forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrtmdet_l_swin_b_4xb32-100e_coco.py
78 lines (72 loc) · 2.06 KB
/
rtmdet_l_swin_b_4xb32-100e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
_base_ = './rtmdet_l_8xb32-300e_coco.py'
norm_cfg = dict(type='GN', num_groups=32)
checkpoint = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth' # noqa
model = dict(
type='RTMDet',
data_preprocessor=dict(
_delete_=True,
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
batch_augments=None),
backbone=dict(
_delete_=True,
type='SwinTransformer',
pretrain_img_size=384,
embed_dims=128,
depths=[2, 2, 18, 2],
num_heads=[4, 8, 16, 32],
window_size=12,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.3,
patch_norm=True,
out_indices=(1, 2, 3),
with_cp=True,
convert_weights=True,
init_cfg=dict(type='Pretrained', checkpoint=checkpoint)),
neck=dict(in_channels=[256, 512, 1024], norm_cfg=norm_cfg),
bbox_head=dict(norm_cfg=norm_cfg))
max_epochs = 100
stage2_num_epochs = 10
interval = 10
base_lr = 0.001
train_cfg = dict(
max_epochs=max_epochs,
val_interval=interval,
dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)])
optim_wrapper = dict(optimizer=dict(lr=base_lr))
# learning rate
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0e-5,
by_epoch=False,
begin=0,
end=1000),
dict(
# use cosine lr from 50 to 100 epoch
type='CosineAnnealingLR',
eta_min=base_lr * 0.05,
begin=max_epochs // 2,
end=max_epochs,
T_max=max_epochs // 2,
by_epoch=True,
convert_to_iter_based=True),
]
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type='PipelineSwitchHook',
switch_epoch=max_epochs - stage2_num_epochs,
switch_pipeline={{_base_.train_pipeline_stage2}})
]