comments | difficulty | edit_url | rating | source | tags | |
---|---|---|---|---|---|---|
true |
Easy |
1354 |
Weekly Contest 285 Q1 |
|
You are given a 0-indexed integer array nums
. An index i
is part of a hill in nums
if the closest non-equal neighbors of i
are smaller than nums[i]
. Similarly, an index i
is part of a valley in nums
if the closest non-equal neighbors of i
are larger than nums[i]
. Adjacent indices i
and j
are part of the same hill or valley if nums[i] == nums[j]
.
Note that for an index to be part of a hill or valley, it must have a non-equal neighbor on both the left and right of the index.
Return the number of hills and valleys in nums
.
Example 1:
Input: nums = [2,4,1,1,6,5] Output: 3 Explanation: At index 0: There is no non-equal neighbor of 2 on the left, so index 0 is neither a hill nor a valley. At index 1: The closest non-equal neighbors of 4 are 2 and 1. Since 4 > 2 and 4 > 1, index 1 is a hill. At index 2: The closest non-equal neighbors of 1 are 4 and 6. Since 1 < 4 and 1 < 6, index 2 is a valley. At index 3: The closest non-equal neighbors of 1 are 4 and 6. Since 1 < 4 and 1 < 6, index 3 is a valley, but note that it is part of the same valley as index 2. At index 4: The closest non-equal neighbors of 6 are 1 and 5. Since 6 > 1 and 6 > 5, index 4 is a hill. At index 5: There is no non-equal neighbor of 5 on the right, so index 5 is neither a hill nor a valley. There are 3 hills and valleys so we return 3.
Example 2:
Input: nums = [6,6,5,5,4,1] Output: 0 Explanation: At index 0: There is no non-equal neighbor of 6 on the left, so index 0 is neither a hill nor a valley. At index 1: There is no non-equal neighbor of 6 on the left, so index 1 is neither a hill nor a valley. At index 2: The closest non-equal neighbors of 5 are 6 and 4. Since 5 < 6 and 5 > 4, index 2 is neither a hill nor a valley. At index 3: The closest non-equal neighbors of 5 are 6 and 4. Since 5 < 6 and 5 > 4, index 3 is neither a hill nor a valley. At index 4: The closest non-equal neighbors of 4 are 5 and 1. Since 4 < 5 and 4 > 1, index 4 is neither a hill nor a valley. At index 5: There is no non-equal neighbor of 1 on the right, so index 5 is neither a hill nor a valley. There are 0 hills and valleys so we return 0.
Constraints:
3 <= nums.length <= 100
1 <= nums[i] <= 100
We initialize a pointer
- If
$nums[i] = nums[i+1]$ , then skip. - Otherwise, if
$nums[i]$ is greater than$nums[j]$ and$nums[i]$ is greater than$nums[i+1]$ , then$i$ is a peak; if$nums[i]$ is less than$nums[j]$ and$nums[i]$ is less than$nums[i+1]$ , then$i$ is a valley. - Then, we update
$j$ to$i$ and continue to traverse.
After the traversal, we can get the number of peaks and valleys.
The time complexity is
class Solution:
def countHillValley(self, nums: List[int]) -> int:
ans = j = 0
for i in range(1, len(nums) - 1):
if nums[i] == nums[i + 1]:
continue
if nums[i] > nums[j] and nums[i] > nums[i + 1]:
ans += 1
if nums[i] < nums[j] and nums[i] < nums[i + 1]:
ans += 1
j = i
return ans
class Solution {
public int countHillValley(int[] nums) {
int ans = 0;
for (int i = 1, j = 0; i < nums.length - 1; ++i) {
if (nums[i] == nums[i + 1]) {
continue;
}
if (nums[i] > nums[j] && nums[i] > nums[i + 1]) {
++ans;
}
if (nums[i] < nums[j] && nums[i] < nums[i + 1]) {
++ans;
}
j = i;
}
return ans;
}
}
class Solution {
public:
int countHillValley(vector<int>& nums) {
int ans = 0;
for (int i = 1, j = 0; i < nums.size() - 1; ++i) {
if (nums[i] == nums[i + 1]) {
continue;
}
if (nums[i] > nums[j] && nums[i] > nums[i + 1]) {
++ans;
}
if (nums[i] < nums[j] && nums[i] < nums[i + 1]) {
++ans;
}
j = i;
}
return ans;
}
};
func countHillValley(nums []int) int {
ans := 0
for i, j := 1, 0; i < len(nums)-1; i++ {
if nums[i] == nums[i+1] {
continue
}
if nums[i] > nums[j] && nums[i] > nums[i+1] {
ans++
}
if nums[i] < nums[j] && nums[i] < nums[i+1] {
ans++
}
j = i
}
return ans
}
function countHillValley(nums: number[]): number {
let ans = 0;
for (let i = 1, j = 0; i < nums.length - 1; ++i) {
if (nums[i] === nums[i + 1]) {
continue;
}
if (nums[i] > nums[j] && nums[i] > nums[i + 1]) {
ans++;
}
if (nums[i] < nums[j] && nums[i] < nums[i + 1]) {
ans++;
}
j = i;
}
return ans;
}
impl Solution {
pub fn count_hill_valley(nums: Vec<i32>) -> i32 {
let mut ans = 0;
let mut j = 0;
for i in 1..nums.len() - 1 {
if nums[i] == nums[i + 1] {
continue;
}
if nums[i] > nums[j] && nums[i] > nums[i + 1] {
ans += 1;
}
if nums[i] < nums[j] && nums[i] < nums[i + 1] {
ans += 1;
}
j = i;
}
ans
}
}