comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
简单 |
|
给你一棵二叉树的根节点 root
,翻转这棵二叉树,并返回其根节点。
示例 1:
输入:root = [4,2,7,1,3,6,9] 输出:[4,7,2,9,6,3,1]
示例 2:
输入:root = [2,1,3] 输出:[2,3,1]
示例 3:
输入:root = [] 输出:[]
提示:
- 树中节点数目范围在
[0, 100]
内 -100 <= Node.val <= 100
递归的思路很简单,就是交换当前节点的左右子树,然后递归地交换当前节点的左右子树。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
def dfs(root):
if root is None:
return
root.left, root.right = root.right, root.left
dfs(root.left)
dfs(root.right)
dfs(root)
return root
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode invertTree(TreeNode root) {
dfs(root);
return root;
}
private void dfs(TreeNode root) {
if (root == null) {
return;
}
TreeNode t = root.left;
root.left = root.right;
root.right = t;
dfs(root.left);
dfs(root.right);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
function<void(TreeNode*)> dfs = [&](TreeNode* root) {
if (!root) {
return;
}
swap(root->left, root->right);
dfs(root->left);
dfs(root->right);
};
dfs(root);
return root;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func invertTree(root *TreeNode) *TreeNode {
var dfs func(*TreeNode)
dfs = func(root *TreeNode) {
if root == nil {
return
}
root.Left, root.Right = root.Right, root.Left
dfs(root.Left)
dfs(root.Right)
}
dfs(root)
return root
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function invertTree(root: TreeNode | null): TreeNode | null {
const dfs = (root: TreeNode | null) => {
if (root === null) {
return;
}
[root.left, root.right] = [root.right, root.left];
dfs(root.left);
dfs(root.right);
};
dfs(root);
return root;
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
#[allow(dead_code)]
pub fn invert_tree(root: Option<Rc<RefCell<TreeNode>>>) -> Option<Rc<RefCell<TreeNode>>> {
if root.is_none() {
return root;
}
let left = root.as_ref().unwrap().borrow().left.clone();
let right = root.as_ref().unwrap().borrow().right.clone();
// Invert the subtree
let inverted_left = Self::invert_tree(right);
let inverted_right = Self::invert_tree(left);
// Update the left & right
root.as_ref().unwrap().borrow_mut().left = inverted_left;
root.as_ref().unwrap().borrow_mut().right = inverted_right;
// Return the root
root
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {TreeNode}
*/
var invertTree = function (root) {
const dfs = root => {
if (!root) {
return;
}
[root.left, root.right] = [root.right, root.left];
dfs(root.left);
dfs(root.right);
};
dfs(root);
return root;
};
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
if root is None:
return None
l, r = self.invertTree(root.left), self.invertTree(root.right)
root.left, root.right = r, l
return root
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode invertTree(TreeNode root) {
if (root == null) {
return null;
}
TreeNode l = invertTree(root.left);
TreeNode r = invertTree(root.right);
root.left = r;
root.right = l;
return root;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (!root) {
return root;
}
TreeNode* l = invertTree(root->left);
TreeNode* r = invertTree(root->right);
root->left = r;
root->right = l;
return root;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func invertTree(root *TreeNode) *TreeNode {
if root == nil {
return root
}
l, r := invertTree(root.Left), invertTree(root.Right)
root.Left, root.Right = r, l
return root
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function invertTree(root: TreeNode | null): TreeNode | null {
if (!root) {
return root;
}
const l = invertTree(root.left);
const r = invertTree(root.right);
root.left = r;
root.right = l;
return root;
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {TreeNode}
*/
var invertTree = function (root) {
if (!root) {
return root;
}
const l = invertTree(root.left);
const r = invertTree(root.right);
root.left = r;
root.right = l;
return root;
};