comments | difficulty | edit_url | tags | |||||
---|---|---|---|---|---|---|---|---|
true |
Medium |
|
You have a binary tree with a small defect. There is exactly one invalid node where its right child incorrectly points to another node at the same depth but to the invalid node's right.
Given the root of the binary tree with this defect, root
, return the root of the binary tree after removing this invalid node and every node underneath it (minus the node it incorrectly points to).
Custom testing:
The test input is read as 3 lines:
<li><code>TreeNode root</code></li>
<li><code>int fromNode</code> (<strong>not available to </strong><code>correctBinaryTree</code>)</li>
<li><code>int toNode</code> (<strong>not available to </strong><code>correctBinaryTree</code>)</li>
After the binary tree rooted at root
is parsed, the TreeNode
with value of fromNode
will have its right child pointer pointing to the TreeNode
with a value of toNode
. Then, root
is passed to correctBinaryTree
.
Example 1:
Input: root = [1,2,3], fromNode = 2, toNode = 3 Output: [1,null,3] Explanation: The node with value 2 is invalid, so remove it.
Example 2:
Input: root = [8,3,1,7,null,9,4,2,null,null,null,5,6], fromNode = 7, toNode = 4 Output: [8,3,1,null,null,9,4,null,null,5,6] Explanation: The node with value 7 is invalid, so remove it and the node underneath it, node 2.
Constraints:
<li>The number of nodes in the tree is in the range <code>[3, 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>9</sup> <= Node.val <= 10<sup>9</sup></code></li>
<li>All <code>Node.val</code> are <strong>unique</strong>.</li>
<li><code>fromNode != toNode</code></li>
<li><code>fromNode</code> and <code>toNode</code> will exist in the tree and will be on the same depth.</li>
<li><code>toNode</code> is to the <strong>right</strong> of <code>fromNode</code>.</li>
<li><code>fromNode.right</code> is <code>null</code> in the initial tree from the test data.</li>
We design a function dfs(root)
to handle the subtree with root
as the root. If root
is null
or root.right
has been visited, root
is an invalid node, so we return null
. Otherwise, we recursively process root.right
and root.left
, and return root
.
Finally, we return dfs(root)
.
The time complexity is
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def correctBinaryTree(self, root: TreeNode) -> TreeNode:
def dfs(root):
if root is None or root.right in vis:
return None
vis.add(root)
root.right = dfs(root.right)
root.left = dfs(root.left)
return root
vis = set()
return dfs(root)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private Set<TreeNode> vis = new HashSet<>();
public TreeNode correctBinaryTree(TreeNode root) {
return dfs(root);
}
private TreeNode dfs(TreeNode root) {
if (root == null || vis.contains(root.right)) {
return null;
}
vis.add(root);
root.right = dfs(root.right);
root.left = dfs(root.left);
return root;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* correctBinaryTree(TreeNode* root) {
unordered_set<TreeNode*> vis;
function<TreeNode*(TreeNode*)> dfs = [&](TreeNode* root) -> TreeNode* {
if (!root || vis.count(root->right)) {
return nullptr;
}
vis.insert(root);
root->right = dfs(root->right);
root->left = dfs(root->left);
return root;
};
return dfs(root);
}
};
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} from
* @param {number} to
* @return {TreeNode}
*/
var correctBinaryTree = function (root) {
const dfs = root => {
if (!root || vis.has(root.right)) {
return null;
}
vis.add(root);
root.right = dfs(root.right);
root.left = dfs(root.left);
return root;
};
const vis = new Set();
return dfs(root);
};