comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
1590 |
Weekly Contest 216 Q3 |
|
You are given an integer array nums
. You can choose exactly one index (0-indexed) and remove the element. Notice that the index of the elements may change after the removal.
For example, if nums = [6,1,7,4,1]
:
- Choosing to remove index
1
results innums = [6,7,4,1]
. - Choosing to remove index
2
results innums = [6,1,4,1]
. - Choosing to remove index
4
results innums = [6,1,7,4]
.
An array is fair if the sum of the odd-indexed values equals the sum of the even-indexed values.
Return the number of indices that you could choose such that after the removal, nums
is fair.
Example 1:
Input: nums = [2,1,6,4] Output: 1 Explanation: Remove index 0: [1,6,4] -> Even sum: 1 + 4 = 5. Odd sum: 6. Not fair. Remove index 1: [2,6,4] -> Even sum: 2 + 4 = 6. Odd sum: 6. Fair. Remove index 2: [2,1,4] -> Even sum: 2 + 4 = 6. Odd sum: 1. Not fair. Remove index 3: [2,1,6] -> Even sum: 2 + 6 = 8. Odd sum: 1. Not fair. There is 1 index that you can remove to make nums fair.
Example 2:
Input: nums = [1,1,1] Output: 3 Explanation: You can remove any index and the remaining array is fair.
Example 3:
Input: nums = [1,2,3] Output: 0 Explanation: You cannot make a fair array after removing any index.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 104
First, we preprocess to get the sum nums
.
Then, we enumerate each element nums
from front to back, using variables
We observe that for the current element
-
If it is an even index, after deleting the element, the sum of the elements at odd indices in the array is
$t_2 + s_1 - t_1 - v$ , and the sum of the elements at even indices is$t_1 + s_2 - t_2$ . If these two sums are equal, it is a balanced array, and the answer is incremented by one. -
If it is an odd index, after deleting the element, the sum of the elements at even indices in the array is
$t_1 + s_2 - t_2 - v$ , and the sum of the elements at odd indices is$t_2 + s_1 - t_1$ . If these two sums are equal, it is a balanced array, and the answer is incremented by one.
Then we update
The time complexity is
class Solution:
def waysToMakeFair(self, nums: List[int]) -> int:
s1, s2 = sum(nums[::2]), sum(nums[1::2])
ans = t1 = t2 = 0
for i, v in enumerate(nums):
ans += i % 2 == 0 and t2 + s1 - t1 - v == t1 + s2 - t2
ans += i % 2 == 1 and t2 + s1 - t1 == t1 + s2 - t2 - v
t1 += v if i % 2 == 0 else 0
t2 += v if i % 2 == 1 else 0
return ans
class Solution {
public int waysToMakeFair(int[] nums) {
int s1 = 0, s2 = 0;
int n = nums.length;
for (int i = 0; i < n; ++i) {
s1 += i % 2 == 0 ? nums[i] : 0;
s2 += i % 2 == 1 ? nums[i] : 0;
}
int t1 = 0, t2 = 0;
int ans = 0;
for (int i = 0; i < n; ++i) {
int v = nums[i];
ans += i % 2 == 0 && t2 + s1 - t1 - v == t1 + s2 - t2 ? 1 : 0;
ans += i % 2 == 1 && t2 + s1 - t1 == t1 + s2 - t2 - v ? 1 : 0;
t1 += i % 2 == 0 ? v : 0;
t2 += i % 2 == 1 ? v : 0;
}
return ans;
}
}
class Solution {
public:
int waysToMakeFair(vector<int>& nums) {
int s1 = 0, s2 = 0;
int n = nums.size();
for (int i = 0; i < n; ++i) {
s1 += i % 2 == 0 ? nums[i] : 0;
s2 += i % 2 == 1 ? nums[i] : 0;
}
int t1 = 0, t2 = 0;
int ans = 0;
for (int i = 0; i < n; ++i) {
int v = nums[i];
ans += i % 2 == 0 && t2 + s1 - t1 - v == t1 + s2 - t2;
ans += i % 2 == 1 && t2 + s1 - t1 == t1 + s2 - t2 - v;
t1 += i % 2 == 0 ? v : 0;
t2 += i % 2 == 1 ? v : 0;
}
return ans;
}
};
func waysToMakeFair(nums []int) (ans int) {
var s1, s2, t1, t2 int
for i, v := range nums {
if i%2 == 0 {
s1 += v
} else {
s2 += v
}
}
for i, v := range nums {
if i%2 == 0 && t2+s1-t1-v == t1+s2-t2 {
ans++
}
if i%2 == 1 && t2+s1-t1 == t1+s2-t2-v {
ans++
}
if i%2 == 0 {
t1 += v
} else {
t2 += v
}
}
return
}
/**
* @param {number[]} nums
* @return {number}
*/
var waysToMakeFair = function (nums) {
let [s1, s2, t1, t2] = [0, 0, 0, 0];
const n = nums.length;
for (let i = 0; i < n; ++i) {
if (i % 2 == 0) {
s1 += nums[i];
} else {
s2 += nums[i];
}
}
let ans = 0;
for (let i = 0; i < n; ++i) {
const v = nums[i];
ans += i % 2 == 0 && t2 + s1 - t1 - v == t1 + s2 - t2;
ans += i % 2 == 1 && t2 + s1 - t1 == t1 + s2 - t2 - v;
t1 += i % 2 == 0 ? v : 0;
t2 += i % 2 == 1 ? v : 0;
}
return ans;
};