-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
1659 lines (1458 loc) · 68.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""Sequential model class and model-related utilities.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import warnings
import copy
import json
import os
import yaml
import numpy as np
from . import backend as K
from . import optimizers
from . import layers as layer_module
from .utils.io_utils import ask_to_proceed_with_overwrite
from .utils.generic_utils import has_arg
from .engine.training import Model
from .engine import topology
from .engine.topology import Layer
from .engine.topology import Input
from .engine.topology import InputLayer
from .legacy import layers as legacy_layers
from .legacy import models as legacy_models
from .legacy import interfaces
try:
import h5py
except ImportError:
h5py = None
def save_model(model, filepath, overwrite=True, include_optimizer=True):
"""Save a model to a HDF5 file.
The saved model contains:
- the model's configuration (topology)
- the model's weights
- the model's optimizer's state (if any)
Thus the saved model can be reinstantiated in
the exact same state, without any of the code
used for model definition or training.
# Arguments
model: Keras model instance to be saved.
filepath: String, path where to save the model.
overwrite: Whether we should overwrite any existing
model at the target location, or instead
ask the user with a manual prompt.
include_optimizer: If True, save optimizer's state together.
# Raises
ImportError: if h5py is not available.
"""
if h5py is None:
raise ImportError('`save_model` requires h5py.')
def get_json_type(obj):
"""Serialize any object to a JSON-serializable structure.
# Arguments
obj: the object to serialize
# Returns
JSON-serializable structure representing `obj`.
# Raises
TypeError: if `obj` cannot be serialized.
"""
# if obj is a serializable Keras class instance
# e.g. optimizer, layer
if hasattr(obj, 'get_config'):
return {'class_name': obj.__class__.__name__,
'config': obj.get_config()}
# if obj is any numpy type
if type(obj).__module__ == np.__name__:
if isinstance(obj, np.ndarray):
return {'type': type(obj),
'value': obj.tolist()}
else:
return obj.item()
# misc functions (e.g. loss function)
if callable(obj):
return obj.__name__
# if obj is a python 'type'
if type(obj).__name__ == type.__name__:
return obj.__name__
raise TypeError('Not JSON Serializable:', obj)
from . import __version__ as keras_version
# If file exists and should not be overwritten.
if not overwrite and os.path.isfile(filepath):
proceed = ask_to_proceed_with_overwrite(filepath)
if not proceed:
return
with h5py.File(filepath, mode='w') as f:
f.attrs['keras_version'] = str(keras_version).encode('utf8')
f.attrs['backend'] = K.backend().encode('utf8')
f.attrs['model_config'] = json.dumps({
'class_name': model.__class__.__name__,
'config': model.get_config()
}, default=get_json_type).encode('utf8')
model_weights_group = f.create_group('model_weights')
if legacy_models.needs_legacy_support(model):
model_layers = legacy_models.legacy_sequential_layers(model)
else:
model_layers = model.layers
topology.save_weights_to_hdf5_group(model_weights_group, model_layers)
if include_optimizer and hasattr(model, 'optimizer'):
if isinstance(model.optimizer, optimizers.TFOptimizer):
warnings.warn(
'TensorFlow optimizers do not '
'make it possible to access '
'optimizer attributes or optimizer state '
'after instantiation. '
'As a result, we cannot save the optimizer '
'as part of the model save file.'
'You will have to compile your model again '
'after loading it. '
'Prefer using a Keras optimizer instead '
'(see keras.io/optimizers).')
else:
f.attrs['training_config'] = json.dumps({
'optimizer_config': {
'class_name': model.optimizer.__class__.__name__,
'config': model.optimizer.get_config()
},
'loss': model.loss,
'metrics': model.metrics,
'sample_weight_mode': model.sample_weight_mode,
'loss_weights': model.loss_weights,
}, default=get_json_type).encode('utf8')
# Save optimizer weights.
symbolic_weights = getattr(model.optimizer, 'weights')
if symbolic_weights:
optimizer_weights_group = f.create_group('optimizer_weights')
weight_values = K.batch_get_value(symbolic_weights)
weight_names = []
for i, (w, val) in enumerate(zip(symbolic_weights,
weight_values)):
# Default values of symbolic_weights is /variable
# for Theano and CNTK
if K.backend() == 'theano' or K.backend() == 'cntk':
if hasattr(w, 'name'):
if w.name.split('/')[-1] == 'variable':
name = str(w.name) + '_' + str(i)
else:
name = str(w.name)
else:
name = 'param_' + str(i)
else:
if hasattr(w, 'name') and w.name:
name = str(w.name)
else:
name = 'param_' + str(i)
weight_names.append(name.encode('utf8'))
optimizer_weights_group.attrs['weight_names'] = weight_names
for name, val in zip(weight_names, weight_values):
param_dset = optimizer_weights_group.create_dataset(
name,
val.shape,
dtype=val.dtype)
if not val.shape:
# scalar
param_dset[()] = val
else:
param_dset[:] = val
f.flush()
def load_model(filepath, custom_objects=None, compile=True):
"""Loads a model saved via `save_model`.
# Arguments
filepath: String, path to the saved model.
custom_objects: Optional dictionary mapping names
(strings) to custom classes or functions to be
considered during deserialization.
compile: Boolean, whether to compile the model
after loading.
# Returns
A Keras model instance. If an optimizer was found
as part of the saved model, the model is already
compiled. Otherwise, the model is uncompiled and
a warning will be displayed. When `compile` is set
to False, the compilation is omitted without any
warning.
# Raises
ImportError: if h5py is not available.
ValueError: In case of an invalid savefile.
"""
if h5py is None:
raise ImportError('`load_model` requires h5py.')
if not custom_objects:
custom_objects = {}
def convert_custom_objects(obj):
"""Handles custom object lookup.
# Arguments
obj: object, dict, or list.
# Returns
The same structure, where occurrences
of a custom object name have been replaced
with the custom object.
"""
if isinstance(obj, list):
deserialized = []
for value in obj:
deserialized.append(convert_custom_objects(value))
return deserialized
if isinstance(obj, dict):
deserialized = {}
for key, value in obj.items():
deserialized[key] = convert_custom_objects(value)
return deserialized
if obj in custom_objects:
return custom_objects[obj]
return obj
with h5py.File(filepath, mode='r') as f:
# instantiate model
model_config = f.attrs.get('model_config')
if model_config is None:
raise ValueError('No model found in config file.')
model_config = json.loads(model_config.decode('utf-8'))
model = model_from_config(model_config, custom_objects=custom_objects)
# set weights
topology.load_weights_from_hdf5_group(f['model_weights'], model.layers)
# Early return if compilation is not required.
if not compile:
return model
# instantiate optimizer
training_config = f.attrs.get('training_config')
if training_config is None:
warnings.warn('No training configuration found in save file: '
'the model was *not* compiled. Compile it manually.')
return model
training_config = json.loads(training_config.decode('utf-8'))
optimizer_config = training_config['optimizer_config']
optimizer = optimizers.deserialize(optimizer_config,
custom_objects=custom_objects)
# Recover loss functions and metrics.
loss = convert_custom_objects(training_config['loss'])
metrics = convert_custom_objects(training_config['metrics'])
sample_weight_mode = training_config['sample_weight_mode']
loss_weights = training_config['loss_weights']
# Compile model.
model.compile(optimizer=optimizer,
loss=loss,
# metrics=metrics,
loss_weights=loss_weights,
sample_weight_mode=sample_weight_mode)
# Set optimizer weights.
if 'optimizer_weights' in f:
# Build train function (to get weight updates).
if isinstance(model, Sequential):
model.model._make_train_function()
else:
model._make_train_function()
optimizer_weights_group = f['optimizer_weights']
optimizer_weight_names = [n.decode('utf8') for n in
optimizer_weights_group.attrs['weight_names']]
optimizer_weight_values = [optimizer_weights_group[n] for n in
optimizer_weight_names]
try:
model.optimizer.set_weights(optimizer_weight_values)
except ValueError:
warnings.warn('Error in loading the saved optimizer '
'state. As a result, your model is '
'starting with a freshly initialized '
'optimizer.')
return model
def model_from_config(config, custom_objects=None):
"""Instantiates a Keras model from its config.
# Arguments
config: Configuration dictionary.
custom_objects: Optional dictionary mapping names
(strings) to custom classes or functions to be
considered during deserialization.
# Returns
A Keras model instance (uncompiled).
# Raises
TypeError: if `config` is not a dictionary.
"""
if isinstance(config, list):
raise TypeError('`model_from_config` expects a dictionary, not a list. '
'Maybe you meant to use '
'`Sequential.from_config(config)`?')
return layer_module.deserialize(config, custom_objects=custom_objects)
def model_from_yaml(yaml_string, custom_objects=None):
"""Parses a yaml model configuration file and returns a model instance.
# Arguments
yaml_string: YAML string encoding a model configuration.
custom_objects: Optional dictionary mapping names
(strings) to custom classes or functions to be
considered during deserialization.
# Returns
A Keras model instance (uncompiled).
"""
config = yaml.load(yaml_string)
return layer_module.deserialize(config, custom_objects=custom_objects)
def model_from_json(json_string, custom_objects=None):
"""Parses a JSON model configuration file and returns a model instance.
# Arguments
json_string: JSON string encoding a model configuration.
custom_objects: Optional dictionary mapping names
(strings) to custom classes or functions to be
considered during deserialization.
# Returns
A Keras model instance (uncompiled).
"""
config = json.loads(json_string)
return layer_module.deserialize(config, custom_objects=custom_objects)
class Sequential(Model):
"""Linear stack of layers.
# Arguments
layers: list of layers to add to the model.
# Note
The first layer passed to a Sequential model
should have a defined input shape. What that
means is that it should have received an `input_shape`
or `batch_input_shape` argument,
or for some type of layers (recurrent, Dense...)
an `input_dim` argument.
# Example
```python
model = Sequential()
# first layer must have a defined input shape
model.add(Dense(32, input_dim=500))
# afterwards, Keras does automatic shape inference
model.add(Dense(32))
# also possible (equivalent to the above):
model = Sequential()
model.add(Dense(32, input_shape=(500,)))
model.add(Dense(32))
# also possible (equivalent to the above):
model = Sequential()
# here the batch dimension is None,
# which means any batch size will be accepted by the model.
model.add(Dense(32, batch_input_shape=(None, 500)))
model.add(Dense(32))
```
"""
def __init__(self, layers=None, name=None):
self.layers = [] # Stack of layers.
self.model = None # Internal Model instance.
self.inputs = [] # List of input tensors
self.outputs = [] # List of length 1: the output tensor (unique).
self._trainable = True
self._initial_weights = None
# Model attributes.
self._inbound_nodes = []
self._outbound_nodes = []
self.built = False
# Set model name.
if not name:
prefix = 'sequential_'
name = prefix + str(K.get_uid(prefix))
self.name = name
# Add to the model any layers passed to the constructor.
if layers:
for layer in layers:
self.add(layer)
def add(self, layer):
"""Adds a layer instance on top of the layer stack.
# Arguments
layer: layer instance.
# Raises
TypeError: If `layer` is not a layer instance.
ValueError: In case the `layer` argument does not
know its input shape.
ValueError: In case the `layer` argument has
multiple output tensors, or is already connected
somewhere else (forbidden in `Sequential` models).
"""
if not isinstance(layer, Layer):
raise TypeError('The added layer must be '
'an instance of class Layer. '
'Found: ' + str(layer))
if not self.outputs:
# First layer in model: check that it is an input layer.
if not isinstance(layer, (InputLayer, legacy_layers.Merge)):
# Create an input layer.
# First, we need to infer its expected input shape and dtype.
if isinstance(layer, (Model, Sequential)):
# We were passed a model as first layer.
# This requires a specific way to figure out the
# input shape and dtype.
if not layer.layers:
raise ValueError('Cannot add an empty model '
'to a `Sequential` model.')
# In case of nested models: recover the first layer
# of the deepest model to infer input shape and dtype.
first_layer = layer.layers[0]
while isinstance(first_layer, (Model, Sequential)):
first_layer = first_layer.layers[0]
batch_shape = first_layer.batch_input_shape
dtype = first_layer.dtype
else:
# We were passed a regular layer, and it should
# know about its input shape. Otherwise, that's an error.
if not hasattr(layer, 'batch_input_shape'):
raise ValueError('The first layer in a '
'Sequential model must '
'get an `input_shape` or '
'`batch_input_shape` argument.')
batch_shape = layer.batch_input_shape
dtype = layer.dtype
# Instantiate the input layer.
x = Input(batch_shape=batch_shape,
dtype=dtype,
name=layer.name + '_input')
# This will build the current layer
# and create the node connecting the current layer
# to the input layer we just created.
layer(x)
if len(layer._inbound_nodes[-1].output_tensors) != 1:
raise ValueError('All layers in a Sequential model '
'should have a single output tensor. '
'For multi-output layers, '
'use the functional API.')
self.outputs = [layer._inbound_nodes[-1].output_tensors[0]]
self.inputs = topology.get_source_inputs(self.outputs[0])
# We create an input node, which we will keep updated
# as we add more layers
topology.Node(outbound_layer=self,
inbound_layers=[],
node_indices=[],
tensor_indices=[],
input_tensors=self.inputs,
output_tensors=self.outputs,
# no model-level masking for now
input_masks=[None for _ in self.inputs],
output_masks=[None],
input_shapes=[x._keras_shape for x in self.inputs],
output_shapes=[self.outputs[0]._keras_shape])
else:
output_tensor = layer(self.outputs[0])
if isinstance(output_tensor, list):
raise TypeError('All layers in a Sequential model '
'should have a single output tensor. '
'For multi-output layers, '
'use the functional API.')
self.outputs = [output_tensor]
# update self._inbound_nodes
self._inbound_nodes[0].output_tensors = self.outputs
self._inbound_nodes[0].output_shapes = [self.outputs[0]._keras_shape]
self.layers.append(layer)
self.built = False
def pop(self):
"""Removes the last layer in the model.
# Raises
TypeError: if there are no layers in the model.
"""
if not self.layers:
raise TypeError('There are no layers in the model.')
self.layers.pop()
if not self.layers:
self.outputs = []
self._inbound_nodes = []
self._outbound_nodes = []
else:
self.layers[-1]._outbound_nodes = []
self.outputs = [self.layers[-1].output]
# update self._inbound_nodes
self._inbound_nodes[0].output_tensors = self.outputs
self._inbound_nodes[0].output_shapes = [self.outputs[0]._keras_shape]
self.built = False
def get_layer(self, name=None, index=None):
"""Retrieve a layer that is part of the model.
Returns a layer based on either its name (unique)
or its index in the graph. Indices are based on
order of horizontal graph traversal (bottom-up).
# Arguments
name: string, name of layer.
index: integer, index of layer.
# Returns
A layer instance.
"""
if not self.built:
self.build()
return self.model.get_layer(name, index)
def call(self, inputs, mask=None):
if not self.built:
self.build()
return self.model.call(inputs, mask)
def build(self, input_shape=None):
if not self.inputs or not self.outputs:
raise TypeError('Sequential model cannot be built: model is empty.'
' Add some layers first.')
# actually create the model
self.model = Model(self.inputs, self.outputs[0],
name=self.name + '_model')
self.model.trainable = self.trainable
# mirror model attributes
self.supports_masking = self.model.supports_masking
self._output_mask_cache = self.model._output_mask_cache
self._output_tensor_cache = self.model._output_tensor_cache
self._output_shape_cache = self.model._output_shape_cache
self.input_layers = self.model.input_layers
self.input_layers_node_indices = self.model.input_layers_node_indices
self.input_layers_tensor_indices = self.model.input_layers_tensor_indices
self.output_layers = self.model.output_layers
self.output_layers_node_indices = self.model.output_layers_node_indices
self.output_layers_tensor_indices = self.model.output_layers_tensor_indices
self._nodes_by_depth = self.model._nodes_by_depth
self.output_names = self.model.output_names
self.input_names = self.model.input_names
self._feed_input_names = self.model._feed_input_names
self._feed_inputs = self.model._feed_inputs
self._container_nodes = self.model._container_nodes
# Make sure child model callbacks
# will call the parent Sequential model.
self.model.callback_model = self
self.built = True
@property
def uses_learning_phase(self):
if not self.built:
self.build()
return self.model.uses_learning_phase
@property
def _flattened_layers(self):
layers = []
if self.layers:
# Support for legacy models
if isinstance(self.layers[0], legacy_layers.Merge):
merge = self.layers[0]
for layer in merge.layers:
if hasattr(layer, '_flattened_layers'):
for sublayer in layer._flattened_layers:
if sublayer not in layers:
layers.append(sublayer)
elif hasattr(layer, 'layers'):
for sublayer in layer.layers:
if sublayer not in layers:
layers.append(sublayer)
else:
if layer not in layers:
layers.append(layer)
else:
if self.layers[0] not in layers:
layers.append(self.layers[0])
for layer in self.layers[1:]:
if layer not in layers:
layers.append(layer)
return layers
def _gather_list_attr(self, attr):
all_attrs = []
for layer in self._flattened_layers:
all_attrs += getattr(layer, attr, [])
return all_attrs
@property
def trainable(self):
return self._trainable
@trainable.setter
def trainable(self, value):
if self.built:
self.model.trainable = value
self._trainable = value
@property
def trainable_weights(self):
if not self.trainable:
return []
# Support for legacy behavior
return self._gather_list_attr('trainable_weights')
@property
def non_trainable_weights(self):
# Support for legacy behavior
weights = self._gather_list_attr('non_trainable_weights')
if not self.trainable:
trainable_weights = self._gather_list_attr('trainable_weights')
return trainable_weights + weights
return weights
@property
def updates(self):
if not self.built:
self.build()
return self.model.updates
@property
def state_updates(self):
if not self.built:
self.build()
return self.model.state_updates
def get_updates_for(self, inputs):
if not self.built:
self.build()
return self.model.get_updates_for(inputs)
@property
def losses(self):
if not self.built:
self.build()
return self.model.losses
def get_losses_for(self, inputs):
if not self.built:
self.build()
return self.model.get_losses_for(inputs)
@property
def regularizers(self):
if not self.built:
self.build()
return self.model.regularizers
def get_weights(self):
"""Retrieves the weights of the model.
# Returns
A flat list of Numpy arrays
(one array per model weight).
"""
# Legacy support
if legacy_models.needs_legacy_support(self):
layers = legacy_models.legacy_sequential_layers(self)
weights = []
for layer in layers:
weights.append(layer.get_weights())
return weights
if not self.built:
self.build()
return self.model.get_weights()
def set_weights(self, weights):
"""Sets the weights of the model.
# Arguments
weights: Should be a list
of Numpy arrays with shapes and types matching
the output of `model.get_weights()`.
"""
# Legacy support
if legacy_models.needs_legacy_support(self):
layers = legacy_models.legacy_sequential_layers(self)
for layer in layers:
nb_param = len(layer.weights)
layer.set_weights(weights[:nb_param])
weights = weights[nb_param:]
if not self.built:
self.build()
self.model.set_weights(weights)
def load_weights(self, filepath, by_name=False, skip_mismatch=False, reshape=False):
if h5py is None:
raise ImportError('`load_weights` requires h5py.')
with h5py.File(filepath, mode='r') as f:
if 'layer_names' not in f.attrs and 'model_weights' in f:
f = f['model_weights']
# Legacy support
if legacy_models.needs_legacy_support(self):
layers = legacy_models.legacy_sequential_layers(self)
else:
layers = self.layers
if by_name:
topology.load_weights_from_hdf5_group_by_name(f, layers,
skip_mismatch=skip_mismatch,
reshape=reshape)
else:
topology.load_weights_from_hdf5_group(f, layers, reshape=reshape)
def save_weights(self, filepath, overwrite=True):
if h5py is None:
raise ImportError('`save_weights` requires h5py.')
# If file exists and should not be overwritten:
if not overwrite and os.path.isfile(filepath):
proceed = ask_to_proceed_with_overwrite(filepath)
if not proceed:
return
# Legacy support
if legacy_models.needs_legacy_support(self):
layers = legacy_models.legacy_sequential_layers(self)
else:
layers = self.layers
with h5py.File(filepath, 'w') as f:
topology.save_weights_to_hdf5_group(f, layers)
f.flush()
def compile(self, optimizer, loss,
metrics=None,
sample_weight_mode=None,
weighted_metrics=None,
target_tensors=None,
**kwargs):
"""Configures the model for training.
# Arguments
optimizer: String (name of optimizer) or optimizer object.
See [optimizers](/optimizers).
loss: String (name of objective function) or objective function.
See [losses](/losses).
If the model has multiple outputs, you can use a different loss
on each output by passing a dictionary or a list of losses.
The loss value that will be minimized by the model
will then be the sum of all individual losses.
metrics: List of metrics to be evaluated by the model
during training and testing.
Typically you will use `metrics=['accuracy']`.
To specify different metrics for different outputs of a
multi-output model, you could also pass a dictionary,
such as `metrics={'output_a': 'accuracy'}`.
sample_weight_mode: If you need to do timestep-wise
sample weighting (2D weights), set this to `"temporal"`.
`None` defaults to sample-wise weights (1D).
If the model has multiple outputs, you can use a different
`sample_weight_mode` on each output by passing a
dictionary or a list of modes.
weighted_metrics: List of metrics to be evaluated and weighted
by sample_weight or class_weight during training and testing.
target_tensors: By default, Keras will create a placeholder for the
model's target, which will be fed with the target data during
training. If instead you would like to use your own
target tensor (in turn, Keras will not expect external
Numpy data for these targets at training time), you
can specify them via the `target_tensors` argument.
It should be a single tensor
(for a single-output `Sequential` model).
**kwargs: When using the Theano/CNTK backends, these arguments
are passed into `K.function`.
When using the TensorFlow backend,
these arguments are passed into `tf.Session.run`.
# Raises
ValueError: In case of invalid arguments for
`optimizer`, `loss`, `metrics` or `sample_weight_mode`.
# Example
```python
model = Sequential()
model.add(Dense(32, input_shape=(500,)))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
```
"""
# create the underlying model
self.build()
# call compile method of Model class
self.model.compile(optimizer, loss,
metrics=metrics,
sample_weight_mode=sample_weight_mode,
weighted_metrics=weighted_metrics,
target_tensors=target_tensors,
**kwargs)
self.optimizer = self.model.optimizer
self.loss = self.model.loss
self.metrics = self.model.metrics
self.loss_weights = self.model.loss_weights
self.sample_weight_mode = self.model.sample_weight_mode
self.weighted_metrics = self.model.weighted_metrics
self.targets = self.model.targets
self.metrics_tensors = self.model.metrics_tensors
self.metrics_names = self.model.metrics_names
self.sample_weights = self.model.sample_weights
self.total_loss = self.model.total_loss
def fit(self,
x=None,
y=None,
batch_size=None,
epochs=1,
verbose=1,
callbacks=None,
validation_split=0.,
validation_data=None,
shuffle=True,
class_weight=None,
sample_weight=None,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None,
**kwargs):
"""Trains the model for a fixed number of epochs (iterations on a dataset).
# Arguments
x: Numpy array of training data.
If the input layer in the model is named, you can also pass a
dictionary mapping the input name to a Numpy array.
`x` can be `None` (default) if feeding from
framework-native tensors (e.g. TensorFlow data tensors).
y: Numpy array of target (label) data.
If the output layer in the model is named, you can also pass a
dictionary mapping the output name to a Numpy array.
`y` can be `None` (default) if feeding from
framework-native tensors (e.g. TensorFlow data tensors).
batch_size: Integer or `None`.
Number of samples per gradient update.
If unspecified, it will default to 32.
epochs: Integer. Number of epochs to train the model.
An epoch is an iteration over the entire `x` and `y`
data provided.
Note that in conjunction with `initial_epoch`,
`epochs` is to be understood as "final epoch".
The model is not trained for a number of iterations
given by `epochs`, but merely until the epoch
of index `epochs` is reached.
verbose: 0, 1, or 2. Verbosity mode.
0 = silent, 1 = progress bar, 2 = one line per epoch.
callbacks: List of `keras.callbacks.Callback` instances.
List of callbacks to apply during training.
See [callbacks](/callbacks).
validation_split: Float between 0 and 1.
Fraction of the training data to be used as validation data.
The model will set apart this fraction of the training data,
will not train on it, and will evaluate
the loss and any model metrics
on this data at the end of each epoch.
The validation data is selected from the last samples
in the `x` and `y` data provided, before shuffling.
validation_data: tuple `(x_val, y_val)` or tuple
`(x_val, y_val, val_sample_weights)` on which to evaluate
the loss and any model metrics at the end of each epoch.
The model will not be trained on this data.
This will override `validation_split`.
shuffle: Boolean (whether to shuffle the training data
before each epoch) or str (for 'batch').
'batch' is a special option for dealing with the
limitations of HDF5 data; it shuffles in batch-sized chunks.
Has no effect when `steps_per_epoch` is not `None`.
class_weight: Optional dictionary mapping class indices (integers)
to a weight (float) value, used for weighting the loss function
(during training only).
This can be useful to tell the model to
"pay more attention" to samples from
an under-represented class.
sample_weight: Optional Numpy array of weights for
the training samples, used for weighting the loss function
(during training only). You can either pass a flat (1D)
Numpy array with the same length as the input samples
(1:1 mapping between weights and samples),
or in the case of temporal data,
you can pass a 2D array with shape
`(samples, sequence_length)`,
to apply a different weight to every timestep of every sample.
In this case you should make sure to specify
`sample_weight_mode="temporal"` in `compile()`.
initial_epoch: Epoch at which to start training
(useful for resuming a previous training run).
steps_per_epoch: Total number of steps (batches of samples)
before declaring one epoch finished and starting the
next epoch. When training with input tensors such as
TensorFlow data tensors, the default `None` is equal to
the number of samples in your dataset divided by
the batch size, or 1 if that cannot be determined.
validation_steps: Only relevant if `steps_per_epoch`
is specified. Total number of steps (batches of samples)
to validate before stopping.
# Returns
A `History` object. Its `History.history` attribute is
a record of training loss values and metrics values
at successive epochs, as well as validation loss values
and validation metrics values (if applicable).
# Raises
RuntimeError: If the model was never compiled.
ValueError: In case of mismatch between the provided input data
and what the model expects.
"""
# Legacy support
if 'nb_epoch' in kwargs:
warnings.warn('The `nb_epoch` argument in `fit` '
'has been renamed `epochs`.')
epochs = kwargs.pop('nb_epoch')
if kwargs:
raise TypeError('Unrecognized keyword arguments: ' + str(kwargs))
if not self.built:
raise RuntimeError('The model needs to be compiled '
'before being used.')
return self.model.fit(x, y,
batch_size=batch_size,
epochs=epochs,
verbose=verbose,
callbacks=callbacks,
validation_split=validation_split,
validation_data=validation_data,
shuffle=shuffle,
class_weight=class_weight,
sample_weight=sample_weight,
initial_epoch=initial_epoch,
steps_per_epoch=steps_per_epoch,
validation_steps=validation_steps)
def evaluate(self, x=None, y=None,
batch_size=None,
verbose=1,
sample_weight=None,
steps=None):
"""Computes the loss on some input data, batch by batch.
# Arguments
x: input data, as a Numpy array or list of Numpy arrays
(if the model has multiple inputs).
`x` can be `None` (default) if feeding from
framework-native tensors (e.g. TensorFlow data tensors).
y: labels, as a Numpy array.
`y` can be `None` (default) if feeding from
framework-native tensors (e.g. TensorFlow data tensors).
batch_size: Integer. If unspecified, it will default to 32.
verbose: verbosity mode, 0 or 1.
sample_weight: sample weights, as a Numpy array.
steps: Integer or `None`.
Total number of steps (batches of samples)
before declaring the evaluation round finished.
Ignored with the default value of `None`.
# Returns
Scalar test loss (if the model has no metrics)
or list of scalars (if the model computes other metrics).
The attribute `model.metrics_names` will give you
the display labels for the scalar outputs.
# Raises
RuntimeError: if the model was never compiled.
"""
if not self.built:
raise RuntimeError('The model needs to be compiled '
'before being used.')
return self.model.evaluate(x, y,