Skip to content

Latest commit

 

History

History
115 lines (92 loc) · 3.46 KB

File metadata and controls

115 lines (92 loc) · 3.46 KB
comments difficulty edit_url tags
true
困难
数据库

English Version

题目描述

表: Transactions

+------------------+------+
| 列名             | 类型 |
+------------------+------+
| transaction_id   | int  |
| customer_id      | int  |
| transaction_date | date |
| amount           | int  |
+------------------+------+
transaction_id 是这个表的具有唯一值的列。 
每行包含有关交易的信息,包括唯一的(customer_id,transaction_date)以及相应的 customer_id 和 amount。

编写一个解决方案,找到连续天数上进行了最多交易的所有 customer_id

返回所有具有最大连续交易次数的 customer_id 。结果表按 customer_id升序 排序。

结果的格式如下所示。

 

示例 1:

输入:
Transactions 表:
+----------------+-------------+------------------+--------+
| transaction_id | customer_id | transaction_date | amount |
+----------------+-------------+------------------+--------+
| 1              | 101         | 2023-05-01       | 100    |
| 2              | 101         | 2023-05-02       | 150    |
| 3              | 101         | 2023-05-03       | 200    |
| 4              | 102         | 2023-05-01       | 50     |
| 5              | 102         | 2023-05-03       | 100    |
| 6              | 102         | 2023-05-04       | 200    |
| 7              | 105         | 2023-05-01       | 100    |
| 8              | 105         | 2023-05-02       | 150    |
| 9              | 105         | 2023-05-03       | 200    |
+----------------+-------------+------------------+--------+
输出:
+-------------+
| customer_id | 
+-------------+
| 101         | 
| 105         | 
+-------------+
解释:
- customer_id 为 101 共有 3 次交易,且全部是连续的。
- customer_id 为 102 共有 3 次交易,但只有其中 2 次是连续的。
- customer_id 为 105 共有 3 次交易,且全部是连续的。 
总的来说,最大连续交易次数为 3,由 customer_id 为 101 和 105 的完成。customer_id 按升序排序。

解法

方法一

MySQL

# Write your MySQL query statement below
WITH
    s AS (
        SELECT
            customer_id,
            DATE_SUB(
                transaction_date,
                INTERVAL ROW_NUMBER() OVER (
                    PARTITION BY customer_id
                    ORDER BY transaction_date
                ) DAY
            ) AS transaction_date
        FROM Transactions
    ),
    t AS (
        SELECT customer_id, transaction_date, COUNT(1) AS cnt
        FROM s
        GROUP BY 1, 2
    )
SELECT customer_id
FROM t
WHERE cnt = (SELECT MAX(cnt) FROM t)
ORDER BY customer_id;