-
Notifications
You must be signed in to change notification settings - Fork 0
/
Kriging.jl
179 lines (140 loc) · 4.93 KB
/
Kriging.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
module Kriging
#
# The Kriging module provides two types of service:
#
# * universal kriging with isotropic covariance or correlation
# * trend surface model kriging
#
#
using Stations
import Stations.nearest_grid_point, Stations.obs_variance, Stations.obs_value
using Storage
import Storage.spush
function numerical_solve_bisect(e2, eps2, k)
N = size(e2,1)
tgt = N - k
s2_eta_left = 0.0
s2_eta_right = 0.1
val_left = sum(e2 ./ eps2)
val_right = sum(e2 ./ (eps2 + s2_eta_right))
if val_left < tgt
return -1.0
end
while val_right > tgt
s2_eta_right *= 2.0
val_right = sum(e2 ./ (eps2 + s2_eta_right))
end
# bisection implementation (initialized with s2_eta = 0)
while val_left - val_right > 1e-6
# compute new value at center of eta interval
s2_eta = 0.5 * (s2_eta_left + s2_eta_right)
val = sum(e2 ./ (eps2 + s2_eta))
if val > tgt
val_left, s2_eta_left = val, s2_eta
else
val_right, s2_eta_right = val, s2_eta
end
end
return 0.5 * (s2_eta_left + s2_eta_right)
end
function trend_surface_model_kriging(obs_data, X, K, V)
"""
Trend surface model kriging, which assumes spatially uncorrelated errors.
WARNING: The variable X is clobbered.
The kriging results in the matrix K, which contains the kriged observations
and the matrix V, which contains the kriging variance.
"""
Nobs = length(obs_data)
Ncov_all = size(X,3)
dsize = size(X)[1:2]
y = zeros((Nobs,1))
m_var = zeros(Nobs)
Xobs = zeros(Nobs, Ncov_all)
for (obs,i) in zip(obs_data, 1:Nobs)
p = nearest_grid_point(obs)
y[i] = obs_value(obs)
Xobs[i,:] = X[p[1], p[2], :]
m_var[i] = obs_variance(obs)
end
# if we have covariates full of zeros (e.g. there is no rain in the entire domain at
# the current simulation time), we must exclude them or a singular exception
# will be thrown by '\'
cov_ids = find(map(i -> sum(Xobs[:,i].^2) > 0, 1:Ncov_all))
Ncov = length(cov_ids)
X = X[:,:,cov_ids]
Xobs = Xobs[:, cov_ids]
# if there are less observations than covariates, remove
# Ncov - Nobs covariates from end
if Ncov > Nobs
Ncov = Nobs
cov_ids = cov_ids[1:Ncov]
X = X[:,:,1:Ncov]
Xobs = Xobs[:, 1:Ncov]
end
# quick pre-conditioning hack
# rescale all columns of Xobs to have norm of first column
norm_1 = sum(Xobs[:,1].^2)^0.5
for i in 2:Ncov
norm_i = sum(Xobs[:,i].^2)^0.5
if norm_i > 0.0
Xobs[:,i] *= norm_1 / norm_i
X[:,:,i] *= norm_1 / norm_i
end
end
# initialize iterative algorithm
s2_eta_hat_old = 10.0
s2_eta_hat = 0.0
XtSX = nothing
beta = nothing
iters = 0
subzeros = 0
# the while loop contains protection against division by zero in case s2_eta_hat_old
# is below zero (happens if the estimate of s2_eta_hat fails and this gets copied into s2_eta_hat_old)
while abs( (s2_eta_hat_old - s2_eta_hat) / max(s2_eta_hat_old, 1e-8)) > 1e-2
# shift current estimate to old var
s2_eta_hat_old = s2_eta_hat
# recompute the covariance matrix
Sigma = diagm(m_var) + s2_eta_hat * eye(Nobs)
XtSX = Xobs' * (Sigma \ Xobs)
# QR solution method of least squares
Sigma_1_2 = diagm(diag(Sigma).^-0.5) # Sigma^(-1/2)
yt = Sigma_1_2 * y
Q, R = qr(Sigma_1_2 * Xobs)
beta = R \ (Q' * yt)
res = y - Xobs * beta
# compute new estimate of variance of microscale variability
s2_array = res.^2 - m_var
for j in 1:Nobs
s2_array[j] += dot(vec(Xobs[j,:]), vec(XtSX \ Xobs[j,:]'))
end
s2_eta_hat2 = sum(s2_array) / Nobs
# solve equation by bisection
s2_eta_hat = numerical_solve_bisect(res.^2, m_var, Ncov)
if s2_eta_hat < 0.0
s2_eta_hat = 0.0
println("TSM: s2_eta_hat estimate below zero, culling to zero.")
end
subzeros = sum(s2_array .< 0)
iters += 1
end
# compute the OLS fit of the covariates to the observations
spush("kriging_xtx_cond", cond(XtSX))
spush("kriging_errors", (y - Xobs * beta)')
# printing construction that makes sure order of printed betas does not vary
# across times even if there are zero covariates
beta_ext = ones((Ncov_all,1)) * NaN
beta_ext[cov_ids] = beta
spush("kriging_beta", beta_ext)
spush("kriging_sigma2_eta", s2_eta_hat)
spush("kriging_iters", iters)
spush("kriging_subzero_s2_estimates", subzeros)
# compute kriging field and kriging variance
for i in 1:dsize[1]
for j in 1:dsize[2]
x_ij = squeeze(X[i,j,:], 1)' # convert covariates at position i,j into a column vector
K[i,j] = dot(vec(x_ij), vec(beta))
V[i,j] = s2_eta_hat + dot(vec(x_ij), vec(XtSX \ x_ij))
end
end
end
end