comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
简单 |
|
给你二叉树的根节点 root
和一个表示目标和的整数 targetSum
。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum
。如果存在,返回 true
;否则,返回 false
。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22 输出:true 解释:等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入:root = [1,2,3], targetSum = 5 输出:false 解释:树中存在两条根节点到叶子节点的路径: (1 --> 2): 和为 3 (1 --> 3): 和为 4 不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:
输入:root = [], targetSum = 0 输出:false 解释:由于树是空的,所以不存在根节点到叶子节点的路径。
提示:
- 树中节点的数目在范围
[0, 5000]
内 -1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
从根节点开始,递归地对树进行遍历,并在遍历过程中更新节点的值为从根节点到该节点的路径和。当遍历到叶子节点时,判断该路径和是否等于目标值,如果相等则返回 true
,否则返回 false
。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def hasPathSum(self, root: Optional[TreeNode], targetSum: int) -> bool:
def dfs(root, s):
if root is None:
return False
s += root.val
if root.left is None and root.right is None and s == targetSum:
return True
return dfs(root.left, s) or dfs(root.right, s)
return dfs(root, 0)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int targetSum) {
return dfs(root, targetSum);
}
private boolean dfs(TreeNode root, int s) {
if (root == null) {
return false;
}
s -= root.val;
if (root.left == null && root.right == null && s == 0) {
return true;
}
return dfs(root.left, s) || dfs(root.right, s);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool hasPathSum(TreeNode* root, int targetSum) {
function<bool(TreeNode*, int)> dfs = [&](TreeNode* root, int s) -> int {
if (!root) return false;
s += root->val;
if (!root->left && !root->right && s == targetSum) return true;
return dfs(root->left, s) || dfs(root->right, s);
};
return dfs(root, 0);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func hasPathSum(root *TreeNode, targetSum int) bool {
var dfs func(*TreeNode, int) bool
dfs = func(root *TreeNode, s int) bool {
if root == nil {
return false
}
s += root.Val
if root.Left == nil && root.Right == nil && s == targetSum {
return true
}
return dfs(root.Left, s) || dfs(root.Right, s)
}
return dfs(root, 0)
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function hasPathSum(root: TreeNode | null, targetSum: number): boolean {
if (root === null) {
return false;
}
const { val, left, right } = root;
if (left === null && right === null) {
return targetSum - val === 0;
}
return hasPathSum(left, targetSum - val) || hasPathSum(right, targetSum - val);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn has_path_sum(root: Option<Rc<RefCell<TreeNode>>>, target_sum: i32) -> bool {
match root {
None => false,
Some(node) => {
let mut node = node.borrow_mut();
// 确定叶结点身份
if node.left.is_none() && node.right.is_none() {
return target_sum - node.val == 0;
}
let val = node.val;
Self::has_path_sum(node.left.take(), target_sum - val)
|| Self::has_path_sum(node.right.take(), target_sum - val)
}
}
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} targetSum
* @return {boolean}
*/
var hasPathSum = function (root, targetSum) {
function dfs(root, s) {
if (!root) return false;
s += root.val;
if (!root.left && !root.right && s == targetSum) return true;
return dfs(root.left, s) || dfs(root.right, s);
}
return dfs(root, 0);
};