comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
困难 |
2205 |
第 149 场周赛 Q4 |
|
设计一个数据结构,有效地找到给定子数组的 多数元素 。
子数组的 多数元素 是在子数组中出现 threshold
次数或次数以上的元素。
实现 MajorityChecker
类:
MajorityChecker(int[] arr)
会用给定的数组arr
对MajorityChecker
初始化。int query(int left, int right, int threshold)
返回子数组中的元素arr[left...right]
至少出现threshold
次数,如果不存在这样的元素则返回-1
。
示例 1:
输入: ["MajorityChecker", "query", "query", "query"] [[[1, 1, 2, 2, 1, 1]], [0, 5, 4], [0, 3, 3], [2, 3, 2]] 输出: [null, 1, -1, 2] 解释: MajorityChecker majorityChecker = new MajorityChecker([1,1,2,2,1,1]); majorityChecker.query(0,5,4); // 返回 1 majorityChecker.query(0,3,3); // 返回 -1 majorityChecker.query(2,3,2); // 返回 2
提示:
1 <= arr.length <= 2 * 104
1 <= arr[i] <= 2 * 104
0 <= left <= right < arr.length
threshold <= right - left + 1
2 * threshold > right - left + 1
- 调用
query
的次数最多为104
我们注意到,题目需要我们找出特定区间内可能的众数,考虑使用线段树来维护每个区间内的候选众数以及其出现的次数。
我们定义线段树的每个节点为 Node
,每个节点包含如下属性:
-
l
:节点的左端点,下标从$1$ 开始。 -
r
:节点的右端点,下标从$1$ 开始。 -
x
:节点的候选众数。 -
cnt
:节点的候选众数出现的次数。
线段树主要有以下几个操作:
build(u, l, r)
:建立线段树。pushup(u)
:用子节点的信息更新父节点的信息。query(u, l, r)
:查询区间和。
在主函数的初始化方法中,我们先创建一个线段树,并且用哈希表
在 query(left, right, threshold)
方法中,我们直接调用线段树的 query
方法,得到候选众数
时间复杂度方面,初始化方法的时间复杂度为
class Node:
__slots__ = ("l", "r", "x", "cnt")
def __init__(self):
self.l = self.r = 0
self.x = self.cnt = 0
class SegmentTree:
def __init__(self, nums):
self.nums = nums
n = len(nums)
self.tr = [Node() for _ in range(n << 2)]
self.build(1, 1, n)
def build(self, u, l, r):
self.tr[u].l, self.tr[u].r = l, r
if l == r:
self.tr[u].x = self.nums[l - 1]
self.tr[u].cnt = 1
return
mid = (l + r) >> 1
self.build(u << 1, l, mid)
self.build(u << 1 | 1, mid + 1, r)
self.pushup(u)
def query(self, u, l, r):
if self.tr[u].l >= l and self.tr[u].r <= r:
return self.tr[u].x, self.tr[u].cnt
mid = (self.tr[u].l + self.tr[u].r) >> 1
if r <= mid:
return self.query(u << 1, l, r)
if l > mid:
return self.query(u << 1 | 1, l, r)
x1, cnt1 = self.query(u << 1, l, r)
x2, cnt2 = self.query(u << 1 | 1, l, r)
if x1 == x2:
return x1, cnt1 + cnt2
if cnt1 >= cnt2:
return x1, cnt1 - cnt2
else:
return x2, cnt2 - cnt1
def pushup(self, u):
if self.tr[u << 1].x == self.tr[u << 1 | 1].x:
self.tr[u].x = self.tr[u << 1].x
self.tr[u].cnt = self.tr[u << 1].cnt + self.tr[u << 1 | 1].cnt
elif self.tr[u << 1].cnt >= self.tr[u << 1 | 1].cnt:
self.tr[u].x = self.tr[u << 1].x
self.tr[u].cnt = self.tr[u << 1].cnt - self.tr[u << 1 | 1].cnt
else:
self.tr[u].x = self.tr[u << 1 | 1].x
self.tr[u].cnt = self.tr[u << 1 | 1].cnt - self.tr[u << 1].cnt
class MajorityChecker:
def __init__(self, arr: List[int]):
self.tree = SegmentTree(arr)
self.d = defaultdict(list)
for i, x in enumerate(arr):
self.d[x].append(i)
def query(self, left: int, right: int, threshold: int) -> int:
x, _ = self.tree.query(1, left + 1, right + 1)
l = bisect_left(self.d[x], left)
r = bisect_left(self.d[x], right + 1)
return x if r - l >= threshold else -1
# Your MajorityChecker object will be instantiated and called as such:
# obj = MajorityChecker(arr)
# param_1 = obj.query(left,right,threshold)
class Node {
int l, r;
int x, cnt;
}
class SegmentTree {
private Node[] tr;
private int[] nums;
public SegmentTree(int[] nums) {
int n = nums.length;
this.nums = nums;
tr = new Node[n << 2];
for (int i = 0; i < tr.length; ++i) {
tr[i] = new Node();
}
build(1, 1, n);
}
private void build(int u, int l, int r) {
tr[u].l = l;
tr[u].r = r;
if (l == r) {
tr[u].x = nums[l - 1];
tr[u].cnt = 1;
return;
}
int mid = (l + r) >> 1;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
pushup(u);
}
public int[] query(int u, int l, int r) {
if (tr[u].l >= l && tr[u].r <= r) {
return new int[] {tr[u].x, tr[u].cnt};
}
int mid = (tr[u].l + tr[u].r) >> 1;
if (r <= mid) {
return query(u << 1, l, r);
}
if (l > mid) {
return query(u << 1 | 1, l, r);
}
var left = query(u << 1, l, r);
var right = query(u << 1 | 1, l, r);
if (left[0] == right[0]) {
left[1] += right[1];
} else if (left[1] >= right[1]) {
left[1] -= right[1];
} else {
right[1] -= left[1];
left = right;
}
return left;
}
private void pushup(int u) {
if (tr[u << 1].x == tr[u << 1 | 1].x) {
tr[u].x = tr[u << 1].x;
tr[u].cnt = tr[u << 1].cnt + tr[u << 1 | 1].cnt;
} else if (tr[u << 1].cnt >= tr[u << 1 | 1].cnt) {
tr[u].x = tr[u << 1].x;
tr[u].cnt = tr[u << 1].cnt - tr[u << 1 | 1].cnt;
} else {
tr[u].x = tr[u << 1 | 1].x;
tr[u].cnt = tr[u << 1 | 1].cnt - tr[u << 1].cnt;
}
}
}
class MajorityChecker {
private SegmentTree tree;
private Map<Integer, List<Integer>> d = new HashMap<>();
public MajorityChecker(int[] arr) {
tree = new SegmentTree(arr);
for (int i = 0; i < arr.length; ++i) {
d.computeIfAbsent(arr[i], k -> new ArrayList<>()).add(i);
}
}
public int query(int left, int right, int threshold) {
int x = tree.query(1, left + 1, right + 1)[0];
int l = search(d.get(x), left);
int r = search(d.get(x), right + 1);
return r - l >= threshold ? x : -1;
}
private int search(List<Integer> arr, int x) {
int left = 0, right = arr.size();
while (left < right) {
int mid = (left + right) >> 1;
if (arr.get(mid) >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
/**
* Your MajorityChecker object will be instantiated and called as such:
* MajorityChecker obj = new MajorityChecker(arr);
* int param_1 = obj.query(left,right,threshold);
*/
class Node {
public:
int l = 0, r = 0;
int x = 0, cnt = 0;
};
using pii = pair<int, int>;
class SegmentTree {
public:
SegmentTree(vector<int>& nums) {
this->nums = nums;
int n = nums.size();
tr.resize(n << 2);
for (int i = 0; i < tr.size(); ++i) {
tr[i] = new Node();
}
build(1, 1, n);
}
pii query(int u, int l, int r) {
if (tr[u]->l >= l && tr[u]->r <= r) {
return {tr[u]->x, tr[u]->cnt};
}
int mid = (tr[u]->l + tr[u]->r) >> 1;
if (r <= mid) {
return query(u << 1, l, r);
}
if (l > mid) {
return query(u << 1 | 1, l, r);
}
auto left = query(u << 1, l, r);
auto right = query(u << 1 | 1, l, r);
if (left.first == right.first) {
left.second += right.second;
} else if (left.second >= right.second) {
left.second -= right.second;
} else {
right.second -= left.second;
left = right;
}
return left;
}
private:
vector<Node*> tr;
vector<int> nums;
void build(int u, int l, int r) {
tr[u]->l = l;
tr[u]->r = r;
if (l == r) {
tr[u]->x = nums[l - 1];
tr[u]->cnt = 1;
return;
}
int mid = (l + r) >> 1;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
pushup(u);
}
void pushup(int u) {
if (tr[u << 1]->x == tr[u << 1 | 1]->x) {
tr[u]->x = tr[u << 1]->x;
tr[u]->cnt = tr[u << 1]->cnt + tr[u << 1 | 1]->cnt;
} else if (tr[u << 1]->cnt >= tr[u << 1 | 1]->cnt) {
tr[u]->x = tr[u << 1]->x;
tr[u]->cnt = tr[u << 1]->cnt - tr[u << 1 | 1]->cnt;
} else {
tr[u]->x = tr[u << 1 | 1]->x;
tr[u]->cnt = tr[u << 1 | 1]->cnt - tr[u << 1]->cnt;
}
}
};
class MajorityChecker {
public:
MajorityChecker(vector<int>& arr) {
tree = new SegmentTree(arr);
for (int i = 0; i < arr.size(); ++i) {
d[arr[i]].push_back(i);
}
}
int query(int left, int right, int threshold) {
int x = tree->query(1, left + 1, right + 1).first;
auto l = lower_bound(d[x].begin(), d[x].end(), left);
auto r = lower_bound(d[x].begin(), d[x].end(), right + 1);
return r - l >= threshold ? x : -1;
}
private:
unordered_map<int, vector<int>> d;
SegmentTree* tree;
};
/**
* Your MajorityChecker object will be instantiated and called as such:
* MajorityChecker* obj = new MajorityChecker(arr);
* int param_1 = obj->query(left,right,threshold);
*/
type node struct {
l, r, x, cnt int
}
type segmentTree struct {
nums []int
tr []*node
}
type pair struct{ x, cnt int }
func newSegmentTree(nums []int) *segmentTree {
n := len(nums)
tr := make([]*node, n<<2)
for i := range tr {
tr[i] = &node{}
}
t := &segmentTree{nums, tr}
t.build(1, 1, n)
return t
}
func (t *segmentTree) build(u, l, r int) {
t.tr[u].l, t.tr[u].r = l, r
if l == r {
t.tr[u].x = t.nums[l-1]
t.tr[u].cnt = 1
return
}
mid := (l + r) >> 1
t.build(u<<1, l, mid)
t.build(u<<1|1, mid+1, r)
t.pushup(u)
}
func (t *segmentTree) query(u, l, r int) pair {
if t.tr[u].l >= l && t.tr[u].r <= r {
return pair{t.tr[u].x, t.tr[u].cnt}
}
mid := (t.tr[u].l + t.tr[u].r) >> 1
if r <= mid {
return t.query(u<<1, l, r)
}
if l > mid {
return t.query(u<<1|1, l, r)
}
left, right := t.query(u<<1, l, r), t.query(u<<1|1, l, r)
if left.x == right.x {
left.cnt += right.cnt
} else if left.cnt >= right.cnt {
left.cnt -= right.cnt
} else {
right.cnt -= left.cnt
left = right
}
return left
}
func (t *segmentTree) pushup(u int) {
if t.tr[u<<1].x == t.tr[u<<1|1].x {
t.tr[u].x = t.tr[u<<1].x
t.tr[u].cnt = t.tr[u<<1].cnt + t.tr[u<<1|1].cnt
} else if t.tr[u<<1].cnt >= t.tr[u<<1|1].cnt {
t.tr[u].x = t.tr[u<<1].x
t.tr[u].cnt = t.tr[u<<1].cnt - t.tr[u<<1|1].cnt
} else {
t.tr[u].x = t.tr[u<<1|1].x
t.tr[u].cnt = t.tr[u<<1|1].cnt - t.tr[u<<1].cnt
}
}
type MajorityChecker struct {
tree *segmentTree
d map[int][]int
}
func Constructor(arr []int) MajorityChecker {
tree := newSegmentTree(arr)
d := map[int][]int{}
for i, x := range arr {
d[x] = append(d[x], i)
}
return MajorityChecker{tree, d}
}
func (this *MajorityChecker) Query(left int, right int, threshold int) int {
x := this.tree.query(1, left+1, right+1).x
l := sort.SearchInts(this.d[x], left)
r := sort.SearchInts(this.d[x], right+1)
if r-l >= threshold {
return x
}
return -1
}
/**
* Your MajorityChecker object will be instantiated and called as such:
* obj := Constructor(arr);
* param_1 := obj.Query(left,right,threshold);
*/