forked from leejet/stable-diffusion.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.cpp
1677 lines (1468 loc) · 63.5 KB
/
model.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <stdarg.h>
#include <fstream>
#include <regex>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
#include "model.h"
#include "stable-diffusion.h"
#include "util.h"
#include "vocab.hpp"
#include "ggml/ggml-alloc.h"
#include "ggml/ggml-backend.h"
#include "ggml/ggml.h"
#include "stable-diffusion.h"
#ifdef SD_USE_METAL
#include "ggml-metal.h"
#endif
#define ST_HEADER_SIZE_LEN 8
uint64_t read_u64(uint8_t* buffer) {
// little endian
uint64_t value = 0;
value |= static_cast<int64_t>(buffer[7]) << 56;
value |= static_cast<int64_t>(buffer[6]) << 48;
value |= static_cast<int64_t>(buffer[5]) << 40;
value |= static_cast<int64_t>(buffer[4]) << 32;
value |= static_cast<int64_t>(buffer[3]) << 24;
value |= static_cast<int64_t>(buffer[2]) << 16;
value |= static_cast<int64_t>(buffer[1]) << 8;
value |= static_cast<int64_t>(buffer[0]);
return value;
}
int32_t read_int(uint8_t* buffer) {
// little endian
int value = 0;
value |= buffer[3] << 24;
value |= buffer[2] << 16;
value |= buffer[1] << 8;
value |= buffer[0];
return value;
}
uint16_t read_short(uint8_t* buffer) {
// little endian
uint16_t value = 0;
value |= buffer[1] << 8;
value |= buffer[0];
return value;
}
/*================================================= Preprocess ==================================================*/
std::string self_attn_names[] = {
"self_attn.q_proj.weight",
"self_attn.k_proj.weight",
"self_attn.v_proj.weight",
"self_attn.q_proj.bias",
"self_attn.k_proj.bias",
"self_attn.v_proj.bias",
};
const char* unused_tensors[] = {
"betas",
"alphas_cumprod_prev",
"sqrt_alphas_cumprod",
"sqrt_one_minus_alphas_cumprod",
"log_one_minus_alphas_cumprod",
"sqrt_recip_alphas_cumprod",
"sqrt_recipm1_alphas_cumprod",
"posterior_variance",
"posterior_log_variance_clipped",
"posterior_mean_coef1",
"posterior_mean_coef2",
"cond_stage_model.transformer.text_model.embeddings.position_ids",
"cond_stage_model.model.logit_scale",
"cond_stage_model.model.text_projection",
"conditioner.embedders.0.transformer.text_model.embeddings.position_ids",
"conditioner.embedders.0.model.logit_scale",
"conditioner.embedders.1.model.logit_scale",
"model.diffusion_model.time_embedding.cond_proj.weight",
"unet.time_embedding.cond_proj.weight",
"model_ema.decay",
"model_ema.num_updates",
"model_ema.diffusion_model",
"embedding_manager",
"denoiser.sigmas",
};
bool is_unused_tensor(std::string name) {
for (int i = 0; i < sizeof(unused_tensors) / sizeof(const char*); i++) {
if (starts_with(name, unused_tensors[i])) {
return true;
}
}
return false;
}
std::unordered_map<std::string, std::string> open_clip_to_hf_clip_model = {
{"model.ln_final.bias", "transformer.text_model.final_layer_norm.bias"},
{"model.ln_final.weight", "transformer.text_model.final_layer_norm.weight"},
{"model.positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"},
{"model.token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"},
{"model.text_projection", "transformer.text_model.text_projection"},
{"model.visual.class_embedding", "transformer.vision_model.embeddings.class_embedding"},
{"model.visual.conv1.weight", "transformer.vision_model.embeddings.patch_embedding.weight"},
{"model.visual.ln_post.bias", "transformer.vision_model.post_layernorm.bias"},
{"model.visual.ln_post.weight", "transformer.vision_model.post_layernorm.weight"},
{"model.visual.ln_pre.bias", "transformer.vision_model.pre_layernorm.bias"},
{"model.visual.ln_pre.weight", "transformer.vision_model.pre_layernorm.weight"},
{"model.visual.positional_embedding", "transformer.vision_model.embeddings.position_embedding.weight"},
{"model.visual.proj", "transformer.visual_projection.weight"},
};
std::unordered_map<std::string, std::string> open_clip_to_hk_clip_resblock = {
{"attn.out_proj.bias", "self_attn.out_proj.bias"},
{"attn.out_proj.weight", "self_attn.out_proj.weight"},
{"ln_1.bias", "layer_norm1.bias"},
{"ln_1.weight", "layer_norm1.weight"},
{"ln_2.bias", "layer_norm2.bias"},
{"ln_2.weight", "layer_norm2.weight"},
{"mlp.c_fc.bias", "mlp.fc1.bias"},
{"mlp.c_fc.weight", "mlp.fc1.weight"},
{"mlp.c_proj.bias", "mlp.fc2.bias"},
{"mlp.c_proj.weight", "mlp.fc2.weight"},
};
std::unordered_map<std::string, std::string> vae_decoder_name_map = {
{"first_stage_model.decoder.mid.attn_1.to_k.bias", "first_stage_model.decoder.mid.attn_1.k.bias"},
{"first_stage_model.decoder.mid.attn_1.to_k.weight", "first_stage_model.decoder.mid.attn_1.k.weight"},
{"first_stage_model.decoder.mid.attn_1.to_out.0.bias", "first_stage_model.decoder.mid.attn_1.proj_out.bias"},
{"first_stage_model.decoder.mid.attn_1.to_out.0.weight", "first_stage_model.decoder.mid.attn_1.proj_out.weight"},
{"first_stage_model.decoder.mid.attn_1.to_q.bias", "first_stage_model.decoder.mid.attn_1.q.bias"},
{"first_stage_model.decoder.mid.attn_1.to_q.weight", "first_stage_model.decoder.mid.attn_1.q.weight"},
{"first_stage_model.decoder.mid.attn_1.to_v.bias", "first_stage_model.decoder.mid.attn_1.v.bias"},
{"first_stage_model.decoder.mid.attn_1.to_v.weight", "first_stage_model.decoder.mid.attn_1.v.weight"},
};
std::string convert_open_clip_to_hf_clip(const std::string& name) {
std::string new_name = name;
std::string prefix;
if (starts_with(new_name, "conditioner.embedders.0.open_clip.")) {
prefix = "cond_stage_model.";
new_name = new_name.substr(strlen("conditioner.embedders.0.open_clip."));
} else if (starts_with(new_name, "conditioner.embedders.0.")) {
prefix = "cond_stage_model.";
new_name = new_name.substr(strlen("conditioner.embedders.0."));
} else if (starts_with(new_name, "conditioner.embedders.1.")) {
prefix = "cond_stage_model.1.";
new_name = new_name.substr(strlen("conditioner.embedders.0."));
} else if (starts_with(new_name, "cond_stage_model.")) {
prefix = "cond_stage_model.";
new_name = new_name.substr(strlen("cond_stage_model."));
} else if (ends_with(new_name, "vision_model.visual_projection.weight")) {
prefix = new_name.substr(0, new_name.size() - strlen("vision_model.visual_projection.weight"));
new_name = prefix + "visual_projection.weight";
return new_name;
} else {
return new_name;
}
if (open_clip_to_hf_clip_model.find(new_name) != open_clip_to_hf_clip_model.end()) {
new_name = open_clip_to_hf_clip_model[new_name];
}
std::string open_clip_resblock_prefix = "model.transformer.resblocks.";
std::string hf_clip_resblock_prefix = "transformer.text_model.encoder.layers.";
auto replace_suffix = [&]() {
if (new_name.find(open_clip_resblock_prefix) == 0) {
std::string remain = new_name.substr(open_clip_resblock_prefix.length());
std::string idx = remain.substr(0, remain.find("."));
std::string suffix = remain.substr(idx.length() + 1);
if (suffix == "attn.in_proj_weight" || suffix == "attn.in_proj_bias") {
new_name = hf_clip_resblock_prefix + idx + "." + suffix;
} else if (open_clip_to_hk_clip_resblock.find(suffix) != open_clip_to_hk_clip_resblock.end()) {
std::string new_suffix = open_clip_to_hk_clip_resblock[suffix];
new_name = hf_clip_resblock_prefix + idx + "." + new_suffix;
}
}
};
replace_suffix();
open_clip_resblock_prefix = "model.visual.transformer.resblocks.";
hf_clip_resblock_prefix = "transformer.vision_model.encoder.layers.";
replace_suffix();
return prefix + new_name;
}
std::string convert_vae_decoder_name(const std::string& name) {
if (vae_decoder_name_map.find(name) != vae_decoder_name_map.end()) {
return vae_decoder_name_map[name];
}
return name;
}
/* If not a SDXL LoRA the unet" prefix will have already been replaced by this
* point and "te2" and "te1" don't seem to appear in non-SDXL only "te_" */
std::string convert_sdxl_lora_name(std::string tensor_name) {
const std::pair<std::string, std::string> sdxl_lora_name_lookup[] = {
{"unet", "model_diffusion_model"},
{"te2", "cond_stage_model_1_transformer"},
{"te1", "cond_stage_model_transformer"},
{"text_encoder_2", "cond_stage_model_1_transformer"},
{"text_encoder", "cond_stage_model_transformer"},
};
for (auto& pair_i : sdxl_lora_name_lookup) {
if (tensor_name.compare(0, pair_i.first.length(), pair_i.first) == 0) {
tensor_name = std::regex_replace(tensor_name, std::regex(pair_i.first), pair_i.second);
break;
}
}
return tensor_name;
}
std::unordered_map<std::string, std::unordered_map<std::string, std::string>> suffix_conversion_underline = {
{
"attentions",
{
{"to_k", "k"},
{"to_q", "q"},
{"to_v", "v"},
{"to_out_0", "proj_out"},
{"group_norm", "norm"},
},
},
{
"resnets",
{
{"conv1", "in_layers_2"},
{"conv2", "out_layers_3"},
{"norm1", "in_layers_0"},
{"norm2", "out_layers_0"},
{"time_emb_proj", "emb_layers_1"},
{"conv_shortcut", "skip_connection"},
},
},
};
std::unordered_map<std::string, std::unordered_map<std::string, std::string>> suffix_conversion_dot = {
{
"attentions",
{
{"to_k", "k"},
{"to_q", "q"},
{"to_v", "v"},
{"to_out.0", "proj_out"},
{"group_norm", "norm"},
},
},
{
"resnets",
{
{"conv1", "in_layers.2"},
{"conv2", "out_layers.3"},
{"norm1", "in_layers.0"},
{"norm2", "out_layers.0"},
{"time_emb_proj", "emb_layers.1"},
{"conv_shortcut", "skip_connection"},
},
},
};
std::string convert_diffusers_name_to_compvis(std::string key, char seq) {
std::vector<std::string> m;
auto match = [](std::vector<std::string>& match_list, const std::regex& regex, const std::string& key) {
auto r = std::smatch{};
if (!std::regex_match(key, r, regex)) {
return false;
}
match_list.clear();
for (size_t i = 1; i < r.size(); ++i) {
match_list.push_back(r.str(i));
}
return true;
};
std::unordered_map<std::string, std::unordered_map<std::string, std::string>> suffix_conversion;
if (seq == '_') {
suffix_conversion = suffix_conversion_underline;
} else {
suffix_conversion = suffix_conversion_dot;
}
auto get_converted_suffix = [&suffix_conversion](const std::string& outer_key, const std::string& inner_key) {
auto outer_iter = suffix_conversion.find(outer_key);
if (outer_iter != suffix_conversion.end()) {
auto inner_iter = outer_iter->second.find(inner_key);
if (inner_iter != outer_iter->second.end()) {
return inner_iter->second;
}
}
return inner_key;
};
// convert attn to out
if (ends_with(key, "to_out")) {
key += format("%c0", seq);
}
// unet
if (match(m, std::regex(format("unet%cconv_in(.*)", seq)), key)) {
return format("model%cdiffusion_model%cinput_blocks%c0%c0", seq, seq, seq, seq) + m[0];
}
if (match(m, std::regex(format("unet%cconv%cout(.*)", seq, seq)), key)) {
return format("model%cdiffusion_model%cout%c2", seq, seq, seq) + m[0];
}
if (match(m, std::regex(format("unet%cconv_norm_out(.*)", seq)), key)) {
return format("model%cdiffusion_model%cout%c0", seq, seq, seq) + m[0];
}
if (match(m, std::regex(format("unet%ctime_embedding%clinear_(\\d+)(.*)", seq, seq)), key)) {
return format("model%cdiffusion_model%ctime_embed%c", seq, seq, seq) + std::to_string(std::stoi(m[0]) * 2 - 2) + m[1];
}
if (match(m, std::regex(format("unet%cdown_blocks%c(\\d+)%c(attentions|resnets)%c(\\d+)%c(.+)", seq, seq, seq, seq, seq)), key)) {
std::string suffix = get_converted_suffix(m[1], m[3]);
// LOG_DEBUG("%s %s %s %s", m[0].c_str(), m[1].c_str(), m[2].c_str(), m[3].c_str());
return format("model%cdiffusion_model%cinput_blocks%c", seq, seq, seq) + std::to_string(1 + std::stoi(m[0]) * 3 + std::stoi(m[2])) + seq +
(m[1] == "attentions" ? "1" : "0") + seq + suffix;
}
if (match(m, std::regex(format("unet%cmid_block%c(attentions|resnets)%c(\\d+)%c(.+)", seq, seq, seq, seq)), key)) {
std::string suffix = get_converted_suffix(m[0], m[2]);
return format("model%cdiffusion_model%cmiddle_block%c", seq, seq, seq) + (m[0] == "attentions" ? "1" : std::to_string(std::stoi(m[1]) * 2)) +
seq + suffix;
}
if (match(m, std::regex(format("unet%cup_blocks%c(\\d+)%c(attentions|resnets)%c(\\d+)%c(.+)", seq, seq, seq, seq, seq)), key)) {
std::string suffix = get_converted_suffix(m[1], m[3]);
return format("model%cdiffusion_model%coutput_blocks%c", seq, seq, seq) + std::to_string(std::stoi(m[0]) * 3 + std::stoi(m[2])) + seq +
(m[1] == "attentions" ? "1" : "0") + seq + suffix;
}
if (match(m, std::regex(format("unet%cdown_blocks%c(\\d+)%cdownsamplers%c0%cconv", seq, seq, seq, seq, seq)), key)) {
return format("model%cdiffusion_model%cinput_blocks%c", seq, seq, seq) + std::to_string(3 + std::stoi(m[0]) * 3) + seq + "0" + seq + "op";
}
if (match(m, std::regex(format("unet%cup_blocks%c(\\d+)%cupsamplers%c0%cconv", seq, seq, seq, seq, seq)), key)) {
return format("model%cdiffusion_model%coutput_blocks%c", seq, seq, seq) + std::to_string(2 + std::stoi(m[0]) * 3) + seq +
(std::stoi(m[0]) > 0 ? "2" : "1") + seq + "conv";
}
// clip
if (match(m, std::regex(format("te%ctext_model%cencoder%clayers%c(\\d+)%c(.+)", seq, seq, seq, seq, seq)), key)) {
return format("cond_stage_model%ctransformer%ctext_model%cencoder%clayers%c", seq, seq, seq, seq, seq) + m[0] + seq + m[1];
}
if (match(m, std::regex(format("te%ctext_model(.*)", seq)), key)) {
return format("cond_stage_model%ctransformer%ctext_model", seq, seq) + m[0];
}
// vae
if (match(m, std::regex(format("vae%c(.*)%cconv_norm_out(.*)", seq, seq)), key)) {
return format("first_stage_model%c%s%cnorm_out%s", seq, m[0].c_str(), seq, m[1].c_str());
}
if (match(m, std::regex(format("vae%c(.*)%cmid_block%c(attentions|resnets)%c(\\d+)%c(.+)", seq, seq, seq, seq, seq)), key)) {
std::string suffix;
std::string block_name;
if (m[1] == "attentions") {
block_name = "attn";
suffix = get_converted_suffix(m[1], m[3]);
} else {
block_name = "block";
suffix = m[3];
}
return format("first_stage_model%c%s%cmid%c%s_%d%c%s",
seq, m[0].c_str(), seq, seq, block_name.c_str(), std::stoi(m[2]) + 1, seq, suffix.c_str());
}
if (match(m, std::regex(format("vae%c(.*)%cup_blocks%c(\\d+)%cresnets%c(\\d+)%c(.+)", seq, seq, seq, seq, seq, seq)), key)) {
std::string suffix = m[3];
if (suffix == "conv_shortcut") {
suffix = "nin_shortcut";
}
return format("first_stage_model%c%s%cup%c%d%cblock%c%s%c%s",
seq, m[0].c_str(), seq, seq, 3 - std::stoi(m[1]), seq, seq, m[2].c_str(), seq, suffix.c_str());
}
if (match(m, std::regex(format("vae%c(.*)%cdown_blocks%c(\\d+)%cdownsamplers%c0%cconv", seq, seq, seq, seq, seq, seq)), key)) {
return format("first_stage_model%c%s%cdown%c%d%cdownsample%cconv",
seq, m[0].c_str(), seq, seq, std::stoi(m[1]), seq, seq);
}
if (match(m, std::regex(format("vae%c(.*)%cdown_blocks%c(\\d+)%cresnets%c(\\d+)%c(.+)", seq, seq, seq, seq, seq, seq)), key)) {
std::string suffix = m[3];
if (suffix == "conv_shortcut") {
suffix = "nin_shortcut";
}
return format("first_stage_model%c%s%cdown%c%d%cblock%c%s%c%s",
seq, m[0].c_str(), seq, seq, std::stoi(m[1]), seq, seq, m[2].c_str(), seq, suffix.c_str());
}
if (match(m, std::regex(format("vae%c(.*)%cup_blocks%c(\\d+)%cupsamplers%c0%cconv", seq, seq, seq, seq, seq, seq)), key)) {
return format("first_stage_model%c%s%cup%c%d%cupsample%cconv",
seq, m[0].c_str(), seq, seq, 3 - std::stoi(m[1]), seq, seq);
}
if (match(m, std::regex(format("vae%c(.*)", seq)), key)) {
return format("first_stage_model%c", seq) + m[0];
}
return key;
}
std::string convert_tensor_name(const std::string& name) {
std::string new_name = name;
if (starts_with(name, "cond_stage_model.") || starts_with(name, "conditioner.embedders.") || ends_with(name, ".vision_model.visual_projection.weight")) {
new_name = convert_open_clip_to_hf_clip(name);
} else if (starts_with(name, "first_stage_model.decoder")) {
new_name = convert_vae_decoder_name(name);
} else if (starts_with(name, "control_model.")) { // for controlnet pth models
size_t pos = name.find('.');
if (pos != std::string::npos) {
new_name = name.substr(pos + 1);
}
} else if (starts_with(name, "lora_")) { // for lora
size_t pos = name.find('.');
if (pos != std::string::npos) {
std::string name_without_network_parts = name.substr(5, pos - 5);
std::string network_part = name.substr(pos + 1);
// LOG_DEBUG("%s %s", name_without_network_parts.c_str(), network_part.c_str());
std::string new_key = convert_diffusers_name_to_compvis(name_without_network_parts, '_');
/* For dealing with the new SDXL LoRA tensor naming convention */
new_key = convert_sdxl_lora_name(new_key);
if (new_key.empty()) {
new_name = name;
} else {
new_name = "lora." + new_key + "." + network_part;
}
} else {
new_name = name;
}
} else if (contains(name, "lora_up") || contains(name, "lora_down") ||
contains(name, "lora.up") || contains(name, "lora.down") ||
contains(name, "lora_linear")) {
size_t pos = new_name.find(".processor");
if (pos != std::string::npos) {
new_name.replace(pos, strlen(".processor"), "");
}
pos = new_name.rfind("lora");
if (pos != std::string::npos) {
std::string name_without_network_parts = new_name.substr(0, pos - 1);
std::string network_part = new_name.substr(pos);
// LOG_DEBUG("%s %s", name_without_network_parts.c_str(), network_part.c_str());
std::string new_key = convert_diffusers_name_to_compvis(name_without_network_parts, '.');
new_key = convert_sdxl_lora_name(new_key);
replace_all_chars(new_key, '.', '_');
size_t npos = network_part.rfind("_linear_layer");
if (npos != std::string::npos) {
network_part.replace(npos, strlen("_linear_layer"), "");
}
if (starts_with(network_part, "lora.")) {
network_part = "lora_" + network_part.substr(5);
}
if (new_key.size() > 0) {
new_name = "lora." + new_key + "." + network_part;
}
// LOG_DEBUG("new name: %s", new_name.c_str());
}
} else if (starts_with(name, "unet") || starts_with(name, "vae") || starts_with(name, "te")) { // for diffuser
size_t pos = name.find_last_of('.');
if (pos != std::string::npos) {
std::string name_without_network_parts = name.substr(0, pos);
std::string network_part = name.substr(pos + 1);
// LOG_DEBUG("%s %s", name_without_network_parts.c_str(), network_part.c_str());
std::string new_key = convert_diffusers_name_to_compvis(name_without_network_parts, '.');
if (new_key.empty()) {
new_name = name;
} else {
new_name = new_key + "." + network_part;
}
} else {
new_name = name;
}
} else {
new_name = name;
}
// if (new_name != name) {
// LOG_DEBUG("%s => %s", name.c_str(), new_name.c_str());
// }
return new_name;
}
void preprocess_tensor(TensorStorage tensor_storage,
std::vector<TensorStorage>& processed_tensor_storages) {
std::vector<TensorStorage> result;
std::string new_name = convert_tensor_name(tensor_storage.name);
// convert unet transformer linear to conv2d 1x1
if (starts_with(new_name, "model.diffusion_model.") &&
(ends_with(new_name, "proj_in.weight") || ends_with(new_name, "proj_out.weight"))) {
tensor_storage.unsqueeze();
}
// convert vae attn block linear to conv2d 1x1
if (starts_with(new_name, "first_stage_model.") && new_name.find("attn_1") != std::string::npos) {
tensor_storage.unsqueeze();
}
tensor_storage.name = new_name;
if (new_name.find("cond_stage_model") != std::string::npos &&
ends_with(new_name, "attn.in_proj_weight")) {
size_t prefix_size = new_name.find("attn.in_proj_weight");
std::string prefix = new_name.substr(0, prefix_size);
std::vector<TensorStorage> chunks = tensor_storage.chunk(3);
chunks[0].name = prefix + "self_attn.q_proj.weight";
chunks[1].name = prefix + "self_attn.k_proj.weight";
chunks[2].name = prefix + "self_attn.v_proj.weight";
processed_tensor_storages.insert(processed_tensor_storages.end(), chunks.begin(), chunks.end());
} else if (new_name.find("cond_stage_model") != std::string::npos &&
ends_with(new_name, "attn.in_proj_bias")) {
size_t prefix_size = new_name.find("attn.in_proj_bias");
std::string prefix = new_name.substr(0, prefix_size);
std::vector<TensorStorage> chunks = tensor_storage.chunk(3);
chunks[0].name = prefix + "self_attn.q_proj.bias";
chunks[1].name = prefix + "self_attn.k_proj.bias";
chunks[2].name = prefix + "self_attn.v_proj.bias";
processed_tensor_storages.insert(processed_tensor_storages.end(), chunks.begin(), chunks.end());
} else {
processed_tensor_storages.push_back(tensor_storage);
}
}
float bf16_to_f32(uint16_t bfloat16) {
uint32_t val_bits = (static_cast<uint32_t>(bfloat16) << 16);
return *reinterpret_cast<float*>(&val_bits);
}
void bf16_to_f32_vec(uint16_t* src, float* dst, int64_t n) {
// support inplace op
for (int64_t i = n - 1; i >= 0; i--) {
dst[i] = bf16_to_f32(src[i]);
}
}
void convert_tensor(void* src,
ggml_type src_type,
void* dst,
ggml_type dst_type,
int nrows,
int n_per_row) {
int n = nrows * n_per_row;
if (src_type == dst_type) {
size_t nbytes = n * ggml_type_size(src_type) / ggml_blck_size(src_type);
memcpy(((char*)dst), ((char*)src), nbytes);
} else if (src_type == GGML_TYPE_F32) {
if (dst_type == GGML_TYPE_F16) {
ggml_fp32_to_fp16_row((float*)src, (ggml_fp16_t*)dst, n);
} else {
std::vector<float> imatrix(n_per_row, 1.0f); // dummy importance matrix
const float* im = imatrix.data();
ggml_quantize_chunk(dst_type, (float*)src, dst, 0, nrows, n_per_row, im);
}
} else if (dst_type == GGML_TYPE_F32) {
if (src_type == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t*)src, (float*)dst, n);
} else {
auto qtype = ggml_internal_get_type_traits(src_type);
if (qtype.to_float == NULL) {
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available",
ggml_type_name(src_type)));
}
qtype.to_float(src, (float*)dst, n);
}
} else {
// src_type == GGML_TYPE_F16 => dst_type is quantized
// src_type is quantized => dst_type == GGML_TYPE_F16 or dst_type is quantized
auto qtype = ggml_internal_get_type_traits(src_type);
if (qtype.to_float == NULL) {
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available",
ggml_type_name(src_type)));
}
std::vector<char> buf;
buf.resize(sizeof(float) * n);
char* src_data_f32 = buf.data();
qtype.to_float(src, (float*)src_data_f32, n);
if (dst_type == GGML_TYPE_F16) {
ggml_fp32_to_fp16_row((float*)src_data_f32, (ggml_fp16_t*)dst, n);
} else {
std::vector<float> imatrix(n_per_row, 1.0f); // dummy importance matrix
const float* im = imatrix.data();
ggml_quantize_chunk(dst_type, (float*)src_data_f32, dst, 0, nrows, n_per_row, im);
}
}
}
/*================================================= ModelLoader ==================================================*/
// ported from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py#L16
std::map<char, int> unicode_to_byte() {
std::map<int, char> byte_to_unicode;
// List of utf-8 byte ranges
for (int b = static_cast<int>('!'); b <= static_cast<int>('~'); ++b) {
byte_to_unicode[b] = static_cast<char>(b);
}
for (int b = 49825; b <= 49836; ++b) {
byte_to_unicode[b] = static_cast<char>(b);
}
for (int b = 49838; b <= 50111; ++b) {
byte_to_unicode[b] = static_cast<char>(b);
}
// printf("%d %d %d %d\n", static_cast<int>('¡'), static_cast<int>('¬'), static_cast<int>('®'), static_cast<int>('ÿ'));
// exit(1);
int n = 0;
for (int b = 0; b < 256; ++b) {
if (byte_to_unicode.find(b) == byte_to_unicode.end()) {
byte_to_unicode[b] = static_cast<char>(256 + n);
n++;
}
}
// byte_encoder = bytes_to_unicode()
// byte_decoder = {v: k for k, v in byte_encoder.items()}
std::map<char, int> byte_decoder;
for (const auto& entry : byte_to_unicode) {
byte_decoder[entry.second] = entry.first;
}
byte_to_unicode.clear();
return byte_decoder;
}
bool is_zip_file(const std::string& file_path) {
struct zip_t* zip = zip_open(file_path.c_str(), 0, 'r');
if (zip == NULL) {
return false;
}
zip_close(zip);
return true;
}
bool is_gguf_file(const std::string& file_path) {
std::ifstream file(file_path, std::ios::binary);
if (!file.is_open()) {
return false;
}
char magic[4];
file.read(magic, sizeof(magic));
if (!file) {
return false;
}
for (uint32_t i = 0; i < sizeof(magic); i++) {
if (magic[i] != GGUF_MAGIC[i]) {
return false;
}
}
return true;
}
bool is_safetensors_file(const std::string& file_path) {
std::ifstream file(file_path, std::ios::binary);
if (!file.is_open()) {
return false;
}
// get file size
file.seekg(0, file.end);
size_t file_size_ = file.tellg();
file.seekg(0, file.beg);
// read header size
if (file_size_ <= ST_HEADER_SIZE_LEN) {
return false;
}
uint8_t header_size_buf[ST_HEADER_SIZE_LEN];
file.read((char*)header_size_buf, ST_HEADER_SIZE_LEN);
if (!file) {
return false;
}
size_t header_size_ = read_u64(header_size_buf);
if (header_size_ >= file_size_ || header_size_ <= 2) {
return false;
}
// read header
std::vector<char> header_buf;
header_buf.resize(header_size_ + 1);
header_buf[header_size_] = '\0';
file.read(header_buf.data(), header_size_);
if (!file) {
return false;
}
nlohmann::json header_ = nlohmann::json::parse(header_buf.data());
if (header_.is_discarded()) {
return false;
}
return true;
}
bool ModelLoader::init_from_file(const std::string& file_path, const std::string& prefix) {
if (is_directory(file_path)) {
LOG_INFO("load %s using diffusers format", file_path.c_str());
return init_from_diffusers_file(file_path, prefix);
} else if (is_gguf_file(file_path)) {
LOG_INFO("load %s using gguf format", file_path.c_str());
return init_from_gguf_file(file_path, prefix);
} else if (is_safetensors_file(file_path)) {
LOG_INFO("load %s using safetensors format", file_path.c_str());
return init_from_safetensors_file(file_path, prefix);
} else if (is_zip_file(file_path)) {
LOG_INFO("load %s using checkpoint format", file_path.c_str());
return init_from_ckpt_file(file_path, prefix);
} else {
LOG_WARN("unknown format %s", file_path.c_str());
return false;
}
}
/*================================================= GGUFModelLoader ==================================================*/
bool ModelLoader::init_from_gguf_file(const std::string& file_path, const std::string& prefix) {
LOG_DEBUG("init from '%s'", file_path.c_str());
file_paths_.push_back(file_path);
size_t file_index = file_paths_.size() - 1;
gguf_context* ctx_gguf_ = NULL;
ggml_context* ctx_meta_ = NULL;
ctx_gguf_ = gguf_init_from_file(file_path.c_str(), {true, &ctx_meta_});
if (!ctx_gguf_) {
LOG_ERROR("failed to open '%s'", file_path.c_str());
return false;
}
int n_tensors = gguf_get_n_tensors(ctx_gguf_);
size_t total_size = 0;
size_t data_offset = gguf_get_data_offset(ctx_gguf_);
for (int i = 0; i < n_tensors; i++) {
std::string name = gguf_get_tensor_name(ctx_gguf_, i);
struct ggml_tensor* dummy = ggml_get_tensor(ctx_meta_, name.c_str());
size_t offset = data_offset + gguf_get_tensor_offset(ctx_gguf_, i);
// LOG_DEBUG("%s", name.c_str());
TensorStorage tensor_storage(prefix + name, dummy->type, dummy->ne, ggml_n_dims(dummy), file_index, offset);
GGML_ASSERT(ggml_nbytes(dummy) == tensor_storage.nbytes());
tensor_storages.push_back(tensor_storage);
}
gguf_free(ctx_gguf_);
ggml_free(ctx_meta_);
return true;
}
/*================================================= SafeTensorsModelLoader ==================================================*/
ggml_type str_to_ggml_type(const std::string& dtype) {
ggml_type ttype = GGML_TYPE_COUNT;
if (dtype == "F16") {
ttype = GGML_TYPE_F16;
} else if (dtype == "BF16") {
ttype = GGML_TYPE_F32;
} else if (dtype == "F32") {
ttype = GGML_TYPE_F32;
}
return ttype;
}
// https://huggingface.co/docs/safetensors/index
bool ModelLoader::init_from_safetensors_file(const std::string& file_path, const std::string& prefix) {
LOG_DEBUG("init from '%s'", file_path.c_str());
file_paths_.push_back(file_path);
size_t file_index = file_paths_.size() - 1;
std::ifstream file(file_path, std::ios::binary);
if (!file.is_open()) {
LOG_ERROR("failed to open '%s'", file_path.c_str());
return false;
}
// get file size
file.seekg(0, file.end);
size_t file_size_ = file.tellg();
file.seekg(0, file.beg);
// read header size
if (file_size_ <= ST_HEADER_SIZE_LEN) {
LOG_ERROR("invalid safetensor file '%s'", file_path.c_str());
return false;
}
uint8_t header_size_buf[ST_HEADER_SIZE_LEN];
file.read((char*)header_size_buf, ST_HEADER_SIZE_LEN);
if (!file) {
LOG_ERROR("read safetensors header size failed: '%s'", file_path.c_str());
return false;
}
size_t header_size_ = read_u64(header_size_buf);
if (header_size_ >= file_size_) {
LOG_ERROR("invalid safetensor file '%s'", file_path.c_str());
return false;
}
// read header
std::vector<char> header_buf;
header_buf.resize(header_size_ + 1);
header_buf[header_size_] = '\0';
file.read(header_buf.data(), header_size_);
if (!file) {
LOG_ERROR("read safetensors header failed: '%s'", file_path.c_str());
return false;
}
nlohmann::json header_ = nlohmann::json::parse(header_buf.data());
for (auto& item : header_.items()) {
std::string name = item.key();
nlohmann::json tensor_info = item.value();
// LOG_DEBUG("%s %s\n", name.c_str(), tensor_info.dump().c_str());
if (name == "__metadata__") {
continue;
}
if (is_unused_tensor(name)) {
continue;
}
std::string dtype = tensor_info["dtype"];
nlohmann::json shape = tensor_info["shape"];
size_t begin = tensor_info["data_offsets"][0].get<size_t>();
size_t end = tensor_info["data_offsets"][1].get<size_t>();
ggml_type type = str_to_ggml_type(dtype);
if (type == GGML_TYPE_COUNT) {
LOG_ERROR("unsupported dtype '%s'", dtype.c_str());
return false;
}
if (shape.size() > SD_MAX_DIMS) {
LOG_ERROR("invalid tensor '%s'", name.c_str());
return false;
}
int n_dims = (int)shape.size();
int64_t ne[SD_MAX_DIMS] = {1, 1, 1, 1, 1};
for (int i = 0; i < n_dims; i++) {
ne[i] = shape[i].get<int64_t>();
}
if (n_dims == 5) {
if (ne[3] == 1 && ne[4] == 1) {
n_dims = 4;
} else {
LOG_ERROR("invalid tensor '%s'", name.c_str());
return false;
}
}
// ggml_n_dims returns 1 for scalars
if (n_dims == 0) {
n_dims = 1;
}
TensorStorage tensor_storage(prefix + name, type, ne, n_dims, file_index, ST_HEADER_SIZE_LEN + header_size_ + begin);
tensor_storage.reverse_ne();
size_t tensor_data_size = end - begin;
if (dtype == "BF16") {
tensor_storage.is_bf16 = true;
GGML_ASSERT(tensor_storage.nbytes() == tensor_data_size * 2);
} else {
GGML_ASSERT(tensor_storage.nbytes() == tensor_data_size);
}
tensor_storages.push_back(tensor_storage);
// LOG_DEBUG("%s %s", tensor_storage.to_string().c_str(), dtype.c_str());
}
return true;
}
/*================================================= DiffusersModelLoader ==================================================*/
bool ModelLoader::init_from_diffusers_file(const std::string& file_path, const std::string& prefix) {
std::string unet_path = path_join(file_path, "unet/diffusion_pytorch_model.safetensors");
std::string vae_path = path_join(file_path, "vae/diffusion_pytorch_model.safetensors");
std::string clip_path = path_join(file_path, "text_encoder/model.safetensors");
if (!init_from_safetensors_file(unet_path, "unet.")) {
return false;
}
if (!init_from_safetensors_file(vae_path, "vae.")) {
return false;
}
if (!init_from_safetensors_file(clip_path, "te.")) {
return false;
}
return true;
}
/*================================================= CkptModelLoader ==================================================*/
// $ python -m pickletools sd-v1-4/archive/data.pkl | head -n 100
// 0: \x80 PROTO 2
// 2: } EMPTY_DICT
// 3: q BINPUT 0
// 5: ( MARK
// 6: X BINUNICODE 'epoch'
// 16: q BINPUT 1
// 18: K BININT1 6
// 20: X BINUNICODE 'global_step'
// 36: q BINPUT 2
// 38: J BININT 470000
// 43: X BINUNICODE 'pytorch-lightning_version'
// 73: q BINPUT 3
// 75: X BINUNICODE '1.4.2'
// 85: q BINPUT 4
// 87: X BINUNICODE 'state_dict'
// 102: q BINPUT 5
// 104: } EMPTY_DICT
// 105: q BINPUT 6
// 107: ( MARK
// 108: X BINUNICODE 'betas'
// 118: q BINPUT 7
// 120: c GLOBAL 'torch._utils _rebuild_tensor_v2'
// 153: q BINPUT 8
// 155: ( MARK
// 156: ( MARK
// 157: X BINUNICODE 'storage'
// 169: q BINPUT 9
// 171: c GLOBAL 'torch FloatStorage'
// 191: q BINPUT 10
// 193: X BINUNICODE '0'
// 199: q BINPUT 11
// 201: X BINUNICODE 'cpu'
// 209: q BINPUT 12
// 211: M BININT2 1000
// 214: t TUPLE (MARK at 156)
// 215: q BINPUT 13
// 217: Q BINPERSID
// 218: K BININT1 0
// 220: M BININT2 1000
// ...............................
// 3201: q BINPUT 250
// 3203: R REDUCE
// 3204: q BINPUT 251
// 3206: X BINUNICODE 'model.diffusion_model.input_blocks.1.1.proj_in.weight'
// 3264: q BINPUT 252
// 3266: h BINGET 8
// 3268: ( MARK
// 3269: ( MARK
// 3270: h BINGET 9
// 3272: h BINGET 10
// 3274: X BINUNICODE '30'
// 3281: q BINPUT 253
// 3283: h BINGET 12
// 3285: J BININT 102400
// 3290: t TUPLE (MARK at 3269)
// 3291: q BINPUT 254
// 3293: Q BINPERSID
// 3294: K BININT1 0
// 3296: ( MARK
// 3297: M BININT2 320
// 3300: M BININT2 320
// 3303: K BININT1 1
// 3305: K BININT1 1
// 3307: t TUPLE (MARK at 3296)
// 3308: q BINPUT 255