forked from adambielski/siamese-triplet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
124 lines (95 loc) · 4.21 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
import numpy as np
def fit(train_loader, val_loader, model, loss_fn, optimizer, scheduler, n_epochs, cuda, log_interval, metrics=[],
start_epoch=0):
"""
Loaders, model, loss function and metrics should work together for a given task,
i.e. The model should be able to process data output of loaders,
loss function should process target output of loaders and outputs from the model
Examples: Classification: batch loader, classification model, NLL loss, accuracy metric
Siamese network: Siamese loader, siamese model, contrastive loss
Online triplet learning: batch loader, embedding model, online triplet loss
"""
for epoch in range(0, start_epoch):
scheduler.step()
for epoch in range(start_epoch, n_epochs):
scheduler.step()
# Train stage
train_loss, metrics = train_epoch(train_loader, model, loss_fn, optimizer, cuda, log_interval, metrics)
message = 'Epoch: {}/{}. Train set: Average loss: {:.4f}'.format(epoch + 1, n_epochs, train_loss)
for metric in metrics:
message += '\t{}: {}'.format(metric.name(), metric.value())
val_loss, metrics = test_epoch(val_loader, model, loss_fn, cuda, metrics)
val_loss /= len(val_loader)
message += '\nEpoch: {}/{}. Validation set: Average loss: {:.4f}'.format(epoch + 1, n_epochs,
val_loss)
for metric in metrics:
message += '\t{}: {}'.format(metric.name(), metric.value())
print(message)
def train_epoch(train_loader, model, loss_fn, optimizer, cuda, log_interval, metrics):
for metric in metrics:
metric.reset()
model.train()
losses = []
total_loss = 0
for batch_idx, (data, target) in enumerate(train_loader):
target = target if len(target) > 0 else None
if not type(data) in (tuple, list):
data = (data,)
if cuda:
data = tuple(d.cuda() for d in data)
if target is not None:
target = target.cuda()
optimizer.zero_grad()
outputs = model(*data)
if type(outputs) not in (tuple, list):
outputs = (outputs,)
loss_inputs = outputs
if target is not None:
target = (target,)
loss_inputs += target
loss_outputs = loss_fn(*loss_inputs)
loss = loss_outputs[0] if type(loss_outputs) in (tuple, list) else loss_outputs
losses.append(loss.item())
total_loss += loss.item()
loss.backward()
optimizer.step()
for metric in metrics:
metric(outputs, target, loss_outputs)
if batch_idx % log_interval == 0:
message = 'Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
batch_idx * len(data[0]), len(train_loader.dataset),
100. * batch_idx / len(train_loader), np.mean(losses))
for metric in metrics:
message += '\t{}: {}'.format(metric.name(), metric.value())
print(message)
losses = []
total_loss /= (batch_idx + 1)
return total_loss, metrics
def test_epoch(val_loader, model, loss_fn, cuda, metrics):
with torch.no_grad():
for metric in metrics:
metric.reset()
model.eval()
val_loss = 0
for batch_idx, (data, target) in enumerate(val_loader):
target = target if len(target) > 0 else None
if not type(data) in (tuple, list):
data = (data,)
if cuda:
data = tuple(d.cuda() for d in data)
if target is not None:
target = target.cuda()
outputs = model(*data)
if type(outputs) not in (tuple, list):
outputs = (outputs,)
loss_inputs = outputs
if target is not None:
target = (target,)
loss_inputs += target
loss_outputs = loss_fn(*loss_inputs)
loss = loss_outputs[0] if type(loss_outputs) in (tuple, list) else loss_outputs
val_loss += loss.item()
for metric in metrics:
metric(outputs, target, loss_outputs)
return val_loss, metrics