Skip to content

Latest commit

 

History

History
603 lines (526 loc) · 19.9 KB

File metadata and controls

603 lines (526 loc) · 19.9 KB
comments difficulty edit_url rating source tags
true
Medium
1837
Biweekly Contest 33 Q4
Depth-First Search
Breadth-First Search
Union Find
Array
Matrix

中文文档

Description

Given a 2D array of characters grid of size m x n, you need to find if there exists any cycle consisting of the same value in grid.

A cycle is a path of length 4 or more in the grid that starts and ends at the same cell. From a given cell, you can move to one of the cells adjacent to it - in one of the four directions (up, down, left, or right), if it has the same value of the current cell.

Also, you cannot move to the cell that you visited in your last move. For example, the cycle (1, 1) -> (1, 2) -> (1, 1) is invalid because from (1, 2) we visited (1, 1) which was the last visited cell.

Return true if any cycle of the same value exists in grid, otherwise, return false.

 

Example 1:

Input: grid = [["a","a","a","a"],["a","b","b","a"],["a","b","b","a"],["a","a","a","a"]]
Output: true
Explanation: There are two valid cycles shown in different colors in the image below:

Example 2:

Input: grid = [["c","c","c","a"],["c","d","c","c"],["c","c","e","c"],["f","c","c","c"]]
Output: true
Explanation: There is only one valid cycle highlighted in the image below:

Example 3:

Input: grid = [["a","b","b"],["b","z","b"],["b","b","a"]]
Output: false

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 500
  • grid consists only of lowercase English letters.

Solutions

Solution 1: BFS

We can traverse each cell in the 2D grid. For each cell, if the cell $grid[i][j]$ has not been visited, we start a breadth-first search (BFS) from that cell. During the search, we need to record the parent node of each cell and the coordinates of the previous cell. If the value of the next cell is the same as the current cell, and it is not the previous cell, and it has already been visited, then it indicates the presence of a cycle, and we return $\textit{true}$. After traversing all cells, if no cycle is found, we return $\textit{false}$.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the number of rows and columns of the 2D grid, respectively.

Python3

class Solution:
    def containsCycle(self, grid: List[List[str]]) -> bool:
        m, n = len(grid), len(grid[0])
        vis = [[False] * n for _ in range(m)]
        dirs = (-1, 0, 1, 0, -1)
        for i, row in enumerate(grid):
            for j, x in enumerate(row):
                if vis[i][j]:
                    continue
                vis[i][j] = True
                q = [(i, j, -1, -1)]
                while q:
                    x, y, px, py = q.pop()
                    for dx, dy in pairwise(dirs):
                        nx, ny = x + dx, y + dy
                        if 0 <= nx < m and 0 <= ny < n:
                            if grid[nx][ny] != grid[i][j] or (nx == px and ny == py):
                                continue
                            if vis[nx][ny]:
                                return True
                            vis[nx][ny] = True
                            q.append((nx, ny, x, y))
        return False

Java

class Solution {
    public boolean containsCycle(char[][] grid) {
        int m = grid.length, n = grid[0].length;
        boolean[][] vis = new boolean[m][n];
        final int[] dirs = {-1, 0, 1, 0, -1};
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (!vis[i][j]) {
                    Deque<int[]> q = new ArrayDeque<>();
                    q.offer(new int[] {i, j, -1, -1});
                    vis[i][j] = true;
                    while (!q.isEmpty()) {
                        int[] p = q.poll();
                        int x = p[0], y = p[1], px = p[2], py = p[3];
                        for (int k = 0; k < 4; ++k) {
                            int nx = x + dirs[k], ny = y + dirs[k + 1];
                            if (nx >= 0 && nx < m && ny >= 0 && ny < n) {
                                if (grid[nx][ny] != grid[x][y] || (nx == px && ny == py)) {
                                    continue;
                                }
                                if (vis[nx][ny]) {
                                    return true;
                                }
                                q.offer(new int[] {nx, ny, x, y});
                                vis[nx][ny] = true;
                            }
                        }
                    }
                }
            }
        }
        return false;
    }
}

C++

class Solution {
public:
    bool containsCycle(vector<vector<char>>& grid) {
        int m = grid.size(), n = grid[0].size();
        vector<vector<bool>> vis(m, vector<bool>(n));
        const vector<int> dirs = {-1, 0, 1, 0, -1};

        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (!vis[i][j]) {
                    queue<array<int, 4>> q;
                    q.push({i, j, -1, -1});
                    vis[i][j] = true;

                    while (!q.empty()) {
                        auto p = q.front();
                        q.pop();
                        int x = p[0], y = p[1], px = p[2], py = p[3];

                        for (int k = 0; k < 4; ++k) {
                            int nx = x + dirs[k], ny = y + dirs[k + 1];
                            if (nx >= 0 && nx < m && ny >= 0 && ny < n) {
                                if (grid[nx][ny] != grid[x][y] || (nx == px && ny == py)) {
                                    continue;
                                }
                                if (vis[nx][ny]) {
                                    return true;
                                }
                                q.push({nx, ny, x, y});
                                vis[nx][ny] = true;
                            }
                        }
                    }
                }
            }
        }
        return false;
    }
};

Go

func containsCycle(grid [][]byte) bool {
	m, n := len(grid), len(grid[0])
	vis := make([][]bool, m)
	for i := range vis {
		vis[i] = make([]bool, n)
	}
	dirs := []int{-1, 0, 1, 0, -1}

	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			if !vis[i][j] {
				q := [][]int{{i, j, -1, -1}}
				vis[i][j] = true

				for len(q) > 0 {
					p := q[0]
					q = q[1:]
					x, y, px, py := p[0], p[1], p[2], p[3]

					for k := 0; k < 4; k++ {
						nx, ny := x+dirs[k], y+dirs[k+1]
						if nx >= 0 && nx < m && ny >= 0 && ny < n {
							if grid[nx][ny] != grid[x][y] || (nx == px && ny == py) {
								continue
							}
							if vis[nx][ny] {
								return true
							}
							q = append(q, []int{nx, ny, x, y})
							vis[nx][ny] = true
						}
					}
				}
			}
		}
	}
	return false
}

TypeScript

function containsCycle(grid: string[][]): boolean {
    const [m, n] = [grid.length, grid[0].length];
    const vis: boolean[][] = Array.from({ length: m }, () => Array(n).fill(false));
    const dirs = [-1, 0, 1, 0, -1];
    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            if (!vis[i][j]) {
                const q: [number, number, number, number][] = [[i, j, -1, -1]];
                vis[i][j] = true;
                for (const [x, y, px, py] of q) {
                    for (let k = 0; k < 4; k++) {
                        const [nx, ny] = [x + dirs[k], y + dirs[k + 1]];
                        if (nx >= 0 && nx < m && ny >= 0 && ny < n) {
                            if (grid[nx][ny] !== grid[x][y] || (nx === px && ny === py)) {
                                continue;
                            }
                            if (vis[nx][ny]) {
                                return true;
                            }
                            q.push([nx, ny, x, y]);
                            vis[nx][ny] = true;
                        }
                    }
                }
            }
        }
    }
    return false;
}

Rust

impl Solution {
    pub fn contains_cycle(grid: Vec<Vec<char>>) -> bool {
        let m = grid.len();
        let n = grid[0].len();
        let mut vis = vec![vec![false; n]; m];
        let dirs = vec![-1, 0, 1, 0, -1];

        for i in 0..m {
            for j in 0..n {
                if !vis[i][j] {
                    let mut q = vec![(i as isize, j as isize, -1, -1)];
                    vis[i][j] = true;

                    while !q.is_empty() {
                        let (x, y, px, py) = q.pop().unwrap();

                        for k in 0..4 {
                            let nx = x + dirs[k];
                            let ny = y + dirs[k + 1];
                            if nx >= 0 && nx < m as isize && ny >= 0 && ny < n as isize {
                                let nx = nx as usize;
                                let ny = ny as usize;
                                if grid[nx][ny] != grid[x as usize][y as usize]
                                    || (nx == px as usize && ny == py as usize)
                                {
                                    continue;
                                }
                                if vis[nx][ny] {
                                    return true;
                                }
                                q.push((nx as isize, ny as isize, x, y));
                                vis[nx][ny] = true;
                            }
                        }
                    }
                }
            }
        }
        false
    }
}

JavaScript

/**
 * @param {character[][]} grid
 * @return {boolean}
 */
var containsCycle = function (grid) {
    const [m, n] = [grid.length, grid[0].length];
    const vis = Array.from({ length: m }, () => Array(n).fill(false));
    const dirs = [-1, 0, 1, 0, -1];
    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            if (!vis[i][j]) {
                const q = [[i, j, -1, -1]];
                vis[i][j] = true;
                for (const [x, y, px, py] of q) {
                    for (let k = 0; k < 4; k++) {
                        const [nx, ny] = [x + dirs[k], y + dirs[k + 1]];
                        if (nx >= 0 && nx < m && ny >= 0 && ny < n) {
                            if (grid[nx][ny] !== grid[x][y] || (nx === px && ny === py)) {
                                continue;
                            }
                            if (vis[nx][ny]) {
                                return true;
                            }
                            q.push([nx, ny, x, y]);
                            vis[nx][ny] = true;
                        }
                    }
                }
            }
        }
    }
    return false;
};

Solution 2: DFS

We can traverse each cell in the 2D grid. For each cell, if the cell $grid[i][j]$ has not been visited, we start a depth-first search (DFS) from that cell. During the search, we need to record the parent node of each cell and the coordinates of the previous cell. If the value of the next cell is the same as the current cell, and it is not the previous cell, and it has already been visited, then it indicates the presence of a cycle, and we return $\textit{true}$. After traversing all cells, if no cycle is found, we return $\textit{false}$.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the number of rows and columns of the 2D grid, respectively.

Python3

class Solution:
    def containsCycle(self, grid: List[List[str]]) -> bool:
        def dfs(x: int, y: int, px: int, py: int) -> bool:
            vis[x][y] = True
            for dx, dy in pairwise(dirs):
                nx, ny = x + dx, y + dy
                if 0 <= nx < m and 0 <= ny < n:
                    if grid[nx][ny] != grid[x][y] or (nx == px and ny == py):
                        continue
                    if vis[nx][ny] or dfs(nx, ny, x, y):
                        return True
            return False

        m, n = len(grid), len(grid[0])
        vis = [[False] * n for _ in range(m)]
        dirs = (-1, 0, 1, 0, -1)
        for i in range(m):
            for j in range(n):
                if vis[i][j]:
                    continue
                if dfs(i, j, -1, -1):
                    return True
        return False

Java

class Solution {
    private char[][] grid;
    private boolean[][] vis;
    private final int[] dirs = {-1, 0, 1, 0, -1};
    private int m;
    private int n;

    public boolean containsCycle(char[][] grid) {
        this.grid = grid;
        m = grid.length;
        n = grid[0].length;
        vis = new boolean[m][n];
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (!vis[i][j] && dfs(i, j, -1, -1)) {
                    return true;
                }
            }
        }
        return false;
    }

    private boolean dfs(int x, int y, int px, int py) {
        vis[x][y] = true;
        for (int k = 0; k < 4; ++k) {
            int nx = x + dirs[k], ny = y + dirs[k + 1];
            if (nx >= 0 && nx < m && ny >= 0 && ny < n) {
                if (grid[nx][ny] != grid[x][y] || (nx == px && ny == py)) {
                    continue;
                }
                if (vis[nx][ny] || dfs(nx, ny, x, y)) {
                    return true;
                }
            }
        }
        return false;
    }
}

C++

class Solution {
public:
    bool containsCycle(vector<vector<char>>& grid) {
        int m = grid.size(), n = grid[0].size();
        vector<vector<bool>> vis(m, vector<bool>(n));
        const vector<int> dirs = {-1, 0, 1, 0, -1};
        function<bool(int, int, int, int)> dfs = [&](int x, int y, int px, int py) {
            vis[x][y] = true;
            for (int k = 0; k < 4; ++k) {
                int nx = x + dirs[k], ny = y + dirs[k + 1];
                if (nx >= 0 && nx < m && ny >= 0 && ny < n) {
                    if (grid[nx][ny] != grid[x][y] || (nx == px && ny == py)) {
                        continue;
                    }
                    if (vis[nx][ny] || dfs(nx, ny, x, y)) {
                        return true;
                    }
                }
            }
            return false;
        };
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (!vis[i][j] && dfs(i, j, -1, -1)) {
                    return true;
                }
            }
        }
        return false;
    }
};

Go

func containsCycle(grid [][]byte) bool {
	m, n := len(grid), len(grid[0])
	vis := make([][]bool, m)
	for i := range vis {
		vis[i] = make([]bool, n)
	}
	dirs := []int{-1, 0, 1, 0, -1}
	var dfs func(x, y, px, py int) bool
	dfs = func(x, y, px, py int) bool {
		vis[x][y] = true
		for k := 0; k < 4; k++ {
			nx, ny := x+dirs[k], y+dirs[k+1]
			if nx >= 0 && nx < m && ny >= 0 && ny < n {
				if grid[nx][ny] != grid[x][y] || (nx == px && ny == py) {
					continue
				}
				if vis[nx][ny] || dfs(nx, ny, x, y) {
					return true
				}
			}
		}
		return false
	}
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			if !vis[i][j] && dfs(i, j, -1, -1) {
				return true
			}
		}
	}
	return false
}

TypeScript

function containsCycle(grid: string[][]): boolean {
    const [m, n] = [grid.length, grid[0].length];
    const vis: boolean[][] = Array.from({ length: m }, () => Array(n).fill(false));
    const dfs = (x: number, y: number, px: number, py: number): boolean => {
        vis[x][y] = true;
        const dirs = [-1, 0, 1, 0, -1];
        for (let k = 0; k < 4; k++) {
            const [nx, ny] = [x + dirs[k], y + dirs[k + 1]];
            if (nx >= 0 && nx < m && ny >= 0 && ny < n) {
                if (grid[nx][ny] !== grid[x][y] || (nx === px && ny === py)) {
                    continue;
                }
                if (vis[nx][ny] || dfs(nx, ny, x, y)) {
                    return true;
                }
            }
        }
        return false;
    };
    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            if (!vis[i][j] && dfs(i, j, -1, -1)) {
                return true;
            }
        }
    }
    return false;
}

Rust

impl Solution {
    pub fn contains_cycle(grid: Vec<Vec<char>>) -> bool {
        let m = grid.len();
        let n = grid[0].len();
        let mut vis = vec![vec![false; n]; m];
        let dirs = vec![-1, 0, 1, 0, -1];

        fn dfs(
            x: usize,
            y: usize,
            px: isize,
            py: isize,
            grid: &Vec<Vec<char>>,
            vis: &mut Vec<Vec<bool>>,
            dirs: &Vec<isize>,
        ) -> bool {
            vis[x][y] = true;
            for k in 0..4 {
                let nx = (x as isize + dirs[k]) as usize;
                let ny = (y as isize + dirs[k + 1]) as usize;
                if nx < grid.len() && ny < grid[0].len() {
                    if grid[nx][ny] != grid[x][y] || (nx as isize == px && ny as isize == py) {
                        continue;
                    }
                    if vis[nx][ny] || dfs(nx, ny, x as isize, y as isize, grid, vis, dirs) {
                        return true;
                    }
                }
            }
            false
        }

        for i in 0..m {
            for j in 0..n {
                if !vis[i][j] && dfs(i, j, -1, -1, &grid, &mut vis, &dirs) {
                    return true;
                }
            }
        }
        false
    }
}