forked from PingoLH/FCHarDNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
267 lines (217 loc) · 8.99 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import yaml
import time
import shutil
import torch
import random
import argparse
import numpy as np
import torch.nn as nn
from torch.utils import data
from tqdm import tqdm
from ptsemseg.models import get_model
from ptsemseg.loss import get_loss_function
from ptsemseg.loader import get_loader
from ptsemseg.utils import get_logger
from ptsemseg.metrics import runningScore, averageMeter
from ptsemseg.augmentations import get_composed_augmentations
from ptsemseg.schedulers import get_scheduler
from ptsemseg.optimizers import get_optimizer
from tensorboardX import SummaryWriter
def weights_init(m):
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight)
def train(cfg, writer, logger):
# Setup seeds
torch.manual_seed(cfg.get("seed", 1337))
torch.cuda.manual_seed(cfg.get("seed", 1337))
np.random.seed(cfg.get("seed", 1337))
random.seed(cfg.get("seed", 1337))
# Setup device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Setup Augmentations
augmentations = cfg["training"].get("augmentations", None)
data_aug = get_composed_augmentations(augmentations)
# Setup Dataloader
data_loader = get_loader(cfg["data"]["dataset"])
data_path = cfg["data"]["path"]
t_loader = data_loader(
data_path,
is_transform=True,
split=cfg["data"]["train_split"],
img_size=(cfg["data"]["img_rows"], cfg["data"]["img_cols"]),
augmentations=data_aug,
)
v_loader = data_loader(
data_path,
is_transform=True,
split=cfg["data"]["val_split"],
img_size=(1024,2048),
)
n_classes = t_loader.n_classes
trainloader = data.DataLoader(
t_loader,
batch_size=cfg["training"]["batch_size"],
num_workers=cfg["training"]["n_workers"],
shuffle=True,
)
valloader = data.DataLoader(
v_loader, batch_size=cfg["training"]["batch_size"], num_workers=cfg["training"]["n_workers"]
)
# Setup Metrics
running_metrics_val = runningScore(n_classes)
# Setup Model
model = get_model(cfg["model"], n_classes).to(device)
total_params = sum(p.numel() for p in model.parameters())
print( 'Parameters:',total_params )
model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
model.apply(weights_init)
pretrained_path='weights/hardnet_petite_base.pth'
weights = torch.load(pretrained_path)
model.module.base.load_state_dict(weights)
# Setup optimizer, lr_scheduler and loss function
optimizer_cls = get_optimizer(cfg)
optimizer_params = {k: v for k, v in cfg["training"]["optimizer"].items() if k != "name"}
optimizer = optimizer_cls(model.parameters(), **optimizer_params)
print("Using optimizer {}".format(optimizer))
scheduler = get_scheduler(optimizer, cfg["training"]["lr_schedule"])
loss_fn = get_loss_function(cfg)
print("Using loss {}".format(loss_fn))
start_iter = 0
if cfg["training"]["resume"] is not None:
if os.path.isfile(cfg["training"]["resume"]):
logger.info(
"Loading model and optimizer from checkpoint '{}'".format(cfg["training"]["resume"])
)
checkpoint = torch.load(cfg["training"]["resume"])
model.load_state_dict(checkpoint["model_state"])
optimizer.load_state_dict(checkpoint["optimizer_state"])
scheduler.load_state_dict(checkpoint["scheduler_state"])
start_iter = checkpoint["epoch"]
logger.info(
"Loaded checkpoint '{}' (iter {})".format(
cfg["training"]["resume"], checkpoint["epoch"]
)
)
else:
logger.info("No checkpoint found at '{}'".format(cfg["training"]["resume"]))
if cfg["training"]["finetune"] is not None:
if os.path.isfile(cfg["training"]["finetune"]):
logger.info(
"Loading model and optimizer from checkpoint '{}'".format(cfg["training"]["finetune"])
)
checkpoint = torch.load(cfg["training"]["finetune"])
model.load_state_dict(checkpoint["model_state"])
val_loss_meter = averageMeter()
time_meter = averageMeter()
best_iou = -100.0
i = start_iter
flag = True
loss_all = 0
loss_n = 0
while i <= cfg["training"]["train_iters"] and flag:
for (images, labels, _) in trainloader:
i += 1
start_ts = time.time()
scheduler.step()
model.train()
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = loss_fn(input=outputs, target=labels)
loss.backward()
optimizer.step()
c_lr = scheduler.get_lr()
time_meter.update(time.time() - start_ts)
loss_all += loss.item()
loss_n += 1
if (i + 1) % cfg["training"]["print_interval"] == 0:
fmt_str = "Iter [{:d}/{:d}] Loss: {:.4f} Time/Image: {:.4f} lr={:.6f}"
print_str = fmt_str.format(
i + 1,
cfg["training"]["train_iters"],
loss_all / loss_n,
time_meter.avg / cfg["training"]["batch_size"],
c_lr[0],
)
print(print_str)
logger.info(print_str)
writer.add_scalar("loss/train_loss", loss.item(), i + 1)
time_meter.reset()
if (i + 1) % cfg["training"]["val_interval"] == 0 or (i + 1) == cfg["training"][
"train_iters"
]:
torch.cuda.empty_cache()
model.eval()
loss_all = 0
loss_n = 0
with torch.no_grad():
for i_val, (images_val, labels_val, _) in tqdm(enumerate(valloader)):
images_val = images_val.to(device)
labels_val = labels_val.to(device)
outputs = model(images_val)
val_loss = loss_fn(input=outputs, target=labels_val)
pred = outputs.data.max(1)[1].cpu().numpy()
gt = labels_val.data.cpu().numpy()
running_metrics_val.update(gt, pred)
val_loss_meter.update(val_loss.item())
writer.add_scalar("loss/val_loss", val_loss_meter.avg, i + 1)
logger.info("Iter %d Val Loss: %.4f" % (i + 1, val_loss_meter.avg))
score, class_iou = running_metrics_val.get_scores()
for k, v in score.items():
print(k, v)
logger.info("{}: {}".format(k, v))
writer.add_scalar("val_metrics/{}".format(k), v, i + 1)
for k, v in class_iou.items():
logger.info("{}: {}".format(k, v))
writer.add_scalar("val_metrics/cls_{}".format(k), v, i + 1)
val_loss_meter.reset()
running_metrics_val.reset()
state = {
"epoch": i + 1,
"model_state": model.state_dict(),
"optimizer_state": optimizer.state_dict(),
"scheduler_state": scheduler.state_dict(),
}
save_path = os.path.join(
writer.file_writer.get_logdir(),
"{}_{}_checkpoint.pkl".format(cfg["model"]["arch"], cfg["data"]["dataset"]),
)
torch.save(state, save_path)
if score["Mean IoU : \t"] >= best_iou:
best_iou = score["Mean IoU : \t"]
state = {
"epoch": i + 1,
"model_state": model.state_dict(),
"best_iou": best_iou,
}
save_path = os.path.join(
writer.file_writer.get_logdir(),
"{}_{}_best_model.pkl".format(cfg["model"]["arch"], cfg["data"]["dataset"]),
)
torch.save(state, save_path)
torch.cuda.empty_cache()
if (i + 1) == cfg["training"]["train_iters"]:
flag = False
break
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="config")
parser.add_argument(
"--config",
nargs="?",
type=str,
default="configs/hardnet.yml",
help="Configuration file to use",
)
args = parser.parse_args()
with open(args.config) as fp:
cfg = yaml.load(fp)
run_id = random.randint(1, 100000)
logdir = os.path.join("runs", os.path.basename(args.config)[:-4], "cur")
writer = SummaryWriter(log_dir=logdir)
print("RUNDIR: {}".format(logdir))
shutil.copy(args.config, logdir)
logger = get_logger(logdir)
logger.info("Let the games begin")
train(cfg, writer, logger)