comments | difficulty | edit_url | tags | |||
---|---|---|---|---|---|---|
true |
Easy |
|
You are playing the following Nim Game with your friend:
- Initially, there is a heap of stones on the table.
- You and your friend will alternate taking turns, and you go first.
- On each turn, the person whose turn it is will remove 1 to 3 stones from the heap.
- The one who removes the last stone is the winner.
Given n
, the number of stones in the heap, return true
if you can win the game assuming both you and your friend play optimally, otherwise return false
.
Example 1:
Input: n = 4 Output: false Explanation: These are the possible outcomes: 1. You remove 1 stone. Your friend removes 3 stones, including the last stone. Your friend wins. 2. You remove 2 stones. Your friend removes 2 stones, including the last stone. Your friend wins. 3. You remove 3 stones. Your friend removes the last stone. Your friend wins. In all outcomes, your friend wins.
Example 2:
Input: n = 1 Output: true
Example 3:
Input: n = 2 Output: true
Constraints:
1 <= n <= 231 - 1
The first player who gets a multiple of
Proof:
- When
$n \lt 4$ , the first player can directly take all the stones, so the first player will win the game. - When
$n = 4$ , no matter whether the first player chooses$1, 2, 3$ , the second player can always choose the remaining number, so the first player will lose the game. - When
$4 \lt n \lt 8$ , i.e.,$n = 5, 6, 7$ , the first player can correspondingly reduce the number to$4$ , then the "death number"$4$ is given to the second player, and the second player will lose the game. - When
$n = 8$ , no matter whether the first player chooses$1, 2, 3$ , it will leave a number between$4 \lt n \lt 8$ to the second player, so the first player will lose the game. - ...
- By induction, when a player gets the number
$n$ , and$n$ can be divided by$4$ , he will lose the game, otherwise, he will win the game.
The time complexity is
class Solution:
def canWinNim(self, n: int) -> bool:
return n % 4 != 0
class Solution {
public boolean canWinNim(int n) {
return n % 4 != 0;
}
}
class Solution {
public:
bool canWinNim(int n) {
return n % 4 != 0;
}
};
func canWinNim(n int) bool {
return n%4 != 0
}
function canWinNim(n: number): boolean {
return n % 4 != 0;
}
impl Solution {
pub fn can_win_nim(n: i32) -> bool {
n % 4 != 0
}
}