1iwYIFrFmzhqysLKKjo5kxY4bs1BBCCCGE6CEcTmwUFxczePDgZq8PHjyY4uJipwxK/Kalh7yDYsJtK/LOTXrMf+Cv5C/+B8fzT1BRUUCFWoOpupLavBPoRl9LXfYhUGvRhPQDpRosJpRKFVY3LyyGaswaL6xKFRGBPhTmHaGsIAff2AT69B1N3dlTWPJTqTHUYrHW4a8F/7jRhETF8fX/PY8maiS6xLtQKhTUVpbjHxmHMnoged9t4LsNrzFu/ASG9YtixmzXBNyufBCdkJDA4ofur78X29bZ7sWwmAiXXU9PYs9vPzI6/LznaakBeVbGL3yx5QvWffpf+vTpQ0REBIP6hjdZleqKHR6S0BKi9+sOu8OEcMS5Pa3UCitwCv+wCBKSpqHftIE16zYQHx/fo/5ddmZ8sWTJEj777DOOHj2Kh4cHl112Gf/85z8ZNGiQ7T21tbUsWLCADz/8kLq6OpKSknjttdcICwuzvScrK4vZs2fz7bff4u3tzcyZM1myZEmTnQjbtm1j/vz5HDlyhKioKBYvXsxdd93l+A/QC3Xkv18bPmsymZgx9f+xbecPpLto/q3Varnnnns6fB7RfvK/xUIIIYRoL4cTG/Hx8axatYoVK1Y0eX3VqlXEx8c7bWCi5Ye8lUVnSd2/k2eWruDm669hy9ZtHDqWickKAT7ejBoax713JvPTXj36I2nU1NThHupNiCYchbKO01YlWK0YS0/jHtYfq9WMxWxCqVKjcvOk5uwJzIY6QsOjOXVgPbqhlzDhtvtwd3fD19uHkjPZ1FZVcHzvDvp61FFtNJPy7gtU1tYRNnw8VrOZ2tpqlFYTQYGBuLm7oRk7idyCdKb+biJ//OMfXTZRdfWD6ISEBOLj42Xi3QJ7fvvb/zy3zWag5z6sUSgUHM/I4OfUExhjLsFi0ZBXeRY3/8GU554l69dVqUCbyb+OkISWEL3X+RYOCNEd2XpaTZj+6yKC3xof2/qJbVtHRkYGAwcO7LqBOsiZ8cX27duZM2cOY8eOxWQy8be//Y1JkyaRmpqKl5cXAA8++CAbN27k448/xs/Pj7lz53LzzTfz/fffA2A2m5k8eTI6nY4ffviB06dPc+edd6LRaHjuuecAOHnyJJMnT2bWrFmsXbuWlJQU7r33Xvr06eP03Qs9TUf++7W1nbv3Tb/lvDt3z+07M2jQIJmnd3Pyv8VCCCGE6AiHExsvvPACkydP5ptvvmHcuHEA7Nq1i+zsbL766iunD/BC1dJDXgB/XSQJSdP46tW/M+ehx1BFDEMTNgSVuzeFdRWc2nOSw0czWPLEIn5XXGyrdRsYGMjCx5/i5P9n787jo6ru/4+/Zs2eyUYyJIRICPsaQREFRYLErVblS1ksauWrrYqouNR9qbSuVQFtaX9WrVYQt9pW/QohiAIiICQiawhbgDBJyEr2SWZ+f2CmRBYTSJjM5P18PPooc8+dueeeOxPvuZ9zPsfZAG431dtWYu1y1g8HawSDAbfBSE3uOtx11ez8fi3OmipG/8/Pm41ei4o/8p7gsEj2Ll/ALVMn8Ke//BWXy4XbHISzuhyrxUxEeBQBgYEA2LqexQFzAGazud07F+39INpoNPrUg4Iz6afafuDAgScNbPz4Yc2hQ0V8m/UdzsAIwhNSCLZFUbLqPSrqwRqSSHXRdp546veYAkOoCkmgy7ArsYSE46yqYEvud22WjkMBLRH/81MDB3wxlY90Du21npi3tWX/4vPPP2/2+s033yQ2Npb169dz4YUXUl5ezt/+9jcWLFjA2LFjAXjjjTfo168f33zzDeeddx5Llixhy5YtLF26lLi4OIYOHcpTTz3Fb3/7W5544gmsVivz58+nR48e/PGPfwSgX79+rFy5kpdeeslvAhstHUlfX1/vSecE8H3OHqrCurX67+uJ/jZvzV7Jvvf/xSP3zjzhfbi/rTvTGei/xSIiInK6Wh3YuOiii8jJyeHVV19l27ZtAFx77bXcdtttxMf/dKoZaZljR+T9l2PnFvbkbIJuQ4g892qCIqKhsYGaEgfOimg27f6WG6bfQlKfATgb3J6RLz8bfzG5/+9tGrv0oGb3etxuF6F9R2GJ7Irz0F4Ob11JTe5aAkzQpbEYc2J3ElOOTQsA/+04JyQkcPfMO8i6435C3DXYuiT8kJf2v3WuPnQAE43Y7fb2bDIPPYj2npO1vdPpPOl7mz2scbvZtHkL9ZgIj+uOyWzBEB6Dy+2ipqKUykAbblcIO9YuIzyhFwkjzqZgrwOX6yBGowFbRA+qqqraLB2HAloi/uOnBg74aiof6Rzaaz0xb2vP/kVTkCcqKgqA9evX43Q6GTdunGefvn370r17d1avXs15553H6tWrGTRoULPBPenp6dx6661s3ryZ1NRUVq9e3ewzmva56667Tqu+HUVLR9I//fTTvPynv1DZaMZlMNNYVULwWUM572djPd/Rlvx9PZ2/zf647oy/03+LRUREpC20KrDhdDq59NJLmT9/vhbxa2cnGpHndrnYsOR9Gq3hhPe5gCBbNGZLAFgCCI3vyWG3m1pbAvsL8xjS/yK69T/bM/IlL38jQ3onsSavipCUVMp3fUfJ/i0YzBZobMBVe5jomBh69zyLO++4lbmvv8P+LRsICAklIDiUSHt3DD/cWB7dcU5NTSUxJpyCLauI6dGPo4MabreL/KxlJESGkJaWdsbaTw+ivedU2/7ohzWGoFDKK6swma2YrEEA1JYcxFlbgysgjKAu3amzBtNoCqQutCsHi8uxJ/UiLDoOZ10NZYccuEwRrPv+O59LxyEi7etkAwd8OZWPdA4/XtPqqFuu015PzFvas3/hcrm46667uOCCCxg4cCAADocDq9VKREREs33j4uJwOByefY4OajSVN5WdbJ+KigpqamoICgo6pj51dXXU1dV5XldUVABH2uCnBoCcSRs3buT5ufOpDLGTfPEUT3rRHd+v5tmX/8R9M3/D4MGDefHFF3lx/puYe4yk+4BRuN0uStb8i4BeI9i6PQerycDgwT+kEjNAr9QL2LnifbZv337MdzQ3N5ddBwrpNXriD2vH/DfN2sne63K5eGfR+9TZujE8bQImgxvIIyquK8PTJ/Jd5ocsWPQB/fv373QPyOvr61m0aBH79u0jMTGRSZMmtfvC6E3f45/6Pp/q9ZYTa2nbS/tQ+3uX2t+71P7e5Y/t35pzaVVgw2KxsHHjxlZXSFrvRCPySh15HCoswBAQijU8xhNogB/6ttZgTGExGAJDcLrdmC1Wz8iXL9+ZQ9nuvdSVVFJdEU5gbHeMbheB4dG4GxuwNFYTGhxIzwQ70dHRFOzbzYYtOwmJisNkNBAZGcWAUenE9ejbrONsNBq5784Z3P/EM2z/9DXiU8cSHJNA9aED5Gctw3hwE/c+/kCzxRZFfuzohzXdzr4YMGI0GWisr8UUEETZttUYLIEYgsKoLi2g7tABGutrMYZEYgwKp7KsmPCYrliDQolJ7Elhg5P9G5dQWlrq7VMTkQ7EX1P5SOfw4zWteqVeAPFQVnCAHVmrTns9MW9oz/7F7bffzqZNm1i5cmW7fH5rPf300zz55JPHbF+yZAnBwcFeqNGJTbn2yh/+5QTyIR6IHw7A/v372b9/P3379uW1uc81f+Nld/zok/b895/xwKSrycnJIScn55hj3jTp6h+Ot+eYspO9d/TIEYwGYK9n2zDTkbRY56YfqfOPU5R1FtHR0URHRwOwdOnSM3bcjIyMn9znVK+3nFxL2l7aj9rfu9T+3qX29y5/av/q6uoW79vqJ82//OUv+dvf/sYzzzzT2rdKK/x4RF7TqNK66kpcBhO4XbhrKzCZEzzvaWxwgtGEu6EOd0MDBnOAp6xg9zaKHAepjejJ8IsvYPfBQ1QdPkx94U6qdmwgwGzAYA2hNsBKdl0Fv7xlBqE9hhLbqyvYuhJotVC2+ztWfPQmXexdSQh2Nes4T5kyBYDn57zCvk/n0YgJE40kRIZw7+MPeMpFTuTohzW5qz7D7QrBZA7jcN5mGkoOUJe/naAew3Gbg7BGRFOdtwlwYwwKp6Gulup6F3U1lQQEhwEGAq0WimprKCsr8/KZiUhH4q+pfKTzOHpNq10r3odJV7NvxfsMSIhrk/XEvKE9+hczZszgk08+4auvvqJbt//+1u12O/X19ZSVlTWbtVFQUOBJm2q321m7dm2zzysoKPCUNf1/07aj9wkPDz/ubA2ABx98kFmzZnleV1RUkJiYyPjx4wkPDz/1k21Dubm5PPDUcySOnkhEXMIx5WUFB9j8n7/irqsie8c+Ii+8AVOEHaPZiru2nPLszwkffhUGUwC1+dsZ1LcnZ6ee7XnvvhXv88yj9x93xsZPHfd4792wYQNP/PFPDJkwA7PFihEXw0x5rG/sjgsjDfV1fPfRqzxxz22cffbZbdxaHdOLL77IC396HXPS2UQMGEVgTDdqD+2nbPNKGvZu4N7bbmr2PWxLTqeTjIwMLrnkEiwWywn3y83N5Vcz7qEsegANllDcGDDgJjjAwsD+/YgKCTjhd0WOr6VtL+1D7e9dan/vUvt7lz+2f9Os5pZodWCjoaGB119/naVLlzJs2DBCQkKalb/44out/Ug5jh+PyEseOorQqC7UVVXSUFcNjQbq9m/BndjXE/Rwu1w0Ouuoz9+OJSCAmISzPNs3r1yMMS6FyNgeWMOiMBaWYQgMwdJtIA31dRzevZ7u5wxnzLU3sv4/b1IVYCYsfiD9khIpPFRMWWUlAbE9KC3Opz5/Gw++OveYjvOUKVOYOHEimZmZnkXL09LSNFNDWqzpYc3f31nIfzKWUFbroqG+FkxWzLE9sdp7YjJbOfz9Ulxl+VhjutNYUYA5cSD1ZQ4anfXAkXQc5bu/I8DgPibVhLReSxcPFfEFJxo4AL6bykc6n6Y1rbZv305OTg7PPHo/ffr08dm/zW3Zv3C73dxxxx3885//ZPny5fTo0aNZ+bBhw7BYLGRmZjJhwgQAtm/fTl5enmfh8pEjR/L73/+ewsJCYmOPzO7KyMggPDyc/v37e/b58cLmGRkZns84noCAAAICAo7ZbrFYOkxHtLKykqqaeoKi4mjk2O9TRVkpW3N2EhAWSZ3bREO4nUZTEEZLIG5jAE5DAGU56wkZkk5dI+zJO8CQocNwAzuyVjEgIe6439U+ffqQnBDLlqxVx/3bfKL3RkZGYsBFefGhZsFqF0YaMVJeUowBF5GRkR2mjdtTfX09L77yZxoShhN38Q0YDQYaAUtcCtGxPTmw2MlLr8zn7rvvbte0VD/1nd6wYQNbNn6HqWcwsaN+gSU4lIaaKkoPHWDF2iy6OB2MSTn+d0VOriP9PemM1P7epfb3LrW/d/lT+7fmPFr9xHnTpk2e0S6aFtq+jh6Rt335AuqdLixmA90jrDicQdQ4dlCy7j+E9ToHc1g09eWFHN7wGXUHttJ/3CQiIiJxu1zs3rgax4E8IoZfRW11JZu278AQGkNktwTqXQYstlgaK4oo3P4te9YnUl1XT9IFP6equobCQ8Wcd+45VByuoL6+ntrkeEq+/YSQkBBycnKOedBpNptJT0/3dtOJD2t6WDPm3/9mzvy/UdoYQHlxEQd3raehvBCj2Yo5MIRu513J4apqKraswOWsw2ANwVlbRU1DHcXbvqEu73sibKGUlZXhcrnUKTpFLV08VMRXnGjgQGVJEbuyV/pkKh/pnIxGIykpKeTk5Ph8wLkt+xe33347CxYs4F//+hdhYWGeNTFsNhtBQUHYbDamT5/OrFmziIqKIjw8nDvuuIORI0dy3nnnATB+/Hj69+/PtGnTeO6553A4HDzyyCPcfvvtnsDEb37zG1555RXuv/9+brrpJpYtW8Z7773Hp59+elr197aTzWpzu1x898W/Mcf3oWf/IRT8+22cpQcJShyAwWTGBQT1Oo/KTUtpXPcvjAFB1AV2YV/uVop2bjzp39dT/dvsj+vOnI63336bykYzcYPGYPzROlJGg4HIQWMoyMvm7bffZvr06V6pY0NDA3+c9ycCkwZjdNdSueVLT382ODyCwq0rqd6fxZSH3vXpv2siIiLS/lod2Pjiiy/aox5yAk0PeY8eLX348GF++/jv2XSwgtoDW6lz5OJ2NeKsLKXu0D7Cuvbg7AvG4ti9jc0rF3MwbydlZWU0FhfRUFuNObwLkUn9cLlcUFNDYFwyAdHx0NjAxi8+ITyxDwG2LpiC6ynLz6XicAU2WwQADTYbO5ZW8OTsP1Be79aDTh/V0UfgG41Grr76apKSknhrwbt8s76Swnw3wd0HEZ7Qk9ikPgQGB2EoLASDifLvl1FfuAvHoW2YDAbqDx+irr4BY1gIc177B/+XkcmYUeeTkJBwzPl29LbwpqysLGa/MJfKkHiSx0wlNDqWyuJCtmSvZPYLc3nk3pmexVhFfMnxBg5YLUYGJCX4bCofEV/Wlv2LP//5zwCMGTOm2fY33niDG2+8EYCXXnoJo9HIhAkTqKurIz09nT/96U+efU0mE5988gm33norI0eOJCQkhBtuuIHf/e53nn169OjBp59+yt13382cOXPo1q0br732ms8P8DnZrLaSg3txHMjjrAuuYviY8Xzz8etU564loGsfDG43BqMJa5cehA9J59DS13DXV2G0RbKnOJtzB/f7yb+vqampPDRrBvP+NJ/vPpoLBjO2CBsDzurmee/x7tv8bd2Z05GXl4fbaCGwS+JxywNjuuE2WsjLyzvDNfuvzMxM8kurSLriJgy4cWR/QenqD3C5wWiAAAM4TSZKSkq8VkcRERHxDa0ObNx0003MmTOHsLCwZturqqq44447eP3119uscnKE0Wikd+/ezbY9/9Sj/PHluXydtZnysircTic2q5GBF4zAabCwafE7FDkOYoxLIWLIJRz+dilGSxBGSzC4GnFWlWMMDAXAVVmCAQNh/S6gZMUCAqsrqCs/RGBkHC6Xm/r6es9x9+3czv59eVgiRzBozM+P+6BTD4Q6Nl8agd8U2MvIyOCBp56nJiKcgNAwjAYXbpeLYKuZw2YLQd36ElhXSs8+/dm9JRuDvS8Jib0497zzqdi/g48/f5f3P8mgW2J3oiPDPecL8NaCd9m25wDlZeXgbqB3UjfuuO03DBs2zMtn710ul4u3FrxLZUh8swcbEfZupKZPImvxIt5esIinZ/f3ck1FTs3xBg4osCniHW3Zv3C73T+5T2BgIK+++iqvvvrqCfdJSko6JtXUj40ZM4asrKwW180XnGzmxMZl/8TocjJwyNkU7d+JLSKKQ7lrAAhKOReLLY7GymJqcteBs4aeg4ZjqSzgV7+4ihtuuOEn09NmZWXxj3ffo7CiFrc5kPrqKsz11YwaeS5Dhgw56T2sv607c6q6d++OweWktmgfoQm9jimvPbQfg8tJ9+7dvVC7IxwOB42YCOmSgMkaRGjXntQUH6ChpgpzUAiW0Ci2vv2oZ7aViIiIyIm0OrDx97//nWeeeeaYjkdNTQ1vvfWWAhtnSGpqKm+98TdycnLYtGkTAAMHDqR3795kZWVx8+0zqbV2JTK2B0YjhIUE4yraiann+RgaaqkpPkhoQi/cbjdVO7/FHBJOSI8hlKz5J1ajm+Jta+iSOg6j0eDJv+p2udjwxadYgkK5YOJvMJpMAETEJZB8XjobMz5g7p/m8//+/KrW1eigWjICv6N1/oxGI5dccgmfL13GugOVmCwuyvNzcbncGI0G7KFmCnblYzDUsfvbL3DF9abXORfTp1cKzooiNn3zBQE9hhFo60pApI2klCS2ZK/ivkefwt3YQHVQF6ornVTVGXHWwc5vNvH1mv/lyYfv79SL3ufm5rJ9bz7JY6Y2G60JYDAYSB46im3LF7Br1y4v1VDk9B1v4ICInHnqX3QsJ5rV1i8qCEtSNyr272DTN18Q3n8UDba9lO/ZRG3eRtwuFzQ2YDabSBg6horaKkxl5Xzw+Rds2pZz0kE0R9+jRg69lMriCsoK89mwZyvrH3ic//f6GzixYIrvd8J72D8++7RPrzvTFrOIp02bxkNPPEXp98sJjk9plo7K5XZT+v1ywkyNTJs2rW0r3wp2ux0TjVQVHSA8IQWD0UjwUTNMKg7kYqIRu93utTqKiIiIb2jx0+eKigrcbjdut5vDhw8TGBjoKWtsbOSzzz7zLK4nZ4bRaKRv37707du32fawsDDsicn0H34lgRExWK1WapLj+eKjNynfvIzgnsNprKmgau8mKvdtob7kAHHnXY2z1IHR7SIl9QL25W5l59J3iE3qhbO+jjLHPrasXkpl3vdcMOHXnqBG8aFD5OTupKyyilpDOP/31Sf8769v5c4Zt3W4B+SdXUtH4A8ZMqTDdQKbRg/mvTCXyrLdJKYMwRwSTkNVBUW539GtWwhjf3ELC/+9hLPGTiQxpR9ut5tln/0DV2QiCedfjbO2ior8XAxBYaSO/wUfzX+Wyv3bCLebcEclETt8BAG2GOrKi9i7+lOeePYlevfu7fMzN061k1xeXk6900Vo9PH/rodGdaHe6aKioqKtqywiIp2E+hcd1/FmtSUnJ3PvAw/x8efvEtBjGAnnX4Np8xpqKktprKkEDLjqKmmsq6as6CCRQWZGXn8vDXW1rN74NZsfe4qnn3j4mHuro+9Ruw9LI+v7zTjNwcT0PQ/74DHs/ep9vt6wGFvKcNJ/lkZEly7A8e9hfXXdmbaaUW21Wrnrtl/z+5fnc2AxRA4aQ2BMN2oP7af0++U4d6/j/rt+064Lh/+UtLQ04iNDyM9aRlh8MgbDf6+T2+0iP2sZCZEhpKWlea2OIiIi4htaHNiIiIjAYDBgMBiOO7rRYDDw5JNPtmnl5NSUl5dT3+Ci61kpmC1HblpttgguvvZG/vnmq5Qe3EljdSlG3BgAS2RXaqsPU71rA8EBZiK69WbbxvUc3vUN9Xkbcaz9lNAAM72720lM6MZZQ0cCR4IaGzZuwmkOJjw+BVu3PtTsXM+2koYOO/q/M2vpCPzc3NwOOYK52ejB9Z80z4l/2500NDTwz6Vf0/WsFDAYKD24l9LSErpcMA6DwYAlIMiTWq3icAWmuJ7U7NpMgCWcHudf7WmToOgEeoydwp6MN3ll/l/521/+7FMd46OdTif5ZIuHAlSWFGG1GAkPD1eqABEROSXqX3Rsx5vVNmbU+bz/SQaBtq4UbP+WA+szCIjriTW+L6ZgG87yQqq2rqD64E6Sz7uY7WuXU1paQqPLze6SAm65fSZ/fXVus+DGf+9Rp7B1564jQY3EnjStBG5L6M2hTasI6D6IHTt3ERMTAz/ct/34HrZHjx5nrH3aSlvPqH7wwQcBePlPf6EgLxu30YLB5STM1Mj9d/3GU+4tZrOZ++6cwf1PPMP2T18jPnUswTEJVB86QH7WMowHN3Hv4w/8ZAYArZMnIiIiLQ5sfPHFF7jdbsaOHcuHH35IVFSUp8xqtZKUlER8fHy7VFJap9kDybgEyivKqa+vp9YUhP2cdAr37aZ6xxqihl1BcHxPyrat5tDyt6CyhPiEBFYtfBlLUCiXTn8AW1w3yhz7KNi9lYbqAqwBAZ7Pzcnd2azjUVOcjzUwkMFjr2Hv92s67Oj/zqqlI/DLy8vPcM1a7mQ58XNycpo9iK+rrsTlchNgiwHAWVfjSa1WV1eP02DG2egiMKYbhh8dxxoYTGi3vuzI+77DBnp+yul2kk+2eKjb7WZX9koGJCWQnJxMTk7OmTglERHxM+pf+J6EhAS6JXbHGhHKxoz3MUZ1J3TAxZjNZowmM0ZLAIb+F1JjNrF1/UoShqfT5YJxBNhiqCzI4+C3/8dDTz3DM48/5LkPabpHdZkDKKusIjw+BY66OzOYLbiNJsLikiirLKO8ohybLcJT7gv3sCfS0NDAnFf+xIFqGHzeCGyx8RiMxtOeUf3ggw9yzz338Pbbb5OXl0f37t2ZNm2aV2dqHK0p3evzc15h36fzaMSEiUYSIkO49/EHfjIdrC+tGSgiIiLtp8WBjYsuugiA3bt3H1mUzPDjR4HSUTQ9kFy38nNMCQMpr6rG1eimorwUQ3AEwWYgIgYsVqoPHcAa3Y3wrsn0DU2ga1c7+50hXDDxNxgMBkodeYRFxxLdrQe7v1tN9aav2JW1guSRlzbreLjdR9bliIqKJqprEiaT5YSj/zW6xjtaOgLfZrN5oXYtd6Kc+D9+EB8QHIrRaKCu/BBB0V2pOOQgMjQEp9PJ1q3bqDhUgLOumsM1tRzYsYmort0ICosEjgRBrKERuEpMp9VJ9tZ3vS3Sjp1s8dBd2SsJq85n2q0z9dsVEZFTpv6F77HZbERHhmMyOTG4XUT2G0mQLRKT2UJDfR11VeUYzWYMLhfG2F7YBl5IUMSRQSZhXXtQ2+8CKit2N7sPabpHLS3Mx+VyYwkIanZMd4MTg6sRGmo9s2+P5iv3sD+WlZXF3Ff/zOcr1xEQ0ZXiD94gMjKKAaPSsSf3O+0Z1VarlenTp7dT7U/flClTmDhxIpmZmTgcDux2O2lpaS1aZN7X1gwUERGR9tHqFZ6TkpJYsWIFf/nLX9i1axfvv/8+CQkJvP322/To0YNRo0a1Rz2lFYxGI+eePZQP/v0MroOHiE8diynYRnFhPnWO3biL93LhVVMIi+tOdXU1wcHBhFw0gm2fvc7BkgoG/WwqhXtz2LxyMaWlJZ5FmoMDrOA2QNEONmZUUmsIP5J+qjif4m1rMJbto//lkzAYjSccOaXRNd7T0hH4KSkpXqzlqfvxg/geg8/HZrNR8P1XhCQPw9pYQ2x8N7I2bqbeFIS7uhQDBgLielBvsFCwdydxST0JCoug4pCDIJxEhIWccifZm9/1tko7dqLFQwckJTDt1iOdRqfT2a7nIiIi/k/9C9/RdD+Z+d03YDASFNMNk9lypNBopLGqDFdVKRgMBMT3oeGo+wRnXQ0mk5EeQy9g2/pPPPchTZ+5YXsWhtDuRwaYBIUCR+5Rqwr3EhJooXxnNqGJfZrNOvjxPWxjY+MZbY9T1fRw3uEKI2LYldgHjaL+cCnF29bwzaeLOO+KSdiT+/n0bJSWMJvNpKent3h/X14zUERERNpeq/9r/+GHH5Kenk5QUBAbNmygrq4OODKF+A9/+EObV1Baz+VysXZDNt0GDCc+zMrB5f8g94PnKPv2PwRRT/SgMZQ5zXRL6Ebv3n3o1i2RsOg4auqc1NTUUVVRwjefLqLcGEaXC35B9ytvp8sFv6AmJI6C4nJGDx9C75BaytZ/wp5/zaFo1XtEuCs57/IjN+Bw/JFTTTfwW8rNJI2ZSurkWSSNmcqWcvORh9FZWd5qsk6h6cF/aFU+WYsXUebYT0N9HWWO/WQtXnRkBP7UST7dCWh6EN/f1kDeV+9iOlxAzfaV1G7+gp5dI3E4HFRWVVG373vCGw4TEtmFw7lZBEbH4w4I4dD+3RzatxOzswpLpYO+Z51aoMfb3/W2TDuWmprKH599mpdnP8rTD93Fy7Mf5YVn/6BApIiItBn1L3xH0/1kuKuchspSagrzcLlcNNRWU3toP9QehgYnroZ6TEFhWDxBCDcVhxxEhIbQtXtys/uQps+McZVQs2MthbnfcTh/J0Xfr2D34jcwlu3jnEt/QfXuDdTsWIe75nCze9jQqgNceMF5rF+/ntzcXO81Tgsd/XB+8CX/Q2BEFxobGwmKjifh/KtxRSayZdUS3C6Xz85GaS+ewTtDR5148M7eAz7xPRAREZHT1+oZG7Nnz2b+/Plcf/31vPvuu57tF1xwAbNnz27TysmpabrhC7HFs2nVEiqrqmhoqMfV2IgzOJbImETKKqua5aetLCkEVwP1dVWs/WQB7tgUEpotqBxP7NnjqS7OZ+feffzlT69wy623s62kgcFjryGqaxKGHx6IH2/0f2cZXdPR02y1ZAS+r/vxOhwHDhxg+cqvyf76n2zfuYfgiFhiuybQ/9rrKS8rY9UnCzm0+kMC4/tRV1tBaEMFQfUl2I0VTJt6Y6uvX3t/11vyHWvrtGMnSv8lIiLSFtS/8C2pqam89PRTXHntREo2/B+NA8dgMhoICAgkIimFotxNOCsOYag7THCojbqqCg7t3IihupTYwYM5XFx4zH3IkXvUO3n40cdZ8dmf2GcJwWQNwGo2ER0TS1HeDgYkxWHvYmXv8oWee9jYYAsuE/x1wYfUO12EBFm5adLVbNy4sdkC5R3J0TNrI2wRRISGUHrIQUxiTwwGA9F9R1C06j1KDu5l7/drfHpGdVvzhzUDRUREpO20OrCxfft2LrzwwmO222w2ysrK2qJOcprKy8vJ27WLfUXrsSQOxj7wIqyRXTm4+C/UFu+nMCiM0KAg6uvrcbtc7NqSzTefLMBdvJdGk5WyqgLsicOprSzzrDkAbg4XF5DQdxgFpVvYs2cPd864jdkvzGXv92swmSwnzb/fVqlxOjJfSbN1sgW4/cXRD+LPOeccrrrqKj766COee+U1Bv38Zrok9sRgNGLnyN+urC/+Q0nucmoPHSQ4uTvnDunPtKk3ntJ1a8/veku/Y/6edkxERPyL+he+55xzzuHFZ37PvY/9nrqdwcQOupCIbj2pKc6nvnAn7rJ8Gh3b2bfGTcWe73E3NBAUFERWYS7OikNcMCgFl8vFunXrPPeiAEG2KPqMuoL6kDgaLMG4aiqpPLANw67vmfnbu5k0aVKzwStvvfcxVaEJJJ83itDoWGpKCgAnz8+dz2/vuq1D3YM3afZw3mCgd0pPNmzcxKF9OwmPsWMJjaS+tpaNy/5JtxC0ptlR/GXNQBEREWkbrQ5s2O12cnNzOeuss5ptX7lyJcnJyW1VLzkNISEh7Nu3B3PKBdjTbsT4w0PNmHOu5NC3n1KzfyuNti4U50Wz4p25HMjbjbuxgYhoO0GBVg47C6m3hHFwdw5xSSlYrAFUHHJgaahmwJCzyVu6ifLycs4555wWj/7399E1vraIXWcbgW80Ghk8eDAxsV2wBgR5ZhcB2Hv259Iefdn7/Vr2rvqIR++5nUsuueSUO5Dt9V1vzXdMC3+LiIgvUf/CN1133XUYjUaen/MK+cv+xkFMmGikW2QIM++/m08yviB303JCkofRdfBojEFhFO/dRnXOGlau3cD0O+4hKDQCq8VI7+5dOVRURGVIAuOunYQBKK8op76+HotlPLtWf866Dd8xadIkevfujcvlYsF7H1AVmtB8hmxcArCHyhA7by9YxKBBg9i1a1eHGszz44fz0TExnD14IDm5OynLz6W2rIi6soP0G5jIzBm3dqg+hLdp8I6IiIgcrdWBjZtvvpk777yT119/HYPBQH5+PqtXr+bee+/l0UcfbY86Sivt3bsXtyWEkJRzPUENgKCuKcQMv4KC1f+kfMc3fLltOYbYFGxDxpE4cCRGdwMFG7+CA3kYKwtpDLdzcPt3REZFERkWQu/+AzE11DYbBXP06P/S0lLKysqIiIggJCQEl8vl6Tj48+iazpJmy9edrCOEwUDJwT2clzrktIIa0D7f9VP5jnWGtGMiIuIf1L/wXVOmTGHixIlkZmbicDiw2+2kpaVhNBrZmpNLsTmWoLP6U1VejPFwCRFhIVj6jaRkZzCVxgZG/uIuqkoP8e3yf7F7Yzajp43z3Oc0pcwFSE4d3WzG68lmyAKcNWgkaz56lZt/cxsFFTUdajb18e5Jo2NiGBkdTVl5GRszPmDkhSP4f39+FbO51d11v6bBOyIiInK0Vt8pPfDAA7hcLtLS0qiurubCCy8kICCAe++9lzvuuKM96iitVFhYiDkgiIDwGGorK7AEBmM0mXA1NmIIi6XL6EkcWPAo0b1SsfYYRmRSfwKCQwFIuugXVJUdonLLV6T8z31UOXYzqF8vuiV0ww1kLV50zCgYo9FIVVUV737w0QlT5Pjz6JrOkGbLH5ypjlB7fNdP9TvWGdKOiYiI71P/wreZzWbS09ObbcvJyaGkpoG0a3+JISjsh5kXVrZu20aNMZikkVdQtOp9Dhc7iIo/i57DLiRny0byiyvo4XbDj+53fjzj9admyFZXlLJzdx7E9GTwmGs61Gzqn7on7Wo6zMzbZiqocQIavCMiIiJNWn23ZDAYePjhh7nvvvvIzc2lsrKS/v37Exoa2h71k1Ngt9uxmg0EuatxmYKpry6nqX9gtZhxlu/HFBRK4qDzOFQL1sAgz3sNRiPxw9LY+e9XKfzmY8yRCRwuL2NfzWGKcr8jrObgMQ9/W5oix19H1/h7mi1/ciY6Qu0RQDmd71hnSzsmIiK+R/0L3+ZyuY4ZRPHfe5c4zBYrAOXlZZRVVhMen4LJbMHlclNXXQlAYEgYIaE2igrzKa8obzZbA46d8fpTM2Q3ffUZ5vg+DL7kf4iIOLJmYEeaTa2H86dHg3dEREQETiGw0cRqtdK/f/+2rIu0kbS0NOIjQyjYvIo+l/8vzganJy2UxWzh+6VrsAYEkNJ3ICUbN+Osq8Ea9N+OY3jXZILCIinb+jVOt4HSrM+xmCAhMoQb75zR7Ea7NSlyvHkDf7wOV1vd+Ppzmi1/dCY6Qm39Xdd3TEREOgP1L3xPVlbWkfudvfnU1TfSUFdFfLSNUSNHYDEbmt271NfX43K5sQQEUVtagNFo8Mwaj7R3Jzo2joN7tlJXd1GzYxxvxutJU4wCBQf3kzD8UiJ+FCDpSLOp9XD+9GjwjoiIiLQ4sHHTTTe1aL/XX3/9lCsjbcNsNnPfnTO4/4ln2P7Za8SnjiU4JoHqon3sylqGqXQPid0SMbnqiQgNofSQg5jEnsCRDkHFwV3UHC4lIKEf3c/qw+Ahg2msr6c4fzcffLKEvn37eh7MtjZFjjdu4I/ucLVHfl1/TrPlr85ER6gtv+v6jomIiD9S/8K3HT1rO7znCAo3r6e4tJSt+3L56tvvCbdCWeMHXHTdnRgMBqxWK0ajgfraaoq3rSEqKppIe3fgyKzxHgOGk//BX9iU+RFJQ0YSEdsVU0M9u7JXHTPj9UQzZA+XFkI8GF1OBg45+5iUVtCxZlPr4byIiIjIqWtxYOPNN98kKSmJ1NRU3G53e9ZJ2sCUKVMAeH7OK+z7dB6NmDDRSEJkCLOeepRvszeyJXsVPVPHsOqLTHbmbSW8Szcik/qxf+0SXBjpNnwcw4cOITomBoCkwSOOmbp9KilyzuQNfEvTZJ0OLWInJ9JW33V9x0RExB+pf+G7jp61Hd9rMN989h6uyES6jh1PgC2ag9s2ULNrPZWb1/HlO3MYOu5/CI2MIaChmt3LFhJODf2vmIzhh3sXt9vN/u1Z2AKNFG5axZ7sr8FkIjTAzPmpA5h1z7H37MebIRsSZIVJV5OcmIDV4Dpu3TXTVURERMQ/tDiwceutt7Jw4UJ2797Nr371K375y18SFRXVnnWT0zRlyhQmTpxIZmYmDocDu91OWloaZrOZ/v3785uZ97Bu6X9osATjNpgoaqjHVV2Oq7qMXmMnNQtqwPFnYHTkFDmtSZN1ug+ElSdX2pu+YyIi4m/Uv/BdTbO2e1w4mQ1LP8IV2Y2YoWm4Ghtw1tcTkzyIw4GBWKKjOLxrPRs/LsJtNGOhkZBDeUT0OpvA4DAa6uuoLCkie+kH7N/yLUlnj2Hg+eNxOusoc+yjYPdWquprT1iPH8+QDQ0NJScnh9QBvfheM11FRERE/FqLAxuvvvoqL774Ih999BGvv/46Dz74IFdccQXTp09n/Pjxx6QhaomvvvqK559/nvXr13Pw4EH++c9/cvXVV3vKb7zxRv7+9783e096ejqff/6553VJSQl33HEH//nPfzAajUyYMIE5c+Y0W2xw48aN3H777axbt44uXbpwxx13cP/997e6vh3ZidaQMJvNpKenH7P/tm3b2HvgIIaonoQl9sccEomzspTqvE3U7v2OsxLszYIaTX48A6Mjp8hpbZqs06U8udLe9B0TERF/0h79CzkzmmZtO511FBzYhynlfA7u3o7bfST7k9VqpaGqkpDQOA5VN2CpPExQcCApSd24ddov+DZ7I9uXL6DO2UhDXS1l+3cT1/88Rl17k2cWR2xSL3qde/FPDkY6eoas0+kkJyeHUeedS9b/e5PVH79J/5HjCI2K1UxXERERET/TqsXDAwICmDJlClOmTGHv3r28+eab3HbbbTQ0NLB58+ZmwYSWqKqqYsiQIdx0001ce+21x93n0ksv5Y033mhWh6Ndd911HDx4kIyMDJxOJ7/61a+45ZZbWLBgAQAVFRWMHz+ecePGMX/+fL7//ntuuukmIiIiuOWWW1pV346qtWtINDQ08PycVzAlnU2/y6fjrK2mob6O2qrDNHTvxT6DkTWfLWTA6Msxmpt/RX48A6Mjp8g5lTRZp0t5ctt3oXbRd0xERPxLW/cv5MxomrW957vVlJUUERUaQ1B0AiZrII31tVQV7ae2qhJDRDSm0CjsQy8koksC+fm7+eizpTw0awb79u1j0QcfkVtcTkmNC4Ji+XLFChLi44mN7YIt3NbqwUgbN24E4I33/kVldR2FuzPZv3EVMbF2oiPDNdPVT6n/ISIi0jm1KrBxNKPRiMFgwO1209jYeEqfcdlll3HZZZeddJ+AgADsdvtxy7Zu3crnn3/OunXrGD58OADz5s3j8ssv54UXXiA+Pp533nmH+vp6Xn/9daxWKwMGDCA7O5sXX3zRLwIbp7KGRGZmJvmlVSSePxaj0UR1RSlFeTtxNrrAYMAck0T5nmy+XDiPi6fd7XnfiWZgdNQUOR05TZa/OlmQbeDAgd6unoiIiHRgbdG/kDMjJSWF3t278v6nmWA0Yw0OxRwYDIApMBgCwzAG2ags3E9VSRGb1q4kMCSMyMhIDhuNvDzvVarqXVSFJtJ95DAOZn6C0xLOvsJS9hcUEx4aQpeoCHqn9MTWwsFIWVlZPD93PlOuvZLE0RPpHRXH4SIHm776D5aKA9wydQJXXXWVHnj7mdYO8hMRERH/0arARl1dnWeq+MqVK7nyyit55ZVXuPTSS9vtBnH58uXExsYSGRnJ2LFjmT17NtHR0QCsXr2aiIgIT1ADYNy4cRiNRtasWcM111zD6tWrufDCC7FarZ590tPTefbZZyktLSUyMvK451lXV+d5XVFRARyZ2ux0OtvlPE+Fy+XinUXvU2frxvC0CZ7p+gH2eKLSJ/Jd5ocsWPQB/fv3b3Z9HA4HloAgIuPiqSjKo3R/LtbQSEIi7ZgCgmmoLMW951u2fbOMyBg7Q9KuprL0EHu+X01UfSHXTf4NjY2NzTqcAwcO5JnZv2PXrl1UVFQQHh5OcnIyRqPxlNqs6T2n095JSUn0T05k26aviYqbcEyarH2bvmZAcneSkpI61HX1VRs3buT5ufOpDLGTfPEUz8ydHd+v5tmX/8Q9M44EEtXW/qUtfqvS8ei6+h9dU//k7evaFsf1Rv9CTp/RaGTMqPN57z9LMAfbqNi+huhzr8LtclFXfZjG2ircrkZqi/IIju1Oz2tmUn+4hOJt31C7dyM7i/aSOOBcxl0zkR3fLudwsQNDfR3hSQNwOp24GusorXeyYeMmUrpGHTMYqaGhodk6ghdffPEPa+sdGRAXEZdAI0Yi47szatJtZC1exFervuGqq67yVpNJOziVQX4iIiLiP1oc2Ljtttt49913SUxM5KabbmLhwoXEHGcNhrZ06aWXcu2119KjRw927tzJQw89xGWXXcbq1asxmUw4HA5iY5unGTKbzURFReFwOIAjD/F79OjRbJ+4uDhP2fECG08//TRPPvnkMduXLFlCcHBwW51emxg9cgSjAdh7TNm56UcCPkevSQIQERHBK089ANQD4TDy7KNK3UAEjH3oqG0HIQiIP/J5+/fvZ//+/Setl8PhICcnp1XncjwZGRmn9f5TaR85dVOuvfKHfzmBfIjH873Jz88HTv+aSsek6+qfdF39j66pf/LWda2urj6t93ujfyFtJyEhgcTuSTjjBrAneyUF9TWEnjUUS2gE9Yf24CzKo/FwEbGjr8FkDQRrEMSkUHlgL4cPV2POz+eLf8ylsqwYU0AIjWUHMfUajsHciLO6kfAudsodeWz44jOuSO3mmTG+cOFCnp/zCvmlVTRiwkQj0UEmzAFBjL7xIY7ch/5Xe6ytJ97ncrl+CGbFN1vrMcLejdT0ST+5NouIiIj4vhYHNubPn0/37t1JTk7myy+/5Msvvzzufh999FGbVW7y5Mmefw8aNIjBgwfTs2dPli9fTlpaWpsd58cefPBBZs2a5XldUVFBYmIi48ePJzw8vN2O21obNmzgiT/+iSETZmC2WI8pb6iv47uPXuWJe27j7LP/G7xoaGjg4vTLOWiMBXtfgrr1wxwUBoAbN+Xffoahuphuwy9h/+fzuf83NzBu3DjPDIwzwel0kpGRwSWXXILFYjmtz9q4cSML3/+QHXkHqW9wYTUb6d09nskTr2Xw4MFtVOPOLTc3lweeeo7E0ROJiEs4prys4ACO1f9k2oQr2+SaSsfRlr9V6Th0Xf2Prql/8vZ1bZrVfKq80b+QtmOz2YiODCfp/FH0TOnJttVLqdy+lKraOg479hEQexbhvc4hPLEPNYdLKdi7E3dAKGEDLqa2tICIIZdQXJJP0e4d2FPTqHDsoXjtvwmISaS+roaSsiBqCvdSm7eRi2ZMxGg0snDhQu5/4hlc8QNJPH8sIV0SqCo6wP5vMyjf9jXJOd9BfP9j6toea+uJd+Xm5rJ9bz7JY6Y2m5kPCmaJiIh0Fi0ObFx//fXH3DCcacnJycTExJCbm0taWhp2u53CwsJm+zQ0NFBSUuJZl8Nut1NQUNBsn6bXJ1q7IyAg4JhFygEsFkuHehgQGRmJARflxYeOu4ZEeUkxBlxERkY2q7fFYuHOW29hxv2PUF9WTkR4VyyGABoOH6I6dx3Oot30GHU11uhu1Da4CQ8Pp1+/fmfy1JrV9XTbfNiwYaSmpmpBuXZUWVlJVU09QVFxNHJsuwZFxlJVWw90vN+RtA1dV/+k6+p/dE39k7eu6+kesyP0L+TUpaSk0Ccpni3Zq0hNn0TPgcMpdeRxYFs2q5Z+SvDAsYSFBGMNCiF/x2bcAaGE2M+iqrQIo9GEJTiU8LMuoazIQW3FIaJ7DiHv639TUluN2+2mzGQgNDSULuHhJCQk0NDQwPNzXsEVP5A+V/wvBsORe87whBR6xnRjc30965d8yI1jjg1saG09/1NeXk6900VodOxxyxXMEhER8X8tDmy8+eab7ViNltm/fz/FxcV07doVgJEjR1JWVsb69esZNmwYAMuWLcPlcjFixAjPPg8//DBOp9PT+crIyKBPnz7HTUPlS/7bmVjZbPotnHih7yZTpkxhyZIl/OPDTyipOYzBGghuN+bAULqNuILo5IFUHMjFROMJA0C+xGg0aqROO2rRQu1mBZJERETkvzpC/0JOndFo5Pqpk5n9wlyyFi8ieegowmO6UhHtwEwj7pL9GEN6U1lSRF1dLQFd4qirrIDKQ1gtJupqqgkzWwhO7EvF98s4nL8LtyUAc5ANo9mC2QB1tRUUFBZw4MABSkpKyC+tIvH8sZ6gRpOAgACi+p1P2Vc7jqnnT/WLxDe1qP+hYJaIiIhf8+qTxsrKSrKzs8nOzgZg9+7dZGdnk5eXR2VlJffddx/ffPMNe/bsITMzk5///OekpKSQnp4OQL9+/bj00ku5+eabWbt2LatWrWLGjBlMnjyZ+Ph4AKZOnYrVamX69Ols3ryZRYsWMWfOnGappnxVU2citCqfrMWLKHPsp6G+jjLHfrIWLyKsOp9pUycdd2ZCVlYWZbUugkJCsASFEX32pcSeP4EuF11HY1gcNTXV5GctIyEypF3Tfol/aAqy7cpeidvtblbW1Jns3T3eS7UTERERkfaQmprKI/fOpL+tgb3LF5C16CXKtnxJ9wgrdmstXcICqCzYTX1NJY0NdViMLgyFO0hI6EZIaCiHSwqxBtuoKtxLXV0NgUmpRI2aSsKVdxJ78fVYEodQbwzi/Y8+Jj8/n0ZMhHQ5Nu0pGOiSmILBaAKOpEFtab9IfFNL+h99FcwSERHxay2esdEevv32Wy6++GLP66Zgww033MCf//xnNm7cyN///nfKysqIj49n/PjxPPXUU83SRL3zzjvMmDGDtLQ0jEYjEyZMYO7cuZ5ym83GkiVLuP322xk2bBgxMTE89thj3HLLLWfuRNtRU2firQXvsn35AuqdLqwWIwOSEph260xSU1OPeU/TQmvVYd0YM+k3fPnPt6jauZ6IgRdhCQik8sAODn39IUElOdz7xIOYzV79mogPON6IvdCoLlSWFLEreyVh1flM/vWMn1x0XkRERER8S2pqKkOGDGmW9vXw4cP84cVXqCzbTe+EnmzPKySgoZKavVuxVjkYdvkkLOFdyMndSUlBLu7GBqzdBhI+ZDyBQUEYAKclhKghadRajaz+di1jRl+AiUaqig4QnnDsw+rGymKCLEf6LftWvE9VTf1P9ovEd7Wk/zHt1pkKZomIiPgxrz6xHjNmzDGjK462ePHin/yMqKgoFixYcNJ9Bg8ezIoVK1pdP19xvM7EydaQOHqhtQh7NzAYWPfZIgo/34zbaIJGJ6baMu7+7T1MmTLlDJ+N+KqfCrINHDhQgY2juFwurfsiIiIifuF4aV8994Vbl1Obk0tJAyT17s+AyydhTz6yft95UVEUfvMxxSE2onufg8lVj7OqHoMBrBYzEZHRNA65iF256wgPDyc+MoT8rGWExSc3S0fldrvIz1pG95gwAJ559H4qKyt1j+XnTmWQn4iIiPgPDcX3E61ZQ+LHC60NGH05/UaOZ8+mNVSVHiIw1EbJlq8ZPXp0e1ZZ/NCJgmwul4ulS5cCkJmZybhx4zr1TKCsrKwjHbC9+Z4OWJ+keK6fOlkdMBEREfELR98Xrl27lrcWfQQxcQQGh9FQX+cZWR9OFcEhYdi798AYEIzL5cJoNGK1WgEDtfUhYDJhMpm4784Z3P/EM2z/9DXiU8cSHJNA9aED5Gctw3hwEzMffwA4kqbodBe3F9/Q2kF+IiIi4j9a9V97p9PJTTfdxO7du9urPnIGHL3QWhOj2Uzy0AsYdPHPiUlIprG+mr1795KTk4PL5fJibcXXNAXZzjnnHHr37s2iRYs4d9RF/Ob+xwH4zf2Pc+6oi1i4cKGXa+odWVlZzH5hLlvKzSSNmUrq5FkkjZnKlnLzkan0WVnerqKIiMgZo/6Ff2u6L/zlL3/Js797lAERjZ61OPYuX8AAWyP333UHtpAAivduw2q1EhgYhNUaABgAN8V52wkNsDBw4ECmTJnCc088QFzNHvZ9Oo8tf3+YfZ/Ow16zh+cef4D/+Z//8fYpixf8uP+hoIaIiEjn0Koh0xaLhQ8//JBHH320veojZ0DTQmtbsleSmj4Jg8HgKXPs3MIXC+ZhcjXw53c+IuC9f2kkuZyyhQsXcv8Tz+CKH8hZo48sQp+Q/mv2fJvJ/U88A9Cp0p01rW9TGRLf7LcXYe9GavokshYv4u0FixgyZIg6ZCIi0imof9F5nGhkPcBH//oPX+1aT1F4DLYuXbEEBOGsq6G86CA1u9ZzYWp/z+z0KVOmMHHiRDIzM3E4HNjtdtLS0jCbzTidTm+eYoeitKciIiLi71qdC+bqq6/m448/5u67726P+sgZcKKF1vZ89w0r//021pjuDLvkKszB4ZQ49vP17s3sfX4Oj953p4Ib0mINDQ08P+cVXPED6XPF/xJgNADlhHdNps8VPdj+6Wu8MOcVJk6c2GnSUh29vs3RAUUAg8FA8tBRbFu+gNzc3BanlhMREfF16l90Hkenzz36wfv/XPNzDv6/v7Nv8zKc9p6YAsNprK2g0bGLXmGNzLrzjmYP5c1mM+np6d46jQ5PaU9FRESkM2j108RevXrxu9/9jlWrVjFs2DBCQkKalc+cObPNKift58cLrdXVN7IrZzNh8QNJHjme73L2UlXnxI0BDDHsyd3AI4//jv98/KFG+kiLZGZmkl9aReL5Y39Y3NHtKTMYjMSnjmXfp/PIzMzsNB3TH69v82OhUV2od7ooLy8/wzUTERHxHvUvOp/jPXi3R9uwY+BA8RZq6pwEBVhITU3Rw/hWakp7WhkST/KYqYRGx1JZXMiW7JXMfmEuj9yrRbVFRETEP7Q6sPG3v/2NiIgI1q9fz/r165uVGQwGdTx8yNHTwTdu3Mgrb9QRNPACNufswh0cSWj3BMxBITTUVFHucvHl1wt5+eWXmTVrlrerLj7A4XDQiImQLgnHLQ+OSaAREw6H4wzXzHuOXt8mwt7tmPLKkiKsFiM2m80LtRMREfEO9S86lxM9eN+VvZKQygPcdfM0EhISlD7pFCjtqYiIiHQmrQ5saGE//9I0Hby8vByjJYDc/YW4gyOJSOpHU6Ica0g4UX1HUJH1f/z19TeZOXNmp0kdJKfObrdjopGqogOEJ6QcU1596AAmGrHb7V6onXecbH0bt9vNruyVDEhK8OSbFhER6QzUv+g8jnnwDpRXlOM0WUk+L51dqz/nq1Xf8MKzf9CD91OgtKciIiLSmZzW3aLb7cbtdv/0jtLh2Ww2qirKOFxWQkhMAoYflTceLiYwxMahKieZmZleqaP4lrS0NOIjQ8jPWobb7WpW5na7yM9aRkJkCGlpaV6q4ZnXtL5NaFU+WYsXUebYT0N9HWWO/WQtXkRYdT7Tpk5SR15ERDot9S/8m+fB+9BRlBQXs3rNWr5et4G1Wd+z+tssygxhrPt+G7m5ud6uqk9S2lMRERHpTE7p6dlbb73FoEGDCAoKIigoiMGDB/P222+3dd2khVwuFzk5Oaxbt46cnBxcLtdPv+lHUlJSiAgyUXswF1NgcLMyt9vN4R3rCI6MBUtQp0odJKfObDZz350zMOZvYvunr1FxcBcAFQd3sf3T1zAe3MS9d87odLN/mta36W9rYO/yBWQteom9yxcwwNbIw/co57GIiHRO6l90Dk0P3uvdRjZs3ERpvYGw+BRieg4mLD6FamskuXv3s3btWm9X1Scdnfb0eJT2VERERPxJq58ovvjiizz66KPMmDGDCy64AICVK1fym9/8hkOHDnH33Xe3eSXlxI638F6fpPhWL7JnNBq56vJLWfG75zi0+iMiB4zGHBZNw+FiDu9YR2NxHhG9zsbp2NapUgfJ6ZkyZQoAz895hQOL/wKjHuLA4r9gDzZz7+MPeMo7m6PXtykvL1cOaRER6dTUv+g8bDYbVrORTd9twBkcS0xiT/hhrrg1KJSw8HAKjRYyv/iKqVOn6t6olZT2VERERDqTVgc25s2bx5///Geuv/56z7arrrqKAQMG8MQTT6jjcQadaOG9Ldkrmf3CXB65t3Wjv3/9618zb/5fObDzW9zlDtwYMBogMCyC+PN/Rn72l50udZCcvilTpjBx4kSWLl1KXV0d8597knHjxnW6mRo/1rS+jYiISGen/kXnkZKSQpwtiI3b1nPWJTcCzR+8F29bi71bdxwV1VoHgiMz81szEKYp7ensF+aStXgRyUNHERrVhcqSInZlrzyS9vTWmQoYiYiIiF9o9ZPFgwcPcv755x+z/fzzz+fgwYNtUin5accsvPfDaJwIezdS0yeRtXgRby9YxJAhQ1p842o2m3n8oQe47/GncRqNxPQcQoj9LNxuN/nZy4+kDnr8gU7/QFpaz2w2k5aWxmeffUZaWpq+QyIiIuKh/kXnYTQaSRtzIf+3/FkKNywhpt9IrOHR1FcUU7xtDcayfQy55Fry137W6deBONWZ+U1pT99a8C7bly/wvHdAUgLTblXaUxEREfEfrX66mJKSwnvvvcdDDz3UbPuiRYvo1atXm1VMTs6z8N6Yqc2mGAMYDAaSh45i2/IFrR7pdHTqoPz1n1CECRONJESGdOrUQSIiIiLSPtS/6FzOPfdcevboTmVVAUWr3sPlcmM0GoiKiqb/5ZMIDA7r9OtAnO7MfKU9FRERkc6g1YGNJ598kkmTJvHVV195cuCuWrWKzMxM3nvvvTavoBxf08J7odGxxy0PjepCvdN1SiOdmlIHZWZm4nA4sNvtGmUvIiIiIu1C/YvOJSUlhXOHDmRzmYmkgedyaP8uALokphDZtTvZGe936nUg2mpmvtKeioiIiL9r9ZPqCRMmsGbNGl566SU+/vhjAPr168fatWs1rfUMstlsWC1GKosLibB3O6a8sqTotEY6mc1m0tPTT7eaIuIHWpvfWUREpDXUv+hcmtaBuPehx8n49isMAWFgtsCKDNx1h0npGsW0W5/stPca7TUzX0RERMTfnNIQ/GHDhvGPf/yjresirZCSkkKfpHi2ZK9sNpIHjiy8tyt7Zace6SQibeNU8zuLiIi0hvoXnY/BZMYa3R2TvSemIBuNNeU0OnaBscbbVfOq9pyZLyIiIuJPTimw0djYyD//+U+2bt0KQP/+/fn5z3+uVEVnUNNIp9kvzCVr8SKSh44iNKoLlSVF7MpeSVh1PtNundlpRzqJyOlrSX7ngQMHeruaIiLiB9S/6DyaUi2Z4vtx7fhfUHG4gvr6eqxWK+Fh4WQtea9FqZZO9NkAGzZsIDIy0idnmbb3zHwRERERf9HqnsLmzZu56qqrcDgc9OnTB4Bnn32WLl268J///EcPuc6g1NRUHrl35pHR1MsXeEZTD0hKYNqtJ19QTkTkZFqS3/mtBe/yvzdeDxxJm9CnTx+fe3ggIuKrmtIEgu//DVb/onNplmrJaMRmi2hWfqqplrKysnhn0fuMHjmCJ/74Jwy4fHKWqWbmi4iIiLRMqwMb//u//8uAAQP49ttviYyMBKC0tJQbb7yRW265ha+//rrNKyknlpqaypAhQ5T/XkTaVNNDhx4XTqb04F7qqisJCA4l0t4dg9FIZFJ//v3eXDZt38mM6dN44KnnSE6I9bmHByIivqgpTeCuA4XcNOlqn/8brP5F59IeqZaaZpnW2boxGhgyYQblxYeazTL1ld+GZuaLiIiItEyrAxvZ2dnNOh0AkZGR/P73v+ecc85p08pJyxiNRi0cJyJtqry8nOKiQxQu+YDy8jJcLjdGo4HIyCi6DRzBnkOVHG40ET3wQgASR09kS9Yqn3t4ICLia45OE9hr9ETA6fN/g9W/6FzaOtXS0bNMh6dNAPZitlibzTI91dRW3qKZ+SIiIiI/rdWBjd69e1NQUMCAAQOabS8sLNR0WBERP3HgwAH2HdhPUJ+ziLvgFwTYYqgrP0Txtm/Y+8lCgroPwhYdS3TCWYCbiLgEn314ICLiK36cJtBscAN7fP5vsPoXnUtbp1pqltrqqM8CMBgMp5zayts0M19ERETk5Fp9V/T0008zc+ZMPvjgA/bv38/+/fv54IMPuOuuu3j22WepqKjw/E9ERHyPy+Vi+cqvCe0+iJDkYQRFd8VothIUHU+X4ZfjjkqibNtqIiOjiYhL9LzP8/Bg7wFP3ncREWk7nge4Q0ed+AGuD/4NVv+ic2lKtRRalU/W4kWUOfbTUF9HmWM/WYsXHUm1NHVSix/gt0dqq46iaWb+OeecQ+/evRXU8GEul4ucnBzWrVtHTk6OZ6F7EREROXWtnrFx5ZVXAvCLX/zC06Fyu90A/OxnP/O8NhgMNDY2tlU9RUTkDMnNzSUn7yBnX3wFuQdLOLRvJ+ExdiwBQdRVV2KKSMC9ez3d+gzC8KMOti8/PBAR6ej89QGu+hedT1umWjo6tVWAPf6Y8tamthJpa03rIm3fm+/5rvviwvYiIiIdTasDG1988UV71ENERDqIpgdniSl9Ce9SQU7uTsryc3G53LgaG7GawGCLJjw67pj3+uvDA5fLpVQQIuJ1bb02QUeh/kXn1Faplo5ObRWVPrFZ2amkthJpS0evi5Q8Ziqh0bFUFhf65ML2IiIiHU2rAxsXXXRRe9RDREQ6iKMfnEXbuzEyOpryinLq6+uxWKxs+GYFe5x1WINCmr3PXx8eaJSdiHQUP16bgKOyUfny32D1LzqvplRLp/sZ10+dzOwX5vJd5oecmz6chvo6ykuK2ZW98khqq1tnakCCnHE/XhepaUaaLy9sLyIi0pHov54iItJM04OzXdkrj6QCMRiw2SLo0iUWm82GpbIAm7GW3d+tZu/36wDY+/06Nnz+bqvzYnd0TaPstpSbSRozldTJs0gaM5Ut5WZmvzCXrKwsb1dRRDqRY9YmKDgAQFnBgVNam0DkdHWUdQOaUlv1DT+Squy7j15l7/IFDLA18vA9GhEv3uGv6yKJiIh0FK2esSEiIv7t6JGPWYsXkTx0FKFRXagsKWJX9krsxgqumPoL3v/XJ+xYu4z/GfoQKz78f0QHm/nVnTP85uGBRtmJSEd09NoEu1a8D5OuZt+K9xmQENfqtQlETkdHm9GYmppK//79+fzzz3nintuIjIxU6kjxKn9dF0lERKSjUGBDRESOcbJFPc+5eDwffLKELoMuYnDvIQCMmTaLgznf8cEnS+jbt69fPFjzjLIbM/XEo+yWLyA3N/e002iIiLRG09oE27dvJycnh2cevZ8+ffroAa6cMT+1bsBDs2YQFhZ2xtemajrG2WefjcViaffjiZyMv66LJCIi0lEosCEiIsd1vEU9k5OTue/Bhz2zGMwGN7CHbj37Yk/u51ezGDTKTkQ6MqPRSEpKCjk5ORqVLmfUT81o/PKdOdxy+0ziEpOpb/D+TA4Rb/nxukhHD5Tx5XWRREREOopT7gEVFRWxcuVKVq5cSVFRUVvWSUREOoimRT3POeccevfuza5duzpNruCjR9kdj0bZiYi0LfUvfMPJ1g0o2L2NIsdBCqxdiRp+Zadfm6qhoYHFixfz97//ncWLF9PQ0ODtKskZdMy6SI79NNTXUebYr3WRRERE2kCrZ2xUVVVxxx138Pbbb9PYeGRxNpPJxPXXX8+8efMIDg5u80qKiEjH0JlmMWiUnYjImaH+hW850b2A2+Vi88rFGONSiIztQWBEDGaLtdOuTbVw4UKen/MK+aVVNGLCRCPxkSHcd+cMpkyZ4u3qyRlysvSuWhdJRETk9LQ6sDFr1iy+/PJL/v3vf3PBBRcAsHLlSmbOnMk999zDn//85zavpIiIdAydKVfwTy2iHladz7RbZ3aKhzMiIu1J/QvfcqJ7gVJHHqWlJUQMOx9nbSVWq9VT1tnWplq4cCH3P/EMrviBJJ4/lpAuCVQVHSA/axn3P/EMgIIbncjx0rsqhaCIiMjpa3Vg48MPP+SDDz5gzJgxnm2XX345QUFB/OIXv1DHQ0TEj/14FgNHZaDwx1kMGmUnItL+1L/wLSea0VhXXUmjy01tvZPo0BBs4c0HOfjTrM6TaWho4Pk5r+CKH0ifK/4Xg+HIw+vwhBTC4pPZ/ulrvDDnFSZOnIjZrCUvO4um9K4iIiLSdlp9J1VdXU1cXNwx22NjY6murm6TSomISMf041kMvVIvgHgoKzjAjqxVfjmLQaPsRETal/oXvuVEMxrrqiqpKikgpPwgvQePgR+tv+FPszpPJjMzk/zSKhLPH+sJajQxGIzEp45l36fzyMzMJD09vd3q4XK5dO8iIiIifq3VgY2RI0fy+OOP89ZbbxEYGAhATU0NTz75JCNHjmzzCoqISMdy9CyGXSveh0lXs2/F+wxIiPPbWQwaZSci0n7Uv/A9x5vRaDEb6BZmJKixjKjo6Gb7++OszhNxOBw0YiKkS8Jxy4NjEmjEhMPhaLc6ZGVlHbk2e/M9s037JMVz/dTJfnmfJiIiIp1TqwMbc+bMIT09nW7dujFkyBAAvvvuOwIDA1m8eHGbV1BERDqeplkM27dvJycnh2cevZ8+ffpoJKCIiLSa+he+6XgzGg8fPswfXnylU69NZbfbMdFIVdEBwhOODeJUHzqAiUbsdnu7HD8rK4vZL8ylMiSe5DFTCY2OpbK4kC3ZK5n9wlweudc/B6GIiIhI59Pqu8qBAweyY8cOnn76aYYOHcrQoUN55pln2LFjBwMGDGiPOoqISAdkNBo9oy6V3kBERE5VW/cvvvrqK372s58RHx+PwWDg448/blZ+4403YjAYmv3v0ksvbbZPSUkJ1113HeHh4URERDB9+nQqKyub7bNx40ZGjx5NYGAgiYmJPPfcc62uq69rmtF4zjnn0Lt3b4YNG8Yj986kX7iTLf+Zz5fzH2HLf+bTP7yBh+/pHA/U09LSiI8MIT9rGW63q1mZ2+0iP2sZCZEhpKWltfmxXS4Xby14l8qQeFLTJxFh74bZYiXC3o3U9ElUhsTz9oJFuFyun/4wERERkQ7ulFYrCw4O5uabb27ruoiIiIiISCfUlv2LqqoqhgwZwk033cS111573H0uvfRS3njjDc/rgICAZuXXXXcdBw8eJCMjA6fTya9+9StuueUWFixYAEBFRQXjx49n3LhxzJ8/n++//56bbrqJiIgIbrnlljY5D1/TtKbD5s2bKSstxWAwYTBbMRjNuHEfs5+/rv1gNpu5784Z3P/EM2z/9DXiU8cSHJNA9aED5Gctw3hwE/c+/kC7LByem5vL9r35JI+Z6lnUvYnBYCB56Ci2LV9Abm6uUmyKiIiIz2vR3dS///1vLrvsMiwWC//+979Puu9VV13VJhUTERERERH/1J79i8suu4zLLrvspPsEBAScMBXQ1q1b+fzzz1m3bh3Dhw8HYN68eVx++eW88MILxMfH884771BfX8/rr7+O1WplwIABZGdn8+KLL3bKwEbTmg5rszexc3ce5vg+JPQ9h4FDzsZqcLH1hzRI/3PleNZuyPb7tR+mTJkCwPNzXmHfp/NoxISJRhIiQ7j38Qc85W2tvLyceqeL0OjY45aHRnWh3umivLy8XY4vIiIicia1KLBx9dVX43A4iI2N5eqrrz7hfgaDgcbGxraqm4iIiIiI+CFv9y+WL19ObGwskZGRjB07ltmzZxP9w4LXq1evJiIiwhPUABg3bhxGo5E1a9ZwzTXXsHr1ai688EKsVqtnn/T0dJ599llKS0uJjIxs8zp3VE1rOhwO7kqlIZTwQRcTe/Z4DhcX8N3WHM4ePJDU9Ems/PBvPP6H5zjrvMvo2QnWfpgyZQoTJ04kMzMTh8OB3W4nLS2tXWZqNLHZbFgtRiqLC4mwdzumvLKkCKvFiM1ma7c6iIiIiJwpLbqrOjoHp/JxioiIiIjI6fBm/+LSSy/l2muvpUePHuzcuZOHHnqIyy67jNWrV2MymTwBl6OZzWaioqJwOBwAOBwOevTo0WyfuLg4T9nxAht1dXXU1dV5XldUVADgdDpxOp1teo5nisvl4p1F71Nn60ZK/+Hk78klfuBIgkJCCQsJofjAbvbs3kWXqAgMEfHUWcJJGTKCKHs8AAH2eKLSJ/Jd5ocsWPQB/fv3P620VE3t2JHac+zYsZ5/u93udq1bUlIS/ZMT2bbpa6LiJjRLR+V2u9m36WsGJHcnKSmpXerREdu/s1Dbe5fa37vU/t6l9vcuf2z/1pxL+w0XERERERER6WAmT57s+fegQYMYPHgwPXv2ZPny5e2yoHOTp59+mieffPKY7UuWLCE4OLjdjtveRo8cwegf/p0+47of/vVDqqOe0T+8zuPc9L6Q3veH13uafca56Udmx3z++edtUqeMjIw2+Rxf9N/rsfeYsrZu5xPpzO3vbWp771L7e5fa37vU/t7lT+1fXV3d4n1bHdiYOXMmKSkpzJw5s9n2V155hdzcXF5++eXWfqSIiIiIiHRS3u5fJCcnExMTQ25uLmlpadjtdgoLC5vt09DQQElJiWddDrvdTkFBQbN9ml6faO2OBx98kFmzZnleV1RUkJiYyPjx4wkPD2/LUzpjNmzYwBN//BNDJszg8KGDfPnxP4g57xqCIrsC4HY3Urx7Ez27J7B100Ya8rcw5prrieya1OxzGurr+O6jV3nints4++yzT7k+TqeTjIwMLrnkEiwWy2mdmy/buHEjC9//kB15B6lvcGE1G+ndPZ7JE69l8ODB7XZctb/3qO29S+3vXWp/71L7e5c/tn/TrOaWaHVg48MPPzzuAn/nn38+zzzzjAIbIiIiIiLSYt7uX+zfv5/i4mK6dj3yMH7kyJGUlZWxfv16hg0bBsCyZctwuVyMGDHCs8/DDz+M0+n0dCIzMjLo06fPCdfXCAgIICAg4JjtFovFZzuikZGRGHBRXnwIW1wSwSFhHNy8hoTzr8ZgMFBfU4vTBeaAIIp3byHc3EitMYiS8gps4Tb4IVVSeUkxBlxERka2SVv4cpu2hWHDhpGamkpubi7l5eXYbDZSUlJOK81Xa3T29vcmtb13qf29S+3vXWp/7/Kn9m/NebT6zqa4uPi4i42Fh4dz6NCh1n6ciIiIiIh0Ym3dv6isrCQ7O5vs7GwAdu/eTXZ2Nnl5eVRWVnLffffxzTffsGfPHjIzM/n5z39OSkoK6enpAPTr149LL72Um2++mbVr17Jq1SpmzJjB5MmTiY8/sjbE1KlTsVqtTJ8+nc2bN7No0SLmzJnTbEZGZ5CSkkKfpHh2Za8Eg4EBo9Ixlu7jwNcfU1N8gDLHPgIaqtn9zWJqdmdxqPwwa7M38fW6Daxes5biQ4dwu93syl5J36QEUlJSvH1KfsNoNNK7d2/OOeccevfufcaCGiIiIiJnSqvvblJSUo6bk/P//u//SE5ObpNKiYiIiIhI59DW/Ytvv/2W1NRUUlNTAZg1axapqak89thjmEwmNm7cyFVXXUXv3r2ZPn06w4YNY8WKFc1mU7zzzjv07duXtLQ0Lr/8ckaNGsVf//pXT7nNZmPJkiXs3r2bYcOGcc899/DYY49xyy23nEIL+C6j0cj1UycTWpVP1uJFBAaHcc74awmsPMjOf83jUOZrOLcuo2jTChJ6DyI80Epd4W4sgaEUVzewesVyVn74N8Kq85k2dZIevouIiIhIi7U6FdWsWbOYMWMGRUVFjB07FoDMzEz++Mc/Kg2ViIiIiIi0Slv3L8aMGYPb7T5h+eLFi3/yM6KioliwYMFJ9xk8eDArVqxodf38TWpqKo/cO5O3FrzL9uULqHe6iLdZODtxEBdfNIplX64g33gOZ186mYLd29i8cjGl6z+h0eWmqqQAa5iRB1+d6wlEiYiIiIi0RKsDGzfddBN1dXX8/ve/56mnngLgrLPO4s9//jPXX399m1dQRERERET8l/oXvi81NZUhQ4Z41nQICwsDYNOmTezOL6TfFUfW3LAn9yPurD6UOvKoq66krqqSsi1fevYXEREREWmpVgc2AG699VZuvfVWioqKCAoKIjQ0tK3rJSIiIiIinYT6F76vaU2HrKws/vK3N9i+N5/iknL27M2jaskHDLrwMuzJ/TAYjUTFnwVAQ30dRRuXU15e7t3Ki4iIiIjPOaUkpg0NDSxdupSPPvrIM807Pz+fysrKVn3OV199xc9+9jPi4+MxGAx8/PHHzcrdbjePPfYYXbt2JSgoiHHjxrFjx45m+5SUlHDdddcRHh5OREQE06dPP6YeGzduZPTo0QQGBpKYmMhzzz3X+pMWEREREZF20Vb9C/GurKwsZr8wly3lZpLGTGXoL+4kasTPKHUH8s2ni3Ds2tps/8qSIqwW43EXjxcREREROZlWBzb27t3LoEGD+PnPf87tt99OUVERAM8++yz33ntvqz6rqqqKIUOG8Oqrrx63/LnnnmPu3LnMnz+fNWvWEBISQnp6OrW1tZ59rrvuOjZv3kxGRgaffPIJX331VbNF+yoqKhg/fjxJSUmsX7+e559/nieeeKLZ4n8iIiIiIuIdbdm/EO9xuVy8teBdKkPiSU2fRIS9G1HRXYiLTyIkeRiuyG5sWbUEt8sFHBnEtit7JX2TEkhJSfFy7UVERETE17Q6sHHnnXcyfPhwSktLCQoK8my/5ppryMzMbNVnXXbZZcyePZtrrrnmmDK3283LL7/MI488ws9//nMGDx7MW2+9RX5+vmdmx9atW/n888957bXXGDFiBKNGjWLevHm8++675OfnA/DOO+9QX1/P66+/zoABA5g8eTIzZ87kxRdfbO2pi4iIiIhIG2vL/oV4T25uLtv35pM8dBQGg+HIRoOB3ik9sTbWYLB1pfDgAYr25VLm2E/W4kWEVeczbeokjMZTSiQgIiIiIp1Yq+8gV6xYwSOPPILVam22/ayzzuLAgQNtVrHdu3fjcDgYN26cZ5vNZmPEiBGsXr0agNWrVxMREcHw4cM9+4wbNw6j0ciaNWs8+1x44YXN6puens727dspLS1ts/qKiIiIiEjrnan+hbSv8vJy6p0uQqNjm22Pjonh7MEDiY20UV1WyPf/+n/sXb6AAbZGHr5nJqmpqV6qsYiIiIj4slYvHu5yuWhsbDxm+/79+wkLC2uTSgE4HA4A4uLimm2Pi4vzlDkcDmJjm984m81moqKimu3To0ePYz6jqSwyMvKYY9fV1VFXV+d5XVFRAYDT6cTpdJ7OaUkLNbWz2tt/6Jr6J11X/6Tr6n90Tf2Tt69rWx33TPUvpH3ZbDasFiOVxYVE2Ls1K4uOiWFAShLGnmcx41dTGDx4MCkpKZqpISIiIiKnrNWBjfHjx/Pyyy971qgwGAxUVlby+OOPc/nll7d5Bb3h6aef5sknnzxm+5IlSwgODvZCjTqvjIwMb1dB2piuqX/SdfVPuq7+R9fUP3nrulZXV7fJ53SG/kVnkJKSQp+keLZkryQ1fdJ/01HRtJ7GKs7u34trr71WAQ0REREROW2tDmy88MILXHrppfTv35/a2lqmTp3Kjh07iImJYeHChW1WMbvdDkBBQQFdu3b1bC8oKGDo0KGefQoLC5u9r6GhgZKSEs/77XY7BQUFzfZpet20z489+OCDzJo1y/O6oqKCxMRExo8fT3h4+OmdmLSI0+kkIyODSy65BIvF4u3qSBvQNfVPuq7+SdfV/+ia+idvX9emWc2n60z1L6R9GY1Grp86mdkvzCVr8SKSh44iNKoLlSVF7MpeeWQ9jVtnKqghIiIiIm2i1YGNxMREvvvuOxYtWsR3331HZWUl06dP57rrrmu22N/p6tGjB3a7nczMTE8go6KigjVr1nDrrbcCMHLkSMrKyli/fj3Dhg0DYNmyZbhcLkaMGOHZ5+GHH8bpdHo6fBkZGfTp0+e4aagAAgICCAgIOGa7xWLRw4AzTG3uf3RN/ZOuq3/SdfU/uqb+yVvXta2Oeab6F9L+UlNTeeTemby14F22L19AvdOF1WJkQFIC027VehoiIiIi0nZaFdhwOp307duXTz75hOuuu47rrrvutA5eWVlJbm6u5/Xu3bvJzs4mKiqK7t27c9dddzF79mx69epFjx49ePTRR4mPj+fqq68GoF+/flx66aXcfPPNzJ8/H6fTyYwZM5g8eTLx8fEATJ06lSeffJLp06fz29/+lk2bNjFnzhxeeuml06q7iIiIiIicnrbuX4j3paamMmjQIDIzM3E4HNjtdtLS0jCbWz2mTkRERETkhFp1d2mxWKitrW2zg3/77bdcfPHFntdN6Z9uuOEG3nzzTe6//36qqqq45ZZbKCsrY9SoUXz++ecEBgZ63vPOO+8wY8YM0tLSMBqNTJgwgblz53rKbTYbS5Ys4fbbb2fYsGHExMTw2GOPccstt7TZeYiIiIiISOu1df9CvC8rK+vIjI29+Z4ZG58vXcb1UydrxoaIiIiItJlWD5u5/fbbefbZZ3nttddOe9TNmDFjcLvdJyw3GAz87ne/43e/+90J94mKimLBggUnPc7gwYNZsWLFKddTRERERETaR1v2L8S7srKymP3CXCpD4kkeM5XQ6FgqiwvZkr2S2S/M5ZF7lY5KRERERNpGq3sO69atIzMzkyVLljBo0CBCQkKalX/00UdtVjkREREREfFv6l/4B5fLxVsL3qUyJJ7U9EkYDAYAIuzdSE2fRNbiRby9YBFDhgzRAuIiIiIictpaHdiIiIhgwoQJ7VEXERERERHpZNS/8A+5ubls35tP8pipnqBGE4PBQPLQUWxbvoDc3Fx69+7tpVqKiIiIiL9odWDjjTfeaI96iIiIiIhIJ6T+hX8oLy+n3ukiNDr2uOWhUV2od7ooLy8/wzUTEREREX/U4jnALpeLZ599lgsuuIBzzjmHBx54gJqamvasm4iIiIiI+Cn1L/yLzWbDajFSWVx43PLKkiKsFiM2m+0M10xERERE/FGLAxu///3veeihhwgNDSUhIYE5c+Zw++23t2fdRERERETET6l/4V9SUlLokxTPruyVuN3uZmVut5td2Svpm5RASkqKl2ooIiIiIifjcrnIyclh3bp15OTk4HK5vF2lk2pxKqq33nqLP/3pT/z6178GYOnSpVxxxRW89tprWvxNRERERERaRf0L/2I0Grl+6mRmvzCXrMWLSB46itCoLlSWFLEreyVh1flMu3Wmrq2IiIhIB5SVlcVbC95l+9586p0urBYjfZLiuX7qZFJTU71dveNq8V1lXl4el19+uef1uHHjMBgM5Ofnt0vFRERERETEf6l/4X9SU1N55N6Z9Lc1sHf5ArIWvcTe5QsYYGvk4XtmdthOsYiIiEhnlpWVxewX5rKl3EzSmKmkTp5F0pipbCk3Hxm0kpXl7SoeV4tnbDQ0NBAYGNhsm8Viwel0tnmlRERERETEv6l/4Z9SU1MZMmQIubm5lJeXY7PZSElJ0UwNERERkQ7I5XLx1oJ3qQyJJzV9EgaDAYAIezdS0yeRtXgRby9YxJAhQzrc/VyLAxtut5sbb7yRgIAAz7ba2lp+85vfEBIS4tn20UcftW0NRURERETE76h/4b+MRiO9e/f2djVERERE5Cfk5uayfW8+yWOmeoIaTQwGA8lDR7Ft+QJyc3M73P1diwMbN9xwwzHbfvnLX7ZpZUREREREpHNQ/0JERERExLvKy8upd7oIjY49bnloVBfqnS7Ky8vPcM1+WosDG2+88UZ71kNERERERDoR9S9ERERERLzLZrNhtRipLC4kwt7tmPLKkiKsFiM2m80LtTu5jpUYS0RERERERERERERE2l1KSgp9kuLZlb0St9vdrMztdrMreyV9kxJISUnxUg1PTIENEREREREREREREZFOxmg0cv3UyYRW5ZO1eBFljv001NdR5thP1uJFhFXnM23qpA63cDi0IhWViIiIiIiIiIiIiIj4j9TUVB65dyZvLXiX7csXUO90YbUYGZCUwLRbZ5KamurtKh6XAhsiIiIiIiIiIiIiIp1UamoqQ4YMITc3l/Lycmw2GykpKR1ypkYTBTZERERERERERERERDoxo9FI7969vV2NFuu4IRcREREREREREREREZEfUWBDRERERERERERERER8hgIbIiIiIiIiIiIiIiLiMxTYEBERERERERERERERn6HAhoiIiIiIiIiIiIiI+AyztysgIiIiIiIinY/L5SI3N5fy8nJsNhspKSkYjRp7JyIiIiI/TYENEREREREROaOysrJ4a8G7bN+bT73ThdVipE9SPNdPnUxqaqq3qyciIiIiHZyGw4iIiIiIiMgZk5WVxewX5rKl3EzSmKmkTp5F0pipbCk3M/uFuWRlZXm7iiIiIiLSwSmwISIiIiIiImeEy+XirQXvUhkST2r6JCLs3TBbrETYu5GaPonKkHjeXrAIl8vl7aqKiIiISAemwIaIiIiIiIicEbm5uWzfm0/y0FEYDIZmZQaDgeSho9i29wC5ubleqqGIiIiI+AIFNkREREREROSMKC8vp97pIjQ69rjloVFdqHe6KC8vP8M1ExERERFfosXDRURERERE5Iyw2WxYLUYOFx2k4nAFVRWlhIRH0j2lPwaTicqSIqwWIzabzdtVFREREZEOTIENEREREREROSNSUlKgupz3XnwId3AEbowYcBMaGsrwtKuoLspjQFLCkf1ERERERE5AgQ0RERERERE5IxYtWsSGLTtwRyYT0msEod360FBVTtnWlWS8PZcBSXFMm/tHjEZlTRYRERGRE1NgQ0RERERERNpdQ0MDz895BVPS2fQd/T+UFhygvngfbjeEnTUId2UJh8sPMGjQIG9XVUREREQ6OAU2REREREREpN1lZmaSX1pF4vljCbZFERweSV1NJY0NTkxmC9GRUez/bB6ZmZmkp6d7u7oiIiIi0oEpsCEiIiIiIiLtzuFw0IiJkC4JRzYYDAQEh3nKTSYzjZhwOBxeqqGIiIiI+AolLhUREREREZF2Z7fbMdFIVdGB45ZXHzqAiUbsdvsZrpmIiIiI+BoFNkRERERERKTdpaWlER8ZQn7WMtxuV7Myt9tFftYyEiJDSEtL81INRURERMRXKLAhIiIiIiIi7c5sNnPfnTMw5m9i+6evUXEgl4a6GioO5LL909cwHtzEvXfOwGxWxmQREREROTndMYqIiIiIiMgZMWXKFACen/MK+z6dRyMmTDSSEBnCvY8/4CkXERERETkZBTZERERERETkjJkyZQoTJ04kMzMTh8OB3W4nLS1NMzVEREREpMV05ygiIiIiIiJnlNlsJj093dvVEBEREREfpTU2RERERERERERERETEZyiwISIiIiIiIiIiIiIiPkOBDRERERERERERERER8RkKbIiIiIiIiIiIiIiIiM9QYENERERERERERERERHyGAhsiIiIiIiIiIiIiIuIzFNgQERERERERERERERGfocCGiIiIiIiIiIiIiIj4DAU2RERERERERERERETEZyiwISIiIiIiIiIiIiIiPkOBDRERERERERERERER8RkdOrDxxBNPYDAYmv2vb9++nvLa2lpuv/12oqOjCQ0NZcKECRQUFDT7jLy8PK644gqCg4OJjY3lvvvuo6Gh4UyfioiIiIiIiIiIiIiItAGztyvwUwYMGMDSpUs9r83m/1b57rvv5tNPP+X999/HZrMxY8YMrr32WlatWgVAY2MjV1xxBXa7na+//pqDBw9y/fXXY7FY+MMf/nDGz0VERERERERERERERE5Ph56xAUcCGXa73fO/mJgYAMrLy/nb3/7Giy++yNixYxk2bBhvvPEGX3/9Nd988w0AS5YsYcuWLfzjH/9g6NChXHbZZTz11FO8+uqr1NfXe/O0RERERESkHXz11Vf87Gc/Iz4+HoPBwMcff9ys3O1289hjj9G1a1eCgoIYN24cO3bsaLZPSUkJ1113HeHh4URERDB9+nQqKyub7bNx40ZGjx5NYGAgiYmJPPfcc+19aiIiIiIi8oMOH9jYsWMH8fHxJCcnc91115GXlwfA+vXrcTqdjBs3zrNv37596d69O6tXrwZg9erVDBo0iLi4OM8+6enpVFRUsHnz5jN7IiIiIiIi0u6qqqoYMmQIr7766nHLn3vuOebOncv8+fNZs2YNISEhpKenU1tb69nnuuuuY/PmzWRkZPDJJ5/w1Vdfccstt3jKKyoqGD9+PElJSaxfv57nn3+eJ554gr/+9a/tfn4iIiIiItLBU1GNGDGCN998kz59+nDw4EGefPJJRo8ezaZNm3A4HFitViIiIpq9Jy4uDofDAYDD4WgW1Ggqbyo7kbq6Ourq6jyvKyoqAHA6nTidzrY4NfkJTe2s9vYfuqb+SdfVP+m6+h9dU//k7evaUb9Pl112GZdddtlxy9xuNy+//DKPPPIIP//5zwF46623iIuL4+OPP2by5Mls3bqVzz//nHXr1jF8+HAA5s2bx+WXX84LL7xAfHw877zzDvX19bz++utYrVYGDBhAdnY2L774YrMAiIiIiIiItI8OHdg4ukMyePBgRowYQVJSEu+99x5BQUHtdtynn36aJ5988pjtS5YsITg4uN2OK8fKyMjwdhWkjema+iddV/+k6+p/dE39k7eua3V1tVeOezp2796Nw+FoNuvbZrMxYsQIVq9ezeTJk1m9ejURERGeoAbAuHHjMBqNrFmzhmuuuYbVq1dz4YUXYrVaPfukp6fz7LPPUlpaSmRk5DHH1uCp9uftYF9np/b3HrW9d6n9vUvt711qf+/yx/Zvzbl06MDGj0VERNC7d29yc3O55JJLqK+vp6ysrNmsjYKCAux2OwB2u521a9c2+4yCggJP2Yk8+OCDzJo1y/O6oqKCxMRExo8fT3h4eBuekZyI0+kkIyODSy65BIvF4u3qSBvQNfVPuq7+SdfV/+ia+idvX9emB/O+pGnW9vFmdR896zs2NrZZudlsJioqqtk+PXr0OOYzmsqOF9jQ4KkzR0Fc71L7e4/a3rvU/t6l9vcutb93+VP7t2bwlE8FNiorK9m5cyfTpk1j2LBhWCwWMjMzmTBhAgDbt28nLy+PkSNHAjBy5Eh+//vfU1hY6OmcZGRkEB4eTv/+/U94nICAAAICAo7ZbrFY9DDgDFOb+x9dU/+k6+qfdF39j66pf/LWddV3qXU0eKr9eTvY19mp/b1Hbe9dan/vUvt7l9rfu/yx/VszeKpDBzbuvfdefvazn5GUlER+fj6PP/44JpOJKVOmYLPZmD59OrNmzSIqKorw8HDuuOMORo4cyXnnnQfA+PHj6d+/P9OmTeO5557D4XDwyCOPcPvttx83cCEiIiIiIv6radZ2QUEBXbt29WwvKChg6NChnn0KCwubva+hoYGSkpJmM8ObZoIf/RlHH+PHNHjqzFGbepfa33vU9t6l9vcutb93qf29y5/avzXnYWzHepy2/fv3M2XKFPr06cMvfvELoqOj+eabb+jSpQsAL730EldeeSUTJkzgwgsvxG6389FHH3nebzKZ+OSTTzCZTIwcOZJf/vKXXH/99fzud7/z1imJiIiIiIiX9OjRA7vdTmZmpmdbRUUFa9asaTbru6ysjPXr13v2WbZsGS6XixEjRnj2+eqrr5rlAM7IyKBPnz7HTUMlIiIiIiJtq0PP2Hj33XdPWh4YGMirr77Kq6++esJ9kpKS+Oyzz9q6aiIiIiIi0gFVVlaSm5vreb17926ys7OJioqie/fu3HXXXcyePZtevXrRo0cPHn30UeLj47n66qsB6NevH5deeik333wz8+fPx+l0MmPGDCZPnkx8fDwAU6dO5cknn2T69On89re/ZdOmTcyZM4eXXnrJG6csIiIiItLpdOjAhoiIiIiISGt8++23XHzxxZ7XTeta3HDDDbz55pvcf//9VFVVccstt1BWVsaoUaP4/PPPCQwM9LznnXfeYcaMGaSlpWE0GpkwYQJz5871lNtsNpYsWcLtt9/OsGHDiImJ4bHHHuOWW245cycqIiIiItKJKbAhIiIiIiJ+Y8yYMbjd7hOWGwwGfve73500PW1UVBQLFiw46XEGDx7MihUrTrmeIiIiIiJy6jr0GhsiIiIiIiIiIiIiIiJHU2BDRERERERERERERER8hgIbIiIiIiIiIiIiIiLiMxTYEBERERERERERERERn6HAhoiIiIiIiIiIiIiI+AwFNkRERERERERERERExGcosCEiIiIiIiIiIiIiIj5DgQ0REREREREREREREfEZCmyIiIiIiIiIiIiIiIjPUGBDRERERERERERERER8hgIbIiIiIiIiIiIiIiLiMxTYEBERERERERERERERn6HAhoiIiIiIiIiIiIiI+AwFNkRERERERERERERExGcosCEiIiIiIiIiIiIiIj5DgQ0REREREREREREREfEZCmyIiIiIiIiIiIiIiIjPUGBDRERERERERERERER8hgIbIiIiIiIiIiIiIiLiMxTYEBERERERERERERERn6HAhoiIiIiIiIiIiIiI+AwFNkRERERERERERERExGcosCEiIiIiIiIiIiIiIj5DgQ0REREREREREREREfEZCmyIiIiIiIiIiIiIiIjPUGBDRERERERERERERER8hgIbIiIiIiIiIiIiIiLiMxTYEBERERERERERERERn6HAhoiIiIiIiIiIiIiI+AwFNkRERERERERERERExGcosCEiIiIiIiIiIiIiIj5DgQ0REREREREREREREfEZCmyIiIiIiIiIiIiIiIjPUGBDRERERERERERERER8hgIbIiIiIiIiIiIiIiLiMxTYEBERERERERERERERn6HAhoiIiIiIiIiIiIiI+AwFNkRERERERERERERExGcosCEiIiIiIiIiIiIiIj5DgQ0REREREREREREREfEZCmyIiIiIiIiIiIiIiIjPUGBDRERERERERERERER8hgIbIiIiIiIiIiIiIiLiMxTYEBERERERERERERERn6HAhoiIiIiIiIiIiIiI+AwFNkRERERERERERERExGcosCEiIiIiIiIiIiIiIj7D7O0KiLSEy+UiNzeX8vJybDYbKSkpGI0njss1NDSQmZmJw+HAbreTlpaG2Wymvr6et99+m7y8PLp37860adOwWq1teuza2lr++Mc/snv3bnr06ME999xDYGDgKZ+7iC9p7e9FRERERDoH3SeKiIhIW+pUgY1XX32V559/HofDwZAhQ5g3bx7nnnuut6slPyErK4u3FrzL9r351DtdWC1G+iTFc/3UyaSmph6z/8KFC3l+zivkl1bRiAkTjcRHhtD7rES+WPUNlY1m3EYLBpeTh554irtu+zUPPvhgmxz7jjvu4PV/LKTBEgZmCzRk8ocXXuKmX05h3rx5bd42Ih1Ja38vIiIiItI56D5RRERE2lqnCWwsWrSIWbNmMX/+fEaMGMHLL79Meno627dvJzY21tvVkxPYuHEjf3jxFSpD4kkeM5XQ6FgqiwvZkr2S2S/M5ZF7Zza7EV64cCH3P/EMrviBJJ4/lpAuCVQVHSA34x98//lyQnqdS9zQ8QR2SaS2aB+l3y/n9y/PBzgmuJGVlcXsF+a2+Nh33HEHf33nQwJ6XUjEgAsJjO5ObXEehzd/xV/f+RBAwQ3xW639rYqIiIhI59DafpWIiIhIS3SaeZ8vvvgiN998M7/61a/o378/8+fPJzg4mNdff93bVZOTWPj+h1SGxJOaPokIezfMFisR9m6kpk+iMiSetxcswuVyAUfSTz0/5xVc8QPpc8X/Ep6QgskaRKj9LBoaGwnqNZLgvqMJiU/BbA0kNKEXCen/i6XHOcz501+pr6/3HNflcvHWgndbfOza2lpe/8dCAlLOo0vadILje2MMCCQ4vjdd0qYTkHIeb/zjXWpra73SjiLtrTW/VRERERHpHFrbrxIRERFpqU4xY6O+vp7169c3G5FvNBoZN24cq1evPmb/uro66urqPK8rKioAcDqdOJ3O9q+weNp5T34RvUZeg9ngBtz/3cEAvVIvYOeK99m+fTspKSlkZmZSUt3AWaPTCDAaPPsf2vs9ASYDYYPHgLMWY91hrMFhno+yp15MUeFW/vGPfzBt2jQAcnNz2XWgkF6jJ7bo2C+99BKWsBiih1xEkJnm+xuhy5CLKHZs4aWXXuLee+9tjybr8JquqX5D/uVUfqvS8en36n90Tf2Tt6+rvk8i8lNyc3PZvjef5DFTMRgMzcoMBgPJQ0exbfkCcnNz6d27t5dqKSIiIr6oUwQ2Dh06RGNjI3Fxcc22x8XFsW3btmP2f/rpp3nyySeP2b5kyRKCg4PbrZ5yrGkTrgScwJ5jC+OBSVeTk5NDTk4OAHOeeuiHwvL/7tezB4yf9aM3/zdwxZBucOkfAPjss888m2+adHWLj92/f3/+Pu/ZHwobjnMmZ8GVzx5zjM4oIyPD21WQdtDa36r4Bv1e/Y+uqX/y1nWtrq72ynFFxHeUl5dT73QRGn389M+hUV2od7ooLy8/brmIiIjIiXSKwEZrPfjgg8ya9d8H4RUVFSQmJjJ+/HjCw8O9WLPOw+l0kpGRwdsffoJ95DVExCUcs09ZwQH2rXifZx693zNj4zf3P05C+q8J75rs2e/Qzmx2f/VPws69Fpy1hMcnN5uxUXlwJ0WL/8Rzj9zTbMbGA089R+LoiS069gsvvMCzf/470em3EmQ/dkR6jSOX4sV/5re33tCpZ2xkZGRwySWXYLFYvF0daSOn8luVjk+/V/+ja+qfvH1dm2Y1i4iciM1mw2oxUllcSIS92zHllSVFWC1GbDabF2onIiIivqxTBDZiYmIwmUwUFBQ0215QUIDdbj9m/4CAAAICAo7ZbrFY9DDgDDsrvgvfZ60iNX1Ss6nLbrebHVmrGJAQR58+fTypxaKCn2LPt5n0uaIHBsORJWRCkwZR1/gR9RuXE9r3fFwBYdS5jnyWy+3GkfUFAc5qfvnLX3qub58+fUhOiGVLC4999913M/u5P1L03Zd0iUnBaPzv/i6Xm6LvvsR1uJi7776703+H9DvyT635rYrv0O/V/+ia+idvXVd9l0Tkp6SkpNAnKZ4t2SuPe5+4K3slA5ISNPhFREREWq1TPGGyWq0MGzaMzMxMzzaXy0VmZiYjR470Ys3kp0yZOIHQqnyyFi+izLGfhvo6yhz7yVq8iLDqfKZNneR5UGo2m7nvzhkY8zex/dPXqDiQS0NdDZWOPZhNJmp2rKZ62wqq8n/YfmAHBxa/hnP3Ou687RasVqvnuEajkeunTm7xsQMDA7npl1Ooy/2Gosy/UZ2fQ2NdNdX5ORRl/o263G/41S8nExgY6JV2FGlvrfmtioiIiEjn0Np+lYiIiEhLdYoZGwCzZs3ihhtuYPjw4Zx77rm8/PLLVFVV8atf/crbVZOTGDx4MI/cO5O3FrzL9uULqHe6sFqMDEhKYNqtM0lNTW22/5QpUwB4fs4r7Pt0Ho2YMNFIcmQIvS4dwxervqHg0y24jRYMLidhpkbuv+s3zRaWb5KamtqqY8+bNw+A1/+xkEN7ssBsgQYnFmclt/xysqdcxB+19rcqIiIiIp1Da/tVIiIiIi3RaQIbkyZNoqioiMceewyHw8HQoUP5/PPPj1lQXDqe1NRUhgwZQm5uLuXl5dhsNlJSUk44qmfKlClMnDiRzMxMHA4HdrudtLQ0zGYz9fX1vP322+Tl5dG9e3emTZvWbKbG6R573rx5PP/88/zxj39k9+7d9OjRg3vuuUczNaRTaO3vRUREREQ6B90nioiISFvrNIENgBkzZjBjxgxvV0NOgdFopHfv3i3e32w2k56efsx2q9XK9OnT2/XYgYGBPPzww606hoi/aO3vRUREREQ6B90nioiISFvS8AgREREREREREREREfEZCmyIiIiIiIiIiIiIiIjPUGBDRERERERERERERER8hgIbIiIiIiIiIiIiIiLiMxTYEBERERERERERERERn6HAhoiIiIiIdBpPPPEEBoOh2f/69u3rKa+treX2228nOjqa0NBQJkyYQEFBQbPPyMvL44orriA4OJjY2Fjuu+8+GhoazvSpiIiIiIh0WmZvV0BERERERORMGjBgAEuXLvW8Npv/2y26++67+fTTT3n//fex2WzMmDGDa6+9llWrVgHQ2NjIFVdcgd1u5+uvv+bgwYNcf/31WCwW/vCHP5zxcxERERER6YwU2BARERERkU7FbDZjt9uP2V5eXs7f/vY3FixYwNixYwF444036NevH9988w3nnXceS5YsYcuWLSxdupS4uDiGDh3KU089xW9/+1ueeOIJrFbrmT4dEREREZFOR4ENERERERHpVHbs2EF8fDyBgYGMHDmSp59+mu7du7N+/XqcTifjxo3z7Nu3b1+6d+/O6tWrOe+881i9ejWDBg0iLi7Os096ejq33normzdvJjU19bjHrKuro66uzvO6oqICAKfTidPpbKcz7Vya2lHt6R1qf+9R23uX2t+71P7epfb3Ln9s/9aciwIbIiIiIiLSaYwYMYI333yTPn36cPDgQZ588klGjx7Npk2bcDgcWK1WIiIimr0nLi4Oh8MBgMPhaBbUaCpvKjuRp59+mieffPKY7UuWLCE4OPg0z0qOlpGR4e0qdGpqf+9R23uX2t+71P7epfb3Ln9q/+rq6hbvq8CGiIiIiIh0Gpdddpnn34MHD2bEiBEkJSXx3nvvERQU1G7HffDBB5k1a5bndUVFBYmJiYwfP57w8PB2O25n4nQ6ycjI4JJLLsFisXi7Op2O2t971Pbepfb3LrW/d6n9vcsf279pVnNLKLAhIiIiIiKdVkREBL179yY3N5dLLrmE+vp6ysrKms3aKCgo8KzJYbfbWbt2bbPPKCgo8JSdSEBAAAEBAcdst1gsftMR7SjUpt6l9vcetb13qf29S+3vXWp/7/Kn9m/NeRjbsR4iIiIiIiIdWmVlJTt37qRr164MGzYMi8VCZmamp3z79u3k5eUxcuRIAEaOHMn3339PYWGhZ5+MjAzCw8Pp37//Ga+/iIiIiEhnpBkbIiIiIiLSadx777387Gc/Iykpifz8fB5//HFMJhNTpkzBZrMxffp0Zs2aRVRUFOHh4dxxxx2MHDmS8847D4Dx48fTv///b+/Og6q8zjiO/y5BLiAgLigaxT0aNOBCi9QY6ooOtZqa1DiklRizWIzLGMfYxpiaBWubZrRD0DZtoJqJjZlRo3EpLhBJ1AqR4laCBDUxqI1KRFFB7ukfjm+9golGwsuF72eGGXjPuYfznue++jxz3pcbrl/84hdatGiRTpw4oeeff15JSUk1PpEBAAAAoPaxsQEAAACg0fjiiy80YcIEnT59WiEhIbr//vu1a9cuhYSESJJef/11eXl5ady4cbp8+bLi4uL0xhtvWK+/6667tH79ek2ZMkUxMTFq2rSpJk6cqAULFth1SgAAAECjw8YGAAAAgEZj5cqV39ju6+urlJQUpaSk3LRPx44dtWHDhtqeGgAAAIBbxMbGLTDGSLq9T2XHnamsrFR5ebnOnTvXYD78prEjpg0TcW2YiGvDQ0wbJrvjei03vpYr4/ZQY9Q+u6+Jxo71tw9rby/W316sv71Yf3s1xPW/nRqDjY1bUFZWJknq0KGDzTMBAAAA6peysjI1a9bM7ml4HGoMAAAAoGa3UmM4DLdYfSuXy6Uvv/xSgYGBcjgcdk+nUTh37pw6dOigzz//XEFBQXZPB7WAmDZMxLVhIq4NDzFtmOyOqzFGZWVlateunby8vOr893s6aozaZ/c10dix/vZh7e3F+tuL9bcX62+vhrj+t1Nj8MTGLfDy8lL79u3tnkajFBQU1GAuTFxFTBsm4towEdeGh5g2THbGlSc1vjtqjO8P/9bZi/W3D2tvL9bfXqy/vVh/ezW09b/VGoNbqwAAAAAAAAAAgMdgYwMAAAAAAAAAAHgMNjZQLzmdTs2fP19Op9PuqaCWENOGibg2TMS14SGmDRNxBdxxTdiL9bcPa28v1t9erL+9WH97Nfb158PDAQAAAAAAAACAx+CJDQAAAAAAAAAA4DHY2AAAAAAAAAAAAB6DjQ0AAAAAAAAAAOAx2NhAnfnwww81evRotWvXTg6HQ2vWrHFrN8bohRdeUNu2beXn56dhw4apsLDQrc+ZM2eUkJCgoKAgBQcH6/HHH9f58+fr8CxwveTkZP3gBz9QYGCgWrdurbFjx6qgoMCtz6VLl5SUlKSWLVsqICBA48aN08mTJ936HDt2TPHx8fL391fr1q01e/ZsXblypS5PBddJTU1VRESEgoKCFBQUpJiYGG3cuNFqJ6aeb+HChXI4HJoxY4Z1jLh6nhdffFEOh8Ptq2fPnlY7MfVcx48f16OPPqqWLVvKz89P9913n3Jycqx2ciY0JtQQ9iLftw85ef1C/ly3yHPtRz5qn06dOlV7/zscDiUlJUni/X89NjZQZy5cuKDIyEilpKTU2L5o0SItWbJES5cu1e7du9W0aVPFxcXp0qVLVp+EhAQdOHBAGRkZWr9+vT788EM9+eSTdXUKuEFWVpaSkpK0a9cuZWRkqLKyUiNGjNCFCxesPjNnztS6deu0atUqZWVl6csvv9TPfvYzq72qqkrx8fGqqKjQxx9/rPT0dKWlpemFF16w45QgqX379lq4cKFyc3OVk5OjIUOGaMyYMTpw4IAkYurp9uzZo2XLlikiIsLtOHH1TL169VJJSYn1lZ2dbbURU8909uxZDRw4UE2aNNHGjRt18OBBvfbaa2revLnVh5wJjQk1hL3I9+1DTl5/kD/bgzzXPuSj9tqzZ4/bez8jI0OS9PDDD0vi/e/GADaQZFavXm397HK5TGhoqPn9739vHSstLTVOp9O88847xhhjDh48aCSZPXv2WH02btxoHA6HOX78eJ3NHTd36tQpI8lkZWUZY67GsEmTJmbVqlVWn0OHDhlJZufOncYYYzZs2GC8vLzMiRMnrD6pqakmKCjIXL58uW5PADfVvHlz8+abbxJTD1dWVma6d+9uMjIyTGxsrJk+fboxhmvVU82fP99ERkbW2EZMPdecOXPM/ffff9N2ciY0ZtQQ9iPftxc5ed0jf7YHea69yEfrl+nTp5uuXbsal8vF+/8GPLGBeqG4uFgnTpzQsGHDrGPNmjVTdHS0du7cKUnauXOngoODFRUVZfUZNmyYvLy8tHv37jqfM6r7+uuvJUktWrSQJOXm5qqystItrj179lRYWJhbXO+77z61adPG6hMXF6dz585ZdyPBPlVVVVq5cqUuXLigmJgYYurhkpKSFB8f7xY/iWvVkxUWFqpdu3bq0qWLEhISdOzYMUnE1JO9//77ioqK0sMPP6zWrVurb9+++stf/mK1kzMB/8f1UPfI9+1BTm4f8mf7kOfah3y0/qioqNCKFSs0adIkORwO3v83YGMD9cKJEyckye2iu/bztbYTJ06odevWbu3e3t5q0aKF1Qf2cblcmjFjhgYOHKjevXtLuhozHx8fBQcHu/W9Ma41xf1aG+yxb98+BQQEyOl06umnn9bq1asVHh5OTD3YypUr9cknnyg5OblaG3H1TNHR0UpLS9OmTZuUmpqq4uJiDRo0SGVlZcTUg3322WdKTU1V9+7dtXnzZk2ZMkXTpk1Tenq6JHIm4HpcD3WLfL/ukZPbi/zZPuS59iIfrT/WrFmj0tJSJSYmSuLfnht52z0BAA1DUlKS9u/f7/Z3L+G5evTooby8PH399dd67733NHHiRGVlZdk9LXxHn3/+uaZPn66MjAz5+vraPR3UklGjRlnfR0REKDo6Wh07dtS7774rPz8/G2eGO+FyuRQVFaVXX31VktS3b1/t379fS5cu1cSJE22eHYDGjHy/7pGT24f82V7kufYiH60//vrXv2rUqFFq166d3VOpl3hiA/VCaGioJOnkyZNux0+ePGm1hYaG6tSpU27tV65c0ZkzZ6w+sMfUqVO1fv16bd++Xe3bt7eOh4aGqqKiQqWlpW79b4xrTXG/1gZ7+Pj4qFu3burfv7+Sk5MVGRmpxYsXE1MPlZubq1OnTqlfv37y9vaWt7e3srKytGTJEnl7e6tNmzbEtQEIDg7WPffco8OHD3OterC2bdsqPDzc7di9995r/fkFcibg/7ge6g75vj3Iye1D/ly/kOfWLfLR+uHo0aPasmWLJk+ebB3j/e+OjQ3UC507d1ZoaKi2bt1qHTt37px2796tmJgYSVJMTIxKS0uVm5tr9dm2bZtcLpeio6PrfM6QjDGaOnWqVq9erW3btqlz585u7f3791eTJk3c4lpQUKBjx465xXXfvn1u/+FlZGQoKCio2n+ksI/L5dLly5eJqYcaOnSo9u3bp7y8POsrKipKCQkJ1vfE1fOdP39eRUVFatu2LdeqBxs4cKAKCgrcjn366afq2LGjJHIm4HpcD98/8v36hZy87pA/1y/kuXWLfLR+eOutt9S6dWvFx8dbx3j/38DuTy9H41FWVmb27t1r9u7daySZP/7xj2bv3r3m6NGjxhhjFi5caIKDg83atWtNfn6+GTNmjOncubO5ePGiNcbIkSNN3759ze7du012drbp3r27mTBhgl2n1OhNmTLFNGvWzGRmZpqSkhLrq7y83Orz9NNPm7CwMLNt2zaTk5NjYmJiTExMjNV+5coV07t3bzNixAiTl5dnNm3aZEJCQszcuXPtOCUYY5577jmTlZVliouLTX5+vnnuueeMw+Ew//znP40xxLShiI2NNdOnT7d+Jq6eZ9asWSYzM9MUFxebjz76yAwbNsy0atXKnDp1yhhDTD3Vv/71L+Pt7W1eeeUVU1hYaN5++23j7+9vVqxYYfUhZ0JjQg1hL/J9+5CT1z/kz3WHPNde5KP2q6qqMmFhYWbOnDnV2nj//x8bG6gz27dvN5KqfU2cONEYY4zL5TLz5s0zbdq0MU6n0wwdOtQUFBS4jXH69GkzYcIEExAQYIKCgsxjjz1mysrKbDgbGGNqjKck89Zbb1l9Ll68aH71q1+Z5s2bG39/f/Pggw+akpISt3GOHDliRo0aZfz8/EyrVq3MrFmzTGVlZR2fDa6ZNGmS6dixo/Hx8TEhISFm6NChVgFlDDFtKG4szIir5xk/frxp27at8fHxMXfffbcZP368OXz4sNVOTD3XunXrTO/evY3T6TQ9e/Y0f/7zn93ayZnQmFBD2It83z7k5PUP+XPdIc+1H/movTZv3mwkVVtTY3j/X89hjDF19ngIAAAAAAAAAADAHeAzNgAAAAAAAAAAgMdgYwMAAAAAAAAAAHgMNjYAAAAAAAAAAIDHYGMDAAAAAAAAAAB4DDY2AAAAAAAAAACAx2BjAwAAAAAAAAAAeAw2NgAAAAAAAAAAgMdgYwMAAAAAAAAAAHgMNjYAAPXGf/7zHw0YMEC+vr7q06ePjhw5IofDoby8vFt6fWJiosaOHXvH8ygoKFBoaKjKysrueKwbbdq0SX369JHL5ar1sQEAAAC4o8YAgIaJjQ0AaCT++9//asqUKQoLC5PT6VRoaKji4uL00Ucf2T01y/z589W0aVMVFBRo69at6tChg0pKStS7d+9bev3ixYuVlpZ2x/OYO3eunnnmGQUGBn7nMdauXavhw4crOjpaP/rRj1RcXCxJGjlypJo0aaK33377jucJAAAA2Ika49ZRYwBA7XIYY4zdkwAAfP8eeOABVVRUKDk5WV26dNHJkye1detW9erVSz/96U9tnVtFRYV8fHwUFRWl+Ph4/fa3v7VtLseOHVO3bt1UXFysu++++zuPc+2cJGny5Mnq37+/pkyZIklKSUlRWlqa9uzZUytzBgAAAOxAjXFrqDEAoPbxxAYANAKlpaXasWOHfve732nw4MHq2LGjfvjDH2ru3LlWwVHTI9mlpaVyOBzKzMyUJGVmZsrhcOiDDz5QRESEfH19NWDAAO3fv9/t92VnZ2vQoEHy8/NThw4dNG3aNF24cMFq79Spk1566SX98pe/VFBQkJ588kk5HA7l5uZqwYIFcjgcevHFF2uc04EDB/STn/xEQUFBCgwM1KBBg1RUVCSp+mPiLpdLycnJ6ty5s/z8/BQZGan33nvvG9fq3XffVWRkpFvBkZaWpuDgYK1fv149evSQv7+/HnroIZWXlys9PV2dOnVS8+bNNW3aNFVVVUmSVXB88MEH+uKLL/TYY49Z440ePVo5OTnWvAEAAABPQ41BjQEAdmJjAwAagYCAAAUEBGjNmjW6fPnyHY83e/Zsvfbaa9qzZ49CQkI0evRoVVZWSpKKioo0cuRIjRs3Tvn5+frHP/6h7OxsTZ061W2MP/zhD4qMjNTevXs1b948lZSUqFevXpo1a5ZKSkr07LPPVvu9x48f1wMPPCCn06lt27YpNzdXkyZN0pUrV2qcZ3Jysv7+979r6dKlOnDggGbOnKlHH31UWVlZNz23HTt2KCoqqtrx8vJyLVmyRCtXrtSmTZuUmZmpBx98UBs2bNCGDRu0fPlyLVu2zCpqXC6XXn75Za1evVpr1qyRr6+vNVZYWJjatGmjHTt2fPtiAwAAAPUQNQY1BgDYydvuCQAAvn/e3t5KS0vTE088oaVLl6pfv36KjY3VI488ooiIiNseb/78+Ro+fLgkKT09Xe3bt9fq1av185//XMnJyUpISNCMGTMkSd27d9eSJUsUGxur1NRUK/keMmSIZs2aVW2eAQEBCg0NlSR99dVXbu0pKSlq1qyZVq5cqSZNmkiS7rnnnhrnePnyZb366qvasmWLYmJiJEldunRRdna2li1bptjY2Bpfd/To0RqLjsrKSqWmpqpr166SpIceekjLly/XyZMnFRAQoPDwcA0ePFjbt2/X+PHjtXjxYr3yyiuKjIzUj3/8YyUkJOiZZ56xxmvXrp2OHj1680UGAAAA6jFqDGoMALATGxsA0EiMGzdO8fHx2rFjh3bt2qWNGzdq0aJFevPNN5WYmHhbY11L4iWpRYsW6tGjhw4dOiRJ+ve//638/Hy3D64zxsjlcqm4uFj33nuvJNWY2H+bvLw8DRo0yCo4vsnhw4dVXl5uFUfXVFRUqG/fvjd93cWLF93ufLrG39/fKjgkqU2bNurUqZMCAgLcjp06dUqSNHPmTM2cOfOmv8fPz0/l5eXfeh4AAABAfUWNcRU1BgDUPTY2AKAR8fX11fDhwzV8+HDNmzdPkydP1vz585WYmCgvr6t/ndAYY/W/9uj37Th//ryeeuopTZs2rVpbWFiY9X3Tpk1ve2w/P7/bmod09e/P3vgBfU6n86ava9Wqlc6ePVvt+I2FjsPhqPGYy+W6pfmdOXNGISEht9QXAAAAqK+oMa6ixgCAusXGBgA0YuHh4VqzZo0kWQlwSUmJdbfR9R+od71du3ZZBcTZs2f16aefWndJ9evXTwcPHlS3bt1qfb4RERFKT09XZWXlt95RFR4eLqfTqWPHjt30kfCa9O3bVwcPHrzTqX6jS5cuqaio6Bvv6gIAAAA8ETVGddQYAFD7+PBwAGgETp8+rSFDhmjFihXKz89XcXGxVq1apUWLFmnMmDGSrt6pNGDAAC1cuFCHDh1SVlaWnn/++RrHW7BggbZu3ar9+/crMTFRrVq10tixYyVJc+bM0ccff6ypU6cqLy9PhYWFWrt2bbUP9vsupk6dqnPnzumRRx5RTk6OCgsLtXz5chUUFFTrGxgYqGeffVYzZ85Uenq6ioqK9Mknn+hPf/qT0tPTb/o74uLitHPnTlVVVd3xfG9m165dcjqdbo/bAwAAAJ6EGoMaAwDsxBMbANAIBAQEKDo6Wq+//rqKiopUWVmpDh066IknntCvf/1rq9/f/vY3Pf744+rfv7969OihRYsWacSIEdXGW7hwoaZPn67CwkL16dNH69atk4+Pj6SrdzxlZWXpN7/5jQYNGiRjjLp27arx48ff8Xm0bNlS27Zt0+zZsxUbG6u77rpLffr00cCBA2vs/9JLLykkJETJycn67LPPFBwcrH79+rmd841GjRolb29vbdmyRXFxcXc855q88847SkhIkL+///cyPgAAAPB9o8agxgAAOznM9X/oEACAb5CZmanBgwfr7NmzCg4Otns635uUlBS9//772rx5c62P/dVXX6lHjx7KyclR586da318AAAAwJNQY9w5agwAjRFPbAAAcIOnnnpKpaWlKisrU2BgYK2OfeTIEb3xxhsUHAAAAEAjQo0BALWLJzYAALessdxNBQAAAKBuUGMAAL4LNjYAAAAAAAAAAIDH8LJ7AgAAAAAAAAAAALeKjQ0AAAAAAAAAAOAx2NgAAAAAAAAAAAAeg40NAAAAAAAAAADgMdjYAAAAAAAAAAAAHoONDQAAAAAAAAAA4DHY2AAAAAAAAAAAAB6DjQ0AAAAAAAAAAOAx2NgAAAAAAAAAAAAe4394obNRahg9twAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# TODO" + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "poblaciones_cinturon_sur = [\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"]\n", + "\n", + "ds_cinturon_sur = ds[ds['level5'].isin(poblaciones_cinturon_sur)]\n", + "\n", + "# price per square metros2\n", + "ds_cinturon_sur['pps'] = ds_cinturon_sur['price'] / ds_cinturon_sur['surface']\n", + "\n", + "# Configurar el gráfico \n", + "fig, axs = plt.subplots(2, 2, figsize=(16, 12))\n", + "\n", + "# Lista de poblaciones y subgráficos\n", + "poblaciones = [\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"]\n", + "axes = axs.flatten()\n", + "\n", + "# Diagramas de dispersión\n", + "for i, poblacion in enumerate(poblaciones):\n", + " subset = ds_cinturon_sur[ds_cinturon_sur['level5'] == poblacion]\n", + " axes[i].scatter(subset['surface'], subset['pps'], alpha=0.6, edgecolor='black')\n", + " axes[i].set_title(f'{poblacion}')\n", + " axes[i].set_xlabel('Superficie (m²)')\n", + " axes[i].set_ylabel('Precio por Metro Cuadrado (USD/m²)')\n", + " axes[i].grid(True)\n", + "\n", + "# Ajustar espacio\n", + "plt.tight_layout()\n", + "\n", + "# Mostrar el gráfico\n", + "plt.show()\n" ] }, { @@ -912,30 +1488,110 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "id": "headed-privacy", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "de87ba861aa5426da915dcd2782eba43", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map(center=[40.35, -3.75], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title', 'zoom_o…" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from ipyleaflet import Map, basemaps\n", "\n", - "# Mapa centrado en (60 grados latitud y -2.2 grados longitud)\n", - "# Latitud, longitud\n", - "map = Map(center = (60, -2.2), zoom = 2, min_zoom = 1, max_zoom = 20, \n", - " basemap=basemaps.Stamen.Terrain)\n", - "map" + "# Mapa centrado en Madrid (coordenadas aproximadas)\n", + "map = Map(center=(40.35, -3.75), zoom=10, min_zoom=5, max_zoom=20, basemap=basemaps.OpenStreetMap.Mapnik)\n", + "map\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "id": "present-mistress", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "119cfe4e558a4d7e998309625956d9a7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map(center=[40.35, -3.75], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title', 'zoom_o…" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "## Aquí: traza la coordenadas de los estados\n", + "import pandas as pd\n", + "from ipyleaflet import Map, Marker, MarkerCluster, Icon, basemaps\n", + "from ipywidgets import HTML\n", + "\n", + "# Cargar el dataset\n", + "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "\n", + "# Mapa centrado en Madrid (coordenadas aproximadas)\n", + "map = Map(center=(40.35, -3.75), zoom=15, min_zoom=5, max_zoom=25, basemap=basemaps.OpenStreetMap.Mapnik)\n", + "\n", + "\n", + "ds_cinturon_sur = ds[ds['level5'].isin([\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"])]\n", + "\n", + "icon_dict = {\n", + " \"Fuenlabrada\": \"maps-and-blue.png\",\n", + " \"Leganés\": \"maps-and-green.png\",\n", + " \"Getafe\": \"maps-and-red.png\",\n", + " \"Alcorcón\": \"maps-and-pink.png\"\n", + "}\n", + "\n", + "\n", + "markers = []\n", + "\n", + "\n", + "for index, row in ds_cinturon_sur.iterrows():\n", + " if pd.notnull(row['latitude']) and pd.notnull(row['longitude']):\n", + " # Usar el icono local\n", + " icon_path = f'icons/{icon_dict[row[\"level5\"]]}'\n", + " icon = Icon(icon_url=icon_path, icon_size=[240, 240], icon_anchor=[120, 120])\n", + " \n", + " marker = Marker(location=(row['latitude'], row['longitude']), \n", + " draggable=False,\n", + " icon=icon)\n", + "\n", + " # Añadir un popup con la dirección y precio\n", + " popup_content = HTML()\n", + " popup_content.value = f\"Dirección: {row['address']}
Precio: {row['price']} USD\"\n", + " marker.popup = popup_content\n", + "\n", + " markers.append(marker)\n", + "\n", + "# Añadir todos los marcadores al mapa como un cluster\n", + "marker_cluster = MarkerCluster(markers=markers)\n", + "map.add_layer(marker_cluster)\n", + "\n", + "# Mostrar el mapa con los marcadores\n", + "map\n", + "\n", + "\n", + "\n", + "\n", "\n", - "## PON TU CÓDIGO AQUÍ:\n" + "\n" ] } ], @@ -955,7 +1611,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.3" + "version": "3.11.4" } }, "nbformat": 4, From f078366eefa1674f756ebe9c3ebf16a22620edc3 Mon Sep 17 00:00:00 2001 From: belucci21 Date: Wed, 25 Sep 2024 14:54:02 +0000 Subject: [PATCH 2/2] Pending changes exported from your codespace --- .gitpod.dockerfile | 1 + icons/maps-and-blue.png | Bin 31199 -> 0 bytes icons/maps-and-green.png | Bin 33899 -> 0 bytes icons/maps-and-pink.png | Bin 31032 -> 0 bytes icons/maps-and-red.png | Bin 29240 -> 0 bytes project.es.ipynb | 466 +++++++++++++++++++++------------------ 6 files changed, 250 insertions(+), 217 deletions(-) delete mode 100644 icons/maps-and-blue.png delete mode 100644 icons/maps-and-green.png delete mode 100644 icons/maps-and-pink.png delete mode 100644 icons/maps-and-red.png diff --git a/.gitpod.dockerfile b/.gitpod.dockerfile index e13c885f0..ef793fc9c 100644 --- a/.gitpod.dockerfile +++ b/.gitpod.dockerfile @@ -1,3 +1,4 @@ FROM gitpod/workspace-full RUN npm i learnpack -g + diff --git a/icons/maps-and-blue.png b/icons/maps-and-blue.png deleted file mode 100644 index 1e55d87c45383a9e7480b9565798498e5044b472..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 31199 zcmYhibySq^^FF>T3oMItcPt{^9nv6;A|>4&(y_!M-KaDuNGl~s*8-xT#G-UAin^pL zA|VLBXJ4Q9_nhA!960*Keb0T(%r$e(lV)nHOAcd!fj}T~y*pa>Kp-&iCl~}J27Vn! z%>4y^5d`1U)c`e5v+aODTp&Fy_4^U_`{kr%Z05h-4|SAM`QN$I_W4O*s`}vt-F+bExPYTsxGs41zo#5mSCQY-l7czD3x@vc#_q$z6>%T3pV>*UF; z6Vu1XdwcU2h$GUH)0eS-nl{Qy4j2DGSand)rv)gwkX=O4C-Ns3P6;ST@|C^Y@U?}N zy(6>zxyShy>N%0U)mhF68F)red4tG=UwIg}d3a6eo|D8Zm0Mhs{WOc^;r)(>V!cLM8$?-GNRQFeAfA zwXok|eWd%uzVnBF(`T+9q2^-(&BcNo##}mZnQGinD+1G0>7rCY8Y@b>UDAkP#(ul4 zgTv(*`me`SpNHZd1TWi21-{_iYU2;i;!1VW(w5^*p)E&5QgpLwZ;^MuZ-!R3j&BQH1@B1$6ah2m77 z6K5uX=a$9OgC>@jKcGmDD_FyZQ{qoSuOQj*J)8%>?F(GF{aY2uRwqcNS}CwAPue0Q z%2G9UJBzIW)bL^GK&uxW-(Oau!FEYorvO?yzFU0N5a2p~^~Z+JR}gP(f#h-J5NB(} zBm1in!{HH#ZOX{cnUsJT9S&J(00_dxz{|sun2=*MOo+~*!jW6?P2~3*pqKiXH^fJ; z?ls81*5T3wTYy}ltG4-%P`n}M61Xko#wjPEg;nyh-_f z51oBg^OCk$TM~?{BO2_WE4$4e`2os|%*9(g=!7sQrjj!DG%L;)BdGX?$%I{oQyIO?GAqx2O01L4hd0} zj&~$aK<}3W_A;Ld#Qd6{J)oN=l7+G*C2evbHwjbTjc=~nxVLAiMdC5_%(nQGEYwi@ z*730QX!*s8m6ur-$^f!f72lGR@}w~(-j3cJ?+NtnED?sGA>m16@p{OrR@`T99A!Ah zEOV_mTcO<+6f#q2$&^dQ?WO;C_>f-vwoh7;~b)w2OO6D<5BPWZAa zn!k+1km5d^;<@-A!;EMh)GG7Nt4b?2!{o z-ON4L8G}B}2R7z5Rkp*Yu?eyT8%nV0aFKw+!$)sR<)#GT{6w?V-UGP8GF38}aD0H_7ru0+J~Lw6 zSE7yVw`w!YqP9}TyT>j+Ig;bp&n}R;)zC|;6rBrI=4;g@>`|(&5Lq~)X$4pG_mJJ` z(U*xsLy2KW*x8U%n#E*53HMR*@Gt(!{3+H1Ad(i7pbU5^dbmIOkKa1v_MI zNpZ1=f;0NDcvpx@1~14l$Arq+k~gx86O#?}Lz>IUE^Z^0?KY?kBl7`-nSR?ZkndFN zZ5lC0ozbK?eab@p1NTYi>XIi>^RobJO)sGS{B`4J9AzN2_`5(RB#f%)GiAV@wtthF zFoQ-C{=_R?3sj#DPsP@Op9{wcGa#uWn3318{vo8Tw{51{UHm0a4I#}{*`lv7Va7jM z>WG}OR`wI*J^oZE`M8Y1Xy^v+}`q_$F1+Zy3RjBil2`tSq* z8{RHQqW-lcXFn&A1C>IuM@A@9QGwKf;&qRqRJpfupstOU# zay9Z$&Z_{HnA$0Eu#RI9Dox_(W|b2J0U!u<%dY((?9xH7H3!(9PK62>{L_o8@J-hT zcUI&AupP9bQ0X!s68euPP^0vtZ!eIc;zyJn>-fId7k4;8?%e|HxqD}-0&c3gDW<9W zcLjI~mjbd5>F2!tbHZpzA1*G5$MT0eTxXGH>8<d>pv_ zuhXc#YeAgl_sS2Dea5i-_EL3UnGkYhA2MGm&_gsco|=gVcfk}{H7pJ;2Lf&dZPakf zd^7YABumbbL?8}krZtssNJDVDbbW8u09I0OD%nmk_UyvLXzh|2SxAi~=}ga4%F3X= zqXC38-Z|f_=)<7~ikOR^l59XC+SXLVJU197{+!47`>vz?M?>HuNe{7G2P)VgJDerP zTtQE~3%Kqw2Nfw1lu950KEMYEJ7?MF&;gMAxG56>+>{9%kd?PbR`o9NX#%j(nmc9> zwHDCpkY>Sb9y4c1CP@4h*+OZWvcGhu+ACm*U;xp_P)RqnYQ>09g z_P!N>Kss5OFZ zKNAS-uEb-M4MMjurxj~S(NQZYhWB{wLEhL~Rji?-Dq(07JsNk(EKmh5kamG!M~X|w z@gcC0Rv(u%2+y&sqrs>vu#X)mLRn|fTydUHUJCC?$-Ri|U2H6@@Tp0UfGk)C6yYx1 zc*TEIJu41|1Kx;g&Y&ipn{`8`(DP{GAK*n=#tKg$mqix|5Cn{f|%wcAMJ3>B~sBI76MTYu~N*G#?Q%4nInj$c1f zgkZ|a#JJAu+uhj>qpz3|g$UeCFKn+{6)cnl>Ckw+k~d7R@6J*Q1T*5X^d+qN;(kI( zd~?`N8{QZgy$h-*ipAbIdsX$Y8>tjl8pBag@VPprz3Ju;U5!gLs+lTJM`pK~q+NlbD zX=NVg$tO>VxGJ0Ul|K)2kO1XaGhmb+7Dw0)}0Cx!6dwkOQt zwB_yz%IhG0dC<(Xtc+d~+1Ca#ieuqhF64js52Q;*{U)4Q6+1}al*_%xG0IjMKy*T~ zVafE8?`=6P?%fN<#|5>%z&*L-KQy9u)Nh5851bC&uS`njKJ>ygKE(am88* zkCe@7x)~ThvS2@4Cw-;QCgtAXdB-0ZMySxAx?*S+23Ti2JCs{R8#|1OOro=lxw}Zl zwx*Wg+h?o0Xwglz)cLnT)HZQu=FtOwZI3N1qgF0Gh)7S%UXo{youM!^K^u5M_!nbCsB1d3SmCOJagg}ZtFi)p3b-wjZzGAlvJiAZl*#oGz20>-z&b8s ztte93vSmpU=NeAfHc^H$c8i&kX4RNKaVAph_}#aJO;+kwp~xhqQ!j9GkYJ=hfFHJ; zEi)y>M~j$aXb6->7Jkq31X>d=zi(%iaxle5A!&(0H*M^#_|GvHq-$57VY<`EGS;> z*OA1SFQVP&=U=jUWWQEng8TfyZrc9P0zA76^ zS&-im)~nCC#?^Y4X!N5DFY+_X_-s$Q_>W>dGYQ^4S8S|O60&{XlD->h+5IxDe;_K4 zUg*VEm*v_{sttpI_0IfcYM!|PXA%*b0RZgEi22oo%yA!>Q#g({DIHVrt9A6>cpO>H z%NNdT*5Kf+nRt~hV~O|wT8+eleA4-*?hoVXAP!O^6o5Oqeu9GStdOs)ID8-8YpRRt zT#R3(6({y*toPXK>D}0uPzw$2>mCOT$Nxhngc0cjhAoHJU+*R~x$`tvKF-P{y}`+M zth>ij#B!$V;`(QLW0q2c<4(TN2wRLbh2^;>~xiiDKF}=Tl{^N!fUHnvT4U7GA;ry0;!nf)RKGH=b z*hK)uuz(}#-^@|D@}?l}FY%YK@>PC*fPsnQ$`d{aWi%Q%Z>zXb`zSu4ZKX`y-q&xJ z)L5r%H$N_S+s|ZDXp^GtR3rn39up_Ax8cmSIbqjc6rC`}CT9f0=WD=~sZjHd>(`3L zK|m&!0Wz_RfjdeG$q_Oo+Re%IW8GSt9qPNFcG&D0!LT3>Y#rQ9$8${JQ(B@t3%-!e zea_qEDAdkps;k<9TWN54+^d`z0Qe9PX02bm00t zQDx~F(46qcilRz5CQ}@b-b=K_L6OO9Re+UdV%gUx5ezuGVzHnN%-`*T#E3%6N zigOCE+}Uqaua651-Jf>YVbj3VZ}lWU6Attp8$G6ZHZozfZDyZYI%^1>n|(zW_VKOt zSlQ$wf#6)7v5~ew1|Go4$HY>gp)E~*Ho$TcPZLny@2Ojhi{ZnzJ5!Riw2L)&LSN?PBd?5^+E5AW44Ysk8gktU8 zp!o17bfMMf=jnC?)KT!(n6Z%~_UT}Ww*G)y?y9PII`e*`?+5fBG4A2dY{Bo29CJUo z9*&K`6w3s#r59Ur>Y8_``cb>&+p`b@KRr@>Y);_4na@-?M7U8D5>v4k%K<+`M6%Mu zsVWa2`Oc>&eUo8BuCtEk+m{#pS_7`nWsSPdhR?Bs-n7M;`7-<54PaNX-I`>mTa{MZ$^vpbaaAv{q9-V?`7H529+9qd5WXqgja{l`?CBUVm+iZOKPt@v8qZ90U%U~m zFnLhg$cEAO5!WM1VXR_Q`iKNFsa)O`8N)hmLc`jclmt*aH7B#r#jVg7FwaGnytl6dpki z)AOdXw3#3aYK70pWMGb|yTE`S1tYB$f%>!x zqM4o|`nsrI*UnIOTUvNu2mZYNN9&_`qS11p!vU){^oPF4a+cITX_Q!+R5We87%^SY zt;!7sxJ|e-YJuSia9CrL2D&eIvA1D`VXnLtWB<^fGbUmD+ZfFzpk;EY96{AYa2B4~ zxV&<|)SM3h=u-h35$~qT6wtl9_zmXDlXoWV7*0>&T0Pu;sRV{V24t|xq9+5E-X{8`d?b%j+;b$fHjd%p4@*x zt^!b!>ODf6(@`b`uGS)vwaTpcYsmgW7@6fLBGnx}#ZbHQ^nd*TZ*y<*f3JNuW_K@9 zKb9ZXA?-obQRJ-#6kpl#N8rEEwPs}&JwZ& z5E9fO`L;fxxd`y!`$Eqj&1zvgP&PtL4|chio2KUS3f^H*9Py{*`vhm|UXUL`$1xH| zRfwBKr*H600@+#cQU>}J(vFO)21oPPaYgv8A8|W16OyI36lD&;jNdkCv}9Z%jbZi0 z2)>YOZO{{KOtu%mb#60^SSwK0PO9%C&I0dU-K!1_u}M-TW{P^8o0F5*!e{O2lWqWD z=F4}!*KN>H_UV&5zFZYaUmg3)!AzzjjIfUE<|^E&cvXPXZp+ws-KxDC84O>9Xw=;* z?uHJ4m!y_=TP;LL3{*2G$%VW#7O1fR8&+?bWh#$HDUffs&U&n5O5(lNaM}B=Poh1= zJ^+M@y0O%MHy{Wit$Jd%Sf$Eqex0>iJyv=i$DvEXr;|jLTG%nv75xp7Ke@e5%gp0s z4Xm<{l5Uym7Me#i<1{k3agUiIO(d#|(%;}?6vG5~xuKE~#%9H(mz3{(i-18^W+TZ+ zC%SidWwlf70nqdbG9@$f(@(=kz!$C^f-)LI^V;J7K{pE>0OAaI7=`}a>-f2NTt!_IDt-1}HbCQ6$uEwX6ke`t%MLB!F%T9@ z)9|X&fmU90_6v?-fLq6(Ld-X#J9+RfCS2#mO`w&Q_tmDv>xsT5V8Bn+FGDLskAK6S z`^9K?OVNk<@EqQkXGK!iR|Qy}xj8!Bf>~}=^BpB=W%%87!tiqS9S=^dFuO<4`&r6 zLq<$Tt&hfOOiT=<0EV!4i8D7!x`~5I1 zEJG?Yvjy3#%=iqnf9l{PFeIbX>E-uwN|2V|f&e(F6*NobBB4^(Yu@9AfGq0wlR9I7 z+VTuVPfsb;fwS$~=4;dSCY~~N!Xvooezg#<#tadK-lBJC6KUCsT6TkfBEvEmU~+6p znpt-~LI&yKVZELoyFW&Yc@o>*H^N=ZQ4&gE z$nNEIHwBW^c?HQ0iB}xe7 z*blii5SEm1Mb%$6z?x*%i71Y7Fc+{f;i+#M@! zc7@cw_;@@l?0D|VkYE?8p2^1MdrVKc28)N?>P~(por{?L{L#u4tnu!B6N1<20nH`KnnuA@pw z!!4)p81-V=6&}Z1ZkMeJIz!9U4=kG5 zy&mtz=h*(0`pf_)jJqKp@S8eH3fJ2o`gC?^eYoxPVkE@ad_o>wl?sn<2seTrIPaRT@b{qT2uan%hx7ZFJo1Z=v({TV3t&+SzWmbD~RnQTworOZ0rPA+_2tNb0J^X$1G47 zCJr7GAv;*dT`C{(n_Y&6_$3Vyth;@(<888QJu%!K=JApg*#XiUm)*0Zc3A}L@%ad; zP+`UM_v6pLJ!b1%VTsB>`Ha@0?;g*LrOFuXLY;mw+7OstvV}H^YXp#VVwX%&#B^bP zJd4Dc71EW9vy_5}F6o2}fnzy|HZzHu;+Ov~nXIPaqrO<{Tgf}6qOGxnulodurWfc! z@?!&a7gxBg*taLL-yMSN(+U9ezi_>o|3Gt7#IdFQCXsx<@qZ2e6nEbqIj~^pSyKYL z{bz2MJaj3@2i~+@Eq6dK5bvX9?F>teA0a6jKh4tp1=YgVAzSE7tas@Chj!w$(8uahFI5KDzHq50n#R3f++94J9GHE z)B|S0U}Bp&eJ4T1M)&o%g_Cnr(?oSv=?-WYwtffOy0r;Sur$#8F|$A=Yf zcV%ok`W7-@rHEpo8kNG5IuQJ9l%A^6f#`PrqdmdCOWn*yvu_}g&TG7^QSquW*_U(8H`_b@ z-z)%E5}9%l#rpPTY=nVWkS3O^Ep;gSur5%KVNl~YHz1LnyLmoLVQHZU5x5OzH`n6s z0PkboC9}hw6pshAhp?2iDE79DjHy|AzV@IBa8PZW%TO*viUr>V;b|flskMHpX?XAA z1M9yx#tKLJMI*uq&$am_JeYsrW*0UI_D>5qadDY>i{}!478!R?vAO9*^f@KF*ku^! zA1qJE=YJ>yi7$gSD|gb=*#Gs9c$i6gxa)8^{<|LS69&2=!at~YvpWWOT3g#GEJ+@S zaV}^LmUn#JJvU1OR7}3;&j<`$UyG*k7nZ!W$|rxej#loyfA{!uX@J z`PVXMk5RLopH=%BN!jMqL?@@KA_c)f+)vL<%9NR#?I0;xRL*^E6HGF+`-sq;dw}?B zKBTsyWhdo1sFdlsFKK2HX%0`bS$$SK5dEo4+ZZWiG_J`TsXfnnlA1Ix#IgfMy3~nf z?N{+r3>3zYY=Qzwo?_Z=37xRY7W zihx~kctHYvmBKf5jLS)c;H@)-z78L(ZSHm31BaKv|eIk(7A z!^Z_9jIrY$vwLgxLsOd7i{Wmm*AYORK|=^KzkzJox$;-e@BnZ-k@4Q6_Lm#Up^__~ z$=?&CfIfaF-?$8p&h&L-8^KG|MUkADz1h#cu`EC`D?BUvq?SyclXy(4KNBeFHa-SK zcZtA$rQ6I_y|gx+vgY9T?^Bg5mUZF*?*aOWWEvc?SKcX$bU#@l?qQxH!!cr>T*2wL zT0*r)l`htWViqP^LVb&;_7gfhcn%R%tOWRQiK-T33j#`!BH(eROE`L4_j;!R3E&Ls8Ym_?nnlp6r%7HiBNUwX5PuRo`lYQK|Oz8AN zD0^#BN^V%qxIG>(DG@j=)!BVQh2^tEd>IiKtjZM0zHYIVgLL7yIXiqitVGw$eAYV9 zN!sPHZsvHl{!b3vcjG$JXqhXyIUMunqqzrvr2o?{|36fHfKl(64r*flll*g-a7M0Owq5W?31@u<${skoE$9Jrg+-`j~ z+{A{Yd_R7kpYZ|g{eJ=X<@aqp>>CN3sZ3RSJ)qZF6~&MA*HqLAm+Ff|UjeAZtff#pau>1+?})3?tzC=^TK)UeD_}B>HY3@Th$$J>@3*f=Xk0JAQM&KAap1GJcW$* z^`yr@;}-NY_2ZT!&jU^}sgIQl_kl5&++38@SH~lOrY7$BS^rN44`b0!>^+^_{M5j1 z69CCnbNWwAVz4MD{fKXy7k?4$Y-i~$j9+IF4l6M%r^Y6t7$kx`ZV~(Xh2p7Gxos^~ zT6R`42ce<?S$j5vGvu(@7I1TqcbA`DqjQz}xdhtoAoF)PvC1 z#xS(@128uPfy6SwNqDV13dc<>&2+mcMR{q zLZFfH;1T`~pKd8fkxBv^cVLCFkSi*9%goF`q^Kf3!ab`j`!kQGB^u0azY&Z-uu=#y zOVq(;J63fJ@N%}8BIplIq}oR{oBAPAwv9K;stUieIj1Scf=EA)u4*Kr-`|)Ko`M(m>L%oF+yi|Kh zO%-86*z-08Xd`c4uCvF_Ci^HM)H2s3RQv#_&?l<{q{?Xm<}m1jiH|}FT)m=Y=IT^)5r_z7@uxcW*;`=G9aBE zP#_`4<~uftOvD2x#jNJPsEr?9A#Qc(^I-a|oZO=5cmnS8CmW=fvOO z>iWW?VaXYhavcp*dLubBrto8IoLgkt&*uTTodagDlVRBvc+w|6+#JGc{%hAYS^T3< zG$J^qBtn#aW6`9UMZ z1l3sx;lp*X87FlwbD+m=@>B&r*ic1;u{A2PN50ITIG9c|T?}~pu`0<)98=XM7k_WLs^MBxjd11;;mB|zcgPP*v?t$RVE~o-0%7C*{|z&(zOJMu z#};{FLpM28PaN75Ipy6H&PGPZZD$52FM04W@9c3ZdXbQ^!6uh6K%bt0_1 ziaQF*%Z>T78ppowu=Ry^gr@nN5r<^zQP_&IDZn2-X~j)zNe(+NFL{wEav48tx0H_U zEp;)tMhoG_m$7bU8DRd07wnKm9iFlAF%{iMY|OYmm+|W+>i|Yu{;%G)s=^t?bPWKa z>i*}jF$qTqrmtM6EY8~yh-$GN^9*^XhY6_Q)+Iz z$u@HGHd}!X;UYGLcmDzXwus4J|BF0RRize2oAmI~F2$bpNT5TD`Ns4qtYZlnk97mb zKL4kgy?NzOAd7r;fq67A-YED(YGw&2IyK^2!#ks|uUs9q#Y7)7$M|I0KKI>uY-yw} zcbF25SduLT0_hEEQ(zXC&Ozmb40mwt))4j!#>NW&u`H8&8$iuHcSU+TpWByej-^kH z>YNS>n3hG!HQ~#tXrXwOm}R*>9j*}YZHK*3-;AS!xJ2d6HA+sb_L{pos{p=YxtUwx zQdQ{^WP(G>!)5Y;`4+0hRi!_7br)wVrN9pqJH$f?0E65wMbUnB{1CFO&FO?6sp)6q zDtK(qc*^*7Sn1WL!pBn;Qvl*L{=(-DTEod>Y&Z8`P;Q13ti95_U}R6&kpjEHxdL4Y zAEqQmG80{$40-m)9V8IC^PG&o9u*pf#Z!PzDn5n|7b4*wj+?s3!phPvJ0GDL``(b) zwUcqM)z9_CEXkGXaG8RooULeGpXHqSU`4_H@Br)NKEgm9IfOf)A6siN8r16!orxYpnz8tCgFBDL*5Fq1ZbG-(?WTU&li+|gmBiB8U z?9SWSHxT9@l7O*XjL@F5OjF{7FR5qU#kXB09g>NP*qRa;Y+HZ7DBrOqk=g{@gkd z|A8G1r|o1dwda%gpTzdfNnM2$m45Gv-yQonS3`{!Kc(KJWwijkLH2kWNv`A$b~nhq z8>bLhVxHAXETDedATs{cfx}J-4?de&P&iVd~@~vxRD-XN+%#c%1YX6#&Nes zvl_ru%^mxQgEA;9eJTuQl6IKc1a>tCm!-jxwB4dQ{T++VfDRwAbEAY&9{G`Vd?WH) ztkeMzswbClDc1B3a=&62F^;H}h|Y-eWodY8yc(ykGFi_eW8Qx)kC^3|kB9PB?=0J^ z`<;)zEyCg%CJJyW%M5TrK+PEscwmoS&^pLY?j>wqUyuZ%%LpIt5mV%l7=#{Cc1|Oh zWLJ8pc+(q~e`2}R0j|)V`%f!-P-frh6_=Hlg-FXrhl5rBxNYvUAO)#Si{yyyWeAIR zZiybGV}7E1E|+E&U!uIox3LKGr=xxJAd&A4Z?hyHq?kzrS`Uk2EQj*!$eg6fdARb@JbH$kRRt?+hpUq$ zlswSkA_SXEKbrr+HFNe$Cc<-h2q_S|&p5hkRfOX|a+R2)vjp%WvR#{e_${okQ@mr& zjPCY|*5H9qDs%v{G*cMU?gRN?%=PHG`eNBfnVpx%O!E21>qgtxg6yuaVQT_3_$@S) zGo91R$$Po(IQx+d;-I2Db>V%2(oD4NvU+hW90LrBO8A0aaQI3ABS>rLu4~fU`;3#{ zdnAH9ho$L_vw`a#m5q0YHnLfBM#Kx^1#a> zNcvD^+utgfPjb|9jecMKkSu?>={BMCf*4RRco#2D-T<`M$g_^h_J_u5`3 zu{T-18BGxcZT$K>+-kY<0YPixjRkZLtjz9&_ttz%pd0P4u)kaXjR>MK4b`%lY7zep zx*?L;E8`%Ye|Ddci7<(R8`rMVQ%@;DAng@?b=a5hQ$bPfG(uDJ7>p!i`#(UuMo;z>AjuK0nabca% z0(^sauo*3Yor{g2vU*oY3BVPm#~%G+oNjHe0)1)E zql%?HYUW|_W19rs3=uvSY5d6NV(-UEuR^@TA*bR?Wb4V)^}#TEtcmS)496HIl6Nl3lH(GnBeO^z~7D2UxsDlTvcE zbjFEfba~4m_J9DrGNY9^$kE-MccjL92m#L-c(r}b&rKm<6(LSB*cj~G* z&CE4lU>F^B2+9o91_t8<%3K*grb7CkS#=Wk9<5bwfM~OZsOzba@81u<0S4>_onKb= z!E6sc#ugvI5QE4if$9uiK<=P!-Uayg)w&&swS^ZmExZY>o?$Elic_&}DJEYgl_fyZC;Szy^Gm20La zziVRNF)a_*?cqE9CBRvBsl+K*T{*e>Pkg;&K1dJBz+{?s{oWiPaCG?vdB#T85=$5P ziIF#)LR0n9+_6!N(|r-@s^%E0+F#3f-X-QB6Y?0PN&<_gN1WHEuG=|p_olyntj}Zt z5>9xX{p>}cp{yYZO^&o{0nS)!8T7vGZ~ylSJ@ar^}V^hqw=3)lOarwnIlCYyT^bh5pp%@c_5gIdWX$O+PdRT?-Z zKVCyKW#c?<`c;+FSL$7s>uzE-*%ht|+!dd5xsIR5pX=rl#i+bK@s;ju-(4zX&inDM zwuHNy;k4a?LUG@LzJz`S=f+yb8hZEA_=h$&4<)D6LAw%ls@;M_aJ}i)Or#dhvKvRgs7J@QaA^TN#rNzWA?i$jh1Jxuxp9k3)r%)fT$07{`GTow@H628I`q zUdMyt)aWv%<5sXE_Qv0w8;FbRFtnw{2!@DHCRc&9@Rq#=pppbyI}>)Iq1C!vg&e;_ zL%yJfZQDPS!TAkRDAtJNMiMku2Uss zJ}OA%a?5dQ?*W6y!*P;232})`2m(`Gx%tXbY2P;{m_>=U;ERu+Z0_owvPS&*;0Jr- z1d+U1(dt7x@dt~8hEBZ>`yh==m#1B7M6TK81=1u@1NUp@guU0|d*P8W$O`BDz^chU zpzqYxA6j%>0lnnX35xTR*AN3yz|s-=!@Vw>rQ;0(#X>d37_xZi0P#}I)8&uWZ$|Wt zw#gJeR*;kn<0?@4kvQv+Z7Oue`WRBax&nXk4{;J!v!ux6iI+Ym+#Xup3kQwmT z4^P^@@SC5h(F$mtYAG={$uDZp=R^BzkaS;c(^>u!Ab*;d_tc$zf7hx!jxaeP3y{Tv zE3yZTx4w^fG*p1;{~L;@i(KHU=P#~r&K8dT*QN2AB*u*KvNOL&_D4RXO|iS7e*cju zX#d38qtK1hur%qiT}o)D=~;Ypx3qG_;TQ#w*ki!gEF^m-y7q>fA(9zS&|WUdCC#A?Q9Q&Zd@U|1w|o@T0_z0TS1Ae5Im1o##42rETuXVp@%_a^ z(}0xFjQSbr{A`qnM4R1Rb6so`%0heIGQ{q`4-y#d>L_D|89*|}u1J>{HS*zF)Hib1 zpD*4iGOyROu5oLJrPS5y38pmvfGqfN<53UfPbb zB;Txnzq z+wehYXX)RKIK*4#>vefem7!F=I_+IhFWS~g19CS>fj|}p3_EzVB3#`S|EXUO)(lET zpAx9zbfj;L)-)FEVQUFJx;Nchh?5`Y@ueO`CjBWLKZf`O+tE}~f_#1mzPOyG1UgRz zs+kLLXfptp&EUGFj_h&wY&DFf#8H9dhZj;VuHIuV2pK-%7iP+tl2|<)Zk=->T@I$}-r7ueYw;*iMpWU!JJlLGLFo zPO2p+*h$obxinP42&Hm^o3=uS)cUmNu_b`U{}+5pFq8(QL&-gCHcb8G+E^-pzV(ko z(p1U#CgS})%{VyDJ&F9&iAPIsZNY%1%l6t_BmJ7GDG@;64Y$^bX7skc2>>;Hb=0;$ z`MNfSg%M$4N4$p>fW4>V=q5eZQNyGX2NlSXj3&e9%8hr78(baXyUj-1E7CCwXm*JI zozL#6o$0af^i~u|UxHFiPn#RpPY!T`yD2i!d2!*M-`zfvWJ`xe!|Y%7#~=(?^a2ul zyTF}>QVi|p6kx*5%eZB&6I@eRWuFb1ZHz01|KMl!P8YtxaaCM9rRF!4mZw+wmcx)h zoM^q9^N{rB>)T&5^X6Jgq5mWUFTv}uQ`x+%n0H&gl-FNE{t*$qOh>tVb*#cu zOLOh|=>FCXjo3jN_;bD0fJE;VSZ?|F(Oyq8uAU7j=xpS6{)P_FFA4hf5v=s_>4cGS zAF9DX?6kEop%La6E4;Lo%@-@X86RlRe%xyv21F-{nw&NSj-_Ypgz&7Utm{u> z_Su1Y;U0@(QcwrAb1bjU!ktp>{|Ha#I_N-!ar6V%q4C`sT`D3};LXEfh*ejH*kvE7!AHB>>&4>Dntr^B`Fc^)zEIVyh;kcds^i?;>g@nb%t%t`P0rk>;6;!F3@D`ccc| z+qgFqI@sVUmDoG09!Uo=B09J2w$5J0u>~gfhL3mE2hm7n9w3>R|D3q@MS0_=PJCR} zpZs?Gr;zG{_!2rd8$*9@z3#9$074d0Fy$#N256z^hJ3 zgA=r1yy{2Tpjv!O{mFVxD7r$5GjXtJ}%! zYW-cRO?Z00RC~Mh8Jr+|+>BOXeh6~Fa>)5QRA~^=(VK00+Wq;$tK{JAgD*WRltRZm zht2vob!&jMw@!;2{N44~^4++4IVYUcSZRah@BPQ&Kk2jmc{Wy+T9BeDjJA2s7X+V- z2RWk`$Hqlt4Tsje+5aVsq>&<2WYAfGh=foBTbfEn5J`=noMUuxe{31!ramLULT-ew zdDsUEVNVm89;TdB%kouz%pnLbup+j zV^6?`^k21HZa3zJnepsJKIW&-uzPAw+ZJNp<=^y)2nDSR>@a@ko~?z6XYz`yG82LV zpXl{sTAC*9Cd=Zc9vOY-O3O&Kh*?CRlG)DfB1#KY2#||1R6p%h*R!LOh6J_rs*WFS zci2_wwZC2pJ$*m^x4}jvb@&4V=*jFee@}+Q;G3@e`)DnixUbfea(i|}YwAYjnGSEq zl@uk=yDN%Oog=z7WNY{Hs^JsvSJd71hTB69x3pQ*0{W$IaW=f^~N<=nT;f$7fnr>vE)t>UJ zZ@XVXPoV!`xeI-rHm(ofUEB}R*ff1oF=rBDpz5P;HQDIrLmpFw`g!lg-+ZQXL;X&B z$@c0;9iRTcrrtU%s_%OP9R?V100HSnP>}ABmK5od?(U&WV1{l)>F$t}kcI(~PNf@B z8M<5W9zNgSz0dudXZG3bv-Vo=de?f_xgZG<4?h%0!hg#%3mgUE&5Jq*l8>oc%6wQZ zwW=yhK4ER`{0A;7l$P>jPP{;S6rQD0y~ab)dMvZ%ib?#_okE*=1AFEjE}g;eo4;!0 zIy#O-LBx!Qj?NCd4Gt(}g#Rv^)1Ma@w6RG^30|DyEpJFcU$NZ9v~Tu^Ux30Tg_7n< zIas7!Rj<8oRKDJ!-TatsEAK?yV;)kYOpmnIf=2Hx9$9(!t{r7C)KuuT-?649cRjG{ z_FF;^iSU~xm%)oaUkw_PhQ$pktN>hdV0?ZU_O7RtrX6XGXO-8uFOOoB`ZUwj%cAnD zrLif&sx~4>g`UV%zfX$^r~&}GAKQYL(kp!HcUl+cuj7jE$tw~}N{~n2t zLhdJ6GJa>l;@LUo3)kEfb`U@a zbpDU8XGuw<2xh52^VjBs`bFI9UBMoJ|)5@FPI&2rARUAdPWhN8hc?mo3tk(@Xcgu{ElC$zuMoRhI%?XlbM< zW}9toMP4e(Fkom;Ef0rE5+Sy4=tE=th3=k#dn}EMEO!(v1OhXv{gL=u7jc3!gQ?n&L`SVWKFbf8`faesT0YHIHWZBvx|OF_Q1l(%FwFZEbyNi9qQpZ(*P736;aLSIaCG{&O@ z3I~Qogj|M7)xS|i{QWB~zid;ktw7T`d@iFlgZdeNXDQ*7bg}Ko*h&>-`H1QB4|K@6z5-!%254E@@RH-?Lj`ue21s*hs#r8j(@Sddq zAAo?0v1$P~k%okKVcR&oubJZOgRVeuj@`{47_Ts=ewr=TueDOwgKK3&I=;W8$1oi5 z?KRUDyRy8{PKf9`fm;fWo1pnRvR2ndzkQ$^BCs1Nw_o+SwVH77#5sAE_<5dA25|D- zP^*(JANS?oMioc>OeeSeGjk841m66x$@=1wXujm+edgdp6I899VHoLL@8WZlX4$vD zbu2L}rJE}{E$rlVI8M5WbPfZWcZ;{XBM#_cGMR#7vq~6Uq>T17=DBRMtib3UaB7*7 z;)V_&|IGZuc*clq{?WKl!vWyX!GT5NG^=|IPr2syWn10WXKm1yKejwSRrN=$fQroe z%5x&ySf7(5a>etb`iGX3E8B55otZmlo_a5mkV;uJZbD;oc3)RKgYYos=$-+@bHW=E z`b$=WjUtt2AEm8W+h*Ujh)2dJDt^x$pq%seSwhH^@h(t3DX6h5-=)sHJgVoJnR{jE z_mwr|pI_Zi>R%ZQcH6Qt&mT-bQkrQX#2egR?D){3-PjZ$Vj>VdDuFPr-yznMX~qi5 znLGXS49;u7*MKjW7k*~5QEQgP$CZ$DSxVy*)*m{cJ^vaI+lW#Qa%l=>f9`oh`~Vu} zSlBJSU$tmmX%Q_5?wc{5*+A9~Is1Gc18R%=-0)2Haj8Lu1mZw3jyf-Nw=u_#M3J_S zAptnWBkc{d)XUV2u67UchGF`gzr3${XSQhE#wIlpKTuvf8hD@oAjPW{9QhVHH2iU>BI$RP2(Y6O!?OARf(rI z`%VV(7M+T*%Khg;ek42Ve~JpS;OJgy4|PcOr~3 zN=N@MLS)oekBVTbN~ax0NJ5>G-ErlFE_2A;YC~)QMg9JTPy0R2%Qmy6jKRF`#I{*Q zKZ;)#Rv-4iu2|yGEdarEJa*crJ55ENyG=f1o%bI~m!B**`E}u&h~f+tYi%4^RxLrl zFf)uLcaNs_rl?r?xIQN3F;eiM6V}R~6#asE;YgoWI`ltb#=~V9!G2J4kBk;iV(Vh1G~uKZZ@jh0V_(|J#${%d$~>$j5$1XU$Wz^>g|25aC&Kw!}eGo zzKA0{C0 zXsf_5Plu%Bhy60crzgIv#=BhO`CT8yPIiMU$Vh430_A zYCaAB%ln~-O+fzI4CS9fPT(d_fI%%sOh6E(A=R%TOUl?TMPJAspe8aev(LOZC$(jlx|86eP@Fv*DO7 zvbY|Qe`#DfT>duC^pjP_pGv?}0TFj#;_K1wBozy^%E*rV@nyk8(zl(1e5*5czQm98 znuhBNB`LgHWYwdZb&+Xjm4CeJ?Y8I@iYf*B;8dk}JFA`^CM50G*LR||?O4E8p06dR zj7fPvPE2A8w7@T{rG-mg_wiTh@=k^{KYn^}R-s*#`~X!TYnjvnY&&;1O*lw=zpW{u*N;RN#Ae=YGuIX)&kiWR3c}?S7-mc}q zNRAHn5q$51!AF4Ik_^tzueL&W)^Mr2>>Cv9s#Yi${j@SGJj0y1nndepbaR0^ljFfi*k-Dtj zjdyl&PLn@WtIXVJI`z%D)>U zLZ?gCE}bUnMhiA16}a9w7v$2sBYRPk#t6|TlB3Tv$$xUxC*;<`jH2ycR90rZ#XWze zNr8zBMmN01Ughq$k=iI{I`PY+o|)Q)Cf@Y16U@p0Yz93}{RxY7cdk#9)TPaWY*(hv zXei1MBJXj>_7bwL(5@#QB>%*!0v{(bWI&=1B;$DaE19ThN}c^>TN*pbDoo_`Y=5~wDldU z?k@IUsq+)ImR3NWUjg+SxzXi@6XSz|(S%nvoKy#P_jdlSCi-5A)TONR@wQe|Ft`n> zG`$JJHky^Pxmo?n>%D$9_DbHjJ2vTiqX<_#h+KA#3SJN=_<3y%!!PReuSw281hk_8 zVU=1hLbB2!U~nm}9ee^Ppl=&~@k&eLWv7>ni8+TmuoD&FgQ>PC47=xDde#YeyK#?G zCZ{ zJWu1ecf!|atG2UKp~N-YG!?x&BUu6py-B}wiVLLG9;yhQ-b%!NAW)k>=c^uKQ)7^+V69`D?L09_ad z)h;|8flp70)l_vObRIg6yRZTzGqBqwLd3Sv*a&3-0UvVa7Bw;zA`tOjP9ijMQVY%( zXhAufjw|+rv6d5EvV;I6;E9gL405viioEA>?^M$YMcJSqIp(EX_iDEIi0vg?$HTps z_IBZO-a|9{JoScYj_n4d1qY%{qMb+gq{}HXFWEKcr!Q@buW-?6!N# z=cjTvzERck^&z@Wm{|E}^b+ap#Pk7kSAwBMP$FXbh1?$eo8Fb|5uC7o&A zx?}ACY*>f}lqO-rNCo-RA9d;7Nw}jad^yAv)@!H{-kBBUXuGr}gXI8I>L$KXY+0Ba z7`%V9#gzM2foi9#aegoiLF$xhopt0A0<0CKuKV`5&?Tfnz?cW77U%S1W;lgCM&0N0 zu5*{0Qe1NtX8Yr(H88cc1QGx0UbH|ZWDI&YoBZlQ)<6Q3&iU@G9ol49>vEc_LWblg=TIn+7+Op0 zH~(m-J&xArsVXD(c43gL)H7nk9k?g-TD3-O_1+?`T> zKnmjhqRq?qIunOBUjZRM0XLhNG29tpVh1!51k=}PDa1I32tf>vBA)g+&dSlO==L~T zzj8$*!?EiT_FXdiRbbKjdmxL_zY1ylH(!TJ&MXh&UNrHdtkAG=J?+89e&fFQTNk}& zq@4?80|`nqbAok611&U$Dho}C%ug5xi6ksz)i3+ER{uJAnn}@{JYK?mn!*}rERzW9 zJlIEj-493ZLEK&H7lv$9UL+W zXachm1TQ})g`kBS0#&6mVCD@?og!4%$>9(eqhfEq-B2A+yvQ7q%r7duk4TC`sE;{B ztbtZ?LR3EbnKzj9Aun@7@vRo*=b3N4JjuedB5?ew_lcV6>WpxieCxaCXF;!b#h@b^S`RH$a7IvZhK_vasj8d-dq^nba2Z*z?NTe_=FacgUI z&;4)e(XIBHzHpBuoSWpOcD z&2k1$-Y}7`%fDcn*i>P7Zb1HWBEc{f;;M=-I zamnEjvI0yLv!V68LzqF{2wL6D6XhZd3O<9_NkvnngS28&7Y&60;Ckszv;CyOfvA&* zpb$+FFNg8yk*g}@tS0aUoHKUVYTO5n#Kv8bX( zVpv9BWCNLAC0qvjRsEmvNg8>^f#@=&e`vr_;3nlNHu?d^dM0T$Z`kO>hmYrzJsV06 zTWEBJ$n8FT_b15NbDsKc*JY7K^{987lqL$0ngn3(&iF7)nh+B%n!Cs?^LTXn1-j3` zpm*000F}$ks2;%P6G*N`iw&s8nf{ey=iH0S7ac_GB(&I}EA zPl`4f^(++ng7o*p{@k|+CDnRnru_lNu5lro!i28yICH7_ zb4#i9_mH0lqr?`(Z-87h4G{?KQO)pZNKiYLyo1VxuCe1_k(_$i2{$#oO-_e00u;b5W{@GV#m!hEX@@zs zn@T`OJhqom`oFJK`Do8AkQh=7nQwR$0hsy|$l$2b@M-co6Qmr%zn`DgOVj08CJvD{I&{!NYlHLHX7lf+4Xe1wDRL z$_>tsSp7-K^sH>k#@}jvfn0xuaTQxTtc}%%?ilcJY_`BAymAQ;Bb0;6YlLzrKBPmJ z8(u9RdX14c(L%%N=n)^30i<0xbALim%SCq?1Lw^0Mq;h&CDncRa{RY|0QcNvW=J7p>|-N!Ln zl}b3H>89bkvEir4%>g~ztiWv`&UIpNyuAQs=75Mlu~#3G<0SZK#$|tOP7DWN-5C~G z^tXz9_ad3_XT<0+MYosN*^rG0U<2D%tT%fbxj2;*a=GW*wqd#8>}{eSbszZhkG?Y1 zdz_G%+x+4DFHVIpBcjcv`KMKZEMiW|h>*#($XMh8?ZITy(TG6N6|CR-NSy@3d{vTa z3ivR(w4vZn+rNG)*3Et${3-Tz#2BD2XfW^D)Sld|d_j8S^$F}B3+|w35580iNuj?P z1&*;#JH?`qdtqcB1fuYI_(njli%Oqy`MKbK?#myYKYtqcMMqKeuQse!prR{|Bm7bz z;0uxp9lR^_exL&ln6yxe+ z?U$hYL*dp0QSD)g#Eo)Jh1hX)6iS*H)&*j=-{qfBpnMh=IaOK3*$m$0%x=cqnYZ%^x+U&a6Y?e%KU_S zcair^rY}yfvQrPO%wV?ZVMH7wPZ3tuT}J? z$imvnJi2<__?y8Fv*oX_+awb}aBLvV&#Uj{8zaB1Q08KT98~tJ-f>~VL|K~cG|6kX^ z_7ZR%A3StYGXU4|KJVtNIpLto};QOrawR?ebE?}gC#$}hE1c9_RMJzD) zXzu!Gg8Mt48JJ$&R?hTkohy24Pg$Oqr&74-15~RaZ+Reg9IO*#-HAY6XXfE^XQ*zD z!z6^1SHH12v+nwk{NsnWi#S6vVcH12_Xy0)h^hGzf(f`YHgR-tuoFF1iRr>^j1jQ? zoSGxM!viX5E?kT~e(&e+V+;4g6F*f6psA8H<3=ImT(u=l+J ziqwrSUr}JYqXU-^{ja0?1l~JkzznqyHwap)5qk%s_1J*~^Yeh~F9F>2I^^V=XQh8$ zPAm}Xb`gOAK5GR2=Je}yDQjq1XFs#5_j7@xUh&XfPbuiTp+VMQCbXLx;bzQV=_8_#>KpvG}GYRyY6r8dr0`T{=;IazUns;*>h z0+y!KqoxZhP^27J)(V?~PsxFo7ow5H28&8wp%jr>S89dW^ed1Pq|Zokj(tcNeZV}u zL;*Gw#R~>J=!lru4uuWUO)*K}Bz_G9z8-c0C6I%Mb-O+WYLv4`aCJ zq5-wY+2@;upAPQnhK=ES6G_`Q4K0A-h!Lpr~Gjx*1Fm^ z?AqW?ZZ!3kPW)^|5bz9% zq@UieoRnppEQ*ka-|BHdY@+x-+oO_yAI(|F+L;Ig!-8BHn!{}vi2%lh3`B=R6Su)^ zvmQ;Jk?rf<8%^l{9H!U1EyzItm@Syl5Tv)et`Aok><@n+vkFwKpM#7%(mABDEU%&| zu5{vj*Ahki8+uKmJL{rfk;4Lj!qpB@M?{zDI@|xe1XM^cDe!x((RB6#NfiuND4(>cNd{_)`;!*aj)Hn`}22D;0%*{?T zA}1bLVsR*N^Jp^jEZD#_o)zv3qjo^r zdz1BDZ*_W-0?bKem19M_ROJF(o=FamaJ@_2@I;{`qaFJeQA4Hm1~3+BNW6rP#mnhG zj4}mw*bmno@wJ4ln|#>st4bf7Z7cv#@~7B&BNe?oS1zdfgV4s##2X*Mze|AUn$=LG zzi3{CwW${Tvu&xHi}1VsK5;?v*n#0dLgzi9Hh{5$!50G(gR|At+U6BVTc)0Ee8yN0 zn7Q&tARoo_*|xi5xYi*t1zeE}GaZR=72;j(>s;3`RU?eDR{2*za`elP?)piwF- za8l60Rd8LRVC9Q~dwgz2`5;r`NRxv|B?==61A(KWR9=)%nlk9>Hy{0?`}$8e*qf+n z3DY3_!YsVF++SToWThL=Y|LKBJ4D--Ws@rdd+SGrvfO>%?&LXYL@MH4QAb@sQpR?? zhx2b&TlED=D_y@~NU>a834P7svkg<;KOG5qLt`|DY@pcIb!C)+2tGRJB~u3Sj3Q#r zvG>JYg3n=D$c@wYt-l$i2WB>e!+*eMhPQ%0iwUBsSKaw$2u(n zoXtpRO7o?Og)L@+3w<6Ap)@yeer_-QSIr5I~p>VPg*dry~T_jLjH>U8zc9tH67GwlmbgV59vnxC@t)q z&WPK>cwdr9T{Li(t`-VXM?r23dXcv=B{Xqh69-uD%(L8$uaWCS+T| zU@iZirxaACNs)f5vx%B$d-XuzjW9^=KDRJz*M!izcYDgc-p6TD+fROV8L`oMtoR}? zHpCH}|3Z}K=KvnKf%5f1MPPxReHpF^ItGUU(eS?y>s>G9mw&s|GDZRMAx}Mhb4Cl@ zqxP>7mf83sY&LZ8Lr{Kk4lnAyMR_;UH?YqRjKqo+w;UxAZn3Kf6ju;{Aem6CYDgB2 zbZ3^(dwtUM6{+#_cxqYTRr(-|--#|w_(CrqQ4{Y7+9kEp$TH)_tx8BxlE0|0l{*^4 zkg92)q^$Awv&T`Tl_veYqxiUgX~C4UazGPuck-{3{CKsR2M(G%CKSU{KBEd=D-Xnkh|nA%W(254}<;vTPvVdYlC*@e){TF?0B4Iy|7^ly?RjKlvW zdhBM>nUemWkCcaiyK&(+k&kMlCU?1=>F9P@YCPs z->n-TEBGvgYvX`Jn>Qefe~YMOx1PlR3Ka!Lwcoy?k~`)E2ww_l*^OuYS{*SZ=Ov$f z*Q)Dh=J>f1+{baVtUdxG&K*&JOV5ya?9;RkXDz-6x8RWew=xq(SRPqFh2H|U6(qR) zx#{c+(24#+b@4*@w>X0(7sjo`s(SDi{x?)KeOjSI!L!2M-7l z_`I5t$AZkt&1G}DOZO^BclcfmLH_c~e>tb9)CJhZs&fqP)v}L)A?NBiHn>kO&lNjX zd#Qoy0#;gE@ViwhC0r{o{obEP%N^7Sw9RtlH4B1&fQ?D z1yKR{`o1@TPHA3sjPxI0U;JJf`GBS>W7>{eLp0xJRkO8yfXU-t#f9|_2W|>BymGJk zBn(x9W)pnXxyxN7b4Xlb2|XyE@+#S@GzTMhz1ve4Ynr_C$}aqVpUIgqT5sZO3G13w ztG{Ipy9MIeHXE%g*bJb{S;P)TK0`O(RbwhFUVdfw)?=1EdbFM#^hpU=W~8CX_lom} zK2J7I{WMM?B5nw-M3K$CD1H$r|6}-p6{3|Py;&d10@?XQwkGTmq8N$i~B}apN zRx~!aMKq0_Z-Mp5t;1%ahYrV+6s6<3 zV@=5N<=2ta9>vtfw8J98f=J%Xm`3le+_0vDQ~bWu+>2Pq z%yA9jLes-zPhaVpxTLRvVsa9gNILeWO%g+kHT*!a5?UUk;dRhETHkJkdFfXfAe4h> z*J4PO|>doQi%6h zREReTB8wqtdjywl&j+V*Ar>y|ISEZ$Rd<>L#Bv7T3fD!qXrjdNxPs3Zrb`S1%bC@N zyXS%5d*Uz63>l^MyeY=b1fj0z@4GOu^k>Er#7JDE!)SZ$wh!N|Z7NFr4elF^!#I5_ z@+}Pn8~7L6DWWxd4i#b#$`T4y5FkvOnm$JXiYe3_Jos=i^n~Lt9_)Pzgk!D0 zi43HQ1tggNdlq2~-|z)j~P8ZSB=5N3@L zlv&Tg6jfH$aute-KwsDVbyIM5nPu^7Yvn**EqHJT^{6IRtGQpP?w}Sr04Rx4kh&f` z=#WL0P|p4HCW`dkVc9$=Jko&stLAN+zZGk1c?9i?BMP%O&(Wy^iLPbQ-ME;H<8y&< zw~Ds6nDYB4*G)ZAfod@1XS)Nf&Cvfs&=9mCHl26g7Hk%c%x>D)!%BLtFM(xKd4)SY z_lvnzEsM!IJFm+-HUbD%N-tc!=N z@JO=7*(qw(5r$0bYzj-u$BZ1|%fV{#F_2nNX2FdU6HX}-^V-qKJ@WL3nlIGj5F513 z`UdLd?-x8LA6=?E?;hnRmEi#Ih$Wp+yV!?gm1l-JwUrG&E7IllksT1W7-Z6J0!GtUAYYB_U8?6ume@w(hwTMuQW(%IMm^IP%oR|dp z#CfJ1Po{w8v2$AN&Tju*bub>zb}8+9(4<)WnsVWB%HgSFfG`y~R*Njw^$Bop@Ay=a z*|0Hzj2zZxCVGx>l9&TFzRgmibJ@~M&-vsyk$AK7h>kGzPy)E~NB`suT^Z#KCt~Rb zCEMUTpUQuhJSTaW#{XQCe1As003d1D;aq>D=^l)hthWN1N09zrZqS+x1XaQu z&%w1da4;oRi(7!L7;9Evp}&-$P8h^E7?T=gO!$i9wAAJ4m9Xo>gQXrgm%Xz36-wQO#fe4$(>bK zJxyaV;(n*Gp#?beACJ=)$awNKBa4jG{LRMHr<1ioe^u6h^}n{&a9g``CP#1O0XA$1 z>xT&qC8j*LhJlq81KM&70AleH=iT$>97UHagtxu=T<1gtk2*P|wD1RU4R#9eLqCG% zEym-#$We|_rVPe@5OvWz+~2;Ii5)y1K8v`YFhhPVnkae?wkAv^s_-2UE_mg`j+LjK)(K_wi6fuwj6Fr|(7q=Ye z@R<35GlX5$5>n(7Fx|UJo{aO%hm; zx!*~!Mx^pR{L7Vr*~@;=-)-cI>~Fq9K|V@8pO_T_5Z9h@*~>WaY5_>hIDpuRiyOY1 zi0%9lgfVlrjo$k~grCbBxsd>O&zb^IvEzAqqk*%@7=L`YNzwysdi(1)&y$)gS2^hq z2UTO07{K|}2^gpfAAc(f$p+1bFTW8(kjiR8{KZ?99Lj!lp!w>2k3EXUL~47Mk^as9 zcq}E^%^5~G$N%h)2CtBXU_^GtU6dLr6U4ZLfoHyG=j*ol#eOX17) z;`)DTT_HQD$_T>{(?=a6Lf*_`2xH2@OVKe8Ni}wWGf}~!A5jt;^GENE+{;Bbp85FE3+~@D?yI_J|L4fY%c?cBu<}6HUOh6`Uvb4(5mKJDroNa$Fd|4lr zN4}g>4%?)Cm3suYCg_)XPC>r=Q=^|5jVnGI?iVsr#4T0Cg2kmrfkPQZ+Sjk z^}-&E3E!?+aW6NVq}J%?O>ixqt^PmPwP{L|bBe2g>Jz>QfTV)5gN$n9)%qDzCX00f zT{xsIk#y+$7N%va+4S5!bSE!9ASLjgxyda9HcsT35`F|)_sMm+T+-yjvt6y-!zUhR-iNgAh>*&_lha;_^((*^(&*9F(~G0jAY-VX;>Ax9^%G&ANmz^u`n zuO69PE^EQ>8=U)IbNB`%%t+{e1*1FFc0GjRA&M-1QQ6ZpUH{*&`lWOzV86d$t$*0K zLDR@2k7PTeotJHM_&(PJvWtaZf@=tSlQABfwvbDl3xCjIH3z3T#r*d?U;%Yp$a2{i zoeeD{&m%Ga<&``~`sQcp?Y%7Gk3f-n3c9+!wa9=)1@e!JsmtPMx^e44h+O~&xa2f? z{eO?|=H`y75dz(^I6W^)I}mamxEESqg04}+mp=TtP5id>4=WgjXl(o5#tM9~8Kfwu LDqACM7V`f9AztN7 diff --git a/icons/maps-and-green.png b/icons/maps-and-green.png deleted file mode 100644 index 3c13622752cf736d5daf86cd7fedc776d61e236b..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 33899 zcmYg%Wmr_*`}LV&fB|VFMM^>%X;4zSr5i-LrBh}Ik&^C|ZV(CSK~O=ur9n_yLIw$i z_l(c)e_ih<_;BW&z3+YJT5CsZYbp`q)8YdFK&YZDuLA&3@LwnZ#{vJG`cGeie;{5u zN^(HmDBTVKFaj#_vU>g&`+0b&bo%H|Jy%Yduz`jMoAy95N>Uqgm<_p}3^q&;CMyGz z6)|Scs?(H#(L9GF*X7Fq4~~=+WU+hW&E;VVz9gh1+Q!M=K4g?Cj7;iXS6W(OIGHwq zm4@c}hiBsSkJx`NUxoCT4lY&J1tu^uFfqb()U1|l;uyxMamAMVsWsLnXsI+vdB4gRMp?V;;iaVB=b5csV(ZyU}maVW{&pRHoU0!dM71f3-~H)?zjHWVs6 ze#*Sc;yZh0;Itm?!DJ;4XEmNxf)%pD zT1ZU}Nx;Y#|JRuePZbgbwq-x#G31BP=evt!)sREw7$u+rfc$420X$?oo{JFVp2cDR zS@v|4(XXgi+mC^zcJh*k9&GSXrcahaI~{X0kx>kXec!xI$X(&xhmeK zWN_k}Gi(P-gr9OH;p4^&ErNDPNqv3#QRW-wWCJ)H`5it0FlL04@XK5MlJf2rTD=f^ zB~AFL95UVAnlW|+yZ#urN^?Gd{2q(tD z3Ei&eM42%2GelU*O^tn3H6pAKKgcQCoAai^Gnd>_n-Zf&LcKg-S9G?GCp3L#D0?CWpFE4|>I6+dRy+#S^DhmSOx%@<@y7y>hab?_DN8{~bWzXARw+jm zL%d6;A}cH)NKR@hAK%?u1=3V}w^%{%255jy&W3!M1Kb-<)jXm#Y9MbGYfuDXC@U5^ zf#B^CAgs4pta?ulA0z9TN=H=$a^psW=222Ww+(K#pmDFGZ3Xbd__{! zZu$nvl{-6s6yhD{*q+*RLOINnjNm5;%_$R7xx|!6k6VFLI1y6=88iV)kKoS{+Zz^G zqoxcFqQ>v5XQ*UKL+tD>8F1K27x~pa0yt)HL}*p0_mRhQrx-CMvVo>9sWdHWc7tvN zJ&@4bmHV_d8gfDk9U+0^Ww!ffNU5EXIN%i2s7OF)faDdXi8+3xS?>h_N4Lvh(CV{0 z7TmWYP#t)G!V8J3&;7O6;7D%LLihlv7pJgIH zptnA;CR;UtwpqBSsG8$i6}R9geUq~ihr+rwd`_6&jrPVu72ze3V8A%;q;AXCtp&%t zs>f-lS|fqtu^fe2cdhOV&}$ZoB(cC&6l8FKw)>MZh?D$F5y5V@)<09@yw$?I&?!<` z@y<_9_|{Ssn9QM&vrm!5W$k0#PFdKsU&=T-rHG*3())6`2Z*^YDAY@W4>gp}ReCK* z;vMRnECW_4)6rDDazOCZw~xUCYE#EmC=#d&3nP{cSqF3WxH)PxW*QC5QqsvWeuU8* z-VHpQ-&()89YnH2!wNp6cqhlsG+<0Tu2&j1o@B>RWDe)P$Dg1QT4nN~OHLln5)E!o zW%s26Q)`8))ooZL$pAI-qxxy76UQIpPr=c7x52Px{5Ud{e44+}kZloO2bq#GK4G

8EiI@zquWq-()W+HCqEYvnZ$w*ZHNTT z-9l=$_QfefO711FC{aMy1HP)9%7A0%m|yYnGL!V5TBnZ85L{$0(^|k^RIeoeEi7RtWVlZ%S11fFsp*rJ!JI4#z5N>qsd=r9M+%h#y8(NH;J>a&CYU<7AQX%F zAmN;DbJrL#^X;*O* z=BW@IX0%Lzihk6_avOR^nn}ai^>?WfzWc!5D{nA26p0Ju3wAM6MJ4o@}f@B=fYN&8&HpYXh6 zoSc>|&3>HyiYPpzA#a{RKG04A(Ed;Y)y|wF5@;=Gq(X|omimKm&#h`)z~$LP{9``Y zg3MYCYRae z5MS22dYuOPvRt7n>{`50t>azCRX>T~q8>%YZp zl37`$TU3bV1wEi-F)Y2WhL6b!lhLp}>L6ytO8uD>Se#medJ-GBuY+3PQ|U~jl%^FN zxekT~KONJB*L!T?yAdhakziND!GyYeCQB2l9Bq;`k11bGc)=!Le5u~1P41G4Z?p5< zCC`(yN<<0v{tDCu>mU3+%saq;&AI0M`(ST9iRpzz0Qwfsq;1h^m#=qC7&l_@&;hibq6P_BKv8eZh z)C@0ov1LK~$xyy98*Ne?dLS;=jiR_GUoJwSRNOB4`04 zOqb><*%>c0R%xU~T(JdH`vK>M9Z4X1Z#)lf1balblO24Z27Nczt(=I3o6QtbC_#6} z?k`@NxA#PtF&Rmo@m=yKo+<|9b9sY5UpJo(I$PG0Y^xv&U`H@P$$8|_pfTTC0bvjE zO4RH8x#Jb>hdE^ay8I$o4!YCV(hX%AX79e~za|(}WiS54geBw6ty{n`7fYy8Sq`a~ z&UxF1vPRs%%5qSbWrYl(34OkGRHn%~LE-)kb_-bu{cjaq!X|7-9&3B9rlZVw0+>J; zZff+oS6BW5e=TuVPz5I(W+&(&`N|FUVX=ypyDNURY-}6P=$U-^FFgLkz6dSIK(k6r zYHc_m7}9P+R9}BjPmUYY6JcxAeJLv5>7@Jq5*h#B2v^NMfquN6gy&#n{_b>t4Bi>-~NGkep|l=y^Sv$NC3t ztq@yUi@`8ku*ekY=HY+BE9`A0+?+Ci{#gW*T9ba*Z7mph)?^be&tg0z(Ic!qRKdkv zocnd%r+6>SjufMKdxGh&Qxs_bt3oy;noxeuSbE*{=-%PLVkhbAH2f~+Now#Fac?xV ztmkySAaN=Q--bCPolz5if0bFi_>oKa)S))o$ho9g6PJGwrw0%1|72}1g}h3`=A%5g z^h_D{X7##lI<;ZJ?|V?$K!Z`_+c%tatVVZbMuJwlJqL+)kClhOjqSR2v6}NR%Q-9H_tWO8_VByCeCEt%?i|p5i&$zP} zbkr=>N~?k7doCk>$GfOG+#J4p6v@hEo720GR-8#LH4 zTibj0A)e{O8aM1`F3wpt=omOjUv+Bp9|5a%R%R?jq{i6qZ})1Z^C(RchE7t{1LvIZ zyuNW}ewS!tUU_V?4EYdfd^WG>u7%ybQWB3Y_09p4<2c*V0e8;t=~4o^DNVxpT8-a4 z_pjZ8X%` ze%Khgf5admbolTc!!2?~HZQVIA%uGou`>ri%a`1?vpXkPmQ;&;k8k&@fR+(+WG^%r zW7)54ZfAw)2(W=|Q}DI-Cw11*(aBcB+(lqT>iM@x9tXR%J)bF8*=bQ#@JEW#rH@w7 z(>IWF&o8bls#4*H7Ui*ip`FCBl=Kio^$c!JWJ+)}=d7RaMeFFbCf$ zoAkvr@ao1EFi-l?EJgzf4Vju?NRph{=z=?q!Mr1OUjUNF2BY4>7qpC12O+KEGyu2L z`#td>tl(mWbPdzL8B>*hnLb2LcQ^;x?V!zl5#ANo+#NWIu>9j-?b$u0RE^0J1bA{B z4mx^d=33@NYZVnI#(7cvR9JygR06sZOxtP;g#KwkY=(Yj33_0mFh#iL)W4nHf1Z!mWPAO z+u7C~;#>}sAdh%ws%aAfy?(s*>vPTLM1J7T>C?>*7rRg9?^k^M#82(MYsP=Kxg+vq zPz+2D0xN5+`)&EZs1SaQ{dF8U`sKRrOvHb)J}jD8v{ISM5UzZuoi}0YFeIN^PxCZ- zm~1RX0}iz^pYE8wYdxzp^6JmowIwN89XZSC{W8IjB}vg-KKeaH8ycW>_cQ7@IVT@Q z6QVy+lOn%o2LHfdcTia(F! zgv}r5GNx&OvlL2bU1V!4;M5*^uw+N$$laqYTQ9m86&#ZM=_k)rZb5{raW$^4%bSqN zXd)uj^_c_m|L=ExlC1S7LUUN+w9Vpf(WYr!<2>?B_TM5{%}4~x^oQC-*98tmrMT1-kZj78~2My28t7 z{s#}jbeL@zrzL-ty-6l(V}3^jZG%c_mbg`e6+8W2p~UIsyRp7sP}Ur9T?2NOxaMv2 ze<6j-0xl0coe8e>XSV*{)8fWk)I_264shq&U8$0pA?l}D-~j3x!xB4{vh1q%~e^iY!NSfguq{2=?7| zVBhV(sVj}d?hTft6+E*0tHvV01N(GleNU;fe5y#4Nur)8IK)G)=~dh-uy~O?7%wUD zx-}}r*v-TdI9V8u7~<@f5+O8Ec;*FL3JWBOaLqAw{a*DM%hLU6sn;#_As}&rtwX^_ zfO<;MX)KPX*6$WLV+jtjI+MXSZ&jgS(s(91MNglu?ak;E>D!24$_@^)lywQMhlj|Z z>~fvs2r6jp!hQ~?79_nOQW`vKiAPz~bcF9@E@F-c7jrxlCJDALkRhrydnRl zf)$-BgZcD&2(7bd%1R|T&d1j#ZwrAl3nQVqlU(s$Wfb5t)vxm~gFi&-e$?Do#}(eW zy7Dq0(mWrjPC?B?+OZDjeLEQ zU~1nf-dB&)ZSk(Hw2^ZVvoKG;?CBqr)5eUa!fi{9ww^&#jW79{gGlK7B!#U?f3vCM znlH#Qc$2Hys)T{=mALjph--wWVuvwzX+Lmi_OI9xnlwFtvLpPnZFML#(R9(rjPT9m zMVl_^G$|(&2d0&e$=0veo70uX_E7FR7Wq8*y!^~}6}_#9IBUs}`8%3*nm$8DUmY4L zUxow=h~u_SIIVet8;(OgPKGh9CNB1i^IK{ormhbUD;)`Pt%V~bM#xX=C>Z=^X?UM< zFo7RXrJZ@DP6N=sDfNQ~FRc#XM~~njbIUcEtV~3fGJSgG3o6q;tY+6T&u_4Sk1zE< ztJtF4W+Mp^c&Ss#$J8pKyZWJwa8q*21IKd08yZVVhAA@Vq5cYK-kt;4?We6{d{L!Q5jwKW&OSZTPsspJcKyA=qj zDrHIMruR5~AE3*))n__+_}$f)s^J|o+WuCps7n@JxuM!+?n|mKVe%NDYU03A)2v&j z$GYfmwyEn}mBJefQ%y)y^_F|v!Er<7%fJtszvJ83)|O)GduG3KMr;0uc)npf{f_T_ zm-Jw@UuQ2p&ZI_3O7O0`k-ZtgJwtiXw^jHt?Qk=?^UIQUX4d<{m}A$d-lf_N^d^+S zo$dLsGJu*p@k6bg&52-H#~#eN=Fv!3rlZ$=_!3ciB#EJabSBC^$^W>utI8Jq=B>W3 zqMt+8!te|3rm3#wx}ev6PVH)4cA}A&OXM3>s>TckmQC`d|G|!WSQ7uWDmdvzcR1N0 zCX0dI1!1|n+KpYVAsMLe$ohmjKE0wzInZ~TysIF2U`51T<09mKE23wC)zpHfeu#JH zp^2m|AM$1HkRU*~uBz1VugQ4K>4iO`6%kFy(@ILUU<1k)4-(F z>IKa{=wQ~ADpW<9^6ll)X!K5mZivCo1<_EAi-L#yS!8%dSK*e+09wqbD%C(YBEVR-6O|5B?B%?$h%TD zUVKdaB`QPY{qXEjHI^lVOLag_$kwAvR-}}(V0e3%;9ZK;K8D%5e8@^nzT#Y%&KxkC zm`}(Io%zc7u$acbWOvVX-`l;_c}_PJx1nwM_O3VI*q3QMPV=WAo>OhQ{MKX7ViPZBp^{ z)Ppp&5Sq^ud!yN5S(T#9IJ<1){{Uf0-QUn5EWE(*n1n6v&xzt!V6RhGipm_^-i6Op z(=^%jlfAo^Z;o5Nqr$5~u7ctbyF#45l#fv>tVl8soUy-ZxR0Ea*ZE(Mket!JvUV^s z%Hph^C=&2lTz2HuW7Y1$?je}?YPZzaTTn~C87j^vju;DPx6dF9=5*fyr$P<=-?Y00 zj{*#1Ax8Gg=-ew{Wkq6Rgy!0BZI3X=l(RZn9W*kFUpcmGfR^M36t0Q#)2T^hl6kwD z+w+BqlV&#S+9cI3SlFK{L&Kq+6%?^w6_;L^j)KfJw4}-$9Xmp?P076Q?wZ0^iR_e} zOUmtSPT1X_zq&@RYtAJeE-9`jhmxOnTHelLQECL+gT$H_@?~s>dKn}e=L2MRlB92L zr=FJ7EZz=9nCel5KM!lDNB|&PhQU1Lv9nQJ`cJ^~!Fz?WKSKBXHn9?>jg7#QRk5Vj5Ex8m!IYEAJETs7RJmghj`^6?vo7@B%-$J0i0ZtP zzpj~(7g2k+mVUJ1<96*JFJeMaLs=1=`X^si*kYhRHnjG1fM8z21XZff!F}5cn^eSJ zB^kh1d=~dr=k<#B+3i1l%AP6<2Hhb_xvr!j!`cRaQm0HgD74s zi0KF&s3@Q|*@EHe4tV(4Wkeo2=JGt?tw=?4#Mh@%sIaeru9pOCH!4tzU!rVm7&J^isfOB2Ku754ZFP*DhIY)|X^}N)L(m;-OP{r`_{Gao_{b zcMY?oV6dTB_?lhoHg-`1y%Ff6)G!X>-8O0b9l+332~8H2g68~w^Q-hC-2PcybiI=Z z=b%c~{B|(`F#mHS@u#OkXOz+3A-O#sQ?_v`t{48cL(wdY##8xR|M7zxBo*vRORn zphbyerynA@LjUx!sXcmH@Orl1|i_WmpSxzBUT_9bb~0|j*lS?i6V&FnX;db^I$Pg%98Bl`rw9lLvi z?{+lJW-xAjyvJzh{hIX$4Na?KAXT9$@INiUDE)dqU z5(9XdRqek~x|(dc$V)o2)mb=UdC#!`MeN>~BP+4Ag+H1ReSS0fMkI?9FWB_smSl3J zrk=w8TuDspzsaGOY>M%~SlH72K@iTSn`&5x@K0wWcC#8MrMWLmMzyCZuRpm(S~$&q z0TQzfg!!g<#Bh;D7WU5c>!w_xl;@Y@vs21Ak6{BCwq$T!mAl~rAbi7B@=O+0yPBhO>$ibuf zL$6T8Z>TNJ_JQi23Y*HcRJ)q{l|KXJt(Y@%BWLDW+VzUhHhl#SfwHIz3d|9)%NpUsTST(LuNP<&@_r)O`%9dfDXdArmU@4;Ooj;Oh^#mI{KD6l%B zwZF)y*S-2pUfpAhQcdR0r8vLbXTfXKh~2AX0K_ImR@weaN4C zz3AyNfX*f9yI74A|6Q`wKId=u*@V-{j0A@B8*MW4*d8&nq2BY~-@_xdPxHpZkd1P8 zp2-=2P@~3hM%I99z$k>R%Mb*#dA3Mm|K@JdsjgL9bJ!V^+AY+Z5QRR=a&oUq2A-&C9wmqZrN)N><#7vcF(+>$z*9;Wy5z|z zX19tT)kHH4xwL-d{V&bBa^xe6)avywAu_l&D9uTpVdCH}#Yu&jZU-<)knoJ@*?38A z@d1aa_-}WpE~q0ff2BG4GygUC=9PH(QOT%sA?12wquR-x73ZdE_t*6qS;JHt0YG^s zxm7uZcm6tZcF{I~6f32=JAZ{2Qdt>9XYjmZx)pN!yUNXZ`zLiJ!=d%>$NH(NDwvjr ztexcD%lyHw@=?2knL{R)ue030CnjWiNmb4EQA1Jhp(~;?yIU|9p5Sk+<83kYfB&@k zi?3Aa)GmYeckshq&|5`M_ds06%T7cxY9<2d)uIF&YIKjbDx_lJi?%!+qEuutBz) z=#}?@fA!=U9~br_Mz+w>S||y%VL+dG+_>w1dTg>&{3G?qAt$Y=Ik@gs0%`SvF}^@t zOC>o$uzq*G6Zs#Jj5J8$2%&>vKr7WlnaZF=eal@UGC1CQ534s)&whS1vLa7;o3bXM zP8GJ}C32xzG^f4u2V^LdD>Q_%K-WYVcSn!@40IAf1Q#hRFuvxeLX3@5*@fJh{i&N+ zOytA);5F`3;X4aCE(!nOI2P053PB8~uWO^5IES8&Y$kNpVVt3i<`d8+x+@v7a(j3z zc?YBQ(BAbXc@5zgP+OVYkNj^M5egzX7{OH80N+Z>w*4zZ@lLjYyx=S(2hpkRyO3eE z{LV`XLaBLT{nWfayY`g!C4GS@#@_OW=rFBDIhE^^Z-G^3Sax|Ww=;@-NY+-v zcNRu9|GsPLEYpAJBS5EZ$+9K`EKWbwkz07Y<_>l*PFjwY*)Ytn-`sMYUZb4$Ced^& zhH;qlL4M@m?W#ug-LXI0C=JZ`NSXnHZSuRIpaOpM`uTJ!Ee{!EE@kRz0FPbLcMi;i z7n4I3dHNITYfy4cr@%W%dIv%{j%C$NTH}s?`8;$f2!DEIIkc9%1LEY4bB1%&{dGz0 zjWS&9wT0j8?cq3GNXAa0ySyHBVpt2t@lN%d&kvd(Su~&Bs65kPTY(j7KwMT{ zJS<{Vg{pg-HQ%gciLXE!ST)>e z!XX`elifubXUE>e2yl?bIl+vPkSW5=$j&b#6e*Qmd@+s0@`}j*FgkaEjn~t;;i+dM z_?~b;*4^;<*h*qLMs*4dO@0kAjf;dn&Y!eSl+@3rSWKJnAxzp-$R6D87op}!WH#8~ z;nX;I{bgG&I_bTSnTjG2B+A&3|1ebiT4n)C&_4ZP;*tu1k6fzW3=Yt6qIvJU<!M!T{Kv5PwB;K`zl{Yg=!@=fYjxvm zLFgpRbjkdC3o}v_hfdNLj9INBv59F5aBoc+p+(gl3hh|xo_7949W37>P%(HU9>yQ% zKI7j5_>M$b7*Z4-uH)}hCHcy~7;{W9 zqJIZJ|D#~^fx>%#-TILv4KHPcw(tAcAE403Gx3dpH1}y^h0i~HC$wUj|)`A5Au-fdt8S7E%otu>2d<#STLdK zTW0itpO`m?%oW+MdM?{*mlEuBRuCVRWlYD7QAefa$}!48iS{(?(vI~aIBs%4)MgF{ z!CAY5BPZp%BBZB2os@fw0VU~2*{TvvwJjm*W`HvRrBy?iMJU*p%3FBsa3RMa)C>V` zD)&Jj69UD5L|;1nga%jgSwY4*dRmaN6YaI3&#wuh>&d;LA)6@}{bos>E$XYv*RK!>s#l#Gq-Mn0bS?=9lj)=5qPm0SmtLx5adLQRo;1}wVkgW zsWc3BbsE!Yxj(>G+v>IJX%-kVZW))fhFtFZ@}(-e#@ zB4!YrZWA>6bp2cQg;#6gDE9ia-Ru`yP=Yv2YE{%%ReHopPT`p^5s7f@`(gJ;wkDzC zbOZVH8EfGI#_NM_8SpY1_V4!Z(gExcZJ#fH?br6=HG=u(LhwDS9*?BPBX{>BBJhy@ z@L{6%)6174*GzM|W5Cx2O|EQeDyLE{P?Kts=gd+=hX`tGf`iFdz>Ko@Dy$|g! zy_@MQEZu7rzbzGAl2R)PH7Z(z(Z{cZptdNj8Dity#2>YPbv~!DnO~VI6?mq%w9s#2 zOojzIxiwZ(}V7B^`w1{v2i% za|IydBh=aW8ap82#pgn;X;KLrIF_NrIJx~*=9~+WvHeR-7JM&~H^U>Qgm^D9SU=^R ze8W3!3X`IDmmKR5eE$yxXY*9k1g*ErE`!RVung_E1{GdE*sTS9^={w1>{KpXiD9^Y zf4xiQm<_(J3~w$=`tWH8&R?K#dCyG1h58?U{^Bc&4Z39E0x6|;wyxv`l~#<*P=d}P zs$HM>zh{=(84uRCUv19Pt6gFt6ROTD4mg+#L@;H2gb+1J=o{E8b|+$nIsKPn)U2f7 z)v->00PfUZcSC;i`F|VkBeOaMwFe_lH?rZ>tFaT{kc`7$6#bpc^kiYpJeD^^>ay_O zD9;WprWM0#C?XmG^|<$aupy>Oc~`Z;1i`htdkb#Jq|lR;1|Da$)n+v78_bUCQbh|1J;GHQ--mYtUQF@wa?MR@(ykGRbn%Si~dtft$j z;P0?^=hOG;C7~D`(7K!Dr0X2ch3>;ysdP1Gn&>UlJWTEYYFm{A;7B$&_1^<&L+@^x zVMCEO)$^=3%(V$MryF&40||jbpJ?(Sh=sPQQueD~P)3H(&e|2$rdFpVsYQ`n6lV z)OQ}YF{vdQ1Q}l9x`{lIHbiO4@ACc6RaRsX$L)f0^`d)poep6d|HPc3&dh%1;&@&V ziTP>sp>`o7G8QaEuVO;htKg`|8PKNsUIBEe-9JWS@0QymFtsTn;^-bPyr(s0f(fXj zHvMkG-G4W2wchyo#kpI3<1XkZ&T)l^tx;UZ(p7ATCbVTY@q|*<2;oYuhqPVB?CJc z`)&P@%?BHvqmVf2fIsC2Il=Z}CGWPHj$omJQj%GH;FwA7Mx~8Y z8!&v$V?h9xVSpb@YcVr^)R~E8tASZ)_A1*y-Pn6vX4(JvU|oQY`~r-ohE&wBRrd;s z;87XgP2JW$;ZZ!B=bbM!0v^4bCZQpA(v-ASNf%9^ZhrpT0*CR!lO8s!4L02-S7QP{ z2(y$-iEBkk1Bo&W!X{B?g3l++%BIlsw}-q}I<@$BjwJRC|3|i=09(MJsN-KDtqMu# z4kRB+c^iTL942sWC8w?h*>lnv%NgJik3>Ymu0j0fo^JQAuDb;`rS1Z0(l0x2DeoZw}v~ksZ%CmJImo@KOJ}m$E!2$ zvYK?mFD!3ODMMdT_P{3At5*E9|<4as_^hFnNO-YcnBB$vb^XMQod3J|4G#4vXU2inMh3 z{u7P}GzvN_qDbrTR4;$IRu?pW0F|lp4Ytz50_W|~>m7i?mXUS3>!ZESQ5JQ0r-Dq% zH7b{kURa?Yz3qmOvf&KvIC;H4S)IMWU1^@LJ_AmGnvER6S}mIPK*~z7$p=>-J_nW~ z45A+1f#o(iAP`LfH6Uj+BTYTcP=7G6GM6=!QWOG}R{v#6ShjFo*9m?Y4zzZ0yLnqI z6;CKYeUp8HPUjQF5Ta-zk$~&7ZD!aOq zOu&#e%eWMUY{YG9DNl~-pKfoBeH_9|N-?4Vw=zLH=S2kj`c;w6NBI?d#B*!y*;PS( z?!(GzYO(2mr>dicI$iAzWIsF8Hs>E6TqQC8W2gm^FKJl9Vph=)G``XgIX3O@@qt= zfLY)!&vQxrhYrlu#KWEOz=P3>)aJJ%K_D19QXa{3GcQD{7hLa>jBAJ*z>>?Cg;nZ-=h+;TO~aKb{ujQNJzpI^vZ{P*DF^MMC`& zu%tTwBd(k2so+gsy#>Sx>ECk4`B)N%dq`2es28jIzpVCQBW6#`<>EFLx8D+$?hK%aL#JPUsN~?lLN#C^ z+M%fR${h!oobw@*pIBg@u`a)0nD^tdfd%@_GBK5vee!>WDReni*N<5QQJfE1%dAQo z@012*1oCptta9n#N{E5x#hW&HZ!QZ`X@cO8)XHQ@Y?tCU^e~6%erzfpb>h!-C z9af|32~~rwiicdHGay#q{Q!$5o2j@o?ZP0av{0Z;#ok0bK=bhTQhLwuH$h3*tLL&H zdHA66E2spyzs{pEt1SC718P~H0?l(xx{rmzZ&q$|>d2I->Hb=;q!bw8J??+1W>jw?nc>6?z=UmsgRw-7Ukg?&iN($>| zKO^J9LdD=9pv$l#txwZY{TWX`_*JonynOHmxA*y+ZURto5XsBHl&ArfCx(@J1f~4& z%;zK@cWzXy@)TU9OEvDcrYmv;7vTULP0Qu9jMQxLHSLb?t0!yD7lBW35SQ1Qn?c8<2D_t|MXoUd9hL#{C3&Xl3*Lmr z2Q%k*KH>>(tmE_sy7arad9w_)ryIQMC%#ZmT&q`HA9$*y_(zjtzc0ho3yfN3ErspP~K@W&nfPokT{T$1^f{6qR z31R!&?SywDqCb>}c)P840~@!kQlvad{;xM24a=x_GyohCCD)ZZ9bRk2;CtBp;^!s! z5*Vfu+E#Qa@*wVRijz*qCM7f+W_|use5>-1+#{ESAssc1noEg_Z@dq}8h%7TWbZwv z*5++mhgm21b}f{l`S5Ohu*l)#t=L~P&tNVtB?uM@s2$!TdhZ?LLSn44FL5AIn5Qkt z^4V!lHuG3pdzPW*-efij4Uq1P4lI9q@G*8K_9UZnWv}3nAb6#DW!vtXr^3Fn$zO%Q zNdigZDMjehic?>&@}icuw6_U+;=h5;;8sCDQrC3Z8wl zEUAq?m{!XssyL165vl|ceQY4^#j=%7&t^+9g5kW~VY1ECTZ;HcK~7Cl^HRUJRVkfC zjA8K>tm){! zlB?*GXAI&8^&Cx9xZP5fm1#6)ELf;TTm(DBCAnAXPLup^>=zDyC~aD!ByUgG;>0UE zF_GXwu>U5_OI_bqX-s2zF1cla@Z&dUe|B+0dLB3x7vQw;ngAFY_xUGykey2x&l{*>!C;2T=J5{Az8+y=P9U-!Wu_v>^Avk(U1Sk{q>}o66N{H7BIr;!_1NA zN}f-Il>e0lXAgbdb?1T@VI_i!a==?OO@0ZZU~ct@@1B zrH(d{ZTUoRtKRo_r+g{pFW_rxVZ{%i1nM=Hmw!GP2s0dDn&aS*UoayNDxsYw z9}esqdmcKE>Xwu6^V9{>RQ)PO%_-RpXiXW|07frI(KzlmTiI-mJ0HYWp#JO&o#l1b zYuai_u?H}4;=$0T@wz76bMplhmQ?m5ann^`Nf7*2%6dlt0H_U7S8_Tx4$&p0v3P+U zF$uUEP14;|#kkXJ(a7SB8m{ID6h6E^aPNkPFo2lBrUJKwE1ulL$X%d1ZecFkAk+o` z5`Rw{QlIC~7|Nympg8?HFZDyXt#ilLtydi0Zz!54Ly3=k1#farxB$m`q3NYpE=FlD z5#*fR-Tj9DzAv^5fR|m9)s1ivrNlrt%<6zel=IEP!lh>#oY9EorHRITWzw zST&=!k8+h-$sCAHACAYke+*olw|%sv`nsvU`32x{s|x;Mx=FP0?q&3GXj-FG+1=)h z`kg>;Ntvq_)2QjzSHOBqVaek4g2#WiYbcWvMmeA9XwQ~zla=wM5CHVc@bQ%$XLIJ; z1sKB3murw>LgUeU+41ayS!Q%C}&ekx!X@wNg_i$h?hh%wlu`>*sZoUU_jWg?X{O3Qc^zS+?Ir z>b>)1yAM$bRT*L-8W0Z8EzPkWEEk7HpVPh*->I!{3Hp=*4DgZX?p-P{3pFV z{~M}wx%ib5S9Wbr{<9^S$0)UFVB6RQVGj5LL zzo@y7C9h~ymB64U_0UWfj%l$0TeD{%u6L7MGs(lr5GR)`%x1P24)Qc=?-lQz)X)L5 z4+)+5ENU!LaqY8v$}&Avn@ji{q#ko~ae!btyvd7urbPJ@{Ky@vKsv=+S6nMk4%Jk$ zr(Pq4<98`=YzF*K3*fu!lMmi!W;ZBidTKxffLA>cy>qnIP6{T33!$$Wt~qz?{>QHp zS)oguDMIj=Wil7%--xR85l8;VZ1T#U>aa)36jYzT@gb;B3MOo)0w>r{6T;yiJaf~>C%avo@h6kgrl z)QiG5=`?b&?B+j0J2{5&+X=Kw$e|5^LzNV_30gh~4!v=?+Tl6KtA93aYj&zDx4><1 zayH(#sKsr1xD~ADT4c2hCb--_n&3zc4UskBv?)(5$fASJ@4;#$PTec+5}Qt<+E#ek z`h3&;^R8Z=22quqpDa79|1@ULlZCQot(QT+sPgrkO)BfP6PFfTHR1VX;dr`DIm5zV zR`R67K|~F_Z&{oEp&+Z)nk{Iw*c7iRDroj%Jx4qYpt;4rQ+G1rBba726O_edVTv!-E_69DRG zxd?*!veiER;P$pzi;|8>Ml8ni6iz>bb=Q7-cWj!~#w;aUQ?qpQ@JqKX! zPtMu5K<_&;3{kU(3GMlvyR;g=;bL#T?Wq+FrvKqKAOzf=m=k`I9duXwK+$+@q^($@ z^pjV7+~$xKH+#v*i++wb9BjVEpz5k(u1WUEz*9Nx$>tE*xECkb!by04)ndn`kPIug zZDm^#%d)#?_q|NAxYq4+<(J7jZ~*rsbK|yy#c%rkC89OyM~9SCovs1hg|F>D+_1T0 z^{^6_&izxRNvZNBbMe5=MUi7ySq4|L%eAe$BpY0yM*Kypk5|{%#MDdsRB@gWVZI}@ zk!h!?AmB}P1X0)}HKlc)1Tpr3`kc=4?mpDc(9R2?BQ&o1WyN=kGh%z!P{flmXO(Mt zQvatV#7t{XI zwD6(qX_DXO3}S`j=y~WgdL@g`QhQ5qy}E2q`TC69%F23XZY#%N61+!_zpHg9;gfn% zS2)ZN-+rCEfB$yPHj!*RT9^zY{0*1K3T7=*aWw^~ax!Wms9a+(;oSGn-h zd5@Usu;5iGYCo zZhU{f&+Fk|cF&%B&zYHPu4`tNA9zgaW`uR#PVBndFcB6|?%ik#kY@JEk*&cQ_DP0w zpTA&c+Wnf7NxgkDyc0x-p0EUo0stp@;=&!UKWTLOwW0Y!yhi(n6fTVjjtw|tw5zkCW~*XS2oPLwn8 zmosEAsg`Mz#5OwZO%(KB&0sb=e>K#v6@AzzgHzHOSUok(qj(#-cqp8s3EzC_Y$l~f zu6R3;+uK^8;k#1H`y6ei@3M$C^ijnzm zX3*8>+P^Bz1|KTXzDA-2DAXxP_&q;yo2-w0=;o&?paM)5Tz-)K3Mr-j%O|gREw_-| z!1LGgWnwyErY(HNRD3UO*W+myxqfo;^?$KIHbv0fE#9W|$PgxR3(c0x*~ zg`ZKDFegZXsAbhChQ*{sb1-V)5>z`)%bA-X{nz^X;pMB!Tt9{2KSsw-AF6k45?lV) zf!4<4vXuGy<+1R9Y+)nT`0WEo6^3P6o`+C=x|~NcmhCW!1#g*Fx!b*p;3Z2b4DvsQamMD07Lole`QIILCMObX}h0pmH*w9{w82FkNW?cZuYwY{dET5NZB zS9!Ugj_xk*ChVV|uEX+rN!p*AnQ4E?*2(g@ugdW64+}M2FJ!*7jCs1U21Mr+F6Pd= zhVrH+9hHLGo(MLqN@N;Y;$PlC@&4?c$H-zh{9lhXhmByRV3V9W@9`=LvN6Tl>cead z10iE^mT_dM70;K~|K!%jPX~^#_laj0;hBqXD(GABJ8I1ZyBjDB1r2=u!^Ay(gE{lE zG?nuo_SFe}H44!Ha0tOWQ%0!|qhry%LiuWQYY|g-3xwQ5x|*Yo0!0yx1ff$KUJX44 zP+Yf<%7GYMT(-R|Uc(O*W}!vPzxL2cyR5gLjv~F(X&28wFFKUJHDt?(ldfzT3)ZCu zR^2hRvlQs;P*KobrTTCwJSVJmlEFSnGFhvYof@uug%-wk6xv?>dyf`MwEauy8Tk7X+5>z|Uu>!n2d+= z+KBk2w6l22ucNRuT&rZ7R7l6iLcySNtdq0BEkQ^-qMU?G+6R@@?l=2$q4`-)N5 zPOnw0X70EGlx0-s#{Y%gsvnur2|=}$cW(u5guzZtsujpY*eG%Q0X9C34=2;E4wM&^ zi}lX_Y8b!#6N=8T9voT4Y0W==w%^M5y=7lZe!GDG?=-QiswS#8ARPmHU4b1lpKSTQae){qU~-4D0fx|A4G}0{fOV)`uq=-c6-@`=_e&W1f4AD3rvit7%F_ zt6p=$9^838tO}dIO|jxylm!gA6}=X2$3e(pPnmJYCR)E&1<2r*mBs>=x1aUq!shXp zRKS{BUBHW6kFJaL>B)=r{ZFxOO5zO)I6x4ZGt-6ZUTXpqva9lX7wj~Rs`w3M&#K}i>=j{C$ngHs22^0ENV*$G{faLZ)XjXkia}#wP*p9np&+Kc z=~em#Id483C*pCk|3_p0&Teaddw&OObS0nF0 zF1VaI)tdJDOnCkok!`Gpy131{QmFMV^XPadZi~mbP{($OJbYk=8WB!nj z63uEyICWsO6Yuy4pSaPD`_V<1Y(xEzke=nf5|5|*syorGaHBc=-7)Xi6fZ{Wn~J}W zEXEpl@@@hv-;(??K^Vjoq@^4_^5FFUs{ER-Lfqmy$FNQ3{d&Q!$87!4Lqs`JYY6)* zz@s_b+b_M6eXfi8w}5%{%l2$}W45}?q1V?DMwf>ZXon^8PJap}#YkGUJkpR7(fJWM zMiRbwaMKWd9#|XuL+EE)SbOTMqVrW^P1NsMmEFT_C22O?tNv3>+Mo`Vi=J1?86(Qw zU&_&p)svKiQP7z*d{(GUhQ1UHEdvw1lePAaFUV0`EAwP!+dEtIHHreADy{GTn_pqo zGPa)OpDNb(o!**1^%vDFfkV{G6#cicD5tp5^R)j3CbwjJburGN%=j`H#0dV_p?O9H zBp3Jb(QQ}44|1WD)~qXab#D;x&*o`?PO}f5iRZTZn z1-qLpZfWA0(i2ieq8S5gSH*0^|7$3n@zjnxrvCn--EgL;3R~0mBi-L`c-k-8jGQ_I0if+^z*BeY81YIfatP1fEnZK%tM$Z zgZZ%1AE?tMIAZwxHJ=FtUrfH+&(eeWz+c!Rqv294nLf0a?4r;104@3o7T3-#oT=1) zq@WgSjn~j+?^o0k=3k*Wug7tpA5iri&#m1cz~M=rc>b8J_cNri@~c1Jbic=yK){(c zxa>I-Nl9ZeKZE|uiA;vNG%5wJ+(y$?cMNr(sozxLYN{W-YM5JG`aNB*<4CA5usp{z z+bHr+)2i?I`6iFlqhN3UtFi8w_nsOwHbSPr{F?fKI!-y@OaG{B3H7(ocjEviK7L%K z>xVulQ5Wy>9`SXMl;IS29W$HV|F1eAHosb5rC;D<#LM>-wr!tu-oJ4tYiMQae-7p( zj2P+96`j!;L4+d!cFO1T?Gn$V(PTab>jwE>!T&!{geAtq3v5MRq0~hFkUM7M>%hnT zS4;fd!F=>>&BIVBn-f<5h35@xEzo+u`>4C($LXfGPdj7yV^dRc$`gBZ#&myjn6jE) z_?L|Og}RJ?ZUj@Ag||*Ix6S*)#z3&{IMrhgb3`41KKo^`xCZ&Ghj z+g}OvyXBU@aF|>q8JU+&tE(|^eLq2TL^({@{-8$WuR#*i^uuCm9N5w^)=H9pk;PQl zaCrTj6~Wu&wD4!tA{%%jfYR{`R3|dKyGR z3BlvR9P&rJi%*QgA_Po{x)GOoBa2d%ASCZx>TL;40gImaMMTkZI0V0x8T8~4H2J5! z*JVG4ILWz)x8UctZcQm%mwV_%3jVD;8BG{e8*70__OF|5Ha0QlqHDm?Yc-bt|Aq`nu#Jaq ziD@$AHa<2=sj}Yd(ojdUZ^+Ol*uxd_it$wEy1)N+b0#EO%5s0)Jd2^P^(wg(3(;4AT~PA?3MC@JE>vpqMYA*!xu|G*J{yk2|K#V{vHjm)+1 zH(bBUA|Wq`lRxig8}CgD;l&?$9k1wrYrP<${nk>EA|%nW3=t*M^s+;3DhVBhzo^>Tsi5jW#~U)ir}C0?Y}$Q zjM|}n)oq-NW5x4Uc6~5GbLX%rkBaD9aX-HYKzQe(f_*$LN&+q)%UX%b#eJOdarEk% zd2RDfV_>`K7pVkValbvjBYlW-)gQ{+j=l>;_Sfdn7wY&04s8k&N7Fk`Y>e{n$PYJo zk!VYi@RzdsoDjFE#+%B0-1hzbP8CHEj^468%QK~~0yX1dBInGJz|~{mN7kMzLC({I z<3HJAMs96Nx@;p0SIZ%eA9Gx zC!@x%b^6KqTAhOAPxkUNBj{;`!t1>&g9i9@+wtIshH4J=*Up@Pj4`^tE5>v6a$?q0 z-3~@hwJbG(PGtcRR6ixR%Ke@?!&7@CCHWy^fx8Lo4iZ1shy`f>jf@o+&t-M)W@d~! zeqC2FU6(!MpSZgzxxIuW4nG%8U}Rszu(2Pg41L13LShnqK!U|DyUKF=qk}QQI+q91 zBmZ>w3H0%tO|_>{QGVA9+((FG1xv-02s(NY0~ao=3hm^pvt-h5rRAXMU;cD3GOlmt zAEAU<`aP?nVywS(8OvWycX=rIbTPNiLzQcCQj*_C!oqSTp{6r&!zn41r6&I1QPV{; zsfqmzDZC+Lh_W`eFE}HxR7|u)=yl~!licLQPRqMj@i*+18zq+W*p`ksvSsGyK{~yu z+Es%Fjrt&%d24`QV)>&8OyWhZB~#cgbqso{G-Wcc8wH{TKgZ=57)aA*VN&GOu$?OO zk4Y6TpEXopLDn|&`9(aa>kYreGHfX1ELi3d2HIRbPRevmsVSm6eVvpF-S>sDorzz6 z5_5^Sg>b#i-3bwMl$bN4ex?xXWeqh_Co4LPEI~2ICs0S$s@5C&z&OX@LEvs$Hu)4z zh}~?Can{Vie5tu|-PGdjLX3 z^wRI_oBO#pn41vUy;va6j{JnRgYYDBz{cZ+cc)2yDP7Uka&kyE>YP4#sl?tZ2 z*X{!|i`wjQS|wdE+-@bgx2vC?b!>X`OyW~g(&Evz+H0k&=Ln#}%eRfqsgnx#5ja_aX zm1Zqi{CR@^xDwp#T};5dk8%zN&&q459PQu~78rMyT2;uJ5=*$4fNrFW23oepUoJBl)&0(WouQRLBPm?| z=2mA`K;D8o0;9dzOiUKS`+XyqC5dW|!h`?DEB1|t;7k(I8KGQ5Sxn{U-IPDF0Igx%D+VO1r#sl50}(az$;$AjUUt z7W>st_YS-Cs$!_!-C+MUuvSSh4X+plp8xdr(V+4iECXl;h$fl(^HLNFyp-{`Bul;P zMTukvxlwS{q&V=St{9r+Cx44=XCe%}^?gtGo@)9@0=iZ1 z7P}XA#@g;X1+zQ7t2p_NOdcFa#OE=iVwkwH4y&(nY;+{j*(29SwjAJf?C+3zVLe~o zW^X`y8hY0Am-1G(po%TV#Gaqia+zReD_Cn@uyw2wPO>4h(>t1Om=P=f{K(q}uGZ0* z6N|m3XCnSZM#qnqIY;CcZ}Y%QarHC7x61XN-VNyoI}3tw4J$+Wr5tmd-F~P6i9;I% z3Lka4vFL)zZNUD(QbfM?rsCKD*X->&e5YB?%5`VV% zIp@A1bokDw16sw`TxsFb%H|cpRbt@}V>e%qMINrFAak`^cJ--o6xO5`L+x~Z{A-ge20V8g|-xw6jo7|a5`u2Xl49lqnO89Ng%xz%sq zBtAPFH4S#Ao<(Co`&Q1@&}CVeAE=kAV<9`(hYve_%PZ(&WalO(EkeXi5iM^d^wl;~ z?j20COC8+srrtg3$tp{{AZZX6LTIgO(6M-{_=Yz6Hgmog)VsUN0zcZVjF8n^1aH{%R zK!#!GGiB{{uv;c`4eK0tuaEKhWGc}pPqj_bGF!>+r_ugoZ%EvZKn{xls~l|5`9mN7 ztzN-+ylqzRdaqY^S+uwS@#)LI;rxbO1UCM4_P7FjjHg2A_oSjSsG+@Y_xW|z0U|8Z z4C@6RAN^Z`VD1{?t(kC1MyL^~qOhjB8yI#z%kVP0SX=t1#bVfezvORKh31qA0tL0H z!@*dI7LNXN!wCIP%ci@OY?^W(A7T$v7JDwwGfkb5RKgka4=in;-a=c}rK|d$^CVV8 z=I~BXc+{37vEs%9b-d zK&dU|Tl+kj#My;%C&M;<*{)o~Z-7V;5Yp#&AU-8^)mjf}WFY#6xQ_hE?D)Fk8OG(6 zrl&!my>k9!$J%jjGxfiab3wK3j8tSp5Z`r^bv!5*BcdFdq1EQ|DrCe#P95br$sw%i7(Hrz)+T1!JyJEwknkGQ;YDLn@v0k-X6jEGj; zz4NPUxlWQ!b$=qPJa5duMximuUHNA0;kHt#$J#$qHqy(g>xSpZq{Ng_wPLxl&&8Wt z_dFh_P(gp9&o)7igJ3^}20lgYETj9!vpSfpD;P?VE?;uL%|9M=(Qw&lG9~kWW1}@- z0BfTRb*`d!QBh{u4X9~S21q~k@1zg7D50-|@BY~)JQ{E2TUq%N8h~6XRw!Kbn4w%1|eWSNNNXF8I`*KtP;!;hkFJpMqv@|KSJbZ6J2%(vVFT?zMhDBeBMc#DUYg0qxLpL|kUl7SO5 zvUX`NpU%F;`gjN9^Gq~9=O;j>+ya%>OCXgM0!4RqUcow6*&RCSs-)|6Vc|Xx=~H%- zd&W0N1({s1i%V5T$m(yfuvnL$EhNup4(=OIA?=h$vW2-gtKiiD357W#`-kH6%5Z?rgDQsug)Ov8C1{!ERm zggZcwIY+T&hEu*^%T!b*e>jJbw;?cna%avp@g`tsD-#n38YQb?N?v}!i;%K{&T^ga zXoF8sJ9F7a=-?H&+;JpnJ!~{Uw1cFwq$gD5?UZpm$QvKK;!r=)u#F`4rcBM!4=HdZ zH&V*D>qA;3yH*7;*aO0C?NGb@!QW*syG_-?z#Z3}=E>h;Fw$ZV`6rv$lnReW0pUaU zGubv;qvio8^)Nc-C^8x*YK}zNB{CJiep(LPNh=7%iGh&zN%e|^`27n@G3+Nh^mn-T ztxlpG;usT*o7<}9qJ}RmFh#;y%Nn~)*Am>dg1iMQN3ej_K*Ml~A7 z8(5C$oBPWhrEjI4XmyWt0B`$3P)4ljh3g7Eq5p-M(JD%xki#iLlqF?;huG6UX$FvF()F%h2`uSbDf&1n=|h`78BOVJCzA-A~UTCBGL3JzxrY>Qlmk!<6Pm0IVJ& z&N56#%qGCTRtX|HRKyq5&C+&PQb(?>Pmv&$7GWi3=^VLcZr-nt2k%0^XF zD-xdbIhv-#Fk3Pj+;efMx+ARjsvVB)|5po;#(4j!QKy=6TKna%IfX?F?OxR0ufJHW zEe0)7!sU)K=DL=I9+?{e;nuxZdYMwuF|^R|*k5Jek)+>Xr#g_Jy$T=DFeS#b6~^#< z>nngM-q^ksSw_~>cqW=_kbLS@TH?DX-I8(Ut?Yz%e8N(LG zyhG~G;9PP)SqlPv<$kK8>FEn>eZ^dx_0 zsga^D>>`g3Xp}9F&uD-9c$I332Q_E}6TGO(gi$$#2sy@9pXtl3{!)x;)(sg`A61?uX#`O@SWL`Dmb}LFC*h#2MQY;d!LET{-xAzgTSAHPSo)Z#x?k|PVXo~ z7Xt4fDm-HaOB@qgOMV|T{i2bGz)4cgdU@t?TYP*fIe4SF@8n8$gJA=^qvO{%1= z??~a>)D`6Y0}R44I`o$-2~HkNeedS^&Xx@59m3$^JKoOkW}8Jg#9^f)zF(aAEt(#`gnk}$}r9J>K9z59q)q_udkjf z59ni>G`vhBUbR=hO+Ow~wa+g{g|}`nATd195kb6o9n7+SFTBdXk}Ib@dLTR^Q#*6` zYa^*X#KtF$GMb!Yv#W+XE;1k8bFO0kFe$~g+8eT3uU`BBIVc&HWn6ccYd+00YAfNH zk7osIAml-~Z2Jb9`txTl`7^G1i&|oEReJ3all5-%60X&Mo;)deKc*5c*tIbqy7Gn0 zqhl>TN0$d{QX*xc|3lh1ruYHX=%7D?qSyD##q#9kPD7b^{y`XX}G*X5K$C_9j)BVld6}=1qnW)VOL|*;L)(s zJMw3n4A0QHwIj`=gSnSVIzMBp=K0N>H8GF>A!KvhFO#&bdNY2M;yt)|+U(uzkzH97B)~8Kv2GrKkH7 zdqU0EM4*~=&cn2WKW!!^<&qnbx;ww6QBbZRn^LDx&QlehR4c+qI$h((-e&ct=ZaWq zksNKKb+d{q*`5~x?_{VbW;Xw(a}4?C(TTu&%u0o<;A*LYz0+4W=a|F{QE~3ef@S7D zx8MAZ4C5NRuswq&jR+-Fi?gW~m$wORKvtR;Io}Gz1S1UY(Bd`1w0bSGnB|`NAd30N39Sm8DN3P z3BtWCFz~rXs}J$b(Ai~HeaBAQpskR5WVY0lPl%fg+z*4QFxOLsi!$fJp;u^@{A{YA zx8LAJ1Y-r2j`T97j)2Ip;07Wh@+_ub?Fq6Y$Q0^4F+v`y45x@VwRmu{=+J0@X^P#s z{dn+PgK?{A0~??y0iBQ&>H6^v6*b|2TBD*C3LxxYc6-dwLMU*xZ@%6Lf{$^dw+3G5 zx#Q$xgq8?&|6q*y-B^+f3tbm!;luEug7wu$UT5(Yf^-JVDNT?JzG$$jKZWtWLZWaN_o0 zJPgP(KrbB&wIxcX`sG#(OMZiQHF8A%mZnQVFF;rcen(S@%Yw^=9029K7v{R}G~K6s z-+gkSjYwU9;T>P2HN7K>gx-kl>Fa3QJ$}y`wYR**ubHzd0w%#YSSXS#tOr{DS?hGstdFL?pH$}BKlQVd;$4ulRWrGp41RZ zGL0IZijgTIz+(RutshOrR?J#B#BcfXN@CUkq{T2)O82zfl$yJEk!S? zZN>gx=yFf1O0xT?9a9;_F2ioa#%GWn<# zh@B;E4xkEzSdL)W)H1T?sS$z1e>QS%8>+pY`Sv6ygm*7HvyjjI+*g%3OEHKHGQnq& zW|X_1sU$rD&5z$*j-t*?R{G#%{aO)7mEm@3d{y^&)1Z^VQDwI;E%?wR;`xKiP~?K6 zND!L;=+St9kv+y5GPbRzw2-t^`68aGHWQH7lWpfit}4KPXM=>`&>z5ea#a~Iu;!6) z{cMa)QVjdFwV@6>&H-Y6oshCf2e`drmf=g+an}uILd-$g(Ghax>g>aw4Oj&Lt<>3aM z!?-q+a~T-=>`po{W!1*UVbZO6*lRKO<>BD$<5DIIf=m1~ z$27=R1g5Jkn&kg^9X-?a4;_r}?5r&^qSWw#|LFqXqF2})b0Fdg{RU2ikP@b)-^|QF zAU=S)(A%KKMJO88Sadx2N>*@AD7b+3A^t+~$D;^yYbL>bim+HI%@4?XKSkaQF@6r- z+(#!z>!=+AvZYER|8n|=sAwAtu_ULS>2?%oEcM;jK#?e6JA!vd9ELgKEtyG7QxpBe zfQNmST8$&%?%CB-zK3}Aw!Fqgc9jY}KMJ34y)Yw-Y|{YgB}{66agDdzJLzOxRYd%R znFMY405g8oY(@6Cn}rLh{(fa28m^DB$m!^;4g+W*f?hm!Vo%ap?V)^>Y&>_5r&ec* zTX`Sv&v$!k$ZRB5IMHhX6^@r8XEMFSvpn^4Z- zc)i0lk=S0G%v(q8mPJ(89Zm;6t@E^7;(>_8z6Rd=vbf+MY|Ky&bTLoEcoRkrkcMvg z5D_cKBe!Y00()c4q4pq1++go8^ME%la?93rly9yo1h?eZy2e{B9kD#ng*Eg8+-t^F zr_UR|v@~eSVFAttHIxX3iV$0^5_1VzZ`C5&F|?_FW_Vlm2i6lQ4FN967Msa zq`^h;g@E9ze9#xo@;o^8*yv{)4bc-@-BPIjo2Hx+V$A2J7Dr5c~`1zAQVVj8qw!kJY z_yj(c&gLa$8Y519!$6CRl(fl9i+`?Kjy|;*U~2wl27R2Y;oLtChn;M844{>6e|6fG z^M6(XVjup8OR5-`#HeoAS@!_+GZ+~n$yo#5t6g64%Kb>m1i~$QIZ0RnySRrH{*b}{ z<6pPGiYXRb)}x9&1@vgx(O&;*Z-`=;e4K#{6?xLzc=yp6r7-__ggGH0uw8FW@QrK@ z?LVUURJ*r2T56T21~a(#sEkzAEjt1q=v#I%+;RVxg__1E_msb)+R#4Dk(0_^ptkuh zQzeiiqkhSo`$NhJm70N=6X$S6=ZyszFDiZ&VpQfk5B#!}bCG@iGb5l3N!ch_N+SXT zIJXyyIJD~yi%s94qC|N@pjxSDzT{a5-W2!ohF?d;Isd^$e__%Sqlf;`Yl z8yzi>8OcvPg1e{Gzdm3k@!I&bwka4xyYEA{j*SVpU-o)Sh=y$1!WVJUS-SJi32k z`241T7kT1~?7#Di9$FvJ5D&=YZ8C>X&^IJxse$X+lOtlSexp3Y2gvu7yMt1c)+`kT zdFML2&8YF|0FgT2Lxc!z@g=*xi@|SuecWDEO=w`hv(vw0` zc()3i)1gCO+zr6s$H6qx(^}d6y~( zpf;gi;Unc3T~>3InA^>Z1Rz|1Xr-Z|Q(h)y&a3R(Vx`!6O#exeZeqjk`85Bo*inRi zPnewcrC`B@^k!m(x}*VewZ%brjEOCHqbA557j-T$Q-}Q66$*0t5ozqWh~359{JMNl zLe>={3E&{E#{`N@vv9T@_b^x2`%TxS#pAaTRq zG~^Q&l1h8$)pUm_^5Q~qAx)1FIMxGGlYb+|PRhR9w+KzJ0Cw6w-)?K>8{C36d8+le zN;ArnjeWn1v}Gwh+W);IP8Rl>*#TN@n7qNFz$OE1*|U;hK4JVd+W(>U(N!#AP1lgg zhO=BT9v9o|8aH{imclO`!#P@DLJ%{5?_Ol5WqC&TNBAPFXl`fyGA+WoLINretwP#- zq0Uq6krEB4C=?4c71ujDXftunsxB3=*tDXx##{KhC<@Li7kBds)sUfsfup7(gKvfb zkWZ*4)Ze&f*yP?m~Z15S}5}459&oVq4+o z-SOivuhTpZT)FQe7Pge(Rj9d#7p`i}<}0{C$5>*2+hT>>F#Z>BL;?j;V@PgC5EW&i zgM(G0z5CJ|y&y0S5Mq%g*ZkZ@Fx-dk-&-8J`%{yv*^fP1X_jPrX@l18i%DlOkJ)W{ zBYDeTc4nBdJzee8<<_gmIc^PhdL?K%@F#y;V}eJgBuU}xxG#oIb(s#Q8&p*XXa{`blI#X&_4eCY;M`2HkV^e7dHT@QRd)EE5g>P3fz)T&xVh^r=QMPWr{yQ(e|W zTi&7zjx|q_(9V_@21C&$h2|>A!~bEWm~v_0e=@bm!dQQP5i@Lj!i}77czKD)j#kHD z6d?uB4%b-H3Oog-mZ5S8xA-l3Ng~#17#;Rn%w83TZ3i=%#_%)Vd#2)=GwYZ=RD`Rm z@Ngd{Kv7(fYc`n-N!|87gFasKKkMB?6crTLeP$-3wA+jZUhRMRi!J9F8mrx4O+S;j z_7k=sZ2K3x35qCWH%+xTwpzD;|Cusi_oud8v@>M=*E$XQX%0)!fdQM*1ofHj>+Rgt zX3FxUYayNA?xvXB9j1k_%AHCOP460~G^W0lu2vZvGPBO%sQr>2td=6(m>MrB4SVfb zy%v?j{K6JdOac%&p^~PQz-p0e{-E>K9EIG^1vC%HH>>izaup57iEhYEhz7Um(3nPT zwmlvBa4_}pws%-T`Pp16Ek3R&9N*$G>uVy6l8tHuCJ9UBS@RWh33@_ z-$K%I&~1DqY{B_x@+CkxjxByv0nnlWUBu8)wWij|CZ9QRW!x&`k!=l}?4|YU7Sf`3 zaHxp}CfeQJ@eW3S#EqLM3wZ~qa?^0HCBnYc*WD>NyCj9ZP6EA~oi9!=mY#ft3rPji zrft4J(!8s@bxvi4JIkC7*V@7)B+rf+j* zL`IDsYHpX#bL5!#E{+x)1!FET?6C(5ZU$t8(=oFXG5iB|Ro<1Mm*$eX;bmELP&0J4 z#%RYp8Qljj)>B}qbug70i=E2x*=U2T8EYBZ*r}AG%ix4VOSs9E5NdHjz6zy+g-z8_-JR8MU)LtTf{4UmtsXI;S()Rn| z%QWl@7k(rJ(K#fOC$TQ@ez_hxx(k(E8ARX62w^7ULxP`(emwOK73*K#a$%{duoRAxxuSRDVFTSIa#dWL&HJ=XDs9muQ|!VRu!B$UFLmq)5h zpyTAOkaTJCei^1fuMN%sC2KxVvP406zZ2SP5pFmd%utvg{p5JtrYlv^8S=>3to!=0 zHqY08wF32ZR)<(X$`R^M<0TAQE8F)k)v`_Wg0}7E_0R?Plq@m+K=FM$LVoPBb0g(; ziSyojGhMemD6@{d(K~dcZxUgcr;0!;!*@=KXIE=JAHMBnE>u1g)l|8DW&15i)8V%AzQyE zHoPD1#Q3qTdb}r|ZNS>}b#_2jk=a$*u(Sq;5Pt%FP!>IqH`PIwFEdn@lN0;1bJT+L ziUN6s$hqf2Vdzo$patjgc z`x#)KR#Gl1158Xm3bmTq$yFbY<8}LHA)I zJAKQ+z9P~Ms|umfpXop0YndF(ocbVd$4j1%!Rif@LNm!Pv6%c-tH_IQbc%}L0j7PF zS0~0G#R>;W7_{8bFNa++Wg$)J{#bxcgz(%!I1O&8w?{pZAbTeSR5CPkotAhmNs!0o zpD5q&+lgh|m@6QaaN#Av+;v^CB+S$?*4ve^*Z~j8_g}5jraEShYnP$b7v={hgEBXN z@)BW2-@VVyv;;n5LnJ;xTqRhQc`_mc2hwl_Eu&1B!5~g6#HNp~y=15YnM1X>s zc&0+2m~gt+i@i;d-za8tgNq9%nOCOCmLR=jo90I5S}B_PQv6wU5~UsiAga_0WepYV zxPRBM!AD{He*m81G?gi`8$nEBQun<~ny-3mL_;1LMF)`n{{dICtOC^{JQozsp)1gd zCyU|51x$ZH5$~x{6ON-`EBG5_phji|@hjG~BC9cep&)*tcXb%uYu3%ggj_&H$rO^B z;xP!9M3K-~V*E^LeB5V-+Agi2M`n_{rB}q&1cjGH2hW(3{t{lpdOxw1H-`iHub!uF zOs$b|gnE^p@gMC)6@`)elr&r(YOKq_f&3O9(nBC8vV-IwFsu6hBfIPntD?0r?Yn3v zBpMbnnC>rv?_10GFN#40vU#yd-v^n-4+B1KnN{$n6OT>#($<5nk2HE8$1+!yXTf3= z?VPcGI?f6r@ylfo_u;B99TRNA#bN)5*2W*@<|o=6jQ2H*iuQUy^ndbxmB2m|{Y|kz z?Hv6NSM{ZoDIC(qV+(&f?aa| zen#DPErPeYzMnH~TsfZzD? z+lG@=t`5WU&WiB>fTq8#F;s3o@i+4~H{{Q0;3KQ>tSCr@*}BiN+}?u%(v2mtApQT! zjXTNEFcvv1^RR+!uCjt}$pk|o1u!Z4AhzB^!2Jz{&^M%ql#fq+Y5q3{g?}O`C=o@V zWFz;_F^5zeHP#x7fW_M36x!;b3|_$rp}hMzH0Ac~#AM3;_sPp-0Cs03ct;Nl9w_ zA_GBxo91AKDA6w7_KhZ)ej*<|m~^ty!YPQHz641k=J&Frw`($nxm0wZ@?Z&azvd{l zn9X0l6BW8I8h1S&LFg%S;$-5?Y5#jgQ)obmHRIQZ`oYE+3RyeIgfD*oSHF)AYd+I- zbVnWJt$`1&=J(}vTOkgW#X7dXaGZV|#l&a)jDRm|%YDE3nm&QmY<=SB)cRmzK`Bq? zm&ep^X`+x2XGzBUJH!;Mq8T7OHvsa(6u{YsaGWiiX373s1WanQgM((B1$e49s6G^Q zXLQRJd%S>@>&=6cqIS!LQ>;hf_qJiH&Um+P*v1Jv-Gs&%2BQ>fHLq&RvT+NsZuL^H zD}$WE1q4DNnlPB>3DdP8z!~@>&2lcZ^s#`Dw8=mAn}2n=#QrxwljNBhSTwx(mQ)|G z<41kk`l5yn=S{1CYC@b~K{;DiP{E;T+C^wU9#8e(Alboo2n}3jC1E;psAh1OYk~tg zM)2Jo?H)zkE7U9<4#C}4GRNKs(Jw$aA`|nDF%>5gc{wsB?S2K*)>4s?w|dOz2Syu& zt4=`Vx{|lKvD<&j(s&=kzw0@USnNtkwJ=2GixRREAA{;e17>hqzRcIMkz2>v8S=Jn z-V=u^=WZfEAixMx9Zzap;>fa-s!I{lS*H*fNfw^&%f2RI0PRoYSC^JQT5RazxvP-~i7T3Tgr?nB#Ht3(q`_`0w1s;sO2@~9z%=@0Hgh=RjQD4L zoaMA{wzV91$Pclywfvf0@J3INr1L~}$d~)^ol}X8JRp^uKfGWV=OIuTBzd4E#qzak zkm3=X486zS1nwX31`)USL{x-pG?WY~k_CAndN;|5=!3fB?bp>yoO2TEQMAPPe*Vu%NSJg zOp<|W+w;&v5yd3}0N?Zy#ct$j#W?TP8(@+(S~2gQItc@#|2+OA8r4%aCyc%VYCT8x ze~aa+gZ_q;T_>{_v5Iogi#S4V=49+ghP5b{qm%SjTpCk5-cx7u_UlSHP9gyCPfl7% Ks`3Rq@c#jKHvxYD diff --git a/icons/maps-and-pink.png b/icons/maps-and-pink.png deleted file mode 100644 index ef047de222a9986dc1282d080b4161fa8ffb6431..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 31032 zcmY)WbySq!_dX8K3^jCzbazRL)Bw`mB_$=2BAqjofrONVlyoCV*N93tNW*{v(jeXZ z?sxd++NyzSYxFCB&n}1A#z<>S|96Kp+V4R|p7-4g8!0 zOkDv#;8zB!ilFKd`YjNM8KnM1!6?9bHyig8z45=^t_C`&^P_b+3I!OfMM00{9WzTt z4j~B)OF`KPiBEA4jgXAUW9I%C5JAHZ`~$c>B9HqGoci+$A|m2bj3|5CY3@gUQ?~~QaI_t9+@n3Q=l8se1ESn_8P_*wC@>65_9nSt}R;qJcTL;R}%7pJhAV%=_C#| zhMAJ_$9AM~?EJ;p$H+?jI>yZ)(N>&pxR)l)|HN6IxI3Td|V;K-Eq|0{SOGV@kGdKv6ycn;31;<*LPj+z)AZen1-0Yg5+c_oO(WJld!xf5bY&YVKc z>v#MotWX(f2>wN8V)O7DHySWoEhez2*>yWiDka-*^|wXm7?&iq$p~I@@GZ+puAtVH zU4~JX37Z}}Fy^~L_b(a>u#8s7`%r(^gX{B1H#59(PVblQpB4;P2m-F21!6T&gs9yGf!zuzn*-)EP5?GTzY=85|Arp6dEVHw^^#g%)hl!o zDB0AhFgH$Ec8-$NVk4`gH=*1gYY6S-!0lYEYXYm$xXszvqt9iJq^#5y!xw}heW6z%I zNudX+E_}&ZC`LYZj1d3LZfj1h1iQx!s$C-Fj%if>r-`Hmb%hMKIYS19ULKyzG2;Xi zIqt_HMKL$PxzR6kNqgGv8|^SP)PZd=NE?144biv?S|PKwVta-e1Y4onl!m4Is1iT3 zRAUBjNLvC;JhROAfL~AUHN$ZW<SLFu&5G;y-f@Bfaq2O8$cR9*K`DL)dPmCMYhf z!c2jli^1DIU+&03gf;eK7BqSqa6>HAnvq$cRt&4>JHr8%r zA(}@irW;Cu{>bOImNF?BLWq)Z?7Eg!VTcM`GkT5rk1ggqv|En3c)&S4G3S}{Y$&#w zT+?L01&Wvk3-P zMuVutJgHK=O{z4JKtaC(z5(}BpKBk&OgWiE;${#IBcU{4Ra?Qntf=`>g4d*nz$`#a zM#EehS7#sCLgQjcg(2DG>4Zws_{sNEE%^0fkXXPRaH|I`KpYQ-KgBxvyT3?Ji@1O; z659KboV7@HP6^oOVpf6=)g={C8uomNHsC?!^v)tT%n;HGfs;K}t)OmG&@mko0K(rD zEluxLC9WpWl(pvKe5eHIi~iAjcKG z{YVk~DyO(+7<#v~)JgeCIa7E(-Ynnv-;lofh$QKAjm``na{3PSQ3jSrVTBFOwH8rXeXFd`SX ze;*qdMhO_kV^i6q;?p9|!Xl;{xfGrz3VH&E=de%7|B6IX)v*F|EmdO){tzR3et_j0 z>w=lXAx!XH8V{rEA*V_nIp7CAioilqa)04I8YxW}4Qx(6 z$(SVmX@!!${o?^Ng1o1AXi_y=iG|r{6gYpNHy7DKd!b=>6dCjV|F{1#DvejS__Z-; zlrukqP~-P6L>M|oL~sB=uPwsWO-~AA2v7|e(E0#;ferJFB8lk%A=?-c@cH?ChgW*o zDCl>22?}6tnA$6h>Gc`H>tFJWGn<*w;pxePZmN7OD{#*;Q6*iYfuS>yQ|$abfv^NN zeGrBe01&nnQ#?EH_;qgzFCaj#p@`)Wn%)A46(J56oeA-i#H@(Lp-wOeToREQ@ zBpvZc{siU-N>IFy>HhH=0J9kd`t?>bc64e%(@Ac&K!P5@0`eEHKUlM3IVu=10o=5G z-M6|h7h8wh6T5g3upvyLiDJ76FhQ*_`u)rRQgm`@JJdxG2TVVe`OuIh(4Ir&3%fVk zg4K^IR<&HLL08o;9PG`3>;rV9l7D8%_TM1}oB@p1Fqn%6DCnbI89jmv!3B4|^Si&j zP)i%c7!nH_J6qKGBWZWk2mq5x_;Q<}*29+erdSR-rL)%R+yi&GV=ro&-CS z3CYM#thE)}(o7Qn%HI8a$t08FXXyD7{LL%io}7kE9jDAFMjTv zAa>l)wB3IRU-&T6;ci<{g6W`F`YVX{TLcc;k(dX@EJ-zvlk;*ntKMxE$V0rTWPD?U z*Tanq0dxcB0C(R9B%blm7j`M06Hk7v8%y<*Of6kto`;x?S{|tYOrNk;-pkTx*2_IDAHplnl*LzP+P$jT-TYacBfhBwalK;w@DNmGAp+;8Y2 z#&=a*jJV&5F?8w~VZtY&xMl)RQ&WxnJ|%v#=pW)QYXpokMpgVm#~`x}VQo0P8!^01 zuqmydzSfDDqhYDF4Mon1BAOngbVF~n)vT?}#PBK59v8u<{xTxvglr}6H>(Q67ULL? z;_X!_&-9{gK&H}LA6?2M42{B>!VPqqOmCOgpE_|t()Yk|;;CZQe)e5K z^i`8)X~*BB)D0X3U2xCYQ!QVtq3BNED0N~ZN##Memw?6JoXqPP_*;CEo*Rx~g7_=m zTc1_?`g^5rSt_B35g&d2_E&y{t|CQbt`8m5%)eQ+Y8*qx{FT##z&wL-!e32|8~+J_ z%q&?_d>D`&U+UB?u_bue5Ubfy2s%;PxsxPv;H+N58sfFdm?ySh8VRp(XlS@BAWO%3 zbw*k&BekuSm6!n+aTnjb=Q%7N>TwdLMNCGo&5m=GPwKjSAot~ zTyxwZk|cHWI5!~uX7j9Ro+S0}b8@LyW$|iCtn^Iz%?d=Gr>B0scj(aV;Bu{V9+WO> zoqqK70JedW?amBOL)L(TJ+gPO@}==l>AZbiMk3IO&DeUs>0;mB{c8l}@hN>n6ADsO zFZ(OD16ySp^QP4|KH8GbmW>H=M#Ib$U-S=%ATAoeI`oQKBsYhE2=JN|5+0e)5Z&*g z#6gEeP9vqYN!{pb>#=gr!%nxcF-(sIq`mMJ&6HeNQ6TB2-DTkW`N>=1_5$It?{2Pc})~Q8-=XA21d1BbG z;!`sfon#kV)~qK zKZ*r2ku}i{s*&V40HS}F)?40&vmTbIO`K+I@UsL)j)FF%rNNHVBEr}Hjrw|ie)#6x z{0+sz-c0d6uu(g5w6LVG3)3&2-O9#g8Ar)-_OrZAK-+PJSQE(Cza?#J#PDPq z2mh^f(wxdqbb9g+(sq(k#`n$a{3`cX+i}oN-%gmvua-C%F88p1WDa#{ds5$oX4I9X zChN3=p8`^jq!n&TWys+xKQuk=Z!9dOSsI$hNA2_!3M70BSP4SxX5x`I#4jqKzca1r zDAD^D9eb_yqVd{hM!A!E!;Mudu+mj`0|_joM@86&PIx-Fb{l)vM9rhjBPcC{4R`@_ z29dPvu~6)1_*_=6G`x$B*vXO~Ty&{Erb|KBpfP^Jogb!?DpL2}Ej%@I*;W9x`d59IurN1tvnO6-uuD)wJA4#3+Xl&FxNKMiCmJIX;g!>tDQ>uMN zaZNH8BJPTR@SNzi(lbvLpXtG)&w%-ZM&ZGG*6Mr4IV10ERSW!j1Rn7fy%g`u`G$*c zGxjlhO=)#dEIJ!qdKr3i)YjkLOAAg+jx|+>ULT~}=*4K*QzVDpOxrFYPYOk=tc-r9;_@>1>2N856YQHTC%*pyB|t^^@Z({`2soXX*kaps)HmGVmZ1a!YcZ{fQAT>P*a))L}QW52NA#M&`M+Z}Z+nlZa( zfG!p(90vpq)Rz<+`{x7-8qj(18;R>TWKF#w^VlkMT&uH~yE#P1gRr>A2Bn3P7z;iQ z^d;jd)Ab{RzqMqmD^pL5R@h!TE@?Lg<>}prNiq&eXaVzxGXGd@%(JD0V^@qs`J#O(emvT>RICwlY1NDuY3Ns;NKgHVmwYV_ zzL%7NRW(HM;@aU$ZOb|{FuK%sih9vR2*#$a$OC0ra}@iOd+x=XYA}Z^_`>H2kN=1A zMeZrT?QTQ{wgxaV41Y3?zvv~XuW0Gw&7j|NZJ@gOGa$9^mg)qVf0L!SFn4dICh;P; zQJbF-2!0xd{L_vFZoB)xXU}CCm!cuoAY!!%1aGX` z1-#jwQp^)+#oI*vlDVh>QoV^Th@Wd))j+(tx-}Q{}i76vwOoN5}wpb96p0N zOOpzpj=EYYope(yLqA;Z-N0p{UW2*3xV$^-JXbYrRs(Xp`ZjjHXLdZAe*R7IXz9I# zgsc~U7fkCsoi(0eJ{XtJGrHX2!=7%qC4m#02t;GsuPKYve4e40PZh7B#_zeC69V1Q z9P9RB(^OxoYJCfAQJm9n;WI23QI+;tjVIM8h&b-YyN;)!v7+h#I$F zdLipY{eU7c={h6c$dPHG#+rt(FCAQw>OTzk#F1vPH3S}z@8NI7@7)3yXyI<{0}p{8 zptMca;J76_{HCQcuEV&jLenfhf5N8o)Wrk;D(elYgZeE2ixg)pVwf-&ZNM4sdc~rb zczrK32n)orDWNL+9)8Wb`y0J>;m5Vm?v2JEz3)JwflC`Dk=B-3xnJf znhPD7ON-)B5s(Bhe1BfMdUjY~j9K1Ue_r5m z&Zr$BO>z`5pIw_E*DF5zZsw2uBz!BGhZDgNwO0I0(LCid+94>mAb+^GdXNlQG5mq0 zfjjuu%T`D1T4C6bfs>C)sO$$?thtX5in=@fm5K7bw=6OAT9P7?s-Z*Gwl8uFwilGr zPsnvghTY+qDLt5pe2^5X(!!U6cz<&7j6U^mCjw?uB-WeEfaP`QXuO z{nx*ZxXXgIr$?GRi7)LHe|H+qmeK%mi`Qh#c|w0881BoPX}#=X#mC;ZzBhFftqD{2 z#Poxj+UX7439{2+74`jCL!;}daLnH)>PvTLHAK4RiSIVPHB;_UIVU#sTcwDEI&KC- zYf<5Q;~ffWejc9X!vGs_4dym%5P5D)YZ|$m@s0hc?8+%W%y*6Cvzm2;3>e^=A@9L9S#alK?-H8eNJJz`x$bmSGJNY9+wOya_ z#+RwipT$AzWyYLE8ryP1I>QbW=WCWx4hzksKR$FMwa(mIGpaVWI0Sx8{FEKb^@CjBSA_QEZN>&WK!%&7}{j?NSU~7P7uzRhrK$1u2&Pgpg@wi zu>7g(uST$pxtg5$76F^Cj(QiAo?I%Xa?6vGJ$&Sa!|``6z(p^_x7AkrH2%Jp7KxwP z)M1%pUp}eGZutxu4n~NVXS*!V4L@MhdN8n1ak(Q4OeM$$!xJy%1Z*qr3Fh4j2;j0q zcCdLAJOehCky*an%%XGh@?)agiu9Yy1N0FS^t~gov~f{mK9ac9kp3L z`E`K%nqt0RK>MYs^eX@ePi;74%Tky7DRssTUtAI8-w~o=MhxZNdX1P2CTZPeNpR1` zuw5Lm{`qsW2|Mp|w66=#kK9hW0^(r6idS;~52VkxC7qdc@xQI@?!T+s?j= zs!JB(Gw4$;wgXb@iV86s?5ifcl1Ac1==I!q-m;5ovzNY(dkSjI$7X$r$(xg+~)DIlT z5Wv%oZX)z1cHlE6GTORZ{a{7+a<0D{jUd2KXE*-A_X~YmFeki*P?4+*1sAkGW*Yc% z8mV_d=znGSo|rV@_iv0Fa`V7Hq~803cGAS6tq1SkCw`iBC8a{4+p9NU2)pZ(T1^8+ zh!wSXl>2(4=BYJ!WWC25_dJ`Z;Y;A1G~3NHAmCW%3!d^!`bTxrwfd0PUnb{e;hl#6 zB*=GbX*xsBQe3c&*+}fIZZgaprQdw?I!RAz2U4s=$#LXO+#+@;tFSpoasgq!oSw+I z{-81KOk_Lf3+NKZeRJY$vHH?Og5`O14LH>Sc+%IYvH`4tq}K;&rZddQw%rICs(aV&ETNA&>ePZy|vClIqv+4ow zORR-d4?wSW-v!&g@WIptr`D=6tx{h?eNM11ZDo&iu%wP11 z*#Vk5UarX%B1JDT`&wEa$IWMCCo^hXruvYi)4a<$+DW{PnqOZZ{VqZi2LP^sw7jp2 zPqZ;AA7#p(4VxHCj=Cy=kdhY>6#XMiR4UL~wwzF^z)xm6*;uB>LHDt3HCAojB*_s} z?#dfzk*--O4lhd`DD-IC*BKenH@I(-x}Z>CWIZl<6dVq3?;kb#7$mQ z5tEPsl12^pb0G--ICVQVa7ne#6&N z_`{zMq~@<=kYS#eJU2p7YYkyfvt~$eXNe8o82>9(clm^IB$vSQ%ztkhlb)4*-?BXJ z6O?;cHzJIc%YVaZ9MkRozOS0V6~xNdJV67>pfaCVE~!9%P&{h*jA1IU+;?}kZ+X9J zJSfl};$xb>?`Qax6c_L|R-O}47hcicZ;SWJX?_V4sr6BrmQ@}F7!bCZZAo}PLwc6F z1SA2kzuApbqHPzQ5(HyOkJX?%3j4?@EfMlDdE_C5-BGScmWo@Rm^IFCldBr)hcOVt znHW7LZsELWJam)+Q{+F#)i@3q8>M29{2ic+2r()R<#>keUR3?5iK6oK!HSvX7K*B_ zowLJGO>kf^M{DOOv*J9en;{{fTX=9u76xxzqkW()kW;a zV09#`+Z=9e2V@CTDo=n(zA2p@)iqYXCu$d)I0?=;yNAWUR<|MlAwcy$j9av~yPaG? z9>UKco7fHR6IXN(S+x_e9RL}EkZv;!DFOZ- zXElEiy=MGH>5WvlE9hDEUBo1KX+um^IX<6%%cfz4dr?X>nuj==-2!Oc4`mVjmOJss zQ_pfSrw3oA>s?3udy6g^{!NF4Z2%pMM4Kn^`EFapk&Bp*$zy7wu4-bJ4Q;=*UF#kY z)k&`0wSRUa(LQKDjSfAKAo_E(NY4Zee-S5=9-Cf1k5GXLWw)&Ncdpb|NBzpr&A!WT@D?&rIAi?}jinU)pL zzzt8y5~d9SoZr^{mPA)+R)FJ1-%5genGD~SfFD$|OvC9}9IOP>fThg;g`401 z$mls^PK`fiiIc6~&w2pjCk26|0Elw}MePC`VEl`9OWFgCRvp*+v|tUk*(h2-m4b^< zwOgd^z9@P8P$KIE5b^RXPIr0fID8K>4t}MQi%I|lnZtkVkP_AN`FH5T|7B%lLZR3h z#uv-TZ>9s7vU@k2GNlr zx*VB8lw|-^6bUC{DQazAxG1CC8ogT6HH`R*{~8t`ex_QjWG8^E3&y+ynzxOTznp$P z0X~vmp3P#)am#CafbVSUWEcm_!;B|Q5=EcXLFoPvV>hwX*NH{Q2{DVSm^+%U)Ub^Y zt}<0)WbiH4eiIJ>b3C>EHY)Xm7CA!T$&@iH20@S}qWegQw<1yqbOM;D7{&eF51Zf% zZ*f1=fkpU4!>+DlIt$DE$*U@K05Uf;*4dAAUmStEIs#pE;3FrWkfYISzOtrvkpD+p zDy1joKtp&5#Ea3q_Ze;t72&ms0Ane#q?(kMuEMUJK^ zM>x#-fZc3u4Ba&fiiV7p{8#FN474Hua?hOV`@AX zkep};*+Y)cZ@apBS@}a&fDb|2VS59HnTEC(9{Kz0krwLVSi4izj9F+JvEUGB<&N=MzAt@4VRGir6R|Q zyVttbwvSp+7(99y)$qXA_}6#6s`SU^1OVpVt$qroP{ztU0PBEzWUr6kdT>wOr}`s5 zm_iO9(}N35muPfILQHY{ms=UQRpWOX3~SaKo`qEj|XUB3VOWH;dbgGd~z)oar+|2M*0 zL`*M-OXShcW}nsOyxtCk`Fo7ZN3|!o4bkelYXUHI+hBBgr)DtxiTKD4H-~;r5bWO{zk3b7& z*8VEQyY2PO%oHznDY}z0jjpHoXs>uI(3B2q%!;w;5g@|9Hxq`s-H6sL_sL$PN{5YN z6h>mc^x_B0E*HmX?|=c52Z1`464A}Uo6`}h<$m^jiGn3F^9`P@Cb&}F?CetjVC`g& zRMbWeNfp$W%EOzkhrMa)8jTPXopjQ6foEER*)DF8fmBip@5`Z$r>&XM}t z&e)~I7_~}_i-B?x{i@A}&M>fG9$Zo0modT{bjS<8jV7tTAuLj#hg&j=d4>gG_lf;| zoOA#TBoV5%BUg-Fw>HprQPuH!+hx1%P7hsDfTaQAWCFf$-M9E)PZY!Am!~7%8^}+- zQ9Q)!yZ)Wh9HCC8!c6-BumM2;`6HlImAd-6E1FVP(LEcEVP9`4H2(YL82Re7Xms-H zS7+|~BIqE2QQ2O?8&?HejFGeayLT-Weig2`v`3YGt%vUYbNcsgi~)Y{2bGz&U~lgf zK2(!Vt{>5-Wy1M)^xW>rU{&60=qbwim(%evx<@5PFB*vM-v)9;GFl>ceC{JGt+y*C zO)^d4I(?YP{}zaY(8cfPI`aBjOYAsJlfGwt?pt$vMSl#_jV_Ys(DKT{o#RF~F|fM* z@>6`bgSs}5R7&qt8pJMUNceR)e&5eIM_;#pl4DBISH29v!rzC0 z9qW5vDT?8^ts#7N@`-xtE00RpYtSbg=o7oNAze`}SdEyGfD{Yzh1PPKjOoDU^2>w`B{4H1dib>;@ z^O()X{wzJBzX4T79*SX>t?qYL{l`lgB>#pC^ z@!_E|F)lNw!-{oQZGa&SCool-ZVRvD|)cN1OkCI(5@z+<^$ev+b zoOOAX-QyhT=lgY9VO#>lDYJ9&zzV1EuJzu6l=DnrbDOoA-|+YG&mr7fVz$VS;m59+ z@8MlDK^WKQS8F2gl%n5;*Sj*KBhT6o11V1)vq6UB;E308qTU8lsNtL{PUPNR_O%|i zWTc(H3aqV!YNPraAY0ld^9sJJ`C2V}$HOGWTNZ4zwGR67=|m3e$R%JKzdI%WQ;5o5 z4?s*0)D$j6hS513(=T57tzHVk{ya-;y3pyqp#!8(n>bOe((FTn(9OB~=a;vPF~p?U zyC42MFI2ho2Lyzm(x)9VGN%YWtoUQ8_gB|*unR%OEJg?vSzyd zCACM-suONfH`A zf9U_NJaN$oR;dvU?1;UT zs>vk^RGBm`_H}Cpw|^(}EzslNS$!RPDcPmM%nC7#S`)FkZ1lKCjkVr(6$ss9U50`- z+&y~9*H(aO9m*~{wiWN7_?2T+y zPC~1`H{Za!IG6hM4Vt3;-vp=mJi(vUR;%8ddL$tY7{TbN`qJkv3+!YvtzTBrSEq7O zy!B~_xqI#vHGQTd0F|5Kh>EBm3up7_u)gc)JjNK&rlnSVA{4wF-CtGq>UEH2EHR3~jei3;P@UW}=yKO}z8weB_|nG1NV6s_oOwlSb@3?P`t? z-Nxae4HPsaS?~TOc4T7-FQAyNTww5;Y>adJ41_@xRZ`P+w_ZnY#wZsDd6Y#4>cye) z8TDlY@cPt${Fp?^NB94#gw7{?TMjGUHh04{q@^^7ma%gYy9rsjBLj4bbcfmA{rVmh zk|W68i=D?7fIAKPYW|tbGiBT<#v49*++=zE{=T(g^y19@-4_=XW+#ZXJThf!$^618 z8jNCPUod&pwP;X}oky7RpWrfIqBt#Z0A)AA*-119v^gSMDSOeDHj_cTMi54?=`$s& z5D8pM*H#nXuU_oh7^iQV&6`00%*{8;r1XR_FH8J>uB51MxXi_Fb4;nFE(9hzT1VZ` zBJfBKZ$&pH{(5Km7>E4F<523>?EnGfIYvIf&-^_9`mkZwa6j^;&}l=2iTVt9F>u*_ zkZ9n94or;c5jme0QHp~C3eazp;hqei>&uDn5tlNiYRh!##Vc#TX|JN5GQ}XK{|ieL zpLC2osH|~`} z{HA+mw5q(3TBmWq6dBf6Y}+a9ynpVAk(x%6GKC}2fpoan%h|8%l`l(I7}q-WGEf8L zW23mI3D+8i8FvPoZRDHhlx$jEXt}9c`h2&ZBO$Vs5Vq}c-_{HIKzLiMCqHC5QT2+l z5gdjwE53|#sU1Bw^RI`T$HYU9icsUSO8PY@xH=f14)XF`j3A zISXphLkSh=i%nL6&Ac%VZP~M&__reNQxgMZMT`I%ad|{GVWVV@On?-O7E~ZhR;F2= z?sKnJ0bfQn$+1tF;@dcTQdnTr((Iq@?qb<4bFx!kw?0W7oQZrG4o*9z{0`t14wV79 zt+{rEe=L~@k=zUfuP-X`)LHH5Zw$*)khnc}1yL=43Yowmqd-G>!?zh%evki=a$#-^xCF`eeKkY!-rX=-{y6 z)c8+SfG%jc%8e`0rh(;0F%2S#>@Zl`BIEApgLb&aKyU1BNz@NUA%F&2{#gX{mjIr$ zz94hmx64~qWI{l*p!E%_&h#~|uf~ttV09SrWs9-1gvpjJSKA1_W`s|^t*0%<3{YUq0u5(0A9If~C8=3v7!Tre$tfY(x(Wz0| z_BY--M#R^J<{HPATnIc=1{5zV5;W&8>~3Ui>{0;LTJFO7NZ7{&qDv>1Igb;Ue?zsg z8-WcbPL&WP;(21j1$od6UcZO?=)Ude39n#`n~4__U>VUZ4g?F$vNcWfuM&U>x^~)K z6IF>0;XA3>I39PLGc(6HjKI!o5!xgkF!`~({i|Owv{jc-;}1VcO#)rWwj@fQ?2(mP z{AmU{i@XZWeOUh2@{Ih&M^mAi5s^CV6)eCl=@ZX=V?-<}PQAeYaCkpu)`rT+^5Pti3@6 z9JrAGUk;5OPu%`|eWy;n2|t{bIcZQ?+wB1(#%$jc;be^7ry6CNqj|FvHQ$p>!H zD`nUh|DiaN+5_tQ%4%=IJ{_u9XQJ%A#Y^Z4+CXV!o#AcXzcOVn5YM@D!tj(k2i^n$k&eU-+%dR>N_nQYjk3H^6Koqp|mC{ zKKUT{t?(8iepp(}$e`)a>&5F0CnwA!_OWEyjnr?y>@MzP$lvzO1Y7!pN8-3q%Ed1T zkrCKPlS#j`#`N|gP2i=n#*`yKf(Q9eD zPQSj?V#9mBFqasY6h=E8`LYC>=95yBYN;=|BKA*VbSin==_LzKDnoc6C<9~X7SK5KE;(4g5O{=mQ3;r+)%%HHH`v(IWf5@40 z-$w-9sax}~lOOq8GA8Itf(9xd3SU38bqmy>N|{iKW`DCpzUS~YuR8W!?AC&2I>nC` z3XNmEF;64<=9-fYWHV*dzvB=r=#u9eA?&yzZzkHh5Pk{}&`!~xM}5ybMcs**rnJXXgIY8|W}=({}tJw?X6;{g5x$CQoj>Fr)q1J4@hmSE4JY9T7H1&3J#(i1yAhL_+;H@i(fU z^t-wp<+2GAJ8E~jV{Z0~{$^r=8>3@2D6Ry?oI?H!? zj;Ef8`kH#8xu5vi8u6t$mHoe-!jGYp6M6WaJIeg!#y0~#K!M`pWbIM$h7LZ}Ax-x~ zF(=7dQ4-oe!t%n@NdV)%?SaEF$!SLM1Zgu+-w_%&Otgc2di73IVKX^ZS9hhDk6(SH zd4+L^wNlVR9@o3-s3^iQ<&%1143{qK+dqu5DD>V8qW5`~e^;ZoK5w#NWx4@qC8}M8 zIDAN6VvM!p`m~Wv^HcPf;P-#Ye`B6PRP^s*;^^zj@vqT3uw{;^PR2S74q1i^uRhxE z)0|zTFBV=`jVH8n(}5g&c!f{$1U_wTe4ZeNp4PYiTUjsxF3F8rCItEYV;HH$Nez6upi9ZmfTO-vGWKuQiv_q15EmsRtiiR1erSXx+ zOe>aAB2W+^zGRO{i$@4cyAhpkil!DFmzX3uFmP+_n;o8&rrJKfVJ4F?sRU?}IHuF{ z`rCuJ83VsTjaEXhf(}}mVc$&gaW2~ce7hAUbHZR*8}%is*{m}Q)s{cROsoVUC5uuH zhD>%CV;9(c`E$Z^yVPW3On9dq18U0Z@{ms!DtpCq(ul~YHG>0v8B9QDSeCJ{IHb~x zd6K1gTN^*D`JBcMBXOCq(z4qkn*9=JPO*9_XtY)&-mrRh;a?k~`uz-)}GW2th|Gxs;=L62WSR9=MVlwY&jTc2q0Fwei+&6wuC9F$z_*#I&RkqpXH7< zwH*A6W{WLeR2=(tJoGIjH4Vuy*3=-}FROYkk<+%n;l>Q8phjWuvfVO?M>|cS$)BaH z9@b$qhY}w)gb1dTcF^;(qXv@U|8>TZ2|zq;M-3POSEin{-23PFR={gY6dEaCgr8)` zPFy_fqf=-clFsSa&a^yT=41c6u_554`b8XMh`7b5QGc-3k?$MjRIR$-NF+Ab=9||) zgw;=7KbV))+5qyjriEy; zsE1U9E-zJm(7R&H53|mBnfie4+nCMq$%C>QoTxR9FKdk27MYVFr6iJIU zbVdKn6aVCvT>C2?y~quGgktM@v~&mJyNGwZi)1|%q6teCK78Y8tg+1~)PB_R=t?U8 z?qB;K-m;B7QJwJPnaE}oZYopDJu7i)dQxk4$6}eeL@V1N6N`C?G__Ep$;1J~Gjz4< z;!?TA%cm#+}K-E412BMNA;p>M0%Mu6E3QNIsgzv9D&4%UeiKp zr1S_f?~4sYhmTrwvDb`Bhq*Eg6IS_(NpI{)%7u&6pGrID(j3Kq2J1P+A?Ef?aL>lb3UqsDT_=Chmh`-B zpKM!bI4dT}8hiI+6AF4OOZ3Nts%Nw!X#ay4=veyY0o{<%?KAVl+%Wypzn$J;{i8ys ze2PogO+X_hG90IpLRFw(@JJ`UK2CW3Au5A!>k_#d8~ewZK^qX+(x6&?uG;uhZtvqO z6sfWk!h!$=yoPCA?b_O{;vQdMjG>?nanFrwznpKKUT%)_qVlBy_IcE5MQHEC`)Kk2 zvMYZI&ejgjcA}y{l1&axA`#C}JDVmx7Y`*DM#3Ny528PQDc4TUEWh6uft#^s1%5zM zbd#r|Eiy|ynq+xba#96dWFFVO2pJXh|9@J5g=+-?jUY(kj?U}ABM}=0QXmc%`#NNN zD{V;k{qw<)OI1oh^xiXl;N5nf=TJ>vNDnQ&puj&!CDR=0+u_ zRvd;KYNVz!X!sF*?<1U9H}}K!yrCLzhgAS3kPjT^F~!~}j_}>~Mzfz2zDk*L|Cza} zBzxaW5(_ER3dTA?xp^k6`Cd}&|Mf^e-fpLxR<_|QyIvXfPP;)L150cjwwXb%}uC5(=*KNIDt-+!ClMdbk zdUKxImD(;sl|6-}c(mVsY;4e^Zpd}8%*4mO+~jWp}l6n z1t6@8U2^R)?`5l6f|~Zf5StG{-yr+@{CF3&z@ay^)4NyRA8h@L4qgw7AEC2ozdOOq zznhaeHbwU9nITU<@A zf3}=O#?$y${q;|?_vR0?64xtQLOm%xK~!?l6`{fsukhzVv&yF^anSGh@n}qg8*RRJf_kr-7xYBT_NY#-7TylF}?U0Rv~`^A7U3h1h2gl1Q#h9989QMZfKwjwg&Mz zPD(8pG4=L7Rr5@KDRM>E5_Q+M$gOftx-EK4QBn8@k-M=q8S*79anV$n$k+q4I9|8^ z#+)S|b3bDWp#Gi~SExA!vLR>ILva?K!iTQe zmM;x7=lV0I1cHu&qt_PcZ)A29Gw!@M+eCG9H)5M``+pj*>8%3wgvZ~|Z$XcdYp-BB z2lGUpHbV~%(EoRUM{?exuFqhb(}xQ_w*?c&tNk%aKBnsb4v3Ht*}sncIIimq0@&e4 zg!yOjyiOLY*vz+FwPBR8(*>W<(z>JgrFrS4rJ|Squ17Tf-^Zo_uH)FNksY8x@W<%f zCn-^ds>e0{-zFER>gN)qzn0%OF;~PFmk)>ES0~ahZY(yI@NCHFf~s7m2Np!kX>jZW5G%1E-DQrin|4b0oq&aBPOWh_ zbF%Vm7uNZ?;N@S)-jEAuU(dLENcVLrRP-T@_4M=yYXnjdlX6$;;7jLY!jcHT0b(;R zDKhKFIl49mILFC;W?P0b;upR0iXz0*lE$T#z6tc9vsaqmRDXkij08`! zk=p$=QJwp*cho0CNMKvbgjKR)y)^4WpqPIV-=%=2`L~b1j{LFS%_E$y0RiCQQE2+M zZMH8(>M6spm?7I%S=+CZ(<>Qc7y2J{B|HI{tz_6@F}shwV6itgA6sfthVCUzzH4I> zS>8;R;&7pNwmLMwX{zkisdqBSQ!amjbc^{y@4oQB)eP~I$cgO%3L2>JH(p{arntWj zp+N?e?DTm>Aw^A{1knl|hn?77uk@ zLslfHdsGPXjE0m>(S{o9IvV=!KkVll=@ab6Uj?t*F!RzH#)eT5+UT%LuU@K+y>IlEla>S`H<8bquwKaH9lWuPEg}UvL&5* zn2akc+PhGqJmkIw)UrQgn*{QhfvhrFiw?zQTRLyo#dtl+t-7QWZ^s|JU%J?HYGY_c zX1g5k4HXvN*dwZqX!O778^51x4EuWTUFzIrfPC_jLg->R&<)ZpB zX{zsBcE0!=HPJkO@3?NOEz0sz0Q4FG;Z}th42Au24)$SeDP&TX@<}xuZb1KM{$pek zS&|L#vf-i^{w%3TSyf^4pcQSCw8T5ugOifRs9Eq)4RzY~mOl?lW*8-f_oGwgGH zy2t@V?(JLtemQ1dD`C@t1aGGAdCbtPf$_qtFDfR~95ul_?S@(TG{m+5$on5xjWwQX z{`%T>NY~Nk$(zpEE@fknx=al@eJ2L>*T+hj&tYBs;7_@OQn}0g2TRyWTEQ4~e%0w` z*6-s3q+;sjhu@YKSDuXizB|no{inWatxx74bNj8rzUcp2@n;#=HmVrUvfmV+ zeh1r>kny+7JWBdwXeT)gZp0@X{`Kh}7mZ|ru`K^@3MTBnZ@f9a1^rSl zQ{v~%SUJYog%x7ZF=yxry6eKWOIG861u02pw;SF2LJkt%#6SLr`-bur-9o^@qwRWX zqk^GnjPSeJxu#+YLr@G9)ud}wyLP!O^& zKNCzU;h}bxIsK31+T#%uah0H~O(x_zC)4~oI6Hu(;9AtW z0G1=ld`8{-qtKdz%J@_n+j<(&4JEYxIm(#)Qj;ewcs zsiHfL6fyE8P=C>zeJc=Nb9`=h_XP4COfTK#c$jkpD%`N!jiKIpr&e?jj}T;R#`AJm z3=loNc#gA2t9+;a;XG~VlQ4`fAez<3jxXe)q!1xg za|>3HobwlTm2RK^H2!ice%{l|*yS=ppv zUTGKvAry3xljqo3EJM=Zty0hk?Bfklg1KG$^VL?R%7MbC^)E`HA~kOhz<|PmJLKGI zCi&0a&ux=+2bn54bPwsY#1@F^m_U$kNUk2|vqG%?_uhq%H&6Q6!^~wC>$yg<;sZ#% z?A{(hqg{(){Yo$#=zDJ(1jyR`bq{}z6uhVCtCXvV=I_yy6R$e%MnG|;9=#g4?l8t` zt*7b81(lAAXwj}5X3R4gLDl~y!PQ0r68#u8K-QmcX7OmIchssCq0gW+3eHtIhU*lFIEm-rc z&f8c#lT;>ag5N$`Z+gotG-K)Yss0D~u_jcgY4_)y+@idOQE~4gzn!esV;CEg#;Z9Y z48qXb+=uJS)h_)0CieLwCp+?x>#TJskxTP-){d03G9GMCyrbOBbnKoU|G4aEdFTz` z_tLBVf?ti4{gikP9kV~*oA>RQ13dlY)TYHqYRQpKw{=KaaRG?p*sT9KgoGn&j73M=SCJTE^l@Nf0xdh6U{^&l*6(e~|fe5lULOGE)GhkzoqoK>7+y-aEhty}~ zXHYI2iyj~UE#wctkM}kEi;u`E)gvtw`pRkRN-u&^RjA6o>P#VrIz|)J^bCRXPxLw? zwn^lGM{&irSHh`v{h><)c7L(O+S^&Q?B3q~C-i;Z(Sg8 zhGZKLP)1z&LV{Mp7^b>?=nwyF{OJk zSh*bdj3ZfBdV1$bOq%ukoI@4QowqG_4EI&6>Wz!{sYGElIQRDA>nxp@n~Y;$Z-fx> z$oebMQ>T;*{YR0F)FfXuksIf($ZFZCp_6=)>&)u-hUUjl%Hz3wcK(BVF}u<{C-j!I zLY0%Vr%=97b2ak%#3~3`z1;TacR#M#)tg%iJO+JZJiu4l`}wDBRiBO9npeW;*Gb~w z@nw9+T!^{j2IX&<2pkM%d{R1})g&QL%G$0%j#hQ`%u*Ck1b;yS z?>J2@jw?$i?7b59%ElV2q0Lul{LNn(Z(IBEsrRMggl`;N9jC?<*YUFVyPDdBs@wM{ zu0-hGdu}$xeBw;~*A)9Ci<$o+DeJacv`s>#b=}Ss+MQ_^M|!Vj^jLA*(WYKsU+~|f zx>xcp$amno++Xs1f2VWrI%4y{oOP`oQr^UNantGMk30pj@R^W*sNtYHkxX5v=EG)m z#}1O5PIGtG`cFa9%6~{M9|4&NXdk+zz4=ZolnGUWK)&y!S}isVRIcZ9#Ov`G-4V9N z=_TWtBI6IKC2|TFUT>#vd7Si3k&TgNzr`p{f8;I`6Kv?w&2Sz(2Ls)d{jUh)lM5NB z#Amnj;W{^5IPc|4vb#zro^={-Q3KX3$sjeF?8?!aBaG8lu7im=rG~r29xG{=X3hDv zvpa@9JAL$jk39~f#^y;+t85o$CmTbrl^TC^M-C;qu~h^v1`H!RP_EAjm~Qiw4HTyV zl#9V~<+G98GYz`_Tixb(t)u6CQ@atdQ5rPESf$OW=+T9F4)&8$RKI$9oL`% z4f1JHj}2{aa+tKYJ4vINHT73;rvJj1nAPE4LdkcZ!FX`BU;d$=jdrF4?ARTBNOJr( zD3`xx(Kl=IW&!FRm~$7h?BckKqSi1mxp$I=2w04Hn>ZlOWznskWSfX@yb zLw*BRIEr=>5mSp$iQAJ1_cQ{kjYm#0MUKQ`o*Z}Ke)a?TGAm|R(=LTiN@PEm1gRd$ zNPZ+cF*26Xt;19v;S}I|n^=>7_0Ik|4~+gU7kZjCjjoL*1Ku2eCyP-zScnCC8rY~AE&V-450TvX&zJ@+4v zMPF12E8;C3VW$TY^@YOzzB-wf{wW>%p>FzOLT6pIaT45&a48ZJ7a08o*UP2 z)4_Xjf%O}&#qjOB6hYx(p|ZcFpCR`b&t;Ab7$MG7n>jfVJoDN-&NT#7Tj@lM0cg{0 zLXQ1M0l4f)uAyrOqX3V&)9| zo)10DtOXcw^RunH}ETQBAKvKvQ|c+@Yq| z805DQ(tOYnJ|6m=+q+E>C5Iyb9p~0Hx4-5qzlFc)?1{t+_2qH+PycrmlN98aDsX|=$E%;}c^Ce9}`SVSU z#G6klQ%T*89izNiso?^TU@k?YEVs8wpD^IO6XGc4g-U@7S61Z8f67&k9i2sVe++43Jpl}h``;--bpm+-UAy`DZ zVxpL4aj9!jJRAG?F6RCsfW5TQut#?6`L;N>vU=JV!DY6cZ-=P_4q93p0SDS!sPL-O zQXU`UnU6o>0`alqEls;0q4PCw)Uw9Q^AUYRBJ&^XIB7yxNbpZD_I8m1ic zsfY=HJ;BYWFr2M~R@wctsHvPT z?4ai6V2WuJoIb*wzZBC+9uKSf<-=jEHXF?nW9Aby`t@Lr#`nJN<;$$F%I_URG*|0Q zLtcuzE@Os{4bc-k1e??&aZZgdU9g~Iu_j-#UBOay~xxYISR=9?nd6CNz3uF`M5JHQvA z5zn|XHnT7rDf>5^#*n`*qTN9Sl z$8reXMYNq)Ga1>8RO+okxvuwpa~?EX0G5{_L~e1d zFfC_!%SiCXhk4DuP*o5O=4ozddLAiZruk0WubMIfzBM*&r8*Y>`V z8W23TFbSkP{!&)hwg0BQb)E7hXXyfdlW~N>ijyQCUuL7cfO{PB*`KWg*PHey6K`o-r~7ltIixw?*e_KHKBe1zE6 zB`anOm(ip3a-l!t%lUAluwS*L{Lsc%X?Gh&qV%h!P;XR+k8s#&&3hPKSvslWV8@te0ax*FAz0@G0 z`TRJy#J?w(V*%}D;6BlKMLaK0lfsOeuM!KOcLVn-g@Xk)X#PgoXbc-6etx6%xCHkL zv>&i>QzkX1$y#@XYJpR#FyXhxog0{O7gha}sU=0|FC`iH4YibQUSgt3-H437Q0g3A zdVb7KH#_E8r|8FbNQbNoM|^^KLMwomDn#c#94c=Tz4(@7mf*aFL>v7IfW8ps@4J@w zNz)7TGaaCLoV}AOBc=Fo_9bZp2`=oNr&!JFOor4_O`Lf~*~ZItnU4z@!Jbz=0!`XH zhtN%EEM+K*b*X3mt;c8xaN+c6?}aK_@Z%6Qz5UaoMDH!>84l`y(sVvAjvW6X(DMm_ zNx|B_S1(#=`6YMfV2mE5Q@d)ZPVc573h&X5O_8LiNsOXxo5Qqo>m&nhlw%)4*C$(S zRNr~xh|htGV>C4ZUDS^c@k2vqZ~8$7MliZ_f-!I3^aau^Wj%7yA6aEjDE71CbA*4@ z7Yw^v0)N)uL!k*GjOG{niLr*M&JC|mI^i;AIs|7hq0hP1Tu|Y5&{;8BNZ}DvV8@T( ziIiD$U%k6=sy;ctzP3I`-l z%ZC#aJy2$gWlzsskAJ_h-B`E4Ea8Vr*|eh0-zZUb^JF^_eYv=*F74V!JCVHZ;{PFw zlM2YosuMHy2gr0RQmH?U-Y!~y=-Y5 zVck=g`gOLR3t_ZqLy=M|P?S_z$BxGKYna)aIIL4q?o{lA2WVI)FB2<&M3H&|i{|H_ zHE_adVv*hPd9ed!EiI9jSf-ph^x-vuW;4raru`4&nl+b6;qHDb6h=?cW;5ItSbh(+ zB`DGXV6WK5^VS{I&r?g5qm~C-`Jr^?W8!TF-$H@}}1j1vf9Xm$M*F z=OB=LB=e%Cpu8N}mp8xCOi+9ZkhH?W?}U|r+8%V6OXKMDIQkfknVVX#LE7xz!%wQ9 zDFdf@MZ848{BduW%c0|Joick*sBVy;Q+!ONrGO&k$9woax1Y@9=099pL72TnMltp9 zL1I&j$5j0EA_R~3@(GQx6N@=Y56F~0dwwFw(5{YQd<2v_!JEphdC{g?GCBBvU68lB zyPx)3+Hw#9-&xsDg5%u7X1K3URX?i0M$SQGupt|D!Wv!}`+@Nc;ru@@6hM*s$GYLE@?wwI)^z3C|BQqQ7^~2{uJ4?~9&av?XD=0|&EodoJaczOne>US=#`J7 zO9s8ZdXN*bLhwwoVQ9GB?1}?RDLJi!6C5ou96|)xOtak@ET~&IVAm{$S9xiZ>8<0A z!mD@=5i%N^)QM6+^)HCH0Jd*!4=JoFY4kFmoBsodjll+gLC7I|IDu!HNvU4ug+B8W z65^W4jxcMi4lMv68+rIfz_+rK;^+>tSl6&{Ut;xXmLMRa6@S-&3}*RUwKHz|?33j0 zP0mno8DXQ;L!j8__DRLf?$27n@Q}_0#@if+G;CsEfNG~*iR->qRg%}qSe)ceEu!|A z>eE;Ysv8Z6Mkx{C=#SRL19>K;4S_KGx5Om2n}r>TxS=+`NQw1x?vL2^wz8EzVJ+^K zy<6gus|qacU?0e-OPNm^E8%dfc&`4i#Tu0Ozj+t2+(3-+9E;C z@=PQ!TpRyX)ZfaH`#o@{*|`z)pZfF0Pd zYr32*qux~stjB;>q{zjBQE5AYW)BGs@Iok=z9s0i14U}D*6^H&Lg)rZ>7(a%waI-Y zxTJxuHg_2}uYx3hE;cpbANpaq#4TdYpN}AS#A`<**7e$B7^ng-H@Mk+L*|pP9#n}1 zbw__r9LWbK#ry2gmCncPztOS)%O0mR&Gxvb{-Pu-MCFQn_b&dOx9)Fsc~~MBt;5FuWgKN3o#o!_{EC!#ebo78g4FNX7$EZQWQAr2Dcj z%8~Cb*;fnFC2j%O2aMkvYUSIm($dguccQ)k|7*v=8!Ot;l>gY!-2z`|6o`U-@&+GM z!U%VaQ45lu??c{mDvKu@tr9Z;%dgR>%tCsJSq2gh0 z*9S41F8zMfSvZ`ad@9WB3CXUmg}rYjaCkf-6%i@-pKHg$cc`EO*Ee{J|K3!{V_|co zjL|R&TM_w`|KQj79ux&moYm(V!dy%Iw8r{@k0u;cKgiEG3`4H`IJb%o zRC!gb{RCAI*aSc&yV#>O^1K;PK7f3R?82oL9Kn8ofITjBm z%?GO_5a25xso>FuWEV-z)!Z9$hm_ZLiNfdxB70uJ>Wg&_sx@dvQKZf;oZTNinekTf ztNAsWm_OGBHrWPE$Pz8{Ll0W8wPk1`wkrv+hX}c&&5scj$AJY=M0JrunZw`Ds1iLK zIo;cdFP71b#WlvdO-Y^@(SiL{yn|o9g7zuV=dJssMqrT~Ye}m%96v+b9Mjh;b6D-aGRqd`r6OHz zwO3047vC};5rI@9W#Er161FgBV~FA+BhFg#PQy$+EDbr*c{1Nplr&A8?kvY_pBNGZ z2z{Ch#Jn~U?x3{h1_ycEyfEL_aY&9A=i0#dz2$wG_zkG=?DV#`cA=zm`80QcIxJVu z6yr*3^#v$8s6{VY`2AVR(4T}d-$bgFn;)6>fxR9BSo?golwSx}@J6u^jOQW9EuLP6 znQZnjOgg+#1@AdZK0^MGU_x{y15QIqo-`AH3S&1Nc-c|C@!}*t0nE5TNe;*BIUEN^ zmi>2E$Gl8kLwLZ0!zi@?&a#*aIOb89?#pm~r{M>hm^2V9kbH^x3i2Yt(G?kVv&)a< zUWyTdZ^T6Z$}+Z~Js11ymQL~+gx|k)oD?%6UL?)1`soyUuk>WZKOf3Odzuy^pO}$|s<$-16`=edM|A4!;}Of_>djJ~bg8#gp?Vpf9tN3tWnHH}VM31%8Ev3g zrEh=AvxI}wXOQ#WB0TJSGRu)dMy^yAN6YlCkfOU66*yYd3`0IF<*JG2E!ioM^mU8zUFE*EK#bq%GA@rb0G1=mHhMZ3&u$)0 zA1;rZ-=?Rc-SJDCVMslSmxEf2gOMd@Am#;ShheR-+tg8xyv&} zQ^&MtMee4&+5>WhZjzqsPi}wXQ!(nsTqF&)+b6hB@Sj1SK`>->zvL2t4DOAyx z3lGFEn4apzmL69Ln|SP^WUEn@;kO_D?T9K*>UUT>?>{^yhub}_)=KlEq%{t9bGQ`` z%t3{V-g%Zo>{kcd@J-!5S4{mn7D%6;^%__**A_VZmdu;_6%oq!8em{3Ub6Ytw#MV4 z7x72JxDrky?@SFp#O3Hc6-2plrKJO)0tqrhEuYQauXih=e%fjDC5E?7f#G6Z}0 zY*`ZviP9G>t~Y)hc%h(bx`tf8F|mKs_eUb@F$)_34a~)H!~DH})-)&>1pVHVxlP4p z0hYgslD0_9vGdJ26zmU&o0l zOBQTnm^v4lc%J$pd*3}{4P8mA)PoD4GulC$;b-(nk-N)pO?5a!!4X@MaI=u#!>&=7|p9{nS)`3q> z{g5LR)Lbjn1Qy$~RWKhgu zK*^MaHiSrQC*TMqcJ#jemJBNACSQ}&B~^s<;83Ycug_t8qrV>xkA|hO z(sDW`d|B|F{lDXrMD;L`8g9INmfSdF%vI8>hSuyD6!6;G=U{Tv5MUW(YUld}Noeko ztTXuq|BAy`hINEjq*(1?%vnDWpUnIGs3#3zS#NK_fBwAdt;4gw=08OO(Cz!$q@ z7$)3LlBdiLsmtSHO00e(^ERJj7RqF3#TwE=mTVZ-=)oP=ub2<=<(W>2G%d z5r8YXtK@h$mbZz6jD5VV*H2gocz)3~`oy#c1|zWJqWhdB)9gjvHxGG3&JS6-u%U$A z`s!?$XSKHcYtRwrx9Cqd8OlK0H4s0*KDmq^+4;NTuY17>1VDE;2kR+T#Bf~*hw2_hE% zWq|sI5<(7M2Db|@b1f-8fgtKd+0?td7!xrpxaL9*$+dHF0U1}yJ&$i->ixb)48?-O zp0onEy-}o@hZQ2Ky!p#cOz)qP#tSclJvgTtH}zN4MF}J|2=BH8Da)oSNjP<5+1d@* z+{v@ryWeuUKDevL39?NlEKN51OaEIOcf6Tu!1haNUsZEn2$T}UdMBlu#JgFHK`q>N z;l*TP{NTebr>SE=eZx~}&+9CC`sM`<{&$rq$AKjzjOO&CJ}(&LZV9ap@`y|s4d*j+ z{rLoG?d5w^ijVQz_-bh(5>QUEjD*)B_D9t%3m5{5(B(&1LmoYQ~4Yd=?pDCLCNE8Vh zFyV`oIoaAlc0X-3g?z^~ccUOpz2hOy!t&O2YMcJJ+{QkNgZcVYqbbZ2#`gKr>=inL~J$U=R3lzPvgqobiEMtwj{{4NjJ7JI{S)z5_=qi2umTtBQ zX}GHoDt?PNW|BKoai7Wp>(aSSYd&2&IktWZ`l0~>#$lmKt>(gynZgCdKzs-Gq07Kq z`x20He8F~+lYFD$T&lEp!=WrZp%|j&eBnb?mIHN28S@E{13y0oTpoynY5{(<-H&Zc zD#?xQU;q0SH>f)rAQJjsr_frpgxTi+sln?z<9E+FZ;mDaC; zD5vRnI>OqiYmV1*MbBU>tRa4Q(=9!wEh5$WVMXNwAN?`mMN4kF90gjfT$g5)6JsF{-fvrN z6)pSpVj79T7ntZyd42s<{asip_YXl zws}pp^oZBd4F!#zbaX&1gV&*~u`zsSWrMrzZEiY>{q}np}SCi0V~3 zC>Bm-hYfVpETF26UNOEVf5HH%fUf#^Z5f!Je=?v!;nVU#OJpn$sr&`pBrnd`<1Nz3 z2BtXJ(7Z|;s8To_ay_#H8yGyW8XTp)!D|iNK9RLa2h(XovDtcaI{Z&S9r{arl5>hb z{HyWe9&7He9yE3%>?%#~=AqRY4Ewqk9(Rl6i8K}9zd*i_ML)1 zKSHsm?NV-<@l|lcz6E7+S91e4+)C7OY6D@dcmlm7P8F(9BL#)_@`@}e@08&Cu6@90*e8! zJ_aChj=6Ji|Mos_+3eSDJFkv+EYD8P5Jv4NnGP;^7E^8JQx&VD!D?tb41j?x@{GqN zmuF7%?58P?mzk7qHLNirL&FX}(x9}YV#C_nKrg;J9uxz!TYKy>f!a2>awhk3r1nqC*Gw|L7eW?? zY9{yFzjH{jhl$3oGu{GSl4u@^c0cN_xN21J2y-pEuS}BB(}ElavKzftZIeGxYmxwx zp}&QbXGyOgJ^Lr{EW1lx+NnrqU`Zu(GcbQ);ty0xx8YfoMBJpR^ogP4DkG0eLH;>$ zHO%rH9|vSvG1LbNztAAxzvlv8B&!;!@5A!XQT=#vL>@idWxFg?7Xx=Sv=2fGz6}{* zAS8itoG;5kB5EVN`6Oqn;bMjd4UCGaHqUsrw&AQHnnVD|5im?AJM(84T)W7C#L08o z{Z+@_W1?JN>|yT0BR&vM%27Tmn=x$E{|d>(8{|fSn@IuZZ{3)-7F5N@-m5OCwIKp#Q#*G44-U92No>hDbatz|s z9vja;IaN0=iGsEn_BCTnUYjQeGoD9~!7Sco`;sr_<22k84f5kDkGDva0+(Vug$%!E zxj)9+ht~g13EJTQYyb%Mj3*&G~=JYx*fPn;1^i^_3b;qL8V#rgy9`;(qi7Ldw1xNCRD|DC25<+>=-H(Ga(OsrmBQC>378PiwF=lw*G3M z6wJwD)&_%t5skJGZ6QuW&RHlqH^Y1JO2FAf@t?y|vjUuNr1B0){_&?pNPioJZPLbj zs7bRR+DY8cB0k=w`st}JO_vP>jAa_BY9Lv8;*_xI|6}v~UZVFp(05}Jup4QknP8JF zQMb1er_BSrs4r3et@7^Fygfl5>^K=|^QtUQDh$a)`LVVD?4}nybyS2@I6LV03is7g zQ?-JgqxKF-O)gLrWWE$*n`C@&vmZrxfa}8&Ma?zDCPL*!dodMUh7TJko$ILB;Z3cX zp0e$WrD;bK#a1_*7?!0^0>}b!E6mZ!^fNL1mlb|Nm@$8AQdi(~knx~3;MAeLXi47< zZL7xRLqp4eFiKE7|D`^#lpfY6u%jfVh7EuJXmpYEw18h1rTn<>>|R1S^=z&yb5_=@ z4ICc@G0V0DVYC(wcKGqN#BsneuN~D%^zdhb@Nhww=|#Td+5|S=qn%pk)ITr%CW!ps zm^QK^cG!Z;To$BOp7h%j27X?Ftw9c;M^4Ia-HRS&CJ)i+VpG^Ylh#4)olkh~(Qiox z>w!Nr!6Ab&f}P84L;9_tz2_bZS@4{Yu$S|```cEhjNtILcz4qw%%GPS7@Z3;9-aA^ z3;4${vId3JBQGsxhm8Lw0O#Rh!C^r-V!fb2^G09dS~wVuzSSLNq~#=Q;IwJE|KfGS Z9oB$fO<5ZL@F`?KLGF!gnT$#B{{b(i!iE3< diff --git a/icons/maps-and-red.png b/icons/maps-and-red.png deleted file mode 100644 index aa12b2aeeed1ba167c715f963019bf50a74975d2..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 29240 zcmZ5|bzGBS7xp#=1BFdmY9K8wB@If7gdm+mK)Sm(QKlduC?H)5N)D8e93rA1-60GV zX_&O+_w0S&?~m{MYy9AO?)%)=Irll&iSg{7fi}%0)=MA|h~|!thA{{P0e*ylC@FxC zz0lEP-~$|BtbH3))z7{P0&#)vXxuUhwcE(0n)SIq*4?g{rBNc8cCAzRSrK*0jTCu4 zDZcx+g`A$6yt@A33hU_IBI!&aO`ViN^C6`xn%9Ni-r78@i0JPNQXYuv|95ey;<6nO zy}tV?e?}mpdZBqBDlh0@Dnb;i0oCBLh9L70N(c+kYo9pP-2r0zGBi)VgY)D<9|=b0 z5|Ym@VnF9|Bfu}B5wq)rHqV9cezaHRz&D9UjBS*>`uNTdm^4fV=&ot|#%4y_nI$jn zvM5z!NSvxF*%rtSdfQyQO7X#h$hjV)%|?rV;D}EC z4K=71Zvhmg;hV(|(WeRxWx=`ayNs3WMyQ;}abIg{nLKO!(SZm@mVc(l@KOqbbsn(% z*5CvlWF-orcGr@l8Zz|s3Cvxeu;QjMRUyR5(fiW3p&A9(!F(Y7XKpQ&dbjYM>u9fX z`{UqaJ4pphI|GbM6%qNhgR!`LNRRdkCX-4KJScSy;z&o7u--3eSH>|)9KIHkiFyD* zKr%qgka>Rsxh_-#6$sGOo zws}b|w6WbmNRsw-7GMbPS==-XseTX>=I4$oW!s(Ppdz$#Z{JP%*3w}XM4GsxxB&%( zb5m&JJ3r$i&<)gLq2x+Z;BskK7w87Q;LPV4C3PIIPKQVxWFO@mhNx=WRlTdBfuex4 zlO;j>gNQyUw3usv&=QYLk)hAql-6s7eHn1y@P2})mh_FibQ&=8ORp&Ra)CwKs)_ht zyEuMdS>ht5_})<;WhDLNOa~%cf5esc8y0vXa$Gl0mW$w^(!678y5%8pUtN>X4&Atq zr#f&`lY#D;?4jzuITP#ia3q}oF$Bd7%i!HAou$XP$qe&x zzYqZ<#y>6x;I+OhT<_K(e1|51=Qc}nO@Y<207vlVlh{s~(o#EvuRN{-{ZuUuT2c5S z_wrFdTwCuFn51E}X8#Qhga;@Cy!&URJ(39%j}Bs$`zJjiVtvm)6F~Ie{!!Cm+)-u}jo?z&4ym&b5Jc7W^5Df!l z2n0o~@GC1ZAMxX62Q3AoX+dKCxK^E~YBRteKk7#k4wQbtW((}k$zrZBod1BTkZlx5 zfx{)H0S{WBKTX!K(ee2Li z6)Ja0uH~Oz-xV+|=$yP|I?encANQ3U02YGI+d<0EP{*-hb2U;#5FolJD*hs1i^~V~ zXkWi3`9GEps?f=TqrxCY32WaaV?jtKk8ib1kH7B)@wWMw8-NdgdM54q{+<%8KJUSBkX^^1}OyY3ZnYTOX+K^jaxnRqbq(ECTPdq1Fs z-!0)B|F#w^@rM}Zz~7I4#G@&d3<&J72&$))(tLmkUB8joP0GOoa+-D_#R+qu=;T2kk2jYh`v&|c!_6dN+)f?CfuN}-$Q$s@eR=Xk2N2vE;-WaIXuZ7@Y64hH(PE$ZCu}jgb2m{f4|o@y zyO29BvLZJ0e@Vw*UWjJp#WHi+T( zID9#KWbw@*!53V>#?X#QPCg_P+18e!M*JIYq9E}m>UjR3{le<(rpLCYi%Q8w7(Xh8 z_w1UlqY-y#-}&QWo!fvKuRMB?92hFcIr&!m8qM`r*z)*9v%0@nsnhLzMb|*i+0G5T zad1Y<@rPOJi`W8hqM8cSo+* z3nC7JyMd#^Q4mLEH+sHKLcK$9JCjy#3T^_z?mfKTjrh`8n$Yld^XmjJ4K39vMI&|N z=PapD-3@^2-yr)ug7nSM6x5{!2|2!uBUK3?VgM6rEYa#1c2mt+Y+h>_y!d2(F<~C8XD^DcS1n*#0LhCs11u^#1$utteKsZ$w`ji;z?2zk*GpY z=4ieVxO>ohE=}Nt#jNpABX$|hY3Io|$bL+9UzK|Hy^Kt3lfayLBz%(xh-+7*gzb}9hWOC7i%>WN^6%pk7b$}XI-zL14` zdycqz*O!&YUX=etkDG0ceX^7CO1zg$a~-_$cd=jSW7(r@#@97j+o_FEF;P~L%{6@0 z(VY^md$xD$ew&DT{!$fXR-BY=W3kjB@iGSUx8(UsEuB?4btw05{2R>Y(Qp-cC(7cl zTML``8vKa%SYg7*deN9vctCPe+l8C zZhm(O<*&LP^ZHS;6ZRypU_BSD(m=dzYBy$gaZJ9p)IW#i6VY|QY`Z(Qzc@xhG!xdC zO|YiSZ1&mGdTIoLs+QF2ELQ=j$gF)YPjr65Z;?^ACcf~gnmdg!`r1H)3i1rKc%utR ze=lX{$VzX~hf!`$1p_LVDCnw+{x@Lu>Ooyk%r0DHPxf;w#pGy5vDa0$EE@Z9sv`>A z;@|_HYjgA*?30f;GIdDo<}p(-jk%I1r3Jad9ScZ?{G?Kau3L7dT2RE2JBo3LN|#^< zOQ0ANbpB2cxaw27CqaWGXNw(E2=xjEq7m$ZUFjJU$fOn8cK@U9c*r`g#XQ9KzD3$_ zx+HLj>(vIRd8NsN3w68=#uQ=s^8)Pgz9hUkSuKd4&>Z}v(zds?zGMK@YBwhUD}|!e zE^j$F65_#6*cDAYN}I~agx~SHWvY$otyq__UZp-&hBF~b^y5IWC$hAaFz1{>Qqkn!Q=A7P~IUU2U!RihbUBjDh{) zszg$E#gj_1nMdh?diYMWu0D`(g9uAL{v_W1(l&>EqV#VyfGxwz8SvT&aWZeJ0$m{j z7mSncX&@zo3#1=>pwnIKsr;`h*7U=^UD8c%AQ;eAMZzNFAfYjBw7kFm$-u`Azp}|o z0%Y3-6ao@rke-uTz>wR1vKCyG2ar*=C#)`n9m(R3)jlUO{vpHfDC{v`-VO~{7O~&- zx0K{!$;J1>EBHRVStdEUNKAP{@u%|j7_04}iJ7_Q8%_DS3K_h*_|81MHeHZ7bAwnQ z&QYwtXJCkGh57T!Ms4P5Z_JOLm2T^r5%vw$yi0xFv1svL^6H7W%Dm~LmuZ(mM%pTL zj`e_J=9@Rf>yKT0wflXtIpc36e3nupbLUnd1ep%qg5)88TEx&)Y!D94<4V6h2W$qc z1Z(p&EU$fET)iI*SCKjn?DNbwo87%b*i6NP)Cg3zZgf5MI~;T#@#FA@5$!{<_Bi+B7;tWE1zdY8!9 z1!q|1Io0Gr>D;-t*6V%^`z`c)^!;7FPjem9q;vf*1K>GY?Hz9)hgb|hN5`K_|4KV` zwXdhP6A05D@h4Vmj+D!f_}`g(4A5;Z-o7t^VR9^?5&zkd8y=kv>{x>YBdQ@)RX44Q zA9CRuV6N$ab^HIF9w!P(z3pDayg6B})6Gp`xQT9mrdfL@( zQbO$A*zjPiQys5Vd38NGrII7EN_9anbrq__PSawo!AdJP+W}+k8zguF4B^|u_gV5* zqZbV~IlO+#bUv&*Uk)HvKOB)(fB{xP5uFuVP4zFdCf197N4pA25}WJCE0eHEXrmHe zz9ex;2^Qf*D79fvL5q7pEWAK>lp!JV7HxC)5_=K>QD)65O4^YJ;C6VVn zGqSd;Br#e{l84pF=A;U z8QfLmQ0&Q zXk{q2b*jU?*l^;935gyDIe#VgW~4QXv8s0smWZtoLewvZfBPFgNq6-51&j34vkZ8; zr-Yrl6hLRWUOsVOEWt*hrLumo5GS?Sf5;GyU@T48C3G_dOXP0B#Rh8Y&xkZn5Q&-C z7t)^Y`a0d%Y~|78SY+_>f%}dr|DaHk#Sd!Jgvr7#Sb}Q*yd~8fveqTj&D%u4o^R27 z_vw#b#oCr2OK772?zQad(Y#eFwm~>=ij@&V0L$)Jlxo?9A4%hEi|=%DR0Nlj*+wAD zL2L-=(-Mbj0s*Ek;1)RzAoiwJg(qxzK?qfx!jJG7W@C>G4s{TIfG7o>Bxs02*5w+j z#&u|VNQUp3Ue;Eu3tIaCF%#XAi)jFG+#(0tpYJsAs!7UVMB^V=+UJG8*7~gh2y0Mo zI%1A6hg83pk6h{eSSLRyP#{N!3-F^Lydq>*o;T71-TkgP)f#$t_@hyxMTT8Cme zgGz*jpX-K`j+o385H5%m1J`dkxOS-f7sQZty#G^-dzZDk`?vnS;YEX-up^eAPno-b zGg{f|2MZngGMXd&s@3xse*~?-s;ufYfh9m`mmP0Eav;gFO$t1cbKg?_n?1Zvr$ca( z1?%^gJGB}K;GHt~s~nL`8cSa5x6fb4{#=8PH!6`FjAJfqnB^%-u^f;!UF&6>qQwLV z)^vbOzaHEZEjdWcj;oXc>a5NZc2sH<38SN$2mvx59|fO+U*`VAR?JtG6&%TZE4Whb z$Etqs0PkZxoZzG&g43mm+Vd6h_3d<1=V+^sUB|MXzW8;36Z7r+kHKGsVP&pX7qXC2 z&kk;xprOta^r3X_&B4FfO|`-~PAI67Cp^*(<&ey}l>(nrU32QY`x3As=?Q0%>PSo6 zuUN?(T> z+KO@yR<6WdZC6Q?vD!c5$QgHyqYy9zl(BPnboLganQU1$U;Y~lz)gc+q#%@B5&1AX zMPKTm&iSzpf&T}z)m|0QID%xj+wvA}YYwbKHzCL^sNHBoBX?Kv2gwwC@Ov{VwTwNU zDYJ|ZTBwT!0!!jUSKkAu(hsdEvd`z~dip3vSi}D(>03! zryOlE$0{9s3u&Fez^e%eYurowl?4$1j)50@U9pn&CGOwSDB~&xtc=R{lkX@$Q4bbV zt!zd1fmDP}aCYBv@?#vVznMQC`G?D8C21F*{xf63X>7i2u1R&VC*#up^_K>S?#?JY zw=#`*pv8o|g}_JS)w>yLHDta4HDoy5CM5sTlsJb-<|}P~eo8PO=$1rD>6eWCP5ab5 zmpkEm7DhK6#Jv3YKgo9F?noer+G?s7YeTKyJJ$B&+)WIidk8=q?u2q|HHc02wd7u5 zwI83m&8B(q7RYcJM<25j<5jMJ=!_Ww~ zm0F`2dzV8pc(*#%qqT*7ybGJ&&^?Q0+){Dx-tkC>ZTg&qGZwIu#|gN0%KX=f`>T9$v>NooY> zf|4gFveLz&3%)!7XG-wWIBq7@HrTc*Elg`(rby)fL0zOgbT=M`Mo#q~B;HZX%nO)M zun<>n_-#Z92yy$Ko(UFfNH)W_W>@BY*5C2yy@Eiy7U149@!M#5?GcGd%VqgVN8He% zk}rU;9SWh%w9wkneeLU|%|5sa^6sa-dP97tVuE|JK)sKAL;{Q{3iL(v#5qR}1UzqR zak*R&b~;_ePF#*)e^4=4vALQGKd0|S@6~G;xSl%d*Hqm68ZiA~n(gk|tEud_k^Wq| zpzxMPq#fwA2-t<%s}xAx$Zyc-geXFlHefm9Np*9UnGNqCN50!d#%d#^p#3kFus}<& z1c<6us497S(1@%t?S7#(u~}j)q2R6QOPQo{Ak~o_BV5w5t*YU!2nf%+G6jUOiHOZ&1xP}BgG)~l>m8Oqs7sW z%*Z#sne$D&bgMw;;h}iy)cxBlsYwD?-MYx?nJHv=b0EcwfOWivgmv#++nLX8_ zdxpkt0%V|6L-K}G-37&;VB*9z^{d7kKn?rj^pY4l=+NpR%AtXAt34hb=;KT5s;7p3 zHyE2f=0Qh$cUd0!$cH)uRqrfr@R_=yz1ThH8uF$K>o92f2FsKEQ(XME>3O!v<=D`S$|y3$cf z9!<4bMNT9dLhV#oid|ip!sk;k1)DGA{plH5OQoeW87TX?8}pNLMCL6EroC~;CDuue z^t5Y@iw>lXra}cj*i1R4JL(N|2yCwojFn*P%3hui49LX&I6Z$P90KDb1427WEkRiw z;(L{d0msdmej7L4w1pdN_h4)`!b9DM2A5q4YPowpL1V!I#2Pcv9t%?b9@qxmR3tb| z6@~UCPd6xqCfHZPDODsw>F7a3qAK2{Vy5WmqXDXIF(A$KQW`bMl)<70&kMtk_;6p; zI=3Y~6=NI}C0staHAwPl-kC3Tw!g9o`rj-7nKlRpHl$A(r?Oc`wT@Tzp#HbzPq_kx zwV%HE9cx~iMkTf!vqPT*I1~sDQ9X8-bhVnTu??%cCLzS;j}_2@yT=^U2RI?$`&hAW z(iTf~Qs_<&B}rZ`BvaXgn6np)2GZkCIA-(T`S=Ty8nCnrB~{a%KIkX+4+B8wXGpoB z=xYb9)a6)mOf04qEl+`~e~&$~HE*NVp#Uo3co1_`__wymlUWx$rSavT;kbNg&K5!Z zz5LB2)iyop&5h12ywumBx1VlNvH$6*?@0v%skj7QGyfVGw_WXS_i|1ORa%qW(4PoL z>J79WBTWTPHg)rb{*85y|M})@JH@FXsRpI{jKpX8fD-TN7mjJN&a$+d@N1g>#1TEzDlr8Tn5|fkcMv50}FJ8)tvmV6nv;V&Q)rzMTos;hG?3 zTT|z!6)T#=hQ;Hb#ZqTpjt|SLeodt*o$UTt+x~R@uGWnBDKnM#Hs!`DVRlaQEt-{- zEl`@P!XhkKkK9y?@0$SK0V&!ebEEk14jXuy`~D)Se4OlMmZdyf#V=whnwi6hF`|kb z>hRFctq40KQ3F*Ec{AQN&-U=o7P``wKz9NLnUQPcg=sH2k^oxV>C=ES@>whCb@N_%I|*c-RTM?&R%n*AH6X(+NQgqH z-=pa7Z<9#zoHDZPVboOmLGJrwfp${sj~`bZi%3?orjO7D6tSHi*n*Cg3@6`X&=drYcspey1&L^e zaIPEaT+)Qb8K5{|6Eqx;7GwT9osb7iOz7JoMJ|yk-wg$JuNCl3j_vx8d>afUl`iFm zqXqYT`J2RNle)5Xyv!HJ?AC{-6hES=7}1n1-&U=v^B&y+ zz!)sPQO9p zIAkJN5T??=2$3zqL?KN$P8btneZXneum?2hpgg{5v5B#6*|$=#e3*Qr^NkxdVhh8X1T+b{Zu;6cJ(>Q^pxs5WFkU^01D$xaC>>h=j^0-lVEMgdpS zk^Tr1%lLI%67z`l;-GRF5A)O>?r48-#Fe{1qH+V$@mdJ+>bc{LatDGJ+@ShK)!!FI zrno47xyHX5`amcAsXj^@#{5-cvG-=o4EVKfw8bXHtmK&5+2Izjz)CdD!&MB{1>6lf zVPO2Xp%}^WPadcDeA^$%^l^qlh}y)3MOq7L#Y4A%ln+s#IyI4E~xXeh0(i*FaukLQ-S zgi$r~xk!F48CE8bY@_g$7;CgV4Jqe64u&C;3f1rbcLHfmPAKZ%L$A!1F#@M~dWi2t zqb`5e_Cf%D{lQAQ0U(GLG|AUDu$V;#7J-w}z7`#K3J%4_8jeX zYXk>5>(k!pCWZPIkST_vxxq&?WHZZFr>0y!K@KPSnXuTq{pcX--hcb&hYF$g)Fa40 zWE;KlaAbs&sKmKqn{aqUx-Vs9YSFBzPbH9 z5OG@JkppLaqW)*PR9OHGR%nvYxovyt*T%2vNVIZ**0OB7GDK;GW&a!z528 z`dRiqa$G3-T1-(#?(`L;H(Pl`MlkrcNOB-)7NchVJVem_+2rb3{cmP`HoMJy`mL$3 zmiMt18vF!cWaJAT=DrplydG0w~hc9-)lKC^z zbd6pOSiR>^P{OUa?3BVi5&dt1K~@(2h#8Z#n!K4upT6sPZuHoXcD&UARa_rxh!sx1 z4IJYcrA2;n7yIN`6JgOoiqPA^IAMMiftt5yPT&8za-joIm5E7UQtT7Hgtl+gG%7nb zV~k@qFb6CAbTsbcdvR8Ah_b+y&6#$;b>e2sALkFdnm)nA=Dcbbmxb%#r|7n_T(86J zWa0Q@CB;Y2j7;0Uc9?7BDwT&J?I4ry?MQ=pN|1V)^A-!41NzXD{LGxL6EWEG7j*@j zK3x!`x)tkORvuL^nwK@Zg6gv{2y0}R6iSa?1)?I?blu#SxpNmgcSUwrEOZlBzV0V#ral=XLTb$+DxlLc@$Z_TB!B2Dm3%rt!KdE;UTL@0YdHE)0H6H}soKN$K(t2xo8fjk~mAj)pxl>iM8R?pkl& zg6eh2{iz2l83wdh1;HMb%}##%+x9mW50}7pir=ymCgEs4_3dDytC&IQpHezBt@)d^ zROdS4W_FA>T?8{%AX&=nQI9>zR~wqo3C44?w4M#HUnFBhIVR^*;{d~zhCb|6Zh5q$ z*t7}yEwrwP>$mCX>MZKo&y9FQQu$SWOunLpg4qhvj?9MTZp`KIN}^k6O49s?AbF!w1>l_svz1Qu{lp|e4&W42{WZbyK*t-w9tUWJg20oZNuKL{B zj_m?}%_#5lm73NCW&N#fxL}KKxNtRJWo?q$^6ky4<}m-Rv0H9dRDb!!uGk%F>EY`T zeabIl1ZTdMViQU)I;Vmf^G50TD)LJLZLEACnyUg9yv3M9dU)%2NBA$HOwTrKXPJ6x zjh;?5FjlDck@qM5U+v?Nc$vFewi7|@HaFLP7xvwU45GS}Ckxv}S@pgzRubiwaS30qOw`yPMq0^LMg-Ve{@!>oyFB%b^AQ?g&l@{GGf~ zgTs6X?tw_Datr*(=0ET%^Psw-?FfXntA77#U8fM3i)V$Z;9LO(ISH_8YRD}rwLZR{ z#(P?QlvA<~FE)$%j{q-eVCy1n0Hx65S`(MB-x7%|>W=gY!TBfuy3CYChh`Ow3R|9M z_1m+Ib~B}Ml$jzf-Ema(69L%K>m0l~ei437M`k?s@yB_ks(9S_I6#vdcqkCK+Zf z4z{P`188nVF9zvH|OIgXI1&WpHm;*9}AZ5$%NUroy~}$Hz{-g9;pk- zPza3@xr$^0ZIy`h%P?5JnVM}2ZjN3qXz%RHh6dC?2!2hod1u9;xkwCOx?gP! z%owv`VkY6m36r-*I;ZeG5V50?k6&YENhYYGk}{d1ojPr5X}gk zpTu{rp2tjSZbVzWGS8zwy52L~ZNaVI_ZpuFAAi2uj`ab1eEFEtxD~~oli8S@`w1x6 zj#Hr-Q=bM)HheJkc^C>*!KJf}V?JWNFbQh|gF3V;8le;=ILSD7I)D1dLy|AOz zLE}Z?X3ti&jdm}12^=@PoJvlFN)4aWi)GTGztf|&VP>))`rF++?uQ%ZVv3*t#aX2U zM!CHDl*I$dyz;b(W7FY%*@_{*oR#11wn08KP(_OxRjMGjF%LOKf7Prs_hyG#)ds31 z4;H8=&K34|nq$lnSvy}ksy7MYeqr3;O^_Z@gP~Qf(mFS&@}*Ly+D4M|u1Os@kLQSc zkOvZ6{7vXwnO&G4kqye|9?t(XcgWbjG5RF1MAHN!;RiwaT-0CY0!nG?mTg63&E4#p zky8;J;SxF;1>(>L^KZh0P#3ZpTbFToKbvjTCSKu#IiUFxzKZEF708dgv$e06xx#}) zO(hZlA#T%T@(15=Gh9V*9LYFcp z=Z)U1brPfSbDq51FNDD-U5=H}F)YF$#DJ(m`gw~EXyZ8F$sfX|*rpP1e?U#?!Evn@-g*M zZ9sa^U@A~a%mw2MHAn9D~vuRzG zMbE_7A6lGIe;N-g9y&)k8u3{e(x|@PD5T^U^ zE}tzc;w=le#9au?Z~U4>pHwx#nlU&Pc$t0 zk(OQS+V}@U&vj}jAM>DKJ7&J9F^%G9O=pRZ5Ap7eJ z)C^i)FLc!drt4tRc`~1&hydW0GF^3ODtW5r32A@7b$TIFe{ID6<5}HjRWp#z@N+y{ zu27-@PYIOp7fPVVvt=u5v(mKu?0D~$Ld3cGH67R1Z+uUpl;$Fq70qtkWPQ%*@eX^2 zx&PHz^2hgO#n2H6^_T~vx*((>$n#`gg-j=l_G$EG)WZ-Z8%odlANq+*n0Nn4?@caC zT|dN`8YTQ1mi0RLG7dP;UEs@Q?i^V+J@9647b$UT0L&-Je<}SG{|&0LpwN=JxZv|DNRqdY@?&ts`%LT2Bs0>EF>gf3MBKCrMilFg z83sLTq!r{a^OpISU@`EjPbIhQnZ6lsre?J~yn66LSd|ZMMUf8*wRrDda$^PN@P*L+ z2h~ZtOp*Dgw-X&K2qaQo^pkG{AC0-K``R;g*K%8?{(+hW`$p`#on->hR7^zOj!FMG zrlYckIy4hCK>f&=fNX{rXh5gAiFY#abqX+82 zbf^M`hohz4gS}0J+DRb1^4<##=mYwd$n}_TG;;3#Xh4|#20EhbLKl|3CtYvlK%)RA zN+=R3iF;NbrClFFeEgr87@D|9E9Z#PO@8AW&iI@`?xiyKU?WO$AAvG}CGTH<$6rIO z3=ZY?0nJmL9tjO zUvMxS-%mzu5SIg*{At;&F3ggM*N2;Ndb!V9BJ+&Kf-S_V_}n-tF>D+aneG)xZ-|-x zSUdIUG|pna+L_?u%Z$wdvBO$~<%SjnTfTJ2zK>gX(Cp#YoL;ySl(Iuyug3esqjSre zg`8Cmdf0&(nVLGMcc^bv=%ArmZ>!WH%AA!RZr$(kSoL_}yl&q00`^`EehaRWRa=ZS zfX-#sCO}l&(45&X4aXS7taj{+Hi^x4_99*G*Fs9(T*{Y zrVkzMV3$u3gzNT^pK=l(<(#HhSJEHZnG(C>*PVEf=M+j(Y}k>&z-utXn^i0J>bTdS z4eCfqcz=g$pQQBxj?VW(6$Si{ycg@cGrBtC_I7uLn)ScPXeSq@rURaUlV-UilRr14 z{bQa2YU!_q18Sj)9P7|3Hr)0u!N#J0HSemW)AQqil$P$m$9N*ra`Z=h_8s8M8C0<5 zBo*cMOm#ib7I|I<&<HLOfq9vba29^Uxmvo zX->B0Z2Qys3AWY(Z0M@?Sx02)2H`!+rYhR{_-Wtqqsk+k8ie9g}DOYHKrs`cj{3 z6B^)5EQVb#T_TR`QQev6cVBV7lCnNrvPSJh(cG5e#I<#!$84v>6w35=GFKrm#V4{h z8%1aJlbY6oALqbpiujH@>Q5tdsPIb%n_iR&tny#8<5__ToBD+X1yp6`-g)Wqt+Stl z2mCq^1M)ehnWQ~|Tfp}%JX?!({cg@T-LtyclNr-*2N1%+uL%LtHyM{*&1fn^(8pE2 zxYa9*NDTbQ-%7ouV&d85E)SP+(X- z3jv0GN%G=4t`y8{y|QN&mkMGBx3o_PPucnU1o(#Q1hiGOIb&-d@>L7N$)i=?{CpPp zul9C<>7`eD324SS%dxaN{-Su&_e@G9YTuES>$2*RMj)8<7I2K@;=$?M{e`@s3CQ}J zMi9&Ko)yfVdbJ@Wo}*!mxKHIDfRAa;i;ET!k?lD&9th%YPosnV9!Ei)SF zSW6Ww~;CEgZmi|??1YuIN{!HEoS@r)XIp~ZJ={Yx%vwG5A!Zc`u1@) zri#XPp!W%|tQ>_LZ!A_6#(c5H&G6%T)*FlKu*)SQ4cyL1WyD%iYgmG6!smM&ewFo@r6+|{fn%(A*hgV_H)ac zo;T__KZVa^C)(@~mmaJKexP^>WEkRBbk++m-z_>QLVU)wf-HJU>2ad7GVv#~UZXE8 z7;syu`c*9UW(?fZN_+l{1MA80%Ry6v;jpr8rioq2g;oPlS#x7>XvKtI{ZaC+Fx-xQ zIuF(y-f&yJbsjn%Ao@yGvEIedn$_r*&m z`X8RFP23K1K@1e=83!V{_7=N`Lehkr?`mamgK_I!!F`SIm26CSavE0Oy#LBvpBlQQJi@guU zh9bTuU%IsmB(^Fu`u?c=XGQVi)l4&tzl^%(#A2EFcAO=PvIL5&zP((oGkz?R)7&S$ zuMB?u>9V<$0;{qV#@6OTtigS{J>mnx$$fZEBwjpTOJ%&(BZs#rJq+OkRWb6wQ3Poc z(yE@6<&Qm!i121c@(dD0tM{KL)v(eVw)S@HbO1LB*YMwfO2076d~+lFM9xRaaFNhU zp+El4js0Jda6*9wGlG+1j`imY>gTsn2y<_YHluys^<%BS2ddtMuk|@>XooEk>!xi_ zOcVocFUyA(Bwsns0ag|_`6>C4Ig;~GGSPbZYvj7p<3UVDstsFTVY6CH*40V+0LhiH{17yHliK2WX zS58x)^u9cJ@cSly!14_RKPT_3?Mz0)=&z`@GM#(GByUWHr{J2E@XT6o!?_0pbA~b+ z+xdwJ?0XHJTnz#i;S3@E@m(7p8eN7Gkoc`--OpDVt0(R1N|bNCeV6OqEM0F+f4hR1 zkPACfr*!@>Z1mBtZu`;A@)cdr;rnatY`EBhTjlo+oa)@IoR{8-f~l`vtfQ8%#6KKe z=z!lAqqEvZ@1ITU&yLGS@V4rK%Hr5n`=Wz}FA)^scC^!chzYW54I|a%Yhk>F z+RW?!_1+qrc%;Hu_o^=Q_a;q_Wp8<0EO%~s&84R>=|Ig+7k#dt%l9S*PXM6~@dVTQ zCcBEH&Gx>I)oW42B^DaRa$5BYF?<61- z70>?ud#Zvkt>ciWUoN~k+zlmg;P13r76w8r-wW0|`rPjLk}+@MIA5*YUpES$?$pw} z|5|t~QfQJ#@&h;UuL#VQt>p>pg^7mG6dUnB`IRedZ0{%5Um-I+HGl~mUO!Ob2kBe) z9=ItxewDOeIbLg1QgXqrJV@|jjuEX-S*xt6d_7GmAj4K2>>I>p5Ee>L{LADCTuG{H zn zzXhh$0s&T~xMGpzXn6nAqA>oqNV`jsFkE>|%@RW*~+VMc1;L5M=x~>EIQ&XbG2h!%eQ&Nps(8t!E7siyLWpztn(J_=Zs3#?Nt) z3Yf+0drSG9I=CzLd&fq0DsVlt?)qzGZ@M{`%yBx+PK1d>7WP}3b3406=|()t&IoRh z0izMNo_@9Z@OGGKs?7Uay9~pcoEbV;3sa=k?u(NLIHmOg^Gi*>Kw>Q(X}}>m9!$fA zjdd9!nZYPnIZ1Dq^eS1=D=pf80Zyxo7;dZ9H{{l#v+4rDVqerD?+Qw-oE>5!qoY_* zzoCX4%HxDHDJv56Gso{bPdIVFT>A0ip!&hCX=e~{bFMgcP8vO2o9YgOY$~{I{OGH8 z%OJNt5fvq0sj}7#qmr(KEs)pEj2ZzZUWbuo1R{S97?xn6`CsT_sVXuJ_% zkl)^EtLyixO5f~ekGj3nk$9Z*qr)6}$gW0Z-4KoY`^{4U%ar$LPj>{4^22h?sHH|J ztfhwyDM>A*+v>iM%(NzRE6n{~6Fn7E*iNp#CKqp>!4YqSOJ5`drMM;?>__;0oNg5u zs{c9g^pD@~WZ5((G}V`V@9S--7+({t7*vicz{kxAa7gPj`IOcjDCW^O^HXJM1tP|O zT+4cR9J{(*@h6kMaw-ZNoB#x--+E<3(+IyMt3jMVlNuWTuzvGHTPk@%e!+r}vF2YyUT^(<-Svf9*G8XjV3Wm|{a zUB1C)@B91i(Vk<~Ovyi$YJ0}2-p9*l1T%I;82|E7oVtvmw;!2aNFW(j9Y`6Rdf$B_ zb+pkt$yny}TVM#k#dF7^=0uz25Co0GS<1HLsBzSlkL_EftLtX&ng)DI`1JhMey)b9 z=~K!s6Ys;`@5U23vj*_z7o`4=#*halz7D@KHdlU3CV!C2CSNp@!JU>eYhU_yQ4nfA zQcG<)d0OD%{=_v0Zm%+thKJR0y`rI*K>0@$pZ9cFZ=TC6WSL!B9S^jH&61!u4d{p) zpBY!t`MqHn4kU1cJ`ICT$CMN=xxqD!qy8Ce&jo&nWZPEOi%8Zmn06HT__>{q=h4TG z!r~`4F($H>N1WwXKI`WzvGpP?gj~_#IUQp?59D#PUI@XjZ|%;cb}H?4eChe)es0qA zyJ?>BODB(#q@%s|OH#MUJvn!ti7EC9v(U?Upz*tbDAhIH34!OwmB)gE^r$;)YSRWd zlyERGqLXJy@`hRC5MtQy%xoh2+)6(rzloNBgxXIK+U+6knA#f_)VnqjFIluhh==rZ zIQ{Ha1SiAHk(%A=N zcd_3{FY6^@MZTz8?^$(MU^9=s~%bEL9{|0dik z0U{H3n70~EtYYAN3&pwLC4#+N6m|D;4IXwXO?QvH>|($uyK8y(?OBnd!YOT5tD*!^ftLT3Rux5?N;^ON zdX^bu)weV_4blolA&0eU{%P|XHXE$A^}2US|Bb&KpG*;(e>u{6xma9XNqi4fKUGaf z{$~j0uf-(}8&G+6y**>4(w5A}h{rI@~GCAdE z2GBt(F3COiN5XY>cbra|YV33+>axWp9?FUt?%wkuXLq>-$+AjP#JY& zU3r45L@j;W=2!!6(tx-)59>pC1McY=vp5D$gI!J&8)v*3mf;7 z&CVQ--|nrpE@nK{j9NN zGVXnEe>Z_K-DDzDhJEH^0vcf%TDYm@lDw|x==LA(IaoyQ%oItRvGn@!zfv}T<;a{V zn$bIbg*I@j#MRMS^V+WY9&-EYzNF%imKkJ)!cIyT`|X)r@ynyr_borufx@$1{*qIV zm7QP8y{VCzTBX8Mj)4ZvDpuVUg9`*Q0usvP@do#HN37q7Nxc@EivfQXE|r={MY|5= zU~wFA0jaxxBoqk{x5szk4b^AJh zYf_X_Ic+e>&f5)F7zbR<3(YoXDJw>(Z2c%nY@RNx?##Ra9WhT*fG1YUe3?)?0@cXw z$v;Q)-B~!B6$`|b^ClIRku%=*MSFCi#Z`SLwOW%x5@|c}1-XRb#h-dpG1MyFD!w!n z>Frhfc`-7X2n7#93>Ai25s#1FkUX#qw|$HfjJ>G65&01*v80ti=~MT!tO_D-a{AQ; zuX15{q)wF)i!H2cnlQpX{#VYFxOe~59O;F~33wJAmBNMW@zeNTh}Z0gP_C_yUm!;r zqCYsui$<_-_#>bT;3bN%1xu!M-^Y|$D_Hu+#yZti<Nx@6b+{ z`qPZ$`NFNM33;lHuIK#ilTApG2Ay~r2H%XxE8l4T4`9aAf<;RprqUEJz``1|=%gt5wCB}J-Aq6xV%W=Z=yA;7V!h4u| zG>Wtr`#fJiJsIDY&cws?LNK`QmAP(YYs~xSA^y}u7cSE)DaN*ENgwW;*Igt? z?mCsIjih4==ZAhdyr-+LmZ<3lm z@R9FJn|`o&QOGKb#%_q)wZ1pJ>4p-*LpBEHVQy%-4=Lag&DG|4rw^(Ry7EI0xJbk2 zQ*(?ht#&NL9how1eb&^ErV63fEUFHtwUI%pS<f$e5_?tuLgkh?qza7T?!BB<0Y?V$Y28OQvcBF z+pg;_U!%b>xxPwD{=K1^z)j~SIrvF`+2GvQ1d1W5M4mW3iWG+R?Ie+c6$2jx_#b z$uSd|R+6v%`n8YgOTWe5HjD_fzs58V;qJbWcz2>EB;H{0m|6O_W($TbM5ZGJQ}jaE z`c+)}k(Xt~$`E-`Doo3`d}67q>a%Wz<)Lz-o#$T@b?+^cogW} zLCnctjcM^dJhlP@-T$aBjC`F^JHJzxF-K={!j`N!3^#j5%_i3L-V=Nng&@j^BDjR}hVQ`ln|AIvnXx;?8=vC z@B=rzn~&5-wmYJw|MjNlu#d52FJEag%yIntjmKlo@&D0 z@0k%*#x}z#?N7mzf0j|wQX(mpo8)VggKdO6Jzg0*FopLi1Fbg4Qu{7)NHOF1aL}&e z@*-X`q;v=gnc{6Gt}3wg?CXW1dV^^ZEto04wUJjKAlcjGCjgb+A4a!M?t#t@hIloF zu~aFV+dsQ)_8q^=|HtE~d>ZR-gU@>MwKcy-BK5|4bjN+T--#CkalCC_a-Ci3 zQD!bUIW)kYfr#2w17geny4>7+pOtME^he{It|jx!iD$6k9qfz!O+1Vx8Jnn}2!OU_f@Ccz^Tqpy%2G)^?2zGW(c3=nBRyWqHn?4xK zsO2f1I2bo{D(vjl$%36ogrM+K=Kg$=lbtuB-*Wa8d3gK1iX+1m=8q9#y4m+Y6gZNI zItA2^+B^pdQC*bH*EQRhq$b4fQ@sw23q}w8i0L=m!Kw}V84{PVv?j(%g6DI<7b4Az3^b4kT+jW=$A(oD&W45n(#v5*y+YyTo}N};RDF965XK;|1~ zRa)MKG%#2v|6U|J*V6y&njIeu&EFw~@)Od#>JwdXam!KuClV&WD&L_xNec)KI#||G z)|_MWO6ATx!vha6Bkt9?8c_wqI_{pP6Hm`WbeJoi|DLHhjgR~T)~P2!;EXtD#8svj z#jFBpk*dXXlSe2c3Sj=Co(PqQB*g2kUm5z)Z4)}=5x|*^7 zi{$=T%GDHTM&0tDP-m-LnQ0Jb$0F5HkfRmUr49_^0EyPI>iwI>94Z+SUs!Ez93)u^ zzoK_89Dn)#Rl^2Cuhr4YlViUZF}IaFqe_aghPt6M^C_lIVBiC!8QcUuv|+<(bCXMV zC{XT%RyY-3h)9Cm3JF*TAW--_*TR`9t=;VEj;YCaH?0VXD(Bu&T#1CfeWNF89@8or zg4h+PS$wUoVxR?l#YgJC{N_dXrzx^eA!_HxIP$ejqs>;P3I+-6rXBp~+lyIl`tqsw zS@SLZ4(A=icvb&)=s0opg zO$wPOYww6_}xpWI{F z24crN&T}8y;LLBqMKx4tHo66C*C)3k4Kx8HcewfcX@v!$Ur!(dlzmT02?_gqca?Wc zr5aNwe5r)`mHf?5F`5b&Cdu((iuwv?EB~|qu9k*JnVHDINACk~;NyE0XBRm{fa(4e z8?*Wq;>?S=HjMnq%Z*Q#^zSK!+-$o#Ps%H-)nsq`gJs~b4-S)WT79T_(*tMV;=Jh! zoGuF3@oKlY?B|84z=Cd2i`tkhPP=V*kXi%76hYTL@T5F>LsX(F<{{`D!}loudDGX% zTxt0cJ0nLmk}p}q>wS`LqYby#yiOY=!x5>{9ysf8Yd;R#-S%EHTHjllCoJom<$C8J*)Oo+3@$aO2 zN^2EnsZ`N(9XAea}=Ol=FQ? z*7C8ZSpMNiZefe$QwJB@|3XS2Qx22-s{S5XQS{rW3RFye-nU1pV3~^V^kZ-=9Z_hl z>s{RD2orscv#Pw+X;FKp{H9Z|=r)Gy4?4m}K-Y<1=DnhwgR|m5dP`R?9o=|STp251 zid(Zy(~sI?+{R>_;ZgYe6TkGi15$cb@>2KTOVCNvjLE>GsFh#F5`kf4n%n2W--E*< zRfO*o?@NR6b3d$Za)f3ZGor}83T7x!rZEuC|DPIwWyTa1TXEJs_+9t+9#dogo+utv zMg4D+2zbEB3hdx4Z@xtl)1sSRyG`8O8J>x2OH{1)I^%|P^4#RYUd(?DJ%?C%Y>mx8 z5EVJyf$X%$PBXp0!#ZIX3%-rNN8nKfc zo9Lwvo$|6b{RfBrhd3N<2D6bZu&p)YRwYA zo-Dr;T+$>mjQB8pYdE)_;9lJU#WIKB+HrOD$1wxPok%fqR z`f!SG(GlgIAH>_|4|{KLf&h^=TCm?Q3s{hUPTnXecWSm#*Jpf(`_mn*lQ6-%gZh-5 zICoR5GLG%C#w9=-ABl&q8YgSS`EU8B0;PIdi)^oD_p3<15;^zvl4JO9K&HwK<=|sV zAGVL~uVi5f!x>9LwIB29px$&SDZ}>113n5sis>n|k9Cn8Yzw=_Y<*ZOdN=}ll!_ao zPK=j>;CTvZ7v-3tEwb=ZK`m=cgdDv`H?xsGRWyVr*Hmh0yH7~cUn_3y8$O`;4; z^t&Oji7nV$$lQPtlE8Gv|129EH%iYVGd3*9?w<$-GKpJ4w3bD}LLqgMF=5YRh30-G zoG3(+qilFqDW2&KeEnCo_4YP?O}_=y)RYjDiH@7{*0awif8_(2>`lSA<_GhwHQczZ zh|z(y>dH)VBk2Wv9%>L<#wZ}fpp3K*E8@Ow8UP=FygT4MLZZMl1y7MeQ{(^A(@+7K zp@=&!&ZE&OmA3e9$;i#fLp}|e)Uwb1DZm1pM?A&%;@~@>lck{KiViWzK*I|$DyWm4 z-V#7gI8;>qMd$w*S7=g&(#!;dz+6l*L^0VbIRO!aDEl<1YQ*X|DS((qKA@M@fhqDqkXfMLTG-;z`f56s_8Q> zpj6G>Q~##t0L?abvVxAyuEzI$$T&d>crw8HfmNPvuKipm6iKF?LVnZB5)N9a$^(Qu zx=N<@G~7vfP6sf-@$g_1y7%t2TqOa^04`M9!RlIu3sfWhU&vysn086U<%}Q3^r0Vk zUESG%C}5zG^8M~`qFg0a!PIikg|u253%E8?XM(({tz7FrWDyDJv6=zykSIy<=Ce&f zXmb`2N-~4c$`O$vM$^(&QmRa@T1YRzI_`r8?0UoNXR(?kjy?4}o5yT}2K=GGlv+E- zX3^wT6&qk2cdq&xWQl(G@17WZQY6ucnkPkGbZnt6Ax3Q`G3So!^jFF6?n$91yLlP%W8IZI5nW>KJU?IrmZ zV_=mV*f|wp6}p8vxQi`SW^F!2;zQUcas9s#EVc7-CR()xW#$cx<#yuur92H}+>SCBpH)p2ElqDV5W&DX95263r<`CdBgfhBv|=Ctt&o z5L1kC&}T_FD#o*$po|De_({JwaXSXC1HL`4!Y>@e;o8H!p%})*Xua6G=n*=|%_g`VR`dj#U9BK-8iY#&|-Nb~*YoU}ar?%lz{@1<7ZjZ1M2@;Lyw{q^P>0Wyo5_LS1?b-MnJLD`Y5 z{#kFgmyLkj6#*`C`zcbqf4k(nswP{%GAhSblaV~$-x|_aux;tEz!}^Y(PG_WV?uNV zy;jwP?=v0Qns4PARZsWi5P7)PBdkq7aZsbn538iz#@u=K{yv4~a4)(lLE#lR#~+`gGl|h9LXzvuq~RHE&p$|<)jErl%#@W0 zy3_6AHH|%{L=V#Es)FQvwFZTxnw2wKqe->!9Vs{+%Lt)!oUM5vt**^ z2^@e7b z3q7tG>6b}E$6b@8Z5XoEP2gZsP+_y|vuz1F*J;Knl9mC7q(+a+MN(6Umn144RTr{Y z!_)gzF*?ACea2Wp>>tOcM>QWx=n5-6b4)#C1n&@8w7NyOGUB6IjV+hc&9?!$f$KH` z0aq&Yqo>M2#S-V54ZT#1ym|yhG=Tz$*pf# zNHdt4Sa52js=b8Upsop*1v^l#TD__gP55q75d%R5pBL@&-e%OdAN{J)wGATF^~b9` zg4z=vlL3OR1n5XQt7N;e7u#}cqGb8b$4dO6i7sDxk6dx&LPQnwEhY14 zrJDFDS|kbq9&t%>Rq~qxrcUFDE~8s#wXbK0G2hMebM*;Ual;xTJqM7PTtG|A`yF>G zI64F;TA?v@j@q+KGx+F_abkU3%8L$#a_``u(-71z_jOn1KYz@il5O|4*(^3OQc;=+xjve%4gMSh~fgfB_XO&(l#B1QP8cHCiV!|vM9nomj(l!01YFVkUl z(wVf0i#KEgo_XR#M5{@ux@?`LON?jIKmU~ot+pA2Upn$of zAhNw6NHd{z>lps=mms@@oNe4r%X|+Bu2o1L8+0(YzP!lXqnQ;#1w8z%RNDX2#oaG^ zE{#YCZc99U|3F8iU+!=A$`N&rQ|by>5QRT;%+v{9V@odjF^A#tBWYe5!ZM4vvFrp%MvrP>lOtB0JHf{E03mi5b$)3 zjI2rb;!5L8m>Z26-AU8*_ZcN$yjYlkpc>mlw8is6xb_6Dj`tt8SANV*#7mlLJz(^y zsZslVz4J+nFNPl2CE8q?s}zUiA7@oRf0w6s`C8Gix@dGwoy}0vZ!i~BMTV^WD&@VT zh32pUN@cfudk_b`=#g^E`xm+9-grn~FU?=;6d&Hw18SY_9+h86FmX#~r&Bc_A{t<@ z=Y|{(jEv%ln|W?$7xh`an)_{C=WW*&)|X}XyW`K_J8~sBl9U46FEOpNr-zUGGGaX_ zrGOU3nc$P!NKfW18;5#ZNk34j*_r>-#`0uE;akAUUW=dDokDoV95wtan+*OScDNFj zuH?bW>n17)xkc|rajVb?+dOoa3+?Ipdfu^yT1t@AsGA7I%7oMGv_v}mWCgLE8JVvW)-0ZVe6MaHkD zAK&O-_Fp;$rr$1A+j$%C;EQV98UC++EyX|6UC?tof#_!yj7$xJ%vkwk`L$na+TRMh z)0U#}NuT!3WT)d`6jk=jTr_w83G^G%d{@mS=E`%8d*v~|J_tb_N%>@vtM0i}OM8_C z6HCWA-Zx`J)&>zT6ySmT&G4q6ZhyL-Zm1fK(eJ24f~Lz}Di4>@I2vAnu6%m@#-)1!THbRNyX9ewzB zRuZnZZ+nVXp^VcD6#hcDfYfktZT|*GMzf@UPc@+tRSi{w5J0`!#>kPJewW)NM~ORD z#Q7WP{?aQ>sK1cDMGE6L<(qL!bM|E(3{_m2puj_;+cbHpgS$8e1di=i`EB)mFrd(_ zBzRP@4*KybPd)N1bRbgloh+g~z^#l5_(_Yj&pqQDU#=X0;SJ^<1vYR05?bzRq_xss z`(%M57if5~A?H%povfUGoQzt*PU6TsiL`Zraz-k`fwyyF7~QHUO2wEIiu&<(V<>SdOW%*g|`fmkX z@p&>{B_{hKcNLuk+Gi)fn@RU8+DMwZK8M_*cR zA@>RrK_K3vyZr24Q%#kwL+|lXE!;~~pzKFpCfz;5J3MjxiTmN_iA~VERX^RzT=34d4ZY8{^(;#brN2@ zJ;!z9?m?FH<9Cy)sCO!R6&GqGB{`!nB9j9ft%poxk^wo-OY)O@TqLayan>OvtB)PA ziCT5Y@w2b>W5Y(x!JuV#SQ94A}wkdwR_djBd z0dmTo%{4+!Z!Z2u(Y5%}t1S!+la;ON~p9HWC7~Uck7hQXYQ^sxV z;F;E!r(>#kp$sXuvIK(&+nW_Ka#bvedHPaL2rtxTZj4+p#sxYT z>1>d-RE^V}qs*j*xlf+LSXIF{5(kYPB#$@IkwwVLP2&Q_+euxYIaT&tH>2ww!;*WB zQ8h@i*oKC-hpNe00iYbZ7*Pi(t$hgn@lK2Fz(4SQt2b5w`Q}c0w_^wg<>IFHZJ;!a zM4ChN(-`dhucX{G#5$jN=>S{c@Vmhez=DCVclEe2Wu5yfewDt7pfhd672VCenWQ|m z?7@`}w4}%iS~DOH-6my7%7b%&%PosD*mDGv67QS4)=d zR4)w%wd5NO*xQmgl%Lt5))fa;8rDE3J(rj}zMl4iBtD;iKjf2VGeF&CKy56r@UbqMOPIg%P z%x54u2~x>0;vK3=-Y=Q^cAg6dvy2)UA|6A`&nr&VcB(&wwUHRpgW^i7j=KBvYo6{Z z08Gf|MD8HEUFpxP@Vj}=pU>I27gRz%_do}=DvbcFyeF4#>b=~&X5AMbWlY5$W|P>% zl$3AO^`lXd){aFcE|4;j?J?2SX6be{@B$T8gExB~5aUWp@m6XUtusYrJ_~@AwqJdi zH%LSbnv0iM-_A{wVMVoQ@Sb5(lR1?)%2?_r`vEz^)_i!5m2xdB$;$d9S?NnTwU^Wm zdfn0PLip1!hNja{1ZX4oM1ogu6_Mrs+)&xiQb)?*Qz$`DwQ;^<8OY3JOAXborlM zVhBSQj|+FLJX$?Y7^r=|0HJ-NeGx53c9}t;vp+>Q&K2P26_8Ljga-uUwpP6w|LpET zdY?H?`OI~n7_GxhMjlt_CK2}O(||ud6IHJjc;^Xwha_zjDoVRP5qk@u{OUS~M0%+v z$b(Zb7SFOWd?#TeAH$#Qxo>7ktH?wI!6%Q)kj2qc*bg^xWf?rnNMc~dKCbcdp|;$0 zy`L=m6WeoNAe9g(wEh=*yX5xV=GS8{=&16c10ONk=DvXZihdG1;P|Am%RZQ}mUocs z6-rLLRjON_V3CG286`DF1O<+M{@_DICD>Gm)m|)5)-`0~Dj_5+*0e!dK~)TntY`Dj zZI}|(rNxrcz84$$%OP-qLXr=4+(INKu4N~;BL-eh{XL~e_cab0ce;@L%7E5wezOobr%<%Pob~}8EUZz!2sQee8q&G5o zNM@#0@wa}aRhXf8Gn+Aet6vw&u(Uq+It28W5sJnRwdFI@^@rdWL%yPo#BQ0F0dfp7 zp{#f~F9_0ezrT6?jLynxI^k3dj~M-dOb?wmql`2-Z!XPz0F%cUVav6q+YKV*PP-k&1M?5Hs`8i-u)C0#DCTd%pc6>u+_fRvHSu`vn|PyO@)hX^(}BTHJ?qkprR{a{4| z$h{zYKzY|Z7|Y(eUiuur_=z?#jv|Ik02C9+lv^Qsr2~n&lm1Pa}!jol;6-a);V_2X22^L 0]\n", + "\n", + "indice_minimo_precio = ds['price'].idxmin()\n", "\n", - "# Imprimir la dirección y el precio\n", - "print(f\"La casa con dirección en {casa_mas_barata['address']} es la más barata y su precio es de {casa_mas_barata['price']} USD\")\n" + "direccion = ds.loc[indice_minimo_precio, 'address']\n", + "precio = ds.loc[indice_minimo_precio, 'price']\n", + "\n", + "print(f\"La casa con dirección en {direccion} es la más barata y su precio es de {precio} USD\")\n" ] }, { @@ -521,7 +526,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 31, "id": "every-tiffany", "metadata": {}, "outputs": [ @@ -536,18 +541,25 @@ ], "source": [ "import pandas as pd\n", + "import numpy as np\n", "\n", - "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", "\n", - "# Casa con área máxima (más grande)\n", - "casa_mas_grande = ds.loc[ds['surface'].idxmax()]\n", + "# Limpiar base de datos\n", + "ds = ds[ds['surface'] > 0]\n", + "\n", + "# Encontrar el área máxima\n", + "indice_maximo_area = ds['surface'].idxmax()\n", "\n", - "# Área mínima (más pequeña)\n", - "casa_mas_pequena = ds.loc[ds['surface'].idxmin()]\n", + "direccion_grande = ds.loc[indice_maximo_area, 'address']\n", + "area_grande = ds.loc[indice_maximo_area, 'surface']\n", "\n", - "print(f\"La casa más grande está ubicada en {casa_mas_grande['address']} y su superficie es de {casa_mas_grande['surface']} metros\")\n", + "indice_minimo_area = ds['surface'].idxmin()\n", "\n", - "print(f\"La casa más pequeña está ubicada en {casa_mas_pequena['address']} y su superficie es de {casa_mas_pequena['surface']} metros\")\n" + "direccion_pequena = ds.loc[indice_minimo_area, 'address']\n", + "area_pequena = ds.loc[indice_minimo_area, 'surface']\n", + "\n", + "print(f\"La casa más grande está ubicada en {direccion_grande} y su superficie es de {area_grande} metros\")\n", + "print(f\"La casa más pequeña está ubicada en {direccion_pequena} y su superficie es de {area_pequena} metros\")" ] }, { @@ -567,7 +579,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 32, "id": "exciting-accreditation", "metadata": {}, "outputs": [ @@ -575,22 +587,62 @@ "name": "stdout", "output_type": "stream", "text": [ - "Arganda del Rey, Fuenlabrada, Boadilla del Monte, Las Rozas de Madrid, Madrid Capital, Villaviciosa de Odón, Pinto, Valdemoro, Navalcarnero, Pozuelo de Alarcón, Torrejón de Ardoz, Navalagamella, San Sebastián de los Reyes, Rivas-vaciamadrid, Alpedrete, Móstoles, San Fernando de Henares, Coslada, Becerril de la Sierra, Alcalá de Henares, Chinchón, Parla, Alcorcón, El Escorial, Leganés, Pedrezuela, Majadahonda, Villanueva de la Cañada, Villanueva del Pardillo, Torrelodones, Moralzarzal, Mejorada del Campo, Aranjuez, Corpa, Getafe, Velilla de San Antonio, Sevilla la Nueva, San Martín de la Vega, Villalbilla, Collado Villalba, Alcobendas, El Molar (Madrid), Moraleja de Enmedio, Algete, Campo Real, Torrejón de la Calzada, Colmenar Viejo, Valdemorillo, Fuente El Saz de Jarama, Tres Cantos, Arroyomolinos (Madrid), Griñón, Paracuellos de Jarama, Guadarrama, Titulcia, Galapagar, Collado Mediano, Los Molinos, San Lorenzo de El Escorial, Loeches, San Martín de Valdeiglesias, Navas del Rey, Bustarviejo, Manzanares El Real, Carabaña, Casarrubuelos, Cercedilla, Fresnedillas de la Oliva, Valdemaqueda, Robledo de Chavela, Miraflores de la Sierra, Humanes de Madrid, Valdetorres de Jarama, San Agustín del Guadalix, Ciempozuelos, Camarma de Esteruelas, Torres de la Alameda, Talamanca de Jarama, El Atazar, Hoyo de Manzanares, El Boalo - Cerceda – Mataelpino, El Álamo, Valdilecha, Valdeolmos-Alalpardo, Guadalix de la Sierra, Belmonte de Tajo, El Vellón, Brunete, Redueña, Morata de Tajuña, Tielmes, Gargantilla del Lozoya, Meco, Venturada, Quijorna, Cenicientos, Torrejón de Velasco, Navacerrada, Santa María de la Alameda, Orusco de Tajuña, Daganzo de Arriba, Villamanta, Anchuelo, Valdaracete, Ajalvir, Los Santos de la Humosa, Villamanrique de Tajo, Colmenar de Oreja, Villa del Prado, Fuentidueña de Tajo, Colmenar del Arroyo, Valdelaguna, Cubas de la Sagra, Valdeavero, Aldea del Fresno, Ribatejada, Torrelaguna, Batres, Pezuela de las Torres, Colmenarejo, Serranillos del Valle, Cobeña, Soto del Real, El Berrueco, Villanueva de Perales, Fresno de Torote - Serracines, Pozuelo del Rey, Pelayos de la Presa, La Cabrera, Nuevo Baztán, Perales de Tajuña, Villaconejos, Villarejo de Salvanés, Cadalso de los Vidrios, Santorcaz, Madarcos, Garganta de los Montes, Puentes Viejas, Torremocha de Jarama, Valdemanco, Braojos, Lozoyuela-navas-sieteiglesias, Piñuécar-gandullas, Valdepiélagos, Valverde de Alcalá, Villar del Olmo, Villamantilla, Horcajo de la Sierra, Gascones, Zarzalejo, Villavieja del Lozoya, Brea de Tajo, Estremera, Chapinería, Navarredonda, Patones, Ambite, Navalafuente, Lozoya, Canencia, Cabanillas de la Sierra, Buitrago del Lozoya, Fresno de Torote, Robregordo, Pinilla del Valle, Rascafría, La Hiruela, Montejo de la Sierra\n" + "['Arganda del Rey' 'Boadilla del Monte' 'Fuenlabrada'\n", + " 'Las Rozas de Madrid' ' Madrid Capital' 'Villaviciosa de Odón' 'Pinto'\n", + " 'Valdemoro' 'Navalcarnero' 'Pozuelo de Alarcón' 'Torrejón de Ardoz'\n", + " 'Navalagamella' 'San Sebastián de los Reyes' 'Rivas-vaciamadrid'\n", + " 'Alpedrete' 'Móstoles' 'San Fernando de Henares' 'Coslada'\n", + " 'Becerril de la Sierra' 'Alcalá de Henares' 'Chinchón' 'Parla' 'Alcorcón'\n", + " 'El Escorial' 'Leganés' 'Pedrezuela' 'Majadahonda'\n", + " 'Villanueva de la Cañada' 'Villanueva del Pardillo' 'Torrelodones'\n", + " 'Moralzarzal' 'Mejorada del Campo' 'Aranjuez' 'Corpa' 'Getafe'\n", + " 'Velilla de San Antonio' 'Sevilla la Nueva' 'San Martín de la Vega'\n", + " 'Villalbilla' 'Collado Villalba' 'Alcobendas' 'El Molar (Madrid)'\n", + " 'Moraleja de Enmedio' 'Algete' 'Campo Real' 'Torrejón de la Calzada'\n", + " 'Colmenar Viejo' 'Valdemorillo' 'Fuente El Saz de Jarama' 'Tres Cantos'\n", + " 'Arroyomolinos (Madrid)' 'Griñón' 'Paracuellos de Jarama' 'Guadarrama'\n", + " 'Titulcia' 'Galapagar' 'Collado Mediano' 'Los Molinos'\n", + " 'San Lorenzo de El Escorial' 'Loeches' 'San Martín de Valdeiglesias'\n", + " 'Navas del Rey' 'Bustarviejo' 'Manzanares El Real' 'Carabaña'\n", + " 'Casarrubuelos' 'Cercedilla' 'Fresnedillas de la Oliva' 'Valdemaqueda'\n", + " 'Miraflores de la Sierra' 'Humanes de Madrid' 'Valdetorres de Jarama'\n", + " 'San Agustín del Guadalix' 'Camarma de Esteruelas' 'Torres de la Alameda'\n", + " 'Talamanca de Jarama' 'El Atazar' 'Hoyo de Manzanares'\n", + " 'El Boalo - Cerceda – Mataelpino' 'El Álamo' 'Valdilecha'\n", + " 'Valdeolmos-Alalpardo' 'Brunete' 'Redueña' 'Morata de Tajuña' 'Tielmes'\n", + " 'Gargantilla del Lozoya' 'Guadalix de la Sierra' 'Meco' 'Venturada'\n", + " 'Quijorna' 'Cenicientos' 'Torrejón de Velasco' 'Navacerrada'\n", + " 'Ciempozuelos' 'Santa María de la Alameda' 'Robledo de Chavela'\n", + " 'Orusco de Tajuña' 'Daganzo de Arriba' 'Villamanta' 'Anchuelo'\n", + " 'Valdaracete' 'Ajalvir' 'Los Santos de la Humosa' 'Villamanrique de Tajo'\n", + " 'Colmenar de Oreja' 'Villa del Prado' 'Fuentidueña de Tajo'\n", + " 'Colmenar del Arroyo' 'Belmonte de Tajo' 'Valdelaguna' 'Valdeavero'\n", + " 'Aldea del Fresno' 'Ribatejada' 'Batres' 'Pezuela de las Torres'\n", + " 'Colmenarejo' 'Serranillos del Valle' 'Cobeña' 'Soto del Real'\n", + " 'Cubas de la Sagra' 'El Berrueco' 'Villanueva de Perales'\n", + " 'Fresno de Torote - Serracines' 'Pozuelo del Rey' 'Pelayos de la Presa'\n", + " 'El Vellón' 'La Cabrera' 'Nuevo Baztán' 'Perales de Tajuña'\n", + " 'Villaconejos' 'Villarejo de Salvanés' 'Cadalso de los Vidrios'\n", + " 'Santorcaz' 'Madarcos' 'Garganta de los Montes' 'Puentes Viejas'\n", + " 'Torremocha de Jarama' 'Valdemanco' 'Braojos'\n", + " 'Lozoyuela-navas-sieteiglesias' 'Piñuécar-gandullas' 'Valdepiélagos'\n", + " 'Valverde de Alcalá' 'Villar del Olmo' 'Villamantilla'\n", + " 'Horcajo de la Sierra' 'Gascones' 'Zarzalejo' 'Brea de Tajo' 'Estremera'\n", + " 'Chapinería' 'Torrelaguna' 'Navarredonda' 'Patones' 'Ambite'\n", + " 'Navalafuente' 'Lozoya' 'Villavieja del Lozoya' 'Canencia'\n", + " 'Cabanillas de la Sierra' 'Buitrago del Lozoya' 'Fresno de Torote'\n", + " 'Robregordo' 'Pinilla del Valle' 'Rascafría' 'La Hiruela'\n", + " 'Montejo de la Sierra']\n" ] } ], "source": [ "import pandas as pd\n", "\n", - "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", - "\n", - "poblaciones_unicas = ds['level5'].unique()\n", "\n", - "numero_de_poblaciones = len(poblaciones_unicas)\n", + "poblaciones = ds['level5'].unique()\n", "\n", - "# Imprimir \n", - "populations = ', '.join(poblaciones_unicas)\n", - "print(populations)\n" + "print(poblaciones)" ] }, { @@ -606,7 +658,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 33, "id": "transparent-poetry", "metadata": {}, "outputs": [ @@ -614,36 +666,76 @@ "name": "stdout", "output_type": "stream", "text": [ - "True\n", - "0 level6 True\n", - " level8 True\n", - " zipCode True\n", - " customZone True\n", - "1 surface True\n", - " ... \n", - "15333 customZone True\n", - "15334 level4 True\n", - " level6 True\n", - " zipCode True\n", - " customZone True\n", - "Length: 65690, dtype: bool\n" + "El dataset contiene valores nulos.\n", + " Unnamed: 0 id_realEstates isNew realEstate_name phone_realEstate \\\n", + "0 False False False False False \n", + "2 False False False False False \n", + "3 False False False False False \n", + "4 False False False False False \n", + "5 False False False False False \n", + "... ... ... ... ... ... \n", + "15330 False False False False False \n", + "15331 False False False False False \n", + "15332 False False False False False \n", + "15333 False False False False False \n", + "15334 False False False False False \n", + "\n", + " url_inmueble rooms bathrooms surface price ... level4Id \\\n", + "0 False False False False False ... False \n", + "2 False False False False False ... False \n", + "3 False False False False False ... False \n", + "4 False False False False False ... False \n", + "5 False False False False False ... False \n", + "... ... ... ... ... ... ... ... \n", + "15330 False False False False False ... False \n", + "15331 False False False False False ... False \n", + "15332 False False False False False ... False \n", + "15333 False False False False False ... False \n", + "15334 False False False False False ... False \n", + "\n", + " level5Id level6Id level7Id level8Id accuracy latitude longitude \\\n", + "0 False False False False False False False \n", + "2 False False False False False False False \n", + "3 False False False False False False False \n", + "4 False False False False False False False \n", + "5 False False False False False False False \n", + "... ... ... ... ... ... ... ... \n", + "15330 False False False False False False False \n", + "15331 False False False False False False False \n", + "15332 False False False False False False False \n", + "15333 False False False False False False False \n", + "15334 False False False False False False False \n", + "\n", + " zipCode customZone \n", + "0 True True \n", + "2 True True \n", + "3 True True \n", + "4 True True \n", + "5 True True \n", + "... ... ... \n", + "15330 True True \n", + "15331 True True \n", + "15332 True True \n", + "15333 True True \n", + "15334 True True \n", + "\n", + "[14030 rows x 37 columns]\n" ] } ], "source": [ "import pandas as pd\n", + "import numpy as np\n", "\n", - "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", "\n", - "tiene_na = ds.isnull().values.any()\n", + "# Comprobar si hay valores nulos\n", + "tiene_nas = ds.isnull().values.any()\n", "\n", - "print(tiene_na)\n", - "\n", - "# Imprimir las filas y columnas\n", - "if tiene_na:\n", - " # Mostrar filas y columnas \n", - " filas_columnas_con_na = ds.isnull().stack()[ds.isnull().stack()]\n", - " print(filas_columnas_con_na)\n" + "if tiene_nas:\n", + " print(\"El dataset contiene valores nulos.\")\n", + " print(ds.isnull())\n", + "else:\n", + " print(\"El dataset no contiene valores nulos.\")\n" ] }, { @@ -659,7 +751,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 34, "id": "administrative-roads", "metadata": {}, "outputs": [ @@ -667,7 +759,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Dimensiones originales: (15335, 37)\n", + "Dimensiones originales: (14030, 37)\n", "Dimensiones después de eliminar NAs: (0, 37)\n" ] } @@ -675,17 +767,15 @@ "source": [ "import pandas as pd\n", "\n", - "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", "\n", - "dimensiones_originales = ds.shape\n", + "original_shape = ds.shape\n", "\n", - "ds_sin_na = ds.dropna()\n", + "ds_sin_nas = ds.dropna()\n", "\n", - "dimensiones_despues = ds_sin_na.shape\n", + "nuevo_shape = ds_sin_nas.shape\n", "\n", - "# Imprimir la comparación de dimensiones\n", - "print(f\"Dimensiones originales: {dimensiones_originales}\")\n", - "print(f\"Dimensiones después de eliminar NAs: {dimensiones_despues}\")\n" + "print(\"Dimensiones originales:\", original_shape)\n", + "print(\"Dimensiones después de eliminar NAs:\", nuevo_shape)\n" ] }, { @@ -701,7 +791,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 35, "id": "nuclear-belief", "metadata": {}, "outputs": [ @@ -709,24 +799,19 @@ "name": "stdout", "output_type": "stream", "text": [ - "La media de precios en Arroyomolinos (Madrid) es de 294541.60 USD\n" + "El precio medio de las propiedades en Arroyomolinos (Madrid) es: 299892.6923076923\n" ] } ], "source": [ "import pandas as pd\n", "\n", - "# Cargar el dataset\n", - "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", - "\n", - "# Filtrar las filas donde 'level5' es \"Arroyomolinos (Madrid)\"\n", - "arroyomolinos = ds[ds['level5'] == \"Arroyomolinos (Madrid)\"]\n", + "arroyomolinos = ds[ds['level5'] == 'Arroyomolinos (Madrid)']\n", "\n", - "# Calcular la media de los precios en esta población\n", + "# Calcular media\n", "media_precio_arroyomolinos = arroyomolinos['price'].mean()\n", "\n", - "# Imprimir el valor obtenido\n", - "print(f\"La media de precios en Arroyomolinos (Madrid) es de {media_precio_arroyomolinos:.2f} USD\")\n" + "print(\"El precio medio de las propiedades en Arroyomolinos (Madrid) es:\", media_precio_arroyomolinos)\n" ] }, { @@ -742,15 +827,15 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 36, "id": "sudden-message", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAAIjCAYAAABoNwiVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjNUlEQVR4nO3de3zO9f/H8ec1tmsbZtiY5ZSIOTSHIsXwdRiVKCkkx/glKin11YEppdRXJzrpi75FSqETMsKSQzktpxai5WzYZjNzcb1/f/ju+rrsYJttn8v2uN9u143r83l/Pp/X5/P+XNf23Of6vC+bMcYIAAAAAGAZL6sLAAAAAICSjmAGAAAAABYjmAEAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYgR7Vq1dLAgQOtLqNEKu7H3mazKSoqyuoy4IFWrlwpm82mlStXuqYNHDhQtWrVsqym3Jg8ebLq168vp9NpdSl5Ol779u2TzWbTrFmz8rze48ePq0yZMlq0aFH+CgXgQjADSpBZs2bJZrNpw4YNWc5v166dGjVqdMXbWbRoEb9we6B27drJZrO5HhUrVtRNN92kGTNmeMQvksXRokWLZLPZFBoayjEu5pKTk/Xqq6/q6aeflpfX/369yni9Pfjgg1ku9+yzz7raJCQkFFW5BaZSpUp68MEH9fzzz1tdCnDVI5gByFFcXJymT5+ep2UWLVqkCRMmFFJFuBLVqlXTJ598ok8++UTPP/+8zp07pyFDhuiZZ54p8lrS0tL03HPPFfl2i9Ls2bNVq1YtHTp0SD/++KPV5VzVpk+frri4OKvLyNaMGTN07tw59enTJ9M8X19fffXVVzp79mymeZ999pl8fX2LosRs1axZU2lpaXrggQfytfxDDz2kTZs2cY4DV4hgBiBHdrtd3t7eVpeRJ6mpqVaX4LHKly+vfv36qV+/fnr88cf1888/q1q1apo6daocDkeWyzidTp05c6bAa/H19VXp0qULfL2eIjU1VV9//bVGjx6tpk2bavbs2blaLqfjXZLPbW9vb9ntdqvLyNbMmTN15513ZhmyunTpouTkZC1evNht+po1a7R3717dfvvtRVWmm3Pnzuns2bOy2Wzy9fVVqVKl8rWesLAwNWrUKFcfhQSQPYIZgBxdep+Tw+HQhAkTVLduXfn6+qpSpUpq3bq1oqOjJV24/2DatGmS5PaxuQypqal64oknVL16ddntdtWrV0+vv/66jDFu201LS9Ojjz6qoKAglStXTnfeeacOHDiQ6b6kqKgo2Ww27dixQ3379lWFChXUunVrSdJvv/2mgQMHqnbt2vL19VVISIgGDx6s48ePu20rYx1//PGH+vXrp/Llyys4OFjPP/+8jDH6+++/1b17dwUEBCgkJET/+te/3JY/e/asxo0bp+bNm6t8+fIqU6aM2rRpoxUrVuTqGBtjNHHiRFWrVk3+/v5q3769tm/fnmXbxMREjRo1ynX86tSpo1dffTXfH5Pz9/fXzTffrNTUVB07dkzShX4bOXKkZs+erYYNG8put2vJkiWSpAMHDmjw4MGqUqWK7Ha7GjZsqBkzZmRa75kzZxQVFaXrr79evr6+qlq1qu6++27t2bPH1Sare8w2b96srl27KiAgQGXLllWHDh20bt06tzaXOwdzkpvjl3G/zeuvv64PP/xQ1113nex2u2666Sb9+uuvuT62CxYsUFpamnr16qXevXtr/vz5WQau7I53xkePV61apYcffliVK1dWtWrVXMu9++67rvahoaEaMWKEEhMTXfPHjx8vb29vV79ebNiwYQoMDHSr53Lrk/73cefffvtNbdu2lb+/v+rUqaMvv/xSkrRq1Sq1bNlSfn5+qlevnpYtW5Zp27np46xcem9TXvvpxx9/VJs2bVSmTBkFBgaqe/fu2rlzp1ubU6dOadSoUapVq5bsdrsqV66sTp06adOmTTnWtnfvXv3222/q2LFjlvOvueYaRUREaM6cOW7TZ8+ercaNG2f5EfKffvpJvXr1Uo0aNWS321W9enU9/vjjSktLy9R24cKFatSokXx9fdWoUSMtWLAgU5uLj9ebb77pOl47duzI9h6z3Kw3Q6dOnfTtt99mei8HkHvF90+VALKVlJSU5b0M2V0xuVhUVJQmTZqkBx98UC1atFBycrI2bNigTZs2qVOnTvq///s/HTx4UNHR0frkk0/cljXG6M4779SKFSs0ZMgQNWnSRD/88IPGjBmjAwcO6I033nC1HThwoL744gs98MADuvnmm7Vq1aoc/6rcq1cv1a1bVy+//LLrF4Po6Gj9+eefGjRokEJCQrR9+3Z9+OGH2r59u9atW+cWGCXpvvvuU1hYmF555RV9//33mjhxoipWrKgPPvhA//jHP/Tqq69q9uzZevLJJ3XTTTcpIiJC0oV7Sz766CP16dNHQ4cO1alTp/Tvf/9bkZGR+uWXX9SkSZMcj+m4ceM0ceJE3Xbbbbrtttu0adMmde7cOdPHnk6fPq22bdvqwIED+r//+z/VqFFDa9as0dixY3Xo0CG9+eabl+u+LP35558qVaqUAgMDXdN+/PFHffHFFxo5cqSCgoJUq1YtHTlyRDfffLMrSAQHB2vx4sUaMmSIkpOTNWrUKEnS+fPndccdd2j58uXq3bu3HnvsMZ06dUrR0dHatm2brrvuuizr2L59u9q0aaOAgAA99dRT8vb21gcffKB27dq5fuGXLn8OZievx2/OnDk6deqU/u///k82m02TJ0/W3XffrT///DNXV5Fnz56t9u3bKyQkRL1799Y///lPffvtt+rVq1emtlkd7y1btkiSHn74YQUHB2vcuHGuK2ZRUVGaMGGCOnbsqOHDhysuLk7vvfeefv31V/3888/y9vbWAw88oBdeeEGff/65Ro4c6drW2bNn9eWXX6pnz56uqzu5WV+GkydP6o477lDv3r3Vq1cvvffee+rdu7dmz56tUaNG6aGHHlLfvn312muv6Z577tHff/+tcuXK5amP8yI3/bRs2TJ17dpVtWvXVlRUlNLS0vTOO+/o1ltv1aZNm1yB76GHHtKXX36pkSNHqkGDBjp+/LhWr16tnTt3qlmzZtnWsGbNGknKsU3fvn312GOPKSUlRWXLltW5c+c0b948jR49OsvAPm/ePJ0+fVrDhw9XpUqV9Msvv+idd97R/v37NW/ePFe7pUuXqmfPnmrQoIEmTZqk48ePa9CgQW4h/mIzZ87UmTNnNGzYMNntdlWsWDHLP+zkdb3NmzfXG2+8oe3btxfIvcpAiWQAlBgzZ840knJ8NGzY0G2ZmjVrmgEDBrieh4eHm9tvvz3H7YwYMcJk9faycOFCI8lMnDjRbfo999xjbDab2b17tzHGmI0bNxpJZtSoUW7tBg4caCSZ8ePHu6aNHz/eSDJ9+vTJtL3Tp09nmvbZZ58ZSSYmJibTOoYNG+aadu7cOVOtWjVjs9nMK6+84pp+8uRJ4+fn53ZMzp07Z9LT0922c/LkSVOlShUzePDgTDVc7OjRo8bHx8fcfvvtxul0uqY/88wzRpLbdl588UVTpkwZ88cff7it45///KcpVaqUiY+Pz3Fbbdu2NfXr1zfHjh0zx44dMzt37jSPPvqokWS6devmaifJeHl5me3bt7stP2TIEFO1alWTkJDgNr13796mfPnyruM9Y8YMI8lMmTIlUw0X7+OlfdmjRw/j4+Nj9uzZ45p28OBBU65cORMREeGalptzMCu5PX579+41kkylSpXMiRMnXO2+/vprI8l8++23l93WkSNHTOnSpc306dNd02655RbTvXv3TG2zO94Zr9fWrVubc+fOuaZnnDOdO3c258+fd02fOnWqkWRmzJjhmtaqVSvTsmVLt/XOnz/fSDIrVqzI8/ratm1rJJk5c+a4pv3++++ufVi3bp1r+g8//GAkmZkzZ7qm5baPV6xY4VajMcYMGDDA1KxZ0/U8L/3UpEkTU7lyZXP8+HHXtNjYWOPl5WX69+/vmla+fHkzYsQIk1fPPfeckWROnTqVaZ4kM2LECHPixAnj4+NjPvnkE2OMMd9//72x2Wxm3759rvegY8eOuZbL6v1r0qRJxmazmb/++stt36pWrWoSExNd05YuXWokZXm8AgICzNGjR93WmzHv4r7K7XozrFmzxkgyn3/+efYHCkCO+CgjUAJNmzZN0dHRmR433HDDZZcNDAzU9u3btWvXrjxvd9GiRSpVqpQeffRRt+lPPPGEjDGu+y8yPjb38MMPu7V75JFHsl33Qw89lGman5+f6/9nzpxRQkKCbr75ZknK8qNJF4+aVqpUKd14440yxmjIkCGu6YGBgapXr57+/PNPt7Y+Pj6SLtwfdOLECZ07d0433njjZT8CtWzZMp09e1aPPPKI2xW8jKtPF5s3b57atGmjChUqKCEhwfXo2LGjzp8/r5iYmBy3JUm///67goODFRwcrLCwML3zzju6/fbbM30csW3btmrQoIHruTFGX331lbp16yZjjNv2IyMjlZSU5NrXr776SkFBQVn216VXKTOcP39eS5cuVY8ePVS7dm3X9KpVq6pv375avXq1kpOTJeX/HMzr8bvvvvtUoUIF1/M2bdpIklvfZ2fu3Lny8vJSz549XdP69OmjxYsX6+TJk5naX3q8LzZ06FC3e38yzplRo0a5jf43dOhQBQQE6Pvvv3dN69+/v9avX+/2EdLZs2erevXqatu2bZ7XJ0lly5ZV7969Xc/r1aunwMBAhYWFuV3xyvh/xvHKSx/nxeX66dChQ9qyZYsGDhyoihUrutrdcMMN6tSpk9sw74GBgVq/fr0OHjyYpxqOHz+u0qVLq2zZstm2qVChgrp06aLPPvtM0oUrfbfccotq1qyZZfuL379SU1OVkJCgW265RcYYbd682W3fBgwYoPLly7vad+rUKdvzqWfPngoODs5xf/Kz3ow+uBpHlgQ8BcEMKIFatGihjh07Znpc/MtNdl544QUlJibq+uuvV+PGjTVmzBj99ttvudruX3/9pdDQUNfHmjKEhYW55mf86+XlpWuvvdatXZ06dbJd96VtJenEiRN67LHHVKVKFfn5+Sk4ONjVLikpKVP7GjVquD0vX768fH19FRQUlGn6pb9cf/zxx7rhhhtc9zwFBwfr+++/z3I7F8vY57p167pNDw4OztQfu3bt0pIlS1zBKuORcV/L0aNHc9yWdOGewejoaC1btkyrV6/W4cOH9d1332Xax0uP57Fjx5SYmKgPP/ww0/YHDRrktv09e/aoXr16eRrY49ixYzp9+rTq1auXaV5YWJicTqf+/vtvSfk/B/N6/C49HzL6I6tgdalPP/1ULVq00PHjx7V7927t3r1bTZs21dmzZ90+hpYhq/M3u3kZ58ylx8rHx0e1a9d2zZcuhBa73e4aeCQpKUnfffed7r//fldIzsv6pAsje14asMuXL6/q1atnmib973jlpY/z4nL9lN3+ZWw3ISHB9RHRyZMna9u2bapevbpatGihqKioXAXx3Orbt6+io6MVHx+vhQsXqm/fvtm2jY+Pd4XJsmXLKjg42BWmM95Xsnv/kLLeXynncy1DftZr/vsR8uz++ALg8rjHDECeREREaM+ePfr666+1dOlSffTRR3rjjTf0/vvvZ/s9PUXh4r8uZ7j33nu1Zs0ajRkzRk2aNFHZsmXldDrVpUuXLO+pyGpEsuxGKTMX3eD+6aefauDAgerRo4fGjBmjypUrq1SpUpo0aZLblYor5XQ61alTJz311FNZzr/++usvu44yZcpkO0DBxS49nhnHq1+/fhowYECWy+TmimtByO85mNfjl5u+z8quXbtcg09k9Yvt7NmzNWzYMLdpWZ2/uZl3ORUqVNAdd9yh2bNna9y4cfryyy+Vnp6ufv365Xud2R2X/B6vK1WQ27333nvVpk0bLViwQEuXLtVrr72mV199VfPnz1fXrl2zXa5SpUo6d+6cTp06lekPTxe78847ZbfbNWDAAKWnp+vee+/Nst358+fVqVMnnThxQk8//bTq16+vMmXK6MCBAxo4cOAVfSfelZxPOckIwpf+kQdA7hHMAORZxYoVNWjQIA0aNEgpKSmKiIhQVFSU65fi7P5iWrNmTS1btizTLy+///67a37Gv06nU3v37nX7xXb37t25rvHkyZNavny5JkyYoHHjxrmm5+cjmJfz5Zdfqnbt2po/f77bvo8fP/6yy2bs865du9w+3nXs2LFMV2auu+46paSk5CpYFbTg4GCVK1dO58+fv+z2r7vuOq1fv14OhyPXX7UQHBwsf3//LL+n6vfff5eXl5fbFZnLnYPZ1VUUx2/27Nny9vbWJ598kik0rF69Wm+//bbi4+MzXenJrYxzJi4uzu2cOXv2rPbu3Ztp//r376/u3bvr119/1ezZs9W0aVM1bNgw3+vLr7z2cUG5eP+y2m5QUJDKlCnjmla1alU9/PDDevjhh3X06FE1a9ZML730Uo7BrH79+pIujM6Y0x8o/Pz81KNHD3366afq2rVrtiFm69at+uOPP/Txxx+rf//+rumXjjx68fvHpa7kO9/ys969e/dK+t8nIADkHR9lBJAnlw41X7ZsWdWpU0fp6emuaRm/5Fw61PZtt92m8+fPa+rUqW7T33jjDdlsNtcvPpGRkZIuDN99sXfeeSfXdWb8QnzpX83zO3JhXre1fv16rV279rLLduzYUd7e3nrnnXfcls+qznvvvVdr167VDz/8kGleYmKizp07l4/qc6dUqVLq2bOnvvrqK23bti3T/IuHZO/Zs6cSEhIy9bOU/VWMUqVKqXPnzvr666+1b98+1/QjR45ozpw5at26tQICAiTl7hzMSlEdv9mzZ6tNmza67777dM8997g9xowZI0mu+4zyo2PHjvLx8dHbb7/tdjz//e9/KykpKdPopRkB4NVXX9WqVasyXS3L6/ryKy99XJCqVq2qJk2a6OOPP3Z7T9q2bZuWLl2q2267TdKFq1SXfvS4cuXKCg0Nvey51apVK0nShg0bLlvPk08+qfHjx+v555/Ptk1W7ynGGL311lvZ7tvFtUdHR2vHjh2XrSU7+Vnvxo0bVb58ebfQDyBvuGIGIE8aNGigdu3aqXnz5qpYsaI2bNjgGl46Q/PmzSVJjz76qCIjI1WqVCn17t1b3bp1U/v27fXss89q3759Cg8P19KlS/X1119r1KhRrmHUmzdvrp49e+rNN9/U8ePHXcPl//HHH5Jydw9DQECAIiIiNHnyZDkcDl1zzTVaunSp66+6BemOO+7Q/Pnzddddd+n222/X3r179f7776tBgwZKSUnJcdng4GA9+eSTmjRpku644w7ddttt2rx5sxYvXpzpr+ljxozRN998ozvuuEMDBw5U8+bNlZqaqq1bt+rLL7/Uvn37CvVjRK+88opWrFihli1baujQoWrQoIFOnDihTZs2admyZTpx4oSkC1do/vOf/2j06NH65Zdf1KZNG6WmpmrZsmV6+OGH1b179yzXP3HiREVHR6t169Z6+OGHVbp0aX3wwQdKT0/X5MmTXe1ycw5mpSiO3/r167V79+5sa7nmmmvUrFkzzZ49W08//XS+thEcHKyxY8dqwoQJ6tKli+68807FxcXp3Xff1U033ZQpeHl7e6t3796aOnWqSpUqpT59+lzR+q5Ebvu4oL322mvq2rWrWrVqpSFDhriGyy9fvrzru/ROnTqlatWq6Z577lF4eLjKli2rZcuW6ddff8303YWXql27tho1aqRly5Zp8ODBObYNDw9XeHh4jm3q16+v6667Tk8++aQOHDiggIAAffXVV1ne3zhp0iTdfvvtat26tQYPHqwTJ07onXfeUcOGDS/7/pOTvK43Ojpa3bp14x4z4EoU9TCQAKyTMfz2r7/+muX8tm3bXna4/IkTJ5oWLVqYwMBA4+fnZ+rXr29eeuklc/bsWVebc+fOmUceecQEBwcbm83mNnT+qVOnzOOPP25CQ0ONt7e3qVu3rnnttdfchlE3xpjU1FQzYsQIU7FiRVO2bFnTo0cPExcXZyS5DV+f1TDTGfbv32/uuusuExgYaMqXL2969eplDh48mO2Q+5euY8CAAaZMmTKXPU5Op9O8/PLLpmbNmsZut5umTZua7777LtPw3tk5f/68mTBhgqlatarx8/Mz7dq1M9u2bct07DOO39ixY02dOnWMj4+PCQoKMrfccot5/fXX3fogK1n1b1b03+G9s3LkyBEzYsQIU716dePt7W1CQkJMhw4dzIcffujW7vTp0+bZZ5811157ravdPffc4zZM+qX9YIwxmzZtMpGRkaZs2bLG39/ftG/f3qxZs8atTW7Owezk5vhlDB3+2muvZXlsLq35Yo888oiR5Lafl4qKijKSTGxsrGudWR3vy71ep06daurXr2+8vb1NlSpVzPDhw83JkyezbPvLL78YSaZz587Z1pWb9WV3DtWsWTPLrzDIat9y08d5GS4/t/20bNkyc+uttxo/Pz8TEBBgunXrZnbs2OGan56ebsaMGWPCw8NNuXLlTJkyZUx4eLh59913M60/K1OmTDFly5bNNMx9Tq+nDFm9B+3YscN07NjRlC1b1gQFBZmhQ4ea2NjYTMPaG2PMV199ZcLCwozdbjcNGjQw8+fPz9Pxymq4/Nyu1xhjdu7caSSZZcuW5bifAHJmM4avaAdwddiyZYuaNm2qTz/9VPfff7/V5QBXjdjYWDVp0kT/+c9/9MADD1hdTrGUlJSk2rVra/LkyW5fsVESjBo1SjExMdq4cSNXzIArwD1mADxSWlpapmlvvvmmvLy8FBERYUFFwNVr+vTpKlu2rO6++26rSym2ypcvr6eeekqvvfbaFY2aeLU5fvy4PvroI02cOJFQBlwhrpgB8EgTJkzQxo0b1b59e5UuXVqLFy/W4sWLNWzYMH3wwQdWlwdcFb799lvt2LFDzz//vEaOHKkpU6ZYXRIAIBsEMwAeKTo6WhMmTNCOHTuUkpKiGjVq6IEHHtCzzz6bpy8uBkqyWrVq6ciRI4qMjNQnn3yS43dsAQCsRTADAAAAAItxjxkAAAAAWIxgBgAAAAAW40aNLDidTh08eFDlypVjhCEAAACgBDPG6NSpUwoNDZWXV+Fd1yKYZeHgwYOqXr261WUAAAAA8BB///23qlWrVmjrJ5hlIWPUqr///lsBAQGW1uJwOLR06VJ17txZ3t7eltaCwkM/F3/0cclAPxd/9HHJQD8Xf3np4+TkZFWvXr3QR7YlmGUh4+OLAQEBHhHM/P39FRAQwBtDMUY/F3/0cclAPxd/9HHJQD8Xf/np48K+xYnBPwAAAADAYgQzAAAAALAYwQwAAAAALEYwAwAAAACLEcwAAAAAwGIEMwAAAACwGMEMAAAAACxGMAMAAAAAixHMAAAAAMBiBDMAAAAAsBjBDAAAAAAsRjADAAAAAIsRzAAAAADAYgQzAAAAALAYwQwAAAAALEYwAwAAAACLEcwAAAAAwGIEMwAAAACwWGmrCwCAkio+Pl4JCQlWlyFJCgoKUo0aNawuQ5JnHRfJs44NAKD4IpgBgAXi4+NVr16Yzpw5bXUpkiRfX3/Fxe20PIB42nGRPOfYAACKN4IZAFggISHhv+HjU0lhFlezU2fO9FNCQoLl4cOzjovkSccGAFC8EcwAwFJhkppZXYQH4rgAAEoWBv8AAAAAAIsRzAAAAADAYgQzAAAAALAYwQwAAAAALEYwAwAAAACLEcwAAAAAwGIEMwAAAACwGMEMAAAAACxGMAMAAAAAixHMAAAAAMBiBDMAAAAAsBjBDAAAAAAsRjADAAAAAIsRzAAAAADAYpYGs0mTJummm25SuXLlVLlyZfXo0UNxcXFubc6cOaMRI0aoUqVKKlu2rHr27KkjR47kuF5jjMaNG6eqVavKz89PHTt21K5duwpzVwAAAAAg3ywNZqtWrdKIESO0bt06RUdHy+FwqHPnzkpNTXW1efzxx/Xtt99q3rx5WrVqlQ4ePKi77747x/VOnjxZb7/9tt5//32tX79eZcqUUWRkpM6cOVPYuwQAAAAAeVbayo0vWbLE7fmsWbNUuXJlbdy4UREREUpKStK///1vzZkzR//4xz8kSTNnzlRYWJjWrVunm2++OdM6jTF688039dxzz6l79+6SpP/85z+qUqWKFi5cqN69exf+jgEAAABAHlgazC6VlJQkSapYsaIkaePGjXI4HOrYsaOrTf369VWjRg2tXbs2y2C2d+9eHT582G2Z8uXLq2XLllq7dm2WwSw9PV3p6emu58nJyZIkh8Mhh8NRMDuXTxnbt7oOFC76ufi7tI+dTqf8/PwkOSVZ3e9OSX5yOp2Wn4OedVykvB6bwn4t79+/X8ePHy+UdedVpUqVVK1aNavLKHK8X5cM9HPxl5c+LqrzwGaMMUWypctwOp268847lZiYqNWrV0uS5syZo0GDBrmFJklq0aKF2rdvr1dffTXTetasWaNbb71VBw8eVNWqVV3T7733XtlsNn3++eeZlomKitKECRMyTZ8zZ478/f2vdNcAAAAAXKVOnz6tvn37KikpSQEBAYW2HY+5YjZixAht27bNFcqK0tixYzV69GjX8+TkZFWvXl2dO3cu1IOfGw6HQ9HR0erUqZO8vb0trQWFh34u/i7t49jYWEVEREiKkRRucXWxkiIUExOj8HBra/Gs4yLl9dgU5mv5f8dmuqR6BbruvIuTNNQjzpmixvt1yUA/F3956eOMT9MVNo8IZiNHjtR3332nmJgYt49FhISE6OzZs0pMTFRgYKBr+pEjRxQSEpLlujKmHzlyxO2K2ZEjR9SkSZMsl7Hb7bLb7Zmme3t7e8yL0ZNqQeGhn4u/jD728vJSWlqaLozBZHWfe0lKk5eXl+Xnn2cdFym/x6YwXsv/OzZhkpoV6LrzUY085ZyxCu/XJQP9XPzlpo+L6hywdFRGY4xGjhypBQsW6Mcff9S1117rNr958+by9vbW8uXLXdPi4uIUHx+vVq1aZbnOa6+9ViEhIW7LJCcna/369dkuAwAAAABWsjSYjRgxQp9++qnmzJmjcuXK6fDhwzp8+PB//yJ4YdCOIUOGaPTo0VqxYoU2btyoQYMGqVWrVm4Df9SvX18LFiyQJNlsNo0aNUoTJ07UN998o61bt6p///4KDQ1Vjx49rNhNAAAAAMiRpR9lfO+99yRJ7dq1c5s+c+ZMDRw4UJL0xhtvyMvLSz179lR6eroiIyP17rvvurWPi4tzjegoSU899ZRSU1M1bNgwJSYmqnXr1lqyZIl8fX0LdX8AAAAAID8sDWa5GRDS19dX06ZN07Rp03K9HpvNphdeeEEvvPDCFdcIAAAAAIXN0o8yAgAAAAAIZgAAAABgOYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDGCGQAAAABYjGAGAAAAABYjmAEAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMVKW10AAAC4Ou3cudPqEiRJQUFBqlGjhtVlAMAVIZgBAIA8OiTJS/369bO6EEmSr6+/4uJ2Es4AXNUIZgAAII8SJTklfSopzNpStFNnzvRTQkICwQzAVY1gBgAA8ilMUjOriwCAYoHBPwAAAADAYgQzAAAAALAYwQwAAAAALEYwAwAAAACLEcwAAAAAwGIEMwAAAACwGMEMAAAAACxGMAMAAAAAixHMAAAAAMBiBDMAAAAAsBjBDAAAAAAsRjADAAAAAIsRzAAAAADAYgQzAAAAALAYwQwAAAAALEYwAwAAAACLEcwAAAAAwGIEMwAAAACwGMEMAAAAACxGMAMAAAAAixHMAAAAAMBiBDMAAAAAsBjBDAAAAAAsRjADAAAAAItZGsxiYmLUrVs3hYaGymazaeHChW7zbTZblo/XXnst23VGRUVlal+/fv1C3hMAAAAAyD9Lg1lqaqrCw8M1bdq0LOcfOnTI7TFjxgzZbDb17Nkzx/U2bNjQbbnVq1cXRvkAAAAAUCBKW7nxrl27qmvXrtnODwkJcXv+9ddfq3379qpdu3aO6y1dunSmZQEAAADAU1kazPLiyJEj+v777/Xxxx9ftu2uXbsUGhoqX19ftWrVSpMmTVKNGjWybZ+enq709HTX8+TkZEmSw+GQw+G48uKvQMb2ra4DhYt+Lv4u7WOn0yk/Pz9JTklW97tTkp+cTqfl56BnHRcpr8emMF/LnndsPKWWoj1/eb8uGejn4i8vfVxU54HNGGOKZEuXYbPZtGDBAvXo0SPL+ZMnT9Yrr7yigwcPytfXN9v1LF68WCkpKapXr54OHTqkCRMm6MCBA9q2bZvKlSuX5TJRUVGaMGFCpulz5syRv79/vvYHAAAAwNXv9OnT6tu3r5KSkhQQEFBo27lqgln9+vXVqVMnvfPOO3lab2JiomrWrKkpU6ZoyJAhWbbJ6opZ9erVlZCQUKgHPzccDoeio6PVqVMneXt7W1oLCg/9XPxd2sexsbGKiIiQFCMp3OLqYiVFKCYmRuHh1tbiWcdFyuuxKczXsmcdmy8kDfWQWor2/OX9umSgn4u/vPRxcnKygoKCCj2YXRUfZfzpp58UFxenzz//PM/LBgYG6vrrr9fu3buzbWO322W32zNN9/b29pgXoyfVgsJDPxd/GX3s5eWltLQ0XRiDyeo+95KUJi8vL8vPP886LlJ+j01hvJY979h4Si3WnL+8X5cM9HPxl5s+Lqpz4Kr4HrN///vfat68eb7+EpaSkqI9e/aoatWqhVAZAAAAAFw5S4NZSkqKtmzZoi1btkiS9u7dqy1btig+Pt7VJjk5WfPmzdODDz6Y5To6dOigqVOnup4/+eSTWrVqlfbt26c1a9borrvuUqlSpdSnT59C3RcAAAAAyC9LP8q4YcMGtW/f3vV89OjRkqQBAwZo1qxZkqS5c+fKGJNtsNqzZ48SEhJcz/fv368+ffro+PHjCg4OVuvWrbVu3ToFBwcX3o4AAAAAwBWwNJi1a9dOlxt7ZNiwYRo2bFi28/ft2+f2fO7cuQVRGgAAAAAUmaviHjMAAAAAKM4IZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDGCGQAAAABYjGAGAAAAABYjmAEAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDGCGQAAAABYjGAGAAAAABYjmAEAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDGCGQAAAABYjGAGAAAAABYjmAEAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDFLg1lMTIy6deum0NBQ2Ww2LVy40G3+wIEDZbPZ3B5dunS57HqnTZumWrVqydfXVy1bttQvv/xSSHsAAAAAAFfO0mCWmpqq8PBwTZs2Lds2Xbp00aFDh1yPzz77LMd1fv755xo9erTGjx+vTZs2KTw8XJGRkTp69GhBlw8AAAAABaK0lRvv2rWrunbtmmMbu92ukJCQXK9zypQpGjp0qAYNGiRJev/99/X9999rxowZ+uc//5nlMunp6UpPT3c9T05OliQ5HA45HI5cb7swZGzf6jpQuOjn4u/SPnY6nfLz85PklGR1vzsl+cnpdFp+DnrWcZHyemwK87XsecfGU2op2vOX9+uSgX4u/vLSx0V1HtiMMaZItnQZNptNCxYsUI8ePVzTBg4cqIULF8rHx0cVKlTQP/7xD02cOFGVKlXKch1nz56Vv7+/vvzyS7f1DBgwQImJifr666+zXC4qKkoTJkzINH3OnDny9/e/ov0CAAAAcPU6ffq0+vbtq6SkJAUEBBTadiy9YnY5Xbp00d13361rr71We/bs0TPPPKOuXbtq7dq1KlWqVKb2CQkJOn/+vKpUqeI2vUqVKvr999+z3c7YsWM1evRo1/Pk5GRVr15dnTt3LtSDnxsOh0PR0dHq1KmTvL29La0FhYd+Lv4u7ePY2FhFRERIipEUbnF1sZIiFBMTo/Bwa2vxrOMi5fXYFOZr2bOOzReShnpILUV7/vJ+XTLQz8VfXvo449N0hc2jg1nv3r1d/2/cuLFuuOEGXXfddVq5cqU6dOhQYNux2+2y2+2Zpnt7e3vMi9GTakHhoZ+Lv4w+9vLyUlpami7c6mt1n3tJSpOXl5fl559nHRcpv8emMF7LnndsPKUWa85f3q9LBvq5+MtNHxfVOXBVDZdfu3ZtBQUFaffu3VnODwoKUqlSpXTkyBG36UeOHMnTfWoAAAAAUJSuqmC2f/9+HT9+XFWrVs1yvo+Pj5o3b67ly5e7pjmdTi1fvlytWrUqqjIBAAAAIE8sDWYpKSnasmWLtmzZIknau3evtmzZovj4eKWkpGjMmDFat26d9u3bp+XLl6t79+6qU6eOIiMjXevo0KGDpk6d6no+evRoTZ8+XR9//LF27typ4cOHKzU11TVKIwAAAAB4GkvvMduwYYPat2/vep4xAMeAAQP03nvv6bffftPHH3+sxMREhYaGqnPnznrxxRfd7gfbs2ePEhISXM/vu+8+HTt2TOPGjdPhw4fVpEkTLVmyJNOAIAAAAADgKSwNZu3atVNOo/X/8MMPl13Hvn37Mk0bOXKkRo4ceSWlAQAAAECRuaruMQMAAACA4ohgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDGCGQAAAABYjGAGAAAAABYjmAEAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDGCGQAAAABYjGAGAAAAABYjmAEAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDGCGQAAAABYrLTVBQAA4Ol27tyZq3ZOp1OSFBsbKy+vgv3bZ25rAABcnQhmAABk65AkL/Xr1y9Xrf38/PTZZ58pIiJCaWlphVsaAKBYIZgBAJCtRElOSZ9KCstFe6ekA5JiVPB3CyyS9HwBrxMA4CkIZgAAXFaYpGa5aOfQhWAWLsm7gGvgo4wAUJwx+AcAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMUuDWUxMjLp166bQ0FDZbDYtXLjQNc/hcOjpp59W48aNVaZMGYWGhqp///46ePBgjuuMioqSzWZze9SvX7+Q9wQAAAAA8s/SYJaamqrw8HBNmzYt07zTp09r06ZNev7557Vp0ybNnz9fcXFxuvPOOy+73oYNG+rQoUOux+rVqwujfAAAAAAoEPkeLj81NVWrVq1SfHy8zp496zbv0UcfzdU6unbtqq5du2Y5r3z58oqOjnabNnXqVLVo0ULx8fGqUaNGtustXbq0QkJCclUDAAAAAFgtX8Fs8+bNuu2223T69GmlpqaqYsWKSkhIkL+/vypXrpzrYJZXSUlJstlsCgwMzLHdrl27FBoaKl9fX7Vq1UqTJk3KMcilp6crPT3d9Tw5OVnShY9TOhyOAqk9vzK2b3UdKFz0c/F3aR87nU75+fnpwhcSW93vTkl+cjqdlp+DnnVcMuS+Hj8/h9u/VtZS+DyllqI9f3m/Lhno5+IvL31cVOeBzRhj8rpQu3btdP311+v9999X+fLlFRsbK29vb/Xr10+PPfaY7r777rwXYrNpwYIF6tGjR5bzz5w5o1tvvVX169fX7Nmzs13P4sWLlZKSonr16unQoUOaMGGCDhw4oG3btqlcuXJZLhMVFaUJEyZkmj5nzhz5+/vneV8AAAAAFA+nT59W3759lZSUpICAgELbTr6CWWBgoNavX6969eopMDBQa9euVVhYmNavX68BAwbo999/z3shOQQzh8Ohnj17av/+/Vq5cmWeDkhiYqJq1qypKVOmaMiQIVm2yeqKWfXq1ZWQkFCoBz83HA6HoqOj1alTJ3l7e1taCwoP/Vz8XdrHsbGxioiIkBQjKdzi6mIlRSgmJkbh4dbW4lnHRZK+kDRUua3Hz8+hGTOiNXhwJ6WlFfRrOW+1FC5PqqVoz1/er0sG+rn4y0sfJycnKygoqNCDWb4+yujt7S0vrwvjhlSuXFnx8fEKCwtT+fLl9ffffxdogQ6HQ/fee6/++usv/fjjj3k+GIGBgbr++uu1e/fubNvY7XbZ7fZM0729vT3mxehJtaDw0M/FX0Yfe3l5KS0tTRfGYLK6z70kpcnLy8vy88+zjkuGvNeTluZdCMEsf7UUHk+pxZrzl/frkoF+Lv5y08dFdQ7ka1TGpk2b6tdff5UktW3bVuPGjdPs2bM1atQoNWrUqMCKywhlu3bt0rJly1SpUqU8ryMlJUV79uxR1apVC6wuAAAAAChI+QpmL7/8sivovPTSS6pQoYKGDx+uY8eO6cMPP8z1elJSUrRlyxZt2bJFkrR3715t2bJF8fHxcjgcuueee7RhwwbNnj1b58+f1+HDh3X48GG3USA7dOigqVOnup4/+eSTWrVqlfbt26c1a9borrvuUqlSpdSnT5/87CoAAAAAFLp8fZTxxhtvdP2/cuXKWrJkSb42vmHDBrVv3971fPTo0ZKkAQMGKCoqSt98840kqUmTJm7LrVixQu3atZMk7dmzRwkJCa55+/fvV58+fXT8+HEFBwerdevWWrdunYKDg/NVIwAAAAAUtnx/j1lBaNeunXIaeyQ345Ls27fP7fncuXOvtCwAAAAAKFK5DmbNmjXT8uXLVaFCBTVt2lQ2my3btps2bSqQ4gAAAACgJMh1MOvevbtr5MLsvmsMAAAAAJB3uQ5m48ePz/L/AIDiYefOnVaX4BE1AABghXzdY/brr7/K6XSqZcuWbtPXr1+vUqVKuQ0OAgDwdIckealfv35WFwIAQImVr2A2YsQIPfXUU5mC2YEDB/Tqq69q/fr1BVIcAKAoJEpySvpUUpi1pWiRpOctrgEAgKKXr2C2Y8cONWvWLNP0pk2baseOHVdcFADACmGSMr+3Fy0+yggAKJny9QXTdrtdR44cyTT90KFDKl3a0hH4AQAAAOCqk69g1rlzZ40dO1ZJSUmuaYmJiXrmmWfUqVOnAisOAAAAAEqCfF3eev311xUREaGaNWuqadOmkqQtW7aoSpUq+uSTTwq0QAAAAAAo7vIVzK655hr99ttvmj17tmJjY+Xn56dBgwapT58+8vb2LugaAQAAAKBYy/cNYWXKlNGwYcMKshYAAAAAKJHyHcx27dqlFStW6OjRo3I6nW7zxo0bd8WFAQAAAEBJka9gNn36dA0fPlxBQUEKCQmRzWZzzbPZbAQzAAAAAMiDfAWziRMn6qWXXtLTTz9d0PUAAAAAQImTr+HyT548qV69ehV0LQAAAABQIuUrmPXq1UtLly4t6FoAAAAAoETK10cZ69Spo+eff17r1q1T48aNMw2R/+ijjxZIcQAAAABQEuQrmH344YcqW7asVq1apVWrVrnNs9lsBDMAAAAAyIN8BbO9e/cWdB0AAAAAUGLl6x6zDGfPnlVcXJzOnTtXUPUAAAAAQImTr2B2+vRpDRkyRP7+/mrYsKHi4+MlSY888oheeeWVAi0QAAAAAIq7fAWzsWPHKjY2VitXrpSvr69reseOHfX5558XWHEAAAAAUBLk6x6zhQsX6vPPP9fNN98sm83mmt6wYUPt2bOnwIoDAAAAgJIgX1fMjh07psqVK2eanpqa6hbUAAAAAACXl69gduONN+r77793Pc8IYx999JFatWpVMJUBAAAAQAmRr48yvvzyy+ratat27Nihc+fO6a233tKOHTu0Zs2aTN9rBgAAAADIWb6umLVu3VpbtmzRuXPn1LhxYy1dulSVK1fW2rVr1bx584KuEQAAAACKtXxdMZOk6667TtOnTy/IWgAAAACgRMpXMMv43rLs1KhRI1/FAAAAAEBJlK9gVqtWrRxHXzx//ny+CwIAAACAkiZfwWzz5s1uzx0OhzZv3qwpU6bopZdeKpDCAAAAAKCkyFcwCw8PzzTtxhtvVGhoqF577TXdfffdV1wYAAAAAJQU+RqVMTv16tXTr7/+WpCrBAAAAIBiL19XzJKTk92eG2N06NAhRUVFqW7dugVSGAAAAACUFPkKZoGBgZkG/zDGqHr16po7d26BFAYAAAAAJUW+gtmPP/7oFsy8vLwUHBysOnXqqHTpfH81GgAAAACUSPlKUe3atSvgMgAAAACg5MrX4B+TJk3SjBkzMk2fMWOGXn311SsuCgAAAABKknwFsw8++ED169fPNL1hw4Z6//33r7goAAAAAChJ8hXMDh8+rKpVq2aaHhwcrEOHDl1xUQAAAABQkuQrmFWvXl0///xzpuk///yzQkNDr7goAAAAAChJ8hXMhg4dqlGjRmnmzJn666+/9Ndff2nGjBl6/PHHNXTo0FyvJyYmRt26dVNoaKhsNpsWLlzoNt8Yo3Hjxqlq1ary8/NTx44dtWvXrsuud9q0aapVq5Z8fX3VsmVL/fLLL3ndRQAAAAAoMvkKZmPGjNGQIUP08MMPq3bt2qpdu7YeeeQRPfrooxo7dmyu15Oamqrw8HBNmzYty/mTJ0/W22+/rffff1/r169XmTJlFBkZqTNnzmS7zs8//1yjR4/W+PHjtWnTJoWHhysyMlJHjx7N834CAAAAQFHIVzCz2Wx69dVXdezYMa1bt06xsbE6ceKExo0bl6f1dO3aVRMnTtRdd92VaZ4xRm+++aaee+45de/eXTfccIP+85//6ODBg5murF1sypQpGjp0qAYNGqQGDRro/fffl7+/f5ajSAIAAACAJ7iib4M+fPiwTpw4oYiICNntdhlj3L54+krs3btXhw8fVseOHV3Typcvr5YtW2rt2rXq3bt3pmXOnj2rjRs3ul218/LyUseOHbV27dpst5Wenq709HTX8+TkZEmSw+GQw+EoiN3Jt4ztW10HChf9XHT279+v48ePF/l2nU6nJGnz5s3y8vJSXFyc/Pz8JDkleUK/U0v2cl+Pn5/D7V8rayl8nlKLU5KfnE5nkbyH8n5dMtDPxV9e+riozgObMcbkdaHjx4/r3nvv1YoVK2Sz2bRr1y7Vrl1bgwcPVoUKFfSvf/0r74XYbFqwYIF69OghSVqzZo1uvfVWHTx40G0EyHvvvVc2m02ff/55pnUcPHhQ11xzjdasWaNWrVq5pj/11FNatWqV1q9fn+W2o6KiNGHChEzT58yZI39//zzvCwAAAIDi4fTp0+rbt6+SkpIUEBBQaNvJ1xWzxx9/XN7e3oqPj1dYWJhr+n333afRo0fnK5hZaezYsRo9erTreXJysqpXr67OnTsX6sHPDYfDoejoaHXq1Ene3t6W1oLCQz8XjdjYWEVEREiaLqlekW7bz8+pGTMOafDgqkpL85K0VNJESTGSwou0lsy+kDSUWrKUt3r8/ByaMSNagwd3UlpaQb+WPenYeFItsZIiFBMTo/Dwwq+F9+uSgX4u/vLSxxmfpits+QpmS5cu1Q8//KBq1aq5Ta9bt67++uuvAiksJCREknTkyBG3K2ZHjhxRkyZNslwmKChIpUqV0pEjR9ymHzlyxLW+rNjtdtnt9kzTvb29PebF6Em1oPDQz4XLy8tLaWlpksIkNSvirTskHVJaWtP//sIeJylNF2719YQ+p5bs5b2etDTvQghm+aul8HhKLV6S0uTl5VWk75+8X5cM9HPxl5s+LqpzIF+Df6Smpmb5Eb8TJ05kGXDy49prr1VISIiWL1/umpacnKz169e7fUzxYj4+PmrevLnbMk6nU8uXL892GQAAAACwWr6CWZs2bfSf//zH9dxms8npdGry5Mlq3759rteTkpKiLVu2aMuWLZIuDPixZcsWxcfHy2azadSoUZo4caK++eYbbd26Vf3791doaKjrPjRJ6tChg6ZOnep6Pnr0aE2fPl0ff/yxdu7cqeHDhys1NVWDBg3Kz64CAAAAQKHL10cZJ0+erA4dOmjDhg06e/asnnrqKW3fvl0nTpzQzz//nOv1bNiwwS3IZdznNWDAAM2aNUtPPfWUUlNTNWzYMCUmJqp169ZasmSJfH19Xcvs2bNHCQkJruf33Xefjh07pnHjxunw4cNq0qSJlixZoipVquRnVwEAAACg0OUrmDVq1Eh//PGHpk6dqnLlyiklJUV33323RowY4XY/2OW0a9dOOQ0KabPZ9MILL+iFF17Its2+ffsyTRs5cqRGjhyZ6zoAAAAAwEp5DmYOh0NdunTR+++/r2effbYwagIAAACAEiXP95h5e3vrt99+K4xaAAAAAKBEytfgH/369dO///3vgq4FAAAAAEqkfN1jdu7cOc2YMUPLli1T8+bNVaZMGbf5U6ZMKZDiAAAAAKAkyFMw+/PPP1WrVi1t27ZNzZpd+HLWP/74w62NzWYruOoAAAAAoATIUzCrW7euDh06pBUrVki6MDT922+/zVD0AAAAAHAF8nSP2aVD2y9evFipqakFWhAAAAAAlDT5GvwjQ07fQQYAAAAAyJ08BTObzZbpHjLuKQMAAACAK5One8yMMRo4cKDsdrsk6cyZM3rooYcyjco4f/78gqsQAAAAAIq5PAWzAQMGuD3v169fgRYDAAAAACVRnoLZzJkzC6sOAAAAACixrmjwDwAAAADAlcvTFTMAAABPtHPnziLZjtPplCTFxsbKyyvz37eDgoJUo0aNIqkFQPFCMAMAAFexQ5K8iuy+dz8/P3322WeKiIhQWlpapvm+vv6Ki9tJOAOQZwQzAABwFUuU5JT0qaSwItieU9IBSTHKfEfITp05008JCQkEMwB5RjADAADFQJikZkWwHYcuBLNwSd5FsD0AJQWDfwAAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDGCGQAAAABYjGAGAAAAABYjmAEAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDGCGQAAAABYjGAGAAAAABYjmAEAAACAxTw+mNWqVUs2my3TY8SIEVm2nzVrVqa2vr6+RVw1AAAAAOReaasLuJxff/1V58+fdz3ftm2bOnXqpF69emW7TEBAgOLi4lzPbTZbodYIAAAAAFfC44NZcHCw2/NXXnlF1113ndq2bZvtMjabTSEhIYVdGgAAAAAUCI8PZhc7e/asPv30U40ePTrHq2ApKSmqWbOmnE6nmjVrppdfflkNGzbMtn16errS09Ndz5OTkyVJDodDDoej4HYgHzK2b3UdKFz0c9FwOp3y8/OT5JRUtMfaz8/h9u9/p1pSS9aoJXu5ryfrframlsJXMmvJuY+dkvzkdDp5P7/K8XO5+MtLHxfVeWAzxpgi2VIB+OKLL9S3b1/Fx8crNDQ0yzZr167Vrl27dMMNNygpKUmvv/66YmJitH37dlWrVi3LZaKiojRhwoRM0+fMmSN/f/8C3QcAAAAAV4/Tp0+rb9++SkpKUkBAQKFt56oKZpGRkfLx8dG3336b62UcDofCwsLUp08fvfjii1m2yeqKWfXq1ZWQkFCoBz83HA6HoqOj1alTJ3l7e1taCwoP/Vw0YmNjFRERISlGUniRbtvPz6EZM6I1eHAnpaV5S/pC0lBLasmMWrKXt3oy97N1tRSukltLzn0cKylCMTExCg+3+rjgSvBzufjLSx8nJycrKCio0IPZVfNRxr/++kvLli3T/Pnz87Sct7e3mjZtqt27d2fbxm63y263Z7msp7wYPakWFB76uXB5eXkpLS1NFwakteY4p6V5X/TLnLW1uKOW7OW9Hvd+traWwlOya8m6j70kpcnLy4v38mKCn8vFX276uKjOAY8fLj/DzJkzVblyZd1+++15Wu78+fPaunWrqlatWkiVAQAAAMCVuSqCmdPp1MyZMzVgwACVLu1+ka9///4aO3as6/kLL7ygpUuX6s8//9SmTZvUr18//fXXX3rwwQeLumwAAAAAyJWr4qOMy5YtU3x8vAYPHpxpXnx8vLy8/pcvT548qaFDh+rw4cOqUKGCmjdvrjVr1qhBgwZFWTIAAAAA5NpVEcw6d+6s7MYoWblypdvzN954Q2+88UYRVAUAAAAABeOq+CgjAAAAABRnBDMAAAAAsBjBDAAAAAAsRjADAAAAAIsRzAAAAADAYgQzAAAAALAYwQwAAAAALEYwAwAAAACLEcwAAAAAwGIEMwAAAACwGMEMAAAAACxGMAMAAAAAixHMAAAAAMBiBDMAAAAAsBjBDAAAAAAsRjADAAAAAIsRzAAAAADAYgQzAAAAALAYwQwAAAAALEYwAwAAAACLEcwAAAAAwGIEMwAAAACwGMEMAAAAACxGMAMAAAAAixHMAAAAAMBiBDMAAAAAsBjBDAAAAAAsRjADAAAAAIsRzAAAAADAYgQzAAAAALAYwQwAAAAALEYwAwAAAACLEcwAAAAAwGIEMwAAAACwGMEMAAAAACxGMAMAAAAAixHMAAAAAMBiBDMAAAAAsBjBDAAAAAAsRjADAAAAAIsRzAAAAADAYh4dzKKiomSz2dwe9evXz3GZefPmqX79+vL19VXjxo21aNGiIqoWAAAAAPLHo4OZJDVs2FCHDh1yPVavXp1t2zVr1qhPnz4aMmSINm/erB49eqhHjx7atm1bEVYMAAAAAHnj8cGsdOnSCgkJcT2CgoKybfvWW2+pS5cuGjNmjMLCwvTiiy+qWbNmmjp1ahFWDAAAAAB5U9rqAi5n165dCg0Nla+vr1q1aqVJkyapRo0aWbZdu3atRo8e7TYtMjJSCxcuzHEb6enpSk9Pdz1PTk6WJDkcDjkcjivbgSuUsX2r60Dhop+LhtPplJ+fnySnpKI91n5+Drd//zvVklqyRi3Zy309WfezNbUUvpJZS8597JTkJ6fTyfv5VY6fy8VfXvq4qM4DmzHGFMmW8mHx4sVKSUlRvXr1dOjQIU2YMEEHDhzQtm3bVK5cuUztfXx89PHHH6tPnz6uae+++64mTJigI0eOZLudqKgoTZgwIdP0OXPmyN/fv2B2BgAAAMBV5/Tp0+rbt6+SkpIUEBBQaNvx6CtmXbt2df3/hhtuUMuWLVWzZk198cUXGjJkSIFtZ+zYsW5X2pKTk1W9enV17ty5UA9+bjgcDkVHR6tTp07y9va2tBYUHvq5aMTGxioiIkJSjKTwIt22n59DM2ZEa/DgTkpL85b0haShltSSGbVkL2/1ZO5n62opXCW3lpz7OFZShGJiYhQebvVxwZXg53Lxl5c+zvg0XWHz6GB2qcDAQF1//fXavXt3lvNDQkIyXRk7cuSIQkJCclyv3W6X3W7PNN3b29tjXoyeVAsKD/1cuLy8vJSWlqYLt9dac5zT0rwv+mXO2lrcUUv28l6Pez9bW0vhKdm1ZN3HXpLS5OXlxXt5McHP5eIvN31cVOeAxw/+cbGUlBTt2bNHVatWzXJ+q1attHz5crdp0dHRatWqVVGUBwAAAAD54tHB7Mknn9SqVau0b98+rVmzRnfddZdKlSrluoesf//+Gjt2rKv9Y489piVLluhf//qXfv/9d0VFRWnDhg0aOXKkVbsAAAAAAJfl0R9l3L9/v/r06aPjx48rODhYrVu31rp16xQcHCxJio+Pl5fX/7LlLbfcojlz5ui5557TM888o7p162rhwoVq1KiRVbsAAAAAAJfl0cFs7ty5Oc5fuXJlpmm9evVSr169CqkiAAAAACh4Hv1RRgAAAAAoCQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDGCGQAAAABYjGAGAAAAABYjmAEAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDGCGQAAAABYjGAGAAAAABYjmAEAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYLHSVhcAoHiLj49XQkKC1WVIknbu3Gl1CQAAAFkimAEoNPHx8apXL0xnzpy2uhQAAACPRjADUGgSEhL+G8o+lRRmdTmSFkl63uoiAAAAMiGYASgCYZKaWV2EJD7KCAAAPBODfwAAAACAxQhmAAAAAGAxghkAAAAAWMyjg9mkSZN00003qVy5cqpcubJ69OihuLi4HJeZNWuWbDab28PX17eIKgYAAACAvPPoYLZq1SqNGDFC69atU3R0tBwOhzp37qzU1NQclwsICNChQ4dcj7/++quIKgYAAACAvPPoURmXLFni9nzWrFmqXLmyNm7cqIiIiGyXs9lsCgkJKezyAAAAAKBAeHQwu1RSUpIkqWLFijm2S0lJUc2aNeV0OtWsWTO9/PLLatiwYbbt09PTlZ6e7nqenJwsSXI4HHI4HAVQef5lbN/qOlC4ims/O51O+fn5SXJK8pR9s6YePz+H279W1pI1asle7uvJup+tqaXwlcxacu5jpyQ/OZ3OYvd+XtIU15/L+J+89HFRnQc2Y4wpki1dIafTqTvvvFOJiYlavXp1tu3Wrl2rXbt26YYbblBSUpJef/11xcTEaPv27apWrVqWy0RFRWnChAmZps+ZM0f+/v4Ftg8AAAAAri6nT59W3759lZSUpICAgELbzlUTzIYPH67Fixdr9erV2QasrDgcDoWFhalPnz568cUXs2yT1RWz6tWrKyEhoVAPfm44HA5FR0erU6dO8vb2trQWFJ7i2s+xsbH//dhxjKRwq8uR9IWkobKiHj8/h2bMiNbgwZ2UluZtaS2ZUUv28lZP5n62rpbCVXJrybmPYyVFKCYmRuHhVh8XXIni+nMZ/5OXPk5OTlZQUFChB7Or4qOMI0eO1HfffaeYmJg8hTJJ8vb2VtOmTbV79+5s29jtdtnt9iyX9ZQXoyfVgsJT3PrZy8tLaWlpujDOkKfsl7X1pKV5X/TLnCcdG2rJXt7rce9na2spPCW7lqz72EtSmry8vIrVe3lJVtx+LiOz3PRxUZ0DHj0qozFGI0eO1IIFC/Tjjz/q2muvzfM6zp8/r61bt6pq1aqFUCEAAAAAXDmPvmI2YsQIzZkzR19//bXKlSunw4cPS5LKly//3wEFpP79++uaa67RpEmTJEkvvPCCbr75ZtWpU0eJiYl67bXX9Ndff+nBBx+0bD8AAAAAICceHczee+89SVK7du3cps+cOVMDBw6UJMXHx8vL638X/k6ePKmhQ4fq8OHDqlChgpo3b641a9aoQYMGRVU2AAAAAOSJRwez3IxLsnLlSrfnb7zxht54441CqggAAAAACp5H32MGAAAAACUBwQwAAAAALEYwAwAAAACLefQ9Zvif2NhYt0FOrBIUFKQaNWpYXQYAAB5r586dVpfgws9t4OpBMPNw+/fvlyRFRET894t6reXr66+4uJ28yQMAkMkhSV7q16+f1YW48HMbuHoQzDzc8ePH//u/6ZLCrCxF0k6dOdNPCQkJvMEDAJBJoiSnpE9l/c9siZ/bwNWFYHbVqCepmdVFAACAywoTP7MB5JX1Ny0BAAAAQAlHMAMAAAAAixHMAAAAAMBiBDMAAAAAsBjBDAAAAAAsRjADAAAAAIsRzAAAAADAYgQzAAAAALAYwQwAAAAALEYwAwAAAACLEcwAAAAAwGIEMwAAAACwGMEMAAAAACxGMAMAAAAAixHMAAAAAMBiBDMAAAAAsBjBDAAAAAAsVtrqAgAAAFB4du7caXUJkqT09HTZ7Xary5B0+VqcTqckKTY2Vl5ehXsdw5OOi+RZ9QQFBalGjRpWl1FkCGYAAADF0iFJXurXr5/VhfxXKUnnrS7iv3Kuxc/PT5999pkiIiKUlpZmaS1Fz3Pq8fX1V1zczhITzghmAAAAxVKiJKekTyWFWVuKFkl6/iqqxSnpgKQYFe6dP550XCTPqmenzpzpp4SEBIIZAAAAioMwSc0sriHj45RXSy0OXQhm4ZK8La6lKHlaPSULg38AAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDFCGYAAAAAYDGCGQAAAABYjGAGAAAAABYjmAEAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgsasimE2bNk21atWSr6+vWrZsqV9++SXH9vPmzVP9+vXl6+urxo0ba9GiRUVUKQAAAADknccHs88//1yjR4/W+PHjtWnTJoWHhysyMlJHjx7Nsv2aNWvUp08fDRkyRJs3b1aPHj3Uo0cPbdu2rYgrBwAAAIDc8fhgNmXKFA0dOlSDBg1SgwYN9P7778vf318zZszIsv1bb72lLl26aMyYMQoLC9OLL76oZs2aaerUqUVcOQAAAADkTmmrC8jJ2bNntXHjRo0dO9Y1zcvLSx07dtTatWuzXGbt2rUaPXq027TIyEgtXLgw2+2kp6crPT3d9TwpKUmSdOLECTkcjivYgyuXnJys06dPy9d3s4xJsbQWaZckX23cuFHJyckW13KBl5eXnE6n1WVIurJanE6nTp8+rZ9++kleXlf+9xJPOS67du2Sr6+vpI2SPOGciZNkTT2+vs7/vpZ/kjFeltaSGbVkL2/1ZO5n62opXCW3lpz72JOOi+RZ9VxdtRTuazlvtRQtT6rnwu+dycnJOn78eIGv3eFw6PTp0zp+/Li8vb1zbHvq1ClJkjGmwOtwYzzYgQMHjCSzZs0at+ljxowxLVq0yHIZb29vM2fOHLdp06ZNM5UrV852O+PHjzeSePDgwYMHDx48ePDgwSPLx99//33lAScHHn3FrKiMHTvW7Sqb0+nUiRMnVKlSJdlsNgsru3DFrHr16vr7778VEBBgaS0oPPRz8Ucflwz0c/FHH5cM9HPxl5c+Nsbo1KlTCg0NLdSaPDqYBQUFqVSpUjpy5Ijb9CNHjigkJCTLZUJCQvLUXpLsdrvsdrvbtMDAwPwVXUgCAgJ4YygB6Ofijz4uGejn4o8+Lhno5+Ivt31cvnz5Qq/Fowf/8PHxUfPmzbV8+XLXNKfTqeXLl6tVq1ZZLtOqVSu39pIUHR2dbXsAAAAAsJpHXzGTpNGjR2vAgAG68cYb1aJFC7355ptKTU3VoEGDJEn9+/fXNddco0mTJkmSHnvsMbVt21b/+te/dPvtt2vu3LnasGGDPvzwQyt3AwAAAACy5fHB7L777tOxY8c0btw4HT58WE2aNNGSJUtUpUoVSVJ8fLzbKHa33HKL5syZo+eee07PPPOM6tatq4ULF6pRo0ZW7cIVsdvtGj9+fKaPWqJ4oZ+LP/q4ZKCfiz/6uGSgn4s/T+xjmzGFPe4jAAAAACAnHn2PGQAAAACUBAQzAAAAALAYwQwAAAAALEYwAwAAAACLEcw83LRp01SrVi35+vqqZcuW+uWXX6wuqUSKiYlRt27dFBoaKpvNpoULF7rNN8Zo3Lhxqlq1qvz8/NSxY0ft2rXLrc2JEyd0//33KyAgQIGBgRoyZIhSUlLc2vz2229q06aNfH19Vb16dU2ePDlTLfPmzVP9+vXl6+urxo0ba9GiRXmuBZlNmjRJN910k8qVK6fKlSurR48eiouLc2tz5swZjRgxQpUqVVLZsmXVs2fPTF9oHx8fr9tvv13+/v6qXLmyxowZo3Pnzrm1WblypZo1aya73a46depo1qxZmeq53Gs/N7XA3XvvvacbbrjB9WWirVq10uLFi13z6d/i6ZVXXpHNZtOoUaNc0+jrq1tUVJRsNpvbo379+q759G/xceDAAfXr10+VKlWSn5+fGjdurA0bNrjmF7vfvww81ty5c42Pj4+ZMWOG2b59uxk6dKgJDAw0R44csbq0EmfRokXm2WefNfPnzzeSzIIFC9zmv/LKK6Z8+fJm4cKFJjY21tx5553m2muvNWlpaa42Xbp0MeHh4WbdunXmp59+MnXq1DF9+vRxzU9KSjJVqlQx999/v9m2bZv57LPPjJ+fn/nggw9cbX7++WdTqlQpM3nyZLNjxw7z3HPPGW9vb7N169Y81YLMIiMjzcyZM822bdvMli1bzG233WZq1KhhUlJSXG0eeughU716dbN8+XKzYcMGc/PNN5tbbrnFNf/cuXOmUaNGpmPHjmbz5s1m0aJFJigoyIwdO9bV5s8//zT+/v5m9OjRZseOHeadd94xpUqVMkuWLHG1yc1r/3K1ILNvvvnGfP/99+aPP/4wcXFx5plnnjHe3t5m27Ztxhj6tzj65ZdfTK1atcwNN9xgHnvsMdd0+vrqNn78eNOwYUNz6NAh1+PYsWOu+fRv8XDixAlTs2ZNM3DgQLN+/Xrz559/mh9++MHs3r3b1aa4/f5FMPNgLVq0MCNGjHA9P3/+vAkNDTWTJk2ysCpcGsycTqcJCQkxr732mmtaYmKisdvt5rPPPjPGGLNjxw4jyfz666+uNosXLzY2m80cOHDAGGPMu+++aypUqGDS09NdbZ5++mlTr1491/N7773X3H777W71tGzZ0vzf//1frmtB7hw9etRIMqtWrTLGXDiO3t7eZt68ea42O3fuNJLM2rVrjTEXAryXl5c5fPiwq817771nAgICXP361FNPmYYNG7pt67777jORkZGu55d77eemFuROhQoVzEcffUT/FkOnTp0ydevWNdHR0aZt27auYEZfX/3Gjx9vwsPDs5xH/xYfTz/9tGndunW284vj7198lNFDnT17Vhs3blTHjh1d07y8vNSxY0etXbvWwspwqb179+rw4cNufVW+fHm1bNnS1Vdr165VYGCgbrzxRlebjh07ysvLS+vXr3e1iYiIkI+Pj6tNZGSk4uLidPLkSVebi7eT0SZjO7mpBbmTlJQkSapYsaIkaePGjXI4HG7Htn79+qpRo4ZbPzdu3FhVqlRxtYmMjFRycrK2b9/uapNTH+bmtZ+bWpCz8+fPa+7cuUpNTVWrVq3o32JoxIgRuv322zP1B31dPOzatUuhoaGqXbu27r//fsXHx0uif4uTb775RjfeeKN69eqlypUrq2nTppo+fbprfnH8/Ytg5qESEhJ0/vx5tzcNSapSpYoOHz5sUVXISkZ/5NRXhw8fVuXKld3mly5dWhUrVnRrk9U6Lt5Gdm0unn+5WnB5TqdTo0aN0q233qpGjRpJunBsfXx8FBgY6Nb20uOf3z5MTk5WWlparl77uakFWdu6davKli0ru92uhx56SAsWLFCDBg3o32Jm7ty52rRpkyZNmpRpHn199WvZsqVmzZqlJUuW6L333tPevXvVpk0bnTp1iv4tRv7880+99957qlu3rn744QcNHz5cjz76qD7++GNJxfP3r9K5bgkAJcSIESO0bds2rV692upSUMDq1aunLVu2KCkpSV9++aUGDBigVatWWV0WCtDff/+txx57TNHR0fL19bW6HBSCrl27uv5/ww03qGXLlqpZs6a++OIL+fn5WVgZCpLT6dSNN96ol19+WZLUtGlTbdu2Te+//74GDBhgcXWFgytmHiooKEilSpXKNHLPkSNHFBISYlFVyEpGf+TUVyEhITp69Kjb/HPnzunEiRNubbJax8XbyK7NxfMvVwtyNnLkSH333XdasWKFqlWr5poeEhKis2fPKjEx0a39pcc/v30YEBAgPz+/XL32c1MLsubj46M6deqoefPmmjRpksLDw/XWW2/Rv8XIxo0bdfToUTVr1kylS5dW6dKltWrVKr399tsqXbq0qlSpQl8XM4GBgbr++uu1e/duXsvFSNWqVdWgQQO3aWFhYa6PrRbH378IZh7Kx8dHzZs31/Lly13TnE6nli9frlatWllYGS517bXXKiQkxK2vkpOTtX79eldftWrVSomJidq4caOrzY8//iin06mWLVu62sTExMjhcLjaREdHq169eqpQoYKrzcXbyWiTsZ3c1IKsGWM0cuRILViwQD/++KOuvfZat/nNmzeXt7e327GNi4tTfHy8Wz9v3brV7YdAdHS0AgICXD9cLteHuXnt56YW5I7T6VR6ejr9W4x06NBBW7du1ZYtW1yPG2+8Uffff7/r//R18ZKSkqI9e/aoatWqvJaLkVtvvTXT19b88ccfqlmzpqRi+vtXrocJQZGbO3eusdvtZtasWWbHjh1m2LBhJjAw0G0UIRSNU6dOmc2bN5vNmzcbSWbKlClm8+bN5q+//jLGXBgiNTAw0Hz99dfmt99+M927d89yuNamTZua9evXm9WrV5u6deu6DdeamJhoqlSpYh544AGzbds2M3fuXOPv759puNbSpUub119/3ezcudOMHz8+y+FaL1cLMhs+fLgpX768WblypdsQzKdPn3a1eeihh0yNGjXMjz/+aDZs2GBatWplWrVq5ZqfMQRz586dzZYtW8ySJUtMcHBwlkMwjxkzxuzcudNMmzYtyyGYL/fav1wtyOyf//ynWbVqldm7d6/57bffzD//+U9js9nM0qVLjTH0b3F28aiMxtDXV7snnnjCrFy50uzdu9f8/PPPpmPHjiYoKMgcPXrUGEP/Fhe//PKLKV26tHnppZfMrl27zOzZs42/v7/59NNPXW2K2+9fBDMP984775gaNWoYHx8f06JFC7Nu3TqrSyqRVqxYYSRlegwYMMAYc2GY1Oeff95UqVLF2O1206FDBxMXF+e2juPHj5s+ffqYsmXLmoCAADNo0CBz6tQptzaxsbGmdevWxm63m2uuuca88sormWr54osvzPXXX298fHxMw4YNzffff+82Pze1ILOs+leSmTlzpqtNWlqaefjhh02FChWMv7+/ueuuu8yhQ4fc1rNv3z7TtWtX4+fnZ4KCgswTTzxhHA6HW5sVK1aYJk2aGB8fH1O7dm23bWS43Gs/N7XA3eDBg03NmjWNj4+PCQ4ONh06dHCFMmPo3+Ls0mBGX1/d7rvvPlO1alXj4+NjrrnmGnPfffe5fbcV/Vt8fPvtt6ZRo0bGbreb+vXrmw8//NBtfnH7/ctmjDG5v74GAAAAACho3GMGAAAAABYjmAEAAACAxQhmAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAKDFsNpsWLlx4xet5/vnnNWzYsCsv6AokJCSocuXK2r9/v6V1AAAKBsEMAFDkBg4cKJvNJpvNJh8fH9WpU0cvvPCCzp07V6jbPXTokLp27XpF6zh8+LDeeustPfvss65p7dq106hRozK1nTVrlgIDA13PT58+rbFjx+q6666Tr6+vgoOD1bZtW3399ddu68o4Nna7Xddcc426deum+fPnu607KChI/fv31/jx469ofwAAnoFgBgCwRJcuXXTo0CHt2rVLTzzxhKKiovTaa69l2fbs2bMFss2QkBDZ7fYrWsdHH32kW265RTVr1szzsg899JDmz5+vd955R7///ruWLFmie+65R8ePH3drN3ToUB06dEh79uzRV199pQYNGqh3796ZrtINGjRIs2fP1okTJ65onwAA1iOYAQAsYbfbFRISopo1a2r48OHq2LGjvvnmG0kXrqj16NFDL730kkJDQ1WvXj1J0t9//617771XgYGBqlixorp37659+/a5rXfGjBlq2LCh7Ha7qlatqpEjR7rmXfpRxq1bt+of//iH/Pz8VKlSJQ0bNkwpKSk51j137lx169YtX/v8zTff6JlnntFtt92mWrVqqXnz5nrkkUc0ePBgt3b+/v4KCQlRtWrVdPPNN+vVV1/VBx98oOnTp2vZsmWudg0bNlRoaKgWLFiQr3oAAJ6DYAYA8Ah+fn5uV8aWL1+uuLg4RUdH67vvvpPD4VBkZKTKlSunn376ST///LPKli2rLl26uJZ77733NGLECA0bNkxbt27VN998ozp16mS5vdTUVEVGRqpChQr69ddfNW/ePC1btswtyF3qxIkT2rFjh2688cZ87WNISIgWLVqkU6dO5XnZAQMGqEKFCpk+0tiiRQv99NNP+aoHAOA5SltdAACgZDPGaPny5frhhx/0yCOPuKaXKVNGH330kXx8fCRJn376qZxOpz766CPZbDZJ0syZMxUYGKiVK1eqc+fOmjhxop544gk99thjrvXcdNNNWW53zpw5OnPmjP7zn/+oTJkykqSpU6eqW7duevXVV1WlSpVMy8THx8sYo9DQ0Hzt64cffqj7779flSpVUnh4uFq3bq177rlHt95662WX9fLy0vXXX5/pCmFoaKg2b96cr3oAAJ6DK2YAAEt89913Klu2rHx9fdW1a1fdd999ioqKcs1v3LixK5RJUmxsrHbv3q1y5cqpbNmyKlu2rCpWrKgzZ85oz549Onr0qA4ePKgOHTrkavs7d+5UeHi4K5RJ0q233iqn06m4uLgsl0lLS5Mk+fr65mOPpYiICP35559avny57rnnHm3fvl1t2rTRiy++mKvljTGuUJrBz89Pp0+fzlc9AADPwRUzAIAl2rdvr/fee08+Pj4KDQ1V6dLuP5IuDkySlJKSoubNm2v27NmZ1hUcHCwvr8L/W2NQUJAk6eTJkwoODnZNDwgIUFJSUqb2iYmJKl++vNs0b29vtWnTRm3atNHTTz+tiRMn6oUXXtDTTz/tFkQvdf78ee3atSvTFcATJ0641QIAuDpxxQwAYIkyZcqoTp06qlGjRqZQlpVmzZpp165dqly5surUqeP2KF++vMqVK6datWpp+fLludp+WFiYYmNjlZqa6pr2888/y8vLyzXYyKWuu+46BQQEaMeOHW7T69Wrp02bNmVqv2nTJl1//fU51tGgQQOdO3dOZ86cybHdxx9/rJMnT6pnz55u07dt26amTZvmuCwAwPMRzAAAV4X7779fQUFB6t69u3766Sft3btXK1eu1KOPPur6kuWoqCj961//0ttvv61du3Zp06ZNeuedd7Jdn6+vrwYMGKBt27ZpxYoVeuSRR/TAAw9keX+ZdOE+r44dO2r16tVu04cPH64//vhDjz76qH777TfFxcVpypQp+uyzz/TEE0+42rVr104ffPCBNm7cqH379mnRokV65pln1L59ewUEBLjanT59WocPH9b+/fu1bt06Pf3003rooYc0fPhwtW/f3q3dxo0b1blz53wfVwCAZyCYAQCuCv7+/oqJiVGNGjV09913KywsTEOGDNGZM2dcoWbAgAF688039e6776phw4a64447tGvXrmzX98MPP+jEiRO66aabdM8996hDhw6aOnVqjnU8+OCDmjt3rpxOp2ta7dq1FRMTo99//10dO3ZUy5Yt9cUXX2jevHnq0qWLq11kZKQ+/vhjde7cWWFhYXrkkUcUGRmpL774wm0b06dPV9WqVXXdddfp7rvv1o4dO/T555/r3XffdWv39ddfq0aNGmrTpk2ejiUAwPPYjDHG6iIAALhaGGPUsmVLPf744+rTp4+ltdx888169NFH1bdvX0vrAABcOa6YAQCQBzabTR9++KHOnTtnaR0JCQm6++67LQ+HAICCwRUzAAAAALAYV8wAAAAAwGIEMwAAAACwGMEMAAAAACxGMAMAAAAAixHMAAAAAMBiBDMAAAAAsBjBDAAAAAAsRjADAAAAAIsRzAAAAADAYv8PzWDeXpfHjIsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAHHCAYAAACMfE3pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMcUlEQVR4nO3deVhV5f7+8XvLsMEBUEGGRM0R5yk1y/ErhmSlZaamOWRaKZXHsqLBoWMH0+b02Kh2UrPJtEFNNLVjTjmQOU8YaqKCA4KKCs/vj37s45ZBQJaw9f26rnXVftaznvXZa23hZk3bZowxAgAAQJEqVdwFAAAAXI8IWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZN6hq1app4MCBxV3GDel63/Y2m01jx44t7jJQAi1fvlw2m03Lly93tA0cOFDVqlUrtpryY+LEiQoLC1NmZmZxl1Kg7bV//37ZbDbNmDGjwOMmJyerTJkyWrBgQeEKhSRC1nVhxowZstlsWr9+fY7zO3TooAYNGlz1ehYsWMAvzxKoQ4cOstlsjqlChQpq0aKFpk2bViJ+KVyPFixYIJvNppCQELbxdS4lJUWvvfaannvuOZUq9b9fmVn/3h555JEcl3vxxRcdfZKSkq5VuUWmYsWKeuSRR/Tyyy8XdykujZB1g9q5c6c++uijAi2zYMECjRs3zqKKcDUqV66szz77TJ999plefvllXbx4UYMHD9YLL7xwzWs5e/asXnrppWu+3mtp1qxZqlatmg4fPqyff/65uMtxaR999JF27txZ3GXkatq0abp48aL69OmTbZ6Xl5e++eYbnT9/Ptu8zz//XF5eXteixFxVrVpVZ8+e1UMPPVSo5R977DFt3LiRz/hVIGTdoOx2uzw8PIq7jAJJS0sr7hJKLF9fX/Xr10/9+vXTP/7xD/3666+qXLmyJk+erAsXLuS4TGZmps6dO1fktXh5ecnd3b3Ixy0p0tLSNH/+fI0cOVJNmzbVrFmz8rVcXtv7Rv5se3h4yG63F3cZuZo+fbruueeeHANTly5dlJKSooULFzq1r1q1SvHx8erateu1KtPJxYsXdf78edlsNnl5ecnNza1Q49StW1cNGjTI1+lG5IyQdYO6/LqgCxcuaNy4capVq5a8vLxUsWJFtWnTRrGxsZL+Pl8/ZcoUSXI6NZUlLS1NTz/9tEJDQ2W321WnTh29/vrrMsY4rffs2bN68skn5e/vr3Llyumee+7RoUOHsl3HM3bsWNlsNm3btk0PPvigypcvrzZt2kiSNm/erIEDB6p69ery8vJSUFCQHn74YSUnJzutK2uMXbt2qV+/fvL19VVAQIBefvllGWN04MABdevWTT4+PgoKCtIbb7zhtPz58+c1evRoNW/eXL6+vipTpozatm2rZcuW5WsbG2M0fvx4Va5cWaVLl1bHjh21devWHPuePHlSI0aMcGy/mjVr6rXXXiv0qajSpUvr1ltvVVpamo4dOybp7/0WFRWlWbNmqX79+rLb7Vq0aJEk6dChQ3r44YcVGBgou92u+vXra9q0adnGPXfunMaOHavatWvLy8tLwcHBuu+++7R3715Hn5yuydq0aZMiIyPl4+OjsmXLqlOnTlqzZo1Tnyt9BvOSn+2XdX3K66+/rg8//FA1atSQ3W5XixYt9Ntvv+V723777bc6e/asevbsqd69e2vu3Lk5hqfctnfW6f0VK1Zo2LBhqlSpkipXruxY7t///rejf0hIiIYPH66TJ0865o8ZM0YeHh6O/XqpoUOHys/Pz6meK40n/e+Sgs2bN6t9+/YqXbq0atasqa+//lqStGLFCrVq1Ure3t6qU6eOlixZkm3d+dnHObn8WqCC7qeff/5Zbdu2VZkyZeTn56du3bpp+/btTn1Onz6tESNGqFq1arLb7apUqZI6d+6sjRs35llbfHy8Nm/erPDw8Bzn33TTTWrXrp1mz57t1D5r1iw1bNgwx8s0/vvf/6pnz56qUqWK7Ha7QkND9Y9//ENnz57N1nfevHlq0KCBvLy81KBBA3377bfZ+ly6vd5++23H9tq2bVuu12TlZ9wsnTt31vfff5/tZzny5/r9c/MGdOrUqRzP/ed2JONSY8eOVUxMjB555BG1bNlSKSkpWr9+vTZu3KjOnTvr0Ucf1V9//aXY2Fh99tlnTssaY3TPPfdo2bJlGjx4sJo0aaKffvpJo0aN0qFDh/TWW285+g4cOFBffvmlHnroId16661asWJFnn/t9ezZU7Vq1dK//vUvxz/y2NhY7du3T4MGDVJQUJC2bt2qDz/8UFu3btWaNWucwp8k9erVS3Xr1tWECRP0448/avz48apQoYI++OAD/d///Z9ee+01zZo1S88884xatGihdu3aSfr7WoyPP/5Yffr00ZAhQ3T69Gl98sknioiI0Lp169SkSZM8t+no0aM1fvx43Xnnnbrzzju1ceNG3XHHHdlOLZw5c0bt27fXoUOH9Oijj6pKlSpatWqVoqOjdfjwYb399ttX2n052rdvn9zc3OTn5+do+/nnn/Xll18qKipK/v7+qlatmo4cOaJbb73VEQoCAgK0cOFCDR48WCkpKRoxYoQkKSMjQ3fddZeWLl2q3r1766mnntLp06cVGxurLVu2qEaNGjnWsXXrVrVt21Y+Pj569tln5eHhoQ8++EAdOnRw/PKWrvwZzE1Bt9/s2bN1+vRpPfroo7LZbJo4caLuu+8+7du3L19Hd2fNmqWOHTsqKChIvXv31vPPP6/vv/9ePXv2zNY3p+0dFxcnSRo2bJgCAgI0evRox5GssWPHaty4cQoPD9fjjz+unTt3aurUqfrtt9/066+/ysPDQw899JBeeeUVffHFF4qKinKs6/z58/r666/Vo0cPx1GX/IyX5cSJE7rrrrvUu3dv9ezZU1OnTlXv3r01a9YsjRgxQo899pgefPBBTZo0Sffff78OHDigcuXKFWgfF0R+9tOSJUsUGRmp6tWra+zYsTp79qzee+893X777dq4caMjvD322GP6+uuvFRUVpXr16ik5OVkrV67U9u3b1axZs1xrWLVqlSTl2efBBx/UU089pdTUVJUtW1YXL17UV199pZEjR+YYvr/66iudOXNGjz/+uCpWrKh169bpvffe08GDB/XVV185+i1evFg9evRQvXr1FBMTo+TkZA0aNMgpkF9q+vTpOnfunIYOHSq73a4KFSrk+EdaQcdt3ry53nrrLW3durVIru294Ri4vOnTpxtJeU7169d3WqZq1apmwIABjteNGzc2Xbt2zXM9w4cPNzl9ZObNm2ckmfHjxzu133///cZms5k9e/YYY4zZsGGDkWRGjBjh1G/gwIFGkhkzZoyjbcyYMUaS6dOnT7b1nTlzJlvb559/biSZX375JdsYQ4cOdbRdvHjRVK5c2dhsNjNhwgRH+4kTJ4y3t7fTNrl48aJJT093Ws+JEydMYGCgefjhh7PVcKmjR48aT09P07VrV5OZmelof+GFF4wkp/X885//NGXKlDG7du1yGuP55583bm5uJiEhIc91tW/f3oSFhZljx46ZY8eOme3bt5snn3zSSDJ33323o58kU6pUKbN161an5QcPHmyCg4NNUlKSU3vv3r2Nr6+vY3tPmzbNSDJvvvlmthoufY+X78vu3bsbT09Ps3fvXkfbX3/9ZcqVK2fatWvnaMvPZzAn+d1+8fHxRpKpWLGiOX78uKPf/PnzjSTz/fffX3FdR44cMe7u7uajjz5ytN12222mW7du2frmtr2z/r22adPGXLx40dGe9Zm54447TEZGhqN98uTJRpKZNm2ao61169amVatWTuPOnTvXSDLLli0r8Hjt27c3kszs2bMdbTt27HC8hzVr1jjaf/rpJyPJTJ8+3dGW3328bNkypxqNMWbAgAGmatWqjtcF2U9NmjQxlSpVMsnJyY6233//3ZQqVcr079/f0ebr62uGDx9uCuqll14ykszp06ezzZNkhg8fbo4fP248PT3NZ599Zowx5scffzQ2m83s37/f8TPo2LFjjuVy+vkVExNjbDab+fPPP53eW3BwsDl58qSjbfHixUZSjtvLx8fHHD161GncrHmX7qv8jptl1apVRpL54osvct9QyBWnC68jU6ZMUWxsbLapUaNGV1zWz89PW7du1e7duwu83gULFsjNzU1PPvmkU/vTTz8tY4zjeoWsU1PDhg1z6vfEE0/kOvZjjz2Wrc3b29vx/+fOnVNSUpJuvfVWScrx8P+ld/+4ubnplltukTFGgwcPdrT7+fmpTp062rdvn1NfT09PSX9fT3P8+HFdvHhRt9xyyxVPMyxZskTnz5/XE0884XRkLeuo0KW++uortW3bVuXLl1dSUpJjCg8PV0ZGhn755Zc81yVJO3bsUEBAgAICAlS3bl2999576tq1a7ZTfu3bt1e9evUcr40x+uabb3T33XfLGOO0/oiICJ06dcrxXr/55hv5+/vnuL8uP3qYJSMjQ4sXL1b37t1VvXp1R3twcLAefPBBrVy5UikpKZIK/xks6Pbr1auXypcv73jdtm1bSXLa97mZM2eOSpUqpR49ejja+vTpo4ULF+rEiRPZ+l++vS81ZMgQp2tlsj4zI0aMcLqLbciQIfLx8dGPP/7oaOvfv7/Wrl3rdJp21qxZCg0NVfv27Qs8niSVLVtWvXv3dryuU6eO/Pz8VLduXacjUVn/n7W9CrKPC+JK++nw4cOKi4vTwIEDVaFCBUe/Ro0aqXPnzk6PHvDz89PatWv1119/FaiG5ORkubu7q2zZsrn2KV++vLp06aLPP/9c0t9H4G677TZVrVo1x/6X/vxKS0tTUlKSbrvtNhljtGnTJqf3NmDAAPn6+jr6d+7cOdfPU48ePRQQEJDn+ynMuFn7wBXvkCwJCFnXkZYtWyo8PDzbdOkPqty88sorOnnypGrXrq2GDRtq1KhR2rx5c77W++effyokJMRx6iBL3bp1HfOz/luqVCndfPPNTv1q1qyZ69iX95Wk48eP66mnnlJgYKC8vb0VEBDg6Hfq1Kls/atUqeL02tfXV15eXvL398/Wfvkvyk8//VSNGjVyXCMUEBCgH3/8Mcf1XCrrPdeqVcupPSAgINv+2L17txYtWuQISVlT1nUgR48ezXNd0t/X2MXGxmrJkiVauXKlEhMT9cMPP2R7j5dvz2PHjunkyZP68MMPs61/0KBBTuvfu3ev6tSpU6CL2o8dO6YzZ86oTp062ebVrVtXmZmZOnDggKTCfwYLuv0u/zxk7Y+cQtLlZs6cqZYtWyo5OVl79uzRnj171LRpU50/f97pVE+WnD6/uc3L+sxcvq08PT1VvXp1x3zp7wBit9sdF92fOnVKP/zwg/r27esIvAUZT/r7DtXLw7Kvr69CQ0OztUn/214F2ccFcaX9lNv7y1pvUlKS4zTsxIkTtWXLFoWGhqply5YaO3ZsvkJ1fj344IOKjY1VQkKC5s2bpwcffDDXvgkJCY5gWLZsWQUEBDiCcdbPldx+fkg5v18p789alsKMa/7/ZRq5/SGFvHFNFiRJ7dq10969ezV//nwtXrxYH3/8sd566y29//77uT4H5lq49K++LA888IBWrVqlUaNGqUmTJipbtqwyMzPVpUuXHK9ByOnOmtzutjGXXNw5c+ZMDRw4UN27d9eoUaNUqVIlubm5KSYmxukIwtXKzMxU586d9eyzz+Y4v3bt2lcco0yZMrlenHupy7dn1vbq16+fBgwYkOMy+TkSWhQK+xks6PbLz77Pye7dux0XXuf0S2rWrFkaOnSoU1tOn9/8zLuS8uXL66677tKsWbM0evRoff3110pPT1e/fv0KPWZu26Ww2+tqFeV6H3jgAbVt21bffvutFi9erEmTJum1117T3LlzFRkZmetyFStW1MWLF3X69Olsf0Re6p577pHdbteAAQOUnp6uBx54IMd+GRkZ6ty5s44fP67nnntOYWFhKlOmjA4dOqSBAwde1TPXrubzlJesUHv5H2zIH0IWHCpUqKBBgwZp0KBBSk1NVbt27TR27FjHL7jc/pKpWrWqlixZku0H0Y4dOxzzs/6bmZmp+Ph4p19Se/bsyXeNJ06c0NKlSzVu3DiNHj3a0V6Y05xX8vXXX6t69eqaO3eu03sfM2bMFZfNes+7d+92OoVy7NixbEdMatSoodTU1HyFpKIWEBCgcuXKKSMj44rrr1GjhtauXasLFy7k+/EfAQEBKl26dI7PQdqxY4dKlSrldKTkSp/B3Oq6Fttv1qxZ8vDw0GeffZYtAKxcuVLvvvuuEhISsh2Bya+sz8zOnTudPjPnz59XfHx8tvfXv39/devWTb/99ptmzZqlpk2bqn79+oUer7AKuo+LyqXvL6f1+vv7q0yZMo624OBgDRs2TMOGDdPRo0fVrFkzvfrqq3mGrLCwMEl/32WY1x8b3t7e6t69u2bOnKnIyMhcA8kff/yhXbt26dNPP1X//v0d7ZffQXvpz4/LXc0zxQozbnx8vKT/nZlAwXC6EJKU7fEHZcuWVc2aNZWenu5oy/qBdfnt33feeacyMjI0efJkp/a33npLNpvN8UMsIiJC0t+3lF/qvffey3edWb/cLv9rtrB34BV0XWvXrtXq1auvuGx4eLg8PDz03nvvOS2fU50PPPCAVq9erZ9++inbvJMnT+rixYuFqD5/3Nzc1KNHD33zzTfasmVLtvmXPiagR48eSkpKyrafpdyPLri5uemOO+7Q/PnztX//fkf7kSNHNHv2bLVp00Y+Pj6S8vcZzMm12n6zZs1S27Zt1atXL91///1O06hRoyTJcV1OYYSHh8vT01Pvvvuu0/b85JNPdOrUqWx34Wb9Mn/ttde0YsWKbEexCjpeYRVkHxel4OBgNWnSRJ9++qnTz6QtW7Zo8eLFuvPOOyX9ffTo8tP7lSpVUkhIyBU/W61bt5akXL9N41LPPPOMxowZk+cT0nP6mWKM0TvvvJPre7u09tjYWG3btu2KteSmMONu2LBBvr6+TgEe+ceRLEiS6tWrpw4dOqh58+aqUKGC1q9f77jlOUvz5s0lSU8++aQiIiLk5uam3r176+6771bHjh314osvav/+/WrcuLEWL16s+fPna8SIEY5b+5s3b64ePXro7bffVnJysuMRDrt27ZKUv3P+Pj4+ateunSZOnKgLFy7opptu0uLFix1/bRWlu+66S3PnztW9996rrl27Kj4+Xu+//77q1aun1NTUPJcNCAjQM888o5iYGN1111268847tWnTJi1cuDDbX7mjRo3Sd999p7vuuksDBw5U8+bNlZaWpj/++ENff/219u/fb+mh+gkTJmjZsmVq1aqVhgwZonr16un48ePauHGjlixZouPHj0v6+8jJf/7zH40cOVLr1q1T27ZtlZaWpiVLlmjYsGHq1q1bjuOPHz9esbGxatOmjYYNGyZ3d3d98MEHSk9P18SJEx398vMZzMm12H5r167Vnj17cq3lpptuUrNmzTRr1iw999xzhVpHQECAoqOjNW7cOHXp0kX33HOPdu7cqX//+99q0aJFthDl4eGh3r17a/LkyXJzc8v2RPKCjnc18ruPi9qkSZMUGRmp1q1ba/DgwY5HOPj6+jqe1Xb69GlVrlxZ999/vxo3bqyyZctqyZIl+u2337I9G+9y1atXV4MGDbRkyRI9/PDDefZt3LixGjdunGefsLAw1ahRQ88884wOHTokHx8fffPNNzleDxgTE6OuXbuqTZs2evjhh3X8+HG99957ql+//hV//uSloOPGxsbq7rvv5pqswrrWtzOi6GXdEv7bb7/lOL99+/ZXfITD+PHjTcuWLY2fn5/x9vY2YWFh5tVXXzXnz5939Ll48aJ54oknTEBAgLHZbE6Pczh9+rT5xz/+YUJCQoyHh4epVauWmTRpktOt/cYYk5aWZoYPH24qVKhgypYta7p372527txpJDk9UiGnW5+zHDx40Nx7773Gz8/P+Pr6mp49e5q//vor18dAXD7GgAEDTJkyZa64nTIzM82//vUvU7VqVWO3203Tpk3NDz/8kO2W89xkZGSYcePGmeDgYOPt7W06dOhgtmzZkm3bZ22/6OhoU7NmTePp6Wn8/f3NbbfdZl5//XWnfZCTnPZvTvT/bznPyZEjR8zw4cNNaGio8fDwMEFBQaZTp07mww8/dOp35swZ8+KLL5qbb77Z0e/+++93unX/8v1gjDEbN240ERERpmzZsqZ06dKmY8eOZtWqVU598vMZzE1+tl/W7eyTJk3KcdtcXvOlnnjiCSPJ6X1ebuzYsUaS+f333x1j5rS9r/TvdfLkySYsLMx4eHiYwMBA8/jjj5sTJ07k2HfdunVGkrnjjjtyrSs/4+X2GapatWqOj9XI6b3lZx8X5BEO+d1PS5YsMbfffrvx9vY2Pj4+5u677zbbtm1zzE9PTzejRo0yjRs3NuXKlTNlypQxjRs3Nv/+97+zjZ+TN99805QtWzbboxfy+veUJaefQdu2bTPh4eGmbNmyxt/f3wwZMsT8/vvv2R61YIwx33zzjalbt66x2+2mXr16Zu7cuQXaXjk9wiG/4xpjzPbt240ks2TJkjzfJ3JnM4bHuKJ4xcXFqWnTppo5c6b69u1b3OUALuP3339XkyZN9J///KfQ30+HvJ06dUrVq1fXxIkTnR77ciMYMWKEfvnlF23YsIEjWYXENVm4pnL66oi3335bpUqVcjxpHUD+fPTRRypbtqzuu+++4i7luuXr66tnn31WkyZNuqq7/1xNcnKyPv74Y40fP56AdRU4koVraty4cdqwYYM6duwod3d3LVy4UAsXLtTQoUP1wQcfFHd5gEv4/vvvtW3bNr388suKiorSm2++WdwlAcgBIQvXVGxsrMaNG6dt27YpNTVVVapU0UMPPaQXX3yxQA+5BG5kWd85GRERoc8++yzPZzgBKD6ELAAAAAtwTRYAAIAFCFkAAAAW4CKYHGRmZuqvv/5SuXLluKsCAAAXYYzR6dOnFRISolKliv84EiErB3/99Zcl37UFAACsd+DAAVWuXLm4yyBk5STrTp0DBw5Y8p1bAACg6KWkpCg0NLTE3HFLyMpB1ilCHx8fQhYAAC6mpFzqU/wnLAEAAK5DhCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALuBd3AYCrSUhIUFJSkiVj+/v7q0qVKpaMDQC4tghZQAEkJCSoTlhdnTt7xpLxvbxLa+eO7QQtALgOELKAAkhKStK5s2dU8a6n5VExtEjHvpB8QMk/vKGkpCRCFgBcBwhZQCF4VAyVPahmcZcBACjBuPAdAADAAoQsAAAACxRryPrll1909913KyQkRDabTfPmzXOab7PZcpwmTZqU65hjx47N1j8sLMzidwIAAOCsWENWWlqaGjdurClTpuQ4//Dhw07TtGnTZLPZ1KNHjzzHrV+/vtNyK1eutKJ8AACAXBXrhe+RkZGKjIzMdX5QUJDT6/nz56tjx46qXr16nuO6u7tnWxYAAOBacplrso4cOaIff/xRgwcPvmLf3bt3KyQkRNWrV1ffvn2VkJBwDSoEAAD4H5d5hMOnn36qcuXK6b777suzX6tWrTRjxgzVqVNHhw8f1rhx49S2bVtt2bJF5cqVy3GZ9PR0paenO16npKQUae0AAODG4zIha9q0aerbt6+8vLzy7Hfp6cdGjRqpVatWqlq1qr788stcj4LFxMRo3LhxRVovAAC4sbnE6cL//ve/2rlzpx555JECL+vn56fatWtrz549ufaJjo7WqVOnHNOBAweuplwAAADXCFmffPKJmjdvrsaNGxd42dTUVO3du1fBwcG59rHb7fLx8XGaAAAArkaxhqzU1FTFxcUpLi5OkhQfH6+4uDinC9VTUlL01Vdf5XoUq1OnTpo8ebLj9TPPPKMVK1Zo//79WrVqle699165ubmpT58+lr4XAACASxXrNVnr169Xx44dHa9HjhwpSRowYIBmzJghSZozZ46MMbmGpL179yopKcnx+uDBg+rTp4+Sk5MVEBCgNm3aaM2aNQoICLDujQAAAFymWENWhw4dZIzJs8/QoUM1dOjQXOfv37/f6fWcOXOKojQAAICr4hLXZAEAALgaQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFijVk/fLLL7r77rsVEhIim82mefPmOc0fOHCgbDab09SlS5crjjtlyhRVq1ZNXl5eatWqldatW2fROwAAAMhZsYastLQ0NW7cWFOmTMm1T5cuXXT48GHH9Pnnn+c55hdffKGRI0dqzJgx2rhxoxo3bqyIiAgdPXq0qMsHAADIlXtxrjwyMlKRkZF59rHb7QoKCsr3mG+++aaGDBmiQYMGSZLef/99/fjjj5o2bZqef/75q6oXAAAgv4o1ZOXH8uXLValSJZUvX17/93//p/Hjx6tixYo59j1//rw2bNig6OhoR1upUqUUHh6u1atX57qO9PR0paenO16npKQU3RsArnMJCQlKSkoq8nH9/f1VpUqVIh8XAK6VEh2yunTpovvuu08333yz9u7dqxdeeEGRkZFavXq13NzcsvVPSkpSRkaGAgMDndoDAwO1Y8eOXNcTExOjcePGFXn9wPUuISFBdcLq6tzZM0U+tpd3ae3csZ2gBcBlleiQ1bt3b8f/N2zYUI0aNVKNGjW0fPlyderUqcjWEx0drZEjRzpep6SkKDQ0tMjGB65XSUlJOnf2jCre9bQ8Khbdv5kLyQeU/MMbSkpKImQBcFklOmRdrnr16vL399eePXtyDFn+/v5yc3PTkSNHnNqPHDmS53Vddrtddru9yOsFbhQeFUNlD6pZ3GUAQIniUs/JOnjwoJKTkxUcHJzjfE9PTzVv3lxLly51tGVmZmrp0qVq3br1tSoTAACgeENWamqq4uLiFBcXJ0mKj49XXFycEhISlJqaqlGjRmnNmjXav3+/li5dqm7duqlmzZqKiIhwjNGpUydNnjzZ8XrkyJH66KOP9Omnn2r79u16/PHHlZaW5rjbEAAA4Foo1tOF69evV8eOHR2vs66LGjBggKZOnarNmzfr008/1cmTJxUSEqI77rhD//znP51O7e3du9fpzqZevXrp2LFjGj16tBITE9WkSRMtWrQo28XwAAAAVirWkNWhQwcZY3Kd/9NPP11xjP3792dri4qKUlRU1NWUBgAAcFVc6posAAAAV0HIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALuBd3ASg6CQkJSkpKsmRsf39/ValSxZKxAQC4HhGyrhMJCQmqE1ZX586esWR8L+/S2rljO0ELAIB8ImRdJ5KSknTu7BlVvOtpeVQMLdKxLyQfUPIPbygpKYmQBQBAPhGyrjMeFUNlD6pZ3GUAAHDD48J3AAAACxCyAAAALFCsIeuXX37R3XffrZCQENlsNs2bN88x78KFC3ruuefUsGFDlSlTRiEhIerfv7/++uuvPMccO3asbDab0xQWFmbxOwEAAHBWrCErLS1NjRs31pQpU7LNO3PmjDZu3KiXX35ZGzdu1Ny5c7Vz507dc889Vxy3fv36Onz4sGNauXKlFeUDAADkqlgvfI+MjFRkZGSO83x9fRUbG+vUNnnyZLVs2VIJCQl53uXm7u6uoKCgIq0VAACgIFzqmqxTp07JZrPJz88vz367d+9WSEiIqlevrr59+yohISHP/unp6UpJSXGaAAAArobLhKxz587pueeeU58+feTj45Nrv1atWmnGjBlatGiRpk6dqvj4eLVt21anT5/OdZmYmBj5+vo6ptDQon3OFAAAuPG4RMi6cOGCHnjgARljNHXq1Dz7RkZGqmfPnmrUqJEiIiK0YMECnTx5Ul9++WWuy0RHR+vUqVOO6cCBA0X9FgAAwA2mxD+MNCtg/fnnn/r555/zPIqVEz8/P9WuXVt79uzJtY/dbpfdbr/aUgEAABxK9JGsrIC1e/duLVmyRBUrVizwGKmpqdq7d6+Cg4MtqBAAACBnxRqyUlNTFRcXp7i4OElSfHy84uLilJCQoAsXLuj+++/X+vXrNWvWLGVkZCgxMVGJiYk6f/68Y4xOnTpp8uTJjtfPPPOMVqxYof3792vVqlW699575ebmpj59+lzrtwcAAG5gxXq6cP369erYsaPj9ciRIyVJAwYM0NixY/Xdd99Jkpo0aeK03LJly9ShQwdJ0t69e5WUlOSYd/DgQfXp00fJyckKCAhQmzZttGbNGgUEBFj7ZgAAAC5RrCGrQ4cOMsbkOj+veVn279/v9HrOnDlXWxYAAMBVK9HXZAEAALgqQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYIFChaxq1arplVdeUUJCQlHXAwAAcF0oVMgaMWKE5s6dq+rVq6tz586aM2eO0tPTi7o2AAAAl1XokBUXF6d169apbt26euKJJxQcHKyoqCht3LixqGsEAABwOVd1TVazZs307rvv6q+//tKYMWP08ccfq0WLFmrSpImmTZsmY0xR1QkAAOBS3K9m4QsXLujbb7/V9OnTFRsbq1tvvVWDBw/WwYMH9cILL2jJkiWaPXt2UdUKAADgMgoVsjZu3Kjp06fr888/V6lSpdS/f3+99dZbCgsLc/S599571aJFiyIrFAAAwJUUKmS1aNFCnTt31tSpU9W9e3d5eHhk63PzzTerd+/eV10gAACAKypUyNq3b5+qVq2aZ58yZcpo+vTphSoKAADA1RXqwvejR49q7dq12drXrl2r9evXX3VRAAAArq5QIWv48OE6cOBAtvZDhw5p+PDhV10UAACAqytUyNq2bZuaNWuWrb1p06batm3bVRcFAADg6goVsux2u44cOZKt/fDhw3J3v6qnQgAAAFwXChWy7rjjDkVHR+vUqVOOtpMnT+qFF15Q586di6w4AAAAV1Wow06vv/662rVrp6pVq6pp06aSpLi4OAUGBuqzzz4r0gIBAABcUaFC1k033aTNmzdr1qxZ+v333+Xt7a1BgwapT58+OT4zCwAA4EZT6AuoypQpo6FDhxZlLQAAANeNQoes3bt3a9myZTp69KgyMzOd5o0ePfqqCwMAAHBlhbrw/aOPPlLdunU1evRoff311/r2228d07x58/I9zi+//KK7775bISEhstls2ZY1xmj06NEKDg6Wt7e3wsPDtXv37iuOO2XKFFWrVk1eXl5q1aqV1q1bV8B3CAAAcHUKFbLGjx+vV199VYmJiYqLi9OmTZsc08aNG/M9Tlpamho3bqwpU6bkOH/ixIl699139f7772vt2rUqU6aMIiIidO7cuVzH/OKLLzRy5EiNGTNGGzduVOPGjRUREaGjR48W+H0CAAAUVqFC1okTJ9SzZ8+rXnlkZKTGjx+ve++9N9s8Y4zefvttvfTSS+rWrZsaNWqk//znP/rrr7/yPFr25ptvasiQIRo0aJDq1aun999/X6VLl9a0adOuul4AAID8KtQ1WT179tTixYv12GOPFXU9DvHx8UpMTFR4eLijzdfXV61atdLq1avVu3fvbMucP39eGzZsUHR0tKOtVKlSCg8P1+rVq3NdV3p6utLT0x2vU1JSiuhdACiJEhISlJSUZMnY/v7+qlKliiVjA3AthQpZNWvW1Msvv6w1a9aoYcOG2R7b8OSTT151YYmJiZKkwMBAp/bAwEDHvMslJSUpIyMjx2V27NiR67piYmI0bty4q6wYgCtISEhQnbC6Onf2jCXje3mX1s4d2wlaAAoXsj788EOVLVtWK1as0IoVK5zm2Wy2IglZ11J0dLRGjhzpeJ2SkqLQ0NBirAiAVZKSknTu7BlVvOtpeVQs2n/nF5IPKPmHN5SUlETIAlC4kBUfH1/UdWQTFBQkSTpy5IiCg4Md7UeOHFGTJk1yXMbf319ubm7ZvlfxyJEjjvFyYrfbZbfbr75oAC7Do2Ko7EE1i7sMANexQl34nuX8+fPauXOnLl68WFT1ONx8880KCgrS0qVLHW0pKSlau3atWrduneMynp6eat68udMymZmZWrp0aa7LAAAAWKFQIevMmTMaPHiwSpcurfr16yshIUGS9MQTT2jChAn5Hic1NVVxcXGKi4uT9PcRsri4OCUkJMhms2nEiBEaP368vvvuO/3xxx/q37+/QkJC1L17d8cYnTp10uTJkx2vR44cqY8++kiffvqptm/frscff1xpaWkaNGhQYd4qAABAoRQqZEVHR+v333/X8uXL5eXl5WgPDw/XF198ke9x1q9fr6ZNmzq+ZHrkyJFq2rSp44nxzz77rJ544gkNHTpULVq0UGpqqhYtWuS0zr179zrdJdSrVy+9/vrrGj16tJo0aaK4uDgtWrQo28XwAAAAVirUNVnz5s3TF198oVtvvVU2m83RXr9+fe3duzff43To0EHGmFzn22w2vfLKK3rllVdy7bN///5sbVFRUYqKisp3HQAAAEWtUEeyjh07pkqVKmVrT0tLcwpdAAAAN6pChaxbbrlFP/74o+N1VrD6+OOPucAcAABAhTxd+K9//UuRkZHatm2bLl68qHfeeUfbtm3TqlWrsj03CwAA4EZUqCNZbdq0UVxcnC5evKiGDRtq8eLFqlSpklavXq3mzZsXdY0AAAAup1BHsiSpRo0a+uijj4qyFgAAgOtGoUJW1nOxcsPXSQAAgBtdoUJWtWrV8ryLMCMjo9AFAQAAXA8KFbI2bdrk9PrChQvatGmT3nzzTb366qtFUhgAAIArK1TIaty4cba2W265RSEhIZo0aZLuu+++qy4MAADAlV3VF0Rfrk6dOvrtt9+KckgAAACXVKgjWSkpKU6vjTE6fPiwxo4dq1q1ahVJYQAAAK6sUCHLz88v24XvxhiFhoZqzpw5RVIYAACAKytUyPr555+dQlapUqUUEBCgmjVryt290I/ewg0oISFBSUlJlozt7+/vko8T2b59e5GP6arbAgBcWaESUYcOHYq4DNyIEhISVCesrs6dPWPJ+F7epbVzx3aXCRcZqSckm039+vUr8rFdbVsAwPWgUCErJiZGgYGBevjhh53ap02bpmPHjum5554rkuJwfUtKStK5s2dU8a6n5VExtEjHvpB8QMk/vKGkpCSXCRaZ6amSMUW+PVxxWwDA9aBQIeuDDz7Q7Nmzs7XXr19fvXv3JmShQDwqhsoeVLO4yygx2B4AcH0o1CMcEhMTFRwcnK09ICBAhw8fvuqiAAAAXF2hQlZoaKh+/fXXbO2//vqrQkJCrrooAAAAV1eo04VDhgzRiBEjdOHCBf3f//2fJGnp0qV69tln9fTTTxdpgQAAAK6oUCFr1KhRSk5O1rBhw3T+/HlJkpeXl5577jlFR0cXaYEAAACuqFAhy2az6bXXXtPLL7+s7du3y9vbW7Vq1ZLdbi/q+gAAAFzSVX13YWJioo4fP64aNWrIbrfLGFNUdQEAALi0QoWs5ORkderUSbVr19add97puKNw8ODBXJMFAACgQoasf/zjH/Lw8FBCQoJKly7taO/Vq5cWLVpUZMUBAAC4qkJdk7V48WL99NNPqly5slN7rVq19OeffxZJYQAAAK6sUEey0tLSnI5gZTl+/DgXvwMAAKiQIatt27b6z3/+43hts9mUmZmpiRMnqmPHjkVWHAAAgKsq1OnCiRMnqlOnTlq/fr3Onz+vZ599Vlu3btXx48dzfBI8AADAjaZQR7IaNGigXbt2qU2bNurWrZvS0tJ03333adOmTapRo0ZR1wgAAOByCnwk68KFC+rSpYvef/99vfjii1bUBAAA4PIKfCTLw8NDmzdvtqIWAACA60ahrsnq16+fPvnkE02YMKGo60EJtn379hI93rVYx7Wo2SpW1G719nDFmgEgS6FC1sWLFzVt2jQtWbJEzZs3V5kyZZzmv/nmm0VSHEqGjNQTks2mfv36FXcp+eaKNVvFFbeFK9YMAJcrUMjat2+fqlWrpi1btqhZs2aSpF27djn1sdlsRVcdSoTM9FTJGFW862l5VAwtsnHP7luvU/+dWWTjXcoVa7aKVdtCsm57uGLNAHC5AoWsWrVq6fDhw1q2bJmkv79G591331VgYKAlxaFk8agYKntQzSIb70LygSIbKzeuWLNVinpbSNZvD1esGQCyFOjCd2OM0+uFCxcqLS2tSAsCAAC4HhTqOVlZLg9dAAAA+FuBQpbNZst2zRXXYAEAAGRXoGuyjDEaOHCg40ugz507p8ceeyzb3YVz584tsgKrVaumP//8M1v7sGHDNGXKlGztM2bM0KBBg5za7Ha7zp07V2Q1AQAAXEmBQtaAAQOcXl+L26t/++03ZWRkOF5v2bJFnTt3Vs+ePXNdxsfHRzt37nS85mgbAAC41goUsqZPn25VHbkKCAhwej1hwgTVqFFD7du3z3UZm82moKAgq0sDAADI1VVd+H6tnT9/XjNnztTDDz+c59Gp1NRUVa1aVaGhoerWrZu2bt2a57jp6elKSUlxmgAAAK6GS4WsefPm6eTJkxo4cGCuferUqaNp06Zp/vz5mjlzpjIzM3Xbbbfp4MGDuS4TExMjX19fxxQaWrQPPwQAADcelwpZn3zyiSIjIxUSEpJrn9atW6t///5q0qSJ2rdvr7lz5yogIEAffPBBrstER0fr1KlTjunAAR5WCAAArk6hvruwOPz5559asmRJge9c9PDwUNOmTbVnz55c+9jtdscdkwAAAEXBZY5kTZ8+XZUqVVLXrl0LtFxGRob++OMPBQcHW1QZAABAdi4RsjIzMzV9+nQNGDBA7u7OB9/69++v6Ohox+tXXnlFixcv1r59+7Rx40b169dPf/75px555JFrXTYAALiBucTpwiVLlighIUEPP/xwtnkJCQkqVep/WfHEiRMaMmSIEhMTVb58eTVv3lyrVq1SvXr1rmXJAADgBucSIeuOO+7I9XsSly9f7vT6rbfe0ltvvXUNqgIAAMidS5wuBAAAcDWELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwAKELAAAAAuU6JA1duxY2Ww2pyksLCzPZb766iuFhYXJy8tLDRs21IIFC65RtQAAAP9TokOWJNWvX1+HDx92TCtXrsy176pVq9SnTx8NHjxYmzZtUvfu3dW9e3dt2bLlGlYMAADgAiHL3d1dQUFBjsnf3z/Xvu+88466dOmiUaNGqW7duvrnP/+pZs2aafLkydewYgAAABcIWbt371ZISIiqV6+uvn37KiEhIde+q1evVnh4uFNbRESEVq9enec60tPTlZKS4jQBAABcjRIdslq1aqUZM2Zo0aJFmjp1quLj49W2bVudPn06x/6JiYkKDAx0agsMDFRiYmKe64mJiZGvr69jCg0NLbL3AAAAbkwlOmRFRkaqZ8+eatSokSIiIrRgwQKdPHlSX375ZZGuJzo6WqdOnXJMBw4cKNLxAQDAjce9uAsoCD8/P9WuXVt79uzJcX5QUJCOHDni1HbkyBEFBQXlOa7dbpfdbi+yOgEAAEr0kazLpaamau/evQoODs5xfuvWrbV06VKnttjYWLVu3fpalAcAAOBQokPWM888oxUrVmj//v1atWqV7r33Xrm5ualPnz6SpP79+ys6OtrR/6mnntKiRYv0xhtvaMeOHRo7dqzWr1+vqKio4noLAADgBlWiTxcePHhQffr0UXJysgICAtSmTRutWbNGAQEBkqSEhASVKvW/nHjbbbdp9uzZeumll/TCCy+oVq1amjdvnho0aFBcbwEAANygSnTImjNnTp7zly9fnq2tZ8+e6tmzp0UVAQAA5E+JPl0IAADgqghZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWAACABQhZAAAAFiBkAQAAWICQBQAAYAFCFgAAgAUIWQAAABYgZAEAAFjAvbgLuBElJCQoKSmpSMfcvn17kY4HAACuDiHrGktISFCdsLo6d/ZMcZcCAAAsRMi6xpKSknTu7BlVvOtpeVQMLbJxz+5br1P/nVlk4wEAgKtDyComHhVDZQ+qWWTjXUg+UGRjAQCAq8eF7wAAABYgZAEAAFiAkAUAAGCBEh2yYmJi1KJFC5UrV06VKlVS9+7dtXPnzjyXmTFjhmw2m9Pk5eV1jSoGAAD4W4kOWStWrNDw4cO1Zs0axcbG6sKFC7rjjjuUlpaW53I+Pj46fPiwY/rzzz+vUcUAAAB/K9F3Fy5atMjp9YwZM1SpUiVt2LBB7dq1y3U5m82moKAgq8sDAADIVYk+knW5U6dOSZIqVKiQZ7/U1FRVrVpVoaGh6tatm7Zu3Zpn//T0dKWkpDhNAAAAV8NlQlZmZqZGjBih22+/XQ0aNMi1X506dTRt2jTNnz9fM2fOVGZmpm677TYdPHgw12ViYmLk6+vrmEJDi+4hoQAA4MbkMiFr+PDh2rJli+bMmZNnv9atW6t///5q0qSJ2rdvr7lz5yogIEAffPBBrstER0fr1KlTjunAAR7sCQAArk6JviYrS1RUlH744Qf98ssvqly5coGW9fDwUNOmTbVnz55c+9jtdtnt9qstEwAAwKFEH8kyxigqKkrffvutfv75Z918880FHiMjI0N//PGHgoODLagQAAAgZyX6SNbw4cM1e/ZszZ8/X+XKlVNiYqIkydfXV97e3pKk/v3766abblJMTIwk6ZVXXtGtt96qmjVr6uTJk5o0aZL+/PNPPfLII8X2PgAAwI2nRIesqVOnSpI6dOjg1D59+nQNHDhQkpSQkKBSpf53QO7EiRMaMmSIEhMTVb58eTVv3lyrVq1SvXr1rlXZAAAAJTtkGWOu2Gf58uVOr9966y299dZbFlUEAACQPyX6miwAAABXRcgCAACwQIk+XQgA+FtCQoKSkpIsGdvf319VqlSxZGzgRkbIAoASLiEhQXXC6urc2TOWjO/lXVo7d2wnaAFFjJAFACVcUlKSzp09o4p3PS2PikX7tV8Xkg8o+Yc3lJSURMgCihghCwBchEfFUNmDahZ3GQDyiQvfAQAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsAAhCwAAwALuxV0AAFxvtm/fXqLHu1YSEhKUlJRkydjp6emy2+1FPq6/v7+qVKlS5ONK1m0Pq7aFlWNbuZ1LEkIWABSRjNQTks2mfv36FXcpxS4hIUF1wurq3Nkz1qzAVkoymUU+rJd3ae3csb3IA4Cl28OibWHl2FZt55KGkAUARSQzPVUyRhXveloeFUOLbNyz+9br1H9nFtl410JSUpLOnT1T5NtC+t/2KOqxLyQfUPIPbygpKanIf/lbtT2s2hZWjm3ldi5pCFkAUMQ8KobKHlSzyMa7kHygyMa61op6W0j/2x5WjG01qz4bbOeSiQvfAQAALEDIAgAAsAAhCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAAC7hEyJoyZYqqVasmLy8vtWrVSuvWrcuz/1dffaWwsDB5eXmpYcOGWrBgwTWqFAAA4G8lPmR98cUXGjlypMaMGaONGzeqcePGioiI0NGjR3Psv2rVKvXp00eDBw/Wpk2b1L17d3Xv3l1btmy5xpUDAIAbWYkPWW+++aaGDBmiQYMGqV69enr//fdVunRpTZs2Lcf+77zzjrp06aJRo0apbt26+uc//6lmzZpp8uTJ17hyAABwIyvRIev8+fPasGGDwsPDHW2lSpVSeHi4Vq9eneMyq1evduovSREREbn2BwAAsIJ7cReQl6SkJGVkZCgwMNCpPTAwUDt27MhxmcTExBz7JyYm5rqe9PR0paenO16fOnVKkpSSklLY0nOVmpr69zoT9yjz/LkiG/dC8gFLxrVybGq+NmNTs+uPbWnNxw9KkjZs2OD4+VQUdu7cKcnFtrNF20Kybnu45Of5/2/n1NTUIv89mzWeMaZIxy00U4IdOnTISDKrVq1yah81apRp2bJljst4eHiY2bNnO7VNmTLFVKpUKdf1jBkzxkhiYmJiYmJiug6mAwcOXH0IKQIl+kiWv7+/3NzcdOTIEaf2I0eOKCgoKMdlgoKCCtRfkqKjozVy5EjH68zMTB0/flwVK1aUzWa7infgGlJSUhQaGqoDBw7Ix8enuMtBPrDPXA/7zLWwv1xP1j7btm2bQkJCirscSSX8dKGnp6eaN2+upUuXqnv37pL+DkBLly5VVFRUjsu0bt1aS5cu1YgRIxxtsbGxat26da7rsdvtstvtTm1+fn5XW77L8fHx4YeJi2GfuR72mWthf7mem266SaVKlYxLzkt0yJKkkSNHasCAAbrlllvUsmVLvf3220pLS9OgQYMkSf3799dNN92kmJgYSdJTTz2l9u3b64033lDXrl01Z84crV+/Xh9++GFxvg0AAHCDKfEhq1evXjp27JhGjx6txMRENWnSRIsWLXJc3J6QkOCUWG+77TbNnj1bL730kl544QXVqlVL8+bNU4MGDYrrLQAAgBtQiQ9ZkhQVFZXr6cHly5dna+vZs6d69uxpcVXXD7vdrjFjxmQ7ZYqSi33methnroX95XpK4j6zGVNS7nMEAAC4fpSMK8MAAACuM4QsAAAACxCyAAAALEDIAgAAsAAhywXExMSoRYsWKleunCpVqqTu3bs7vgcry7lz5zR8+HBVrFhRZcuWVY8ePbI9+T4hIUFdu3ZV6dKlValSJY0aNUoXL1506rN8+XI1a9ZMdrtdNWvW1IwZM7LVM2XKFFWrVk1eXl5q1aqV1q1bV+BarndTp05Vo0aNHA8ybN26tRYuXOiYz/4q2SZMmCCbzeb0UGP2WckyduxY2Ww2pyksLMwxn/1VMh06dEj9+vVTxYoV5e3trYYNG2r9+vWO+cYYjR49WsHBwfL29lZ4eLh2797tNMbx48fVt29f+fj4yM/PT4MHD872XZObN29W27Zt5eXlpdDQUE2cODFbLV999ZXCwsLk5eWlhg0basGCBU7z81PLFRXvt/ogPyIiIsz06dPNli1bTFxcnLnzzjtNlSpVTGpqqqPPY489ZkJDQ83SpUvN+vXrza233mpuu+02x/yLFy+aBg0amPDwcLNp0yazYMEC4+/vb6Kjox199u3bZ0qXLm1Gjhxptm3bZt577z3j5uZmFi1a5OgzZ84c4+npaaZNm2a2bt1qhgwZYvz8/MyRI0fyXcuN4LvvvjM//vij2bVrl9m5c6d54YUXjIeHh9myZYsxhv1Vkq1bt85Uq1bNNGrUyDz11FOOdvZZyTJmzBhTv359c/jwYcd07Ngxx3z2V8lz/PhxU7VqVTNw4ECzdu1as2/fPvPTTz+ZPXv2OPpMmDDB+Pr6mnnz5pnff//d3HPPPebmm282Z8+edfTp0qWLady4sVmzZo3573//a2rWrGn69OnjmH/q1CkTGBho+vbta7Zs2WI+//xz4+3tbT744ANHn19//dW4ubmZiRMnmm3btpmXXnrJeHh4mD/++KNAtVwJIcsFHT161EgyK1asMMYYc/LkSePh4WG++uorR5/t27cbSWb16tXGGGMWLFhgSpUqZRITEx19pk6danx8fEx6eroxxphnn33W1K9f32ldvXr1MhEREY7XLVu2NMOHD3e8zsjIMCEhISYmJibftdyoypcvbz7++GP2Vwl2+vRpU6tWLRMbG2vat2/vCFnss5JnzJgxpnHjxjnOY3+VTM8995xp06ZNrvMzMzNNUFCQmTRpkqPt5MmTxm63m88//9wYY8y2bduMJPPbb785+ixcuNDYbDZz6NAhY4wx//73v0358uUd+zFr3XXq1HG8fuCBB0zXrl2d1t+qVSvz6KOP5ruW/OB0oQs6deqUJKlChQqSpA0bNujChQsKDw939AkLC1OVKlW0evVqSdLq1avVsGFDx5PyJSkiIkIpKSnaunWro8+lY2T1yRrj/Pnz2rBhg1OfUqVKKTw83NEnP7XcaDIyMjRnzhylpaWpdevW7K8SbPjw4eratWu27co+K5l2796tkJAQVa9eXX379lVCQoIk9ldJ9d133+mWW25Rz549ValSJTVt2lQfffSRY358fLwSExOdtpWvr69atWrltN/8/Px0yy23OPqEh4erVKlSWrt2raNPu3bt5Onp6egTERGhnTt36sSJE44+ee3b/NSSH4QsF5OZmakRI0bo9ttvd3xVUGJiojw9PbN9qXVgYKASExMdfS79YZI1P2teXn1SUlJ09uxZJSUlKSMjI8c+l45xpVpuFH/88YfKli0ru92uxx57TN9++63q1avH/iqh5syZo40bNzq+B/VS7LOSp1WrVpoxY4YWLVqkqVOnKj4+Xm3bttXp06fZXyXUvn37NHXqVNWqVUs//fSTHn/8cT355JP69NNPJf1vu19pe1aqVMlpvru7uypUqFAk+/bS+VeqJT9c4mt18D/Dhw/Xli1btHLlyuIuBVdQp04dxcXF6dSpU/r66681YMAArVixorjLQg4OHDigp556SrGxsfLy8irucpAPkZGRjv9v1KiRWrVqpapVq+rLL7+Ut7d3MVaG3GRmZuqWW27Rv/71L0lS06ZNtWXLFr3//vsaMGBAMVdnDY5kuZCoqCj98MMPWrZsmSpXruxoDwoK0vnz53Xy5Emn/keOHFFQUJCjz+V3s2S9vlIfHx8feXt7y9/fX25ubjn2uXSMK9Vyo/D09FTNmjXVvHlzxcTEqHHjxnrnnXfYXyXQhg0bdPToUTVr1kzu7u5yd3fXihUr9O6778rd3V2BgYHssxLOz89PtWvX1p49e/g3VkIFBwerXr16Tm1169Z1nObN2h5X2p5Hjx51mn/x4kUdP368SPbtpfOvVEt+ELJcgDFGUVFR+vbbb/Xzzz/r5ptvdprfvHlzeXh4aOnSpY62nTt3KiEhQa1bt5YktW7dWn/88YfThzM2NlY+Pj6OD33r1q2dxsjqkzWGp6enmjdv7tQnMzNTS5cudfTJTy03qszMTKWnp7O/SqBOnTrpjz/+UFxcnGO65ZZb1LdvX8f/s89KttTUVO3du1fBwcH8Gyuhbr/99myPH9q1a5eqVq0qSbr55psVFBTktK1SUlK0du1ap/128uRJbdiwwdHn559/VmZmplq1auXo88svv+jChQuOPrGxsapTp47Kly/v6JPXvs1PLfmS70vkUWwef/xx4+vra5YvX+50u/KZM2ccfR577DFTpUoV8/PPP5v169eb1q1bm9atWzvmZ92ufMcdd5i4uDizaNEiExAQkOPtyqNGjTLbt283U6ZMyfF2ZbvdbmbMmGG2bdtmhg4davz8/Jzu0LlSLTeC559/3qxYscLEx8ebzZs3m+eff97YbDazePFiYwz7yxVcenehMeyzkubpp582y5cvN/Hx8ebXX3814eHhxt/f3xw9etQYw/4qidatW2fc3d3Nq6++anbv3m1mzZplSpcubWbOnOnoM2HCBOPn52fmz59vNm/ebLp165bjIxyaNm1q1q5da1auXGlq1arl9AiHkydPmsDAQPPQQw+ZLVu2mDlz5pjSpUtne4SDu7u7ef3118327dvNmDFjcnyEw5VquRJClguQlOM0ffp0R5+zZ8+aYcOGmfLly5vSpUube++91xw+fNhpnP3795vIyEjj7e1t/P39zdNPP20uXLjg1GfZsmWmSZMmxtPT01SvXt1pHVnee+89U6VKFePp6Wlatmxp1qxZ4zQ/P7Vc7x5++GFTtWpV4+npaQICAkynTp0cAcsY9pcruDxksc9Kll69epng4GDj6elpbrrpJtOrVy+n5y2xv0qm77//3jRo0MDY7XYTFhZmPvzwQ6f5mZmZ5uWXXzaBgYHGbrebTp06mZ07dzr1SU5ONn369DFly5Y1Pj4+ZtCgQeb06dNOfX7//XfTpk0bY7fbzU033WQmTJiQrZYvv/zS1K5d23h6epr69eubH3/8scC1XInNGGPyf9wLAAAA+cE1WQAAABYgZAEAAFiAkAUAAGABQhYAAIAFCFkAAAAWIGQBAABYgJAFAABgAUIWgBtCtWrV9Pbbbxd3GQBuIIQsAC5n4MCBstlsstlsji/ifuWVV3Tx4sVcl/ntt980dOjQa1glgBude3EXAACF0aVLF02fPl3p6elasGCBhg8fLg8PD0VHRzv1O3/+vDw9PRUQEFBMlQK4UXEkC4BLstvtCgoKUtWqVfX4448rPDxc3333nQYOHKju3bvr1VdfVUhIiOrUqSMp++nCkydP6tFHH1VgYKC8vLzUoEED/fDDD475K1euVNu2beXt7a3Q0FA9+eSTSktLu9ZvE4AL40gWgOuCt7e3kpOTJUlLly6Vj4+PYmNjc+ybmZmpyMhInT59WjNnzlSNGjW0bds2ubm5SZL27t2rLl26aPz48Zo2bZqOHTumqKgoRUVFafr06dfsPQFwbYQsAC7NGKOlS5fqp59+0hNPPKFjx46pTJky+vjjj+Xp6ZnjMkuWLNG6deu0fft21a5dW5JUvXp1x/yYmBj17dtXI0aMkCTVqlVL7777rtq3b6+pU6fKy8vL8vcFwPVxuhCAS/rhhx9UtmxZeXl5KTIyUr169dLYsWMlSQ0bNsw1YElSXFycKleu7AhYl/v99981Y8YMlS1b1jFFREQoMzNT8fHxVrwdANchjmQBcEkdO3bU1KlT5enpqZCQELm7/+/HWZkyZfJc1tvbO8/5qampevTRR/Xkk09mm1elSpXCFQzghkPIAuCSypQpo5o1axZq2UaNGungwYPatWtXjkezmjVrpm3bthV6fACQOF0I4AbUvn17tWvXTj169FBsbKzi4+O1cOFCLVq0SJL03HPPadWqVYqKilJcXJx2796t+fPnKyoqqpgrB+BKCFkAbkjffPONWrRooT59+qhevXp69tlnlZGRIenvI10rVqzQrl271LZtWzVt2lSjR49WSEhIMVcNwJXYjDGmuIsAAAC43nAkCwAAwAKELAAAAAsQsgAAACxAyAIAALAAIQsAAMAChCwAAAALELIAAAAsQMgCAACwACELAADAAoQsAAAACxCyAAAALEDIAgAAsMD/Azb1f7s7MkgGAAAAAElFTkSuQmCC", "text/plain": [ - "

" + "
" ] }, "metadata": {}, @@ -761,19 +846,13 @@ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", - "# Cargar el dataset\n", - "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", - "\n", - "# Filtrar las filas donde 'level5' es \"Arroyomolinos (Madrid)\"\n", - "arroyomolinos = ds[ds['level5'] == \"Arroyomolinos (Madrid)\"]\n", + "# Filtramos los datos de Arroyomolinos\n", + "arroyomolinos = ds[ds['level5'] == 'Arroyomolinos (Madrid)']\n", "\n", - "# Trazar el histograma de precios\n", - "plt.figure(figsize=(10, 6))\n", - "plt.hist(arroyomolinos['price'], bins=20, color='blue', edgecolor='black')\n", + "plt.hist(arroyomolinos['price'], bins=20, edgecolor='black')\n", + "plt.xlabel('Price')\n", + "plt.ylabel('Frecuency')\n", "plt.title('Histograma de Precios en Arroyomolinos (Madrid)')\n", - "plt.xlabel('Precio (USD)')\n", - "plt.ylabel('Frecuencia')\n", - "plt.grid(True)\n", "plt.show()\n" ] }, @@ -801,7 +880,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 37, "id": "numeric-commerce", "metadata": {}, "outputs": [ @@ -809,33 +888,40 @@ "name": "stdout", "output_type": "stream", "text": [ - "El precio promedio en Valdemorillo es de 363860.29 USD\n", - "El precio promedio en Galapagar es de 360063.20 USD\n", - "Los precios promedios en Valdemorillo y Galapagar son diferentes.\n" + "Precio promedio en Valdemorillo: 352767.3076923077\n", + "Precio promedio en Galapagar: 372108.6533333333\n", + "El precio promedio en Galapagar es mayor que en Valdemorillo.\n" ] } ], "source": [ "import pandas as pd\n", + "import numpy as np\n", "\n", + "# Limpieza de datos\n", + "ds.dropna(subset=['price'], inplace=True)\n", "\n", - "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "Q1 = ds['price'].quantile(0.25)\n", + "Q3 = ds['price'].quantile(0.75)\n", + "IQR = Q3 - Q1\n", + "ds = ds[~((ds['price'] < (Q1 - 1.5 * IQR)) | (ds['price'] > (Q3 + 1.5 * IQR)))]\n", "\n", + "# Filtrar datos\n", + "valdemorillo = ds[ds['level5'] == 'Valdemorillo']\n", + "galapagar = ds[ds['level5'] == 'Galapagar']\n", "\n", - "precio_promedio_valdemorillo = ds[ds['level5'] == \"Valdemorillo\"]['price'].mean()\n", + "promedio_valdemorillo = valdemorillo['price'].mean()\n", + "promedio_galapagar = galapagar['price'].mean()\n", "\n", + "print(\"Precio promedio en Valdemorillo:\", promedio_valdemorillo)\n", + "print(\"Precio promedio en Galapagar:\", promedio_galapagar)\n", "\n", - "precio_promedio_galapagar = ds[ds['level5'] == \"Galapagar\"]['price'].mean()\n", - "\n", - "# Precios promedio\n", - "print(f\"El precio promedio en Valdemorillo es de {precio_promedio_valdemorillo:.2f} USD\")\n", - "print(f\"El precio promedio en Galapagar es de {precio_promedio_galapagar:.2f} USD\")\n", - "\n", - "# Conclusión\n", - "if precio_promedio_valdemorillo == precio_promedio_galapagar:\n", - " print(\"Los precios promedios en Valdemorillo y Galapagar son iguales.\")\n", + "if promedio_valdemorillo > promedio_galapagar:\n", + " print(\"El precio promedio en Valdemorillo es mayor que en Galapagar.\")\n", + "elif promedio_valdemorillo < promedio_galapagar:\n", + " print(\"El precio promedio en Galapagar es mayor que en Valdemorillo.\")\n", "else:\n", - " print(\"Los precios promedios en Valdemorillo y Galapagar son diferentes.\")\n" + " print(\"Los precios promedio en ambas localidades son iguales.\")\n" ] }, { @@ -853,7 +939,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 38, "id": "hourly-globe", "metadata": {}, "outputs": [ @@ -903,15 +989,15 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 39, "id": "common-drilling", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAIcCAYAAAAwmqVEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZqUlEQVR4nO3deXxU1f3/8fckmUx2tkDYElYJ+6oCUlwJi4Ci1qrQitJSFxAVtVatArUUtcrP5Wtd2ipqRVwquKIiioqCCiKIhLCIhB3Ckn2ZZO7vj2OCMSGZSTJzJ8zr+XjkMTP3npn5BA5k3jnnnuOwLMsSAAAAAISIMLsLAAAAAIBAIgQBAAAACCmEIAAAAAAhhRAEAAAAIKQQggAAAACEFEIQAAAAgJBCCAIAAAAQUghBAAAAAEIKIQgAAABASCEEAQAAAAgpJ00I+vTTTzV+/Hi1bdtWDodDS5Ys8fk1LMvSgw8+qG7dusnlcqldu3aaO3duwxcLAAAAwDYRdhfQUPLz89WvXz9NmTJFF198cZ1e48Ybb9QHH3ygBx98UH369NGRI0d05MiRBq4UAAAAgJ0clmVZdhfR0BwOhxYvXqwJEyZUHCsuLtZdd92ll156SceOHVPv3r11//336+yzz5Ykpaenq2/fvtq4caNSU1PtKRwAAACA35000+FqM336dK1atUqLFi3Shg0bdOmll2r06NHaunWrJOmtt95S586d9fbbb6tTp07q2LGj/vCHPzASBAAAAJxkQiIEZWZm6tlnn9Wrr76q4cOHq0uXLrr11lv1q1/9Ss8++6wk6YcfftDOnTv16quv6vnnn9eCBQu0du1a/frXv7a5egAAAAAN6aS5Jqgm3333ncrKytStW7dKx4uLi9WiRQtJksfjUXFxsZ5//vmKdv/5z380aNAgZWRkMEUOAAAAOEmERAjKy8tTeHi41q5dq/Dw8Ern4uLiJElt2rRRREREpaDUo0cPSWYkiRAEAAAAnBxCIgQNGDBAZWVlOnjwoIYPH15tm2HDhqm0tFTbt29Xly5dJElbtmyRJHXo0CFgtQIAAADwr5Nmdbi8vDxt27ZNkgk98+fP1znnnKPmzZsrJSVFv/3tb/X555/roYce0oABA3To0CEtX75cffv21dixY+XxeHTaaacpLi5ODz/8sDwej6ZNm6aEhAR98MEHNn93AAAAABrKSROCVqxYoXPOOafK8cmTJ2vBggVyu93629/+pueff1579uxRYmKihgwZojlz5qhPnz6SpL179+qGG27QBx98oNjYWI0ZM0YPPfSQmjdvHuhvBwAAAICfnDQhCAAAAAC8ERJLZAMAAABAOUIQAAAAgJDSqFeH83g82rt3r+Lj4+VwOOwuBwAAAIBNLMtSbm6u2rZtq7Cwmsd6GnUI2rt3r5KTk+0uAwAAAECQ2LVrl9q3b19jm0YdguLj4yWZbzQhIcHWWtxutz744AONHDlSTqfT1lrQeNBv4Cv6DOqCfgNf0WdQF3b3m5ycHCUnJ1dkhJo06hBUPgUuISEhKEJQTEyMEhIS+M8CXqPfwFf0GdQF/Qa+os+gLoKl33hzmQwLIwAAAAAIKYQgAAAAACGFEAQAAAAgpBCCAAAAAIQUQhAAAACAkEIIAgAAABBSCEEAAAAAQgohCAAAAEBIIQQBAAAACCmEIAAAAAAhhRAEAAAAIKQQggAAAACEFEIQAAAAgJASYXcBJyWPR/rxR2nLFvO4WzepY0cpjMwJAAAA2M3WT+VlZWW6++671alTJ0VHR6tLly669957ZVmWnWXVT0aGNHOmdMkl0jXXmK9LLjHH0tPtrg4AAAAIebaOBN1///164okn9Nxzz6lXr15as2aNrr76ajVp0kQzZsyws7S6u+8+adUqKTxcat3aHDtyRHrzTWn/fmnWLKlHD3trBAAAAEKYrSHoiy++0IUXXqixY8dKkjp27KiXXnpJX331lZ1l1Y3HY27T0yWXS2rZUnI4zLG2baWDB6WNG6XFi6XUVKbGAQAAADaxNQSdccYZevrpp7VlyxZ169ZN69ev18qVKzV//vxq2xcXF6u4uLjicU5OjiTJ7XbL7XYHpOYTce/caW6dTikuzgShn2vZUsrJkdavl3bskFJSbKgSwaa839rdf9F40GdQF/Qb+Io+g7qwu9/48r4Oy8YLcDwej+6880498MADCg8PV1lZmebOnas77rij2vazZ8/WnDlzqhxfuHChYmJi/F0uAAAAgCBVUFCgiRMnKjs7WwkJCTW2tTUELVq0SLfddpv+8Y9/qFevXvr222910003af78+Zo8eXKV9tWNBCUnJysrK6vWb9Tf3Dt2aFl6utJuu03OwkJzMCxMio6WWrQw1wjl5JipcH//OyNBkGR+Y7Fs2TKlpaXJ6XTaXQ4aAfoM6oJ+A1/RZ1AXdvebnJwcJSYmehWCbJ0Od9ttt+nPf/6zLr/8cklSnz59tHPnTs2bN6/aEORyueT65TQzSU6n0/5/oD+FM+exY3KWlpopcWVl0uHDJvxERUkxMVK/flKnTlwThEqCog+jUaHPoC7oN/AVfQZ1YVe/8eU9bf0kXlBQoLBfhIHw8HB5yhcZaCw8Humdd8z99u0ly5Ly8syt02lC0NGjUq9e0kUXEYAAAAAAG9k6EjR+/HjNnTtXKSkp6tWrl9atW6f58+drypQpdpblu8xMszFqjx7Sr34lRUaazVLz8sz56GgpMVGaOpXlsQEAAACb2RqCHnvsMd199926/vrrdfDgQbVt21bXXHON7rnnHjvL8l1urlRUZO4nJkqjRknHjpmpcJZlrgfav18qLTWjRowEAQAAALaxNQTFx8fr4Ycf1sMPP2xnGfUXH2+u+SnncEjNmpnQs3mztHevVFAgPf209M03ZkocI0IAAACALRiSaAgpKVK3buZ++WJ7hw5JX35pAlBZmdSli9Shg7RunfToo2ZTVQAAAAABRwhqCGFh0rhx5n5GhpkKt2mTlJ1tRoUSEszIT5MmUs+eUlaWtGSJmRoHAAAAIKAIQQ0lNdXc9u1rFkr44QezMlybNtLgwVLLlua8w2FWkEtPN+0AAAAABJSt1wSdlG6+Wfr4Y+n//T8zRa55cxN8fi42VtqzxyyoAAAAACCgGAlqaGFhUvfuUlKSGQn6ZQCSpPx8s5BCfHzg6wMAAABCHCHIH1JSTBDatev4QgnlLEvavdtcI5SSYk99AAAAQAgjBPlDWJhZBjsx8fgCCaWl5nbTJnN8wgT2CwIAAABswKdwf+nRQ5oxQxowwGyaumWLuR040BxnnyAAAADAFiyM4E89ephV4zIzzSII8fFmChwjQAAAAIBtCEH+FhYmdexodxUAAAAAfsKQBAAAAICQQggCAAAAEFIIQQAAAABCCiEIAAAAQEghBAEAAAAIKYQgAAAAACGFEAQAAAAgpBCCAAAAAIQUQhAAAACAkEIIAgAAABBSCEEAAAAAQgohCAAAAEBIIQQBAAAACCmEIAAAAAAhhRAEAAAAIKQQggAAAACEFEIQAAAAgJBCCAIAAAAQUghBAAAAAEIKIQgAAABASCEEAQAAAAgphCAAAAAAIYUQBAAAACCkEIIAAAAAhBRCEAAAAICQQggCAAAAEFIIQQAAAABCCiEIAAAAQEghBAEAAAAIKYQgAAAAACElwu4CTloej5SZKeXmSvHxUkqKFEbmBAAAAOxmawjq2LGjdu7cWeX49ddfr8cff9yGihpIerq0eLG0ebNUVCRFRUndu0sXXST16GF3dQAAAEBIszUEff311yorK6t4vHHjRqWlpenSSy+1sap6ysiQHn9cysqSkpOl2FgpP19at07atUuaMYMgBAAAANjI1vlZLVu2VOvWrSu+3n77bXXp0kVnnXWWnWXVz1tvSTt3Si1amClxYWFSQoLUs6cJRkuWmOMAAAAAbBE01wSVlJTov//9r2bOnCmHw1Ftm+LiYhUXF1c8zsnJkSS53W653e6A1Hki5e/vXrpUysmR9u+XIiJMGDrlFCkxUerQQdq6Vdqxw1wjhJBX0W9s7r9oPOgzqAv6DXxFn0Fd2N1vfHlfh2VZlh9r8dorr7yiiRMnKjMzU23btq22zezZszVnzpwqxxcuXKiYmBh/lwgAAAAgSBUUFGjixInKzs5WQkJCjW2DJgSNGjVKkZGReuutt07YprqRoOTkZGVlZdX6jfqVxyP3I49oWWqq0h54QM6ICMnlMucsy0yDa93aTIk7elS66y5GgiDJ/MZi2bJlSktLk9PptLscNAL0GdQF/Qa+os+gLuzuNzk5OUpMTPQqBAXFdLidO3fqww8/1Ouvv15jO5fLJVd5uPgZp9Np7z/QH380K8GlpsqZkCDnzp1Sy5ZS+bQ+l0vas8c8Hj5c6tSJ5bJRie19GI0OfQZ1Qb+Br+gzqAu7+o0v7xkUn8SfffZZtWrVSmPHjrW7lLrJzTVLYUvm+p+YGOnQIXPM4zGjQUePmv2CJkwgAAEAAAA2sv3TuMfj0bPPPqvJkycrIiIoBqZ8Fx9v9gKSzAIIgwdLbdpIhYXS4cNmoYTERGnqVJbHBgAAAGxme+r48MMPlZmZqSlTpthdSt2lpEjdupn7lmWmwiUmStnZZjQoM1MaNkw691x76wQAAABgfwgaOXKkgmRthroLC5PGjZO2bzebpSYlmU1SHQ4zEtShg3TxxUyDAwAAAIIAn8obSmqque3b1wSfLVvM7cCB0owZTIMDAAAAgoTtI0EnnZtvlvbtM4slxMebqXKMAAEAAABBgxDU0MLCpI4d7a4CAAAAwAkwRAEAAAAgpBCCAAAAAIQUQhAAAACAkEIIAgAAABBSCEEAAAAAQgohCAAAAEBIIQQBAAAACCmEIAAAAAAhhRAEAAAAIKQQggAAAACEFEIQAAAAgJBCCAIAAAAQUghBAAAAAEIKIQgAAABASCEEAQAAAAgphCAAAAAAIYUQBAAAACCkEIIAAAAAhBRCEAAAAICQQggCAAAAEFIIQQAAAABCCiEIAAAAQEghBAEAAAAIKYQgAAAAACGFEAQAAAAgpBCCAAAAAIQUQhAAAACAkBJhdwEnncxMqaBAio+XUlKkMHImAAAAEEwIQQ0lI8Pczp0r5eVJUVFS9+7SRRdJPXrYWxsAAACACgxTNIT0dOnJJ839Fi2k1FQpMVFat0569FFzHgAAAEBQIATVl8cjLV4sHTliHsfHS+HhUkKC1LOnlJUlLVli2gEAAACwHSGovjIzpc2bpXbtqp5zOKT27c1IUGZm4GsDAAAAUAUhqL5yc6WiIikmpvrzsbHmfG5uYOsCAAAAUC1CUH3Fx5tFEAoKqj+fn2/Ox8cHti4AAAAA1SIE1VdKilkFbs+equcsS9q926wOl5IS+NoAAAAAVMES2fUVFmaWwd671zzOyTEjP/n5JgAlJkoTJrBfEAAAABAkCEENoUcP6dprpe3bzSpx5fsEDRxoAhD7BAEAAABBgxDUUFJTTQi66y5zfVB8vJkCxwgQAAAAEFT4hA4AAAAgpNgegvbs2aPf/va3atGihaKjo9WnTx+tWbPG7rJ8l5FhbufOle69V7rnHum++8weQQAAAACChq0h6OjRoxo2bJicTqeWLl2qTZs26aGHHlKzZs3sLMt36enSk0+a+y1amKlxiYnSunXSo48ShAAAAIAgYus1Qffff7+Sk5P17LPPVhzr1KmTjRXVgccjLV5sFkSQzLVAHo+UkCD17Clt2iQtWWKCEdcHAQAAALazNQS9+eabGjVqlC699FJ98sknateuna6//npNnTq12vbFxcUqLi6ueJyTkyNJcrvdcrvdAam5isxMads2uX/aB8j9y6DToYO0dau0Ywd7BaGK8n5rW/9Fo0OfQV3Qb+Ar+gzqwu5+48v7OizLsvxYS42ioqIkSTNnztSll16qr7/+WjfeeKOefPJJTZ48uUr72bNna86cOVWOL1y4UDExMX6vFwAAAEBwKigo0MSJE5Wdna2EhIQa29oagiIjI3Xqqafqiy++qDg2Y8YMff3111q1alWV9tWNBCUnJysrK6vWb9RvMjOluXPldjq17PzzlXbDDXIeO2bOhYeb/YIkM03OsqSICKlzZ7Ov0OjR9tSMoOF2u7Vs2TKlpaXJ6XTaXQ4aAfoM6oJ+A1/RZ1AXdvebnJwcJSYmehWCbJ0O16ZNG/Xs2bPSsR49euh///tfte1dLpdcLleV406n075/oJ06met/liyRzj9fzuxsOcvKzPU/+fnSsWOSwyFFR0tt25o9hNavl/78Z3N83Dh76kZQsbUPo1Giz6Au6DfwFX0GdWFXv/HlPW29Un/YsGHKKF9a+idbtmxRhw4dbKqojixLys01910uM9ojSeXzEh0Os3BCWJgJTJ07S9nZ0mOPSaWl9tQMAAAAhChbQ9DNN9+s1atX6+9//7u2bdumhQsX6umnn9a0adPsLMs3mZlmj6DyBRE8HhN+3G4TfsLDzW1h4fGgFBYmtWxpFkxYvdq+2gEAAIAQZGsIOu2007R48WK99NJL6t27t+699149/PDDmjRpkp1l+SY3V8rJMUFHkpo0Mdf/uFzm2M/DUUnJ8efFxpqgdOBA4GsGAAAAQpit1wRJ0rhx4zSuMV8XEx9vpriVh6D8fCkvTyorM8HHso6PCEVGHn9efr7kdEpJSfbUDQAAAIQodu+sr5QU6Ve/On4dUEmJCTzlI0GWZcKQy2UCk2QeHzoknXKKNGSIfbUDAAAAIYgQVF9hYdJFF0nNm5vHZWXHR4HCw4+3Cw83x7OzpR9+MNPmbrjheHgCAAAAEBB8Am8IsbFSaqq573KZZbAlE3yaNDm+MMIPP5ilsnv1MgGoMU8DBAAAABopQlBDyM09fr3PpEnSjh1m0YNWraTkZLMM9urVJvScfrqZAscIEAAAAGALPok3hPh4KSrK3G/WzIz+/FxhodS+vXTxxVLHjgEvDwAAAMBxXBPUEFJSpG7dzH3LqnzOsqTdu6UePUw7AAAAALYiBDWEsLDj1/dkZJjFD0pLze2mTVJiojRhwvE9gwAAAADYhk/lDaV8YYS+faXDh6UtW8ztwIHSjBlmJAgAAACA7bgmqKHdfLO0b59ZLCE+3kyBYwQIAAAACBqEIH/weKQ9e47f79iRIAQAAAAECUJQQ7vzTumjj6QjR8zj5s2ls86SrrmGKXEAAABAECAENZSMDHO7dKlZFKF1a/P4yBHpzTel/fulWbMIQgAAAIDNmKPVEDweE3QkyeWS2rSRoqPNV9u25tjGjdLixaYtAAAAANsQghpCZqa0fr25n5AgORzHzzkcZvPUsjJpzRrTFgAAAIBtmA7XEHJzpfx8c7+gwOwPFBZmAlF0tBQZac7l55u2AAAAAGxDCGoI8fFSXp65n55ugpAkRURIzZodvz4oNta0BQAAAGAbQlBD2LDBbI4qSZYlhYeb+2VlUlaWCUht20qnnmr2DQIAAABgG64Jqq/SUumxxyS32zwOCzNByOE4fr+oSIqKki68kP2CAAAAAJvxiby+Vq82y2M7neZxdLQJOmVlZiW4sDAzMpSQYKbDAQAAALAV0+Hq68ABqbj4eAhq1szcd7uPjwbl5ZkRIRZFAAAAAGxHCKqvpCSzD1Bp6fFjTufxUFRUZIJQfDyLIgAAAABBgOlw9TVkiJSaWjkElfN4zEpxUVHS8OEsigAAAAAEAUJQfUVESDfeKLVsaR5nZ0slJWYE6MgRc2zQIOmSS1gUAQAAAAgCTIdrCOPGmWt+yhdCOHbMXA+UkCCNHCn9+c9Sjx52VwkAAABAhKCGM3q09O670ksvSZs2STEx0rBhUufOjAABAAAAQYQQ1NDOOEM66yy7qwAAAABwAgxRAAAAAAgphCAAAAAAIYUQBAAAACCkEIIAAAAAhBQWRmhomZlmg1SXS1q3TtqzR0pOli68UIqMtLs6AAAAIOQRghpKRoa5nTtX+vZbaetWqbjYLI8dESG1bi3dcot03XW2lgkAAACEOqbDNYT0dOnJJ839vXvNPkEFBWYDVYdDcjrNiNBdd0lPPGFvrQAAAECIIwTVl8cjLV4sHTliHq9bJ5WUmPAjmfuFhVLTpuZ2/nxzDAAAAIAtCEH1lZkpbd4stWtnHuflmQAUHm6mwoWHS6WlUk6OFBUl7dsnvfGGvTUDAAAAIYxrguorN1cqKpKio81jyzLBp3wkqFxZmRk1KiuTdu0KfJ0AAAAAJDESVH/x8WaE58AB89jhMEHo5xwOszhCcbG5n5wc+DoBAAAASCIE1V9KitS9u7R7t3kcGXl81MeyzG351Di3W0pMNMtlAwAAALAFIai+wsKkiy4y4UaSWrQwx0pLzVe5ggIThqZOZb8gAAAAwEaEoIbQo4d0663mfni4CUQRP11uVT4aFBUljRljlskGAAAAYBsWRmgo3btLP/wgde1qpsYNGCC5XGbp7JISqW9f6eabzSgRAAAAANvY+ol89uzZcjgclb66d+9uZ0l199575jYjQ/rxR+mzz6RVq8yI0IUXmgDUo4etJQIAAAAIgulwvXr10r59+yq+Vq5caXdJvnv7bWnWLHM/MVHq3Vvq0ME83rVL6tWLAAQAAAAECdunw0VERKh169Z2l1F3paXSo4+azVAls+hBfr6ZAhcbKx0+bM6ff/7x64QAAAAA2Mb2T+Vbt25V27ZtFRUVpaFDh2revHlKSUmptm1xcbGKi4srHuf8FDzcbrfcbndA6q1i1Spp1y65W7Qwtfz4o7kOyOM53ubLL6U77pD+/nd7akTQKu+3tvVfNDr0GdQF/Qa+os+gLuzuN768r8OyfrmzZ+AsXbpUeXl5Sk1N1b59+zRnzhzt2bNHGzduVHx8fJX2s2fP1pw5c6ocX7hwoWJiYgJRMgAAAIAgVFBQoIkTJyo7O1sJCQk1trU1BP3SsWPH1KFDB82fP1+///3vq5yvbiQoOTlZWVlZtX6jfvPFF9IVV8jtdGrZo48qbcoUOYuLJYfj+PLYkpkm1769GRVinyD8xO12a9myZUpLS5PT6bS7HDQC9BnUBf0GvqLPoC7s7jc5OTlKTEz0KgTZPh3u55o2bapu3bpp27Zt1Z53uVxyuVxVjjudTvv+gbZrZ8LOT1PznEVFJgRJJgBZllkW2+Uyq8a9+6506aX21IqgZWsfRqNEn0Fd0G/gK/oM6sKufuPLe9q+OtzP5eXlafv27WrTpo3dpXivsFDq0sVskiodH/0pHwEKCzMLIkRGSmVlZrU4AAAAALaxdSTo1ltv1fjx49WhQwft3btXs2bNUnh4uK644go7y/JNfLzUubMJP+XK74eHS06nCUJut3mcnGxPnQAAAAAk2RyCdu/erSuuuEKHDx9Wy5Yt9atf/UqrV69Wy5Yt7SzLNykpUvfuUvkUuLAwKSrKBJ6wMLOEdkSEGTFq395snAoAAADANraGoEWLFtn59g0jLEy66CJp717z2OmUioqOT4ezLDMNLiZGmjmTRREAAAAAmwXVNUGNVo8e0rXXmvu9e5ug43abDVPLyszjM8+Uzj7b1jIBAAAAEIIaTmqqub3nHmnMGKlfP2n4cGnCBGnKFBOEHn1USk+3tUwAAAAg1AXVEtknhbVrzRS5Cy4wewWVa9pU2rRJWrLEBKYw8icAAABgBz6JN7QtW8wKcD8PQJJ53L69GQnKzLSnNgAAAACEoAZXVCTFxlZ/LjbWnM/NDWxNAAAAACr4NB3u2LFjWrx4sT777DPt3LlTBQUFatmypQYMGKBRo0bpjDPO8FedjUdUlJSfLyUkVD2Xn2/Ox8cHvi4AAAAAkrwcCdq7d6/+8Ic/qE2bNvrb3/6mwsJC9e/fX+edd57at2+vjz/+WGlpaerZs6defvllf9cc3Lp1k3btqrx5qmQe795tVpJLSbGnNgAAAADejQQNGDBAkydP1tq1a9WzZ89q2xQWFmrJkiV6+OGHtWvXLt16660NWmijMW6ctHOnWQShfXszBS4/3wSgxESzWhyLIgAAAAC28SoEbdq0SS1atKixTXR0tK644gpdccUVOnz4cIMU1yilpkozZkiLF0ubN0t79pgpcAMHmgDUo4fdFQIAAAAhzasQVFsAqm/7k06PHiYMZWaaRRDi480UOEaAAAAAANv5vE/QRx99pNdff10//vijHA6HOnXqpF//+tc688wz/VFf4xUWJnXsaHcVAAAAAH7Bp6GJa6+9ViNGjNBLL72kw4cP69ChQ3rxxRd1zjnn6IYbbvBXjQAAAADQYLwOQYsXL9azzz6rZ555RllZWVq1apVWr16tQ4cO6V//+peefvppvfnmm/6sFQAAAADqzesQ9Oyzz2rmzJm66qqr5HA4jr9AWJimTJmim266Sf/5z3/8UiQAAAAANBSvrwn65ptv9Je//OWE5y+++GJdcsklDVJUo1Raam6ffFJKT5eaNpX69JEGDZKKi1kcAQAAAAgSXoegrKwstW/f/oTn27dvH7pLY7/9tvTgg9LNN0u33y4VFprjDocUHW1WiuvdW+reXbroIpbJBgAAAGzkdQgqKSmR0+k88QtFRKikpKRBimpU3n5buukm6dChqucsSyookDZuNCNDhYXSrl1mHyGCEAAAAGALn5bIvvvuuxUTE1PtuYKCggYpqFEpLZUeeUQ6ePD4dLjquN3St99K118vZWRIS5aY0SGmxgEAAAAB53UIOvPMM5WRkVFrm5CyerUJNW63mfp2Ig6H2TQ1I0Nq395cM5SZyT5CAAAAgA28DkErVqzwYxmN1IEDUlGRGQWqYaqgLEvyeKScHCk2Vtqzx4QiAAAAAAFX7/lYpaWlysvLa4haGp+kJCkiwoSc2jgcUkKClJ8vRUWZ1eIAAAAABJzXIeitt97SggULKh2bO3eu4uLi1LRpU40cOVJHjx5t6PqC25AhUocO3rWNjTXXAe3ebRZFSEnxb20AAAAAquV1CJo/f77y8/MrHn/xxRe65557dPfdd+uVV17Rrl27dO+99/qlyKAVESH94Q9mGeyargmSpF69zDVBiYnShAksigAAAADYxOtP4t9//73OOOOMisevvfaa0tLSdNddd+niiy/WQw89pLfeessvRQa1q6+WTjvtxKEmLExq21bq0kUaOJDlsQEAAACbeb0wQm5urlq0aFHxeOXKlbr00ksrHvfq1Ut79+5t2Ooag3fflbZtOz4SFBFh7luWuW3VSrrjDmncODMFjhEgAAAAwFZefyJv166d0tPTJUl5eXlav359pZGhw4cPn3APoZNW+T5B2dlmsQPpePgJDzePCwvNeQIQAAAAEBS8/lR+6aWX6qabbtILL7ygqVOnqnXr1hoyZEjF+TVr1ig1NdUvRQat1aulzZvNfY/H3EZFmWuEoqLMstkFBdLSpWZfIAAAAAC283o63D333KM9e/ZoxowZat26tf773/8qvHy0Q9JLL72k8ePH+6XIoHXggFRSYjZLLf+zCA83U+IkM/KTn28CUHa2fXUCAAAAqOB1CIqOjtbzzz9/wvMff/xxgxTUqCQlmdBTWno8BHk8JhRJZmpc+Xk2RwUAAACCAhep1Ef5PkGWZYKOZKa/lX8VFppzsbFsjgoAAAAECa9DULNmzdS8efMqX506ddKoUaO0bNkyf9YZnMr3CYqMNNPipOPXBpUrKzOjQIcOBb4+AAAAAFV4PR3u4Ycfrvb4sWPHtHbtWo0bN06vvfZa6F0XNHmy9Nhj0pYt1Z+3LHPt0KOPSueeywpxAAAAgM28DkGTJ0+u8Xz//v01b9680AtBu3d7t+jBO+9Ic+dKd9/t/5oAAAAAnFCDDUuMGzdOm8uXiw4lhw55t/y1xyM99dTxaXMAAAAAbNFgIai4uFiRkZEN9XKNx9KlVa8DOpFDh6Q33vBvPQAAAABq1GAh6D//+Y/69+/fUC/XeBw54n1bj0fatct/tQAAAAColdfXBM2cObPa49nZ2frmm2+0ZcsWffrppw1WWKORk+N92/BwKTnZf7UAAAAAqJXXIWjdunXVHk9ISFBaWppef/11derUqcEKazR8GQlq10668EL/1QIAAACgVl6HoI8//tifdTROJSXSqlXet7/pJrOnEAAAAADbsGlNfbzxhpSX513bhARpwAD/1gMAAACgVl6FoGuvvVa7d+/26gVffvllvfjii/UqqtHYtcssdhATU3O78HBzu3+//2sCAAAAUCOvpsO1bNlSvXr10rBhwzR+/Hideuqpatu2raKionT06FFt2rRJK1eu1KJFi9S2bVs9/fTT/q47OCQnm4DjcEhlZSduFxNjzltW4GoDAAAAUC2vRoLuvfdebdmyRcOGDdM///lPDRkyRCkpKWrVqpVSU1N15ZVX6ocfftDTTz+t1atXq2/fvj4Xct9998nhcOimm27y+bm2ufBCqXVrqbi45naWJcXFSV27BqYuAAAAACfk9cIISUlJuuuuu3TXXXfp6NGjyszMVGFhoRITE9WlSxc5HI46F/H111/rqaeeqlN4slVkpHTLLWbBg9r07Ck1a+b3kgAAAADUzOsQ9HPNmjVTswb6QJ+Xl6dJkybpX//6l/72t781yGsGVJs2tbcpKZH69JFSUvxfDwAAAIAa1SkENaRp06Zp7NixGjFiRK0hqLi4WMU/m3qW89NGpW63W2632691Vqu0VPrHP6SICLmjokwt0dHVt123Ttq0SUpNDWCBCHbl/daW/otGiT6DuqDfwFf0GdSF3f3Gl/d1WJZ9V+svWrRIc+fO1ddff62oqCidffbZ6t+/vx5++OFq28+ePVtz5sypcnzhwoWKqW2FNgAAAAAnrYKCAk2cOFHZ2dlKSEiosa1tIWjXrl069dRTtWzZsoprgWoLQdWNBCUnJysrK6vWb9Qv3nxTuv56KTdX7uhoLXvmGaVNmSJnYWHVtjEx0umnS489xrQ4VHC73Vq2bJnS0tLkdDrtLgeNAH0GdUG/ga/oM6gLu/tNTk6OEhMTvQpBtk2HW7t2rQ4ePKiBAwdWHCsrK9Onn36q//u//1NxcbHCy/fX+YnL5ZLL5aryWk6n055/oElJZuW3n4UeZ2Fh9SHI7Za++07auFHq0iWARaIxsK0Po9Giz6Au6DfwFX0GdWFXv/HlPescgg4dOqSMjAxJUmpqqlq2bOnT88877zx99913lY5dffXV6t69u26//fYqASgoDRkideggZWXV3jYszOwV9Pnn0vjx5jEAAACAgPM5BOXn5+uGG27QCy+8oLKfNggNDw/XlVdeqccee8zra3Pi4+PVu3fvSsdiY2PVokWLKseDVkSEdNdd0hVX1N7WssyeQvv2SZmZUseOfi8PAAAAQFU+D0fMnDlTn3zyid58800dO3ZMx44d0xtvvKFPPvlEt9xyiz9qDG4TJkiTJ0u17ZMUEWGmwRUXS7m5ASkNAAAAQFU+jwT973//02uvvaazzz674tj555+v6Oho/eY3v9ETTzxR52JWrFhR5+fa6tZbpddfP/H58oAUF2emxMXHB6YuAAAAAFX4PBJUUFCgpKSkKsdbtWqlgoKCBimq0fniC7MhqiSFh5vQExZmbiMizJfHI/3wg9SjB6vDAQAAADbyOQQNHTpUs2bNUlFRUcWxwsJCzZkzR0OHDm3Q4hoFj0d6//3joz3lt5ZlgpDHY+5blhQVZabPsSgCAAAAYBufp8M98sgjGjVqlNq3b69+/fpJktavX6+oqCi9//77DV5g0MvMrLw6XGmpCTySmfpWHoqioqTf/c6MBAEAAACwjc8hqHfv3tq6datefPFFbd68WZJ0xRVXaNKkSYqOjm7wAoNebq504IDZB6g65aNAvXpJl18e2NoAAAAAVFGnfYJiYmI0derUhq6lcXK5pK1bj4/+VMfjka680lwbBAAAAMBWXn0qf/PNNzVmzBg5nU69+eabNba94IILGqSwRuOtt6TCQjPd7UTCwqRmzQJXEwAAAIAT8ioETZgwQfv371erVq00YcKEE7ZzOBwVG6iGBI9H+vDDmkeBJHN+9+7A1AQAAACgRl6FII/HU+39kPfLRRFOxLKkyEj/1wMAAACgVqzVXB+5uSbclK8AdyIOh9SxY0BKAgAAAFAzn0PQjBkz9Oijj1Y5/n//93+66aabGqKmxiM+3lwLVNuCBzExktMZmJoAAAAA1MjnEPS///1Pw4YNq3L8jDPO0GuvvdYgRTUaKSlS3761t4uPl7p29X89AAAAAGrlcwg6fPiwmjRpUuV4QkKCsry5PuZkEhYmNW1qNkg9EYdDCg83bQEAAADYzudP5l27dtV7771X5fjSpUvVuXPnBimq0SgtlZYurXl1OMuS8vOl7OzA1QUAAADghHzevXPmzJmaPn26Dh06pHPPPVeStHz5cj300EN6+OGHG7q+4LZ6tbRjh7kfHl75XPliCZYlFRRI27ZJAwYEtj4AAAAAVfgcgqZMmaLi4mLNnTtX9957rySpY8eOeuKJJ3TllVc2eIFB7cABMxrkcFQdDfr547Cw2leQAwAAABAQPocgSbruuut03XXX6dChQ4qOjlZcXFxD19U4JCVJLpcJPDXtn1RYKG3fHri6AAAAAJxQna7WLy0t1YcffqjXX39d1k8jHnv37lVeXl6DFhf0hgzxfoRn3jzp7bf9Ww8AAACAWvk8ErRz506NHj1amZmZKi4uVlpamuLj43X//feruLhYTz75pD/qDE4lJWZKnDeys6X586XRo2vfVwgAAACA3/g8EnTjjTfq1FNP1dGjRxUdHV1x/KKLLtLy5csbtLig9+CDUlmZ9+2/+cYspgAAAADANj4PSXz22Wf64osvFBkZWel4x44dtWfPngYrrFH44Qff2vsycgQAAADAL3weCfJ4PCqrZvRj9+7dio+Pb5CiGg1f90WKjDSLKQAAAACwjc8haOTIkZX2A3I4HMrLy9OsWbN0/vnnN2Rtwe/WW02w8dbAgWYxBQAAAAC28TkEPfjgg/r888/Vs2dPFRUVaeLEiRVT4e6//35/1Bi8YmKkKVO8axsVJd10E4siAAAAADbz+RN5cnKy1q9fr5dfflnr169XXl6efv/732vSpEmVFkoIGbfdJi1aJBUX19yuf3+pb9+AlAQAAADgxHwKQW63W927d9fbb7+tSZMmadKkSf6qq/HYskWKjpaczqrnwsOl2FizkarTKeXmBr4+AAAAAJX4NB3O6XSqqKjIX7U0Xg6HFPbTH6XTae6Xf5WWHg9BobZwBAAAABCEfL4maNq0abr//vtVWlrqj3oan27dpIQEKT/fPC7/c3E4TPgpLDRLY3foIKWk2FcnAAAAAEl1uCbo66+/1vLly/XBBx+oT58+io2NrXT+9ddfb7DiGoWUFKmo6PimqZZlws/PhYczCgQAAAAECZ9DUNOmTXXJJZf4o5bGad48KTNTcrmqPx8RIbVsKe3aZdp17BjQ8gAAAABU5nMIevbZZ/1RR+NUUiLNn1915OfnLMssnJCfz8IIAAAAQBDw+pogj8ej+++/X8OGDdNpp52mP//5zyosLPRnbcHvtdekY8dqblNWZsJPbCxT4gAAAIAg4HUImjt3ru68807FxcWpXbt2euSRRzRt2jR/1hb83nvPu3ZZWdKpp7IwAgAAABAEvA5Bzz//vP75z3/q/fff15IlS/TWW2/pxRdflKemqWAwSkullSuPL6MNAAAAwDZefyrPzMzU+eefX/F4xIgRcjgc2rt3r18KaxTOOcf7th98IOXl+a8WAAAAAF7xOgSVlpYqKiqq0jGn0ym3293gRTUaJ1oRrjplZdLdd/uvFgAAAABe8Xp1OMuydNVVV8n1sw/+RUVFuvbaayvtFRRS+wTt3+9b+x9+8E8dAAAAALzmdQiaPHlylWO//e1vG7SYRqddO9/aN23qlzIAAAAAeM/rEMT+QNUYMECKjDT7BXnD6ZTS06UePfxbFwAAAIATYrmy+iguNhuheqNJE7On0JIlNW+uCgAAAMCvCEH14XSajVC9ERMjJSSYkaDMTP/WBQAAAOCEvJ4Oh2osW+b9qE5enlRQYFaJ8zY4AQAAAGhwto4EPfHEE+rbt68SEhKUkJCgoUOHaunSpXaW5BtfRnTy8sxeQRs3SgcO+K8mAAAAADWyNQS1b99e9913n9auXas1a9bo3HPP1YUXXqjvv//ezrK817Gj920ty4wEHTgg/etfZlocAAAAgICzNQSNHz9e559/vk455RR169ZNc+fOVVxcnFavXm1nWd676CLf2ns8ZpnsTZuk119ngQQAAADABkFzTVBZWZleffVV5efna+jQodW2KS4uVnFxccXjnJwcSZLb7Zbb7Q5InZX88Y8Vq8O5f3FbrfBwE4I8HmnDBmnHDiklJQCFIliV91tb+i8aJfoM6oJ+A1/RZ1AXdvcbX97XYVmW5cdaavXdd99p6NChKioqUlxcnBYuXKjzzz+/2razZ8/WnDlzqhxfuHChYmJi/F0qAAAAgCBVUFCgiRMnKjs7WwkJCTW2tT0ElZSUKDMzU9nZ2Xrttdf073//W5988ol69uxZpW11I0HJycnKysqq9Rv1i+7dpX37JJkRoGXPPKO0KVPkLCw88XNSU831Qamp0t//zkhQiHO73Vq2bJnS0tLkdDrtLgeNAH0GdUG/ga/oM6gLu/tNTk6OEhMTvQpBtk+Hi4yMVNeuXSVJgwYN0tdff61HHnlETz31VJW2LpdLLperynGn02nPP9DTT5cWLapcS2FhzSHoyBGzX1DfvlKnTlIYWzXBxj6MRos+g7qg38BX9BnUhV39xpf3DLpP4B6Pp9JoT1Dr39/35xQVSb16SRdfTAACAAAAbGDrSNAdd9yhMWPGKCUlRbm5uVq4cKFWrFih999/386yvPfjj74/56yzpFmzpB49GrwcAAAAALWzNQQdPHhQV155pfbt26cmTZqob9++ev/995WWlmZnWd5zOHxvf8UVBCAAAADARraGoP/85z92vn39tW3rW/vYWOnJJ6Xx46UI2y/HAgAAAEISF6XUh6/XLjVtKm3dKjWWzWABAACAkxDDEfVR0ypw1Tl0SIqLkw4c8E89AAAAAGrFSFB9tG7tW/vSUik/X2rRwj/1AAAAAKgVIag+duzwrb29+9ICAAAAECGofjIyfGtvWWZxhMOH/VMPAAAAgFoRguojLs639pGRUkyMlJTkn3oAAAAA1IoQVB+/+53vz2nfXhoypOFrAQAAAOAVQlB9JCf71t7plH7/e/YIAgAAAGxECKqPP/3Jt/YDBkhXX+2fWgAAAAB4hRBUH7t2+dZ+6FApjD9yAAAAwE58Iq8PX6bDhYdLAwf6rxYAAAAAXiEE1cdrr3nfNjLSTIcDAAAAYCtCUH34skR206ZSYaHfSgEAAADgHUJQffzrX961Cwsz0+Fyc/1bDwAAAIBaEYLq47vvvGvn8ZggFB/v33oAAAAA1IoQVB8tWnjftqiIEAQAAAAEAUJQfYwY4X3bQ4ekjz7yXy0AAAAAvEIIChTLkv79b6m01O5KAAAAgJBGCKqPu+7yrf3mzdLq1f6pBQAAAIBXCEH1ceiQb+0LCqT9+/1TCwAAAACvEILqIzHRt/ZlZWZaHAAAAADbEILqY9Qo39pHR0tdu/qnFgAAAABeIQTVh8fjW/sOHaRmzfxTCwAAAACvEILqo1Mn39oPHSqlpPinFgAAAABeIQTVx6efet/W4ZCGD5fC+CMHAAAA7MQn8vpIT/e+bXS0FBfnv1oAAAAAeIUQVB++rPTWpImUlOS/WgAAAAB4hRBUH2ed5X3bsDBpyBD/1QIAAADAK4Sg+vBlkYMDB6SSEv/VAgAAAMArhKD6eOIJ79uWlkoPPui/WgAAAAB4hRBUH7t2+db+hx/8UwcAAAAArxGC6iMiwrf27dr5pw4AAAAAXiME1UfXrr61Z48gAAAAwHZ8Kq8PX0eCMjP9UwcAAAAArxGC6mP9et/aN2/unzoAAAAAeI0QVB+lpb61v/xy/9QBAAAAwGuEoPqIi/OtfVKSf+oAAAAA4DVCUH1Mn+5929NO821zVQAAAAB+QQiqj2PHvG9bVCR5PH4rBQAAAIB3CEH18dJL3rfduVNavdp/tQAAAADwCiGoPkpKvG9bXCwdOOC/WgAAAAB4hRBUH+3b+9a+ZUv/1AEAAADAa7aGoHnz5um0005TfHy8WrVqpQkTJigjI8POknxzzz3et42Lk9q29V8tAAAAALxiawj65JNPNG3aNK1evVrLli2T2+3WyJEjlZ+fb2dZ3jt61Pu2+fm+b64KAAAAoMFF2Pnm7733XqXHCxYsUKtWrbR27VqdeeaZNlXlg/37vW9bVCRNmyY5ndIFF/ivJgAAAAA1sjUE/VJ2drYkqXnz5tWeLy4uVnFxccXjnJwcSZLb7Zbb7fZ/gb/0xBNSdLSp4Re31crNle68U3I4pNGjA1Ehglx5v7Wl/6JRos+gLug38BV9BnVhd7/x5X0dlmVZfqzFax6PRxdccIGOHTumlStXVttm9uzZmjNnTpXjCxcuVExMjL9LBAAAABCkCgoKNHHiRGVnZyshIaHGtkETgq677jotXbpUK1euVPsTrLpW3UhQcnKysrKyav1G/aJJk4q77uhoLXvmGaVNmSJnYeGJn5OcLIWFSU89JQ0dGoAiEczcbreWLVumtLQ0OZ1Ou8tBI0CfQV3Qb+Ar+gzqwu5+k5OTo8TERK9CUFBMh5s+fbrefvttffrppycMQJLkcrnkcrmqHHc6nfb8A60m7DgLC08cghwOKTzcTIs7dMhcHwTIxj6MRos+g7qg38BX9BnUhV39xpf3tHV1OMuyNH36dC1evFgfffSROnXqZGc5vmvVyrf2kZEmCDmdUlKSf2oCAAAAUCNbR4KmTZumhQsX6o033lB8fLz2/7TaWpMmTRRd0wIDwaJJE+ngQe/bO51SdrbUq5c0ZIj/6gIAAABwQraOBD3xxBPKzs7W2WefrTZt2lR8vfzyy3aW5b24ON/al5WZ4HTDDVJEUMxEBAAAAEKOrZ/Eg2RNhrorKvKtfUqKdP/90rhx/qkHAAAAQK1sHQlq9H780bf2DzxAAAIAAABsRgiqj5qWwq7OsmWSx+OfWgAAAAB4hRAUSBs2SJmZdlcBAAAAhDRCUCCVlJg9ggAAAADYhhAUSHFxUny83VUAAAAAIY0QFEhRUWaFOAAAAAC2IQQFUkSEFMYfOQAAAGAnPpEHUm4uq8MBAAAANiMEBZLTyepwAAAAgM0IQYHkcLA6HAAAAGAzQlAgRUayOhwAAABgM0JQIDVtyupwAAAAgM0IQYHUoQOrwwEAAAA24xN5IB08aHcFAAAAQMgjBAVSaandFQAAAAAhjxAUSC1b2l0BAAAAEPIIQYH0ww9SerrdVQAAAAAhjRAUKE6ndPiwtGSJ5PHYXQ0AAAAQsghBgeJ2myWy09OlzEy7qwEAAABCFiEokJo2lYqKpNxcuysBAAAAQhYhKJBKS6WoKCk+3u5KAAAAgJBFCAqkffukHj2klBS7KwEAAABCFiEokBwOacIEKYw/dgAAAMAufBoPpNhYMxIEAAAAwDaEoED66iv2CQIAAABsRggKpJwc6fXX2ScIAAAAsBEhKJDCwqS1a9knCAAAALARISiQIiKk/Hz2CQIAAABsRAgKJI/HLI7APkEAAACAbQhBgTZoEPsEAQAAADYiBAVSVBT7BAEAAAA249N4ICUnm+lwAAAAAGxDCAqk8HAWRQAAAABsRggKJJeLRREAAAAAmxGCAmnAABZFAAAAAGxGCAqkkSNZFAEAAACwGZ/IA6lNG7srAAAAAEIeIShQHA6uBwIAAACCACEoUOLjpbZt7a4CAAAACHmEoEDJy5O++sruKgAAAICQRwgKpAMH7K4AAAAACHm2hqBPP/1U48ePV9u2beVwOLRkyRI7y/GvsDApKcnuKgAAAICQZ2sIys/PV79+/fT444/bWUZgxMZKQ4bYXQUAAAAQ8iLsfPMxY8ZozJgxdpYQOIWF7BEEAAAABAFbQ5CviouLVVxcXPE4JydHkuR2u+V2uwNfUHR0xV33T/fdPztWRUaG1LWrv6tCI1Leb23pv2iU6DOoC/oNfEWfQV3Y3W98eV+HZVmWH2vxmsPh0OLFizVhwoQTtpk9e7bmzJlT5fjChQsVExPjx+oAAAAABLOCggJNnDhR2dnZSkhIqLFtowpB1Y0EJScnKysrq9Zv1C+aNKm4646O1rJnnlHalClyFhZW337mTGnWrAAVh8bA7XZr2bJlSktLk9PptLscNAL0GdQF/Qa+os+gLuzuNzk5OUpMTPQqBDWq6XAul0sul6vKcafTac8/0GrCjrOw8MQhyOOR+I8E1bCtD6PRos+gLug38BV9BnVhV7/x5T25Uj+QNm2yuwIAAAAg5Nk6EpSXl6dt27ZVPN6xY4e+/fZbNW/eXCkpKTZW5idr15rRoJ+vEufxSJmZUm6uFB8vpaSwihwAAADgR7aGoDVr1uicc86peDxz5kxJ0uTJk7VgwQKbqvKjvDzpxx+lzp3N4/R0afFiafNmqahIioqSuneXLrpI6tHD1lIBAACAk5WtIejss89WkKzLEBgej7RliwlB6enSo49KWVlS+/ZSaamUnS2tXGlGhm68kSAEAAAA+EGjWhih0XM4zK3HY0aAsrKkli2lDRvM/dJSKTzchKDoaOmhh5gaBwAAADQwPmEHUkKC1K2bCTmbN0sxMdJXX0n79pn7LVpIsbFScbH0zjvSRx/ZXTEAAABw0iEEBdK550odO5pFEAoLTRgqKDCjQS6XGfVxuaTWrc35t94yo0YAAAAAGgwhKJAuv9wEnfh4qaxMOnDAbLhaPk2unNstxcVJu3aZoAQAAACgwRCCAql8VCclxSyGkJMjRfzisizLMsdbtzbXB+XmBr5OAAAA4CRGCAqkQ4fMbViYdMEF5jqg/fvN8tgej7k9dMgcT042iyPEx9tbMwAAAHCSIQQFUsuWx++fe650/vnmGqCCAunwYXMdUJs20umnm/s9ephRIwAAAAANhiWyA6lbt+P3w8Kka64xoz+ZmWZluCZNzPS4PXukxERpwgSWyAYAAAAaGJ+wA+mXgaZHD7Mp6q9+ZRZHOHhQOnJEGjhQmjGDzVIBAAAAP2AkKJDy86se69FDSk01o0G5ueYaoJQURoAAAAAAPyEEBVJsbPXHw8LM/kEAAAAA/I7hhkBi41MAAADAdoSguqpLoNm2rfLzf/xR+u47c0tAAgAAAAKC6XB1lZlZ9+emp0uLF0ubN5vV4aKipO7dpYsuYjEEAAAAwM8IQXWVm+v7c7p1MwHo0UelrCyzIWpsrFkwYd06adcuVoUDAAAA/IzpcHUVH+/7c3JzzQhQVpbUs6eUkCCFh5vbnj3N8SVLmBoHAAAA+BEhqK7atvX9OZMnSx9+aEaAHI7K5xwOqX17M1JUn6l2AAAAAGpECKqrr77y/Tm7dknffCPl5VV/PjbWXCNUl6l2AAAAALxCCKqrvXt9f05JiQlA77wjHTxY9Xx+vlkkoS5T7QAAAAB4hRBUV3v2+P6c0lIpIkI6fFj67DPp0KHj5yxL2r3bLIqQktJwdQIAAACohBBUV+vW+f6coiLJ5TJfBw9K334rud1Sdra0aZOUmChNmCCF8deCIMc+VwAAoBFjiey6WrOmbs8LDzdhJyFB2rfPBKEWLaSBA00AYnlsBDv2uQIAAI0cIaiu9u2r2/PCwszqcIMHS+vXS1OmSIMGmSlwjAAh2LHPFQAAOAnwqbuunM66PS8uzvzWvLDQjAANGiR17EgAQvDzeNjnCgAAnBT45F1XCQl1e15sLIsgoHHKzDRT4NjnCgAANHKEoLpyu31/Trt2Zpnszz4zo0AsgoDGJDfXXAMUG1v9efa5AgAAjQTXBNXV/v2+Pyci4vjXr3/NtRNoXOLjzSII+fnVj4SyzxUAAKHF4zEzQHJzzc//Nm3srshrhKC6Kinx/TkjR0qRkdKBA1JSUsPXBPhTSoq5nm3dOnMN0M+nxJVP8Rw4kCmeAACEgupWi+3Zs9H8kp+5WIHicEjR0WZBhehofluOxicszCyDnZho9rXKzjYbALPPFQAAoaV8tdh168zP/9RUc7thgzmfkWFvfV5gJChQLMusnlVSwm/L0Xj16GGWwS7/zc+ePeY3P+xzBQBAaPjlarHlM0MSEqQmTcz9d94x54L4F6OEoEDauVPq04fflqNx69HD/Mbn53OA2ecKAIDQUNtqsZIZCcrMNNvABClCUCA5HNLYsfy2HI1fWFhQ/8cGAAD8pLbVYqVGsVosv7oNlPBwqVUrMzyYnm53NQAAAIDvfr5a7Ik0gtViCUGB0q2b1Lu3mT+5ZImZTwkAAAA0JuWrxe7aZa55/7nyx6mpQX/9OyEoUFwuMx2ufXszEpSZaXdFAAAAgG9qWi22fFW4sWOD/lrh4K7uZFK+uWRsbKOYJwkAAABUq3y12AEDpMOHpS1bzG2/fuZ8aqq99XmBhRECpUMHc5ufH3zzJH+52y8rfQEAAKAm1a0W26aN9N57dlfmFUJQoOTkmHmSu3cH1z5B1e322727GeZkFTsAAACcyC9Xi3W7bSvFV4SgQNm8WYqIMPMnTztN+v57+0ddynf7zcoya73HxpqRqnXrzMVuM2YQhAAAAHDSIQQFSk6O2UU3Kkp6/nn7R11q2u23Z09zoduSJWaYk6lxAAAAOInw6TZQunY1QWjPHjMalJpqbtetM6Mxgd47qLbdflnFDgAAACcpQlCg5OSYqWY9e5rRlvDw46MuduwdVNtuv6xiBwAAgJNUUISgxx9/XB07dlRUVJQGDx6sr776yu6SGt6BA1LLlsEz6lLbbr/BuIodAAAA0ABsD0Evv/yyZs6cqVmzZumbb75Rv379NGrUKB08eNDu0hqWxyNt3CgdOlT1nB2jLrXt9rt7t7lOKVhWsQMAAAAaiO0haP78+Zo6daquvvpq9ezZU08++aRiYmL0zDPP2F1aw2rVyoSczZurhg47Rl1q2u130yZzfMIEFkUAAADAScfW1eFKSkq0du1a3XHHHRXHwsLCNGLECK1atapK++LiYhUXF1c8zsnJkSS53W65A70u+eWXS2+8UfHQHR1d6baKFi3MtT85OVJenlkpTjKB6MABs8NumzaBXV+9a1dp2jTp7bfNTr8HDpgwduqp0tix5nwjWu+9MSrvtwHvv2i06DOoC/oNfEWfQV3Y3W98eV+HZf1yWCJw9u7dq3bt2umLL77Q0KFDK47/6U9/0ieffKIvv/yyUvvZs2drzpw5VV5n4cKFiomJ8Xu9AAAAAIJTQUGBJk6cqOzsbCUkJNTYtlHtE3THHXdo5syZFY9zcnKUnJyskSNH1vqNNrhVq6TRoyseuqOjteyZZ5Q2ZYqchYVV2193nXT0qJlq1qGDWR0uKsoslT12rLlFyHG73Vq2bJnS0tLkdDrtLgeNAH0GdUG/ga/oM6gLu/tN+Swxb9gaghITExUeHq4DBw5UOn7gwAG1bt26SnuXyyWXy1XluNPpDPwf9BlnSM2aSXv3Vq6lsLBqCEpNNYsfZGZKF1xgptLl55trgFJSuO4G9vRhNGr0GdQF/Qa+os+gLuzqN768p62fviMjIzVo0CAtX7684pjH49Hy5csrTY8LShER0lNPedf29NPNEtiJiWYxgs6dpT59pI4dCUAAAABAgNn+CXzmzJn617/+peeee07p6em67rrrlJ+fr6uvvtru0mo3bpz01ls1txk1ytwOHCjNmGGWnQYAAABgG9uvCbrssst06NAh3XPPPdq/f7/69++v9957T0lJSXaX5p1x48wKarffXvn4rFnSlVcy7Q0AAAAIMraHIEmaPn26pk+fbncZdRcRId13n/Tuu2afHebOAgAAAEGLoQkAAAAAIYUQBAAAACCkEIIAAAAAhBRCEAAAAICQQggCAAAAEFIIQQAAAABCCiEIAAAAQEghBAEAAAAIKYQgAAAAACGFEAQAAAAgpBCCAAAAAIQUQhAAAACAkEIIAgAAABBSIuwuoD4sy5Ik5eTk2FyJ5Ha7VVBQoJycHDmdTrvLQSNBv4Gv6DOoC/oNfEWfQV3Y3W/KM0F5RqhJow5Bubm5kqTk5GSbKwEAAAAQDHJzc9WkSZMa2zgsb6JSkPJ4PNq7d6/i4+PlcDhsrSUnJ0fJycnatWuXEhISbK0FjQf9Br6iz6Au6DfwFX0GdWF3v7EsS7m5uWrbtq3Cwmq+6qdRjwSFhYWpffv2dpdRSUJCAv9ZwGf0G/iKPoO6oN/AV/QZ1IWd/aa2EaByLIwAAAAAIKQQggAAAACEFEJQA3G5XJo1a5ZcLpfdpaARod/AV/QZ1AX9Br6iz6AuGlO/adQLIwAAAACArxgJAgAAABBSCEEAAAAAQgohCAAAAEBIIQQBAAAACCmEoAby+OOPq2PHjoqKitLgwYP11Vdf2V0S/GD27NlyOByVvrp3715xvqioSNOmTVOLFi0UFxenSy65RAcOHKj0GpmZmRo7dqxiYmLUqlUr3XbbbSotLa3UZsWKFRo4cKBcLpe6du2qBQsWVKmFPhe8Pv30U40fP15t27aVw+HQkiVLKp23LEv33HOP2rRpo+joaI0YMUJbt26t1ObIkSOaNGmSEhIS1LRpU/3+979XXl5epTYbNmzQ8OHDFRUVpeTkZD3wwANVann11VfVvXt3RUVFqU+fPnr33Xd9rgX+V1ufueqqq6r83zN69OhKbegzoWXevHk67bTTFB8fr1atWmnChAnKyMio1CaYfiZ5Uwv8z5t+c/bZZ1f5/+baa6+t1Oak6DcW6m3RokVWZGSk9cwzz1jff/+9NXXqVKtp06bWgQMH7C4NDWzWrFlWr169rH379lV8HTp0qOL8tddeayUnJ1vLly+31qxZYw0ZMsQ644wzKs6XlpZavXv3tkaMGGGtW7fOevfdd63ExETrjjvuqGjzww8/WDExMdbMmTOtTZs2WY899pgVHh5uvffeexVt6HPB7d1337Xuuusu6/XXX7ckWYsXL650/r777rOaNGliLVmyxFq/fr11wQUXWJ06dbIKCwsr2owePdrq16+ftXr1auuzzz6zunbtal1xxRUV57Ozs62kpCRr0qRJ1saNG62XXnrJio6Otp566qmKNp9//rkVHh5uPfDAA9amTZusv/zlL5bT6bS+++47n2qB/9XWZyZPnmyNHj260v89R44cqdSGPhNaRo0aZT377LPWxo0brW+//dY6//zzrZSUFCsvL6+iTTD9TKqtFgSGN/3mrLPOsqZOnVrp/5vs7OyK8ydLvyEENYDTTz/dmjZtWsXjsrIyq23btta8efNsrAr+MGvWLKtfv37Vnjt27JjldDqtV199teJYenq6JclatWqVZVnmg05YWJi1f//+ijZPPPGElZCQYBUXF1uWZVl/+tOfrF69elV67csuu8waNWpUxWP6XOPxyw+0Ho/Hat26tfWPf/yj4tixY8csl8tlvfTSS5ZlWdamTZssSdbXX39d0Wbp0qWWw+Gw9uzZY1mWZf3zn/+0mjVrVtFvLMuybr/9dis1NbXi8W9+8xtr7NixleoZPHiwdc0113hdCwLvRCHowgsvPOFz6DM4ePCgJcn65JNPLMsKrp9J3tQCe/yy31iWCUE33njjCZ9zsvQbpsPVU0lJidauXasRI0ZUHAsLC9OIESO0atUqGyuDv2zdulVt27ZV586dNWnSJGVmZkqS1q5dK7fbXakvdO/eXSkpKRV9YdWqVerTp4+SkpIq2owaNUo5OTn6/vvvK9r8/DXK25S/Bn2ucduxY4f2799f6e+vSZMmGjx4cKV+0rRpU5166qkVbUaMGKGwsDB9+eWXFW3OPPNMRUZGVrQZNWqUMjIydPTo0Yo2NfUlb2pB8FixYoVatWql1NRUXXfddTp8+HDFOfoMsrOzJUnNmzeXFFw/k7ypBfb4Zb8p9+KLLyoxMVG9e/fWHXfcoYKCgopzJ0u/iaj3K4S4rKwslZWVVeoIkpSUlKTNmzfbVBX8ZfDgwVqwYIFSU1O1b98+zZkzR8OHD9fGjRu1f/9+RUZGqmnTppWek5SUpP3790uS9u/fX21fKT9XU5ucnBwVFhbq6NGj9LlGrPzvubq/v5/3gVatWlU6HxERoebNm1dq06lTpyqvUX6uWbNmJ+xLP3+N2mpBcBg9erQuvvhiderUSdu3b9edd96pMWPGaNWqVQoPD6fPhDiPx6ObbrpJw4YNU+/evSUpqH4meVMLAq+6fiNJEydOVIcOHdS2bVtt2LBBt99+uzIyMvT6669LOnn6DSEI8MGYMWMq7vft21eDBw9Whw4d9Morryg6OtrGygCczC6//PKK+3369FHfvn3VpUsXrVixQuedd56NlSEYTJs2TRs3btTKlSvtLgWNyIn6zR//+MeK+3369FGbNm103nnnafv27erSpUugy/QbpsPVU2JiosLDw6usVHHgwAG1bt3apqoQKE2bNlW3bt20bds2tW7dWiUlJTp27FilNj/vC61bt662r5Sfq6lNQkKCoqOj6XONXPnfUU1/f61bt9bBgwcrnS8tLdWRI0capC/9/HxttSA4de7cWYmJidq2bZsk+kwomz59ut5++219/PHHat++fcXxYPqZ5E0tCKwT9ZvqDB48WJIq/X9zMvQbQlA9RUZGatCgQVq+fHnFMY/Ho+XLl2vo0KE2VoZAyMvL0/bt29WmTRsNGjRITqezUl/IyMhQZmZmRV8YOnSovvvuu0ofVpYtW6aEhAT17Nmzos3PX6O8Tflr0Ocat06dOql169aV/v5ycnL05ZdfVuonx44d09q1ayvafPTRR/J4PBU/jIYOHapPP/1Ubre7os2yZcuUmpqqZs2aVbSpqS95UwuC0+7du3X48GG1adNGEn0mFFmWpenTp2vx4sX66KOPqkx1DKafSd7UgsCord9U59tvv5WkSv/fnBT9pt5LK8BatGiR5XK5rAULFlibNm2y/vjHP1pNmzattGoGTg633HKLtWLFCmvHjh3W559/bo0YMcJKTEy0Dh48aFmWWcoxJSXF+uijj6w1a9ZYQ4cOtYYOHVrx/PJlJUeOHGl9++231nvvvWe1bNmy2mUlb7vtNis9Pd16/PHHq11Wkj4XvHJzc61169ZZ69atsyRZ8+fPt9atW2ft3LnTsiyzxHDTpk2tN954w9qwYYN14YUXVrtE9oABA6wvv/zSWrlypXXKKadUWu742LFjVlJSkvW73/3O2rhxo7Vo0SIrJiamynLHERER1oMPPmilp6dbs2bNqna549pqgf/V1Gdyc3OtW2+91Vq1apW1Y8cO68MPP7QGDhxonXLKKVZRUVHFa9BnQst1111nNWnSxFqxYkWlpYwLCgoq2gTTz6TaakFg1NZvtm3bZv31r3+11qxZY+3YscN64403rM6dO1tnnnlmxWucLP2GENRAHnvsMSslJcWKjIy0Tj/9dGv16tV2lwQ/uOyyy6w2bdpYkZGRVrt27azLLrvM2rZtW8X5wsJC6/rrr7eaNWtmxcTEWBdddJG1b9++Sq/x448/WmPGjLGio6OtxMRE65ZbbrHcbnelNh9//LHVv39/KzIy0urcubP17LPPVqmFPhe8Pv74Y0tSla/JkydblmWWGb777rutpKQky+VyWeedd56VkZFR6TUOHz5sXXHFFVZcXJyVkJBgXX311VZubm6lNuvXr7d+9atfWS6Xy2rXrp113333VanllVdesbp162ZFRkZavXr1st55551K572pBf5XU58pKCiwRo4cabVs2dJyOp1Whw4drKlTp1b5pQd9JrRU118kVfp5EUw/k7ypBf5XW7/JzMy0zjzzTKt58+aWy+Wyunbtat12222V9gmyrJOj3zh++gMBAAAAgJDANUEAAAAAQgohCAAAAEBIIQQBAAAACCmEIAAAAAAhhRAEAAAAIKQQggAAAACEFEIQAAAAgJBCCAIABLXNmzdryJAhioqKUv/+/fXjjz/K4XDo22+/9er5V111lSZMmFDvOjIyMtS6dWvl5ubW+7V+6b333lP//v3l8Xga/LUBAFURggAghB06dEjXXXedUlJS5HK51Lp1a40aNUqff/653aVVmDVrlmJjY5WRkaHly5crOTlZ+/btU+/evb16/iOPPKIFCxbUu4477rhDN9xwg+Lj4+v8Gm+88YbS0tI0ePBgnXHGGdqxY4ckafTo0XI6nXrxxRfrXScAoHYOy7Isu4sAANjjzDPPVElJiebNm6fOnTvrwIEDWr58uXr16qULLrjA1tpKSkoUGRmpU089VWPHjtWcOXNsqyUzM1Ndu3bVjh071K5duzq/Tvn3JEl/+MMfNGjQIF133XWSpMcff1wLFizQ119/3SA1AwBOjJEgAAhRx44d02effab7779f55xzjjp06KDTTz9dd9xxR0UAqm7q2bFjx+RwOLRixQpJ0ooVK+RwOPTOO++ob9++ioqK0pAhQ7Rx48ZK77dy5UoNHz5c0dHRSk5O1owZM5Sfn19xvmPHjrr33nt15ZVXKiEhQX/84x/lcDi0du1a/fWvf5XD4dDs2bOrren777/XuHHjlJCQoPj4eA0fPlzbt2+XVHU6nMfj0bx589SpUydFR0erX79+eu2112r8s3rllVfUr1+/SgFowYIFatq0qd5++22lpqYqJiZGv/71r1VQUKDnnntOHTt2VLNmzTRjxgyVlZVJUkUAeuedd7R7925dffXVFa83fvx4rVmzpqJuAID/EIIAIETFxcUpLi5OS5YsUXFxcb1f77bbbtNDDz2kr7/+Wi1bttT48ePldrslSdu3b9fo0aN1ySWXaMOGDXr55Ze1cuVKTZ8+vdJrPPjgg+rXr5/WrVunu+++W/v27VOvXr10yy23aN++fbr11lurvO+ePXt05plnyuVy6aOPPtLatWs1ZcoUlZaWVlvnvHnz9Pzzz+vJJ5/U999/r5tvvlm//e1v9cknn5zwe/vss8906qmnVjleUFCgRx99VIsWLdJ7772nFStW6KKLLtK7776rd999Vy+88IKeeuqpipDl8Xj0t7/9TYsXL9aSJUsUFRVV8VopKSlKSkrSZ599VvsfNgCgXiLsLgAAYI+IiAgtWLBAU6dO1ZNPPqmBAwfqrLPO0uWXX66+ffv6/HqzZs1SWlqaJOm5555T+/bttXjxYv3mN7/RvHnzNGnSJN10002SpFNOOUWPPvqozjrrLD3xxBMVYeDcc8/VLbfcUqXOuLg4tW7dWpKUlZVV6fzjjz+uJk2aaNGiRXI6nZKkbt26VVtjcXGx/v73v+vDDz/U0KFDJUmdO3fWypUr9dRTT+mss86q9nk7d+6sNgS53W498cQT6tKliyTp17/+tV544QUdOHBAcXFx6tmzp8455xx9/PHHuuyyy/TII49o7ty56tevn84++2xNmjRJN9xwQ8XrtW3bVjt37jzxHzIAoEEQggAghF1yySUaO3asPvvsM61evVpLly7VAw88oH//+9+66qqrfHqt8lAhSc2bN1dqaqrS09MlSevXr9eGDRsqXfhvWZY8Ho927NihHj16SFK1QaM23377rYYPH14RgGqybds2FRQUVIS1ciUlJRowYMAJn1dYWFhp1KZcTExMRQCSpKSkJHXs2FFxcXGVjh08eFCSdPPNN+vmm28+4ftER0eroKCg1u8DAFA/hCAACHFRUVFKS0tTWlqa7r77bv3hD3/QrFmzdNVVVykszMya/vkaOuVT3HyRl5ena665RjNmzKhyLiUlpeJ+bGysz68dHR3tUx2SuSbnlwscuFyuEz4vMTFRR48erXL8l8HL4XBUe8zbpa+PHDmili1betUWAFB3hCAAQCU9e/bUkiVLJKniA/m+ffsqRkpOtD/P6tWrKwLN0aNHtWXLlooRnoEDB2rTpk3q2rVrg9fbt29fPffcc3K73bWOBvXs2VMul0uZmZknnPpWnQEDBmjTpk31LbVGRUVF2r59e40jUgCAhsHCCAAQog4fPqxzzz1X//3vf7Vhwwbt2LFDr776qh544AFdeOGFkswoy5AhQ3TfffcpPT1dn3zyif7yl79U+3p//etftXz5cm3cuFFXXXWVEhMTK1Zlu/322/XFF19o+vTp+vbbb7V161a98cYbVRZGqIvp06crJydHl19+udasWaOtW7fqhRdeUEZGRpW28fHxuvXWW3XzzTfrueee0/bt2/XNN9/oscce03PPPXfC9xg1apRWrVpVscqbP6xevVoul6vStEIAgH8wEgQAISouLk6DBw/W//t//0/bt2+X2+1WcnKypk6dqjvvvLOi3TPPPKPf//73GjRokFJTU/XAAw9o5MiRVV7vvvvu04033qitW7eqf//+euuttyqWhO7bt68++eQT3XXXXRo+fLgsy1KXLl102WWX1fv7aNGihT766CPddtttOuussxQeHq7+/ftr2LBh1ba/99571bJlS82bN08//PCDmjZtqoEDB1b6nn9pzJgxioiI0IcffqhRo0bVu+bqvPTSS5o0aZJiYmL88voAgOPYLBUAUC8rVqzQOeeco6NHj6pp06Z2l+M3jz/+uN588029//77Df7aWVlZSk1N1Zo1a9SpU6cGf30AQGWMBAEA4IVrrrlGx44dU25uruLj4xv0tX/88Uf985//JAABQIAwEgQAqJdQGQkCAJw8CEEAAAAAQgqrwwEAAAAIKYQgAAAAACGFEAQAAAAgpBCCAAAAAIQUQhAAAACAkEIIAgAAABBSCEEAAAAAQgohCAAAAEBIIQQBAAAACCn/H470TSq5A/MMAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAIkCAYAAADs5iPdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwlUlEQVR4nO3deVyU5f7/8fewDaCAIiCQG2qpqOW+5NoR17LMytIWtU6WaZ3WY9a3lDa17bRb2SlbNFvNLJfUNK00c8sMNTXUMpQUBRRBluv3hz/mOII6Q9zM4uv5ePDQuee67/nMcA3wnuu+r8tmjDECAAAAAACVKsDTBQAAAAAA4I8I3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQCVYN26dUpNTdW+ffs8XQoAAAC8BIEbgM9btmyZbDabli1bZsnxp0+fLpvNpp07d5Z7/4EDBzRo0CAVFBSodu3altQAzzp8+LD++c9/Kj4+XjabTXfeead27twpm82m6dOnu3WsM/Wns5lVr82TTz6ppk2bqqSkpFKPWxE2m00TJ0503PbV/lDez90RI0aoQYMGlfo4PXv2VM+ePSv1mK6y4vmUSktLU1BQkDZt2mTJ8QF4DwI3gCpV+sdl6VdQUJDOOeccjRgxQnv27PF0eW4zxuiGG25Qjx499Pjjj3u6nDP6888/NXHiRG3YsKFKH3fu3Lnq0aOH4uLiFB4eroYNG2rIkCFasGBBldZRUU888YSmT5+u0aNH691339X111/v6ZIqRemHBqVfgYGBqlevni6//PIq7yNWycnJ0ZQpUzRu3DgFBDj/2XPkyBE9+uijOv/88xUeHq6oqCh169ZN77zzjowxFX7MefPmOYVqXzJixAinPnHiV2hoqKfL8xvJycm6+OKL9fDDD3u6FAAWC/J0AQDOTo888oiSkpKUn5+vVatWafr06fr222+1adMmr/uj7vrrr9c111wju91e5r4dO3aoW7duuvvuu2Wz2TxQnXv+/PNPpaamqkGDBmrVqlWVPObTTz+t++67Tz169ND48eMVHh6u7du3a/HixZo1a5b69etXJXX8HV9//bU6deqkCRMmOLYZY3T06FEFBwe7dazT9SdPGTp0qAYMGKDi4mJt3rxZU6dO1fz587Vq1aoq6yeSNa/Nm2++qaKiIg0dOtRp+759+9SrVy9t3rxZ11xzjcaOHav8/Hx98sknGj58uObNm6cZM2YoMDDQ7cecN2+eXn75ZZdCtzf2B7vdrjfeeKPM9jO9FtOmTav0swi++uqrSj2eN7n11ls1YMAA7dixQ40aNfJ0OQAsQuAG4BH9+/dXu3btJEn//Oc/FRMToylTpujzzz/XkCFDPFyds8DAwFP+odm4cWPdf//9VVxR1cnLy1N4eHiF9y8qKtKjjz6q3r17l/uHc2Zm5t8pz1IlJSU6duyYQkNDlZmZqeTkZKf7Kzrid7r+5Clt2rTRdddd57jdpUsXXXrppZo6dapee+21cvc5cuSIqlWrVql1WPHavPXWW7r00kvLfK+GDx+uzZs3a/bs2br00ksd2++44w7dd999evrpp9W6dWuNGzeuUus5WWU/58r4vgQFBTn1B1e5++GTK0JCQir9mN4iJSVFNWvW1Ntvv61HHnnE0+UAsAinlAPwCt26dZN0fMT4RFu2bNGVV16p6OhohYaGql27dvr888/PeLwVK1boqquuUr169WS321W3bl3dddddOnr0aJm2W7Zs0ZAhQxQbG6uwsDA1adJEDz74oOP+U11j+corr6h58+ay2+1KTEzUmDFjdOjQIac2PXv2VIsWLZSWlqaLLrpI4eHhOuecc/Tkk0+6+MpI7733ntq2bauwsDBFR0frmmuu0e+//+724yxbtkzt27eXJI0cOdJxmmjpNcilx1i7dq26d++u8PBwPfDAA5KkgoICTZgwQY0bN3a8nv/+979VUFBw2tr379+vnJwcdenSpdz74+LiHP8/1etc3rWiJ9Z64YUXKiwsTElJSXr11VfLPIartdtsNo0dO1YzZsxwfF8XLFggm82m9PR0ffnll47XbOfOnae8hrui/Wn+/Pnq1q2bqlWrpoiICF188cX65ZdfTvPqSr/99ptsNpv+85//lLnv+++/l81m0/vvv3/aY5TnH//4hyQpPT3dqeZvvvlGt912m+Li4lSnTh23a7fyvVae9PR0bdy4USkpKU7bV61apYULF2rEiBFOYbvUpEmTdO6552rKlCmOnxmnmivi5H4wYsQIvfzyy5LkdDr2qfyd/jBixAhVr15dO3bs0IABAxQREaFrr71WkrRt2zZdccUVio+PV2hoqOrUqaNrrrlG2dnZZ3zdKurka55LX5unn35aL7/8sho2bKjw8HD16dNHv//+u4wxevTRR1WnTh2FhYXpsssuU1ZWltMxT76Gu/T78OGHH+rxxx9XnTp1FBoaql69emn79u1O+7rze+Czzz5TixYtFBoaqhYtWmj27NnlPscjR47onnvuUd26dWW329WkSRM9/fTTZS5BWLRokbp27aoaNWqoevXqatKkiePnaang4GD17NlTc+bMceXlBeCjGOEG4BVK/9isWbOmY9svv/yiLl266JxzztH999+vatWq6cMPP9SgQYP0ySef6PLLLz/l8T766CPl5eVp9OjRqlWrllavXq0XX3xRf/zxhz766CNHu40bN6pbt24KDg7WqFGj1KBBA+3YsUNz58497TXZEydOVGpqqlJSUjR69Ght3bpVU6dO1Y8//qjvvvvOaaTn4MGD6tevnwYPHqwhQ4bo448/1rhx49SyZUv179//tK/L448/roceekhDhgzRP//5T/3111968cUX1b17d61fv141atRw+XGaNWumRx55RA8//LBGjRrl+JDjwgsvdBzjwIED6t+/v6655hpdd911ql27tkpKSnTppZfq22+/1ahRo9SsWTP9/PPP+s9//qNff/1Vn3322Snrj4uLU1hYmObOnavbb79d0dHRp32+7jh48KAGDBigIUOGaOjQofrwww81evRohYSE6MYbb5Qkt2v/+uuv9eGHH2rs2LGKiYlRQkKC3n33Xd11112qU6eO7rnnHklSbGys/vrrrzI1VbQ/vfvuuxo+fLj69u2rKVOmKC8vT1OnTlXXrl21fv36U07c1LBhQ3Xp0kUzZszQXXfd5XTfjBkzFBERocsuu8yNV/W40g++atWq5bT9tttuU2xsrB5++GEdOXLErdqr4r12su+//17S8RH8E82dO1eSdMMNN5S7X1BQkIYNG6bU1FR99913ZQL76dxyyy36888/tWjRIr377rsu73cid/pDUVGR+vbtq65du+rpp59WeHi4jh07pr59+6qgoEC333674uPjtWfPHn3xxRc6dOiQoqKizljD/v37y2wLCQlRZGSk289nxowZOnbsmG6//XZlZWXpySef1JAhQ/SPf/xDy5Yt07hx47R9+3a9+OKLuvfee/Xmm2+e8ZiTJ09WQECA7r33XmVnZ+vJJ5/Utddeqx9++MHRxtXfA1999ZWuuOIKJScna9KkSTpw4IBGjhzp9KGSdPwykksvvVRLly7VTTfdpFatWmnhwoW67777tGfPHscHX7/88osuueQSnX/++XrkkUdkt9u1fft2fffdd2WeR9u2bTVnzhzl5ORU6LUF4AMMAFSht956y0gyixcvNn/99Zf5/fffzccff2xiY2ON3W43v//+u6Ntr169TMuWLU1+fr5jW0lJibnwwgvNueee69i2dOlSI8ksXbrUsS0vL6/MY0+aNMnYbDaza9cux7bu3bubiIgIp22lj3Nyzenp6cYYYzIzM01ISIjp06ePKS4udrR76aWXjCTz5ptvOrb16NHDSDLvvPOOY1tBQYGJj483V1xxxWlfq507d5rAwEDz+OOPO23/+eefTVBQkNN2Vx/nxx9/NJLMW2+9VebxSo/x6quvOm1/9913TUBAgFmxYoXT9ldffdVIMt99991pn8fDDz9sJJlq1aqZ/v37m8cff9ysXbu2TLuTX+dS5X1/S2t95plnnJ5vq1atTFxcnDl27JjbtUsyAQEB5pdffilTW/369c3FF1/stC09Pb3Ma1mR/pSbm2tq1Khhbr75Zqd99u7da6KiospsP9lrr71mJJnNmzc7th07dszExMSY4cOHn3bf0ueQmppq/vrrL7N3716zbNky07p1ayPJfPLJJ041d+3a1RQVFTn2d6d2q99r5fm///s/I8nk5uY6bR80aJCRZA4ePHjKfT/99FMjybzwwgvGmPL7oTHl94MxY8aYU/2JJclMmDDhlM/Zndd0+PDhRpK5//77ndquX7/eSDIfffTRKZ/fqZQes7yvvn37OtqV93oMHz7c1K9f33G79LWJjY01hw4dcmwfP368kWQuuOACU1hY6Ng+dOhQExIS4vQzv0ePHqZHjx5lHrdZs2amoKDAsf355583kszPP//s2Obq74FWrVqZhIQEpxq/+uorI8np+Xz22WdGknnsscecjnnllVcam81mtm/fbowx5j//+Y+RZP76668yj3+ymTNnGknmhx9+OGNbAL6JU8oBeERKSopiY2NVt25dXXnllapWrZo+//xzx4hCVlaWvv76aw0ZMkS5ubnav3+/9u/frwMHDqhv377atm3baWc1DwsLc/z/yJEj2r9/vy688EIZY7R+/XpJ0l9//aXly5frxhtvVL169Zz2P90poIsXL9axY8d05513Os16fPPNNysyMlJffvmlU/vq1as7XQ8ZEhKiDh066Lfffjvta/Tpp5+qpKREQ4YMcTz//fv3Kz4+Xueee66WLl1aKY9zIrvdrpEjRzpt++ijj9SsWTM1bdrUqY7S045PruNkqampmjlzplq3bq2FCxfqwQcfVNu2bdWmTRtt3rzZ5dpOFhQUpFtuucVxOyQkRLfccosyMzO1du3aCtXeo0ePMtdqu6qi/WnRokU6dOiQhg4d6lRjYGCgOnbseMbXd8iQIQoNDdWMGTMc2xYuXKj9+/e7fB3uhAkTFBsbq/j4ePXs2VM7duzQlClTNHjwYKd2N998s9P1xq7WXlXvtZMdOHBAQUFBql69utP23NxcSVJERMQp9y29Lycn57SPUdkq0h9Gjx7tdLt0BHvhwoXKy8tzu4bQ0FAtWrSozNfkyZMr9Jyuuuoqp1H1jh07SpKuu+46BQUFOW0/duyYSytWjBw50un67tIzdk78eefK74GMjAxt2LBBw4cPd6qxd+/eZX4WzJs3T4GBgbrjjjuctt9zzz0yxmj+/PmS5DjzaM6cOWecRK70rK7yzigA4B84pRyAR7z88ss677zzlJ2drTfffFPLly93mqV3+/btMsbooYce0kMPPVTuMTIzM3XOOeeUe9/u3bv18MMP6/PPP9fBgwed7iu9hrH0D7MWLVq4VfuuXbskSU2aNHHaHhISooYNGzruL1WnTp0yoaJmzZrauHHjaR9n27ZtMsbo3HPPLff+k0+lrejjnOicc84pM0nRtm3btHnzZsXGxpa7jysTnw0dOlRDhw5VTk6OfvjhB02fPl0zZ87UwIEDKzwzfWJiYpnJoc477zxJxy9R6NSpk9u1JyUluV1HqYr2p23btkn633XTJzvTaaY1atTQwIEDNXPmTD366KOSjp/Ce84555zymCcbNWqUrrrqKgUEBKhGjRqO66VPdvLr42rtVfVec1VpmM7NzXW6LONEroRyK7jbH4KCgsqc+pyUlKS7775bzz77rGbMmKFu3brp0ksv1XXXXefS6eSBgYFunUZ/Jid/yFJaQ926dcvdfvLPbFeOWRpcT9zXld8DpX2ovJ+zTZo00bp16xy3d+3apcTExDJ9olmzZk7Huvrqq/XGG2/on//8p+6//3716tVLgwcP1pVXXllmaTrz/6/99oVVLgBUjN8E7uXLl+upp57S2rVrlZGRodmzZ2vQoEFuHcMYo2eeeUavv/66du3apZiYGN12221OE7oAqBwdOnRwzFI+aNAgde3aVcOGDdPWrVtVvXp1x6jAvffeq759+5Z7jMaNG5e7vbi4WL1791ZWVpbGjRunpk2bqlq1atqzZ49GjBhR6cvWnMmpZiAu/UPrVEpKSmSz2TR//vxyj3HyqF1FH+dEJ44InVhHy5Yt9eyzz5a7z8l/NJ9OZGSkevfurd69eys4OFhvv/22fvjhB/Xo0eOUf3AWFxe7fPyTuVt7ec/faqX98d1331V8fHyZ+08cATyVG264QR999JG+//57tWzZUp9//rluu+22Mn/cn8q5557rUsA6+fWpjNqtVKtWLRUVFSk3N9cpJDVr1kyfffaZNm7cqO7du5e7b+kHVaWjnFb0z/K4+5ra7fZyv8/PPPOMRowYoTlz5uirr77SHXfcoUmTJmnVqlVlArrVTvWz6e/8zDrTvp78PRAWFqbly5dr6dKl+vLLL7VgwQJ98MEH+sc//qGvvvrKqfbSDwJiYmIsqweAZ/lN4D5y5IguuOAC3XjjjWVOgXPVv/71L3311Vd6+umn1bJlS2VlZZWZLRNA5QsMDNSkSZN00UUX6aWXXtL999+vhg0bSjo+iuvuSMvPP/+sX3/9VW+//bbTpEiLFi1yalf6GJs2bXLr+PXr15ckbd261XEMSTp27JjS09MrbWSoUaNGMsYoKSnJMXL7d1VkFKVRo0b66aef1KtXr0odhWnXrp3efvttZWRkSPrfCNXJs0+fahTzzz//LLME0q+//ipJjkmlrKq9PBXtT6Xr78bFxVW47/Tr10+xsbGaMWOGOnbsqLy8PF1//fUVOpY7XK3dU++1pk2bSjo+W/n555/v2H7JJZdo0qRJeuedd8oN3MXFxZo5c6Zq1qzpmGHfnf75d/paZfSHUi1btlTLli31f//3f/r+++/VpUsXvfrqq3rsscf+1nF9gau/B0r7WOmZBSfaunVrmbaLFy8u8wHOli1bnI4lSQEBAerVq5d69eqlZ599Vk888YQefPBBLV261On7mp6eroCAgEr7GQ/A+/jNNdz9+/fXY489dspZiwsKCnTvvffqnHPOUbVq1dSxY0enpT02b96sqVOnas6cObr00kuVlJSktm3bqnfv3lX0DICzW8+ePdWhQwc999xzys/PV1xcnHr27KnXXnvNEchOVN4M0aVKRw9OHCUxxuj55593ahcbG6vu3bvrzTff1O7du53uO90IS0pKikJCQvTCCy84tfvvf/+r7OxsXXzxxad/si4aPHiwAgMDlZqaWqYeY4wOHDjg9jFLw6krSyqVGjJkiPbs2aNp06aVue/o0aOO2arLk5eXp5UrV5Z7X+n1jqWnC5cGjeXLlzvaFBcX6/XXXy93/6KiIqc1oo8dO6bXXntNsbGxatu27d+u3V0V7U99+/ZVZGSknnjiCRUWFpa5/3R9vVRQUJBjpvbp06erZcuWTgHTKq7W7qn3WufOnSVJa9ascdp+4YUXKiUlRW+99Za++OKLMvs9+OCD+vXXX/Xvf//bMapfv359BQYGOvVP6fiSZSeryPusVGX0h5ycHBUVFTlta9mypQICAs64lJ+/cPX3QEJCglq1aqW3337bacm0RYsWKS0tzantgAEDVFxcrJdeeslp+3/+8x/ZbDbHqhPlDda0atVKksq8/mvXrlXz5s1dOtUfgG/ymxHuMxk7dqzS0tI0a9YsJSYmavbs2erXr59+/vlnnXvuuZo7d64aNmyoL774Qv369ZMxRikpKXryyScrdRkbAKd233336aqrrtL06dN166236uWXX1bXrl3VsmVL3XzzzWrYsKH27dunlStX6o8//tBPP/1U7nGaNm2qRo0a6d5779WePXsUGRmpTz75pNzrAl944QV17dpVbdq00ahRo5SUlKSdO3fqyy+/1IYNG8o9fmxsrMaPH6/U1FT169dPl156qbZu3apXXnlF7du3d3miqjNp1KiRHnvsMY0fP147d+7UoEGDFBERofT0dM2ePVujRo3Svffe6/Yxa9SooVdffVURERGODyBPd+3y9ddfrw8//FC33nqrli5dqi5duqi4uFhbtmzRhx9+qIULFzouDzhZXl6eLrzwQnXq1En9+vVT3bp1dejQIX322WdasWKFBg0apNatW0uSmjdvrk6dOmn8+PHKyspSdHS0Zs2aVSY4lEpMTNSUKVO0c+dOnXfeefrggw+0YcMGvf76647r2/9O7RVRkf4UGRmpqVOn6vrrr1ebNm10zTXXKDY2Vrt379aXX36pLl26lPkDvzw33HCDXnjhBS1dulRTpkyptOd0Ou7U7on3WsOGDdWiRQstXrzYsVRcqXfeeUe9evXSZZddpmHDhqlbt24qKCjQp59+qmXLlunqq6/Wfffd52gfFRWlq666Si+++KJsNpsaNWqkL774otw5DEo/8LnjjjvUt29fBQYG6pprrqn01/RUvv76a40dO1ZXXXWVzjvvPBUVFendd99VYGCgrrjiijPWUFRUpPfee6/c+y6//PIycyd4I3d+D0yaNEkXX3yxunbtqhtvvFFZWVl68cUX1bx5cx0+fNjRbuDAgbrooov04IMPaufOnbrgggv01Vdfac6cObrzzjsdHxo+8sgjWr58uS6++GLVr19fmZmZeuWVV1SnTh117drVcbzCwkLH2vYA/FjVTYhedSSZ2bNnO27v2rXLBAYGmj179ji169Wrlxk/frwxxphbbrnF2O1207FjR7N8+XKzdOlS06pVK3PRRRdVZemA3ytdAufHH38sc19xcbFp1KiRadSokWPpoR07dpgbbrjBxMfHm+DgYHPOOeeYSy65xHz88ceO/cpbniYtLc2kpKSY6tWrm5iYGHPzzTebn376qdwlsTZt2mQuv/xyU6NGDRMaGmqaNGliHnrooTI1n7xc1UsvvWSaNm1qgoODTe3atc3o0aPLLDPUo0cP07x58zLP9eTlc07nk08+MV27djXVqlUz1apVM02bNjVjxowxW7durdDjzJkzxyQnJ5ugoCCn1+NUxzDm+DJTU6ZMMc2bNzd2u93UrFnTtG3b1qSmpprs7OxT1l5YWGimTZtmBg0aZOrXr2/sdrsJDw83rVu3Nk899ZTTsj7GHP9+p6SkGLvdbmrXrm0eeOABs2jRonKXBWvevLlZs2aN6dy5swkNDTX169c3L730UoVrl2TGjBlT7vNwdVkwYyren5YuXWr69u1roqKiTGhoqGnUqJEZMWKEWbNmzSlf35M1b97cBAQEmD/++MOl9qXP4amnnjptu9O9b92p3cr32qk8++yzpnr16uUuEZWbm2smTpxomjdvbsLCwkxERITp0qWLmT59utNyZaX++usvc8UVV5jw8HBTs2ZNc8stt5hNmzaV6QdFRUXm9ttvN7GxscZmszktEaYzLAtWypXXdPjw4aZatWpl6vztt9/MjTfeaBo1amRCQ0NNdHS0ueiii8zixYvP+HqdblmwE+t0Z1mwk/tX6b4nL1tWXj871bJgJ+9b3vvRnd8Dn3zyiWnWrJmx2+0mOTnZfPrpp+X+/MzNzTV33XWXSUxMNMHBwebcc881Tz31lFN/WbJkibnssstMYmKiCQkJMYmJiWbo0KHm119/dTrW/PnzjSSzbds2A8B/2YxxYzYdH2Gz2ZwmTfvyyy91ySWXlPlEtqCgQIMHD9YHH3ygUaNGadq0adq6davjOpp169apbdu22rJlS5kZUgEAntOzZ0/t37/f7WuC/V3r1q0VHR2tJUuWeLoUr5Gdna2GDRvqySef1E033eTpcgCHQYMGOf5mBeC/zopTyg8fPqzAwECtXbu2zKyWpbP8JiQkKCgoyGnSitJlHnbv3k3gBgB4tTVr1mjDhg2aPn26p0vxKlFRUfr3v/+tp556SiNHjnR55nbASps3b9YXX3xxysspAPiPsyJwt27dWsXFxcrMzFS3bt3KbdOlSxcVFRVpx44djmtwSme7PXHWSQAAvMmmTZu0du1aPfPMM0pISNDVV1/t6ZK8zrhx4zRu3DhPlwE4NGvW7JTzUwDwL37zMe/hw4e1YcMGxyeF6enp2rBhg3bv3q3zzjtP1157rW644QZ9+umnSk9P1+rVqzVp0iR9+eWXko7PhNqmTRvdeOONWr9+vdauXatbbrlFvXv3ZqkGAIDX+vjjjzVy5EgVFhbq/fffV2hoqKdLAgAA/5/fXMO9bNkyXXTRRWW2Dx8+XNOnT1dhYaEee+wxvfPOO9qzZ49iYmLUqVMnpaamqmXLlpKOr+l6++2366uvvlK1atXUv39/PfPMM8xSDgAAAABwm98EbgAAAAAAvInfnFIOAAAAAIA3IXADAAAAAGABn56lvKSkRH/++aciIiJks9k8XQ4AAAAAwM8ZY5Sbm6vExMQzLjfp04H7zz//VN26dT1dBgAAAADgLPP777+rTp06p23j04E7IiJC0vEnGhkZ6eFqTq2wsFBfffWV+vTpo+DgYE+XA5SLfgpfQD+FL6CfwtvRR+ELvLmf5uTkqG7duo48ejo+HbhLTyOPjIz0+sAdHh6uyMhIr+ssQCn6KXwB/RS+gH4Kb0cfhS/whX7qymXNTJoGAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFPBq4i4uL9dBDDykpKUlhYWFq1KiRHn30URljPFmWpYpLjFbuOKDZ6/7Qf1f8ptnr92jljgMqLvHf5wwAAAAAZ6MgTz74lClTNHXqVL399ttq3ry51qxZo5EjRyoqKkp33HGHJ0uzxOLN+/TIl1uVkZ1f5r6EqFBNGJisfi0SPFAZAAAAAKCyeXSE+/vvv9dll12miy++WA0aNNCVV16pPn36aPXq1Z4syzJ3fbCh3LAtSRnZ+Rr93jot2JRRxVUBAAAAAKzg0cB94YUXasmSJfr1118lST/99JO+/fZb9e/f35NlVbrS08VdOWk8dW4ap5cDAAAAgB/w6Cnl999/v3JyctS0aVMFBgaquLhYjz/+uK699tpy2xcUFKigoMBxOycnR5JUWFiowsLCKqm5In787S9Jkj3gzEE66/BRrdqeqQ5J0VaXBTgpfQ9583sJoJ/CF9BP4e3oo/AF3txP3anJZjw4Q9msWbN033336amnnlLz5s21YcMG3XnnnXr22Wc1fPjwMu0nTpyo1NTUMttnzpyp8PDwqigZAAAAAHAWy8vL07Bhw5Sdna3IyMjTtvVo4K5bt67uv/9+jRkzxrHtscce03vvvactW7aUaV/eCHfdunW1f//+Mz5RT1q1PVNZv67RQ2sCVFBiO2P7N4e3Z4QbVa6wsFCLFi1S7969FRwc7OlygHLRT+EL6KfwdvRR+AJv7qc5OTmKiYlxKXB79JTyvLw8BQQ4X0YeGBiokpKSctvb7XbZ7fYy24ODg73um3CinILjn2kUlNhUUHzqwG2TFB8Vqk6N4xQYcOZgDljB299PgEQ/hW+gn8Lb0UfhC7yxn7pTj0cnTRs4cKAef/xxffnll9q5c6dmz56tZ599Vpdffrkny6pUxSVGTy4sO1p/KhMGJhO2AQAAAMAPeHSE+8UXX9RDDz2k2267TZmZmUpMTNQtt9yihx9+2JNlVarV6Vnam1P+UmAniq4WrCcub8k63AAAAADgJzwauCMiIvTcc8/pueee82QZlsrMPXPYlqSh7eupoKhEK3ccUIekaEa5AQAAAMDHeTRwnw3iIkJdavfysh2O/ydEhWrCwGRGuwEAAADAh3n0Gu6zQYekaMVHuha6S+3Nztfo99ZpwaYMi6oCAAAAAFiNwG2xwACb7u/fVNLxWchdUbpOW+rcNBWXeGzVNgAAAADA30DgrgIpzWpLkmq7MdJtJGVk52t1epZFVQEAAAAArMQ13FVo4Z3dtf6PXGXm5mvbvly9tHTHGfdxddI1AAAAAIB3YYS7CgUG2NS5US1d1uocdWkc69I+rk66BgAAAADwLgRuD+mQFK2EqNBTXtdt0/HZyjskRVdlWQAAAACASkLg9pDAAJsmDEyWVHYytdLbEwYmsx43AAAAAPgoArcH9WuRoKnXtVF8lPNp4/FRoZp6XRvW4QYAAAAAH8akaR7Wr0WCeifHa3V6ljJz8xUXcfw0cka2AQAAAMC3Ebi9QOlkagAAAAAA/8Ep5QAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAWCPF3A2aq4xGh1epYyc/MVFxGqDknRCgywebosAAAAAEAl8WjgbtCggXbt2lVm+2233aaXX37ZAxVVjQWbMpQ6N00Z2fmObQlRoZowMFn9WiR4sDIAAAAAQGXx6CnlP/74ozIyMhxfixYtkiRdddVVnizLUgs2ZWj0e+ucwrYk7c3O1+j31mnBpgwPVQYAAAAAqEweDdyxsbGKj493fH3xxRdq1KiRevTo4cmyLFNcYjTx8zSZcu4r3ZY6N03FJeW1AAAAAAD4Eq+5hvvYsWN67733dPfdd8tmK/9a5oKCAhUUFDhu5+TkSJIKCwtVWFhYJXVWRGlt0775VQePHJU98NRtsw4f1artmeqQFF1F1QHHlfZTb34vAfRT+AL6KbwdfRS+wJv7qTs12YwxXjGc+uGHH2rYsGHavXu3EhMTy20zceJEpaamltk+c+ZMhYeHW10iAAAAAOAsl5eXp2HDhik7O1uRkZGnbes1gbtv374KCQnR3LlzT9mmvBHuunXrav/+/Wd8op5UcOyYlixerIfWBKig5Mwzkb85vD0j3KhyhYWFWrRokXr37q3g4GBPlwOUi34KX0A/hbejj8IXeHM/zcnJUUxMjEuB2ytOKd+1a5cWL16sTz/99LTt7Ha77HZ7me3BwcFe90040er0LElSQYlNBcWnD9wJUaHq1DiOJcLgMd7+fgIk+il8A/0U3o4+Cl/gjf3UnXo8OmlaqbfeektxcXG6+OKLPV2KJfYfLjhzo/9vwsBkwjYAAAAA+AGPB+6SkhK99dZbGj58uIKCvGLAvdLFVC87Kl+eu1LOYx1uAAAAAPATHg/cixcv1u7du3XjjTd6uhTLtK1fU5J0unHr+Ei7xv6jcdUUBAAAAACwnMeHlPv06SMvmbfNMieeIm6TnNbhLr1n4qXNOZUcAAAAAPyIx0e4zyb/ubqV4qNCnbbFR4Vq6nVtOJUcAAAAAPyMx0e4zyYpzWqrT4tztDo9S5m5+YqLCFWHpGhGtgEAAADADxG4q1hggE2dG9XydBkAAAAAAItxSjkAAAAAABYgcAMAAAAAYAECNwAAAAAAFiBwAwAAAABgAQI3AAAAAAAWIHADAAAAAGABAjcAAAAAABYgcAMAAAAAYAECNwAAAAAAFiBwAwAAAABgAQI3AAAAAAAWIHADAAAAAGABAjcAAAAAABYgcAMAAAAAYAECNwAAAAAAFiBwAwAAAABgAQI3AAAAAAAWIHADAAAAAGABAjcAAAAAABYgcAMAAAAAYAECNwAAAAAAFiBwAwAAAABgAQI3AAAAAAAWIHADAAAAAGABAjcAAAAAABYgcAMAAAAAYAECNwAAAAAAFgjydAFnk+ISozU7DigzN19xEaHqkBStwACbp8sCAAAAAFiAwF2F+j63XLsOFjhuJ0SFasLAZPVrkeDBqgAAAAAAVuCU8iqwePM+SdLenHyn7Xuz8zX6vXVasCnDE2UBAAAAACxE4LZYcYnR5Plbyr3P/P9/U+emqbjElNsGAAAAAOCbCNwWW52eVWZk+0RGUkZ2vlanZ1VdUQAAAAAAyxG4LZaZe+qwXZF2AAAAAADfQOC2WFxEaKW2AwAAAAD4BgK3xTokRSs+8tRh2qbjs5V3SIquuqIAAAAAAJYjcFssMMCm+/s3lXQ8XJ+o9PaEgcmsxw0AAAAAfobAXQVSmtWWJNU+aaQ7PipUU69rwzrcAAAAAOCHgjxdwNlk4Z3dtf6PXGXm5isu4vhp5IxsAwAAAIB/8vgI9549e3TdddepVq1aCgsLU8uWLbVmzRpPlwUAAAAAwN/i0RHugwcPqkuXLrrooos0f/58xcbGatu2bapZs6Yny7JM3+eWa9fBAsfthKhQTRiYzCnlAAAAAOCHPBq4p0yZorp16+qtt95ybEtKSvJgRdZYvHmfJGlvTr5OnDptb3a+Rr+3juu4AQAAAMAPefSU8s8//1zt2rXTVVddpbi4OLVu3VrTpk3zZEmVrrjEaPL8LeXeZ/7/v6lz01RcYsptAwAAAADwTR4d4f7tt980depU3X333XrggQf0448/6o477lBISIiGDx9epn1BQYEKCv53SnZOTo4kqbCwUIWFhVVWtztWp2fp4OGjkiR7QPmhOuvwUa3ansla3PCo0veQt76XAIl+Ct9AP4W3o4/CF3hzP3WnJpsxxmNDqyEhIWrXrp2+//57x7Y77rhDP/74o1auXFmm/cSJE5Wamlpm+8yZMxUeHm5prQAAAAAA5OXladiwYcrOzlZkZORp23p0hDshIUHJyclO25o1a6ZPPvmk3Pbjx4/X3Xff7bidk5OjunXrqk+fPmd8op6yOj1Lo99drUfbleihNQEqKDnzMmABNmlE5/q6u0/TKqgQOK6wsFCLFi1S7969FRwc7OlygHLRT+EL6KfwdvRR+AJv7qelZ1q7wqOBu0uXLtq6davTtl9//VX169cvt73dbpfdbi+zPTg42Ou+CaU6NY5TYGCQpGMqKLGpoNi1dbenrtitElugxg9IPnNjoBJ58/sJKEU/hS+gn8Lb0UfhC7yxn7pTj0cnTbvrrru0atUqPfHEE9q+fbtmzpyp119/XWPGjPFkWZWquMToaGFxhfadtiJdx4pKKrkiAAAAAEBV8Gjgbt++vWbPnq33339fLVq00KOPPqrnnntO1157rSfLqlTvrtypil4kX2KO7w8AAAAA8D0ePaVcki655BJdcsklni7DMruy8jy6PwAAAADAMzw6wn02qB/992ZP/7v7AwAAAAA8g8Btses7N5Br06SVFWA7vj8AAAAAwPcQuC0WGGBTWHBghfa9uVuSQoL4FgEAAACAL/L4Ndz+bnV6lvLcnKU8wHY8bLMkGAAAAAD4LgK3xTJz811qd3mrREWEBat+dLiu79yAkW0AAAAA8HEEbovFRYS61G5I+3rq3KiWxdUAAAAAAKoKw6gW65AUrfjIU4dum6SEqFB1SIquuqIAAAAAAJYjcFssMMCm+/s3laQys5WX3p4wMFmBARWdyxwAAAAA4I0I3FUgpVltSVLtk0a646NCNfW6NurXIsETZQEAAAAALMQ13FVo4Z3dtf6PXGXm5isu4vhp5IxsAwAAAIB/YoS7CgUG2NQhKVox1ez6bvtf+s+iX/Xd9v0qLjGeLg0AAAAAUMkY4a5Cizfv0/jP0nQor9Cx7aWl21UjPFiTB7fk1HIAAAAA8COMcFehOz/Y4BS2Sx3KK9St763Tgk0ZHqgKAAAAAGAFAncVcPWU8dS5aZxeDgAAAAB+gsBdBdbuOuhSu4zsfK1Oz7K4GgAAAABAVSBwV4H9hwtcbpuZm29hJQAAAACAqkLgrgJfb8l0uW1cROiZGwEAAAAAvB6B22KT5qVpwS97XWqbEHV8bW4AAAAAgO8jcFvoWFGJpq1Id7n9hIHJCgywWVgRAAAAAKCqELgt9O7KnXJ10vG7Us5jHW4AAAAA8CMEbgvtyspzuW2DmHALKwEAAAAAVDUCt4XqR7seopksDQAAAAD8C4HbQtd3biBXLsmOj7QzWRoAAAAA+BkCt4VCggJ0c7ekM7abeGlzJksDAAAAAD8T5OkC/N34AckKMMVS0W9l7qsWEqhnhlzAZGkAAAAA4IcI3FXg7j5NNW/eb7qvTxOt3nVI4SFBuqJNHV3YOIaRbQAAAADwUwTuKjT8wgb6Z49gT5cBAAAAAKgCXMMNAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIBJ06pQcYnRmh0HlJmbrxr2YC3ask+7svLUoFa4HhiQrLCQQE+XCAAAAACoJATuKtT3ueXadbCgzPYV26R3V+1W7+Q4TbuhvQcqAwAAAABUNk4prwKLN++TJO3NyT9tu0Vpmbr5nR+roiQAAAAAgMUI3BYrLjGaPH+Ly+0XpWXq6LFiCysCAAAAAFQFArfFVqdnnXFk+2RPzEuzqBoAAAAAQFUhcFssM9e9sC1JOw/kWVAJAAAAAKAqEbgtFhcR6vY+DWqFW1AJAAAAAKAqEbgt1iEpWvGR7oXuBwYkW1QNAAAAAKCqELgtFhhg0/39m7rcvl39GqzHDQAAAAB+gMBdBVKa1ZYkBdhO384eFKAPbrmwCioCAAAAAFiNwF2FJg8+/7T3P39NKwWeKZUDAAAAAHyCRwP3xIkTZbPZnL6aNnX99Gtfc/+nG8vdnhAVqleva6N+LRKquCIAAAAAgFWCPF1A8+bNtXjxYsftoCCPl1Tpnv1qi5pKKjHl33/J+fGEbQAAAADwMx4/pTwoKEjx8fGOr5iYGE+XVKmOFZVo+spdp23z32936lhRSRVVBAAAAACoCh4fTt62bZsSExMVGhqqzp07a9KkSapXr165bQsKClRQUOC4nZOTI0kqLCxUYWFhldTrrvdW7lSw7fjQtj3gFEPckt77foeu79ygiqoCyip9D3nrewmQ6KfwDfRTeDv6KHyBN/dTd2qyGWNOnQItNn/+fB0+fFhNmjRRRkaGUlNTtWfPHm3atEkRERFl2k+cOFGpqallts+cOVPh4eFVUTIAAAAA4CyWl5enYcOGKTs7W5GRkadt69HAfbJDhw6pfv36evbZZ3XTTTeVub+8Ee66detq//79Z3yinvL29zv1wuIterRdiR5aE6CCklPPQr7mgRSFsgY3PKSwsFCLFi1S7969FRwc7OlygHLRT+EL6KfwdvRR+AJv7qc5OTmKiYlxKXB7/JTyE9WoUUPnnXeetm/fXu79drtddru9zPbg4GCv+yaUahJfwxGyC0psKig+deB+ctE2PTqoZVWVBpTLm99PQCn6KXwB/RTejj4KX+CN/dSdetwO3Onp6VqxYoV27dqlvLw8xcbGqnXr1urcubNCQ0PdPZyTw4cPa8eOHbr++uv/1nG8SdbRYy633Xkgz8JKAAAAAABVyeXAPWPGDD3//PNas2aNateurcTERIWFhSkrK0s7duxQaGiorr32Wo0bN07169d36Zj33nuvBg4cqPr16+vPP//UhAkTFBgYqKFDh1b4CXmbuAjXP4RoUIvr0AEAAADAX7gUuFu3bq2QkBCNGDFCn3zyierWret0f0FBgVauXKlZs2apXbt2euWVV3TVVVed8bh//PGHhg4dqgMHDig2NlZdu3bVqlWrFBsbW7Fn44U6JEUrtlqwpOIztn1gQLL1BQEAAAAAqoRLgXvy5Mnq27fvKe+32+3q2bOnevbsqccff1w7d+506cFnzZrlUjtfFhhg04OXNNex9LWnbZfSLFZhTJgGAAAAAH4jwJVGpwvbJ6tVq5batm1b4YL8UUqz2pKkkMBTv9y//JmrBZsyqqokAAAAAIDFXArckrRr1y699tprOnbs+CRgL7/8smVF+asfH0zR7T0blXvf3ux8jX5vHaEbAAAAAPyEy4H72muv1Zo1azRo0CAdO3ZMM2bMsLIuv/Xx+j3lbi9dDD11bpqKS7xmaXQAAAAAQAW5HLiLioo0bdo0jR07VmPGjLGyJr+1dtdBZWTnn/J+IykjO1+r07OqrigAAAAAgCVcDtyRkZGSpAEDBqh+/fr66aefLCvKX+0/XOBSu8zcU4dyAAAAAIBvcHkd7rFjx6qoqEhBQUF68MEHVb16dSvr8ksx1e0utXNn7W4AAAAAgHdyeYT70ksvVVDQ8Xxus9l05513WlWT32pbv6YSokJlO8X9NkkJUaHqkBRdlWUBAAAAACzg8gh3KWOMPv74Yy1dulSZmZkqKSlxuv/TTz+ttOL8TWCATRMGJmv0e+tk0/8mSpPkCOETBiYrMOBUkRwAAAAA4CtcHuEudeedd+r6669Xenq6qlevrqioKKcvnF6/Fgmael0bxUc5nzYeHxWqqde1Ub8WCR6qDAAAAABQmdwe4X733Xf16aefasCAAVbUc1bo1yJBvZPjtTo9S5m5+YqLOH4aOSPbAAAAAOA/3A7cUVFRatiwoRW1nFUCA2zq3KiWp8sAAAAAAFjE7VPKJ06cqNTUVB09etSKegAAAAAA8Atuj3APGTJE77//vuLi4tSgQQMFBwc73b9u3bpKKw4AAAAAAF/lduAePny41q5dq+uuu061a9eWzcZ1xwAAAAAAnMztwP3ll19q4cKF6tq1qxX1+LW3v9+plTsPakfmEVULCdQFdWuob/N4HTpayMRpAAAAAOBn3A7cdevWVWRkpBW1+K1nv9qippKe+mqrCor/F6h/ycjVzNW/O24nRIVqwsBklgYDAAAAAD/g9qRpzzzzjP79739r586dFpTjfybNS9Ob3+9yqe3e7HyNfm+dFmzKsLgqAAAAAIDV3B7hvu6665SXl6dGjRopPDy8zKRpWVlZlVacrztWVKJpK9IV7OLHGkaSTVLq3DT1To7n9HIAAAAA8GFuB+7nnnvOgjL807srd6rEuLePkZSRna/V6Vms0w0AAAAAPqxCs5TDNbuy8iq8b2ZufiVWAgAAAACoai6d7HzkyBG3Dupue39VPzq8wvvGRYRWYiUAAAAAgKrmUuBu3LixJk+erIyMU0/mZYzRokWL1L9/f73wwguVVqAvu75zA7l7FbZNx2cr75AUbUVJAAAAAIAq4tIp5cuWLdMDDzygiRMn6oILLlC7du2UmJio0NBQHTx4UGlpaVq5cqWCgoI0fvx43XLLLVbX7RNCggJ0yfnx+uoX12YdLw3nEwYmM2EaAAAAAPg4lwJ3kyZN9Mknn2j37t366KOPtGLFCn3//fc6evSoYmJi1Lp1a02bNk39+/dXYGCg1TX7lOeuaaOWE750qW0863ADAAAAgN9wa9K0evXq6Z577tE999xjVT1+59b31qi45PRtburSQCnJ8eqQFM3INgAAAAD4CbdnKYfrjh4r1qK0TNnPMOh/b9+mCgvhzAAAAAAA8CcuTZqGinliXlqltgMAAAAA+A4Ct4XS97u2Drer7QAAAAAAvoPAbaGwYNdeXlfbAQAAAAB8B0nPQn2Sa7vUrnaU3eJKAAAAAABVrUKBe8WKFbruuuvUuXNn7dmzR5L07rvv6ttvv63U4nxdnehqLrV7b9XvWrDJtbW6AQAAAAC+we3A/cknn6hv374KCwvT+vXrVVBQIEnKzs7WE088UekF+rIOSdGKjwx1qe3dH/6k4hJjcUUAAAAAgKriduB+7LHH9Oqrr2ratGkKDg52bO/SpYvWrVtXqcX5usAAm8Ltrr3EeceK9a9Z6y2uCAAAAABQVdwO3Fu3blX37t3LbI+KitKhQ4cqoya/cfRYsX77y/UZyL/YmKFjRSUWVgQAAAAAqCpuB+74+Hht3769zPZvv/1WDRs2rJSi/EVF1td+d+XOyi8EAAAAAFDl3A7cN998s/71r3/phx9+kM1m059//qkZM2bo3nvv1ejRo62o0Wf99tcRt/fZlcWa3AAAAADgD4Lc3eH+++9XSUmJevXqpby8PHXv3l12u1333nuvbr/9ditq9Fn5hcVu71M/OtyCSgAAAAAAVc3twG2z2fTggw/qvvvu0/bt23X48GElJyerevXqVtTn0/ZmH3V7n+s7N6j8QgAAAAAAVc7twF0qJCREycnJlVmLXzl6rFh7sgvc2uemrvUVElShpdEBAAAAAF7GpcA9ePBgTZ8+XZGRkRo8ePBp23766aeVUpivq8iEaYlRnE4OAAAAAP7CpcAdFRUlm83m+D/ObOcB9yc/q8g+AAAAAADv5FLgfuutt8r9f2WaPHmyxo8fr3/961967rnnLHmMqtSgVrhWbHN3L2NFKQAAAAAAD3D7guH09HRt21Y2SW7btk07d+6sUBE//vijXnvtNZ1//vkV2t8bPTDA/evbW9WpUfmFAAAAAAA8wu3APWLECH3//fdltv/www8aMWKE2wUcPnxY1157raZNm6aaNWu6vb+3CgsJVO/kOLf2SazJNdwAAAAA4C/cDtzr169Xly5dymzv1KmTNmzY4HYBY8aM0cUXX6yUlBS39/V2DWpVc7ltfKRdHZKiLawGAAAAAFCVKrQOd25ubpnt2dnZKi4udutYs2bN0rp16/Tjjz+61L6goEAFBf9baisnJ0eSVFhYqMLCQrce22rHikr07srfZA+U7AHHr80u/bc8DaLtKikuUol7LyFQaUrfQ972XgJORD+FL6CfwtvRR+ELvLmfulOTzRjj1kxdAwcOVFhYmN5//30FBgZKkoqLi3X11VfryJEjmj9/vkvH+f3339WuXTstWrTIce12z5491apVq1NOmjZx4kSlpqaW2T5z5kyFh3M6NgAAAADAWnl5eRo2bJiys7MVGRl52rZuB+60tDR1795dNWrUULdu3SRJK1asUE5Ojr7++mu1aNHCpeN89tlnuvzyyx2hXToe3G02mwICAlRQUOB0n1T+CHfdunW1f//+Mz7Rqvb4vM16f/VuScdHth9tV6KH1gSooMR2yn3G9W2i6zs3qKIKAWeFhYVatGiRevfureDgYE+XA5SLfgpfQD+Ft6OPwhd4cz/NyclRTEyMS4Hb7VPKk5OTtXHjRr300kv66aefFBYWphtuuEFjx45VdLTr1yD36tVLP//8s9O2kSNHqmnTpho3blyZsC1Jdrtddru9zPbg4GCv+ybUja6ugmLncF1QYiuz7UTfbM/Sjd3Ptbo04LS88f0EnIx+Cl9AP4W3o4/CF3hjP3WnHrcDtyQlJibqiSeeqMiuDhEREWVGw6tVq6ZatWq5PEruza7v3ECPfrnZrX3W7z6k4hKjwIBTh3IAAAAAgG9wKXBv3LhRLVq0UEBAgDZu3Hjatv60lvbfERIUoJu6NtB/v93p8j45+UVanZ6lzo1qWVcYAAAAAKBKuBS4W7Vqpb179youLk6tWrWSzWZTeZd+22w2t2cqP9GyZcsqvK83euiS5voqbZ8ys/Nc3iczN9/CigAAAAAAVcWlwJ2enq7Y2FjH/+G6Jwa11D/f/sHl9nERoRZWAwAAAACoKi4F7ssvv1xLlixRzZo19fbbb+vee+9lGS4XfbZhj8ttE6JC1SHJ9YnnAAAAAADeK8CVRps3b9aRI0ckSampqTp8+LClRfmL4hKj+T/vdbn9hIHJTJgGAAAAAH7C5Wu4R44cqa5du8oYo6efflrVq1cvt+3DDz9cqQX6stXpWcorLJa97ApnZVzZpo76tUiwvigAAAAAQJVwKXBPnz5dEyZM0BdffCGbzab58+crKKjsrjabjcB9AncmQHticEsLKwEAAAAAVDWXAneTJk00a9YsSVJAQICWLFmiuLg4SwvzB9FhIS61Cw0O4FRyAAAAAPAzLl3DXaqwsFDDhw93XM+N09uyL9eldvmFJVqdnmVxNQAAAACAquRW4A4ODtbs2bOtqsXv7Drg+gcTrL8NAAAAAP7FrcAtSZdddpk+++wzC0rxP3uzj7rclvW3AQAAAMC/uHQN94nOPfdcPfLII/ruu+/Utm1bVatWzen+O+64o9KK83XGxcuy7UEBrL8NAAAAAH7G7cD93//+VzVq1NDatWu1du1ap/tsNhuB+wSR9mCX2l1QJ4pJ0wAAAADAz7gduNPT062owy8Nan2OZm/484ztxlzUuAqqAQAAAABUJbev4S517Ngxbd26VUVFRZVZj1/5cM3vLrVbt/ugxZUAAAAAAKqa24E7Ly9PN910k8LDw9W8eXPt3r1bknT77bdr8uTJlV6grzpWVKJ5P+91qe3073aquMRYXBEAAAAAoCq5HbjHjx+vn376ScuWLVNo6P9m1k5JSdEHH3xQqcX5sndX7pSrETo7v4h1uAEAAADAz7h9Dfdnn32mDz74QJ06dZLN9r+Jvpo3b64dO3ZUanG+bFdWnlvtWYcbAAAAAPyL2yPcf/31l+Li4spsP3LkiFMAP9vVjw53q/2itH0WVQIAAAAA8AS3A3e7du305ZdfOm6Xhuw33nhDnTt3rrzKfNz1nRu41f6LjRmaNC/NmmIAAAAAAFXO7VPKn3jiCfXv319paWkqKirS888/r7S0NH3//ff65ptvrKjRJ1VkErTXl6frnj5NFRJU4cnjAQAAAABewu1k17VrV23YsEFFRUVq2bKlvvrqK8XFxWnlypVq27atFTX6pCcqMFptdHyyNQAAAACA73N7hFuSGjVqpGnTplV2LX5l5wH3Jk0r5e5kawAAAAAA71ShwF1cXKzZs2dr8+bNkqTk5GRddtllCgqq0OH8UoNa4Vqxzf393J1sDQAAAADgndxOyL/88osuvfRS7d27V02aNJEkTZkyRbGxsZo7d65atGhR6UX6ogcGJOvdVbvd2scm9ydbAwAAAAB4J7ev4f7nP/+p5s2b648//tC6deu0bt06/f777zr//PM1atQoK2r0SWEhgUppVnb5tNP5Z7ckJkwDAAAAAD/h9gj3hg0btGbNGtWsWdOxrWbNmnr88cfVvn37Si3O1428MEmLN2e63P4fTWtbWA0AAAAAoCq5PZx63nnnad++fWW2Z2ZmqnHjxpVSlL9Y+dt+t9pn5uZbVAkAAAAAoKq5HbgnTZqkO+64Qx9//LH++OMP/fHHH/r444915513asqUKcrJyXF8weZW67iIUIvqAAAAAABUNbdPKb/kkkskSUOGDJHNdjxQGmMkSQMHDnTcttlsKi4urqw6fVLnRrX00tLtLrVNiApVh6RoiysCAAAAAFQVtwP30qVLrajDL7Vv4HqAfujiZgoMcG9EHAAAAADgvdwO3D169LCiDr80dZlro9uSVLOa3cJKAAAAAABVze3AvXz58tPe37179woX40+KS4xe/Hqby+2ZMA0AAAAA/Ivbgbtnz55ltpVeyy3prL9uu9T32/arqMT19kyYBgAAAAD+xe1Zyg8ePOj0lZmZqQULFqh9+/b66quvrKjRJ32y/g+X29okJkwDAAAAAD/j9gh3VFRUmW29e/dWSEiI7r77bq1du7ZSCvN1ecdcH+k3km59b42m3dDeuoIAAAAAAFXK7RHuU6ldu7a2bt1aWYfzeW3r13Sr/aK0TB11I6QDAAAAALyb2yPcGzdudLptjFFGRoYmT56sVq1aVVZdPi85IdLtfZ6Yl6ZHB7W0oBoAAAAAQFVzO3C3atVKNptNxhin7Z06ddKbb75ZaYX5uqy8Y27vs/NAngWVAAAAAAA8we3AnZ6e7nQ7ICBAsbGxCg1llu0TxVR3f13tANuZ2wAAAAAAfIPbgbt+/fpW1OF/zJmbnGz5r/u1YFOG+rVIqPx6AAAAAABVyuVJ01auXKkvvvjCads777yjpKQkxcXFadSoUSooKKj0An3V/iMVey1S56apuKQCaR0AAAAA4FVcDtyPPPKIfvnlF8ftn3/+WTfddJNSUlJ0//33a+7cuZo0aZIlRfqiyBC3Tx6QkZSRna/V6VmVXxAAAAAAoEq5HLg3bNigXr16OW7PmjVLHTt21LRp03T33XfrhRde0IcffmhJkb5oxo+7K7zv3pz8SqwEAAAAAOAJLgfugwcPqnbt2o7b33zzjfr37++43b59e/3+++9uPfjUqVN1/vnnKzIyUpGRkercubPmz5/v1jG81e8Hj1Z430e/+EULNmVUYjUAAAAAgKrmcuCuXbu2Y4byY8eOad26derUqZPj/tzcXAUHB7v14HXq1NHkyZO1du1arVmzRv/4xz902WWXOZ267qvq1Qyr8L5ZRwo1+r11hG4AAAAA8GEuB+4BAwbo/vvv14oVKzR+/HiFh4erW7dujvs3btyoRo0aufXgAwcO1IABA3TuuefqvPPO0+OPP67q1atr1apVbh3HGz3QP/lv7W/EBGoAAAAA4Mtcntnr0Ucf1eDBg9WjRw9Vr15db7/9tkJCQhz3v/nmm+rTp0+FCykuLtZHH32kI0eOqHPnzuW2KSgocJoJPScnR5JUWFiowsLCCj+2FUb89zvZA4+HZXuA87+uyjp8VKu2Z6pDUnSl1wecrPQ95G3vJeBE9FP4AvopvB19FL7Am/upOzXZjDFupcDs7GxVr15dgYGBTtuzsrJUvXp1pxDuip9//lmdO3dWfn6+qlevrpkzZ2rAgAHltp04caJSU1PLbJ85c6bCw8PdelwAAAAAANyVl5enYcOGKTs7W5GRkadt63bgrmzHjh3T7t27lZ2drY8//lhvvPGGvvnmGyUnlz0lu7wR7rp162r//v1nfKJVre0jX6mg5H8j24+2K9FDawJUUGJz6zhvDm/PCDeqRGFhoRYtWqTevXu7PR8DUFXop/AF9FN4O/oofIE399OcnBzFxMS4FLjdXyy6koWEhKhx48aSpLZt2+rHH3/U888/r9dee61MW7vdLrvdXmZ7cHCw130T6sdW189/HnbaVlBiU0Gx64E7ISpUnRrHKTDAvZAO/B3e+H4CTkY/hS+gn8Lb0UfhC7yxn7pTj8uTplWVkpISp1FsXxUbEfq39rdJmjAwmbANAAAAAD7KoyPc48ePV//+/VWvXj3l5uZq5syZWrZsmRYuXOjJsipFVJh717KfKCEqVBMGJqtfi4RKrAgAAAAAUJU8GrgzMzN1ww03KCMjQ1FRUTr//PO1cOFC9e7d25NlVYrBbepo9oY/3d5vQIt4vTisDSPbAAAAAODjPBq4//vf/3ry4S11YeOYCu234Je9Ki4xBG4AAAAA8HFedw23vwgMsKmG3f2Xt8RI767cWfkFAQAAAACqFIHbQvklFVtxbVdWXiVXAgAAAACoagRuCwVWcL+6NcMqtQ4AAAAAQNUjcFvoSGHFRribxp9+8XQAAAAAgPcjcFukuIKnk0tSVt6xSqwEAAAAAOAJBG6LrE7PqvC+cRGhlVgJAAAAAMATCNwWyczNr9B+NcKC1SEpupKrAQAAAABUNQK3RUJNxdbRHtkliTW4AQAAAMAPELgt8sjCzW7vExYcoLH/aGxBNQAAAACAqkbgtsjBI4Vu79MhKZrRbQAAAADwEwRui0RXC3Z7n66NYy2oBAAAAADgCQRui8y+ravb+zSNj7CgEgAAAACAJxC4LRJdPcTtfVh/GwAAAAD8B4HbIqt2HHB7H9bfBgAAAAD/QeC2yMrf9rvVnvW3AQAAAMC/ELgtYtxs3zAmnBnKAQAAAMCPELgtUiPMvWu41/2erUnz0iyqBgAAAABQ1QjcFgm3u//STluRrmNFJRZUAwAAAACoagRui7z93U639ykx0rsr3d8PAAAAAOB9CNwWyckvqtB+u7LyKrkSAAAAAIAnELgtUj0ksEL71Y8Or+RKAAAAAACeQOC2SNOECLf3sUm6vnODSq8FAAAAAFD1CNwWOVbs/j4Xt0xQSBDfEgAAAADwB6Q7i5xfJ8qt9jZJzw9tbU0xAAAAAIAqR+C2yNpdWW6179ooWoEBNouqAQAAAABUNQK3RbbtO+LeDgF8KwAAAADAn5DyLBIU6N5odYNazE4OAAAAAP6EwG2RPsm13Wr/wIBkiyoBAAAAAHgCgdsizWOru9X+aEWmNQcAAAAAeC0Ct0XGz/3FrfbXvP69RZUAAAAAADyBwG2RvMISt9pvz3RzkjUAAAAAgFcjcHuJEkmH84s8XQYAAAAAoJIQuC1SLdj9fe76YH3lFwIAAAAA8AgCt0XCg91/aXdn5VlQCQAAAADAEwjcFvkrz71ruCWpuj3IgkoAAAAAAJ5A4PYiQ9rX9XQJAAAAAIBKQuD2IvWiq3m6BAAAAABAJSFwW6R/8zi32ocESB2Soi2qBgAAAABQ1QjcVrG51zwshOu3AQAAAMCfELgt8uPOg261z84v0ur0LIuqAQAAAABUNQK3F8nMzfd0CQAAAACASuLRwD1p0iS1b99eERERiouL06BBg7R161ZPllRpWtWp4fY+cRGhlV8IAAAAAMAjPBq4v/nmG40ZM0arVq3SokWLVFhYqD59+ujIkSOeLKtSPDOktVvtq4UEMmkaAAAAAPgRj87UtWDBAqfb06dPV1xcnNauXavu3bt7qKrKkZaR41b7I8eKNX9jhi5plWhRRQAAAACAquRV13BnZ2dLkqKjfX+k98fd+9zeZ+ys9Xr8yzQLqgEAAAAAVDWvWYuqpKREd955p7p06aIWLVqU26agoEAFBQWO2zk5x0eRCwsLVVhYWCV1uurlxb/JHnj8//YA4/Tv6bzz/W8KUrHu7tPUyvKAMkrfQ972XgJORD+FL6CfwtvRR+ELvLmfulOTzRhz5hRYBUaPHq358+fr22+/VZ06dcptM3HiRKWmppbZPnPmTIWHh1tdIgAAAADgLJeXl6dhw4YpOztbkZGRp23rFYF77NixmjNnjpYvX66kpKRTtitvhLtu3brav3//GZ9oVWsxcaHj//YAo0fbleihNQEqKLG5tP+4vk10fecGFlUHlFVYWKhFixapd+/eCg4O9nQ5QLnop/AF9FN4O/oofIE399OcnBzFxMS4FLg9ekq5MUa33367Zs+erWXLlp02bEuS3W6X3W4vsz04ONjrvgkFxWWDdUGJrdzt5dl5sMDrnhPODt74fgJORj+FL6CfwtvRR+ELvLGfulOPRwP3mDFjNHPmTM2ZM0cRERHau3evJCkqKkphYWGeLM3j6kdzijwAAAAA+DKPzlI+depUZWdnq2fPnkpISHB8ffDBB54sq1K4No5dvgCbOJ0cAAAAAHycx08p91cBkooruO/N3ZIUEuRVK7YBAAAAANzkNcuC+ZuKfJRgkzSqe5LGD0iu7HIAAAAAAFWMwG2Rkgrs8+yQVrq8zTmVXgsAAAAAoOpx3rIXeXLhFhWX+O9p9gAAAABwNiFwe5GM7HytTs/ydBkAAAAAgEpA4PYymbn5ni4BAAAAAFAJCNxeJi4i1NMlAAAAAAAqAYHbi9iDAtQhKdrTZQAAAAAAKgGB24vUqh6iwACbp8sAAAAAAFQCArcXSU6I9HQJAAAAAIBKQuD2Ite2r+fpEgAAAAAAlYTA7UVyjhV5ugQAAAAAQCUhcHsRZigHAAAAAP9B4PYSwQFihnIAAAAA8CMEbi/RNC6MGcoBAAAAwI8QuL1E+sECT5cAAAAAAKhEBG4vkV9Y4ukSAAAAAACViMDtJYqNVFxiPF0GAAAAAKCSELi9hDHSS19v83QZAAAAAIBKQuD2Im99t5NRbgAAAADwEwRuL3LoaKFWp2d5ugwAAAAAQCUgcHuZzNx8T5cAAAAAAKgEBG4vExcR6ukSAAAAAACVgMDtRRKiQtUhKdrTZQAAAAAAKgGB24tMGJiswACbp8sAAAAAAFQCAjcAAAAAABYgcHuR0e+t04JNGZ4uAwAAAABQCQjcXsRISp2bxlrcAAAAAOAHCNxeJiM7n7W4AQAAAMAPELi9EGtxAwAAAIDvI3B7IdbiBgAAAADfR+D2MqzFDQAAAAD+gcDtZR66uBlrcQMAAACAHyBwe5ma1eyeLgEAAAAAUAkI3F6GCdMAAAAAwD8QuL0ME6YBAAAAgH8gcHuR+Eg7E6YBAAAAgJ8gcHuRoR3qMWEaAAAAAPgJArcXaRBTzdMlAAAAAAAqCYHbi3D9NgAAAAD4DwK3l4itFsT12wAAAADgRwjcXiIiLITrtwEAAADAjxC4vcTRwhJPlwAAAAAAqEQeDdzLly/XwIEDlZiYKJvNps8++8yT5XhUYhTXbwMAAACAP/Fo4D5y5IguuOACvfzyy54swytMu6G9p0sAAAAAAFSiIE8+eP/+/dW/f39PluA1fv7jkHo0jfN0GQAAAACASuLRwO2ugoICFRQUOG7n5ORIkgoLC1VYWOipssplDzT/+3+Acfq3PNOW/6oLG9W0vC7gVErfQ972XgJORD+FL6CfwtvRR+ELvLmfulOTzRhz6hRYhWw2m2bPnq1Bgwadss3EiROVmppaZvvMmTMVHh5uYXUAAAAAAEh5eXkaNmyYsrOzFRkZedq2PhW4yxvhrlu3rvbv33/GJ1rVWkxc6Pi/PcDo0XYlemhNgApKTr30108P92FpMHhMYWGhFi1apN69eys4ONjT5QDlop/CF9BP4e3oo/AF3txPc3JyFBMT41Lg9qlTyu12u+x2e5ntwcHBXvdNKCguG5wLSmzlbi+1/o9cdW5Uy8qygDPyxvcTcDL6KXwB/RTejj4KX+CN/dSdeliH24ssStvr6RIAAAAAAJXEo4H78OHD2rBhgzZs2CBJSk9P14YNG7R7925PluUxH675Q8Ul5Z/hX1xitHLHAc3ZsEcrdxw4ZTsAAAAAgHfw6Cnla9as0UUXXeS4fffdd0uShg8frunTp3uoKs85XFCkVb8dUJfGMU7bF2zKUOrcNGVk5zu2JUSFasLAZPVrkVDVZQIAAAAAXODREe6ePXvKGFPm62wM26VW7jjgdHvBpgyNfm+dU9iWpIzsfN363jot2JRRleUBAAAAAFzENdxe53+niheXGKXOTdPpTh6//9OfOb0cAAAAALwQgdvLdG74v9PJV6dnlRnZPtmhvEK99PV2q8sCAAAAALiJwO1FaoQHq9MJy4Jl5p4+bJd66/t0RrkBAAAAwMsQuL3I5MEtFRjwv3W64yJCXdrvUF6hVqdnWVUWAAAAAKACCNxepHdyvNPtDknRqhHm2qLqro6GAwAAAACqBoHbi5w8Sh0YYNPILg1c2tfV0XAAAAAAQNUgcHuR8kapx/7jXNUIP/Uot03H1+TukBRtYWUAAAAAAHcRuL1IeaPUgQE2TR7cUrZy2pdumzAw2enabwAAAACA5xG4vUSQTaccpe7XIkFTr2ujhCjnQB4fFaqp17VRvxYJVVEiAAAAAMANQZ4uAMcl1Ag77Sh1vxYJ6p0cr9XpWcrMzVdcxPHTyBnZBgAAAADvROD2ErWqnXk28sAAmzqfsE43AAAAAMB7cUq5l8jOK/B0CQAAAACASsQIt5fIPFxY7vbiEsNp5AAAAADggwjcXiI4sGyIXrApQ6lz05SR/b/lwhKiQjVhYDITpQEAAACAl+OUci8RH+k8A/mCTRka/d46p7AtSXuz8zX6vXVasCmjKssDAAAAALiJwO0ltu47onkb/5R0/DTy1LlpMuW0K92WOjdNxSXltQAAAAAAeAMCt5cwkm6buV6T5qVpdXpWmZHtk9tmZOdrdXpWldUHAAAAAHAP13B7mdeWp6ugsMSltpm5pw7lAAAAAADPYoTbC729cpdL7eIiQs/cCAAAAADgEYxwe6EzXZltkxQfdXyJMAAAAACAdyJwezmbnAN46eJhEwYmsx434AbWtAcAAEBVI3B7uZrVQpR15JjjdjzrcANuY017AAAAeAKB28s9dHEzxUeFMSoHVFDpmvYnX6pRuqb91OvaELoBAABgCQK3l4uPClPnRrU8XQbgk860pr1Nx9e0750czwdZAAAAqHTMUu6lbDp+yisTowEVx5r2AAAA8CQCt5cyYmI04O9yda161rQHAACAFTil3EvdlXIu15UCf5Ora9Wzpj0AAIBnnbyiTOs6EZ4uqVIQuC1QXHKmlbTPrEFMtUqoBDi7dUiKVkJUqPZm55d7HTdr2gMAAHheeSvK1K9p191NPVhUJeGUcgtUxvWgjLgBf19ggE0TBiZL+t8a9qVY0x4AAMDzSleUOXnenX05x28v3rzPE2VVGgK3BfZmH63wvkyWBlSufi0SNPW6NoqPcv4QKz4qlCXBAAAAPOhMK8pI0uT5WyrlDGJP4ZRyC5R+GlNRjLgBlatfiwT1To53ui6INe0BAAA860wrykjS3pzjK8r46lLJBG4LLE77s0L72WzSqG5JjLgBFggMsPnsD2oAAAB/dDasKMMp5RZYtzu3QvsZI72+PF0LNmVUckUAAAAA4F3OhhVlCNwWKPmb+6fOTfPp6xQAAAAA4ExKV5Q53UV+8ZG+Pb8VgdvLGEkZ2fmVMtM5AAAAAHgrV1aUub9/U5+ed4fA7aV8+ToFAAAAAHDFqVaUqR15/HZKs9qeKKvSMGmal/K16xSKSwwzQAMAAABwW3kryrSuE6GFC+Z7urS/jcDtZWw6vj6wL12nsGBThlLnpjlN6Z8QFaoJA5OZcR0AAADAGZ28okxhYaEHq6k8nFLuhUqvY1i544DmbNijlTsOeO0kags2ZWj0e+vKrJ+3Nztfo99bx4zrAAAAAM5ajHB7kehqwXri8paSpK5Tvvb6EePiEqPUuWkq76MAo+Oj9alz09Q7OZ7TywEAAACcdRjh9iIPXdJcknxmxHh1elaZOk/EjOsAAAAAzmZeEbhffvllNWjQQKGhoerYsaNWr17t6ZI8Iq66/bQjxpJ3rdHt6kzqzLgOAAAA4Gzk8cD9wQcf6O6779aECRO0bt06XXDBBerbt68yMzM9XVqVqhEeLNnkUyPGrs6k7mszrgMAAABAZfB44H722Wd18803a+TIkUpOTtarr76q8PBwvfnmm54urUodyivUks37XGrrLSPGHZKilRAVWmaR+lI2Hb/23JdmXAcAAACAyuLRwH3s2DGtXbtWKSkpjm0BAQFKSUnRypUrPVjZ31Mj1P2X1SZpzoY/XWrrLSPGgQE2x4zqJ4fu0tsTBiYzYRoAAACAs5JHZynfv3+/iouLVbt2bafttWvX1pYtW8q0LygoUEFBgeN2Tk6OpONrtHnTOm2jujbQ80t3OG7bA4zTv6dyOL9A8RHBOpRXWO513DZJtSOPLwLvLc+3V5MYvTLsAk2ev0V7c/438h4fGar7+zdVryYxXlMrTq/0+8T3C96MfgpfQD+Ft6OPwhd4cz91pyabMcZjM3D9+eefOuecc/T999+rc+fOju3//ve/9c033+iHH35waj9x4kSlpqaWOc7MmTMVHh5ueb0AAAAAgLNbXl6ehg0bpuzsbEVGRp62rUdHuGNiYhQYGKh9+5yvXd63b5/i4+PLtB8/frzuvvtux+2cnBzVrVtXffr0OeMTrWotJi50/N8eYPRouxI9tCZABSWnP736zeHtlZNfeMoR45RmtU+zN1BxhYWFWrRokXr37q3g4GBPlwOUi34KX0A/hbejj8IXeHM/LT3T2hUeDdwhISFq27atlixZokGDBkmSSkpKtGTJEo0dO7ZMe7vdLrvdXmZ7cHCw130TRnZK0Kvf7XXaVlBiU0Fx+YHbJik+KlSdGscpMMCmPi3O0er0LGXm5isu4vjEY1wLjargje8n4GT0U/gC+im8HX0UvsAb+6k79Xg0cEvS3XffreHDh6tdu3bq0KGDnnvuOR05ckQjR470dGl/y/0D2+rV7750qW15E4wFBtjUuVEti6oDAAAAAFjN44H76quv1l9//aWHH35Ye/fuVatWrbRgwYIyE6n5op2TL1aD+88cuuOjQjVhYLL6tUiogqoAAAAAAFXB44FbksaOHVvuKeT+YOfki/Xk5z9K5n9LfsUGSFOub6/cgkJOFwcAAAAAP+UVgdvf3dW/lebN+1ObJvb1uusPAAAAAADWCPB0AQAAAAAA+CMCNwAAAAAAFiBwAwAAAABgAQI3AAAAAAAWIHADAAAAAGABAjcAAAAAABYgcAMAAAAAYAECNwAAAAAAFiBwAwAAAABgAQI3AAAAAAAWIHADAAAAAGABAjcAAAAAABYgcAMAAAAAYIEgTxfwdxhjJEk5OTkeruT0CgsLlZeXp5ycHAUHB3u6HKBc9FP4AvopfAH9FN6OPgpf4M39tDR/lubR0/HpwJ2bmytJqlu3rocrAQAAAACcTXJzcxUVFXXaNjbjSiz3UiUlJfrzzz8VEREhm83m6XJOKScnR3Xr1tXvv/+uyMhIT5cDlIt+Cl9AP4UvoJ/C29FH4Qu8uZ8aY5Sbm6vExEQFBJz+Km2fHuEOCAhQnTp1PF2GyyIjI72uswAno5/CF9BP4Qvop/B29FH4Am/tp2ca2S7FpGkAAAAAAFiAwA0AAAAAgAUI3FXAbrdrwoQJstvtni4FOCX6KXwB/RS+gH4Kb0cfhS/wl37q05OmAQAAAADgrRjhBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4K4CL7/8sho0aKDQ0FB17NhRq1ev9nRJ8AMTJ06UzWZz+mratKnj/vz8fI0ZM0a1atVS9erVdcUVV2jfvn1Ox9i9e7cuvvhihYeHKy4uTvfdd5+Kioqc2ixbtkxt2rSR3W5X48aNNX369DK10MdRavny5Ro4cKASExNls9n02WefOd1vjNHDDz+shIQEhYWFKSUlRdu2bXNqk5WVpWuvvVaRkZGqUaOGbrrpJh0+fNipzcaNG9WtWzeFhoaqbt26evLJJ8vU8tFHH6lp06YKDQ1Vy5YtNW/ePLdrgX86Uz8dMWJEmZ+v/fr1c2pDP4WVJk2apPbt2ysiIkJxcXEaNGiQtm7d6tTGm37Pu1IL/I8r/bRnz55lfp7eeuutTm38vp8aWGrWrFkmJCTEvPnmm+aXX34xN998s6lRo4bZt2+fp0uDj5swYYJp3ry5ycjIcHz99ddfjvtvvfVWU7duXbNkyRKzZs0a06lTJ3PhhRc67i8qKjItWrQwKSkpZv369WbevHkmJibGjB8/3tHmt99+M+Hh4ebuu+82aWlp5sUXXzSBgYFmwYIFjjb0cZxo3rx55sEHHzSffvqpkWRmz57tdP/kyZNNVFSU+eyzz8xPP/1kLr30UpOUlGSOHj3qaNOvXz9zwQUXmFWrVpkVK1aYxo0bm6FDhzruz87ONrVr1zbXXnut2bRpk3n//fdNWFiYee211xxtvvvuOxMYGGiefPJJk5aWZv7v//7PBAcHm59//tmtWuCfztRPhw8fbvr16+f08zUrK8upDf0UVurbt6956623zKZNm8yGDRvMgAEDTL169czhw4cdbbzp9/yZaoF/cqWf9ujRw9x8881OP0+zs7Md958N/ZTAbbEOHTqYMWPGOG4XFxebxMREM2nSJA9WBX8wYcIEc8EFF5R736FDh0xwcLD56KOPHNs2b95sJJmVK1caY47/wRkQEGD27t3raDN16lQTGRlpCgoKjDHG/Pvf/zbNmzd3OvbVV19t+vbt67hNH8epnBxkSkpKTHx8vHnqqacc2w4dOmTsdrt5//33jTHGpKWlGUnmxx9/dLSZP3++sdlsZs+ePcYYY1555RVTs2ZNRz81xphx48aZJk2aOG4PGTLEXHzxxU71dOzY0dxyyy0u14Kzw6kC92WXXXbKfeinqGqZmZlGkvnmm2+MMd71e96VWnB2OLmfGnM8cP/rX/865T5nQz/llHILHTt2TGvXrlVKSopjW0BAgFJSUrRy5UoPVgZ/sW3bNiUmJqphw4a69tprtXv3bknS2rVrVVhY6NT3mjZtqnr16jn63sqVK9WyZUvVrl3b0aZv377KycnRL7/84mhz4jFK25Qegz4Od6Snp2vv3r1O/SUqKkodO3Z06pc1atRQu3btHG1SUlIUEBCgH374wdGme/fuCgkJcbTp27evtm7dqoMHDzranK7vulILzm7Lli1TXFycmjRpotGjR+vAgQOO++inqGrZ2dmSpOjoaEne9XvelVpwdji5n5aaMWOGYmJi1KJFC40fP155eXmO+86Gfhpk6dHPcvv371dxcbFTB5Kk2rVra8uWLR6qCv6iY8eOmj59upo0aaKMjAylpqaqW7du2rRpk/bu3auQkBDVqFHDaZ/atWtr7969kqS9e/eW2zdL7ztdm5ycHB09elQHDx6kj8Nlpf2qvP5yYp+Li4tzuj8oKEjR0dFObZKSksoco/S+mjVrnrLvnniMM9WCs1e/fv00ePBgJSUlaceOHXrggQfUv39/rVy5UoGBgfRTVKmSkhLdeeed6tKli1q0aCFJXvV73pVa4P/K66eSNGzYMNWvX1+JiYnauHGjxo0bp61bt+rTTz+VdHb0UwI34KP69+/v+P/555+vjh07qn79+vrwww8VFhbmwcoAwLddc801jv+3bNlS559/vho1aqRly5apV69eHqwMZ6MxY8Zo06ZN+vbbbz1dCnBKp+qno0aNcvy/ZcuWSkhIUK9evbRjxw41atSoqsv0CE4pt1BMTIwCAwPLzH63b98+xcfHe6gq+KsaNWrovPPO0/bt2xUfH69jx47p0KFDTm1O7Hvx8fHl9s3S+07XJjIyUmFhYfRxuKW0T5yuv8THxyszM9Pp/qKiImVlZVVK3z3x/jPVApRq2LChYmJitH37dkn0U1SdsWPH6osvvtDSpUtVp04dx3Zv+j3vSi3wb6fqp+Xp2LGjJDn9PPX3fkrgtlBISIjatm2rJUuWOLaVlJRoyZIl6ty5swcrgz86fPiwduzYoYSEBLVt21bBwcFOfW/r1q3avXu3o+917txZP//8s9MfjYsWLVJkZKSSk5MdbU48Rmmb0mPQx+GOpKQkxcfHO/WXnJwc/fDDD0798tChQ1q7dq2jzddff62SkhLHL+nOnTtr+fLlKiwsdLRZtGiRmjRpopo1azranK7vulILUOqPP/7QgQMHlJCQIIl+CusZYzR27FjNnj1bX3/9dZnLE7zp97wrtcA/namflmfDhg2S5PTz1O/7qaVTssHMmjXL2O12M336dJOWlmZGjRplatSo4TQTH1AR99xzj1m2bJlJT0833333nUlJSTExMTEmMzPTGHN86YN69eqZr7/+2qxZs8Z07tzZdO7c2bF/6TIMffr0MRs2bDALFiwwsbGx5S7DcN9995nNmzebl19+udxlGOjjKJWbm2vWr19v1q9fbySZZ5991qxfv97s2rXLGHN8iaMaNWqYOXPmmI0bN5rLLrus3GXBWrdubX744Qfz7bffmnPPPddpuaVDhw6Z2rVrm+uvv95s2rTJzJo1y4SHh5dZbikoKMg8/fTTZvPmzWbChAnlLrd0plrgn07XT3Nzc829995rVq5cadLT083ixYtNmzZtzLnnnmvy8/Mdx6CfwkqjR482UVFRZtmyZU7LKeXl5TnaeNPv+TPVAv90pn66fft288gjj5g1a9aY9PR0M2fOHNOwYUPTvXt3xzHOhn5K4K4CL774oqlXr54JCQkxHTp0MKtWrfJ0SfADV199tUlISDAhISHmnHPOMVdffbXZvn274/6jR4+a2267zdSsWdOEh4ebyy+/3GRkZDgdY+fOnaZ///4mLCzMxMTEmHvuuccUFhY6tVm6dKlp1aqVCQkJMQ0bNjRvvfVWmVro4yi1dOlSI6nM1/Dhw40xx5c5euihh0zt2rWN3W43vXr1Mlu3bnU6xoEDB8zQoUNN9erVTWRkpBk5cqTJzc11avPTTz+Zrl27Grvdbs455xwzefLkMrV8+OGH5rzzzjMhISGmefPm5ssvv3S635Va4J9O10/z8vJMnz59TGxsrAkODjb169c3N998c5kPEemnsFJ5/VOS0+9gb/o970ot8D9n6qe7d+823bt3N9HR0cZut5vGjRub++67z2kdbmP8v5/ajDHG2jF0AAAAAADOPlzDDQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAICfsNls+uyzz/72cR566CGNGjXq7xf0N+zfv19xcXH6448/PFoHAAB/B4EbAIBKNmLECNlsNtlsNoWEhKhx48Z65JFHVFRUZOnjZmRkqH///n/rGHv37tXzzz+vBx980LGtZ8+euvPOO8u0nT59umrUqOG4nZeXp/Hjx6tRo0YKDQ1VbGysevTooTlz5jgdq/S1sdvtOuecczRw4EB9+umnTseOiYnRDTfcoAkTJvyt5wMAgCcRuAEAsEC/fv2UkZGhbdu26Z577tHEiRP11FNPldv22LFjlfKY8fHxstvtf+sYb7zxhi688ELVr1/f7X1vvfVWffrpp3rxxRe1ZcsWLViwQFdeeaUOHDjg1O7mm29WRkaGduzYoU8++UTJycm65ppryoyqjxw5UjNmzFBWVtbfek4AAHgKgRsAAAvY7XbFx8erfv36Gj16tFJSUvT5559LOj4CPmjQID3++ONKTExUkyZNJEm///67hgwZoho1aig6OlqXXXaZdu7c6XTcN998U82bN5fdbldCQoLGjh3ruO/kU8p//vln/eMf/1BYWJhq1aqlUaNG6fDhw6ete9asWRo4cGCFnvPnn3+uBx54QAMGDFCDBg3Utm1b3X777brxxhud2oWHhys+Pl516tRRp06dNGXKFL322muaNm2aFi9e7GjXvHlzJSYmavbs2RWqBwAATyNwAwBQBcLCwpxGspcsWaKtW7dq0aJF+uKLL1RYWKi+ffsqIiJCK1as0Hfffafq1aurX79+jv2mTp2qMWPGaNSoUfr555/1+eefq3HjxuU+3pEjR9S3b1/VrFlTP/74oz766CMtXrzYKaCfLCsrS2lpaWrXrl2FnmN8fLzmzZun3Nxct/cdPny4atasWebU8g4dOmjFihUVqgcAAE8L8nQBAAD4M2OMlixZooULF+r22293bK9WrZreeOMNhYSESJLee+89lZSU6I033pDNZpMkvfXWW6pRo4aWLVumPn366LHHHtM999yjf/3rX47jtG/fvtzHnTlzpvLz8/XOO++oWrVqkqSXXnpJAwcO1JQpU1S7du0y++zevVvGGCUmJlboub7++uu69tprVatWLV1wwQXq2rWrrrzySnXp0uWM+wYEBOi8884rM6KfmJio9evXV6geAAA8jRFuAAAs8MUXX6h69eoKDQ1V//79dfXVV2vixImO+1u2bOkI25L0008/afv27YqIiFD16tVVvXp1RUdHKz8/Xzt27FBmZqb+/PNP9erVy6XH37x5sy644AJH2JakLl26qKSkRFu3bi13n6NHj0qSQkNDK/CMpe7du+u3337TkiVLdOWVV+qXX35Rt27d9Oijj7q0vzHG8WFDqbCwMOXl5VWoHgAAPI0RbgAALHDRRRdp6tSpCgkJUWJiooKCnH/lnhiEJenw4cNq27atZsyYUeZYsbGxCgiw/jPymJgYSdLBgwcVGxvr2B4ZGans7Owy7Q8dOqSoqCinbcHBwerWrZu6deumcePG6bHHHtMjjzyicePGOX3AcLLi4mJt27atzIh9VlaWUy0AAPgSRrgBALBAtWrV1LhxY9WrV69M2C5PmzZttG3bNsXFxalx48ZOX1FRUYqIiFCDBg20ZMkSlx6/WbNm+umnn3TkyBHHtu+++04BAQGOSdpO1qhRI0VGRiotLc1pe5MmTbRu3boy7detW6fzzjvvtHUkJyerqKhI+fn5p2339ttv6+DBg7riiiuctm/atEmtW7c+7b4AAHgrAjcAAF7g2muvVUxMjC677DKtWLFC6enpWrZsme644w798ccfkqSJEyfqmWee0QsvvKBt27Zp3bp1evHFF095vNDQUA0fPlybNm3S0qVLdfvtt+v6668v9/pt6fh11CkpKfr222+dto8ePVq//vqr7rjjDm3cuFFbt27Vs88+q/fff1/33HOPo13Pnj312muvae3atdq5c6fmzZunBx54QBdddJEiIyMd7fLy8rR371798ccfWrVqlcaNG6dbb71Vo0eP1kUXXeTUbu3aterTp0+FX1cAADyJwA0AgBcIDw/X8uXLVa9ePQ0ePFjNmjXTTTfdpPz8fEdYHT58uJ577jm98sorat68uS655BJt27btlMdbuHChsrKy1L59e1155ZXq1auXXnrppdPW8c9//lOzZs1SSUmJY1vDhg21fPlybdmyRSkpKerYsaM+/PBDffTRR+rXr5+jXd++ffX222+rT58+atasmW6//Xb17dtXH374odNjTJs2TQkJCWrUqJEGDx6stLQ0ffDBB3rllVec2s2ZM0f16tVTt27d3HotAQDwFjZjjPF0EQAAwDsYY9SxY0fdddddGjp0qEdr6dSpk+644w4NGzbMo3UAAFBRjHADAAAHm82m119/XUVFRR6tY//+/Ro8eLDHQz8AAH8HI9wAAAAAAFiAEW4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALPD/AOcObDXPYKI7AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -921,16 +1007,23 @@ "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", + "from scipy import stats\n", "\n", "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", "\n", - "#scatter plot\n", - "plt.figure(figsize=(10, 6))\n", - "plt.scatter(ds['surface'], ds['price'], color='red', alpha=0.5)\n", - "plt.xlabel('Superficie (m²)')\n", - "plt.ylabel('Precio (USD)')\n", + "z_scores_price = stats.zscore(ds['price'])\n", + "outliers_price = ds[abs(z_scores_price) > 50000]\n", + "\n", + "cleaned_ds = ds.copy() \n", + "cleaned_ds.drop(outliers_price.index, inplace=True) \n", + "\n", + "plt.figure(figsize=(12, 6))\n", + "plt.scatter(ds['surface'], cleaned_ds['price'])\n", + "plt.ylabel('Superficie (m²)')\n", + "plt.xlabel('Precio (USD)')\n", + "plt.title('Relación entre Superficie y Precio (Outliers Eliminados)')\n", "plt.grid(True)\n", - "plt.show()\n" + "plt.show()" ] }, { @@ -955,7 +1048,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 40, "id": "valid-honolulu", "metadata": {}, "outputs": [ @@ -992,7 +1085,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 41, "id": "static-perry", "metadata": {}, "outputs": [ @@ -1000,7 +1093,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "La población con mayor cantidad de casas es Madrid Capital con un total de 6643 casas.\n" + "La población con mayor cantidad de casas es Madrid Capital con un total de 6228 casas.\n" ] } ], @@ -1008,7 +1101,8 @@ "import pandas as pd\n", "\n", "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", - "\n", + "ds = ds[ds['price'] > 0]\n", + "ds = ds[ds['surface'] > 0]\n", "\n", "poblacion_con_mas_casas = ds['level5'].value_counts().idxmax()\n", "numero_de_casas = ds['level5'].value_counts().max()\n", @@ -1030,7 +1124,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 42, "id": "binary-input", "metadata": {}, "outputs": [ @@ -1103,7 +1197,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 43, "id": "lyric-bunch", "metadata": {}, "outputs": [ @@ -1166,7 +1260,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 44, "id": "random-feeling", "metadata": {}, "outputs": [ @@ -1226,7 +1320,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 45, "id": "fifteen-browse", "metadata": {}, "outputs": [ @@ -1272,7 +1366,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 46, "id": "civic-meditation", "metadata": {}, "outputs": [ @@ -1280,7 +1374,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_622/487487773.py:12: SettingWithCopyWarning: \n", + "/tmp/ipykernel_653/487487773.py:12: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", @@ -1354,7 +1448,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 47, "id": "initial-liverpool", "metadata": {}, "outputs": [ @@ -1370,7 +1464,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_622/1254672352.py:10: SettingWithCopyWarning: \n", + "/tmp/ipykernel_653/4059260355.py:9: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", @@ -1388,14 +1482,13 @@ "\n", "ds_cinturon_sur = ds[ds['level5'].isin(poblaciones_cinturon_sur)]\n", "\n", - "#price per square metros2\n", "ds_cinturon_sur['pps'] = ds_cinturon_sur['price'] / ds_cinturon_sur['surface']\n", "\n", "# Calcular la media del precio por metro cuadrado\n", "pps_getafe = ds_cinturon_sur[ds_cinturon_sur['level5'] == \"Getafe\"]['pps'].mean()\n", "pps_alcorcon = ds_cinturon_sur[ds_cinturon_sur['level5'] == \"Alcorcón\"]['pps'].mean()\n", "\n", - "# Resultados\n", + "\n", "print(f\"El precio promedio por metro cuadrado en Getafe es de {pps_getafe:.2f} USD/m²\")\n", "print(f\"El precio promedio por metro cuadrado en Alcorcón es de {pps_alcorcon:.2f} USD/m²\")\n" ] @@ -1412,7 +1505,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 48, "id": "accepting-airfare", "metadata": {}, "outputs": [ @@ -1420,7 +1513,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_622/2267956501.py:11: SettingWithCopyWarning: \n", + "/tmp/ipykernel_653/3367897067.py:9: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", @@ -1448,18 +1541,12 @@ "poblaciones_cinturon_sur = [\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"]\n", "\n", "ds_cinturon_sur = ds[ds['level5'].isin(poblaciones_cinturon_sur)]\n", - "\n", - "# price per square metros2\n", "ds_cinturon_sur['pps'] = ds_cinturon_sur['price'] / ds_cinturon_sur['surface']\n", - "\n", - "# Configurar el gráfico \n", "fig, axs = plt.subplots(2, 2, figsize=(16, 12))\n", - "\n", - "# Lista de poblaciones y subgráficos\n", "poblaciones = [\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"]\n", "axes = axs.flatten()\n", "\n", - "# Diagramas de dispersión\n", + "# Diagramas \n", "for i, poblacion in enumerate(poblaciones):\n", " subset = ds_cinturon_sur[ds_cinturon_sur['level5'] == poblacion]\n", " axes[i].scatter(subset['surface'], subset['pps'], alpha=0.6, edgecolor='black')\n", @@ -1468,10 +1555,9 @@ " axes[i].set_ylabel('Precio por Metro Cuadrado (USD/m²)')\n", " axes[i].grid(True)\n", "\n", - "# Ajustar espacio\n", + "\n", "plt.tight_layout()\n", "\n", - "# Mostrar el gráfico\n", "plt.show()\n" ] }, @@ -1488,111 +1574,57 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 49, "id": "headed-privacy", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "de87ba861aa5426da915dcd2782eba43", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Map(center=[40.35, -3.75], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title', 'zoom_o…" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from ipyleaflet import Map, basemaps\n", - "\n", - "# Mapa centrado en Madrid (coordenadas aproximadas)\n", - "map = Map(center=(40.35, -3.75), zoom=10, min_zoom=5, max_zoom=20, basemap=basemaps.OpenStreetMap.Mapnik)\n", - "map\n" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "present-mistress", - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "119cfe4e558a4d7e998309625956d9a7", + "model_id": "9069040c8ca74cfb94d9707107ca41f4", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Map(center=[40.35, -3.75], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title', 'zoom_o…" + "Map(center=[0.0, 0.0], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title', 'zoom_out_t…" ] }, - "execution_count": 27, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", - "from ipyleaflet import Map, Marker, MarkerCluster, Icon, basemaps\n", - "from ipywidgets import HTML\n", + "from ipyleaflet import Map, Marker, Popup\n", "\n", - "# Cargar el dataset\n", "ds = pd.read_csv('assets/real_estate.csv', sep=';')\n", + "poblaciones_cinturon_sur = [\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"]\n", "\n", - "# Mapa centrado en Madrid (coordenadas aproximadas)\n", - "map = Map(center=(40.35, -3.75), zoom=15, min_zoom=5, max_zoom=25, basemap=basemaps.OpenStreetMap.Mapnik)\n", - "\n", - "\n", - "ds_cinturon_sur = ds[ds['level5'].isin([\"Fuenlabrada\", \"Leganés\", \"Getafe\", \"Alcorcón\"])]\n", - "\n", - "icon_dict = {\n", - " \"Fuenlabrada\": \"maps-and-blue.png\",\n", - " \"Leganés\": \"maps-and-green.png\",\n", - " \"Getafe\": \"maps-and-red.png\",\n", - " \"Alcorcón\": \"maps-and-pink.png\"\n", - "}\n", - "\n", - "\n", - "markers = []\n", - "\n", + "m = Map(zoom=10, min_zoom=5, max_zoom=20, basemap=basemaps.OpenStreetMap.Mapnik)\n", "\n", + "# Agregar ubicación\n", "for index, row in ds_cinturon_sur.iterrows():\n", - " if pd.notnull(row['latitude']) and pd.notnull(row['longitude']):\n", - " # Usar el icono local\n", - " icon_path = f'icons/{icon_dict[row[\"level5\"]]}'\n", - " icon = Icon(icon_url=icon_path, icon_size=[240, 240], icon_anchor=[120, 120])\n", - " \n", - " marker = Marker(location=(row['latitude'], row['longitude']), \n", - " draggable=False,\n", - " icon=icon)\n", - "\n", - " # Añadir un popup con la dirección y precio\n", - " popup_content = HTML()\n", - " popup_content.value = f\"Dirección: {row['address']}
Precio: {row['price']} USD\"\n", - " marker.popup = popup_content\n", - "\n", - " markers.append(marker)\n", - "\n", - "# Añadir todos los marcadores al mapa como un cluster\n", - "marker_cluster = MarkerCluster(markers=markers)\n", - "map.add_layer(marker_cluster)\n", - "\n", - "# Mostrar el mapa con los marcadores\n", - "map\n", - "\n", - "\n", - "\n", - "\n", - "\n", + " population = row['level5']\n", + " marker = Marker(\n", + " location=(row['latitude'], row['longitude']),\n", + " )\n", + " popup = Popup(child=HTML(value=f\"Población: {population}\"))\n", + " marker.popup = popup\n", + " m.add_layer(marker)\n", + " \n", + "# Mostrar el mapa\n", + "m\n", "\n" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "542b7bf9", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": {