forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolof_r50-c5_8xb8-iter-1x_coco.py
32 lines (28 loc) · 1.01 KB
/
yolof_r50-c5_8xb8-iter-1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
_base_ = './yolof_r50-c5_8xb8-1x_coco.py'
# We implemented the iter-based config according to the source code.
# COCO dataset has 117266 images after filtering. We use 8 gpu and
# 8 batch size training, so 22500 is equivalent to
# 22500/(117266/(8x8))=12.3 epoch, 15000 is equivalent to 8.2 epoch,
# 20000 is equivalent to 10.9 epoch. Due to lr(0.12) is large,
# the iter-based and epoch-based setting have about 0.2 difference on
# the mAP evaluation value.
train_cfg = dict(
_delete_=True,
type='IterBasedTrainLoop',
max_iters=22500,
val_interval=4500)
# learning rate policy
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=22500,
by_epoch=False,
milestones=[15000, 20000],
gamma=0.1)
]
train_dataloader = dict(sampler=dict(type='InfiniteSampler'))
default_hooks = dict(checkpoint=dict(by_epoch=False, interval=2500))
log_processor = dict(by_epoch=False)