comments | difficulty | edit_url | tags | |||||||
---|---|---|---|---|---|---|---|---|---|---|
true |
中等 |
|
给定一个长度为 n
的数组 perm
,它是 [1, 2, ..., n]
的一个排列,将 [1, 2, ..., n]
所有的排列放在数组中,并以 字典序 排序,返回这个数组中 perm
的下标。
由于答案可能非常大,返回值对 109 + 7
取模。
示例 1:
输入:perm = [1,2]
输出:0
解释:
按以下顺序只有 2 种排列:
[1,2]
, [2,1]
并且 [1,2]
在下标 0。
示例 2:
输入:perm = [3,1,2]
输出:4
解释:
按以下顺序只有 6 种排列:
[1,2,3]
, [1,3,2]
, [2,1,3]
, [2,3,1]
, [3,1,2]
, [3,2,1]
并且 [3,1,2]
在下标 4。
提示:
1 <= n == perm.length <= 105
perm
是[1, 2, ..., n]
的一个排列。
根据题目要求,我们需要找出一共有多少个排列的字典序小于给定的排列。
我们考虑如何计算字典序小于给定排列的排列个数,一共有两种情况:
- 排列的第一个元素小于
$perm[0]$ ,一共有$(perm[0] - 1) \times (n-1)!$ 种排列。 - 排列的第一个元素等于
$perm[0]$ ,我们需要继续考虑第二个元素,以此类推。 - 累加所有情况即可。
我们可以用树状数组维护遍历过的元素中,比当前元素小的元素个数,那么对于给定排列的第
时间复杂度
class BinaryIndexedTree:
__slots__ = "n", "c"
def __init__(self, n: int):
self.n = n
self.c = [0] * (n + 1)
def update(self, x: int, delta: int) -> None:
while x <= self.n:
self.c[x] += delta
x += x & -x
def query(self, x: int) -> int:
s = 0
while x:
s += self.c[x]
x -= x & -x
return s
class Solution:
def getPermutationIndex(self, perm: List[int]) -> int:
mod = 10**9 + 7
ans, n = 0, len(perm)
tree = BinaryIndexedTree(n + 1)
f = [1] * n
for i in range(1, n):
f[i] = f[i - 1] * i % mod
for i, x in enumerate(perm):
cnt = x - 1 - tree.query(x)
ans += cnt * f[n - i - 1] % mod
tree.update(x, 1)
return ans % mod
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
this.c = new int[n + 1];
}
public void update(int x, int delta) {
for (; x <= n; x += x & -x) {
c[x] += delta;
}
}
public int query(int x) {
int s = 0;
for (; x > 0; x -= x & -x) {
s += c[x];
}
return s;
}
}
class Solution {
public int getPermutationIndex(int[] perm) {
final int mod = (int) 1e9 + 7;
long ans = 0;
int n = perm.length;
BinaryIndexedTree tree = new BinaryIndexedTree(n + 1);
long[] f = new long[n];
f[0] = 1;
for (int i = 1; i < n; ++i) {
f[i] = f[i - 1] * i % mod;
}
for (int i = 0; i < n; ++i) {
int cnt = perm[i] - 1 - tree.query(perm[i]);
ans = (ans + cnt * f[n - i - 1] % mod) % mod;
tree.update(perm[i], 1);
}
return (int) ans;
}
}
class BinaryIndexedTree {
private:
int n;
vector<int> c;
public:
BinaryIndexedTree(int n)
: n(n)
, c(n + 1) {}
void update(int x, int delta) {
for (; x <= n; x += x & -x) {
c[x] += delta;
}
}
int query(int x) {
int s = 0;
for (; x > 0; x -= x & -x) {
s += c[x];
}
return s;
}
};
class Solution {
public:
int getPermutationIndex(vector<int>& perm) {
const int mod = 1e9 + 7;
using ll = long long;
ll ans = 0;
int n = perm.size();
BinaryIndexedTree tree(n + 1);
ll f[n];
f[0] = 1;
for (int i = 1; i < n; ++i) {
f[i] = f[i - 1] * i % mod;
}
for (int i = 0; i < n; ++i) {
int cnt = perm[i] - 1 - tree.query(perm[i]);
ans += cnt * f[n - i - 1] % mod;
tree.update(perm[i], 1);
}
return ans % mod;
}
};
type BinaryIndexedTree struct {
n int
c []int
}
func NewBinaryIndexedTree(n int) *BinaryIndexedTree {
return &BinaryIndexedTree{n: n, c: make([]int, n+1)}
}
func (bit *BinaryIndexedTree) update(x, delta int) {
for ; x <= bit.n; x += x & -x {
bit.c[x] += delta
}
}
func (bit *BinaryIndexedTree) query(x int) int {
s := 0
for ; x > 0; x -= x & -x {
s += bit.c[x]
}
return s
}
func getPermutationIndex(perm []int) (ans int) {
const mod int = 1e9 + 7
n := len(perm)
tree := NewBinaryIndexedTree(n + 1)
f := make([]int, n)
f[0] = 1
for i := 1; i < n; i++ {
f[i] = f[i-1] * i % mod
}
for i, x := range perm {
cnt := x - 1 - tree.query(x)
ans += cnt * f[n-1-i] % mod
tree.update(x, 1)
}
return ans % mod
}
class BinaryIndexedTree {
private n: number;
private c: number[];
constructor(n: number) {
this.n = n;
this.c = Array(n + 1).fill(0);
}
update(x: number, delta: number): void {
for (; x <= this.n; x += x & -x) {
this.c[x] += delta;
}
}
query(x: number): number {
let s = 0;
for (; x > 0; x -= x & -x) {
s += this.c[x];
}
return s;
}
}
function getPermutationIndex(perm: number[]): number {
const mod = 1e9 + 7;
const n = perm.length;
const tree = new BinaryIndexedTree(n + 1);
let ans = 0;
const f: number[] = Array(n).fill(1);
for (let i = 1; i < n; ++i) {
f[i] = (f[i - 1] * i) % mod;
}
for (let i = 0; i < n; ++i) {
const cnt = perm[i] - 1 - tree.query(perm[i]);
ans = (ans + cnt * f[n - i - 1]) % mod;
tree.update(perm[i], 1);
}
return ans % mod;
}