comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
Medium |
|
You are given a 2D integer matrix board
and a 2D character matrix pattern
. Where 0 <= board[r][c] <= 9
and each element of pattern
is either a digit or a lowercase English letter.
Your task is to find a submatrix of board
that matches pattern
.
An integer matrix part
matches pattern
if we can replace cells containing letters in pattern
with some digits (each distinct letter with a unique digit) in such a way that the resulting matrix becomes identical to the integer matrix part
. In other words,
- The matrices have identical dimensions.
- If
pattern[r][c]
is a digit, thenpart[r][c]
must be the same digit. - If
pattern[r][c]
is a letterx
:- For every
pattern[i][j] == x
,part[i][j]
must be the same aspart[r][c]
. - For every
pattern[i][j] != x
,part[i][j]
must be different thanpart[r][c]
.
- For every
Return an array of length 2
containing the row number and column number of the upper-left corner of a submatrix of board
which matches pattern
. If there is more than one such submatrix, return the coordinates of the submatrix with the lowest row index, and in case there is still a tie, return the coordinates of the submatrix with the lowest column index. If there are no suitable answers, return [-1, -1]
.
Example 1:
1 | 2 | 2 |
2 | 2 | 3 |
2 | 3 | 3 |
a | b |
b | b |
Input: board = [[1,2,2],[2,2,3],[2,3,3]], pattern = ["ab","bb"]
Output: [0,0]
Explanation: If we consider this mapping: "a" -> 1
and "b" -> 2
; the submatrix with the upper-left corner (0,0)
is a match as outlined in the matrix above.
Note that the submatrix with the upper-left corner (1,1) is also a match but since it comes after the other one, we return [0,0]
.
Example 2:
1 | 1 | 2 |
3 | 3 | 4 |
6 | 6 | 6 |
a | b |
6 | 6 |
Input: board = [[1,1,2],[3,3,4],[6,6,6]], pattern = ["ab","66"]
Output: [1,1]
Explanation: If we consider this mapping: "a" -> 3
and "b" -> 4
; the submatrix with the upper-left corner (1,1)
is a match as outlined in the matrix above.
Note that since the corresponding values of "a"
and "b"
must differ, the submatrix with the upper-left corner (1,0)
is not a match. Hence, we return [1,1]
.
Example 3:
1 | 2 |
2 | 1 |
x | x |
Input: board = [[1,2],[2,1]], pattern = ["xx"]
Output: [-1,-1]
Explanation: Since the values of the matched submatrix must be the same, there is no match. Hence, we return [-1,-1]
.
Constraints:
1 <= board.length <= 50
1 <= board[i].length <= 50
0 <= board[i][j] <= 9
1 <= pattern.length <= 50
1 <= pattern[i].length <= 50
pattern[i][j]
is either a digit represented as a string or a lowercase English letter.
Let's denote board
, and pattern
.
We can enumerate each possible sub-matrix's top-left position board
from small to large, and then determine whether the pattern
. If we find a matching sub-matrix, we return
The time complexity is board
, and pattern
. The space complexity is
class Solution:
def findPattern(self, board: List[List[int]], pattern: List[str]) -> List[int]:
def check(i: int, j: int) -> bool:
d1 = {}
d2 = {}
for a in range(r):
for b in range(c):
x, y = i + a, j + b
if pattern[a][b].isdigit():
if int(pattern[a][b]) != board[x][y]:
return False
else:
if pattern[a][b] in d1 and d1[pattern[a][b]] != board[x][y]:
return False
if board[x][y] in d2 and d2[board[x][y]] != pattern[a][b]:
return False
d1[pattern[a][b]] = board[x][y]
d2[board[x][y]] = pattern[a][b]
return True
m, n = len(board), len(board[0])
r, c = len(pattern), len(pattern[0])
for i in range(m - r + 1):
for j in range(n - c + 1):
if check(i, j):
return [i, j]
return [-1, -1]
class Solution {
public int[] findPattern(int[][] board, String[] pattern) {
int m = board.length, n = board[0].length;
int r = pattern.length, c = pattern[0].length();
for (int i = 0; i < m - r + 1; ++i) {
for (int j = 0; j < n - c + 1; ++j) {
if (check(board, pattern, i, j)) {
return new int[] {i, j};
}
}
}
return new int[] {-1, -1};
}
private boolean check(int[][] board, String[] pattern, int i, int j) {
int[] d1 = new int[26];
int[] d2 = new int[10];
Arrays.fill(d1, -1);
Arrays.fill(d2, -1);
for (int a = 0; a < pattern.length; ++a) {
for (int b = 0; b < pattern[0].length(); ++b) {
int x = i + a, y = j + b;
if (Character.isDigit(pattern[a].charAt(b))) {
int v = pattern[a].charAt(b) - '0';
if (v != board[x][y]) {
return false;
}
} else {
int v = pattern[a].charAt(b) - 'a';
if (d1[v] != -1 && d1[v] != board[x][y]) {
return false;
}
if (d2[board[x][y]] != -1 && d2[board[x][y]] != v) {
return false;
}
d1[v] = board[x][y];
d2[board[x][y]] = v;
}
}
}
return true;
}
}
class Solution {
public:
vector<int> findPattern(vector<vector<int>>& board, vector<string>& pattern) {
int m = board.size(), n = board[0].size();
int r = pattern.size(), c = pattern[0].size();
auto check = [&](int i, int j) {
vector<int> d1(26, -1);
vector<int> d2(10, -1);
for (int a = 0; a < r; ++a) {
for (int b = 0; b < c; ++b) {
int x = i + a, y = j + b;
if (isdigit(pattern[a][b])) {
int v = pattern[a][b] - '0';
if (v != board[x][y]) {
return false;
}
} else {
int v = pattern[a][b] - 'a';
if (d1[v] != -1 && d1[v] != board[x][y]) {
return false;
}
if (d2[board[x][y]] != -1 && d2[board[x][y]] != v) {
return false;
}
d1[v] = board[x][y];
d2[board[x][y]] = v;
}
}
}
return true;
};
for (int i = 0; i < m - r + 1; ++i) {
for (int j = 0; j < n - c + 1; ++j) {
if (check(i, j)) {
return {i, j};
}
}
}
return {-1, -1};
}
};
func findPattern(board [][]int, pattern []string) []int {
m, n := len(board), len(board[0])
r, c := len(pattern), len(pattern[0])
check := func(i, j int) bool {
d1 := [26]int{}
d2 := [10]int{}
for a := 0; a < r; a++ {
for b := 0; b < c; b++ {
x, y := i+a, j+b
if pattern[a][b] >= '0' && pattern[a][b] <= '9' {
v := int(pattern[a][b] - '0')
if v != board[x][y] {
return false
}
} else {
v := int(pattern[a][b] - 'a')
if d1[v] > 0 && d1[v]-1 != board[x][y] {
return false
}
if d2[board[x][y]] > 0 && d2[board[x][y]]-1 != v {
return false
}
d1[v] = board[x][y] + 1
d2[board[x][y]] = v + 1
}
}
}
return true
}
for i := 0; i < m-r+1; i++ {
for j := 0; j < n-c+1; j++ {
if check(i, j) {
return []int{i, j}
}
}
}
return []int{-1, -1}
}
function findPattern(board: number[][], pattern: string[]): number[] {
const m: number = board.length;
const n: number = board[0].length;
const r: number = pattern.length;
const c: number = pattern[0].length;
const check = (i: number, j: number): boolean => {
const d1: number[] = Array(26).fill(-1);
const d2: number[] = Array(10).fill(-1);
for (let a = 0; a < r; ++a) {
for (let b = 0; b < c; ++b) {
const x: number = i + a;
const y: number = j + b;
if (!isNaN(Number(pattern[a][b]))) {
const v: number = Number(pattern[a][b]);
if (v !== board[x][y]) {
return false;
}
} else {
const v: number = pattern[a].charCodeAt(b) - 'a'.charCodeAt(0);
if (d1[v] !== -1 && d1[v] !== board[x][y]) {
return false;
}
if (d2[board[x][y]] !== -1 && d2[board[x][y]] !== v) {
return false;
}
d1[v] = board[x][y];
d2[board[x][y]] = v;
}
}
}
return true;
};
for (let i = 0; i < m - r + 1; ++i) {
for (let j = 0; j < n - c + 1; ++j) {
if (check(i, j)) {
return [i, j];
}
}
}
return [-1, -1];
}